PROJECT W-551 DETERMINATION DATA FOR EARLY LAW INTERIM PRETREATMENT SYSTEM SELECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
TEDESCHI AR
This report provides the detailed assessment forms and data for selection of the solids separation and cesium separation technology for project W-551, Interim Pretreatment System. This project will provide early pretreated low activity waste feed to the Waste Treatment Plant to allow Waste Treatment Plan Low Activity Waste facility operation prior to construction completion of the Pretreatment and High Level Waste facilities. The candidate solids separations technologies are rotary microfiltration and crossflow filtration, and the candidate cesium separation technologies are fractional crystallization, caustic-side solvent extraction, and ion-exchange using spherical resorcinol-formaldehyde resin. This data was used to prepare a cross-cutting technologymore » summary, reported in RPP-RPT-37740.« less
Establishment of the Center for Advanced Separation Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopher E. Hull
2006-09-30
This Final Technical Report covers the eight sub-projects awarded in the first year and the five projects awarded in the second year of Cooperative Agreement DE-FC26-01NT41091: Establishment of the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.
Continuation of Crosscutting Technology Development at Cast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Roe-Hoan
2012-03-31
This Final Technical Report describes progress made on the sub-projects awarded in the Cooperative Agreement DE-FC26-05NT42457: Continuation of Crosscutting Technology Development at Center for Advanced Separation Technologies (CAST). The final reports for each sub-project are attached in the appendix. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: a) Solid-solid separation b) Solid-liquid separation c) Chemical/Biological Extraction d) Modeling and Control, and e) Environmental Control.
Evaluation of Mars CO2 Capture and Gas Separation Technologies
NASA Technical Reports Server (NTRS)
Muscatello, Anthony C.; Santiago-Maldonado, Edgardo; Gibson, Tracy; Devor, Robert; Captain, James
2011-01-01
Recent national policy statements have established that the ultimate destination of NASA's human exploration program is Mars. In Situ Resource Utilization (ISRU) is a key technology required to ,enable such missions and it is appropriate to review progress in this area and continue to advance the systems required to produce rocket propellant, oxygen, and other consumables on Mars using the carbon dioxide atmosphere and other potential resources. The Mars Atmospheric Capture and Gas separation project is selecting, developing, and demonstrating techniques to capture and purify Martian atmospheric gases for their utilization for the production of hydrocarbons, oxygen, and water in ISRU systems. Trace gases will be required to be separated from Martian atmospheric gases to provide pure CO2 to processing elements. In addition, other Martian gases, such as nitrogen and argon, occur in concentrations high enough to be useful as buffer gas and should be captured as well. To achieve these goals, highly efficient gas separation processes will be required. These gas separation techniques are also required across various areas within the ISRU project to support various consumable production processes. The development of innovative gas separation techniques will evaluate the current state-of-the-art for the gas separation required, with the objective to demonstrate and develop light-weight, low-power methods for gas separation. Gas separation requirements include, but are not limited to the selective separation of: (1) methane and water from unreacted carbon oxides (C02-CO) and hydrogen typical of a Sabatier-type process, (2) carbon oxides and water from unreacted hydrogen from a Reverse Water-Gas Shift process, (3)/carbon oxides from oxygen from a trash/waste processing reaction, and (4) helium from hydrogen or oxygen from a propellant scavenging process. Potential technologies for the separations include' freezers, selective membranes, selective solvents, polymeric sorbents, zeolites, and new technologies. This paper summarizes the results of an extensive literature review of candidate technologies for the capture and separation of CO2 and other relevant gases. This information will be used to prioritize the technologies to be developed further during this and other ISRU projects.
Crosscutting Technology Development at the Center for Advanced Separation Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopher E. Hull
2006-09-30
This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.
CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopher E. Hull
2006-05-15
This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.
Power and Energy Systems Technology Program. Research Series No. 43.
ERIC Educational Resources Information Center
Haakenson, Harvey
The overall objective of this project was to develop a training program and materials for power plant training in North Dakota. The project utilized four separate instructional units and four separate enrollment times with eight students enrolling in each phase to a maximum of thirty-two students. The course that resulted from the project is…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helen Kerr
2002-01-10
This report (which forms part of the requirements of the Statement of Work Task 0, subtask 0.4) records progress towards defining a detailed Work Plan for the CCP 30 days after contract initiation. It describes the studies planned, workscope development and technology provider bid evaluation status at that time. Business sensitive information is provided separately in Appendix 1. Contract negotiations are on hold pending award of patent waiver status to the CCP.
ERIC Educational Resources Information Center
Matthews, Wendy; Johnson, Daniel C.
2017-01-01
The purpose of this inter-university project was to explore pre-service teachers' perceptions of collaboration and use of online technology. Twenty-two undergraduate music education majors from two separate universities participated in an eleven-week collaborative project to develop, teach, and self-assess general music lesson plans via a variety…
USDA-ARS?s Scientific Manuscript database
This project evaluated and demonstrated the viability of a third generation manure treatment technology. The technology was developed as an alternative to the lagoon/spray field system typically used to treat the wastewater generated by swine farms in North Carolina. It separates solids and liquids ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kearney, M; Kochergin, V; Hess, R
2005-03-31
Large-scale displacement of petroleum will come from low-cost cellulosic feedstocks such as straw and corn stover crop residues. This project has taken a step toward making this projection a reality by reducing capital and energy costs, the two largest cost factors associated with converting cellulosic biomass to chemicals and fuels. The technology exists for using acid or enzyme hydrolysis processes to convert biomass feedstock (i.e., waste cellulose such as straw, corn stover, and wood) into their base monomeric sugar building blocks, which can, in turn, be processed into chemicals and fuels using a number of innovative fermentation technologies. However, whilemore » these processes are technically possible, practical and economic barriers make these processes only marginally feasible or not feasible at all. These barriers are due in part to the complexity and large fixed and recurring capital costs of unit operations including filtration, chromatographic separation, and ion exchange. This project was designed to help remove these barriers by developing and implementing new purification and separation technologies that will reduce the capital costs of the purification and chromatographic separation units by 50% to 70%. The technologies fundamental to these improvements are: (a) highly efficient clarification and purification systems that use screening and membrane filtration to eliminate suspended solids and colloidal material from feed streams and (b) fractal technology based chromatographic separation and ion exchange systems that can substitute for conventional systems but at much smaller size and cost. A non-hazardous ''raw sugar beet juice'' stream (75 to 100 gal/min) was used for prototype testing of these technologies. This raw beet juice stream from the Amalgamated Sugar LLC plant in Twin Falls, Idaho contained abrasive materials and membrane foulants. Its characteristics were representative of an industrial-scale heterogeneous plant extract/hydrolysis stream, and therefore was an ideal model system for developing new separation equipment. Subsequent testing used both synthetic acid hydrolysate and corn stover derived weak acid hydrolysate (NREL produced). A two-phased approach was used for the research and development described in this project. The first level of study involved testing the new concepts at the bench level. The bench-scale evaluations provided fundamental understanding of the processes, building and testing small prototype systems, and determining the efficiency of the novel processes. The second level of study, macro-level, required building larger systems that directly simulated industrial operations and provided validation of performance to minimize financial risk during commercialization. The project goals and scope included: (1) Development of low-capital alternatives to conventional crop-based purification/separation processes; and (2) Development of each process to the point that transition to commercial operation is low risk. The project reporting period was January 2001 to December 2004. This included a one year extension of the project (without additional funding).« less
NASA Technical Reports Server (NTRS)
Baldwin, Richard S.; Bennet, William R.; Wong, Eunice K.; Lewton, MaryBeth R.; Harris, Megan K.
2010-01-01
To address the future performance and safety requirements for the electrical energy storage technologies that will enhance and enable future NASA manned aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued within the scope of the NASA Exploration Technology Development Program s (ETDP's) Energy Storage Project. A critical cell-level component of a lithium-ion battery which significantly impacts both overall electrochemical performance and safety is the porous separator that is sandwiched between the two active cell electrodes. To support the selection of the optimal cell separator material(s) for the advanced battery technology and chemistries under development, laboratory characterization and screening procedures were established to assess and compare separator material-level attributes and associated separator performance characteristics.
Evaluation of target efficiencies for solid-liquid separation steps in biofuels production.
Kochergin, Vadim; Miller, Keith
2011-01-01
Development of liquid biofuels has entered a new phase of large scale pilot demonstration. A number of plants that are in operation or under construction face the task of addressing the engineering challenges of creating a viable plant design, scaling up and optimizing various unit operations. It is well-known that separation technologies account for 50-70% of both capital and operating cost. Additionally, reduction of environmental impact creates technological challenges that increase project cost without adding to the bottom line. Different technologies vary in terms of selection of unit operations; however, solid-liquid separations are likely to be a major contributor to the overall project cost. Despite the differences in pretreatment approaches, similar challenges arise for solid-liquid separation unit operations. A typical process for ethanol production from biomass includes several solid-liquid separation steps, depending on which particular stream is targeted for downstream processing. The nature of biomass-derived materials makes it either difficult or uneconomical to accomplish complete separation in a single step. Therefore, setting realistic efficiency targets for solid-liquid separations is an important task that influences overall process recovery and economics. Experimental data will be presented showing typical characteristics for pretreated cane bagasse at various stages of processing into cellulosic ethanol. Results of generic material balance calculations will be presented to illustrate the influence of separation target efficiencies on overall process recoveries and characteristics of waste streams.
Fuel From Algae: Scaling and Commercialization of Algae Harvesting Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-01-15
Broad Funding Opportunity Announcement Project: Led by CEO Ross Youngs, AVS has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS’s Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leavingmore » behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.« less
Mars Atmospheric Capture and Gas Separation
NASA Technical Reports Server (NTRS)
Muscatello, Anthony; Santiago-Maldonado, Edgardo; Gibson, Tracy; Devor, Robert; Captain, James
2011-01-01
The Mars atmospheric capture and gas separation project is selecting, developing, and demonstrating techniques to capture and purify Martian atmospheric gases for their utilization for the production of hydrocarbons, oxygen, and water in ISRU systems. Trace gases will be required to be separated from Martian atmospheric gases to provide pure C02 to processing elements. In addition, other Martian gases, such as nitrogen and argon, occur in concentrations high enough to be useful as buffer gas and should be captured as welL To achieve these goals, highly efficient gas separation processes will be required. These gas separation techniques are also required across various areas within the ISRU project to support various consumable production processes. The development of innovative gas separation techniques will evaluate the current state-of-the-art for the gas separation required, with the objective to demonstrate and develop light-weight, low-power methods for gas separation. Gas separation requirements include, but are not limited to the selective separation of: (1) methane and water from un-reacted carbon oxides (C02- CO) and hydrogen typical of a Sabatier-type process, (2) carbon oxides and water from unreacted hydrogen from a Reverse Water-Gas Shift process, (3) carbon oxides from oxygen from a trash/waste processing reaction, and (4) helium from hydrogen or oxygen from a propellant scavenging process. Potential technologies for the separations include freezers, selective membranes, selective solvents, polymeric sorbents, zeolites, and new technologies. This paper and presentation will summarize the results of an extensive literature review and laboratory evaluations of candidate technologies for the capture and separation of C02 and other relevant gases.
Assessments of Fuels for Military Use Preparation and Distribution of Synthetic Fuel Blends
2013-01-01
received from DLA Energy. The HRJ-8 was sourced from Centuri Technologies LP. Three separate shipments of HRJ-8 fuel (18,450 gallons) were received...of HRJ-8 was received from Centauri Technologies , LP. Three separate shipments totaling 16,382 gallons were delivered to TFLRF on January 25, 26, and...for Patsy Muzzell U.S. Army TARDEC Force Projection Technologies Warren, Michigan Contract No. W56HZV-09-C-0100 (WD0004–Tasks 1, 20, 21
Pedagogical Approaches for Technology-Integrated Science Teaching
ERIC Educational Resources Information Center
Hennessy, Sara; Wishart, Jocelyn; Whitelock, Denise; Deaney, Rosemary; Brawn, Richard; la Velle, Linda; McFarlane, Angela; Ruthven, Kenneth; Winterbottom, Mark
2007-01-01
The two separate projects described have examined how teachers exploit computer-based technologies in supporting learning of science at secondary level. This paper examines how pedagogical approaches associated with these technological tools are adapted to both the cognitive and structuring resources available in the classroom setting. Four…
Designing, Developing and Implementing WWW-Based Distance Learning.
ERIC Educational Resources Information Center
Riley, Peter C.
The rapid advancement of communication technologies is resulting in a wide array of design and development choices for distance learning projects. The 58th Special Operations Wing at Kirtland Air Force Base, New Mexico, is developing a prototype distance learning project designed to serve geographically separated learner populations. Project staff…
Report on all ARRA Funded Technical Work
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2013-10-05
The main focus of this American Recovery and Reinvestment Act of 2009 (ARRA) funded project was to design an energy efficient carbon capture and storage (CCS) process using the Recipients membrane system for H{sub 2} separation and CO{sub 2} capture. In the ARRA-funded project, the Recipient accelerated development and scale-up of ongoing hydrogen membrane technology research and development (R&D). Specifically, this project focused on accelerating the current R&D work scope of the base program-funded project, involving lab scale tests, detail design of a 250 lb/day H{sub 2} process development unit (PDU), and scale-up of membrane tube and coating manufacturing. Thismore » project scope included the site selection and a Front End Engineering Design (FEED) study of a nominally 4 to 10 ton-per-day (TPD) Pre-Commercial Module (PCM) hydrogen separation membrane system. Process models and techno-economic analysis were updated to include studies on integration of this technology into an Integrated Gasification Combined Cycle (IGCC) power generation system with CCS.« less
Advanced Air Transportation Technologies (AATT) Project: Distributed Air-Ground Traffic Management
NASA Technical Reports Server (NTRS)
Mogford, Richard; Green, Steve; Ballin, Mark
2002-01-01
This viewgraph presentation provides an overview of active Distributed Air Ground Traffic Management (DAG-TM) work and reported on its overall progress to date. It does not include details on the concept elements (CEs).The DAG-TM research project is defined as a concept development and definition project and no tools will be delivered. Of the 14 CEs, three are being explored actively: CE-5, CE-6, and CE-11. Overviews of CE-5 (Free Maneuvering for User-Preferred Separation Assurance and Local TFM Conformance), CE-6 (En Route and Transition Trajectory Negotiation for User-Preferred Separation and Local TFM Conformance) and CE-11 (Self-Spacing for Merging and In-Trail Separation) are presented.
NASA Technical Reports Server (NTRS)
Nerren, B. H.
1977-01-01
The electrophoresis of six columns was accomplished on the Apollo-Soyuz test Project. After separation, these columns were frozen in orbit and were returned for ground-based analyses. One major goal of the MA-011 experiment was the assessment of the separation achieved in orbit by slicing these frozen columns. The slicing of the frozen columns required a new device. The development of that device is described.
McIntosh Unit 4 PCFB demonstration project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodd, A.M.; Dryden, R.J.; Morehead, H.T.
1997-12-31
The City of Lakeland, Foster Wheeler Corporation and Westinghouse Electric Corporation have embarked on a utility scale demonstration of Pressurized Circulating Fluidized Bed (PCFB) technology at Lakeland`s McIntosh Power Station in Lakeland, Florida. The US Department of Energy will be providing approximately $195 million of funding for the project through two Cooperative Agreements under the auspices of the Clean Coal Technology Program. The project will involve the commercial demonstration of Foster Wheeler Pyroflow PCFB technology integrated with Westinghouse`s Hot Gas Filter (HGF) and power generation technologies. The total project duration will be approximately eight years and will be structured intomore » three separate phases; two years of design and permitting, followed by an initial period of two years of fabrication and construction and concluding with a four year demonstration (commercial operation) period. It is expected that the project will show that Foster Wheeler`s Pyroflow PCFB technology coupled with Westinghouse`s HGF and power generation technologies represents a cost effective, high efficiency, low emissions means of adding greenfield generation capacity and that this same technology is also well suited for repowering applications.« less
Develop Improved Materials to Support the Hydrogen Economy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Michael C. Martin
The Edison Materials Technology Center (EMTEC) solicited and funded hydrogen infrastructure related projects that have a near term potential for commercialization. The subject technology of each project is related to the US Department of Energy hydrogen economy goals as outlined in the multi-year plan titled, 'Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan.' Preference was given to cross cutting materials development projects that might lead to the establishment of manufacturing capability and job creation. The Edison Materials Technology Center (EMTEC) used the US Department of Energy hydrogen economy goals to find and fund projects withmore » near term commercialization potential. An RFP process aligned with this plan required performance based objectives with go/no-go technology based milestones. Protocols established for this program consisted of a RFP solicitation process, white papers and proposals with peer technology and commercialization review (including DoE), EMTEC project negotiation and definition and DoE cost share approval. Our RFP approach specified proposals/projects for hydrogen production, hydrogen storage or hydrogen infrastructure processing which may include sensor, separator, compression, maintenance, or delivery technologies. EMTEC was especially alert for projects in the appropriate subject area that have cross cutting materials technology with near term manufacturing and commercialization opportunities.« less
DOT National Transportation Integrated Search
2016-03-01
The project objective was to conduct a detailed literature review of storm water pollutants and mitigation technologies and synthesize : the information so that INDOT can implement project results into standards. Because it is a municipal separate st...
Electronic-projecting Moire method applying CBR-technology
NASA Astrophysics Data System (ADS)
Kuzyakov, O. N.; Lapteva, U. V.; Andreeva, M. A.
2018-01-01
Electronic-projecting method based on Moire effect for examining surface topology is suggested. Conditions of forming Moire fringes and their parameters’ dependence on reference parameters of object and virtual grids are analyzed. Control system structure and decision-making subsystem are elaborated. Subsystem execution includes CBR-technology, based on applying case base. The approach related to analysing and forming decision for each separate local area with consequent formation of common topology map is applied.
Proceedings of the 1998 U.S. DOE Hydrogen Program Review: Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-08-01
This document contains technical progress reports on 42 research projects funded by the DOE Hydrogen Program in Fiscal Year 1998, in support of its mission to make hydrogen a cost-effective energy carrier for utility, building, and transportation applications. Each year, the Program conducts a rigorous review of its portfolio of projects, utilizing teams of experts to provide vital feedback on the progress of research. These proceedings serve as an important technology reference for the DOE Hydrogen Program. The papers in Volume 2 are arranged under the following topical sections: Storage and separation systems; Thermal systems; and Transportation systems. Selected papersmore » have been indexed separately for inclusion in the Energy Science and Technology Database.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, D.E.
This report presents discussions given at a conference on environmental remediation, September 8--11, Pasco, Washington. Topics include: public confidence; education; in-situ remediation; Hanford tank operations; risk assessments; field experiences; standards; site characterization and monitoring; technology discussions; regulatory issues; compliance; and the UMTRA project. Individual projects are processed separately for the data bases.
NASA Technical Reports Server (NTRS)
Costa, Guillermo J.; Arteaga, Ricardo A.
2011-01-01
A preliminary survey of existing separation assurance and collision avoidance advancements, technologies, and efforts has been conducted in order to develop a concept of operations for flight testing autonomous separation assurance at Dryden Flight Research Center. This effort was part of the Unmanned Aerial Systems in the National Airspace System project. The survey focused primarily on separation assurance projects validated through flight testing (including lessons learned), however current forays into the field were also examined. Comparisons between current Dryden flight and range assets were conducted using House of Quality matrices in order to allow project management to make determinations regarding asset utilization for future flight tests. This was conducted in order to establish a body of knowledge of the current collision avoidance landscape, and thus focus Dryden s efforts more effectively towards the providing of assets and test ranges for future flight testing within this research field.
Advanced Distillation Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddalena Fanelli; Ravi Arora; Annalee Tonkovich
2010-03-24
The Advanced Distillation project was concluded on December 31, 2009. This U.S. Department of Energy (DOE) funded project was completed successfully and within budget during a timeline approved by DOE project managers, which included a one year extension to the initial ending date. The subject technology, Microchannel Process Technology (MPT) distillation, was expected to provide both capital and operating cost savings compared to conventional distillation technology. With efforts from Velocys and its project partners, MPT distillation was successfully demonstrated at a laboratory scale and its energy savings potential was calculated. While many objectives established at the beginning of the projectmore » were met, the project was only partially successful. At the conclusion, it appears that MPT distillation is not a good fit for the targeted separation of ethane and ethylene in large-scale ethylene production facilities, as greater advantages were seen for smaller scale distillations. Early in the project, work involved flowsheet analyses to discern the economic viability of ethane-ethylene MPT distillation and develop strategies for maximizing its impact on the economics of the process. This study confirmed that through modification to standard operating processes, MPT can enable net energy savings in excess of 20%. This advantage was used by ABB Lumus to determine the potential impact of MPT distillation on the ethane-ethylene market. The study indicated that a substantial market exists if the energy saving could be realized and if installed capital cost of MPT distillation was on par or less than conventional technology. Unfortunately, it was determined that the large number of MPT distillation units needed to perform ethane-ethylene separation for world-scale ethylene facilities, makes the targeted separation a poor fit for the technology in this application at the current state of manufacturing costs. Over the course of the project, distillation experiments were performed with the targeted mixture, ethane-ethylene, as well as with analogous low relative volatility systems: cyclohexane-hexane and cyclopentane-pentane. Devices and test stands were specifically designed for these efforts. Development progressed from experiments and models considering sections of a full scale device to the design, fabrication, and operation of a single-channel distillation unit with integrated heat transfer. Throughout the project, analytical and numerical models and Computational Fluid Dynamics (CFD) simulations were validated with experiments in the process of developing this platform technology. Experimental trials demonstrated steady and controllable distillation for a variety of process conditions. Values of Height-to-an-Equivalent Theoretical Plate (HETP) ranging from less than 0.5 inch to a few inches were experimentally proven, demonstrating a ten-fold performance enhancement relative to conventional distillation. This improvement, while substantial, is not sufficient for MPT distillation to displace very large scale distillation trains. Fortunately, parallel efforts in the area of business development have yielded other applications for MPT distillation, including smaller scale separations that benefit from the flowsheet flexibility offered by the technology. Talks with multiple potential partners are underway. Their outcome will also help determine the path ahead for MPT distillation.« less
NASA Astrophysics Data System (ADS)
Lin, Chien-Liang
2018-02-01
This study sought to develop a self-report instrument to be used in the assessment of the project competences of college students engaged in online project-based learning. Three scales of the KIPSSE instrument developed for this study, namely, the knowledge integration, project skills, and self-efficacy scales, were based on related theories and the analysis results of three project advisor interviews. Those items of knowledge integration and project skill scales focused on the integration of different disciplines and technological skills separately. Two samples of data were collected from information technology-related courses taught with an online project-based learning strategy over different semesters at a college in southern Taiwan. The validity and reliability of the KIPSSE instrument were confirmed through item analysis and confirmatory factor analysis using structural equation modeling of two samples of students' online response sets separately. The Cronbach's alpha reliability coefficient for the entire instrument was 0.931; for each scale, the alpha ranged from 0.832 to 0.907. There was also a significant correlation ( r = 0.55, p < 0.01) between the KIPSSE instrument results and the students' product evaluation scores. The findings of this study confirmed the validity and reliability of the KIPSSE instrument. The confirmation process and related implications are also discussed.
Initiating the 2002 Mars Science Laboratory (MSL) Technology Program
NASA Technical Reports Server (NTRS)
Caffrey, Robert T.; Udomkesmalee, Gabriel; Hayati, Samad A.; Henderson, Rebecca
2004-01-01
The Mars Science Laboratory (MSL) Project is an aggressive mission launching in 2009 to investigate the Martian environment and requires new capabilities that are currently are not available. The MSL Technology Program is developing a wide-range of technologies needed for this Mission and potentially other space missions. The MSL Technology Program reports to both the MSL Project and the Mars Technology Program (MTP). The dual reporting process creates a challenging management situation, but ensures the new technology meets both the specific MSL requirements and the broader Mars Program requirements. MTP is a NASA-wide technology development program managed by JPL and is divided into a Focused Program and a Base Program. The MSL Technology Program is under the focused program and is tightly coupled to MSL's mission milestones and deliverables. The technology budget is separate from the flight Project budget, but the technology's requirements and the development process are tightly coordinated with the Project. The MSL Technology Program combines the proven management techniques of flight projects with the commercial technology management strategies of industry and academia, to create a technology management program that meets the short-term requirements of MSL and the long-term requirements of MTP. This paper examines the initiation of 2002 MSL Technology program. Some of the areas discussed in this paper include technology definition, task selection, technology management, and technology assessment. This paper also provides an update of the 2003 MSL technology program and examines some of the drivers that changed the program from its initiation.
USDA-ARS?s Scientific Manuscript database
The primary objective for this project was to construct and evaluate a third generation, innovative swine manure treatment system. The system was designed to: separate solids and liquids with the aid of settling and polymer flocculants; biologically remove ammonia nitrogen with bacteria adapted to h...
1987 Oak Ridge model conference: Proceedings: Volume I, Part 3, Waste Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-01-01
A conference sponsored by the United States Department of Energy (DOE), was held on waste management. Topics of discussion were transuranic waste management, chemical and physical treatment technologies, waste minimization, land disposal technology and characterization and analysis. Individual projects are processed separately for the data bases. (CBS)
Crosscutting Technology Development at the Center for Advanced Separation Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopher Hull
2009-10-31
The U.S. is the largest producer of mining products in the world. In 2003, U.S. mining operations produced $57 billion worth of raw materials that contributed a total of $564 billion to the nation's wealth. Despite these contributions, the mining industry has not been well supported with research and development funds as compared to mining industries in other countries. To overcome this problem, the Center for Advanced Separation Technologies (CAST) was established to develop technologies that can be used by the U.S. mining industry to create new products, reduce production costs, and meet environmental regulations. Originally set up by Virginiamore » Tech and West Virginia University, this endeavor has been expanded into a seven-university consortium -- Virginia Tech, West Virginia University, University of Kentucky, University of Utah, Montana Tech, New Mexico Tech and University of Nevada, Reno - that is supported through U.S. DOE Cooperative Agreement No. DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: (1) Solid-solid separation; (2) Solid-liquid separation; (3) Chemical/biological extraction; (4) Modeling and control; and (5) Environmental control. Distribution of funds is handled via competitive solicitation of research proposals through Site Coordinators at the seven member universities. These were first reviewed and ranked by a group of technical reviewers (selected primarily from industry). Based on these reviews, and an assessment of overall program requirements, the CAST Technical Committee made an initial selection/ranking of proposals and forwarded these to the DOE/NETL Project Officer for final review and approval. The successful projects are listed by category, along with brief abstracts of their aims and objectives.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voelker, Gary; Arnold, John
The objective of this project was to improve the safety of operation of Lithium ion batteries (LIB)and at the same time significantly reduce the manufacturing cost of LIB separators. The project was very successful in demonstrating the improved performance and reduced cost attributed to using UV curable binder and high speed printing technology to place a very thin and precisely controlled ceramic layer on the surface of base separators made of polyolefins such as Polyethylene, Polypropylene and combinations of the two as well as cellulosic base separators. The underlying need for this new technology is the recently identified potential ofmore » fire in large format Lithium ion batteries used in hybrid, plug-in hybrid and electric vehicles. The primary potential cause of battery fire is thermal runaway caused by several different electrical or mechanical mechanisms; such as, overcharge, puncture, overheating, compaction, and internal short circuit. During thermal runaway, the ideal separator prevents ion flow and continues to physically separate the anode from the cathode. If the temperature of the battery gets higher, the separator may melt and partially clog the pores and help prevent ion flows but it also can shrink which can result in physical contact of the electrodes and accelerate thermal run-away even further. Ceramic coated separators eliminate many of the problems related to the usage of traditional separators. The ceramic coating provides an electrically insulating layer that retains its physical integrity at high temperature, allows for more efficient thermal heat transfer, helps reduce thermal shrinkage, and inhibits dendrite growth that could create a potential short circuit. The use of Ultraviolet (UV) chemistry to bind fine ceramic particles on separators is a unique and innovative approach primarily because of the instant curing of the UV curable binder upon exposure to UV light. This significant reduction in drying/curing time significantly reduces the cost of a ceramic coating. Another innovation is high precision, high speed, printing techniques that can apply a unique pattern of ceramic particles on base separators. The pattern will maximize ionic conductivity and minimize ceramic coating weight and thickness, while retaining the benefits of increased puncture strength, reduced thermal shrinkage and no decomposition. This project has met all of its goals and has been successfully completed. This successful completion has enabled Miltec UV to take the final steps leading to the commercialization of an innovative technology that will result in ceramic coated separators that can be manufactured and sold from the US, with increased production capacity, reduced cost, and improved battery safety.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-08-01
In this project, in situ remediation technologies are being tested and evaluated for both source control and mass removal of dense, non-aqueous phase liquid (DNAPL) compounds in low permeability media (LPM). This effort is focused on chlorinated solvents (e.g., trichloroethylene and perchloroethylene) in the vadose and saturated zones of low permeability, massive deposits, and stratified deposits with inter-bedded clay lenses. The project includes technology evaluation and screening analyses and field-scale testing at both clean and contaminated sites in the US and Canada. Throughout this project, activities have been directed at understanding the processes that influence DNPAL compound migration and treatmentmore » in LPM and to assessing the operation and performance of the remediation technologies developed and tested. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less
Flat-plate solar array project. Volume 5: Process development
NASA Technical Reports Server (NTRS)
Gallagher, B.; Alexander, P.; Burger, D.
1986-01-01
The goal of the Process Development Area, as part of the Flat-Plate Solar Array (FSA) Project, was to develop and demonstrate solar cell fabrication and module assembly process technologies required to meet the cost, lifetime, production capacity, and performance goals of the FSA Project. R&D efforts expended by Government, Industry, and Universities in developing processes capable of meeting the projects goals during volume production conditions are summarized. The cost goals allocated for processing were demonstrated by small volume quantities that were extrapolated by cost analysis to large volume production. To provide proper focus and coverage of the process development effort, four separate technology sections are discussed: surface preparation, junction formation, metallization, and module assembly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanislowski, Joshua; Tolbert, Scott; Curran, Tyler
2012-04-30
The Energy & Environmental Research Center (EERC) has continued the work of the National Center for Hydrogen Technology® (NCHT®) Program Year 6 Task 1.12 project to expose hydrogen separation membranes to coal-derived syngas. In this follow-on project, the EERC has exposed two membranes to coal-derived syngas produced in the pilot-scale transport reactor development unit (TRDU). Western Research Institute (WRI), with funding from the State of Wyoming Clean Coal Technology Program and the North Dakota Industrial Commission, contracted with the EERC to conduct testing of WRI’s coal-upgrading/gasification technology for subbituminous and lignite coals in the EERC’s TRDU. This gasifier fires nominallymore » 200–500 lb/hour of fuel and is the pilot-scale version of the full-scale gasifier currently being constructed in Kemper County, Mississippi. A slipstream of the syngas was used to demonstrate warm-gas cleanup and hydrogen separation using membrane technology. Two membranes were exposed to coal-derived syngas, and the impact of coal-derived impurities was evaluated. This report summarizes the performance of WRI’s patent-pending coalupgrading/ gasification technology in the EERC’s TRDU and presents the results of the warm-gas cleanup and hydrogen separation tests. Overall, the WRI coal-upgrading/gasification technology was shown to produce a syngas significantly lower in CO2 content and significantly higher in CO content than syngas produced from the raw fuels. Warm-gas cleanup technologies were shown to be capable of reducing sulfur in the syngas to 1 ppm. Each of the membranes tested was able to produce at least 2 lb/day of hydrogen from coal-derived syngas.« less
DESIGN AND DEVELOPMENT OF GAS-LIQUID CYLINDRICAL CYCLONE COMPACT SEPARATORS FOR THREE-PHASE FLOW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Ram S. Mohan; Dr. Ovadia Shoham
The U.S. Department of Energy (DOE) has awarded a five-year (1997-2002) grant (Mohan and Shoham, DE-FG26-97BC15024, 1997) to The University of Tulsa, to develop compact multiphase separation components for 3-phase flow. The research activities of this project have been conducted through cost sharing by the member companies of the Tulsa University Separation Technology Projects (TUSTP) research consortium and the Oklahoma Center for the Advancement of Science and Technology (OCAST). As part of this project, several individual compact separation components have been developed for onshore and offshore applications. These include gas-liquid cylindrical cyclones (GLCC{copyright}), liquid-liquid cylindrical cyclones (LLCC{copyright}), and the gas-liquid-liquidmore » cylindrical cyclones (GLLCC{copyright}). A detailed study has also been completed for the liquid-liquid hydrocyclones (LLHC). Appropriate control strategies have been developed for proper operation of the GLCC{copyright} and LLCC{copyright}. Testing of GLCC{copyright} at high pressure and real crude conditions for field applications is also completed. Limited studies have been conducted on flow conditioning devices to be used upstream of the compact separators for performance improvement. This report presents a brief overview of the activities and tasks accomplished during the 5-year project period, October 1, 1997-March 31, 2003 (including the no-cost extended period of 6 months). An executive summary is presented initially followed by the tasks of the 5-year budget periods. Then, detailed description of the experimental and modeling investigations are presented. Subsequently, the technical and scientific results of the activities of this project period are presented with some discussions. The findings of this investigation are summarized in the ''Conclusions'' section, followed by relevant references. The publications resulting from this study in the form of MS Theses, Ph.D. Dissertation, Journal Papers and Conference Presentations are provided at the end of this report.« less
PROJECT W-551 INTERIM PRETREATMENT SYSTEM PRECONCEPTUAL CANDIDATE TECHNOLOGY DESCRIPTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
MAY TH
The Office of River Protection (ORP) has authorized a study to recommend and select options for interim pretreatment of tank waste and support Waste Treatment Plant (WTP) low activity waste (LAW) operations prior to startup of all the WTP facilities. The Interim Pretreatment System (IPS) is to be a moderately sized system which separates entrained solids and 137Cs from tank waste for an interim time period while WTP high level waste vitrification and pretreatment facilities are completed. This study's objective is to prepare pre-conceptual technology descriptions that expand the technical detail for selected solid and cesium separation technologies. This revisionmore » includes information on additional feed tanks.« less
NASA Technical Reports Server (NTRS)
Johnson, Charles W.
2011-01-01
The vision of the Unmanned Aircraft System (UAS) Integration in the National Airspace System (NAS) Project is "A global transportation system which allows routine access for all classes of UAS." The goal of the UAS Integration in the NAS Project is to "contribute capabilities that reduce technical barriers related to the safety and operational challenges associated with enabling routine UAS access to the NAS." This goal will be accomplished through a two-phased approach based on development of system-level integration of key concepts, technologies and/or procedures, and demonstrations of integrated capabilities in an operationally relevant environment. Phase 1 will take place the first two years of the Project and Phase 2 will take place the following three years. The Phase 1 and 2 technical objectives are: Phase 1: Developing a gap analysis between current state of the art and the Next Generation Air Transportation System (NextGen) UAS Concept of Operations . Validating the key technical areas identified by this Project . Conducting initial modeling, simulation, and flight testing activities . Completing Sub-project Phase 1 deliverables (spectrum requirements, comparative analysis of certification methodologies, etc.) and continue Phase 2 preparation (infrastructure, tools, etc.) Phase 2: Providing regulators with a methodology for developing airworthiness requirements for UAS, and data to support development of certifications standards and regulatory guidance . Providing systems-level, integrated testing of concepts and/or capabilities that address barriers to routine access to the NAS. Through simulation and flight testing, address issues including separation assurance, communications requirements, and human systems integration in operationally relevant environments. The UAS in the NAS Project will demonstrate solutions in specific technology areas, which will address operational/safety issues related to UAS access to the NAS. Since the resource allocation for this Project is limited ($150M over the five years), the focus is on reducing the technical barriers where NASA has unique capabilities. As a result, technical areas, such as Sense and Avoid (SAA) and beyond line of sight command and control will not be addressed. While these are critical barriers to UAS access, currently, there is a great deal of global effort being exercised to address these challenge areas. Instead, specific technology development in areas where there is certainty that NASA can advance the research to high technology readiness levels will be the Project's focus. Specific sub-projects include Separation Assurance, Human Systems Integration, Communications, Certification, and Integrated Test and Evaluation. Each sub-project will transfer technologies to relevant key stakeholders and decision makers through research transition teams, technology forums, or through other analogous means.
Remote terminal system evaluation
NASA Technical Reports Server (NTRS)
Phillips, T. L.; Grams, H. L.; Lindenlaub, J. C.; Schwingendorf, S. K.; Swain, P. H.; Simmons, W. R.
1975-01-01
An Earth Resources Data Processing System was developed to evaluate the system for training, technology transfer, and data processing. In addition to the five sites included in this project two other sites were connected to the system under separate agreements. The experience of these two sites is discussed. The results of the remote terminal project are documented in seven reports: one from each of the five project sites, Purdue University, and an overview report summarizing the other six reports.
Separation science and technology. Semiannual progress report, October 1993--March 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandegrift, G.F.; Aase, S.B.; Buchholz, B.
1997-12-01
This document reports on the work done by the Separations Science and Technology Programs of the Chemical Technology Division, Argonne National Laboratory (ANL), in the period October 1993-March 1994. This effort is mainly concerned with developing the TRUEX process for removing and concentrating actinides from acidic waste streams contaminated with transuranic (TRU) elements. The objectives of TRUEX processing are to recover valuable TRU elements and to lower disposal costs for the nonTRU waste product of the process. Other projects are underway with the objective of developing (1) evaporation technology for concentrating radioactive waste and product streams such as those generatedmore » by the TRUEX process, (2) treatment schemes for liquid wastes stored are being generated at ANL, (3) a process based on sorbing modified TRUEX solvent on magnetic beads to be used for separation of contaminants from radioactive and hazardous waste streams, and (4) a process that uses low-enriched uranium targets for production of {sup 99}Mo for nuclear medicine uses.« less
Glow Discharge Plasma Demonstrated for Separation Control in the Low-Pressure Turbine
NASA Technical Reports Server (NTRS)
Ashpis, David e.; Hultgren, Lennart S.
2004-01-01
Flow separation in the low-pressure turbine (LPT) is a major barrier that limits further improvements of aerodynamic designs of turbine airfoils. The separation is responsible for performance degradation, and it prevents the design of highly loaded airfoils. The separation can be delayed, reduced, or eliminated completely if flow control techniques are used. Successful flow control technology will enable breakthrough improvements in gas turbine performance and design. The focus of this research project was the development and experimental demonstration of active separation control using glow discharge plasma (GDP) actuators in flow conditions simulating the LPT. The separation delay was shown to be successful, laying the foundation for further development of the technologies to practical application in the LPT. In a fluid mechanics context, the term "flow control" means a technology by which a very small input results in a very large effect on the flow. In this project, the interest is to eliminate or delay flow separation on LPT airfoils by using an active flow control approach, in which disturbances are dynamically inserted into the flow, they interact with the flow, and they delay separation. The disturbances can be inserted using a localized, externally powered, actuating device, examples are acoustic, pneumatic, or mechanical devices that generate vibrations, flow oscillations, or pulses. A variety of flow control devices have been demonstrated in recent years in the context of the external aerodynamics of aircraft wings and airframes, where the incoming flow is quiescent or of a very low turbulence level. However, the flow conditions in the LPT are significantly different because there are high levels of disturbances in the incoming flow that are characterized by high free-stream turbulence intensity. In addition, the Reynolds number, which characterizes the viscous forces in the flow and is related to the flow speed, is very low in the LPT passages.
Metal-containing residues from industry and in the environment: geobiotechnological urban mining.
Glombitza, Franz; Reichel, Susan
2014-01-01
This chapter explains the manifold geobiotechnological possibilities to separate industrial valuable metals from various industrial residues and stored waste products of the past. In addition to an overview of the different microbially catalyzed chemical reactions applicable for a separation of metals and details of published studies, results of many individual investigations from various research projects are described. These concern the separation of rare earth elements from phosphorous production slags, the attempts of tin leaching from mining flotation residues, the separation of metals from spent catalysts, or the treatment of ashes as valuable metal-containing material. The residues of environmental technologies are integrated into this overview as well. The description of the different known microbial processes offers starting points for suitable and new technologies. In addition to the application of chemolithoautotrophic microorganisms the use of heterotrophic microorganisms is explained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, W.E.; Kurath, D.E.
1994-04-01
The US Department of Energy has established the Tank Waste Remediation System (TWRS) to manage and dispose of radioactive wastes stored at the Hanford Site. Within this program are evaluations of pretreatment system alternatives through literature reviews. The information in this report was collected as part of this project at Pacific Northwest Laboratory. A preliminary survey of literature on separations recently entered into the Hanford electronic databases (1992--1993) that have the potential for pretreatment of Hanford tank waste was conducted. Separation processes that can assist in the removal of actinides (uranium, plutonium, americium), lanthanides, barium, {sup 137}Cs, {sup 90}Sr,{sup 129more » }I, {sup 63}Ni, and {sup 99}Tc were evaluated. Separation processes of interest were identified through literature searches, journal reviews, and participation in separation technology conferences. This report contains brief descriptions of the potential separation processes, the extent and/or selectivity of the separation, the experimental conditions, and observations. Information was collected on both national and international separation studies to provide a global perspective on recent research efforts.« less
Recent health sciences library building projects.
Ludwig, L
1993-01-01
The Medical Library Association's third annual survey of recent health sciences library building projects identified fourteen libraries planning, expanding, or constructing new library facilities. Three of five new library buildings are freestanding structures where the library occupies all or a major portion of the space. The two other new facilities are for separately administered units where the library is a major tenant. Nine projects involve additions to or renovations of existing space. Six projects are in projected, predesign, or design stages or are awaiting funding approval. This paper describes four projects that illustrate technology's growing effect on librarians and libraries. They are designed to accommodate change, a plethora of electronic gear, and easy use of technology. Outwardly, they do not look much different than many other modern buildings. But, inside, the changes have been dramatic although they have evolved slowly as the building structure has been adapted to new conditions. Images PMID:8251970
Client-Server Connection Status Monitoring Using Ajax Push Technology
NASA Technical Reports Server (NTRS)
Lamongie, Julien R.
2008-01-01
This paper describes how simple client-server connection status monitoring can be implemented using Ajax (Asynchronous JavaScript and XML), JSF (Java Server Faces) and ICEfaces technologies. This functionality is required for NASA LCS (Launch Control System) displays used in the firing room for the Constellation project. Two separate implementations based on two distinct approaches are detailed and analyzed.
BBN-Based Portfolio Risk Assessment for NASA Technology R&D Outcome
NASA Technical Reports Server (NTRS)
Geuther, Steven C.; Shih, Ann T.
2016-01-01
The NASA Aeronautics Research Mission Directorate (ARMD) vision falls into six strategic thrusts that are aimed to support the challenges of the Next Generation Air Transportation System (NextGen). In order to achieve the goals of the ARMD vision, the Airspace Operations and Safety Program (AOSP) is committed to developing and delivering new technologies. To meet the dual challenges of constrained resources and timely technology delivery, program portfolio risk assessment is critical for communication and decision-making. This paper describes how Bayesian Belief Network (BBN) is applied to assess the probability of a technology meeting the expected outcome. The network takes into account the different risk factors of technology development and implementation phases. The use of BBNs allows for all technologies of projects in a program portfolio to be separately examined and compared. In addition, the technology interaction effects are modeled through the application of object-oriented BBNs. The paper discusses the development of simplified project risk BBNs and presents various risk results. The results presented include the probability of project risks not meeting success criteria, the risk drivers under uncertainty via sensitivity analysis, and what-if analysis. Finally, the paper shows how program portfolio risk can be assessed using risk results from BBNs of projects in the portfolio.
Technology transfer program of Microlabsat
NASA Astrophysics Data System (ADS)
Nakamura, Y.; Hashimoto, H.
2004-11-01
A 50kg-class small satellite developed by JAXA called "MicroLabSat" was launched piggyback by H-IIA rocket No. 4 on 14 December 2002. This satellite will demonstrate small satellite bus technology and conduct experiments on a new separator feasibility and remote inspection technology. All missions were completed successfully on 25 May 2003. Furthermore, the hand-construction by young JAXA engineers motivated these engineers to higher performance in learning design, assembly and testing technology. Small and medium-sized Japanese companies have recently joined together and initiated a project to develop a small satellite. The goal of the project is to commercialise small satellites, which will require low- cost development. Therefore, they have started with a satellite incorporating the components and bus technologies of MicroLabSat and have been technically supported by universities and JAXA since 2004. This satellite project, in which industry, universities and a space agency are collaborating, seeks to meet the technical challenge of launching a low-cost satellite. This paper reports JAX's strategies for developing a small satellite for demonstrating space technology as well as the development and operation results of MicroLabSat. It also describes the project status of an industry-based satellite, developed through collaboration among industries, universities and the space agency, and how the technologies of MicroLabSat are applied.
A Physicochemical Method for Separating Rare Earths: Addressing an Impending Shortfall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schelter, Eric
2017-03-14
There are currently zero operating suppliers of critical rare earth elements La–Lu, Sc, Y (REs), in the western hemisphere. REs are critical materials due to their importance in clean energy and defense applications, including permanent magnets in wind turbines and phosphors in energy efficient lighting. It is not economically viable to produce pure REs in the U.S. given current separations technology. REs production is dominated by suppliers in the People’s Republic of China (PRC) because of their capacity in liquidliquid solvent extraction (SX) used to purify mixtures. Weak environmental regulations in the PRC also contribute to a competitive advantage. SXmore » is a cost, time, solvent and waste intensive process but is highly optimized and scalable. The low efficiency of SX derives from the small thermodynamic differences in solvation enthalpy between the RE3+ cations. To foster stable domestic RE production there is a critical need for fundamentally new REs chemistry that contributes to disruptive technologies in RE separations. The overall goal of this project was to develop new thermodynamic bases, and apply them, for the solution separation of rare earth metals. We have developed the chemistry of rare earth metals: La–Lu, Sc and Y, with redox active ligands. Our hypothesis for the project was that electronhole coupling in complexes of certain lanthanide metals with redox active ligands can be used to manifest chemical distinctiveness and affect separations. We also developed separations based on unique solution equilibria from tailored ligands.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1991-06-14
This report summarizes the activities and accomplishments of an US Army technology security project designed to identify and develop effective policy guidelines for militarily critical technologies in specific Army systems and in broad generic technology areas of military interest, Individual systems analyses are documented in separate Weapons Systems Technical Assessments (WSTAs) and the general generic technology areas are evaluated in the Advanced Technology Assessment Reports (ATARs), However, specific details of these assessments are not addressed here, only recommendations regarding aspects of the defined approach, methodology, and format are provided and discussed.
Survival of the project: a case study of ICT innovation in health care.
Andreassen, Hege K; Kjekshus, Lars Erik; Tjora, Aksel
2015-05-01
From twenty years of information and communication technology (ICT) projects in the health sector, we have learned one thing: most projects remain projects. The problem of pilotism in e-health and telemedicine is a growing concern, both in medical literature and among policy makers, who now ask for large-scale implementation of ICT in routine health service delivery. In this article, we turn the question of failing projects upside down. Instead of investigating the obstacles to implementing ICT and realising permanent changes in health care routines, we ask what makes the temporary ICT project survive, despite an apparent lack of success. Our empirical material is based on Norwegian telemedicine. Through a case study, we take an in-depth look into the history of one particular telemedical initiative and highlight how ICT projects matter on a managerial level. Our analysis reveals how management tasks were delegated to the ICT project, which thus contributed to four processes of organisational control: allocating resources, generating and managing enthusiasm, system correction and aligning local practice and national policies. We argue that the innovation project in itself can be considered an innovation that has become normalised in health care, not in clinical, but in management work. In everyday management, the ICT project appears to be a convenient tool suited to ease the tensions between state regulatory practices and claims of professional autonomy that arise in the wake of new public management reforms. Separating project management and funding from routine practice handles the conceptualised heterogeneity between innovation and routine within contemporary health care delivery. Whilst this separation eases the execution of both normal routines and innovative projects, it also delays expected diffusion of technology. Copyright © 2015 Elsevier Ltd. All rights reserved.
Water Capture Device Signal Integration Board
NASA Technical Reports Server (NTRS)
Chamberlin, Kathryn J.; Hartnett, Andrew J.
2018-01-01
I am a junior in electrical engineering at Arizona State University, and this is my second internship at Johnson Space Center. I am an intern in the Command and Data Handling Branch of Avionics Division (EV2), my previous internship was also in EV2. During my previous internship I was assigned to the Water Capture Device payload, where I designed a prototype circuit board for the electronics system of the payload. For this internship, I have come back to the Water Capture Device project to further the work on the electronics design I completed previously. The Water Capture Device is an experimental payload to test the functionality of two different phase separators aboard the International Space Station (ISS). A phase separator sits downstream of a condensing heat exchanger (CHX) and separates the water from the air particles for environmental control on the ISS. With changing CHX technology, new phase separators are required. The goal of the project is to develop a test bed for the two phase separators to determine the best solution.
Initiating the 2002 Mars Science Laboratory (MSL) Focused Technology Program
NASA Technical Reports Server (NTRS)
Caffrey, Robert T.; Udomkesmalee, Gabriel; Hayati, Samad A.
2004-01-01
The Mars Science Laboratory (MSL) Project is an aggressive mission launching in 2009 to deliver a new generation of rover safely to the surface of Mars and conduct comprehensive in situ investigations using a new generation of instruments. This system will be designed to land with precision and be capable of operating over a large percentage on the surface of Mars. It will have capabilities that will support NASA's scientific goals into the next decade of exphation. The MSL Technology program is developing a wide-range of technologies needed for this Mission and potentially other space missions. The MSL Technology Program reports to both the MSL Project and the Mars Technology Program (MTP). The dual reporting process creates a challenging management situation, but ensures the new technology meets both the specific MSL requirements and the broader Mars Program requirements. MTP is a NASA-wide technology development program managed by the Jet Propulsion Laboratory (JPL) and is divided into a Focused Program and a Base Program. The Focused Technology Program addresses technologies that are specific and critical to near-term missions, while the Base Technology Program addresses those technologies that are applicable to multiple missions and which can be characterized as longer term, higher risk, and high payoff technologies. The MSL Technology Program is under the Focused Program and is tightly coupled to MSL's mission milestones and deliverables. The technology budget is separate from the flight Project budget, but the technology s requirements and the development process are tightly coordinated with the Project. The Technology Program combines proven management techniques of flight projects with commercial and academic technology management strategies, to create a technology management program that meets the near-term requirements of MSL and the long-term requirements of MTP. This paper examines the initiation of 2002 MSL Technology program. Some of the areas discussed in this paper include technology definition, task selection, technology management, and technology assessment.
Recovery technologies for building materials
NASA Astrophysics Data System (ADS)
Karu, Veiko; Nurme, Martin; Valgma, Ingo
2015-04-01
Mining industry provides building materials for construction. Civil engineers have settled the quality parameters for construction materials. When we produce high quality building materials from carbonate rock (limestone, dolostone), then the estimated waste share is 25% to 30%, depending on crushing principles and rock quality. The challenge is to find suitable technology for waste recovery. During international mining waste related cooperation project MIN-NOVATION (www.min-novation.eu), partners mapped possibilities for waste recovery in mining industry and pointed out good examples and case studies. One example from Estonia showed that when we produce limestone aggregate, then we produce up to 30% waste material (fines with size 0-4mm). This waste material we can see as secondary raw material for building materials. Recovery technology for this fine grained material has been achieved with CDE separation plant. During the process the plant washes out minus 63 micron material from the limestone fines. This technology allows us to use 92% of all limestone reserves. By-product from 63 microns to 4 mm we can use as filler in concrete or as fine limestone aggregate for building or building materials. MIN-NOVATION project partners also established four pilot stations to study other mineral waste recovery technologies and solutions. Main aims on this research are to find the technology for recovery of mineral wastes and usage for new by-products from mineral mining waste. Before industrial production, testing period or case studies are needed. This research is part of the study of Sustainable and environmentally acceptable Oil shale mining No. 3.2.0501.11-0025 http://mi.ttu.ee/etp and the project B36 Extraction and processing of rock with selective methods - http://mi.ttu.ee/separation; http://mi.ttu.ee/miningwaste/
Manufacturing Methods & Technology (MMT) Project Execution Report
1982-10-01
managers. This document is used as a management tool for monitoring the progress of MMT projects. There are separate sections in the report showing...in this area will insure a use- ful review of the progression of the MMT Program. Relative to the second are of concern, there has always been a...THRU 5. DAMAGE TU ANY UNE BLADE DURING MANUFACTURING CR IN THE FIELD RESULTS IN SCRAPPING THE WHOLE BLISK. 25 I II I_ _IL PROJECTS ADWI IN 1ST HALF
Molecular separations using nanostructured porous thin films fabricated by glancing angle deposition
NASA Astrophysics Data System (ADS)
Bezuidenhout, Louis Wentzel
Biomolecular separation techniques are an enabling technology that indirectly in.uence many aspects of our lives. Advances have led to faster analyses, reduced costs, higher specificity, and new analytical techniques, impacting areas such as health care, environmental monitoring, polymer sciences, agriculture, and nutrition. Further development of separations technology is anticipated to follow the path of computing technology such that miniaturization through the development of microfluidics technology, lab-on-a-chip systems, and other integrative, multi-component systems will further extend our analysis capabilities. Creation of new and improvement of existing separation technologies is an integral part of the pathway to miniaturized systems. the work of this thesis investigates molecular separations using porous nanostructured films fabricated by the thin film process glancing angle deposition (GLAD). Structural architecture, pore size and shape, and film density can be finely controlled to produce high-surface area thin films with engineered morphology. The characteristic size scales and structural control of GLAD films are well-suited to biomolecules and separation techniques, motivating investigation into the utility and performance of GLAD films for biomolecular separations. This project consisted of three phases. First, chromatographic separation of dye molecules on silica GLAD films was demonstrated by thin layer chromatography Direct control of film nanostructure altered the separation characteristics; most strikingly, anisotropic structures provided two-dimensional analyte migration. Second, nanostructures made with GLAD were integrated in PDMS microfluidic channels using a sacrificial etching process; DNA molecules (10/48 kbp and 6/10/20 kbp mixtures) were electrophoretically separated on a microfluidic chip using a porous bed of SiO2 vertical posts. Third, mass spectrometry of proteins and drugs in the mass range of 100-1300 m/z was performed using laser desorption/ionization (LDI) on silicon GLAD films, and the influence of film thickness, porosity, structure, and substrate on performance was characterized. The application of GLAD nanostructured thin films to biomolecular separations is demonstrated and validated in this thesis. Chromatographic separation of dye molecules, electrophoretic separation of DNA molecules, and mass spectrometric isolation of small proteins and drug molecules by laser desorption ionization were demonstrated using GLAD films. All three methods yielded promising results and establish GLAD as a potential technology for biomolecular separations.
Customizing graphical user interface technology for spacecraft control centers
NASA Technical Reports Server (NTRS)
Beach, Edward; Giancola, Peter; Gibson, Steven; Mahmot, Ronald
1993-01-01
The Transportable Payload Operations Control Center (TPOCC) project is applying the latest in graphical user interface technology to the spacecraft control center environment. This project of the Mission Operations Division's (MOD) Control Center Systems Branch (CCSB) at NASA Goddard Space Flight Center (GSFC) has developed an architecture for control centers which makes use of a distributed processing approach and the latest in Unix workstation technology. The TPOCC project is committed to following industry standards and using commercial off-the-shelf (COTS) hardware and software components wherever possible to reduce development costs and to improve operational support. TPOCC's most successful use of commercial software products and standards has been in the development of its graphical user interface. This paper describes TPOCC's successful use and customization of four separate layers of commercial software products to create a flexible and powerful user interface that is uniquely suited to spacecraft monitoring and control.
Bringing space technology down to earth
NASA Technical Reports Server (NTRS)
Gray, E. Z.
1974-01-01
The direct transfer of space technology to terrestial applications is demonstrated by the use of fuel cells to augment existing electric power-generation facilities. The role of NASA's Technology Utilization Program is discussed in regard to indirect transfer of technology. The Tech Brief program for identifying and reporting innovations, the regional dissemination centers, and the Applications Teams working with other government agencies and the medical community are described. Projects discussed include the development of a lightweight breathing apparatus for firemen, a practical method for separating nonferrous metals from automobile scrap, and a rechargeable heart pacemaker.
NASA Technical Reports Server (NTRS)
Vallee, J.; Wilson, T.
1976-01-01
Results are reported of the first experiments for a computer conference management information system at the National Aeronautics and Space Administration. Between August 1975 and March 1976, two NASA projects with geographically separated participants (NASA scientists) used the PLANET computer conferencing system for portions of their work. The first project was a technology assessment of future transportation systems. The second project involved experiments with the Communication Technology Satellite. As part of this project, pre- and postlaunch operations were discussed in a computer conference. These conferences also provided the context for an analysis of the cost of computer conferencing. In particular, six cost components were identified: (1) terminal equipment, (2) communication with a network port, (3) network connection, (4) computer utilization, (5) data storage and (6) administrative overhead.
A Separate Compilation Extension to Standard ML (Revised and Expanded)
2006-09-17
repetition of interfaces. The language is given a formal semantics, and we argue that this semantics is implementable in a variety of compilers. This...material is based on work supported in part by the National Science Foundation under grant 0121633 Language Technology for Trustless Software...Dissemination and by the Defense Advanced Research Projects Agency under contracts F196268-95-C-0050 The Fox Project: Advanced Languages for Systems Software
Transformation of Taiwan’s Reserve Force
2017-01-01
force roles, missions, and capabilities, based on the requirement to counter People’s Republic of China advan- tages in air and maritime power -projection... people on Taiwan increasingly identify themselves as citizens of a state that is separate and distinct from the PRC. As a result, the Chinese Communist...including short- comings in the PLA’s ability to project power significantly across the Taiwan Strait, technological advantages of Taiwan’s armed
ERIC Educational Resources Information Center
Peace Corps, Washington, DC. Information Collection and Exchange Div.
This manual, the Spanish translation of a separately available English handbook on program design, is intended to assist volunteers and staff of volunteer organizations in the systematic design of projects in various health, community, and social service areas. The first section of the manual is a guidebook that addresses such aspects of the…
Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping
NASA Astrophysics Data System (ADS)
Lozada-Hidalgo, M.; Zhang, S.; Hu, S.; Esfandiar, A.; Grigorieva, I. V.; Geim, A. K.
2017-05-01
Thousands of tons of isotopic mixtures are processed annually for heavy-water production and tritium decontamination. The existing technologies remain extremely energy intensive and require large capital investments. New approaches are needed to reduce the industry's footprint. Recently, micrometre-size crystals of graphene are shown to act as efficient sieves for hydrogen isotopes pumped through graphene electrochemically. Here we report a fully-scalable approach, using graphene obtained by chemical vapour deposition, which allows a proton-deuteron separation factor of around 8, despite cracks and imperfections. The energy consumption is projected to be orders of magnitude smaller with respect to existing technologies. A membrane based on 30 m2 of graphene, a readily accessible amount, could provide a heavy-water output comparable to that of modern plants. Even higher efficiency is expected for tritium separation. With no fundamental obstacles for scaling up, the technology's simplicity, efficiency and green credentials call for consideration by the nuclear and related industries.
Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Howard; Zhou, S James; Ding, Yong
2012-03-31
This report summarizes progress made during Phase I and Phase II of the project: "Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process," under contract DE-FE-0000646. The objective of this project is to develop a practical and cost effective technology for CO{sub 2} separation and capture for pre-combustion coal-based gasification plants using a membrane contactor/solvent absorption process. The goals of this technology development project are to separate and capture at least 90% of the CO{sub 2} from Integrated Gasification Combined Cycle (IGCC) power plants with less than 10% increase in the cost of energy services. Unlike conventional gas separationmore » membranes, the membrane contactor is a novel gas separation process based on the gas/liquid membrane concept. The membrane contactor is an advanced mass transfer device that operates with liquid on one side of the membrane and gas on the other. The membrane contactor can operate with pressures that are almost the same on both sides of the membrane, whereas the gas separation membranes use the differential pressure across the membrane as driving force for separation. The driving force for separation for the membrane contactor process is the chemical potential difference of CO{sub 2} in the gas phase and in the absorption liquid. This process is thus easily tailored to suit the needs for pre-combustion separation and capture of CO{sub 2}. Gas Technology Institute (GTI) and PoroGen Corporation (PGC) have developed a novel hollow fiber membrane technology that is based on chemically and thermally resistant commercial engineered polymer poly(ether ether ketone) or PEEK. The PEEK membrane material used in the membrane contactor during this technology development program is a high temperature engineered plastic that is virtually non-destructible under the operating conditions encountered in typical gas absorption applications. It can withstand contact with most of the common treating solvents. GTI and PGC have developed a nanoporous and superhydrophobic PEEK-based hollow fiber membrane contactor tailored for the membrane contactor/solvent absorption application for syngas cleanup. The membrane contactor modules were scaled up to 8-inch diameter commercial size modules. We have performing extensive laboratory and bench testing using pure gases, simulated water-gas-shifted (WGS) syngas stream, and a slipstream from a gasification derived syngas from GTI's Flex-Fuel Test Facility (FFTF) gasification plant under commercially relevant conditions. The team have also carried out an engineering and economic analysis of the membrane contactor process to evaluate the economics of this technology and its commercial potential. Our test results have shown that 90% CO{sub 2} capture can be achieved with several physical solvents such as water and chilled methanol. The rate of CO{sub 2} removal by the membrane contactor is in the range of 1.5 to 2.0 kg/m{sup 2}/hr depending on the operating pressures and temperatures and depending on the solvents used. The final economic analysis has shown that the membrane contactor process will cause the cost of electricity to increase by 21% from the base plant without CO{sub 2} capture. The goal of 10% increase in levelized cost of electricity (LCOE) from base DOE Case 1(base plant without capture) is not achieved by using the membrane contactor. However, the 21% increase in LCOE is a substantial improvement as compared with the 31.6% increase in LCOE as in DOE Case 2(state of art capture technology using 2-stages of Selexol{TM}).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Christopher F.; Rapko, Brian M.; Serne, R. Jeffrey
2014-03-03
The U.S. Department of Energy Office of Environmental Management (EM) is engaging the national laboratories to provide the scientific and technological rigor to support EM program and project planning, technology development and deployment, project execution, and assessment of program outcomes. As an early demonstration of this new responsibility, Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) were chartered to implement a science and technology program addressing low-temperature waste forms for immobilization of DOE aqueous waste streams, including technetium removal as an implementing technology. As a first step, the laboratories examined the technical risks and uncertainties associated withmore » the Cast Stone waste immobilization and technetium removal projects at Hanford. Science and technology gaps were identified for work associated with 1) conducting performance assessments and risk assessments of waste form and disposal system performance, and 2) technetium chemistry in tank wastes and separation of technetium from waste processing streams. Technical approaches to address the science and technology gaps were identified and an initial sequencing priority was suggested. A subset of research was initiated in 2013 to begin addressing the most significant science and technology gaps. The purpose of this paper is to report progress made towards closing these gaps and provide notable highlights of results achieved to date.« less
UST CORRECTIVE ACTION TECHNOLOGIES: ENGINEERING DESIGN OF FREE PRODUCT RECOVERY SYSTEMS
The objective of this project was to develop a technical assistance document for assessment of subsurface hydrocarbon spills and for evaluating effects of well placement and pumping rates on separate phase plume control and on free product recovery. Procedures developed for estim...
A Study of Future Communications Concepts and Technologies for the National Airspace System-Part III
NASA Technical Reports Server (NTRS)
Ponchak, Denise S.; Apaza, Rafael D.; Wichgersm Joel M.; Haynes, Brian; Roy, Aloke
2014-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating current and anticipated wireless communications concepts and technologies that the National Airspace System (NAS) may need in the next 50 years. NASA has awarded three NASA Research Announcements (NAR) studies with the objective to determine the most promising candidate technologies for air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. This paper will present progress made in the studies and describe the communications challenges and opportunities that have been identified as part of the study. NASA's NextGen Concepts and Technology Development (CTD) Project integrates solutions for a safe, efficient and high-capacity airspace system through joint research efforts and partnerships with other government agencies. The CTD Project is one of two within NASA's Airspace Systems Program and is managed by the NASA Ames Research Center. Research within the CTD Project is in support the 2011 NASA Strategic Plan Sub-Goal 4.1: Develop innovative solutions and advanced technologies, through a balanced research portfolio, to improve current and future air transportation. The focus of CTD is on developing capabilities in traffic flow management, dynamic airspace configuration, separation assurance, super density operations and airport surface operations. Important to its research is the development of human/automation information requirements and decisionmaking guidelines for human-human and human-machine airportal decision-making. Airborne separation, oceanic intrail climb/descent and interval management applications depend on location and intent information of surrounding aircraft. ADS-B has been proposed to provide the information exchange, but other candidates such as satellite-based receivers, broadband or airborne internet, and cellular communications are possible candidate's.
Project support of practical training in biophysics.
Mornstein, V; Vlk, D; Forytkova, L
2006-01-01
The Department of Biophysics ensures practical training in biophysics and related subjects for students of medical and health study programmes. Demonstrations of medical technology are an important part of this training. Teaching for Faculty of Sciences in biophysical study programmes becomes also very important. Some lectures and demonstrations of technology are involved, but the practical trainig is missing. About 1 mil. CZK for additional laboratory equipment was obtained from the HEIDF project No. 1866/ 2005 "The demonstration and measuring technology for education in medical biophysics and radiological physics" for measuring system DEWETRON for high frequency signal analysis, Fluke Ti30 IR camera, PM 9000B patient monitor, ARSENAL AF 1 fluorescence microscope, and Nikon Coolpix 4500 digital camera with accessories for microphotography. At the present time, further financial resources are being provided by a development project of Ministry of Education "Inter-university co-operation in biomedical technology and engineering using top technologies" in total amount of almost 5 mil CZK, whereas over 2 mil CZK from this project are reserved for student laboratory equipment. The main goal of this project is to ensure the participation of Medical Faculty in educational co-operation in the biomedical technology and engineering, namely with the Faculty of Electrical Engineering and Communication (FEEC), Brno University of Technology. There will be taught those areas of biophysics which are not covered by FEEC, thus forming a separate subject "General Biophysics". The following instruments will be installed: UV-VIS spectrophotometers, rotation viscometers, tensiometers, microscopes with digital image processing, cooled centrifuge, optical benches, and some smaller instruments for practical measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drucker, H.
1983-02-01
Biomedical and health effects research conducted at PNL in 1982 on the evaluation of risk to man from existing and/or developing energy-related technologies are described. Most of the studies described in this report relate to activities for three major energy technologies: nuclear fuel cycle; fossil fuel cycle (oil, gas, and coal process technologies, mining, and utilization; synfuel development), and fudion (biomagnetic effects). The report is organized under these technologies. In addition, research reports are included on the application of nuclear energy to biomedical problems. Individual projects are indexed separately.
Particulate emission abatement for Krakow boiler houses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wysk, R.
1995-12-31
Among the many strategies for improving air quality in Krakow, one possible method is to adapt new and improved emission control technology. This project focuses on such a strategy. In order to reduce dust emissions from coal-fueled boilers, a new device called a Core Separator has been introduced in several boiler house applications. This advanced technology has been successfully demonstrated in Poland and several commercial units are now in operation. Particulate emissions from the Core Separator are typically 3 to 5 times lower than those from the best cyclone collectors. It can easily meet the new standard for dust emissionsmore » which will be in effect in Poland after 1997. The Core Separator is a completely inertial collector and is based on a unique recirculation method. It can effectively remove dust particles below 10 microns in diameter, the so-called PM-10 emissions. Its performance approaches that of fabric filters, but without the attendant cost and maintenance. It is well-suited to the industrial size boilers located in Krakow. Core Separators are now being marketed and sold by EcoInstal, one of the leading environmental firms in Poland, through a cooperative agreement with LSR Technologies.« less
DOT National Transportation Integrated Search
1998-05-01
The Smart Sign project has successfully demonstrated the merging of two separate technological disciplines of highway messaging and on-road vehicle emissions sensing into an advanced ITS public information system. This operational test has demonstrat...
NASA Technical Reports Server (NTRS)
Morrison, D. R.; Lewis, M. L.
1982-01-01
Static zone electrophoresis is an electrokinetic method of separating macromolecules and small particles. However, its application for the isolation of biological cells and concentrated protein solutions is limited by sedimentation and convection. Microgravity eliminates or reduces sedimentation, floatation, and density-driven convection arising from either Joule heating or concentration differences. The advantages of such an environment were first demonstrated in space during the Apollo 14 and 16 missions. In 1975 the Electrophoresis Technology Experiment (MA-011) was conducted during the Apollo-Soyuz Test Project flight. In 1979 a project was initiated to repeat the separations of human kidney cells. One of the major objectives of the Electrophoresis Equipment Verification Tests (EEVT) on STS-3 was to repeat and thereby validate the first successful electrophoretic separation of human kidney cells. Attention is given to the EEVT apparatus, the preflight electrophoresis, and inflight operational results.
Membrane systems for energy efficient separation of light gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devlin, D.J.; Archuleta, T.; Barbero, R.
1997-04-01
Ethylene and propylene are two of the largest commodity chemicals in the United States and are major building blocks for the petrochemicals industry. These olefins are separated currently by cryogenic distillation which demands extremely low temperatures and high pressures. Over 75 billion pounds of ethylene and propylene are distilled annually in the US at an estimated energy requirement of 400 trillion BTU`s. Non-domestic olefin producers are rapidly constructing state-of-the-art plants. These energy-efficient plants are competing with an aging United States olefins industry in which 75% of the olefins producers are practicing technology that is over twenty years old. New separationmore » opportunities are therefore needed to continually reduce energy consumption and remain competitive. Amoco has been a leader in incorporating new separation technology into its olefins facilities and has been aggressively pursuing non-cryogenic alternatives to light gas separations. The largest area for energy reduction is the cryogenic isolation of the product hydrocarbons from the reaction by-products, methane and hydrogen. This separation requires temperatures as low as {minus}150{degrees}F and pressures exceeding 450 psig. This CRADA will focus on developing a capillary condensation process to separate olefinic mixtures from light gas byproducts at temperatures that approach ambient conditions and at pressures less than 250 psig; this technology breakthrough will result in substantial energy savings. The key technical hurdle in the development of this novel separation concept is the precise control of the pore structure of membrane materials. These materials must contain specially-shaped channels in the 20-40A range to provide the driving force necessary to remove the condensed hydrocarbon products. In this project, Amoco is the technology end-user and provides the commercialization opportunity and engineering support.« less
A Survey of Factors Affecting Blunt Leading-Edge Separation for Swept and Semi-Slender Wings
NASA Technical Reports Server (NTRS)
Luckring, James M.
2010-01-01
A survey is presented of factors affecting blunt leading-edge separation for swept and semi-slender wings. This class of separation often results in the onset and progression of separation-induced vortical flow over a slender or semi-slender wing. The term semi-slender is used to distinguish wings with moderate sweeps and aspect ratios from the more traditional highly-swept, low-aspect-ratio slender wing. Emphasis is divided between a selection of results obtained through literature survey a section of results from some recent research projects primarily being coordinated through NATO s Research and Technology Organization (RTO). An aircraft context to these studies is included.
Quantification of false positive reduction in nucleic acid purification on hemorrhagic fever DNA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Conrad D.; Pohl, Kenneth Roy; Derzon, Mark Steven
2006-11-01
Columbia University has developed a sensitive highly multiplexed system for genetic identification of nucleic acid targets. The primary obstacle to implementing this technology is the high rate of false positives due to high levels of unbound reporters that remain within the system after hybridization. The ability to distinguish between free reporters and reporters bound to targets limits the use of this technology. We previously demonstrated a new electrokinetic method for binary separation of kb pair long DNA molecules and oligonucleotides. The purpose of this project 99864 is to take these previous demonstrations and further develop the technique and hardware formore » field use. Specifically, our objective was to implement separation in a heterogeneous sample (containing target DNA and background oligo), to perform the separation in a flow-based device, and to develop all of the components necessary for field testing a breadboard prototype system.« less
ERIC Educational Resources Information Center
Overby, Alexandra
2009-01-01
Music has always been an important aspect of teenage life, but with the portability of the newest technological devices, it is harder and harder to separate students from their musical influences. In this article, the author describes a lesson wherein she incorporated their love of song into an engaging art project. In this lesson, she had…
Solar parabolic dish technology evaluation report
NASA Technical Reports Server (NTRS)
Lucas, J. W.
1984-01-01
The activities of the JPL Solar Thermal Power Systems Parabolic Dish Project for FY 1983 are summarized. Included are discussions on designs of module development including concentrator, receiver, and power conversion subsystems together with a separate discussion of field tests, Small Community Experiment system development, and tests at the Parabolic Dish Test Site.
Separation of Prior-Service Reentrants in the U.S. (United States) Navy: A Preliminary Analysis.
1983-04-01
AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK ’ Institute for Policy Research and Evaluation AREA & WORK UNIT NUMBERS N-253 Burrowes Building, PSU...enlistment a Percent of area reentrants in each district - . . - • . .. .. p. . ia OTHER TECHNICAL REPORTS OF TIllS PROJECTa As part of the project...bOffie of Naval Research Contract No. N00014-82-K-0262. • . . . . Distribution List Director Technology Programs Office of Naval Research (Code 200
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Jankovsky, Amy L.; Reid, Concha M.; Miller, Thomas B.; Hoberecht, Mark A.
2011-01-01
NASA's Exploration Technology Development Program funded the Energy Storage Project to develop battery and fuel cell technology to meet the expected energy storage needs of the Constellation Program for human exploration. Technology needs were determined by architecture studies and risk assessments conducted by the Constellation Program, focused on a mission for a long-duration lunar outpost. Critical energy storage needs were identified as batteries for EVA suits, surface mobility systems, and a lander ascent stage; fuel cells for the lander and mobility systems; and a regenerative fuel cell for surface power. To address these needs, the Energy Storage Project developed advanced lithium-ion battery technology, targeting cell-level safety and very high specific energy and energy density. Key accomplishments include the development of silicon composite anodes, lithiated-mixed-metal-oxide cathodes, low-flammability electrolytes, and cell-incorporated safety devices that promise to substantially improve battery performance while providing a high level of safety. The project also developed "non-flow-through" proton-exchange-membrane fuel cell stacks. The primary advantage of this technology set is the reduction of ancillary parts in the balance-of-plant--fewer pumps, separators and related components should result in fewer failure modes and hence a higher probability of achieving very reliable operation, and reduced parasitic power losses enable smaller reactant tanks and therefore systems with lower mass and volume. Key accomplishments include the fabrication and testing of several robust, small-scale nonflow-through fuel cell stacks that have demonstrated proof-of-concept. This report summarizes the project s goals, objectives, technical accomplishments, and risk assessments. A bibliography spanning the life of the project is also included.
ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis Project
NASA Technical Reports Server (NTRS)
1988-01-01
Fiscal year 1987 research activities and accomplishments for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division are presented. The project's technical activities were organized into three work elements. The Molecular Modeling and Applied Genetics work element includes modeling and simulation studies to verify a dynamic model of the enzyme carboxypeptidase; plasmid stabilization by chromosomal integration; growth and stability characteristics of plasmid-containing cells; and determination of optional production parameters for hyper-production of polyphenol oxidase. The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields, and lower separation energetics. The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the economics and energetics of a given biocatalyst process.
Advanced Modular Power Approach to Affordable, Supportable Space Systems
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Kimnach, Greg L.; Fincannon, James; Mckissock,, Barbara I.; Loyselle, Patricia L.; Wong, Edmond
2013-01-01
Recent studies of missions to the Moon, Mars and Near Earth Asteroids (NEA) indicate that these missions often involve several distinct separately launched vehicles that must ultimately be integrated together in-flight and operate as one unit. Therefore, it is important to see these vehicles as elements of a larger segmented spacecraft rather than separate spacecraft flying in formation. The evolution of large multi-vehicle exploration architecture creates the need (and opportunity) to establish a global power architecture that is common across all vehicles. The Advanced Exploration Systems (AES) Modular Power System (AMPS) project managed by NASA Glenn Research Center (GRC) is aimed at establishing the modular power system architecture that will enable power systems to be built from a common set of modular building blocks. The project is developing, demonstrating and evaluating key modular power technologies that are expected to minimize non-recurring development costs, reduce recurring integration costs, as well as, mission operational and support costs. Further, modular power is expected to enhance mission flexibility, vehicle reliability, scalability and overall mission supportability. The AMPS project not only supports multi-vehicle architectures but should enable multi-mission capability as well. The AMPS technology development involves near term demonstrations involving developmental prototype vehicles and field demonstrations. These operational demonstrations not only serve as a means of evaluating modular technology but also provide feedback to developers that assure that they progress toward truly flexible and operationally supportable modular power architecture.
National Air Space (NAS) Data Exchange Environment Through 2060
NASA Technical Reports Server (NTRS)
Roy, Aloke
2015-01-01
NASA's NextGen Concepts and Technology Development (CTD) Project focuses on capabilities to improve safety, capacity and efficiency of the National Air Space (NAS). In order to achieve those objectives, NASA sought industry-Government partnerships to research and identify solutions for traffic flow management, dynamic airspace configuration, separation assurance, super density operations, airport surface operations and similar forward-looking air-traffic modernization (ATM) concepts. Data exchanges over NAS being the key enabler for most of these ATM concepts, the Sub-Topic area 3 of the CTD project sought to identify technology candidates that can satisfy air-to-air and air/ground communications needs of the NAS in the year 2060 timeframe. Honeywell, under a two-year contract with NASA, is working on this communications technology research initiative. This report summarizes Honeywell's research conducted during the second year of the study task.
ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis project
NASA Technical Reports Server (NTRS)
Baresi, Larry
1989-01-01
The Annual Report presents the fiscal year (FY) 1988 research activities and accomplishments, for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division. The ECUT Biocatalysis Project is managed by the Jet Propulsion Laboratory, California Institute of Technology. The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of universities, industrial companies and government research laboratories. The Project's technical activities were organized into three work elements: (1) The Molecular Modeling and Applied Genetics work element includes research on modeling of biological systems, developing rigorous methods for the prediction of three-dimensional (tertiary) protein structure from the amino acid sequence (primary structure) for designing new biocatalysis, defining kinetic models of biocatalyst reactivity, and developing genetically engineered solutions to the generic technical barriers that preclude widespread application of biocatalysis. (2) The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields and lower separation energetics. Results of work within this work element will be used to establish the technical feasibility of critical bioprocess monitoring and control subsystems. (3) The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the energy-economics of biocatalyzed chemical production processes, and initiation of technology transfer for advanced bioprocesses.
ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis project
NASA Astrophysics Data System (ADS)
Baresi, Larry
1989-03-01
The Annual Report presents the fiscal year (FY) 1988 research activities and accomplishments, for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division. The ECUT Biocatalysis Project is managed by the Jet Propulsion Laboratory, California Institute of Technology. The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of universities, industrial companies and government research laboratories. The Project's technical activities were organized into three work elements: (1) The Molecular Modeling and Applied Genetics work element includes research on modeling of biological systems, developing rigorous methods for the prediction of three-dimensional (tertiary) protein structure from the amino acid sequence (primary structure) for designing new biocatalysis, defining kinetic models of biocatalyst reactivity, and developing genetically engineered solutions to the generic technical barriers that preclude widespread application of biocatalysis. (2) The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields and lower separation energetics. Results of work within this work element will be used to establish the technical feasibility of critical bioprocess monitoring and control subsystems. (3) The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the energy-economics of biocatalyzed chemical production processes, and initiation of technology transfer for advanced bioprocesses.
"First generation" automated DNA sequencing technology.
Slatko, Barton E; Kieleczawa, Jan; Ju, Jingyue; Gardner, Andrew F; Hendrickson, Cynthia L; Ausubel, Frederick M
2011-10-01
Beginning in the 1980s, automation of DNA sequencing has greatly increased throughput, reduced costs, and enabled large projects to be completed more easily. The development of automation technology paralleled the development of other aspects of DNA sequencing: better enzymes and chemistry, separation and imaging technology, sequencing protocols, robotics, and computational advancements (including base-calling algorithms with quality scores, database developments, and sequence analysis programs). Despite the emergence of high-throughput sequencing platforms, automated Sanger sequencing technology remains useful for many applications. This unit provides background and a description of the "First-Generation" automated DNA sequencing technology. It also includes protocols for using the current Applied Biosystems (ABI) automated DNA sequencing machines. © 2011 by John Wiley & Sons, Inc.
Migliore, Antonio; Perrini, Maria Rosaria; Jefferson, Tom; Cerbo, Marina
2012-07-01
The aim of this study was to establish a national Early Awareness and Alert (EAA) system for the identification and assessment of new and emerging health technologies in Italy. In 2008, Agenas, a public body supporting Regions and the Ministry of Health (MoH) in health services research, started a project named COTE (Observatory of New and Emerging Health Technologies) with the ultimate aim of implementing a national EAA system. The COTE project involved all stakeholders (MoH, Regions, Industry, Universities, technical government bodies, and Scientific Societies), in defining the key characteristics and methods of the EAA system. Agreement with stakeholders was reached using three separate workshops. During the workshops, participants shared and agreed methods for identification of new and emerging health technologies, prioritization, and assessment. The structure of the Horizon Scanning (HS) reports was discussed and defined. The main channels for dissemination of outputs were identified as the EuroScan database, and the stakeholders' Web portals. During the final workshop, Agenas presented the first three HS reports produced at national level and proposed the establishment of a permanent national EAA system. The COTE Project created the basis for a permanent national EAA system in Italy. An infrastructure to enable the stakeholders network to grow was created, methods to submit new and emerging health technologies for possible evaluation were established, methods for assessment of the technologies selected were defined, and the stakeholders involvement was delineated (in the identification, assessment, and dissemination stages).
Summary of Plutonium-238 Production Alternatives Analysis Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
James Werner; Wade E. Bickford; David B. Lord
The Team implemented a two-phase evaluation process. During the first phase, a wide variety of past and new candidate facilities and processing methods were assessed against the criteria established by DOE for this assessment. Any system or system element selected for consideration as an alternative within the project to reestablish domestic production of Pu-238 must meet the following minimum criteria: Any required source material must be readily available in the United States, without requiring the development of reprocessing technologies or investments in systems to separate material from identified sources. It must be cost, schedule, and risk competitive with existing baselinemore » technology. Any identified facilities required to support the concept must be available to the program for the entire project life cycle (notionally 35 years, unless the concept is so novel as to require a shorter duration). It must present a solution that can generate at least 1.5 Kg of Pu-238 oxide per year, for at least 35 years. It must present a low-risk, near-term solution to the National Aeronautics and Space Administration’s urgent mission need. DOE has implemented this requirement by eliminating from project consideration any alternative with key technologies at less than Technology Readiness Level 5. The Team evaluated the options meeting these criteria using a more detailed assessment of the reasonable facility variations and compared them to the preferred option, which consists of target irradiation at the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR), target fabrication and chemical separations processing at the ORNL Radiochemical Engineering Development Center, and neptunium 237 storage at the Materials and Fuels Complex at INL. This preferred option is consistent with the Records of Decision from the earlier National Environmental Policy Act (NEPA) documentation« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cort, Katherine A.; Hostick, Donna J.; Belzer, David B.
The purpose of this report is to compile information and conclusions gathered as part of three separate tasks undertaken as part of the overall project, “Modeling EERE Deployment Programs,” sponsored by the Planning, Analysis, and Evaluation office within the Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE). The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address improvements to modeling in the near term, and note gaps in knowledge where future research is needed.
Heritage Adoption Lessons Learned: Cover Deployment and Latch Mechanism
NASA Technical Reports Server (NTRS)
Wincentsen, James
2006-01-01
Within JPL, there is a technology thrust need to develop a larger Cover Deployment and Latch Mechanism (CDLM) for future missions. The approach taken was to adopt and scale the CDLM design as used on the Galaxy Evolution Explorer (GALEX) project. The three separate mechanisms that comprise the CDLM will be discussed in this paper in addition to a focus on heritage adoption lessons learned and specific examples. These lessons learned will be valuable to any project considering the use of heritage designs.
FutureGen 2.0 Oxy-combustion Large Scale Test – Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenison, LaVesta; Flanigan, Thomas; Hagerty, Gregg
The primary objectives of the FutureGen 2.0 CO 2 Oxy-Combustion Large Scale Test Project were to site, permit, design, construct, and commission, an oxy-combustion boiler, gas quality control system, air separation unit, and CO 2 compression and purification unit, together with the necessary supporting and interconnection utilities. The project was to demonstrate at commercial scale (168MWe gross) the capability to cleanly produce electricity through coal combustion at a retrofitted, existing coal-fired power plant; thereby, resulting in near-zeroemissions of all commonly regulated air emissions, as well as 90% CO 2 capture in steady-state operations. The project was to be fully integratedmore » in terms of project management, capacity, capabilities, technical scope, cost, and schedule with the companion FutureGen 2.0 CO 2 Pipeline and Storage Project, a separate but complementary project whose objective was to safely transport, permanently store and monitor the CO 2 captured by the Oxy-combustion Power Plant Project. The FutureGen 2.0 Oxy-Combustion Large Scale Test Project successfully achieved all technical objectives inclusive of front-end-engineering and design, and advanced design required to accurately estimate and contract for the construction, commissioning, and start-up of a commercial-scale "ready to build" power plant using oxy-combustion technology, including full integration with the companion CO 2 Pipeline and Storage project. Ultimately the project did not proceed to construction due to insufficient time to complete necessary EPC contract negotiations and commercial financing prior to expiration of federal co-funding, which triggered a DOE decision to closeout its participation in the project. Through the work that was completed, valuable technical, commercial, and programmatic lessons were learned. This project has significantly advanced the development of near-zero emission technology and will be helpful to plotting the course of, and successfully executing future large demonstration projects. This Final Scientific and Technical Report describes the technology and engineering basis of the project, inclusive of process systems, performance, effluents and emissions, and controls. Further, the project cost estimate, schedule, and permitting requirements are presented, along with a project risk and opportunity assessment. Lessons-learned related to these elements are summarized in this report. Companion reports Oxy-combustion further document the accomplishments and learnings of the project, including: A.01 Project Management Report which describes what was done to coordinate the various participants, and to track their performance with regard to schedule and budget B.02 Lessons Learned - Technology Integration, Value Improvements, and Program Management, which describes the innovations and conclusions that we arrived upon during the development of the project, and makes recommendations for improvement of future projects of a similar nature . B.03 Project Economics, which details the capital and operation costs and their basis, and also illustrates the cost of power produced by the plant with certain sensitivities. B.04 Power Plant, Pipeline, and Injection Site Interfaces, which details the interfaces between the two FutureGen projects B.05 Contractual Mechanisms for Design, Construction, and Operation, which describes the major EPC, and Operations Contracts required to execute the project.« less
Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kloosterman, Jeff
2012-12-31
Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baselinemore » CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.« less
Membrane-based systems for carbon capture and hydrogen purification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berchtold, Kathryn A
2010-11-24
This presentation describes the activities being conducted at Los Alamos National Laboratory to develop carbon capture technologies for power systems. This work is aimed at continued development and demonstration of a membrane based pre- and post-combustion carbon capture technology and separation schemes. Our primary work entails the development and demonstration of an innovative membrane technology for pre-combustion capture of carbon dioxide that operates over a broad range of conditions relevant to the power industry while meeting the US DOE's Carbon Sequestration Program goals of 90% CO{sub 2} capture at less than a 10% increase in the cost of energy services.more » Separating and capturing carbon dioxide from mixed gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and pressures as well as be compatible with large gas volumes. Our project team is developing polymer membranes based on polybenzimidazole (PBI) chemistries that can purify hydrogen and capture CO{sub 2} at industrially relevant temperatures. Our primary objectives are to develop and demonstrate polymer-based membrane chemistries, structures, deployment platforms, and sealing technologies that achieve the critical combination of high selectivity, high permeability, chemical stability, and mechanical stability all at elevated temperatures (> 150 C) and packaged in a scalable, economically viable, high area density system amenable to incorporation into an advanced Integrated Gasification Combined-Cycle (IGCC) plant for pre-combustion CO{sub 2} capture. Stability requirements are focused on tolerance to the primary synthesis gas components and impurities at various locations in the IGCC process. Since the process stream compositions and conditions (temperature and pressure) vary throughout the IGCC process, the project is focused on the optimization of a technology that could be positioned upstream or downstream of one or more of the water-gas-shift reactors (WGSRs) or integrated with a WGSR.« less
NASA Technical Reports Server (NTRS)
Grindle, Laurie; Sakahara, Robert; Hackenberg, Davis; Johnson, William
2017-01-01
The topics discussed are the UAS-NAS project life-cycle and ARMD thrust flow down, as well as the UAS environments and how we operate in those environments. NASA's Armstrong Flight Research Center at Edwards, CA, is leading a project designed to help integrate unmanned air vehicles into the world around us. The Unmanned Aircraft Systems Integration in the National Airspace System project, or UAS in the NAS, will contribute capabilities designed to reduce technical barriers related to safety and operational challenges associated with enabling routine UAS access to the NAS. The project falls under the Integrated Systems Research Program office managed at NASA Headquarters by the agency's Aeronautics Research Mission Directorate. NASA's four aeronautics research centers - Armstrong, Ames Research Center, Langley Research Center, and Glenn Research Center - are part of the technology development project. With the use and diversity of unmanned aircraft growing rapidly, new uses for these vehicles are constantly being considered. Unmanned aircraft promise new ways of increasing efficiency, reducing costs, enhancing safety and saving lives 460265main_ED10-0132-16_full.jpg Unmanned aircraft systems such as NASA's Global Hawks (above) and Predator B named Ikhana (below), along with numerous other unmanned aircraft systems large and small, are the prime focus of the UAS in the NAS effort to integrate them into the national airspace. Credits: NASA Photos 710580main_ED07-0243-37_full.jpg The UAS in the NAS project envisions performance-based routine access to all segments of the national airspace for all unmanned aircraft system classes, once all safety-related and technical barriers are overcome. The project will provide critical data to such key stakeholders and customers as the Federal Aviation Administration and RTCA Special Committee 203 (formerly the Radio Technical Commission for Aeronautics) by conducting integrated, relevant system-level tests to adequately address safety and operational challenges of national airspace access by unmanned aircraft systems, or UAS. In the process, the project will work with other key stakeholders to define necessary deliverables and products to help enable such access. Within the project, NASA is focusing on five sub-projects. These five focus areas include assurance of safe separation of unmanned aircraft from manned aircraft when flying in the national airspace; safety-critical command and control systems and radio frequencies to enable safe operation of UAS; human factors issues for ground control stations; airworthiness certification standards for UAS avionics and integrated tests and evaluation designed to determine the viability of emerging UAS technology. Five Focus Areas of the UAS Integration in the NAS Project Separation Assurance Provide an assessment of how planned Next Generation Air Transportation System (NextGen) separation assurance systems, with different functional allocations, perform for UAS in mixed operations with manned aircraft Assess the applicability to UAS and the performance of NASA NextGen separation assurance systems in flight tests with realistic latencies and uncertain trajectories Assess functional allocations ranging from today's ground-based, controller-provided aircraft separation to fully autonomous airborne self-separation Communications Develop data and rationale to obtain appropriate frequency spectrum allocations to enable safe and efficient operation of UAS in the NAS Develop and validate candidate secure safety-critical command and control system/subsystem test equipment for UAS that complies with UAS international/national frequency regulations, standards and recommended practices and minimum operational and aviation system performance standards for UAS Perform analysis to support recommendations for integration of safety-critical command and control systems and air traffic control communications to ensure safe and efficient operation of UAS in the NAS Human Systems Integration Develop a research test bed and database to provide data and proof of concept for GCS - ground control station - operations in the NAS Coordinate with standards organizations to develop human-factors guidelines for GCS operation in the NAS Certification Define a UAS classification scheme and approach to determining Federal Aviation Regulation airworthiness requirements applicable to all UAS digital avionics Provide hazard and risk-related data to support development of type design criteria and best development practices Integrated Tests and Evaluation Integrate and test mature concepts from technical elements to demonstrate and test viability Evaluate the performance of technology development in a relevant environment (full-mission, human-in-the-loop simulations and flight tests)
Low cost silicon solar array project silicon materials task
NASA Technical Reports Server (NTRS)
1977-01-01
A program was established to develop a high temperature silicon production process using existing electric arc heater technology. Silicon tetrachloride and a reductant will be injected into an arc heated mixture of hydrogen and argon. Under these high temperature conditions, a very rapid reaction is expected to occur and proceed essentially to completion, yielding silicon and gaseous sodium chloride. Techniques for high temperature separation and collection of the molten silicon will be developed using standard engineering approaches, and the salt vapor will later be electrolytically separated into its elemental constituents for recycle. Preliminary technical evaluations and economic projections indicate not only that this process appears to be feasible, but that it also has the advantages of rapid, high capacity production of good quality molten silicon at a nominal cost.
NASA Technical Reports Server (NTRS)
1973-01-01
The results are reported of the NASA/Drexel research effort which was conducted in two separate phases. The initial phase stressed exploration of the problem from the point of view of three primary research areas and the building of a multidisciplinary team. The final phase consisted of a clinical demonstration program in which the research associates consulted with the County Executive of New Castle County, Delaware, to aid in solving actual problems confronting the County Government. The three primary research areas of the initial phase are identified as technology, management science, and behavioral science. Five specific projects which made up the research effort are treated separately. A final section contains the conclusions drawn from total research effort as well as from the specific projects.
Safe and Secure Virtualization: Answers for IMA next Generation and Beyond
NASA Astrophysics Data System (ADS)
Almeida, Jose; Vatrinet, Francis
2010-08-01
This paper presents some of the challenges the aerospace industry is facing for the future and explains why and how a safe and secured virtualization technology can help solving these challenges Efforts around the next generation of IMA have already started, like the European FP7 funded project SCARLETT or the IDEE5 project and many avionics players and working groupware focused on how the new technologies like SMP capabilities introduced in latest CPU architectures, can help increasing system performances in future avionics system. We present PikeOS, a separation micro-kernel, which applies the state-of-the-art techniques and widely recognized standards such as ARINC 653 and MILS in order to guarantee safety and security properties, and still improve overall performance.
The science of laboratory and project management in regulated bioanalysis.
Unger, Steve; Lloyd, Thomas; Tan, Melvin; Hou, Jingguo; Wells, Edward
2014-05-01
Pharmaceutical drug development is a complex and lengthy process, requiring excellent project and laboratory management skills. Bioanalysis anchors drug safety and efficacy with systemic and site of action exposures. Development of scientific talent and a willingness to innovate or adopt new technology is essential. Taking unnecessary risks, however, should be avoided. Scientists must strategically assess all risks and find means to minimize or negate them. Laboratory Managers must keep abreast of ever-changing technology. Investments in instrumentation and laboratory design are critical catalysts to efficiency and safety. Matrix management requires regular communication between Project Managers and Laboratory Managers. When properly executed, it aligns the best resources at the right times for a successful outcome. Attention to detail is a critical aspect that separates excellent laboratories. Each assay is unique and requires attention in its development, validation and execution. Methods, training and facilities are the foundation of a bioanalytical laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huskey, A.; Bowen, A.; Jager, D.
This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, five turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certificationmore » requirements. The test equipment includes a Mariah Windspire wind turbine mounted on a monopole tower. L&E Machine manufactured the turbine in the United States. The inverter was manufactured separately by Technology Driven Products in the United States. The system was installed by the NWTC site operations group with guidance and assistance from Mariah Power.« less
Two-Phase Flow Technology Developed and Demonstrated for the Vision for Exploration
NASA Technical Reports Server (NTRS)
Sankovic, John M.; McQuillen, John B.; Lekan, Jack F.
2005-01-01
NASA s vision for exploration will once again expand the bounds of human presence in the universe with planned missions to the Moon and Mars. To attain the numerous goals of this vision, NASA will need to develop technologies in several areas, including advanced power-generation and thermal-control systems for spacecraft and life support. The development of these systems will have to be demonstrated prior to implementation to ensure safe and reliable operation in reduced-gravity environments. The Two-Phase Flow Facility (T(PHI) FFy) Project will provide the path to these enabling technologies for critical multiphase fluid products. The safety and reliability of future systems will be enhanced by addressing focused microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability, all of which are essential to exploration technology. The project--a multiyear effort initiated in 2004--will include concept development, normal-gravity testing (laboratories), reduced gravity aircraft flight campaigns (NASA s KC-135 and C-9 aircraft), space-flight experimentation (International Space Station), and model development. This project will be implemented by a team from the NASA Glenn Research Center, QSS Group, Inc., ZIN Technologies, Inc., and the Extramural Strategic Research Team composed of experts from academia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-01
This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this second volume covermore » Transportation Fuels, and Chemicals and Products. Transportation Fuels topics include: Biodiesel, Pyrolytic Liquids, Ethanol, Methanol and Ethers, and Commercialization. The Chemicals and Products section includes specific topics in: Research, Technology Transfer, and Commercial Systems. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vahdat, Nader
2013-09-30
The project provided hands-on training and networking opportunities to undergraduate students in the area of carbon dioxide (CO2) capture and transport, through fundamental research study focused on advanced separation methods that can be applied to the capture of CO2 resulting from the combustion of fossil-fuels for power generation . The project team’s approach to achieve its objectives was to leverage existing Carbon Capture and Storage (CCS) course materials and teaching methods to create and implement an annual CCS short course for the Tuskegee University community; conduct a survey of CO2 separation and capture methods; utilize data to verify and developmore » computer models for CO2 capture and build CCS networks and hands-on training experiences. The objectives accomplished as a result of this project were: (1) A comprehensive survey of CO2 capture methods was conducted and mathematical models were developed to compare the potential economics of the different methods based on the total cost per year per unit of CO2 avoidance; and (2) Training was provided to introduce the latest CO2 capture technologies and deployment issues to the university community.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achey, R.; Rivera, O.; Wellons, M.
Microporous zeolite adsorbent materials are widely used as a medium for separating gases. Adsorbent gas separation systems can run at ambient temperature and require minimal pressure to flow the input gas stream across the adsorbent bed. This allows for low energy consumption relative to other types of separation systems. Specific zeolites also have a high capacity and selectivity for the gases of interest, leading to compact and efficient separation systems. These characteristics are particularly advantageous for the application of signatures detection for non-proliferation, which often requires portable systems with low power draw. Savannah River National Laboratory currently is the leadermore » in using zeolites for noble gas sampling for non-proliferation detection platforms. However, there is a constant customer need for improved sampling capabilities. Development of improved zeolite materials will lead to improved sampling technology. Microwave-assisted and conventional hydrothermal synthesis have been used to make a variety of zeolites tailored for noble gas separation. Materials characterization data collected in this project has been used to help guide the synthesis of improved zeolite materials. Candidate materials have been down-selected based on highest available surface area, maximum overall capacity for gas adsorption and highest selectivity. The creation of improved adsorbent materials initiated in this project will lead to development of more compact, efficient and effective noble gas collectors and concentrators. The work performed in this project will be used as a foundation for funding proposals for further material development as well as possible industrial applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander Fridman
2005-06-01
This DOE project DE-FC36-04GO14052 ''Plasma Pilot Plant Test for Treating VOC Emissions from Wood Products Plants'' was conducted by Drexel University in cooperation with Georgia-Pacific (G-P) and Kurchatov Institute (KI). The objective of this project was to test the Plasma Pilot Plant capabilities in wood industry. The final goal of the project was to replace the current state-of-the-art, regenerative thermal oxidation (RTO) technology by Low-Temperature Plasma Technology (LTPT) in paper and wood industry for Volatile Organic Components (VOC) destruction in High Volume Low Concentration (HVLC) vent emissions. MetPro Corporation joined the team as an industrial partner from the environmental controlmore » business and a potential leader for commercialization. Concurrent Technology Corporation (CTC) has a separate contract with DOE for this technology evaluation. They prepared questionnaires for comparison of this technology and RTO, and made this comparison. These data are presented in this report along with the description of the technology itself. Experiments with the pilot plant were performed with average plasma power up to 3.6 kW. Different design of the laboratory and pilot plant pulsed coronas, as well as different analytical methods revealed many new peculiarities of the VOC abatement process. The work reported herein describes the experimental results for the VOCs removal efficiency with respect to energy consumption, residence time, water effect and initial concentration.« less
NASA Redox Storage System Development Project
NASA Technical Reports Server (NTRS)
Hagedorn, N. H.
1984-01-01
The Redox Storage System Technology Project was jointly supported by the U.S. Department of Energy and NASA. The objectives of the project were to develop the Redox flow battery concept and to probe its technical and economic viability. The iron and chromium redox couples were selected as the reactants. Membranes and electrodes were developed for the original mode of operating at 25 C with the reactants separated by an ion-exchange membrane. Analytical capabilities and system-level operating concepts were developed and verified in a 1-kW, 13-kWh preprototype system. A subsequent change was made in operating mode, going to 65 C and using mixed reactants. New membranes and a new electrode catalyst were developed, resulting in single cell operation as high as 80 mA/sq cm with energy efficiencies greater than 80 percent. Studies indicate a likely system cost of about $75/kWh. Standard Oil of Ohio (Sohio) has undertaken further development of the Redox system. An exclusive patent license was obtained from NASA by Sohio. Transfer of Redox technology to Sohio is supported by the NASA Technology Utilization Office.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldridge, Chris D.
Mobile biometric devices (MBDs) capable of both enrolling individuals in databases and performing identification checks of subjects in the field are seen as an important capability for military, law enforcement, and homeland security operations. The technology is advancing rapidly. The Department of Homeland Security Science and Technology Directorate through an Interagency Agreement with Sandia sponsored a series of pilot projects to obtain information for the first responder law enforcement community on further identification of requirements for mobile biometric device technology. Working with 62 different jurisdictions, including components of the Department of Homeland Security, Sandia delivered a series of reports onmore » user operation of state-of-the-art mobile biometric devices. These reports included feedback information on MBD usage in both operational and exercise scenarios. The findings and conclusions of the project address both the limitations and possibilities of MBD technology to improve operations. Evidence of these possibilities can be found in the adoption of this technology by many agencies today and the cooperation of several law enforcement agencies in both participating in the pilot efforts and sharing of information about their own experiences in efforts undertaken separately.« less
SERS internship fall 1995 abstracts and research papers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Beverly
1996-05-01
This report is a compilation of twenty abstracts and their corresponding full papers of research projects done under the US Department of Energy Science and Engineering Research Semester (SERS) program. Papers cover a broad range of topics, for example, environmental transport, supercomputers, databases, biology. Selected papers were indexed separately for inclusion the the Energy Science and Technology Database.
Micro-Optic Color Separation Technology for Efficient Projection Displays
NASA Technical Reports Server (NTRS)
Gunning, W. J.; Boehmer, E.
1997-01-01
Phase 1 of this project focused on development of an overall optical concept which incorporated a single liquid crystal spatial light modulator. The system achieved full color by utilizing an echelon grating, which diffracted the incident light into three orders with different color spectra, in combination with a microlens array, which spatially separated RGB bands and directed the light of the appropriate wavelength to the appropriate color dot. Preliminary echelon grating designs were provided by MIT/LL and reviewed by Rockwell. Additional Rockwell activities included the Identification of microlens designs, light sources (ILC), and projection optics to fulfill the overall design requirements. An Internal subcontract was established with Rockwell's Collins Avionics and Communications Division (CACD) which specified the liquid crystal SLM (Sharp Model No. LQ 46EO2) and built the projection display baseline projector. Full Color projected video images were produced and shown at the 1995 HDS meeting in Washington. Analysis of the luminance performance of the projector and detailed parameter trade studies helped define the dependence of overall display efficiency on lamp collimation, and indicated that a lamp with very small arc dimension is required for the optical concept to be viable.
Laser micro-structuring of surfaces for applications in materials and biomedical science
NASA Astrophysics Data System (ADS)
Sarzyński, Antoni; Marczak, Jan; Strzelec, Marek; Rycyk, Antoni; CzyŻ, Krzysztof; Chmielewska, Danuta
2016-12-01
Laser radiation is used, among others, for surface treatment of various materials. At the Institute of Optoelectronics, under the direction of the late Professor Jan Marczak, a number of works in the field of laser materials processing were performed. Among them special recognition deserves flagship work of Professor Jan Marczak: implementation in Poland laser cleaning method of artworks. Another big project involved the direct method of laser interference lithography. These two projects have already been widely discussed in many national and international scientific conferences. They will also be discussed at SLT2016. In addition to these two projects in the Laboratory of Lasers Applications many other works have been carried out, some of which will be separately presented at the SLT2016 Conference. These included laser decorating of ceramics and glass (three projects completed in cooperation with the Institute of Ceramics and Building Materials), interference structuring medical implants (together with the Warsaw University of Technology), testing the adhesion of thin layers (project implemented together with IFTR PAS), structuring layers of DLC for growing endothelial cells (together with IMMS PAS), engraving glass for microfluidic applications, metal marking, sapphire cutting and finally the production of microsieves for separating of blood cells.
Strategies for the enrichment and identification of basic proteins in proteome projects.
Bae, Soo-Han; Harris, Andrew G; Hains, Peter G; Chen, Hong; Garfin, David E; Hazell, Stuart L; Paik, Young-Ki; Walsh, Bradley J; Cordwell, Stuart J
2003-05-01
Two-dimensional gel electrophoresis (2-DE) is currently the method of choice for separating complex mixtures of proteins for visual comparison in proteome analysis. This technology, however, is biased against certain classes of proteins including low abundance and hydrophobic proteins. Proteins with extremely alkaline isoelectric points (pI) are often very poorly represented using 2-DE technology, even when complex mixtures are separated using commercially available pH 6-11 or pH 7-10 immobilized pH gradients. The genome of the human gut pathogen, Helicobacter pylori, is dominated by genes encoding basic proteins, and is therefore a useful model for examining methodology suitable for separating such proteins. H. pylori proteins were separated on pH 6-11 and novel pH 9-12 immobilized pH gradients and 65 protein spots were subjected to matrix-assisted laser desorption/ionization-time of flight mass spectrometry, leading to the identification of 49 unique proteins. No proteins were characterized with a theoretical pI of greater than 10.23. A second approach to examine extremely alkaline proteins (pI > 9.0) utilized a prefractionation isoelectric focusing. Proteins were separated into two fractions using Gradiflow technology, and the extremely basic fraction subjected to both sodium dodecyl sulphate-polyacrylamide gel electrophoresis and liquid chromatography (LC) - tandem mass spectrometry post-tryptic digest, allowing the identification of 17 and 13 proteins, respectively. Gradiflow separations were highly specific for proteins with pI > 9.0, however, a single LC separation only allowed the identification of peptides from highly abundant proteins. These methods and those encompassing multiple LC 'dimensions' may be a useful complement to 2-DE for 'near-to-total' proteome coverage in the alkaline pH range.
The Navajo Learning Network and the NASA Life Sciences/AFOSR Infrastructure Development Project
NASA Technical Reports Server (NTRS)
1999-01-01
The NSF-funded Navajo Learning Network project, with help from NASA Life Sciences and AFOSR, enabled Dine College to take a giant leap forward technologically - in a way that could never had been possible had these projects been managed separately. The combination of these and other efforts created a network of over 500 computers located at ten sites across the Navajo reservation. Additionally, the college was able to install a modern telephone system which shares network data, and purchase a new higher education management system. The NASA Life Sciences funds further allowed the college library system to go online and become available to the entire campus community. NSF, NASA and AFOSR are committed to improving minority access to higher education opportunities and promoting faculty development and undergraduate research through infrastructure support and development. This project has begun to address critical inequalities in access to science, mathematics, engineering and technology for Navajo students and educators. As a result, Navajo K-12 education has been bolstered and Dine College will therefore better prepare students to transfer successfully to four-year institutions. Due to the integration of the NSF and NASA/AFOSR components of the project, a unified project report is appropriate.
The Alliance of Advanced Process Control and Accountability – A Future Safeguards-By-Design Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lumetta, Gregg J.; Bresee, James C.; Paviet, Patricia D.
For any chemical separation process producing a valuable product, a material balance is an important process control measurement. That is particularly true for the separation of actinides from irradiated nuclear fuel, not only for their intrinsic value but also because an incomplete material balance may indicate diversion for unauthorized use. The DOE Office of Nuclear Energy is currently carrying out at the Pacific Northwest National Laboratory an experimental measurement of how well and with what precision current technologies can implement near real-time actinide material balances. This measurement effort is called the CoDCon project. It involves the separation of a productmore » with a 70/30 uranium/plutonium mass ratio. Initial tests will use dissolved fuel simulants prepared with pure uranium and plutonium nitrates at the same input ratios as irradiated fuel. Subsequent testing with actual irradiated fuel would be done to verify the results obtained with simulants. The experiments will use advanced on-line instrumentation supported by dynamic process models. Since accountability uncertainties could mask diversions, the aim of the project is not only to measure present-day capabilities but also, through sensitivity analyses, to identify those measurements with the greatest potential for overall material-balance improvements. The latter results will help identify priorities for future fuel cycle R&D programs. Advanced separations process control and material accountability technologies thus have a common goal: to provide the best tools available for safeguards-by-design [defined by the International Atomic Energy Agency (IAEA) as the integration of the design of a new nuclear facility through planning, construction, operation and decommissioning]. Since the potential domestic use of CoDCon results may be later than their possible foreign applications, arrangements may be feasible for possible bilateral or multinational cooperation in the CoDCon project.« less
2009 EVALUATION OF TRITIUM REMOVAL AND MITIGATION TECHNOLOGIES FOR WASTEWATER TREATMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
LUECK KJ; GENESSE DJ; STEGEN GE
2009-02-26
Since 1995, a state-approved land disposal site (SALDS) has received tritium contaminated effluents from the Hanford Site Effluent Treatment Facility (ETF). Tritium in this effluent is mitigated by storage in slow moving groundwater to allow extended time for decay before the water reaches the site boundary. By this method, tritium in the SALDS is isolated from the general environment and human contact until it has decayed to acceptable levels. This report contains the 2009 update evaluation of alternative tritium mitigation techniques to control tritium in liquid effluents and groundwater at the Hanford site. A thorough literature review was completed andmore » updated information is provided on state-of-the-art technologies for control of tritium in wastewaters. This report was prepared to satisfy the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-026-07B (Ecology, EPA, and DOE 2007). Tritium separation and isolation technologies are evaluated periodically to determine their feasibility for implementation to control Hanford site liquid effluents and groundwaters to meet the Us. Code of Federal Regulations (CFR), Title 40 CFR 141.16, drinking water maximum contaminant level (MCL) for tritium of 20,000 pOll and/or DOE Order 5400.5 as low as reasonably achievable (ALARA) policy. Since the 2004 evaluation, there have been a number of developments related to tritium separation and control with potential application in mitigating tritium contaminated wastewater. These are primarily focused in the areas of: (1) tritium recycling at a commercial facility in Cardiff, UK using integrated tritium separation technologies (water distillation, palladium membrane reactor, liquid phase catalytic exchange, thermal diffusion), (2) development and demonstration of Combined Electrolysis Catalytic Exchange (CECE) using hydrogen/water exchange to separate tritium from water, (3) evaporation of tritium contaminated water for dispersion in the atmosphere, and (4) use of barriers to minimize the transport of tritium in groundwater. Continuing development efforts for tritium separations processes are primarily to support the International Thermonuclear Experimental Reactor (ITER) program, the nuclear power industry, and the production of radiochemicals. While these applications are significantly different than the Hanford application, the technology could potentially be adapted for Hanford wastewater treatment. Separations based processes to reduce tritium levels below the drinking water MCL have not been demonstrated for the scale and conditions required for treating Hanford wastewater. In addition, available cost information indicates treatment costs for such processes will be substantially higher than for discharge to SALDS or other typical pump and treat projects at Hanford. Actual mitigation projects for groundwater with very low tritium contamination similar to that found at Hanford have focused mainly on controlling migration and on evaporation for dispersion in the atmosphere.« less
Near-Blackbody Enclosed Particle-Receiver Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Zhiwen; Sakadjian, Bartev
2015-12-01
This 3-year project develops a technology using gas/solid, two-phase flow as a heat-transfer fluid and separated, stable, solid particles as a thermal energy storage (TES) medium for a concentrating solar power (CSP) plant, to address the temperature, efficiency, and cost barriers associated with current molten-salt CSP systems. This project focused on developing a near-blackbody particle receiver and an integrated fluidized-bed heat exchanger with auxiliary components to achieve greater than 20% cost reduction over current CSP plants, and to provide the ability to drive high-efficiency power cycles.
Medilanski, Edi; Chuan, Liang; Mosler, Hans-Joachim; Schertenleib, Roland; Larsen, Tove A
2007-05-01
We conducted a study of the institutional barriers to introducing urine source separation in the urban area of Kunming, China. On the basis of a stakeholder analysis, we constructed stakeholder diagrams showing the relative importance of decision-making power and (positive) interest in the topic. A hypothetical decision-making process for the urban case was derived based on a successful pilot project in a periurban area. All our results were evaluated by the stakeholders. We concluded that although a number of primary stakeholders have a large interest in testing urine source separation also in an urban context, most of the key stakeholders would be reluctant to this idea. However, the success in the periurban area showed that even a single, well-received pilot project can trigger the process of broad dissemination of new technologies. Whereas the institutional setting for such a pilot project is favorable in Kunming, a major challenge will be to adapt the technology to the demands of an urban population. Methodologically, we developed an approach to corroborate a stakeholder analysis with the perception of the stakeholders themselves. This is important not only in order to validate the analysis but also to bridge the theoretical gap between stakeholder analysis and stakeholder involvement. We also show that in disagreement with the assumption of most policy theories, local stakeholders consider informal decision pathways to be of great importance in actual policy-making.
NASA Astrophysics Data System (ADS)
Medilanski, Edi; Chuan, Liang; Mosler, Hans-Joachim; Schertenleib, Roland; Larsen, Tove A.
2007-05-01
We conducted a study of the institutional barriers to introducing urine source separation in the urban area of Kunming, China. On the basis of a stakeholder analysis, we constructed stakeholder diagrams showing the relative importance of decision-making power and (positive) interest in the topic. A hypothetical decision-making process for the urban case was derived based on a successful pilot project in a periurban area. All our results were evaluated by the stakeholders. We concluded that although a number of primary stakeholders have a large interest in testing urine source separation also in an urban context, most of the key stakeholders would be reluctant to this idea. However, the success in the periurban area showed that even a single, well-received pilot project can trigger the process of broad dissemination of new technologies. Whereas the institutional setting for such a pilot project is favorable in Kunming, a major challenge will be to adapt the technology to the demands of an urban population. Methodologically, we developed an approach to corroborate a stakeholder analysis with the perception of the stakeholders themselves. This is important not only in order to validate the analysis but also to bridge the theoretical gap between stakeholder analysis and stakeholder involvement. We also show that in disagreement with the assumption of most policy theories, local stakeholders consider informal decision pathways to be of great importance in actual policy-making.
Shoepe, Todd C; Cavedon, Dana K; Derian, Joseph M; Levy, Celine S; Morales, Amy
2015-01-01
Anatomical education is a dynamic field where developments in the implementation of constructive, situated-learning show promise in improving student achievement. The purpose of this study was to examine the effectiveness of an individualized, technology heavy project in promoting student performance in a combined anatomy and physiology laboratory course. Mixed-methods research was used to compare two cohorts of anatomy laboratories separated by the adoption of a new laboratory atlas project, which were defined as preceding (PRE) and following the adoption of the Anatomical Teaching and Learning Assessment Study (ATLAS; POST). The ATLAS project required the creation of a student-generated, photographic atlas via acquisition of specimen images taken with tablet technology and digital microscope cameras throughout the semester. Images were transferred to laptops, digitally labeled and photo edited weekly, and compiled into a digital book using Internet publishing freeware for final project submission. An analysis of covariance confirmed that student final examination scores were improved (P < 0.05) following the implementation of the laboratory atlas project (PRE, n = 75; POST, n = 90; means ± SE; 74.9 ± 0.9 versus 78.1 ± 0.8, respectively) after controlling for cumulative student grade point average. Analysis of questionnaires collected (n = 68) from the post group suggested students identified with atlas objectives, appreciated the comprehensive value in final examination preparation, and the constructionism involved, but recommended alterations in assignment logistics and the format of the final version. Constructionist, comprehensive term-projects utilizing student-preferred technologies could be used to improve performance toward student learning outcomes. © 2014 American Association of Anatomists.
NASA Technical Reports Server (NTRS)
1983-01-01
A miniature gas chromatograph, a system which separates a gaseous mixture into its components and measures the concentration of the individual gases, was designed for the Viking Lander. The technology was further developed under National Institute for Occupational Safety and Health (NIOSH) and funded by Ames Research Center/Stanford as a toxic gas leak detection device. Three researchers on the project later formed Microsensor Technology, Inc. to commercialize the product. It is a battery-powered system consisting of a sensing wand connected to a computerized analyzer. Marketed as the Michromonitor 500, it has a wide range of applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klapperich, H.; Poettler, R.; Willocq, J.
In the last decade there has been a wide variety of major developments in shotcrete technology producing significant steps forward in the widely separated fields of materials science, design, new additives and admixtures, fibers, and shotcrete equipment. This has been achieved partly in projects such as the new high speed rail tracks in France. Significant advances have been made also in mining which was where the basic technology for the method was developed. These proceedings are divided into eight sessions, the first six covering the activities in the following regions: Central Europe; Canada and the US; the Far East, Southmore » America, and Africa; east/south Alp countries; west Alp countries; and Scandinavia and the UK. A session on shotcrete equipment and a poster presentation complete the contents. Twenty-four papers have been processed separately for inclusion on the data base.« less
Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughan, K.H.
1993-06-01
The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermalmore » energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.« less
NASA's Plans for Developing Life Support and Environmental Monitoring and Control Systems
NASA Technical Reports Server (NTRS)
Lawson, B. Michael; Jan, Darrell
2006-01-01
Life Support and Monitoring have recently been reworked in response to the Vision for Space Exploration. The Exploration Life Support (ELS) Project has replaced the former Advanced Life Support Element of the Human Systems Research and Technology Office. Major differences between the two efforts include: the separation of thermal systems into a new stand alone thermal project, deferral of all work in the plant biological systems, relocation of food systems to another organization, an addition of a new project called habitation systems, and overall reduction in the number of technology options due to lower funding. The Advanced Environmental Monitoring and Control (AEMC) Element is retaining its name but changing its focus. The work planned in the ELS and AEMC projects is organized around the three major phases of the Exploration Program. The first phase is the Crew Exploration Vehicle (CEV). The ELS and AEMC projects will develop hardware for this short duration orbital and trans-lunar vehicle. The second phase is sortie landings on the moon. Life support hardware for lunar surface access vehicles including upgrades of the CEV equipment and technologies which could not be pursued in the first phase due to limited time and budget will be developed. Monitoring needs will address lunar dust issues, not applicable to orbital needs. The ELS and AEMC equipment is of short duration, but has different environmental considerations. The third phase will be a longer duration lunar outpost. This will consist of a new set of hardware developments better suited for long duration life support and associated monitoring needs on the lunar surface. The presentation will show the planned activities and technologies that are expected to be developed by the ELS and AEMC projects for these program phases.
Cradle-to-Grave Logistic Technologies for Exploration Missions
NASA Technical Reports Server (NTRS)
Broyan, James L.; Ewert, Michael K.; Shull, Sarah
2013-01-01
Human exploration missions under study are very limited by the launch mass capacity of exiting and planned vehicles. The logistical mass of crew items is typically considered separate from the vehicle structure, habitat outfitting, and life support systems. Consequently, crew item logistical mass is typically competing with vehicle systems for mass allocation. NASA is Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project is developing four logistics technologies guided by a systems engineering cradle-to-grave approach to enable used crew items to augment vehicle systems. Specifically, AES LRR is investigating the direct reduction of clothing mass, the repurposing of logistical packaging, the processing of spent crew items to benefit radiation shielding and water recovery, and the conversion of trash to propulsion supply gases. The systematic implementation of these types of technologies will increase launch mass efficiency by enabling items to be used for secondary purposes and improve the habitability of the vehicle as the mission duration increases. This paper provides a description, benefits, and challenges of the four technologies under development and a status of progress at the mid ]point of the three year AES project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LiVecchi, Al
2015-05-07
This document summarizes the tasks identified for National Laboratory technical support of Ocean Renewable Power Corporation (ORPC) DOE grant awarded under the FY10 Industry Solicitation DE-FOA-0000293: Technology Readiness Advancement Initiative. The system ORPC will deploy in Cobscook Bay, ME is known as the TidGen™ Power System. The Turbine Generator Unit (TGU) each have a rated capacity of 150 to 175 kW, and they are mounted on bottom support frames and connected to an onshore substation using an underwater power and control cable. This system is designed for tidal energy applications in water depths from 60 to 150 feet. In fundingmore » provided separately by DOE, National Laboratory partners NREL and SNL will provide in-kind resources and technical expertise to help ensure that industry projects meet DOE WWPP (Wind and Water Power Program) objectives by reducing risk to these high value projects.« less
Refrigeration and air-conditioning technology workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, P. J.; Counce, D. M.
1993-01-01
The Alternative Fluorocarbon Environmental Acceptability Study (AFEAS), a consortium of fluorocarbon manufacturers, and the US Department of Energy (DOE) are collaborating on a project to evaluate the energy use and global warming impacts of CFC alternatives. The goal of this project is to identify technologies that could replace the use of CFCs in refrigeration, heating, and air-conditioning equipment; to evaluate the direct impacts of chemical emissions on global warming; and to compile accurate estimates of energy use and, indirect CO{sub 2} emissions of substitute technologies. The first phase of this work focused on alternatives that could be commercialized before themore » year 2000. The second phase of the project is examining not-in-kind and next-generation technologies that could be developed to replace CFCs, HCFCs, and HFCs over a longer period. As part of this effort, Oak Ridge National Laboratory held a workshop on June 23--25, 1993. The preliminary agenda covered a broad range of alternative technologies and at least one speaker was invited to make a brief presentation at the workshop on each technology. Some of the invited speakers were unable to participate, and in a few cases other experts could not be identified. As a result, those technologies were not represented at the workshop. Each speaker was asked to prepare a five to seven page paper addressing six key issues concerning the technology he/she is developing. These points are listed in the sidebar. Each expert also spoke for 20 to 25 minutes at the workshop and answered questions from the other participants concerning the presentation and area of expertise. The primary goal of the presentations and discussions was to identify the developmental state of the technology and to obtain comparable data on system efficiencies. Individual papers are indexed separately.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-01
This conference was designed to provide a national and international forum to support the development of a viable biomass industry. Although papers on research activities and technologies under development that address industry problems comprised part of this conference, an effort was made to focus on scale-up and demonstration projects, technology transfer to end users, and commercial applications of biomass and wastes. The conference was divided into these major subject areas: Resource Base, Power Production, Transportation Fuels, Chemicals and Products, Environmental Issues, Commercializing Biomass Projects, Biomass Energy System Studies, and Biomass in Latin America. The papers in this third volume dealmore » with Environmental Issues, Biomass Energy System Studies, and Biomass in Latin America. Concerning Environmental Issues, the following topics are emphasized: Global Climate Change, Biomass Utilization, Biofuel Test Procedures, and Commercialization of Biomass Products. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less
High Selectivity Gas Separation Membrane Assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nachlas, Jesse; Corn, Isaac; Wegst, Ulrike
Global energy consumption is projected to be more than double of today’s levels by 2050. Economic and environmental pressures are putting significant limits on fossil fuel resources, and there is a significant push for improved efficiency in many industrial processes. Membranes for gas separation represent a significant opportunity for reduced energy consumption and improved efficiencies in a wide range of industrial applications by replacing typical high temperature processes or energy intensive processes with low temperature energy efficient processes. Carbon membranes represent an attractive class of membrane materials that offer the potential to improve the reliability, corrosion resistance and temperature capabilitymore » of polymeric membranes, which limit their adoption for many industrial applications. However, there are still a number of technical hurdles which must be overcome before carbon membranes can be made commercially ready including elimination of manufacturing defects, and improved performance (permeability and selectivity) relative to polymeric membranes. Examples of potential application of carbon membranes include production of oxygen enriched air (OEA) for combustion applications, separation of carbon dioxide (CO 2) from flue gas to improve the commercial feasibility of CO 2 sequestration, separation of hydrogen from CO/CO 2 during hydrogen manufacturing, and separation of H 2 from hydrocarbons during refinery operations to improve the kinetics of cracking reactions. As a result of these benefits there is a strong driving force to develop processing technologies capable of producing carbon membranes and possessing high reliability, for a wide range of applications. The DOE provides significant support for research and development is this area, as they have recognized the significant impact a low cost carbon membrane technology can have on energy consumption and polluting emissions across a broad range of industrial applications. In this SBIR Phase I project, we developed a novel polymer precursor composition, which led to highly reproducible crack-free porous carbon membranes that were capable of producing 30-50% oxygen for OEA from a pressurized air feed, thereby meeting the primary Phase I objective, and possessing a selectivity of ~20:1 for CO 2/N 2 separation. We also successfully developed a method for fabricating a ceramic support from low-cost fly ash. In general, the effectiveness of a carbon membrane at separating various gases is a function of the pore structure and size. The novel processing method utilized is capable of accurately controlling pore structure during the fabrication process opening the possibility to create a membrane technology platform that can operate across a broad range of gas compositions and applications. Nanoporous carbon membrane technology offers a very attractive option for important industrial gas separation processes that are typically energy intensive and expensive to install and operate. Highly efficient gas separation represents a key enabling technology for increasing efficiency and lowering cost in various applications involving advanced power generation systems, metallurgical operations and chemical processes. These benefits will be translated to the public through lower cost for goods and services in addition to lower cost for energy. Increased national security will come from decreased dependence on imported oil by making local resources, such as coal and natural gas, competitive in energy generation markets. Finally, making low cost oxygen available in these industries results in cleaner power production and reduced emissions of polluting gases.« less
Tarkhov, P V; Matsenko, A M; Krugliak, A P; Derkach, Zh V
2012-01-01
To reach normal competitiveness in world division of labour, investment projects should stimulate development of human capital towards advance of modern technologies and organizational development of all types of labour. At present time there are only separate calculations of certain types of people's health damage and completely disparate matters of damage compensation exceptionally for chemical contamination effects. The purpose of the paper is development of algorithms to provide hygienic welfare of human capital in investment projects. For this purpose in investments assessment and hygienic examination it is necessary to apply complete and comprehensive (systematic) evaluation of all factors that influence human capital welfare and practical hygienic and research institutions should be focused on systematic elimination of possible dangers and risks of investment projects.
X-43C Flight Demonstrator Project Overview
NASA Technical Reports Server (NTRS)
Moses, Paul L.
2003-01-01
The X-43C Flight Demonstrator Project is a joint NASA-USAF hypersonic propulsion technology flight demonstration project that will expand the hypersonic flight envelope for air-breathing engines. The Project will demonstrate sustained accelerating flight through three flights of expendable X-43C Demonstrator Vehicles (DVs). The approximately 16-foot long X-43C DV will be boosted to the starting test conditions, separate from the booster, and accelerate from Mach 5 to Mach 7 under its own power and autonomous control. The DVs will be powered by a liquid hydrocarbon-fueled, fuel-cooled, dual-mode, airframe integrated scramjet engine system developed under the USAF HyTech Program. The Project is managed by NASA Langley Research Center as part of NASA's Next Generation Launch Technology Program. Flight tests will be conducted by NASA Dryden Flight Research Center off the coast of California over water in the Pacific Test Range. The NASA/USAF/industry project is a natural extension of the Hyper-X Program (X-43A), which will demonstrate short duration (approximately 10 seconds) gaseous hydrogen-fueled scramjet powered flight at Mach 7 and Mach 10 using a heavy-weight, largely heat sink construction, experimental engine. The X-43C Project will demonstrate sustained accelerating flight from Mach 5 to Mach 7 (approximately 4 minutes) using a flight-weight, fuel-cooled, scramjet engine powered by much denser liquid hydrocarbon fuel. The X-43C DV design flows from integrating USAF HyTech developed engine technologies with a NASA Air-Breathing Launch Vehicle accelerator-class configuration and Hyper-X heritage vehicle systems designs. This paper describes the X-43C Project and provides the background for NASA's current hypersonic flight demonstration efforts.
Diamond High Assurance Security Program: Trusted Computing Exemplar
2002-09-01
computing component, the Embedded MicroKernel Prototype. A third-party evaluation of the component will be initiated during development (e.g., once...target technologies and larger projects is a topic for future research. Trusted Computing Reference Component – The Embedded MicroKernel Prototype We...Kernel The primary security function of the Embedded MicroKernel will be to enforce process and data-domain separation, while providing primitive
Electrochemical Membrane for Carbon Dioxide Capture and Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghezel-Ayagh, Hossein
FuelCell Energy, Inc. (FCE), in collaboration with AECOM Corporation (formerly URS Corporation) and Pacific Northwest National Laboratory, has been developing a novel Combined Electric Power and Carbon-dioxide Separation (CEPACS) system. The CEPACS system is based on electrochemical membrane (ECM) technology derived from FCE’s carbonate fuel cell products featuring internal (methane steam) reforming and carrying the trade name of Direct FuelCell®. The unique chemistry of carbonate fuel cells offers an innovative approach for separation of CO 2 from existing fossil-fuel power plant exhaust streams (flue gases). The ECM-based CEPACS system has the potential to become a transformational CO 2-separation technology bymore » working as two devices in one: it separates the CO 2 from the exhaust of other plants such as an existing coal-fired plant and simultaneously produces clean electric power at high efficiency using a supplementary fuel. The development effort was carried out under the U.S. Department of Energy (DOE) cooperative agreement DE-FE0007634. The overall objective of this project was to successfully demonstrate the ability of FCE’s ECM-based CEPACS system technology to separate ≥90% of the CO 2 from a simulated Pulverized Coal (PC) power plant flue gas stream and to compress the captured CO2 to a state that can be easily transported for sequestration or beneficial use. In addition, a key objective was to show, through the technical and economic feasibility study and bench scale testing, that the ECM-based CEPACS system is an economical alternative for CO 2 capture in PC power plants, and that it meets DOE’s objective related to the incremental cost of electricity (COE) for post-combustion CO 2 capture (no more than 35% increase in COE). The project was performed in three budget periods (BP). The specific objective for BP1 was to complete the Preliminary Technical and Economic Feasibility Study. The T&EF study was based on the carbon capture system size suitable for a reference 550 MW PC power plant. The specific objectives for BP2 were to perform (flue gas) contaminant effect evaluation tests, small area membrane tests using clean simulated flue gas, design a flue gas pretreatment system for processing of the gas feed to ECM, update the Technical & Economic Feasibility Study (T&EFS) incorporating results of contaminant effect tests and small area membrane tests, and to prepare a test facility for bench scale testing. The specific objectives for BP3 were to perform bench scale testing (parametric and long-duration testing) of a 11.7 m 2 ECM-based CO 2 capture, purification and compression system, and update (as final) the Technical and Economic Feasibility Study. In addition, an Environmental Health and Safety evaluation (assessment) of the ECM technology was included. This final technical report presents the progress made under the project.« less
Forced-flow once-through boilers. [structural design criteria/aerospace environments
NASA Technical Reports Server (NTRS)
Stone, J. R.; Gray, V. H.; Gutierrez, O. A.
1975-01-01
A compilation and review of NASA-sponsored research on boilers for use in spacecraft electrical power generation systems is presented. Emphasis is on the heat-transfer and fluid-flow problems. In addition to space applications, much of the boiler technology is applicable to terrestrial and marine uses such as vehicular power, electrical power generation, vapor generation, and heating and cooling. Related research areas are discussed such as condensation, cavitation, line and boiler dynamics, the SNAP-8 project (Mercury-Rankine cycle), and conventional terrestrial boilers (either supercritical or gravity-assisted liquid-vapor separation types). The research effort was directed at developing the technology for once-through compact boilers with high heat fluxes to generate dry vapor stably, without utilizing gravity for phase separations. A background section that discusses, tutorially, the complex aspects of the boiling process is presented. Discussions of tests on alkali metals are interspersed with those on water and other fluids on a phenomenological basis.
Fast Switching Magnet for Heavy Ion Beam Separation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartzell, Josiah
2017-10-03
Fast magnets for multiplexing ion beams between different beamlines are technologically challenging and expensive, but there is an ever-growing need to develop such systems for beam separation at research and industrial facilities. For example, The Argonne Tandem Linac Accelerator System (ATLAS) is planning to expand its operations as a multi-user facility and there is a clear need, presently unmet by the industry, for a switching magnet system with the sub-millisecond transient times.In response to this problem, RadiaBeam Technologies is developing a novel pulsed switching magnet system capable of producing a 1.1T peak field over 45 cm length with a shortmore » (<1 ms) rise and fall time. The key enabling innovation in this project is an introduction of a solid-state interposed modulator architecture, which enables to improve magnet performance and reliability and reduce the cost to a practical level.« less
Separating Added Value from Hype: Some Experiences and Prognostications
NASA Astrophysics Data System (ADS)
Reed, Dan
2004-03-01
These are exciting times for the interplay of science and computing technology. As new data archives, instruments and computing facilities are connected nationally and internationally, a new model of distributed scientific collaboration is emerging. However, any new technology brings both opportunities and challenges -- Grids are no exception. In this talk, we will discuss some of the experiences deploying Grid software in production environments, illustrated with experiences from the NSF PACI Alliance, the NSF Extensible Terascale Facility (ETF) and other Grid projects. From these experiences, we derive some guidelines for deployment and some suggestions for community engagement, software development and infrastructure
Evolving Our Evaluation of Luminous Environments
NASA Technical Reports Server (NTRS)
Clark, Toni
2016-01-01
The advance in solid state light emitting technologies and optics for lighting and visual communication necessitates the evaluation of how NASA envisions spacecraft lighting architectures and how NASA uses industry standards for the design and evaluation of lighting systems. Current NASA lighting standards and requirements for existing architectures focus on the separate ability of a lighting system to throw light against a surface or the ability of a display system to provide the appropriate visual contrast. This project investigated large luminous surface lamps as an alternative or supplement to overhead lighting. The efficiency of the technology was evaluated for uniformity and power consumption.
Cimpan, Ciprian; Maul, Anja; Jansen, Michael; Pretz, Thomas; Wenzel, Henrik
2015-06-01
Today's waste regulation in the EU comprises stringent material recovery targets and calls for comprehensive programs in order to achieve them. A similar movement is seen in the US where more and more states and communities commit to high diversion rates from landfills. The present paper reviews scientific literature, case studies and results from pilot projects, on the topic of central sorting of recyclable materials commonly found in waste from households. The study contributes, inter alia, with background understanding on the development of materials recovery, both in a historical and geographical perspective. Physical processing and sorting technology has reached a high level of maturity, and many quality issues linked to cross-contamination by commingling have been successfully addressed to date. New sorting plants tend to benefit from economies of scale, and innovations in automation and process control, which are targeted at curtailing process inefficiencies shown by operational practice. Technology developed for the sorting of commingled recyclables from separate collection is also being successfully used to upgrade residual MSW processing plants. The strongest motivation for central sorting of residual MSW is found for areas where source separation and separate collection is difficult, such as urban agglomerations, and can in such areas contribute to increasing recycling rates, either complementary to- or as a substitute for source separation of certain materials, such as plastics and metals. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Photovolatic Manufacturing Technology project (PVMaT) after three years
NASA Astrophysics Data System (ADS)
Witt, C. Edwin; Mitchell, Richard L.; Thomas, Holly; Herwig, Lloyd O.
1994-08-01
The Photovoltaic Manufacturing Technology project (PVMaT) is a government/industry research and development (R&D) partnership involving joint efforts between the federal government (through the US Department of Energy (DOE)) and members of the US photovoltaic (PV) industry. The project's goal is to assist US industry in retaining and extending its world leadership role in the manufacture and commercial development of PV components and systems. PVMaT is being carried out in three separate phases, each designed to address separate R&D requirements for achieving PVMaT goals. Phase 1 was a problem identification phase of about 3 months duration. In Phase 1, the status and needs of the US PV manufacturing industry were identified, and the development of a Phase 2 procurement responsive to the industry's needs was begun. Phase 1 was completed in 1991. Problem solution began in 1992, under Phase 2A, when DOE awarded multiyear subcontracts. Technical accomplishments for PVMaT 2A are presented in this paper. Subcontracts were recently awarded for a second, overlapping, and similar process-specific solicitation (PVMaT 2B). The activities of these new subcontracts are also described. Two subcontracts presently comprise the Phase 3 effort. Phase 3 addresses R&D problems that are relatively common to a number of PV companies or the PV industry as a whole. A teamed research approach is being used to improve automated module manufacturing lines and encapsulation materials used in module manufacturing. The first year's work on these subcontracts is also described in this paper.
RESOLVE Projects: Lunar Water Resource Demonstration and Regolith Volatile Characterization
NASA Technical Reports Server (NTRS)
2008-01-01
To sustain affordable human and robotic space exploration, the ability to live off the land at the exploration site will be essential. NASA calls this ability in situ resource utilization (ISRU) and is focusing on finding ways to sustain missions first on the Moon and then on Mars. The ISRU project aims to develop capabilities to technology readiness level 6 for the Robotic Lunar Exploration Program and early human missions returning to the Moon. NASA is concentrating on three primary areas of ISRU: (1) excavating, handling, and moving lunar regolith, (2) extracting oxygen from lunar regolith, and (3) finding, characterizing, extracting, separating, and storing volatile lunar resources, especially in the permanently shadowed polar craters. To meet the challenges related to technology development for these three primary focus areas, the Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) project was initiated in February 2005, through funding by the Exploration Systems Mission Directorate. RESOLVE's objectives are to develop requirements and conceptual designs and to perform breadboard concept verification testing of each experiment module. The final goal is to deliver a flight prototype unit that has been tested in a relevant lunar polar environment. Here we report progress toward the third primary area creating ways to find, characterize, extract, separate, and store volatile lunar resources. The tasks include studying thermal, chemical, and electrical ways to collect such volatile resources as hydrogen, water, nitrogen, methane, and ammonia. We approached this effort through two subtasks: lunar water resource demonstration (LWRD) and regolith volatile characterization (RVC).
The use of hydrodynamic vortex separators and screening systems to improve water quality.
Andoh, R Y G; Saul, A J
2003-01-01
The paper reviews the evolution of Hydrodynamic Vortex Separators (HDVS) in the context of application as high rate rotary flow separators for achieving water quality improvements to meet with regulatory requirements in Europe and North America. The types of HDVS and their application for the control of wet-weather discharges such as combined sewer overflows (CSOs), sanitary sewer overflows (SSOs) and stormwater are outlined and a number of myths surrounding their use, dispelled. Reference is made to outputs of peer reviewed comprehensive monitoring, evaluation and demonstration projects on pilot and full-scale installations to demonstrate the efficacy and extensive track record of these systems. Recent developments and innovations in HDVS technologies are discussed, focusing on their combined use as solids liquid separators, contact vessels for wastewater disinfection, the incorporation of self-cleansing screening devices for the control of aesthetic pollutants (e.g. floatables) and the use of computational modelling for optimisation.
The Mesaba Energy Project: Clean Coal Power Initiative, Round 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, Richard; Gray, Gordon; Evans, Robert
2014-07-31
The Mesaba Energy Project is a nominal 600 MW integrated gasification combine cycle power project located in Northeastern Minnesota. It was selected to receive financial assistance pursuant to code of federal regulations (?CFR?) 10 CFR 600 through a competitive solicitation under Round 2 of the Department of Energy?s Clean Coal Power Initiative, which had two stated goals: (1) to demonstrate advanced coal-based technologies that can be commercialized at electric utility scale, and (2) to accelerate the likelihood of deploying demonstrated technologies for widespread commercial use in the electric power sector. The Project was selected in 2004 to receive a totalmore » of $36 million. The DOE portion that was equally cost shared in Budget Period 1 amounted to about $22.5 million. Budget Period 1 activities focused on the Project Definition Phase and included: project development, preliminary engineering, environmental permitting, regulatory approvals and financing to reach financial close and start of construction. The Project is based on ConocoPhillips? E-Gas? Technology and is designed to be fuel flexible with the ability to process sub-bituminous coal, a blend of sub-bituminous coal and petroleum coke and Illinois # 6 bituminous coal. Major objectives include the establishment of a reference plant design for Integrated Gasification Combined Cycle (?IGCC?) technology featuring advanced full slurry quench, multiple train gasification, integration of the air separation unit, and the demonstration of 90% operational availability and improved thermal efficiency relative to previous demonstration projects. In addition, the Project would demonstrate substantial environmental benefits, as compared with conventional technology, through dramatically lower emissions of sulfur dioxide, nitrogen oxides, volatile organic compounds, carbon monoxide, particulate matter and mercury. Major milestones achieved in support of fulfilling the above goals include obtaining Site, High Voltage Transmission Line Route, and Natural Gas Pipeline Route Permits for a Large Electric Power Generating Plant to be located in Taconite, Minnesota. In addition, major pre-construction permit applications have been filed requesting authorization for the Project to i) appropriate water sufficient to accommodate its worst case needs, ii) operate a major stationary source in compliance with regulations established to protect public health and welfare, and iii) physically alter the geographical setting to accommodate its construction. As of the current date, the Water Appropriation Permits have been obtained.« less
Redox flow cell development and demonstration project, calendar year 1976
NASA Technical Reports Server (NTRS)
1977-01-01
The major focus of the effort was the key technology issues that directly influence the fundamental feasibility of the overall redox concept. These issues were the development of a suitable semipermeable separator membrane for the system, the screening and study of candidate redox couples to achieve optimum cell performance, and the carrying out of systems analysis and modeling to develop system performance goals and cost estimates.
Sorbent-based Oxygen Production for Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethi, Vijay
Project DE-FE0024075 deals with the development of a moderate-temperature sorbent-based oxygen production technology. Sorbent-based oxygen production process utilizes oxygen-storage properties of Perovskites to (1) adsorb oxygen from air in a solid sorbent, and (2) release the adsorbed oxygen into a sweep gas such as CO 2 and/or steam for gasification systems or recycled flue gas for oxy-combustion systems. Pure oxygen can be produced by the use of vacuum instead of a sweep gas to affect the pressure swing. By developing more efficient and stable, higher sorption capacity, newer class of materials operating at moderate temperatures this process represents a majormore » advancement in air separation technology. Newly developed perovskite ceramic sorbent materials with order-disorder transition have a higher O 2 adsorption capacity, potentially 200 °C lower operating temperatures, and up to two orders of magnitude faster desorption rates than those used in earlier development efforts. The performance advancements afforded by the new materials lead to substantial savings in capital investment and operational costs. Cost of producing oxygen using sorbents could be as much as 26% lower than VPSA and about 13% lower than a large cryogenic air separation unit. Cost advantage against large cryogenic separation is limited because sorbent-based separation numbers up sorbent modules for achieving the larger capacity.« less
Superfast 3D shape measurement of a flapping flight process with motion based segmentation
NASA Astrophysics Data System (ADS)
Li, Beiwen
2018-02-01
Flapping flight has drawn interests from different fields including biology, aerodynamics and robotics. For such research, the digital fringe projection technology using defocused binary image projection has superfast (e.g. several kHz) measurement capabilities with digital-micromirror-device, yet its measurement quality is still subject to the motion of flapping flight. This research proposes a novel computational framework for dynamic 3D shape measurement of a flapping flight process. The fast and slow motion parts are separately reconstructed with Fourier transform and phase shifting. Experiments demonstrate its success by measuring a flapping wing robot (image acquisition rate: 5000 Hz; flapping speed: 25 cycles/second).
Cast Metals Coalition Technology Transfer and Program Management Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gwyn, Mike
2009-03-31
The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. Thismore » closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration, new technologies enabling energy efficiencies and environment-friendly improvements are slow to develop, and have trouble obtaining a broad application. The CMC team was able to effectively and efficiently transfer the results of DOE's metalcasting R&D projects to industry by utilizing and delivering the numerous communication vehicles identified in the proposal. The three metalcasting technical associations achieved significant technology transition results under this program. In addition to reaching over 23,000 people per year through Modern Casting and 28,000 through Engineered Casting Solutions, AFS had 84 national publications and reached over 1,200 people annually through Cast Metals Institute (CMI) education courses. NADCA's education department reached over 1,000 people each year through their courses, in addition to reaching over 6,000 people annually through Die Casting Engineer, and publishing 58 papers. The SFSA also published 99 research papers and reached over 1,000 people annually through their member newsletters. In addition to these communication vehicles, the CMC team conducted numerous technical committee meetings, project reviews, and onsite visits. All of these efforts to distribute the latest metalcasting technologies contributed to the successful deployment of DOE's R&D projects into industry. The DOE/CMC partnership demonstrated significant success in the identification and review of relevant and easy-to-implement metalcasting energy-saving processes and technologies so that the results are quickly implemented and become general practice. The results achieved in this program demonstrate that sustained technology transfer efforts are a critical step in the deployment of R&D projects to industry.« less
Diffusion of Technology: Frequency of Use for Younger and Older Adults
Olson, Katherine E.; O’Brien, Marita A.; Rogers, Wendy A.; Charness, Neil
2012-01-01
Objectives When we think of technology-savvy consumers, older adults are typically not the first persons that come to mind. The common misconception is that older adults do not want to use or cannot use technology. But for an increasing number of older adults, this is not true (Pew Internet and American Life Project, 2003). Older adults do use technologies similar to their younger counterparts, but perhaps at different usage rates. Previous research has identified that there may be subgroups of older adults, “Silver Surfers”, whose adoption patterns mimic younger adults (Pew Internet and American Life Project, 2003). Much of the previous research on age-related differences in technology usage has only investigated usage broadly -- from a “used” or “not used” standpoint. The present study investigated age-related differences in overall usage of technologies, as well as frequency of technology usage (i.e., never, occasional, or frequent). Methods The data were gathered through a questionnaire from younger adults (N=430) and older adults (N=251) in three geographically separate and ethnically diverse areas of the United States. Results We found that younger adults use a greater breadth of technologies than older adults. However, age-related differences in usage and the frequency of use depend on the technology domain. Conclusion This paper presents technology usage and frequency data to highlight age-related differences and similarities. The results provide insights into older and younger adults’ technology-use patterns, which in turn provide a basis for expectations about knowledge differences. Designers and trainers can benefit from understanding experience and knowledge differences. PMID:22685360
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Kevin; Anasti, William; Fang, Yichuan
The main purpose of this project is to look at technologies and philosophies that would help reduce the costs of an Integrated Gasification Combined Cycle (IGCC) plant, increase its availability or do both. GE’s approach to this problem is to consider options in three different areas: 1) technology evaluations and development; 2) constructability approaches; and 3) design and operation methodologies. Five separate tasks were identified that fall under the three areas: Task 2 – Integrated Operations Philosophy; Task 3 – Slip Forming of IGCC Components; Task 4 – Modularization of IGCC Components; Task 5 – Fouling Removal; and Task 6more » – Improved Slag Handling. Overall, this project produced results on many fronts. Some of the ideas could be utilized immediately by those seeking to build an IGCC plant in the near future. These include the considerations from the Integrated Operations Philosophy task and the different construction techniques of Slip Forming and Modularization (especially if the proposed site is in a remote location or has a lack of a skilled workforce). Other results include ideas for promising technologies that require further development and testing to realize their full potential and be available for commercial operation. In both areas GE considers this project to be a success in identifying areas outside the core IGCC plant systems that are ripe for cost reduction and ity improvement opportunities.« less
Overview of Active Flow Control at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Pack, L. G.; Joslin, R. D.
1998-01-01
The paper summarizes Active Flow Control projects currently underway at the NASA Langley Research Center. Technology development is being pursued within a multidisciplinary, cooperative approach, involving the classical disciplines of fluid mechanics, structural mechanics, material science, acoustics, and stability and control theory. Complementing the companion papers in this session, the present paper will focus on projects that have the goal of extending the state-of-the-art in the measurement, prediction, and control of unsteady, nonlinear aerodynamics. Toward this goal, innovative actuators, micro and macro sensors, and control strategies are considered for high payoff flow control applications. The target payoffs are outlined within each section below. Validation of the approaches range from bench-top experiments to wind-tunnel experiments to flight tests. Obtaining correlations for future actuator and sensor designs are implicit in the discussion. The products of the demonstration projects and design tool development from the fundamental NASA R&D level technology will then be transferred to the Applied Research components within NASA, DOD, and US Industry. Keywords: active flow control, separation control, MEMS, review
Laser transmitter for Lidar In-Space Technology Experiment
NASA Technical Reports Server (NTRS)
Chang, John; Cimolino, Marc; Petros, Mulugeta
1991-01-01
The Lidar In-Space Technology Experiment (LITE) Laser Transmitter Module (LTM) flight laser optical architecture has been space qualified by extensive testing at the system, subsystem and component level. The projected system output performance has been verified using an optically and electrically similar breadboard version of the laser. Parasitic lasing was closely examined and completely suppressed after design changes were implemented and tested. Oscillator and amplifier type heads were separately tested to 150 million shots. Critical subassemblies have undergone environmental testing to Shuttle qualification levels. A superior three color anti-reflection coating was developed and tested for use on 14 surfaces after the final amplifier.
A science and technology initiative within the office of civilian radioactive waste management
Budnitz, R.J.; Kiess, T.E.; Peters, M.; Duncan, D.
2003-01-01
In 2002, by following a national decision-making process that had been specified in the 1982 Nuclear Waste Policy Act, Yucca Mountain (YM) was designated as the site for the nation's geologic repository for commercial spent nuclear fuel (SNF). The U.S. Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM) must now obtain regulatory approval to construct and operate a repository there, and to develop transportation and infrastructure needed to support operations. The OCRWM has also recently begun a separate Science and Technology (S&T) initiative, whose purposes, beginnings, current projects, and future plans are described here.
NASA Technical Reports Server (NTRS)
Giulianetti, Demo J.
2001-01-01
Ground and airborne technologies were developed in the Terminal Area Productivity (TAP) project for increasing throughput at major airports by safely maintaining good-weather operating capacity during bad weather. Methods were demonstrated for accurately predicting vortices to prevent wake-turbulence encounters and to reduce in-trail separation requirements for aircraft approaching the same runway for landing. Technology was demonstrated that safely enabled independent simultaneous approaches in poor weather conditions to parallel runways spaced less than 3,400 ft apart. Guidance, control, and situation-awareness systems were developed to reduce congestion in airport surface operations resulting from the increased throughput, particularly during night and instrument meteorological conditions (IMC). These systems decreased runway occupancy time by safely and smoothly decelerating the aircraft, increasing taxi speed, and safely steering the aircraft off the runway. Simulations were performed in which optimal trajectories were determined by air traffic control (ATC) and communicated to flight crews by means of Center TRACON Automation System/Flight Management System (CTASFMS) automation to reduce flight delays, increase throughput, and ensure flight safety.
NASA Technical Reports Server (NTRS)
Janardan, B. A.; Hoff, G. E.; Barter, J. W.; Brausch, J. F.; Gliebe, P. R.; Coffin, R. S.; Martens, S.; Delaney, B. R.; Dalton, W. N.; Mengle, V. G.
2000-01-01
This presentation discusses: Project Objectives, Approach and Goal; Baseline Nozzles and Test Cycle Definition; Repeatability and Baseline Nozzle Results; Noise Reduction Concepts; Noise Reduction Tests Configurations of BPR=5 Internal Plug Nozzle adn Acoustic Results; Noise Reduction Test Configurations of BPR=5 External Plug Nozzle and Acoustic Results; and Noise Reduction Tests Configurations of BPR=8 External Plug Nozzle and Acoustic Results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-05-01
This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from July 1, 1995 through September 30, 1995. The ACCP Demonstration Project is a US Department of Energy (DOE) Clean Coal Technology Project. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, andmore » volatile sulfur compounds. After thermal upgrading, the cola is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal.« less
Characterization and Evaluation of Lunar Regolith and Simulants
NASA Technical Reports Server (NTRS)
Cross, William M.; Murphy, Gloria A.
2010-01-01
A NASA-ESMD (National Aeronautics and Space Administration-Exploration Systems Mission Directorate) funded senior design project "Mineral Separation Technology for Lunar Regolith Simulant Production" is directed toward designing processes to produce Simulant materials as close to lunar regolith as possible. The eight undergraduate (junior and senior) students involved are taking a systems engineering design approach to identifying the most pressing concerns in simulant needs, then designing subsystems and processing strategies to meet these needs using terrestrial materials. This allows the students to, not only learn the systems engineering design process, but also, to make a significant contribution to an important NASA ESMD project. This paper will primarily be focused on the implementation aspect, particularly related to the systems engineering process, of this NASA EMSD senior design project. In addition comparison of the NASA ESMD group experience to the implementation of systems engineering practices into a group of existing design projects is given.
New Fragment Separation Technology for Superheavy Element Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaughnessy, D A; Moody, K J; Henderson, R A
2008-01-28
This project consisted of three major research areas: (1) development of a solid Pu ceramic target for the MASHA separator, (2) chemical separation of nuclear decay products, and (3) production of new isotopes and elements through nuclear reactions. There have been 16 publications as a result of this project, and this collection of papers summarizes our accomplishments in each of the three areas of research listed above. The MASHA (Mass Analyzer for Super-Heavy Atoms) separator is being constructed at the U400 Cyclotron at the Flerov Laboratory of Nuclear Reactions in Dubna, Russia. The purpose of the separator is to physicallymore » separate the products from nuclear reactions based on their isotopic masses rather than their decay characteristics. The separator was designed to have a separation between isotopic masses of {+-}0.25 amu, which would enable the mass of element 114 isotopes to be measured with outstanding resolution, thereby confirming their discovery. In order to increase the production rate of element 114 nuclides produced via the {sup 244}Pu+{sup 48}Ca reaction, a new target technology was required. Instead of a traditional thin actinide target, the MASHA separator required a thick, ceramic-based Pu target that was thick enough to increase element 114 production while still being porous enough to allow reaction products to migrate out of the target and travel through the separator to the detector array located at the back end. In collaboration with UNLV, we began work on development of the Pu target for MASHA. Using waste-form synthesis technology, we began by creating zirconia-based matrices that would form a ceramic with plutonium oxide. We used samarium oxide as a surrogate for Pu and created ceramics that had varying amounts of the starting materials in order to establish trends in material density and porosity. The results from this work are described in more detail in Refs. [1,4,10]. Unfortunately, work on MASHA was delayed in Russia because it was found that the efficiency of transporting products from the target chamber to the detector array was much too low for applications in heavy element experiments where production rates are on the order of one atom per day or less. Work continues on the MASHA separator, and once the efficiency has been improved, we plan to continue our work on the Pu target for future element 114 experiments. Due to the delays of the MASHA separator, work on establishing the identity of heavy element species produced through nuclear reactions focused instead on chemical separations. In particular, element 115 decays through a series of alpha decays, terminating with an element 105 isotope with a long half-life ({approx} 1 day). By chemically separating the element 105 daughter and observing its subsequent fission decay, the identity of the original parent nucleus can be established through the genetic correlation of the initial series of alpha decays. Chemical separations of element 105 were developed in Switzerland, Russia, and at LLNL. Over the course of two experiments, reaction products from the {sup 243}Am+{sup 48}Ca reaction were collected in a copper block and subsequently processed for chemical separation of the Group Five elements [8,9,13,15]. The Group Five elements were initially separated from the Group Four species, and then the samples were sub-divided into tantalum and niobium fractions. All of the fission events were observed in the tantalum fractions, which implied that element 105 behaved more like tantalum under the chemical conditions of these experiments. These experiments were very successful, and not only demonstrated that chemical separation could be performed on single atoms of interest, but also lent proof to the identity of the parent nucleus as element 115. Subsequent analysis of the alpha spectra taken during the experiment further prove that the fission events observed during the two experiments came from element 105 as the decay daughter of element 115 and could not attributed to interference from other background species [16]. The final aspect of this project was the production of new isotopes and elements. All of the experiments were performed in Dubna at the U400 Cyclotron and the results are described in more detail in Refs. [2,3,5-8,11,12,14]. The first experiments were designed to establish the decay properties of isotopes of elements 112, 114, and 116 [5]. Because these isotopic signatures were established through these initial experiments, the discovery of element 118 [11] was possible, since the 118 nuclides decayed into these previously studied isotopes. This was the first successful report of the discovery of element 118, which was reported by the media to a large extent. The last experiment that was performed for this project was the production and detection of a new isotope of element 113 [14].« less
NASA Astrophysics Data System (ADS)
Balke, Benjamin
Half-Heusler (HH) compounds are one of the most promising candidates for thermoelectric materials for automotive and industrial waste heat recovery applications. In this talk, I will give an overview about our recent investigations of phase separations in HH thermoelectrics, focusing on the ternary system TiNiSn-ZrNiSn-HfNiSn. I will show how we adapted this knowledge to design a p-type HH compound which exhibits a ZT that is increased by 130% compared to the best published bulk p-type Heusler. I will also present how we used the phase separation to design thermoelectric highly efficient nano-composites of different single-phase materials. Since the price for Hafnium doubled within the last year, our research focused on the design of HH compounds without Hafnium. I will present a very recent calculation on ZT per Euro and efficiency per Euro for various materials followed by our latest very promising results for n-type Heusler compunds without Hafnium resulting in 20 times higher ZT/Euro values. These results strongly underline the importance of phase separations as a powerful tool for designing highly efficient materials for thermoelectric applications that fulfill the industrial demands for a thermoelectric converter. The author gratefully acknowledges financial support by the thermoHEUSLER2 Project (Project No. 19U15006F) of the German Federal Ministry of Economics and Technology (BMWi).
Novel Application of Carbonate Fuel Cell for Capturing Carbon Dioxide from Flue Gas Streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolly, Stephen; Ghezel-Ayagh, Hossein; Willman, Carl
To address concerns about climate change resulting from emission of CO2 by coal-fueled power plants, FuelCell Energy, Inc. has developed the Combined Electric Power and Carbon-dioxide Separation (CEPACS) system concept. The CEPACS system utilizes Electrochemical Membrane (ECM) technology derived from the Company’s Direct FuelCell® products. The system separates the CO2 from the flue gas of other plants and produces electric power using a supplementary fuel. FCE is currently evaluating the use of ECM to cost effectively separate CO2 from the flue gas of Pulverized Coal (PC) power plants under a U.S. Department of Energy contract. The overarching objective of themore » project is to verify that the ECM can achieve at least 90% CO2 capture from the flue gas with no more than 35% increase in the cost of electricity. The project activities include: 1) laboratory scale operational and performance tests of a membrane assembly, 2) performance tests of the membrane to evaluate the effects of impurities present in the coal plant flue gas, in collaboration with Pacific Northwest National Laboratory, 3) techno-economic analysis for an ECM-based CO2 capture system applied to a 550 MW existing PC plant, in partnership with URS Corporation, and 4) bench scale (11.7 m2 area) testing of an ECM-based CO2 separation and purification system.« less
Zhu, Hua-Xu; Duan, Jin-Ao; Guo, Li-Wei; Li, Bo; Lu, Jin; Tang, Yu-Ping; Pan, Lin-Mei
2014-05-01
Resource of traditional Chinese medicine residue is an inevitable choice to form new industries characterized of modem, environmental protection and intensive in the Chinese medicine industry. Based on the analysis of source and the main chemical composition of the herb residue, and for the advantages of membrane science and technology used in the pharmaceutical industry, especially membrane separation technology used in improvement technical reserves of traditional extraction and separation process in the pharmaceutical industry, it is proposed that membrane science and technology is one of the most important choices in technological design of traditional Chinese medicine resource industrialization. Traditional Chinese medicine residue is a very complex material system in composition and character, and scientific and effective "separation" process is the key areas of technology to re-use it. Integrated process can improve the productivity of the target product, enhance the purity of the product in the separation process, and solve many tasks which conventional separation is difficult to achieve. As integrated separation technology has the advantages of simplified process and reduced consumption, which are in line with the trend of the modern pharmaceutical industry, the membrane separation technology can provide a broad platform for integrated process, and membrane separation technology with its integrated technology have broad application prospects in achieving resource and industrialization process of traditional Chinese medicine residue. We discuss the principles, methods and applications practice of effective component resources in herb residue using membrane separation and integrated technology, describe the extraction, separation, concentration and purification application of membrane technology in traditional Chinese medicine residue, and systematically discourse suitability and feasibility of membrane technology in the process of traditional Chinese medicine resource industrialization in this paper.
Amine Swingbed Payload Project Management
NASA Technical Reports Server (NTRS)
Hayley, Elizabeth; Curley, Su; Walsh, Mary
2011-01-01
The International Space Station (ISS) has been designed as a laboratory for demonstrating technologies in a microgravity environment, benefitting exploration programs by reducing the overall risk of implementing such technologies in new spacecraft. At the beginning of fiscal year 2010, the ISS program manager requested that the amine-based, pressure-swing carbon dioxide and humidity absorption technology (designed by Hamilton Sundstrand, baselined for the ORION Multi-Purpose Crew Vehicle, and tested at the Johnson Space Center in relevant environments, including with humans, since 2005) be developed into a payload for ISS Utilization. In addition to evaluating the amine technology in a flight environment before the first launch of the ORION vehicle, the ISS program wanted to determine the capability of the amine technology to remove carbon dioxide from the ISS cabin environment at the metabolic rate of the full 6-person crew. Because the amine technology vents the absorbed carbon dioxide and water vapor to space vacuum (open loop), additional hardware needed to be developed to minimize the amount of air and water resources lost overboard. Additionally, the payload system would be launched on two separate Space Shuttle flights, with the heart of the payload the swingbed unit itself launching a full year before the remainder of the payload. This paper discusses the project management and challenges of developing the amine swingbed payload in order to accomplish the technology objectives of both the open-loop ORION application as well as the closed-loop ISS application.
Amine Swingbed Payload Project Management
NASA Technical Reports Server (NTRS)
Walsch, Mary; Curley, Su
2013-01-01
The International Space Station (ISS) has been designed as a laboratory for demonstrating technologies in a microgravity environment, benefitting exploration programs by reducing the overall risk of implementing such technologies in new spacecraft. At the beginning of fiscal year 2010, the ISS program manager requested that the amine-based, pressure-swing carbon dioxide and humidity absorption technology (designed by Hamilton Sundstrand, baselined for the Orion Multi-Purpose Crew Vehicle, and tested at the Johnson Space Center in relevant environments, including with humans, since 2005) be developed into a payload for ISS Utilization. In addition to evaluating the amine technology in a flight environment before the first launch of the Orion vehicle, the ISS program wanted to determine the capability of the amine technology to remove carbon dioxide from the ISS cabin environment at the metabolic rate of the full 6 ]person crew. Because the amine technology vents the absorbed carbon dioxide and water vapor to space vacuum (open loop), additional hardware needed to be developed to minimize the amount of air and water resources lost overboard. Additionally, the payload system would be launched on two separate Space Shuttle flights, with the heart of the payload-the swingbed unit itself-launching a full year before the remainder of the payload. This paper discusses the project management and challenges of developing the amine swingbed payload in order to accomplish the technology objectives of both the open -loop Orion application as well as the closed-loop ISS application.
2001 Evaluation of Tritium Removal & Mitigation Technologies for Waste Water Treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
PENWELL, D.L.
2001-06-01
This report contains the 2001 biennial update evaluation of separation technologies and other mitigation techniques to control tritium in liquid effluents and groundwater at the Hanford site. A thorough literature review was completed, and national and international experts in the field of tritium separation and mitigation techniques were consulted. Current state-of-the-art technologies to address the control of tritium in wastewaters were identified and are described. This report was prepared to satisfy the Hanford Federal Facility Agreement and Consent Order Tri-Party Agreement, Milestone M-29-O5H (Ecology, EPA, and DOE 1996). Tritium separation and isolation technologies are evaluated on a biennial basis tomore » determine their feasibility for implementation for the control of Hanford site liquid effluents and groundwater to meet the US. Code of Federal Regulations (CFR), Title 40 CFR 141.16, drinking water maximum contaminant level (MCL) for tritium of 0.02 {mu} Ci/l ({approx}2 parts per quadrillion [10{sup -15}]) and/or DOE Order 5400.5 as low as reasonably achievable (ALARA) policy The objectives of this evaluation were to (1) status the development of potentially viable tritium separations technologies with regard to reducing tritium concentrations in current Hanford site process waters and existing groundwater to MCL levels and (2) status control methods to prevent the flow of tritiated water at concentrations greater than the MCL to the environment. Current tritium releases are in compliance with applicable US Environmental Protection Agency, Washington State Department of Ecology, and U.S. Department of Energy requirements under the Tri-Party Agreement. Advances in technologies for the separation of tritium from wastewater since the 1999 Hanford Site evaluation report include: (1) construction and testing of the Combined Industrial Reforming and Catalytic Exchange (CIRCE) Prototype Plant by Atomic Energy Canada Limited (AECL). The plant has a stage that uses the combined electrolysis catalytic exchange (CECE) and a stage that uses the bithermal hydrogen-waterprocess. The testing is still ongoing at the time of the development of this evaluation report, therefore, final results of the testing are not available; (2) further testing and a DOE sponsored American Society of Mechanical Engineers (ASME) peer review of a tritium resin separations process to remove tritium from wastewaters; and (3) completion of the design of the water detritiation system for the International Thermonuclear Experimental Reactor (ITER). The system uses a variation of the CECE process, and is designed to process 20 Whr of feed. The primary advance in technologies to control tritium migration in groundwater are the implementation of phytoremediation as a method of reducing the amount of tritium contaminated groundwater reaching the surface waters at Argonne National Laboratory, and initiation of a project for phytoremediation at the Savannah River Site.« less
24 CFR 884.122 - Separate project requirement.
Code of Federal Regulations, 2010 CFR
2010-04-01
... separate ACC List and ACC Part I and shall be assigned a separate project number. All new construction... construction projects where: (1) The units are placed under ACC on the same date; and (2) Such consolidation is...
24 CFR 884.122 - Separate project requirement.
Code of Federal Regulations, 2011 CFR
2011-04-01
... separate ACC List and ACC Part I and shall be assigned a separate project number. All new construction... construction projects where: (1) The units are placed under ACC on the same date; and (2) Such consolidation is...
EARLY ENTRANCE COPRODUCTION PLANT
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Storm; Govanon Nongbri; Steve Decanio
2004-01-12
The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase IImore » is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, Inc., GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. During Phase I, a design basis for the Fischer-Tropsch Synthesis section was developed based on limited experience with the specified feed gas and operating conditions. The objective of this Task in Phase II RD&T work was to confirm the performance of the F-T reactor at the set design conditions. Although much of the research, development, and testing work were done by TES outside of this project, several important issues were addressed in this phase of the project. They included Rejuvenation/Regeneration of the Fischer-Tropsch Catalyst, online Catalyst Withdrawal and Addition from the synthesis reactor, and the Fischer-Tropsch Design Basis Confirmation. In Phase III the results from these RD&T work will be incorporated in developing the engineering design package. This Topical Report documents the Phase II RD&T work that was completed for this task.« less
1982-10-01
AD-A127 993 MODEM SIGNATURE ANALISIS (U) PAR TECHNOLOGY CORP NEW / HARTFORD NY V EDWARDS ET AL. OCT 82 RADC-TR-82-269 F30602-80-C-0264 NCLASSIFIED F/G...as an indication of the class clustering and separation between different classes in the modem data base. It is apparent from the projection that the...that as the clusters disperse, the likelihood of a sample crossing the boundary into an adjacent region and causing a symbol decision error increases. As
Supporting the Future Air Traffic Control Projection Process
NASA Technical Reports Server (NTRS)
Davison, Hayley J.; Hansman, R. John, Jr.
2002-01-01
In air traffic control, projecting what the air traffic situation will be over the next 30 seconds to 30 minutes is a key process in identifying conflicts that may arise so that evasive action can be taken upon discovery of these conflicts. A series of field visits in the Boston and New York terminal radar approach control (TRACON) facilities and in the oceanic air traffic control facilities in New York and Reykjavik, Iceland were conducted to investigate the projection process in two different ATC domains. The results from the site visits suggest that two types of projection are currently used in ATC tasks, depending on the type of separation minima and/or traffic restriction and information display used by the controller. As technologies improve and procedures change, care should be taken by designers to support projection through displays, automation, and procedures. It is critical to prevent time/space mismatches between interfaces and restrictions. Existing structure in traffic dynamics could be utilized to provide controllers with useful behavioral models on which to build projections. Subtle structure that the controllers are unable to internalize could be incorporated into an ATC projection aid.
Hybrid energy storage test procedures and high power battery project FY-1995 interim report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, G.L.
1995-12-01
Near the end of FY 1994, DOE provided funding and guidance to INEL for two separate but closely related tasks involving high power energy storage technology. One task was intended to develop and refine application-specific test procedures appropriate to high power energy storage devices for potential use in hybrid vehicles, including batteries, ultracapacitors, flywheels, and similar devices. The second task was intended to characterize the high power capabilities of presently available battery technologies, as well as eventually to evaluate the potential high power capabilities of advanced battery technologies such as those being developed by the USABC. Since the evaluation ofmore » such technologies is necessarily dependent to some extent on the availability of appropriate test methods, these two tasks have been closely coordinated. This report is intended to summarize the activities and results for both tasks accomplished during FY-1995.« less
NASA Technical Reports Server (NTRS)
Cockrell, Charles E., Jr.
2003-01-01
The Next Generation Launch Technology (NGLT) program, Vehicle Systems Research and Technology (VSR&T) project is pursuing technology advancements in aerothermodynamics, aeropropulsion and flight mechanics to enable development of future reusable launch vehicle (RLV) systems. The current design trade space includes rocket-propelled, hypersonic airbreathing and hybrid systems in two-stage and single-stage configurations. Aerothermodynamics technologies include experimental and computational databases to evaluate stage separation of two-stage vehicles as well as computational and trajectory simulation tools for this problem. Additionally, advancements in high-fidelity computational tools and measurement techniques are being pursued along with the study of flow physics phenomena, such as boundary-layer transition. Aero-propulsion technology development includes scramjet flowpath development and integration, with a current emphasis on hypervelocity (Mach 10 and above) operation, as well as the study of aero-propulsive interactions and the impact on overall vehicle performance. Flight mechanics technology development is focused on advanced guidance, navigation and control (GN&C) algorithms and adaptive flight control systems for both rocket-propelled and airbreathing vehicles.
Taliotis, Constantinos; Taibi, Emanuele; Howells, Mark; Rogner, Holger; Bazilian, Morgan; Welsch, Manuel
2017-10-01
The generation mix of Cyprus has been dominated by oil products for decades. In order to conform with European Union and international legislation, a transformation of the supply system is called for. Energy system models can facilitate energy planning into the future, but a large volume of data is required to populate such models. The present data article provides information on key modelling assumptions and input data adopted with the aim of representing the electricity supply system of Cyprus in a separate research article. Data in regards to renewable energy technoeconomic characteristics and investment cost projections, fossil fuel price projections, storage technology characteristics and system operation assumptions are described in this article.
The CHPM2030 H2020 Project: Combined Heat, Power and Metal extraction from ultra-deep ore bodies
NASA Astrophysics Data System (ADS)
Miklovicz, Tamas; Bodo, Balazs; Cseko, Adrienn; Hartai, Eva; Madarasz, Tamas
2017-04-01
The CHPM2030 project consortium is working on a novel technology solution that can provide both geothermal energy and minerals, in a single interlinked process. The CHPM technology involves an integrated approach to cross fertilize between two yet separated research areas: unconventional geothermal energy and mineral extraction. This places the project's research agenda onto the frontiers of geothermal resources development, mineral extraction and electro-metallurgy with the objectives of converting ultra-deep metallic mineral formations into an "orebody-enhanced geothermal system". In the envisioned facility, an EGS is established on a 3-4 km deep ore mineralisation. Metal content from the ore body is mobilised using mild leaching and/or nanoparticles, then metals are recovered by high-temperature, high-pressure geothermal fluid electrolysis and gas-diffusion electroprecipitation and electrocrystallisation. Salinity gradient power from pre-treated geothermal fluids will also be used. In the project, all these will be carried out at laboratory scale (technology readiness level of 4-5), providing data for the conceptual framework, process optimisation and simulations. Integrated sustainability assessment will also be carried out on the economic feasibility, social impact, policy considerations, environmental impact and ethics concerns. During the last stage of the research agenda, the work will focus on mapping converging technological areas, setting a background for pilot implementation and developing research roadmaps for 2030 and 2050. Pilot study areas include South West England, the Iberian Pyrite Belt in Portugal, the Banatitic Magmatic and Metallogenic Belt in Romania, and three mining districts in Sweden. The project started in January 2016 and lasts for 42 months. In the first phase, the metallogenesis of Europe was investigated and the potential ore formations have been identified. The rock-mechanical characteristics of orebodies have also been examined from an EGS perspective and the conceptual framework for an orebody-EGS has been formulated. Metal extraction from geothermal resources provides added value to the system, which has the potential to increase financial feasibility of geothermal development. This approach can contribute to a Europe-wide growth in industrial applications of geothermal resources in the future. The project also thrives to connect thousands of scientists, engineers, and decision-makers by establishing co-operative links to already running on critical raw materials, geothermal energy and other technology-driven projects.
Garrett Electric Boosting Systems (EBS) Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steve Arnold; Craig Balis; Pierre Barthelet
2005-03-31
Turbo diesel engine use in passenger cars in Europe has resulted in 30-50% improvement in fuel economy. Diesel engine application is particularly suitable for US because of vehicle size and duty cycle patterns. Adopting this technology for use in the US presents two issues--emissions and driveability. Emissions reduction technology is being well addressed with advanced turbocharging, fuel injection and catalytic aftertreatment systems One way to address driveability is to eliminate turbo lag and increase low speed torque. Electrically assisted turbocharging concepts incorporated in e-Turbo{trademark} designs do both The purpose of this project is to design and develop an electrically assistedmore » turbocharger, e-Turbo{trademark}, for diesel engine use in the US. In this report, early design and development of electrical assist technology is described together with issues and potential benefits. In this early phase a mathematical model was developed and verified. The model was used in a sensitivity study. The results of the sensitivity study together with the design and test of first generation hardware was fed into second generation designs. In order to fully realize the benefits of electrical assist technology it was necessary to expand the scope of work to include technology on the compressor side as well as electronic controls concepts. The results of the expanded scope of work are also reported here. In the first instance, designs and hardware were developed for a small engine to quantify and demonstrate benefits. The turbo size was such that it could be applied in a bi-turbo configuration to an SUV sized V engine. Mathematical simulation was used to quantify the possible benefits in an SUV application. It is shown that low speed torque can be increased to get the high performance expected in US, automatic transmission vehicles. It is also shown that e-Turbo{trademark} can be used to generate modest amounts of electrical power and supplement the alternator under most load-speed conditions. It is shown that a single (large) e-Turbo{trademark} consumes slightly less electrical power for the same steady state torque shaping than a bi-Turbo configuration. However, the transient response of a bi-Turbo configuration is slightly better. It was shown that in order to make full use of additional capabilities of e-Turbo{trademark} wide compressor flow range is required. Variable geometry compressor (VGC) technology developed under a separate project was evaluated for incorporation into e-Turbo{trademark} designs. It was shown that the combination of these two technologies enables very high torque at low engine speeds. Designs and hardware combining VGC and e-Turbo{trademark} are to be developed in a future project. There is concern about high power demands (even though momentary) of e-Turbo{trademark}. Reducing the inertia of the turbocharger can reduce power demand and increase battery life. Low inertia turbocharger technology called IBT developed under a separate project was evaluated for synergy with e-Turbo{trademark} designs. It was concluded that inertial reduction provided by IBT is very beneficial for e-Turbo{trademark}. Designs and hardware combining IBT and e-Turbo{trademark} are to be developed in a future project. e-Turbo{trademark} provides several additional flexibilities including exhaust gas recirculation (EGR) for emissions reduction with minimum fuel economy penalty and exhaust temperature control for aftertreatment. In integrated multi-parameter control system is needed to realize the full potential of e-Turbo{trademark} performance. Honeywell expertise in process control systems involving hundreds of sensors and actuators was applied to demonstrate the potential benefits of multi-parameter, model based control systems.« less
Bench Scale Thin Film Composite Hollow Fiber Membranes for Post-Combustion Carbon Dioxide Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glaser, Paul; Bhandari, Dhaval; Narang, Kristi
2015-04-01
GE Global Research, Idaho National Laboratory (INL), Georgia Institute of Technology (Georgia Tech), and Western Research Institute (WRI) proposed to develop high performance thin film polymer composite hollow fiber membranes and advanced processes for economical post-combustion carbon dioxide (CO 2) capture from pulverized coal flue gas at temperatures typical of existing flue gas cleanup processes. The project sought to develop and then optimize new gas separations membrane systems at the bench scale, including tuning the properties of a novel polyphosphazene polymer in a coating solution and fabricating highly engineered porous hollow fiber supports. The project also sought to define themore » processes needed to coat the fiber support to manufacture composite hollow fiber membranes with high performance, ultra-thin separation layers. Physical, chemical, and mechanical stability of the materials (individual and composite) towards coal flue gas components was considered via exposure and performance tests. Preliminary design, technoeconomic, and economic feasibility analyses were conducted to evaluate the overall performance and impact of the process on the cost of electricity (COE) for a coal-fired plant including capture technologies. At the onset of the project, Membranes based on coupling a novel selective material polyphosphazene with an engineered hollow fiber support was found to have the potential to capture greater than 90% of the CO 2 in flue gas with less than 35% increase in COE, which would achieve the DOE-targeted performance criteria. While lab-scale results for the polyphosphazene materials were very promising, and the material was incorporated into hollow-fiber modules, difficulties were encountered relating to the performance of these membrane systems over time. Performance, as measured by both flux of and selectivity for CO 2 over other flue gas constituents was found to deteriorate over time, suggesting a system that was more dynamic than initially hypothesized. These phenomena are believed to be associated with the physical and mechanical properties of the separation material, rather than chemical degradation by flue gas or one of its constituents. Strategies to improve the composite systems via alternate chemistries and processing techniques were only partially successful in creating a more robust system, but the research provided critical insight into the barriers to engineering sophisticated composite systems for gas separation. Promising concepts, including a re-engineering of the separation material with interpenetrating polymer networks were identified which may prove useful to future efforts in this field.« less
Chemical Bonding Technology: Direct Investigation of Interfacial Bonds
NASA Technical Reports Server (NTRS)
Koenig, J. L.; Boerio, F. J.; Plueddemann, E. P.; Miller, J.; Willis, P. B.; Cuddihy, E. F.
1986-01-01
This is the third Flat-Plate Solar Array (FSA) Project document reporting on chemical bonding technology for terrestrial photovoltaic (PV) modules. The impetus for this work originated in the late 1970s when PV modules employing silicone encapsulation materials were undergoing delamination during outdoor exposure. At that time, manufacturers were not employing adhesion promoters and, hence, module interfaces in common with the silicone materials were only in physical contact and therefore easily prone to separation if, for example, water were to penetrate to the interfaces. Delamination with silicone materials virtually vanished when adhesion promoters, recommended by silicone manufacturers, were used. The activities related to the direct investigation of chemically bonded interfaces are described.
Proceedings: Joint DOE/NSF Workshop on flow of particulates and fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-12-31
These proceedings are the result of the Fifth DOR-NSF Workshop on fundamental research in the area of particulate two-phase flow and granular flow. The present collection of twenty contributions from universities and national laboratories is based on research projects sponsored by either the Department of Energy or the National Science Foundation. These papers illustrate some of the latest advances in theory, simulations, and experiments. The papers from the Workshop held September 29--October 1, 1993 have been separated into three basic areas: experiments, theory, and numerical simulations. A list of attendees at the workshop is included at the end of themore » proceedings. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less
NASA Technical Reports Server (NTRS)
Brockman, Philip; Barker, Ben C., Jr.; Koch, Grady J.; Nguyen, Dung Phu Chi; Britt, Charles L., Jr.; Petros, Mulugeta
1999-01-01
NASA Langley Research Center (LaRC) has field tested a 2.0 gm, 100 Hertz, pulsed coherent lidar to detect and characterize wake vortices and to measure atmospheric winds and turbulence. The quantification of aircraft wake-vortex hazards is being addressed by the Wake Vortex Lidar (WVL) Project as part of Aircraft Vortex Spacing System (AVOSS), which is under the Reduced Spacing Operations Element of the Terminal Area Productivity (TAP) Program. These hazards currently set the minimum, fixed separation distance between two aircraft and affect the number of takeoff and landing operations on a single runway under Instrument Meteorological Conditions (IMC). The AVOSS concept seeks to safely reduce aircraft separation distances, when weather conditions permit, to increase the operational capacity of major airports. The current NASA wake-vortex research efforts focus on developing and validating wake vortex encounter models, wake decay and advection models, and wake sensing technologies. These technologies will be incorporated into an automated AVOSS that can properly select safe separation distances for different weather conditions, based on the aircraft pair and predicted/measured vortex behavior. The sensor subsystem efforts focus on developing and validating wake sensing technologies. The lidar system has been field-tested to provide real-time wake vortex trajectory and strength data to AVOSS for wake prediction verification. Wake vortices, atmospheric winds, and turbulence products have been generated from processing the lidar data collected during deployments to Norfolk (ORF), John F. Kennedy (JFK), and Dallas/Fort Worth (DFW) International Airports.
Electricity from biomass: A development strategy
NASA Astrophysics Data System (ADS)
1992-04-01
The purpose of this document is to review the current status of biomass power technology and to evaluate the future directions for development that could significantly enhance the contribution of biomass power to U.S. production of electricity. This document reviews the basic principles of biomass electric systems, the previous contributions of industry and the National Biomass Energy Programs to technology development, and the options for future technology development. It discusses the market for biomass electric technology and future needs for electric power production to help establish a market-oriented development strategy. It projects trends in the performance and cost of the technology and examines the changing dynamics of the power generation market place to evaluate specific opportunities for biomass power development. In a separate document, the Biomass Power Program Five Year R&D Plan, the details of schedules, funding, and roles of participating R&D organizations within the R&D program funded by the U.S. Department of Energy (DOE) are presented. In evaluating the future directions for research and development, two cases are examined.
UAS Integration into the NAS Project
NASA Technical Reports Server (NTRS)
Bauer, Jeff
2010-01-01
The goal of the UAS Integration in the NAS Project is to contribute capabilities that reduce technical barriers related to the safety and operational challenges associated with enabling routine UAS access to the NAS This goal will be accomplished through a two-phased approach of system-level integration of key concepts, technologies and/or procedures, and demonstrations of integrated capabilities in an operationally relevant environment. Technical objectives include: PHASE 1: a) Validating the key technical areas identified by this project. System-level analyses, a State of the Art Analysis (SOAA), and a ConOps will identify the challenges and barriers preventing routine UAS access to the NAS. b) Developing a national roadmap and gap analysis identifying specific deliverables in the area of operations, procedures, and technologies that will impact future policy decisions. PHASE 2: a) Provide regulators with a methodology for developing airworthiness requirements for UAS and data to support development of certifications standards and regulatory guidance. b) Provide systems-level integrated testing of concepts and/or capabilities that address barriers to routine access to the NAS. Through simulation and flight testing, address issues including separation assurance, communications requirements, and Pilot Aircraft Interfaces (PAIs) in operationally relevant environments
DEMONSTRATION AND QUALITY ASSURANCE PROJECT ...
The demonstration of technologies for determining the presence of dioxin in soil and sediment is being conducted under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation Program in Saginaw, Michigan, at Green Point Environmental Learning Center from approximately April 26 to May 6, 2004. The primary purpose of the demonstration is to evaluate innovative monitoring technologies. The technologies listed below will be demonstrated. .AhRC PCRTM Kit, Hybrizyme Corporation .Ah-IMMUNOASSY@ Kit, Paralsian, Inc. .Coplanar PCB Immunoassay Kit, Abraxis LLC .DF-l Dioxin/Furan Immunoassay Kit, CAPE Technologies L.L.C. .CALUX@ by Xenobiotic Detection Systems, Inc- .Dioxin ELISA Kit, Wako Pure Chemical Industries LTD. This demonstration plan describes the procedures that will be used to verify the performance and cost of these technologies. The plan incorporates the quality assurance and quality control elements needed to generate data of sufficient quality to document each technology's performance and cost. A separate innovative technology verification report (ITVR) will.be prepared for each technology. The ITVRs will present the demonstration findings associated with the demonstration objectives. The objective of this program is to promote the acceptance and use of innovative field technologies by providing well-documented performance and cost data obtained from field demonstrations.
C-BASS: The C-Band All Sky Survey
NASA Astrophysics Data System (ADS)
Pearson, Timothy J.; C-BASS Collaboration
2016-06-01
The C-Band All Sky Survey (C-BASS) is a project to image the whole sky at a wavelength of 6 cm (frequency 5 GHz), measuring both the brightness and the polarization of the sky. Correlation polarimeters are mounted on two separate telescopes, one at the Owens Valley Observatory (OVRO) in California and another in South Africa, allowing C-BASS to map the whole sky. The OVRO instrument has completed observations for the northern part of the survey. We are working on final calibration of intensity and polarization. The southern instrument has recently started observations for the southern part of the survey from its site at Klerefontein near Carnarvon in South Africa. The principal aim of C-BASS is to allow the subtraction of polarized Galactic synchrotron emission from the data produced by CMB polarization experiments, such as WMAP, Planck, and dedicated B-mode polarization experiments. In addition it will contribute to studies of: (1) the local (< 1 kpc) Galactic magnetic field and cosmic-ray propagation; (2) the distribution of the anomalous dust emission, its origin and the physical processes that affect it; (3) modeling of Galactic total intensity emission, which may allow CMB experiments access to the currently inaccessible region close to the Galactic plane. Observations at many wavelengths from radio to infrared are needed to fully understand the foregrounds. At 5 GHz, C-BASS maps synchrotron polarization with minimal corruption by Faraday rotation, and complements the full-sky maps from WMAP and Planck. I will present the project status, show results of component separation in selected sky regions, and describe the northern survey data products.C-BASS (http://www.astro.caltech.edu/cbass/) is a collaborative project between the Universities of Oxford and Manchester in the UK, the California Institute of Technology (supported by the National Science Foundation and NASA) in the USA, the Hartebeesthoek Radio Astronomy Observatory (supported by the Square Kilometre Array project) in South Africa, and the King Abdulaziz City for Science and Technology (KACST) in Saudi Arabia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Melissa
2011-10-14
This project supported the continued development of the RNA Therapeutics Institute at the UMass Medical School. This funding allows for the purchase of critical equipment that will enable faculty members to develop RNA technology in order to better understand the complexity that separates genome sequence from biological function, as well as to reduce the hyperactivity of harmful genes.
Distributed telemedicine for the National Information Infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forslund, D.W.; Lee, Seong H.; Reverbel, F.C.
1997-08-01
TeleMed is an advanced system that provides a distributed multimedia electronic medical record available over a wide area network. It uses object-based computing, distributed data repositories, advanced graphical user interfaces, and visualization tools along with innovative concept extraction of image information for storing and accessing medical records developed in a separate project from 1994-5. In 1996, we began the transition to Java, extended the infrastructure, and worked to begin deploying TeleMed-like technologies throughout the nation. Other applications are mentioned.
Space-based Science Operations Grid Prototype
NASA Technical Reports Server (NTRS)
Bradford, Robert N.; Welch, Clara L.; Redman, Sandra
2004-01-01
Grid technology is the up and coming technology that is enabling widely disparate services to be offered to users that is very economical, easy to use and not available on a wide basis. Under the Grid concept disparate organizations generally defined as "virtual organizations" can share services i.e. sharing discipline specific computer applications, required to accomplish the specific scientific and engineering organizational goals and objectives. Grids are emerging as the new technology of the future. Grid technology has been enabled by the evolution of increasingly high speed networking. Without the evolution of high speed networking Grid technology would not have emerged. NASA/Marshall Space Flight Center's (MSFC) Flight Projects Directorate, Ground Systems Department is developing a Space-based Science Operations Grid prototype to provide to scientists and engineers the tools necessary to operate space-based science payloads/experiments and for scientists to conduct public and educational outreach. In addition Grid technology can provide new services not currently available to users. These services include mission voice and video, application sharing, telemetry management and display, payload and experiment commanding, data mining, high order data processing, discipline specific application sharing and data storage, all from a single grid portal. The Prototype will provide most of these services in a first step demonstration of integrated Grid and space-based science operations technologies. It will initially be based on the International Space Station science operational services located at the Payload Operations Integration Center at MSFC, but can be applied to many NASA projects including free flying satellites and future projects. The Prototype will use the Internet2 Abilene Research and Education Network that is currently a 10 Gb backbone network to reach the University of Alabama at Huntsville and several other, as yet unidentified, Space Station based science experimenters. There is an international aspect to the Grid involving the America's Pathway (AMPath) network, the Chilean REUNA Research and Education Network and the University of Chile in Santiago that will further demonstrate how extensive these services can be used. From the user's perspective, the Prototype will provide a single interface and logon to these varied services without the complexity of knowing the where's and how's of each service. There is a separate and deliberate emphasis on security. Security will be addressed by specifically outlining the different approaches and tools used. Grid technology, unlike the Internet, is being designed with security in mind. In addition we will show the locations, configurations and network paths associated with each service and virtual organization. We will discuss the separate virtual organizations that we define for the varied user communities. These will include certain, as yet undetermined, space-based science functions and/or processes and will include specific virtual organizations required for public and educational outreach and science and engineering collaboration. We will also discuss the Grid Prototype performance and the potential for further Grid applications both space-based and ground based projects and processes. In this paper and presentation we will detail each service and how they are integrated using Grid
Project Genesis: Mars in situ propellant technology demonstrator mission
NASA Technical Reports Server (NTRS)
Acosta, Francisco Garcia; Anderson, Scott; Andrews, Jason; Deger, Matt; Hedman, Matt; Kipp, Jared; Kobayashi, Takahisa; Marcelo, Mohrli; Mark, Karen; Matheson, Mark
1994-01-01
Project Genesis is a low cost, near-term, unmanned Mars mission, whose primary purpose is to demonstrate in situ resource utilization (ISRU) technology. The essence of the mission is to use indigenously produced fuel and oxidizer to propel a ballistic hopper. The Mars Landing Vehicle/Hopper (MLVH) has an Earth launch mass of 625 kg and is launched aboard a Delta 117925 launch vehicle into a conjunction class transfer orbit to Mars. Upon reaching its target, the vehicle performs an aerocapture maneuver and enters an elliptical orbit about Mars. Equipped with a ground penetrating radar, the MLVH searches for subsurface water ice deposits while in orbit for several weeks. A deorbit burn is then performed to bring the MLVH into the Martian atmosphere for landing. Following aerobraking and parachute deployment, the vehicle retrofires to a soft landing on Mars. Once on the surface, the MLVH begins to acquire scientific data and to manufacture methane and oxygen via the Sabatier process. This results in a fuel-rich O2/CH4 mass ratio of 2, which yields a sufficiently high specific impulse (335 sec) that no additional oxygen need be manufactured, thus greatly simplifying the design of the propellant production plant. During a period of 153 days the MLVH produces and stores enough fuel and oxidizer to make a 30 km ballistic hop to a different site of scientific interest. At this new location the MLVH resumes collecting surface and atmospheric data with the onboard instrumentation. Thus, the MLVH is able to provide a wealth of scientific data which would otherwise require two separate missions or separate vehicles, while proving a new and valuable technology that will facilitate future unmanned and manned exploration of Mars. Total mission cost, including the Delta launch vehicle, is estimated to be $200 million.
The DYNES Instrument: A Description and Overview
NASA Astrophysics Data System (ADS)
Zurawski, Jason; Ball, Robert; Barczyk, Artur; Binkley, Mathew; Boote, Jeff; Boyd, Eric; Brown, Aaron; Brown, Robert; Lehman, Tom; McKee, Shawn; Meekhof, Benjeman; Mughal, Azher; Newman, Harvey; Rozsa, Sandor; Sheldon, Paul; Tackett, Alan; Voicu, Ramiro; Wolff, Stephen; Yang, Xi
2012-12-01
Scientific innovation continues to increase requirements for the computing and networking infrastructures of the world. Collaborative partners, instrumentation, storage, and processing facilities are often geographically and topologically separated, as is the case with LHC virtual organizations. These separations challenge the technology used to interconnect available resources, often delivered by Research and Education (R&E) networking providers, and leads to complications in the overall process of end-to-end data management. Capacity and traffic management are key concerns of R&E network operators; a delicate balance is required to serve both long-lived, high capacity network flows, as well as more traditional end-user activities. The advent of dynamic circuit services, a technology that enables the creation of variable duration, guaranteed bandwidth networking channels, allows for the efficient use of common network infrastructures. These gains are seen particularly in locations where overall capacity is scarce compared to the (sustained peak) needs of user communities. Related efforts, including those of the LHCOPN [3] operations group and the emerging LHCONE [4] project, may take advantage of available resources by designating specific network activities as a “high priority”, allowing reservation of dedicated bandwidth or optimizing for deadline scheduling and predicable delivery patterns. This paper presents the DYNES instrument, an NSF funded cyberinfrastructure project designed to facilitate end-to-end dynamic circuit services [2]. This combination of hardware and software innovation is being deployed across R&E networks in the United States at selected end-sites located on University Campuses. DYNES is peering with international efforts in other countries using similar solutions, and is increasing the reach of this emerging technology. This global data movement solution could be integrated into computing paradigms such as cloud and grid computing platforms, and through the use of APIs can be integrated into existing data movement software.
Science& Technology Review June 2003
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, D
This month's issue has the following articles: (1) Livermore's Three-Pronged Strategy for High-Performance Computing, Commentary by Dona Crawford; (2) Riding the Waves of Supercomputing Technology--Livermore's Computation Directorate is exploiting multiple technologies to ensure high-performance, cost-effective computing; (3) Chromosome 19 and Lawrence Livermore Form a Long-Lasting Bond--Lawrence Livermore biomedical scientists have played an important role in the Human Genome Project through their long-term research on chromosome 19; (4) A New Way to Measure the Mass of Stars--For the first time, scientists have determined the mass of a star in isolation from other celestial bodies; and (5) Flexibly Fueled Storage Tank Bringsmore » Hydrogen-Powered Cars Closer to Reality--Livermore's cryogenic hydrogen fuel storage tank for passenger cars of the future can accommodate three forms of hydrogen fuel separately or in combination.« less
Design and Implementation of a Mechanical Control System for the Scanning Microwave Limb Sounder
NASA Technical Reports Server (NTRS)
Bowden, William
2011-01-01
The Scanning Microwave Limb Sounder (SMLS) will use technological improvements in low noise mixers to provide precise data on the Earth's atmospheric composition with high spatial resolution. This project focuses on the design and implementation of a real time control system needed for airborne engineering tests of the SMLS. The system must coordinate the actuation of optical components using four motors with encoder readback, while collecting synchronized telemetric data from a GPS receiver and 3-axis gyrometric system. A graphical user interface for testing the control system was also designed using Python. Although the system could have been implemented with a FPGA-based setup, we chose to use a low cost processor development kit manufactured by XMOS. The XMOS architecture allows parallel execution of multiple tasks on separate threads-making it ideal for this application and is easily programmed using XC (a subset of C). The necessary communication interfaces were implemented in software, including Ethernet, with significant cost and time reduction compared to an FPGA-based approach. For these reasons, the XMOS technology is an attractive, cost effective, alternative to FPGA-based technologies for this design and similar rapid prototyping projects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makhlouf M. Makhlouf; Diran Apelian
The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS asmore » a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.« less
Otterpohl, R; Braun, U; Oldenburg, M
2003-01-01
Avoiding the comingling of water flows coming from different sources and thus obtaining flows with a very low dilution factor is the first and major step key to technical solutions for adequate treatment of household wastewaters. Through their decentral structure and effective recovery of water, energy and fertiliser these systems can be highly cost efficient. Fresh water consumption can be reduced by up to 80% while nutrients can be recovered to a large extent. Source control is also advantageous for hygienic reasons: low volumes are far easier to sanitise. Source separation technology in municipal waste water treatment does often lead decentralised or semicentral systems. The first essential step is the separate collection and treatment of toilet waste in households, which contains almost all pathogens and nutrients. New toilet systems with very low dilution factors, ranging from vacuum- through urine sorting to dry toilets, have been introduced in several projects and proven feasible. New ideas such as the black- and greywater cycle systems are presently under research at the Technical University Hamburg Harburg. Such modular, integrated and small scale systems are only possible through recent advances in membrane technology and, due to their small scale, do have the potential to be installed in densely populated regions. These technologies are options for following the principles of ecological sanitation, to contain, to sanitise and to reuse also in urban areas (EcoSanRes, 2003).
New Directions for NASA's Advanced Life Support Program
NASA Technical Reports Server (NTRS)
Barta, Daniel J.
2006-01-01
Advanced Life Support (ALS), an element of Human Systems Research and Technology s (HSRT) Life Support and Habitation Program (LSH), has been NASA s primary sponsor of life support research and technology development for the agency. Over its history, ALS sponsored tasks across a diverse set of institutions, including field centers, colleges and universities, industry, and governmental laboratories, resulting in numerous publications and scientific articles, patents and new technologies, as well as education and training for primary, secondary and graduate students, including minority serving institutions. Prior to the Vision for Space Exploration (VSE) announced on January 14th, 2004 by the President, ALS had been focused on research and technology development for long duration exploration missions, emphasizing closed-loop regenerative systems, including both biological and physicochemical. Taking a robust and flexible approach, ALS focused on capabilities to enable visits to multiple potential destinations beyond low Earth orbit. ALS developed requirements, reference missions, and assumptions upon which to structure and focus its development program. The VSE gave NASA a plan for steady human and robotic space exploration based on specific, achievable goals. Recently, the Exploration Systems Architecture Study (ESAS) was chartered by NASA s Administrator to determine the best exploration architecture and strategy to implement the Vision. The study identified key technologies required to enable and significantly enhance the reference exploration missions and to prioritize near-term and far-term technology investments. This technology assessment resulted in a revised Exploration Systems Mission Directorate (ESMD) technology investment plan. A set of new technology development projects were initiated as part of the plan s implementation, replacing tasks previously initiated under HSRT and its sister program, Exploration Systems Research and Technology (ESRT). The Exploration Life Support (ELS) Project, under the Exploration Technology Development Program, has recently been initiated to perform directed life support technology development in support of Constellation and the Crew Exploration Vehicle (CEV). ELS) has replaced ALS, with several major differences. Thermal Control Systems have been separated into a new stand alone project (Thermal Systems for Exploration Missions). Tasks in Advanced Food Technology have been relocated to the Human Research Program. Tasks in a new discipline area, Habitation Engineering, have been added. Research and technology development for capabilities required for longer duration stays on the Moon and Mars, including bioregenerative system, have been deferred.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasbir Gill
2010-08-30
Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was amore » multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica/silicate are two common potential cycle-limiting minerals for using impaired waters. For produced waters, barium sulfate and calcium sulfate are two additional potential cycle-limiting minerals. For reclaimed municipal wastewater effluents, calcium phosphate scaling can be an issue, especially in the co-presence of high silica. Computational assessment, using a vast amount of Nalco's field data from coal fired power plants, showed that the limited use and reuse of impaired waters is due to the formation of deposit caused by the presence of iron, high hardness, high silica and high alkalinity in the water. Appropriate and cost-effective inhibitors were identified and developed - LL99B0 for calcite and gypsum inhibition and TX-15060 for silica inhibition. Nalco's existing dispersants HSP-1 and HSP-2 has excellent efficacy for dispersing Fe and Mn. ED and EDI were bench-scale tested by the CRADA partner Argonne National Laboratory for hardness, alkalinity and silica removal from synthetic make-up water and then cycled cooling water. Both systems showed low power consumption and 98-99% salt removal, however, the EDI system required 25-30% less power for silica removal. For Phase 2, the EDI system's performance was optimized and the length of time between clean-in-place (CIP) increased by varying the wafer composition and membrane configuration. The enhanced EDI system could remove 88% of the hardness and 99% of the alkalinity with a processing flux of 19.2 gal/hr/m{sup 2} and a power consumption of 0.54 kWh/100 gal water. Bench tests to screen alternative silica/silicate scale inhibitor chemistries have begun. The silica/silicate control approaches using chemical inhibitors include inhibition of silicic acid polymerization and dispersion of silica/silicate crystals. Tests were conducted with an initial silica concentration of 290-300 mg/L as SiO{sub 2} at pH 7 and room temperature. A proprietary new chemistry was found to be promising, compared with a current commercial product commonly used for silica/silicate control. Additional pilot cooling tower testing confirmed the bench study. We also developed a molecule to inhibit calcium carbonate precipitation and calcium sulfate precipitation at high supersaturations. During Phase 3, a long-term test of the EDI system and scale inhibitors was done at Nalco's cooling tower water testing facility, producing 850 gallons of high purity water (90+% salt removal) at a rate of 220 L/day. The EDI system's performance was stable when the salt concentration in the concentrate compartment (i.e. the EDI waste stream) was controlled and a CIP was done after every 48 hours of operation time. A combination of EDI and scale inhibitors completely eliminated blowdown discharge from the Pilot cooling Tower. The only water-consumption came from evaporation, CIP and EDI concentrate. Silica Inhibitor was evaluated in the field at a western coal fired power plant.« less
Full color laser projection display using Kr-Ar laser (white laser) beam-scanning technology
NASA Astrophysics Data System (ADS)
Kim, Yonghoon; Lee, Hang W.; Cha, Seungnam; Lee, Jin-Ho; Park, Youngjun; Park, Jungho; Hong, Sung S.; Hwang, Young M.
1997-07-01
Full color laser projection display is realized on the large screen using a krypton-argon laser (white laser) as a light source, and acousto-optic devices as light modulators. The main wavelengths of red, green and blue color are 647, 515, and 488 nm separated by dichroic mirrors which are designed to obtain the best performance for the s-polarized beam with the 45 degree incident angle. The separated beams are modulated by three acousto-optic modulators driven by rf drivers which has energy level of 1 watt at 144 MHz and recombined by dichroic mirrors again. Acousto-optic modulators (AOM) are fabricated to satisfy high diffraction efficiency over 80% and fast rising time less than 50 ns at the video bandwidth of 5 MHz. The recombined three beams (RGB) are scanned by polygonal mirrors for horizontal lines and a galvanometer for vertical lines. The photodiode detection for monitoring of rotary polygonal mirrors is adopted in this system for the compensation of the tolerance in the mechanical scanning to prevent the image joggling in the horizontal direction. The laser projection display system described in this paper is expected to apply HDTV from the exploitation of the acousto- optic modulator with the video bandwidth of 30 MHz.
A simple wavelength division multiplexing system for active learning teaching
NASA Astrophysics Data System (ADS)
Zghal, Mourad; Ghalila, Hassen; Ben Lakhdar, Zohra
2009-06-01
The active learning project consists in a series of workshops for educators, researchers and students and promotes an innovative method of teaching physics using simple, inexpensive materials that can be fabricated locally. The objective of the project is to train trainers and inspire students to learn physics. The workshops are based on the use of laboratory work and hands-on activities in the classroom. The interpretation of these experiments is challenging for some students, and the experiments can lead to a significant amount of discussion. The workshops are organized within the framework of the project ``Active Learning in Optics and Photonics" (ALOP) mainly funded by UNESCO, with the support of ICTP (Abdus Salam International Centre for Theoretical Physics) and SPIE. ALOP workshops offer high school, college or university physics teachers the opportunity to improve their conceptual understanding of optics. These workshops usually run for five days and cover several of the topics usually found in any introductory university physics program. Optics and photonics are used as subject matter because it is relevant as well as adaptable to research and educational conditions in many developing countries [1]. In this paper, we will mainly focus on a specific topic of the ALOP workshops, namely optical communications and Wavelength Division Multiplexing technology (WDM). This activity was originally developed by Mazzolini et al [2]. WDM is a technology used in fibre-optic communications for transmitting two or more separate signals over a single fibre optic cable by using a separate wavelength for each signal. Multiple signals are carried together as separate wavelengths of light in a multiplexed signal. Simple and inexpensive WDM system was implemented in our laboratory using light emitting diodes or diode lasers, plastic optical fibres, a set of optical filters and lenses, prism or grating, and photodiodes. Transmission of audio signals using home-made, simple, inexpensive electronic circuits was also demonstrated. The experimental set-up was used during national ALOP workshops. Results are presented and discussed in this paper. Current explorations to further develop these and other closely-related experiments will also be described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, Douglas C.; Olarte, Mariefel V.; Hart, Todd R.
2015-06-19
DOE-EE Bioenergy Technologies Office has set forth several goals to increase the use of bioenergy and bioproducts derived from renewable resources. One of these goals is to facilitate the implementation of the biorefinery. The biorefinery will include the production of liquid fuels, power and, in some cases, products. The integrated biorefinery should stand-alone from an economic perspective with fuels and power driving the economy of scale while the economics/profitability of the facility will be dependent on existing market conditions. UOP LLC proposed to demonstrate a fast pyrolysis based integrated biorefinery. Pacific Northwest National Laboratory (PNNL) has expertise in an importantmore » technology area of interest to UOP for use in their pyrolysis-based biorefinery. This CRADA project provides the supporting technology development and demonstration to allow incorporation of this technology into the biorefinery. PNNL developed catalytic hydrothermal gasification (CHG) for use with aqueous streams within the pyrolysis biorefinery. These aqueous streams included the aqueous phase separated from the fast pyrolysis bio-oil and the aqueous byproduct streams formed in the hydroprocessing of the bio-oil to finished products. The purpose of this project was to demonstrate a technically and economically viable technology for converting renewable biomass feedstocks to sustainable and fungible transportation fuels. To demonstrate the technology, UOP constructed and operated a pilot-scale biorefinery that processed one dry ton per day of biomass using fast pyrolysis. Specific objectives of the project were to: The anticipated outcomes of the project were a validated process technology, a range of validated feedstocks, product property and Life Cycle data, and technical and operating data upon which to base the design of a full-scale biorefinery. The anticipated long-term outcomes from successful commercialization of the technology were: (1) the replacement of a significant fraction of petroleum based fuels with advanced biofuels, leading to increased energy security and decreased carbon footprint; and (2) establishment of a new biofuel industry segment, leading to the creation of U.S. engineering, manufacturing, construction, operations and agricultural jobs. PNNL development of CHG progressed at two levels. Initial tests were made in the laboratory in both mini-scale and bench-scale continuous flow reactor systems. Following positive results, the next level of evaluation was in the scaled-up engineering development system, which was operated at PNNL.« less
The 30/20 GHz fixed communications systems service demand assessment. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Gamble, R. B.; Seltzer, H. R.; Speter, K. M.; Westheimer, M.
1979-01-01
Demand for telecommunications services is forecasted for the period 1980-2000, with particular reference to that portion of the demand associated with satellite communications. Overall demand for telecommunications is predicted to increase by a factor of five over the period studied and the satellite portion of demand will increase even more rapidly. Traffic demand is separately estimated for voice, video, and data services and is also described as a function of distance traveled and city size. The satellite component of projected demand is compared with the capacity available in the C and Ku satellite bands and it is projected that new satellite technology and the implementation of Ka band transmission will be needed in the decade of the 1990's.
The NASA Deep Space Network (DSN) Array
NASA Technical Reports Server (NTRS)
Gatti, Mark
2006-01-01
The DSN Array Project is currently working with Senior Management at both JPL and NASA to develop strategies towards starting a major implementation project. Several studies within NASA are concluding, all of which recommend that any future DSN capability include arraying of antennas to increase performance. Support of Deep Space, Lunar, and CEV (crewed exploration vehicle) missions is possible. High data rate and TDRSS formatting is being investigated. Any future DSN capacity must include Uplink. Current studies ongoing to investigate and develop technologies for uplink arraying; provides advantages in three ways: 1) N2 effect. EIRP grows as N2(-vs-N for a downlink array); 2) Improved architectural options (can separate uplink and downlink); and 3) Potential for more cost effective transmitters for fixed EIRP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cortright, Randy; Rozmiarek, Robert; Dally, Brice
2017-08-31
The objective of this project was to develop an improved multistage process for the hydrothermal liquefaction (HTL) of biomass to serve as a new front-end, deconstruction process ideally suited to feed Virent’s well-proven catalytic technology, which is already being scaled up. This process produced water soluble, partially de-oxygenated intermediates that are ideally suited for catalytic finishing to fungible distillate hydrocarbons. Through this project, Virent, with its partners, demonstrated the conversion of pine wood chips to drop-in hydrocarbon distillate fuels using a multi-stage fractional conversion system that is integrated with Virent’s BioForming® process. The majority of work was in the liquefactionmore » task and included temperature scoping, solvent optimization, and separations.« less
Miniature Biometric Sensor Project
NASA Technical Reports Server (NTRS)
Falker, John; Terrier, Douglas; Clayton, Ronald; Hanson, Andrea; Cooper, Tommy; Downs, Meghan; Flint, Stephanie; Reyna, Baraquiel; Simon, Cory; Wilt, Grier
2015-01-01
Heart rate monitoring (HRM) is a critical need during exploration missions. Unlike the four separate systems used on ISS today, the single HRM system should perform as a diagnostic tool, perform well during exercise or high level activity, and be suitable for use during EVA. Currently available HRM technologies are dependent on uninterrupted contact with the skin and are prone to data drop-out and motion artifact when worn in the spacesuit or during exercise. Here, we seek an alternative to the chest strap and electrode based sensors currently in use on ISS today. This project aims to develop a single, high performance, robust biosensor with focused efforts on improved heart rate data quality collection during high intensity activity such as exercise or EVA.
Logistics Reduction Technologies for Exploration Missions
NASA Technical Reports Server (NTRS)
Broyan, James L., Jr.; Ewert, Michael K.; Fink, Patrick W.
2014-01-01
Human exploration missions under study are very limited by the launch mass capacity of existing and planned vehicles. The logistical mass of crew items is typically considered separate from the vehicle structure, habitat outfitting, and life support systems. Consequently, crew item logistical mass is typically competing with vehicle systems for mass allocation. NASA's Advanced Exploration Systems (AES) Logistics Reduction and Repurposing (LRR) Project is developing five logistics technologies guided by a systems engineering cradle-to-grave approach to enable used crew items to augment vehicle systems. Specifically, AES LRR is investigating the direct reduction of clothing mass, the repurposing of logistical packaging, the use of autonomous logistics management technologies, the processing of spent crew items to benefit radiation shielding and water recovery, and the conversion of trash to propulsion gases. The systematic implementation of these types of technologies will increase launch mass efficiency by enabling items to be used for secondary purposes and improve the habitability of the vehicle as the mission duration increases. This paper provides a description and the challenges of the five technologies under development and the estimated overall mission benefits of each technology.
FJET Database Project: Extract, Transform, and Load
NASA Technical Reports Server (NTRS)
Samms, Kevin O.
2015-01-01
The Data Mining & Knowledge Management team at Kennedy Space Center is providing data management services to the Frangible Joint Empirical Test (FJET) project at Langley Research Center (LARC). FJET is a project under the NASA Engineering and Safety Center (NESC). The purpose of FJET is to conduct an assessment of mild detonating fuse (MDF) frangible joints (FJs) for human spacecraft separation tasks in support of the NASA Commercial Crew Program. The Data Mining & Knowledge Management team has been tasked with creating and managing a database for the efficient storage and retrieval of FJET test data. This paper details the Extract, Transform, and Load (ETL) process as it is related to gathering FJET test data into a Microsoft SQL relational database, and making that data available to the data users. Lessons learned, procedures implemented, and programming code samples are discussed to help detail the learning experienced as the Data Mining & Knowledge Management team adapted to changing requirements and new technology while maintaining flexibility of design in various aspects of the data management project.
Exploring the Earth's crust: history and results of controlled-source seismology
Prodehl, Claus; Mooney, Walter D.
2012-01-01
This volume contains a comprehensive, worldwide history of seismological studies of the Earth’s crust using controlled sources from 1850 to 2005. Essentially all major seismic projects on land and the most important oceanic projects are covered. The time period 1850 to 1939 is presented as a general synthesis, and from 1940 onward the history and results are presented in separate chapters for each decade, with the material organized by geographical region. Each chapter highlights the major advances achieved during that decade in terms of data acquisition, processing technology, and interpretation methods. For all major seismic projects, the authors provide specific details on field observations, interpreted crustal cross sections, and key references. They conclude with global and continental-scale maps of all field measurements and interpreted Moho contours. An accompanying DVD contains important out-of-print publications and an extensive collection of controlled-source data, location maps, and crustal cross sections.
DOE-FG02-00ER62797 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweedler, J.V.
2004-12-01
Specific Aims The overall goal of this proposal has been to develop and interface a new technology, molecular gates, with microfabricated systems to add an important capability to microfabricated DNA measurement systems. This project specifically focused on demonstrating how molecular gates could be used to capture a single analyte band, among a stream of bands from a separation or a flow injection analysis experiment, and release it for later measurement, thus allowing further manipulations on the selected analyte. Since the original proposal, the molecular gate concept has been greatly expanded to allow the gates to be used as externally controllablemore » intelligent interconnects in multilayer microfluidic networks. We have demonstrated: (1) the ability of the molecular gates to work with a much wider range of biological molecules including DNA, proteins and small metabolites; and (2) the capability of performing an electrophoretic separation and sequestering individual picoliter volume components (or even classes of components) into separate channels for further analysis. Both capabilities will enable characterization of small mass amounts of complex mixtures of DNA, proteins and even small molecules--allowing them to be further separated and chemically characterized.« less
Novel, Ceramic Membrane System For Hydrogen Separation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elangovan, S.
2012-12-31
Separation of hydrogen from coal gas represents one of the most promising ways to produce alternative sources of fuel. Ceramatec, teamed with CoorsTek and Sandia National Laboratories has developed materials technology for a pressure driven, high temperature proton-electron mixed conducting membrane system to remove hydrogen from the syngas. This system separates high purity hydrogen and isolates high pressure CO{sub 2} as the retentate, which is amenable to low cost capture and transport to storage sites. The team demonstrated a highly efficient, pressure-driven hydrogen separation membrane to generate high purity hydrogen from syngas using a novel ceramic-ceramic composite membrane. Recognizing themore » benefits and limitations of present membrane systems, the all-ceramic system has been developed to address the key technical challenges related to materials performance under actual operating conditions, while retaining the advantages of thermal and process compatibility offered by the ceramic membranes. The feasibility of the concept has already been demonstrated at Ceramatec. This project developed advanced materials composition for potential integration with water gas shift rectors to maximize the hydrogenproduction.« less
The deployable, inflatable wing technology demonstrator experiment aircraft looks good during a flig
NASA Technical Reports Server (NTRS)
2001-01-01
The deployable, inflatable wing technology demonstrator experiment aircraft looks good during a flight conducted by the NASA Dryden Flight Research Center, Edwards, California. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings 'popped-out,' deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control.
1993-12-30
projectile fragments from target materials, principally sand. Phase I activities included (1) literature review of separations technology , (2) site visits, (3...the current operation, evaluation of alternative means for separation of DU from sand, a review of uranium mining technology for v possible...the current operation, evaluation of alternative means for separation of DU from sand, a review of uranium mining technology for possible
The Challenge of Separating Effects of Simultaneous Education Projects on Student Achievement
ERIC Educational Resources Information Center
Ma, Xin; Ma, Lingling
2009-01-01
When multiple education projects operate in an overlapping or rear-ended manner, it is always a challenge to separate unique project effects on schooling outcomes. Our analysis represents a first attempt to address this challenge. A three-level hierarchical linear model (HLM) was presented as a general analytical framework to separate program…
Dispersant Effectiveness, In-Situ Droplet Size Distribution and ...
This report summarizes two projects covered under an Interagency Agreement between the Bureau of Safety and Environmental Enforcement (BSEE) and the U.S. Environmental Protection Agency (EPA) in collaboration with the Bedford Institute of Oceanography, Department of Fisheries and Oceans Canada (BIO DFO), New Jersey Institute of Technology (NJIT) and Dalhousie University. Both projects dovetail together in addressing the ability to differentiate physical from chemical dispersion effectiveness using dispersed oil simulations within a flume tank for improving forensic response monitoring tools. This report is split into separateTasks based upon the two projects funded by BSEE: 1) Dispersant Effectiveness, In-Situ Droplet Size Distribution and Numerical Modeling to Assess Subsurface Dispersant Injection as a Deepwater Blowout Oil Spill Response Option. 2) Evaluation of Oil Fluorescence Characteristics to Improve Forensic Response Tools. This report summarizes 2 collaborative projects funded through an Interagency Agreement with DOI BSEE and a Cooperative Agreement with DFO Canada. BSEE required that the projects be combined into one report as they are both covered under the one Interagency Agreement. Task B (Fluorescence of oils) is an SHC 3.62 FY16 product.
Membrane applications and research in food processing: An assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohr, C.M.; Leeper, S.A.; Engelau, D.E.
This assessment is intended to aid in planning separations research and development projects aimed at reducing energy consumption in the food industry. The food processing industry uses approximately 1.5 quadrillion Btu per year, 2% of the US national annual energy consumption. Food processing involves a variety of liquid feed, product, and waste streams and makes extensive use of thermal operations such as drying, evaporation, pasteurization, and distillation. As such, it is a candidate for energy conservation through the use of membrane separations. The assessment is organized according to Standard Industry Classification (SIC) Code for the food industry. Individual subindustries consideredmore » are: (a) Meat Processing, Dairy Products, Preserved Fruit and Vegetables, Grain Milling, Bakery Products, Sugar and Confectionery products, Edible Fats and Oils, and Beverages. Topics covered include: (a) background information on food processing and membrane separations, (b) a review of current and developing membrane separations for the food industry, (c) energy consumption and processes used in individual subindustries, (d) separations in the subindustries that could be augmented or replaced by membrane processes, (e) industry practices and market conditions that could affect adoption of new technologies, and (f) prioritized recommendations for DOE-OIP supported research to further use of membrane separations in the food industry. 435 refs.« less
Kr/Xe Separation over a Chabazite Zeolite Membrane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Xuhui; Zong, Zhaowang; Elsaidi, Sameh K.
2016-08-10
Cryogenic distillation, the current conventional technology to separate Krypton and Xenon from air, and from nuclear reprocessing technologies, is an energy-intensive and expensive process. Membrane technology could potentially make this challenging industrial separation less energy intensive and economically viable. We demonstrate that chabazite zeolite SAPO-34 membranes effectively separated Kr/Xe gas mixtures at industrially relevant compositions. Control over membrane thickness and average crystal size led to industrial range permeances and high separation selectivities. Specifically, SAPO-34 membranes can separate Kr/Xe mixtures with Kr permeances as high as 361.4 GPU and separation selectivities of 34.8 for molar compositions close to typical concentrations ofmore » these two gases in air. In addition, SAPO-34 membranes separated Kr/Xe mixtures with Kr permeances as high as 525.7 GPU and separation selectivities up to 45.1 for molar compositions as might be encountered in nuclear reprocessing technologies. Molecular sieving and differences in diffusivities were identified as the dominant separation mechanisms.« less
Arctic Energy Technology Development Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney
2008-12-31
The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. Inmore » the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.« less
Automated ammunition logistics for the Crusader program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Speaks, D.M.; Kring, C.T.; Lloyd, P.D.
1997-03-01
The US Army`s next generation artillery system is called the Crusader. A self-propelled howitzer and a resupply vehicle constitute the Crusader system, which will be designed for improved mobility, increased firepower, and greater survivability than current generation vehicles. The Army`s Project Manager, Crusader, gave Oak Ridge National Laboratory (ORNL) the task of developing and demonstrating a concept for the resupply vehicle. The resupply vehicle is intended to sustain the howitzer with ammunition and fuel and will significantly increase capabilities over those of current resupply vehicles. Ammunition is currently processed and transferred almost entirely by hand. ORNL identified and evaluated variousmore » concepts for automated upload, processing, storage, docking and delivery. Each of the critical technologies was then developed separately and demonstrated on discrete test platforms. An integrated technology demonstrator, incorporating each of the individual technology components to realistically simulate performance of the selected vehicle concept, was developed and successfully demonstrated for the Army.« less
WISPER: Wirless Space Power Experiment
NASA Technical Reports Server (NTRS)
Hawkins, Joseph
1993-01-01
The 1993 Advanced Design Project at the University of Alaska Fairbanks was to design a spacecraft as a technology demonstration of wireless power transmission (WPT). With cost effectiveness as a design constraint, a micro-satellite in low earth orbit (LEO) was chosen for the mission. Existing and near term technologies were analyzed and selected for the project. In addition to the conceptual design of the payload, support systems, and structure, the analysis included attention to safety, environmental impact, cost, and schedule for construction and operation. Wireless power beaming is not a new concept. Experimental demonstrations and study efforts have continued since the early 1960's. With the latest progress in transmitter and receiver technology, the next natural step is to beam power from earth to space. This proposed flight demonstration will advance the science of power beaming and prove the viability of various applications of WPT in space. Two methods of power beaming will be examined during the two separate phases of the spacecraft life. The first phase will demonstrate the technology and examine the theory of microwave power transmission at a high frequency. Special aspects of the first phase will include a highly accurate attitude control system and a 14 m inflatable parabolic antenna. The second phase will investigate the utilization of high intensity laser power using modified photovoltaic arrays. Special instrumentation on the spacecraft will measure the conversion efficiency from the received microwave or laser power to direct current power.
Ding, Linlin; Wang, Yanji; Wu, Zhaoliang; Liu, Wei; Li, Rui; Wang, Yanyan
2016-10-02
A novel technology coupling extraction and foam fractionation was developed for separating the total saponins from Achyranthes bidentata. In the developed technology, the powder of A. bidentata was loaded in a nylon filter cloth pocket with bore diameter of 180 µm. The pocket was fixed in the bulk liquid phase for continuously releasing saponins. Under the optimal conditions, the concentration and the extraction rate of the total saponins in the foamate by the developed technology were 73.5% and 416.2% higher than those by the traditional technology, respectively. The foamates obtained by the traditional technology and the developed technology were analyzed by ultraperformance liquid chromatography-mass spectrometry to determine their ingredients, and the results appeared that the developed technology exhibited a better performance for separating saponins than the traditional technology. The study is expected to develop a novel technology for cost effectively separating plant-derived materials with surface activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Howard, S.; Lu, Yingzhong
The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries thatmore » utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced the economic incentive to extract NGLs from domestically produced natural gas. Successful gas processors will be those who adopt technologies that are less energy intensive, have lower capital and operating costs and offer the flexibility to tailor the plant performance to maximize product revenue as market conditions change, while maintaining overall system efficiency. Presently, cryogenic turbo-expander technology is the dominant NGL recovery process and it is used throughout the world. This process is known to be highly energy intensive, as substantial energy is required to recompress the processed gas back to pipeline pressure. The purpose of this project is to develop a new NGL separation process that is flexible in terms of ethane rejection and can reduce energy consumption by 20-30% from current levels, particularly for ethane recoveries of less than 70%. The new process integrates the dehydration of the raw natural gas stream and the removal of NGLs in such a way that heat recovery is maximized and pressure losses are minimized so that high-value equipment such as the compressor, turbo-expander, and a separate dehydration unit are not required. GTI completed a techno-economic evaluation of the new process based on an Aspen-HYSYS simulation model. The evaluation incorporated purchased equipment cost estimates obtained from equipment suppliers and two different commercial software packages; namely, Aspen-Icarus and Preliminary Design and Quoting Service (PDQ$). For a 100 MMscfd gas processing plant, the annualized capital cost for the new technology was found to be about 10% lower than that of conventional technology for C2 recovery above 70% and about 40% lower than that of conventional technology for C2 recovery below 50%. It was also found that at around 40-50% C2 recovery (which is economically justifiable at the current natural gas prices), the energy cost to recover NGL using the new technology is about 50% of that of conventional cryogenic technology.« less
Energy efficient engine preliminary design and integration study
NASA Technical Reports Server (NTRS)
Gray, D. E.
1978-01-01
The technology and configurational requirements of an all new 1990's energy efficient turbofan engine having a twin spool arrangement with a directly coupled fan and low-pressure turbine, a mixed exhaust nacelle, and a high 38.6:1 overall pressure ratio were studied. Major advanced technology design features required to provide the overall benefits were a high pressure ratio compression system, a thermally actuated advanced clearance control system, lightweight shroudless fan blades, a low maintenance cost one-stage high pressure turbine, a short efficient mixer and structurally integrated engine and nacelle. A conceptual design analysis was followed by integration and performance analyses of geared and direct-drive fan engines with separate or mixed exhaust nacelles to refine previously designed engine cycles. Preliminary design and more detailed engine-aircraft integration analysis were then conducted on the more promising configurations. Engine and aircraft sizing, fuel burned, and airframe noise studies on projected 1990's domestic and international aircraft produced sufficient definition of configurational and advanced technology requirements to allow immediate initiation of component technology development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
SPAHN, OLGA B.; GROSSETETE, GRANT D.; CICH, MICHAEL J.
2003-03-01
Many MEMS-based components require optical monitoring techniques using optoelectronic devices for converting mechanical position information into useful electronic signals. While the constituent piece-parts of such hybrid opto-MEMS components can be separately optimized, the resulting component performance, size, ruggedness and cost are substantially compromised due to assembly and packaging limitations. GaAs MOEMS offers the possibility of monolithically integrating high-performance optoelectronics with simple mechanical structures built in very low-stress epitaxial layers with a resulting component performance determined only by GaAs microfabrication technology limitations. GaAs MOEMS implicitly integrates the capability for radiation-hardened optical communications into the MEMS sensor or actuator component, a vitalmore » step towards rugged integrated autonomous microsystems that sense, act, and communicate. This project establishes a new foundational technology that monolithically combines GaAs optoelectronics with simple mechanics. Critical process issues addressed include selectivity, electrochemical characteristics, and anisotropy of the release chemistry, and post-release drying and coating processes. Several types of devices incorporating this novel technology are demonstrated.« less
Full-Scale Turbofan Engine Noise-Source Separation Using a Four-Signal Method
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.; Arechiga, Rene O.
2016-01-01
Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and expected advances in mitigation of other noise sources. During on-ground, static-engine acoustic tests, combustor noise is generally sub-dominant to other engine noise sources because of the absence of in-flight effects. Consequently, noise-source separation techniques are needed to extract combustor-noise information from the total noise signature in order to further progress. A novel four-signal source-separation method is applied to data from a static, full-scale engine test and compared to previous methods. The new method is, in a sense, a combination of two- and three-signal techniques and represents an attempt to alleviate some of the weaknesses of each of those approaches. This work is supported by the NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject and the NASA Glenn Faculty Fellowship Program.
NASA Astrophysics Data System (ADS)
Du, Nian
The last decade has witnessed an explosion of interests in the science and technology of engineered nanomaterials. While the benefits of nanotechnology are widely publicized, the discussion about the transformation of nanomaterials in the environment, and their potential impacts on human health has just begun. Nanoscale particles, whether ultrafine, nano, engineered, intentional, or incidental, pose significant health effects. New approaches for environmental monitoring of nanomaterials at high sensitivity and in real-time are particularly needed. Since nanoparticles must be isolated from complex environmental and biological matrices, the most effective and simple method of isolating engineered nanomaterials from air or water is filtration. Hence the overall project objective of this work is to develop innovative methods that can simultaneously remove, detect and inactivate diverse nanostructured materials. At the center of the technology is a novel class of polymeric filters capable of simultaneously removing and detecting metal and metal oxide nanoparticles. This project reports the development of a new class of self-standing, flexible, phase-inverted, poly(amic) acid membranes with experimentally-controlled nanopores ranging from less than 10nm to greater than 100nm. Compared to most commercial filter membranes, phase-inverted PAA membranes were found to exhibit superior durability and higher efficiency. The filtration efficiency was ˜99.97% for a number of nanoparticles including Quantum Dots, TiO2, Au and Ag. This work also showed that PAA membranes could be used to separate mixtures of nanoparticles. Although the separation does not show much selectivity according to the NPs’ chemical composition, it shows the ability to separate efficiently based on nanoparticle size. PAA showed an excellent performance not only for nanoparticle isolation at sub-nanometer size ranges, but also as a platform for the detection of engineered nanoparticles at low ppb levels. We demonstrated the application of phase-inverted PAA membranes for quantitative detection of silver NPs using commercial food supplements, and the results were confirmed with AAS, SEM and EDS. Selective detection was achieved in the presence of high concentrations of other metal nanoparticles such as zinc oxide and gold NPs, and silver ions.
Development of a Process for a High Capacity Arc Heater Production of Silicon for Solar Arrays
NASA Technical Reports Server (NTRS)
Reed, W. H.
1979-01-01
A program was established to develop a high temperature silicon production process using existing electric arc heater technology. Silicon tetrachloride and a reductant (sodium) are injected into an arc heated mixture of hydrogen and argon. Under these high temperature conditions, a very rapid reaction is expected to occur and proceed essentially to completion, yielding silicon and gaseous sodium chloride. Techniques for high temperature separation and collection were developed. Included in this report are: test system preparation; testing; injection techniques; kinetics; reaction demonstration; conclusions; and the project status.
NASA Technical Reports Server (NTRS)
1983-01-01
In the mid 60s under contract with NASA, Dr. Benjamin W. Grunbaum was responsible for the development of an automated electrophoresis device that would work in the weightless environment of space. The device was never used in space but was revived during the mid 70s as a technology utilization project aimed at an automated system for use on Earth. The advanced system became known as the Grunbaum System for electrophoresis. It is a versatile, economical assembly for rapid separation of specific blood proteins in very small quantities, permitting their subsequent identification and quantification.
Bauer, Alexander; Mayr, Herwig; Hopfner-Sixt, Katharina; Amon, Thomas
2009-06-01
The Austrian "green electricity act" (Okostromgesetz) has led to an increase in biogas power plant size and consequently to an increased use of biomass. A biogas power plant with a generating capacity of 500 kW(el) consumes up to 38,000 kg of biomass per day. 260 ha of cropland is required to produce this mass. The high water content of biomass necessitates a high transport volume for energy crops and fermentation residues. The transport and application of fermentation residues to farmland is the last step in this logistic chain. The use of fermentation residues as fertilizer closes the nutrient cycle and is a central element in the efficient use of biomass for power production. Treatment of fermentation residues by separation into liquid and solid phases may be a solution to the transport problem. This paper presents detailed results from the monitoring of two biogas plants and from the analysis of the separation of fermentation residues. Furthermore, two different separator technologies for the separation of fermentation residues of biogas plants were analyzed. The examined biogas plants correspond to the current technological state of the art and have designs developed specifically for the utilization of energy crops. The hydraulic retention time ranged between 45.0 and 83.7 days. The specific methane yields were 0.40-0.43 m(3)N CH(4) per kg VS. The volume loads ranged between 3.69 and 4.00 kg VS/m(3). The degree of degradation was between 77.3% and 82.14%. The screw extractor separator was better suited for biogas slurry separation than the rotary screen separator. The screw extractor separator exhibited a high throughput and good separation efficiency. The efficiency of slurry separation depended on the dry matter content of the fermentation residue. The higher the dry matter content, the higher the proportion of solid phase after separation. In this project, we found that the fermentation residues could be divided into 79.2% fluid phase with a dry matter content of 4.5% and 20.8% solid phase with a dry matter content of 19.3%. Dry matter, volatile solids and carbon, raw ash and phosphate--in relation to the mass--accumulated strongly in the solid phase. Nitrogen and ammonia nitrogen were slightly enriched in the solid phase. Only the potassium content decreased slightly in the solid phase.
Separators - Technology review: Ceramic based separators for secondary batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram
Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ('Energiewende') was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membranemore » - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic-based separators. Two prominent examples, the lithium-ion and sodium-sulfur battery, are described to show the current stage of development. New routes are presented as promising technologies for safe and long-life electrochemical storage cells.« less
Separators - Technology review: Ceramic based separators for secondary batteries
NASA Astrophysics Data System (ADS)
Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram; Bazhenov, Vasilii; Schilm, Jochen; Leisegang, Tilmann; Meyer, Dirk C.
2014-06-01
Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ("Energiewende") was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membrane - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic-based separators. Two prominent examples, the lithium-ion and sodium-sulfur battery, are described to show the current stage of development. New routes are presented as promising technologies for safe and long-life electrochemical storage cells.
Development of high power VRLA batteries using novel materials and processes
NASA Astrophysics Data System (ADS)
Soria, M. L.; Valenciano, J.; Ojeda, A.; Raybaut, G.; Ihmels, K.; Deiters, J.; Clement, N.; Morales, J.; Sánchez, L.
Nowadays UPS manufacturers demand batteries with very high specific power and relatively low specific energy, because most mains failures can be defined as "microfailures", usually of the order of seconds. Due to this fact, it is not necessary to provide energy but power. Within a 3-year EU funded project, a new AGM valve-regulated lead-acid battery with weight and volume substantially reduced, as well as a substantial improvement in its reliability, is under development. These aspects can provide the achievement of a more efficient, safe and economic energy supply. Battery specific power is practically related to electrode area, so that its increase, and therefore an electrode thickness reduction, appear essential to achieve the project objectives. Furthermore, it is necessary to achieve a similar reduction in the conventional glass microfibre separator. But such thin material should have improved mechanical properties and can make the battery more prone to develop short circuits across the separator. In order to avoid this problem, a new microporous polyethylene membrane has been developed and tested, with excellent mechanical properties, high porosity and low pore size. For these reasons, the final separator configuration includes a combination of both materials, improved non-woven glass microfibre and the polyethylene membrane. Batteries are designed and assembled by Tudor (Exide Technologies) as battery manufacturer and will be tested in real conditions by MGE UPS Systems as end user. Daramic for the membrane and Bernard Dumas for the glass microfibre mat, have developed and supplied the separators, while the Inorganic Chemistry Department of Córdoba University carries out fundamental research studies on very thin electrodes.
Vascular plants for water pollution control and renewable sources of energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolverton, B.C.; McDonald, R.C.
1980-01-01
Vascular aquatic plants have demonstrated their ability to remove pollutants from domestic and chemical wastewaters. Plants such as the water hyacinth (Eichhornia crassipes), duckweed (Lemna sp., Spirodela sp., and Wolffia sp.), and cattail (Typha sp.) thrive in nutrient-rich waters and produce tremendous quantities of biomass under favorable climatic conditions. This method of wastewater treatment is currently being used exclusively at NASA's National Space Technology Laboratories (NSTL) with water hyacinths and duckweed to treat daily over 759 m/sup 3/ of domestic wastewater and 114 m/sup 3/ of chemical wastewater in four separate systems. The harvested plants from these systems have beenmore » used in various biomass utilization projects over the past five years. In laboratory batch studies of digesting vascular plants with anaerobic filters, NASA has found that 140 to 280 liters methane per kg dry weight can be obtained in an average of 23 days. Current NASA projects at NSTL seek to expand the technology required to design energy systems which produce methane through bioconversion with anaerobic filters and use the mineral residue as a nutrient source for producing new biomass.« less
New Brunswick Laboratory progress report, October 1989--September 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The New Brunswick Laboratory (NBL) has been tasked by the DOE Office of Safeguards and Security, Defense Programs (OSS/DP) to assure the application of accurate and reliable measurement technology for the safeguarding of special nuclear materials. NBL is fulfilling its mission responsibilities by identifying the measurement and measurement-related needs of the nuclear material safeguards community and addressing them by means of activities in the following program areas: (1) reference and calibration materials, (2) measurement development, (3) measurement services, (4) measurement evaluation, (5) safeguards assessment, and (6) site-specific assistance. Highlights of each of these program areas are provided in this summary.more » This progress report is written as a part of NBL's technology transfer responsibilities, primarily for the use and benefit of the scientific personnel that perform safeguards-related measurements. Consequently, the report is technical in nature. Many of the reports of multi-year projects are fragmentary in that only partial results are reported. Separate topical reports are to be issued at the completion of many of these projects. 30 refs.« less
Ceramic High Efficiency Particulate Air (HEPA) Filter Final Report CRADA No. TC02102.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, M.; Morse, T.
This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermor e National Laboratory (LLNL) and Flanders-Precisionaire (Flanders), to develop ceramic HEP A filters under a Thrust II Initiative for Proliferation Prevention (IPP) project. The research was conducted via the IPP Program at Commonwe alth of Independent States (CIS) Institutes, which are handled under a separate agreement. The institutes (collectively referred to as "CIS Institutes") involved with this project were: Bochvar: Federal State Unitarian Enterprise All-Russia Scientific and Research Institute of Inorganic Materials (FSUE VNIINM); Radium Khlopin: Federal State Unitarian Enterprisemore » NPO Radium Institute named (FSUE NPO Radium Institute); and Bakor: Science and Technology Center Bakor (STC Bakor).« less
Innovative 3D Textile Structures for Soft Body Armor Protection: The EPIDARM Project
NASA Astrophysics Data System (ADS)
Maillet, Jérôme; Lefebvre, Marie; Boussu, François; Pirlot, Marc
There is a real need for battlefield soldiers to be protected from ballistic and CBRNE threats and also to be in permanent contact and localization with the logistic support of the commander. Ballistic, CBRNE and tactical jackets are currently three different components, developed separately and worn on top of each other. One of the EPIDARM project's targets is to propose a personal protection demonstration for the optimal system configuration in order to reduce the cost and weight while improving protection. The systems approach used for the EPIDARM program considers the protective system inside its environment (threat, the wearer - generic soldier, task and climates). The latest emergent technologies in ballistic and CBRN protection, ergonomic effectiveness and financial cost are considered and help to select final solutions.
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fourteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the period starting January 1, 2004 and ending March 31, 2004. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale shakedown and performance testing, program management and technology transfer.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the thirteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL under Contract No. DE-FC26-00FT40974. This report summarizes program accomplishments for the period starting October 1, 2003 and ending December 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, pilot-scale demonstration and program management and technology transfer.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program has determined the feasibility of the integrated UFP technology through pilot-scale testing, and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrated experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fifteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the period starting April 1, 2004 and ending June 30, 2004. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale testing, kinetic modeling, program management and technology transfer.« less
NASA Astrophysics Data System (ADS)
Maksimovic, C.
2012-04-01
The effects of climate change and increasing urbanisation call for a new paradigm for efficient planning, management and retrofitting of urban developments to increase resilience to climate change and to maximize ecosystem services. Improved management of urban floods from all sources in required. Time scale for well documented fluvial and coastal floods allows for timely response but surface (pluvial) flooding caused by intense local storms had not been given appropriate attention, Pitt Review (UK). Urban surface floods predictions require fine scale data and model resolutions. They have to be tackled locally by combining central inputs (meteorological services) with the efforts of the local entities. Although significant breakthrough in modelling of pluvial flooding was made there is a need to further enhance short term prediction of both rainfall and surface flooding. These issues are dealt with in the EU Iterreg project Rain Gain (RG). Breakthrough in urban flood mitigation can only be achieved by combined effects of advanced planning design, construction and management of urban water (blue) assets in interaction with urban vegetated areas' (green) assets. Changes in design and operation of blue and green assets, currently operating as two separate systems, is urgently required. Gaps in knowledge and technology will be introduced by EIT's Climate-KIC Blue Green Dream (BGD) project. The RG and BGD projects provide synergy of the "decoupled" blue and green systems to enhance multiple benefits to: urban amenity, flood management, heat island, biodiversity, resilience to drought thus energy requirements, thus increased quality of urban life at lower costs. Urban pluvial flood management will address two priority areas: Short Term rainfall Forecast and Short term flood surface forecast. Spatial resolution of short term rainfall forecast below 0.5 km2 and lead time of a few hours are needed. Improvements are achievable by combining data sources of raingauge networks with C-Band and X-Band radars with NWP and pluvial flood prediction models. The RG project deals with the merging and providing synergy of these technologies. Combined effects of BG technologies can totally reduce the risk of surface flooding for low return period events and up to 50-80% for high return periods. Demonstration technology testing sites for both BGD and RG projects will be established in 5 participating countries. Decision Support Systems will enhance full scale implementation of both BGD and RG project deliverables. A BGD efficiency rating scheme and training guidelines and e-learning tools will be developed. Experimental/demo sites for BDG and RG technology development and testing in Rotterdam, Paris, Berlin, Leuven and London and the expected results with concepts of RG and BGD projects and the initial results will be presented in the paper.
Integrating remediation and resource recovery: On the economic conditions of landfill mining.
Frändegård, Per; Krook, Joakim; Svensson, Niclas
2015-08-01
This article analyzes the economic potential of integrating material separation and resource recovery into a landfill remediation project, and discusses the result and the largest impact factors. The analysis is done using a direct costs/revenues approach and the stochastic uncertainties are handled using Monte Carlo simulation. Two remediation scenarios are applied to a hypothetical landfill. One scenario includes only remediation, while the second scenario adds resource recovery to the remediation project. Moreover, the second scenario is divided into two cases, case A and B. In case A, the landfill tax needs to be paid for re-deposited material and the landfill holder does not own a combined heat and power plant (CHP), which leads to disposal costs in the form of gate fees. In case B, the landfill tax is waived on the re-deposited material and the landfill holder owns its own CHP. Results show that the remediation project in the first scenario costs about €23/ton. Adding resource recovery as in case A worsens the result to -€36/ton, while for case B the result improves to -€14/ton. This shows the importance of landfill tax and the access to a CHP. Other important factors for the result are the material composition in the landfill, the efficiency of the separation technology used, and the price of the saleable material. Copyright © 2015 Elsevier Ltd. All rights reserved.
Particulate Emission Abatement for Krakow Boilerhouses
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-09-14
Environmental cleanup and pollution control are considered the foremost national priorities in Poland. The target of this cleanup is the Polish coal industry, which supplies the fuel to generate over 78% of Poland`s primary energy production. This project addresses the problem of airborne dust and uncontrolled particulate emissions from boilerhouses, which represent a large fraction of the total in Poland. In Krakow alone, there are numerous uncontrolled boilers accounting for about half the total fuel use. The large number of low-capacity boilers poses both technical and economic challenges, since the cost of control equipment is a significant factor in themore » reduction of emissions. A new concept in dust collection, called a Core Separator, is proposed for this important application. The Core Separator is an advanced technology developed through research sponsored by the Department of Energy.« less
Engineers Jim Murray and Joe Pahle prepare a deployable, inflatable wing technology demonstrator exp
NASA Technical Reports Server (NTRS)
2001-01-01
Engineers Jim Murray and Joe Pahle prepare a deployable, inflatable wing technology demonstrator experiment flown by the NASA Dryden Flight Research Center, Edwards, California. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings 'popped-out,' deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control.
The Base Engine for Solar Stirling Power
NASA Technical Reports Server (NTRS)
Meijer, R. J.; Godett, T. M.
1984-01-01
A new concept in Stirling engine technology is embodied in the base engine now being developed at Stirling Thermal Motors, Inc. This is a versatile energy conversion unit suitable for many different applications and heat sources. The base engine, rated 40 kW at 2800 RPM, is a four-cylinder, double-acting variable displacement Stirling engine with pressurized crankcase and rotating shaft seal. Remote-heating technology is incorporated with a stacked-heat-exchanger configuration and a liquid metal heat pipe connected to a distinctly separate combustor or other heat source. High efficiency over a wide range of operating conditions, long life, low manufacturing cost and low material cost are specifically emphasized. The base engine, its design philosophy and approach, its projected performance, and some of its more attractive applications are described.
The I2000, a deployable, inflatable wing technology demonstrator experiment aircraft, leaves the gro
NASA Technical Reports Server (NTRS)
2001-01-01
The deployable, inflatable wing technology demonstrator experiment aircraft leaves the ground during a flight conducted by the NASA Dryden Flight Research Center, Edwards, California. The inflatable wing project represented a basic flight research effort by Dryden personnel. Three successful flights of the I2000 inflatable wing aircraft occurred. During the flights, the team air-launched the radio-controlled (R/C) I2000 from an R/C utility airplane at an altitude of 800-1000 feet. As the I2000 separated from the carrier aircraft, its inflatable wings 'popped-out,' deploying rapidly via an on-board nitrogen bottle. The aircraft remained stable as it transitioned from wingless to winged flight. The unpowered I2000 glided down to a smooth landing under complete control.
Energy Efficient Community Development in California: Chula Vista Research Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gas Technology Institute
2009-03-31
In 2007, the U.S. Department of Energy joined the California Energy Commission in funding a project to begin to examine the technical, economic and institutional (policy and regulatory) aspects of energy-efficient community development. That research project was known as the Chula Vista Research Project for the host California community that co-sponsored the initiative. The researches proved that the strategic integration of the selected and economically viable buildings energy efficiency (EE) measures, photovoltaics (PV), distributed generation (DG), and district cooling can produce significant reductions in aggregate energy consumption, peak demand and emissions, compared to the developer/builder's proposed baseline approach. However, themore » central power plant emission reductions achieved through use of the EE-DG option would increase local air emissions. The electric and natural gas utility infrastructure impacts associated with the use of the EE and EE-PV options were deemed relatively insignificant while use of the EE-DG option would result in a significant reduction of necessary electric distribution facilities to serve a large-scale development project. The results of the Chula Vista project are detailed in three separate documents: (1) Energy-Efficient Community Development in California; Chula Vista Research Project report contains a detailed description of the research effort and findings. This includes the methodologies, and tools used and the analysis of the efficiency, economic and emissions impacts of alternative energy technology and community design options for two development sites. Research topics covered included: (a) Energy supply, demand, and control technologies and related strategies for structures; (b) Application of locally available renewable energy resources including solar thermal and PV technology and on-site power generation with heat recovery; (c) Integration of local energy resources into district energy systems and existing energy utility networks; (d) Alternative land-use design and development options and their impact on energy efficiency and urban runoff, emissions and the heat island effect; and (e) Alternative transportation and mobility options and their impact on local emissions. (2) Creating Energy-Efficient Communities in California: A Reference Guide to Barriers, Solutions and Resources report provides the results of an effort to identify the most innovative existing and emerging public policy, incentive and market mechanisms that encourage investment in advanced energy technologies and enabling community design options in the State of California and the nation. The report evaluates each of these mechanisms in light of the preceding research and concludes with a set of recommended mechanisms designed for consideration by relevant California State agencies, development and finance industry associations, and municipal governments. (3) Creating Energy-Efficient Communities in California: A Technical Reference Guide to Building and Site Design report contains a set of selected commercially viable energy technology and community design options for high-efficiency, low-impact community development in California. It includes a summary of the research findings referenced above and recommendations for energy technology applications and energy-efficient development strategies for residential, commercial and institutional structures and supporting municipal infrastructure for planned communities. The document also identifies design options, technology applications and development strategies that are applicable to urban infill projects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-09-01
The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologiesmore » identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 2 has been divided into five sections: Characterization, Decontamination, Dismantlement, Robotics/Automation, and Waste Management. Each section contains logical breakdowns of the Y-12 D and D problems by subject area and identifies technologies that can be reasonably applied to each D and D challenge.« less
Electric Boosting System for Light Truck/SUV Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Steve; Balis, Craig; Barthelet, Pierre
2005-06-22
Turbo diesel engine use in passenger cars in Europe has resulted in 30-50% improvement in fuel economy. Diesel engine application is particularly suitable for US because of vehicle size and duty cycle patterns. Adopting this technology for use in the US presents two issues--emissions and driveability. Emissions reduction technology is being well addressed with advanced turbocharging, fuel injection and catalytic aftertreatment systems. One way to address driveability is to eliminate turbo lag and increase low speed torque. Electrically assisted turbocharging concepts incorporated in e-TurboTM designs do both. The purpose of this project is to design and develop an electrically assistedmore » turbocharger, e-TurboTM, for diesel engine use in the US. In this report, early design and development of electrical assist technology is described together with issues and potential benefits. In this early phase a mathematical model was developed and verified. The model was used in a sensitivity study. The results of the sensitivity study together with the design and test of first generation hardware was fed into second generation designs. In order to fully realize the benefits of electrical assist technology it was necessary to expand the scope of work to include technology on the compressor side as well as electronic controls concepts. The results of the expanded scope of work are also reported here. In the first instance, designs and hardware were developed for a small engine to quantify and demonstrate benefits. The turbo size was such that it could be applied in a bi-turbo configuration to an SUV sized V engine. Mathematical simulation was used to quantify the possible benefits in an SUV application. It is shown that low speed torque can be increased to get the high performance expected in US, automatic transmission vehicles. It is also shown that e-TurboTM can be used to generate modest amounts of electrical power and supplement the alternator under most load-speed conditions. It is shown that a single (large) e-TurboTM consumes slightly less electrical power for the same steady state torque shaping than a bi-Turbo configuration. However, the transient response of a bi-Turbo configuration in slightly better. It was shown that in order to make full use of additional capabilities of e-TurboTM wide compressor flow range is required. Variable geometry compressor (VGC) technology developed under a separate project was evaluated for incorporation into e-TurboTM designs. It was shown that the combination of these two technologies enables very high torque at low engine speeds. Designs and hardware combining VGC and e-TurboTM are to be developed in a future project. There is concern about high power demands (even though momentary) of e-TurboTM. Reducing the inertia of the turbocharger can reduce power demand and increase battery life. Low inertia turbocharger technology called IBT developed under a separate project was evaluated for synergy with e-TurboTM designs. It was concluded that inertial reduction provided by IBT is very beneficial for e-TurboTM. Designs and hardware combining IBT and e-TurboTM are to be developed in a future project. e-TurboTM provides several additional flexibilities including exhaust gas recirculation (EGR) for emissions reduction with minimum fuel economy penalty and exhaust temperature control for aftertreatment. In integrated multi-parameter control system is needed to realize the full potential of e-TurboTM performance. Honeywell expertise in process control systems involving hundreds of sensors and actuators was applied to demonstrate the potential benefits of multi-parameter, model based control systems.« less
This paper presents performance verification data on two types of high-rate separation devices utilized for solids removal: Vortex separation devices (a class of physical treatment technologies that use cylindrical chambers to create centrifugal forces that separate settleable so...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-12-01
The primary objectives of the project were to identify and evaluate existing processes for (1) using gas as a feedstock for production of marketable, value-added commodities, and (2) enriching contaminated gas to pipeline quality. The following gas conversion technologies were evaluated: (1) transformation to liquid fuels, (2) manufacture of methanol, (3) synthesis of mixed alcohols, and (4) conversion to ammonia and urea. All of these involved synthesis gas production prior to conversion to the desired end products. Most of the conversion technologies evaluated were found to be mature processes operating at a large scale. A drawback in all of themore » processes was the need to have a relatively pure feedstock, thereby requiring gas clean-up prior to conversion. Despite this requirement, the conversion technologies were preliminarily found to be marginally economic. However, the prohibitively high investment for a combined gas clean-up/conversion facility required that REI refocus the project to investigation of gas enrichment alternatives. Enrichment of a gas stream with only one contaminant is a relatively straightforward process (depending on the contaminant) using available technology. However, gob gas has a unique nature, being typically composed of from constituents. These components are: methane, nitrogen, oxygen, carbon dioxide and water vapor. Each of the four contaminants may be separated from the methane using existing technologies that have varying degrees of complexity and compatibility. However, the operating and cost effectiveness of the combined system is dependent on careful integration of the clean-up processes. REI is pursuing Phase 2 of this project for demonstration of a waste gas enrichment facility using the approach described above. This is expected to result in the validation of the commercial and technical viability of the facility, and the refinement of design parameters.« less
Study of Electromagnetic Interactions in the MicroBooNE Liquid Argon Time Projection Chamber
NASA Astrophysics Data System (ADS)
Caratelli, David
This thesis presents results on the study of electromagnetic (EM) activity in the MicroBooNE Liquid Argon Time Projection Chamber (LArTPC) neutrino detector. The LArTPC detector technology provides bubble-chamber like information on neutrino interaction final states, necessary to perform precision measurements of neutrino oscillation parameters. Accelerator-based oscillation experiments heavily rely on the appearance channel numu → nu e to make such measurements. Identifying and reconstructing the energy of the outgoing electrons from such interactions is therefore crucial for their success. This work focuses on two sources of EM activity: Michel electrons in the 10-50 MeV energy range, and photons from pi 0 decay in the ˜30-300 MeV range. Studies of biases in the energy reconstruction measurement, and energy resolution are performed. The impact of shower topology at different energies is discussed, and the importance of thresholding and other reconstruction effects on producing an asymmetric and biased energy measurement are highlighted. This work further presents a study of the calorimetric separation of electrons and photons with a focus on the shower energy dependence of the separation power.
Multiphase Flow Technology Impacts on Thermal Control Systems for Exploration
NASA Technical Reports Server (NTRS)
McQuillen, John; Sankovic, John; Lekan, Jack
2006-01-01
The Two-Phase Flow Facility (TPHIFFy) Project focused on bridging the critical knowledge gap by developing and demonstrating critical multiphase fluid products for advanced life support, thermal management and power conversion systems that are required to enable the Vision for Space Exploration. Safety and reliability of future systems will be enhanced by addressing critical microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability. The project included concept development, normal gravity testing, and reduced gravity aircraft flight campaigns, in preparation for the development of a space flight experiment implementation. Data will be utilized to develop predictive models that could be used for system design and operation. A single fluid, two-phase closed thermodynamic loop test bed was designed, assembled and tested. The major components in this test bed include: a boiler, a condenser, a phase separator and a circulating pump. The test loop was instrumented with flow meters, thermocouples, pressure transducers and both high speed and normal speed video cameras. A low boiling point surrogate fluid, FC-72, was selected based on scaling analyses using preliminary designs for operational systems. Preliminary results are presented which include flow regime transitions and some observations regarding system stability.
Study of Electromagnetic Interactions in the MicroBooNE Liquid Argon Time Projection Chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caratelli, David
This thesis presents results on the study of electromagnetic (EM) activity in the MicroBooNE Liquid Argon Time Projection Chamber (LArTPC) neutrino detector. The LArTPC detector technology provides bubble-chamber like information on neutrino interaction final states, necessary to perform precision measurements of neutrino oscillation parameters. Accelerator-based oscillation experiments heavily rely on the appearance channel ! e to make such measurements. Identifying and reconstructing the energy of the outgoing electrons from such interactions is therefore crucial for their success. This work focuses on two sources of EM activity: Michel electrons in the 10-50 MeV energy range, and photons from 0 decay inmore » the 30-300 MeV range. Studies of biases in the energy reconstruction measurement, and energy resolution are performed. The impact of shower topology at different energies is discussed, and the importance of thresholding and other reconstruction effects on producing an asymmetric and biased energy measurement are highlighted. This work further presents a study of the calorimetric separation of electrons and photons with a focus on the shower energy dependence of the separation power.« less
Cascade Distillation Subsystem Development: Progress Toward a Distillation Comparison Test
NASA Technical Reports Server (NTRS)
Callahan, M. R.; Lubman, A.; Pickering, Karen D.
2009-01-01
Recovery of potable water from wastewater is essential for the success of long-duration manned missions to the Moon and Mars. Honeywell International and a team from NASA Johnson Space Center (JSC) are developing a wastewater processing subsystem that is based on centrifugal vacuum distillation. The wastewater processor, referred to as the Cascade Distillation Subsystem (CDS), utilizes an innovative and efficient multistage thermodynamic process to produce purified water. The rotary centrifugal design of the system also provides gas/liquid phase separation and liquid transport under microgravity conditions. A five-stage subsystem unit has been designed, built, delivered and integrated into the NASA JSC Advanced Water Recovery Systems Development Facility for performance testing. A major test objective of the project is to demonstrate the advancement of the CDS technology from the breadboard level to a subsystem level unit. An initial round of CDS performance testing was completed in fiscal year (FY) 2008. Based on FY08 testing, the system is now in development to support an Exploration Life Support (ELS) Project distillation comparison test expected to begin in early 2009. As part of the project objectives planned for FY09, the system will be reconfigured to support the ELS comparison test. The CDS will then be challenged with a series of human-gene-rated waste streams representative of those anticipated for a lunar outpost. This paper provides a description of the CDS technology, a status of the current project activities, and data on the system s performance to date.
7 CFR 3570.93 - Regional Commission grants.
Code of Federal Regulations, 2011 CFR
2011-01-01
... to all ARC grants administered by Rural Development. Therefore, a separate Project Management... Commissions are handled in accordance with a separate Project Management Agreement between the respective... and Economic Development Act of 1965) for projects eligible for RHS assistance. RHS has agreed to...
7 CFR 3570.93 - Regional Commission grants.
Code of Federal Regulations, 2013 CFR
2013-01-01
... to all ARC grants administered by Rural Development. Therefore, a separate Project Management... Commissions are handled in accordance with a separate Project Management Agreement between the respective... and Economic Development Act of 1965) for projects eligible for RHS assistance. RHS has agreed to...
7 CFR 3570.93 - Regional Commission grants.
Code of Federal Regulations, 2014 CFR
2014-01-01
... to all ARC grants administered by Rural Development. Therefore, a separate Project Management... Commissions are handled in accordance with a separate Project Management Agreement between the respective... and Economic Development Act of 1965) for projects eligible for RHS assistance. RHS has agreed to...
7 CFR 3570.93 - Regional Commission grants.
Code of Federal Regulations, 2012 CFR
2012-01-01
... to all ARC grants administered by Rural Development. Therefore, a separate Project Management... Commissions are handled in accordance with a separate Project Management Agreement between the respective... and Economic Development Act of 1965) for projects eligible for RHS assistance. RHS has agreed to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, R.M.; DiMare, S.; Sabatini, J.
1992-02-01
Arthur D. Little, Inc., under contract to the US DOE Pittsburgh Energy Technology Center, has developed a triboelectric separation device for coal beneficiation, that employs an entrained-flow, rotating-cylinder concept. The described apparatus has been used to test the efficacy of chemical pretreatment and in-situ treatment of coal on separation efficiency. Coal particle entrainment is achieved with gaseous carbon dioxide and particle collection is accomplished by an electrostatic plate separator. The triboelectric separation device incorporates instrumentation for the direct measurement of charge in the dilute-phase particle stream. Some of the pretreatment materials investigated under this project to modify the surface chargingmore » characteristics of the coal included oleic acid, sodium oleate, quinoline and dicyclohexylamine. Ammonia and sulfur dioxide at a concentration up to 1000 ppM was used for in-situ treatment of the coal, with carbon dioxide as the carrier/inerting gas. Nitrogen was used earlier in the test program as the carrier/inerting gas for the coal, but a severe arcing problem was encountered in the electrostatic collector with nitrogen as the carrier gas. This problem did not occur when carbon dioxide was used. The report covers the chemical treatment employed, and summarizes and interprets the results achieved. In addition, an economic analysis of a full scale system based on this concept is presented.« less
NASA Technical Reports Server (NTRS)
Ntuen, Celestine A.
1999-01-01
Developments are being made that allow pilots to have more flexibility over the control of their aircraft. This new concept is called Free Flight. Free Flight strives to move the current air traffic system into an age where space technology is used to its fullest potential. Self-separation is one part of the Free Flight system. Self-separation provides pilots the opportunity to choose their own route to reach a specified destination provided that they maintain the 'minimum required separation distance between airplanes. In the event that pilots are unable to maintain separation, controllers will need to have the aircraft separation authority passed back to them. This situation is known as a procedural intervention point. This project attempted to examine and diagnose those particular situations in an effort to avoid reaching a procedural intervention point in the near future. Crews that reached procedural intervention points were compared with crews that made similar maneuver types in the same scenario, but did not reach procedural intervention points. Results showed that there were no significant differences between crews in a high-density acute angle flight conditions. However, significant differences in maneuver times, following the detection of an intruder aircraft and following the time the intruder aircraft came into view, were found in a low-density, acute angle scenario.
Plasma Modified Polypropylene Membranes as the Lithium-Ion Battery Separators
NASA Astrophysics Data System (ADS)
Wang, Zhengduo; Zhu, Huiqin; Yang, Lizhen; Wang, Xinwei; Liu, Zhongwei; Chen, Qiang
2016-04-01
To reduce the thermal shrinkage of the polymeric separators and improve the safety of the Li-ion batteries, plasma treatment and plasma enhanced vapor chemical deposition (PECVD) of SiOx-like are carried out on polypropylene (PP) separators, respectively. Critical parameters for separator properties, such as the thermal shrinkage rate, porosity, wettability, and mechanical strength, are evaluated on the plasma treated PP membranes. O2 plasma treatment is found to remarkably improve the wettability, porosity and electrolyte uptake. PECVD SiOx-like coatings are found to be able to effectively reduce the thermal shrinkage rate of the membranes and increase the ionic conductivity. The electrolyte-philicity of the SiOx-like coating surface can be tuned by the varying O2 content in the gas mixture during the deposition. Though still acceptable, the mechanical strength is reduced after PECVD, which is due to the plasma etching. supported by National Natural Science Foundation of China (Nos. 11175024, 11375031), the Beijing Institute of Graphic and Communication Key Project of China (No. 23190113051), the Shenzhen Science and Technology Innovation Committee of China (No. JCYJ20130329181509637), BJNSFC (No. KZ201510015014), and the State Key Laboratory of Electrical Insulation and Power Equipment of China (No. EIPE15208)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, R.; Hazen, T.C.; Joyner, D.C.
2011-04-15
Immunomagnetic separation (IMS) has proved highly efficient for recovering microorganisms from heterogeneous samples. Current investigation targeted the separation of viable cells of the sulfate-reducing bacterium, Desulfovibrio vulgaris. Streptavidin-coupled paramagnetic beads and biotin labeled antibodies raised against surface antigens of this microorganism were used to capture D. vulgaris cells in both bioreactor grown laboratory samples and from extremely low-biomass environmental soil and subsurface drilling samples. Initial studies on detection, recovery efficiency and viability for IMS were performed with laboratory grown D. vulgaris cells using various cell densities. Efficiency of cell isolation and recovery (i.e., release of the microbial cells from themore » beads following separation) was followed by microscopic imaging and acridine orange direct counts (AODC). Excellent recovery efficiency encouraged the use of IMS to capture Desulfovibrio spp. cells from low-biomass environmental samples. The environmental samples were obtained from a radionuclide-contaminated site in Germany and the chromium (VI)-contaminated Hanford site, an ongoing bioremediation project of the U.S. Department of Energy. Field deployable IMS technology may greatly facilitate environmental sampling and bioremediation process monitoring and enable transcriptomics and proteomics/metabolomics-based studies directly on cells collected from the field.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awardedmore » a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on Aspen Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the third annual technical progress report for the UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending September 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, bench-scale experimental testing, process modeling, pilot-scale system design and assembly, and program management.« less
Linking_Learning: Migrant Education Technology Projects, 1999.
ERIC Educational Resources Information Center
Carson, Nancy
1999-01-01
The two issues of Linking_Learning published in 1999 update the education community and others regarding six migrant education technology projects funded by the U.S. Department of Education. The projects are the Anchor School Project, InTime (Integrating Technology into Migrant Education), MECHA, KMTP (Kentucky Migrant Technology Project),…
Aggression and Niche-Separation in Ants: A Suggestion for a Student Project
ERIC Educational Resources Information Center
Bates, Martin R.
1973-01-01
Based upon British studies, suggests how the coexistence of different ant species can occur, and discusses competition and niche-separation in relation to a study made in Norfolk. Recommends the elucidation of the mechanisms of niche-separation in ants as an ideal student project. (JR)
On the Restricted Toda and c-KdV Flows of Neumann Type
NASA Astrophysics Data System (ADS)
Zhou, RuGuang; Qiao, ZhiJun
2000-09-01
It is proven that on a symplectic submanifold the restricted c-KdV flow is just the interpolating Hamiltonian flow of invariant for the restricted Toda flow, which is an integrable symplectic map of Neumann type. They share the common Lax matrix, dynamical r-matrix and system of involutive conserved integrals. Furthermore, the procedure of separation of variables is considered for the restricted c-KdV flow of Neumann type. The project supported by the Chinese National Basic Research Project "Nonlinear Science" and the Doctoral Programme Foundation of Institution of High Education of China. The first author also thanks the National Natural Science Foundation of China (19801031) and "Qinglan Project" of Jiangsu Province of China; and the second author also thanks the Alexander von Humboldt Fellowships, Deutschland, the Special Grant of Excellent Ph. D Thesis of China, the Science & Technology Foundation (Youth Talent Foundation) and the Science Research Foundation of Education Committee of Liaoning Province of China.
Software Engineering Research/Developer Collaborations in 2005
NASA Technical Reports Server (NTRS)
Pressburger, Tom
2006-01-01
In CY 2005, three collaborations between software engineering technology providers and NASA software development personnel deployed three software engineering technologies on NASA development projects (a different technology on each project). The main purposes were to benefit the projects, infuse the technologies if beneficial into NASA, and give feedback to the technology providers to improve the technologies. Each collaboration project produced a final report. Section 2 of this report summarizes each project, drawing from the final reports and communications with the software developers and technology providers. Section 3 indicates paths to further infusion of the technologies into NASA practice. Section 4 summarizes some technology transfer lessons learned. Also included is an acronym list.
Carbon Capture and Sequestration from a Hydrogen Production Facility in an Oil Refinery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engels, Cheryl; Williams, Bryan, Valluri, Kiranmal; Watwe, Ramchandra
2010-06-21
The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. Asmore » part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE?s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities (associated with CO2 capture technologies and geologic sequestration MVA), and Environmental Information Volume. Specific accomplishments of this Phase include: 1. Finalization of the Project Management Plan 2. Development of engineering designs in sufficient detail for defining project performance and costs 3. Preparation of Environmental Information Volume 4. Completion of Hazard Identification Studies 5. Completion of control cost estimates and preparation of business plan During the Phase 1 detailed cost estimate, project costs increased substantially from the previous estimate. Furthermore, the detailed risk assessment identified integration risks associated with potentially impacting the steam methane reformer operation. While the Phase 1 work identified ways to mitigate these integration risks satisfactorily from an operational perspective, the associated costs and potential schedule impacts contributed to the decision not to proceed to Phase 2. We have concluded that the project costs and integration risks at Texas City are not commensurate with the potential benefits of the project at this time.« less
Projects in Technology Education and Fostering Learning: The Potential and Its Realization
NASA Astrophysics Data System (ADS)
Barak, Moshe; Shachar, Ahron
2008-06-01
The current study aimed at examining the efficacy of technological projects as learning tools by exploring the following questions: the extent to which projects in technology develop students as independent learners; the types of knowledge the students deal with in working on their projects; the role of problem-solving in technological projects; and how projects integrate into traditional schooling. The subjects were 53 high school (12th grade) students who prepared graduating projects in technology under the supervision of nine teachers. Data were collected by observing the students in the laboratory, administrating two questionnaires to both the students and the teachers, and analyzing 25 portfolios prepared by the students of their projects. The findings indicate that projects in technology provide a good opportunity to engage students in challenging tasks that enhance their learning skills. To maximize this potential, it is necessary to employ the project method from the early stages of learning technology. It is especially important that teachers having a strong engineering orientation also acquire pedagogical knowledge on issues such as fostering independent learning, creativity, peer learning and reflective practice in the technological classroom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hang, T.
2003-07-16
The U.S. Department of Energy (DOE) and the Nuclear Energy Commission of Argentina (CNEA) have a collaborative project to separate cesium/strontium from waste resulting from the production of Mo-99. The Pacific Northwest National Laboratory (PNNL) is assisting DOE on this joint project by providing technical guidance to CNEA scientists. As part of the collaboration, PNNL staff works with staff at the Savannah River Technology Center (SRTC) to run the VERSE-LC model for removal of cesium from the Mo-99 waste using the crystalline silicotitanate (CST) material (IONSIV(R) IE-911, UOP LLC, DesPlaines, IL) based on technical data provided by CNEA. This reportmore » discusses the VERSE-LC ion-exchange-column model and the predicted results of CNEA test cases.« less
MSFC Technology Year in Review 2015
NASA Technical Reports Server (NTRS)
Reynolds, David; Tinker, Mike
2015-01-01
MSFC has a strong diverse portfolio of technology development projects, ranging from flight projects to very low Technology Readiness Level (TRL) laboratory projects. The 2015 Year in Review highlights the Center's technology projects and celebrates their accomplishments to raise awareness of technology development work that is integral to the success of future Agency flight programs.
Science minister unveils reforms to facilities council
NASA Astrophysics Data System (ADS)
Banks, Michael
2010-04-01
The UK's science minister Lord Dray son has announced a series of measures to prevent the Science and Technology Facilities Council (STFC) from being dogged by further financial crises. They include a plan for the STFC's budget for large facilities, such as the Diamond synchrotron and the ISIS neutron-scattering lab, to be allocated and managed separately from its budget for grants. Drayson was forced to review the STFC after the council announced last December that the UK would have to pull out of 25 international science projects because of a £40m shortfall in funding.
Pacific Northwest Laboratory Annual Report for 1992 to the DOE Office of Energy Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreml, S.A.; Park, J.F.
1993-06-01
This report summarizes progress in OHER biological research and general life sciences research programs conducted at PNL in FY 1992. The research develops the knowledge and fundamental principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from energy-related technologies through an increase understanding of the ways in which radiation and chemicals cause biological damage. Descriptors of individual research projects as detailed in this report one separately abstracted and indexed for the database.
Aid for the Medical Laboratory
NASA Technical Reports Server (NTRS)
1986-01-01
A process for separating chemical compounds in fluids resulted from a Jet Propulsion Laboratory (JPL)/LAPD project. The technique involves pouring a blood or urine sample into an extraction tube where packing material contained in a disposable tube called an "extraction column" absorbs water and spreads the specimen as a thin film, making it easy to identify specific components. When a solvent passes through the packing material, the desired compound dissolves and exits through the tube's bottom stem and is collected. Called AUDRI, Automated Drug Identification, it is commercially produced by Analytichem International which has successfully advanced the original technology.
DEMONSTRATION AND QUALITY ASSURANCE PROJECT ...
A demonstration of field portable/mobile technologies for measuring trace elements in soil and sediments was conducted under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation (SITE) Program. The demonstration took place from January 24 to 28, 2005, at the Kennedy Athletic, Recreational and Social Park at Kennedy Space Center on Merritt Island, Florida. The purpose of the demonstration was to verify the performance of various instruments that employ X-ray fluorescence (XRF) measurement technologies for the determination of 13 toxic elements in a variety of soil and sediment samples. Instruments from the technology developers listed below were demonstrated. o Innov-X Systems, Inc.o NITON LLC (2 instruments ) o Oxford Instruments Portable Division (formerly Metorex, Inc.) .Oxford Instruments Analytical .Rigaku, Inc.o RONTEC USA Inc.o Xcalibur XRF Services Inc. (Division of Elvatech Ltd. ) This demonstration plan describes the procedures that will be used to verify the performance and cost of the XRF instruments provided by these technology developers. The plan incorporates the quality assurance and quality control elements needed to generate data of sufficient quality to perform this verification. A separate innovative technology verification report (ITVR) will be prepared for each instrument. The objective of this program is to promote the acceptance and use of innovative field technologies by providing well-documented perfor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consonni, Stefano, E-mail: stefano.consonni@polimi.it; Giugliano, Michele; Massarutto, Antonio
Highlights: > The source separation level (SSL) of waste management system does not qualify adequately the system. > Separately collecting organic waste gives less advantages than packaging materials. > Recycling packaging materials (metals, glass, plastics, paper) is always attractive. > Composting and anaerobic digestion of organic waste gives questionable outcomes. > The critical threshold of optimal recycling seems to be a SSL of 50%. - Abstract: This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW)more » in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on 'how much' source separation is carried out, but rather on 'how' a given SSL is reached.« less
NASA Technical Reports Server (NTRS)
Young, Roy M.; Adams, Charles L.
2010-01-01
The NASA In-Space Propulsion Technology (ISPT) Projects Office sponsored two separate, independent solar sail system design and development demonstration activities during 2002-2005. ATK Space Systems of Goleta, CA was the prime contractor for one development team and L' Garde, Inc. of Tustin, CA was the prime contractor for the other development team. The goal of these activities was to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by the year 2006. Component and subsystem fabrication and testing were completed successfully, including the ground deployment of 10-meter and 20-meter demonstration hardware systems under vacuum conditions. The deployment and structural testing of the 20-meter solar sail systems was conducted in the 30 meter diameter Space Power Facility thermal-vacuum chamber at NASA Glenn Plum Brook in April though August, 2005. This paper will present the results of the TRL assessment following the solar sail technology development activities associated with the design, development, analysis and testing of the 20-meter system ground demonstrators.
CapiBRIC- Capillary-Based Brine Residual In-Containment for Secondary Water Recovery
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam; Pensinger, S.; Callahan, M.
2015-01-01
One of the goals of the AES Life Support Systems Project is to achieve 98% water loop closure for long-duration human exploration missions. Brine water recovery is the primary technology gap that must be bridged to realize this goal. In response to an Agency call for technologies to compete in an October down-select, Capi-BRIC was chosen through a JSC down-select as the strongest candidate to go forward. This resulted in a period of intense development to increase its TRL in preparation for the Agency down-select. This was achieved through rapid prototype design, fabrication, and test at JSC and in a zero-g drop tower at Portland State University. INNOVATION CapiBRIC takes a novel approach of optimizing the containment geometry to support capillary flow and static phase separation to enable evaporation in a microgravity environment. OUTCOME TRL was advanced from 3 to 4, and was selected for continued funding through the AES program. CapiBRIC is poised for development into an ISS technology demonstration, proving its viability as an enabling technology for exploration.
NASA Technical Reports Server (NTRS)
Hanks, G. W.; Shomber, H. A.; Dethman, H. A.; Gratzer, L. B.; Maeshiro, A.; Gangsaas, D.; Blight, J. D.; Buchan, S. M.; Crumb, C. B.; Dorwart, R. J.
1981-01-01
An active controls technology (ACT) system architecture was selected based on current technology system elements and optimal control theory was evaluated for use in analyzing and synthesizing ACT multiple control laws. The system selected employs three redundant computers to implement all of the ACT functions, four redundant smaller computers to implement the crucial pitch-augmented stability function, and a separate maintenance and display computer. The reliability objective of probability of crucial function failure of less than 1 x 10 to the -9th power per flight of 1 hr can be met with current technology system components, if the software is assumed fault free and coverage approaching 1.0 can be provided. The optimal control theory approach to ACT control law synthesis yielded comparable control law performance much more systematically and directly than the classical s-domain approach. The ACT control law performance, although somewhat degraded by the inclusion of representative nonlinearities, remained quite effective. Certain high-frequency gust-load alleviation functions may require increased surface rate capability.
This membrane separation technology developed by Membrane Technology and Research (MTR), Incorporated, is designed to remove volatile organic compounds (VOCs) from contaminated air streams. In the process, organic vapor-laden air contacts one side of a membrane that is permeable ...
Separability study of wheat and small grains
NASA Technical Reports Server (NTRS)
Lennington, R. K.; Marquina, N. E. (Principal Investigator)
1978-01-01
The author has identified the following significant results. Barley showed significant separability from spring wheat, both multitemporally and on a single date chosen near the turning time for barley. Oats showed occasional multitemporal separability from barley and spring wheat; however, the cause of this separability was not well understood. Oats showed no significant separability from spring wheat on any single date during the growing season. By pooling data from segments having an acquisition near the turning time for barley, a fixed unitemporal projection for aiding in the labeling of barley versus spring wheat and oats was constructed. This projection has about the same separability of barley from spring wheat and oats as the unitemporal greeness versus brightness plot. The new fixed projection has the advantage that barley occurs consistently in the same general location on the plot with respect to spring wheat and oats. Attempts to construct a fixed multitemporal or a segment-dependent multitemporal projection for aiding in the labeling of spring wheat versus other small grains were unsuccessful due to segment availability and the fact that each segment has a unique acquisition history.
Custom FPGA processing for real-time fetal ECG extraction and identification.
Torti, E; Koliopoulos, D; Matraxia, M; Danese, G; Leporati, F
2017-01-01
Monitoring the fetal cardiac activity during pregnancy is of crucial importance for evaluating fetus health. However, there is a lack of automatic and reliable methods for Fetal ECG (FECG) monitoring that can perform this elaboration in real-time. In this paper, we present a hardware architecture, implemented on the Altera Stratix V FPGA, capable of separating the FECG from the maternal ECG and to correctly identify it. We evaluated our system using both synthetic and real tracks acquired from patients beyond the 20th pregnancy week. This work is part of a project aiming at developing a portable system for FECG continuous real-time monitoring. Its characteristics of reduced power consumption, real-time processing capability and reduced size make it suitable to be embedded in the overall system, that is the first proposed exploiting Blind Source Separation with this technology, to the best of our knowledge. Copyright © 2016 Elsevier Ltd. All rights reserved.
Research in cosmic and gamma ray astrophysics: Cosmic physics portion
NASA Technical Reports Server (NTRS)
Stone, Edward C.; Mewaldt, Richard A.; Schindler, Stephen
1993-01-01
Research in particle astrophysics at the Space Radiation Laboratory (SRL) of the California Institute of Technology is supported under NASA Grant NAGW-1919. A three-year proposal for continuation of support was submitted a year ago and put into effect 1 October 1992. This report is the combined progress report and continuation application called for under the Federal Demonstration Project. Gamma-ray Astrophysics at SRL is separately supported under NAGW-1919 and will be separately summarized and proposed. This report will document progress and plans for our particle spectroscopy activities and for related data analysis, calibration, and community service activities. A bibliography and a budget will be attached as appendices. The Caltech SRL research program includes a heavy emphasis on elemental and isotopic spectroscopy of energetic particles in the cosmic radiation; in solar, interplanetary, and anomalous 'cosmic' radiation; and in planetary magnetospheres as discussed.
Biomedical research applications of electromagnetically separated enriched stable isotopes
NASA Astrophysics Data System (ADS)
Lambrecht, R. M.
The current and projected annual requirements through 1985 for stable isotopes enriched by electromagnetic separation methods were reviewed for applications in various types of biomedical research: (1) medical radiosiotope production, labeled compounds, and potential radio-pharmaceuticals; (2) nutrition, food science, and pharmacology: (3) metallobiochemistry and environmental toxicology; (4) nuclear magnetic resonance, electron paramagnetic resonance, and moessbauer spectroscopy in biochemical, biophysical, and biomedical research; and (5) miscellaneous advances in radioactive and nonradioactive tracer technology. Radioisotopes available from commercial sources or routinely used in clinical nuclear medicine were excluded. Current requirements for enriched stable isotopes in biomedical research are not being satisfied. Severe shortages exist for Mg 26, Ca 43, Zn 70, Se 76, Se 77, Se 78, Pd 102, Cd 111, Cd 113, and Os 190. Many interesting and potentially important investigations in biomedical research require small quantities of specific elements at high isotopic enrichments.
Frank H. Spedding award citation
NASA Astrophysics Data System (ADS)
Soderholm, Lynda
2003-02-01
Today it is my honor and my pleasure to present the Frank H. Spedding Award for Outstanding Contributions to the Science and Technology of the Rare Earths. Professor Spedding, after whom this award is named, was the former director of Ames Laboratory at Iowa State University. He received his Ph.D. in 1929 under the supervision of Professor G.N. Lewis and went on to receive the Langmuir Award in Pure Chemistry, awarded to a chemist, under 31 years old. With the advent of World War II he became involved with the Manhattan Project, and was present with Enrico Fermi during the first sustained pile reaction at the University of Chicago. Among Professor Spedding's most notable achievements was the development in the 1950s of a form of ion exchange displacement chromatography that permits the remarkably effective separation of neighboring rare-earth elements. Additionally, the Spedding team established the efficacy of EDTA in performing such separations.
NASA Technical Reports Server (NTRS)
Mirza, Ali; Sant, David; Woodyard, James R.; Johnston, Richard R.; Brown, William J.
2002-01-01
Balloon, control and communication technologies are under development in our laboratory for testing multi-junction solar cells in the stratosphere to achieve near AM0 conditions. One flight, Suntracker I, has been carried out reported earlier. We report on our efforts in preparation for a second flight, Suntracker II, that was aborted due to hardware problems. The package for Suntracker I system has been modified to include separate electronics and battery packs for the 70 centimeter and 2 meter systems. The collimator control system and motor gearboxes have been redesigned to address problems with the virtual stops and backlash. Surface mount technology on a printed circuit board was used in place of the through-hole prototype circuit in efforts to reduce weight and size, and improve reliability. A mobile base station has been constructed that includes a 35' tower with a two axis rotator and multi-element yagi antennas. Modifications in Suntracker I and the factors that lead to aborting Suntracker II are discussed.
Technology Reinvestment Project Manufacturing Education and Training. Volume 1
NASA Technical Reports Server (NTRS)
Schroer, Bernard J.; Bond, Arthur J.
1997-01-01
The manufacturing education program is a joint program between the University of Alabama in Huntsville's (UAH) College of Engineering and Alabama A&M University's (AAMLJ) School of Engineering and Technology. The objective of the program is to provide more hands-on experiences to undergraduate engineering and engineering technology students. The scope of work consisted of. Year 1, Task 1: Review courses at Alabama Industrial Development Training (AIDT); Task 2: Review courses at UAH and AAMU; Task 3: Develop new lab manuals; Task 4: Field test manuals; Task 5: Prepare annual report. Year 2, Task 1: Incorporate feedback into lab manuals; Task 2 : Introduce lab manuals into classes; Task 3: Field test manuals; Task 4: Prepare annual report. Year 3, Task 1: Incorporate feedback into lab manuals; Task 2: Introduce lab manuals into remaining classes; Task 3: Conduct evaluation with assistance of industry; Task 4: Prepare final report. This report only summarizes the activities of the University of Alabama in Huntsville. The activities of Alabama A&M University are contained in a separate report.
In silico screening of carbon-capture materials
NASA Astrophysics Data System (ADS)
Lin, Li-Chiang; Berger, Adam H.; Martin, Richard L.; Kim, Jihan; Swisher, Joseph A.; Jariwala, Kuldeep; Rycroft, Chris H.; Bhown, Abhoyjit S.; Deem, Michael W.; Haranczyk, Maciej; Smit, Berend
2012-07-01
One of the main bottlenecks to deploying large-scale carbon dioxide capture and storage (CCS) in power plants is the energy required to separate the CO2 from flue gas. For example, near-term CCS technology applied to coal-fired power plants is projected to reduce the net output of the plant by some 30% and to increase the cost of electricity by 60-80%. Developing capture materials and processes that reduce the parasitic energy imposed by CCS is therefore an important area of research. We have developed a computational approach to rank adsorbents for their performance in CCS. Using this analysis, we have screened hundreds of thousands of zeolite and zeolitic imidazolate framework structures and identified many different structures that have the potential to reduce the parasitic energy of CCS by 30-40% compared with near-term technologies.
A HWIL test facility of infrared imaging laser radar using direct signal injection
NASA Astrophysics Data System (ADS)
Wang, Qian; Lu, Wei; Wang, Chunhui; Wang, Qi
2005-01-01
Laser radar has been widely used these years and the hardware-in-the-loop (HWIL) testing of laser radar become important because of its low cost and high fidelity compare with On-the-Fly testing and whole digital simulation separately. Scene generation and projection two key technologies of hardware-in-the-loop testing of laser radar and is a complicated problem because the 3D images result from time delay. The scene generation process begins with the definition of the target geometry and reflectivity and range. The real-time 3D scene generation computer is a PC based hardware and the 3D target models were modeled using 3dsMAX. The scene generation software was written in C and OpenGL and is executed to extract the Z-buffer from the bit planes to main memory as range image. These pixels contain each target position x, y, z and its respective intensity and range value. Expensive optical injection technologies of scene projection such as LDP array, VCSEL array, DMD and associated scene generation is ongoing. But the optical scene projection is complicated and always unaffordable. In this paper a cheaper test facility was described that uses direct electronic injection to provide rang images for laser radar testing. The electronic delay and pulse shaping circuits inject the scenes directly into the seeker's signal processing unit.
Modeling and Analysis of the Reverse Water Gas Shift Process for In-Situ Propellant Production
NASA Technical Reports Server (NTRS)
Whitlow, Jonathan E.
2000-01-01
This report focuses on the development of mathematical models and simulation tools developed for the Reverse Water Gas Shift (RWGS) process. This process is a candidate technology for oxygen production on Mars under the In-Situ Propellant Production (ISPP) project. An analysis of the RWGS process was performed using a material balance for the system. The material balance is very complex due to the downstream separations and subsequent recycle inherent with the process. A numerical simulation was developed for the RWGS process to provide a tool for analysis and optimization of experimental hardware, which will be constructed later this year at Kennedy Space Center (KSC). Attempts to solve the material balance for the system, which can be defined by 27 nonlinear equations, initially failed. A convergence scheme was developed which led to successful solution of the material balance, however the simplified equations used for the gas separation membrane were found insufficient. Additional more rigorous models were successfully developed and solved for the membrane separation. Sample results from these models are included in this report, with recommendations for experimental work needed for model validation.
Printed Spacecraft Separation System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmans, Walter; Dehoff, Ryan
In this project Planetary Systems Corporation proposed utilizing additive manufacturing (3D printing) to manufacture a titanium spacecraft separation system for commercial and US government customers to realize a 90% reduction in the cost and energy. These savings were demonstrated via “printing-in” many of the parts and sub-assemblies into one part, thus greatly reducing the labor associated with design, procurement, assembly and calibration of mechanisms. Planetary Systems Corporation redesigned several of the components of the separation system based on additive manufacturing principles including geometric flexibility and the ability to fabricate complex designs, ability to combine multiple parts of an assembly intomore » a single component, and the ability to optimize design for specific mechanical property targets. Shock absorption was specifically targeted and requirements were established to attenuate damage to the Lightband system from shock of initiation. Planetary Systems Corporation redesigned components based on these requirements and sent the designs to Oak Ridge National Laboratory to be printed. ORNL printed the parts using the Arcam electron beam melting technology based on the desire for the parts to be fabricated from Ti-6Al-4V based on the weight and mechanical performance of the material. A second set of components was fabricated from stainless steel material on the Renishaw laser powder bed technology due to the improved geometric accuracy, surface finish, and wear resistance of the material. Planetary Systems Corporation evaluated these components and determined that 3D printing is potentially a viable method for achieving significant cost and savings metrics.« less
Argon Collection And Purification For Proliferation Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achey, R.; Hunter, D.
2015-10-09
In order to determine whether a seismic event was a declared/undeclared underground nuclear weapon test, environmental samples must be taken and analyzed for signatures that are unique to a nuclear explosion. These signatures are either particles or gases. Particle samples are routinely taken and analyzed under the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) verification regime as well as by individual countries. Gas samples are analyzed for signature gases, especially radioactive xenon. Underground nuclear tests also produce radioactive argon, but that signature is not well monitored. A radioactive argon signature, along with other signatures, can more conclusively determine whether an event wasmore » a nuclear test. This project has developed capabilities for collecting and purifying argon samples for ultra-low-background proportional counting. SRNL has developed a continuous gas enrichment system that produces an output stream containing 97% argon from whole air using adsorbent separation technology (the flow diagram for the system is shown in the figure). The vacuum swing adsorption (VSA) enrichment system is easily scalable to produce ten liters or more of 97% argon within twelve hours. A gas chromatographic separation using a column of modified hydrogen mordenite molecular sieve has been developed that can further purify the sample to better than 99% purity after separation from the helium carrier gas. The combination of these concentration and purification systems has the capability of being used for a field-deployable system for collecting argon samples suitable for ultra-low-background proportional counting for detecting nuclear detonations under the On-Site Inspection program of the CTBTO verification regime. The technology also has applications for the bulk argon separation from air for industrial purposes such as the semi-conductor industry.« less
Hyper-X Stage Separation: Background and Status
NASA Technical Reports Server (NTRS)
Reubush, David E.
1999-01-01
This paper provides an overview of stage separation activities for NASA's Hyper-X program; a focused hypersonic technology effort designed to move hypersonic, airbreathing vehicle technology from the laboratory environment to the flight environment. This paper presents an account of the development of the current stage separation concept, highlights of wind tunnel experiments and computational fluid dynamics investigations being conducted to define the separation event, results from ground tests of separation hardware, schedule and status. Substantial work has been completed toward reducing the risk associated with stage separation.
Proceedings: Fourteenth annual EPRI conference on fuel science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-05-01
EPRI's Fourteenth Annual Contractors' Conference on Fuel Science was held on May 18--19, 1989 in Palo Alto, CA. The conference featured results of work on coal science, coal liquefaction, methanol production, and coal oil coprocessing and coal upgrading. The following topics were discussed: recent development in coal liquefaction at the Wilsonville Clean Coal Research Center; British coal's liquid solvent extraction (LSE) process; feedstock reactivity in coal/oil co-processing; utility applications for coal-oil coprocessed fuels; effect of coal rank and quality on two-stage liquefaction; organic sulfur compounds in coals; the perchloroethylene refining process of high-sulfur coals; extraction of sulfur coals; extraction ofmore » sulfur from coal; agglomeration of bituminous and subbituminous coals; solubilization of coals by cell-free extracts derived from polyporus versicolor; remediation technologies and services; preliminary results from proof-of-concept testing of heavy liquid cyclone cleaning technology; clean-up of soil contaminated with tarry/oily organics; midwest ore processing company's coal benefication technology: recent prep plant, scale and laboratory activities; combustion characterization of coal-oil agglomerate fuels; status report on the liquid phase methanol project; biomimetic catalysis; hydroxylation of C{sub 2} {minus} C{sub 3} and cycloc{sub 6} hydrocarbons with Fe cluster catalysts as models for methane monooxygenase enzyme; methanol production scenarios; and modeling studies of the BNL low temperature methanol catalyst. Individual projects are processed separately for the data bases.« less
Membrane separation systems---A research and development needs assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, R.W.; Cussler, E.L.; Eykamp, W.
1990-03-01
Membrane based separation technology, a relative newcomer on the separations scene, has demonstrated the potential of saving enormous amounts of energy in the processing industries if substituted for conventional separation systems. Over 1 quad annually, out of 2.6, can possibly be saved in liquid-to-gas separations, alone, if membrane separation systems gain wider acceptance, according to a recent DOE/OIP (DOE/NBM-80027730 (1986)) study. In recent years great strides have been made in the field and offer even greater energy savings in the future when substituted for other conventional separation techniques such as distillation, evaporation, filtration, sedimentation, and absorption. An assessment was conductedmore » by a group of six internationally known membrane separations experts who examined the worldwide status of research in the seven major membrane areas. This encompassed four mature technology areas: reverse osmosis, micorfiltration, ultrafiltration, and electrodialysis; two developing areas: gas separation and and pervaporation; and one emerging technology: facilitated transport. Particular attention was paid to identifying the innovative processes currently emerging, and even further improvements which could gain wider acceptance for the more mature membrane technology. The topics that were pointed out as having the greatest research emphasis are pervaporation for organic-organic separations; gas separation; micorfiltration; an oxidant-resistant reverse osmosis membrane; and a fouling-resistant ultrafiltration membrane. 35 refs., 6 figs., 22 tabs.« less
Consonni, Stefano; Giugliano, Michele; Massarutto, Antonio; Ragazzi, Marco; Saccani, Cesare
2011-01-01
This paper describes the context, the basic assumptions and the main findings of a joint research project aimed at identifying the optimal breakdown between material recovery and energy recovery from municipal solid waste (MSW) in the framework of integrated waste management systems (IWMS). The project was carried out from 2007 to 2009 by five research groups at Politecnico di Milano, the Universities of Bologna and Trento, and the Bocconi University (Milan), with funding from the Italian Ministry of Education, University and Research (MIUR). Since the optimization of IWMSs by analytical methods is practically impossible, the search for the most attractive strategy was carried out by comparing a number of relevant recovery paths from the point of view of mass and energy flows, technological features, environmental impact and economics. The main focus has been on mature processes applicable to MSW in Italy and Europe. Results show that, contrary to a rather widespread opinion, increasing the source separation level (SSL) has a very marginal effects on energy efficiency. What does generate very significant variations in energy efficiency is scale, i.e. the size of the waste-to-energy (WTE) plant. The mere value of SSL is inadequate to qualify the recovery system. The energy and environmental outcome of recovery depends not only on "how much" source separation is carried out, but rather on "how" a given SSL is reached. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snell, Mark Kamerer
2013-01-01
This report documents the results of Task 3 of Project Action Sheet PP05 between the United States Department of Energy (DOE) and the Republic of Korea (ROK) Ministry of Education, Science, and Technology (MEST) for Support with Review of an ROK Risk Evaluation Process. This task was to have Sandia National Laboratories collaborate with the Korea Institute of Nuclear Nonproliferation and Control (KINAC) on several activities concerning how to determine the Probability of Neutralization, PN, and the Probability of System Effectiveness, PE, to include: providing descriptions on how combat simulations are used to determine PN and PE; comparisons of themore » strengths and weaknesses of two neutralization models (the Neutralization.xls spreadsheet model versus the Brief Adversary Threat-Loss Estimator (BATLE) software); and demonstrating how computer simulations can be used to determine PN. Note that the computer simulation used for the demonstration was the Scenario Toolkit And Generation Environment (STAGE) simulation, which is a stand-alone synthetic tactical simulation sold by Presagis Canada Incorporated. The demonstration is provided in a separate Audio Video Interleave (.AVI) file.« less
Project PHOENIX SETI Observations at Parkes
NASA Astrophysics Data System (ADS)
Backus, P. R.
1995-12-01
For sixteen weeks (February to June of 1995), Project Phoenix had the exclusive use of the 64 m Parkes radio telescope in New South Wales, Australia, as well as another element of the Australian Telescope National Facility (ATNF), the 22 m Mopra telescope, 200 km to the north at Coonabarabran. With these two telescopes, we conducted a targeted search of nearly two hundred solar-type stars covering the frequency range from 1.2 to 3 GHz. The signal detection system was optimized to detect narrowband signals (presumed to be transmitted by another technological civilization) originating in the vicinity of these targets. The system was sensitive to signals that were continuously present, or pulsed regularly, even if their frequencies drifted, or changed slowly in time. Many signals of precisely this nature were detected, but all were coming from our own technology! All manner of transmitters, from microwave ovens to satellite downlinks, are rapidly making this naturally quiet portion of the electromagnetic spectrum extremely noisy. The use of the two widely separated telescopes as a pseudo-interferometer was essential to discriminate against signals of terrestrial origin. The architecture and performance of the system and the results of the observing campaign are presented in this paper.
Nineteenth annual actinide separations conference: Conference program and abstracts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bronson, M.
This report contains the abstracts from the conference presentations. Sessions were divided into the following topics: Waste treatment; Spent fuel treatment; Issues and responses to Defense Nuclear Facility Safety Board 94-1; Pyrochemical technologies; Disposition technologies; and Aqueous separation technologies.
Proposed Project Selection Method for Human Support Research and Technology Development (HSR&TD)
NASA Technical Reports Server (NTRS)
Jones, Harry
2005-01-01
The purpose of HSR&TD is to deliver human support technologies to the Exploration Systems Mission Directorate (ESMD) that will be selected for future missions. This requires identifying promising candidate technologies and advancing them in technology readiness until they are acceptable. HSR&TD must select an may of technology development projects, guide them, and either terminate or continue them, so as to maximize the resulting number of usable advanced human support technologies. This paper proposes an effective project scoring methodology to support managing the HSR&TD project portfolio. Researchers strongly disagree as to what are the best technology project selection methods, or even if there are any proven ones. Technology development is risky and outstanding achievements are rare and unpredictable. There is no simple formula for success. Organizations that are satisfied with their project selection approach typically use a mix of financial, strategic, and scoring methods in an open, established, explicit, formal process. This approach helps to build consensus and develop management insight. It encourages better project proposals by clarifying the desired project attributes. We propose a project scoring technique based on a method previously used in a federal laboratory and supported by recent research. Projects are ranked by their perceived relevance, risk, and return - a new 3 R's. Relevance is the degree to which the project objective supports the HSR&TD goal of developing usable advanced human support technologies. Risk is the estimated probability that the project will achieve its specific objective. Return is the reduction in mission life cycle cost obtained if the project is successful. If the project objective technology performs a new function with no current cost, its return is the estimated cash value of performing the new function. The proposed project selection scoring method includes definitions of the criteria, a project evaluation questionnaire, and a scoring formula.
Sensor Acquisition for Water Utilities: A Survey and Technology List
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alai, M; Glascoe, L; Love, A
2005-03-07
The early detection of the deliberate biological and chemical contamination of water distribution systems is a necessary capability for securing the nation's water supply. Current and emerging early-detection technology capabilities and shortcomings need to be identified and assessed to provide government agencies and water utilities with an improved methodology for assessing the value of installing these technologies. The Department of Homeland Security (DHS) has tasked a multi-laboratory team to evaluate current and future needs to protect the nation's water distribution infrastructure by supporting an objective evaluation of current and new technologies. The primary deliverables from this Operational Technology Demonstration (OTD)more » are the following: (1) establishment of an advisory board for review and approval of testing protocols, technology acquisition processes and recommendations for technology test and evaluation in laboratory and field settings; (2) development of a technology acquisition process; (3) creation of laboratory and field testing and evaluation capability; and (4) testing of candidate technologies for insertion into a water early warning system. The initial phase of this study involves the development of two separate but complementary strategies to be reviewed by the advisory board: (1) a technology acquisition strategy, and (2) a technology evaluation strategy. Lawrence Livermore National Laboratory and Sandia National Laboratories are tasked with the first strategy, while Los Alamos, Pacific Northwest, and Oak Ridge National Laboratories are tasked with the second strategy. The first goal of the acquisition strategy is the development of a technology survey process that includes a review of previous sensor surveys and current test programs and then the development of a method to solicit and select existing and emerging sensor technologies for evaluation and testing. In this paper we discuss a survey of previous efforts by governmental agencies and private companies with the aim of facilitating a water sensor technology acquisition procedure. We provide a survey of previous sensor studies with regard to the use of Early Warning Systems (EWS) including earlier surveys, testing programs, and response studies. In the project we extend this earlier work by developing a list of important sensor specifications that are then used to help assemble a sensor selection criteria. A list of sensor technologies with their specifications is appended to this document. This list will assist the second goal of the project which is a recommendation of candidate technologies for laboratory and field testing.« less
Permitting of Landfill Bioreactor Operations: Ten Years after ...
Prior to promulgation of the Rule, there were approximately 20 full-scale bioreactor projects in North America, including one in Canada. Of these, six were permitted by EPA (four Project XL sites and two projects listed separately under a cooperative research agreement at the Outer Loop Landfill in Kentucky). In March 2014, there were about 40 bioreactor projects reported, including 30 active RD&D projects in 11 approved states and one project on tribal lands. Wisconsin features the largest number of projects at 13, due primarily to the fact that landfill owners in the state must either eliminate landfill disposal of biodegradable materials or to achieve the complete stabilization of deposited organic waste at MSW landfills within 40 years after closure. Most landfill operators have selected a bioreactor approach to attempt to achieve the latter goal. In summary, only 16 of 50 (32%) states have currently adopted the Rule, meaning that development of RD&D permitting procedures that are consistent with EPA’s requirements has generally not occurred. The predominant single reason cited for not adopting the Rule was lack of interest amongst landfill facilities in the state. Subtitle D and its state derivatives already allow leachate recirculation over prescriptive (i.e., minimum technology) liner systems, which is often the primary goal of site operators seeking to control leachate treatment costs. Other reasons related to concerns over increased time, cost
Hawaii energy strategy project 3: Renewable energy resource assessment and development program
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-11-01
RLA Consulting (RLA) has been retained by the State of Hawaii Department of Business, Economic Development and Tourism (DBEDT) to conduct a Renewable Energy Resource Assessment and Development Program. This three-phase program is part of the Hawaii Energy Strategy (HES), which is a multi-faceted program intended to produce an integrated energy strategy for the State of Hawaii. The purpose of Phase 1 of the project, Development of a Renewable Energy Resource Assessment Plan, is to better define the most promising potential renewable energy projects and to establish the most suitable locations for project development in the state. In order tomore » accomplish this goal, RLA has identified constraints and requirements for renewable energy projects from six different renewable energy resources: wind, solar, biomass, hydro, wave, and ocean thermal. These criteria were applied to areas with sufficient resource for commercial development and the results of Phase 1 are lists of projects with the most promising development potential for each of the technologies under consideration. Consideration of geothermal energy was added to this investigation under a separate contract with DBEDT. In addition to the project lists, a monitoring plan was developed with recommended locations and a data collection methodology for obtaining additional wind and solar data. This report summarizes the results of Phase 1. 11 figs., 22 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, R.M.; DiMare, S.; Sabatini, J.
1992-02-01
Arthur D. Little, Inc., under contract to the US DOE Pittsburgh Energy Technology Center, has developed a triboelectric separation device for coal beneficiation, that employs an entrained-flow, rotating-cylinder concept. The described apparatus has been used to test the efficacy of chemical pretreatment and in-situ treatment of coal on separation efficiency. Coal particle entrainment is achieved with gaseous carbon dioxide and particle collection is accomplished by an electrostatic plate separator. The triboelectric separation device incorporates instrumentation for the direct measurement of charge in the dilute-phase particle stream. Some of the pretreatment materials investigated under this project to modify the surface chargingmore » characteristics of the coal included oleic acid, sodium oleate, quinoline and dicyclohexylamine. Ammonia and sulfur dioxide at a concentration up to 1000 ppM was used for in-situ treatment of the coal, with carbon dioxide as the carrier/inerting gas. Nitrogen was used earlier in the test program as the carrier/inerting gas for the coal, but a severe arcing problem was encountered in the electrostatic collector with nitrogen as the carrier gas. This problem did not occur when carbon dioxide was used. The report covers the chemical treatment employed, and summarizes and interprets the results achieved. In addition, an economic analysis of a full scale system based on this concept is presented.« less
Projecting technology change to improve space technology planning and systems management
NASA Astrophysics Data System (ADS)
Walk, Steven Robert
2011-04-01
Projecting technology performance evolution has been improving over the years. Reliable quantitative forecasting methods have been developed that project the growth, diffusion, and performance of technology in time, including projecting technology substitutions, saturation levels, and performance improvements. These forecasts can be applied at the early stages of space technology planning to better predict available future technology performance, assure the successful selection of technology, and improve technology systems management strategy. Often what is published as a technology forecast is simply scenario planning, usually made by extrapolating current trends into the future, with perhaps some subjective insight added. Typically, the accuracy of such predictions falls rapidly with distance in time. Quantitative technology forecasting (QTF), on the other hand, includes the study of historic data to identify one of or a combination of several recognized universal technology diffusion or substitution patterns. In the same manner that quantitative models of physical phenomena provide excellent predictions of system behavior, so do QTF models provide reliable technological performance trajectories. In practice, a quantitative technology forecast is completed to ascertain with confidence when the projected performance of a technology or system of technologies will occur. Such projections provide reliable time-referenced information when considering cost and performance trade-offs in maintaining, replacing, or migrating a technology, component, or system. This paper introduces various quantitative technology forecasting techniques and illustrates their practical application in space technology and technology systems management.
Nickel-hydrogen separator development
NASA Technical Reports Server (NTRS)
Gonzalez-Sanabria, O. D.
1986-01-01
The separator technology is a critical element in the nickel-hydrogen (Ni-H2) systems. Previous research and development work carried out at NASA Lewis Research Center has determined that separators made from zirconium oxide (ZrO2) and potassium titanate (PKT) fibers will function satisfactorily in Ni-H2 cells without exhibiting the problems associated with the asbestos separators. These separators and their characteristics were previously discussed. A program was established to transfer the separator technology into a commercial production line. A detailed plan of this program will be presented and the preliminary results will be discussed.
Smart Gun Technology project. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, D.R.
The goal of the Smart Gun Technology project is to eliminate the capability of an unauthorized user form firing a law officer`s firearm by implementing user-recognizing-and-authorizing (or {open_quotes}smart{close_quotes}) surety technologies. This project was funded by the National Institute of Justice. This report lists the findings and results of the project`s three primary objectives. First, to find and document the requirements for a smart firearm technology that law enforcement officers will value. Second, to investigate, evaluate, and prioritize technologies that meet the requirements for a law enforcement officer`s smart firearm. Third, to demonstrate and document the most promising technology`s usefulness inmore » models of a smart firearm.« less
SITE TECHNOLOGY CAPSULE: ROCHEM SEPARATION SYSTEMS, INC. - DISC TUBE MODULE TECHNOLOGY
SITE Program demonstration of the Rochem Disc Tube Module™(DTM) developed by Rochem Separations Systems, Inc. The demonstration test was conducted at the central landfill superfund site in Johnston, Rhode island in August, 1994. The DTM technology is an innovative membrane filt...
R&D Opportunities for Membranes and Separation Technologies in Building Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzler, William; Guernsey, Matt; Bargach, Youssef
This report recommends innovative membrane and separation technologies that can assist the Building Technologies Office in achieving its 2030 goal. This report identifies research and development (R&D) initiatives across several building applications where further investigations could result in impactful savings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schertz, C.; Dubbe, D.; Pratt, D.
1983-03-01
The belowground portion of the cattail plant is a desirable alcohol fuel feedstock because of its high yield and sugar and starch content. Belowground yields of 22 Mt/hectare (10 tons/acre) with a sugar and starch content of 40% have been reported. In order to utilize this resource, a device must be developed to harvest it. The main objective of the project was to produce such a device based on existing harvesting technology which would be capable of removing and separating cattail rhizomes and shoot bases from the substrate in which they are growing. The device would eventually serve as amore » vital component of a harvesting machine for the entire plant. Associated objectives of this project included the gathering of information necessary to assess required draft forces, traction requirements, and soil moisture conditions.« less
Birchley, Giles; Huxtable, Richard; Murtagh, Madeleine; Ter Meulen, Ruud; Flach, Peter; Gooberman-Hill, Rachael
2017-04-04
Smart-home technologies, comprising environmental sensors, wearables and video are attracting interest in home healthcare delivery. Development of such technology is usually justified on the basis of the technology's potential to increase the autonomy of people living with long-term conditions. Studies of the ethics of smart-homes raise concerns about privacy, consent, social isolation and equity of access. Few studies have investigated the ethical perspectives of smart-home engineers themselves. By exploring the views of engineering researchers in a large smart-home project, we sought to contribute to dialogue between ethics and the engineering community. Either face-to-face or using Skype, we conducted in-depth qualitative interviews with 20 early- and mid-career smart-home researchers from a multi-centre smart-home project, who were asked to describe their own experience and to reflect more broadly about ethical considerations that relate to smart-home design. With participants' consent, interviews were audio-recorded, transcribed and analysed using a thematic approach. Two overarching themes emerged: in 'Privacy', researchers indicated that they paid close attention to negative consequences of potential unauthorised information sharing in their current work. However, when discussing broader issues in smart-home design beyond the confines of their immediate project, researchers considered physical privacy to a lesser extent, even though physical privacy may manifest in emotive concerns about being watched or monitored. In 'Choice', researchers indicated they often saw provision of choice to end-users as a solution to ethical dilemmas. While researchers indicated that choices of end-users may need to be restricted for technological reasons, ethical standpoints that restrict choice were usually assumed and embedded in design. The tractability of informational privacy may explain the greater attention that is paid to it. However, concerns about physical privacy may reduce acceptability of smart-home technologies to future end-users. While attention to choice suggests links with privacy, this may misidentify the sources of privacy and risk unjustly burdening end-users with problems that they cannot resolve. Separating considerations of choice and privacy may result in more satisfactory treatment of both. Finally, through our engagement with researchers as participants this study demonstrates the relevance of (bio)ethics as a critical partner to smart-home engineering.
DOT National Transportation Integrated Search
2015-01-01
As mobile technology becomes widely available and affordable, transportation agencies can use this : technology to streamline operations involved within project inspection. This research, conducted in two : phases, identified opportunities for proces...
Nickel-hydrogen separator development
NASA Technical Reports Server (NTRS)
Gonzalez-Sanabria, O. D.
1986-01-01
The separator technology is a critical element in the nickel-hydrogen (Ni-H2) systems. Previous research and development work carried out at NASA Lewis Research Center has determined that separators made from zirconium oxide (ZrO2) and potassium titanate (PKT) fibers will function satisfactorily in Ni-H2 cells without exhibiting the problems associated with the asbestos separators. A program has been established to transfer the separator technology into a commercial production line. A detailed plan of this program will be presented and the preliminary results will be discussed.
NASA Astrophysics Data System (ADS)
Frankowski, G.; Hainich, R.
2009-02-01
Since the mid-eighties, a fundamental idea for achieving measuring accuracy in projected fringe technology was to consider the projected fringe pattern as an interferogram and evaluate it on the basis of advanced algorithms widely used for phase measuring in real-time interferometry. A fundamental requirement for obtaining a sufficiently high degree of measuring accuracy with this so-called "phase measuring projected fringe technology" is that the projected fringes, analogous to interference fringes, must have a cos2-shaped intensity distribution. Until the mid-nineties, this requirement for the projected fringe pattern measurement technology presented a basic handicap for its wide application in 3D metrology. This situation changed abruptly, when in the nineties Texas Instruments introduced to the market advanced digital light projection on the basis of micro mirror based projection systems, socalled DLP technology, which also facilitated the generation and projection of cos2-shaped intensity and/or fringe patterns. With this DLP technology, which from its original approach was actually oriented towards completely different applications such as multimedia projection, Texas Instruments boosted phase-measuring fringe projection in optical 3D metrology to a worldwide breakthrough both for medical as well as industrial applications. A subject matter of the lecture will be to present the fundamental principles and the resulting advantages of optical 3D metrology based on phase-measuring fringe projection using DLP technology. Further will be presented and discussed applications of the measurement technology in medical engineering and industrial metrology.
SITE program demonstration of the Rochem Disc Tube™ Module (DTM) developed by Rochem Separation systems Inc. The demonstration test was conducted at the central landfill Superfund site in Johnston, Rhode Island in August 1994. The DTM technology is an innovative membrane filtra...
Plans moving to tap Rocky Mountain and Eastern US coal for innovative projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-02-18
Energy Transition Corp. is conducting a study for W.R. Grace and Co. to determine the feasibility of using coal-derived methanol and liquefied carbon dioxide to transport coal in a proposed $500 million coal slurry pipeline from northwestern Colorado to an as-yet unchosen destination. If, as expected, the study shows that the three products can be separated upon delivery, and if suitable synthetic fuels legislation is passed, Grace would decide whether to proceed with the project, which would use technology developed by Koppers Co., Inc., to produce 5000 tons/day of fuel-grade methanol. Permitting and construction would probably take at least fivemore » years. With funding by the US Department of Energy for the initial stages, the Ashland Synthetic Fuels Inc./Airco Energy Co., Inc., Breckenridge Project will plan an H-Coal process plant that will convert 18,000 tons/day of coal to about 50,000 bbl/day of liquid hydrocarbons. The site will be Addison in Breckenridge County, Ky., and the project will probably use high-sulfur Illinois basin coal. The design and construction of the $1.5 billion commercial plant would require about 6.5 yr.« less
Project HealthDesign: enhancing action through information.
Brennan, Patricia Flatley; Casper, Gail; Downs, Stephen; Aulahk, Veenu
2009-01-01
Project HealthDesign is a country-wide initiative in the United States designed to stimulate innovation in personal health records (PHRs). Nine grantee teams engaged in an 18-month long design and prototyping process. Two teams addressed the needs of children and adolescents; three created novel approaches to help adults prevent or manage metabolic syndrome; three groups employed interface innovations to assist patients with chronic care management and one team devised a novel calendaring system to assist patients undergoing complex medical/surgical treatments to integrate care processes into their daily lives. These projects not only included development and testing of novel personal health records applications, but also served as the starting point to specify and implement a common technical core platform. The project advanced PHR development in two key ways: intensive user-centered design and a development architecture that separates applications of PHRs from the infrastructure that supports them. The initiative also allowed systematic investigation of significant ethical, legal and social issues, including how privacy considerations are changed when information technology innovations are used in the home and the rebalancing of the authority structure of health care decision making when patient-centered approaches guide the design of PHRs.
Ares Project Technology Assessment: Approach and Tools
NASA Technical Reports Server (NTRS)
Hueter, Uwe; Tyson, Richard
2010-01-01
Technology assessments provide a status of the development maturity of specific technologies. Along with benefit analysis, the risks the project assumes can be quantified. Normally due to budget constraints, the competing technologies are prioritized and decisions are made which ones to fund. A detailed technology development plan is produced for the selected technologies to provide a roadmap to reach the desired maturity by the project s critical design review. Technology assessments can be conducted for both technology only tasks or for product development programs. This paper is primarily biased toward the product development programs. The paper discusses the Ares Project s approach to technology assessment. System benefit analysis, risk assessment, technology prioritization, and technology readiness assessment are addressed. A description of the technology readiness level tool being used is provided.
ERIC Educational Resources Information Center
Wang, Heng
2017-01-01
Construction project productivity typically lags other industries and it has been the focus of numerous studies in order to improve the project performance. This research investigated the application of Radio Frequency Identification (RFID) technology on construction projects' supply chain and determined that RFID technology can improve the…
Separation of organic ion exchange resins from sludge -- engineering study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, J.B.
1998-08-25
This engineering study evaluates the use of physical separation technologies to separate organic ion exchange resin from KE Basin sludge prior to nitric acid dissolution. This separation is necessitate to prevent nitration of the organics in the acid dissolver. The technologies under consideration are: screening, sedimentation, elutriation. The recommended approach is to first screen the Sludge and resin 300 microns then subject the 300 microns plus material to elutriation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, Terrence D.
2017-04-01
This report specifies the electronic file format that was agreed upon to be used as the file format for normalized radiological data produced by the software tool developed under this TI project. The NA-84 Technology Integration (TI) Program project (SNL17-CM-635, Normalizing Radiological Data for Analysis and Integration into Models) investigators held a teleconference on December 7, 2017 to discuss the tasks to be completed under the TI program project. During this teleconference, the TI project investigators determined that the comma-separated values (CSV) file format is the most suitable file format for the normalized radiological data that will be outputted frommore » the normalizing tool developed under this TI project. The CSV file format was selected because it provides the requisite flexibility to manage different types of radiological data (i.e., activity concentration, exposure rate, dose rate) from other sources [e.g., Radiological Assessment and Monitoring System (RAMS), Aerial Measuring System (AMS), Monitoring and Sampling). The CSV file format also is suitable for the file format of the normalized radiological data because this normalized data can then be ingested by other software [e.g., RAMS, Visual Sampling Plan (VSP)] used by the NA-84’s Consequence Management Program.« less
Flight evaluation of an advanced technology light twin-engine airplane (ATLIT)
NASA Technical Reports Server (NTRS)
Holmes, B. J.
1977-01-01
Project organization and execution, airplane description and performance predictions, and the results of the flight evaluation of an advanced technology light twin engine airplane (ATLIT) are presented. The ATLIT is a Piper PA-34-200 Seneca I modified by the installation of new wings incorporating the GA(W)-1 (Whitcomb) airfoil, reduced wing area, roll control spoilers, and full span Fowler flaps. The conclusions for the ATLIT evaluation are based on complete stall and roll flight test results and partial performance test results. The Stalling and rolling characteristics met design expectations. Climb performance was penalized by extensive flow separation in the region of the wing body juncture. Cruise performance was found to be penalized by a large value of zero lift drag. Calculations showed that, with proper attention to construction details, the improvements in span efficiency and zero lift drag would permit the realization of the predicted increases in cruising and maximum rate of climb performance.
GPU Based Software Correlators - Perspectives for VLBI2010
NASA Technical Reports Server (NTRS)
Hobiger, Thomas; Kimura, Moritaka; Takefuji, Kazuhiro; Oyama, Tomoaki; Koyama, Yasuhiro; Kondo, Tetsuro; Gotoh, Tadahiro; Amagai, Jun
2010-01-01
Caused by historical separation and driven by the requirements of the PC gaming industry, Graphics Processing Units (GPUs) have evolved to massive parallel processing systems which entered the area of non-graphic related applications. Although a single processing core on the GPU is much slower and provides less functionality than its counterpart on the CPU, the huge number of these small processing entities outperforms the classical processors when the application can be parallelized. Thus, in recent years various radio astronomical projects have started to make use of this technology either to realize the correlator on this platform or to establish the post-processing pipeline with GPUs. Therefore, the feasibility of GPUs as a choice for a VLBI correlator is being investigated, including pros and cons of this technology. Additionally, a GPU based software correlator will be reviewed with respect to energy consumption/GFlop/sec and cost/GFlop/sec.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fred D. Brent; Lalit Shah; Earl Berry
The overall objective of this project is the three phase development of an Early Entrance Coproduction Plant (EECP) which uses petroleum coke to produce at least one product from at least two of the following three categories: (1) electric power (or heat), (2) fuels, and (3) chemicals using ChevronTexaco's proprietary gasification technology. The objective of Phase I is to determine the feasibility and define the concept for the EECP located at a specific site; develop a Research, Development, and Testing (RD&T) Plan to mitigate technical risks and barriers; and prepare a Preliminary Project Financing Plan. The objective of Phase IImore » is to implement the work as outlined in the Phase I RD&T Plan to enhance the development and commercial acceptance of coproduction technology. The objective of Phase III is to develop an engineering design package and a financing and testing plan for an EECP located at a specific site. The project's intended result is to provide the necessary technical, economic, and environmental information needed by industry to move the EECP forward to detailed design, construction, and operation. The partners in this project are Texaco Energy Systems LLC or TES (a subsidiary of ChevronTexaco), General Electric (GE), Praxair, and Kellogg Brown & Root (KBR) in addition to the U.S. Department of Energy (DOE). TES is providing gasification technology and Fischer-Tropsch (F-T) technology developed by Rentech, GE is providing combustion turbine technology, Praxair is providing air separation technology, and KBR is providing engineering. Each of the EECP subsystems was assessed for technical risks and barriers. A plan was developed to mitigate the identified risks (Phase II RD&T Plan, October 2000). The potential technical and economic risks to the EECP from Task 2.5 can be mitigated by demonstrating that the end-use products derived from the upgrading of the F-T synthesis total liquid product can meet or exceed current specifications for the manufacture of ethylene and propylene chemicals from F-T naphtha, for the generation of hydrogen from F-T naphtha to power fuel cells, for direct blending of F-T diesels into transportation fuels, for the conversion of F-T heavy product wax to transportation fuels, and the conversion of F-T Heavy product wax to a valuable high melting point food-grade specialty wax product. Product evaluations conducted under Task 2.5 of Phase II successfully mitigated the above technical and economic risks to the EECP with the development of product yields and product qualities for the production of chemicals, transportation fuels, and specialty food-grade waxes from the F-T synthesis products.« less
Thermographic Data Analyses for Karst Watersheds
NASA Technical Reports Server (NTRS)
Campbell, C. Warren; McCaleb, Rebecca C. (Technical Monitor)
2001-01-01
Aerial thermography is an emerging technology unsurpassed for locating groundwater discharges. Thermography can be used to locate submerged discharges that are extremely difficult to find by other means. In two large projects, thermography was used to identify almost every significant spring at sites underlain by karst aquifers. This technology effectively converts Brown's Type 5 topology to types 1 or 2 (all discharges known), which has a significant impact on dye tracing. At a north Alabama site, springs located by thermography quadrupled the known groundwater discharge in and around the site. For submerged discharges, thermographic temperatures can be measured down the center of the groundwater plume that rises to the surface in the winter. Using the Cornell Mixing (CORMIX) model, flow rate for one submerged spring was estimated. Once identified, estimates of spring recharge area were desired. The size of the area of recharge was estimated by hydrograph separation of flow data from nearby, unregulated surface streams. Monthly recharge estimates were also made and used to show that in north Alabama the mean annual recharge/discharge occurs during May and December. Spring flow measurements for the same county of north Alabama were averaged to obtain mean flows. Then measurements for May only, were averaged. The two averages usually agreed to within 20 percent. This provides evidence that hydrograph separation determinations of recharge are valid.
NASA Astrophysics Data System (ADS)
Chrétien, L.-P.; Théau, J.; Ménard, P.
2015-08-01
Wildlife aerial surveys require time and significant resources. Multispecies detection could reduce costs to a single census for species that coexist spatially. Traditional methods are demanding for observers in terms of concentration and are not adapted to multispecies censuses. The processing of multispectral aerial imagery acquired from an unmanned aerial vehicle (UAV) represents a potential solution for multispecies detection. The method used in this study is based on a multicriteria object-based image analysis applied on visible and thermal infrared imagery acquired from a UAV. This project aimed to detect American bison, fallow deer, gray wolves, and elks located in separate enclosures with a known number of individuals. Results showed that all bison and elks were detected without errors, while for deer and wolves, 0-2 individuals per flight line were mistaken with ground elements or undetected. This approach also detected simultaneously and separately the four targeted species even in the presence of other untargeted ones. These results confirm the potential of multispectral imagery acquired from UAV for wildlife census. Its operational application remains limited to small areas related to the current regulations and available technology. Standardization of the workflow will help to reduce time and expertise requirements for such technology.
Detection of the ideal resource for multiqubit teleportation
NASA Astrophysics Data System (ADS)
Zhao, Ming-Jing; Chen, Bin; Fei, Shao-Ming
2015-07-01
We give a sufficient condition for detecting the entanglement resource for perfect multiqubit teleportation. The criterion involves only local measurements on some complementary observables and can be experimentally implemented. It is also a necessary condition for full separability of multiqubit states. Moreover, by proving the optimality of teleportation witnesses, we solve the open problem in Phys. Rev. A 86, 032315 (2012). Project supported by the National Natural Science Foundation of China (Grant Nos. 11401032, 11275131, and 61473325), the Foundation of Beijing Information Science and Technology University, China (Grant No. 1425032), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China.
Fundamentals and techniques of nonimaging optics for solar energy concentration
NASA Astrophysics Data System (ADS)
Winston, R.; Gallagher, J. J.
1980-05-01
The properties of a variety of new and previously known nonimaging optical configurations were investigated. A thermodynamic model which explains quantitatively the enhancement of effective absorptance of gray body receivers through cavity effects was developed. The classic method of Liu and Jordan, which allows one to predict the diffuse sunlight levels through correlation with the total and direct fraction was revised and updated and applied to predict the performance of nonimaging solar collectors. The conceptual design for an optimized solar collector which integrates the techniques of nonimaging concentration with evacuated tube collector technology was carried out and is presently the basis for a separately funded hardware development project.
Usage of the Jess Engine, Rules and Ontology to Query a Relational Database
NASA Astrophysics Data System (ADS)
Bak, Jaroslaw; Jedrzejek, Czeslaw; Falkowski, Maciej
We present a prototypical implementation of a library tool, the Semantic Data Library (SDL), which integrates the Jess (Java Expert System Shell) engine, rules and ontology to query a relational database. The tool extends functionalities of previous OWL2Jess with SWRL implementations and takes full advantage of the Jess engine, by separating forward and backward reasoning. The optimization of integration of all these technologies is an advancement over previous tools. We discuss the complexity of the query algorithm. As a demonstration of capability of the SDL library, we execute queries using crime ontology which is being developed in the Polish PPBW project.
The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fix, N. J.
Pacific Northwest National Laboratory researchers are working on the Columbia River Protection Supplemental Technologies Project. This project is a U. S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies, and technologies for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Technologies Project staff.
REMEDIATION TECHNOLOGY EVALUATION AT THE GILT EDGE MINE, SOUTH DAKOTA
This document reports the findings of the Mine Waste Technology Program's Activity III, Project 29,The Remediation Technology Evaluation Project at the Gilt Edge Mine, S.D. This project consisted of evaluating three emerging acidic waste rock stabilization technologies and compar...
Comparing Efficiency Projections (released in AEO2010)
2010-01-01
Realized improvements in energy efficiency generally rely on a combination of technology and economics. The figure below illustrates the role of technology assumptions in the Annual Energy Outlook 2010 projections for energy efficiency in the residential and commercial buildings sector. Projected energy consumption in the Reference case is compared with projections in the Best Available Technology, High Technology, and 2009 Technology cases and an estimate based on an assumption of no change in efficiency for building shells and equipment.
Zhou, Zhengdong; Guan, Shaolin; Xin, Runchao; Li, Jianbo
2018-06-01
Contrast-enhanced subtracted breast computer tomography (CESBCT) images acquired using energy-resolved photon counting detector can be helpful to enhance the visibility of breast tumors. In such technology, one challenge is the limited number of photons in each energy bin, thereby possibly leading to high noise in separate images from each energy bin, the projection-based weighted image, and the subtracted image. In conventional low-dose CT imaging, iterative image reconstruction provides a superior signal-to-noise compared with the filtered back projection (FBP) algorithm. In this paper, maximum a posteriori expectation maximization (MAP-EM) based on projection-based weighting imaging for reconstruction of CESBCT images acquired using an energy-resolving photon counting detector is proposed, and its performance was investigated in terms of contrast-to-noise ratio (CNR). The simulation study shows that MAP-EM based on projection-based weighting imaging can improve the CNR in CESBCT images by 117.7%-121.2% compared with FBP based on projection-based weighting imaging method. When compared with the energy-integrating imaging that uses the MAP-EM algorithm, projection-based weighting imaging that uses the MAP-EM algorithm can improve the CNR of CESBCT images by 10.5%-13.3%. In conclusion, MAP-EM based on projection-based weighting imaging shows significant improvement the CNR of the CESBCT image compared with FBP based on projection-based weighting imaging, and MAP-EM based on projection-based weighting imaging outperforms MAP-EM based on energy-integrating imaging for CESBCT imaging.
ERIC Educational Resources Information Center
Fischer, Mark A.
2014-01-01
One of the most important issues for organizations and information technology (IT) professionals is measuring the success or failure of information technology projects. How we understand the value and usefulness of IT projects is critical to how information technology executives evaluate and decide on technology investments. In a 2009 CHAOS…
Composite Technology for Exploration
NASA Technical Reports Server (NTRS)
Fikes, John
2017-01-01
The CTE (Composite Technology for Exploration) Project will develop and demonstrate critical composites technologies with a focus on joints that utilize NASA expertise and capabilities. The project will advance composite technologies providing lightweight structures to support future NASA exploration missions. The CTE project will demonstrate weight-saving, performance-enhancing bonded joint technology for Space Launch System (SLS)-scale composite hardware.
1987-06-15
001 GENERAL DYNAMICS 00 FORT WORTH DIVISION INDUSTRIAL TECHNOLOGY MODERNIZATION PROGRAM Phase 2 Final Project Repc t JUNG 0 ?7 PROJECT 28 AUTOMATION...DYNAMICS FORT WORTH DIVISION INDUSTRIAL TECHNOLOGY MODERNIZATION PROGRAM Phase 2 Final Project Report PROJECT 28 AUTOMATION OF RECEIVING, RECEIVING...13 6 PROJECT ASSUMPTIONS 20 7 PRELIMINARY/FINAL DESIGN AND FINDINGS 21 8 SYSTEM/EQUIPMENT/MACHINING SPECIFICATIONS 37 9 VENDOR/ INDUSTRY ANALYSIS
Separations in the STATS report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choppin, G.R.
1996-12-31
The Separations Technology and Transmutation Systems (STATS) Committee formed a Subcommittee on Separations. This subcommittee was charged with evaluating the separations proposed for the several reactor and accelerator transmutation systems. It was also asked to review the processing options for the safe management of high-level waste generated by the defense programs, in particular, the special problems involved in dealing with the waste at the U.S. Department of Energy (DOE) facility in Hanford, Washington. Based on the evaluations from the Subcommittee on Separations, the STATS Committee concluded that for the reactor transmutation programs, aqueous separations involving a combination of PUREX andmore » TRUEX solvent extraction processes could be used. However, additional research and development (R&D) would be required before full plant-scale use of the TRUEX technology could be employed. Alternate separations technology for the reactor transmutation program involves pyroprocessing. This process would require a significant amount of R&D before its full-scale application can be evaluated.« less
Binary electrokinetic separation of target DNA from background DNA primers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Conrad D.; Derzon, Mark Steven
2005-10-01
This report contains the summary of LDRD project 91312, titled ''Binary Electrokinetic Separation of Target DNA from Background DNA Primers''. This work is the first product of a collaboration with Columbia University and the Northeast BioDefense Center of Excellence. In conjunction with Ian Lipkin's lab, we are developing a technique to reduce false positive events, due to the detection of unhybridized reporter molecules, in a sensitive and multiplexed detection scheme for nucleic acids developed by the Lipkin lab. This is the most significant problem in the operation of their capability. As they are developing the tools for rapidly detecting themore » entire panel of hemorrhagic fevers this technology will immediately serve an important national need. The goal of this work was to attempt to separate nucleic acid from a preprocessed sample. We demonstrated the preconcentration of kilobase-pair length double-stranded DNA targets, and observed little preconcentration of 60 base-pair length single-stranded DNA probes. These objectives were accomplished in microdevice formats that are compatible with larger detection systems for sample pre-processing. Combined with Columbia's expertise, this technology would enable a unique, fast, and potentially compact method for detecting/identifying genetically-modified organisms and multiplexed rapid nucleic acid identification. Another competing approach is the DARPA funded IRIS Pharmaceutical TIGER platform which requires many hours for operation, and an 800k$ piece of equipment that fills a room. The Columbia/SNL system could provide a result in 30 minutes, at the cost of a few thousand dollars for the platform, and would be the size of a shoebox or smaller.« less
2007-07-09
Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, an Ares I x-test involves the upper stage separating from the first stage. This particular test was conducted at the NASA Langley Research Center in July 2007. (Highest resolution available)
Review of defense display research programs
NASA Astrophysics Data System (ADS)
Tulis, Robert W.; Hopper, Darrel G.; Morton, David C.; Shashidhar, Ranganathan
2001-09-01
Display research has comprised a substantial portion of the defense investment in new technology for national security for the past 13 years. These investments have been made by the separate service departments and, especially, via several Defense Research Projects Agency (DARPA) programs, known collectively as the High Definition Systems (HDS) Program (which ended in 2001) and via the Office of the Secretary of Defense (OSD) Defense Production Act (DPA) Title III Program (efforts ended in 2000). Using input from the Army, Navy, and Air Force to focus research and identify insertion opportunities, DARPA and the Title III Program Office have made investments to develop the national technology base and manufacturing infrastructure necessary to meet the twin challenge of providing affordable displays in current systems and enabling the DoD strategy of winning future conflicts by getting more information to all participants during the battle. These completed DARPA and DPA research and infrastructure programs are reviewed. Service investments have been and are being made to transition display technology; examples are described. Display science and technology (S&T) visions are documented for each service to assist the identification of areas meriting consideration for future defense research.
The ADvanced SEParation (ADSEP)
NASA Technical Reports Server (NTRS)
1998-01-01
The ADvanced SEParation (ADSEP) commercial payload is making use of major advances in separation technology: The Phase Partitioning Experiment (PPE); the Micorencapsulation experiment; and the Hemoglobin Separation Experiment (HSE). Using ADSEP, commercial researchers will attempt to determine the partition coefficients for model particles in a two-phase system. With this information, researchers can develop a higher resolution, more effective cell isolation procedure that can be used for many different types of research and for improved health care. The advanced separation technology is already being made available for use in ground-based laboratories.
Verification testing of the BaySaver Separation System, Model 10K was conducted on a 10 acre drainage basin near downtown Griffin, Georgia. The system consists of two water tight pre-cast concrete manholes and a high-density polyethylene BaySaver Separator Unit. The BaySaver Mod...
Space Technology for Rural Education; Brazil Experiment. Project SACI.
ERIC Educational Resources Information Center
Cusack, Mary Ann
An eight-year project--Project SACI--begun in 1969 is introducing technology into Brazil's educational system. It is based upon the hypotheses that technology can deliver education to more students, increase achievement, and provide cost-effective teacher education. To rest these hypotheses, Project SACI aims to bring satellite transmission of…
Projection moire for remote contour analysis
NASA Technical Reports Server (NTRS)
Doty, J. L.
1983-01-01
Remote projection and viewing of moire contours are examined analytically for a system employing separate projection and viewing optics, with specific attention paid to the practical limitations imposed by the optical systems. It is found that planar contours are possible only when the optics are telecentric (exit pupil at infinity) but that the requirement for spatial separability of the contour fringes from extraneous fringes is independent of the specific optics and is a function only of the angle separating the two optic axes. In the nontelecentric case, the contour separation near the object is unchanged from that of the telecentric case, although the contours are distorted into low-eccentricity (near-circular) ellipses. Furthermore, the minimum contour spacing is directly related to the depth of focus through the resolution of the optics.
Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Raul Subia
GE Global Research is developing an innovative energy technology for coal gasification with high efficiency and near-zero pollution. This Unmixed Fuel Processor (UFP) technology simultaneously converts coal, steam and air into three separate streams of hydrogen-rich gas, sequestration-ready CO{sub 2}, and high-temperature, high-pressure vitiated air to produce electricity in gas turbines. This is the draft final report for the first stage of the DOE-funded Vision 21 program. The UFP technology development program encompassed lab-, bench- and pilot-scale studies to demonstrate the UFP concept. Modeling and economic assessments were also key parts of this program. The chemical and mechanical feasibility weremore » established via lab and bench-scale testing, and a pilot plant was designed, constructed and operated, demonstrating the major UFP features. Experimental and preliminary modeling results showed that 80% H{sub 2} purity could be achieved, and that a UFP-based energy plant is projected to meet DOE efficiency targets. Future work will include additional pilot plant testing to optimize performance and reduce environmental, operability and combined cycle integration risks. Results obtained to date have confirmed that this technology has the potential to economically meet future efficiency and environmental performance goals.« less
NASA Astrophysics Data System (ADS)
Szopa, Cyril; Coscia, David; Buch, Arnaud; Pineau, Jean-Pierre; Coll, Patrice
2016-04-01
Gas chromatography is used since the Mars Viking missions in the 70's to characterize the nature and amount of volatile chemical compounds present in planetary atmospheres, soils or rocks. This technique allows to separate the gaseous compound injected in the instrument for their subsequent detection either by a physical sensor, or a spectrometer giving information about the structure of the volatile. This pre-separation is precious to proceed to the identification of individual species present in a complex mixture. Moreover, it is a unique method to separate and quantify enantiomers of organic molecules which is a key information in astrobiology to assess the potential for such molecules to be related to a biotic or a pre-biotic process. Finally, the potential of this technique is proven by its current use in the Curiosity rover at the Mars surface, as it allowed to demonstrate the presence of organic material endogenous to Mars for the first time ever [1]. But despite its efficiency, this instrumentation is based on laboratory technologies and requires for resources which are limited (e.g. carrier gas), making it a resources consuming instrumentation. That prevents it to be considered for small and light scientific payloads. This is one among reasons why our team initiated a research and technology action with the aim to miniaturize this type of instrumentation. This work relies on the use of micro-electro mechanical systems and their integration into a complete chromatographic system with the aim to gain one order of magnitude in term of resources required to make it work. In this communication we will present the different components that were developed for this project and their tested performances which show the potential for this system to be used in future in situ exploration space probes. References [1] Freissinet et al., JGR planets 120, 495-514, (2015).
The key to success: Gelled-electrolyte and optimized separators for stationary lead-acid batteries
NASA Astrophysics Data System (ADS)
Toniazzo, Valérie
The lead acid technology is nowadays considered one of the best suited for stationary applications. Both gel and AGM batteries are complementary technologies and can provide reliability and efficiency due to the constant optimization of the battery design and components. However, gelled-electrolyte batteries remain the preferred technology due to a better manufacturing background and show better performance mainly at low and moderate discharge rates. Especially, using the gel technology allows to get rid of the numerous problems encountered in most AGM batteries: drainage, stratification, short circuits due to dendrites, and mostly premature capacity loss due to the release of internal cell compression. These limitations are the result of the evident lack of an optimal separation system. In gel batteries, on the contrary, highly efficient polymeric separators are nowadays available. Especially, microporous separators based on PVC and silica have shown the best efficiency for nearly 30 years all over the world, and especially in Europe, where the gel technology was born. The improved performance of these separators is explained by the unique extrusion process, which leads to excellent wettability, and optimized physical properties. Because they are the key for the battery success, continuous research and development on separators have led to improved properties, which render the separator even better adapted to the more recent gel technology: the pore size distribution has been optimized to allow good oxygen transfer while avoiding dendrite growth, the pore volume has been increased, the electrical resistance and acid displacement reduced to such an extent that the electrical output of batteries has been raised both in terms of higher capacity and longer cycle life.
Research on the application of BIM technology in the whole life cycle of construction projects
NASA Astrophysics Data System (ADS)
Chang-liu, CHEN; Wei-wei, KOU; Shuai-hua, YE
2018-05-01
BIM technology can realize information sharing, and good BIM application will reduce the whole life cycle cost of construction projects. The popularization of BIM technology challenges the application of BIM technology at all stages of the whole life cycle of the construction project. It will give full play to the value of BIM, if developing a reasonable BIM project execution plan, defining BIM requirements, specifying Level of Development, determining the BIM quality control plan and clearing BIM application content of each stage, and will provide a unified method for project stakeholders, realize the whole life cycle of construction projects, and achieve the desired information sharing in construction project.
Publications of LASL research, 1974
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, A.K.
1975-05-01
This bibliography includes Los Alamos Scientific Laboratory reports, papers released as non-Los Alamos reports, journal articles, books, chapters of books, conference papers (whether published separately or as part of conference proceedings issued as books or reports), papers published in congressional hearings, theses, and U. S. patents. Publications by LASL authors which are not records of Laboratory-sponsored work are included when the Library becomes aware of them. The entries are arranged in sections by broad subject categories; within each section they are alphabetical by title. The following subject categories are included: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equationmore » of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma studies; earth science and engineering; energy (non-nuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronic and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). Author, numerical and KWIC indexes are included. (RWR)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
TEDESCHI AR; CORBETT JE; WILSON RA
2012-01-26
Simulant testing of a full-scale thin-film evaporator system was conducted in 2011 for technology development at the Hanford tank farms. Test results met objectives of water removal rate, effluent quality, and operational evaluation. Dilute tank waste simulant, representing a typical double-shell tank supernatant liquid layer, was concentrated from a 1.1 specific gravity to approximately 1.5 using a 4.6 m{sup 2} (50 ft{sup 2}) heated transfer area Rototherm{reg_sign} evaporator from Artisan Industries. The condensed evaporator vapor stream was collected and sampled validating efficient separation of the water. An overall decontamination factor of 1.2E+06 was achieved demonstrating excellent retention of key radioactivemore » species within the concentrated liquid stream. The evaporator system was supported by a modular steam supply, chiller, and control computer systems which would be typically implemented at the tank farms. Operation of these support systems demonstrated successful integration while identifying areas for efficiency improvement. Overall testing effort increased the maturation of this technology to support final deployment design and continued project implementation.« less
Technology transfer for adaptation
NASA Astrophysics Data System (ADS)
Biagini, Bonizella; Kuhl, Laura; Gallagher, Kelly Sims; Ortiz, Claudia
2014-09-01
Technology alone will not be able to solve adaptation challenges, but it is likely to play an important role. As a result of the role of technology in adaptation and the importance of international collaboration for climate change, technology transfer for adaptation is a critical but understudied issue. Through an analysis of Global Environment Facility-managed adaptation projects, we find there is significantly more technology transfer occurring in adaptation projects than might be expected given the pessimistic rhetoric surrounding technology transfer for adaptation. Most projects focused on demonstration and early deployment/niche formation for existing technologies rather than earlier stages of innovation, which is understandable considering the pilot nature of the projects. Key challenges for the transfer process, including technology selection and appropriateness under climate change, markets and access to technology, and diffusion strategies are discussed in more detail.
Yang, Fang; Liao, Xiangzhi; Tian, Yuan; Li, Guiying
2017-04-01
Exosomes, nanovesicles secreted by most types of cells, exist in virtually all bodily fluids. Their rich nucleic acid and protein content make them potentially valuable biomarkers for noninvasive molecular diagnostics. They also show promise, after further development, to serve as a drug delivery system. Unfortunately, existing exosome separation technologies, such as ultracentrifugation and methods incorporating magnetic beads, are time-consuming, laborious and separate only exosomes of low purity. Thus, a more effective separation method is highly desirable. Microfluidic platforms are ideal tools for exosome separation, since they enable fast, cost-efficient, portable and precise processing of nanoparticles and small volumes of liquid samples. Recently, several microfluidic-based exosome separation technologies have been studied. In this article, the advantages of the most recent technologies, as well as their limitations, challenges and potential uses in novel microfluidic exosome separation and collection applications is reviewed. This review outlines the uses of new powerful microfluidic exosome detection tools for biologists and clinicians, as well as exosome separation tools for microfluidic engineers. Current challenges of exosome separation methodologies are also described, in order to highlight areas for future research and development. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
John, B A
2013-05-08
Students entering Higher Education are increasingly information and communications technology literate. Many students (graduates and undergraduates) arrive as "digital residents", who are adept with social media and technologically fluent. The informal use of social media for learning is becoming increasingly evident, along with the potentially detrimental effects of a poor digital profile on employment prospects. This paper describes the creation of Kinship (King's Social Harmonisation Project), a university hosted, members only social network, which is currently being piloted in the Medical School at King's College London. Along with a number of other teaching and learning resources, it is intended to use Kinship to establish an informal code of conduct by modelling and moderating appropriate professional online behaviour. Kinship was developed using an open source Elgg platform, thanks to funding of £20,000 from the College Teaching Fund under the mentorship of Brighton University (1). This educational research project, led by Medicine, was proposed to select, customise and evaluate a social networking platform in order to provide functionality that would enhance new and existing e-learning resources, support group interaction, participation and sharing and meet the diverse needs of three academic schools: Medicine, the Dental Institute and two separate Departments, the Modern Languages Centre and the Department of English from Arts & Humanities, as a pilot for wider College deployment. Student involvement is central to the project, from conducting the evaluation to moulding and customising the functionality and look of Kinship, in order to ensure that the site is authentic and evolves in response to their wishes and requirements. Formal evaluation of Kinship commences summer 2012.
Fasani, Rick A; Livi, Carolina B; Choudhury, Dipanwita R; Kleensang, Andre; Bouhifd, Mounir; Pendse, Salil N; McMullen, Patrick D; Andersen, Melvin E; Hartung, Thomas; Rosenberg, Michael
2015-01-01
The Human Toxome Project is part of a long-term vision to modernize toxicity testing for the 21st century. In the initial phase of the project, a consortium of six academic, commercial, and government organizations has partnered to map pathways of toxicity, using endocrine disruption as a model hazard. Experimental data is generated at multiple sites, and analyzed using a range of computational tools. While effectively gathering, managing, and analyzing the data for high-content experiments is a challenge in its own right, doing so for a growing number of -omics technologies, with larger data sets, across multiple institutions complicates the process. Interestingly, one of the most difficult, ongoing challenges has been the computational collaboration between the geographically separate institutions. Existing solutions cannot handle the growing heterogeneous data, provide a computational environment for consistent analysis, accommodate different workflows, and adapt to the constantly evolving methods and goals of a research project. To meet the needs of the project, we have created and managed The Human Toxome Collaboratorium, a shared computational environment hosted on third-party cloud services. The Collaboratorium provides a familiar virtual desktop, with a mix of commercial, open-source, and custom-built applications. It shares some of the challenges of traditional information technology, but with unique and unexpected constraints that emerge from the cloud. Here we describe the problems we faced, the current architecture of the solution, an example of its use, the major lessons we learned, and the future potential of the concept. In particular, the Collaboratorium represents a novel distribution method that could increase the reproducibility and reusability of results from similar large, multi-omic studies.
Software Engineering Research/Developer Collaborations in 2004 (C104)
NASA Technical Reports Server (NTRS)
Pressburger, Tom; Markosian, Lawrance
2005-01-01
In 2004, six collaborations between software engineering technology providers and NASA software development personnel deployed a total of five software engineering technologies (for references, see Section 7.2) on the NASA projects. The main purposes were to benefit the projects, infuse the technologies if beneficial into NASA, and give feedback to the technology providers to improve the technologies. Each collaboration project produced a final report (for references, see Section 7.1). Section 2 of this report summarizes each project, drawing from the final reports and communications with the software developers and technology providers. Section 3 indicates paths to further infusion of the technologies into NASA practice. Section 4 summarizes some technology transfer lessons learned. Section 6 lists the acronyms used in this report.
NASA Astrophysics Data System (ADS)
Sahli, Hichem; Bruschini, Claudio; Van Kempen, Luc; Schleijpen, Ric; den Breejen, Eric
2008-04-01
The EC DELVE Support Action project has analyzed the bottlenecks in the transfer of Humanitarian Demining (HD) technology from technology development to the use in the field, and drawn some lessons learned, basing itself on the assessment of the European Humanitarian Demining Research and Technology Development (RTD) situation from early 1990 until 2006. The situation at the European level was analyzed with emphasis on activities sponsored by the European Commission (EC). This was also done for four European countries and Japan, with emphasis on national activities. The developments in HD during the last 10 years underline the fact that in a number of cases demining related developments have been terminated or at least put on hold. The study also showed that the funding provided by the EC under the Framework Program for RTD has led directly to the creation of an extensive portfolio of Humanitarian Demining technology development projects. The latter provided a range of research and supporting measures addressing the critical issues identified as a result of the regulatory policies developed in the field of Humanitarian Demining over the last ten years. However, the range of instruments available to the EC to finance the necessary research and development were limited, to pre-competitive research. The EC had no tools or programs to directly fund actual product development. As a first consequence, the EC funding program for development of technology for Humanitarian Demining unfortunately proved to be largely unsuitable for the small-scale development needed in a field where there is only a very limited market. As a second consequence, most of the research has been demonstrator-oriented. Moreover, the timeframe for RTD in Humanitarian Demining has not been sufficiently synchronized with the timeframe of the EC policies and regulations. The separation of the Mine Action and RTD funding streams in the EC did also negatively affect the take-up of new technologies. As a conclusion, creating coherence between: (1) the EC policy based on political decisions, (2) RTD, testing and industrialization of equipment, and (3) timely deployment, requires a new way of coordinated thinking: "end-to-end planning" has to be supported by a well organized and coordinated organizational structure involving different DGs and even extending beyond the EU. This was not the case for Mine Action, but appears today to be the case for Environmental Risk Management.
Lavrik, N V; Taylor, L T; Sepaniak, M J
2011-05-23
Pressure driven liquid chromatography (LC) is a powerful and versatile separation technique particularly suitable for differentiating species present in extremely small quantities. This paper briefly reviews main historical trends and focuses on more recently developed technological approaches in miniaturization and on-chip integration of LC columns. The review emphasizes enabling technologies as well as main technological challenges specific to pressure driven separations and highlights emerging concepts that could ultimately overcome fundamental limitations of conventional LC columns. Copyright © 2011 Elsevier B.V. All rights reserved.
Acquisition of a High Performance Computer Cluster for Materials Research and Education
2015-04-17
separation in all-organic and hybrid organic- inorganic solar cells. The outcome of the project 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13...diffusion and interfacial charge separation in all-organic and hybrid organic- inorganic solar cells. The outcome of the project is the development...simulations to predict charge carrier mobilities, exciton diffusion and interfacial charge separation in all- organic and hybrid organic- inorganic solar
Technology Infusion Strategy: Beginning with a Pilot Project is the Key.
ERIC Educational Resources Information Center
Ball, John
1996-01-01
Presents an effective way to start a technological revolution in schools by beginning with a single exciting project that incorporates new technologies and then letting interest in the project prompt others to action. (JRH)
Users speak out on technology deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Mark; Prochaska, Marty; Cromer, Paul
2001-02-25
This report summarizes user feedback data collected during a recent Accelerated Site Technology Deployment (ASTD) project: the Fluor Fernald ASTD Technology Deployment Project from May, 1999 through September, 2000. The main goal of the ASTD project was to use the ''Fernald approach'' to expedite the deployment of new or innovative technologies with superior safety, cost, and/or productivity benefits to Department of Energy (DOE) facilities. The Fernald approach targets technology end-users and their managers and directly involves them with hands-on demonstrations of new or innovative technologies during technology transfer sessions. The two technologies deployed through this project were the Personal Icemore » Cooling System (PICS) and the oxy-gasoline torch. Participants of technology transfer sessions were requested to complete feedback surveys. Surveys evaluated the effectiveness of the Fernald approach to technology deployment and assessed the responsiveness of employees to new technologies. This report presents the results of those surveys.« less
Technology Base Research Project for electrochemical energy storage
NASA Astrophysics Data System (ADS)
Kinoshita, K.
1985-06-01
The DOE Electrochemical Energy Storage Program is divided into two projects: (1) the exploratory technology development and testing (ETD) project and (2) the technology base research (TBR) project. The role of the TBR Project is to perform supporting research for the advanced battery systems under development by the ETD Project, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the TBR Project is to identify the most promising electrochemical technologies and transfer them to industry and/or the ETD Project for further development and scale-up. This report summarizes the research, financial, and management activities relevant to the TBR Project in CY 1984. General problem areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the assessment of fuel-cell technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: exploratory research, applied science research, and air systems research.
Project Trans(m)it: Creating Dance Collaboratively via Technology--A Best Practices Overview
ERIC Educational Resources Information Center
Weber, Rebecca; Mizanty, Megan; Allen, Lora
2017-01-01
Project Trans(m)it is a collaborative research project among a cohort of intercontinental artists exploring dance creation via technological platforms. This paper seeks to disseminate our practice-led research findings on "best practices" for transferring embodied information via technology, as well as posit how technology will shape and…
Top Level Summary of Technologies
NASA Technical Reports Server (NTRS)
Craig, Douglas, A.
2009-01-01
This document is a chart that reviews the technology of various NASA projects. Included in the chart is the title, a brief description of the technology, the funding status, a statement of the benefits, the date required, how the element connects to the Constellation project architecture, and how critical the technology is to the Constellation project.
Distillation process using microchannel technology
Tonkovich, Anna Lee [Dublin, OH; Simmons, Wayne W [Dublin, OH; Silva, Laura J [Dublin, OH; Qiu, Dongming [Carbondale, IL; Perry, Steven T [Galloway, OH; Yuschak, Thomas [Dublin, OH; Hickey, Thomas P [Dublin, OH; Arora, Ravi [Dublin, OH; Smith, Amanda [Galloway, OH; Litt, Robert Dwayne [Westerville, OH; Neagle, Paul [Westerville, OH
2009-11-03
The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.
Membrane Separation Processes at Low Temperatures
NASA Technical Reports Server (NTRS)
Parrish, Clyde
2002-01-01
The primary focus of Kennedy Space Center's gas separation activities has been for carbon dioxide, nitrogen, and argon used in oxygen production technologies for Martian in-situ resource utilization (ISRU) projects. Recently, these studies were expanded to include oxygen for regenerative life support systems. Since commercial membrane systems have been developed for separation of carbon dioxide, nitrogen, and oxygen, initially the studies focused on these membrane systems, but at lower operating temperatures and pressures. Current investigations art examining immobilized liquids and solid sorbents that have the potential for higher selectivity and lower operating temperatures. The gas separation studies reported here use hollow fiber membranes to separate carbon dioxide, nitrogen, and argon in the temperature range from 230 to 300 K. Four commercial membrane materials were used to obtain data at low feed and permeate pressures. These data were used with a commercial solution-diffusion modeling tool to design a system to prepare a buffer gas from the byproduct of a process to capture Martian carbon dioxide. The system was designed to operate, at 230 K with a production rate 0.1 sLpm; Feed composition 30% CO2, 44% N2, and 26% Ar; Feed pressure 104 kPa (780); and Permeate pressure 1 kPa (6 torr); Product concentration 600 ppm CO2. This new system was compared with a similar system designed to operate at ambient temperatures (298 K). The systems described above, along with data, test apparatus, and models are presented.
Environmental consequences of future biogas technologies based on separated slurry.
Hamelin, Lorie; Wesnæs, Marianne; Wenzel, Henrik; Petersen, Bjørn M
2011-07-01
This consequential life cycle assessment study highlights the key environmental aspects of producing biogas from separated pig and cow slurry, a relatively new but probable scenario for future biogas production, as it avoids the reliance on constrained carbon cosubstrates. Three scenarios involving different slurry separation technologies have been assessed and compared to a business-as-usual reference slurry management scenario. The results show that the environmental benefits of such biogas production are highly dependent upon the efficiency of the separation technology used to concentrate the volatile solids in the solid fraction. The biogas scenario involving the most efficient separation technology resulted in a dry matter separation efficiency of 87% and allowed a net reduction of the global warming potential of 40%, compared to the reference slurry management. This figure comprises the whole slurry life cycle, including the flows bypassing the biogas plant. This study includes soil carbon balances and a method for quantifying the changes in yield resulting from increased nitrogen availability as well as for quantifying mineral fertilizers displacement. Soil carbon balances showed that between 13 and 50% less carbon ends up in the soil pool with the different biogas alternatives, as opposed to the reference slurry management.
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Shelton, Kevin J.; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.; Norman, Rober M.; Ellis, Kyle K. E.; Barmore, Bryan E.
2011-01-01
An emerging Next Generation Air Transportation System concept - Equivalent Visual Operations (EVO) - can be achieved using an electronic means to provide sufficient visibility of the external world and other required flight references on flight deck displays that enable the safety, operational tempos, and visual flight rules (VFR)-like procedures for all weather conditions. Synthetic and enhanced flight vision system technologies are critical enabling technologies to EVO. Current research evaluated concepts for flight deck-based interval management (FIM) operations, integrated with Synthetic Vision and Enhanced Vision flight-deck displays and technologies. One concept involves delegated flight deck-based separation, in which the flight crews were paired with another aircraft and responsible for spacing and maintaining separation from the paired aircraft, termed, "equivalent visual separation." The operation required the flight crews to acquire and maintain an "equivalent visual contact" as well as to conduct manual landings in low-visibility conditions. The paper describes results that evaluated the concept of EVO delegated separation, including an off-nominal scenario in which the lead aircraft was not able to conform to the assigned spacing resulting in a loss of separation.
SEPARATED FLOW CONDITIONS AT PIPE WALLS OF WATER DISTRIBUTION MAINS - Project Summary
The objectives of this research project were to develop and evaluate a method for determining residence times for separated recirculation cavity flow conditions, and to determine the rate of growth and surface ramp contours developed from particulate deposits at obstacles that i...
Cepheid temperature and the Blazhko effect
NASA Technical Reports Server (NTRS)
Teays, Terry
1995-01-01
Two separate research projects were covered under this contract. The first project was to study the temperatures of Cepheid variable stars, while the second was a study of the Blazhko effect in RR Larae, both of them using IUE data. They will be reported on separately, in what follows.
36 CFR 67.11 - Fees for processing rehabilitation certification requests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... building projects where there is no historic functional relationship among the structures and which are... certified historic structure as provided by the owner in the Historic Preservation Certification Application... rehabilitation of a separate certified historic structure will be considered a separate project for purposes of...
Metadata-driven Clinical Data Loading into i2b2 for Clinical and Translational Science Institutes.
Post, Andrew R; Pai, Akshatha K; Willard, Richard; May, Bradley J; West, Andrew C; Agravat, Sanjay; Granite, Stephen J; Winslow, Raimond L; Stephens, David S
2016-01-01
Clinical and Translational Science Award (CTSA) recipients have a need to create research data marts from their clinical data warehouses, through research data networks and the use of i2b2 and SHRINE technologies. These data marts may have different data requirements and representations, thus necessitating separate extract, transform and load (ETL) processes for populating each mart. Maintaining duplicative procedural logic for each ETL process is onerous. We have created an entirely metadata-driven ETL process that can be customized for different data marts through separate configurations, each stored in an extension of i2b2 's ontology database schema. We extended our previously reported and open source Eureka! Clinical Analytics software with this capability. The same software has created i2b2 data marts for several projects, the largest being the nascent Accrual for Clinical Trials (ACT) network, for which it has loaded over 147 million facts about 1.2 million patients.
Metadata-driven Clinical Data Loading into i2b2 for Clinical and Translational Science Institutes
Post, Andrew R.; Pai, Akshatha K.; Willard, Richard; May, Bradley J.; West, Andrew C.; Agravat, Sanjay; Granite, Stephen J.; Winslow, Raimond L.; Stephens, David S.
2016-01-01
Clinical and Translational Science Award (CTSA) recipients have a need to create research data marts from their clinical data warehouses, through research data networks and the use of i2b2 and SHRINE technologies. These data marts may have different data requirements and representations, thus necessitating separate extract, transform and load (ETL) processes for populating each mart. Maintaining duplicative procedural logic for each ETL process is onerous. We have created an entirely metadata-driven ETL process that can be customized for different data marts through separate configurations, each stored in an extension of i2b2 ‘s ontology database schema. We extended our previously reported and open source Eureka! Clinical Analytics software with this capability. The same software has created i2b2 data marts for several projects, the largest being the nascent Accrual for Clinical Trials (ACT) network, for which it has loaded over 147 million facts about 1.2 million patients. PMID:27570667
Workplace Factors That Shape Information Technology Project Success
ERIC Educational Resources Information Center
Nguyen, Dan Schilling
2013-01-01
Information technology (IT) project success depends on having a project manager with effective decision making, leadership, and project management skills. Project success also depends on completing the project in a given budget, time, and scope. Despite these critical qualities of a successful project manager, little research has explored the…
Research review for information management
NASA Technical Reports Server (NTRS)
Bishop, Peter C.
1988-01-01
The goal of RICIS research in information management is to apply currently available technology to existing problems in information management. Research projects include the following: the Space Business Research Center (SBRC), the Management Information and Decision Support Environment (MIDSE), and the investigation of visual interface technology. Several additional projects issued reports. New projects include the following: (1) the AdaNET project to develop a technology transfer network for software engineering and the Ada programming language; and (2) work on designing a communication system for the Space Station Project Office at JSC. The central aim of all projects is to use information technology to help people work more productively.
Technology base research project for electrochemical energy storage
NASA Astrophysics Data System (ADS)
Kinoshita, Kim
1988-07-01
The progress made by the technology base research (TBR) project for electrochemical energy storage during calendar year 1987 was summarized. The primary objective of the TBR Project, which is sponsored by the Department of Energy (DOE) and managed by Lawrence Berkeley Laboratory (LBL), is to identify electrochemical technologies that can satisfy stringent performance and economic requirements for electric vehicles and stationary energy storage applications. The ultimate goal is to transfer the most promising electrochemical technologies to the private sector or to another DOE project (e.g., Sandia National Laboratories' Exploratory Technology Development and Testing Project) for further development and scale-up. Besides LBL, which has overall responsibility for the TBR Project, Los Alamos National Laboratory (LANL), Brookhaven National Laboratory (BNL) and Argonne National Laboratory (ANL) participate in the TBR Project by providing key research support in several of the project elements. The TBR Project consists of three major project elements: exploratory research; applied science research; and air systems research. The objectives and the specific battery and electrochemical systems addressed by each project element are discussed in the following sections, which also include technical summaries that relate to the individual projects. Financial information that relates to the various projects and a description of the management activities for the TBR Project are described in the Executive Summary.
Managing Science: Management for R&D Laboratories
NASA Astrophysics Data System (ADS)
Gelès, Claude; Lindecker, Gilles; Month, Mel; Roche, Christian
1999-10-01
A unique "how-to" manual for the management of scientific laboratories This book presents a complete set of tools for the management of research and development laboratories and projects. With an emphasis on knowledge rather than profit as a measure of output and performance, the authors apply standard management principles and techniques to the needs of high-flux, open-ended, separately funded science and technology enterprises. They also propose the novel idea that failure, and incipient failure, is an important measure of an organization's potential. From the management of complex, round-the-clock, high-tech operations to strategies for long-term planning, Managing Science: Management for R&D Laboratories discusses how to build projects with the proper research and development, obtain and account for funding, and deal with rapidly changing technologies, facilities, and trends. The entire second part of the book is devoted to personnel issues and the impact of workplace behavior on the various functions of a knowledge-based organization. Drawing on four decades of involvement with the management of scientific laboratories, the authors thoroughly illustrate their philosophy with real-world examples from the physics field and provide tables and charts. Managers of scientific laboratories as well as scientists and engineers expecting to move into management will find Managing Science: Management for R&D Laboratories an invaluable practical guide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noel, Donna
This project integrated state-of-the-art exploration technologies with a geologic framework and reservoir modeling to ultimately determine the efficacy of future geothermal production within the PLPT reservation. The information gained during this study should help the PLPT to make informed decisions regarding construction of a geothermal power plant. Additional benefits included the transfer of new technologies and geothermal data to the geothermal industry and it created and/or preserved nearly three dozen jobs accordance with the American Recovery and Reinvestment Act of 2009. A variety of tasks were conducted to achieve the above stated objectives. The following are the tasks completed withinmore » the project: 1. Permitting 2. Shallow temperature survey 3. Seismic data collection and analysis 4. Fracture stress analysis 5. Phase I reporting Permitting 7. Shallow temperature survey 8. Seismic data collection and analysis 9. Fracture stress analysis 10. Phase I reporting 11. Drilling two new wells 12. Borehole geophysics 13. Phase II reporting 14. Well testing and geochemical analysis 15. Three-dimensional geologic model 16. Three-dimensional reservoir analysis 17. Reservation wide geothermal potential analysis 18. Phase III reporting Phase I consisted of tasks 1 – 5, Phase II tasks 6 – 8, and Phase III tasks 9 – 13. This report details the results of Phase III tasks. Reports are available for Phase I, and II as separate documents.« less
Carbon Dioxide Separation Using Thermally Optimized Membranes
NASA Astrophysics Data System (ADS)
Young, J. S.; Jorgensen, B. S.; Espinoza, B. F.; Weimer, M. W.; Jarvinen, G. D.; Greenberg, A.; Khare, V.; Orme, C. J.; Wertsching, A. K.; Peterson, E. S.; Hopkins, S. D.; Acquaviva, J.
2002-05-01
The purpose of this project is to develop polymeric-metallic membranes for carbon dioxide separations that operate under a broad range of industrially relevant conditions not accessible with present membrane units. The last decade has witnessed a dramatic increase in the use of polymer membranes as an effective, economic and flexible tool for many commercial gas separations including air separation, the recovery of hydrogen from nitrogen, carbon monoxide, and methane mixtures, and the removal of carbon dioxide from natural gas. In each of these applications, high fluxes and excellent selectivities have relied on glassy polymer membranes which separate gases based on both size and solubility differences. To date, however, this technology has focused on optimizing materials for near ambient conditions. The development of polymeric materials that achieve the important combination of high selectivity, high permeability, and mechanical stability at temperatures significantly above 25oC and pressures above 10 bar, respectively, has been largely ignored. Consequently, there is a compelling rationale for the exploration of a new realm of polymer membrane separations. Indeed, the development of high temperature polymeric-metallic composite membranes for carbon dioxide separation at temperatures of 100-450 oC and pressures of 10-150 bar would provide a pivotal contribution with both economic and environmental benefits. Progress to date includes the first ever fabrication of a polymeric-metallic membrane that is selective from room temperature to 370oC. This achievement represents the highest demonstrated operating temperature at which a polymeric based membrane has successfully functioned. Additionally, we have generated the first polybenzamidizole silicate molecular composites. Finally, we have developed a technique that has enabled the first-ever simultaneous measurements of gas permeation and membrane compaction at elevated temperatures. This technique provides a unique approach to the optimization of long-term membrane performance under challenging operating conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorhout, Jacquelyn Marie
This dissertation covers several distinct projects relating to the fields of nuclear forensics and basic actinide science. Post-detonation nuclear forensics, in particular, the study of fission products resulting from a nuclear device to determine device attributes and information, often depends on the comparison of fission products to a library of known ratios. The expansion of this library is imperative as technology advances. Rapid separation of fission products from a target material, without the need to dissolve the target, is an important technique to develop to improve the library and provide a means to develop samples and standards for testing separations.more » Several materials were studied as a proof-of-concept that fission products can be extracted from a solid target, including microparticulate (< 10 μm diameter) dUO 2, porous metal organic frameworks (MOFs) synthesized from depleted uranium (dU), and other organicbased frameworks containing dU. The targets were irradiated with fast neutrons from one of two different neutron sources, contacted with dilute acids to facilitate the separation of fission products, and analyzed via gamma spectroscopy for separation yields. The results indicate that smaller particle sizes of dUO 2 in contact with the secondary matrix KBr yield higher separation yields than particles without a secondary matrix. It was also discovered that using 0.1 M HNO 3 as a contact acid leads to the dissolution of the target material. Lower concentrations of acid were used for future experiments. In the case of the MOFs, a larger pore size in the framework leads to higher separation yields when contacted with 0.01 M HNO 3. Different types of frameworks also yield different results.« less
ERIC Educational Resources Information Center
Eichleay, Kristen; Pressman, Harvey
1987-01-01
Exemplary projects which help disabled people use technology (particularly computers) expand their employment opportunities include: Project Entry (Seattle); Georgia Computer Programmer Project (Atlanta); Perkins Project with Industry (Watertown, Massachusetts); Project Byte (Newton Massachusetts); Technology Relevant to You (St. Louis); Special…
Sensors for process control Focus Team report
NASA Astrophysics Data System (ADS)
At the Semiconductor Technology Workshop, held in November 1992, the Semiconductor Industry Association (SIA) convened 179 semiconductor technology experts to assess the 15-year outlook for the semiconductor manufacturing industry. The output of the Workshop, a document entitled 'Semiconductor Technology: Workshop Working Group Reports,' contained an overall roadmap for the technology characteristics envisioned in integrated circuits (IC's) for the period 1992-2007. In addition, the document contained individual roadmaps for numerous key areas in IC manufacturing, such as film deposition, thermal processing, manufacturing systems, exposure technology, etc. The SIA Report did not contain a separate roadmap for contamination free manufacturing (CFM). A key component of CFM for the next 15 years is the use of sensors for (1) defect reduction, (2) improved product quality, (3) improved yield, (4) improved tool utilization through contamination reduction, and (5) real time process control in semiconductor fabrication. The objective of this Focus Team is to generate a Sensors for Process Control Roadmap. Implicit in this objective is the identification of gaps in current sensor technology so that research and development activity in the sensor industry can be stimulated to develop sensor systems capable of meeting the projected roadmap needs. Sensor performance features of interest include detection limit, specificity, sensitivity, ease of installation and maintenance, range, response time, accuracy, precision, ease and frequency of calibration, degree of automation, and adaptability to in-line process control applications.
IAEA programme in the field of radiation technology
NASA Astrophysics Data System (ADS)
Chmielewski, Andrzej G.; Haji-Saeid, Mohammad
2005-07-01
Radiation technologies applying gamma sources and electron accelerators for material modification are well-established processes. There are over 160 gamma industrial irradiators and 1300 electron industrial accelerators in operation worldwide. A new advancement in the field of radiation sources engineering is the development of high power direct e-/X conversion sources based on electron accelerators. Technologies to be developed beside environmental applications could be nanomaterials, structure engineered materials (sorbents, composites, ordered polymers, etc.) and natural polymers' processing. New products based on radiation-processed polysaccharides have already been commercialised in many countries of the East Asia and Pacific Region, especially in those being rich in natural polymers. Very important and promising applications concern environmental protection-radiation technology, being a clean and environment friendly process, helps to curb pollutants' emission as well. Industrial plants for flue gas treatment have been constructed in Poland and China. The pilot plant in Bulgaria using this technology has just started its operation. The Polish plant is equipped with accelerators of over 1 MW power, a breakthrough in radiation technology application. The industrial plant for wastewater treatment is under development in Korea and a pilot plant for sewage sludge irradiation has been in operation in India for many years. Due to recent developments, the Agency has restructured its programme and organized a Technical Meeting (TM) on "Emerging Applications of Radiation Technology for the 21st Century" at its Headquarters in Vienna, Austria, in April 2003, to review the present situation and possible developments of radiation technology to contribute to a sustainable development. This meeting provided the basic input to launch others in the most important fields of radiation technology applications: "Advances in Radiation Chemistry of Polymers" (Notre Dame, USA, September 2003), "Status of Industrial Scale Radiation Treatment of Wastewater" (Taejon, Republic of Korea, October 2003), "Radiation Processing of Polysaccharides" (Takasaki, Japan, November 2003), "Emerging Applications of Radiation in Nanotechnology" (Bologna, Italy, March 2004) and "Radiation Processing of Gaseous and Liquid Effluents" (Sofia, Bulgaria, September 2004). The Agency is presently supervising three Coordinated Research Projects on radiation wastewater treatment, radiation synthesis stimuli-responsive hydrogels for separation purposes and degradation effects of polymers. The role of this technology for a sustainable development is well illustrated by the fact that over 30 technical cooperation projects (including three regional ones) were accomplished in the years 2003-2004 and several new projects are being expected for the new cycle 2005-2006. Detailed analyses of the results of both, regular and TC programmes, laid the foundation for formulation of the new programme for the years 2006-2007. The emphasis will be put on nanotechnology, natural polymers, environment and health protection, including combat with hazardous bioagents.
1998-10-01
The ADvanced SEParation (ADSEP) commercial payload is making use of major advances in separation technology: The Phase Partitioning Experiment (PPE); the Micorencapsulation experiment; and the Hemoglobin Separation Experiment (HSE). Using ADSEP, commercial researchers will attempt to determine the partition coefficients for model particles in a two-phase system. With this information, researchers can develop a higher resolution, more effective cell isolation procedure that can be used for many different types of research and for improved health care. The advanced separation technology is already being made available for use in ground-based laboratories.
Present situation and trend of precision guidance technology and its intelligence
NASA Astrophysics Data System (ADS)
Shang, Zhengguo; Liu, Tiandong
2017-11-01
This paper first introduces the basic concepts of precision guidance technology and artificial intelligence technology. Then gives a brief introduction of intelligent precision guidance technology, and with the help of development of intelligent weapon based on deep learning project in foreign: LRASM missile project, TRACE project, and BLADE project, this paper gives an overview of the current foreign precision guidance technology. Finally, the future development trend of intelligent precision guidance technology is summarized, mainly concentrated in the multi objectives, intelligent classification, weak target detection and recognition, intelligent between complex environment intelligent jamming and multi-source, multi missile cooperative fighting and other aspects.
25 CFR 700.465 - Technical feasibility.
Code of Federal Regulations, 2010 CFR
2010-04-01
... construction, technology, or another engineering project, however, an application for a construction, technology or another engineering project shall: (a) Include sufficient information to determine the nature... construction, technology, or other engineering project prior to construction. The Commission shall review the...
25 CFR 700.465 - Technical feasibility.
Code of Federal Regulations, 2012 CFR
2012-04-01
... construction, technology, or another engineering project, however, an application for a construction, technology or another engineering project shall: (a) Include sufficient information to determine the nature... construction, technology, or other engineering project prior to construction. The Commission shall review the...
25 CFR 700.465 - Technical feasibility.
Code of Federal Regulations, 2014 CFR
2014-04-01
... construction, technology, or another engineering project, however, an application for a construction, technology or another engineering project shall: (a) Include sufficient information to determine the nature... construction, technology, or other engineering project prior to construction. The Commission shall review the...
25 CFR 700.465 - Technical feasibility.
Code of Federal Regulations, 2011 CFR
2011-04-01
... construction, technology, or another engineering project, however, an application for a construction, technology or another engineering project shall: (a) Include sufficient information to determine the nature... construction, technology, or other engineering project prior to construction. The Commission shall review the...
25 CFR 700.465 - Technical feasibility.
Code of Federal Regulations, 2013 CFR
2013-04-01
... construction, technology, or another engineering project, however, an application for a construction, technology or another engineering project shall: (a) Include sufficient information to determine the nature... construction, technology, or other engineering project prior to construction. The Commission shall review the...
Collaborative project-based learning: an integrative science and technological education project
NASA Astrophysics Data System (ADS)
Baser, Derya; Ozden, M. Yasar; Karaarslan, Hasan
2017-04-01
Background: Blending collaborative learning and project-based learning (PBL) based on Wolff (2003) design categories, students interacted in a learning environment where they developed their technology integration practices as well as their technological and collaborative skills.
ATST telescope mount: telescope of machine tool
NASA Astrophysics Data System (ADS)
Jeffers, Paul; Stolz, Günter; Bonomi, Giovanni; Dreyer, Oliver; Kärcher, Hans
2012-09-01
The Advanced Technology Solar Telescope (ATST) will be the largest solar telescope in the world, and will be able to provide the sharpest views ever taken of the solar surface. The telescope has a 4m aperture primary mirror, however due to the off axis nature of the optical layout, the telescope mount has proportions similar to an 8 meter class telescope. The technology normally used in this class of telescope is well understood in the telescope community and has been successfully implemented in numerous projects. The world of large machine tools has developed in a separate realm with similar levels of performance requirement but different boundary conditions. In addition the competitive nature of private industry has encouraged development and usage of more cost effective solutions both in initial capital cost and thru-life operating cost. Telescope mounts move relatively slowly with requirements for high stability under external environmental influences such as wind buffeting. Large machine tools operate under high speed requirements coupled with high application of force through the machine but with little or no external environmental influences. The benefits of these parallel development paths and the ATST system requirements are being combined in the ATST Telescope Mount Assembly (TMA). The process of balancing the system requirements with new technologies is based on the experience of the ATST project team, Ingersoll Machine Tools who are the main contractor for the TMA and MT Mechatronics who are their design subcontractors. This paper highlights a number of these proven technologies from the commercially driven machine tool world that are being introduced to the TMA design. Also the challenges of integrating and ensuring that the differences in application requirements are accounted for in the design are discussed.
The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fix, N. J.
The U.S. Department of Energy (DOE) has conducted interim groundwater remedial activities on the Hanford Site since the mid-1990s for several groundwater contamination plumes. DOE established the Columbia River Protection Supplemental Technologies Project (Technologies Project) in 2006 to evaluate alternative treatment technologies. The objectives for the technology project are as follows: develop a 300 Area polyphosphate treatability test to immobilize uranium, design and test infiltration of a phosphate/apatite technology for Sr-90 at 100-N, perform carbon tetrachloride and chloroform attenuation parameter studies, perform vadose zone chromium characterization and geochemistry studies, perform in situ biostimulation of chromium studies for a reducing barriermore » at 100-D, and perform a treatability test for phytoremediation for Sr-90 at 100-N. This document provides the quality assurance guidelines that will be followed by the Technologies Project. This Quality Assurance Project Plan is based on the quality assurance requirements of DOE Order 414.1C, Quality Assurance, and 10 CFR 830, Subpart A--Quality Assurance Requirements as delineated in Pacific Northwest National Laboratory’s Standards-Based Management System. In addition, the technology project is subject to the Environmental Protection Agency (EPA) Requirements for Quality Assurance Project Plans (EPA/240/B-01/003, QA/R-5). The Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD, DOE/RL-96-68) apply to portions of this project and to the subcontractors. HASQARD requirements are discussed within applicable sections of this plan.« less
Hyper-X Stage Separation: Simulation Development and Results
NASA Technical Reports Server (NTRS)
Reubush, David E.; Martin, John G.; Robinson, Jeffrey S.; Bose, David M.; Strovers, Brian K.
2001-01-01
This paper provides an overview of stage separation simulation development and results for NASA's Hyper-X program; a focused hypersonic technology effort designed to move hypersonic, airbreathing vehicle technology from the laboratory environment to the flight environment. This paper presents an account of the development of the current 14 degree of freedom stage separation simulation tool (SepSim) and results from use of the tool in a Monte Carlo analysis to evaluate the risk of failure for the separation event. Results from use of the tool show that there is only a very small risk of failure in the separation event.
Flow Separation Ahead of a Blunt Axially Symmetric Body at Mach Numbers 1.76 to 2.10
NASA Technical Reports Server (NTRS)
Moeckel, W E
1951-01-01
The pressure distribution and drag were determined for a spherical-nosed axially symmetric body with thin projecting rods at Mach numbers of 1.76, 1.93, and 2.10. The upstream projection distance of the rods was varied over a wide range to study changes in the character of the flow separation and to determine the variation of drag and pressure distribution with tip projection. Drag coefficients between 0.18 and 0.30 were obtained for most tip projections at each Mach number.
Developing a decision support system for R&D project portfolio selection with interdependencies
NASA Astrophysics Data System (ADS)
Ashrafi, Maryam; Davoudpour, Hamid; Abbassi, Mohammad
2012-11-01
Although investment in research and technology is a promising tool for technology centered organizations through obtaining their objectives, resource constraints make organizations select between their pool of research and technology projects through means of R&D project portfolio selection techniques mitigating corresponding risks and enhancing the overall value of project portfolio.
ERIC Educational Resources Information Center
Merrill, Chris; Custer, Rodney L.; Daugherty, Jenny; Westrick, Martin; Zeng, Yong
2007-01-01
Within primary and secondary school technology education, engineering has been proposed as an avenue to bring about technological literacy. Different initiatives such as curriculum development projects (i.e., Project ProBase and Project Lead The Way) and National Science Foundation funded projects such as the National Center for Engineering and…
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2016-01-01
This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR) technologies into NASA Aeronautics Research Mission Directorate (ARMD) projects. Other Government and commercial projects managers can also find this useful.
Report #11-R-0248, June 7, 2011. We conducted an unannounced site visit of the Clifton Street Sewer Separation and Water Main Replacement Projects in the City of Portland, Maine, from June 15 through June 17, 2009.
Space Transportation Technology Workshop: Propulsion Research and Technology
NASA Technical Reports Server (NTRS)
2000-01-01
This viewgraph presentation gives an overview of the Space Transportation Technology Workshop topics, including Propulsion Research and Technology (PR&T) project level organization, FY 2001 - 2006 project roadmap, points of contact, foundation technologies, auxiliary propulsion technology, PR&T Low Cost Turbo Rocket, and PR&T advanced reusable technologies RBCC test bed.
Ariani, Arni; Kapadia, Vasvi
2017-01-01
Background Many elderly people prefer to live at home independently. One of the major concerns raised by the family members is the safety and well-being of their elderly family members when living independently in a home environment. To address this issue, assistive technology solutions have been available in the market. Despite their availability and proliferation, these types of solutions are not popular with the elderly due to their intrusive nature, privacy-related issues, social stigma, and fear of losing human interaction. This study shares the experience in the development of a digital photo frame system that helps family members to check the well-being of the elderly, exploiting their desire to remain socially connected. Objectives The aim of this study was to iteratively design, implement, and assess the usability, user friendliness, and acceptability of a tablet-based system to check the well-being of the elderly. Methods Our study methodology comprises three separate stages: initial system development, contextual assessment, and comparative case study evaluation. Results In the first stage, requirements were elicited from the elderly to design a well-being check prototype. In the second stage, areas for improvements (eg, privacy features) were identified. Also, additional features (such as medication prompts or food reminders) were suggested to help aged and health care service providers with effective but subtle monitoring of the elderly. These would lower their operating cost by reducing visits by care providers to the homes of the elderly. In the third stage, the results highlighted the difference (between users in India and Australia) in the levels of familiarity of the elderly with this technology. Some elderly participants at the Kalyani Institute for Study, Planning and Action for Rural Change, India latched onto this technology quickly while a few refused to use the system. However, in all cases, the support of family members was crucial for their willingness to use the technology. Conclusions This project has three major outcomes. First, a picture frame prototype was tested with the elderly to leverage the benefits of social communication. Second, the project helped us test and implement the “Silvercare” model for supporting the elderly through young retired people residing in the area. Finally, the project helped formalize the agile three-stage design methodology to develop information technology solutions for the elderly. Also, the project contributed to an ongoing European Union Project called Victoryahome, which involves more than 50 sites across 5 countries (Norway, Sweden, Netherlands, Portugal, and Australia) to assess the use of telepresence robots, wearable fall detectors, and medication dispensers for the elderly living independently. PMID:28500017
Ray, Pradeep; Li, Junhua; Ariani, Arni; Kapadia, Vasvi
2017-05-12
Many elderly people prefer to live at home independently. One of the major concerns raised by the family members is the safety and well-being of their elderly family members when living independently in a home environment. To address this issue, assistive technology solutions have been available in the market. Despite their availability and proliferation, these types of solutions are not popular with the elderly due to their intrusive nature, privacy-related issues, social stigma, and fear of losing human interaction. This study shares the experience in the development of a digital photo frame system that helps family members to check the well-being of the elderly, exploiting their desire to remain socially connected. The aim of this study was to iteratively design, implement, and assess the usability, user friendliness, and acceptability of a tablet-based system to check the well-being of the elderly. Our study methodology comprises three separate stages: initial system development, contextual assessment, and comparative case study evaluation. In the first stage, requirements were elicited from the elderly to design a well-being check prototype. In the second stage, areas for improvements (eg, privacy features) were identified. Also, additional features (such as medication prompts or food reminders) were suggested to help aged and health care service providers with effective but subtle monitoring of the elderly. These would lower their operating cost by reducing visits by care providers to the homes of the elderly. In the third stage, the results highlighted the difference (between users in India and Australia) in the levels of familiarity of the elderly with this technology. Some elderly participants at the Kalyani Institute for Study, Planning and Action for Rural Change, India latched onto this technology quickly while a few refused to use the system. However, in all cases, the support of family members was crucial for their willingness to use the technology. This project has three major outcomes. First, a picture frame prototype was tested with the elderly to leverage the benefits of social communication. Second, the project helped us test and implement the "Silvercare" model for supporting the elderly through young retired people residing in the area. Finally, the project helped formalize the agile three-stage design methodology to develop information technology solutions for the elderly. Also, the project contributed to an ongoing European Union Project called Victoryahome, which involves more than 50 sites across 5 countries (Norway, Sweden, Netherlands, Portugal, and Australia) to assess the use of telepresence robots, wearable fall detectors, and medication dispensers for the elderly living independently. ©Pradeep Ray, Junhua Li, Arni Ariani, Vasvi Kapadia. Originally published in JMIR Human Factors (http://humanfactors.jmir.org), 12.05.2017.
Design as a Focus for Technology Integration: Lessons Learned from a PT3 Project
ERIC Educational Resources Information Center
Nelson, Wayne A.; Thomeczek, Melissa
2007-01-01
Plugging in to L.I.T.E.S. project (Leaders in Technology Enhanced Schools--a previously funded Technology Innovation Challenge grant project) at Southern Illinois University Edwardsville (SIUE) has been very successful in its attempts to enhance the technology integration skills of teacher education students, and to improve the capabilities of our…
Geothermal Project Consulting | Geothermal Technologies | NREL
Geothermal Project Consulting Geothermal Project Consulting When consulting on projects, NREL focuses on identifying specific barriers or challenges that are likely to impact geothermal project , validation, and deployment of geothermal technologies Assess and evaluate geothermal R&D projects
Recovery Act: Alpena Biorefinery and Alpena Biorefinery Lignin Separation Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Retsina, Theodora
The Alpena Biorefinery (AB) was constructed in Alpena, Michigan, at the Decorative Panels International hardboard manufacturing facility. The goal of the AB was to demonstrate a modular, technically successful, and financially viable process of making cellulosic ethanol from woody biomass extract at wood processing facilities. At full capacity, the AB can produce 894,200 gallons per year of cellulosic ethanol and 696,000 gallons per year of aqueous potassium acetate, using extract from northern hardwood and aspen woodchips feedstock. The project objectives and the value proposition of AB promote the national goals of energy independence, greenhouse gas reduction, and green job creationmore » and retention. A successful outcome of the Alpena Biorefinery project has been commercial sales of the first ever cellulosic ethanol RINS generated from woody biomass in the US, under the EPA’s Renewable Fuels Standard Program. We believe that American Process is also likely the first company in the world to produce commercial quantities of cellulosic ethanol from mixed forest residue. Life Cycle Analysis performed by Michigan Institute of Technology found that the entire life cycle greenhouse gas emissions from the plant’s cellulosic ethanol were only 25 percent that of petroleum-based gasoline. They found the potassium acetate runway de-icer coproduct generates up to 45 percent less greenhouse gases than the production of conventional potassium acetate. The Alpena Biorefinery project created 31 permanent jobs for direct employees and helped retain 200 jobs associated with the existing Decorative Panels International facility, by increasing its economic viability through significant savings in waste water treatment costs. The AB project has been declared a Michigan Center of Energy Excellence and was awarded a $4 million State of Michigan grant. The project also received New Market Tax Credit financing for locating in an economically distressed community. All other equity funds were contributed by American Process Inc. The facility will remain operational after the demonstration period. It will also be available as a pilot-plant “for hire,” where third parties can perform trials on emerging biorefinery technologies. Additional capital projects are underway outside of the scope of DOE project.« less
NASA Technical Reports Server (NTRS)
Mehta, Unmeel; Lomax, Harvard
1981-01-01
During the past five years, numerous pioneering archival publications have appeared that have presented computer solutions of the mass-weighted, time-averaged Navier-Stokes equations for transonic problems pertinent to the aircraft industry. These solutions have been pathfinders of developments that could evolve into a major new technological capability, namely the computational Navier-Stokes technology, for the aircraft industry. So far these simulations have demonstrated that computational techniques, and computer capabilities have advanced to the point where it is possible to solve forms of the Navier-Stokes equations for transonic research problems. At present there are two major shortcomings of the technology: limited computer speed and memory, and difficulties in turbulence modelling and in computation of complex three-dimensional geometries. These limitations and difficulties are the pacing items of the continuing developments, although the one item that will most likely turn out to be the most crucial to the progress of this technology is turbulence modelling. The objective of this presentation is to discuss the state of the art of this technology and suggest possible future areas of research. We now discuss some of the flow conditions for which the Navier-Stokes equations appear to be required. On an airfoil there are four different types of interaction of a shock wave with a boundary layer: (1) shock-boundary-layer interaction with no separation, (2) shock-induced turbulent separation with immediate reattachment (we refer to this as a shock-induced separation bubble), (3) shock-induced turbulent separation without reattachment, and (4) shock-induced separation bubble with trailing edge separation.
1990-10-01
adsorption/incineration * Membrane vapor separation/condensation * Supercritical fluid oxidation • UV/ozone destruction * Molten salt combustion process...separation/ separate air stream contaminants 9 Oxygenated solvents condensation * Chlorinated hydrocarbons Supercritical fluid * Technology utilizing high...testing or full-scale unit capacity; they are: * Supercritical fluid oxidation • UV/ozone destruction * Molten salt incineration * Infrared incineration
Integral Engine Inlet Particle Separator. Volume 1. Technology Program
1975-07-01
inlet particle separators for future Army aircraft gas turbine engines . Appropriate technical personnel of this Directorate have reviewed this report...USAAMRDL-TR-75-31A I - / INTEGRAL ENGINE INLET PARTICLE SEPARATOR Volume I-- Technology Program General Electric Company Aircraft Engine Group...N1 i 9ap mm tm~qu INTRODUCTION The adverse environments in which Army equipment operates impose severe )enalties upon gas turbine engine performance
ISAIA: Interoperable Systems for Archival Information Access
NASA Technical Reports Server (NTRS)
Hanisch, Robert J.
2002-01-01
The ISAIA project was originally proposed in 1999 as a successor to the informal AstroBrowse project. AstroBrowse, which provided a data location service for astronomical archives and catalogs, was a first step toward data system integration and interoperability. The goals of ISAIA were ambitious: '...To develop an interdisciplinary data location and integration service for space science. Building upon existing data services and communications protocols, this service will allow users to transparently query hundreds or thousands of WWW-based resources (catalogs, data, computational resources, bibliographic references, etc.) from a single interface. The service will collect responses from various resources and integrate them in a seamless fashion for display and manipulation by the user.' Funding was approved only for a one-year pilot study, a decision that in retrospect was wise given the rapid changes in information technology in the past few years and the emergence of the Virtual Observatory initiatives in the US and worldwide. Indeed, the ISAIA pilot study was influential in shaping the science goals, system design, metadata standards, and technology choices for the virtual observatory. The ISAIA pilot project also helped to cement working relationships among the NASA data centers, US ground-based observatories, and international data centers. The ISAIA project was formed as a collaborative effort between thirteen institutions that provided data to astronomers, space physicists, and planetary scientists. Among the fruits we ultimately hoped would come from this project would be a central site on the Web that any space scientist could use to efficiently locate existing data relevant to a particular scientific question. Furthermore, we hoped that the needed technology would be general enough to allow smaller, more-focused community within space science could use the same technologies and standards to provide more specialized services. A major challenge to searching for data across a broad community is that information that describe some data products are either not relevant to other data or not applicable in the same way. Some previous metadata standard development efforts (e.g., in the earth science and library communities) have produced standards that are very large and difficult to support. To address this problem, we studied how a standard may be divided into separable pieces. Data providers that wish to participate in interoperable searches can support only those parts of the standard that are relevant to them. We prototyped a top-level metadata standard that was small and applicable to all space science data.
Phonesat In-flight Experience Results
NASA Technical Reports Server (NTRS)
Attai, Watson; Guillen, Salas Alberto; Oyadomari, Ken Yuji; Priscal, Cedric; Shimmin, Rogan Stuart; Gazulla, Oriol Tintore; Wolfe, Jasper Lewis
2014-01-01
Consumer technology, over the last decade, has begun to encompass devices that enable us to figure out where we are, which way we are pointing, observe the world around us, and store and transmit this information to wherever we want. Once separate consumer products such as GPS units, digital cameras and mobile phones are now combined into the modern day Smartphone. Since these capabilities are remarkably similar to those required for the multi-million dollar satellites - so why not use a multihundred dollar Smartphone instead? The PhoneSat project of NASA Ames Research Center is developing technology demonstrations utilizing these extraordinary advances to show just how simple and cheap Space can be. The style of development revolves around the "release early, release often" Silicon Valley mentality. PhoneSat is a series of 1U CubeSat size spacecrafts that use an off-the-shelf Smartphone as their onboard computer. By doing so, PhoneSat takes advantage of the high computational capability, large memory as well as ultra-tiny sensors like high-resolution cameras and navigation devices that Smartphones offer. Along with a Smartphone, PhoneSat is equipped with other commercially available technology products, such as medical brushless motors that are used as reaction wheels. Over the four years that NASA Ames Research Center has been developing the PhoneSat project, different suborbital and orbital flight activities have proven the validity of this revolutionary approach. In early 2013, the PhoneSat project launched the first triage of PhoneSats into LEO. In the five day orbital life time, the nano-satellites flew the first functioning Smartphone based satellites (using the Nexus One and Nexus S phones), the cheapest satellite (a total parts cost below $3,500) and one of the fastest on-board processors (CPU speed of 1GHz). In late 2013, the PhoneSat project launched an improved version of its bus to a higher altitude orbit which provided data about the overall system's tolerance to the space environment. In this paper, an overview of the PhoneSat project as well as a summary of the in-flight experimental results is presented. NASA Ames Research Center is carrying on its effort to bring a paradigm shift in the way we conceive Space exploration, this new approach is certainly incarnated by PhoneSat. A set of eight PhoneSat-based CubeSats is manifested to launch in 2014 with the purpose of demonstrating new technical capabilities and being a pathfinder for future Spacecraft technology missions.
7 CFR 2.37 - Chief Information Officer.
Code of Federal Regulations, 2010 CFR
2010-01-01
... technology program or project. (3) Providing advice and other assistance to the Secretary and other senior... selection of agency Chief Information Officers and agency major information technology system project... recommendations to Agency Heads for the removal or replacement of information technology project managers, when...
Technology Projects for the Classroom [and] Teacher's Guide.
ERIC Educational Resources Information Center
Kaufman, Allan; Flowers, Jim
This book presents 20 projects for technology education students. The emphasis is on problem solving and hands-on learning through projects dealing with a wide variety of technologies/industries, including the following: robotics, information storage and retrieval, communications, transportation, electronics, manufacturing, construction, materials…
Influences of Government Championship on the Technology Innovation Process at the Project-level
NASA Astrophysics Data System (ADS)
Yue, Xin
Government support is a popular instrument to foster technology innovation. It can take various forms such as financial aid, tax credits, and technological assistance. Along with the firm characteristics, strategic behavior of the project team, characteristics of the technology and the market, and the regulatory environment, government support influences firms' research and development (R&D) motivations, decision making process, and hence technology development performance. How government support influences the performance in different industries is an important policy and research question. There are many studies on the effectiveness and impacts of government support, mostly at program-level or industry-level. Government Championship is a form of government support distinct from direct financial or technological assistance. Championship includes expressing confidence in the innovation, encouraging others to support the innovation, and persisting under adversity. Championship has been studied as a critical inside factor for innovation success, particularly at project-level. Usually a champion emerged within the organization responsible for the innovation project. However, with the intention to encourage technology development, governments can also play a championship role. Government championship, besides government financial and technological assistance (hereafter "government F&T"), could be one major category of government support to facilitate high-technology innovation. However, there are few studies focusing on the effectiveness of government championship, and how it influences the innovation process. This thesis addresses this question through two studies on high-technology development projects. The first study has tested the effectiveness of government championship on the performance of 431 government sponsored technology innovation projects. Government championship and government F&T, as well as project team strategic behavior, are hypothesized to influence the technology innovation performance. The team strategy has two dimensions in this model: pro-activeness and defensiveness, which indicate the emphasis of the team on exploiting new opportunities, and enhancing the current methods, respectively. A survey was administered to the project managers of li-ion battery projects in the United States. After data was collected, factor analysis and regression were used to test hypotheses. The results suggest that both government championship and government F&T are positive factors in technology innovation performance, while strategic behaviors are positive and more significant. The results also suggest a strong correlation between government support (both championship and F&T assistance) and the R&D team strategy, which means government intervention and team strategic behavior could affect each other. To understand how the government champions and the project team impact each other during the project, the second study employed a single in-depth case study, investigating the Shenhua Direct-Coal-Liquefaction (DCL) Project. A variety of government championship behaviors have been identified, and their situation and impacts on the project performance and outcome were analyzed. This case is a good start to accumulate information and observations for a better understanding of the influences of government championship in technology innovation. These two studies will help increase understanding of how government championship behaviors influence the process, the project performance, and the outcome of technology innovation, particularly in high-technology industries.
NASA Research For Instrument Approaches To Closely Spaced Parallel Runways
NASA Technical Reports Server (NTRS)
Elliott, Dawn M.; Perry, R. Brad
2000-01-01
Within the NASA Aviation Systems Capacity Program, the Terminal Area Productivity (TAP) Project is addressing airport capacity enhancements during instrument meteorological condition (IMC). The Airborne Information for Lateral Spacing (AILS) research within TAP has focused on an airborne centered approach for independent instrument approaches to closely spaced parallel runways using Differential Global Positioning System (DGPS) and Automatic Dependent Surveillance-Broadcast (ADS-B) technologies. NASA Langley Research Center (LaRC), working in partnership with Honeywell, Inc., completed in AILS simulation study, flight test, and demonstration in 1999 examining normal approaches and potential collision scenarios to runways with separation distances of 3,400 and 2,500 feet. The results of the flight test and demonstration validate the simulation study.
Advanced Energy and Water Recovery Technology from Low Grade Waste Heat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dexin Wang
2011-12-19
The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performancemore » of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer performance was also done, which shows this heat transfer enhancement approach works well in a wide parameters range for typical flue gas conditions. Better understanding of condensing heat transfer mechanism for porous membrane heat transfer surfaces, shows higher condensation and heat transfer rates than non-permeable tubes, due to existence of the porous membrane walls. Laboratory testing has documented increased TMC performance with increased exhaust gas moisture content levels, which has exponentially increased potential markets for the product. The TMC technology can uniquely enhance waste heat recovery in tandem with water vapor recovery for many other industrial processes such as drying, wet and dry scrubber exhaust gases, dewatering, and water chilling. A new metallic substrate membrane tube development and molded TMC part fabrication method, provides an economical way to expand this technology for scaled up applications with less than 3 year payback expectation. A detailed market study shows a broad application area for this advanced waste heat and water recovery technology. A commercialization partner has been lined up to expand this technology to this big market. This research work led to new findings on the TMC working mechanism to improve its performance, better scale up design approaches, and economical part fabrication methods. Field evaluation work needs to be done to verify the TMC real world performance, and get acceptance from the industry, and pave the way for our commercial partner to put it into a much larger waste heat and waste water recovery market. This project is addressing the priority areas specified for DOE Industrial Technologies Program's (ITP's): Energy Intensive Processes (EIP) Portfolio - Waste Heat Minimization and Recovery platform.« less
Factors that Impact Software Project Success in Offshore Information Technology (IT) Companies
ERIC Educational Resources Information Center
Edara, Venkatarao
2011-01-01
Information technology (IT) projects are unsuccessful at a rate of 65% to 75% per year, in spite of employing the latest technologies and training employees. Although many studies have been conducted on project successes in U.S. companies, there is a lack of research studying the impact of various factors on software project success in offshore IT…
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2016-01-01
This report is intended to help NASA program and project managers incorporate Glenn ResearchCenter Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR)technologies into NASA Science Mission Directorate (SMD) programs/projects. Other Government and commercial project managers can also find this useful.
Nuclear rocket propulsion technology - A joint NASA/DOE project
NASA Technical Reports Server (NTRS)
Clark, John S.
1991-01-01
NASA and the DOE have initiated critical technology development for nuclear rocket propulsion systems for SEI human and robotic missions to the moon and to Mars. The activities and project plan of the interagency project planning team in FY 1990 and 1991 are summarized. The project plan includes evolutionary technology development for both nuclear thermal and nuclear electric propulsion systems.
The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects
ERIC Educational Resources Information Center
Tang, Tian; Popp, David
2016-01-01
The Clean Development Mechanism (CDM) is a project-based carbon trade mechanism that subsidizes the users of climate-friendly technologies and encourages technology transfer. The CDM has provided financial support for a large share of Chinese wind projects since 2002. Using pooled cross-sectional data of 486 registered CDM wind projects in China…
Rooper, Chris; Stone, Robert P.; Etnoyer, Peter; Conrath, Christina; Reynolds, Jennifer; Greene, H. Gary; Williams, Branwen; Salgado, Enrique; Morrison, Cheryl L.; Waller, Rhian G.; Demopoulos, Amanda W.J.
2017-01-01
Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska’s marine waters. In some places, such as the central and western Aleutian Islands, deep-sea coral and sponge resources can be extremely diverse and may rank among the most abundant deep-sea coral and sponge communities in the world. Many different species of fishes and invertebrates are associated with deep-sea coral and sponge communities in Alaska. Because of their biology, these benthic invertebrates are potentially impacted by climate change and ocean acidification. Deepsea coral and sponge ecosystems are also vulnerable to the effects of commercial fishing activities. Because of the size and scope of Alaska’s continental shelf and slope, the vast majority of the area has not been visually surveyed for deep-sea corals and sponges. NOAA’s Deep Sea Coral Research and Technology Program (DSCRTP) sponsored a field research program in the Alaska region between 2012–2015, referred to hereafter as the Alaska Initiative. The priorities for Alaska were derived from ongoing data needs and objectives identified by the DSCRTP, the North Pacific Fishery Management Council (NPFMC), and Essential Fish Habitat-Environmental Impact Statement (EFH-EIS) process.This report presents the results of 15 projects conducted using DSCRTP funds from 2012-2015. Three of the projects conducted as part of the Alaska deep-sea coral and sponge initiative included dedicated at-sea cruises and fieldwork spread across multiple years. These projects were the eastern Gulf of Alaska Primnoa pacifica study, the Aleutian Islands mapping study, and the Gulf of Alaska fish productivity study. In all, there were nine separate research cruises carried out with a total of 109 at-sea days conducting research. The remaining projects either used data and samples collected by the three major fieldwork projects or were piggy-backed onto existing research programs at the Alaska Fisheries Science Center (AFSC).
NASA Technical Reports Server (NTRS)
Moses, Paul L.
2003-01-01
X-43C Project is a hypersonic flight demonstration being executed as a collaboration between the National Aeronautics and Space Administration (NASA) and the United States Air Force (USAF). X-43C will expand the hypersonic flight envelope for air breathing engines beyond the history making efforts of the Hyper-X Program (X-43A). X-43C will demonstrate sustained accelerating flight during three flight tests of expendable X-43C Demonstrator Vehicles (DVs). The approximately 16-foot long X-43C DV will be boosted to the starting test conditions, separate from the booster, and accelerate from Mach 5 to Mach 7 under its own power and autonomous control. The DVs are to be powered by a liquid hydrocarbon-fueled, fuel-cooled, dual-mode, airframe integrated scramjet engine system developed under the USAF HyTech Program. The Project is managed by NASA Langley Research Center as part of NASA s Next Generation Launch Technology Program. Flight tests will be conducted by NASA Dryden Flight Research Center over water off the coast of California in the Pacific Test Range. The NASA/USAF/industry project is a natural extension of the Hyper-X Program (X-43A), which will demonstrate short duration ( 10 seconds) gaseous hydrogen-fueled scramjet powered flight at Mach 7 and Mach 10 using a heavyweight, largely heat sink construction, experimental engine. The X-43C Project will demonstrate sustained accelerating flight from Mach 5 to Mach 7 ( 4 minutes) using a flight-weight, fuel-cooled, scramjet engine powered by much denser liquid hydrocarbon fuel. The X-43C DV design flows from integrating USAF HyTech developed engine technologies with a NASA Air Breathing Launch Vehicle accelerator-class configuration and Hyper-X heritage vehicle systems designs. This paper describes the X-43C Project and provides background for NASA s current hypersonic flight demonstration efforts.
14 CFR 1216.305 - Criteria for actions requiring environmental assessments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... spacecraft development and flight projects in space and terrestrial applications. (3) Specific experimental projects in aeronautics and space technology and energy technology applications. (4) Development and... technology applications (e.g., Research and Technology Base, Systems Technology Programs) other than...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-05-02
Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. In 1989, the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established as the umbrella organization which coordinates environmental research at both universities. In December, 1992, the Tulane/Xavier CBR was awarded a five year grant to study pollution in the Mississippi River system. The Hazardous Materials in Aquatic Environments of the Mississippi River Basin project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environmentsmore » of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. Summaries which describe objectives, goals, and accomplishments are included on ten collaborative cluster projects, two education projects, and six initiation projects. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less
Airframe Research and Technology for Hypersonic Airbreathing Vehicles
NASA Technical Reports Server (NTRS)
Glass, David E.; Merski, N. Ronald; Glass, Christopher E.
2002-01-01
The Hypersonics Investment Area (HIA) within NASA's Advanced Space Transportation Program (ASTP) has the responsibility to develop hypersonic airbreathing vehicles for access to space. The Airframe Research and Technology (AR and T) Project, as one of six projects in the HIA, will push the state-of-the-art in airframe and vehicle systems for low-cost, reliable, and safe space transportation. The individual technologies within the project are focused on advanced, breakthrough technologies in airframe and vehicle systems and cross-cutting activities that are the basis for improvements in these disciplines. Both low and medium technology readiness level (TRL) activities are being pursued. The key technical areas that will be addressed by the project include analysis and design tools, integrated vehicle health management (IVHM), composite (polymer, metal, and ceramic matrix) materials development, thermal/structural wall concepts, thermal protection systems, seals, leading edges, aerothermodynamics, and airframe/propulsion flowpath technology. Each of the technical areas or sub-projects within the Airframe R and T Project is described in this paper.
Aeronautical technology 2000: A projection of advanced vehicle concepts
NASA Technical Reports Server (NTRS)
1985-01-01
The Aeronautics and Space Engineering Board (ASEB) of the National Research Council conducted a Workshop on Aeronautical Technology: a Projection to the Year 2000 (Aerotech 2000 Workshop). The panels were asked to project advances in aeronautical technologies that could be available by the year 2000. As the workshop was drawing to a close, it became evident that a more comprehensive investigation of advanced air vehicle concepts than was possible in the limited time available at the workshop would be valuable. Thus, a special panel on vehicle applications was organized. In the course of two meetings, the panel identified and described representative types of aircraft judged possible with the workshop's technology projections. These representative aircraft types include: military aircraft; transport aircraft; rotorcraft; extremely high altitude aircraft; and transatmospheric aircraft. Improvements in performance, efficiency, and operational characteristics possible through the application of the workshop's year 2000 technology projections were discussed. The subgroups also identified the technologies considered essential and enhancing or supporting to achieve the projected aircraft improvements.
Changing Technology and Work: Northern Telecom. CAW Technology Project.
ERIC Educational Resources Information Center
Robertson, David; Wareham, Jeff
A project to examine the implications of technological change at Northern Telecom consisted of two major components: a technological survey and case study research. A questionnaire that contained more than 90 questions on technological change was distributed through local union technology committee meetings in Brampton, London, Belleville, and…
On Evaluating a Project: Some Practical Suggestions. NCME Measurement in Education, Vol. 6, No. 1.
ERIC Educational Resources Information Center
Wick, John W.
Prime indicators for realistic short term/long term project goals are budgets and timetables. Concrets, identifiable objects are useful in separating eloquent rhetoric from actual promises. Similarly, an external evaluator should be able to separate proposals with intentional misrepresentation of funding and goals from those which need further…
A Review of Biorefinery Separations for Bioproduct Production via Thermocatalytic Processing.
Nguyen, Hannah; DeJaco, Robert F; Mittal, Nitish; Siepmann, J Ilja; Tsapatsis, Michael; Snyder, Mark A; Fan, Wei; Saha, Basudeb; Vlachos, Dionisios G
2017-06-07
With technological advancement of thermocatalytic processes for valorizing renewable biomass carbon, development of effective separation technologies for selective recovery of bioproducts from complex reaction media and their purification becomes essential. The high thermal sensitivity of biomass intermediates and their low volatility and high reactivity, along with the use of dilute solutions, make the bioproducts separations energy intensive and expensive. Novel separation techniques, including solvent extraction in biphasic systems and reactive adsorption using zeolite and carbon sorbents, membranes, and chromatography, have been developed. In parallel with experimental efforts, multiscale simulations have been reported for predicting solvent selection and adsorption separation. We discuss various separations that are potentially valuable to future biorefineries and the factors controlling separation performance. Particular emphasis is given to current gaps and opportunities for future development.
2002-11-01
Treatment Plant”, TM-2123-ENV, April 1995. 3. Ford, K.H., 1996, “ Heavy Metal Adsorption/ Biosorption Studies for Zero Discharge Industrial Wastewater...SEPARATION, AND RECOVERY OF HEAVY METALS FROM INDUSTRIAL WASTESTREAMS USING MOLECULAR RECOGNITION TECHNOLOGY (MRT) Final Report by Dr. Katherine...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER DEMONSTRATION OF REMOVAL, SEPARATION, AND RECOVERY OF HEAVY METALS FROM INDUSTRIAL WASTEWATERS USING
Bialke, Martin; Rau, Henriette; Thamm, Oliver C; Schuldt, Ronny; Penndorf, Peter; Blumentritt, Arne; Gött, Robert; Piegsa, Jens; Bahls, Thomas; Hoffmann, Wolfgang
2018-01-25
In most research projects budget, staff and IT infrastructures are limiting resources. Especially for small-scale registries and cohort studies professional IT support and commercial electronic data capture systems are too expensive. Consequently, these projects use simple local approaches (e.g. Excel) for data capture instead of a central data management including web-based data capture and proper research databases. This leads to manual processes to merge, analyze and, if possible, pseudonymize research data of different study sites. To support multi-site data capture, storage and analyses in small-scall research projects, corresponding requirements were analyzed within the MOSAIC project. Based on the identified requirements, the Toolbox for Research was developed as a flexible software solution for various research scenarios. Additionally, the Toolbox facilitates data integration of research data as well as metadata by performing necessary procedures automatically. Also, Toolbox modules allow the integration of device data. Moreover, separation of personally identifiable information and medical data by using only pseudonyms for storing medical data ensures the compliance to data protection regulations. This pseudonymized data can then be exported in SPSS format in order to enable scientists to prepare reports and analyses. The Toolbox for Research was successfully piloted in the German Burn Registry in 2016 facilitating the documentation of 4350 burn cases at 54 study sites. The Toolbox for Research can be downloaded free of charge from the project website and automatically installed due to the use of Docker technology.
NASA Technical Reports Server (NTRS)
Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.
1992-01-01
The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.
ERIC Educational Resources Information Center
Howell, Byron Winter
2010-01-01
The purpose of this quantitative study was to assess the relationship between ethical project management and information technology (IT) project success. The success of IT projects is important for organizational success, but the rate of IT projects is historically low, costing billions of dollars annually. Using four key ethical variables…
NASA Technical Reports Server (NTRS)
Nguyen, Hung D.; Steele, Gynelle C.
2016-01-01
This report is intended to help NASA program and project managers incorporate Glenn Research Center Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR) technologies into NASA Human Exploration and Operations Mission Directorate (HEOMD) programs and projects. Other Government and commercial project managers can also find this useful. Introduction Incorporating Small Business Innovation Research (SBIR)-developed technology into NASA projects is important, especially given the Agency's limited resources for technology development. The SBIR program's original intention was for technologies that had completed Phase II to be ready for integration into NASA programs, however, in many cases there is a gap between Technology Readiness Levels (TRLs) 5 and 6 that needs to be closed. After SBIR Phase II projects are completed, the technology is evaluated against various parameters and a TRL rating is assigned. Most programs tend to adopt more mature technologies-at least TRL 6 to reduce the risk to the mission rather than adopt TRLs between 3 and 5 because those technologies are perceived as too risky. The gap between TRLs 5 and 6 is often called the "Valley of Death" (Figure 1), and historically it has been difficult to close because of a lack of funding support from programs. Several papers have already suggested remedies on how to close the gap (Refs. 1 to 4).
Murase, Noriaki; Murayama, Takehiko; Nishikizawa, Shigeo; Sato, Yuriko
2017-10-01
Many cities in Indonesia are under pressure to reduce solid waste and dispose of it properly. In response to this pressure, the Japan International Cooperation Agency and the Indonesian Government have implemented a solid waste separation and collection project to reduce solid waste in the target area (810 households) of Balikpapan City. We used a cluster randomised controlled trial method to measure the impact of awareness-raising activities that were introduced by the project on residents' organic solid waste separation behaviour. The level of properly separated organic solid waste increased by 6.0% in areas that conducted awareness-raising activities. Meanwhile, the level decreased by 3.6% in areas that did not conduct similar activities. Therefore, in relative comparison, awareness-raising increased the level by 9.6%. A comparison among small communities in the target area confirmed that awareness-raising activities had a significant impact on organic solid waste separation. High frequencies of monitoring at waste stations and door-to-door visits by community members had a positive impact on organic solid waste separation. A correlation between the proximity of environmental volunteers' houses to waste stations and a high level of separation was also confirmed. The awareness-raising activities introduced by the project led to a significant increase in the separation of organic solid waste.
Space science to the twenty-first century and the technological implications for implementation
NASA Technical Reports Server (NTRS)
Herman, D. H.
1979-01-01
The paper presents the specific plan for NASA space science missions to the 21st century and highlights the major technological advances that must be effected to accomplish the planned missions. Separate consideration is given to plans for astrophysics, planetary exploration, the solar terrestrial area, and life sciences. The technological consequences of the plans in these separate areas are discussed.
1989-08-30
year period in the following products: Technology Field Product New materials Composite materials Amorphous alloys Macromolecule separation...plastics 8. Composite materials B. Parts 9. Optical fiber 10. Semiconductor lasers 11. CCD 12. Semiconductor memory elements 13. Microcomputers...separation. Composite materials (containing carbon fiber) (1) Aerospace users required strict specifi cations for carbon fiber, resulting in
OECD/NEA Ongoing activities related to the nuclear fuel cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cornet, S.M.; McCarthy, K.; Chauvin, N.
2013-07-01
As part of its role in encouraging international collaboration, the OECD Nuclear Energy Agency is coordinating a series of projects related to the Nuclear Fuel Cycle. The Nuclear Science Committee (NSC) Working Party on Scientific Issues of the Nuclear Fuel Cycle (WPFC) comprises five different expert groups covering all aspects of the fuel cycle from front to back-end. Activities related to fuels, materials, physics, separation chemistry, and fuel cycles scenarios are being undertaken. By publishing state-of-the-art reports and organizing workshops, the groups are able to disseminate recent research advancements to the international community. Current activities mainly focus on advanced nuclearmore » systems, and experts are working on analyzing results and establishing challenges associated to the adoption of new materials and fuels. By comparing different codes, the Expert Group on Advanced Fuel Cycle Scenarios is aiming at gaining further understanding of the scientific issues and specific national needs associated with the implementation of advanced fuel cycles. At the back end of the fuel cycle, separation technologies (aqueous and pyrochemical processing) are being assessed. Current and future activities comprise studies on minor actinides separation and post Fukushima studies. Regular workshops are also organized to discuss recent developments on Partitioning and Transmutation. In addition, the Nuclear Development Committee (NDC) focuses on the analysis of the economics of nuclear power across the fuel cycle in the context of changes of electricity markets, social acceptance and technological advances and assesses the availability of the nuclear fuel and infrastructure required for the deployment of existing and future nuclear power. The Expert Group on the Economics of the Back End of the Nuclear Fuel Cycle (EBENFC), in particular, is looking at assessing economic and financial issues related to the long term management of spent nuclear fuel. (authors)« less
Smart and intelligent sensor payload project
2009-04-01
Engineers working on the smart and intelligent sensor payload project include (l to r): Ed Conley (NASA), Mark Mitchell (Jacobs Technology), Luke Richards (NASA), Robert Drackett (Jacobs Technology), Mark Turowski (Jacobs Technology) , Richard Franzl (seated, Jacobs Technology), Greg McVay (Jacobs Technology), Brianne Guillot (Jacobs Technology), Jon Morris (Jacobs Technology), Stephen Rawls (NASA), John Schmalzel (NASA) and Andrew Bracey (NASA).
Development of sanitation technologies in African context : how could we make it more sustainable?
NASA Astrophysics Data System (ADS)
Dakouré, M. S.; Traoré, M. B.; Sossou, S. K.; Maïga, A. H.
2017-03-01
Access to sanitation technologies remains one of the biggest challenges in sub-Saharan Africa. To overcome this gap, a sanitation project called “Ameli-EAUR” translated from French as improvement of water and sanitation in urban and rural areas, was implemented in Burkina Faso for 5 years (2010-2016). The technologies from the project were designed on the basis of agro-sanitation concept, leading to package containing a composting toilet, a grey water treatment facility and a set of urine collection and treatment. The study aimed to evaluate of Ameli-EAUR project, one year after the end, and identify some key factors of sustainability of technologies. As methodology, a survey and a technical diagnostic of implemented technologies were done. The results showed that, the pilot families stopped using all the technologies one year after the end of the project. However, two main lessons can be learnt: (1) in term of efficiency and effectiveness of the project the technology of composting toilet was not robust enough, leading to a rapid abandonment after the project (2) in term of impact and sustainability, the economic incentive of the resource oriented sanitation concept was very weak compared to the needed workload. The technologies development in this kind of project should be carried on and associated with a more inclusive system driven by economic incentive.
NASA Technical Reports Server (NTRS)
Wiegmann, Douglas A.a
2005-01-01
The NASA Aviation Safety Program (AvSP) has defined several products that will potentially modify airline and/or ATC operations, enhance aircraft systems, and improve the identification of potential hazardous situations within the National Airspace System (NAS). Consequently, there is a need to develop methods for evaluating the potential safety benefit of each of these intervention products so that resources can be effectively invested to produce the judgments to develop Bayesian Belief Networks (BBN's) that model the potential impact that specific interventions may have. Specifically, the present report summarizes methodologies for improving the elicitation of probability estimates during expert evaluations of AvSP products for use in BBN's. The work involved joint efforts between Professor James Luxhoj from Rutgers University and researchers at the University of Illinois. The Rutgers' project to develop BBN's received funding by NASA entitled "Probabilistic Decision Support for Evaluating Technology Insertion and Assessing Aviation Safety System Risk." The proposed project was funded separately but supported the existing Rutgers' program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-09-01
This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions;more » (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.« less
ERIC Educational Resources Information Center
Williamson, David J.
2011-01-01
The specific problem addressed in this study was the low success rate of information technology (IT) projects in the U.S. Due to the abstract nature and inherent complexity of software development, IT projects are among the most complex projects encountered. Most existing schools of project management theory are based on the rational systems…
Hydrogen Research at Florida Universities
NASA Technical Reports Server (NTRS)
Block, David L.; T-Raissi, Ali
2009-01-01
This final report describes the R&D activities and projects conducted for NASA under the 6-year NASA Hydrogen Research at Florida Universities grant program. Contained within this report are summaries of the overall activities, one-page description of all the reports funded under this program and all of the individual reports from each of the 29 projects supported by the effort. The R&D activities cover hydrogen technologies related to production, cryogenics, sensors, storage, separation processes, fuel cells, resource assessments and education. In the span of 6 years, the NASA Hydrogen Research at Florida Universities program funded a total of 44 individual university projects, and employed more than 100 faculty and over 100 graduate research students in the six participating universities. Researchers involved in this program have filed more than 20 patents in all hydrogen technology areas and put out over 220 technical publications in the last 2 years alone. This 6 year hydrogen research program was conducted by a consortium of six Florida universities: Florida International University (FIU) in Miami, Florida State University (FSU) and Florida A&M University (FAMU) in Tallahassee, University of Central Florida (UCF) in Orlando, University of South Florida (USF) in Tampa, and University of Florida (UF) in Gainesville. The Florida Solar Energy Center (FSEC) of the University of Central Florida managed the research activities of all consortium member universities except those at the University of Florida. This report does not include any of the programs or activities conducted at the University of Florida, but can be found in NASA/CR-2008-215440-PART 1-3.
EU Framework 6 Project: Predictive Toxicology (PredTox)-overview and outcome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suter, Laura, E-mail: Laura.suter-dick@roche.com; Schroeder, Susanne; Meyer, Kirstin
2011-04-15
In this publication, we report the outcome of the integrated EU Framework 6 Project: Predictive Toxicology (PredTox), including methodological aspects and overall conclusions. Specific details including data analysis and interpretation are reported in separate articles in this issue. The project, partly funded by the EU, was carried out by a consortium of 15 pharmaceutical companies, 2 SMEs, and 3 universities. The effects of 16 test compounds were characterized using conventional toxicological parameters and 'omics' technologies. The three major observed toxicities, liver hypertrophy, bile duct necrosis and/or cholestasis, and kidney proximal tubular damage were analyzed in detail. The combined approach ofmore » 'omics' and conventional toxicology proved a useful tool for mechanistic investigations and the identification of putative biomarkers. In our hands and in combination with histopathological assessment, target organ transcriptomics was the most prolific approach for the generation of mechanistic hypotheses. Proteomics approaches were relatively time-consuming and required careful standardization. NMR-based metabolomics detected metabolite changes accompanying histopathological findings, providing limited additional mechanistic information. Conversely, targeted metabolite profiling with LC/GC-MS was very useful for the investigation of bile duct necrosis/cholestasis. In general, both proteomics and metabolomics were supportive of other findings. Thus, the outcome of this program indicates that 'omics' technologies can help toxicologists to make better informed decisions during exploratory toxicological studies. The data support that hypothesis on mode of action and discovery of putative biomarkers are tangible outcomes of integrated 'omics' analysis. Qualification of biomarkers remains challenging, in particular in terms of identification, mechanistic anchoring, appropriate specificity, and sensitivity.« less
Neuroprotection trek--the next generation: the measurement is the message.
Andrews, Russell J
2005-08-01
Animal trials of many pharmacological neuroprotective agents have been quite successful, whereas trials in humans have been uniformly disappointing. A major difference between laboratory research in animals and clinical research in humans is the amount and/or quality of data obtained. The goal of this presentation is to argue that when clinical studies consist of more valid, objective data--that is, as our measurement capabilities in clinical research become as robust as they are in laboratory research--we are likely to gain new insights into both (1) injury to the nervous system and (2) neuroprotective treatment strategies. Technological advances (in data acquisition and analysis)--often novel even in the laboratory--will be the "scale" that will enable progress in measurement. As examples of such technological advances, two projects initiated at NASA Ames Research Center are cited. The NASA Smart Probe Project, with the goal of combining multiple microsensors and neural networks for real-time tissue identification (e.g., for tumor detection), has recently moved into the clinical realm, with a prototype being used to diagnose breast cancer in women "on the spot". The NASA Nanoelectrode Array Project has fabricated nanoscale devices that can simultaneously monitor electrical activity and neurotransmitter concentrations, while providing electrical stimulation focally and precisely (and potentially in a closed-loop fashion based on the input from the nanosensors). The large amounts of data that such techniques can acquire and analyze--separated spatially and temporally throughout the nervous system, if necessary--will provide insights not only into neuroprotective strategies, but also into the workings of the nervous system itself.
Baker-Barry Tunnel Lighting: Evaluation of a Potential GATEWAY Demonstrations Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuenge, Jason R.
2011-06-28
The U.S. Department of Energy is evaluating the Baker-Barry Tunnel as a potential GATEWAY Demonstrations project for deployment of solid-state lighting (SSL) technology. The National Park Service views this project as a possible proving ground and template for implementation of light-emitting diode (LED) luminaires in other tunnels, thereby expanding the estimated 40% energy savings from 132 MWh/yr to a much larger figure nationally. Most of the energy savings in this application is attributable to the instant-restrike capability of LED products and to their high tolerance for frequent on/off switching, used here to separately control either end of the tunnel duringmore » daytime hours. Some LED luminaires rival or outperform their high-intensity discharge (HID) counterparts in terms of efficacy, but options are limited, and smaller lumen packages preclude true one-for-one equivalence. However, LED products continue to improve in efficacy and affordability at a rate unmatched by other light source technologies; the estimated simple payback period of eight years (excluding installation costs and maintenance savings) can be expected to improve with time. The proposed revisions to the existing high-pressure sodium (HPS) lighting system would require slightly increased controls complexity and significantly increased luminaire types and quantities. In exchange, substantial annual savings (from reduced maintenance and energy use) would be complemented by improved quantity and quality of illumination. Although advanced lighting controls could offer additional savings, it is unclear whether such a system would prove cost-effective; this topic may be explored in future work.« less
Long Island Smart Energy Corridor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mui, Ming
The Long Island Power Authority (LIPA) has teamed with Stony Brook University (Stony Brook or SBU) and Farmingdale State College (Farmingdale or FSC), two branches of the State University of New York (SUNY), to create a “Smart Energy Corridor.” The project, located along the Route 110 business corridor on Long Island, New York, demonstrated the integration of a suite of Smart Grid technologies from substations to end-use loads. The Smart Energy Corridor Project included the following key features: -TECHNOLOGY: Demonstrated a full range of smart energy technologies, including substations and distribution feeder automation, fiber and radio communications backbone, advanced meteringmore » infrastructure (AM”), meter data management (MDM) system (which LIPA implemented outside of this project), field tools automation, customer-level energy management including automated energy management systems, and integration with distributed generation and plug-in hybrid electric vehicles. -MARKETING: A rigorous market test that identified customer response to an alternative time-of-use pricing plan and varying levels of information and analytical support. -CYBER SECURITY: Tested cyber security vulnerabilities in Smart Grid hardware, network, and application layers. Developed recommendations for policies, procedures, and technical controls to prevent or foil cyber-attacks and to harden the Smart Grid infrastructure. -RELIABILITY: Leveraged new Smart Grid-enabled data to increase system efficiency and reliability. Developed enhanced load forecasting, phase balancing, and voltage control techniques designed to work hand-in-hand with the Smart Grid technologies. -OUTREACH: Implemented public outreach and educational initiatives that were linked directly to the demonstration of Smart Grid technologies, tools, techniques, and system configurations. This included creation of full-scale operating models demonstrating application of Smart Grid technologies in business and residential settings. Farmingdale State College held three international conferences on energy and sustainability and Smart Grid related technologies and policies. These conferences, in addition to public seminars increased understanding and acceptance of Smart Grid transformation by the general public, business, industry, and municipalities in the Long Island and greater New York region. - JOB CREATION: Provided training for the Smart Grid and clean energy jobs of the future at both Farmingdale and Stony Brook. Stony Brook focused its “Cradle to Fortune 500” suite of economic development resources on the opportunities emerging from the project, helping to create new technologies, new businesses, and new jobs. To achieve these features, LIPA and its sub-recipients, FSC and SBU, each have separate but complementary objectives. At LIPA, the Smart Energy Corridor (1) meant validating Smart Grid technologies; (2) quantifying Smart Grid costs and benefits; and (3) providing insights into how Smart Grid applications can be better implemented, readily adapted, and replicated in individual homes and businesses. LIPA installed 2,550 AMI meters (exceeding the 500 AMI meters in the original plan), created three “smart” substations serving the Corridor, and installed additional distribution automation elements including two-way communications and digital controls over various feeders and capacitor banks. It gathered and analyzed customer behavior information on how they responded to a new “smart” TOU rate and to various levels of information and analytical tools.« less
The diversity and evolution of ecological and environmental citizen science.
Pocock, Michael J O; Tweddle, John C; Savage, Joanna; Robinson, Lucy D; Roy, Helen E
2017-01-01
Citizen science-the involvement of volunteers in data collection, analysis and interpretation-simultaneously supports research and public engagement with science, and its profile is rapidly rising. Citizen science represents a diverse range of approaches, but until now this diversity has not been quantitatively explored. We conducted a systematic internet search and discovered 509 environmental and ecological citizen science projects. We scored each project for 32 attributes based on publicly obtainable information and used multiple factor analysis to summarise this variation to assess citizen science approaches. We found that projects varied according to their methodological approach from 'mass participation' (e.g. easy participation by anyone anywhere) to 'systematic monitoring' (e.g. trained volunteers repeatedly sampling at specific locations). They also varied in complexity from approaches that are 'simple' to those that are 'elaborate' (e.g. provide lots of support to gather rich, detailed datasets). There was a separate cluster of entirely computer-based projects but, in general, we found that the range of citizen science projects in ecology and the environment showed continuous variation and cannot be neatly categorised into distinct types of activity. While the diversity of projects begun in each time period (pre 1990, 1990-99, 2000-09 and 2010-13) has not increased, we found that projects tended to have become increasingly different from each other as time progressed (possibly due to changing opportunities, including technological innovation). Most projects were still active so consequently we found that the overall diversity of active projects (available for participation) increased as time progressed. Overall, understanding the landscape of citizen science in ecology and the environment (and its change over time) is valuable because it informs the comparative evaluation of the 'success' of different citizen science approaches. Comparative evaluation provides an evidence-base to inform the future development of citizen science activities.
Clean Coal Technology Demonstration Program: Program Update 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assistant Secretary for Fossil Energy
1999-03-01
Annual report on the Clean Coal Technology Demonstration Program (CCT Program). The report address the role of the CCT Program, implementation, funding and costs, accomplishments, project descriptions, legislative history, program history, environmental aspects, and project contacts. The project descriptions describe the technology and provides a brief summary of the demonstration results.
Wireless Technology in the Library: The RIT Experience: Overview of the Project.
ERIC Educational Resources Information Center
Pitkin, Pat
2001-01-01
Provides an overview of a project at RIT (Rochester Institute of Technology) that experimented with wireless technology, including laptop computers that circulate within the library building. Discusses project requirements, including ease of use, low maintenance, and low cost; motivation, including mobility; implementation; and benefits to the…
An Examination of the Determinants of Top Management Support of Information Technology Projects
ERIC Educational Resources Information Center
Mahoney, Michael L.
2011-01-01
Despite compelling evidence that top management support promotes information technology project success, existing research fails to offer insight into the antecedents of top management support of such projects. This gap in the literature is significant since the exploitation of information technology offers organizations unique opportunities for…
The Early Childhood Interactive Technology Literacy Curriculum Project: A Final Report.
ERIC Educational Resources Information Center
Hutinger, Patricia; Robinsosn, Linda; Schneider, Carol; Johanson, Joyce
This final report describes the activities and outcomes of the Interactive Technology Literacy Curriculum (ITLC) project. This federally funded 5-year model demonstration project was designed to advance the availability, quality, use and effectiveness of computer technology in addressing the acquisition of emergent literacy among young children…
Collaborative Project-Based Learning: An Integrative Science and Technological Education Project
ERIC Educational Resources Information Center
Baser, Derya; Ozden, M. Yasar; Karaarslan, Hasan
2017-01-01
Background: Blending collaborative learning and project-based learning (PBL) based on Wolff (2003) design categories, students interacted in a learning environment where they developed their technology integration practices as well as their technological and collaborative skills. Purpose: The study aims to understand how seventh grade students…
FY2017 Electrification Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
During fiscal year 2017 (FY 2017), the U.S. Department of Energy (DOE) Vehicle Technologies Office (VTO) funded early stage research & development (R&D) projects that address Batteries and Electrification of the U.S. transportation sector. The VTO Electrification Sub-Program is composed of Electric Drive Technologies, and Grid Integration activities. The Electric Drive Technologies group conducts R&D projects that advance Electric Motors and Power Electronics technologies. The Grid and Charging Infrastructure group conducts R&D projects that advance Grid Modernization and Electric Vehicle Charging technologies. This document presents a brief overview of the Electrification Sub-Program and progress reports for its R&D projects. Eachmore » of the progress reports provide a project overview and highlights of the technical results that were accomplished in FY 2017.« less
Advanced Refrigerator/Freezer Technology Development. Technology Assessment
NASA Technical Reports Server (NTRS)
Gaseor, Thomas; Hunter, Rick; Hamill, Doris
1996-01-01
The NASA Lewis Research Center, through contract with Oceaneering Space Systems, is engaged in a project to develop advanced refrigerator/freezer (R/F) technologies for future Life and Biomedical Sciences space flight missions. The first phase of this project, a technology assessment, has been completed to identify the advanced R/F technologies needed and best suited to meet the requirements for the five R/F classifications specified by Life and Biomedical Science researchers. Additional objectives of the technology assessment were to rank those technologies based on benefit and risk, and to recommend technology development activities that can be accomplished within this project. This report presents the basis, the methodology, and results of the R/F technology assessment, along with technology development recommendations.
Advanced structures technology and aircraft safety
NASA Technical Reports Server (NTRS)
Mccomb, H. G., Jr.
1983-01-01
NASA research and development on advanced aeronautical structures technology related to flight safety is reviewed. The effort is categorized as research in the technology base and projects sponsored by the Aircraft Energy Efficiency (ACEE) Project Office. Base technology research includes mechanics of composite structures, crash dynamics, and landing dynamics. The ACEE projects involve development and fabrication of selected composite structural components for existing commercial transport aircraft. Technology emanating from this research is intended to result in airframe structures with improved efficiency and safety.
Conceptual model for collision detection and avoidance for runway incursion prevention
NASA Astrophysics Data System (ADS)
Latimer, Bridgette A.
The Federal Aviation Administration (FAA), National Transportation and Safety Board (NTSB), National Aeronautics and Space Administration (NASA), numerous corporate entities, and research facilities have each come together to determine ways to make air travel safer and more efficient. These efforts have resulted in the development of a concept known as the Next Generation (Next Gen) of Aircraft or Next Gen. The Next Gen concept promises to be a clear departure from the way in which aircraft operations are performed today. The Next Gen initiatives require that modifications are made to the existing National Airspace System (NAS) concept of operations, system level requirements, software (SW) and hardware (HW) requirements, SW and HW designs and implementations. A second example of the changes in the NAS is the shift away from air traffic controllers having the responsibility for separation assurance. In the proposed new scheme of free flight, each aircraft would be responsible for assuring that it is safely separated from surrounding aircraft. Free flight would allow the separation minima for enroute aircraft to be reduced from 2000 nautical miles (nm) to 1000 nm. Simply put "Free Flight is a concept of air traffic management that permits pilots and controllers to share information and work together to manage air traffic from pre-flight through arrival without compromising safety [107]." The primary goal of this research project was to create a conceptual model that embodies the essential ingredients needed for a collision detection and avoidance system. This system was required to operate in two modes: air traffic controller's perspective and pilot's perspective. The secondary goal was to demonstrate that the technologies, procedures, and decision logic embedded in the conceptual model were able to effectively detect and avoid collision risks from both perspectives. Embodied in the conceptual model are five distinct software modules: Data Acquisition, State Processor, Projection, Collision Detection, and Alerting and Resolution. The underlying algorithms in the Projection module are linear projection and Kalman filtering which are used to estimate the future state of the aircraft. The Resolution and Alerting module is comprised of two algorithms: a generic alerting algorithm and the potential fields algorithm [71]. The conceptual model was created using Enterprise Architect RTM and MATLAB RTM was used to code the methods and to simulate conflict scenarios.
2014-09-04
They included two Force Projection Technology (FPT) diesel driven pumping assemblies of 350 and 600 gallons per minute (GPM), and the Advanced...Army Tank Automotive Research Development and Engineering Center (TARDEC). They included two Force Projection Technology (FPT) diesel driven...research programs. The first two systems identified were Force Projection Technology (FPT) diesel -driven pumping assemblies of 350 and 600 gallons per
W.A. Parish Post Combustion CO 2 Capture and Sequestration Project Final Public Design Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armpriester, Anthony
The Petra Nova Project is a commercial scale post-combustion carbon dioxide capture project that is being developed by a joint venture between NRG Energy (NRG) and JX Nippon Oil and Gas Exploration (JX). The project is designed to separate and capture carbon dioxide from an existing coal-fired unit's flue gas slipstream at NRG's W.A. Parish Generation Station located southwest of Houston, Texas. The captured carbon dioxide will be transported by pipeline and injected into the West Ranch oil field to boost oil production. The project, which is partially funded by financial assistance from the U.S. Department of Energy will usemore » Mitsubishi Heavy Industries of America, Inc.'s Kansai Mitsubishi Carbon Dioxide Recovery (KM-CDR(R)) advanced amine-based carbon dioxide absorption technology to treat and capture at least 90% of the carbon dioxide from a 240 megawatt equivalent flue gas slipstream off of Unit 8 at W.A. Parish. The project will capture approximately 5,000 tons of carbon dioxide per day or 1.5 million tons per year that Unit 8 would otherwise emit, representing the largest commercial scale deployment of post-combustion carbon dioxide capture at a coal power plant to date. The joint venture issued full notice to proceed in July 2014 and when complete, the project is expected to be the world's largest post-combustion carbon dioxide capture facility on an existing coal plant. The detailed engineering is sufficiently complete to prepare and issue the Final Public Design Report.« less
Air Traffic Management Technology Demonstration-1 Concept of Operations (ATD-1 ConOps), Version 2.0
NASA Technical Reports Server (NTRS)
Baxley, Brian T.; Johnson, William C.; Swenson, Harry N.; Robinson, John E.; Prevot, Tom; Callantine, Todd J.; Scardina, John; Greene, Michael
2013-01-01
This document is an update to the operations and procedures envisioned for NASA s Air Traffic Management (ATM) Technology Demonstration #1 (ATD-1). The ATD-1 Concept of Operations (ConOps) integrates three NASA technologies to achieve high throughput, fuel-efficient arrival operations into busy terminal airspace. They are Traffic Management Advisor with Terminal Metering (TMA-TM) for precise time-based schedules to the runway and points within the terminal area, Controller-Managed Spacing (CMS) decision support tools for terminal controllers to better manage aircraft delay using speed control, and Flight deck Interval Management (FIM) avionics and flight crew procedures to conduct airborne spacing operations. The ATD-1 concept provides de-conflicted and efficient operations of multiple arrival streams of aircraft, passing through multiple merge points, from top-of-descent (TOD) to the Final Approach Fix. These arrival streams are Optimized Profile Descents (OPDs) from en route altitude to the runway, using primarily speed control to maintain separation and schedule. The ATD-1 project is currently addressing the challenges of integrating the three technologies, and their implantation into an operational environment. The ATD-1 goals include increasing the throughput of high-density airports, reducing controller workload, increasing efficiency of arrival operations and the frequency of trajectory-based operations, and promoting aircraft ADS-B equipage.
Interactive instruction of cellular physiology for remote learning.
Huang, C; Huang, H K
2003-12-01
The biomedical sciences are a rapidly changing discipline that have adapted to innovative technological advances. Despite these many advances, we face two major challenges: a) the number of experts in the field is vastly outnumbered by the number of students, many of whom are separated geographically or temporally and b) the teaching methods used to instruct students and learners have not changed. Today's students have adapted to technology--they use the web as a source of information and communicate via email and chat rooms. Teaching in the biomedical sciences should adopt these new information technologies (IT), but has thus far failed to capitalize on technological opportunity. Creating a "digital textbook" of the traditional learning material is not sufficient for dynamic processes such as cellular physiology. This paper describes innovative teaching techniques that incorporate familiar IT and high-quality interactive learning content with user-centric instruction design models. The Virtual Labs Project from Stanford University has created effective interactive online teaching modules in physiology (simPHYSIO) and delivered them over broadband networks to their undergraduate and medical students. Evaluation results of the modules are given as a measure of success of such innovative teaching method. This learning media strategically merges IT innovations with pedagogy to produce user-driven animations of processes and engaging interactive simulations.
NASA's ATM Technology Demonstration-1: Integrated Concept of Arrival Operations
NASA Technical Reports Server (NTRS)
Baxley, Brian T.; Swenson, Harry N.; Prevot, Thomas; Callantine, Todd J.
2012-01-01
This paper describes operations and procedures envisioned for NASA s Air Traffic Management (ATM) Technology Demonstration #1 (ATD-1). The ATD-1 Concept of Operations (ConOps) demonstration will integrate three NASA technologies to achieve high throughput, fuel-efficient arrival operations into busy terminal airspace. They are Traffic Management Advisor with Terminal Metering (TMA-TM) for precise time-based schedules to the runway and points within the terminal area, Controller-Managed Spacing (CMS) decision support tools for terminal controllers to better manage aircraft delay using speed control, and Flight deck Interval Management (FIM) avionics and flight crew procedures to conduct airborne spacing operations. The ATD-1 concept provides de-conflicted and efficient operations of multiple arrival streams of aircraft, passing through multiple merge points, from top-of-descent (TOD) to touchdown. It also enables aircraft to conduct Optimized Profile Descents (OPDs) from en route altitude to the runway, using primarily speed control to maintain separation and schedule. The ATD-1 project is currently addressing the challenges of integrating the three technologies, and implantation into an operational environment. Goals of the ATD-1 demonstration include increasing the throughput of high-density airports, reducing controller workload, increasing efficiency of arrival operations and the frequency of trajectory-based operations, and promoting aircraft ADS-B equipage.
Integrating remediation and resource recovery: On the economic conditions of landfill mining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frändegård, Per, E-mail: per.frandegard@liu.se; Krook, Joakim; Svensson, Niclas
Highlights: • We compare two remediation scenarios; one with resource recovery and one without. • Economic analysis includes relevant direct costs and revenues for the landfill owner. • High degrees of metal and/or combustible contents are important economic factors. • Landfill tax and the access to a CHP can have a large impact on the result. • Combining landfill mining and remediation may decrease the project cost. - Abstract: This article analyzes the economic potential of integrating material separation and resource recovery into a landfill remediation project, and discusses the result and the largest impact factors. The analysis is donemore » using a direct costs/revenues approach and the stochastic uncertainties are handled using Monte Carlo simulation. Two remediation scenarios are applied to a hypothetical landfill. One scenario includes only remediation, while the second scenario adds resource recovery to the remediation project. Moreover, the second scenario is divided into two cases, case A and B. In case A, the landfill tax needs to be paid for re-deposited material and the landfill holder does not own a combined heat and power plant (CHP), which leads to disposal costs in the form of gate fees. In case B, the landfill tax is waived on the re-deposited material and the landfill holder owns its own CHP. Results show that the remediation project in the first scenario costs about €23/ton. Adding resource recovery as in case A worsens the result to −€36/ton, while for case B the result improves to −€14/ton. This shows the importance of landfill tax and the access to a CHP. Other important factors for the result are the material composition in the landfill, the efficiency of the separation technology used, and the price of the saleable material.« less
Hydrogen tomorrow: Demands and technology requirements
NASA Technical Reports Server (NTRS)
1975-01-01
National needs for hydrogen are projected and the technologies of production, handling, and utilization are evaluated. Research and technology activities required to meet the projected needs are determined.
7 CFR 2.24 - Assistant Secretary for Administration.
Code of Federal Regulations, 2014 CFR
2014-01-01
... determining whether to continue, modify, or terminate an information technology program or project. (iii..., computer conferencing, televideo technologies, and other applications of office automation technology which... information technology system project managers in accordance with OMB policies. (D) Providing recommendations...
ERIC Educational Resources Information Center
Dintzner, Matthew R.; Kinzie, Charles R.; Pulkrabek, Kimberly A.; Arena, Anthony F.
2011-01-01
SIPCAn, an acronym for separation, isolation, purification, characterization, and analysis, is presented as a one-term, integrated project for the first-term undergraduate organic laboratory course. Students are assigned two mixtures of unknown organic compounds--a mixture of two liquid compounds and a mixture of two solid compounds--at the…
ERTS-1, a new window on our planet
Williams, Richard S.; Carter, William Douglas
1976-01-01
The launch, on July 23, 1972, of the first Earth Resources Technology Satellite (ERTS-1) by the National Aeronautics and Space Administration was a major step forward in extending man 's ability to inventory the Earth 's resources and to evaluate objectively his impact upon the environment. ERTS spacecraft represent the first step in merging space and remote-sensing technologies into a system for inventorying and managing the Earth 's resources. Examples presented in this book demonstrate ERTS ' vast potential for inventorying resources, monitoring environmental conditions, and measuring changes. Such information is essential for the full evaluation of the Federal lands and determining their future use, as well as for improved planning of overall land use throughout the United States and the world. Ten bureaus of the U.S. Department of Interior have roles in the ERTS project. Nearly all of these participating bureaus are represented in almost 100 papers included in this book. Chapter 3 is entitled ' Applications to Water Resources ' and contains 23 separate sections. (Woodard-USGS)
The thermodynamic scale of inorganic crystalline metastability
Sun, Wenhao; Dacek, Stephen T.; Ong, Shyue Ping; Hautier, Geoffroy; Jain, Anubhav; Richards, William D.; Gamst, Anthony C.; Persson, Kristin A.; Ceder, Gerbrand
2016-01-01
The space of metastable materials offers promising new design opportunities for next-generation technological materials, such as complex oxides, semiconductors, pharmaceuticals, steels, and beyond. Although metastable phases are ubiquitous in both nature and technology, only a heuristic understanding of their underlying thermodynamics exists. We report a large-scale data-mining study of the Materials Project, a high-throughput database of density functional theory–calculated energetics of Inorganic Crystal Structure Database structures, to explicitly quantify the thermodynamic scale of metastability for 29,902 observed inorganic crystalline phases. We reveal the influence of chemistry and composition on the accessible thermodynamic range of crystalline metastability for polymorphic and phase-separating compounds, yielding new physical insights that can guide the design of novel metastable materials. We further assert that not all low-energy metastable compounds can necessarily be synthesized, and propose a principle of ‘remnant metastability’—that observable metastable crystalline phases are generally remnants of thermodynamic conditions where they were once the lowest free-energy phase. PMID:28138514
NASA pyrotechnically actuated systems program
NASA Technical Reports Server (NTRS)
Schulze, Norman R.
1993-01-01
The Office of Safety and Mission Quality initiated a Pyrotechnically Actuated Systems (PAS) Program in FY-92 to address problems experienced with pyrotechnically actuated systems and devices used both on the ground and in flight. The PAS Program will provide the technical basis for NASA's projects to incorporate new technological developments in operational systems. The program will accomplish that objective by developing/testing current and new hardware designs for flight applications and by providing a pyrotechnic data base. This marks the first applied pyrotechnic technology program funded by NASA to address pyrotechnic issues. The PAS Program has been structured to address the results of a survey of pyrotechnic device and system problems with the goal of alleviating or minimizing their risks. Major program initiatives include the development of a Laser Initiated Ordnance System, a pyrotechnic systems data base, NASA Standard Initiator model, a NASA Standard Linear Separation System and a NASA Standard Gas Generator. The PAS Program sponsors annual aerospace pyrotechnic systems workshops.
Hegde, Maruti; Meenakshisundaram, Viswanath; Chartrain, Nicholas; Sekhar, Susheel; Tafti, Danesh; Williams, Christopher B; Long, Timothy E
2017-08-01
High-performance, all-aromatic, insoluble, engineering thermoplastic polyimides, such as pyromellitic dianhydride and 4,4'-oxydianiline (PMDA-ODA) (Kapton), exhibit exceptional thermal stability (up to ≈600 °C) and mechanical properties (Young's modulus exceeding 2 GPa). However, their thermal resistance, which is a consequence of the all-aromatic molecular structure, prohibits processing using conventional techniques. Previous reports describe an energy-intensive sintering technique as an alternative technique for processing polyimides with limited resolution and part fidelity. This study demonstrates the unprecedented 3D printing of PMDA-ODA using mask-projection stereolithography, and the preparation of high-resolution 3D structures without sacrificing bulk material properties. Synthesis of a soluble precursor polymer containing photo-crosslinkable acrylate groups enables light-induced, chemical crosslinking for spatial control in the gel state. Postprinting thermal treatment transforms the crosslinked precursor polymer to PMDA-ODA. The dimensional shrinkage is isotropic, and postprocessing preserves geometric integrity. Furthermore, large-area mask-projection scanning stereolithography demonstrates the scalability of 3D structures. These unique high-performance 3D structures offer potential in fields ranging from water filtration and gas separation to automotive and aerospace technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Technologies for Decreasing Mining Losses
NASA Astrophysics Data System (ADS)
Valgma, Ingo; Väizene, Vivika; Kolats, Margit; Saarnak, Martin
2013-12-01
In case of stratified deposits like oil shale deposit in Estonia, mining losses depend on mining technologies. Current research focuses on extraction and separation possibilities of mineral resources. Selective mining, selective crushing and separation tests have been performed, showing possibilities of decreasing mining losses. Rock crushing and screening process simulations were used for optimizing rock fractions. In addition mine backfilling, fine separation, and optimized drilling and blasting have been analyzed. All tested methods show potential and depend on mineral usage. Usage in addition depends on the utilization technology. The questions like stability of the material flow and influences of the quality fluctuations to the final yield are raised.
This document is the final report for EPA's Mine WAste Technology Program (MWTP) Activity III, Project 20--Selenium Treatment/Removal Alternatives Demonstration project. Selenium contamination originates from many sources including mining operations, mineral processing, abandoned...
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Saiyed, Naseem H.; Swith, Marion Shayne
2005-01-01
When United States President George W. Bush announced the Vision for Space Exploration in January 2004, twelve propulsion and launch system projects were being pursued in the Next Generation Launch Technology (NGLT) Program. These projects underwent a review for near-term relevance to the Vision. Subsequently, five projects were chosen as advanced development projects by NASA s Exploration Systems Mission Directorate (ESMD). These five projects were Auxiliary Propulsion, Integrated Powerhead Demonstrator, Propulsion Technology and Integration, Vehicle Subsystems, and Constellation University Institutes. Recently, an NGLT effort in Vehicle Structures was identified as a gap technology that was executed via the Advanced Development Projects Office within ESMD. For all of these advanced development projects, there is an emphasis on producing specific, near-term technical deliverables related to space transportation that constitute a subset of the promised NGLT capabilities. The purpose of this paper is to provide a brief description of the relevancy review process and provide a status of the aforementioned projects. For each project, the background, objectives, significant technical accomplishments, and future plans will be discussed. In contrast to many of the current ESMD activities, these areas are providing hardware and testing to further develop relevant technologies in support of the Vision for Space Exploration.
Oxygen production using solid-state zirconia electrolyte technology
NASA Technical Reports Server (NTRS)
Suitor, Jerry W.; Clark, Douglas J.
1991-01-01
High purity oxygen is required for a number of scientific, medical, and industrial applications. Traditionally, these needs have been met by cryogenic distillation or pressure swing adsorption systems designed to separate oxygen from air. Oxygen separation from air via solid-state zirconia electrolyte technology offers an alternative to these methods. The technology has several advantages over the traditional methods, including reliability, compactness, quiet operation, high purity output, and low power consumption.
Membrane Technology: Opportunities for Polyhedral Oligomeric Silsesquioxanes (POSS?) in Membrane-Based Separations
Leland M. Vane, Ph.D.
U.S. Environmental Protection Agency
Office of Research & Development
Cincinnati, OH 45268
Vane.Leland@epa.gov
A sign...
NASA Astrophysics Data System (ADS)
Venkrbec, Vaclav; Bittnerova, Lucie
2017-12-01
Building information modeling (BIM) can support effectiveness during many activities in the AEC industry. even when processing a construction-technological project. This paper presents an approach how to use building information model in higher education, especially during the work on diploma thesis and it supervision. Diploma thesis is project based work, which aims to compile a construction-technological project for a selected construction. The paper describes the use of input data, working with them and compares this process with standard input data such as printed design documentation. The effectiveness of using the building information model as a input data for construction-technological project is described in the conclusion.
Information Technology Team Projects in Higher Education: An International Viewpoint
ERIC Educational Resources Information Center
Lynch, Kathy; Heinze, Aleksej; Scott, Elsje
2007-01-01
It is common to find final or near final year undergraduate Information Technology students undertaking a substantial development project; a project where the students have the opportunity to be fully involved in the analysis, design, and development of an information technology service or product. This involvement has been catalyzed and prepared…
Projecting technological change
Kenneth E. Skog
2007-01-01
Improving efficiency in the use of both wood and nonwood inputs has characterized the US forest sector over the last 50 years. This chapter explores methods used to reflect this pattern of technological change and others in the Timber Assessment Projection System models. The development and use of three types of technology projection methods are explained: (1)...
E-Learning and the Use of New Technologies in the "Kolumbus-Kids" Project in Germany
ERIC Educational Resources Information Center
Wegner, Claas; Homann, Wiebke; Strehlke, Friederike; Borgmann, Annika
2014-01-01
This article presents the science project "Kolumbus-Kids" as an example of the innovative use of "E-Learning" and other "new technologies" to advance student learning and new-media education. The project benefits from various technology-based education strategies and E-Learning scenarios which are employed during the…
ERIC Educational Resources Information Center
Yu, Wei
2013-01-01
This dissertation applied the quantitative approach to the data gathered from online survey questionnaires regarding the three objects: Information Technology (IT) Portfolio Management, IT-Business Alignment, and IT Project Deliverables. By studying this data, this dissertation uncovered the underlying relationships that exist between the…
The AECT HistoryMakers Project: Conversations with Leaders in Educational Technology
ERIC Educational Resources Information Center
Lockee, Barbara B.; Song, Kibong; Li, Wei
2014-01-01
The early beginnings and evolution of the field of educational technology (ET) have been documented by various scholars in the field. Recently, another form of historical documentation has been undertaken through a project of the Association for Educational Communications and Technology (AECT). The AECT HistoryMakers Project is a collaborative…
ERIC Educational Resources Information Center
Romeu, Jorge Luis
2008-01-01
This article discusses our teaching approach in graduate level Engineering Statistics. It is based on the use of modern technology, learning groups, contextual projects, simulation models, and statistical and simulation software to entice student motivation. The use of technology to facilitate group projects and presentations, and to generate,…
NASA Technical Reports Server (NTRS)
Cassell, Rick; Smith, Alex; Connors, Mary; Wojciech, Jack; Rosekind, Mark R. (Technical Monitor)
1996-01-01
As new technologies and procedures are introduced into the National Airspace System, whether they are intended to improve efficiency, capacity, or safety level, the quantification of potential changes in safety levels is of vital concern. Applications of technology can improve safety levels and allow the reduction of separation standards. An excellent example is the Precision Runway Monitor (PRM). By taking advantage of the surveillance and display advances of PRM, airports can run instrument parallel approaches to runways separated by 3400 feet with the same level of safety as parallel approaches to runways separated by 4300 feet using the standard technology. Despite a wealth of information from flight operations and testing programs, there is no readily quantifiable relationship between numerical safety levels and the separation standards that apply to aircraft on final approach. This paper presents a modeling approach to quantify the risk associated with reducing separation on final approach. Reducing aircraft separation, both laterally and longitudinally, has been the goal of several aviation R&D programs over the past several years. Many of these programs have focused on technological solutions to improve navigation accuracy, surveillance accuracy, aircraft situational awareness, controller situational awareness, and other technical and operational factors that are vital to maintaining flight safety. The risk assessment model relates different types of potential aircraft accidents and incidents and their contribution to overall accident risk. The framework links accident risks to a hierarchy of failsafe mechanisms characterized by procedures and interventions. The model will be used to assess the overall level of safety associated with reducing separation standards and the introduction of new technology and procedures, as envisaged under the Free Flight concept. The model framework can be applied to various aircraft scenarios, including parallel and in-trail approaches. This research was performed under contract to NASA and in cooperation with the FAA's Safety Division (ASY).
NASA technology utilization applications. [transfer of medical sciences
NASA Technical Reports Server (NTRS)
1973-01-01
The work is reported from September 1972 through August 1973 by the Technology Applications Group of the Science Communication Division (SCD), formerly the Biological Sciences Communication Project (BSCP) in the Department of Medical and Public Affairs of the George Washington University. The work was supportive of many aspects of the NASA Technology Utilization program but in particular those dealing with Biomedical and Technology Application Teams, Applications Engineering projects, new technology reporting and documentation and transfer activities. Of particular interest are detailed reports on the progress of various hardware projects, and suggestions and criteria for the evaluation of candidate hardware projects. Finally some observations about the future expansion of the TU program are offered.
[Earth Science Technology Office's Computational Technologies Project
NASA Technical Reports Server (NTRS)
Fischer, James (Technical Monitor); Merkey, Phillip
2005-01-01
This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.
7 CFR 2.89 - Chief Information Officer.
Code of Federal Regulations, 2011 CFR
2011-01-01
... continue, modify, or terminate an information technology program or project. (3) Provide advice and other..., computer conferencing, televideo technologies, and other applications of office automation technology which... technology system project managers in accordance with OMB policies. (iv) Providing recommendations to Agency...
7 CFR 2.89 - Chief Information Officer.
Code of Federal Regulations, 2012 CFR
2012-01-01
... continue, modify, or terminate an information technology program or project. (3) Provide advice and other..., computer conferencing, televideo technologies, and other applications of office automation technology which... technology system project managers in accordance with OMB policies. (iv) Providing recommendations to Agency...
Building Technological Capability within Satellite Programs in Developing Countries
NASA Astrophysics Data System (ADS)
Wood, Danielle Renee
Global participation in space activity is growing as satellite technology matures and spreads. Countries in Africa, Asia and Latin America are creating or reinvigorating national satellite programs. These countries are building local capability in space through technological learning. They sometimes pursue this via collaborative satellite development projects with foreign firms that provide training. This phenomenon of collaborative satellite development projects is poorly understood by researchers of technological learning and technology transfer. The approach has potential to facilitate learning, but there are also challenges due to misaligned incentives and the tacit nature of the technology. Perspectives from literature on Technological Learning, Technology Transfer, Complex Product Systems and Product Delivery provide useful but incomplete insight for decision makers in such projects. This work seeks a deeper understanding of capability building through collaborative technology projects by conceiving of the projects as complex, socio-technical systems with architectures. The architecture of a system is the assignment of form to execute a function along a series of dimensions. The research questions explore the architecture of collaborative satellite projects, the nature of capability building during such projects, and the relationship between architecture and capability building. The research design uses inductive, exploratory case studies to investigate six collaborative satellite development projects. Data collection harnesses international field work driven by interviews, observation, and documents. The data analysis develops structured narratives, architectural comparison and capability building assessment. The architectural comparison reveals substantial variation in project implementation, especially in the areas of project initiation, technical specifications of the satellite, training approaches and the supplier selection process. The individual capability building assessment shows that most trainee engineers gradually progressed from no experience with satellites through theoretical training to supervised experience; a minority achieved independent experience. At the organizational level, the emerging space organizations achieved high levels of autonomy in project definition and satellite operation, but they were dependent on foreign firms for satellite design, manufacture, test and launch. The case studies can be summarized by three archetypal projects defined as "Politically Pushed," "Structured," and "Risk Taking." Countries in the case studies tended to start in a Politically Pushed mode, and then moved into either Structured or Risk Taking mode. Decision makers in emerging satellite programs can use the results of this dissertation to consider the broad set of architectural options for capability building. Future work will continue to probe how specific architectural decisions impact capability building outcomes in satellite projects and other technologies. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)
NASA Astrophysics Data System (ADS)
Yang, Changqiao; Li, Suqin; Guo, Zijie; Kong, Jiawei
2017-12-01
Magnetic separation technology is playing an increasingly important role in the field of environmental protection such as waste gas, waste water and solid waste treatment. As a new type of solid waste treatment technology, superconducting high gradient magnetic separation (HGMS) is mainly applied in the separation of micro-fine weakly magnetic particles because of the advantages of high separation efficiency, energy saving, simple equipment and easy automation. In this paper, the basic principle of superconducting HGMS was firstly introduced, then the research status of scholars at home and aboard on the disposal of micro-fine tailings were summarized. Finally, the direction of development for HGMS was put forward.
A Study on Advanced Lithium-Based Battery Cell Chemistries to Enhance Lunar Exploration Missions
NASA Technical Reports Server (NTRS)
Reid, Concha; Bennett, William
2009-01-01
NASA's Exploration Technology Development Program (ETDP) Energy Storage Project conducted an advanced lithium-based battery chemistry feasibility study to determine the best advanced chemistry to develop for the Altair lunar lander and the Extravehicular Activities (EVA) advanced lunar surface spacesuit. These customers require safe, reliable energy storage systems with extremely high specific energy as compared to today's state-of-the-art batteries. Based on customer requirements, the specific energy goals for the development project are 220 watt-hours per kilogram (Wh/kg) delivered at the battery level at 0 degrees Celsius (degrees Celcius) at a C/10 discharge rate. Continuous discharge rates between C/5 and C/2, operation over 0 to 30 degrees C, and 200 cycles are targeted. The team, consisting of members from NASA Glenn Research Center, Johnson Space Center, and Jet Propulsion laboratory, surveyed the literature, compiled information on recent materials developments, and consulted with other battery experts in the community to identify advanced battery materials that might be capable of achieving the desired results with further development. A variety of electrode materials were considered, including layered metal oxides, spinel oxides, and olivine-type cathode materials, and lithium metal, lithium alloy, and silicon-based composite anode materials. lithium-sulfur systems were also considered. Hypothetical cell constructs that combined compatible anode and cathode materials with suitable electrolytes, separators, current collectors, headers, and cell enclosures were modeled. While some of these advanced materials are projected to obtain the desired electrical performance, there are risks that also factored into the decision making process. The risks include uncertainties due to issues such as safety of a system containing some of these materials, ease of scaling-up of large batches of raw materials, adaptability of the materials to processing using established or reasonable cost manufacturing techniques, manufacturability of the materials in dimensions required for integration into battery cells of practical capacities, low Technology Readiness levels (TRl), and the ability to achieve the desired performance by the customer need dates. The advanced cell chemistry options were evaluated with respect to multiple quantitative and qualitative attributes while considering their projected performance at the end of the available development timeframe. Following a rigorous ranking process, a chemistry that combines a lithiated nickel manganese cobalt oxide (lithium NMC) cathode with a silicon-based composite anode was selected as the technology that can offer the best combination of safety, specific energy, energy density, and likelihood of success. Tasks over the next three years will focus on development of electrode materials, compatible electrolytes, and separator materials, and integration of promising components to assess their combined performance in working cells. Cells of the chosen chemistry will be developed to TRl 6 by 2014 and will then be transferred to the customers for infusion into their mission paths.
An Innovative Project in Educational Technology: The Panama-Venezuela Project.
ERIC Educational Resources Information Center
Rojas, Alicia Mabel
1980-01-01
Describes a project which is being implemented in the field of educational technology in Panama and Venezuela. The project emphasizes inservice training of a cadre of professionals who will direct efforts to identify and resolve significant problems in education. (Author/CHC)
Information Technology Project Processes: Understanding the Barriers to Improvement and Adoption
ERIC Educational Resources Information Center
Williams, Bernard L.
2009-01-01
Every year, organizations lose millions of dollars due to IT (Information Technology) project failures. Over time, organizations have developed processes and procedures to help reduce the incidence of challenged IT projects. Research has shown that IT project processes can work to help reduce the number of challenged projects. The research in this…
NASA Technical Reports Server (NTRS)
Gibbel, Mark; Bellamy, Marvin; DeSantis, Charlie; Hess, John; Pattok, Tracy; Quintero, Andrew; Silver, R.
1996-01-01
ESS 2000 has the vision of enhancing the knowledge necessary to implement cost-effective, leading-edge ESS technologies and procedures in order to increase U.S. electronics industry competitiveness. This paper defines EES and discusses the factors driving the project, the objectives of the project, its participants, the three phases of the project, the technologies involved, and project deliverables.
A Synthesis and Survey of Critical Success Factors for Computer Technology Projects
ERIC Educational Resources Information Center
Baker, Ross A.
2012-01-01
The author investigated the existence of critical success factors for computer technology projects. Current research literature and a survey of experienced project managers indicate that there are 23 critical success factors (CSFs) that correlate with project success. The survey gathered an assessment of project success and the degree to which…
Electric energy savings from new technologies. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrer, B.J.; Kellogg, M.A.; Lyke, A.J.
1986-09-01
Purpose of the report is to provide information about the electricity-saving potential of new technologies to OCEP that it can use in developing alternative long-term projections of US electricity consumption. Low-, base-, and high-case scenarios of the electricity savings for 10 technologies were prepared. The total projected annual savings for the year 2000 for all 10 technologies were 137 billion kilowatt hours (BkWh), 279 BkWh, and 470 BkWh, respectively, for the three cases. The magnitude of these savings projections can be gauged by comparing them to the Department's reference case projection for the 1985 National Energy Policy Plan. In themore » Department's reference case, total consumption in 2000 is projected to be 3319 BkWh. Because approximately 75% of the base-case estimate of savings are already incorporated into the reference projection, only 25% of the savings estimated here should be subtracted from the reference projection for analysis purposes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crolley, R.; Thompson, M.
There has been a need for a faster and cheaper deployment model for information technology (IT) solutions to address waste management needs at US Department of Energy (DOE) complex sites for years. Budget constraints, challenges in deploying new technologies, frequent travel, and increased job demands for existing employees have prevented IT organizations from staying abreast of new technologies or deploying them quickly. Despite such challenges, IT organizations have added significant value to waste management handling through better worker safety, tracking, characterization, and disposition at DOE complex sites. Systems developed for site-specific missions have broad applicability to waste management challenges andmore » in many cases have been expanded to meet other waste missions. Radio frequency identification (RFID) and global positioning satellite (GPS)-enabled solutions have reduced the risk of radiation exposure and safety risks. New web-based and mobile applications have enabled precision characterization and control of nuclear materials. These solutions have also improved operational efficiencies and shortened schedules, reduced cost, and improved regulatory compliance. Collaboration between US Department of Energy (DOE) complex sites is improving time to delivery and cost efficiencies for waste management missions with new information technologies (IT) such as wireless computing, global positioning satellite (GPS), and radio frequency identification (RFID). Integrated solutions developed at separate DOE complex sites by new technology Centers of Excellence (CoE) have increased material control and accountability, worker safety, and environmental sustainability. CoEs offer other DOE sister sites significant cost and time savings by leveraging their technology expertise in project scoping, implementation, and ongoing operations.« less
NASA Technical Reports Server (NTRS)
Reynolds, Thomas L.; Eklund, Thor I.; Haack, Gregory A.
2001-01-01
This purpose of this contract study task was to investigate the State of the Art in Gas Separation Technologies utilized for separating air into both nitrogen and oxygen gases for potential applications on commercial aircraft. The intended applications included: nitrogen gas for fuel tank inerting, cargo compartment fire protection, and emergency oxygen for passenger and crew use in the event of loss of cabin pressure. The approach was to investigate three principle methods of gas separation: Hollow Fiber Membrane (HFM), Ceramic Membrane (CM), and liquefaction: Total Atmospheric Liquefaction of Oxygen and Nitrogen (TALON). Additional data on the performance of molecular sieve pressure swing adsorption (PSA) systems was also collected and discussed. Performance comparisons of these technologies are contained in the body of the report.
NASA Technical Reports Server (NTRS)
Comstock, James R., Jr.; Ghatas, Rania W.; Vincent, Michael J.; Consiglio, Maria C.; Munoz, Cesar; Chamberlain, James P.; Volk, Paul; Arthur, Keith E.
2016-01-01
The Federal Aviation Administration (FAA) has been mandated by the Congressional funding bill of 2012 to open the National Airspace System (NAS) to Unmanned Aircraft Systems (UAS). With the growing use of unmanned systems, NASA has established a multi-center "UAS Integration in the NAS" Project, in collaboration with the FAA and industry, and is guiding its research efforts to look at and examine crucial safety concerns regarding the integration of UAS into the NAS. Key research efforts are addressing requirements for detect-and-avoid (DAA), self-separation (SS), and collision avoidance (CA) technologies. In one of a series of human-in-the-loop experiments, NASA Langley Research Center set up a study known as Collision Avoidance, Self-Separation, and Alerting Times (CASSAT). The first phase assessed active air traffic controller interactions with DAA systems and the second phase examined reactions to the DAA system and displays by UAS Pilots at a simulated ground control station (GCS). Analyses of the test results from Phase I and Phase II are presented in this paper. Results from the CASSAT study and previous human-in-the-loop experiments will play a crucial role in the FAA's establishment of rules, regulations, and procedures to safely, efficiently, and effectively integrate UAS into the NAS.
Li, Jia; Gao, Bei; Xu, Zhenming
2014-05-06
New recycling technologies have been developed lately to enhance the value of the fiberglass powder-resin powder fraction (FRP) from waste printed circuit boards. The definite aim of the present paper is to present some novel methods that use the image forces for the separation of the resin powder and fiberglass powder generated from FRP during the corona electrostatic separating process. The particle shape charactization and particle trajectory simulation were performed on samples of mixed non-metallic particles. The simulation results pointed out that particles of resin powder and particles of fiberglass powder had different detach trajectories at the conditions of the same size and certain device parameters. An experiment carried out using a corona electrostatic separator validated the possibility of sorting these particles based on the differences in their shape characteristics. The differences in the physical properties of the different types of particles provided the technical basis for the development of electrostatic separation technologies for the recycling industry.
Membrane bioreactors' potential for ethanol and biogas production: a review.
Ylitervo, Päivi; Akinbomia, Julius; Taherzadeha, Mohammad J
2013-01-01
Companies developing and producing membranes for different separation purposes, as well as the market for these, have markedly increased in numbers over the last decade. Membrane and separation technology might well contribute to making fuel ethanol and biogas production from lignocellulosic materials more economically viable and productive. Combining biological processes with membrane separation techniques in a membrane bioreactor (MBR) increases cell concentrations extensively in the bioreactor. Such a combination furthermore reduces product inhibition during the biological process, increases product concentration and productivity, and simplifies the separation of product and/or cells. Various MBRs have been studied over the years, where the membrane is either submerged inside the liquid to be filtered, or placed in an external loop outside the bioreactor. All configurations have advantages and drawbacks, as reviewed in this paper. The current review presents an account of the membrane separation technologies, and the research performed on MBRs, focusing on ethanol and biogas production. The advantages and potentials of the technology are elucidated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jia
Biorefineries convert biomass into many useful intermediates. For bio-based products to be used for fuel, energy, chemical, and many other applications, water needs to be removed from these aqueous products. Membrane separation technologies can significantly reduce separation energy consumption compared with conventional separation processes such as distillation. Nanoporous inorganic membranes have superior pervaporation performance with excellent organic fouling resistance. However, their commercial applications are limited due to high membrane costs and poor production reproducibility. A novel cost-effective inorganic membrane fabrication technology has been developed with low cost materials and using an advanced membrane fabrication technology. Low cost precursor material formulationmore » was successfully developed with desired material properties for membrane fabrication. An advanced membrane fabrication process was developed using the novel membrane materials to enable the fabrication of separation membranes of various geometries. The structural robustness and separation performance of the low cost inorganic membranes were evaluated. The novel inorganic membranes demonstrated high structural integrity and were effective in pervaporation removal of water.« less
Advanced component technologies for energy-efficient turbofan engines
NASA Technical Reports Server (NTRS)
Saunders, N. T.
1980-01-01
The paper reviews NASA's Energy Efficient Engine Project which was initiated to provide the advanced technology base for a new generation of fuel-conservative engines for introduction into airline service by the late 1980s. Efforts in this project are directed at advancing engine component and systems technologies to a point of demonstrating technology-readiness by 1984. Early results indicate high promise in achieving most of the goals established in the project.
Material review of Li ion battery separators
NASA Astrophysics Data System (ADS)
Weber, Christoph J.; Geiger, Sigrid; Falusi, Sandra; Roth, Michael
2014-06-01
Separators for Li Ion batteries have a strong impact on cell production, cell performance, life, as well as reliability and safety. The separator market volume is about 500 million m2 mainly based on consumer applications. It is expected to grow strongly over the next decade for mobile and stationary applications using large cells. At present, the market is essentially served by polyolefine membranes. Such membranes have some technological limitations, such as wettability, porosity, penetration resistance, shrinkage and meltdown. The development of a cell failure due to internal short circuit is potentially closely related to separator material properties. Consequently, advanced separators became an intense area of worldwide research and development activity in academia and industry. New separator technologies are being developed especially to address safety and reliability related property improvements.
NOx Sensor for Direct Injection Emission Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betteridge, William J
2006-02-28
The Electricore/Delphi team continues to leverage the electrochemical planar sensor technology that has produced stoichiometric planar and wide range oxygen sensors as the basis for development of a NOx sensor. Zirconia cell technology with an integrated heater will provide the foundation for the sensor structure. Proven materials and packaging technology will help to ensure a cost-effective approach to the manufacture of this sensor. The electronics technique and interface is considered to be an area where new strategies need to be employed to produce higher S/N ratios of the NOx signal with emphasis on signal stability over time for robustness andmore » durability Both continuous mode and pulse mode control techniques are being evaluated. Packaging the electronics requires careful design and circuit partitioning so that only the necessary signal conditioning electronics are coupled directly in the wiring harness, while the remainder is situated within the ECM for durability and costs reasons. This task continues to be on hold due to the limitation that the definition of the interface electronics was unavailable until very late in the project. The sense element is based on the amperometric method utilizing integrated alumina and zirconia ceramics. Precious metal electrodes are used to form the integrated heater, the cell electrodes and leads. Inside the actual sense cell structure, it is first necessary to separate NOx from the remaining oxygen constituents of the exhaust, without reducing the NOx. Once separated, the NOx will be measured using a measurement cell. Development or test coupons have been used to facilitate material selection and refinement, cell, diffusion barrier, and chamber development. The sense element currently requires elaborate interconnections. To facilitate a robust durable connection, mechanical and metallurgical connections are under investigation. Materials and process refinements continue to play an important role in the development of the sensor.« less
DOT National Transportation Integrated Search
2013-08-01
As mobile technology becomes widely available and affordable, transportation agencies can use this technology to : streamline operations involved within project inspection. This research, conducted in two phases, identified : opportunities for proces...
7 CFR 1709.111 - Limitations on use of grant funds.
Code of Federal Regulations, 2010 CFR
2010-01-01
... are unrelated to the grant project. (b) Unproven technology. Only projects that utilize technology with a proven operating history, and for which there is an established industry for the design... utilizing experimental, developmental, or prototype technologies or technology demonstrations are not...
Technology Development Report: CDDF, Dual Use Partnerships, SBIR/STTR: Fiscal Year 2003 Activities
NASA Technical Reports Server (NTRS)
Bailey, John W.
2004-01-01
The FY2003 NASA John C. Stennis Stennis Space Center (SSC) Technology Development Report provides an integrated report of all technology development activities at SSC. This report actually combines three annual reports: the Center Director's Discretionary Fund (CDDF) Program Report, Dual Use Program Report, and the Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) Program Report. These reports are integrated in one document to summarize all technology development activities underway in support of the NASA missions assigned to SSC. The Dual Use Program Report provides a summary review of the results and status of the nine (9) Dual Use technology development partnership projects funded and managed at SSC during FY2003. The objective of these partnership projects is to develop or enhance technologies that will meet the technology needs of the two NASA SSC Mission Areas: Propulsion Test and Earth Science Applications. During FY2003, the TDTO managed twenty (20) SBIR Phase II Projects and two (2) STTR Phase II Projects. The SBIR contracts support low TRL technology development that supports both the Propulsion Test and the Earth Science Application missions. These projects are shown in the SBIR/STTR Report. In addition to the Phase II contracts, the TDTO managed ten (10) SBIR Phase I contracts which are fixed price, six month feasibility study contracts. These are not listed in this report. Together, the Dual Use Projects and the SBIR/STTR Projects constitute a technology development partnership approach that has demonstrated that success can be achieved through the identification of the technical needs of the NASA mission and using various available partnership techniques to maximize resource utilization to achieve mutual technology goals. Greater use of these partnership techniques and the resource leveraging they provide, is a goal of the TDTO, providing more support to meet the technology development needs of the mission areas at SSC.
ERIC Educational Resources Information Center
Schmitz, Kurt W.
2013-01-01
Information Technology projects have migrated toward two dominant Project Management (PM) methodologies. Plan-driven practices provide organizational control through highly structured plans, schedules, and specifications that facilitate oversight by hierarchical bureaucracies. In contrast, agile practices emphasize empowered teams using flexible…
ERIC Educational Resources Information Center
Fryda, Lawrence J.; Harrington, Robert; Szumal, Clint
Electronics Engineering Technology majors in the Industrial and Engineering Technology department at Central Michigan University have developed many real-world projects that represent the type of problem-solving projects encouraged by industry. Two projects that can be used by other educators as freestanding projects or as the core for further…
NASA Technical Reports Server (NTRS)
Thomas, Leann; Utley, Dawn
2006-01-01
While there has been extensive research in defining project organizational structures for traditional projects, little research exists to support high technology government project s organizational structure definition. High-Technology Government projects differ from traditional projects in that they are non-profit, span across Government-Industry organizations, typically require significant integration effort, and are strongly susceptible to a volatile external environment. Systems Integration implementation has been identified as a major contributor to both project success and failure. The literature research bridges program management organizational planning, systems integration, organizational theory, and independent project reports, in order to assess Systems Integration (SI) organizational structure selection for improving the high-technology government project s probability of success. This paper will describe the methodology used to 1) Identify and assess SI organizational structures and their success rate, and 2) Identify key factors to be used in the selection of these SI organizational structures during the acquisition strategy process.
Membrane separation technology in the 1980s
NASA Technical Reports Server (NTRS)
Lonsdale, H. K.
1982-01-01
The current status of membrane technology is assessed and industrial processes in which membrane technology could effect energy savings or other advantages are identified. The extension of current trends is recommended; i.e., the development of ultrathin and highly permselective membranes, the use of specific carriers to enhance permselectivity and permit 'uphill' diffusion, and the improvement of separation efficiency. Membranes are predicted to be important in biotechnology and in the production of solar energy. Guidelines indicating where and how to look for opportunities where evolving membrane technology might fit are provided.