Sample records for separator technology alkaline

  1. Arsanilic acid modified superparamagnetic iron oxide nanoparticles for Purification of alkaline phosphatase from hen's egg yolk.

    PubMed

    Farzi-Khajeh, Hamed; Safa, Kazem D; Dastmalchi, Siavoush

    2017-09-01

    Recent studies of magnetic carrier technology have focused on its applications in separation and purification technologies, due to easy separation of the target from the reaction medium by applying an external magnetic field. In the present study, Fe 3 O 4 superparamagnetic nanoparticles were prepared to utilize a chemical co-precipitation method, then the surfaces of the nanoparticles were modified with arsanilic acid derivatives which were used as the specific nanocarriers for the affinity purification of alkaline phosphatase from the hen's egg yolk. The six different types of magnetic nanocarriers with varied lengths of the linkers were obtained. All samples were characterized step by step and validated using FTIR, SEM, EDX, VSM and XRD analysis methods As the results were shown, the use of inflexible tags with long linkers on the surface of the nanocarrier could lead to better results for separation of alkaline phosphatase from the hen's egg yolk with 76.2% recovery and 1361.7-fold purification. The molecular weight of the purified alkaline phosphatase was estimated to be 68kDa by SDS-PAGE. The results of this study showed that the novel magnetic nanocarriers were capable of purifying alkaline phosphatase in a practically time and cost effective way. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Design Principles for Nickel/Hydrogen Cells and Batteries

    NASA Technical Reports Server (NTRS)

    Thaller, Lawrence H.; Manzo, Michelle A.; Gonzalez-Sanabria, Olga D.

    1987-01-01

    Individual-pressure-vessel (IPV) nickel/hydrogen cells and bipolar batteries developed for use as energy-storage subsystems for satelite applications. Design principles applied draw upon extensive background in separator technology, alkaline-fuel-cell technology and several alkaline-cell technology areas. Principals are rather straightforward applications of capillary-force formalisms, coupled with slowly developing data base resulting from careful post-test analyses. Based on preconceived assumptions relative to how devices work and how to be designed so they display longer cycle lives at deep discharge.

  3. Strategies for the enrichment and identification of basic proteins in proteome projects.

    PubMed

    Bae, Soo-Han; Harris, Andrew G; Hains, Peter G; Chen, Hong; Garfin, David E; Hazell, Stuart L; Paik, Young-Ki; Walsh, Bradley J; Cordwell, Stuart J

    2003-05-01

    Two-dimensional gel electrophoresis (2-DE) is currently the method of choice for separating complex mixtures of proteins for visual comparison in proteome analysis. This technology, however, is biased against certain classes of proteins including low abundance and hydrophobic proteins. Proteins with extremely alkaline isoelectric points (pI) are often very poorly represented using 2-DE technology, even when complex mixtures are separated using commercially available pH 6-11 or pH 7-10 immobilized pH gradients. The genome of the human gut pathogen, Helicobacter pylori, is dominated by genes encoding basic proteins, and is therefore a useful model for examining methodology suitable for separating such proteins. H. pylori proteins were separated on pH 6-11 and novel pH 9-12 immobilized pH gradients and 65 protein spots were subjected to matrix-assisted laser desorption/ionization-time of flight mass spectrometry, leading to the identification of 49 unique proteins. No proteins were characterized with a theoretical pI of greater than 10.23. A second approach to examine extremely alkaline proteins (pI > 9.0) utilized a prefractionation isoelectric focusing. Proteins were separated into two fractions using Gradiflow technology, and the extremely basic fraction subjected to both sodium dodecyl sulphate-polyacrylamide gel electrophoresis and liquid chromatography (LC) - tandem mass spectrometry post-tryptic digest, allowing the identification of 17 and 13 proteins, respectively. Gradiflow separations were highly specific for proteins with pI > 9.0, however, a single LC separation only allowed the identification of peptides from highly abundant proteins. These methods and those encompassing multiple LC 'dimensions' may be a useful complement to 2-DE for 'near-to-total' proteome coverage in the alkaline pH range.

  4. 40 CFR 60.41b - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... oven gas, and coal-water mixtures, are also included in this definition for the purposes of this.... Conventional technology means wet flue gas desulfurization (FGD) technology, dry FGD technology, atmospheric... with an alkaline reagent and water, whether introduced separately or as a premixed slurry or solution...

  5. Proton Exchange Membrane (PEM) Fuel Cells for Space Applications

    NASA Technical Reports Server (NTRS)

    Bradley, Karla

    2004-01-01

    This presentation will provide a summary of the PEM fuel cell development at the National Aeronautics and Space Administration, Johnson Space Center (NASA, JSC) in support of future space applications. Fuel cells have been used for space power generation due to their high energy storage density for multi-day missions. The Shuttle currently utilizes the alkaline fuel cell technology, which has highly safe and reliable performance. However, the alkaline technology has a limited life due to the corrosion inherent to the alkaline technology. PEM fuel cells are under development by industry for transportation, residential and commercial stationary power applications. NASA is trying to incorporate some of this stack technology development in the PEM fuel cells for space. NASA has some unique design and performance parameters which make developing a PEM fuel cell system more challenging. Space fuel cell applications utilize oxygen, rather than air, which yields better performance but increases the hazard level. To reduce the quantity of reactants that need to be flown in space, NASA also utilizes water separation and reactant recirculation. Due to the hazards of utilizing active components for recirculation and water separation, NASA is trying to develop passive recirculation and water separation methods. However, the ability to develop recirculation components and water separators that are gravity-independent and successfully operate over the full range of power levels is one of the greatest challenges to developing a safe and reliable PEM fuel cell system. PEM stack, accessory component, and system tests that have been performed for space power applications will be discussed.

  6. Separator Materials Used in Secondary Alkaline Batteries Characterized and Evaluated

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Nickel-cadmium (Ni/Cd) and nickel-hydrogen (Ni/H2) secondary alkaline batteries are vital to aerospace applications. Battery performance and cycle life are significantly affected by the type of separators used in those batteries. A team from NASA Lewis Research Center's Electrochemical Technology Branch developed standardized testing procedures to characterize and evaluate new and existing separator materials to improve performance and cycle life of secondary alkaline batteries. Battery separators must function as good electronic insulators and as efficient electrolyte reservoirs. At present, new types of organic and inorganic separator materials are being developed for Ni/Cd and Ni/H2 batteries. The separator material previously used in the NASA standard Ni/Cd was Pellon 2505, a 100-percent nylon-6 polymer that must be treated with zinc chloride (ZnCl2) to bond the fibers. Because of stricter Environmental Protection Agency regulation of ZnCl2 emissions, the battery community has been searching for new separators to replace Pellon 2505. As of today, two candidate separator materials have been identified; however, neither of the two materials have performed as well as Pellon 2505. The separator test procedures that were devised at Lewis are being implemented to expedite the search for new battery separators. The new test procedures, which are being carried out in the Separator Laboratory at Lewis, have been designed to guarantee accurate evaluations of the properties that are critical for sustaining proper battery operation. These properties include physical and chemical stability, chemical purity, gas permeability, electrolyte retention and distribution, uniformity, porosity, and area resistivity. A manual containing a detailed description of 12 separator test procedures has been drafted and will be used by the battery community to evaluate candidate separator materials for specific applications. These standardized procedures will allow for consistent, uniform, and reliable results that will ensure that separator materials have the desired properties for long life and good performance in secondary alkaline cells.

  7. Evaluation of Production Version of the NASA Improved Inorganic-Organic Separator

    NASA Technical Reports Server (NTRS)

    Sheibley, D.

    1983-01-01

    The technology of an inorganic-organic (I/O) separator, which demonstrated improved flexibility, reduced cost, production feasibility and improved cycle life was developed. Substrates to replace asbestos and waterbased separator coatings to replace the solvent based coatings were investigated. An improved fuel cell grade asbestos sheet was developed and a large scale production capability for the solvent based I/O separator was demonstrated. A cellulose based substrate and a nonwoven polypropylene fiber substrate were evaluated as replacements for the asbestos. Both the cellulose and polypropylene substrates were coated with solvent based and water based coatings to produce a modified I/O separator. The solvent based coatings were modified to produce aqueous separator coatings with acceptable separator properties. A single ply fuel cell grade asbestos with a binder (BTA) was produced. It has shown to be an acceptable substrate for the solvent and water based separator coatings, an acceptable absorber for alkaline cells, and an acceptable matrix for alkaline fuel cells. The original solvent based separator (K19W1), using asbestos as a substrate, was prepared.

  8. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A priormore » fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar. Chromium acetate-polyacrylamide gel used to seal fractured core maintain fracture closure if followed by an alkaline-surfactant-polymer solution. Chromium acetate gels that were stable to injection of alkaline-surfactant-polymer solutions at 72 F were stable to injection of alkaline-surfactant-polymer solutions at 125 F and 175 F in linear corefloods. Chromium acetate-polyacrylamide gels maintained diversion capability after injection of an alkaline-surfactant-polymer solution in stacked; radial coreflood with a common well bore. Xanthan gum-chromium acetate gels maintained gel integrity in linear corefloods after injection of an alkaline-surfactant-polymer solution at 125 F. At 175 F, Xanthan gum-chromium acetate gels were not stable either with or without subsequent alkaline-surfactant-polymer solution injection. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls when a gel was placed in the B sand. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl more oil than only water injection.« less

  9. Inorganic-organic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1978-01-01

    A flexible separator is reported for use between the electrodes of Ni-Cd and Ni-Zn batteries using alkaline electrolytes. The separator was made by coating a porous substrate with a battery separator composition. The coating material included a rubber-based resin copolymer, a plasticizer and inorganic and organic fillers which comprised 55% by volume or less of the coating as finally dried. One or more of the filler materials, whether organic or inorganic, is preferably active with the alkaline electrolyte to produce pores in the separator coating. The plasticizer was an organic material which is hydrolyzed by the alkaline electrolyte to improve conductivity of the separator coating.

  10. Polyvinyl alcohol battery separator containing inert filler. [alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Hsu, L. C.; Manzo, M. A. (Inventor)

    1981-01-01

    A cross-linked polyvinyl alcohol battery separator is disclosed. A particulate filler, inert to alkaline electrolyte of an alkaline battery, is incorporated in the separator in an amount of 1-20% by weight, based on the weight of the polyvinyl alcohol, and is dispersed throughout the product. Incorporation of the filler enhances performance and increases cycle life of alkaline batteries when compared with batteries containing a similar separator not containing filler. Suitable fillers include titanates, silicates, zirconates, aluminates, wood floor, lignin, and titania. Particle size is not greater than about 50 microns.

  11. Design principles for nickel hydrogen cells and batteries

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1985-01-01

    Nickel hydrogen cells, and more recently, bipolar batteries have been built by a variety of organizations. The design principles that have been used by the technology group at the Lewis Research Center draw upon their extensive background in separator technology, alkaline fuel cell technology, and several alkaline cell technology areas. These design principles have been incorporated into both the more contemporary individual pressure vessel (IPV) designs that were pioneered by other groups, as well as the more recent bipolar battery designs using active cooling that are being developed at LeRC and their contractors. These principles are rather straightforward applications of capillary force formalisms, coupled with the slowly developing data base resulting from careful post test analyses. The objective of this overall effort is directed towards the low Earth orbit (LEO) application where the cycle life requirements are much more severe than the geosynchronous orbit (GEO) application. Nickel hydrogen cells have already been successfully flown in an increasing number of GEO missions.

  12. Mutagenicity of nitrogen compounds from synthetic crude oils: collection, separation and biological testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, T K; Epler, J L; Guerin, M R

    1980-01-01

    In order to determine the long range health effects such as carcinogenicity/mutagenicity/teratogenicity/toxicity, associated with the newly emerging energy technologies, we have utilized the Ames Salmonella assay to evaluate mutagenic properties of synthetic fuels. Coupling with class fractionation was necessary. Organic extraction and liquid/liquid partitioning was used to separate acidic and basic fraction. The neutral material was separated using Sephadex LH-20 gel filtration into saturated and aromatic fractions of various ring sizes. The alkaline fraction was subfractionated eluting with benzene and ethanol on a basic alumina column and then with isopropanol and acetone using a Sephadex LH-20 gel column. The frameshiftmore » strain TA-98 was utilized along with Aroclor-induced rat liver homogenate (S-9 mix) for the mutagenicity assay. The natural crude oils were slightly mutagenic, the polynucleararomatics constituting the activity, while the coal-derived fuels indicated mutagenicity associated with alkaline constituents as well as polyaromatics. Hydrotreated coal (H-coal, HDT) or Shale (Paraho-Shale oil, HDT) derived fuels were not mutagenic. Ninety percent of the mutagenic activity in alkaline fraction was recovered in the acetone subfraction. High resolution spectroscopy of this fraction indicates polycyclic aromatic primary amines along with azaarenes as organic constituents responsible for the mutagenic activity associated with shale- and coal-derived fuels.« less

  13. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction withmore » different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses with the exception of the xanthan gum-chromium acetate gels. Aluminum-polyacrylamide flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9, either in linear corefloods or in dual separate radial core, common manifold corefloods. Chromium acetate-polyacrylamide flowing and rigid tonguing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid tonguing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Chromium acetate gels were stable to injection of alkaline-surfactant-polymer solutions at 72 F, 125 F and 175 F in linear corefloods. Chromium acetate-polyacrylamide gels maintained diversion capability after injection of an alkaline-surfactant-polymer solution in stacked; radial coreflood with a common well bore. Chromium acetate-polyacrylamide gel used to seal fractured core maintain fracture closure if followed by an alkaline-surfactant-polymer solution. Chromium acetatexanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection at 72, 125, and 175 F. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid tonguing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid tonguing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. Aluminum citrate-polyacrylamide gels, chromium acetate-polyacrylamide gels, silicate-polymer, and chromium-xanthan gum gels did not alter an alkaline-surfactant-polymer solution's ability to produce incremental oil. Incremental oil was reduced with the resorcinol-formaldehyde gel system. Total waterflood plus chemical flood oil recovery sequence recoveries were generally similar. Performance and produced polymer evaluation of four alkaline-surfactant-polymer projects concluded that only one of the projects could have benefited from combining the alkaline-surfactant-polymer and gelation technologies. Cambridge, the 1993 Daqing, Mellott Ranch, and the Wardlaw alkaline-surfacant-polymer floods were studied. An initial gel treatment followed by an alkaline-surfactant-polymer flood in the Wardlaw field would have been a benefit due to reduction of fracture flow.« less

  14. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction withmore » different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses with the exception of the xanthan gum-chromium acetate gels. Aluminum-polyacrylamide flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9, either in linear corefloods or in dual separate radial core, common manifold corefloods. Chromium acetate-polyacrylamide flowing and rigid tonguing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid tonguing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Chromium acetate gels were stable to injection of alkaline-surfactant-polymer solutions at 72 F, 125 F and 175 F in linear corefloods. Chromium acetate-polyacrylamide gels maintained diversion capability after injection of an alkaline-surfactant-polymer solution in stacked; radial coreflood with a common well bore. Chromium acetate-polyacrylamide gel used to seal fractured core maintain fracture closure if followed by an alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection at 72, 125, and 175 F. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid tonguing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid tonguing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. Aluminum citrate-polyacrylamide gels, chromium acetate-polyacrylamide gels, silicate-polymer, and chromium-xanthan guin gels did not alter an alkaline-surfactant-polymer solution's ability to produce incremental oil. Incremental oil was reduced with the resorcinol-formaldehyde gel system. Total waterflood plus chemical flood oil recovery sequence recoveries were generally similar.« less

  15. Special Advanced Studies for Pollution Prevention. Delivery Order 0058: The Monitor - Winter 2000

    DTIC Science & Technology

    2001-04-01

    Burning/Open Detonation of Energetic Materials ➨Emission factors from a draft EPA report are incorporated into the guidance Site Restoration ➨Method...Aqueous Cleaner Recycle System Microfiltration Removes oil/grease & TSS from alkaline and acid cleaning baths Commodore Separation Technologies, Inc... Microfiltration Removes all heavy metals from wastewater and recycles water Infinity Chemicals Group Infinity Prep-L Deoxidizing Chemical

  16. Advanced technology lightweight fuel cell program

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1981-01-01

    The potential of the alkaline electrolyte fuel cell as the power source in a multi hundred kilowatt orbital energy storage system was studied. The total system weight of an electrolysis cell energy storage system was determined. The tests demonstrated: (1) the performance stability of a platinum on carbon anode catalyst configuration after 5000 hours of testing has no loss in performance; (2) capability of the alkaline fuel cell to operate to a cyclical load profile; (3) suitability of a lightweight graphite electrolyte reservoir plate for use in the alkaline fuel cell; (4) long life potential of a hybrid polysulfone cell edge frame construction; and (5) long term stability of a fiber reinforced potassium titanate matrix structure. The power section tested operates with passive water removal eliminating the requirement for a dynamic hydrogen pump water separator thereby allowing a powerplant design with reduced weight, lower parasite power, and a potential for high reliability and extended endurance. It is concluded that two perovskites are unsuitable for use as a catalyst or as a catalyst support at the cathode of an alkaline fuel cell.

  17. Regenerative fuel cell study for satellites in GEO orbit

    NASA Technical Reports Server (NTRS)

    Levy, Alexander; Vandine, Leslie L.; Stedman, James K.

    1987-01-01

    Summarized are the results of a 12-month study to identify high performance regenerative hydrogen-oxygen fuel cell concepts for geosynchronous satellite application. Emphasis was placed on concepts with the potential for high energy density (W-hr/lb) and passive means for water and heat management to maximize system reliability. Both polymer membrane and alkaline electrolyte fuel cells were considered, with emphasis on the alkaline cell because of its high performance, advanced state of development, and proven ability to operate in a launch and space environment. Three alkaline system concepts were studied. The first, the integrated design, utilized a configuration in which the fuel cell and electrolysis cells are alternately stacked inside a pressure vessel. Product water is transferred by diffusion during electrolysis and waste heat is conducted through the pressure wall, thus using completely passive means for transfer and control. The second alkaline system, the dedicated design, uses a separate fuel cell and electrolysis stack so that each unit can be optimized in size and weight based on its orbital operating period. The third design was a dual function stack configuration, in which each cell can operate in both fuel cell and electrolysis mode, thus eliminating the need for two separate stacks and associated equipment. Results indicate that using near term technology energy densities between 46 and 52 W-hr/lb can be achieved at efficiencies of 55 percent. System densities of 115 W-hr/lb are contemplated.

  18. Factors influence flexibility resistivity and zinc dendrite penetration rate of inorganic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1975-01-01

    Developmental work resulted in a formulation which can improve the flexibility of the inorganic-organic-type separator for silver-zinc and nickel-zinc alkaline batteries. The effects of various fillers and reactive organic additives on separator volume resistivity are described. The effects of various inert fillers on the zinc dendrite penetration rate of the separator are shown. Conclusions regarding the operating mechanism of the separator are presented.

  19. Design principles for nickel-hydrogen cells and batteries

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1985-01-01

    Nickel-hydrogen cells and, more recently, bipolar batteries have been built by a variety of organizations. The design principles that have been used by the technology group at the NASA Lewis Research Center draw upon their extensive background in separator technology, alkaline fuel cell technology, and several alkaline cell technology areas. These design principles have been incorporated into both the more contemporary individual pressure vessel (IPV) designs that were pioneered by other groups, as well as the more recent bipolar battery designs using active cooling that are being developed at NASA Lewis Research Center and under contract. These principles are rather straightforward applications of capillary force formalisms, coupled with the slowly developing data base resulting from careful post test analyses. The objective of this overall effort is directed towards the low-Earth-orbit (LEO) application where the cycle life requirements are much more severe than the geosynchronous-orbit (GEO) application. A summary of the design principles employed is presented along with a discussion of the recommendations for component pore sizes and pore size distributions, as well as suggested materials of construction. These will be made based on our experience in these areas to show how these design principles have been translated into operating hardware.

  20. Design principles for nickel-hydrogen cells and batteries

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1985-01-01

    Nickel-hydrogen cells and, more recently, bipolar batteries have been built by a variety of organizations. The design principles that have been used by the technology group at the NASA Lewis Research Center draw upon their extensive background in separator technology, alkaline fuel cell technology, and several alkaline cell technology areas. These design principles have been incorporated into both the more contemporary individual pressure vessel (IPV) designs that were pioneered by other groups, as well as the more recent bipolar battery designs using active cooling that are being developed at NASA Lewis Research Center and under contract. These principles are rather straightforward applications of capillary force formalisms, coupled with the slowly developing data base resulting from careful post test analyses. The objective of this overall effort is directed towards the low-earth-orbit (LEO) application where the cycle life requirements are much more severe than the geosynchronous-orbit (GEO) application. A summary of the design principles employed is presented along with a discussion of the recommendations for component pore sizes and pore size distributions, as well as suggested materials of construction. These will be made based on our experience in these areas to show how these design principles have been translated into operating hardware.

  1. Alkaline fuel cell with nitride membrane

    NASA Astrophysics Data System (ADS)

    Sun, Shen-Huei; Pilaski, Moritz; Wartmann, Jens; Letzkus, Florian; Funke, Benedikt; Dura, Georg; Heinzel, Angelika

    2017-06-01

    The aim of this work is to fabricate patterned nitride membranes with Si-MEMS-technology as a platform to build up new membrane-electrode-assemblies (MEA) for alkaline fuel cell applications. Two 6-inch wafer processes based on chemical vapor deposition (CVD) were developed for the fabrication of separated nitride membranes with a nitride thickness up to 1 μm. The mechanical stability of the perforated nitride membrane has been adjusted in both processes either by embedding of subsequent ion implantation step or by optimizing the deposition process parameters. A nearly 100% yield of separated membranes of each deposition process was achieved with layer thickness from 150 nm to 1 μm and micro-channel pattern width of 1μm at a pitch of 3 μm. The process for membrane coating with electrolyte materials could be verified to build up MEA. Uniform membrane coating with channel filling was achieved after the optimization of speed controlled dip-coating method and the selection of dimethylsulfoxide (DMSO) as electrolyte solvent. Finally, silver as conductive material was defined for printing a conductive layer onto the MEA by Ink-Technology. With the established IR-thermography setup, characterizations of MEAs in terms of catalytic conversion were performed successfully. The results of this work show promise for build up a platform on wafer-level for high throughput experiments.

  2. The viability of MCM-41 as separator in secondary alkaline cells

    NASA Astrophysics Data System (ADS)

    Meskon, S. R.; Othman, R.; Ani, M. H.

    2018-01-01

    The viability of MCM-41 membrane as a separator material in secondary alkaline cell is investigated. The inorganic membrane was employed in an alkaline nickel-zinc system. MCM-41 mesoporous material consists of arrays of hexagonal nano-pore channels. The membrane was synthesized using sol-gel route from parent solution comprising of quarternary ammonium surfactant, cethyltrimethylammonium bromide C16H33(CH3)3NBr (CTAB), hydrochloric acid (HCl), deionized water (H2O), ethanol (C2H5OH), and tetraethylortosilicate (TEOS). Both the anodic zinc/zinc oxide and cathodic nickel hydroxide electrodeposited film were coated with MCM-41 membrane. The Ni/MCM-41/Zn alkaline cell was then subjected to 100-cycle durability test and the structural stability of MCM-41 separator throughout the progression of the charge-discharge cycles is studied. X-ray diffraction (XRD) analysis on the dismantled cell shows that MCM-41 began to transform to lamellar MCM-50 on the 5th cycle and transformed almost completely on the 25th cycle. The phase transformation of MCM-41 hexagonal structure into gel-like MCM-50 prevents the mesoporous cell separator from diminished in the caustic alkaline surround. This work has hence demonstrated MCM-41 membrane is viable to be employed in secondary alkaline cells.

  3. Characterization of rice starch and protein obtained by a fast alkaline extraction method.

    PubMed

    Souza, Daiana de; Sbardelotto, Arthur Francisco; Ziegler, Denize Righetto; Marczak, Ligia Damasceno Ferreira; Tessaro, Isabel Cristina

    2016-01-15

    This study evaluated the characteristics of rice starch and protein obtained by a fast alkaline extraction method on rice flour (RF) derived from broken rice. The extraction was conducted using 0.18% NaOH at 30°C for 30min followed by centrifugation to separate the starch rich and the protein rich fractions. This fast extraction method allowed to obtain an isoelectric precipitation protein concentrate (IPPC) with 79% protein and a starchy product with low protein content. The amino acid content of IPPC was practically unchanged compared to the protein in RF. The proteins of the IPPC underwent denaturation during extraction and some of the starch suffered the cold gelatinization phenomenon, due to the alkaline treatment. With some modifications, the fast method can be interesting in a technological point of view as it enables process cost reduction and useful ingredients obtention to the food and chemical industries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Ultrafine polybenzimidazole (PBI) fibers. [separators for alkaline batteries and dfuel cells

    NASA Technical Reports Server (NTRS)

    Chenevey, E. C.

    1979-01-01

    Mats were made from ultrafine polybenzimidazole (PBI) fibers to provide an alternate to the use of asbestos as separators in fuel cells and alkaline batteries. To minimize distortion during mat drying, a process to provide a dry fibrid was developed. Two fibrid types were developed: one coarse, making mats for battery separators; the other fine, making low permeability matrices for fuel cells. Eventually, it was demonstrated that suitable mat fabrication techniques yielded fuel cell separators from the coarser alkaline battery fibrids. The stability of PBI mats to 45% KOH at 123 C can be increased by heat treatment at high temperatures. Weight loss data to 1000 hours exposure show the alkali resistance of the mats to be superior to that of asbestos.

  5. Test Procedures for Characterizing, Evaluating, and Managing Separator Materials used in Secondary Alkaline Batteries

    NASA Technical Reports Server (NTRS)

    Guasp, Edwin; Manzo, Michelle A.

    1997-01-01

    Secondary alkaline batteries, such as nickel-cadmium and silver-zinc, are commonly used for aerospace applications. The uniform evaluation and comparison of separator properties for these systems is dependent upon the measurement techniques. This manual presents a series of standard test procedures that can be used to evaluate, compare, and select separator materials for use in alkaline batteries. Detailed test procedures evaluating the following characteristics are included in this manual: physical measurements of thickness and area weight, dimensional stability measurements, electrolyte retention, resistivity, permeability as measured via bubble pressure, surface evaluation via SEM, chemical stability, and tensile strength.

  6. Alkaline battery containing a separator of a cross-linked copolymer of vinyl alcohol and unsaturated carboxylic acid

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Philipp, W. H.; Sheibley, D. W.; Gonzalez-Sanabria, O. D. (Inventor)

    1985-01-01

    A battery separator for an alkaline battery is described. The separator comprises a cross linked copolymer of vinyl alcohol units and unsaturated carboxylic acid units. The cross linked copolymer is insoluble in water, has excellent zincate diffusion and oxygen gas barrier properties and a low electrical resistivity. Cross linking with a polyaldehyde cross linking agent is preferred.

  7. Design considerations for a 10-kW integrated hydrogen-oxygen regenerative fuel cell system

    NASA Technical Reports Server (NTRS)

    Hoberecht, M. A.; Miller, T. B.; Rieker, L. L.; Gonzalez-Sanabria, O. D.

    1984-01-01

    Integration of an alkaline fuel cell subsystem with an alkaline electrolysis subsystem to form a regenerative fuel cell (RFC) system for low earth orbit (LEO) applications characterized by relatively high overall round trip electrical efficiency, long life, and high reliability is possible with present state of the art technology. A hypothetical 10 kW system computer modeled and studied based on data from ongoing contractual efforts in both the alkaline fuel cell and alkaline water electrolysis areas. The alkaline fuel cell technology is under development utilizing advanced cell components and standard Shuttle Orbiter system hardware. The alkaline electrolysis technology uses a static water vapor feed technique and scaled up cell hardware is developed. The computer aided study of the performance, operating, and design parameters of the hypothetical system is addressed.

  8. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-04-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A priormore » fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar.« less

  9. New technology for recyclingmaterials from oily cold rollingmill sludge

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Zhang, Shen-gen; Tian, Jian-jun; Pan, De-an; Meng, Ling; Liu, Yang

    2013-12-01

    Oily cold rolling mill (CRM) sludge is one of metallurgical industry solid wastes. The recycle of these wastes can not only protect the environment but also permit their reutilization. In this research, a new process of "hydrometallurgical treatment + hydrothermal synthesis" was investigated for the combined recovery of iron and organic materials from oily CRM sludge. Hydrometallurgical treatment, mainly including acid leaching, centrifugal separation, neutralization reaction, oxidizing, and preparation of hydrothermal reaction precursor, was first utilized for processing the sludge. Then, micaceous iron oxide (MIO) pigment powders were prepared through hydrothermal reaction of the obtained precursor in alkaline media. The separated organic materials can be used for fuel or chemical feedstock. The quality of the prepared MIO pigments is in accordance with the standards of MIO pigments for paints (ISO 10601-2007). This clean, effective, and economical technology offers a new way to recycle oily CRM sludge.

  10. Treatment of cells with alkaline borate buffer extends the capability of interphase FISH mapping.

    PubMed

    Yokota, H; van den Engh, G; Mostert, M; Trask, B J

    1995-01-20

    Interphase fluorescence in situ hybridization (FISH) has been shown to be a means to map DNA sequences relative to each other in the 100 kb to 1-2 Mb genomic-separation range. At distances below 0.1 Mb, probe sites are infrequently resolved in interphase chromatin. In the 0.1- to 1-Mb range, interphase chromatin can be modeled as a freely flexible chain. The mean square interphase distance between two probes is proportional to the genomic separation between the probes on the linear DNA molecule. Above 1-2 Mb, the relationship between interphase distance and genomic separation changes abruptly and appears to level off. We have used alkaline-borate treatment to expand the capability of interphase FISH mapping. We show here that alkaline-borate treatment increases nuclear diameter, the interphase distance between probes on homologous chromosomes, and the distance between probes on the same chromosome. We also show that the mean square distance between hybridization sites in borate-treated nuclei is proportional to genomic separation up to 4 Mb. Thus, alkaline-borate treatment enhances the capability of interphase FISH mapping by increasing the absolute distance between probes and extending the range of the simple relationship between interphase distance and genomic separation.

  11. Treatment of cells with alkaline borate buffer extends the capability of interphase FISH mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokota, H.; Van Den Engh, G.; Mostert, M.

    1995-01-20

    Interphase fluorescence in situ hybridization (FISH) has been shown to be a means to map DNA sequences relative to each other in the 100 kb to 1-2 Mb genomic-separation range. At distances below 0.1 Mb, probe sites are infrequently resolved in interphase chromatin. In the 0.1- to 1-Mb range, interphase chromatin can be modeled as a freely flexible chain. The mean square interphase distance between two probes is proportional to the genomic separation between the probes on the linear DNA molecule. Above 1-2 Mb, the relationship between interphase distance and genomic separation changes abruptly and appears to level off. Wemore » have used alkaline-borate treatment to expand the capability of interphase FISH mapping. We show here that alkaline-borate treatment increases nuclear diameter, the interphase distance between probes on homologous chromosomes, and the distance between probes on the same chromosome. We also show that the mean square distance between hybridization sites in borate-treated nuclei is proportional to genomic separation up to 4 Mb. Thus, alkaline-borate treatment enhances the capability of interphase FISH mapping by increasing the absolute distance between probes and extending the range of the simple relationship between interphase distance and genomic separation. 31 refs., 5 figs.« less

  12. Grace DAKASEP alkaline battery separator

    NASA Technical Reports Server (NTRS)

    Giovannoni, R. T.; Lundquist, J. T.; Choi, W. M.

    1987-01-01

    The Grace DAKASEP separator was originally developed as a wicking layer for nickel-zinc alkaline batteries. The DAKASEP is a filled non-woven separator which is flexible and heat sealable. Through modification of formulation and processing variables, products with a variety of properties can be produced. Variations of DAKASEP were tested in Ni-H2, Ni-Zn, Ni-Cd, and primary alkaline batteries with good results. The properties of DAKASEP which are optimized for Hg-Zn primary batteries are shown in tabular form. This separator has high tensile strength, 12 micron average pore size, relatively low porosity at 46-48 percent, and consequently moderately high resistivity. Versions were produced with greater than 70 percent porosity and resistivities in 33 wt percent KOH as low as 3 ohm cm. Performance data for Hg-Zn E-1 size cells containing DAKASEP with the properties shown in tabular form, are more reproducible than data obtained with a competitive polypropylene non-woven separator. In addition, utilization of active material is in general considerably improved.

  13. New Class of Flow Batteries for Terrestrial and Aerospace Energy Storage Applications

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; West, William C.; Kindler, Andrew; Smart, Marshall C.

    2013-01-01

    Future sustainable energy generation technologies such as photovoltaic and wind farms require advanced energy storage systems on a massive scale to make the alternate (green) energy options practical. The daunting requirements of such large-scale energy systems such as long operating and cycle life, safety, and low cost are not adequately met by state-of-the-art energy storage technologies such as vanadium flow cells, lead-acid, and zinc-bromine batteries. Much attention is being paid to redox batteries specifically to the vanadium redox battery (VRB) due to their simplicity, low cost, and good life characteristics compared to other related battery technologies. NASA is currently seeking high-specific- energy and long-cycle-life rechargeable batteries in the 10-to-100-kW range to support future human exploration missions, such as planetary habitats, human rovers, etc. The flow batteries described above are excellent candidates for these applications, as well as other applications that propose to use regenerative fuel cells. A new flow cell technology is proposed based on coupling two novel electrodes in the form of solvated electron systems (SES) between an alkali (or alkaline earth) metal and poly aromatic hydrocarbons (PAH), separated by an ionically conducting separator. The cell reaction involves the formation of such SES with a PAH of high voltage in the cathode, while the alkali (or alkaline earth metal) is reduced from such an MPAH complex in the anode half-cell. During recharge, the reactions are reversed in both electrodes. In other words, the alkali (alkaline earth) metal ion simply shuttles from one M-PAH complex (SES) to another, which are separated by a metal-ion conducting solid or polymer electrolyte separator. As an example, the concept was demonstrated with Li-naphthalene//Li DDQ (DDQ is 2,3-Dichloro-5,6-dicyano- 1,4-benzoquinone) separated by lithium super ion conductor, either ceramic or polymer (solid polymer or gel polymer) electrolytes. The reactants are Li-naphthalene dissolved in tetrahydrofuran (THF) with a lithium salt of 1M LiBF4 (lithium tetra fluoroborate) in the anode compartment, and DDQ again dissolved in THF and also containing 1M LiBF4 salt in the cathode half-cell. The solid electrolyte separator used in the first set of experiments is a ceramic solid electrolyte, available from a commercial source. The open circuit voltage of the cells is close to 3.0 V, as expected from the individual half-cell voltages of Li-naphthalene and Li-DDQ. Upon discharge, the cell shows steady discharge voltage of 2.7 V, which confirms that the electrochemical processes do involve lithium ion shuttling from the anodic compartment to the cathode half-cell. The reversibility or rechargeability is demonstrated by charging the partially discharged cells (i.e., with lithium present in the DDQ half). Once again, a steady voltage close to 3.0 V was observed during charge, indicating that the system is quite reversible. In the subsequent concept-demonstration studies, the ceramic electrolyte has been replaced with a gel polymer electrolyte, e.g., PVDF-HFP (poly vinylene difluoride hexafluoropropene) gel, which has several advantages such as high ionic conductivity (almost comparable to liquid electrolyte and about 2 orders of magnitude better than the ceramic equivalent), lower cost, and possibly higher chemical stability at the anode. In addition, it can be bonded to the electrode by thermal fusion to form membrane electrode assemblies (MEAs), as is done in fuel cells.

  14. Space Shuttle Upgrades: Long Life Alkaline Fuel Cell

    NASA Technical Reports Server (NTRS)

    McCurdy, Kerri

    2004-01-01

    NASA has utilized the alkaline fuel cell technology to provide electrical power for manned launch vehicles such as Gemini, Apollo, and the Space Shuttle. The current Shuttle alkaline fuel cells are procured from UTC Fuel Cells, a United Technologies Company. The alkaline fuel cells are very reliable but the operating life is limited to 2600 hours due to voltage degradation of the individual cells. The main limiting factor in the life of the cells is corrosion of the cell's fiberglass/epoxy frame by the aqueous potassium hydroxide electrolyte. To reduce operating costs, the orbiter program office approved the Long Life Alkaline Fuel Cell (LLAFC) program as a shuttle upgrade in 1999 to increase the operating life of the fuel cell powerplant to 5000 hours. The LLAFC program incorporates improving the cell by extending the length of the corrosion path, which reduces the cell frame corrosion. UTCFC performed analysis to understand the fundamental mechanisms that drive the cell frame corrosion. The analysis indicated that the corrosion path started along the bond line between the cathode and the cell frame. Analysis also showed that the oxygen available at the cathode, the catalyst on the electrode, and the electrode substrate all supported or intensified the corrosion. The new cell design essentially doubled the corrosion path to mitigate the problem. A 10-cell stack was tested for 5000 hours during the development phase of this program to verify improved cell performance. A complete 96-cell stack was then tested for 5000 hours during the full manned-space qualification phase of this program. Additional upgrades to the powerplant under this program are: replacing the aluminum body in the pressure regulator with stainless steel to reduce corrosion, improving stack insulator plate with improved resistance to stress failure and improved temperature capability, and replacing separator plate elastomer seals with a more durable material and improved seal retention.

  15. Separation of polyethylene terephthalate from municipal waste plastics by froth flotation for recycling industry.

    PubMed

    Wang, Chong-Qing; Wang, Hui; Liu, You-Nian

    2015-01-01

    Recycling is an effective way to manage plastic wastes and receives considerable attention. Since plastic mixtures are difficult to recycle because of their intrinsic characteristics, separation of mixed plastics is the key problem for recycling. Separation of polyethylene terephthalate (PET) from municipal waste plastics (MWP) by froth flotation combined with alkaline pretreatment was investigated for recycling industry. The effect of process variables was estimated by L9 (3(4)) orthogonal array of experiments and single factor experiments. The optimum conditions of alkaline pretreatment are 10 wt% sodium hydroxide, 20 min and 70°C. After alkaline pretreatment under optimum conditions, flotation separation PET from acrylonitrile-butadiene-styrene, polystyrene, polycarbonate or polyvinyl chloride was achieved with high purity and efficiency. The purity of PET is up to 98.46% and the recovery is above 92.47%. A flow sheet of separation PET from MWP by a combination of froth flotation and sink float separation was designed. This study facilitates industrial application of plastics flotation and provides technical insights into recycling of waste plastics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Reducing mode circulating fluid bed combustion

    DOEpatents

    Lin, Yung-Yi; Sadhukhan, Pasupati; Fraley, Lowell D.; Hsiao, Keh-Hsien

    1986-01-01

    A method for combustion of sulfur-containing fuel in a circulating fluid bed combustion system wherein the fuel is burned in a primary combustion zone under reducing conditions and sulfur captured as alkaline sulfide. The reducing gas formed is oxidized to combustion gas which is then separated from solids containing alkaline sulfide. The separated solids are then oxidized and recycled to the primary combustion zone.

  17. Hydrogen production from a rectangular horizontal filter press Divergent Electrode-Flow-Through (DEFT™) alkaline electrolysis stack

    NASA Astrophysics Data System (ADS)

    Gillespie, M. I.; Kriek, R. J.

    2017-12-01

    A membraneless Divergent Electrode-Flow-Through (DEFT™) alkaline electrolyser, for unlocking profitable hydrogen production by combining a simplistic, inexpensive, modular and durable design, capable of overcoming existing technology current density thresholds, is ideal for decentralised renewable hydrogen production, with the only requirement of electrolytic flow to facilitate high purity product gas separation. Scale-up of the technology was performed, representing a deviation from the original tested stack design, incorporating elongated electrodes housed in a filter press assembly. The pilot plant operating parameters were limited to a low flow velocity range (0.03 m s-1 -0.04 m s-1) with an electrode gap of 2.5 mm. Performance of this pilot plant demonstrated repeatability to results previously obtained. Mesh electrodes with geometric area of 344.32 cm2 were used for plant performance testing. A NiO anode and Ni cathode combination developed optimal performance yielding 508 mA cm-2 at 2 VDC in contrast to a Ni anode and cathode combination providing 467 mA cm-2 at 2.26 VDC at 0.04 m s-1, 30% KOH and 80 °C. An IrO2/RuO2/TiO2 anode and Pt cathode combination underwent catalyst deactivation. Owing to the nature of the gas/liquid separation system, gas qualities were inadequate compared to results achieved previously. Future improvements will provide qualities similar to results achieved before.

  18. SEPARATION OF PLUTONYL IONS

    DOEpatents

    Connick, R.E.; McVey, Wm.H.

    1958-07-15

    A process is described for separating plutonyl ions from the acetate ions with which they are associated in certaln carrier precipitation methods of concentrating plutonium. The method consists in adding alkaline earth metal ions and subsequently alkalizing the solution, causing formation of an alkaltne earth plutonate precipitate. Barium hydroxide is used in a preferred embodiment since it provides alkaline earth metal ion and alkalizes the solution in one step forming insoluble barium platonate.

  19. Polyvinyl alcohol membranes as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Gonzalez-Sanabria, O.; Manzo, M. A.

    1982-01-01

    Polyvinly alcohol (PVA) cross-linked with aldehyde reagents yields membranes that demonstrate properties that make them suitable for use as alkaline battery separators. Film properties can be controlled by the choice of cross-linker, cross-link density and the method of cross-linking. Three methods of cross-linking and their effects on film properties are discussed. Film properties can also be modified by using a copolymer of vinyl alcohol and acrylic acid as the base for the separator and cross-linking it similarly to the PVA. Fillers can be incorporated into the films to further modify film properties. Results of separator screening tests and cell tests for several variations of PBA films are discussed.

  20. Separation of polyethylene terephthalate from municipal waste plastics by froth flotation for recycling industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chong-Qing; Wang, Hui, E-mail: huiwang1968@163.com; Liu, You-Nian

    Highlights: • Factors of NaOH treatment were studied by orthogonal and single factor experiments. • Mechanism of alkaline treatment for facilitating flotation was manifested. • Flotation separation of PET was achieved with high purity and efficiency. • A flow sheet of purification PET from MWP was designed. - Abstract: Recycling is an effective way to manage plastic wastes and receives considerable attention. Since plastic mixtures are difficult to recycle because of their intrinsic characteristics, separation of mixed plastics is the key problem for recycling. Separation of polyethylene terephthalate (PET) from municipal waste plastics (MWP) by froth flotation combined with alkalinemore » pretreatment was investigated for recycling industry. The effect of process variables was estimated by L{sub 9} (3{sup 4}) orthogonal array of experiments and single factor experiments. The optimum conditions of alkaline pretreatment are 10 wt% sodium hydroxide, 20 min and 70 °C. After alkaline pretreatment under optimum conditions, flotation separation PET from acrylonitrile–butadiene–styrene, polystyrene, polycarbonate or polyvinyl chloride was achieved with high purity and efficiency. The purity of PET is up to 98.46% and the recovery is above 92.47%. A flow sheet of separation PET from MWP by a combination of froth flotation and sink float separation was designed. This study facilitates industrial application of plastics flotation and provides technical insights into recycling of waste plastics.« less

  1. Recycling the liquid fraction of alkaline hydrogen peroxide in the pretreatment of corn stover.

    PubMed

    Alencar, Bárbara Ribeiro Alves; Reis, Alexandre Libanio Silva; de Souza, Raquel de Fatima Rodrigues; Morais, Marcos Antônio; Menezes, Rômulo Simões Cezar; Dutra, Emmanuel Damilano

    2017-10-01

    The aim of this study was to evaluate the influence of recycling the liquid fraction of pretreatment with alkaline hydrogen peroxide (AHP) on the hydrolysis of corn stover. Corn stover was pretreated in the traditional condition with 7.5% v/v H 2 O 2 . After pretreatment, the solids were separated from the liquid fraction and five successive reuse cycles of the liquid fraction were tested. The solid fraction from pretreatment in each recycle was submitted to enzymatic hydrolysis. The number of recycles had a linear negative effect (R 2 =0.98) on biomass delignification efficiency and also affected negatively the enzymatic conversion efficiency. Despite the decrease in efficiency after each recycling step, reuse of the liquid fraction leads to reduction in water, H 2 O 2 and NaOH consumption of up to 57.6%, 59.6% and 57.6%, respectively. These findings point to an efficient recycling technology, which may reduce costs and save water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Advanced inorganic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1982-01-01

    A flexible, porous battery separator comprising a coating applied to a porous, flexible substrate is described. The coating comprises: (1) a thermoplastic rubber-based resin which is insoluble and unreactive in the alkaline electrolyte; (2) a polar organic plasticizer which is reactive with the alkaline electrolyte to produce a reaction product which contains a hydroxyl group and/or a carboxylic acid group; and (3) a mixture of polar particulate filler materials which are unreactive with the electrolyte, the mixture comprising at least one first filler material having a surface area of greater than 25 meters sq/gram, at least one second filler material having a surface area of 10 to 25 sq meters/gram, wherein the volume of the mixture of filler materials is less than 45% of the total volume of the fillers and the binder, the filler surface area per gram of binder is about 20 to 60 sq meters/gram, and the amount of plasticizer is sufficient to coat each filler particle. A method of forming the battery separator is also described.

  3. Alkaline electrochemical cells and method of making

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    Equilibrated cellulose ether membranes of increased electrolytic conductivity for use as separators in concentrated alkaline electrochemical cells are investigated. The method of making such membranes by equilibration to the degree desired in an aqueous alkali solution mantained at a temperature below about 10 C is described.

  4. Indirect ultraviolet detection of alkaline earth metal ions using an imidazolium ionic liquid as an ultraviolet absorption reagent in ion chromatography.

    PubMed

    Liu, Yong-Qiang; Yu, Hong

    2017-04-01

    A convenient and versatile method was developed for the separation and detection of alkaline earth metal ions by ion chromatography with indirect UV detection. The chromatographic separation of Mg 2+ , Ca 2+ , and Sr 2+ was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid as the mobile phase, in which the imidazolium ionic liquid acted as an UV-absorption reagent. The effects of imidazolium ionic liquids, detection wavelength, acids in the mobile phase, and column temperature on the retention of Mg 2+ , Ca 2+ , and Sr 2+ were investigated. The main factors influencing the separation and detection were the background UV absorption reagent and the concentration of hydrogen ion in ion chromatography with indirect UV detection. The successful separation and detection of Mg 2+ , Ca 2+ , and Sr 2+ within 14 min were achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.06, 0.12, and 0.23 mg/L, respectively. A new separation and detection method of alkaline earth metal ions by ion chromatography with indirect UV detection was developed, and the application range of ionic liquids was expanded. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. An innovative sewage sludge reduction by using a combined mesophilic anaerobic and thermophilic aerobic process with thermal-alkaline treatment and sludge recirculation.

    PubMed

    Cho, Hyun Uk; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-11-15

    Lab-scale High Efficiency Digestion (HED) systems containing a Mesophilic Anaerobic Reactor (MAR), Thermophilic Aerobic Reactor (TAR), liquid/solid separation unit, and thermal-alkaline treatment were developed to evaluate the efficiencies of sludge reduction and methane production. The HED process was divided into three phases to examine the influence of sludge pretreatment and pretreated sludge recirculation using TCOD and VSS reduction, COD solubilization, and methane production. The VSS removal with a solid/liquid separation unit, sludge recirculation, and thermal-alkaline treatment drastically increased up to 95% compared to the feed concentration. In addition, the results of COD solubilization and VSS/TSS showed that the solubilization of cells and organic matters by the thermal-alkaline treatment was highly increased, which was also consistent with the SEM images. In particular, the methane production rate increased 24-fold when the feed sludge and recirculated sludge were pretreated together. Collectively, the HED experiments performed with sludge recirculation and thermal-alkaline treatment demonstrated that the HED systems can be successfully employed for highly efficient sewage sludge reduction and methane gas production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Process for extracting technetium from alkaline solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  7. Alkaline polymer electrolyte membranes for fuel cell applications.

    PubMed

    Wang, Yan-Jie; Qiao, Jinli; Baker, Ryan; Zhang, Jiujun

    2013-07-07

    In this review, we examine the most recent progress and research trends in the area of alkaline polymer electrolyte membrane (PEM) development in terms of material selection, synthesis, characterization, and theoretical approach, as well as their fabrication into alkaline PEM-based membrane electrode assemblies (MEAs) and the corresponding performance/durability in alkaline polymer electrolyte membrane fuel cells (PEMFCs). Respective advantages and challenges are also reviewed. To overcome challenges hindering alkaline PEM technology advancement and commercialization, several research directions are then proposed.

  8. Distribution behavior of uranium, neptunium, rare-earth elements ( Y, La, Ce, Nd, Sm, Eu, Gd) and alkaline-earth metals (Sr,Ba) between molten LiClKCI eutectic salt and liquid cadmium or bismuth

    NASA Astrophysics Data System (ADS)

    Kurata, M.; Sakamura, Y.; Hijikata, T.; Kinoshita, K.

    1995-12-01

    Distribution coefficients of uranium neptunium, eight rare-earth elements (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) and two alkaline-earth metals (Sr and Ba) between molten LiCl-KCI eutectic salt and either liquid cadmium or bismuth were measured at 773 K. Separation factors of trivalent rare-earth elements to uranium or neptunium in the LiCl-KCl/Bi system were by one or two orders of magnitude larger than those in the LiCl-KCl/Cd system. On the contrary, the separation factors of alkaline-earth metals and divalent rare-earth elements to trivalent rare-earth elements were by one or two orders of magnitude smaller in the LiCl-KCl/Bi system.

  9. SEPARATION PROCESS FOR ZIRCONIUM AND COMPOUNDS THEREOF

    DOEpatents

    Crandall, H.W.; Thomas, J.R.

    1959-06-30

    The separation of zirconium from columbium, rare earths, yttrium and the alkaline earth metals, such mixtures of elements occurring in zirconium ores or neutron irradiated uranium is described. According to the invention a suitable separation of zirconium from a one normal acidic aqueous solution containing salts, nitrates for example, of tetravalent zirconium, pentavalent columbium, yttrium, rare earths in the trivalent state and alkaline earths can be obtained by contacting the aqueous solution with a fluorinated beta diketonc alone or in an organic solvent solution, such as benzene, to form a zirconium chelate compound. When the organic solvent is present the zirconium chelate compound is directly extracted; otherwise it is separated by filtration. The zirconium may be recovered from contacting the organic solvent solution containing the chelated compound by back extraction with either an aqueous hydrofluoric acid or an oxalic acid solution.

  10. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-31

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  11. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  12. Recovery of zinc and manganese from spent alkaline batteries by liquid-liquid extraction with Cyanex 272

    NASA Astrophysics Data System (ADS)

    Salgado, Aline L.; Veloso, Aline M. O.; Pereira, Daniel D.; Gontijo, Glayson S.; Salum, Adriane; Mansur, Marcelo B.

    A hydrometallurgical route based on the liquid-liquid extraction technique using Cyanex 272 as extractant is investigated for the selective separation of metal values, in particular, zinc and manganese from spent alkaline batteries. The recycling route consists of following steps: (1) cryogenic dismantling of the spent batteries, (2) pre-treatment of the internal material consisting of drying, grinding and screening steps in order to produce a dry homogeneous powder, (3) leaching of the powder with sulphuric acid and (4) metal separation by liquid-liquid extraction. Bench scale experiments have shown that zinc and manganese are easily separated (ΔpH 1/2≈2.0) using 20% (v/v) Cyanex 272 dissolved in Escaid 110 at 50 °C. Therefore, the proposed route can treat residues from both zinc-carbon and alkaline batteries because metal composition of these batteries is quite similar. The metal content of other batteries such as Ni-Cd and nickel-metal hydride (NiMH) has been also determined in order to include them in future investigations.

  13. Method of treating waste water

    DOEpatents

    Deininger, J. Paul; Chatfield, Linda K.

    1991-01-01

    A process of treating water to remove transuranic elements contained therein by adjusting the pH of a transuranic element-containing water source to within the range of about 6.5 to about 14.0, admixing the water source with an alkali or alkaline earth ferrate in an amount sufficient to form a precipitate within the water source, the amount of ferrate effective to reduce the transuranic element concentration in the water source, permitting the precipitate in the admixture to separate and thereby yield a supernatant liquid having a reduced transuranic element concentration, and separating the supernatant liquid having the reduced transuranic element concentration from the admixture is provided. Additionally, a water soluble salt, e.g., a zirconium salt, can be added with the alkali or alkaline earth ferrate in the process to provide greater removal efficiencies. A composition of matter including an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, is also provided.

  14. DNA-protein crosslinking by trans-platinum(II)diamminedichloride in mammalian cells, a new method of analysis.

    PubMed

    Kohn, K W; Ewig, R A

    1979-03-28

    DNA-protien crosslinks produced in mouse leukemia L1210 cells by trans-Pt(II)diamminedichloride were quantitated using the technique of DNA alkaline elution. DNA single-strand segments that were or were not linked to protein were separable into distinct components by alkaline elution after exposure of the cells to 2--15 kR of X-ray. Protein-linked DNA strands were separated on the basis of their retention of filters at pH 12 while free DNA strands of the size generated by 2--15 kR of X-ray passed rapidly through the filters. The retention of protein-linked DNA strands was attributable to adsorption of protein to the filter under the conditions of alkaline elution. The results obeyed a simple quantitative model according to which the frequency of DNA-protein crosslinks could be calculated.

  15. Antimicrobial cotton textiles with robust superhydrophobicity via plasma for oily water separation

    NASA Astrophysics Data System (ADS)

    Zhang, Ming; Pang, Jiuyin; Bao, Wenhui; Zhang, Wenbo; Gao, He; Wang, Chengyu; Shi, Junyou; Li, Jian

    2017-10-01

    During these decades, functional materials are facing the severe challenge of their weak surface structure. To solve this problem, plasma technology and spraying technology were utilized to improve the bonding effect between cotton substrates and coating structures. Herein, silica/silver nanoparticles (SiO2/Ag NPs) were prepared and introduced to the nano-/micro- structures on sample surface by spraying technology in the existence of polyurethane adhesive. Then the circles of spraying procedure containing adhesive and SiO2/Ag NPs had been discussed. After further fluorination, the samples still displayed an excellent waterproof property even after abrasion test with sand paper and various washing test by its solvent-acetone or harsh liquids with strong acidity/alkalinity, indicating their robust surfaces structures. More importantly, this product displayed the outstanding performance no matter in laboratory oil/water filtration or the extensive oil leakage and spill. At last, our modification also endowed the cotton sample with great antimicrobial property.

  16. Alkaline battery, separator therefore

    NASA Technical Reports Server (NTRS)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  17. Flexible separator for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1977-01-01

    Device is fabricated from low-cost readily-available commercial-materials by automated methods utilizing conventional paper coating processes. Flexibility of unit prevents cracking and disintegration caused by electrode warpage and dendrite growth, major causes of early battery failure with present separators.

  18. Electrodeposited inorganic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Carson, W. N., Jr.; Consiglio, J. A.; Mc Quade, J. M.

    1970-01-01

    Coating electrodes of silver-cadmium cells with thermostable electrodeposits of calcium hydroxide or magnesium hydroxide reduces silver migration and increases cell life. Absence of organic matter enables assembled cells to be sterilized without oxidation of the material of the separators.

  19. Protection against Experimental Cryptococcosis following Vaccination with Glucan Particles Containing Cryptococcus Alkaline Extracts.

    PubMed

    Specht, Charles A; Lee, Chrono K; Huang, Haibin; Tipper, Donald J; Shen, Zu T; Lodge, Jennifer K; Leszyk, John; Ostroff, Gary R; Levitz, Stuart M

    2015-12-22

    A vaccine capable of protecting at-risk persons against infections due to Cryptococcus neoformans and Cryptococcus gattii could reduce the substantial global burden of human cryptococcosis. Vaccine development has been hampered though, by lack of knowledge as to which antigens are immunoprotective and the need for an effective vaccine delivery system. We made alkaline extracts from mutant cryptococcal strains that lacked capsule or chitosan. The extracts were then packaged into glucan particles (GPs), which are purified Saccharomyces cerevisiae cell walls composed primarily of β-1,3-glucans. Subcutaneous vaccination with the GP-based vaccines provided significant protection against subsequent pulmonary infection with highly virulent strains of C. neoformans and C. gattii. The alkaline extract derived from the acapsular strain was analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS), and the most abundant proteins were identified. Separation of the alkaline extract by size exclusion chromatography revealed fractions that conferred protection when loaded in GP-based vaccines. Robust Th1- and Th17-biased CD4(+) T cell recall responses were observed in the lungs of vaccinated and infected mice. Thus, our preclinical studies have indicated promising cryptococcal vaccine candidates in alkaline extracts delivered in GPs. Ongoing studies are directed at identifying the individual components of the extracts that confer protection and thus would be promising candidates for a human vaccine. The encapsulated yeast Cryptococcus neoformans and its closely related sister species, Cryptococcus gattii, are major causes of morbidity and mortality, particularly in immunocompromised persons. This study reports on the preclinical development of vaccines to protect at-risk populations from cryptococcosis. Antigens were extracted from Cryptococcus by treatment with an alkaline solution. The extracted antigens were then packaged into glucan particles, which are hollow yeast cell walls composed mainly of β-glucans. The glucan particle-based vaccines elicited robust T cell immune responses and protected mice from otherwise-lethal challenge with virulent strains of C. neoformans and C. gattii. The technology used for antigen extraction and subsequent loading into the glucan particle delivery system is relatively simple and can be applied to vaccine development against other pathogens. Copyright © 2015 Specht et al.

  20. Effects of Aging on PuO2∙xH2O Particle Size in Alkaline Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, Calvin H.

    Between 1944 and 1989, 54.5 metric tons of the United States’ weapons-grade plutonium and an additional 12.9 metric tons of fuel-grade plutonium were produced and separated from irradiated fuel at the Hanford Site. Acidic high-activity wastes containing around 600 kg of plutonium were made alkaline and discharged to underground storage tanks from separations, isolation, and recycle processes to yield average plutonium concentration of about 0.003 grams per liter (or ~0.0002 wt%) in the ~200 million liter tank waste volume. The plutonium is largely associated with low-solubility metal hydroxide/oxide sludges where its low concentration and intimate mixture with neutron-absorbing elements (e.g.,more » iron) are credited in nuclear criticality safety. However, concerns have been expressed that plutonium, in the form of plutonium hydrous oxide, PuO2∙xH2O, could undergo sufficient crystal growth through dissolution and reprecipitation in the alkaline tank waste to potentially become separable from neutron absorbing constituents by settling or sedimentation. Thermodynamic considerations and laboratory studies of systems chemically analogous to tank waste show that the plutonium formed in the alkaline tank waste by precipitation through neutralization from acid solution probably entered as 2–4-nm PuO2∙xH2O crystallite particles that, because of their low solubility and opposition from radiolytic processes, grow from that point at exceedingly slow rates, thus posing no risk of physical segregation.« less

  1. Long Life, High Energy Silver-Zinc Batteries

    NASA Technical Reports Server (NTRS)

    Kainthla, Ramesh; Coffey, Brendan

    2003-01-01

    This viewgraph presentation includes: 1) an introduction to RBC Technologies; 2) Rechargeable Zinc Alkaline (RZA(tm)) Systems which include MnO2/Zn, Ni/Zn, Ag/Zn, and Zn/Air; and 3) RZA Silver/Zinc Battery Developments. Conclusions include the following: 1)Issues with long term wet life and cycle life of the silver/zinc battery system are being overcome through the use of new anode formulations and separator designs; 2) Performance may exceed 200 cycles to 80% of initial capacity and ultimate wet-life of > 36 months; and 3) Rechargeable silver/zinc batteries available in prismatic and cylindrical formats may provide a high energy, high power alternative to lithium-ion in military/aerospace applications.

  2. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  3. Effect of pH alkaline salts of fatty acids on the inhibition of bacteria associated with poultry processing

    USDA-ARS?s Scientific Manuscript database

    The agar diffusion assay was used to examine the effect of pH on the ability of alkaline salts of three fatty acids (FA) to inhibit growth of bacteria associated with poultry processing. FA solutions were prepared by dissolving 0.5 M concentrations of caprylic, capric, or lauric acid in separate ali...

  4. Alkaline dehydration of anion-exchanged human urine: Volume reduction, nutrient recovery and process optimisation.

    PubMed

    Simha, Prithvi; Senecal, Jenna; Nordin, Annika; Lalander, Cecilia; Vinnerås, Björn

    2018-06-02

    In urine-separating sanitation systems, bacterial urease enzymes can hydrolyse urea to ammonia during the pipe transport and storage of urine. The present study investigated whether it was possible to reduce the urine volume without losing the nitrogen as ammonia. A method for stabilising the urine prior to dehydration was developed. Briefly, fresh human urine was stabilised by passage through an anion-exchanger, added to an alkaline media (wood ash or alkalised biochar), and dehydrated. Urine dehydration was investigated at three temperatures: 40, 45 and 50 °C. The influence of various factors affecting the dehydration process was modelled and the rate of urine dehydration was optimised. Results indicated that 75% (v/v) of the urine has to pass through the ion-exchanger for alkaline stabilisation of urine to occur. At all investigated temperatures, the dehydrator accomplished >90% volume reduction of ion-exchanged urine, > 70% N retention and 100% recovery of P and K. To realise high degree of nutrient valorisation, this study proposes combining source-separation of human urine with alkaline dehydration. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Inexpensive cross-linked polymeric separators made from water-soluble polymers. [for secondary alkaline nickel-zinc and silver-zinc cells

    NASA Technical Reports Server (NTRS)

    Hsu, L.-C.; Sheibley, D. W.

    1982-01-01

    Polyvinyl alcohol (PVA), cross-linked chemically with aldehyde reagents, produces membranes which demonstrate oxidation resistance, dimensional stability, low ionic resistivity (less than 0.8 Ohms sq cm), low zincate diffusivity (less than 1 x 10 to the -7th mols/sq cm per min), and low zinc dendrite penetration rate (greater than 350 min) which make them suitable for use as alkaline battery separators. They are intrinsically low in cost, and environmental health and safety problems associated with commercial production appear minimal. Preparation, property measurements, and cell test results in Ni/Zn and Ag/Zn cells are described and discussed.

  6. Separation of Native Allophycocyanin and R-Phycocyanin from Marine Red Macroalga Polysiphonia urceolata by the Polyacrylamide Gel Electrophoresis Performed in Novel Buffer Systems

    PubMed Central

    Wang, Yu; Gong, Xueqin; Wang, Shumei; Chen, Lixue; Sun, Li

    2014-01-01

    Three buffer systems of Imidazole−Acetic acid, HEPES−Imidazole/Bis-tris and Bis-tris−HEPES−MES were designed based on the principle of discontinuous polyacrylamide gel electrophoresis (PAGE) for the native PAGE which could be performed in pH 7.0 and 6.5 in order to analyze and prepare the minor components of allophycocyanin (AP) and R-phycocyanin (R-PC) from marine red macroalga Polysiphonia urceolata. These AP and R-PC phycobiliproteins are easily denatured in alkaline environments. The obtained results demonstrated that the PAGE modes performed in the buffer systems of HEPES−Imidazole/Bis-tris and Bis-tris−HEPES−MES gave the satisfactory resolution and separation of AP and R-PC proteins. The absorption and fluorescence spectra of the AP and R-PC proteins which were prepared by the established PAGE modes proved that they maintained natural spectroscopic characteristics. The established PAGE modes may also provide useful references and selections for some other proteins that are sensitive to alkaline environments or are not effectively separated by the classical PAGE modes performed normally in alkaline buffer systems. PMID:25166028

  7. Removal of dissolved actinides from alkaline solutions by the method of appearing reagents

    DOEpatents

    Krot, Nikolai N.; Charushnikova, Iraida A.

    1997-01-01

    A method of reducing the concentration of neptunium and plutonium from alkaline radwastes containing plutonium and neptunium values along with other transuranic values produced during the course of plutonium production. The OH.sup.- concentration of the alkaline radwaste is adjusted to between about 0.1M and about 4M. [UO.sub.2 (O.sub.2).sub.3 ].sup.4- ion is added to the radwastes in the presence of catalytic amounts of Cu.sup.+2, Co.sup.+2 or Fe.sup.+2 with heating to a temperature in excess of about 60.degree. C. or 85.degree. C., depending on the catalyst, to coprecipitate plutonium and neptunium from the radwaste. Thereafter, the coprecipitate is separated from the alkaline radwaste.

  8. Exploring crystalline-structural variations of cellulose during alkaline pretreatment for enhanced enzymatic hydrolysis.

    PubMed

    Ling, Zhe; Chen, Sheng; Zhang, Xun; Xu, Feng

    2017-01-01

    The study aimed to explore the crystallinity and crystalline structure of alkaline pretreated cellulose. The enzymatic hydrolysis followed by pretreatment was conducted for measuring the efficiency of sugar conversion. For cellulose Iβ dominated samples, alkaline pretreatment (<8wt%) caused increased cellulose crystallinity and depolymerized hemicelluloses, that were superimposed to affect the enzymatic conversion to glucose. Varying crystallite sizes and lattice spacings indicated the separation of cellulose crystals during mercerization (8-12wt% NaOH). Completion of mercerization was proved under higher alkaline concentration (14-18wt% NaOH), leading to distortion of crystalline cellulose to some extent. Cellulose II crystallinity showed a stimulative impact on enzymatic hydrolysis due to the weakened hydrophobic interactions within cellulose chains. The current study may provide innovative explanations for enhanced enzymatic digestibility of alkaline pretreated lignocellulosic materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A Synergistic Combination of Advanced Separation and Chemical Scale Inhibitor Technologies for Efficient Use of Imparied Water As Cooling Water in Coal-based Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasbir Gill

    2010-08-30

    Nalco Company is partnering with Argonne National Laboratory (ANL) in this project to jointly develop advanced scale control technologies that will provide cost-effective solutions for coal-based power plants to operate recirculating cooling water systems at high cycles using impaired waters. The overall approach is to use combinations of novel membrane separations and scale inhibitor technologies that will work synergistically, with membrane separations reducing the scaling potential of the cooling water and scale inhibitors extending the safe operating range of the cooling water system. The project started on March 31, 2006 and ended in August 30, 2010. The project was amore » multiyear, multi-phase project with laboratory research and development as well as a small pilot-scale field demonstration. In Phase 1 (Technical Targets and Proof of Concept), the objectives were to establish quantitative technical targets and develop calcite and silica scale inhibitor chemistries for high stress conditions. Additional Phase I work included bench-scale testing to determine the feasibility of two membrane separation technologies (electrodialysis ED and electrode-ionization EDI) for scale minimization. In Phase 2 (Technology Development and Integration), the objectives were to develop additional novel scale inhibitor chemistries, develop selected separation processes, and optimize the integration of the technology components at the laboratory scale. Phase 3 (Technology Validation) validated the integrated system's performance with a pilot-scale demonstration. During Phase 1, Initial evaluations of impaired water characteristics focused on produced waters and reclaimed municipal wastewater effluents. Literature and new data were collected and evaluated. Characteristics of produced waters vary significantly from one site to another, whereas reclaimed municipal wastewater effluents have relatively more uniform characteristics. Assessment to date confirmed that calcite and silica/silicate are two common potential cycle-limiting minerals for using impaired waters. For produced waters, barium sulfate and calcium sulfate are two additional potential cycle-limiting minerals. For reclaimed municipal wastewater effluents, calcium phosphate scaling can be an issue, especially in the co-presence of high silica. Computational assessment, using a vast amount of Nalco's field data from coal fired power plants, showed that the limited use and reuse of impaired waters is due to the formation of deposit caused by the presence of iron, high hardness, high silica and high alkalinity in the water. Appropriate and cost-effective inhibitors were identified and developed - LL99B0 for calcite and gypsum inhibition and TX-15060 for silica inhibition. Nalco's existing dispersants HSP-1 and HSP-2 has excellent efficacy for dispersing Fe and Mn. ED and EDI were bench-scale tested by the CRADA partner Argonne National Laboratory for hardness, alkalinity and silica removal from synthetic make-up water and then cycled cooling water. Both systems showed low power consumption and 98-99% salt removal, however, the EDI system required 25-30% less power for silica removal. For Phase 2, the EDI system's performance was optimized and the length of time between clean-in-place (CIP) increased by varying the wafer composition and membrane configuration. The enhanced EDI system could remove 88% of the hardness and 99% of the alkalinity with a processing flux of 19.2 gal/hr/m{sup 2} and a power consumption of 0.54 kWh/100 gal water. Bench tests to screen alternative silica/silicate scale inhibitor chemistries have begun. The silica/silicate control approaches using chemical inhibitors include inhibition of silicic acid polymerization and dispersion of silica/silicate crystals. Tests were conducted with an initial silica concentration of 290-300 mg/L as SiO{sub 2} at pH 7 and room temperature. A proprietary new chemistry was found to be promising, compared with a current commercial product commonly used for silica/silicate control. Additional pilot cooling tower testing confirmed the bench study. We also developed a molecule to inhibit calcium carbonate precipitation and calcium sulfate precipitation at high supersaturations. During Phase 3, a long-term test of the EDI system and scale inhibitors was done at Nalco's cooling tower water testing facility, producing 850 gallons of high purity water (90+% salt removal) at a rate of 220 L/day. The EDI system's performance was stable when the salt concentration in the concentrate compartment (i.e. the EDI waste stream) was controlled and a CIP was done after every 48 hours of operation time. A combination of EDI and scale inhibitors completely eliminated blowdown discharge from the Pilot cooling Tower. The only water-consumption came from evaporation, CIP and EDI concentrate. Silica Inhibitor was evaluated in the field at a western coal fired power plant.« less

  10. CONCENTRATION OF Pu USING OXALATE TYPE CARRIER

    DOEpatents

    Ritter, D.M.; Black, R.P.S.

    1960-04-19

    A method is given for dissolving and reprecipitating an oxalate carrier precipitate in a carrier precipitation process for separating and recovering plutonium from an aqueous solution. Uranous oxalate, together with plutonium being carried thereby, is dissolved in an aqueous alkaline solution. Suitable alkaline reagents are the carbonates and oxulates of the alkali metals and ammonium. An oxidizing agent selected from hydroxylamine and hydrogen peroxide is then added to the alkaline solution, thereby oxidizing uranium to the hexavalent state. The resulting solution is then acidified and a source of uranous ions provided in the acidified solution, thereby forming a second plutoniumcarrying uranous oxalate precipitate.

  11. Advanced inorganic separators for alkaline batteries and method of making the same

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1983-01-01

    A flexible, porous battery separator includes a coating applied to a porous, flexible substrate. The coating comprises: (1) a thermoplastic rubber-based resin which is insoluble and unreactive in the alkaline electrolyte, (2) a polar organic plasticizer which is reactive with the alkaline electrolyte to produce a reaction product which contains a hydroxyl group and/or a carboxylic acid group, and (3) a mixture of polar particulate filler materials which are unreactive with the electrode. The mixture comprises at least one first filler material having a surface area of greater than 25 sq meters/gram, at last one second filler material having a surface area of 10 to 25 sq meters/gram. The volume of the mixture of filler materials is less than 45% of the total volume of the fillers and the binder. The filler surface area per gram of binder is about 20 to 60 sq meters/gram, and the amount of plasticizer is sufficient to coat each filler particle.

  12. Synthesis of pH-sensitive and recyclable magnetic nanoparticles for efficient separation of emulsified oil from aqueous environments

    NASA Astrophysics Data System (ADS)

    Lü, Ting; Zhang, Shuang; Qi, Dongming; Zhang, Dong; Vance, George F.; Zhao, Hongting

    2017-02-01

    Emulsified oil wastewaters, arisen from oil industry and oil spill accidents, cause severe environmental and ecological problems. In this study, a series of pH-sensitive magnetic nanomaterials (MNPs) were synthesized and characterized for their evaluation in separation of emulsified oil from aqueous environments. A coprecipitation method was used to produce Fe3O4 magnetic nanoparticles that were coated in a 2-step process with first silica to form a surface for anchoring an (3-aminopropyl)triethoxysilane (APTES) molecular layer. Detailed studies were conducted on effects of MNPs dosage, APTES anchoring density (DA) and pH on oil-water separation performance of the synthetic MNPs. Results showed that, under both acidic and neutral conditions, MNPs with high DA exhibited enhanced oil-water separation performance, while under alkaline condition, the oil-water separation process was minimal. Alkaline conditions allowed the MNPs to be recycled up to 9 cycles without showing any significant decrease in oil-water separation efficiency. An examination of the oil-water separation mechanism found that electrostatic interaction and interfacial activity both played important roles in oil-water separation. In conclusion, pH-sensitive MNPs can be easily synthesized and recycled, providing a promising, cost-effective and environmentally-friendly process for the efficient treatment of emulsified oil wastewater.

  13. Pre-separation of ammonium content during high solid thermal-alkaline pretreatment to mitigate ammonia inhibition: Kinetics and feasibility analysis.

    PubMed

    Zhuo, Yang; Han, Yun; Qu, Qiliang; Cao, Yuqin; Peng, Dangcong; Li, Yuyou

    2018-08-01

    The feasibility of ammonia pre-separation during the thermal-alkaline pretreatment (TAP) of waste activated sludge was evaluated to mitigate ammonia inhibition during high solid anaerobic digestion (HSAD). The results showed that the TAP increased the organics hydrolysis rate as much as 77% compared to the thermal hydrolysis pretreatment (THP). The production and separation of the ammonia during the TAP exhibited a linear relationship with the hydrolysis of organics and the Emerson model. The pre-separation ratio of the free ammonia nitrogen exceeded 98.00% at a lime dosage exceeding 0.021 g CaO/g TS. However, the separation ratio of the total ammonia nitrogen (TAN) was hindered by its production ratio. Compared to the THP, the TAP increased the methane production rate under similar production yield. A mass flow analysis indicated that the TAP-HSAD process reduced the volume of the digester compared to the THP-HSAD process and the recirculated HSAD-TAP process recovered 45% of the nitrogen in the waste activated sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Effect of an alkaline environment on the engineering behavior of cement-stabilized/solidified Zn-contaminated soils.

    PubMed

    Liu, Jingjing; Zha, Fusheng; Deng, Yongfeng; Cui, Kerui; Zhang, Xueqin

    2017-12-01

    Although the stabilization/solidification method has been widely used for remediation of heavy metal-contaminated soils in recent decades, the engineering behavior and mobility of heavy metal ions under alkaline groundwater conditions are still unclear. Therefore, the unconfined compressive strength test (UCS) combined with toxicity characteristic leaching procedure (TCLP) and general acid neutralization capacity (GANC) was used to investigate the effects of alkalinity (using NaOH to simulate alkalinity in the environment) on the mechanical and leaching characteristics of cement-solidified/stabilized (S/S) Zn-contaminated soils. Moreover, the microstructure was analyzed using the scanning electron microscope (SEM) technology. The results indicated that alkaline environment could accelerate the UCS development compared with specimens without soaking in NaOH solution,, regardless of whether the specimens contained Zn 2+ or not. And the UCS varied obviously attributed to the variations of both NaOH concentration and soaking time. Except for the specimens soaked for 90 days, the leached Zn 2+ concentrations were higher than that of without soaking. However, the leachability of Zn 2+ in all the stabilized specimens is in the regulatory level. ANC results indicated that the Zn 2+ leaching behavior can be divided into three stages related to the initial leachate pH. Moreover, SEM results proved that the alkaline environment could actually facilitate the cement hydration process. The results proved in the present paper could be useful in treating the heavy metal-contaminated soils involved in the solidification/stabilization technology under alkaline environment.

  15. Transesterification of rapeseed oil for biodiesel production in trickle-bed reactors packed with heterogeneous Ca/Al composite oxide-based alkaline catalyst.

    PubMed

    Meng, Yong-Lu; Tian, Song-Jiang; Li, Shu-Fen; Wang, Bo-Yang; Zhang, Min-Hua

    2013-05-01

    A conventional trickle bed reactor and its modified type both packed with Ca/Al composite oxide-based alkaline catalysts were studied for biodiesel production by transesterification of rapeseed oil and methanol. The effects of the methanol usage and oil flow rate on the FAME yield were investigated under the normal pressure and methanol boiling state. The oil flow rate had a significant effect on the FAME yield for the both reactors. The modified trickle bed reactor kept over 94.5% FAME yield under 0.6 mL/min oil flow rate and 91 mL catalyst bed volume, showing a much higher conversion and operational stability than the conventional type. With the modified trickle bed reactor, both transesterification and methanol separation could be performed simultaneously, and glycerin and methyl esters were separated additionally by gravity separation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Method of enhancing the wettability of boron nitride for use as an electrochemical cell separator

    DOEpatents

    McCoy, L.R.

    1981-01-23

    A felt or other fabric of boron nitride suitable for use as an interelectrode separator within an electrochemical cell is wetted with a solution containing a thermally decomposable organic salt of an alkaline earth metal. An aqueous solution of magnesium acetate is the preferred solution for this purpose. After wetting the boron nitride, the solution is dried by heating at a sufficiently low temperature to prevent rapid boiling and the creation of voids within the separator. The dried material is then calcined at an elevated temperature in excess of 400/sup 0/C to provide a coating of an oxide of magnesium on the surface of the boron nitride fibers. A fabric or felt of boron nitride treated in this manner is easily wetted by molten electrolytic salts, such as the alkali metal halides or alkaline earth metal halides, that are used in high temperature, secondary electrochemical cells.

  17. Method of enhancing the wettability of boron nitride for use as an electrochemical cell separator

    DOEpatents

    McCoy, Lowell R.

    1982-01-01

    A felt or other fabric of boron nitride suitable for use as an interelecte separator within an electrochemical cell is wetted with a solution containing a thermally decomposable organic salt of an alkaline earth metal. An aqueous solution of magnesium acetate is the preferred solution for this purpose. After wetting the boron nitride, the solution is dried by heating at a sufficiently low temperature to prevent rapid boiling and the creation of voids within the separator. The dried material is then calcined at an elevated temperature in excess of 400.degree. C. to provide a coating of an oxide of magnesium on the surface of the boron nitride fibers. A fabric or felt of boron nitride treated in this manner is easily wetted by molten electrolytic salts, such as the alkali metal halides or alkaline earth metal halides, that are used in high temperature, secondary electrochemical cells.

  18. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1983-01-01

    Cross-linking methods have been investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. Then pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide-zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  19. Cross-linked polyvinyl alcohol films as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

    1982-01-01

    Cross-linking methods were investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. The pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide - zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

  20. Environmental hazard of oil shale combustion fly ash.

    PubMed

    Blinova, Irina; Bityukova, Liidia; Kasemets, Kaja; Ivask, Angela; Käkinen, Aleksandr; Kurvet, Imbi; Bondarenko, Olesja; Kanarbik, Liina; Sihtmäe, Mariliis; Aruoja, Villem; Schvede, Hedi; Kahru, Anne

    2012-08-30

    The combined chemical and ecotoxicological characterization of oil shale combustion fly ash was performed. Ash was sampled from the most distant point of the ash-separation systems of the Balti and Eesti Thermal Power Plants in North-Eastern Estonia. The fly ash proved potentially hazardous for tested aquatic organisms and high alkalinity of the leachates (pH>10) is apparently the key factor determining its toxicity. The leachates were not genotoxic in the Ames assay. Also, the analysis showed that despite long-term intensive oil-shale combustion accompanied by considerable fly ash emissions has not led to significant soil contamination by hazardous trace elements in North-Eastern Estonia. Comparative study of the fly ash originating from the 'new' circulating fluidized bed (CFB) combustion technology and the 'old' pulverized-fired (PF) one showed that CFB fly ash was less toxic than PF fly ash. Thus, complete transfer to the 'new' technology will reduce (i) atmospheric emission of hazardous trace elements and (ii) fly ash toxicity to aquatic organisms as compared with the 'old' technology. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Process for recovering hydrocarbons from a diatomite-type ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, B.W.

    1983-02-15

    A process for recovering hydrocarbons from a diatomite-type ore which comprises contacting the diatomite ore with a C/sub 4/-C/sub 10/ alcohol and thereafter contacting the diatomite ore-alcohol mixture with an aqueous alkaline solution to separate a hydrocarbon-alcohol phase and an alkaline aqueous phase containing the stripped diatomite ore. Thereafter, the alcohol is distilled off from the hydrocarbon phase and recycled back into the initial process.

  2. Separator for alkaline batteries and method of making same

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    The preparation of membranes suitable for use as separators in concentrated alkaline battery cells by selective solvolysis of copolymers of methacrylate esters with acrylate esters followed by addition of a base and to the resultant products is described. The method of making copolymers by first copolymerizing a methacrylate ester (or esters) with a more readily hydrolyzable ester, followed by a selective saponification whereby the methacrylate ester moieties remain essentially intact and the readily hydrolyzable ester moiety is suponified and to the partial or complete neutralization of the relatively brittle copolymer acid with a base to make membranes which are sufficiently flexible in the dry state so that they may be wrapped around electrodes without damage by handling is described.

  3. Charge-separated and molecular heterobimetallic rare earth-rare earth and alkaline earth-rare earth aryloxo complexes featuring intramolecular metal-pi-arene interactions.

    PubMed

    Deacon, Glen B; Junk, Peter C; Moxey, Graeme J; Ruhlandt-Senge, Karin; St Prix, Courtney; Zuniga, Maria F

    2009-01-01

    Treatment of a rare earth metal (Ln) and a potential divalent rare earth metal (Ln') or an alkaline earth metal (Ae) with 2,6-diphenylphenol (HOdpp) at elevated temperatures (200-250 degrees C) afforded heterobimetallic aryloxo complexes, which were structurally characterised. A charge-separated species [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] was obtained for a range of metals, demonstrating the similarities between the chemistry of the divalent rare earth metals and the alkaline earth metals. The [(Ln'/Ae)(2)(Odpp)(3)](+) cation in the heterobimetallic structures is unusual in that it consists solely of bridging aryloxide ligands. A molecular heterobimetallic species [AeEu(Odpp)(4)] (Ae = Ca, Sr, Ba) was obtained by treating an alkaline earth metal and Eu metal with HOdpp at elevated temperatures. Similarly, [BaSr(Odpp)(4)] was prepared by treating Ba metal and Sr metal with HOdpp. Treatment of [Ba(2)(Odpp)(4)] with [Mg(Odpp)(2)(thf)(2)] in toluene afforded [Ba(2)(Odpp)(3)][Mg(Odpp)(3)(thf)]. Analogous solution-based syntheses were not possible for [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] complexes, for which the free-metal route was essential. As a result of the absence of additional donor ligands, the crystal structures of the heterobimetallic complexes feature extensive pi-Ph-metal interactions involving the pendant phenyl groups of the Odpp ligands, thus enabling the large electropositive metal atoms to attain coordination saturation. The charge-separated heterobimetallic species were purified by extraction with toluene/thf mixtures at ambient temperature (Ba-containing compounds) or by extraction with toluene under pressure above the boiling point of the solvent (other products). In donor solvents, heterobimetallic complexes other than those containing barium were found to fragment into homometallic species.

  4. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis

    PubMed Central

    Hsieh, En-Jung; Waters, Brian M.

    2016-01-01

    Iron (Fe) is an essential mineral that has low solubility in alkaline soils, where its deficiency results in chlorosis. Whether low Fe supply and alkaline pH stress are equivalent is unclear, as they have not been treated as separate variables in molecular physiological studies. Additionally, molecular responses to these stresses have not been studied in leaf and root tissues simultaneously. We tested how plants with the Strategy I Fe uptake system respond to Fe deficiency at mildly acidic and alkaline pH by measuring root ferric chelate reductase (FCR) activity and expression of selected Fe uptake genes and riboflavin synthesis genes. Alkaline pH increased cucumber (Cucumis sativus L.) root FCR activity at full Fe supply, but alkaline stress abolished FCR response to low Fe supply. Alkaline pH or low Fe supply resulted in increased expression of Fe uptake genes, but riboflavin synthesis genes responded to Fe deficiency but not alkalinity. Iron deficiency increased expression of some common genes in roots and leaves, but alkaline stress blocked up-regulation of these genes in Fe-deficient leaves. In roots of the melon (Cucumis melo L.) fefe mutant, in which Fe uptake responses are blocked upstream of Fe uptake genes, alkaline stress or Fe deficiency up-regulation of certain Fe uptake and riboflavin synthesis genes was inhibited, indicating a central role for the FeFe protein. These results suggest a model implicating shoot-to-root signaling of Fe status to induce Fe uptake gene expression in roots. PMID:27605716

  5. Acid transformation of bauxite residue: Conversion of its alkaline characteristics.

    PubMed

    Kong, Xiangfeng; Li, Meng; Xue, Shengguo; Hartley, William; Chen, Chengrong; Wu, Chuan; Li, Xiaofei; Li, Yiwei

    2017-02-15

    Bauxite residue (BR) is a highly alkaline solid hazardous waste produced from bauxite processing for alumina production. Alkaline transformation appears to reduce the environmental risk of bauxite residue disposal areas (BRDAs) whilst potentially providing opportunities for the sustainable reuse and on-going management of BR. Mineral acids, a novel citric acid and a hybrid combination of acid-gypsum treatments were investigated for their potential to reduce residue pH and total alkalinity and transform the alkaline mineral phase. XRD results revealed that with the exception of andradite, the primary alkaline solid phases of cancrinite, grossular and calcite were transformed into discriminative products based on the transformation used. Supernatants separated from BR and transformed bauxite residue (TBR) displayed distinct changes in soluble Na, Ca and Al, and a reduction in pH and total alkalinity. SEM images suggest that mineral acid transformations promote macro-aggregate formation, and the positive promotion of citric acid, confirming the removal or reduction in soluble and exchangeable Na. NEXAFS analysis of Na K-edge revealed that the chemical speciation of Na in TBRs was consistent with BR. Three acid treatments and gypsum combination had no effect on Na speciation, which affects the distribution of Na revealed by sodium STXM imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Sustainable water desalination and electricity generation in a separator coupled stacked microbial desalination cell with buffer free electrolyte circulation.

    PubMed

    Chen, Xi; Liang, Peng; Wei, Zhimou; Zhang, Xiaoyuan; Huang, Xia

    2012-09-01

    A separator coupled circulation stacked microbial desalination cell (c-SMDC-S) was constructed to stabilize the pH imbalances in MDCs without buffer solution and achieved the stable desalination. The long-term operation of c-SMDC-S, regular stacked MDC (SMDC) and no separator coupled circulation SMDC (c-SMDC) were tested. The SMDC and c-SMDC could only stably operate for 1 week and 1 month owing to dramatic anolyte pH decrease and serious biofilm growth on the air cathode, respectively. The c-SMDC-S gained in anolyte alkalinity and operated stably for about 60 days without the thick biofilm growth on cathode. Besides, the chemical oxygen demand removal and coulombic efficiency were 64 ± 6% and 30 ± 2%, higher than that of SMDC and c-SMDC, respectively. It was concluded that the circulation of alkalinity could remove pH imbalance while the separator could expand the operation period and promote the conversion of organic matter to electricity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Systematic review of the association between dietary acid load, alkaline water and cancer.

    PubMed

    Fenton, Tanis R; Huang, Tian

    2016-06-13

    To evaluate the evidence for a causal relationship between dietary acid/alkaline and alkaline water for the aetiology and treatment of cancer. A systematic review was conducted on published and grey literature separately for randomised intervention and observational studies with either varying acid-base dietary intakes and/or alkaline water with any cancer outcome or for cancer treatment. Incidence of cancer and outcomes of cancer treatment. 8278 citations were identified, and 252 abstracts were reviewed; 1 study met the inclusion criteria and was included in this systematic review. No randomised trials were located. No studies were located that examined dietary acid or alkaline or alkaline water for cancer treatment. The included study was a cohort study with a low risk of bias. This study revealed no association between the diet acid load with bladder cancer (OR=1.15: 95% CI 0.86 to 1.55, p=0.36). No association was found even among long-term smokers (OR=1.72: 95% CI 0.96 to 3.10, p=0.08). Despite the promotion of the alkaline diet and alkaline water by the media and salespeople, there is almost no actual research to either support or disprove these ideas. This systematic review of the literature revealed a lack of evidence for or against diet acid load and/or alkaline water for the initiation or treatment of cancer. Promotion of alkaline diet and alkaline water to the public for cancer prevention or treatment is not justified. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Selective oxoanion separation using a tripodal ligand

    DOEpatents

    Custelcean, Radu; Moyer, Bruce A.; Rajbanshi, Arbin

    2016-02-16

    The present invention relates to urea-functionalized crystalline capsules self-assembled by sodium or potassium cation coordination and by hydrogen-bonding water bridges to selectively encapsulate tetrahedral divalent oxoanions from highly competitive aqueous alkaline solutions and methods using this system for selective anion separations from industrial solutions. The method involves competitive crystallizations using a tripodal tris(urea) functionalized ligand and, in particular, provides a viable approach to sulfate separation from nuclear wastes.

  9. A mathematical model of the maximum power density attainable in an alkaline hydrogen/oxygen fuel cell

    NASA Technical Reports Server (NTRS)

    Kimble, Michael C.; White, Ralph E.

    1991-01-01

    A mathematical model of a hydrogen/oxygen alkaline fuel cell is presented that can be used to predict the polarization behavior under various power loads. The major limitations to achieving high power densities are indicated and methods to increase the maximum attainable power density are suggested. The alkaline fuel cell model describes the phenomena occurring in the solid, liquid, and gaseous phases of the anode, separator, and cathode regions based on porous electrode theory applied to three phases. Fundamental equations of chemical engineering that describe conservation of mass and charge, species transport, and kinetic phenomena are used to develop the model by treating all phases as a homogeneous continuum.

  10. Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Hoberecht, M. A.; Le, M.

    1986-01-01

    The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.

  11. Ultra-high performance supercritical fluid chromatography of lignin-derived phenols from alkaline cupric oxide oxidation.

    PubMed

    Sun, Mingzhe; Lidén, Gunnar; Sandahl, Margareta; Turner, Charlotta

    2016-08-01

    Traditional chromatographic methods for the analysis of lignin-derived phenolic compounds in environmental samples are generally time consuming. In this work, an ultra-high performance supercritical fluid chromatography method with a diode array detector for the analysis of major lignin-derived phenolic compounds produced by alkaline cupric oxide oxidation was developed. In an analysis of a collection of 11 representative monomeric lignin phenolic compounds, all compounds were clearly separated within 6 min with excellent peak shapes, with a limit of detection of 0.5-2.5 μM, a limit of quantification of 2.5-5.0 μM, and a dynamic range of 5.0-2.0 mM (R(2) > 0.997). The new ultra-high performance supercritical fluid chromatography method was also applied for the qualitative and quantitative analysis of lignin-derived phenolic compounds obtained upon alkaline cupric oxide oxidation of a commercial humic acid. Ten out of the previous eleven model compounds could be quantified in the oxidized humic acid sample. The high separation power and short analysis time obtained demonstrate for the first time that supercritical fluid chromatography is a fast and reliable technique for the analysis of lignin-derived phenols in complex environmental samples. © 2016 The Authors, Journal of Separation Science Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis.

    PubMed

    Hsieh, En-Jung; Waters, Brian M

    2016-10-01

    Iron (Fe) is an essential mineral that has low solubility in alkaline soils, where its deficiency results in chlorosis. Whether low Fe supply and alkaline pH stress are equivalent is unclear, as they have not been treated as separate variables in molecular physiological studies. Additionally, molecular responses to these stresses have not been studied in leaf and root tissues simultaneously. We tested how plants with the Strategy I Fe uptake system respond to Fe deficiency at mildly acidic and alkaline pH by measuring root ferric chelate reductase (FCR) activity and expression of selected Fe uptake genes and riboflavin synthesis genes. Alkaline pH increased cucumber (Cucumis sativus L.) root FCR activity at full Fe supply, but alkaline stress abolished FCR response to low Fe supply. Alkaline pH or low Fe supply resulted in increased expression of Fe uptake genes, but riboflavin synthesis genes responded to Fe deficiency but not alkalinity. Iron deficiency increased expression of some common genes in roots and leaves, but alkaline stress blocked up-regulation of these genes in Fe-deficient leaves. In roots of the melon (Cucumis melo L.) fefe mutant, in which Fe uptake responses are blocked upstream of Fe uptake genes, alkaline stress or Fe deficiency up-regulation of certain Fe uptake and riboflavin synthesis genes was inhibited, indicating a central role for the FeFe protein. These results suggest a model implicating shoot-to-root signaling of Fe status to induce Fe uptake gene expression in roots. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT; RECHARGEABLE ALKALINE HOUSEHOLD BATTERY SYSTEM; RAYOVAC CORPORATION, RENEWAL

    EPA Science Inventory

    The EPA's ETV Program, in partnership with recognized testing organizations, objectively and systematically documents the performance of commercial ready technologies. Together, with the full participation of the technology developer, develop plans, conduct tests, collect and ana...

  14. The fuel cell in space: Yesterday, today and tomorrow

    NASA Technical Reports Server (NTRS)

    Warshay, Marvin; Prokopius, Paul R.

    1989-01-01

    The past, present, and future of space fuel cell power systems is reviewed, starting with the first practical fuel cell by F.T. Bacon which led to the 1.5 kW Apollo alkaline fuel cell. However, the first fuel cell to be used for space power was the Gemini 1.0 kW Acid IEM fuel cell. The successor to the Apollo fuel cell is today's 12 kW Orbiter alkaline fuel cell whose technology is considerably different and considerably better than that of its ancestor, the Bacon cell. And in terms of specific weight there has been a steady improvement from the past to the present, from the close to 200 lb/kW of Apollo to the 20 lb/kW of the orbiter. For NASA future Lunar and Martian surface power requirements the regenerative fuel cell (RFC) energy storage system is enabling technology, with the alkaline and the PEM the leading RFC candidate systems. The U.S. Air Force continues to support fuel cell high power density technology development for its future short duration applications.

  15. An Undergraduate Thin-Layer Chromatography Experiment: Olfactory Delights

    NASA Astrophysics Data System (ADS)

    Lynch, Mary Anne; Gloffke, Wendy; Rauner, Richard A.

    1995-12-01

    Mixtures of flavors and fragrances were separated on silica gel sheets, employing toluene/ethyl acetate (90:10) as the solvent. Constituents were located using alkaline potassium permanganate and 2,4-dinitrophenylhydrazine.

  16. Speciation and Oxidative Stability of Alkaline Soluble, Non-Pertechnetate Technetium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitskaia, Tatiana G.; Rapko, Brian M.; Anderson, Amity

    2014-09-30

    The long half-life, complex chemical behavior in tank waste, limited incorporation in mid- to high-temperature immobilization processes, and high mobility in subsurface environments make technetium (Tc) one of the most difficult contaminants to dispose of and/or remediate. Technetium exists predominantly in the liquid tank waste phase as the relatively mobile form of pertechnetate, TcO 4 -. However, based on experimentation to date a significant fraction of the soluble Tc cannot be effectively separated from the wastes and may be present as a non- pertechnetate species. The presence of a non-pertechnetate species significantly complicates disposition of low-activity waste (LAW), and themore » development of methods to either convert them to pertechnetate or to separate directly is needed. The challenge is the uncertainty regarding the chemical form of the alkaline-soluble low-valent non-pertechnetate species in the liquid tank waste. This report summarizes work done in fiscal year (FY) 2014 exploring the chemistry of a low-valence technetium(I) species, [(CO) 3Tc(H 2O) 3] +, a compound of interest due to its implication in the speciation of alkaline-soluble technetium in several Hanford tank waste supernatants.« less

  17. Development of silver nanoparticle-doped adsorbents for the separation and recovery of radioactive iodine from alkaline solutions.

    PubMed

    Kim, Taewoon; Lee, Seung-Kon; Lee, Suseung; Lee, Jun Sig; Kim, Sang Wook

    2017-11-01

    Removing radioactive iodine from solutions containing fission products is essential for nuclear facility decontamination, radioactive waste treatment, and medical isotope production. For example, the production of high-purity fission 99 Mo by irradiation of 235 U with neutrons involves the removal of iodine from an alkaline solution of the irradiated target (which contains numerous fission products and a large quantity of aluminate ions) using silver-based materials or anion-exchange resins. To be practically applicable, the utilized iodine adsorbent should exhibit a decontamination factor of at least 200. Herein, the separation of radioactive iodine from alkaline solutions was achieved using alumina doped with silver nanoparticles (Ag NPs). Ag NPs have a larger surface area than Ag powder/wires and can thus adsorb iodine more effectively and economically, whereas alumina is a suitable inert support that does not adsorb 99 Mo and is stable under basic conditions. The developed adsorbents with less impurities achieved iodine removal and recovery efficiencies of 99.7 and 62%, respectively, thus being useful for the production of 131 I, a useful medical isotope. Copyright © 2017. Published by Elsevier Ltd.

  18. 49 CFR 176.84 - Other requirements for stowage and segregation for cargo vessels and passenger vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... liquids. 29 Stow “away from” ammonium compounds. 30 Stow “away from” animal or vegetable oils. 31 Stow...” alkaline compounds.2 54 Stow “separated from” animal or vegetable oils. 55 Stow “separated from” ammonia... applies. 130 Stowage Category A applies, except for uranyl nitrate hexahydrate solution, uranium metal...

  19. 49 CFR 176.84 - Other requirements for stowage and segregation for cargo vessels and passenger vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... liquids. 29 Stow “away from” ammonium compounds. 30 Stow “away from” animal or vegetable oils. 31 Stow...” alkaline compounds.2 54 Stow “separated from” animal or vegetable oils. 55 Stow “separated from” ammonia... applies. 130 Stowage Category A applies, except for uranyl nitrate hexahydrate solution, uranium metal...

  20. PYROCHEMICAL DECONTAMINATION METHOD FOR REACTOR FUEL

    DOEpatents

    Buyers, A.G.

    1959-06-30

    A pyro-chemical method is presented for decontaminating neutron irradiated uranium and separating plutonium therefrom by contact in the molten state with a metal chloride salt. Uranium trichloride and uranium tetrachloride either alone or in admixture with alkaline metal and alkaline eanth metal fluorides under specified temperature and specified phase ratio conditions extract substantially all of the uranium from the irradiated uranium fuel together with certain fission products. The phases are then separated leaving purified uranium metal. The uranium and plutonium in the salt phase can be reduced to forin a highly decontaminated uraniumplutonium alloy. The present method possesses advantages for economically decontaminating irradiated nuclear fuel elements since irradiated fuel may be proccessed immediately after withdrawal from the reactor and the uranium need not be dissolved and later reduced to the metallic form. Accordingly, the uranium may be economically refabricated and reinserted into the reactor.

  1. Rechargeable Zinc Alkaline Anodes for Long-Cycle Energy Storage

    DOE PAGES

    Turney, Damon E.; Gallaway, Joshua W.; Yadav, Gautam G.; ...

    2017-05-03

    Zinc alkaline anodes command significant share of consumer battery markets and are a key technology for the emerging grid-scale battery market. Improved understanding of this electrode is required for long-cycle deployments at kWh and MWh scale due to strict requirements on performance, cost, and safety. For this article, we give a modern literature survey of zinc alkaline anodes with levelized performance metrics and also present an experimental assessment of leading formulations. Long-cycle materials characterization, performance metrics, and failure analysis are reported for over 25 unique anode formulations with up to 1500 cycles and ~1.5 years of shelf life per test.more » Statistical repeatability of these measurements is made for a baseline design (fewest additives) via 15 duplicates. Baseline design capacity density is 38 mAh per mL of anode volume, and lifetime throughput is 72 Ah per mL of anode volume. We then report identical measurements for anodes with improved material properties via additives and other perturbations, some of which achieve capacity density over 192 mAh per mL of anode volume and lifetime throughput of 190 Ah per mL of anode volume. Novel in operando X-ray microscopy of a cycling zinc paste anode reveals the formation of a nanoscale zinc material that cycles electrochemically and replaces the original anode structure over long-cycle life. Ex situ elemental mapping and other materials characterization suggest that the key physical processes are hydrogen evolution reaction (HER), growth of zinc oxide nanoscale material, concentration deficits of OH – and ZnOH 4 2–, and electrodeposition of Zn growths outside and through separator membranes.« less

  2. Optimization of transesterification of rubber seed oil using heterogeneous catalyst calcium oxide

    NASA Astrophysics Data System (ADS)

    Inggrid, Maria; Kristanto, Aldi; Santoso, Herry

    2015-12-01

    Biodiesel is an alternative fuel manufactured with the help of alkali hydroxide catalyst through transesterification reaction of vegetable oil. This study aims to examine methods and the most suitable conditions for transesterification reaction producing biodiesel from crude rubber seed oil by varying process parameters such as the molar ratio of alcohol, CaO amount as the alkaline catalyst, and reaction time. The rubber seed oil has a high level of free fatty acid content, which means the use of homogenous alkaline catalyst gives some technological problems such as soap formation which leaded in difficulty in the separation and purification of the product. Calcium oxide (CaO) is one of the most favorable heterogeneous base catalysts because it's reusable, noncorrosive, and low cost. Pre-treatment was performed by acid esterification with H2SO4 as the catalyst to decrease the content of free fatty acid in the rubber seed oil, in this pretreatment process the 12% FFA of crude oil could be reduced to below 3% FFA. The product after esterification process was then transesterified by alkaline transesterification by varying process parameters to convert triglyceride into biodiesel. The study found that maximum curvature for biodiesel yield occurred at 9:1 molar ratio of alcohol, 5%w catalyst loading, and 3 hours reaction time. Design expert software is used to determine the optimum point from experimental data. The result showed that the optimum yield of methyl ester from transesterification was 73.5 % by mass with 0.69 degree of desirability. The yielded methyl ester was tested for its density, viscosity, acid number, and solubility to meet SNI requirement standards.

  3. Rechargeable Zinc Alkaline Anodes for Long-Cycle Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turney, Damon E.; Gallaway, Joshua W.; Yadav, Gautam G.

    Zinc alkaline anodes command significant share of consumer battery markets and are a key technology for the emerging grid-scale battery market. Improved understanding of this electrode is required for long-cycle deployments at kWh and MWh scale due to strict requirements on performance, cost, and safety. For this article, we give a modern literature survey of zinc alkaline anodes with levelized performance metrics and also present an experimental assessment of leading formulations. Long-cycle materials characterization, performance metrics, and failure analysis are reported for over 25 unique anode formulations with up to 1500 cycles and ~1.5 years of shelf life per test.more » Statistical repeatability of these measurements is made for a baseline design (fewest additives) via 15 duplicates. Baseline design capacity density is 38 mAh per mL of anode volume, and lifetime throughput is 72 Ah per mL of anode volume. We then report identical measurements for anodes with improved material properties via additives and other perturbations, some of which achieve capacity density over 192 mAh per mL of anode volume and lifetime throughput of 190 Ah per mL of anode volume. Novel in operando X-ray microscopy of a cycling zinc paste anode reveals the formation of a nanoscale zinc material that cycles electrochemically and replaces the original anode structure over long-cycle life. Ex situ elemental mapping and other materials characterization suggest that the key physical processes are hydrogen evolution reaction (HER), growth of zinc oxide nanoscale material, concentration deficits of OH – and ZnOH 4 2–, and electrodeposition of Zn growths outside and through separator membranes.« less

  4. Advanced technology for extended endurance alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Martin, R. A.

    1987-01-01

    Advanced components have been developed for alkaline fuel cells with a view to the satisfaction of NASA Space Station design requirements for extended endurance. The components include a platinum-on-carbon catalyst anode, a potassium titanate-bonded electrolyte matrix, a lightweight graphite electrolyte reservoir plate, a gold-plated nickel-perforated foil electrode substrate, a polyphenylene sulfide cell edge frame material, and a nonmagnesium cooler concept. When incorporated into the alkaline fuel cell unit, these components are expected to yield regenerative operation in a low earth orbit Space Station with a design life greater than 5 years.

  5. Evaluation of a liquid chromatography method for compound-specific δ13C analysis of plant carbohydrates in alkaline media.

    PubMed

    Rinne, Katja T; Saurer, Matthias; Streit, Kathrin; Siegwolf, Rolf T W

    2012-09-30

    Isotope analysis of carbohydrates is important for improved understanding of plant carbon metabolism and plant physiological response to the environment. High-performance liquid chromatography/isotope ratio mass spectrometry (HPLC/IRMS) for direct compound-specific δ(13)C measurements of soluble carbohydrates has recently been developed, but the still challenging sample preparation and the fact that no single method is capable of separating all compounds of interest hinder its wide-spread application. Here we tested in detail a chromatography method in alkaline media. We examined the most suitable chromatographic conditions for HPLC/IRMS analysis of carbohydrates in aqueous conifer needle extracts using a CarboPac PA20 anion-exchange column with NaOH eluent, paying specific attention to compound yields, carbon isotope fractionation processes and the reproducibility of the method. Furthermore, we adapted and calibrated sample preparation methods for HPLC/IRMS analysis. OnGuard II cartridges were used for sample purification. Good peak separation and highly linear and reproducible concentration and δ(13)C measurements were obtained. The alkaline eluent was observed to induce isomerization of hexoses, detected as reduced yields and (13)C fractionation of the affected compounds. A reproducible pre-purification method providing ~100% yield for the carbohydrate compounds of interest was calibrated. The good level of peak separation obtained in this study is reflected in the good precision and linearity of concentration and δ(13)C results. The data provided crucial information on the behaviour of sugars in LC analysis with alkaline media. The observations highlight the importance for the application of compound-matched standard solution for the detection and correction of instrumental biases in concentration and δ(13)C analysis performed under identical chromatographic conditions. The calibrated pre-purification method is well suited for studies with complex matrices that disable the use of a spiked internal standard for the detection of procedural losses. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Improving methane production from digested manure biofibers by mechanical and thermal alkaline pretreatment.

    PubMed

    Tsapekos, P; Kougias, Panagiotis G; Frison, A; Raga, R; Angelidaki, I

    2016-09-01

    Animal manure digestion is associated with limited methane production, due to the high content in fibers, which are hardly degradable lignocellulosic compounds. In this study, different mechanical and thermal alkaline pretreatment methods were applied to partially degradable fibers, separated from the effluent stream of biogas reactors. Batch and continuous experiments were conducted to evaluate the efficiency of these pretreatments. In batch experiments, the mechanical pretreatment improved the degradability up to 45%. Even higher efficiency was shown by applying thermal alkaline pretreatments, enhancing fibers degradability by more than 4-fold. In continuous experiments, the thermal alkaline pretreatment, using 6% NaOH at 55°C was proven to be the most efficient pretreatment method as the methane production was increased by 26%. The findings demonstrated that the methane production of the biogas plants can be increased by further exploiting the fraction of the digested manure fibers which are discarded in the post-storage tank. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Feasibility of reusing the black liquor for enzymatic hydrolysis and ethanol fermentation.

    PubMed

    Wang, Wen; Chen, Xiaoyan; Tan, Xuesong; Wang, Qiong; Liu, Yunyun; He, Minchao; Yu, Qiang; Qi, Wei; Luo, Yu; Zhuang, Xinshu; Yuan, Zhenhong

    2017-03-01

    The black liquor (BL) generated in the alkaline pretreatment process is usually thought as the environmental pollutant. This study found that the pure alkaline lignin hardly inhibited the enzymatic hydrolysis of cellulose (EHC), which led to the investigation on the feasibility of reusing BL as the buffer via pH adjustment for the subsequent enzymatic hydrolysis and fermentation. The pH value of BL was adjusted from 13.23 to 4.80 with acetic acid, and the alkaline lignin was partially precipitated. It deposited on the surface of cellulose and negatively influenced the EHC via blocking the access of cellulase to cellulose and adsorbing cellulase. The supernatant separated from the acidified BL scarcely affected the EHC, but inhibited the ethanol fermentation. The 4-times diluted supernatant and the last-time waste wash water of the alkali-treated sugarcane bagasse didn't inhibit the EHC and ethanol production. This work gives a clue of saving water for alkaline pretreatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration

    PubMed Central

    Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter

    2015-01-01

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively. PMID:26729180

  9. Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration.

    PubMed

    Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter

    2015-12-31

    Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively.

  10. Recovery of protactinium from molten fluoride nuclear fuel compositions

    DOEpatents

    Baes, C.F. Jr.; Bamberger, C.; Ross, R.G.

    1973-12-25

    A method is provided for separating protactinium from a molten fluonlde salt composition consisting essentially of at least one alkali and alkaline earth metal fluoride and at least one soluble fluoride of uranium or thorium which comprises oxidizing the protactinium in said composition to the + 5 oxidation state and contacting said composition with an oxide selected from the group consisting of an alkali metal oxide, an alkaline earth oxide, thorium oxide, and uranium oxide, and thereafter isolating the resultant insoluble protactinium oxide product from said composition. (Official Gazette)

  11. Identification of rat serum alkaline phosphatase isoenzyme by means of wheat germ agglutinin.

    PubMed

    Wada, H; Niwa, N; Hayakawa, T; Tsuge, H

    1997-01-01

    Wheat germ agglutinin (WGA) precipitates bone type serum alkaline phosphatase (sALP) isoenzyme specifically. The precipitates are composed of the macromolecules of WGA and "bone type sALP" (WGA-ALP complex). In order to use bone type sALP as a marker in polyacrylamide gel electrophoresis (PAGE), a method to separate "bone type sALP" from the "WGA-ALP complex" was established by using N-acetyl-D-glucosamine (GlcNAc)-Sepharose 6E column chromatography. It was concluded that this method is useful for clinical examination in the rat.

  12. Alkaline polymer electrolyte fuel cells stably working at 80 °C

    NASA Astrophysics Data System (ADS)

    Peng, Hanqing; Li, Qihao; Hu, Meixue; Xiao, Li; Lu, Juntao; Zhuang, Lin

    2018-06-01

    Alkaline polymer electrolyte fuel cells are a new class of polymer electrolyte fuel cells that fundamentally enables the use of nonprecious metal catalysts. The cell performance mostly relies on the quality of alkaline polymer electrolytes, including the ionic conductivity and the chemical/mechanical stability. For a long time, alkaline polymer electrolytes are thought to be too weak in stability to allow the fuel cell to be operated at elevated temperatures, e.g., above 60 °C. In the present work, we report a progress in the state-of-the-art alkaline polymer electrolyte fuel cell technology. By using a newly developed alkaline polymer electrolyte, quaternary ammonia poly (N-methyl-piperidine-co-p-terphenyl), which simultaneously possesses high ionic conductivity and excellent chemical/mechanical stability, the fuel cell can now be stably operated at 80 °C with high power density. The peak power density reaches ca. 1.5 W/cm2 at 80 °C with Pt/C catalysts used in both the anode and the cathode. The cell works stably in a period of study over 100 h.

  13. Electrochemical processing of lead-containing waste ballistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, C.O.; Olsen, G.P.

    1995-12-31

    Literature review indicates that propellant ingredients in NOSIH-AA2 have been investigated electrochemical separation. Papers on related electroanalytical chemistry offer help in indicating which electrolytic separation systems to investigate. These included copper and nickel electrodes in alkaline solution. Voltammetry studies in 0.1 M NaOH showed that lead metal can be readily collected at a copper cathode and that lead dioxide can be deposited at a nickel anode. Cathodic and anodic deposition reactions begin at less than minus or plus 0.5 V. resp. Other species present in the propellant are also reactive at the anode. Deposits with good mechanical properties resulted, evenmore » with 40 mA/cm{sup 2} current density. Lead concentrations in alkaline solutions can readily be monitored using anodic amperometry with the nickel electrode. Separations from actual propellant solutions in 3 M NaOH were demonstrated using nickel as anode and cathode. Gravimetric monitoring of both anode and cathode showed accumulations suggesting the exhaustive lead collection. Associated voltammetry data showed decreasing amounts of other electroactive species at the anode as well as lead.« less

  14. Nutrient Limitation Dynamics of a Coastal Cape Cod Pond: Seasonal Trends in Alkaline Phosphatase Activity

    DTIC Science & Technology

    2000-11-13

    Collection and Nutrient Analyses Ashumet Pond water column profiles and samples were taken by the School for Marine Science and Technology (SMAST) at the...Collection & Analysis ........................................ .......... 77 4.3.1 SMAST Water Sampling Plan/Collection and Nutrient Analyses...suited as an indicator of phosphate limitation in natural waters . In this study alkaline phosphatase is used to understand the nutrient limitation

  15. Regenerative fuel cell energy storage system for a low earth orbit space station

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Garow, J.; Michaels, K. B.

    1988-01-01

    A study was conducted to define characteristics of a Regenerative Fuel Cell System (RFCS) for low earth orbit Space Station missions. The RFCS's were defined and characterized based on both an alkaline electrolyte fuel cell integrated with an alkaline electrolyte water electrolyzer and an alkaline electrolyte fuel cell integrated with an acid solid polymer electrolyte (SPE) water electrolyzer. The study defined the operating characteristics of the systems including system weight, volume, and efficiency. A maintenance philosophy was defined and the implications of system reliability requirements and modularization were determined. Finally, an Engineering Model System was defined and a program to develop and demonstrate the EMS and pacing technology items that should be developed in parallel with the EMS were identified. The specific weight of an optimized RFCS operating at 140 F was defined as a function of system efficiency for a range of module sizes. An EMS operating at a nominal temperature of 180 F and capable of delivery of 10 kW at an overall efficiency of 55.4 percent is described. A program to develop the EMS is described including a technology development effort for pacing technology items.

  16. Assessing ocean alkalinity for carbon sequestration

    NASA Astrophysics Data System (ADS)

    Renforth, Phil; Henderson, Gideon

    2017-09-01

    Over the coming century humanity may need to find reservoirs to store several trillions of tons of carbon dioxide (CO2) emitted from fossil fuel combustion, which would otherwise cause dangerous climate change if it were left in the atmosphere. Carbon storage in the ocean as bicarbonate ions (by increasing ocean alkalinity) has received very little attention. Yet recent work suggests sufficient capacity to sequester copious quantities of CO2. It may be possible to sequester hundreds of billions to trillions of tons of C without surpassing postindustrial average carbonate saturation states in the surface ocean. When globally distributed, the impact of elevated alkalinity is potentially small and may help ameliorate the effects of ocean acidification. However, the local impact around addition sites may be more acute but is specific to the mineral and technology. The alkalinity of the ocean increases naturally because of rock weathering in which >1.5 mol of carbon are removed from the atmosphere for every mole of magnesium or calcium dissolved from silicate minerals (e.g., wollastonite, olivine, and anorthite) and 0.5 mol for carbonate minerals (e.g., calcite and dolomite). These processes are responsible for naturally sequestering 0.5 billion tons of CO2 per year. Alkalinity is reduced in the ocean through carbonate mineral precipitation, which is almost exclusively formed from biological activity. Most of the previous work on the biological response to changes in carbonate chemistry have focused on acidifying conditions. More research is required to understand carbonate precipitation at elevated alkalinity to constrain the longevity of carbon storage. A range of technologies have been proposed to increase ocean alkalinity (accelerated weathering of limestone, enhanced weathering, electrochemical promoted weathering, and ocean liming), the cost of which may be comparable to alternative carbon sequestration proposals (e.g., $20-100 tCO2-1). There are still many unanswered technical, environmental, social, and ethical questions, but the scale of the carbon sequestration challenge warrants research to address these.

  17. Space water electrolysis: Space Station through advance missions

    NASA Technical Reports Server (NTRS)

    Davenport, Ronald J.; Schubert, Franz H.; Grigger, David J.

    1991-01-01

    Static Feed Electrolyzer (SFE) technology can satisfy the need for oxygen (O2) and Hydrogen (H2) in the Space Station Freedom and future advanced missions. The efficiency with which the SFE technology can be used to generate O2 and H2 is one of its major advantages. In fact, the SFE is baselined for the Oxygen Generation Assembly within the Space Station Freedom's Environmental Control and Life Support System (ECLSS). In the conventional SFE process an alkaline electrolyte is contained within the matrix and is sandwiched between two porous electrodes. The electrodes and matrix make up a unitized cell core. The electrolyte provides the necessary path for the transport of water and ions between the electrodes, and forms a barrier to the diffusion of O2 and H2. A hydrophobic, microporous membrane permits water vapor to diffuse from the feed water to the cell core. This membrane separates the liquid feed water from the product H2, and, therefore, avoids direct contact of the electrodes by the feed water. The feed water is also circulated through an external heat exchanger to control the temperature of the cell.

  18. Method for removing acid gases from a gaseous stream

    DOEpatents

    Gorin, Everett; Zielke, Clyde W.

    1981-01-01

    In a process for hydrocracking a heavy aromatic polynuclear carbonaceous feedstock containing reactive alkaline constituents to produce liquid hydrocarbon fuels boiling below about 475.degree. C. at atmospheric pressure by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, thereafter separating a gaseous stream containing hydrogen, at least a portion of the hydrocarbon fuels and acid gases from the molten metal halide and regenerating the molten metal halide, thereby producing a purified molten metal halide stream for recycle to the hydrocracking zone, an improvement comprising; contacting the gaseous acid gas, hydrogen and hydrocarbon fuels-containing stream with the feedstock containing reactive alkaline constituents to remove acid gases from the acid gas containing stream. Optionally at least a portion of the hydrocarbon fuels are separated from gaseous stream containing hydrogen, hydrocarbon fuels and acid gases prior to contacting the gaseous stream with the feedstock.

  19. Ultra‐high performance supercritical fluid chromatography of lignin‐derived phenols from alkaline cupric oxide oxidation

    PubMed Central

    Sun, Mingzhe; Lidén, Gunnar; Sandahl, Margareta

    2016-01-01

    Traditional chromatographic methods for the analysis of lignin‐derived phenolic compounds in environmental samples are generally time consuming. In this work, an ultra‐high performance supercritical fluid chromatography method with a diode array detector for the analysis of major lignin‐derived phenolic compounds produced by alkaline cupric oxide oxidation was developed. In an analysis of a collection of 11 representative monomeric lignin phenolic compounds, all compounds were clearly separated within 6 min with excellent peak shapes, with a limit of detection of 0.5–2.5 μM, a limit of quantification of 2.5–5.0 μM, and a dynamic range of 5.0–2.0 mM (R 2 > 0.997). The new ultra‐high performance supercritical fluid chromatography method was also applied for the qualitative and quantitative analysis of lignin‐derived phenolic compounds obtained upon alkaline cupric oxide oxidation of a commercial humic acid. Ten out of the previous eleven model compounds could be quantified in the oxidized humic acid sample. The high separation power and short analysis time obtained demonstrate for the first time that supercritical fluid chromatography is a fast and reliable technique for the analysis of lignin‐derived phenols in complex environmental samples. PMID:27452148

  20. Method for separating liquid and solid products of liquefaction of coal or like carbonaceous materials

    DOEpatents

    Malek, John M.

    1978-04-18

    A method of improving the quality of slurry products taken from coal liquefaction reactors comprising subjecting the slurry to treatment with an alkaline compound such as caustic soda in the presence of steam in order to decompose the phenolic and acidic materials present in the slurry, and to also lower the slurry viscosity to allow separation of solid particles by sedimentation.

  1. EVALUATION OF PILOT TREATMENT EFFLUENTS FROM SUMMITVILLE MINE, CO, USING CERIODAPHNIA DUBIA, FATHEAD MINNOW (PIMEPHALES PROMELAS), AND RAINBOW TROUT (ONCORHYNCHUS MYKISS) TOXICITY TESTS

    EPA Science Inventory

    As part of a Superfund Innovative Technology Evaluation (SITE) Program, the U.S. Environmental Protection Agency evaluated a remediation technology at the Summitville Mine Superfund site in southern Colorado. The technology evaluated was a successive alkalinity producing system ...

  2. Electromembrane recycling of highly mineralized alkaline blowdown water from evaporative water treatment plants at thermal power stations

    NASA Astrophysics Data System (ADS)

    Chichirova, N. D.; Chichirov, A. A.; Lyapin, A. I.; Minibaev, A. I.; Silov, I. Yu.; Tolmachev, L. I.

    2016-12-01

    Thermal power stations (TPS) are the main source of highly mineralized effluents affecting the environment. An analysis of their water systems demonstrates that alkaline effluents prevail at TPSs. Extraction of an alkali from highly mineralized effluents can make the recycling of effluents economically feasible. A method is proposed of electromembrane recycling of liquid alkaline highly mineralized wastes from TPSs. The process includes electromembrane apparatuses of two types, namely, a diffusion dialysis extractor (DDE) intended for extraction of the alkali from a highly mineralized solution having a complex composition and an electrodialysis concentrator for increasing the concentration of the extracted solution to a value suitable for use in water treatment plants at TPSs. For implementation of the first process (i.e. the extraction of alkali from alkaline-salt solution) various membranes from various manufacturers were studied: CM-PAD and AM-PAD (Ralex, Czechia), MK-40, MA-40, MA-41, MA-414, and MB-2 (OOO OKhK "Shchekinoazot", Russia), AR103-QDF and CR61-CMP (Ionies Inc., USA). The experiments demonstrate that the acceptable degree of separation of the alkali and the salt is achieved in a pair of cation-exchange membranes with the efficiency of separation being higher without an electric field. The highest efficiency was attained with Russian-made membranes (MK-40, OOO OKhK "Shchekinoazot"). A full scale experiment on recycling of highly-mineralized blowdown water from the evaporating water treatment system at the Kazan cogeneration power station No. 3 (TETs-3) was performed in a pilot unit consisting of two electromembrane apparatuses made by UAB "Membraninės Technologijos LT". In the experiments every ton of blowdown water yielded 0.1 t of concentrated alkaline solution with an alkali content of up to 4 wt % and 0.9 t of the softened salt solution suitable for the reuse in the TPS cycle. The power rate is 6 kWh / ton of blowdown water.

  3. Interaction of Salinity and CaCO3 Affects the Physiology and Fatty Acid Metabolism in Portulaca oleracea.

    PubMed

    Bessrour, Mouna; Chelbi, Najla; Moreno, Diego A; Chibani, Farhat; Abdelly, Chedly; Carvajal, Micaela

    2018-06-25

    As a result of the extreme conditions that usually occur in Mediterranean climates, the objective of this work is to study the combined and/or separate effects of saline and alkaline stresses in Portulaca oleracea. The study was carried out to determine the nutritional food potential in relation to plant physiological parameters. The results show that alkaline media in which CaCO 3 was present did not affect growth but exposure to 100 mM NaCl decreased it greatly. Fatty acid content increased under all stress conditions but to a higher extent with salinity; however, the protein content was increased only by alkaline media. The beneficial effect of each stress on P. oleracea is discussed in light of the physiological response, pointing out the suitability of this plant for human nutrition.

  4. Streptavidin-coated magnetic beads for DNA strand separation implicate a multitude of problems during cell-SELEX.

    PubMed

    Paul, Angela; Avci-Adali, Meltem; Ziemer, Gerhard; Wendel, Hans P

    2009-09-01

    Using whole living cells as a target for SELEX (systematic evolution of ligands by exponential enrichment) experiments represents a promising method to generate cell receptor-specific aptamers. These aptamers have a huge potential in diagnostics, therapeutics, imaging, regenerative medicine, and target validation. During the SELEX for selecting DNA aptamers, one important step is the separation of 2 DNA strands to yield one of the 2 strands as single-stranded DNA aptamer. This is being done routinely by biotin labeling of the complementary DNA strand to the desired aptamer and then separating the DNA strand by using streptavidin-coated magnetic beads. After immobilization of the double-stranded DNA on these magnetic beads and alkaline denaturation, the non-biotinylated strand is being eluted and the biotinylated strand is retarded. Using Western blot analysis, we demonstrated the detachment of covalent-bonded streptavidin from the bead surface after alkaline treatment. The eluates were also contaminated with undesired biotinylated strands. Furthermore, a streptavidin-induced aggregation of target cells was demonstrated by flow cytometry and microscopic methods. Cell-specific enrichment of aptamers was not possible due to clustering and patching effects triggered by streptavidin. Therefore, the use of streptavidin-coated magnetic beads for DNA strand separation should be examined thoroughly, especially for cell-SELEX applications.

  5. 40 CFR 434.44 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... control technology (BCT). [Reserved] 434.44 Section 434.44 Protection of Environment ENVIRONMENTAL..., BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.44 Effluent... conventional pollutant control technology (BCT). [Reserved] ...

  6. 40 CFR 434.44 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... control technology (BCT). [Reserved] 434.44 Section 434.44 Protection of Environment ENVIRONMENTAL..., BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.44 Effluent... conventional pollutant control technology (BCT). [Reserved] ...

  7. Heavy metals stabilization in medical waste incinerator fly ash using alkaline assisted supercritical water technology.

    PubMed

    Jin, Jian; Li, Xiaodong; Chi, Yong; Yan, Jianhua

    2010-12-01

    This study investigated the process of aluminosilicate formation in medical waste incinerator fly ash containing large amounts of heavy metals and treated with alkaline compounds at 375 degrees C and examined how this process affected the mobility and availability of the metals. As a consequence of the treatments, the amount of dissolved heavy metals, and thus their mobility, was greatly reduced, and the metal leaching concentration was below the legislative regulations for metal leachability. Moreover, this process did not produce a high concentration of heavy metals in the effluent. The addition of alkaline compounds such as sodium hydroxide and sodium carbonate can prevent certain heavy metal ions dissolving in water. In comparison with the alkaline-free condition, the extracted concentrations of As, Mn, Pb, Sr and Zn were decreased by about 51.08, 97.22, 58.33, 96.77 and 86.89% by the addition of sodium hydroxide and 66.18, 86.11, 58.33, 83.87 and 81.91% by the addition of sodium carbonate. A mechanism for how the formation of aluminosilicate occurred in supercritical water and affected the mobility and availability of the heavy metals is discussed. The reported results could be useful as basic knowledge for planning new technologies for the hydrothermal stabilization of heavy metals in fly ash.

  8. Optimization of the first dimension for separation by two-dimensional gel electrophoresis of basic proteins from human brain tissue.

    PubMed

    Pennington, Kyla; McGregor, Emma; Beasley, Clare L; Everall, Ian; Cotter, David; Dunn, Michael J

    2004-01-01

    A major cause of poor resolution in the alkaline pH range of two-dimensional electrophoresis (2-DE) gels is unsatisfactory separation of basic proteins in the first dimension. We have compared methods for the separation of basic proteins in the isoelectric focusing dimension of human brain proteins. The combined use of anodic cup-loading and the hydroxyethyldisulphide containing solution (DeStreak) produced better resolution in both analytical and micropreparative protein loaded 2-DE gels than the other methods investigated.

  9. PLUTONIUM ELECTROREFINING CELLS

    DOEpatents

    Mullins, L.J. Jr.; Leary, J.A.; Bjorklund, C.W.; Maraman, W.J.

    1963-07-16

    Electrorefining cells for obtaining 99.98% plutonium are described. The cells consist of an impure liquid plutonium anode, a molten PuCl/sub 3/-- alkali or alkaline earth metal chloanode, a molten PuCl/sub 3/-alkali or alkaline earth metal chloride electrolyte, and a nonreactive cathode, all being contained in nonreactive ceramic containers which separate anode from cathode by a short distance and define a gap for the collection of the purified liquid plutonium deposited on the cathode. Important features of these cells are the addition of stirrer blades on the anode lead and a large cathode surface to insure a low current density. (AEC)

  10. Preliminary plant design of Escherichia coli BPPTCC-EgRK2 cell culture for recombinant cellulase production using Oil Palm Empty Fruit Bunch (OPEFB) as substrate

    NASA Astrophysics Data System (ADS)

    Surya, E. A.; Rahman, S. F.; Zulamraini, S.; Gozan, M.

    2018-03-01

    An economic analysis of recombinant cellulase production from E. coli BPPTCC Eg-RK2 was conducted to support the fulfilling of Indonesia’s energy roadmap for ethanol production. The plant use oil palm empty fruit bunch (OPEFB) as primary substrate in cellulase production, with the expected lifetime of 12 years. The plant is assumed to be built in Indonesia and will fulfill 1% of total market demand. The effect of different pretreatment process (alkaline, steam explosion, and sequential acid-alkaline) on the economic value was also studied. A simulation using SuperPro Designer was used to calculate the mass and energy balance based on the kinetic parameter of E. coli BPPTCC-EgRK2. Technology evaluation show that alkaline pretreatment gave the highest yield with no known inhibitors formed. The steam explosion show the lowest lignin and hemicellulose removal and known to form known fermentation inhibitors. The net present value of alkaline, steam explosion, and sequential acid-alkaline pretreatment were USD 7,118,000; - USD 73,411,000 and USD -114,013,000 respectively, which mean alkaline pretreatment is the only economically feasible pretreatment method for recombinant cellulase production.

  11. Diclofenac salts. III. Alkaline and earth alkaline salts.

    PubMed

    Fini, Adamo; Fazio, Giuseppe; Rosetti, Francesca; Angeles Holgado, M; Iruín, Ana; Alvarez-Fuentes, Josefa

    2005-11-01

    Diclofenac salts containing the alkaline and two earth alkaline cations have been prepared and characterized by scanning electron microscopy (SEM) and EDAX spectroscopy; and by thermal and thermogravimetric analysis (TGA): all of them crystallize as hydrate when precipitated from water. The salts dehydrate at room temperature and more easily on heating, but recovery the hydration, when placed in a humid environment. X-ray diffraction spectra suggest that on dehydration new peaks appear on diffractograms and the lattice of the salts partially looses crystallinity. This phenomenon is readily visible in the case of the calcium and magnesium salts, whose thermograms display a crystallization exotherm, before melting or decomposing at temperatures near or above 200 degrees C; these last salts appear to form solvates, when prepared from methanol. The thermogram of each salt shows a complex endotherm of dehydration about 100 degrees C; the calcium salt displays two endotherms, well separated at about 120 and 160 degrees C, which disappear after prolonged heating. Decomposition exotherms, before or soon after the melting, appear below 300 degrees C. The ammonium salt is thermally unstable and, when heated to start dehydration, dissociates and leaves acidic diclofenac.

  12. Microbial screening test for lignite degradation. Quarterly progress report No. 2, April-June 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yen, T.F.

    1985-01-01

    Fractionation of lignite was performed by means of: (1) benzene-methanol followed by aqueous alkaline extraction; and (2) benzene followed by methanol-alkaline extraction. The residue obtained by the latter fractionation was oxidized by means of cupric oxide and separated into methanol soluble fraction and methanol insoluble residue. Methanol-alkaline fraction was further divided into methylene chloride extractable portion and methylene chloride non-extractable portion. Fourier Transform Infrared Spectroscopy (FT-IR) was employed to characterize functional groups present in the raw lignite sample, benzene-methanol fraction, aqueous alkaline fraction, lignite residue, and benzene fraction. FT-IR was also used for the analysis of both methylene chloride extractablemore » and non-extracted portions. The following are some functional groups identified by the spectra of the fractions mentioned above: OH, amide, aromatic, CH, CO, C=C, CH/sub 2/, C-CH/sub 3/, SiCH/sub 3/, epoxide, and C-O-C. Both, raw lignite sample and aqueous alkaline fraction produced positive results for P. versicolor growth, whereas benzene-methanol fraction and lignite residue produced negative results. Acclimation of P. versicolor to lignite was accomplished up to 80% lignite and 20% neopeptone and maltose. 10 refs., 9 figs., 6 tabs.« less

  13. Technology Status: Fuel Cells and Electrolysis Cells

    NASA Technical Reports Server (NTRS)

    Mcbryar, H.

    1978-01-01

    The status of the baselined shuttle fuel cell as well as the acid membrane fuel cell and space-oriented water electrolysis technologies are presented. The more recent advances in the alkaline fuel cell technology area are the subject of a companion paper. A preliminary plan for the focusing of these technologies towards regenerative energy storage applications in the multi-hundred kilowatt range is also discussed.

  14. Enzymatic pulp upgrade for producing high-value cellulose out of a Kraft paper pulp.

    PubMed

    Hutterer, Christian; Kliba, Gerhard; Punz, Manuel; Fackler, Karin; Potthast, Antje

    2017-07-01

    The high-yield separation of polymeric parts from wood-derived lignocellulosic material is indispensable in biorefinery concepts. For the separation of cellulose and xylan from hardwood paper pulps to obtain pulps of high cellulose contents, simple alkaline extractions were found to be the most suitable technology, although having certain limitations. These are embodied by residual alkali resistant xylan incorporated in the pulp matrix. Further purification in order to produce pure cellulose with a low uniformity could be achieved selectively degrading residual xylan and depolymerizing the cellulose macromolecules by xylanase and cellulase. The latter help to adjust cellulose chain lengths for certain dissolving pulp grades while reducing the demand for ozone in subsequent TCF bleaching. Experiments applying different commercially available enzyme preparations revealed the dependency of xylanase performance on the residual xylan content in pulps being stimulated by additional cellulase usage. The action of the latter strongly depends on the cellulose allomorphy confirming the impact of the pulp morphology. Hence, the combined application of both types of enzymes offers a high potential for upgrading pulps in order to produce a pure and high-value cellulose product. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Supported liquid membrane electrochemical separators

    DOEpatents

    Pemsler, J. Paul; Dempsey, Michael D.

    1986-01-01

    Supported liquid membrane separators improve the flexibility, efficiency and service life of electrochemical cells for a variety of applications. In the field of electrochemical storage, an alkaline secondary battery with improved service life is described in which a supported liquid membrane is interposed between the positive and negative electrodes. The supported liquid membranes of this invention can be used in energy production and storage systems, electrosynthesis systems, and in systems for the electrowinning and electrorefining of metals.

  16. Alkaline regenerative fuel cell energy storage system for manned orbital satellites

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Gitlow, B.; Sheibley, D. W.

    1982-01-01

    It is pointed out that the alkaline regenerative fuel cell system represents a highly efficient, lightweight, reliable approach for providing energy storage in an orbiting satellite. In addition to its energy storage function, the system can supply hydrogen and oxygen for attitude control of the satellite and for life support. A summary is presented of the results to date obtained in connection with the NASA-sponsored fuel cell technology advancement program, giving particular attention to the requirements of the alkaline regenerative fuel cell and the low-earth mission. Attention is given to system design guidelines, weight considerations, gold-platinum cathode cell performance, matrix development, the electrolyte reservoir plate, and the cyclical load profile tests.

  17. 40 CFR 434.44 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... control technology (BCT). [Reserved] 434.44 Section 434.44 Protection of Environment ENVIRONMENTAL... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.44... of the best conventional pollutant control technology (BCT). [Reserved] ...

  18. 40 CFR 434.44 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... control technology (BCT). [Reserved] 434.44 Section 434.44 Protection of Environment ENVIRONMENTAL... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.44... of the best conventional pollutant control technology (BCT). [Reserved] ...

  19. 40 CFR 434.44 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... control technology (BCT). [Reserved] 434.44 Section 434.44 Protection of Environment ENVIRONMENTAL... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.44... of the best conventional pollutant control technology (BCT). [Reserved] ...

  20. Redistribution of wastewater alkalinity with a microbial fuel cell to support nitrification of reject water.

    PubMed

    Modin, Oskar; Fukushi, Kensuke; Rabaey, Korneel; Rozendal, René A; Yamamoto, Kazuo

    2011-04-01

    In wastewater treatment plants, the reject water from the sludge treatment processes typically contains high ammonium concentrations, which constitute a significant internal nitrogen load in the plant. Often, a separate nitrification reactor is used to treat the reject water before it is fed back into the plant. The nitrification reaction consumes alkalinity, which has to be replenished by dosing e.g. NaOH or Ca(OH)(2). In this study, we investigated the use of a two-compartment microbial fuel cell (MFC) to redistribute alkalinity from influent wastewater to support nitrification of reject water. In an MFC, alkalinity is consumed in the anode compartment and produced in the cathode compartment. We use this phenomenon and the fact that the influent wastewater flow is many times larger than the reject water flow to transfer alkalinity from the influent wastewater to the reject water. In a laboratory-scale system, ammonium oxidation of synthetic reject water passed through the cathode chamber of an MFC, increased from 73.8 ± 8.9 mgN/L under open-circuit conditions to 160.1 ± 4.8 mgN/L when a current of 1.96 ± 0.37 mA (15.1 mA/L total MFC liquid volume) was flowing through the MFC. These results demonstrated the positive effect of an MFC on ammonium oxidation of alkalinity-limited reject water. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Characterization and inhibition studies of tissue nonspecific alkaline phosphatase by aminoalkanol derivatives of 1,7-dimethyl-8,9-diphenyl-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5,10-trione, new competitive and non-competitive inhibitors, by capillary electrophoresis.

    PubMed

    Grodner, Błażej; Napiórkowska, Mariola

    2017-09-05

    The article describes the inhibitory effect of two new aminoalkanol derivatives on the enzymatic kinetic of tissue non-specific alkaline phosphatase with use of capillary zone electrophoresis to evaluate the inhibitory effect. This technique allows to investigate of the enzymatic kinetic by the measure of the amounts of the substrate and product in the presence of compound (I) or (II) in the reaction mixture. The separation process was conducted using an eCAP fused-silica capillary. The detector was set at 200nm. The best parameters for the analysis were: 25mM sodium dihydrogen phosphate adjusted to pH=2.5, temperature 25°C, and voltage -15kV. Lineweaver-Burk plots were constructed and determined by comparison of the Km, of alkaline phosphatase in the presence of inhibitor (I) or (II) with the Km in a solution without inhibitor. The influence of replacement the propylamine group by the dimethylamine group on tissue non-specific alkaline phosphatase inhibition activity of new derivatives (I) and (II) was investigated. The tested compounds (I) and (II) were found to be tissue non-specific alkaline phosphatase inhibitors. Detailed kinetic studies indicated a competitive mode of inhibition against tissue non-specific alkaline phosphatase for compound (I) and non-competitive mode of inhibition for compound (II). Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Highly selective Ba2+ separations with acyclic, lipophilic di-[N-(X)sulfonyl carbamoyl] polyethers.

    PubMed

    Elshani, Sadik; Chun, Sangki; Amiri-Eliasi, Bijan; Bartsch, Richard A

    2005-01-14

    New lipophilic acyclic polyethers with two N-(X)sulfonyl carbamoyl groups of "tunable" acidity exhibit remarkable selectivity for Ba2+ over other alkaline earth metal ions in competitive solvent extraction and transport across polymer inclusion membranes.

  3. Proposal for management and alkalinity transformation of bauxite residue in China.

    PubMed

    Xue, Shengguo; Kong, Xiangfeng; Zhu, Feng; Hartley, William; Li, Xiaofei; Li, Yiwei

    2016-07-01

    Bauxite residue is a hazardous solid waste produced during the production of alumina. Its high alkalinity is a potential threat to the environment which may disrupt the surrounding ecological balance of its disposal areas. China is one of the major global producers of alumina and bauxite residue, but differences in alkalinity and associated chemistry exist between residues from China and those from other countries. A detailed understanding of the chemistry of bauxite residue remains the key to improving its management, both in terms of minimizing environmental impacts and reducing its alkaline properties. The nature of bauxite residue and the chemistry required for its transformation are still poorly understood. This review focuses on various transformation processes generated from the Bayer process, sintering process, and combined Bayer-sintering process in China. Problems associated with transformation mechanisms, technical methods, and relative merits of these technologies are reviewed, while current knowledge gaps and research priorities are recommended. Future research should focus on transformation chemistry and its associated mechanisms and for the development of a clear and economic process to reduce alkalinity and soda in bauxite residue.

  4. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress.

    PubMed

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen species and malondialdehyde and a decreased content of chlorophyll, indicating that anti-oxidation and detoxification play an important role in response to saline-alkaline stress. Overall, the transcriptome analysis provided novel insights into the saline-alkaline stress tolerance response mechanisms in alfalfa.

  5. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress

    PubMed Central

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen species and malondialdehyde and a decreased content of chlorophyll, indicating that anti-oxidation and detoxification play an important role in response to saline-alkaline stress. Overall, the transcriptome analysis provided novel insights into the saline-alkaline stress tolerance response mechanisms in alfalfa. PMID:27458463

  6. Genesis of rare-metal pegmatites and alkaline apatite-fluorite rocks of Burpala massi, Northern Baikal folded zone

    NASA Astrophysics Data System (ADS)

    Sotnikova, Irina; Vladykin, Nikolai

    2015-04-01

    Burpalinsky rare metal alkaline massif in the Northern Baikal folded zone in southern margin of Siberian Platform, is a of intrusion central type, created 287 Ma covering area of about 250 km2. It is composed of nepheline syenites and pulaskites grading to quartz syenites in the contacts. Veines and dykes are represented by shonkinites, sodalite syenite, leucocratic granophyres, alkali granites and numerous rare metal alkaline syenite pegmatites and two dykes of carbonatites. All rocks except for granites are cut by a large apatite-fluorite dyke rocks with mica and magnetite, which in turn is cut by alaskite granites dyke. The massif has been studied by A.M. Portnov, A.A. Ganzeev et al. (1992) Burpalinsky massif is highly enriched with trace elements, which are concentrated in pegmatite dykes. About 70 rare-metal minerals we found in massif. Zr-silicates: zircon, eudialyte, lovenite, Ti-lovenite, velerite, burpalite, seidozerite, Ca- seidozerite, Rosenbuschite, vlasovite, katapleite, Ca-katapleite, elpidite. Ti- minerals:- sphene, astrophyllite, ramsaite, Mn-neptunite bafertisite, chevkinite, Mn-ilmenite, pirofanite, Sr-perrerit, landauite, rutile, anatase, brookite; TR- minerals - loparite, metaloparite, britolite, rinkolite, melanocerite, bastnesite, parisite, ankilite, monazite, fluocerite, TR-apatite; Nb- minerals - pyrochlore, loparite. Other rare minerals leucophanite, hambergite, pyrochlore, betafite, torite, thorianite, tayniolite, brewsterite, cryolite and others. We have proposed a new scheme massif: shonkinites - nepheline syenites - alkaline syenite - quartz syenites - veined rocks: mariupolites, rare-metal pegmatites, apatite, fluorite rock alyaskite and alkaline granites and carbonatites (Sotnikova, 2009). Apatite-fluorite rocks are found in the central part of massif. This is a large vein body of 2 km length and a 20 m width cutting prevailing pulaskites. Previously, these rocks were regarded as hydrothermal low-temperature phase. New geological and thermobarometric evidence suggests that apatite-fluorite rocks were formed from the residual fluid-melt, separated after crystallization of rare-metal pegmatites. Petrochemical and geochemical data Burpalinsky are in accord of general trend of crystal differentiation of alkaline magma containing small concentrations of CO2 and higher P2O5 and F, which accumulated significantly separated from the pegmatite melts. In some pegmatites fluorite with rare-metal minerals (flyuocerit etc) are separating in schlieren. Apatite-fluorite rocks are cut by leucogranite dyke, having genetic connection with rare-metal pegmatites. Late granitic phases has its own association of rare-metal minerals described by A.A. Ganzeev (1972). Thermobarometric geochemical study of apatite-fluorite rocks Burpala massif found a large number of primary fluid inclusions (15-50 micrometers). Thermal and cryometric research of 60 individual fluid inclusions in fluorite showed the domination of Na, Ca, Mg chlorides and high temperatures salt inclusions in fluorites (above 550C) and melt inclusions in apatites (800C). Apatite-fluorite rocks in massif are similar to foskorites in carbonatite complexes, with similar high Ca content, but instead fluorite, together with other "foskoritovymi" minerals - apatite, magnetite, mica, and pyroxene were formed instead for calcite. Isotopic studies (Sr-Nd) indicate the mantle source of primary magma Burpala massif close to EM-2, which is characteristic of alkaline intrusions in the folded belts (Vladykin 2009). RBRF grant 14-45-04057

  7. Control of volume resistivity in inorganic-organic separators. [for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Manzo, M. A.

    1980-01-01

    Control of resistivity in NASA inorganic-organic separators is achieved by incorporating small percentages of high surface area, fine-particle silica with other ingredients in the separator coating. The volume resistivity appears to be predictable from coating composition, that is, from the surface area of filler particles in the coating. The approach has been applied to two polymer-'plasticizer'-filler coating systems, where the filler content of each is below the generally acknowledged critical pigment volume concentration of the coating. Application of these coating systems to 0.0254 cm thick (10 mil) fuel-cell grade asbestos sheet produces inexpensive, flexible, microporous separators that perform at least as well as the original inorganic-organic concept, the Astropower separator.

  8. Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products.

    PubMed

    Valsala, T P; Sonavane, M S; Kore, S G; Sonar, N L; De, Vaishali; Raghavendra, Y; Chattopadyaya, S; Dani, U; Kulkarni, Y; Changrani, R D

    2011-11-30

    The acidic and alkaline low level radioactive liquid waste (LLW) generated during the concentration of high level radioactive liquid waste (HLW) prior to vitrification and ion exchange treatment of intermediate level radioactive liquid waste (ILW), respectively are decontaminated by chemical co-precipitation before discharge to the environment. LLW stream generated from the ion exchange treatment of ILW contained high concentrations of carbonates, tributyl phosphate (TBP) degraded products and problematic radio nuclides like (106)Ru and (99)Tc. Presence of TBP degraded products was interfering with the co-precipitation process. In view of this a modified chemical treatment scheme was formulated for the treatment of this waste stream. By mixing the acidic LLW and alkaline LLW, the carbonates in the alkaline LLW were destroyed and the TBP degraded products got separated as a layer at the top of the vessel. By making use of the modified co-precipitation process the effluent stream (1-2 μCi/L) became dischargeable to the environment after appropriate dilution. Based on the lab scale studies about 250 m(3) of LLW was treated in the plant. The higher activity of the TBP degraded products separated was due to short lived (90)Y isotope. The cement waste product prepared using the TBP degraded product was having good chemical durability and compressive strength. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Inexpensive cross-linked polymeric separators made from water soluble polymers

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Sheibley, D. W.

    1979-01-01

    Polyvinyl alcohol (PVA) crosslinked chemically with aldehyde reagents produces membranes which demonstrate oxidation resistance, dimensional stability, low ionic resistivity, low zincate diffusivity, and low zinc dendrite penetration rate which make them suitable for use as alkaline battery separators. They are intrinsically low in cost and environmental health and safety problems associated with commercial production appear minimal. Preparation, property measurements, and cell test results in Ni/Zn and Ag/Zn cells are described and discussed.

  10. Colorimetric determination of alkaline phosphatase as indicator of mammalian feces in corn meal: collaborative study.

    PubMed

    Gerber, H

    1986-01-01

    In the official method for rodent filth in corn meal, filth and corn meal are separated in organic solvents, and particles are identified by the presence of hair and a mucous coating. The solvents are toxic, poor separation yields low recoveries, and fecal characteristics are rarely present on all fragments, especially on small particles. The official AOAC alkaline phosphatase test for mammalian feces, 44.181-44.184, has therefore been adapted to determine the presence of mammalian feces in corn meal. The enzyme cleaves phosphate radicals from a test indicator/substrate, phenolphthalein diphosphate. As free phenolphthalein accumulates, a pink-to-red color develops in the gelled test agar medium. In a collaborative study conducted to compare the proposed method with the official method for corn meal, 44.049, the proposed method yielded 45.5% higher recoveries than the official method. Repeatability and reproducibility for the official method were roughly 1.8 times more variable than for the proposed method. The method has been adopted official first action.

  11. Capillary electrochromatography of inorganic cations in open tubular columns with a controllable capacity multilayered stationary phase architecture.

    PubMed

    Kubán, Pavel; Kubán, Petr; Kubán, Vlastimil; Hauser, Peter C; Bocek, Petr

    2008-05-09

    In this paper capillary electrochromatography of alkali and alkaline-earth metal cations in open tubular capillary columns is described. Capillary columns are prepared by coating fused silica capillaries of 75 microm I.D. with poly(butadiene-maleic acid) copolymer (PBMA) in multiple layers. Thermally initiated radical polymerization is used to crosslink the stationary phase. Capillary columns with different number of stationary phase layers can be prepared and allow for the adjustment of separation selectivity in the electrochromatographic mode. Fast and sensitive separations of common inorganic cations are achieved in less than 6 min in a 60 cm capillary column with on-column capacitively coupled contactless conductivity detector. Limits of detection (S/N=3) for the determination of alkali and alkaline-earth metal cations range from 0.3 to 2.5 microM and repeatability is better than 0.5, 4.5 and 6.1% for migration times, peak heights and peak areas, respectively.

  12. 40 CFR 434.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... technology currently available (BPT). 434.42 Section 434.42 Protection of Environment ENVIRONMENTAL... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.42... of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...

  13. 40 CFR 434.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... technology currently available (BPT). 434.42 Section 434.42 Protection of Environment ENVIRONMENTAL... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.42... of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...

  14. 40 CFR 434.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... representing the degree of effluent reduction attainable by application of the best available technology... NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.43 Effluent limitations guidelines representing the degree of effluent reduction attainable by application of the best available technology...

  15. 40 CFR 434.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... technology currently available (BPT). 434.42 Section 434.42 Protection of Environment ENVIRONMENTAL... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.42... of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...

  16. 40 CFR 434.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... representing the degree of effluent reduction attainable by application of the best available technology... NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.43 Effluent limitations guidelines representing the degree of effluent reduction attainable by application of the best available technology...

  17. The application of alkaline lysis and pressure cycling technology in the differential extraction of DNA from sperm and epithelial cells recovered from cotton swabs.

    PubMed

    Nori, Deepthi V; McCord, Bruce R

    2015-09-01

    This study reports the development of a two-step protocol using pressure cycling technology (PCT) and alkaline lysis for differential extraction of DNA from mixtures of sperm and vaginal epithelial cells recovered from cotton swabs. In controlled experiments, in which equal quantities of sperm and female epithelial cells were added to cotton swabs, 5 min of pressure pulsing in the presence of 0.4 M NaOH resulted in 104 ± 6% recovery of female epithelial DNA present on the swab. Following the pressure treatment, exposing the swabs to a second 5-min alkaline treatment at 95 °C without pressure resulted in the selective recovery of 69 ± 6% of the sperm DNA. The recovery of the vaginal epithelia and sperm DNA was optimized by examining the effect of sodium hydroxide concentration, incubation temperature, and time. Following the alkaline lysis steps, the samples were neutralized with 2 M Tris (pH 7.5) and purified with phenol-chloroform-isoamyl alcohol to permit downstream analysis. The total processing time to remove both fractions from the swab was less than 20 min. Short tandem repeat (STR) analysis of these fractions obtained from PCT treatment and alkaline lysis generated clean profiles of female epithelial DNA and male sperm DNA for 1:1 mixtures of female and male cells and predominant male profiles for mixtures up to 5:1 female to male cells. By reducing the time and increasing the recovery of DNA from cotton swabs, this new method presents a novel and potentially useful procedure for forensic differential extractions.

  18. Development of conductometric biosensors based on alkaline phosphatases for the water quality control

    NASA Astrophysics Data System (ADS)

    Berezhetskyy, A.

    2008-09-01

    Researches are focused on the elaboration of enzymatic microconductometric device for heavy metal ions detection in water solutions. The manuscript includes a general introduction, the first chapter contains bibliographic review, the second chapter described the fundamentals of conductometric transducers, the third chapter examining the possibility to create and to optimize conductometric biosensor based on bovine alkaline phosphatase for heavy metals ions detection, the fourth chapter devoted to creation and optimization of conductometric biosensor based on alkaline phosphatase active microalgae and sol gel technology, the last chapter described application of the proposed algal biosensor for measurements of heavy metal ions toxicity of waste water, general conclusions stating the progresses achieved in the field of environmental monitoring

  19. Separator for alkaline electric batteries and method of making

    NASA Technical Reports Server (NTRS)

    Pfluger, H. L. (Inventor); Hoyt, H. E.

    1970-01-01

    Battery separator membranes of high electrolytic conductivity comprising a cellulose ether and a compatible metallic salt of water soluble aliphatic acids and their hydroxy derivatives are described. It was found that methyl cellulose can be modified by another class of materials, nonpolymeric in nature, to form battery separator membranes of low electrolytic resistance but which have the flexibility of membranes made of unmodified methyl cellulose, and which in many cases enhance flexibility over membranes made with unmodified methyl cellulose. Separator membranes for electrochemical cells comprising a cellulose ether and a modified selected from the group consisting of metallic salts of water soluble alphatic acids and their hydroxy derivatives and to electrochemical cells utilizing said membranes are described.

  20. Life cycle assessment of biogas upgrading technologies.

    PubMed

    Starr, Katherine; Gabarrell, Xavier; Villalba, Gara; Talens, Laura; Lombardi, Lidia

    2012-05-01

    This article evaluates the life cycle assessment (LCA) of three biogas upgrading technologies. An in-depth study and evaluation was conducted on high pressure water scrubbing (HPWS), as well as alkaline with regeneration (AwR) and bottom ash upgrading (BABIU), which additionally offer carbon storage. AwR and BABIU are two novel technologies that utilize waste from municipal solid waste incinerators - namely bottom ash (BA) and air pollution control residues (APC) - and are able to store CO(2) from biogas through accelerated carbonation processes. These are compared to high pressure water scrubbing (HPWS) which is a widely used technology in Europe. The AwR uses an alkaline solution to remove the CO(2) and then the solution - rich in carbonate and bicarbonate ions - is regenerated through carbonation of APC. The BABIU process directly exposes the gas to the BA to remove and immediately store the CO(2), again by carbonation. It was determined that the AwR process had an 84% higher impact in all LCA categories largely due to the energy intensive production of the alkaline reactants. The BABIU process had the lowest impact in most categories even when compared to five other CO(2) capture technologies on the market. AwR and BABIU have a particularly low impact in the global warming potential category as a result of the immediate storage of the CO(2). For AwR, it was determined that using NaOH instead of KOH improves its environmental performance by 34%. For the BABIU process the use of renewable energies would improve its impact since accounts for 55% of the impact. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Protection against Experimental Cryptococcosis following Vaccination with Glucan Particles Containing Cryptococcus Alkaline Extracts

    PubMed Central

    Lee, Chrono K.; Huang, Haibin; Shen, Zu T.; Lodge, Jennifer K.; Leszyk, John; Ostroff, Gary R.

    2015-01-01

    ABSTRACT A vaccine capable of protecting at-risk persons against infections due to Cryptococcus neoformans and Cryptococcus gattii could reduce the substantial global burden of human cryptococcosis. Vaccine development has been hampered though, by lack of knowledge as to which antigens are immunoprotective and the need for an effective vaccine delivery system. We made alkaline extracts from mutant cryptococcal strains that lacked capsule or chitosan. The extracts were then packaged into glucan particles (GPs), which are purified Saccharomyces cerevisiae cell walls composed primarily of β-1,3-glucans. Subcutaneous vaccination with the GP-based vaccines provided significant protection against subsequent pulmonary infection with highly virulent strains of C. neoformans and C. gattii. The alkaline extract derived from the acapsular strain was analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS), and the most abundant proteins were identified. Separation of the alkaline extract by size exclusion chromatography revealed fractions that conferred protection when loaded in GP-based vaccines. Robust Th1- and Th17-biased CD4+ T cell recall responses were observed in the lungs of vaccinated and infected mice. Thus, our preclinical studies have indicated promising cryptococcal vaccine candidates in alkaline extracts delivered in GPs. Ongoing studies are directed at identifying the individual components of the extracts that confer protection and thus would be promising candidates for a human vaccine. PMID:26695631

  2. Chemical Remediation of an Ordnance-Related Compound: The Alkaline Hydrolysis of CL-20. Environmental Quality Technology Program

    DTIC Science & Technology

    2007-09-01

    a higher crystal density, a higher heat of formation, and a better oxidizer- to-fuel ratio than conventional nitramines used in propellants. The...resembles two RDX rings joined at several carbon atoms (Larson et al. 2001). CL-20 is a polycyclic nitramine with a higher crystal density, a higher...Heilmann et al. 1996). Research performed on RDX indicates that its degradation in alkaline media was initiated by a single denitration step, which

  3. Effects of alkaline catalysts on acetone-based organosolv pretreatment of rice straw.

    PubMed

    Raita, Marisa; Denchokepraguy, Naphatsaya; Champreda, Verawat; Laosiripojana, Navadol

    2017-10-01

    Organosolv is an effective pretreatment strategy for increasing digestibility of lignocellulosic materials owing to selectivity of solvents on separating biopolymeric constituents of plant biomass. In the present work, a novel low-temperature alkali-catalyzed organosolv pretreatment of rice straw was studied. The effects of alkaline catalysts (i.e., NaOH, ammonia, and tri-ethylamine) and solvent types (i.e., acetone, ethanol, and water) were carried out. Addition of alkalis led to increasing sugar from enzymatic hydrolysis while acetone was found to be superior to ethanol and water on selectivity towards cellulose preservation. The optimal alkaline-catalyzed pretreatment reaction contained 5% (w/v) NaOH in an aqueous-acetone mixture (1:4) at 80 °C for 5 min. A glucose yield of 913 mg/g of pretreated biomass was achieved, equivalent to a maximal glucose recovery of 93.0% from glucan in the native biomass. Scanning electron microscope revealed efficient removal of non-cellulosic components, resulting in exposed cellulose microfibers with a reduced crystallite size as determined by X-ray diffraction. With potential on obtaining high-quality lignin, the work demonstrated potential of the novel low-temperature alkaline-catalyzed acetone-based organosolv process for pretreatment of lignocellulosic materials in biorefineries.

  4. DEVELOPMENT AND SELECTION OF IONIC LIQUID ELECTROLYTES FOR HYDROXIDE CONDUCTING POLYBENZIMIDAZOLE MEMBRANES IN ALKALINE FUEL CELLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, E.

    2012-05-01

    Alkaline fuel cell (AFC) operation is currently limited to specialty applications such as low temperatures and pure HO due to the corrosive nature of the electrolyte and formation of carbonates. AFCs are the cheapest and potentially most efficient (approaching 70%) fuel cells. The fact that non-Pt catalysts can be used, makes them an ideal low cost alternative for power production. The anode and cathode are separated by and solid electrolyte or alkaline porous media saturated with KOH. However, CO from the atmosphere or fuel feed severely poisons the electrolyte by forming insoluble carbonates. The corrosivity of KOH (electrolyte) limits operatingmore » temperatures to no more than 80°C. This chapter examines the development of ionic liquids electrolytes that are less corrosive, have higher operating temperatures, do not chemically bond to CO and enable alternative fuels. Work is detailed on the IL selection and characterization as well as casting methods within the polybenzimidazole based solid membrane. This approach is novel as it targets the root of the problem (the electrolyte) unlike other current work in alkaline fuel cells which focus on making the fuel cell components more durable.« less

  5. A facile synthesis of highly stable multiblock poly(arylene ether)s based alkaline membranes for fuel cells

    NASA Astrophysics Data System (ADS)

    Jasti, Amaranadh; Shahi, Vinod K.

    2014-12-01

    Herein, we are disclosing simple route for the preparation of alkaline membranes (AMs) based on aminated multiblock poly(arylene ether)s (AMPEs) synthesized by nucleophilic substitution-poly condensation followed by quaternization and alkalization reactions. In this procedure, four quaternary ammonium groups are successfully introduced without use of carcinogenic reagents such as chloromethylmethyl ether (CMME). Hydrophilic/hydrophobic phase separation is responsible for their high hydroxide conductivity (∼150 mS cm-1 at 80 °C) due to development of interconnected ion transport pathway. AMs are exhibiting good alkaline stability due to the presence of two vicinal quaternary ammonium groups and avoid degradation such as Sommelet-Hauser rearrangement and Hofmann elimination. Vicinal quaternary ammonium groups also resist nucleophilic (OH-) attack and suppress the Stevens rearrangement as well as SN2 substitution reaction due to stearic hindrance. Optimized AM (AMPE-M20N15 (55% DCM)) exhibits about 0.95 V open circuit voltage (OCV) and 48.8 mW cm-2 power density at 65 °C in alkaline direct methanol fuel cell (ADMFC) operation. These results suggest promising begin for the preparation of stable and conductive AMs for ADMFC applications and useful for developing hydroxide conductive materials.

  6. Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries

    NASA Technical Reports Server (NTRS)

    Abbey, K. M.; Britton, D. L.

    1983-01-01

    Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders.

  7. 40 CFR 434.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... technology currently available (BPT). 434.42 Section 434.42 Protection of Environment ENVIRONMENTAL..., BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.42 Effluent... practicable control technology currently available (BPT). Except as provided in 40 CFR 125.30-125.32, 40 CFR...

  8. 40 CFR 434.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... technology currently available (BPT). 434.42 Section 434.42 Protection of Environment ENVIRONMENTAL..., BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.42 Effluent... practicable control technology currently available (BPT). Except as provided in 40 CFR 125.30-125.32, 40 CFR...

  9. CO2 mitigation potential of mineral carbonation with industrial alkalinity sources in the United States.

    PubMed

    Kirchofer, Abby; Becker, Austin; Brandt, Adam; Wilcox, Jennifer

    2013-07-02

    The availability of industrial alkalinity sources is investigated to determine their potential for the simultaneous capture and sequestration of CO2 from point-source emissions in the United States. Industrial alkalinity sources investigated include fly ash, cement kiln dust, and iron and steel slag. Their feasibility for mineral carbonation is determined by their relative abundance for CO2 reactivity and their proximity to point-source CO2 emissions. In addition, the available aggregate markets are investigated as possible sinks for mineral carbonation products. We show that in the U.S., industrial alkaline byproducts have the potential to mitigate approximately 7.6 Mt CO2/yr, of which 7.0 Mt CO2/yr are CO2 captured through mineral carbonation and 0.6 Mt CO2/yr are CO2 emissions avoided through reuse as synthetic aggregate (replacing sand and gravel). The emission reductions represent a small share (i.e., 0.1%) of total U.S. CO2 emissions; however, industrial byproducts may represent comparatively low-cost methods for the advancement of mineral carbonation technologies, which may be extended to more abundant yet expensive natural alkalinity sources.

  10. An Optimized Microfluidic Paper-Based NiOOH/Zn Alkaline Battery.

    PubMed

    Burrola, Samantha; Gonzalez-Guerrero, Maria Jose; Avoundjian, Ani; Gomez, Frank A

    2018-05-29

    In this paper, an alkaline Nickel Oxide Hydroxide/Zinc (NiOOH/Zn) battery featuring a cellulose matrix separator between electrodes is presented. The metallic electrodes and the paper separator are inserted in a layer-by-layer (LbL) assembly that provides mechanical stability to the system resulting in a lightweight and easy-to-use device. The battery was optimized for the amount of NiOOH-ink used at the cathode (11.1 mg/cm 2 ) and thickness of the paper membrane separating the electrodes (360 μm). The battery was able to function using a small volume (75 μL) of 1.5 M potassium hydroxide (KOH) producing a maximum voltage, current density and power density of 1.35 ± 0.05 V, 10.62 ± 0.57 mA/cm², and 0.56 ± 0.01 mW/cm², respectively. The system displayed a maximum current of 23.9 mA and a maximum power of 1.26 mW. Moreover, four batteries connected in series were able to power a small flameless candle for approximately 22 minutes. This work has potential in fulfilling the demands for short-term and lightweight power supplies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. [Various methods for the determination of preservatives in food. II. Gaschromatography, high performance liquid chromatography, TAS-method (author's transl)].

    PubMed

    Hild, J; Gertz, C

    1980-02-01

    For the quantitative determination of preservatives in food, analyses were carried out by means of GLC, HPLC, and TLC according to the TAS-method. Using the alkaline extract (sample preparation see part I) the preservatives can be analysed as free acid or appropriate ester out the same GLC-column without any interference from coextractives. A fast and accurate HPLC determination can be achieved by direct injection of the alkaline extract. All preservatives were well separated and detected at a wavelength of 225 resp. 232 nm. As a quick test for the qualitative estimation the TLC (TAS) method is suggested and a suitable solvent system is proposed.

  12. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide

    PubMed Central

    Chen, Long; Dong, Xiaoli; Wang, Yonggang; Xia, Yongyao

    2016-01-01

    Low-cost alkaline water electrolysis has been considered a sustainable approach to producing hydrogen using renewable energy inputs, but preventing hydrogen/oxygen mixing and efficiently using the instable renewable energy are challenging. Here, using nickel hydroxide as a redox mediator, we decouple the hydrogen and oxygen production in alkaline water electrolysis, which overcomes the gas-mixing issue and may increase the use of renewable energy. In this architecture, the hydrogen production occurs at the cathode by water reduction, and the anodic Ni(OH)2 is simultaneously oxidized into NiOOH. The subsequent oxygen production involves a cathodic NiOOH reduction (NiOOH→Ni(OH)2) and an anodic OH− oxidization. Alternatively, the NiOOH formed during hydrogen production can be coupled with a zinc anode to form a NiOOH-Zn battery, and its discharge product (that is, Ni(OH)2) can be used to produce hydrogen again. This architecture brings a potential solution to facilitate renewables-to-hydrogen conversion. PMID:27199009

  13. Separation and determination of secoisolariciresinol diglucoside oligomers and their hydrolysates in the flaxseed extract by high-performance liquid chromatography.

    PubMed

    Li, Xin; Yuan, Jian-Ping; Xu, Shi-Ping; Wang, Jiang-Hai; Liu, Xin

    2008-03-28

    Flaxseed contains the largest amount of lignan secoisolariciresinol diglucoside (SDG) oligomers and is the richest dietary source of SDG. SDG oligomers in the flaxseed extract are often hydrolyzed to break the ester linkages for the release of SDG and the glycosidic bonds for the release of secoisolariciresinol (SECO). The hydrolysates of SDG oligomers are complicated because of the production of esters in an alcohol-containing medium. In this study, a new gradient reversed-phase high-performance liquid chromatography (HPLC) method has been developed to be suitable for the separation and determination of: (1) SDG oligomers extracted from the defatted flaxseed powder by a 70% aqueous methanol solution; (2) SDG oligomers and their alkaline hydrolysates, including SDG, p-coumaric acid glucoside and its methyl ester, ferulic acid glucoside and its methyl ester in an alkaline hydrolytic solution; and (3) the succedent acid hydrolysates, including secoisolariciresinol monoglucoside (SMG), SECO, anhydrosecoisolariciresinol (anhydro-SECO), p-coumaric acid and its methyl ester, ferulic acid and its methyl ester, 5-hydroxymethyl-2-furfural (HMF) and its degradation product in an acid hydrolytic solution. The content of SDG oligomers in a defatted flaxseed powder was found to be 38.5 mg/g on a dry matter basis, corresponding to a SDG content of 15.4 mg/g, which was determined after alkaline hydrolysis. Furthermore, this study presented a major reaction pathway for the hydrolysis of SDG oligomers.

  14. Development of an analytical technique for the detection of alteration minerals formed in bentonite by reaction with alkaline solutions

    NASA Astrophysics Data System (ADS)

    Sakamoto, H.; Shibata, M.; Owada, H.; Kaneko, M.; Kuno, Y.; Asano, H.

    A multibarrier system consisting of cement-based backfill, structures and support materials, and a bentonite-based buffer material has been studied for the TRU waste disposal concept being developed in Japan, the aim being to restrict the migration of radionuclides. Concern regarding bentonite-based materials in this disposal environment relates to long-term alteration under hyper-alkaline conditions due to the presence of cementitious materials. In tests simulating the interaction between bentonite and cement, formation of secondary minerals due to alteration reactions under the conditions expected for geological disposal of TRU waste (equilibrated water with cement at low liquid/solid ratio) has not been observed, although alteration was observed under extremely hyper-alkaline conditions with high temperatures. This was considered to be due to the fact that analysis of C-S-H gel formed at the interface as a secondary mineral was difficult using XRD, because of its low crystallinity and low content. This paper describes an analytical technique for the characterization of C-S-H gel using a heavy liquid separation method which separates C-S-H gel from Kunigel V1 bentonite (bentonite produced in Japan) based on the difference in specific gravity between the crystalline minerals constituting Kunigel V1 and the secondary C-S-H gel. For development of C-S-H gel separation methods, simulated alteration samples were prepared by mixing 990 mg of unaltered Kunigel V1 and 10 mg of C-S-H gel synthesized using pure chemicals at a ratio of Ca/Si = 1.2. The simulated alteration samples were dispersed in bromoform-methanol mixtures with specific gravities ranging from 2.00 to 2.57 g/cm 3 and subjected to centrifuge separation to recover the light density fraction. Subsequent XRD analysis to identify the minerals was complemented by dissolution in 0.6 N hydrochloric acid to measure the Ca and Si contents. The primary peak (2 θ = 29.4°, Cu Kα) and secondary peaks (2 θ = 32.1° and 50.1°, Cu Kα) of the C-S-H gel, which could not be distinguished before the heavy liquid separation, were clearly identified by XRD after separation. The result of the analyses of the light density fraction indicates highest recovery of C-S-H gel and least inclusion of bentonite for separation using heavy liquid with a specific gravity of 2.10 g/cm 3. The traces of bentonite minerals included in the suspension were identified to be montmorillonite, quartz, clinoptilolite, and calcite. The separation technique was also tested for Ca-bentonite prepared by passing a calcium hydroxide solution through a bentonite (Kunigel V1)-silica sand mixture. The results indicated that the technique would also be applicable to separation of C-S-H gel from Ca-bentonite.

  15. Transport and solubility of Hetero-disperse dry deposition particulate matter subject to urban source area rainfall-runoff processes

    NASA Astrophysics Data System (ADS)

    Ying, G.; Sansalone, J.

    2010-03-01

    SummaryWith respect to hydrologic processes, the impervious pavement interface significantly alters relationships between rainfall and runoff. Commensurate with alteration of hydrologic processes the pavement also facilitates transport and solubility of dry deposition particulate matter (PM) in runoff. This study examines dry depositional flux rates, granulometric modification by runoff transport, as well as generation of total dissolved solids (TDS), alkalinity and conductivity in source area runoff resulting from PM solubility. PM is collected from a paved source area transportation corridor (I-10) in Baton Rouge, Louisiana encompassing 17 dry deposition and 8 runoff events. The mass-based granulometric particle size distribution (PSD) is measured and modeled through a cumulative gamma function, while PM surface area distributions across the PSD follow a log-normal distribution. Dry deposition flux rates are modeled as separate first-order exponential functions of previous dry hours (PDH) for PM and suspended, settleable and sediment fractions. When trans-located from dry deposition into runoff, PSDs are modified, with a d50m decreasing from 331 to 14 μm after transport and 60 min of settling. Solubility experiments as a function of pH, contact time and particle size using source area rainfall generate constitutive models to reproduce pH, alkalinity, TDS and alkalinity for historical events. Equilibrium pH, alkalinity and TDS are strongly influenced by particle size and contact times. The constitutive leaching models are combined with measured PSDs from a series of rainfall-runoff events to demonstrate that the model results replicate alkalinity and TDS in runoff from the subject watershed. Results illustrate the granulometry of dry deposition PM, modification of PSDs along the drainage pathway, and the role of PM solubility for generation of TDS, alkalinity and conductivity in urban source area rainfall-runoff.

  16. 40 CFR 434.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... representing the degree of effluent reduction attainable by application of the best available technology... LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.43 Effluent limitations... technology economically achievable (BAT). Except as provided in 40 CFR 125.30-125.32, and §§ 434.61 and 434...

  17. 40 CFR 434.43 - Effluent limitations guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... representing the degree of effluent reduction attainable by application of the best available technology... LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.43 Effluent limitations... technology economically achievable (BAT). Except as provided in 40 CFR 125.30-125.32, and §§ 434.61 and 434...

  18. A Paper Chase: Technology Helps Library Save Its Collections on Paper.

    ERIC Educational Resources Information Center

    Dalrymple, Will

    1997-01-01

    Bookkeeper, a liquid-based mass deacidification technology, may help the Library of Congress win its war against acid damage in its paper collection. The process impregnates books with magnesium oxide particles that both neutralize the acid in paper and leave an alkaline buffer behind. Describes the problem of acidic degradation and the Bookkeeper…

  19. Robust and durable superhydrophobic cotton fabrics for oil/water separation.

    PubMed

    Zhou, Xiaoyan; Zhang, Zhaozhu; Xu, Xianghui; Guo, Fang; Zhu, Xiaotao; Men, Xuehu; Ge, Bo

    2013-08-14

    By introducing the incorporation of polyaniline and fluorinated alkyl silane to the cotton fabric via a facile vapor phase deposition process, the fabric surface possessed superhydrophobicity with the water contact angle of 156° and superoleophilicity with the oil contact angle of 0°. The as-prepared fabric can be applied as effective materials for the separation of water and oil mixture with separation efficiency as high as 97.8%. Compared with other materials for oil/water separation, the reported process was simple, time-saving, and repeatable for at least 30 times. Moreover, the obtained fabric kept stable superhydrophobicity and high separation efficiency under extreme environment conditions of high temperature, high humidity, strong acidic or alkaline solutions, and mechanical forces. Therefore, this reported fabric has the advantages of scalable fabrication, high separation efficiency, stable recyclability, and excellent durability, exhibiting the strong potential for industrial production.

  20. Pore size engineering applied to the design of separators for nickel-hydrogen cells and batteries

    NASA Technical Reports Server (NTRS)

    Abbey, K. M.; Britton, D. L.

    1983-01-01

    Pore size engineering in starved alkaline multiplate cells involves adopting techniques to widen the volume tolerance of individual cells. Separators with appropriate pore size distributions and wettability characteristics (capillary pressure considerations) to have wider volume tolerances and an ability to resist dimensional changes in the electrodes were designed. The separators studied for potential use in nickel-hydrogen cells consist of polymeric membranes as well as inorganic microporous mats. In addition to standard measurements, the resistance and distribution of electrolyte as a function of total cell electrolyte content were determined. New composite separators consisting of fibers, particles and/or binders deposited on Zircar cloth were developed in order to engineer the proper capillary pressure characteristics in the separator. These asymmetric separators were prepared from a variety of fibers, particles and binders. Previously announced in STAR as N83-24571

  1. Cassava Stillage Treatment by Thermophilic Anaerobic Continuously Stirred Tank Reactor (CSTR)

    NASA Astrophysics Data System (ADS)

    Luo, Gang; Xie, Li; Zou, Zhonghai; Zhou, Qi

    2010-11-01

    This paper assesses the performance of a thermophilic anaerobic Continuously Stirred Tank Reactor (CSTR) in the treatment of cassava stillage under various organic loading rates (OLRs) without suspended solids (SS) separation. The reactor was seeded with mesophilic anaerobic granular sludge, and the OLR increased by increments to 13.80 kg COD/m3/d (HRT 5d) over 80 days. Total COD removal efficiency remained stable at 90%, with biogas production at 18 L/d (60% methane). Increase in the OLR to 19.30 kg COD/m3/d (HRT 3d), however, led to a decrease in TCOD removal efficiency to 79% due to accumulation of suspended solids and incomplete degradation after shortened retention time. Reactor performance subsequently increased after OLR reduction. Alkalinity, VFA and pH levels were not significantly affected by OLR variation, indicating that no additional alkaline or pH adjustment is required. More than half of the SS in the cassava stillage could be digested in the process when HRT was 5 days, which demonstrated the suitability of anaerobic treatment of cassava stillage without SS separation.

  2. Preconcentration and determination of rare-earth elements in iron-rich water samples by extraction chromatography and plasma source mass spectrometry (ICP-MS).

    PubMed

    Hernández González, Carolina; Cabezas, Alberto J Quejido; Díaz, Marta Fernández

    2005-11-15

    A 100-fold preconcentration procedure based on rare-earth elements (REEs) separation from water samples with an extraction chromatographic column has been developed. The separation of REEs from matrix elements (mainly Fe, alkaline and alkaline-earth elements) in water samples was performed loading the samples, previously acidified to pH 2.0 with HNO(3), in a 2ml column preconditioned with 20ml 0.01M HNO(3). Subsequently, REEs were quantitatively eluted with 20ml 7M HNO(3). This solution was evaporated to dryness and the final residue was dissolved in 10ml 2% HNO(3) containing 1mugl(-1) of cesium used as internal standard. The solution was directly analysed by inductively coupled plasma mass spectrometry (ICP-MS), using ultrasonic nebulization, obtaining quantification limits ranging from 0.05 to 0.10 ngl(-1). The proposed method has been applied to granitic waters running through fracture fillings coated by iron and manganese oxy-hydroxides in the area of the Ratones (Cáceres, Spain) old uranium mine.

  3. Effect of dilute alkaline pretreatment on the conversion of different parts of corn stalk to fermentable sugars and its application in acetone-butanol-ethanol fermentation.

    PubMed

    Cai, Di; Li, Ping; Luo, Zhangfeng; Qin, Peiyong; Chen, Changjing; Wang, Yong; Wang, Zheng; Tan, Tianwei

    2016-07-01

    To investigate the effect of dilute alkaline pretreatment on different parts of biomass, corn stalk was separated into flower, leaf, cob, husk and stem, which were treated by NaOH in range of temperature and chemical loading. The NaOH-pretreated solid was then enzymatic hydrolysis and used as the substrate for batch acetone-butanol-ethanol (ABE) fermentation. The results demonstrated the five parts of corn stalk could be used as potential feedstock separately, with vivid performances in solvents production. Under the optimized conditions towards high product titer, 7.5g/L, 7.6g/L, 9.4g/L, 7g/L and 7.6g/L of butanol was obtained in the fermentation broth of flower, leaf, cob, husk and stem hydrolysate, respectively. Under the optimized conditions towards high product yield, 143.7g/kg, 126.3g/kg, 169.1g/kg, 107.7g/kg and 116.4g/kg of ABE solvent were generated, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Correlation of Surface Adsorption and Oxidation with a Floatability Difference of Galena and Pyrite in High-Alkaline Lime Systems.

    PubMed

    Niu, Xiaopeng; Ruan, Renman; Xia, Liuyin; Li, Li; Sun, Heyun; Jia, Yan; Tan, Qiaoyi

    2018-02-27

    When it comes to Pb-Zn ores with high amounts of pyrite, the major problem encountered is the low separation efficiency between galena and pyrite. By virtue of high dosage of lime and collector sodium diethyl dithiocarbamate (DDTC), pyrite and zinc minerals are depressed, allowing the galena to be floated. However, there have been significant conflicting reports on the flotation behavior of galena at high pH. In this context, correlation of the surface adsorption and oxidation with the floatability difference of galena and pyrite in high-alkaline lime systems would be a key issue for process optimization. Captive bubble contact angle measurements were performed on freshly polished mineral surfaces in situ exposed to lime solutions of varying pH as a function of immersion time. Furthermore, single mineral microflotation tests were conducted. Both tests indicated that the degree of hydrophobicity on the surfaces of galena and pyrite increased in the presence of DDTC at natural or mild pulp pH. While in a saturated lime solution, at pH 12.5, DDTC only worked for galena, but not for pyrite. Surface chemistry analysis by time-of-flight secondary ion mass spectrometry (Tof-SIMS) confirmed the preference of DDTC on the galena surface at pH 12.5, which contributed to a merit recovery. Further important evidence through measurements of Tof-SIMS, ion chromatography, and high-performance liquid chromatography indicated that in high-alkaline lime systems, the merit floatability of galena could exclude the insignificant contribution of elemental sulfur (S 8 ) and was dominantly attributed by the strong adsorption of DDTC. In contrast, the poor flotation response of pyrite at high pH was due to the prevailing adsorption of CaOH + species. This study provides an important surface chemistry evidence for a better understanding of the mechanism on the better selectivity in the galena-pyrite separation adopting high-alkaline lime systems.

  5. Recovery of 131I from alkaline solution of n-irradiated tellurium target using a tiny Dowex-1 column.

    PubMed

    Chattopadhyay, Sankha; Saha Das, Sujata

    2010-10-01

    A simple and inexpensive ion-exchange chromatography method for the separation of medically useful no-carrier-added (nca) iodine radionuclides from bulk amounts of irradiated tellurium dioxide (TeO(2)) target was developed and tested using (131)I. The radiochemical separation was performed using a very small Dowex-1x8 ion-exchange column. The overall radiochemical yield for the complete separation of (131)I was 92+/-1.8 (standard deviation) % (n=8). The separated nca (131)I was of high, approximately 99%, radionuclidic and radiochemical purity and did not contain detectable amounts of the target material. This method may be adopted for the radiochemical separation of other different iodine radionuclides produced from tellurium matrices through cyclotron as well as reactor irradiation. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Kenneth L.

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinidesmore » under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.« less

  7. Origin and evolution of the Ilmeny-Vishnevogorsky carbonatites (Urals, Russia): insights from trace-element compositions, and Rb-Sr, Sm-Nd, U-Pb, Lu-Hf isotope data

    NASA Astrophysics Data System (ADS)

    Nedosekova, I. L.; Belousova, E. A.; Sharygin, V. V.; Belyatsky, B. V.; Bayanova, T. B.

    2013-02-01

    The carbonatites of the Ilmeny-Vishnevogorsky Alkaline Complex (IVAC) are specific in geological and geochemical aspects and differ by some characteristics from classic carbonatites of the zoned alkaline-ultramafic complexes. Geological, geochemical and isotopic data and comparison with relevant experimental systems show that the IVAC carbonatites are genetically related to miaskites, and seem to be formed as a result of separation of carbonatite liquid from a miaskitic magma. Appreciable role of a carbonate fluid is established at the later stages of carbonatite formation. The trace element contents in the IVAC carbonatites are similar to carbonatites of the ultramafic-alkaline complexes. The characteristic signatures of the IVAC carbonatites are a high Sr content, a slight depletion in Ba, Nb, Та, Ti, Zr, and Hf, and enrichment in HREE in comparison with carbonatites of ultramafic-alkaline complexes. This testifies a specific nature of the IVAC carbonatites related to the fractionation of a miaskitic magma and to further Late Paleozoic metamorphism. Isotope data suggest a mantle source for IVAC carbonatites and indicate that moderately depleted mantle and enriched EMI-type components participated in magma generation. The lower crust could have been involved in the generation of the IVAC magma.

  8. Seeking effective dyes for a mediated glucose-air alkaline battery/fuel cell

    NASA Astrophysics Data System (ADS)

    Eustis, Ross; Tsang, Tsz Ming; Yang, Brigham; Scott, Daniel; Liaw, Bor Yann

    2014-02-01

    A significant level of power generation from an abiotic, air breathing, mediated reducing sugar-air alkaline battery/fuel cell has been achieved in our laboratories at room temperature without complicated catalysis or membrane separation in the reaction chamber. Our prior studies suggested that mass transport limitation by the mediator is a limiting factor in power generation. New and effective mediators were sought here to improve charge transfer and power density. Forty-five redox dyes were studied to identify if any can facilitate mass transport in alkaline electrolyte solution; namely, by increasing the solubility and mobility of the dye, and the valence charge carried per molecule. Indigo dyes were studied more closely to understand the complexity involved in mass transport. The viability of water-miscible co-solvents was also explored to understand their effect on solubility and mass transport of the dyes. Using a 2.0 mL solution, 20% methanol by volume, with 100 mM indigo carmine, 1.0 M glucose and 2.5 M sodium hydroxide, the glucose-air alkaline battery/fuel cell attained 8 mA cm-2 at short-circuit and 800 μW cm-2 at the maximum power point. This work shall aid future optimization of mediated charge transfer mechanism in batteries or fuel cells.

  9. Development and Validation of an RP-HPLC Method for the Determination of Vinpocetine and Folic Acid in the Presence of a Vinpocetine Alkaline Degradation Product in Bulk and in Capsule Form.

    PubMed

    Elkady, Ehab F; Tammam, Marwa H; Mohamed, Ayman A

    2017-05-01

    An alkaline-forced degradation hydrolytic product of vinpocetine was prepared and characterized by 1H-NMR, FTIR spectroscopy, and MS. Subsequently, a simple, selective, and validated reversed-phase HPLC method was developed for the simultaneous estimation of vinpocetine and folic acid in the presence of a vinpocetine alkaline degradation product. Chromatographic separation was achieved using an isocratic mobile phase consisting of acetonitrile-0.02 M KH2PO4 [containing 0.2% (v/v) triethylamine and adjusted to pH 6 with orthophosphoric acid; (80 + 20, v/v)] at a flow rate of 0.9 mL/min at ambient temperature on a Eurospher II C18 (250 × 4.6 mm, 5 μm) column, with UV detection at 280 nm for folic acid and 230 nm for vinpocetine and its alkaline hydrolytic product. Linearity, accuracy, and precision were found to be acceptable over a concentration range of 12.5-200 μg/mL for vinpocetine and 1-16 μg/mL for folic acid. The proposed method was successfully applied for the determination of both drugs and a vinpocetine hydrolysis product in a laboratory-prepared mixture and in a capsule containing both drugs.

  10. Alkaline degradation studies of anion exchange polymers to enable new membrane designs

    NASA Astrophysics Data System (ADS)

    Nunez, Sean Andrew

    Current performance targets for anion-exchange membrane (AEM) fuel cells call for greater than 95% alkaline stability for 5000 hours at temperatures up to 120 °C. Using this target temperature of 120 °C, an incisive 1H NMR-based alkaline degradation method to identify the degradation products of n-alkyl spacer tetraalkylammonium cations in various AEM polymers and small molecule analogs. Herein, the degradation mechanisms and rates of benzyltrimethylammonium-, n-alkyl interstitial spacer- and n-alkyl terminal pendant-cations are studied on several architectures. These findings demonstrate that benzyltrimethylammonium- and n-alkyl terminal pendant cations are more labile than an n-alkyl interstitial spacer cation and conclude that Hofmann elimination is not the predominant mechanism of alkaline degradation. Additionally, the alkaline stability of an n-alkyl interstitial spacer cation is enhanced when combined with an n-alkyl terminal pendant. Interestingly, at 120 °C, an inverse trend was found in the overall alkaline stability of AEM poly(styrene) and AEM poly(phenylene oxide) samples than was previously shown at 80 °C. Successive small molecule studies suggest that at 120 °C, an anion-induced 1,4-elimination degradation mechanism may be activated on styrenic AEM polymers bearing an acidic alpha-hydrogen. In addition, an ATR-FTIR based method was developed to assess the alkaline stability of solid membranes and any added resistance to degradation that may be due to differential solubilities and phase separation. To increase the stability of anion exchange membranes, Oshima magnesate--halogen exchange was demonstrated as a method for the synthesis of new anion exchange membranes that typically fail in the presence of organolithium or Grignard reagents alone. This new chemistry, applied to non-resinous polymers for the first time, proved effective for the n-akyl interstitial spacer functionalization of poly(phenylene oxide) and poly(styrene- co-ethylene-co-butylene-co-styrene) polymer backbones. The comprehensive methodologies for the assessment of alkaline stability in AEMs as well as the new synthetic methodologies are intended as a guide toward robust AEM synthetic designs that approach current performance standards.

  11. Transport phenomena in alkaline direct ethanol fuel cells for sustainable energy production

    NASA Astrophysics Data System (ADS)

    An, L.; Zhao, T. S.

    2017-02-01

    Alkaline direct ethanol fuel cells (DEFC), which convert the chemical energy stored in ethanol directly into electricity, are one of the most promising energy-conversion devices for portable, mobile and stationary power applications, primarily because this type of fuel cell runs on a carbon-neutral, sustainable fuel and the electrocatalytic and membrane materials that constitute the cell are relatively inexpensive. As a result, the alkaline DEFC technology has undergone a rapid progress over the last decade. This article provides a comprehensive review of transport phenomena of various species in this fuel cell system. The past investigations into how the design and structural parameters of membrane electrode assemblies and the operating parameters affect the fuel cell performance are discussed. In addition, future perspectives and challenges with regard to transport phenomena in this fuel cell system are also highlighted.

  12. Rechargeable alkaline manganese dioxide cells. A test report

    NASA Astrophysics Data System (ADS)

    Farrington, Michael D.

    The rechargeable alkaline MnO 2 (RAM) system has now been commercially available for several years. The Canadian Department of National Defence is interested in determining if the low cost RAM system is technically capable of replacing existing cells and batteries now in use. A preliminary study identified sufficient candidate batteries in use within the Department whose performance requirements compared favourably with RAM manufacturers' claims. Further study was warranted. Replacement cost savings could be significant. A study is now in progress that is aimed at determining how well the RAM technology actually performs. This paper presents test results that illustrate how RAM cells compare to primary alkaline cells and nickel/cadmium. The majority of the work is focused on the 'AA' size products from Rayovac and Pure Energy: tests were also conducted on Rayovac 'D' cells.

  13. Extended internal standard method for quantitative 1H NMR assisted by chromatography (EIC) for analyte overlapping impurity on 1H NMR spectra.

    PubMed

    Saito, Naoki; Kitamaki, Yuko; Otsuka, Satoko; Yamanaka, Noriko; Nishizaki, Yuzo; Sugimoto, Naoki; Imura, Hisanori; Ihara, Toshihide

    2018-07-01

    We devised a novel extended internal standard method of quantitative 1 H NMR (qNMR) assisted by chromatography (EIC) that accurately quantifies 1 H signal areas of analytes, even when the chemical shifts of the impurity and analyte signals overlap completely. When impurity and analyte signals overlap in the 1 H NMR spectrum but can be separated in a chromatogram, the response ratio of the impurity and an internal standard (IS) can be obtained from the chromatogram. If the response ratio can be converted into the 1 H signal area ratio of the impurity and the IS, the 1 H signal area of the analyte can be evaluated accurately by mathematically correcting the contributions of the 1 H signal area of the impurity overlapping the analyte in the 1 H NMR spectrum. In this study, gas chromatography and liquid chromatography were used. We used 2-chlorophenol and 4-chlorophenol containing phenol as an impurity as examples in which impurity and analyte signals overlap to validate and demonstrate the EIC, respectively. Because the 1 H signals of 2-chlorophenol and phenol can be separated in specific alkaline solutions, 2-chlorophenol is suitable to validate the EIC by comparing analytical value obtained by the EIC with that by only qNMR under the alkaline condition. By the EIC, the purity of 2-chlorophenol was obtained with a relative expanded uncertainty (k = 2) of 0.24%. The purity matched that obtained under the alkaline condition. Furthermore, the EIC was also validated by evaluating the phenol content with the absolute calibration curve method by gas chromatography. Finally, we demonstrated that the EIC was possible to evaluate the purity of 4-chlorophenol, with a relative expanded uncertainty (k = 2) of 0.22%, which was not able to be separated from the 1 H signal of phenol under any condition. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Stability-indicating chromatographic methods for the determination of some oxicams.

    PubMed

    Taha, Elham Anwer; Salama, Nahla Nour; Abdel Fattah, Laila el-Said

    2004-01-01

    Two sensitive and selective methods were developed for the determination of some oxicams, namely, lornoxicam (LOX), tenoxicam (TEX), and meloxicam (MEX), in the presence of their alkaline degradation products. The first method is based on the thin-layer chromatographic separation of the 3 drugs from their alkaline degradation products, followed by densitometric measurement of the intact drug spots for LOX, TEX, and MEX at 380, 370, and 364 nm, respectively. The developing systems used for separation are ethyl acetate-methanol-26% ammonia (17 + 3 + 0.35, v/v/v) for LOX and TEX and chloroform-n-hexane-96.0% acetic acid (18 + 1 + 1, v/v/v) for MEX. The linear ranges were 0.25-6.0 microg/spot for LOX and TEX and 0.5-10 microg/spot for MEX, with mean recoveries of 99.80 +/- 1.32, 100.57 +/- 1.34, and 100.71 +/- 1.57%, respectively. The second method is based on the liquid chromatographic separation of the 3 drugs from their alkaline degradation products on a reversed-phase C18 column, using mobile phases of methanol-acetonitrile-acetate buffer, pH 4.6 (4.5 + 0.5 + 5.0, v/v/v) for LOX and MEX and methanol-acetonitrile-acetate buffer, pH 4.6 (1.9 + 0.1 + 3.0, v/v/v) for TEX at ambient temperature. Quantification is achieved by UV detection at 280 nm, based on peak area. The linear ranges were 0.5-20 microg/mL for LOX and TEX and 1.25-50 microg/mL for MEX, with mean recoveries of 99.81 +/- 1.01, 98.90 +/- 1.61, and 100.86 +/- 1.55%, respectively. The methods were validated according to guidelines of the International Conference on Harmonization. The developed methods were successfully applied to the determination of LOX, TEX, and MEX in bulk powder, laboratory-prepared mixtures containing different percentages of degradation products, and pharmaceutical dosage forms.

  15. Separation of negatively charged carbohydrates by capillary electrophoresis.

    PubMed

    Linhardt, R J; Pervin, A

    1996-01-12

    Capillary electrophoresis (CE) has recently emerged as a highly promising technique consuming an extremely small amount of sample and capable of the rapid, high-resolution separation, characterization, and quantitation of analytes. CE has been used for the separation of biopolymers, including acidic carbohydrates. Since CE is basically an analytical method for ions, acidic carbohydrates that give anions in weakly acid, neutral, or alkaline media are often the direct objects of this method. The scope of this review is limited to the use of CE for the analysis of carbohydrates containing carboxylate, sulfate, and phosphate groups as well as neutral carbohydrates that have been derivatized to incorporate strongly acidic functionality, such as sulfonate groups.

  16. Separation of Uncharged Oligodeoxynucleotide Analogs by Anion-Exchange Chromatography at High pH

    NASA Technical Reports Server (NTRS)

    Schmidt, Jurgen G.; Nielsen, Peter E.; Orgel, Leslie

    1996-01-01

    Ion-exchange chromatography is a well-established method for the analysis and purification of phosphodiester-linked oligonucleotides. If elution is carried out under alkaline conditions, the secondary structure of G- and C-rich oligomers is disrupted. Furthermore, elution times become more sensitive to the G and T content of the oligomer, because G and T are deprotonated at pH 10. In recent work on peptide-nucleic acids (PNAs) we noted that mixtures of PNA oligomers G(sub 4), G(Sub 6), G(sub 8), and G(sub 10) are readily separated by elution at pH 12 on an RPC-5 column. Here we show that this separation method is more generally applicable.

  17. SEPARATION OF TRANSURANIC ELEMENTS FROM RARE EARTH COMPOUNDS

    DOEpatents

    Kohman, T.P.

    1961-11-21

    A process of separating neptunium and plutonium values from rare earths and alkaline earth fission products present on a solid mixed actinide carrier (Th or U(IV) oxalate or fluoride) --fission product carrier (LaF/sub 3/, CeF/sub 3/, SrF/sub 2/, CaF/sub 2/, YF/sub 3/, La oxalate, cerous oxalate, Sr oxalate, Ca oxalate or Y oxalate) by extraction of the actinides at elevated temperature with a solution of ammonium fluoride and/or ammonium oxalate is described. Separation of the fission-product-containing carriers from the actinide solution formed and precipitation of the neptunium and plutonium from the solution with mineral acid are also accomplished. (AEC)

  18. World wide IFC phosphoric acid fuel cell implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J.M. Jr

    1996-04-01

    International Fuel Cells, a subsidary of United technologies Corporation, is engaged in research and development of all types of fuel cell technologies and currently manufactures alkaline fuel cell power plants for the U.S. manned space flight program and natural gas fueled stationary power plants using phosphoric acid fuel cells. This paper describes the phosphoric acid fuel cell power plants.

  19. Overview of NASA battery technology program

    NASA Technical Reports Server (NTRS)

    Riebling, R. W.

    1980-01-01

    Highlights of NASA's technology program in batteries for space applications are presented. Program elements include: (1) advanced ambient temperature alkaline secondaries, which are primarily nickel-cadmium cells in batteries; (2) a toroidal nickel cadmium secondaries with multi-kilowatt-hour storage capacity primarily for lower orbital applications; (3) ambient temperature lithium batteries, both primary and secondaries, primarily silver hydrogen and high-capacity nickel hydrogen.

  20. Alkaline-stable nickel manganese oxides with ideal band gap for solar fuel photoanodes.

    PubMed

    Suram, Santosh K; Zhou, Lan; Shinde, Aniketa; Yan, Qimin; Yu, Jie; Umehara, Mitsutaro; Stein, Helge S; Neaton, Jeffrey B; Gregoire, John M

    2018-05-01

    Combinatorial (photo)electrochemical studies of the (Ni-Mn)Ox system reveal a range of promising materials for oxygen evolution photoanodes. X-ray diffraction, quantum efficiency, and optical spectroscopy mapping reveal stable photoactivity of NiMnO3 in alkaline conditions with photocurrent onset commensurate with its 1.9 eV direct band gap. The photoactivity increases upon mixture with 10-60% Ni6MnO8 providing an example of enhanced charge separation via heterojunction formation in mixed-phase thin film photoelectrodes. Density functional theory-based hybrid functional calculations of the band edge energies in this oxide reveal that a somewhat smaller than typical fraction of exact exchange is required to explain the favorable valence band alignment for water oxidation.

  1. Enzymatic Processes to Unlock the Lignin Value

    PubMed Central

    Hämäläinen, Veera; Grönroos, Toni; Suonpää, Anu; Heikkilä, Matti Wilhem; Romein, Bastiaan; Ihalainen, Petri; Malandra, Sara; Birikh, Klara R.

    2018-01-01

    Main hurdles of lignin valorization are its diverse chemical composition, recalcitrance, and poor solubility due to high-molecular weight and branched structure. Controlled fragmentation of lignin could lead to its use in higher value products such as binders, coatings, fillers, etc. Oxidative enzymes (i.e., laccases and peroxidases) have long been proposed as a potentially promising tool in lignin depolymerization. However, their application was limited to ambient pH, where lignin is poorly soluble in water. A Finnish biotechnology company, MetGen Oy, that designs and supplies industrial enzymes, has developed and brought to market several lignin oxidizing enzymes, including an extremely alkaline lignin oxidase MetZyme® LIGNO™, a genetically engineered laccase of bacterial origin. This enzyme can function at pH values as high as 10–11 and at elevated temperatures, addressing lignin at its soluble state. In this article, main characteristics of this enzyme as well as its action on bulk lignin coming from an industrial process are demonstrated. Lignin modification by MetZyme® LIGNO™ was characterized by size exclusion chromatography, UV spectroscopy, and dynamic light scattering for monitoring particle size of solubilized lignin. Under highly alkaline conditions, laccase treatment not only decreased molecular weight of lignin but also increased its solubility in water and altered its dispersion properties. Importantly, organic solvent-free soluble lignin fragmentation allowed for robust industrially relevant membrane separation technologies to be applicable for product fractionation. These enzyme-based solutions open new opportunities for biorefinery lignin valorization thus paving the way for economically viable biorefinery business. PMID:29623274

  2. Effect of Different Treatment Technologies on the Fate of Antibiotic Resistance Genes and Class 1 Integrons when Residual Municipal Wastewater Solids are Applied to Soil.

    PubMed

    Burch, Tucker R; Sadowsky, Michael J; LaPara, Timothy M

    2017-12-19

    Residual wastewater solids are a significant reservoir of antibiotic resistance genes (ARGs). While treatment technologies can reduce ARG levels in residual wastewater solids, the effects of these technologies on ARGs in soil during subsequent land-application are unknown. In this study we investigated the use of numerous treatment technologies (air drying, aerobic digestion, mesophilic anaerobic digestion, thermophilic anaerobic digestion, pasteurization, and alkaline stabilization) on the fate of ARGs and class 1 integrons in wastewater solids-amended soil microcosms. Six ARGs [erm(B), qnrA, sul1, tet(A), tet(W), and tet(X)], the integrase gene of class 1 integrons (intI1), and 16S rRNA genes were quantified using quantitative polymerase chain reaction. The quantities of ARGs and intI1 decreased in all microcosms, but thermophilic anaerobic digestion, alkaline stabilization, and pasteurization led to the most extensive decay of ARGs and intI1, often to levels similar to that of the control microcosms to which no wastewater solids had been applied. In contrast, the rates by which ARGs and intI1 declined using the other treatment technologies were generally similar, typically varying by less than 2 fold. These results demonstrate that wastewater solids treatment technologies can be used to decrease the persistence of ARGs and intI1 during their subsequent application to soil.

  3. Uranium chloride extraction of transuranium elements from LWR fuel

    DOEpatents

    Miller, W.E.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Pierce, R.D.

    1992-08-25

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800 C to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein. 1 figure.

  4. Uranium chloride extraction of transuranium elements from LWR fuel

    DOEpatents

    Miller, William E.; Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Pierce, R. Dean

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels containing rare earth and noble metal fission products as well as other fission products is disclosed. The oxide fuel is reduced with Ca metal in the presence of Ca chloride and a U-Fe alloy which is liquid at about 800.degree. C. to dissolve uranium metal and the noble metal fission product metals and transuranium actinide metals and rare earth fission product metals leaving Ca chloride having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein. The Ca chloride and CaO and the fission products contained therein are separated from the U-Fe alloy and the metal values dissolved therein. The U-Fe alloy having dissolved therein reduced metals from the spent nuclear fuel is contacted with a mixture of one or more alkali metal or alkaline earth metal halides selected from the class consisting of alkali metal or alkaline earth metal and Fe or U halide or a combination thereof to transfer transuranium actinide metals and rare earth metals to the halide salt leaving the uranium and some noble metal fission products in the U-Fe alloy and thereafter separating the halide salt and the transuranium metals dissolved therein from the U-Fe alloy and the metals dissolved therein.

  5. Potential contribution of low cost materials in clean technology

    NASA Astrophysics Data System (ADS)

    Smail, Heman A.; Shareef, Kafia M.; Ramli, Zainab

    2016-03-01

    As the world's population approaches more than 9 billion, the strain on the planet's resources is steadily increasing. This demand can only be met by improving production methods to reduce the use of chemicals and the amount of chemical waste. Zeolites are among the least-known products for environmental pollution control, separation science and technology. This study investigates whether the use of geological sources as low-cost materials are suitable for zeolite synthesis and future applications. In this investigation natural montmorillonite clay, locally available in Erbil-Kurdistan, was used as raw material. The experiments were carried out in the presence of ultrasound 30KHz at 60°C and for different crystallization times (5, 10 &15 hours) and the results were compared with those obtained by performing conventional alkaline hydrothermal static syntheses under similar conditions and crystallization time of (90 hours). The raw material as well as the products was analyzed using; Fourier Transform Infra-Red (FT-IR), X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) spectroscopy and scanning electron microscope (SEM). The experimental data were ascertained the formation of Zeolite successfully. Crystallization by ultrasound has been demonstrated to offer the possibilities of increasing the nucleation and crystallization rates of zeolites, improving the yield and directing the synthesis towards different crystal phases.

  6. Efficiency of treatments for controlling Trichoderma spp during spawning in cultivation of lignicolous mushrooms.

    PubMed

    Colavolpe, María Belén; Mejía, Santiago Jaramillo; Albertó, Edgardo

    2014-01-01

    Trichoderma spp is the cause of the green mold disease in mushroom cultivation production. Many disinfection treatments are commonly applied to lignocellulose substrates to prevent contamination. Mushroom growers are usually worried about the contaminations that may occur after these treatments during handling or spawning. The aim of this paper is to estimate the growth of the green mold Trichoderma sp on lignocellulose substrates after different disinfection treatments to know which of them is more effective to avoid contamination during spawning phase. Three different treatments were assayed: sterilization (121 °C), immersion in hot water (60 and 80 °C), and immersion in alkalinized water. Wheat straw, wheat seeds and Eucalyptus or Populus sawdust were used separately as substrates. After the disinfection treatments, bagged substrates were sprayed with 3 mL of suspension of conidia of Trichoderma sp (10(5) conidia/mL) and then separately spawned with Pleurotus ostreatus or Gymnopilus pampeanus. The growth of Trichoderma sp was evaluated based on a qualitative scale. Trichoderma sp could not grow on non-sterilized substrates. Immersions in hot water treatments and immersion in alkalinized water were also unfavorable treatments for its growth. Co- cultivation with mushrooms favored Trichoderma sp growth. Mushroom cultivation disinfection treatments of lignocellulose substrates influence on the growth of Trichoderma sp when contaminations occur during spawning phase. The immersion in hot water at 60 °C for 30 min or in alkalinized water for 36 h, are treatments which better reduced the contaminations with Trichoderma sp during spawning phase for the cultivation of lignicolous species.

  7. Efficiency of treatments for controlling Trichoderma spp during spawning in cultivation of lignicolous mushrooms

    PubMed Central

    Colavolpe, María Belén; Mejía, Santiago Jaramillo; Albertó, Edgardo

    2014-01-01

    Trichoderma spp is the cause of the green mold disease in mushroom cultivation production. Many disinfection treatments are commonly applied to lignocellulose substrates to prevent contamination. Mushroom growers are usually worried about the contaminations that may occur after these treatments during handling or spawning. The aim of this paper is to estimate the growth of the green mold Trichoderma sp on lignocellulose substrates after different disinfection treatments to know which of them is more effective to avoid contamination during spawning phase. Three different treatments were assayed: sterilization (121 °C), immersion in hot water (60 and 80 °C), and immersion in alkalinized water. Wheat straw, wheat seeds and Eucalyptus or Populus sawdust were used separately as substrates. After the disinfection treatments, bagged substrates were sprayed with 3 mL of suspension of conidia of Trichoderma sp (105 conidia/mL) and then separately spawned with Pleurotus ostreatus or Gymnopilus pampeanus. The growth of Trichoderma sp was evaluated based on a qualitative scale. Trichoderma sp could not grow on non-sterilized substrates. Immersions in hot water treatments and immersion in alkalinized water were also unfavorable treatments for its growth. Co- cultivation with mushrooms favored Trichoderma sp growth. Mushroom cultivation disinfection treatments of lignocellulose substrates influence on the growth of Trichoderma sp when contaminations occur during spawning phase. The immersion in hot water at 60 °C for 30 min or in alkalinized water for 36 h, are treatments which better reduced the contaminations with Trichoderma sp during spawning phase for the cultivation of lignicolous species. PMID:25763030

  8. Fabrication of MCM-41 fibers with well-ordered hexagonal mesostructure controlled in acidic and alkaline media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafarzadeh, A.; Sohrabnezhad, Sh., E-mail: sohrabnezhad@guilan.ac.ir; Zanjanchi, M.A.

    In this paper, synthesis and characterization of two type morphologies of the MCM-41mesoporous material, nano and microfibers, were investigated by electrospinning technique. The synthesis was performed in acidic and alkaline media, separately. The MCM-41 morphologies were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray powder diffraction (XRD), and nitrogen adsorption–desorption measurement. Tetraethylorthosilicate (TEOS) and cetyltrimethylammonium bromide (CTAB) were used as silica and template sources for the synthesis of MCM-41 morphologies, respectively. The SEM results showed that MCM-41 nanofibers were spun in acidic media and microfibers of MCM-41 were produced in alkaline media. The XRD study revealed amore » long range structural ordering of mesoporous materials. The TEM results indicated rough surfaces with uniform average diameter 200 nm for nanofibers and 2 µm for microfibers. The pore diameter and surface area of calcined MCM-41 nanofibers were 2.2 nm and 970 m{sup 2}/g, respectively. For the MCM-41 microfibers, pore sizes of 2.7 nm and surface areas 420 m{sup 2}/g was measured. - Graphical abstract: Electrospinning method was used for fabricating of MCM-41 microfibers from TEOS in alkaline media (top) and MCM-41 nanofibers in acidic media (bottom). - Highlights: • Synthesis of MCM-41 nanofibers and microfibers by electrospinning technique. • MCM-41 nanofibers were synthesized in acidic media. • MCM-41 manofibers spun in alkaline media. • Electrospinning was a simple method for preparing of fibers with respect to chemical method.« less

  9. Ocean Acidification: Coccolithophore's Light Controlled Effect on Alkalinity

    NASA Astrophysics Data System (ADS)

    Dobbins, W.

    2015-12-01

    Coccolithophorids, which play a significant role in the flux of calcite and organic carbon from the photic region to deeper pelagic and benthic zones, are potentially far more useful than siliceous phytoplankton for ocean fertilization projects designed to sequester CO2. However, the production of H+ ions during calcification (HCO3 + Ca+ —> CaCO3 + H+) has resulted in localized acidification around coccolithophore blooms. It has been hypothesized that under the correct light conditions photosynthesis could proceed at a rate such that CO2 is removed in amounts equimolar or greater than the H+ produced by calcification, allowing stable or increasing alkalinity despite ongoing calcification. Previously, this effect had not been demonstrated under laboratory conditions. Fifteen Emiliania huxleyi cultures were separated into equal groups with each receiving: 0, 6, 12, 18, or 24 hours of light each day for 24 days. Daily pH, cell density, and temperature measurements revealed a strong positive correlation between light exposure and pH, and no significant decline in pH in any of the cultures. Alkalinity increases were temperature independent and not strongly correlated with cell density, implying photosynthetic removal of carbon dioxide as the root cause. The average pH across living cultures increased from 7.9 to 8.3 over the first week and changed little for the reminder of the 24-day period. The results demonstrate coccolithophorids can increase alkalinity across a broad range of cell densities, despite the acidification inherent to the calcification process. If the light-alkalinity effect reported here proves scalable to larger cultures, Emiliania huxleyi are a strong candidate for carbon sequestration via targeted ocean fertilization.

  10. Recent advances in rare earth doped alkali-alkaline earth borates for solid state lighting applications

    NASA Astrophysics Data System (ADS)

    Verma, Shefali; Verma, Kartikey; Kumar, Deepak; Chaudhary, Babulal; Som, Sudipta; Sharma, Vishal; Kumar, Vijay; Swart, Hendrik C.

    2018-04-01

    As a novel class of inorganic phosphor, the alkali-alkaline earth borate phosphors have gained huge attention due to their charming applications in solid-state lighting (SSL) and display devices. The current research drive shows that phosphors based on the alkali-alkaline earth borates have transformed the science and technology due to their high transparency over a broad spectral range, their flexibility in structure and durability for mechanical and high-laser applications. Recent advances in various aspects of rare-earth (RE) doped borate based phosphors and their utilizations in SSL and light emitting diodes are summarized in this review article. Moreover, the present status and upcoming scenario of RE-doped borate phosphors were reviewed in general along with the proper credential from the existing literature. It is believed that this review is a sole compilation of crucial information about the RE-doped borate phosphors in a single platform.

  11. Regenerative fuel cell study for satellites in GEO orbit

    NASA Technical Reports Server (NTRS)

    Vandine, Leslie; Gonzalez-Sanabria, Olga; Levy, Alexander

    1987-01-01

    The results of a 12 month study to identify high performance regenerative hydrogen-oxygen fuel cell concepts for geosynchronous satellite application are summarized. Emphasis was placed on concepts with the potential for high energy density and passive means for water and heat management to maximize system reliability. Both polymer membrane and alkaline electrolyte fuel cells were considered, with emphasis on the alkaline cell because of its high performance, advanced state of development, and proven ability to operate in a launch and space environment. Three alkaline system concepts were studied. Results indicate that using near term technology energy densities between 46 and 52 watt-hour/lb can be achieved at efficiencies of 55 percent. Using advanced light weight cell construction which was achieved in experimental cells, composite tankage material for the reactant gases and the reversible stack concept, system energy densities of 115 watt-hours/lb can be projected.

  12. Acidic methanolysis v. alkaline saponification in gas chromatographic characterization of mycobacteria: differentiation between Mycobacterium avium-intracellulare and Mycobacterium gastri.

    PubMed

    Larsson, L

    1983-08-01

    Mycobacterium avium-intracellulare and M.gastri were analyzed with capillary gas chromatography after each strain had been subjected to acidic methanolysis or to alkaline saponification followed by methylation. Prominent peaks of myristic, palmitoleic, palmitic, oleic, stearic and tuberculostearic acids were found in the chromatograms of both species, whereas 2-octadecanol and 2-eicosanol were detected only in M. avium-intracellulare. In initial runs, both of the derivatization principles yielded virtually identical chromatograms for a given strain. After repeated injections of extracts from alkaline saponification, however, the alcohol peaks showed pronounced tailing and finally almost disappeared from the chromatograms. This disadvantage, which was not observed when only acid methanolysis was used, could be overcome with trifluoroacetylation. Restored peak shape of the underivatized alcohols could be achieved by washing the cross-linked stationary phase in the capillary tubing with organic solvents. The study demonstrated the importance of conditions which enable separation of 2-octadecanol and 2-eicosanol when gas chromatography is used for species identification of mycobacteria.

  13. Teledyne Energy Systems, Inc., Proton Exchange Member (PEM) Fuel Cell Engineering Model Powerplant. Test Report: Initial Benchmark Tests in the Original Orientation

    NASA Technical Reports Server (NTRS)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    Proton Exchange Membrane (PEM) fuel cell technology is the leading candidate to replace the alkaline fuel cell technology, currently used on the Shuttle, for future space missions. During a 5-yr development program, a PEM fuel cell powerplant was developed. This report details the initial performance evaluation test results of the powerplant.

  14. Mineral Carbonation Potential of CO2 from Natural and Industrial-based Alkalinity Sources

    NASA Astrophysics Data System (ADS)

    Wilcox, J.; Kirchofer, A.

    2014-12-01

    Mineral carbonation is a Carbon Capture and Storage (CSS) technology where gaseous CO2 is reacted with alkaline materials (such as silicate minerals and alkaline industrial wastes) and converted into stable and environmentally benign carbonate minerals (Metz et al., 2005). Here, we present a holistic, transparent life cycle assessment model of aqueous mineral carbonation built using a hybrid process model and economic input-output life cycle assessment approach. We compared the energy efficiency and the net CO2 storage potential of various mineral carbonation processes based on different feedstock material and process schemes on a consistent basis by determining the energy and material balance of each implementation (Kirchofer et al., 2011). In particular, we evaluated the net CO2 storage potential of aqueous mineral carbonation for serpentine, olivine, cement kiln dust, fly ash, and steel slag across a range of reaction conditions and process parameters. A preliminary systematic investigation of the tradeoffs inherent in mineral carbonation processes was conducted and guidelines for the optimization of the life-cycle energy efficiency are provided. The life-cycle assessment of aqueous mineral carbonation suggests that a variety of alkalinity sources and process configurations are capable of net CO2 reductions. The maximum carbonation efficiency, defined as mass percent of CO2 mitigated per CO2 input, was 83% for CKD at ambient temperature and pressure conditions. In order of decreasing efficiency, the maximum carbonation efficiencies for the other alkalinity sources investigated were: olivine, 66%; SS, 64%; FA, 36%; and serpentine, 13%. For natural alkalinity sources, availability is estimated based on U.S. production rates of a) lime (18 Mt/yr) or b) sand and gravel (760 Mt/yr) (USGS, 2011). The low estimate assumes the maximum sequestration efficiency of the alkalinity source obtained in the current work and the high estimate assumes a sequestration efficiency of 85%. The total CO2 storage potential for the alkalinity sources considered in the U.S. ranges from 1.3% to 23.7% of U.S. CO2 emissions, depending on the assumed availability of natural alkalinity sources and efficiency of the mineral carbonation processes.

  15. Polymeric membrane systems of potential use for battery separators

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.

    1977-01-01

    Two membrane systems were investigated that may have potential use as alkaline battery separators. One system comprises two miscible polymers: a support polymer (e.g., polyvinyl formal) and an ion conductor such as polyacrylic acid. The other system involves a film composed of two immiscible polymers: a conducting polymer (e.g., calcium polyacrylate) suspended in an inert polymer support matrix, polyphenylene oxide. Resistivities in 45-percent potassium hydroxide and qualitative mechanical properties are presented for films comprising various proportions of conducting and support polymers. In terms of these parameters, the results are encouraging for optimum ratios of conducting to support polymers.

  16. Cell design concepts for aqueous lithium-oxygen batteries: A model-based assessment

    NASA Astrophysics Data System (ADS)

    Grübl, Daniel; Bessler, Wolfgang G.

    2015-11-01

    Seven cell design concepts for aqueous (alkaline) lithium-oxygen batteries are investigated using a multi-physics continuum model for predicting cell behavior and performance in terms of the specific energy and specific power. Two different silver-based cathode designs (a gas diffusion electrode and a flooded cathode) and three different separator designs (a porous separator, a stirred separator chamber, and a redox-flow separator) are compared. Cathode and separator thicknesses are varied over a wide range (50 μm-20 mm) in order to identify optimum configurations. All designs show a considerable capacity-rate effect due to spatiotemporally inhomogeneous precipitation of solid discharge product LiOH·H2O. In addition, a cell design with flooded cathode and redox-flow separator including oxygen uptake within the external tank is suggested. For this design, the model predicts specific power up to 33 W/kg and specific energy up to 570 Wh/kg (gravimetric values of discharged cell including all cell components and catholyte except housing and piping).

  17. Separation of 'Uncharged' Oligodeoxynucleotide Analogs by Anion-Exchange Chromatography at High pH

    NASA Technical Reports Server (NTRS)

    Schmidt, Jurgen G.; Orgel, Leslie E.; Nielsen, Peter E.

    1996-01-01

    Ion-exchange chromatography is a well-established method for the analysis and purification of phosphodiester-linked oligonucleotides. If elution is carried out under alkaline conditions, the secondary structure of G- and C-rich oligomers is disrupted. Furthermore, elution times become more sensitive to the G and T content of the oligomer, because G and T are deprotonated at pH 10. In recent work on peptide-nucleic acids (PNAs) we noted that mixtures of PNA oligomers G(sub 4), G(sub 6), G(sub 8), and G9(sub 10) are readily separated by elution at pH 12 on an RPC-5 column. Here we show that this separation method is more generally applicable.

  18. SEPARATION OF PROTACTINIUM FROM MOLTEN SALT REACTOR FUEL COMPOSITIONS

    DOEpatents

    Shaffer, J.H.; Strain, J.E.; Cuneo, D.R.; Kelly, M.J.

    1963-11-12

    A method for selectively precipitating protactinium from a neutron- irradiated fused fluoride salt composition comprising at least one metal fluoride selected from the group consisting of an alkali metal fluoride and an alkaline earth metal fluoride containing dissolved thorium-232 values is presented. An inorganic metal oxide corresponding to any of the metal fluorides of the composition is also added. (AEC)

  19. Method for producing tetraphenoxide-n-aniloxy cyclo phosphazotriene

    NASA Technical Reports Server (NTRS)

    Khofbauer, Y. I.; Kolesnikov, V. G.

    1986-01-01

    A method for producing tetraphenoxide-n-aniloxy cyclophosphazotriene, distinguished by the fact that tetraphenoxide dichlorocyclophosphazotriene is processed with an alkaline metal n-acetamidophenolate in an organic solvent, for example pyridine, during heating, after which the resulting compound is saponified in the present of a mineral or organic acid, for example, hydrochloric, and the desired product separated by well known techniques.

  20. Aqueous alkali metal hydroxide insoluble cellulose ether membrane

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1969-01-01

    A membrane that is insoluble in an aqueous alkali metal hydroxide medium is described. The membrane is a resin which is a water-soluble C2-C4 hydroxyalkyl cellulose ether polymer and an insolubilizing agent for controlled water sorption, a dialytic and electrodialytic membrane. It is particularly useful as a separator between electrodes or plates in an alkaline storage battery.

  1. Method of treating waste water

    DOEpatents

    Deininger, James P.; Chatfield, Linda K.

    1995-01-01

    A process of treating water to remove metal ion contaminants contained therein, said metal ion contaminants selected from the group consisting of metals in Groups 8, 1b, 2b, 4a, 5a, or 6a of the periodic table, lanthanide metals, and actinide metals including transuranic element metals, by adjusting the pH of a metal ion contaminant-containing water source to within the range of about 6.5 to about 14.0, admixing the water source with a mixture of an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, in an amount sufficient to form a precipitate within the water source, the amount the mixture of ferrate and water soluble salt effective to reduce the metal ion contaminant concentration in the water source, permitting the precipitate in the admixture to separate and thereby yield a supernatant liquid having a reduced metal ion contaminant concentration, and separating the supernatant liquid having the reduced metal ion contaminant concentration from the admixture is provided. A composition of matter including an alkali or alkaline earth ferrate and a water soluble salt, e.g., a zirconium salt, is also provided.

  2. Preconcentration and separation of nickel, copper and cobalt using solid phase extraction and their determination in some real samples.

    PubMed

    Ghaedi, M; Ahmadi, F; Soylak, M

    2007-08-17

    A solid phase extraction method has been developed to separate and concentrate trace amounts of nickel, cobalt and copper ions from aqueous samples for the measurement by flame atomic absorption spectrometry. By the passage of aqueous samples through activated carbon modified by dithioxamide (rubeanic acid) (DTO), Ni2+, Cu2+ and Co2+ ions adsorb quantitatively. The recoveries of analytes at pH 5.5 with 500 mg solid phase were greater than 95% without interference from alkaline, earth alkaline and some metal ions. The enrichment factor was 330. The detection limits by three sigma were 0.50 microg L(-1) for copper, 0.75 microg L(-1) for nickel and 0.80 microg L(-1) for cobalt. The loading capacity was 0.56 mg g(-1) for Ni2+, 0.50 mg g(-1) for Cu2+ and 0.47 mg g(-1) for Co2+. The presented procedure was applied to the determination of analytes in tap, river and sea waters, vegetable, soil and blood samples with successfully results (recoveries greater than 95%, R.S.D. lower than 2% for n=3).

  3. One-step process of hydrothermal and alkaline treatment of wheat straw for improving the enzymatic saccharification.

    PubMed

    Sun, Shaolong; Zhang, Lidan; Liu, Fang; Fan, Xiaolin; Sun, Run-Cang

    2018-01-01

    To increase the production of bioethanol, a two-step process based on hydrothermal and dilute alkaline treatment was applied to reduce the natural resistance of biomass. However, the process required a large amount of water and a long operation time due to the solid/liquid separation before the alkaline treatment, which led to decrease the pure economic profit for production of bioethanol. Therefore, four one-step processes based on order of hydrothermal and alkaline treatment have been developed to enhance concentration of glucose of wheat straw by enzymatic saccharification. The aim of the present study was to systematically evaluated effect for different one-step processes by analyzing the physicochemical properties (composition, structural change, crystallinity, surface morphology, and BET surface area) and enzymatic saccharification of the treated substrates. In this study, hemicelluloses and lignins were removed from wheat straw and the morphologic structures were destroyed to various extents during the four one-step processes, which were favorable for cellulase absorption on cellulose. A positive correlation was also observed between the crystallinity and enzymatic saccharification rate of the substrate under the conditions given. The surface area of the substrate was positively related to the concentration of glucose in this study. As compared to the control (3.0 g/L) and treated substrates (11.2-14.6 g/L) obtained by the other three one-step processes, the substrate treated by one-step process based on successively hydrothermal and alkaline treatment had a maximum glucose concentration of 18.6 g/L, which was due to the high cellulose concentration and surface area for the substrate, accompanying with removal of large amounts of lignins and hemicelluloses. The present study demonstrated that the order of hydrothermal and alkaline treatment had significant effects on the physicochemical properties and enzymatic saccharification of wheat straw. The one-step process based on successively hydrothermal and alkaline treatment is a simple operating and economical feasible method for the production of glucose, which will be further converted into bioethanol.

  4. Organic Control of Dioctahedral and Trioctahedral Clay Formation in an Alkaline Soil System in the Pantanal Wetland of Nhecolândia, Brazil.

    PubMed

    Barbiero, Laurent; Berger, Gilles; Rezende Filho, Ary T; Meunier, Jean-François; Martins-Silva, Elisângela R; Furian, Sonia

    2016-01-01

    Recent studies have focused on the formation of authigenic clays in an alkaline soil system surrounding lakes of the Nhecolândia region, Pantanal wetland. The presence of trioctahedral Mg-smectites (stevensite and saponite types), which requires low Al and Fe contents in the soil solution for its formation, contrasts with the neoformation of dioctahedral Fe-mica (glauconite, and Fe-illite), which instead requires solutions relatively enriched in Al and Fe. This study aims to understand the conditions of co-existence of both, Mg-smectite and Fe-mica a common clay association in former or modern alkaline soil systems and sediments. The study was carried out along an alkaline soil catena representative of the region. The soil organization revealed that Mg-smectite occur in top soil close to the lake, whereas Fe-mica dominate in the clay fraction of deeper greenish horizons a few meters apart. We propose here that this spatial distribution is controlled by the lateral transfer of Fe and Al with organic ligands. Alkaline organic rich solutions (DOC up to 738 mg L-1) collected in the watertable were centrifuged and filtered through membranes of decreasing pore size (0.45 μm, 0.2 μm, 30 KDa, 10 KDa, 3 KDa) to separate colloidal and dissolved fractions. Fe, Al, Si, Mg and K were analysed for each fraction. Although the filtration had no influence on Si and K contents, almost 90% of Fe (up to 2.3 mg L-1) and Al (up to 7 mg L-1) are retained at the first cutoff threshold of 0.45μm. The treatment of the same solutions by oxygen peroxide before filtration shows that a large proportion of Fe and Al were bonded to organic colloids in alkaline soil solution at the immediate lake border, allowing Mg-smectite precipitation. The fast mineralization of the organic matter a few meters apart from the lake favors the release of Fe and Al necessary for Fe-mica neoformation. In comparison with chemical and mineralogical characteristics of alkaline environments described in the literature, the study suggests that the co-existence of trioctahedral Mg-smectite and dioctahedral Fe-mica should be regarded as a standard occurrence in alkaline soil systems with organic rich waters.

  5. Organic Control of Dioctahedral and Trioctahedral Clay Formation in an Alkaline Soil System in the Pantanal Wetland of Nhecolândia, Brazil

    PubMed Central

    Meunier, Jean-François; Martins-Silva, Elisângela R.; Furian, Sonia

    2016-01-01

    Recent studies have focused on the formation of authigenic clays in an alkaline soil system surrounding lakes of the Nhecolândia region, Pantanal wetland. The presence of trioctahedral Mg-smectites (stevensite and saponite types), which requires low Al and Fe contents in the soil solution for its formation, contrasts with the neoformation of dioctahedral Fe-mica (glauconite, and Fe-illite), which instead requires solutions relatively enriched in Al and Fe. This study aims to understand the conditions of co-existence of both, Mg-smectite and Fe-mica a common clay association in former or modern alkaline soil systems and sediments. The study was carried out along an alkaline soil catena representative of the region. The soil organization revealed that Mg-smectite occur in top soil close to the lake, whereas Fe-mica dominate in the clay fraction of deeper greenish horizons a few meters apart. We propose here that this spatial distribution is controlled by the lateral transfer of Fe and Al with organic ligands. Alkaline organic rich solutions (DOC up to 738 mg L-1) collected in the watertable were centrifuged and filtered through membranes of decreasing pore size (0.45 μm, 0.2 μm, 30 KDa, 10 KDa, 3 KDa) to separate colloidal and dissolved fractions. Fe, Al, Si, Mg and K were analysed for each fraction. Although the filtration had no influence on Si and K contents, almost 90% of Fe (up to 2.3 mg L-1) and Al (up to 7 mg L-1) are retained at the first cutoff threshold of 0.45μm. The treatment of the same solutions by oxygen peroxide before filtration shows that a large proportion of Fe and Al were bonded to organic colloids in alkaline soil solution at the immediate lake border, allowing Mg-smectite precipitation. The fast mineralization of the organic matter a few meters apart from the lake favors the release of Fe and Al necessary for Fe-mica neoformation. In comparison with chemical and mineralogical characteristics of alkaline environments described in the literature, the study suggests that the co-existence of trioctahedral Mg-smectite and dioctahedral Fe-mica should be regarded as a standard occurrence in alkaline soil systems with organic rich waters. PMID:27463379

  6. Endurance test and evaluation of alkaline water electrolysis cells

    NASA Technical Reports Server (NTRS)

    Burke, K. A.; Schubert, F. H.

    1981-01-01

    Utilization in the development of multi-kW low orbit power systems is discussed. The following technological developments of alkaline water electrolysis cells for space power application were demonstrated: (1) four 92.9 cm2 single water electrolysis cells, two using LST's advanced anodes and two using LST's super anodes; (2) four single cell endurance test stands for life testing of alkaline water electrolyte cells; (3) the solid performance of the advanced electrode and 355 K; (4) the breakthrough performance of the super electrode; (5) the four single cells for over 5,000 hours each significant cell deterioration or cell failure. It is concluded that the static feed water electrolysis concept is reliable and due to the inherent simplicity of the passive water feed mechanism coupled with the use of alkaline electrolyte has greater potential for regenerative fuel cell system applications than alternative electrolyzers. A rise in cell voltage occur after 2,000-3,000 hours which was attributed to deflection of the polysulfone end plates due to creepage of the thermoplastic. More end plate support was added, and the performance of the cells was restored to the initial performance level.

  7. Alkaline fuel cells for the regenerative fuel cell energy storage system

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1983-01-01

    The development of the alkaline Regenerative Fuel Cell System, whose fuel cell module would be a derivative of the 12-kW fuel cell power plant currently being produced for the Space Shuttle Orbiter, is reviewed. Long-term endurance testing of full-size fuel cell modules has demonstrated: (1) the extended endurance capability of potassium titanate matrix cells, (2) the long-term performance stability of the anode catalyst, and (3) the suitability of a lightweight graphite structure for use at the anode. These approaches, developed in the NASA-sponsored fuel cell technology advancement program, would also reduce cell weight by nearly one half.

  8. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program, FY-98 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbst, A.K.; Rogers, A.Z.; McCray, J.A.

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

  9. [Optimization theory and practical application of membrane science technology based on resource of traditional Chinese medicine residue].

    PubMed

    Zhu, Hua-Xu; Duan, Jin-Ao; Guo, Li-Wei; Li, Bo; Lu, Jin; Tang, Yu-Ping; Pan, Lin-Mei

    2014-05-01

    Resource of traditional Chinese medicine residue is an inevitable choice to form new industries characterized of modem, environmental protection and intensive in the Chinese medicine industry. Based on the analysis of source and the main chemical composition of the herb residue, and for the advantages of membrane science and technology used in the pharmaceutical industry, especially membrane separation technology used in improvement technical reserves of traditional extraction and separation process in the pharmaceutical industry, it is proposed that membrane science and technology is one of the most important choices in technological design of traditional Chinese medicine resource industrialization. Traditional Chinese medicine residue is a very complex material system in composition and character, and scientific and effective "separation" process is the key areas of technology to re-use it. Integrated process can improve the productivity of the target product, enhance the purity of the product in the separation process, and solve many tasks which conventional separation is difficult to achieve. As integrated separation technology has the advantages of simplified process and reduced consumption, which are in line with the trend of the modern pharmaceutical industry, the membrane separation technology can provide a broad platform for integrated process, and membrane separation technology with its integrated technology have broad application prospects in achieving resource and industrialization process of traditional Chinese medicine residue. We discuss the principles, methods and applications practice of effective component resources in herb residue using membrane separation and integrated technology, describe the extraction, separation, concentration and purification application of membrane technology in traditional Chinese medicine residue, and systematically discourse suitability and feasibility of membrane technology in the process of traditional Chinese medicine resource industrialization in this paper.

  10. Transcriptome Exploration in Leymus chinensis under Saline-Alkaline Treatment Using 454 Pyrosequencing

    PubMed Central

    Sun, Yepeng; Wang, Fawei; Wang, Nan; Dong, Yuanyuan; Liu, Qi; Zhao, Lei; Chen, Huan; Liu, Weican; Yin, Hailong; Zhang, Xiaomei; Yuan, Yanxi; Li, Haiyan

    2013-01-01

    Background Leymus chinensis (Trin.) Tzvel. is a high saline-alkaline tolerant forage grass genus of the tribe Gramineae family, which also plays an important role in protection of natural environment. To date, little is known about the saline-alkaline tolerance of L. chinensis on the molecular level. To better understand the molecular mechanism of saline-alkaline tolerance in L. chinensis, 454 pyrosequencing was used for the transcriptome study. Results We used Roche-454 massive parallel pyrosequencing technology to sequence two different cDNA libraries that were built from the two samples of control and under saline-alkaline treatment (optimal stress concentration-Hoagland solution with 100 mM NaCl and 200 mM NaHCO3). A total of 363,734 reads in control group and 526,267 reads in treatment group with an average length of 489 bp and 493 bp were obtained, respectively. The reads were assembled into 104,105 unigenes with MIRA sequence assemable software, among which, 73,665 unigenes were in control group, 88,016 unigenes in treatment group and 57,576 unigenes in both groups. According to the comparative expression analysis between the two groups with the threshold of “log2 Ratio ≥1”, there were 36,497 up-regulated unegenes and 18,218 down-regulated unigenes predicted to be the differentially expressed genes. After gene annotation and pathway enrichment analysis, most of them were involved in stress and tolerant function, signal transduction, energy production and conversion, and inorganic ion transport. Furthermore, 16 of these differentially expressed genes were selected for real-time PCR validation, and they were successfully confirmed with the results of 454 pyrosequencing. Conclusions This work is the first time to study the transcriptome of L. chinensis under saline-alkaline treatment based on the 454-FLX massively parallel DNA sequencing platform. It also deepened studies on molecular mechanisms of saline-alkaline in L. chinensis, and constituted a database for future studies. PMID:23365637

  11. IMPROVED BIOREFINERY FOR THE PRODUCTION OF ETHANOL, CHEMICALS, ANIMAL FEED AND BIOMATERIALS FROM SUGAR CANE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Donal F. Day

    2009-01-29

    The Audubon Sugar Institute (ASI) of Louisiana State University’s Agricultural Center (LSU AgCenter) and MBI International (MBI) sought to develop technologies that will lead to the development of a sugar-cane biorefinery, capable of supplying fuel ethanol from bagasse. Technology development focused on the conversion of bagasse, cane-leaf matter (CLM) and molasses into high value-added products that included ethanol, specialty chemicals, biomaterials and animal feed; i.e. a sugar cane-based biorefinery. The key to lignocellulosic biomass utilization is an economically feasible method (pretreatment) for separating the cellulose and the hemicellulose from the physical protection provided by lignin. An effective pretreatment disrupts physicalmore » barriers, cellulose crystallinity, and the association of lignin and hemicellulose with cellulose so that hydrolytic enzymes can access the biomass macrostructure (Teymouri et al. 2004, Laureano-Perez, 2005). We chose to focus on alkaline pretreatment methods for, and in particular, the Ammonia Fiber Expansion (AFEX) process owned by MBI. During the first two years of this program a laboratory process was established for the pretreatment of bagasse and CLM using the AFEX process. There was significant improvement of both rate and yield of glucose and xylose upon enzymatic hydrolysis of AFEX-treated bagasse and CLM compared with untreated material. Because of reactor size limitation, several other alkaline pretreatment methods were also co-investigated. They included, dilute ammonia, lime and hydroxy-hypochlorite treatments. Scale-up focused on using a dilute ammonia process as a substitute for AFEX, allowing development at a larger scale. The pretreatment of bagasse by an ammonia process, followed by saccharification and fermentation produced ethanol from bagasse. Simultaneous saccharification and fermentation (SSF) allowed two operations in the same vessel. The addition of sugarcane molasses to the hydrolysate/fermentation process yielded improvements beyond what was expected solely from the addition of sugar. In order to expand the economic potential for building a biorefinery, the conversion of enzyme hydrolysates of AFEX-treated bagasse to succinic acid was also investigated. This program established a solid basis for pre-treatment of bagasse in a manner that is feasible for producing ethanol at raw sugar mills.« less

  12. The Advantages of Non-Flow-Through Fuel Cell Power Systems for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark; Burke, Kenneth; Jakupca, Ian

    2011-01-01

    NASA has been developing proton-exchange-membrane (PEM) fuel cell power systems for the past decade, as an upgraded technology to the alkaline fuel cells which presently provide power for the Shuttle Orbiter. All fuel cell power systems consist of one or more fuel cell stacks in combination with appropriate balance-of-plant hardware. Traditional PEM fuel cells are characterized as flow-through, in which recirculating reactant streams remove product water from the fuel cell stack. NASA recently embarked on the development of non-flow-through fuel cell systems, in which reactants are dead-ended into the fuel cell stack and product water is removed by internal wicks. This simplifies the fuel cell power system by eliminating the need for pumps to provide reactant circulation, and mechanical water separators to remove the product water from the recirculating reactant streams. By eliminating these mechanical components, the resulting fuel cell power system has lower mass, volume, and parasitic power requirements, along with higher reliability and longer life. These improved non-flow-through fuel cell power systems therefore offer significant advantages for many aerospace applications.

  13. Hierarchical NiO-SiO2 composite hollow microspheres with enhanced adsorption affinity towards Congo red in water.

    PubMed

    Lei, Chunsheng; Zhu, Xiaofeng; Zhu, Bicheng; Yu, Jiaguo; Ho, Wingkei

    2016-03-15

    Hollow microspheres and hierarchical porous nanostructured materials with desired morphologies have gained remarkable attention for their potential applications in environmental technology. In this study, NiO-SiO2 hollow microspheres were prepared by co-precipitation with SiO2 and nickel salt as precursors, followed by dipping in alkaline solution and calcination. The samples were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption, and X-ray photoelectron spectroscopy. The synthesized hollow spheres were composed of a SiO2 shell and hierarchical porous NiO nanosheets on the surface. Adsorption experiments suggested that NiO-SiO2 composite particles were powerful adsorbents for removal of Congo red from water, with a maximum adsorption capacity of 204.1 mg/g. The high specific surface areas, hollow structures, and hierarchical porous surfaces of the hollow composite particles are suitable for various applications, including adsorption of pollutants, chemical separation, and water purification. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Assessment of the leaching of metallic elements in the technology of solidification in aqueous solution.

    PubMed

    Rossetti, V Alunno; Di Palma, L; Medici, F

    2002-01-01

    Results are presented of experiments performed to optimize the solidification/stabilization system for metallic elements in aqueous solution. This system involves mixing cement and a solution of metallic elements in a conventional mixer: the paste thus obtained is transferred drop by drop into a recipient filled with an aqueous solution of NaOH at 20% by weight, in which it solidifies immediately. The separate use of chloride solutions of Li+, Cr3+, Pb2+ and Zn2+ makes it possible to obtain granules displaying various levels of compressive strength. Three different inertization matrices were used in the experiments, the first consisting solely of Portland cement, the second of Portland cement and a superplasticizer additive, and the third of Portland cement partially replaced with silica-fume and superplasticizer. The results of the tests performed showed a very low level of leaching into the alkaline solidification solution for Cr3+, the quantity leached being under 2% as against higher levels for the other metallic elements. For all the considered elements, the best results were obtained by using silica-fume in the inertization matrix.

  15. Stabilized nickel-zinc battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himy, A.; Wagner, O.C.

    An alkaline nickel-zinc cell which has (1) a nickel-nickel hydroxide cathode; (2) a zinc-zinc oxide anode containing (A) a corrosion inhibitor such as PBO, SNO2, Tl2O3, in(OH)3 or mixtures thereof; (B) a slight corrosion accelerator such as cdo, bi2o3, ga2o3, or mixtures thereof; and (C) a zinc active material; (3) a mass-transport separator; (4) an alkaline electrolyte; and (5) means for charging the cell with an interrupted current having a frequency of from more than zero to 16 hertz with a rest period of not less than 60 milliseconds. Another desirable feature is the use of a pressure-cutoff switch tomore » terminate charging when the internal pressure of the cell reaches a selected value in the range of from 5 to 8 psig.« less

  16. Charge Characteristics of Rechargeable Batteries

    NASA Astrophysics Data System (ADS)

    Maheswaranathan, Ponn; Kelly, Cormac

    2014-03-01

    Rechargeable batteries play important role in technologies today and they are critical for the future. They are used in many electronic devices and their capabilities need to keep up with the accelerated pace of technology. Efficient energy capture and storage is necessary for the future rechargeable batteries. Charging and discharging characteristics of three popular commercially available re-chargeable batteries (NiCd, NiMH, and Li Ion) are investigated and compared with regular alkaline batteries. Pasco's 850 interface and their voltage & current sensors are used to monitor the current through and the potential difference across the battery. The discharge current and voltage stayed fairly constant until the end, with a slightly larger drop in voltage than current, which is more pronounced in the alkaline batteries. After 25 charge/discharge cycling there is no appreciable loss of charge capacities in the Li Ion battery. Energy densities, cycle characteristics, and memory effects will also be presented. Sponsored by the South Carolina Governor's school for Science and Mathematics under the Summer Program for Research Interns program.

  17. Facile Fabrication of a Polyethylene Mesh for Oil/Water Separation in a Complex Environment.

    PubMed

    Zhao, Tianyi; Zhang, Dongmei; Yu, Cunming; Jiang, Lei

    2016-09-14

    Low cost, eco-friendly, and easily scaled-up processes are needed to fabricate efficient oil/water separation materials, especially those useful in harsh environments such as highly acidic, alkaline, and salty environments, to deal with serious oil spills and industrial organic pollutants. Herein, a highly efficient oil/water separation mesh with durable chemical stability was fabricated by simply scratching and pricking a conventional polyethylene (PE) film. Multiscaled morphologies were obtained by this scratching and pricking process and provided the mesh with a special wettability performance termed superhydrophobicity, superoleophilicity, and low water adhesion, while the inert chemical properties of PE delivered chemical etching resistance to the fabricated mesh. In addition to a highly efficient oil/corrosive liquid separation, the fabricated PE mesh was also reusable and exhibited ultrafast oil/water separation solely by gravity. The easy operation, chemical durability, reusability, and efficiency of the novel PE mesh give it high potential for use in industrial and consumer applications.

  18. Removing tannins from medicinal plant extracts using an alkaline ethanol precipitation process: a case study of Danshen injection.

    PubMed

    Gong, Xingchu; Li, Yao; Qu, Haibin

    2014-11-14

    The alkaline ethanol precipitation process is investigated as an example of a technique for the removal of tannins extracted from Salviae miltiorrhizae Radix et Rhizoma for the manufacture of Danshen injection. More than 90% of the tannins can be removed. However, the recoveries of danshensu, rosmarinic acid, and salvianolic acid B were less than 60%. Total tannin removal increased as the refrigeration temperature decreased or the amount of NaOH solution added increased. Phenolic compound recoveries increased as refrigeration temperature increased or the amount of NaOH solution added decreased. When operated at a low refrigeration temperature, a relative high separation selectivity can be realized. Phenolic compound losses and tannin removal were mainly caused by precipitation. The formation of phenol salts, whose solubility is small in the mixture of ethanol and water used, is probably the reason for the precipitation. A model considering dissociation equilibrium and dissolution equilibrium was established. Satisfactory correlation results were obtained for phenolic compound recoveries and total tannin removal. Two important parameters in the model, which are the water content and pH value of alkaline supernatant, are suggested to be monitored and controlled to obtain high batch-to-batch consistency.

  19. Mapping the Superconducting Anti-ferromagnetic C4 Phase in Iron-Pnictides

    NASA Astrophysics Data System (ADS)

    Stadel, Ryan; Taddei, Keith; Bugaris, Dan; Lapidus, Saul; Claus, Helmut; Phelan, Daniel; Chung, Duck Young; Kanatzidis, Mercouri; Osborn, Raymond; Rosenkranz, Stephan; Chmaissem, Omar

    Following the discovery of the microscopic coexistence of antifermagnetic spin density waves and superconductivity in Ba1-xKxFe2As2 and the low temperature re-entrance to the novel magnetic C4 tetragonal phase in Ba1-xNaxFe2As2, there has been significant interest in developing an understanding of the properties and formation of these phases and analyzing their dependence on temperature and composition in hole-doped 122 alkaline earth metal/iron-pnictides. We describe the mapping of various Ba, Sr, and Ca 122 phase diagrams with systematically controlled levels of hole-doping of alkaline metal onto the alkaline earth metal site, which was investigated via x-ray and neutron diffraction. Our elaborate synthesis, diffraction work, and analysis maps and firmly establishes the C4 phase space in these ternary diagrams as well as the boundary lines that separate the individual phases, and provides natural clues as well as a framework to investigate the stability and formation of the C4 domes that shift location with doping contents in the phase diagrams. Work at Argonne was supported by US DOE, Office of Science, Materials Sciences and Engineering Division.

  20. BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C.; Stefanko, D.

    2011-03-10

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibilitymore » issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].« less

  1. Fructose-2,6-bisphosphatase and 6-phosphofructo-2-kinase are separable in yeast.

    PubMed Central

    Kretschmer, M; Schellenberger, W; Otto, A; Kessler, R; Hofmann, E

    1987-01-01

    Fructose-2,6-bisphosphatase was purified from yeast and separated from 6-phosphofructo-2-kinase and alkaline phosphatase. The enzyme released Pi from the 2-position of fructose 2,6-bisphosphate and formed fructose 6-phosphate in stoichiometric amounts. The enzyme displays hyperbolic kinetics towards fructose 2,6-bisphosphate, with a Km value of 0.3 microM. It is strongly inhibited by fructose 6-phosphate. The inhibition is counteracted by L-glycerol 3-phosphate. Phosphorylation of the enzyme by cyclic-AMP-dependent protein kinase causes inactivation, which is reversible by the action of protein phosphatase 2A. PMID:2825652

  2. Study on application of polyenzyme method to offal of Harengula zunasi

    NASA Astrophysics Data System (ADS)

    Deng, Shanggui; Yang, Ping; Xia, Xingzhou

    2003-12-01

    The new polyenzyme method for making gravy from Harengula zunasi offal involves protein enzymolysis with flavorase after proper alkaline and neutral protease levels were established by orthogonal trials to select the best hydrolytic conditions for processing offal with alkaline and neutral protease. The conditions for the polyenzyme method were pH of 7.0, temperature of 50°C, alkaline and neutral protease concentration of 1.5% respectively, hydrolysis time of 120 min, and flavorase concentration of 2.0%, for 60 min. The new gravy-making technology yields a nutritious and delicious gravy containing 40.3% of total essential amino acids, with delicious amino acids Glu, Asp, Gly, Ala, Pro and Ser comprising 49.5%, total and amino nitrogen being respectively 1.9 and 1.1 g/100 g (amino acid nitrogen being 61.0% of total nitrogen), The polyenzyme method was used to make 14.8% protein gravy from Harengula zunasi offal. In addition, inorganic elements, the phosphorus content is the highest.

  3. Comparing alkaline and thermal disintegration characteristics for mechanically dewatered sludge.

    PubMed

    Tunçal, Tolga

    2011-10-01

    Thermal drying is one of the advanced technologies ultimately providing an alternative method of sludge disposal. In this study, the drying kinetics of mechanically dewatered sludge (MDS) after alkaline and thermal disintegration have been studied. In addition, the effect of total organic carbon (TOC) on specific resistance to filtration and sludge bound water content were also investigated on freshly collected sludge samples. The combined effect of pH and TOC on the thermal sludge drying rate for MDS was modelled using the two-factorial experimental design method. Statistical assessment of the obtained results proposed that sludge drying potential has increased exponentially for both increasing temperature and lime dosage. Execution of curve fitting algorithms also implied that drying profiles for raw and alkaline-disintegrated sludge were well fitted to the Henderson and Pabis model. The activation energy of MDS decreased from 28.716 to 11.390 kJ mol(-1) after disintegration. Consequently, the unit power requirement for thermal drying decreased remarkably from 706 to 281 W g(-1) H2O.

  4. The influence of lake water alkalinity and humic substances on particle dispersion and lanthanum desorption from a lanthanum modified bentonite.

    PubMed

    Reitzel, Kasper; Balslev, Kristiane Astrid; Jensen, Henning S

    2017-11-15

    A 12 days laboratory study on potential desorption of Lanthanum (La) from a commercial La modified clay (Phoslock) was conducted using lake water from 17 Danish lakes with alkalinities between 0.02 and 3.7 meq L -1 and varying concentrations of DOC and humic acids (HA's). A similar study was conducted in artificial lake water with alkalinities from 0 to 2.5 meq L -1 in order to exclude interference from dissolved HA's. To test if La in solution (FLa) was associated with fine particles, the water samples were filtered sequentially through three filter sizes (1.2 μm, 0.45 μm and 0.2 μm), and finally, ultracentrifugation was used in an attempt to separate colloidal La from dissolved La. The study showed that higher FLa (up to 2.5 mg L -1 or 14% of the total La in the Phoslock) concentrations were found in soft water lakes compared to hard water lakes, probably due to dispersion of the clay at low alkalinities. In addition, this study showed that HA's seem to increase the FLa concentrations in soft water lakes, most likely through complexation of La retained in the Phoslock matrix. In summary, we conclude that elevated La concentrations in lake water after a Phoslock treatment should only be expected in soft water lakes rich in DOC and HA's. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Simultaneous recovery of Zn and Mn from used batteries in acidic and alkaline mediums: A comparative study.

    PubMed

    Abid Charef, S; Affoune, A M; Caballero, A; Cruz-Yusta, M; Morales, J

    2017-10-01

    A parallel study of acidic and alkaline leaching for the recovery of Mn and Zn from spent alkaline batteries is outlined. Using H 2 SO 4 as solvent and selecting appropriate conditions of temperature and concentration, all residues were dissolved except carbon. The separation and recovery of the two components were performed by electrodeposition with satisfactory results at pH values above 4 (current efficiency above 70% for Zn and Mn) but rather lower efficiencies as the pH decreased. Most of the Zn was selectively dissolved by alkaline leaching using a 6.5M NaOH solution, and its recovery was examined by means of both electrochemical and chemical processes. The expected formation of pure Zn by electrowinning failed due to the formation of ZnO, the content of which was highly dependent on the electrodeposition time. For short periods, Zn was the main component. For longer periods the electrodeposit consisted of agglomerated microparticles of ZnO with a minor fraction of Zn metal (barely 3% as measured by X-ray diffraction). A chemical reaction of the element with oxygen released at the anode surface might be responsible for its conversion to ZnO. A simple chemical route is described for the first time for the direct conversion of Zn(OH) 4 2- solution to nanostructured ZnO by lowering the pH to values around 12 using 2M HCl solution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Polychronous (Early Cretaceous to Palaeogene) emplacement of the Mundwara alkaline complex, Rajasthan, India: 40Ar/39Ar geochronology, petrochemistry and geodynamics

    NASA Astrophysics Data System (ADS)

    Pande, Kanchan; Cucciniello, Ciro; Sheth, Hetu; Vijayan, Anjali; Sharma, Kamal Kant; Purohit, Ritesh; Jagadeesan, K. C.; Shinde, Sapna

    2017-07-01

    The Mundwara alkaline plutonic complex (Rajasthan, north-western India) is considered a part of the Late Cretaceous-Palaeogene Deccan Traps flood basalt province, based on geochronological data (mainly 40Ar/39Ar, on whole rocks, biotite and hornblende). We have studied the petrology and mineral chemistry of some Mundwara mafic rocks containing mica and amphibole. Geothermobarometry indicates emplacement of the complex at middle to upper crustal levels. We have obtained new 40Ar/39Ar ages of 80-84 Ma on biotite separates from mafic rocks and 102-110 Ma on whole-rock nepheline syenites. There is no evidence for excess 40Ar. The combined results show that some of the constituent intrusions of the Mundwara complex are of Deccan age, but others are older and unrelated to the Deccan Traps. The Mundwara alkaline complex is thus polychronous and similar to many alkaline complexes around the world that show recurrent magmatism, sometimes over hundreds of millions of years. The primary biotite and amphibole in Mundwara mafic rocks indicate hydrous parental magmas, derived from hydrated mantle peridotite at relatively low temperatures, thus ruling out a mantle plume. This hydration and metasomatism of the Rajasthan lithospheric mantle may have occurred during Jurassic subduction under Gondwanaland, or Precambrian subduction events. Low-degree decompression melting of this old, enriched lithospheric mantle, due to periodic diffuse lithospheric extension, gradually built the Mundwara complex from the Early Cretaceous to Palaeogene time.

  7. Design and performance evaluation of a microfluidic ion-suppression module for anion-exchange chromatography.

    PubMed

    Wouters, Sam; Wouters, Bert; Jespers, Sander; Desmet, Gert; Eghbali, Hamed; Bruggink, Cees; Eeltink, Sebastiaan

    2014-08-15

    A microfluidic membrane suppressor has been constructed to suppress ions of alkaline mobile-phases via an acid-base reaction across a sulfonated poly(tetrafluoroethylene)-based membrane and was evaluated for anion-exchange separations using conductivity detection. The membrane was clamped between two chip substrates, accommodating rectangular microchannels for the eluent and regenerant flow, respectively. Additionally, a clamp-on chip holder has been constructed which allows the alignment and stacking of different chip modules. The response and efficacy of the microfluidic chip suppressor was assessed for a wide range of eluent (KOH) concentrations, using 127 and 183μm thick membranes, while optimizing the flow rate and concentration of the regenerant solution (H2SO4). The optimal operating eluent flow rate was determined at 5μL/min, corresponding to the optimal van-Deemter flow velocity of commercially-available column technology, i.e. a 0.4mm i.d.×250mm long column packed with 7.5μm anion-exchange particles. When equilibrated at 10mM KOH, a 99% decrease in conductivity signal could be obtained within 5min when applying 10mM H2SO4 regenerant at 75μL/min. A background signal as low as 1.2μS/cm was obtained, which equals the performance of a commercially-available electrolytic hollow-fiber suppressor. When increasing the temperature of the membrane suppressor from 15 to 20°C, ion suppression was significantly improved allowing the application of 75mM KOH. The applicability of the chip suppressor has been demonstrated with an isocratic baseline separation of a mixture of seven inorganic ions, yielding plate numbers between 5300 and 10,600 and with a gradient separation of a complex ion mixture. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. A High-Performance Sintered Iron Electrode for Rechargeable Alkaline Batteries to Enable Large-Scale Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Chenguang; Manohar, Aswin K.; Narayanan, S. R.

    Iron-based alkaline rechargeable batteries such as iron-air and nickel-iron batteries are particularly attractive for large-scale energy storage because these batteries can be relatively inexpensive, environment- friendly, and also safe. Therefore, our study has focused on achieving the essential electrical performance and cycling properties needed for the widespread use of iron-based alkaline batteries in stationary and distributed energy storage applications.We have demonstrated for the first time, an advanced sintered iron electrode capable of 3500 cycles of repeated charge and discharge at the 1-hour rate and 100% depth of discharge in each cycle, and an average Coulombic efficiency of over 97%. Suchmore » a robust and efficient rechargeable iron electrode is also capable of continuous discharge at rates as high as 3C with no noticeable loss in utilization. We have shown that the porosity, pore size and thickness of the sintered electrode can be selected rationally to optimize specific capacity, rate capability and robustness. As a result, these advances in the electrical performance and durability of the iron electrode enables iron-based alkaline batteries to be a viable technology solution for meeting the dire need for large-scale electrical energy storage.« less

  9. A High-Performance Sintered Iron Electrode for Rechargeable Alkaline Batteries to Enable Large-Scale Energy Storage

    DOE PAGES

    Yang, Chenguang; Manohar, Aswin K.; Narayanan, S. R.

    2017-01-07

    Iron-based alkaline rechargeable batteries such as iron-air and nickel-iron batteries are particularly attractive for large-scale energy storage because these batteries can be relatively inexpensive, environment- friendly, and also safe. Therefore, our study has focused on achieving the essential electrical performance and cycling properties needed for the widespread use of iron-based alkaline batteries in stationary and distributed energy storage applications.We have demonstrated for the first time, an advanced sintered iron electrode capable of 3500 cycles of repeated charge and discharge at the 1-hour rate and 100% depth of discharge in each cycle, and an average Coulombic efficiency of over 97%. Suchmore » a robust and efficient rechargeable iron electrode is also capable of continuous discharge at rates as high as 3C with no noticeable loss in utilization. We have shown that the porosity, pore size and thickness of the sintered electrode can be selected rationally to optimize specific capacity, rate capability and robustness. As a result, these advances in the electrical performance and durability of the iron electrode enables iron-based alkaline batteries to be a viable technology solution for meeting the dire need for large-scale electrical energy storage.« less

  10. Separation of thorium (IV) from lanthanide concentrate (LC) and water leach purification (WLP) residue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman

    Thorium (IV) content in industrial residue produced from rare earth elements production industry is one of the challenges to Malaysian environment. Separation of thorium from the lanthanide concentrate (LC) and Water Leach Purification (WLP) residue from rare earth elements production plant is described. Both materials have been tested by sulphuric acid and alkaline digestions. Th concentrations in LC and WLP were determined to be 1289.7 ± 129 and 1952.9±17.6 ppm respectively. The results of separation show that the recovery of Th separation from rare earth in LC after concentrated sulphuric acid dissolution and reduction of acidity to precipitate Th wasmore » found 1.76-1.20% whereas Th recovery from WLP was less than 4% after concentrated acids and alkali digestion processes. Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) was used to determine Th concentrations in aqueous phase during separation stages. This study indicated that thorium maybe exists in refractory and insoluble form which is difficult to separate by these processes and stays in WLP residue as naturally occurring radioactive material (NORM)« less

  11. Cation-enhanced capillary electrophoresis separation of atropoisomer anions.

    PubMed

    Na, Yun-Cheol; Berthod, Alain; Armstrong, Daniel W

    2015-12-01

    CE was used to study the separation of the atropoisomers of four phosphoric acids and two sulfonic acids and the enantiomers of two phosphoric acids. All solutes are in their anionic forms in aqueous electrolytes. The chiral additives were two hydroxypropyl cyclodextrins (CDs) and cyclofructan 6 (CF6). The CDs were able to separate four solutes and the CF6 additive could separate only one: 1,1'-binaphthyl-2,2'-diyl hydrogenphosphate (BHP). Since CF6 is able to bind with cations, nitrate of alkaline metals, Ba(2+) , and Pb(2+) were added, greatly improving the BHP separation at the expense of longer migration times. There seems to be a link between CF6-cation-binding constants and BHP resolution factors. Cation additions were also performed with CD selectors that are less prone to form complexes with cations. Significant improvements of enantiomer or atropoisomer separations were observed also associated with longer migration times. It is speculated that the anionic solutes associate with the added cations forming larger entities better differentiated by CDs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Partial dissolution of ACQ-treated wood in lithium chloride/N-methyl-2-pyrrolidinone: Separation of copper from potential lignocellulosic feedstocks

    Treesearch

    Thomas L. Eberhardt; Stan Lebow; Karen G. Reed

    2012-01-01

    A cellulose solvent system based on lithium chloride (LiCl) in N-methyl-2-pyrrolidinone (NMP) was used to assess the merits of partial dissolutions of coarsely ground wood samples. Alkaline Copper Quaternary (ACQ)-treated pine wood was of particular interest for treatment given the potential to generate a copper- rich stream apart from solid and/or liquid...

  13. SOLVENT EXTRACTION OF RUTHENIUM

    DOEpatents

    Hyman, H.H.; Leader, G.R.

    1959-07-14

    The separation of rathenium from aqueous solutions by solvent extraction is described. According to the invention, a nitrite selected from the group consisting of alkali nitrite and alkaline earth nitrite in an equimolecular quantity with regard to the quantity of rathenium present is added to an aqueous solution containing ruthenium tetrantrate to form a ruthenium complex. Adding an organic solvent such as ethyl ether to the resulting mixture selectively extracts the rathenium complex.

  14. REDUCTION OF PLUTONIUM TO Pu$sup +3$ BY SODIUM DITHIONITE IN POTASSIUM CARBONATE

    DOEpatents

    Miller, D.R.; Hoekstra, H.R.

    1958-12-16

    Plutonium values are reduced in an alkaline aqueous medlum to the trlvalent state by means of sodium dlthionite. Plutonlum values are also separated from normally assoclated contaminants by metathesizing a lanthanum fluoride carrier precipitate containing plutonium with a hydroxide solution, performing the metathesis in the presence of about 0.2 M sodium dithionite at a temperature of between 40 and 90 icient laborato C.

  15. Towards integrating tracer studies in conceptual rainfall-runoff models: recent insights from a sub-arctic catchment in the Cairngorm Mountains, Scotland

    NASA Astrophysics Data System (ADS)

    Soulsby, Chris; Dunn, Sarah M.

    2003-02-01

    Hydrochemical tracers (alkalinity and silica) were used in an end-member mixing analysis (EMMA) of runoff sources in the 10 km2 Allt a' Mharcaidh catchment. A three-component mixing model was used to separate the hydrograph and estimate, to a first approximation, the range of likely contributions of overland flow, shallow subsurface storm flow, and groundwater to the annual hydrograph. A conceptual, catchment-scale rainfall-runoff model (DIY) was also used to separate the annual hydrograph in an equivalent set of flow paths. The two approaches produced independent representations of catchment hydrology that exhibited reasonable agreement. This showed the dominance of overland flow in generating storm runoff and the important role of groundwater inputs throughout the hydrological year. Moreover, DIY was successfully adapted to simulate stream chemistry (alkalinity) at daily time steps. Sensitivity analysis showed that whilst a distinct groundwater source at the catchment scale could be identified, there was considerable uncertainty in differentiating between overland flow and subsurface storm flow in both the EMMA and DIY applications. Nevertheless, the study indicated that the complementary use of tracer analysis in EMMA can increase the confidence in conceptual model structure. However, conclusions are restricted to the specific spatial and temporal scales examined.

  16. Determination of amines used in the oil and gas industry (upstream section) by ion chromatography.

    PubMed

    Kadnar, R

    1999-07-30

    During production and purification of crude oil and natural gas several different amines are used as chemicals or operating materials, e.g. film forming long chain amines as corrosion inhibitors, steam volatile amines for pH correction and corrosion protection, alkanolamines as absorbents in sour gas treatment plants, etc. For analytical checks, e.g. determination of corrosion inhibitor concentration in produced media, classical chemical methods are used predominantly, because most of them can be performed in small field laboratories. Some amines, especially the small molecular aliphatic and heterocyclic amines can also be determined by ion chromatography. In our laboratory two types of separation columns (IonPac CS10 and CS12A) were available for ion chromatographic separation. The analysis of the amines in low-salt-containing water, soft water or steam condensate can be performed without problems. The presence of alkali and/or alkaline earth ions in the sample can lead to coelution with these ions, to poor peak resolution or enhanced analysis times, depending on the chromatographic conditions. This work shows some examples of ion chromatography applications for the determination of low-molecular-mass ethanolamines, morpholine and piperazine and discusses the possible interferences and troubles caused by alkali and alkaline earth ions in the matrix.

  17. A new standardized method for quantification of humic and fulvic acids in humic ores and commercial products.

    PubMed

    Lamar, Richard T; Olk, Daniel C; Mayhew, Lawrence; Bloom, Paul R

    2014-01-01

    Increased use of humic substances in agriculture has generated intense interest among producers, consumers, and regulators for an accurate and reliable method to quantify humic acid (HA) and fulvic acid (FA) in raw ores and products. Here we present a thoroughly validated method, the new standardized method for determination of HA and FA contents in raw humate ores and in solid and liquid products produced from them. The methods used for preparation of HA and FA were adapted according to the guidelines of the International Humic Substances Society involving alkaline extraction followed by acidification to separate HA from the fulvic fraction. This is followed by separation of FA from the fulvic fraction by adsorption on a nonionic macroporous acrylic ester resin at acid pH. It differs from previous methods in that it determines HA and FA concentrations gravimetrically on an ash-free basis. Critical steps in the method, e.g., initial test portion mass, test portion to extract volume ratio, extraction time, and acidification of alkaline extract, were optimized for maximum and consistent recovery of HA and FA. The method detection limits for HA and FA were 4.62 and 4.8 mg/L, respectively. The method quantitation limits for HA and FA were 14.7 and 15.3 mg/L, respectively.

  18. Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) using REE geochemistry

    NASA Astrophysics Data System (ADS)

    Mokhtari, Mir Ali Asghar; Zadeh, Ghader Hossein; Emami, Mohamad Hashem

    2013-06-01

    Rare earth elements in apatites of different ore types show characteristic patterns which are related to different modes of formation of the ores. Most of the apatite-bearing iron ores are associated with alkaline magmas with LREE/HREE fractionation varying from moderate to steep. Iron-apatite deposits in Posht-e-Badam Block (Central Iran) have a high concentration of REE (more than 1000 ppm up to 2.5%), and show a strong LREE/HREE ratio with a pronounced negative Eu anomaly. This REE pattern is typical of magmatic apatite and quiet distinct from sedimentary apatites (phosphorites) which have a low REE contents and Ce negative anomalies. On the other hand, they are comparable to the REE patterns of apatites in Kiruna-type iron ores in different parts of the world. The REE patterns of apatites, iron-apatite ores and iron ores are similar and only have different REE contents. This similarity indicates a genetic relation for these rocks. Most of the iron-apatite deposits in Central Iran have similar REE patterns too, which in turn show a genetic relation for all of these deposits. This similarity indicates a similar origin and processes in their genesis. There are some small intrusions around some of the iron-apatite deposits that are petrographically identified as syenite and gabbro. These intrusions also have REE patterns similar to that of iron-apatite ores. This demonstrates a genetic relation between these intrusions and iron-apatite ores. The REE patterns of apatites in different deposits of Posht-e-Badam Block iron-apatite ores show an affinity to alkaline to sub-alkaline magmas and rifting environment. The alkaline host rocks of Central Iran iron-apatite ores are clearly related to an extensional setting where rifting was important (SSE-NNW fault lines). A probable source for this large scale ore forming processes is relatively low partial melting of mantle rocks. The ores have originated by magmatic differentiation as a late phase in the volcanic cycle forming sub-surface injections or surface flows. These ores have formed during magmatism as immiscible liquids (silicate and Fe-P-rich magmatic liquids) which separated from strongly differentiated magmas aided by a large volatile and alkali element content. Separation of an iron oxide melt and the ensuing hydrothermal processes dominated by alkali metasomatism were both involved to different degrees in the formation of Posht-e-Badam Block iron-apatite deposits. We proposed that the separation of an iron oxide melt and the ensuing hydrothermal processes dominated by alkali metasomatism were both involved to different degrees in the formation of Posht-e-Badam Block iron-apatite deposits.

  19. Applying WEPP technologies to western alkaline surface coal mines

    Treesearch

    J. Q. Wu; S. Dun; H. Rhee; X. Liu; W. J. Elliot; T. Golnar; J. R. Frankenberger; D. C. Flanagan; P. W. Conrad; R. L. McNearny

    2011-01-01

    One aspect of planning surface mining operations, regulated by the National Pollutant Discharge Elimination System (NPDES), is estimating potential environmental impacts during mining operations and the reclamation period that follows. Practical computer simulation tools are effective for evaluating site-specific sediment control and reclamation plans for the NPDES....

  20. POM-assisted electrochemical delignification and bleaching of chemical pulp

    Treesearch

    Helene Laroche; Mohini Sain; Carl Houtman; Claude Daneault

    2001-01-01

    A polyoxometalate-catalyzed electrochemical process has shown good selectivity in delignifying pulp. This breakthrough in redox catalysis shows promise for the development of a new environmentally benign technology for pulp bleaching. The electrochemical process, applied with a mildly alkaline electrolyte solution containing trace amounts of a vanadium-based...

  1. Bacterial biodiversity from anthropogenic extreme environments: a hyper-alkaline and hyper-saline industrial residue contaminated by chromium and iron.

    PubMed

    Brito, Elcia M S; Piñón-Castillo, Hilda A; Guyoneaud, Rémy; Caretta, César A; Gutiérrez-Corona, J Félix; Duran, Robert; Reyna-López, Georgina E; Nevárez-Moorillón, G Virginia; Fahy, Anne; Goñi-Urriza, Marisol

    2013-01-01

    Anthropogenic extreme environments are among the most interesting sites for the bioprospection of extremophiles since the selection pressures may favor the presence of microorganisms of great interest for taxonomical and astrobiological research as well as for bioremediation technologies and industrial applications. In this work, T-RFLP and 16S rRNA gene library analyses were carried out to describe the autochthonous bacterial populations from an industrial waste characterized as hyper-alkaline (pH between 9 and 14), hyper-saline (around 100 PSU) and highly contaminated with metals, mainly chromium (from 5 to 18 g kg(-1)) and iron (from 2 to 108 g kg(-1)). Due to matrix interference with DNA extraction, a protocol optimization step was required in order to carry out molecular analyses. The most abundant populations, as evaluated by both T-RFLP and 16S rRNA gene library analyses, were affiliated to Bacillus and Lysobacter genera. Lysobacter related sequences were present in the three samples: solid residue and lixiviate sediments from both dry and wet seasons. Sequences related to Thiobacillus were also found; although strains affiliated to this genus are known to have tolerance to metals, they have not previously been detected in alkaline environments. Together with Bacillus (already described as a metal reducer), such organisms could be of use in bioremediation technologies for reducing chromium, as well as for the prospection of enzymes of biotechnological interest.

  2. Theoretical study of the diatomic alkali and alkaline-earth oxides

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.

    1986-01-01

    Theoretical dissociation energies for the ground states of the alkali and alkaline earth oxides are presented that are believed to be accurate to 0.1 eV. The 2 Pi - 2 Sigma + separations for the alkali oxides are found to be more sensitive to basis set than to electron correlation. Predicted 2 Pi ground states for LiO and NaO and 2 Sigma + ground states for RbO and CsO are found to be in agreement with previous theoretical and experimental work. For KO, a 2 Sigma + state is found at both the numerical Hartree-Fock (NHF) level and at the singles plus doubles configuration interaction level using a Slater basis set that is within 0.02 eV of the NHF limit. It is found that an accurate balanced treatment of the two states requires correlating the electrons on both the metal and oxide ion.

  3. Characterization of the products attained from a thermal treatment of a mix of zinc-carbon and alkaline batteries.

    PubMed

    Kuo, Yi-Ming; Lin, Chitsan; Wang, Jian-Wen; Huang, Kuo-Lin; Tsai, Cheng-Hsien; Wang, Chih-Ta

    2016-01-01

    This study applies a thermal separation process (TSP) to recover Fe, Mn, and Zn from hazardous spent zinc-carbon and alkaline batteries. In the TSP, the batteries were heated together with a reducing additive and the metals in batteries, according to their boiling points and densities, were found to move into three major output materials: slag, ingot (mainly Fe and Mn), and particulate (particularly Zn). The slag well encapsulated the heavy metals of interest and can be recycled for road pavement or building materials. The ingot had high levels of Fe (522,000 mg/kg) and Mn (253,000 mg/kg) and can serve as an additive for stainless steel-making processes. The particulate phase had a Zn level of 694,000 mg/kg which is high enough to be directly sold for refinement. Overall, the TSP effectively recovered valuable metals from the hazardous batteries.

  4. Alkaline RFC Space Station prototype - 'Next step Space Station'. [Regenerative Fuel Cells

    NASA Technical Reports Server (NTRS)

    Hackler, I. M.

    1986-01-01

    The regenerative fuel cell, a candidate technology for the Space Station's energy storage system, is described. An advanced development program was initiated to design, manufacture, and integrate a regenerative fuel cell Space Station prototype (RFC SSP). The RFC SSP incorporates long-life fuel cell technology, increased cell area for the fuel cells, and high voltage cell stacks for both units. The RFC SSP's potential for integration with the Space Station's life support and propulsion systems is discussed.

  5. The isolation and subfractionation of plasma membrane from the cellular slime mould Dictyostelium discoideum

    PubMed Central

    Green, Anita A.; Newell, Peter C.

    1974-01-01

    A procedure for the isolation and separation of three different subfractions of plasma membrane from the cellular slime mould Dictyostelium discoideum is described. The cells were disrupted by freeze-thawing in liquid N2 and plasma membranes were purified by equilibrium centrifugation in a sucrose gradient. The cell surface was labelled with radioactive iodide by using the lactoperoxidase iodination method. Alkaline phosphatase was identified as a plasma-membrane marker by its co-distribution with [125I]iodide. 5′-Nucleotidase, which has been widely described as a plasma-membrane marker enzyme in mammalian tissues, was not localized to any marked extent in D. discoideum plasma membrane. The isolated plasma membranes showed a 24-fold enrichment of alkaline phosphatase specific activity relative to the homogenate and a yield of 50% of the total plasma membranes. Determination of succinate dehydrogenase and NADPH–cytochrome c reductase activities indicated that the preparation contained 2% of the total mitochondria and 3% of the endoplasmic reticulum. When the plasma-membrane preparation was further disrupted in a tight-fitting homogenizer, three plasma-membrane subfractions of different densities were obtained by isopycnic centrifugation. The enrichment of alkaline phosphatase was greatest in the subfraction with the lowest density. This fraction was enriched 36-fold relative to the homogenate and contained 19% of the total alkaline phosphatase activity but only 0.08% of the succinate dehydrogenase activity and 0.34% of the NADPH–cytochrome c reductase activity. Electron microscopy of this fraction showed it to consist of smooth membrane vesicles with no recognizable contaminants. ImagesPLATE 1 PMID:4156170

  6. New stable ternary alkaline-earth metal Pb(II) oxides: Ca / Sr / BaPb 2 O 3 and BaPbO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuwei; Zhang, Lijun; Singh, David J.

    The different but related chemical behaviors of Pb(II) oxides compared to Sn(II) oxides, and the existence of known alkali/alkali-earth metal Sn(II) ternary phases, suggest that there should be additional ternary Pb(II) oxide phases. Here, we report structure searches on the ternary alkaline-earth metal Pb(II) oxides leading to four new phases. These are two ternary Pb(II) oxides, SrPb 2O 3 and BaPb 2O 3, which have larger chemical potential stability ranges compared with the corresponding Sn(II) oxides, and additionally two other ternary Pb(II) oxides, CaPb 2O 3 and BaPbO 2, for which there are no corresponding Sn(II) oxides. Those Pb(II) oxidesmore » are stabilized by Pb-rich conditions. These structures follow the Zintl behavior and consist of basic structural motifs of (PbO 3) 4- anionic units separated and stabilized by the alkaline-earth metal ions. They show wide band gaps ranging from 2.86 to 3.12 eV, and two compounds (CaPb 2O 3 and SrPb 2O 3) show rather light hole effective masses (around 2m 0). The valence band maxima of these compounds have a Pb-6s/O-2p antibonding character, which may lead to p-type defect (or doping) tolerant behavior. This then suggests alkaline-earth metal Pb(II) oxides may be potential p-type transparent conducting oxides.« less

  7. New stable ternary alkaline-earth metal Pb(II) oxides: Ca / Sr / BaPb 2 O 3 and BaPbO 2

    DOE PAGES

    Li, Yuwei; Zhang, Lijun; Singh, David J.

    2017-10-16

    The different but related chemical behaviors of Pb(II) oxides compared to Sn(II) oxides, and the existence of known alkali/alkali-earth metal Sn(II) ternary phases, suggest that there should be additional ternary Pb(II) oxide phases. Here, we report structure searches on the ternary alkaline-earth metal Pb(II) oxides leading to four new phases. These are two ternary Pb(II) oxides, SrPb 2O 3 and BaPb 2O 3, which have larger chemical potential stability ranges compared with the corresponding Sn(II) oxides, and additionally two other ternary Pb(II) oxides, CaPb 2O 3 and BaPbO 2, for which there are no corresponding Sn(II) oxides. Those Pb(II) oxidesmore » are stabilized by Pb-rich conditions. These structures follow the Zintl behavior and consist of basic structural motifs of (PbO 3) 4- anionic units separated and stabilized by the alkaline-earth metal ions. They show wide band gaps ranging from 2.86 to 3.12 eV, and two compounds (CaPb 2O 3 and SrPb 2O 3) show rather light hole effective masses (around 2m 0). The valence band maxima of these compounds have a Pb-6s/O-2p antibonding character, which may lead to p-type defect (or doping) tolerant behavior. This then suggests alkaline-earth metal Pb(II) oxides may be potential p-type transparent conducting oxides.« less

  8. Electrochemical Separation, Pumping, and Storage of Hydrogen or Oxygen into Nanocapillaries Via High Pressure MEA Seals

    DTIC Science & Technology

    2015-10-13

    Fabrication (3) Integrate Membrane & (4) Fill with Hydrogen Shaped Al Aluminum Oxide Nanocapillary Array CNT Coated Pore Wall Complete Gas Storage...nanocapillary arrays are produced through aluminum anodization . The nanocapillary arrays are capped with either a PEM or an alkaline (anion) exchange...24,600 psi)  Circumferential Stress  Proportional to  Pore radius  Wall thickness Aluminum AAO AAO /CNT Nanocapillary Array (Not to scale

  9. Mercury and Silver in Clinic Wastewater Goodfellow AFB, Texas

    DTIC Science & Technology

    1989-07-01

    SE(JrTY CLASSIFICATION 1b RESTRICTIVE MARINGSuncfassi I ed N/A 2a SCRITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION / AVAiLABILIT OF REPORT N/A Approved...Material suctioned from teeth restoration are collected in a central separator/collection tank. The tank is automatically cleaned by rinsing it with water ...insoluble or sparingly soluble in water . In neutral or alkaline solutions, mercury is oxidized directly to the mercuric state with the formatin of

  10. REMOVAL OF URANIUM FROM ORGANIC LIQUIDS

    DOEpatents

    Vavalides, S.P.

    1959-08-25

    A process is described for recovering small quantities of uranium from organic liquids such as hydrocarbon oils. halogen-substituted hydrocarbons, and alcohols. The organic liquid is contacted with a comminuted alkaline earth hydroxide, calcium hydroxide particularly, and the resulting uranium-bearing solid is separated from the liquid by filtration. Uranium may then be recovered from the solid by means of dissolution in nitric acid and conventional extraction with an organic solvent such as tributyl phosphate.

  11. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.

    PubMed

    Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A

    2014-10-21

    Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability of the co-ions also appeared to influence permselectivity leading to ion-specific effects; co-ions that are charge dense and have low polarizability tended to result in high membrane permselectivity.

  12. Alkaline regenerative fuel cell systems for energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Reid, M. A.; Martin, R. E.

    1981-01-01

    A description is presented of the results of a preliminary design study of a regenerative fuel cell energy storage system for application to future low-earth orbit space missions. The high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. In addition to providing energy storage, the system can provide hydrogen and oxygen for attitude control of the satellite and for life support. During the daylight portion of the orbit the electrolysis module uses power provided by the solar array to generate H2 and O2 from the product water produced by the fuel cell module. The fuel cell module supplies electrical power during the dark period of the orbit.

  13. The Tomato 14-3-3 Protein TFT4 Modulates H+ Efflux, Basipetal Auxin Transport, and the PKS5-J3 Pathway in the Root Growth Response to Alkaline Stress1[C][W

    PubMed Central

    Xu, Weifeng; Jia, Liguo; Shi, Weiming; Baluška, František; Kronzucker, Herbert J.; Liang, Jiansheng; Zhang, Jianhua

    2013-01-01

    Alkaline stress is a common environmental stress, in particular in salinized soils. Plant roots respond to a variety of soil stresses by regulating their growth, but the nature of the regulatory pathways engaged in the alkaline stress response (ASR) is not yet understood. Previous studies show that PIN-FORMED2, an auxin (indole-3-acetic acid [IAA]) efflux transporter, PKS5, a protein kinase, and DNAJ HOMOLOG3 (J3), a chaperone, play key roles in root H+ secretion by regulating plasma membrane (PM) H+-ATPases directly or by targeting 14-3-3 proteins. Here, we investigated the expression of all 14-3-3 gene family members (TOMATO 14-3-3 PROTEIN1 [TFT1]–TFT12) in tomato (Solanum lycopersicum) under ASR, showing the involvement of four of them, TFT1, TFT4, TFT6, and TFT7. When these genes were separately introduced into Arabidopsis (Arabidopsis thaliana) and overexpressed, only the growth of TFT4 overexpressors was significantly enhanced when compared with the wild type under stress. H+ efflux and the activity of PM H+-ATPase were significantly enhanced in the root tips of TFT4 overexpressors. Microarray analysis and pharmacological examination of the overexpressor and mutant plants revealed that overexpression of TFT4 maintains primary root elongation by modulating PM H+-ATPase-mediated H+ efflux and basipetal IAA transport in root tips under alkaline stress. TFT4 further plays important roles in the PKS5-J3 signaling pathway. Our study demonstrates that TFT4 acts as a regulator in the integration of H+ efflux, basipetal IAA transport, and the PKS5-J3 pathway in the ASR of roots and coordinates root apex responses to alkaline stress for the maintenance of primary root elongation. PMID:24134886

  14. Separation and Depleted Uranium Fragments from Gun Test Catchment. Volume 2. Catchment System and Separations Methods

    DTIC Science & Technology

    1993-12-30

    projectile fragments from target materials, principally sand. Phase I activities included (1) literature review of separations technology , (2) site visits, (3...the current operation, evaluation of alternative means for separation of DU from sand, a review of uranium mining technology for v possible...the current operation, evaluation of alternative means for separation of DU from sand, a review of uranium mining technology for possible

  15. Evaluation of comprehensive multidimensional separations using reversed-phase, reversed-phase liquid chromatography/mass spectrometry for shotgun proteomics.

    PubMed

    Nakamura, Tatsuji; Kuromitsu, Junro; Oda, Yoshiya

    2008-03-01

    Two-dimensional liquid-chromatographic (LC) separation followed by mass spectrometric (MS) analysis was examined for the identification of peptides in complex mixtures as an alternative to widely used two-dimensional gel electrophoresis followed by MS analysis for use in proteomics. The present method involves the off-line coupling of a narrow-bore, polymer-based, reversed-phase column using an acetonitrile gradient in an alkaline mobile phase in the first dimension with octadecylsilanized silica (ODS)-based nano-LC/MS in the second dimension. After the first separation, successive fractions were acidified and dried off-line, then loaded on the second dimension column. Both columns separate peptides according to hydrophobicity under different pH conditions, but more peptides were identified than with the conventional technique for shotgun proteomics, that is, the combination of a strong cation exchange column with an ODS column, and the system was robust because no salts were included in the mobile phases. The suitability of the method for proteomics measurements was evaluated.

  16. Ultrafine and highly disordered Ni 2 Fe 1 nanofoams enabled highly efficient oxygen evolution reaction in alkaline electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Shaofang; Song, Junhua; Zhu, Chengzhou

    Nickel iron hydroxides are the most promising non-noble electrocatalysts for oxygen evolution reaction (OER) in alkaline media. By in situ reduction of metal precursors, compositionally controlled three-dimensional (3D) NixFeyB nanofoams (NFs) are synthesized with high surface area and uniformly distributed bimetallic networks. The resultant ultrafine amorphous Ni2Fe1B NFs exhibit extraordinary electrocatalytic performance toward OER and overall water splitting in alkaline media. At a potential as low as 1.42 V (vs. RHE), Ni2Fe1B NFs can deliver a current density of 10 mA/cm2 and show negligible activity loss after 12 hours’ stability test. Even at large current flux of 100 mA/cm2, anmore » ultralow overpotential of 0.27 V is achieved, which is about 0.18 V more negative than benchmark RuO2. Both ex-situ Mӧssbauer spectroscopy and X-ray Absorption Spectroscopy (XAS) reveal a phase separation and transformation for the Ni2Fe1B catalyst during OER process. The evolution of oxidation state and disordered structure of Ni2Fe1B might be a key to the high catalytic performance for OER.« less

  17. Antihepatotoxic activity of Rosmarinus tomentosus in a model of acute hepatic damage induced by thioacetamide.

    PubMed

    Galisteo, M; Suárez, A; del Pilar Montilla, M; del Pilar Utrilla, M; Jiménez, J; Gil, A; Faus, M J; Navarro, M

    2000-11-01

    R. tomentosus is a vegetal species closely related to the culinary rosemary (R. officinalis), a plant reported to contain antihepatotoxic agents. A dried ethanol extract of the aerial parts of Rosmarinus tomentosus (Lamiaceae) and its major fraction separated by column chromatography (fraction F19) were evaluated for antihepatotoxic activity in rats with acute liver damage induced by a single oral dose of thioacetamide. Silymarin was used as a reference antihepatotoxic substance. Pre-treatment with R. tomentosus ethanol extract, fraction F19 or silymarin significantly reduced the impact of thioacetamide toxicity on plasma protein and urea levels as well as on plasma aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase and gamma-glutamyl transpeptidase activities compared with thioacetamide-treated animals (group T). Pre-treatment with R. tomentosus ethanol extract significantly reduced the impact of thioacetamide damage on alkaline phosphatase and gamma-glutamyl transpeptidase activities compared with group T. Silymarin administration significantly reduced alkaline phosphatase and gamma-glutamyl transpeptidase activities compared with group T. Fraction F19 administration reduced only alkaline phosphatase activity compared with group T. According to these data, R. tomentosus extract shows promising antihepatotoxic activity, suggesting the need to isolate the chemical principles responsible for this activity and to study this activity in a model of thioacetamide-induced cirrhosis. Copyright 2000 John Wiley & Sons, Ltd.

  18. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Haryadi, Sugianto, D.; Ristopan, E.

    2015-12-01

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm-1 and 3300 cm-1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10-2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  19. Chemical test for mammalian feces in grain products: collaborative study.

    PubMed

    Gerber, H R

    1989-01-01

    A collaborative study was conducted to validate the use of the AOAC alkaline phosphatase method for mammalian feces in corn meal, 44.B01-44.B06, for 7 additional products: brown rice cream, oat bran, grits, semolina, pasta flour, farina, and barley plus (a mixture of barley, oat bran, and brown rice). The proposed method determines the presence of alkaline phosphatase, an enzyme contained in mammalian feces, by using phenolphthalein diphosphate as the enzyme substrate in a test agar medium. Fecal matter is separated from the grain products by specific gravity differences in 1% test agar. As the product is distributed on liquid test agar, fecal fragments float while the grain products sink. The alkaline phosphatase cleaves phosphate radicals from phenolphthalein diphosphate, generating free phenolphthalein, which produces a pink to red-purple color around the fecal particles in the previously colorless medium. Collaborators' recovery averages ranged from 21.7 particles (72.3%) for oat bran to 25.3 particles (84.3%) for semolina at the 30 particle spike level. Overall average background was 0.4 positive reactions per food type. The collaborators reported that the method was quick, simple, and easy to use. The method has been approved interim official first action for all 7 grain products.

  20. Endurance Test and Evaluation of Alkaline Water Electrolysis Cells

    NASA Technical Reports Server (NTRS)

    Kovach, Andrew J.; Schubert, Franz H.; Chang, B. J.; Larkins, Jim T.

    1985-01-01

    The overall objective of this program is to assess the state of alkaline water electrolysis cell technology and its potential as part of a Regenerative Fuel Cell System (RFCS) of a multikilowatt orbiting powerplant. The program evaluates the endurance capabilities of alkaline electrolyte water electrolysis cells under various operating conditions, including constant condition testing, cyclic testing and high pressure testing. The RFCS demanded the scale-up of existing cell hardware from 0.1 sq ft active electrode area to 1.0 sq ft active electrode area. A single water electrolysis cell and two six-cell modules of 1.0 sq ft active electrode area were designed and fabricated. The two six-cell 1.0 sq ft modules incorporate 1.0 sq ft utilized cores, which allow for minimization of module assembly complexity and increased tolerance to pressure differential. A water electrolysis subsystem was designed and fabricated to allow testing of the six-cell modules. After completing checkout, shakedown, design verification and parametric testing, a module was incorporated into the Regenerative Fuel Cell System Breadboard (RFCSB) for testing at Life Systems, Inc., and at NASA JSC.

  1. 40 CFR 60.41Da - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., means a 24-hour period during which fossil fuel is combusted in a steam-generating unit for the entire... another form. Alkaline slurries or solutions used in dry FGD technology include, but are not limited to... CFR 52.21 or under 40 CFR 51.18 and 51.24. Fossil fuel means natural gas, petroleum, coal, and any...

  2. 40 CFR 60.41Da - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., means a 24-hour period during which fossil fuel is combusted in a steam-generating unit for the entire... another form. Alkaline slurries or solutions used in dry FGD technology include, but are not limited to... CFR 52.21 or under 40 CFR 51.18 and 51.24. Fossil fuel means natural gas, petroleum, coal, and any...

  3. Synthesis of pulping processes with fiber loading methods for lightweight papers

    Treesearch

    John H. Klungness; Roland Gleisner; Masood Akhtar; Eric G. Horn; Mike Lentz

    2003-01-01

    Pulping technologies can be synthesized with fiber loading with simultaneous alkaline peroxide bleaching to produce lightweight high-opacity printing papers. We compared the results of recent experiments on combining oxalic acid pretreated wood chips used for thermomechanical pulp (TMP) with fiber loading and previous experiments on combining similar pulps treated with...

  4. Production and characterization of thermostable alkaline protease of Bacillus subtilis (ATCC 6633) from optimized solid-state fermentation.

    PubMed

    Chatterjee, Joyee; Giri, Sudipta; Maity, Sujan; Sinha, Ankan; Ranjan, Ashish; Rajshekhar; Gupta, Suvroma

    2015-01-01

    Proteases are the most important group of enzymes utilized commercially in various arenas of industries, such as food, detergent, leather, dairy, pharmaceutical, diagnostics, and waste management, accounting for nearly 20% of the world enzyme market. Microorganisms of specially Bacillus genera serve as a vast repository of diverse set of industrially important enzymes and utilized for the large-scale enzyme production using a fermentation technology. Approximately 30%-40% of the cost of industrial enzymes originates from the cost of the growth medium. This study is attempted to produce protease from Bacillus subtilis (ATCC 6633) after optimization of various process parameters with the aid of solid-state fermentation using a cheap nutrient source such as wheat bran. B. subtilis (ATCC 6633) produces proteases of molecular weight 36 and 20 kDa, respectively, in the fermented medium as evident from SDS zymogram. Alkaline protease activity has been detected with optimum temperature at 50 °C and is insensitive to ethylenediaminetetraacetic acid. This thermostable alkaline protease exhibits dual pH optimum at 7 and 10 with moderate pH stability at alkaline pH range. It preserves its activity in the presence of detergent such as SDS, Tween 20, and Triton X-100 and may be considered as an effective additive to detergent formulation with some industrial importance. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  5. Kr/Xe Separation over a Chabazite Zeolite Membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Xuhui; Zong, Zhaowang; Elsaidi, Sameh K.

    2016-08-10

    Cryogenic distillation, the current conventional technology to separate Krypton and Xenon from air, and from nuclear reprocessing technologies, is an energy-intensive and expensive process. Membrane technology could potentially make this challenging industrial separation less energy intensive and economically viable. We demonstrate that chabazite zeolite SAPO-34 membranes effectively separated Kr/Xe gas mixtures at industrially relevant compositions. Control over membrane thickness and average crystal size led to industrial range permeances and high separation selectivities. Specifically, SAPO-34 membranes can separate Kr/Xe mixtures with Kr permeances as high as 361.4 GPU and separation selectivities of 34.8 for molar compositions close to typical concentrations ofmore » these two gases in air. In addition, SAPO-34 membranes separated Kr/Xe mixtures with Kr permeances as high as 525.7 GPU and separation selectivities up to 45.1 for molar compositions as might be encountered in nuclear reprocessing technologies. Molecular sieving and differences in diffusivities were identified as the dominant separation mechanisms.« less

  6. A novel technology coupling extraction and foam fractionation for separating the total saponins from Achyranthes bidentata.

    PubMed

    Ding, Linlin; Wang, Yanji; Wu, Zhaoliang; Liu, Wei; Li, Rui; Wang, Yanyan

    2016-10-02

    A novel technology coupling extraction and foam fractionation was developed for separating the total saponins from Achyranthes bidentata. In the developed technology, the powder of A. bidentata was loaded in a nylon filter cloth pocket with bore diameter of 180 µm. The pocket was fixed in the bulk liquid phase for continuously releasing saponins. Under the optimal conditions, the concentration and the extraction rate of the total saponins in the foamate by the developed technology were 73.5% and 416.2% higher than those by the traditional technology, respectively. The foamates obtained by the traditional technology and the developed technology were analyzed by ultraperformance liquid chromatography-mass spectrometry to determine their ingredients, and the results appeared that the developed technology exhibited a better performance for separating saponins than the traditional technology. The study is expected to develop a novel technology for cost effectively separating plant-derived materials with surface activity.

  7. Fuel cell technology for lunar surface operations

    NASA Technical Reports Server (NTRS)

    Deronck, Henry J.

    1992-01-01

    Hydrogen-oxygen fuel cells have been shown, in several NASA and contractor studies, to be an enabling technology for providing electrical power for lunar bases, outposts, and vehicles. The fuel cell, in conjunction with similar electrolysis cells, comprises a closed regenerative energy storage system, commonly referred to as a regenerative fuel cell (RFC). For stationary applications, energy densities of 1,000 watt-hours per kilograms an order of magnitude over the best rechargeable batteries, have been projected. In this RFC, the coupled fuel cell and electrolyzer act as an ultra-light battery. Electrical energy from solar arrays 'charges' the system by electrolyzing water into hydrogen and oxygen. When an electrical load is applied, the fuel cell reacts the hydrogen and oxygen to 'discharge' usable power. Several concepts for utilizing RFC's, with varying degrees of integration, have been proposed, including both primary and backup roles. For mobile power needs, such as rovers, an effective configuration may be to have only the fuel cell located on the vehicle, and to use a central electrolysis 'gas station'. Two fuel cell technologies are prime candidates for lunar power system concepts: alkaline electrolyte and proton exchange membrane. Alkaline fuel cells have been developed to a mature production power unit in NASA's Space Shuttle Orbiter. Recent advances in materials offer to significantly improve durability to the level needed for extended lunar operations. Proton exchange membrane fuel cells are receiving considerable support for hydrospace and terrestrial transportation applications. This technology promises durability, simplicity, and flexibility.

  8. Fuel cell technology for lunar surface operations

    NASA Astrophysics Data System (ADS)

    Deronck, Henry J.

    1992-02-01

    Hydrogen-oxygen fuel cells have been shown, in several NASA and contractor studies, to be an enabling technology for providing electrical power for lunar bases, outposts, and vehicles. The fuel cell, in conjunction with similar electrolysis cells, comprises a closed regenerative energy storage system, commonly referred to as a regenerative fuel cell (RFC). For stationary applications, energy densities of 1,000 watt-hours per kilograms an order of magnitude over the best rechargeable batteries, have been projected. In this RFC, the coupled fuel cell and electrolyzer act as an ultra-light battery. Electrical energy from solar arrays 'charges' the system by electrolyzing water into hydrogen and oxygen. When an electrical load is applied, the fuel cell reacts the hydrogen and oxygen to 'discharge' usable power. Several concepts for utilizing RFC's, with varying degrees of integration, have been proposed, including both primary and backup roles. For mobile power needs, such as rovers, an effective configuration may be to have only the fuel cell located on the vehicle, and to use a central electrolysis 'gas station'. Two fuel cell technologies are prime candidates for lunar power system concepts: alkaline electrolyte and proton exchange membrane. Alkaline fuel cells have been developed to a mature production power unit in NASA's Space Shuttle Orbiter. Recent advances in materials offer to significantly improve durability to the level needed for extended lunar operations. Proton exchange membrane fuel cells are receiving considerable support for hydrospace and terrestrial transportation applications. This technology promises durability, simplicity, and flexibility.

  9. The alkaline aluminium/hydrogen peroxide power source in the Hugin II unmanned underwater vehicle

    NASA Astrophysics Data System (ADS)

    Hasvold, Øistein; Johansen, Kjell Håvard; Mollestad, Ole; Forseth, Sissel; Størkersen, Nils

    In 1993, The Norwegian Defence Research Establishment (FFI) demonstrated AUV-Demo, an unmanned (untethered) underwater vehicle (UUV), powered by a magnesium/dissolved oxygen seawater battery (SWB). This technology showed that an underwater range of at least 1000 nautical miles at a speed of 4 knots was possible, but also that the maximum hotel load this battery system could support was very limited. Most applications for UUV technology need more power over a shorter period of time. Seabed mapping using a multibeam echo sounder mounted on an UUV was identified as a viable application and the Hugin project was started in 1995 in cooperation with Norwegian industry. For this application, an endurance of 36 h at 4 knots was required. Development of the UUV hull and electronics system resulted in the UUV Hugin I. It carries a Ni/Cd battery of 3 kW h, allowing up to 6 h under-water endurance. In parallel, we developed a battery based on a combination of alkaline Al/air and SWB technology, using a circulating alkaline electrolyte, aluminium anodes and maintaining the oxidant concentration in the electrolyte by continuously adding hydrogen peroxide (HP) to the electrolyte. This concept resulted in a safe battery, working at ambient pressure (balanced) and with sufficient power and energy density to allow the UUV Hugin II to make a number of successive dives, each of up to 36 h duration and with only 1 h deck time between dives for HP refill and electrolyte exchange. After 100 h, an exchange of anodes takes place. The power source consists of a four-cell Al/HP battery, a DC/DC converter delivering 600 W at 30 V, circulation and dosing pumps and a battery control unit. Hugin II is now in routine use by the Norwegian Underwater Intervention AS (NUI) which operates the UUV for high-precision seabed mapping down to a water depth of 600 m.

  10. Selective separation of pyrite and chalcopyrite by biomodulation.

    PubMed

    Chandraprabha, M N; Natarajan, K A; Modak, Jayant M

    2004-09-01

    Selective separation of pyrite from other associated ferrous sulphides at acidic and neutral pH has been a challenging problem. This paper discusses the utility of Acidithiobacillus ferrooxidans for the selective flotation of chalcopyrite from pyrite. Consequent to interaction with bacterial cells, pyrite remained depressed even in the presence of potassium isopropyl xanthate collector while chalcopyrite exhibited significant flotability. However, when the minerals were conditioned together, the selectivity achieved was poor due to the activation of pyrite surface by the copper ions in solution. The selectivity was improved when the sequence of conditioning with bacterial cells and collector was reversed, since the bacterial cells were able to depress collector interacted pyrite effectively, while having negligible effect on chalcopyrite. The observed behaviour is analysed and discussed in detail. The separation obtained was significant both at acidic and alkaline pH. This selectivity achieved was retained when the minerals were interacted with both bacterial cells and collector simultaneously.

  11. THORIUM OXALATE-URANYL ACETATE COUPLED PROCEDURE FOR THE SEPARATION OF RADIOACTIVE MATERIALS

    DOEpatents

    Gofman, J.W.

    1959-08-11

    The recovery of fission products from neutronirradiated uranium is described. The neutron-irradiated uranium is dissolved in acid and thorium oxalate is precipitated in ihe solution formed, whereby the fission products are carried on the thorium oxalate. The separated thorium oxalate precipitate is then dissolved in an aqueous oxalate solution and the solution formed is acidified, limiting ihe excess acidity to a maximum of 2 N, whereby thorium oxalate precipitates and carries lanthanum-rareearth- and alkaline-earth-metal fission products while the zirconium-fission-product remains in solution. This precipitate, too, is dissolved in an aqaeous oxalate solution at elevated temperature, and lanthanum-rare-earth ions are added to the solution whereby lanthanum-rare-earth oxalate forms and the lanthanum-rare-earth-type and alkalineearth-metal-type fission products are carried on the oxalate. The precipitate is separated from the solution.

  12. Durable underwater superoleophobic PDDA/halloysite nanotubes decorated stainless steel mesh for efficient oil-water separation

    NASA Astrophysics Data System (ADS)

    Hou, Kun; Zeng, Yicheng; Zhou, Cailong; Chen, Jiahui; Wen, Xiufang; Xu, Shouping; Cheng, Jiang; Lin, Yingguang; Pi, Pihui

    2017-09-01

    A durable underwater superoleophobic mesh was conveniently prepared by layer-by-layer (LBL) assembly of poly (diallyldimethylammonium chloride) (PDDA) and halloysite nanotubes (HNTs) on a stainless steel mesh. The hierarchical structure and roughness of the PDDA/HNTs coating surface were controlled by adjusting the number of layer deposition cycles. When the PDDA/HNTs coating with 10 deposition cycles was decorated on the mesh with pore size of about 54 μm, the underwater superoleophobic mesh was obtained. The as-prepared underwater superoleophobic PDDA/HNTs decorated mesh exhibits outstanding oil-water separation performance with a separation efficiency of over 97% for various oil/water mixtures, which allowed water to pass through while repelled oil completely. In addition, the as-prepared decorated mesh still maintained high separation efficiency above 97% after repeated 20 separation times for hexane/water mixture or chloroform/water mixture. More importantly, the as-prepared decorated mesh is durable enough to resist chemical and mechanical challenges, such as strong alkaline, salt aqueous and sand abrasion. Therefore, the as-prepared decorated mesh has practical utility in oil-water separation due to its stable oil-water performance, remarkable chemical and mechanical durability and the facile and eco-friendly preparation process.

  13. Metallated porphyrin based porous organic polymers as efficient electrocatalysts

    NASA Astrophysics Data System (ADS)

    Lu, Guolong; Zhu, Youlong; Xu, Kongliang; Jin, Yinghua; Ren, Zhiyong Jason; Liu, Zhenning; Zhang, Wei

    2015-10-01

    Developing efficient, stable and low-cost catalysts for Oxygen Reduction Reaction (ORR) is of great significance to many emerging technologies including fuel cells and metal-air batteries. Herein, we report the development of a cobalt(ii) porphyrin based porous organic polymer (CoPOP) and its pyrolyzed derivatives as highly active ORR catalysts. The as-synthesized CoPOP exhibits high porosity and excellent catalytic performance stability, retaining ~100% constant ORR current over 50 000 s in both alkaline and acidic media. Pyrolysis of CoPOP at various temperatures (600 °C, 800 °C, and 1000 °C) yields the materials consisting of graphitic carbon layers and cobalt nanoparticles, which show greatly enhanced catalytic activity compared to the as-synthesized CoPOP. Among them, CoPOP-800/C pyrolyzed at 800 °C shows the highest specific surface area and ORR activity, displaying the most positive half-wave potential (0.825 V vs. RHE) and the largest limited diffusion current density (5.35 mA cm-2) in an alkaline medium, which are comparable to those of commercial Pt/C (20 wt%) (half-wave potential 0.829 V vs. RHE, limited diffusion current density 5.10 mA cm-2). RDE and RRDE experiments indicate that CoPOP-800/C directly reduces molecular oxygen to water through a 4-e- pathway in both alkaline and acidic media. More importantly, CoPOP-800/C exhibits excellent durability and methanol-tolerance under acidic and alkaline conditions, which surpass the Pt/C (20 wt%) system.Developing efficient, stable and low-cost catalysts for Oxygen Reduction Reaction (ORR) is of great significance to many emerging technologies including fuel cells and metal-air batteries. Herein, we report the development of a cobalt(ii) porphyrin based porous organic polymer (CoPOP) and its pyrolyzed derivatives as highly active ORR catalysts. The as-synthesized CoPOP exhibits high porosity and excellent catalytic performance stability, retaining ~100% constant ORR current over 50 000 s in both alkaline and acidic media. Pyrolysis of CoPOP at various temperatures (600 °C, 800 °C, and 1000 °C) yields the materials consisting of graphitic carbon layers and cobalt nanoparticles, which show greatly enhanced catalytic activity compared to the as-synthesized CoPOP. Among them, CoPOP-800/C pyrolyzed at 800 °C shows the highest specific surface area and ORR activity, displaying the most positive half-wave potential (0.825 V vs. RHE) and the largest limited diffusion current density (5.35 mA cm-2) in an alkaline medium, which are comparable to those of commercial Pt/C (20 wt%) (half-wave potential 0.829 V vs. RHE, limited diffusion current density 5.10 mA cm-2). RDE and RRDE experiments indicate that CoPOP-800/C directly reduces molecular oxygen to water through a 4-e- pathway in both alkaline and acidic media. More importantly, CoPOP-800/C exhibits excellent durability and methanol-tolerance under acidic and alkaline conditions, which surpass the Pt/C (20 wt%) system. Electronic supplementary information (ESI) available: Details of the experimental section, powder X-ray diffraction (PXRD) data, scanning electron microscopy (FE-SEM) images, Fourier transform infrared spectroscopy (FT-IR) data, and additional electrochemical data. See DOI: 10.1039/c5nr05324b

  14. Characterization of Laboratory Prepared Concrete Pastes Exposed to High Alkaline and High Sodium Salt Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C. A.

    The objective of this study was to identify potential chemical degradation mechanisms for the Saltstone Disposal Unit (SDU) concretes, which over the performance life of the structures may be exposed to highly alkaline sodium salt solutions containing sulfate, hydroxide, and other potentially corrosive chemicals in salt solution and saltstone flush water, drain water, leachate and / or pore solution. The samples analyzed in this study were cement pastes prepared in the SIMCO Technologies, Inc. concrete laboratory. They were based on the paste fractions of the concretes used to construct the Saltstone Disposal Units (SDUs). SDU 1 and 4 concrete pastesmore » were represented by the PV1 test specimens. The paste in the SDU 2, 3, 5, and 6 concrete was represented by the PV2 test specimens. SIMCO Technologies, Inc. selected the chemicals and proportions in the aggressive solutions to approximate proportions in the saltstone pore solution [2, 3, 5, and 6]. These test specimens were cured for 56 days in curing chamber before being immersed in aggressive solutions. After exposure, the samples were frozen to prevent additional chemical transport and reaction. Selected archived (retrieved from the freezer) samples were sent to the Savannah River National Laboratory (SRNL) for additional characterization using x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray (EDX) spectroscopy. Characterization results are summarized in this report. In addition, a correlation between the oxide composition of the pastes and their chemical durability in the alkaline salt solutions is provided.« less

  15. Design and scale-up of an oxidative scrubbing process for the selective removal of hydrogen sulfide from biogas.

    PubMed

    Krischan, J; Makaruk, A; Harasek, M

    2012-05-15

    Reliable and selective removal of hydrogen sulfide (H(2)S) is an essential part of the biogas upgrading procedure in order to obtain a marketable and competitive natural gas substitute for flexible utilization. A promising biogas desulfurization technology has to ensure high separation efficiency regardless of process conditions or H(2)S load without the use or production of toxic or ecologically harmful substances. Alkaline oxidative scrubbing is an interesting alternative to existing desulfurization technologies and is investigated in this work. In experiments on a stirred tank reactor and a continuous scrubbing column in laboratory-scale, H(2)S was absorbed from a gas stream containing large amounts of carbon dioxide (CO(2)) into an aqueous solution prepared from sodium hydroxide (NaOH), sodium bicarbonate (NaHCO(3)) and hydrogen peroxide (H(2)O(2)). The influence of pH, redox potential and solution aging on the absorption efficiency and the consumption of chemicals was investigated. Because of the irreversible oxidation reactions of dissolved H(2)S with H(2)O(2), high H(2)S removal efficiencies were achieved while the CO(2) absorption was kept low. At an existing biogas upgrading plant an industrial-scale pilot scrubber was constructed, which efficiently desulfurizes 180m(3)/h of raw biogas with an average removal efficiency of 97%, even at relatively high and strongly fluctuating H(2)S contents in the crude gas. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Removal of arsenic compounds from petroliferous liquids

    DOEpatents

    Fish, R.H.

    1984-04-06

    The present invention in one aspect comprises a process for removing arsenic from petroliferous-derived liquids by contacting said liquid with a divinylbenzene-crosslinked polystyrene polymer (i.e. PS-DVB) having catechol ligands anchored to said polymer, said contacting being at an elevated temperature. In another aspect, the invention is a process for regenerating spent catecholated polystyrene polymer by removal of the arsenic bound to it from contacting petroliferous liquid in accordance with the aspect described above which regenerating process comprises: (a) treating said spent catecholated polystyrene polymer with an aqueous solution of at least one member selected from the group consisting of carbonates and bicarbonates of ammonium, alkali metals, and alkaline earth metals, said solution having a pH between about 8 and 10, and said treating being at a temperature in the range of about 20/sup 0/ to 100/sup 0/C; (b) separating the solids and liquids from each other. In a preferred embodiment the regeneration treatment is in two steps wherein step: (a) is carried out with an aqueous alcoholic carbonate solution which includes at least one lower alkyl alcohol, and, steps (c) and (d) are added. Steps (c) and (d) comprise: (c) treating the solids with an aqueous alcoholic solution of at least one ammonium, alkali or alkaline earth metal bicarbonate at a temperature in the range of about 20 to 100/sup 0/C; and (d) separating the solids from the liquids.

  17. Short-column anion-exchange chromatography for soil and peat humic substances profiling by step-wise gradient of high pH aqueous sodium ethylenediaminetetraacetate.

    PubMed

    Hutta, Milan; Ráczová, Janka; Góra, Róbert; Pessl, Juraj

    2015-08-21

    Novel anion-exchange liquid chromatographic method with step gradient of aqueous EDTA(4-) based mobile phase elution has been developed to profile available Slovak soil humic substances and alkaline extracts of various soils. The method utilize short glass column (30mm×3mm) filled in with hydrolytically stable particles (60μm diameter) Separon HEMA-BIO 1000 having (diethylamino)ethyl functional groups. Step gradient was programmed by mixing mobile phase composed of aqueous solution of sodium EDTA (pH 12.0; 5mmolL(-1)) and mobile phase constituted of aqueous solution of sodium EDTA (pH 12.0, 500mmolL(-1)). The FLD of HSs was set to excitation wavelength 480nm and emission wavelength 530nm (λem). Separation mechanism was studied by use of selected aromatic acids related to humic acids with the aid of UV spectrophotometric detection at 280nm. The proposed method benefits from high ionic strength (I=5molL(-1)) of the end mobile phase buffer and provides high recovery of humic acids (98%). Accurate and reproducible profiling of studied humic substances, alkaline extracts of various types of soils enables straightforward characterization and differentiation of HSs in arable and forest soils. Selected model aromatic acids were used for separation mechanism elucidation. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Reclaiming the spent alkaline zinc manganese dioxide batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi0.5Mn1.5O4 materials.

    PubMed

    Ma, Ya; Cui, Yan; Zuo, Xiaoxi; Huang, Shanna; Hu, Keshui; Xiao, Xin; Nan, Junmin

    2014-10-01

    A process for reclaiming the materials in spent alkaline zinc manganese dioxide (Zn-Mn) batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi0.5Mn1.5O4 materials is presented. After dismantling battery cans, the iron cans, covers, electric rods, organic separator, label, sealing materials, and electrolyte are separated through the washing, magnetic separation, filtrating, and sieving operations. Then, the powder residues react with H2SO4 (2 mol L(-1)) solution to dissolve zinc under a liquid/solid ratio of 3:1 at room temperature, and subsequently, the electrolytic Zn with purity of ⩾99.8% is recovered in an electrolytic cell with a cathode efficiency of ⩾85% under the conditions of 37-40°C and 300 A m(-2). The most of MnO2 and a small quantity of electrolytic MnO2 are recovered from the filtration residue and the electrodeposit on the anode of electrolytic cell, respectively. The recovered manganese oxides are used to synthesize LiNi0.5Mn1.5O4 material of lithium-ion battery. The as-synthesized LiNi0.5Mn1.5O4 discharges 118.3 mAh g(-1) capacity and 4.7 V voltage plateau, which is comparable to the sample synthesized using commercial electrolytic MnO2. This process can recover the substances in the spent Zn-Mn batteries and innocuously treat the wastewaters, indicating that it is environmentally acceptable and applicable. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Separators - Technology review: Ceramic based separators for secondary batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram

    Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ('Energiewende') was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membranemore » - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic-based separators. Two prominent examples, the lithium-ion and sodium-sulfur battery, are described to show the current stage of development. New routes are presented as promising technologies for safe and long-life electrochemical storage cells.« less

  20. Separators - Technology review: Ceramic based separators for secondary batteries

    NASA Astrophysics Data System (ADS)

    Nestler, Tina; Schmid, Robert; Münchgesang, Wolfram; Bazhenov, Vasilii; Schilm, Jochen; Leisegang, Tilmann; Meyer, Dirk C.

    2014-06-01

    Besides a continuous increase of the worldwide use of electricity, the electric energy storage technology market is a growing sector. At the latest since the German energy transition ("Energiewende") was announced, technological solutions for the storage of renewable energy have been intensively studied. Storage technologies in various forms are commercially available. A widespread technology is the electrochemical cell. Here the cost per kWh, e. g. determined by energy density, production process and cycle life, is of main interest. Commonly, an electrochemical cell consists of an anode and a cathode that are separated by an ion permeable or ion conductive membrane - the separator - as one of the main components. Many applications use polymeric separators whose pores are filled with liquid electrolyte, providing high power densities. However, problems arise from different failure mechanisms during cell operation, which can affect the integrity and functionality of these separators. In the case of excessive heating or mechanical damage, the polymeric separators become an incalculable security risk. Furthermore, the growth of metallic dendrites between the electrodes leads to unwanted short circuits. In order to minimize these risks, temperature stable and non-flammable ceramic particles can be added, forming so-called composite separators. Full ceramic separators, in turn, are currently commercially used only for high-temperature operation systems, due to their comparably low ion conductivity at room temperature. However, as security and lifetime demands increase, these materials turn into focus also for future room temperature applications. Hence, growing research effort is being spent on the improvement of the ion conductivity of these ceramic solid electrolyte materials, acting as separator and electrolyte at the same time. Starting with a short overview of available separator technologies and the separator market, this review focuses on ceramic-based separators. Two prominent examples, the lithium-ion and sodium-sulfur battery, are described to show the current stage of development. New routes are presented as promising technologies for safe and long-life electrochemical storage cells.

  1. Sulphate removal from sodium sulphate-rich brine and recovery of barium as a barium salt mixture.

    PubMed

    Vadapalli, Viswanath R K; Zvimba, John N; Mulopo, Jean; Motaung, Solly

    2013-01-01

    Sulphate removal from sodium sulphate-rich brine using barium hydroxide and recovery of the barium salts has been investigated. The sodium sulphate-rich brine treated with different dosages of barium hydroxide to precipitate barium sulphate showed sulphate removal from 13.5 g/L to less than 400 mg/L over 60 min using a barium to sulphate molar ratio of 1.1. The thermal conversion of precipitated barium sulphate to barium sulphide achieved a conversion yield of 85% using coal as both a reducing agent and an energy source. The recovery of a pure mixture of barium salts from barium sulphide, which involved dissolution of barium sulphide and reaction with ammonium hydroxide resulted in recovery of a mixture of barium carbonate (62%) and barium hydroxide (38%), which is a critical input raw material for barium salts based acid mine drainage (AMD) desalination technologies. Under alkaline conditions of this barium salt mixture recovery process, ammonia gas is given off, while hydrogen sulfide is retained in solution as bisulfide species, and this provides basis for ammonium hydroxide separation and recovery for reuse, with hydrogen sulfide also recoverable for further industrial applications such as sulfur production by subsequent stripping.

  2. Waste separation and pretreatment using crystalline silicotitanate ion exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadros, M.E.; Miller, J.E.; Anthony, R.G.

    1997-10-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CSTs) has been developed jointly by Sandia National Laboratories and Texas A&M University to selectively remove Cs and other radionuclides from a wide spectrum of radioactive defense wastes. The CST exhibits high selectivity and affinity for Cs and Sr under a wide range of conditions. Tests show it can remove part-per-million concentrations of Cs{sup +} from highly alkaline, high-sodium simulated radioactive waste solutions modeled after those at Hanford, Oak Ridge, and Savannah River. The materials exhibit ion exchange properties based on ionic size selectivity. Specifically, crystalline lattice spacing is controlledmore » to be highly selective for Cs ions even in waste streams containing very high (5 to 10 M) concentrations of sodium. The CST technology is being demonstrated with actual waste at several DOE facilities. The use of inorganic ion exchangers. The inorganics are more resistant to chemical, thermal, and radiation degradation. Their high selectivities result in more efficient operations offering the possibility of a simple single-pass operation. In contrast, regenerable organic ion exchangers require additional processing equipment to handle the regeneration liquids and the eluant with the dissolved Cs.« less

  3. Redox thermodynamics of the native and alkaline forms of eukaryotic and bacterial class I cytochromes c.

    PubMed

    Battistuzzi, G; Borsari, M; Sola, M; Francia, F

    1997-12-23

    The reduction potentials of beef heart cytochrome c and cytochromes c2 from Rhodopseudomonas palustris, Rhodobacter sphaeroides, and Rhodobacter capsulatus were measured through direct electrochemistry at a surface-modified gold electrode as a function of temperature in nonisothermal experiments carried out at neutral and alkaline pH values. The thermodynamic parameters for protein reduction (DeltaS degrees rc and DeltaH degrees rc) were determined for the native and alkaline conformers. Enthalpy and entropy terms underlying species-dependent differences in E degrees and pH- and temperature-induced E degrees changes for a given cytochrome were analyzed. The difference of about +0.1 V in E degrees between cytochromes c2 and the eukaryotic species can be separated into an enthalpic term (-DeltaDeltaH degrees rc/F) of +0.130 V and an entropic term (TDeltaDeltaS degrees rc/F) of -0.040 V. Hence, the higher potential of the bacterial species appears to be determined entirely by a greater enthalpic stabilization of the reduced state. Analogously, the much lower potential of the alkaline conformer(s) as compared to the native species is by far enthalpic in origin for both protein families, and is largely determined by the substitution of Met for Lys in axial heme ligation. Instead, the biphasic E degrees /temperature profile for the native cytochromes is due to a difference in reduction entropy between the conformers at low and high temperatures. Temperature-dependent 1H NMR experiments suggest that the temperature-induced transition also involves a change in orientation of the axial methionine ligand with respect to the heme plane.

  4. Space Technology for Book Preservation

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Library of Congress has patented a process to extend book life. It is called vapor phased deacidification, and involves the use of DEZ (diethyl zinc), a chemical vapor which neutralizes acid and deposits an alkaline reserve on book pages. As the process must be done in an airless environment, the library utilized Goddard Space Flight Center's vacuum chamber for deacidification. The chamber can treat 5,000 books at once, and a new facility is planned. The Library plans to license the technology to private companies; several universities are interested in the process.

  5. A novel transposon construct expressing PhoA with potential for studying protein expression and translocation in Mycoplasma gallisepticum

    PubMed Central

    2012-01-01

    Background Mycoplasma gallisepticum is a major poultry pathogen and causes severe economic loss to the poultry industry. In mycoplasmas lipoproteins are abundant on the membrane surface and play a critical role in interactions with the host, but tools for exploring their molecular biology are limited. Results In this study we examined whether the alkaline phosphatase gene (phoA ) from Escherichia coli could be used as a reporter in mycoplasmas. The promoter region from the gene for elongation factor Tu (ltuf) and the signal and acylation sequences from the vlhA 1.1 gene, both from Mycoplasma gallisepticum , together with the coding region of phoA , were assembled in the transposon-containing plasmid pISM2062.2 (pTAP) to enable expression of alkaline phosphatase (AP) as a recombinant lipoprotein. The transposon was used to transform M. gallisepticum strain S6. As a control, a plasmid containing a similar construct, but lacking the signal and acylation sequences, was also produced (pTP) and also introduced into M. gallisepticum . Using a colorimetric substrate for detection of alkaline phosphatase activity, it was possible to detect transformed M. gallisepticum . The level of transcription of phoA in organisms transformed with pTP was lower than in those transformed with pTAP, and alkaline phosphatase was not detected by immunoblotting or enzymatic assays in pTP transformants, eventhough alkaline phosphatase expression could be readily detected by both assays in pTAP transformants. Alkaline phosphatase was shown to be located in the hydrophobic fraction of transformed mycoplasmas following Triton X-114 partitioning and in the membrane fraction after differential fractionation. Trypsin proteolysis confirmed its surface exposure. The inclusion of the VlhA lipoprotein signal sequence in pTAP enabled translocation of PhoA and acylation of the amino terminal cysteine moiety, as confirmed by the effect of treatment with globomycin and radiolabelling studies with [14 C]palmitate. PhoA could be identified by mass-spectrometry after separation by two-dimensional electrophoresis. Conclusion This is the first study to express PhoA as a lipoprotein in mycoplasmas. The pTAP plasmid will facilitate investigations of lipoproteins and protein translocation across the cell membrane in mycoplasmas, and the ease of detection of these transformants makes this vector system suitable for the simultaneous screening and detection of cloned genes expressed as membrane proteins in mycoplasmas. PMID:22770122

  6. VERIFICATION OF HIGH-RATE SEPARATION DEVICES UNDER THE WET-WEATHER FLOW TECHNOLOGIES PILOT - ETV PROGRAM

    EPA Science Inventory

    This paper presents performance verification data on two types of high-rate separation devices utilized for solids removal: Vortex separation devices (a class of physical treatment technologies that use cylindrical chambers to create centrifugal forces that separate settleable so...

  7. The stability of a novel weakly alkaline slurry of copper interconnection CMPfor GLSI

    NASA Astrophysics Data System (ADS)

    Yao, Caihong; Wang, Chenwei; Niu, Xinhuan; Wang, Yan; Tian, Shengjun; Jiang, Zichao; Liu, Yuling

    2018-02-01

    Chemical mechanical polishing (CMP) is one of the important machining procedures of multilayered copper interconnection for GLSI, meanwhile polishing slurry is a critical factor for realizing the high polishing performance such as high planarization efficiency, low surface roughness. The effect of slurry components such as abrasive (colloidal silica), complexing agent (glycine), inhibitor (BTA) and oxidizing agent (H2O2) on the stability of the novel weakly alkaline slurry of copper interconnection CMP for GLSI was investigated in this paper. First, the synergistic and competitive relationship of them in a peroxide-based weakly alkaline slurry during the copper CMP process was studied and the stability mechanism was put forward. Then 1 wt% colloidal silica, 2.5 wt% glycine, 200 ppm BTA, 20 mL/L H2O2 had been selected as the appropriate concentration to prepare copper slurry, and using such slurry the copper blanket wafer was polished. From the variations of copper removal rate, root-mean square roughness (Sq) value with the setting time, it indicates that the working-life of the novel weakly alkaline slurry can reach more than 7 days, which satisfies the requirement of microelectronics further development. Project supported by the Major National Science and Technology Special Projects (No. 2016ZX02301003-004-007), the Professional Degree Teaching Case Foundation of Hebei Province, China (No. KCJSZ2017008), the Natural Science Foundation of Hebei Province, China (No. F2015202267), and the Natural Science Foundation of Tianjin, China (No. 16JCYBJC16100).

  8. [Study of alkaline lignin from Arundo donax linn based on FT Raman spectroscopy].

    PubMed

    You, Ting-ting; Ma, Jian-feng; Guo, Si-qin; Xu, Feng

    2014-08-01

    Arundo donax linn, as a perennial energy crop, has promising application prospect. In the present study, Fourier transform Raman (FT Raman) spectroscopy was applied to determine the structural information of materials, milled wood lignin (MWL), and alkaline lignins (AL, under different treated time) from A. donax stem nondestructively. The results indicated that, extractable compounds in A. donax had negative contribution to the Raman spectra without rising new Raman peaks. FT Raman spectrum of MWL indicated that MWL from A. donax was HGS type lignins. Compared with the spectra of MWL from wood materials, the peak at 1173 cm(-1) was much higher in intensity for the MWL from A. donax stem, which may be assigned to hydroxycinnamic acid by analyzing the standard. With respect to FT Raman spectra of ALs, the relatively highest intensity of 1173 cm(-1) was found in alkaline lignin (AL2), which was treated for 40 min by alkaline. Moreover, the peak of coniferaldehyde/sinapaldehyde (1630 cm(-1)) was lowest in intensity while the band attributed to coniferyl alcohol/sinapyl alcohol (1660 cm(-1)) was almost disappeared in AL2. It could be inferred that AL2 demonstrated a highest content of phenolic acid, which may improve its potential application, such as for antioxidant activity. Furthermore, the results obtained by FT Raman spectra were verified by two dimensional heteronuclear singlequantum coherence nuclear magnetic resonance analyses. Above all, FT Raman spectroscopy provided alternative safe, rapid, accurate, and nondestructive technology for lignin structure determination.

  9. Electroactive materials for rechargeable batteries

    DOEpatents

    Wu, Huiming; Amine, Khalil; Abouimrane, Ali

    2016-10-25

    A secondary battery including a cathode having a primary cathode active material and an alkaline source material selected from the group consisting of Li.sub.2O, Li.sub.2O.sub.2, Li.sub.2S, LiF, LiCl, Li.sub.2Br, Na.sub.2O, Na.sub.2O.sub.2, Na.sub.2S, NaF, NaCl, and a mixture of any two or more thereof; an anode having an anode active material; an electrolyte; and a separator.

  10. An Overview of Hydrogen Generation and Storage for Low-Temperature PEM Fuel Cells

    DTIC Science & Technology

    1999-11-01

    environment. Otherwise, the wt % of stored hydrogen is attractive; e.g., LiH is 25 percent. Thermal stability of pure alkali and alkaline earth- metal ...nanofibers can be prepared by metal -catalyzed decomposition (at 450 to 750 °C) of carbon-containing gases to possess a cross-sectional area between 30 to ...respect to the face of the metal particle. Separation distance between layers depends on the type of catalyst, gas, and reaction conditions used

  11. A Simple Method for Isolation of Caffeine from Black Tea Leaves: Use of a Dichloromethane-Alkaline Water Mixture as an Extractant

    NASA Astrophysics Data System (ADS)

    Onami, Tetsuo; Kanazawa, Hitoshi

    1996-06-01

    A simple procedure for the isolation of caffeine from tea leaves has been established without using hot or boiling water. A mixture of tea leaves, dichloromethane, and 0.2 M NaOH was shaken for 7 min, and the organic layer was separated. After evaporation of the organic solvent, residual crystals were purified by recrystallization to give 20-30 mg (student yield) of pure caffeine from one tea bag (2 g).

  12. Metabolic indicators of habitat condition and capture stress in pronghorns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seal, U.S.; Hoskinson, R.L.

    1978-01-01

    Blood samples were collected from 3 Idaho pronghorn antelope (Antilocapra americana) populations whose summer ranges are separated by physiographic features. Hematology and blood chemistry data were analyzed in terms of stress, age, sex, and ecological features of the habitat. Capture effects were reflected in levels of lactic dehydrogenase (LDH), creatine phosphokinase (CPK), serum glutamic-oxalacetic transaminase (SGOT), and perhaps serum cortisol. Age differences were observed for hematology, fibrinogen, LDH, and SGOT. There were age and sex differences in alkaline phosphatase levels. Differences were found between populations with respect to 15 of the 19 assays performed. Effects attributable to differences in nutritionmore » were observed for serum urea nitrogen, nonesterified fatty acids (NEFA), serum triglycerides, and alkaline phosphatase. Serum urea concentrations were related to the protein content of available food plants. The results indicate that it may be possible to assess the condition of pronghorn antelope habitat by measurement of the metabolic status of animals from free-ranging populations.« less

  13. Géochimie et cadre géodynamique du volcanisme néoprotérozoïque terminal (vendien) du Haut Atlas occidental, Maroc(Geochemical features and tectonic setting of late Neoproterozoic Vendian volcanism in the western High Atlas, Morocco)

    NASA Astrophysics Data System (ADS)

    Jouhari, A.; El-Archi, A.; Aarab, M.; El-Attari, A.; Ennih, N.; Laduron, D.

    2001-05-01

    Late Neoproterozoic Vendian volcanic and volcaniclastic rocks are widely distributed in the western High Atlas. They are located north of the Tizi n'Test Fault, separating the West African Craton from a northerly adjacent craton. These volcanic rocks overlie a semipelitic formation, which represents the equivalent of the Tidilline and Anzi Formations of the Anti-Atlas. The geochemical characteristics of these volcanic rocks suggest a calc-alkaline active margine environment associated with the post Pan-African tectonics. They differ from those of the Anti-Atlas by their lower content of K 2O. The later rock type was generated by a melting process of the crust subducted beneath the northern craton. A carbonate-shale unit, which contains examples of interstratified calc-alkaline dacite, overlies the volcanic succession, demonstrating that the volcanic activity continued sporadically until Early Cambrian times.

  14. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-24

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  15. New support for high-performance liquid chromatography based on silica coated with alumina particles.

    PubMed

    Silveira, José Leandro R; Dib, Samia R; Faria, Anizio M

    2014-01-01

    A new material based on silica coated with alumina nanoparticles was proposed for use as a chromatographic support for reversed-phase high-performance liquid chromatography. Alumina nanoparticles were synthesized by a sol-gel process in reversed micelles composed of sodium bis(2-ethylhexyl)sulfosuccinate, and the support material was formed by the self-assembly of alumina layers on silica spheres. Spectroscopic and (29)Si nuclear magnetic resonance results showed evidence of chemical bonds between the alumina nanoparticles and the silica spheres, while morphological characterizations showed that the aluminized silica maintained the morphological properties of silica desired for chromatographic purposes after alumina incorporation. Stability studies indicated that bare silica showed high dissolution (~83%), while the aluminized silica remained practically unchanged (99%) after passing one liter of the alkaline mobile phase, indicating high stability under alkaline conditions. The C18 bonded aluminized silica phase showed great potential for use in high-performance liquid chromatography to separate basic molecules in the reversed-phase mode.

  16. Low pressure ion chromatography with a low cost paired emitter-detector diode based detector for the determination of alkaline earth metals in water samples.

    PubMed

    Barron, Leon; Nesterenko, Pavel N; Diamond, Dermot; O'Toole, Martina; Lau, King Tong; Paull, Brett

    2006-09-01

    The use of a low pressure ion chromatograph based upon short (25 mm x 4.6 mm) surfactant coated monolithic columns and a low cost paired emitter-detector diode (PEDD) based detector, for the determination of alkaline earth metals in aqueous matrices is presented. The system was applied to the separation of magnesium, calcium, strontium and barium in less than 7min using a 0.15M KCl mobile phase at pH 3, with post-column reaction detection at 570 nm using o-cresolphthalein complexone. A comparison of the performance of the PEDD detector with a standard laboratory absorbance detector is shown, with limits of detection for magnesium and calcium using the low cost PEDD detector equal to 0.16 and 0.23 mg L(-1), respectively. Finally, the developed system was used for the determination of calcium and magnesium in a commercial spring water sample.

  17. Innovative pretreatment of sugarcane bagasse using supercritical CO2 followed by alkaline hydrogen peroxide.

    PubMed

    Phan, Duy The; Tan, Chung-Sung

    2014-09-01

    An innovative method for pretreatment of sugarcane bagasse using sequential combination of supercritical CO2 (scCO2) and alkaline hydrogen peroxide (H2O2) at mild conditions is proposed. This method was found to be superior to the individual pretreatment with scCO2, ultrasound, or H2O2 and the sequential combination of scCO2 and ultrasound regarding the yield of cellulose and hemicellulose, almost twice the yield was observed. Pretreatment with scCO2 could obtain higher amount of cellulose and hemicellulose but also acid-insoluble lignin. Pretreatment with ultrasound or H2O2 could partly depolymerize lignin, however, could not separate cellulose from lignin. The analysis of liquid products via enzymatic hydrolysis by HPLC and the characterization of the solid residues by SEM revealed strong synergetic effects in the sequential combination of scCO2 and H2O2. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Polyhydroxybutyrate-b-polyethyleneglycol block copolymer for the solid phase extraction of lead and copper in water, baby foods, tea and coffee samples.

    PubMed

    Wadhwa, Sham Kumar; Tuzen, Mustafa; Kazi, Tasneem Gul; Soylak, Mustafa; Hazer, Baki

    2014-01-01

    A new adsorbent, polyhydroxybutyrate-b-polyethyleneglycol, was used for the separation and preconcentration of copper(II) and lead(II) ions prior to their flame atomic absorption spectrometric detections. The influences of parameters such as pH, amount of adsorbent, flow rates and sample volumes were investigated. The polymer does not interact with alkaline, alkaline-earth metals and transition metals. The enrichment factor was 50. The detection limits were 0.32 μg L(-1) and 1.82 μg L(-1) for copper and lead, respectively. The recovery values were found >95%. The relative standard deviations were found to be less than 6%. The validation of the procedure was performed by analysing certified reference materials; NIST SRM 1515 Apple leaves, IAEA-336 Lichen and GBW-07605 Tea. The method was successfully applied for the analysis of analytes in water and food samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Mechanistic insights into the bleaching of melanin by alkaline hydrogen peroxide.

    PubMed

    Smith, R A W; Garrett, B; Naqvi, K R; Fülöp, A; Godfrey, S P; Marsh, J M; Chechik, V

    2017-07-01

    This work aims to determine the roles of reactive oxygen species HO∙ and HO 2 - in the bleaching of melanins by alkaline hydrogen peroxide. Experiments using melanosomes isolated from human hair indicated that the HO∙ radical generated in the outside solution does not contribute significantly to bleaching. However, studies using soluble Sepia melanin demonstrated that both HO 2 - and HO∙ will individually bleach melanin. Additionally, when both oxidants are present, bleaching is increased dramatically in both rate and extent. Careful experimental design enabled the separation of the roles and effects of these key reactive species, HO∙ and HO 2 - . Rationalisation of the results presented, and review of previous literature, allowed the postulation of a simplified general scheme whereby the strong oxidant HO∙ is able to pre-oxidise melanin units to o-quinones enabling more facile ring opening by the more nucleophilic HO 2 - . In this manner the efficiency of the roles of both species is maximised. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  1. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1993-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  2. [Separation of osteoclasts by lectin affinity chromatography].

    PubMed

    Itokazu, M; Tan, A; Tanaka, S

    1991-09-01

    Newborn rat calvaria bone cells obtained by digestion were fractionated on columns of wheat-germ agglutinin (WGA) sepharose 6MB for osteoclast isolation. The initial nonspecific binding cells which were passed through the WGA sepharose column by a buffer acquired a high enzyme activity of alkaline phosphatase, but not that of acid phosphatase. However, elution of cells using a buffer with the addition of N-acetyl-D-glucosamine resulted in a high acid phosphatase activity but no alkaline phosphatase activity. The former WGA binding negative fraction enriched osteoblasts averaging 30 microns in size. The latter WGA binding positive fraction enriched osteoclasts ranging from 20 microns to 60 microns in size. The electron-microscope clearly demonstrated the cellular details of osteoclasts. Isolated cell counts showed a ratio of six to four. These results indicate that our method of osteoclast isolation is simple and useful in lectin affinity chromatography because all cells have sugar moieties on their surface and the binding of osteoclasts can be reversed by the addition of specific lectin-binding sugars to the eluting buffer.

  3. Battery Separator Characterization and Evaluation Procedures for NASA's Advanced Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.; Bennet, William R.; Wong, Eunice K.; Lewton, MaryBeth R.; Harris, Megan K.

    2010-01-01

    To address the future performance and safety requirements for the electrical energy storage technologies that will enhance and enable future NASA manned aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued within the scope of the NASA Exploration Technology Development Program s (ETDP's) Energy Storage Project. A critical cell-level component of a lithium-ion battery which significantly impacts both overall electrochemical performance and safety is the porous separator that is sandwiched between the two active cell electrodes. To support the selection of the optimal cell separator material(s) for the advanced battery technology and chemistries under development, laboratory characterization and screening procedures were established to assess and compare separator material-level attributes and associated separator performance characteristics.

  4. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haryadi,, E-mail: haryadi@polban.ac.id; Sugianto, D.; Ristopan, E.

    2015-12-29

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for aboutmore » 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm{sup −1} and 3300 cm{sup −1} respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10{sup −2} S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.« less

  5. Discovery and Analysis of MicroRNAs in Leymus chinensis under Saline-Alkali and Drought Stress Using High-Throughput Sequencing

    PubMed Central

    Wang, Qi; Wang, Nan; Wang, Fawei; Liu, Weican; Li, Xiaowei; Chen, Huan; Yao, Na; Guan, Lili; Chen, Kai; Cui, Xiyan; Yang, Meiying; Li, Haiyan

    2014-01-01

    Leymus chinensis (Trin.) Tzvel. is a perennial rhizome grass of the Poaceae (also called Gramineae) family, which adapts well to drought, saline and alkaline conditions. However, little is known about the stress tolerance of L. chinensis at the molecular level. microRNAs (miRNAs) are known to play critical roles in nutrient homeostasis, developmental processes, pathogen responses, and abiotic stress in plants. In this study, we used Solexa sequencing technology to generate high-quality small RNA data from three L. chinensis groups: a control group, a saline-alkaline stress group (100 mM NaCl and 200 mM NaHCO3), and a drought stress group (20% polyethylene glycol 2000). From these data we identified 132 known miRNAs and 16 novel miRNAs candidates. For these miRNAs we also identified target genes that encode a broad range of proteins that may be correlated with abiotic stress regulation. This is the first study to demonstrate differentially expressed miRNAs in L. chinensis under saline-alkali and drought stress. These findings may help explain the saline-alkaline and drought stress responses in L. chinensis. PMID:25369004

  6. Volatile Fatty Acids Production from Codigestion of Food Waste and Sewage Sludge Based on β-Cyclodextrins and Alkaline Treatments

    PubMed Central

    Yang, Xue; Liu, Xiang; Chen, Si; Wu, Shuyan

    2016-01-01

    Volatile fatty acids (VFAs) are preferred valuable resources, which can be produced from anaerobic digestion process. This study presents a novel technology using β-cyclodextrins (β-CD) pretreatment integrated alkaline method to enhance VFAs production from codigestion of food waste and sewage sludge. Experiment results showed that optimized ratio of food waste to sewage sludge was 3 : 2 because it provided adequate organic substance and seed microorganisms. Based on this optimized ratio, the integrated treatment of alkaline pH 10 and β-CD addition (0.2 g/g TS) performed the best enhancement on VFAs production, and the maximum VFAs production was 8631.7 mg/L which was 6.13, 1.38, and 1.57 times higher than that of control, initial pH 10, and 0.2 g β-CD/g TS treatment, respectively. Furthermore, the hydrolysis rate of protein and polysaccharides was greatly improved in integration treatment, which was 1.18–3.45 times higher than that of other tests. Though the VFAs production and hydrolysis of polymeric organics were highly enhanced, the primary bacterial communities with different treatments did not show substantial differences. PMID:28096735

  7. Volatile Fatty Acids Production from Codigestion of Food Waste and Sewage Sludge Based on β-Cyclodextrins and Alkaline Treatments.

    PubMed

    Yang, Xue; Liu, Xiang; Chen, Si; Liu, Guangmin; Wu, Shuyan; Wan, Chunli

    2016-01-01

    Volatile fatty acids (VFAs) are preferred valuable resources, which can be produced from anaerobic digestion process. This study presents a novel technology using β -cyclodextrins ( β -CD) pretreatment integrated alkaline method to enhance VFAs production from codigestion of food waste and sewage sludge. Experiment results showed that optimized ratio of food waste to sewage sludge was 3 : 2 because it provided adequate organic substance and seed microorganisms. Based on this optimized ratio, the integrated treatment of alkaline pH 10 and β -CD addition (0.2 g/g TS) performed the best enhancement on VFAs production, and the maximum VFAs production was 8631.7 mg/L which was 6.13, 1.38, and 1.57 times higher than that of control, initial pH 10, and 0.2 g β -CD/g TS treatment, respectively. Furthermore, the hydrolysis rate of protein and polysaccharides was greatly improved in integration treatment, which was 1.18-3.45 times higher than that of other tests. Though the VFAs production and hydrolysis of polymeric organics were highly enhanced, the primary bacterial communities with different treatments did not show substantial differences.

  8. Discovery and analysis of microRNAs in Leymus chinensis under saline-alkali and drought stress using high-throughput sequencing.

    PubMed

    Zhai, Junfeng; Dong, Yuanyuan; Sun, Yepeng; Wang, Qi; Wang, Nan; Wang, Fawei; Liu, Weican; Li, Xiaowei; Chen, Huan; Yao, Na; Guan, Lili; Chen, Kai; Cui, Xiyan; Yang, Meiying; Li, Haiyan

    2014-01-01

    Leymus chinensis (Trin.) Tzvel. is a perennial rhizome grass of the Poaceae (also called Gramineae) family, which adapts well to drought, saline and alkaline conditions. However, little is known about the stress tolerance of L. chinensis at the molecular level. microRNAs (miRNAs) are known to play critical roles in nutrient homeostasis, developmental processes, pathogen responses, and abiotic stress in plants. In this study, we used Solexa sequencing technology to generate high-quality small RNA data from three L. chinensis groups: a control group, a saline-alkaline stress group (100 mM NaCl and 200 mM NaHCO3), and a drought stress group (20% polyethylene glycol 2000). From these data we identified 132 known miRNAs and 16 novel miRNAs candidates. For these miRNAs we also identified target genes that encode a broad range of proteins that may be correlated with abiotic stress regulation. This is the first study to demonstrate differentially expressed miRNAs in L. chinensis under saline-alkali and drought stress. These findings may help explain the saline-alkaline and drought stress responses in L. chinensis.

  9. Plasma membranes modified by plasma treatment or deposition as solid electrolytes for potential application in solid alkaline fuel cells.

    PubMed

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-07-30

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane.

  10. Plasma Membranes Modified by Plasma Treatment or Deposition as Solid Electrolytes for Potential Application in Solid Alkaline Fuel Cells

    PubMed Central

    Reinholdt, Marc; Ilie, Alina; Roualdès, Stéphanie; Frugier, Jérémy; Schieda, Mauricio; Coutanceau, Christophe; Martemianov, Serguei; Flaud, Valérie; Beche, Eric; Durand, Jean

    2012-01-01

    In the highly competitive market of fuel cells, solid alkaline fuel cells using liquid fuel (such as cheap, non-toxic and non-valorized glycerol) and not requiring noble metal as catalyst seem quite promising. One of the main hurdles for emergence of such a technology is the development of a hydroxide-conducting membrane characterized by both high conductivity and low fuel permeability. Plasma treatments can enable to positively tune the main fuel cell membrane requirements. In this work, commercial ADP-Morgane® fluorinated polymer membranes and a new brand of cross-linked poly(aryl-ether) polymer membranes, named AMELI-32®, both containing quaternary ammonium functionalities, have been modified by argon plasma treatment or triallylamine-based plasma deposit. Under the concomitant etching/cross-linking/oxidation effects inherent to the plasma modification, transport properties (ionic exchange capacity, water uptake, ionic conductivity and fuel retention) of membranes have been improved. Consequently, using plasma modified ADP-Morgane® membrane as electrolyte in a solid alkaline fuel cell operating with glycerol as fuel has allowed increasing the maximum power density by a factor 3 when compared to the untreated membrane. PMID:24958295

  11. Remediation of aged diesel contaminated soil by alkaline activated persulfate.

    PubMed

    Lominchar, M A; Santos, A; de Miguel, E; Romero, A

    2018-05-01

    The present work studies the efficiency of alkaline activated persulfate (PS) to remediate an aged diesel fuel contaminated soil from a train maintenance facility. The Total Petroleum Hydrocarbon (TPH) concentration in soil was approximately 5000mgkg -1 with a ratio of aliphatic:aromatic compounds of 70:30. Aromatic compounds were mainly naphtalenes and phenanthrenes. The experiments were performed in batch mode where different initial concentrations of persulfate (105mM, 210mM and 420mM) and activator:persulfate ratios (2 and 4) were evaluated, with NaOH used as activator. Runs were carried out during 56days. Complete TPH conversion was obtained with the highest concentration of PS and activator, whereas in the other runs the elimination of fuel ranged between 60 and 77%. Besides, the abatement of napthalenes and phenantrenes was faster than aliphatic reduction (i. e. after 4days of treatment, the conversions of the aromatic compounds were around 0.8 meanwhile the aliphatic abatements were 0.55) and no aromatic oxidation intermediates from naphtalenes or phenantrenes were detected. These results show that this technology is effective for the remediation of aged diesel in soil with alkaline pH. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Two-dimensional RPLC-RPLC system with different pH in two dimensions for separation of alkaloids from Corydalis yanhusuo W. T. Wang.

    PubMed

    Zhang, Jing; Jin, Yu; Liu, Yanfang; Xiao, Yuansheng; Feng, Jiatao; Xue, Xingya; Zhang, Xiuli; Liang, Xinmiao

    2009-06-01

    An effective method utilizing the same RP chromatographic column with different pH in first and second LC dimensions has been developed for separation of the basic compounds from traditional Chinese medicines (TCMs). In this work, the alkaloids in Corydalis yanhusuo which is an important TCM were selected as a model to develop the method. The additives and pH values of the mobile phase were optimized in this work. To investigate the feasibility of this method, off-line mode separation was performed in the experiments. According to the UV-absorption intensity, there were eight fractions collected in acidic conditions. All the fractions were analyzed in basic conditions. The results showed that the chromatographic selectivities were significantly different in the separations performed with acidic and alkaline elution systems. Complementary separation was achieved in this work. It is demonstrated that this method would be an effective tool for alkaloids research. Based on the different pH of the mobile phase in this method, it could also be suitable to analyze compounds which were sensible to the pH of the solution.

  13. Caustic Recycling Pilot Unit to Separate Sodium from LLW at Hanford Site - 12279

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pendleton, Justin; Bhavaraju, Sai; Priday, George

    As part of the Department of Energy (DOE) sponsored Advanced Remediation Technologies initiative, a scheme was developed to combine Continuous Sludge Leaching (CSL), Near-Tank Cesium Removal (NTCR), and Caustic Recycling Unit (CRU) using Ceramatec technology, into a single system known as the Pilot Near-Tank Treatment System (PNTTS). The Cesium (Cs) decontaminated effluent from the NTCR process will be sent to the caustic recycle process for recovery of the caustic which will be reused in another cycle of caustic leaching in the CSL process. Such an integrated mobile technology demonstration will give DOE the option to insert this process for sodiummore » management at various sites in Hanford, and will minimize the addition of further sodium into the waste tanks. This allows for recycling of the caustic used to remove aluminum during sludge washing as a pretreatment step in the vitrification of radioactive waste which will decrease the Low Level Waste (LLW) volume by as much as 39%. The CRU pilot process was designed to recycle sodium in the form of pure sodium hydroxide. The basis for the design of the 1/4 scale pilot caustic recycling unit was to demonstrate the efficient operation of a larger scale system to recycle caustic from the NTCR effluent stream from the Parsons process. The CRU was designed to process 0.28 liter/minute of NTCR effluent, and generate 10 M concentration of 'usable' sodium hydroxide. The proposed process operates at 40 deg. C to provide additional aluminum solubility and then recover the sodium hydroxide to the point where the aluminum is saturated at 40 deg. C. A system was developed to safely separate and vent the gases generated during operation of the CRU with the production of 10 M sodium hydroxide. Caustic was produced at a rate between 1.9 to 9.3 kg/hr. The CRU was located inside an ISO container to allow for moving of the unit close to tank locations to process the LLW stream. Actual tests were conducted with the NTCR effluent simulant from the Parsons process in the CRU. The modular CRU is easily scalable as a standalone system for caustic recycling, or for NTTS integration or for use as an In-Tank Treatment System to process sodium bearing waste to meet LLW processing needs at the Hanford site. The standalone pilot operation of the CRU to recycle sodium from NTCR effluent places the technology demonstration at TRL level 6. Multiple operations were performed with the CRU to process up to 500 gallons of the NTCR effluent and demonstrate an efficient separation of up to 70 % of the sodium without solids precipitation while producing 10 M caustic. Batch mode operation was conducted to study the effects of chemistry variation, establish the processing rate, and optimize the process operating conditions to recycle caustic from the NTCR effluent. The performance of the CRU was monitored by tracking the density parameter to control the concentration of caustic produced. Different levels of sodium were separated in tests from the effluent at a fixed operating current density and temperature. The voltage of the modules remained stable during the unit operation which demonstrated steady operation to separate sodium from the NTCR effluent. The sodium transfer current efficiency was measured in testing based on the concentration of caustic produced. Measurements showed a current efficiency of 99.8% for sodium transfer from the NTCR effluent to make sodium hydroxide. The sodium and hydroxide contents of the anolyte (NTCR feed) and catholyte (caustic product) were measured before and after each batch test. In two separate batch tests, samples were taken at different levels of sodium separation and analyzed to determine the stability of the NTCR effluent after sodium separation. The stability characteristics and changes in physical and chemical properties of the NTCR effluent chemistry after separation of sodium hydroxide as a function of storage time were evaluated. Parameters such as level of precipitated alumina, total alkalinity, analysis of Al, Na, K, Cs, Fe, OH, nitrate, nitrite, total dissolved and undissolved solids, viscosity, density, and other parameters of the NTCR effluent were measured. Changes in rheology and properties of NTCR stream to support downstream handling of the effluent after sodium separation was the basis for the analysis. The results show that the NTCR effluent is stable without the precipitation of aluminum hydroxide after 70% of the sodium was separated from the effluent. (authors)« less

  14. Using Intensive Variables to Constrain Magma Source Regions

    NASA Astrophysics Data System (ADS)

    Edwards, B. R.; Russell, J. K.

    2006-05-01

    In the modern world of petrology, magma source region characterization is commonly the realm of trace element and isotopic geochemistry. However, major element analyses of rocks representing magmatic compositions can also be used to constrain source region charactertistics, which enhance the results of isotopic and trace element studies. We show examples from the northern Cordilleran volcanic province (NCVP), in the Canadian Cordillera, where estimations of thermodynamic intensive variables are used to resolve different source regions for mafic alkaline magmas. We have taken a non-traditional approach to using the compositions of three groups of mafic, alkaline rocks to characterize the source regions of magmas erupted in the NCVP. Based on measured Fe2O3 and FeO in rocks from different locations, the Atlin volcanic district (AVD), the Fort Selkirk volcanic complex (FSVC), the West Tuya volcanic field, (WTVF), we have estimated oxygen fugacities (fO2) for the source regions of magmas based on the model of Kress and Carmichael (1991) and the computational package MELTS/pMelts (Ghiorso and Sack, 1995; Ghiorso et al., 2002). We also have used Melts/pMelts to estimate liquidus conditions for the compositions represented by the samples as well as activities of major element components. The results of our calculations are useful for distinguishing between three presumably different magma series: alkaline basalts, basanites, and nephelinites (Francis and Ludden, 1990; 1995). Calculated intensive variables (fO2, activities SiO2, KAlSiO4, Na2SiO3) show clear separation of the samples into two groups: i) nephelinites and ii) basanites/alkaline basalts. The separation is especially evident on plots of log fO2 versus activity SiO2. The source region for nephelinitic magmas in the AVD is up to 2 log units more oxidized than that for the basanites/basalts as well as having a distinctly lower range of activities of SiO2. Accepting that our assumptions about the magmas representing source region conditions are valid, these thermodynamic constraints on the source regions clearly indicate two things: the nephelinites and basanites/basalts could not have originated from the same source regions, and the basanites and basalts could have originated from the same source regions. We suggest that computation of intensive variables for magma source regions is a logical complement to standard trace element and isotopic studies. -Francis, D. and Ludden, J., (1990) The mantle source for olivine nephelinite, basanite and alkaline olivine basalts at Fort Selkirk, Yukon, Canada: Journal of Petrology, 31, p. 371-400. -Francis, D. and Ludden, J., (1995) The signature of amphibole in mafic alkaline lavas, a study in the northern Canadian Cordillera: Journal of Petrology, 36, p. 1171-1191. -Ghiorso, MS., and Sack, RO. (1995) Chemical Mass Transfer in Magmatic Processes. IV. A Revised and Internally Consistent Thermodynamic Model for the Interpolation and Extrapolation of Liquid-Solid Equilibria in Magmatic Systems at Elevated Temperatures and Pressures. Contributions to Mineralogy and Petrology, 119, 197-212. -Ghiorso, MS., Hirschmann, MM., Reiners, PW., and Kress, VC. III (2002) The pMELTS: An revision of MELTS aimed at improving calculation of phase relations and major element partitioning involved in partial melting of the mantle at pressures up to 3 GPa. Geochemistry, Geophysics, Geosystems 3(5), 10.1029/2001GC000217.

  15. Robust and durable superhydrophobic fabrics fabricated via simple Cu nanoparticles deposition route and its application in oil/water separation.

    PubMed

    Wang, Jintao; Wang, Hongfei

    2017-06-15

    The exploitation of separation materials with high selectivity for oil pollutants is of great importance due to severe environmental damage from oil spillages and industrial discharge of oils. A facile in situ growth process for creating superhydrophobic-superoleophilic fabrics for oil-water separation is developed. This proposed method is based mainly on the deposition Cu nanoparticles and subsequent hydrophobic modification. Compared with the hydrophilicity of original fabric, the water contact angle of the modified fabric rises to 154.5°, suggesting its superhydrophobicity. The as-prepared fabrics also exhibit wonderful oil-water selectivity, excellent recyclability, and high separation efficiency (>94.5%). Especially, via pumping the fabric rolled into a multilayered tube, various types of oils on water surface can be continuously separated in situ without any water uptake. Furthermore, the superhydrophobic fabrics show excellent superhydrophobic stability, and can resist different chemicals, such as salty, acidic, and alkaline solutions, oils, and hot water. After the abrasion of 400cycles, the broken fabric still possesses highly hydrophobicity with water contact angle of 145°. Therefore, due to simple fabrication steps, low cost, and scalable process, the as-prepared fabrics can be applied in the separation of oils and other organic solvents from water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Simultaneous speciation analysis of chromate, molybdate, tungstate and vanadate in welding fume alkaline extracts by HPLC-ICP-MS.

    PubMed

    Ščančar, Janez; Berlinger, Balázs; Thomassen, Yngvar; Milačič, Radmila

    2015-09-01

    A novel analytical procedure was developed for the simultaneous speciation analysis of chromate, molybdate, tungstate and vanadate by anion-exchange high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC-ICP-MS). Linear gradient elution from 100% water to 100% 0.7 M NaCl was applied for chromatographic separation of metal species. In standard aqueous solution at neutral pH molybdate, tungstate and vanadate exist in several aqueous species, while chromate is present as a single CrO4(2-) species. Consequently, only chromate can be separated from this solution in a sharp chromatographic peak. For obtaining sharp chromatographic peaks for molybdate, tungstate and vanadate, the pH of aqueous standard solutions was raised to 12. At highly alkaline conditions single CrO4(2-), MoO4(2-) and WO4(2-) are present and were eluted in sharp chromatographic peaks, while VO4(3-) species, which predominates at pH 12 was eluted in slightly broaden peak. In a mixture of aqueous standard solutions (pH 12) chromate, molybdate, tungstate and vanadate were eluted at retention times from 380 to 420 s, 320 to 370 s, 300 to 350 s and 240 to 360 s, respectively. Eluted species were simultaneously detected on-line by ICP-MS recording m/z 52, 95, 182 and 51. The developed procedure was successfully applied to the analysis of leachable concentrations of chromate, molybdate, tungstate and vanadate in alkaline extracts (2% NaOH+3% Na2CO3) of manual metal arc (MMA) welding fumes loaded on filters. Good repeatability and reproducibility of measurement (RSD±3.0%) for the investigated species were obtained in both aqueous standard solutions (pH 12) and in alkaline extracts of welding fumes. Low limits of detection (LODs) were found for chromate (0.02 ng Cr mL(-1)), molybdate (0.1 ng Mo mL(-1)), tungstate (0.1 ng W mL(-1)) and vanadate (0.2 ng V mL(-1)). The accuracy of analytical procedure for the determination of chromate was checked by analysis of CRM 545, Cr(VI) in welding dust loaded on a filter. Good agreement between determined and reported certified values was obtained. For molybdate, tungstate and vanadate the assessment of accuracy was performed by spiking welding fume filters. Good recoveries for all investigated species (98-101%) confirmed the accuracy of the analytical procedure. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. High-Efficiency Artificial Photosynthesis Using a Novel Alkaline Membrane Cell

    NASA Technical Reports Server (NTRS)

    Narayan, Sri; Haines, Brennan; Blosiu, Julian; Marzwell, Neville

    2009-01-01

    A new cell designed to mimic the photosynthetic processes of plants to convert carbon dioxide into carbonaceous products and oxygen at high efficiency, has an improved configuration using a polymer membrane electrolyte and an alkaline medium. This increases efficiency of the artificial photosynthetic process, achieves high conversion rates, permits the use of inexpensive catalysts, and widens the range of products generated by this type of process. The alkaline membrane electrolyte allows for the continuous generation of sodium formate without the need for any additional separation system. The electrolyte type, pH, electrocatalyst type, and cell voltage were found to have a strong effect on the efficiency of conversion of carbon dioxide to formate. Indium electrodes were found to have higher conversion efficiency compared to lead. Bicarbonate electrolyte offers higher conversion efficiency and higher rates than water solutions saturated with carbon dioxide. pH values between 8 and 9 lead to the maximum values of efficiency. The operating cell voltage of 2.5 V, or higher, ensures conversion of the carbon dioxide to formate, although the hydrogen evolution reaction begins to compete strongly with the formate production reaction at higher cell voltages. Formate is produced at indium and lead electrodes at a conversion efficiency of 48 mg of CO2/kilojoule of energy input. This efficiency is about eight times that of natural photosynthesis in green plants. The electrochemical method of artificial photosynthesis is a promising approach for the conversion, separation and sequestration of carbon dioxide for confined environments as in space habitats, and also for carbon dioxide management in the terrestrial context. The heart of the reactor is a membrane cell fabricated from an alkaline polymer electrolyte membrane and catalyst- coated electrodes. This cell is assembled and held in compression in gold-plated hardware. The cathode side of the cell is supplied with carbon dioxide-saturated water or bicarbonate solution. The anode side of the cell is supplied with sodium hydroxide solution. The solutions are circulated past the electrodes in the electrochemical cell using pumps. A regulated power supply provides the electrical energy required for the reactions. Photovoltaic cells can be used to better mimic the photosynthetic reaction. The current flowing through the electrochemical cell, and the cell voltage, are monitored during experimentation. The products of the electrochemical reduction of carbon dioxide are allowed to accumulate in the cathode reservoir. Samples of the cathode solution are withdrawn for product analysis. Oxygen is generated on the anode side and is allowed to vent out of the reservoir.

  18. Alkaline batteries for hybrid and electric vehicles

    NASA Astrophysics Data System (ADS)

    Haschka, F.; Warthmann, W.; Benczúr-Ürmössy, G.

    Forced by the USABC PNGV Program and the EZEV regulation in California, the development of hybrid vehicles become more strong. Hybrids offer flexible and unrestricted mobility, as well as pollution-free driving mode in the city. To achieve these requirements, high-power storage systems are demanded fulfilled by alkaline batteries (e.g., nickel/cadmium, nickel/metal hydride). DAUG has developed nickel/cadmium- and nickel/metal hydride cells in Fibre Technology of different performance types (up to 700 W/kg peak power) and proved in electric vehicles of different projects. A special bipolar cell design will meet even extreme high power requirements with more than 1000 W/kg peak power. The cells make use of the Recom design ensuring high power charge ability at low internal gas pressure. The paper presents laboratory test results of cells and batteries.

  19. Copper Sensing in Alkaline Electrolyte Using Anodic Stripping Voltammetry by Means of a Lead Mediator

    DOE PAGES

    Duay, Jonathon; Ortiz-Santiago, Joed E.; Lambert, Timothy N.

    2017-10-05

    Anodic stripping voltammetry (ASV) is an analysis technique that permits the selective and quantitative analysis of metal ion species in solution. It is most commonly applied in neutral to acidic electrolyte largely due to inherent metal ion solubility. Bismuth (Bi) is a common film used for ASV due to its good sensitivity, overall stability and insensitivity to O2. ASV, utilizing a Bi film, along with cadmium (Cd) and lead (Pb) as the plating mediators, has recently been adapted to determine zinc (Zn) concentrations in highly alkaline environments (30 % NaOH or 35 % M KOH). Successful analysis of Zn inmore » alkaline relies on the ability of the hydroxide to form soluble metal anion species, such as Bi(OH) 4 – and Zn(OH) 4 2–. Here, we look to extend this technique to detect and quantify copper (Cu) ions in these highly basic electrolytes. However, in general, the use of ASV to detect and quantify Cu ion concentrations is notoriously difficult as the Cu stripping peak potential overlays with that of Bi from the common Bi film electrode. Here, an ASV method for determining Cu concentration in alkaline solutions is developed utilizing Pb as a deposition mediator. As such, it was found that when analyzing Cu solutions in the presence of Pb, the stripping voltammetry curves present separate and defined Cu stripping peaks. Different analyzes were made to find the best stripping voltammetry performance conditions. As such, an accumulation time of 5 minutes, an accumulation potential of ≤–1.45 V vs. Hg/HgO, and a concentration of 35 wt% KOH were determined to be the conditions that presented the best ASV results. Utilizing these conditions, calibration curves in the presence of 5.0 ppm Pb showed the best linear stripping signal correlation with an r-squared value of 0.991 and a limit of detection (LOD) of 0.67 ppm. Lastly, these results give way to evaluating Cu concentrations using ASV in aqueous alkaline solutions.« less

  20. Copper Sensing in Alkaline Electrolyte Using Anodic Stripping Voltammetry by Means of a Lead Mediator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duay, Jonathon; Ortiz-Santiago, Joed E.; Lambert, Timothy N.

    Anodic stripping voltammetry (ASV) is an analysis technique that permits the selective and quantitative analysis of metal ion species in solution. It is most commonly applied in neutral to acidic electrolyte largely due to inherent metal ion solubility. Bismuth (Bi) is a common film used for ASV due to its good sensitivity, overall stability and insensitivity to O2. ASV, utilizing a Bi film, along with cadmium (Cd) and lead (Pb) as the plating mediators, has recently been adapted to determine zinc (Zn) concentrations in highly alkaline environments (30 % NaOH or 35 % M KOH). Successful analysis of Zn inmore » alkaline relies on the ability of the hydroxide to form soluble metal anion species, such as Bi(OH) 4 – and Zn(OH) 4 2–. Here, we look to extend this technique to detect and quantify copper (Cu) ions in these highly basic electrolytes. However, in general, the use of ASV to detect and quantify Cu ion concentrations is notoriously difficult as the Cu stripping peak potential overlays with that of Bi from the common Bi film electrode. Here, an ASV method for determining Cu concentration in alkaline solutions is developed utilizing Pb as a deposition mediator. As such, it was found that when analyzing Cu solutions in the presence of Pb, the stripping voltammetry curves present separate and defined Cu stripping peaks. Different analyzes were made to find the best stripping voltammetry performance conditions. As such, an accumulation time of 5 minutes, an accumulation potential of ≤–1.45 V vs. Hg/HgO, and a concentration of 35 wt% KOH were determined to be the conditions that presented the best ASV results. Utilizing these conditions, calibration curves in the presence of 5.0 ppm Pb showed the best linear stripping signal correlation with an r-squared value of 0.991 and a limit of detection (LOD) of 0.67 ppm. Lastly, these results give way to evaluating Cu concentrations using ASV in aqueous alkaline solutions.« less

  1. Impact of Triethanolamine as an Additive for Rechargeable Alkaline Zn/MnO 2 Batteries under Limited Depth of Discharge Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Maria; Duay, Jonathon; Lambert, Timothy N.

    Rechargeable alkaline Zn/MnO 2 batteries are being developed for use as cost-effective grid-scale energy storage devices. Previous studies have shown that limiting the depth of discharge (DOD) of the MnO 2 cathode extends cell lifetime while still providing a cost-effective battery system. Herein, a comprehensive study of triethanolamine (TEA) as an additive in Zn/MnO 2 limited DOD batteries is provided by examining the effect of TEA in full cells as well as independently on the cathode, anode, separator, and electrolyte. Improvement in cycle-ability of the cathode (on average, 80% of cycled capacity remains after 191 cycles without TEA, 568 cyclesmore » with TEA) and a decrease in ionic zinc mobility across Celgard 3501 (7.91 × 10 -5 cm 2/min without TEA, 3.56 × 10 -5 cm 2/min with TEA) and Cellophane 350P00 (3.26 × 10 -5 cm 2/min without TEA, 4.74 × 10 -6 cm 2/min with TEA) separators upon the addition of TEA are demonstrated. However, TEA increased both the reduction potential of Zn (-0.68 V vs. Hg/HgO without TEA, -0.76 V with TEA) and the solubility of Zn 2+ (0.813 M without TEA, 1.023 M with TEA). Overall, the addition of TEA extended the lifetime of limited DOD cells on average by 297%.« less

  2. Impact of Triethanolamine as an Additive for Rechargeable Alkaline Zn/MnO 2 Batteries under Limited Depth of Discharge Conditions

    DOE PAGES

    Kelly, Maria; Duay, Jonathon; Lambert, Timothy N.; ...

    2017-12-01

    Rechargeable alkaline Zn/MnO 2 batteries are being developed for use as cost-effective grid-scale energy storage devices. Previous studies have shown that limiting the depth of discharge (DOD) of the MnO 2 cathode extends cell lifetime while still providing a cost-effective battery system. Herein, a comprehensive study of triethanolamine (TEA) as an additive in Zn/MnO 2 limited DOD batteries is provided by examining the effect of TEA in full cells as well as independently on the cathode, anode, separator, and electrolyte. Improvement in cycle-ability of the cathode (on average, 80% of cycled capacity remains after 191 cycles without TEA, 568 cyclesmore » with TEA) and a decrease in ionic zinc mobility across Celgard 3501 (7.91 × 10 -5 cm 2/min without TEA, 3.56 × 10 -5 cm 2/min with TEA) and Cellophane 350P00 (3.26 × 10 -5 cm 2/min without TEA, 4.74 × 10 -6 cm 2/min with TEA) separators upon the addition of TEA are demonstrated. However, TEA increased both the reduction potential of Zn (-0.68 V vs. Hg/HgO without TEA, -0.76 V with TEA) and the solubility of Zn 2+ (0.813 M without TEA, 1.023 M with TEA). Overall, the addition of TEA extended the lifetime of limited DOD cells on average by 297%.« less

  3. EMERGING TECHNOLOGY BULLETIN: VOLATILE ORGANIC COMPOUND REMOVAL FROM AIR STREAMS BY MEMBRANES SEPARATION MEMBRANE TECHNOLOGY AND RESEARCH, INC.

    EPA Science Inventory

    This membrane separation technology developed by Membrane Technology and Research (MTR), Incorporated, is designed to remove volatile organic compounds (VOCs) from contaminated air streams. In the process, organic vapor-laden air contacts one side of a membrane that is permeable ...

  4. Electrochemical Energy Storage for an Orbiting Space Station

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1981-01-01

    The system weight of a multi hundred kilowatt fuel cell electrolysis cell energy storage system based upon alkaline electrochemical cell technology for use in a future orbiting space station in low Earth orbit (LEO) was studied. Preliminary system conceptual design, fuel cell module performance characteristics, subsystem and system weights, and overall system efficiency are identified. The impact of fuel cell module operating temperature and efficiency upon energy storage system weight is investigated. The weight of an advanced technology system featuring high strength filament wound reactant tanks and a fuel cell module employing lightweight graphite electrolyte reservoir plates is defined.

  5. Development and evaluation of polyvinyl-alcohol blend polymer films as battery separators

    NASA Technical Reports Server (NTRS)

    Manzo, M. A.

    1982-01-01

    Several dialdehydes and epoxies were evaluated for their suitability as cross-linkers. Optium concentrations of several cross-linking reagents were determined. A two-step method of cross-linking, which involves treatment of the film in an acid or acid periodate bath, was investigated and dropped in favor of a one-step method in which the acid catalyst, which initiates cross-linking, is added to the PVA - cross-linker solution before casting. The cross-linking was thus achieved during the drying step. This one-step method was much more adaptable to commercial processing. Cross-linked films were characterized as alkaline battery separators. Films were prepared in the lab and tested in cells in order to evaluate the effect of film composition and a number of processing parameters on cell performance. These tests were conducted in order to provide a broader data base from which to select optimum processing parameters. Results of the separator screening tests and the cell tests are discussed.

  6. Zirconia based superhydrophobic coatings on cotton fabrics exhibiting excellent durability for versatile use

    PubMed Central

    Das, Indranee; De, Goutam

    2015-01-01

    A fluorinated silyl functionalized zirconia was synthesized by the sol-gel method to fabricate an extremely durable superhydrophobic coating on cotton fabrics by simple immersion technique. The fabric surfaces firmly attached with the coating material through covalent bonding, possessed superhydrophobicity with high water contact angle ≈163 ± 1°, low hysteresis ≈3.5° and superoleophilicity. The coated fabrics were effective to separate oil/water mixture with a considerably high separation efficiency of 98.8 wt% through ordinary filtering. Presence of highly stable (chemically and mechanically) superhydrophobic zirconia bonded with cellulose makes such excellent water repelling ability of the fabrics durable under harsh environment conditions like high temperature, strong acidic or alkaline solutions, different organic solvents and mechanical forces including extensive washings. Moreover, these coated fabrics retained self-cleanable superhydrophobic property as well as high water separation efficiency even after several cycles, launderings and abrasions. Therefore, such robust superhydrophobic ZrO2 coated fabrics have strong potential for various industrial productions and uses. PMID:26678754

  7. METHOD OF PRODUCING DENSE CONSOLIDATED METALLIC REGULUS

    DOEpatents

    Magel, T.T.

    1959-08-11

    A methcd is presented for reducing dense metal compositions while simultaneously separating impurities from the reduced dense metal and casting the reduced parified dense metal, such as uranium, into well consolidated metal ingots. The reduction is accomplished by heating the dense metallic salt in the presence of a reducing agent, such as an alkali metal or alkaline earth metal in a bomb type reacting chamber, while applying centrifugal force on the reacting materials. Separation of the metal from the impurities is accomplished essentially by the incorporation of a constricted passageway at the vertex of a conical reacting chamber which is in direct communication with a collecting chamber. When a centrifugal force is applled to the molten metal and slag from the reduction in a direction collinear with the axis of the constricted passage, the dense molten metal is forced therethrough while the less dense slag is retained within the reaction chamber, resulting in a simultaneous separation of the reduced molten metal from the slag and a compacting of the reduced metal in a homogeneous mass.

  8. Determination of lithium in rocks: Fluorometric method

    USGS Publications Warehouse

    White, C.E.; Fletcher, M.H.; Parks, J.

    1951-01-01

    The gravimetric method in general use for the determination of lithium is tedious, and the final weighed product often contains other alkali metals. A fluorometric method was developed to shorten the time required for the analysis and to assure that the final determination is for lithium alone. This procedure is based on the complex formed between lithium and 8-hydroxyquinoline. The fluorescence is developed in a slightly alkaline solution of 95% alcohol and measurement is made on a photoelectric fluorometer. Separation from the ore is carried out by the wet method or by the distillation procedure. Sodium and potassium are removed by alcohol and ether, but complete separation is not necessary. Comparison of analyzed samples shows excellent agreement with spectrographic and gravimetric methods. The fluorometric method is more rapid than the gravimetric and produces more conclusive results. Another useful application is in the preparation of standard lithium solutions from reagent quality salts when a known standard is available. In this case no separations are necessary.

  9. Metal chelate affinity precipitation of RNA and purification of plasmid DNA

    NASA Technical Reports Server (NTRS)

    Balan, Sindhu; Murphy, Jason; Galaev, Igor; Kumar, Ashok; Fox, George E.; Mattiasson, Bo; Willson, Richard C.

    2003-01-01

    The affinity of metal chelates for amino acids, such as histidine, is widely used in purifying proteins, most notably through six-histidine 'tails'. We have found that metal affinity interactions can also be applied to separation of single-stranded nucleic acids through interactions involving exposed purines. Here we describe a metal affinity precipitation method to resolve RNA from linear and plasmid DNA. A copper-charged copolymer of N-isopropyl acrylamide (NIPAM) and vinyl imidazole (VI) is used to purify plasmid from an alkaline lysate of E. coli. The NIPAM units confer reversible solubility on the copolymer while the imidazole chelates metal ions in a manner accessible to interaction with soluble ligands. RNA was separated from the plasmid by precipitation along with the polymer in the presence of 800 mM NaCl. Bound RNA could be recovered by elution with imidazole and separated from copolymer by a second precipitation step. RNA binding showed a strong dependence on temperature and on the type of buffer used.

  10. Hyper-X Stage Separation: Background and Status

    NASA Technical Reports Server (NTRS)

    Reubush, David E.

    1999-01-01

    This paper provides an overview of stage separation activities for NASA's Hyper-X program; a focused hypersonic technology effort designed to move hypersonic, airbreathing vehicle technology from the laboratory environment to the flight environment. This paper presents an account of the development of the current stage separation concept, highlights of wind tunnel experiments and computational fluid dynamics investigations being conducted to define the separation event, results from ground tests of separation hardware, schedule and status. Substantial work has been completed toward reducing the risk associated with stage separation.

  11. Membrane separation systems---A research and development needs assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, R.W.; Cussler, E.L.; Eykamp, W.

    1990-03-01

    Membrane based separation technology, a relative newcomer on the separations scene, has demonstrated the potential of saving enormous amounts of energy in the processing industries if substituted for conventional separation systems. Over 1 quad annually, out of 2.6, can possibly be saved in liquid-to-gas separations, alone, if membrane separation systems gain wider acceptance, according to a recent DOE/OIP (DOE/NBM-80027730 (1986)) study. In recent years great strides have been made in the field and offer even greater energy savings in the future when substituted for other conventional separation techniques such as distillation, evaporation, filtration, sedimentation, and absorption. An assessment was conductedmore » by a group of six internationally known membrane separations experts who examined the worldwide status of research in the seven major membrane areas. This encompassed four mature technology areas: reverse osmosis, micorfiltration, ultrafiltration, and electrodialysis; two developing areas: gas separation and and pervaporation; and one emerging technology: facilitated transport. Particular attention was paid to identifying the innovative processes currently emerging, and even further improvements which could gain wider acceptance for the more mature membrane technology. The topics that were pointed out as having the greatest research emphasis are pervaporation for organic-organic separations; gas separation; micorfiltration; an oxidant-resistant reverse osmosis membrane; and a fouling-resistant ultrafiltration membrane. 35 refs., 6 figs., 22 tabs.« less

  12. The BATENUS process for recycling mixed battery waste

    NASA Astrophysics Data System (ADS)

    Fröhlich, Siegmund; Sewing, Dirk

    The first large-scale battery recycling facility implementing the hydrometallurgical BATENUS technology is expected to go into operation by 1996. The plant will be situated in Schönebeck/Sachsen-Anhalt, and has a projected maximum capacity of 7500 tons of spent batteries per year. The engineering is being carried out by Keramchemie GmbH and the plant will be operated by Batterierecycling Schönebeck GmbH. The BATENUS process was developed by Pira GmbH, a research institute in Stühlingen, Germany, during a period of five years. This new process combines hydrometallurgical operations in a nearly closed reagent cycle that involves electrochemical and membrane techniques. Effluent emissions are minimized to the greatest possible extent. Process validity has been proven in a series of pilot plant testings. After mechanical separation of the casing materials like ferrous and nonferrous metals, paper and plastics, the subsequent hydrometallurgical recovery yields zinc, copper, nickel and cadmium. The other products are manganese carbonate and a mixture of manganese oxide with carbon black. Mercury is immobilized by absorption on a selective ion-exchange resin. The BATENUS process is a master process for the hydrometallurgical reclamation of metals from secondary raw materials. It has found its first application in the treatment of spent consumer batteries (i.e., mixtures of zinc-carbon, alkaline manganese, lithium, nickel-cadmium cells, etc.). As a result of its modular process design, the individual steps can be modified easily and adapted to accommodate variations in the contents of the secondary raw materials. Further applications of this highly flexible technology are planned for the future.

  13. Energy, Power & Interconnect Technologies Division Overview

    DTIC Science & Technology

    2010-02-26

    Indiana University, Bloomington, IN, February 26, 2010 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...Battery Expertise Alkaline (Sealed/Vented) Lithium (Reserve/Active) Thermal Aluminum-Oxygen (Air) Cadmium -Oxygen (Air) Carbon-Zinc Mercury- Cadmium M Zi...Iron Nickel- Cadmium Nickel-Hydrogen Oxyhalide Polymer Sulfur Dioxide Sulfuryl Chloride Thionyl Chloride V di P t id um con o a su e Magnesium/Vanadium

  14. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    USGS Publications Warehouse

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  15. pH and Organic Carbon Dose Rates Control Microbially Driven Bioremediation Efficacy in Alkaline Bauxite Residue.

    PubMed

    Santini, Talitha C; Malcolm, Laura I; Tyson, Gene W; Warren, Lesley A

    2016-10-18

    Bioremediation of alkaline tailings, based on fermentative microbial metabolisms, is a novel strategy for achieving rapid pH neutralization and thus improving environmental outcomes associated with mining and refining activities. Laboratory-scale bioreactors containing bauxite residue (an alkaline, saline tailings material generated as a byproduct of alumina refining), to which a diverse microbial inoculum was added, were used in this study to identify key factors (pH, salinity, organic carbon supply) controlling the rates and extent of microbially driven pH neutralization (bioremediation) in alkaline tailings. Initial tailings pH and organic carbon dose rates both significantly affected bioremediation extent and efficiency with lower minimum pHs and higher extents of pH neutralization occurring under low initial pH or high organic carbon conditions. Rates of pH neutralization (up to 0.13 mM H + produced per day with pH decreasing from 9.5 to ≤6.5 in three days) were significantly higher in low initial pH treatments. Representatives of the Bacillaceae and Enterobacteriaceae, which contain many known facultative anaerobes and fermenters, were identified as key contributors to 2,3-butanediol and/or mixed acid fermentation as the major mechanism(s) of pH neutralization. Initial pH and salinity significantly influenced microbial community successional trajectories, and microbial community structure was significantly related to markers of fermentation activity. This study provides the first experimental demonstration of bioremediation in bauxite residue, identifying pH and organic carbon dose rates as key controls on bioremediation efficacy, and will enable future development of bioreactor technologies at full field scale.

  16. Nineteenth annual actinide separations conference: Conference program and abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronson, M.

    This report contains the abstracts from the conference presentations. Sessions were divided into the following topics: Waste treatment; Spent fuel treatment; Issues and responses to Defense Nuclear Facility Safety Board 94-1; Pyrochemical technologies; Disposition technologies; and Aqueous separation technologies.

  17. Development of Composite Spectrophotometric Procedures for the Analysis of Low-Alloy Steels and of Aluminum and Its Alloys

    DTIC Science & Technology

    1952-11-01

    COPPER lb Although copper can be determined by measurement of the blue cupric ammonia complex, the reaction is not very sensitive and is subject to...alkaline solution of the sample con- taining tartrate , provided a means of separation of copper by extraction of WADO TR 52-246 1 the copper bensoinoximate...potassium tartrate ), and sodium hydroxide solution added to ad- just the pH within the range ll3 to 12-3. After adding alpha-benzoinoxime the mixture was

  18. Strip cell test and evaluation program

    NASA Technical Reports Server (NTRS)

    Gitlow, B.; Bell, W. F.; Martin, R. E.

    1978-01-01

    The performance characteristics of alkaline fuel cells to be used for space power systems were tested. Endurance tests were conducted on the cells during energy conversion operations. A feature of the cells fabricated and tested was the capability to evaporate the product water formed during the energy conversion reaction directly to space vacuum. A fuel cell powerplant incorporating these cells does not require a condenser and a hydrogen recirculating pump water separator to remove the product water. This simplified the fuel cell powerplant system, reduced the systems weight, and reduced the systems parasite power.

  19. Fuel From Algae: Scaling and Commercialization of Algae Harvesting Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by CEO Ross Youngs, AVS has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS’s Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leavingmore » behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.« less

  20. Effects of the surface mobility on the oxidation of adsorbed CO on platinum electrodes in alkaline media. The role of the adlayer and surface defects.

    PubMed

    Herrero, Enrique; Chen, Qing-Song; Hernández, Javier; Sun, Shi-Gang; Feliu, Juan M

    2011-10-06

    The oxidation of adsorbed CO on Pt single crystal electrodes has been studied in alkaline media. The surfaces used in this study were the Pt(111) electrode and vicinal stepped and kinked surfaces with (111) terraces. The kinked surfaces have either (110) steps broken by (100) kinks or (100) steps broken by (110) kinks and different kink densities. The voltammetric profiles for the CO stripping on those electrodes show peaks corresponding to the oxidation of CO on the (111) terraces, on the (100) steps/kinks and on the (110) steps/kinks at very distinctive potentials. Additionally, the stripping voltammograms always present a prewave. The analysis of the results with the different stepped and kinked surfaces indicates that the presence of the prewave is not associated with defects or kinks in the electrode surface. Also, the clear separation of the CO stripping process in different peak contributions indicates that the mobility of CO on the surface is very low. Using partial CO stripping experiments and studies at different pH, it has been proposed that the low mobility is a consequence of the negative absolute potential at which the adlayers are formed in alkaline media. Also, the surface diffusion coefficient for CO in these media has been estimated from the dependence of the stripping charge of the peaks with the scan rate of the voltammetry.

  1. Experimental investigation of the reaction between corundum xenocrysts and alkaline basaltic host magma: Constraints on magma residence times of basalt-hosted sapphires

    NASA Astrophysics Data System (ADS)

    Baldwin, L. C.; Ballhaus, C.

    2018-03-01

    Megacrystic sapphires (Fe-Ti-rich corundum) of up to 5 cm in size are well known from alkaline mafic rocks from intra-continental rift-related magmatic fields. There is no doubt that these sapphires represent xenocrysts that were trapped from their original lithology by ascending basaltic magmas carrying them to the Earth's surface. Most studies about basalt-hosted sapphires address the question about the origin of the sapphires, but there is hardly any information available about the time the sapphires resided inside the carrier melt. Sapphires are in reaction relationship with basalt and produce spinel coronas at the sapphire-basalt interface, spatially separating the mutually incompatible phases from one another. Assuming isothermal and isobaric conditions of spinel rim formation, the rim-thickness should be a function of the reaction time with the basaltic melt. In this paper, we report time-series experiments aimed at investigating the kinetics of spinel rim formation due to igneous corrosion of corundum. Therefore, we reacted corundum fragments with alkaline basalt powder at 1250 °C and 1GPa, using a Piston Cylinder Apparatus. The width of the spinel rim was used to estimate a residence time. Extrapolating the experimentally derived reaction rates to the thickness of natural spinel rims as described from the Siebengebirge Volcanic Field, Germany, and from Changle, China, we estimated residence times in the order of a few weeks to months.

  2. Production of zinc and manganese oxide particles by pyrolysis of alkaline and Zn-C battery waste.

    PubMed

    Ebin, Burçak; Petranikova, Martina; Steenari, Britt-Marie; Ekberg, Christian

    2016-05-01

    Production of zinc and manganese oxide particles from alkaline and zinc-carbon battery black mass was studied by a pyrolysis process at 850-950°C with various residence times under 1L/minN2(g) flow rate conditions without using any additive. The particular and chemical properties of the battery waste were characterized to investigate the possible reactions and effects on the properties of the reaction products. The thermodynamics of the pyrolysis process were studied using the HSC Chemistry 5.11 software. The carbothermic reduction reaction of battery black mass takes place and makes it possible to produce fine zinc particles by a rapid condensation, after the evaporation of zinc from a pyrolysis batch. The amount of zinc that can be separated from the black mass is increased by both pyrolysis temperature and residence time. Zinc recovery of 97% was achieved at 950°C and 1h residence time using the proposed alkaline battery recycling process. The pyrolysis residue is mainly MnO powder with a low amount of zinc, iron and potassium impurities and has an average particle size of 2.9μm. The obtained zinc particles have an average particle size of about 860nm and consist of hexagonal crystals around 110nm in size. The morphology of the zinc particles changes from a hexagonal shape to s spherical morphology by elevating the pyrolysis temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Chemical reactivation of fluorescein isothiocyanate immunofluorescence-labeled resin-embedded samples

    NASA Astrophysics Data System (ADS)

    Li, Longhui; Rao, Gong; Lv, Xiaohua; Chen, Ruixi; Cheng, Xiaofeng; Wang, Xiaojun; Zeng, Shaoqun; Liu, Xiuli

    2018-02-01

    Resin embedding is widely used and facilitates microscopic imaging of biological tissues. In contrast, quenching of fluorescence during embedding process hinders the application of resin embedding for imaging of fluorescence-labeled samples. For samples expressing fluorescent proteins, it has been demonstrated that the weakened fluorescence could be recovered by reactivating the fluorophore with alkaline buffer. We extended this idea to immunofluorescence-labeling technology. We showed that the fluorescence of pH-sensitive fluorescein isothiocyanate (FITC) was quenched after resin embedding but reactivated after treating by alkaline buffer. We observed 138.5% fluorescence preservation ratio of reactivated state, sixfold compared with the quenched state in embedding resin, which indicated its application for fluorescence imaging of high signal-to-background ratio. Furthermore, we analyzed the chemical reactivation mechanism of FITC fluorophore. This work would show a way for high-resolution imaging of immunofluorescence-labeled samples embedded in resin.

  4. Storage battery aspects of air-electrode research

    NASA Astrophysics Data System (ADS)

    Buzelli, E. S.; Berk, L. B.; Demczyk, B. G.; Zuckerbrod, D.

    The use of air electrodes in secondary, alkaline energy storage systems offers several significant advantages over other conventional cathode systems. The oxygen, required for operation, is not stored or carried within the battery system. The weight of the air electrode is significantly lower than alternative cathode couples for the same mission. The cost of the air electrode is potentially low. As a result of these characteristics, alkaline electrolyte energy storage systems with air electrodes have the potential for achieving energy density levels in excess of 150 Whr/kg at low costs, $30-$40/kWh. The primary key to a successful metal-air secondary battery for an EV application is the development of a bifunctinal air electrode. This paper discusses the various aspects of air electrode research for this application, as well as the physical and performance requirements of the air electrode in this advanced technology battery system.

  5. Storage battery aspects of air-electrode research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buzzelli, E.S.; Berk, L.B.; Demczyk, B.G.

    1983-08-01

    The use of air electrodes in secondary, alkaline energy storage systems offers several significant advantages over other conventional cathode systems. The oxygen, required for operation, is not stored or carried within the battery system. The weight of the air electrode is significantly lower than alternative cathode couples for the same mission. The cost of the air electrode is potentially low. As a result of these characteristics, alkaline electrolyte energy storage systems with air electrodes have the potential for achieving energy density levels in excess of 150 Whr/kg at low costs, $30-$40/kWh. The primary key to a successful metal-air secondary batterymore » for an EV application is the development of a bifunctional air electrode. This paper discusses the various aspects of air electrode research for this application, as well as the physical and performance requirements of the air electrode in this advanced technology battery system.« less

  6. Systematic Studies on Anharmonicity of Rattling Phonons in Type I Clathrates by Low Temperature Heat Capacity Measurements

    NASA Astrophysics Data System (ADS)

    Tanigaki, Katsumi; Wu, Jiazhen; Tanabe, Yoichi; Heguri, Satoshi; Shiimotani, Hidekazu; Tohoku University Collaboration

    2014-03-01

    Clathrates are featured by cage-like polyhedral hosts mainly composed of the IVth group elements of Si, Ge, or Sn and alkali metal or alkaline-earth metal elements can be accommodated inside as a guest atom. One of the most intriguing issues in clathrates is their outstanding high thermoelectric performances thanks to the low thermal conductivity. Being irrespective of good electric conductivity σ, the guest atom motions provide a low-energy lying less-dispersive phonons and can greatly suppress thermal conductivity κ. This makes clathrates close to the concept of ``phonon glass electron crystal: PGEC'' and useful in thermoelectric materials from the viewpoint of the figure of merit. In the present study, we show that the local phonon anharmonicity indicated by the tunneling-term of the endohedral atoms (αT) and the itinerant-electron term (γeT), both of which show T-linear dependences in specific heat Cp, can successfully be separated by employing single crystals with various carrier concentrations in a wide range of temperture experimennts. The factors affecting on the phonon anharmonicity as well as the strength of electron-phonon interactions will be discussed based on our recent experiments. The research was financially supported by Ministry of Education, Science, Sports and Culture, Grant in Aid for Science, and Technology of Japan.

  7. Nickel-hydrogen separator development

    NASA Technical Reports Server (NTRS)

    Gonzalez-Sanabria, O. D.

    1986-01-01

    The separator technology is a critical element in the nickel-hydrogen (Ni-H2) systems. Previous research and development work carried out at NASA Lewis Research Center has determined that separators made from zirconium oxide (ZrO2) and potassium titanate (PKT) fibers will function satisfactorily in Ni-H2 cells without exhibiting the problems associated with the asbestos separators. These separators and their characteristics were previously discussed. A program was established to transfer the separator technology into a commercial production line. A detailed plan of this program will be presented and the preliminary results will be discussed.

  8. Evaluation of Mars CO2 Capture and Gas Separation Technologies

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.; Santiago-Maldonado, Edgardo; Gibson, Tracy; Devor, Robert; Captain, James

    2011-01-01

    Recent national policy statements have established that the ultimate destination of NASA's human exploration program is Mars. In Situ Resource Utilization (ISRU) is a key technology required to ,enable such missions and it is appropriate to review progress in this area and continue to advance the systems required to produce rocket propellant, oxygen, and other consumables on Mars using the carbon dioxide atmosphere and other potential resources. The Mars Atmospheric Capture and Gas separation project is selecting, developing, and demonstrating techniques to capture and purify Martian atmospheric gases for their utilization for the production of hydrocarbons, oxygen, and water in ISRU systems. Trace gases will be required to be separated from Martian atmospheric gases to provide pure CO2 to processing elements. In addition, other Martian gases, such as nitrogen and argon, occur in concentrations high enough to be useful as buffer gas and should be captured as well. To achieve these goals, highly efficient gas separation processes will be required. These gas separation techniques are also required across various areas within the ISRU project to support various consumable production processes. The development of innovative gas separation techniques will evaluate the current state-of-the-art for the gas separation required, with the objective to demonstrate and develop light-weight, low-power methods for gas separation. Gas separation requirements include, but are not limited to the selective separation of: (1) methane and water from unreacted carbon oxides (C02-CO) and hydrogen typical of a Sabatier-type process, (2) carbon oxides and water from unreacted hydrogen from a Reverse Water-Gas Shift process, (3)/carbon oxides from oxygen from a trash/waste processing reaction, and (4) helium from hydrogen or oxygen from a propellant scavenging process. Potential technologies for the separations include' freezers, selective membranes, selective solvents, polymeric sorbents, zeolites, and new technologies. This paper summarizes the results of an extensive literature review of candidate technologies for the capture and separation of CO2 and other relevant gases. This information will be used to prioritize the technologies to be developed further during this and other ISRU projects.

  9. Preparation by alkaline treatment and detailed characterisation of empty hepatitis B virus core particles for vaccine and gene therapy applications.

    PubMed

    Strods, Arnis; Ose, Velta; Bogans, Janis; Cielens, Indulis; Kalnins, Gints; Radovica, Ilze; Kazaks, Andris; Pumpens, Paul; Renhofa, Regina

    2015-06-26

    Hepatitis B virus (HBV) core (HBc) virus-like particles (VLPs) are one of the most powerful protein engineering tools utilised to expose immunological epitopes and/or cell-targeting signals and for the packaging of genetic material and immune stimulatory sequences. Although HBc VLPs and their numerous derivatives are produced in highly efficient bacterial and yeast expression systems, the existing purification and packaging protocols are not sufficiently optimised and standardised. Here, a simple alkaline treatment method was employed for the complete removal of internal RNA from bacteria- and yeast-produced HBc VLPs and for the conversion of these VLPs into empty particles, without any damage to the VLP structure. The empty HBc VLPs were able to effectively package the added DNA and RNA sequences. Furthermore, the alkaline hydrolysis technology appeared efficient for the purification and packaging of four different HBc variants carrying lysine residues on the HBc VLP spikes. Utilising the introduced lysine residues and the intrinsic aspartic and glutamic acid residues exposed on the tips of the HBc spikes for chemical coupling of the chosen peptide and/or nucleic acid sequences ensured a standard and easy protocol for the further development of versatile HBc VLP-based vaccine and gene therapy applications.

  10. Preparation by alkaline treatment and detailed characterisation of empty hepatitis B virus core particles for vaccine and gene therapy applications

    PubMed Central

    Strods, Arnis; Ose, Velta; Bogans, Janis; Cielens, Indulis; Kalnins, Gints; Radovica, Ilze; Kazaks, Andris; Pumpens, Paul; Renhofa, Regina

    2015-01-01

    Hepatitis B virus (HBV) core (HBc) virus-like particles (VLPs) are one of the most powerful protein engineering tools utilised to expose immunological epitopes and/or cell-targeting signals and for the packaging of genetic material and immune stimulatory sequences. Although HBc VLPs and their numerous derivatives are produced in highly efficient bacterial and yeast expression systems, the existing purification and packaging protocols are not sufficiently optimised and standardised. Here, a simple alkaline treatment method was employed for the complete removal of internal RNA from bacteria- and yeast-produced HBc VLPs and for the conversion of these VLPs into empty particles, without any damage to the VLP structure. The empty HBc VLPs were able to effectively package the added DNA and RNA sequences. Furthermore, the alkaline hydrolysis technology appeared efficient for the purification and packaging of four different HBc variants carrying lysine residues on the HBc VLP spikes. Utilising the introduced lysine residues and the intrinsic aspartic and glutamic acid residues exposed on the tips of the HBc spikes for chemical coupling of the chosen peptide and/or nucleic acid sequences ensured a standard and easy protocol for the further development of versatile HBc VLP-based vaccine and gene therapy applications. PMID:26113394

  11. Hydrogen bio-production through anaerobic microorganism fermentation using kitchen wastes as substrate.

    PubMed

    Shi, Yue; Zhao, Xiu-Tao; Cao, Peng; Hu, Yinyin; Zhang, Liang; Jia, Yan; Lu, Zeqi

    2009-09-01

    In order to treat the kitchen wastes and produce hydrogen, anaerobic fermentation technology was used in this experiment. The results showed that the fermentation type changed from mixed acid fermentation to ethanol fermentation in a continuous stirred tank reactor (CSTR) 22 days after start-up. The maximum efficiency of hydrogen bio-production in the CSTR was 4.77 LH(2)/(L reactor d) under the following conditions: organic loading rate (OLR) of 32-50 kg COD/(m(3) d), oxidation reduction potential (ORP) of -450 to -400 mV, influent pH value of 5.0-6.0, effluent pH value of 4.0-4.5, influent alkalinity of 300-600 mg/l, temperature of 35 +/- 1 degrees C and hydraulic retention time (HRT) of 7 h. An artificial neural network (ANN) model was established, and each parameter influencing the performance of the reactor was compared using the method of partitioning connection weights (PCW). The results showed that OLR, pH, ORP and alkalinity could influence the fermentation characteristics and hydrogen yield of the anaerobic activated sludge; with an influence hierarchy: OLR > pH values > ORP > alkalinity. An economic analysis showed that the cost of producing hydrogen in this experiment was less than the cost of electrolysis of water.

  12. Preparation by alkaline treatment and detailed characterisation of empty hepatitis B virus core particles for vaccine and gene therapy applications

    NASA Astrophysics Data System (ADS)

    Strods, Arnis; Ose, Velta; Bogans, Janis; Cielens, Indulis; Kalnins, Gints; Radovica, Ilze; Kazaks, Andris; Pumpens, Paul; Renhofa, Regina

    2015-06-01

    Hepatitis B virus (HBV) core (HBc) virus-like particles (VLPs) are one of the most powerful protein engineering tools utilised to expose immunological epitopes and/or cell-targeting signals and for the packaging of genetic material and immune stimulatory sequences. Although HBc VLPs and their numerous derivatives are produced in highly efficient bacterial and yeast expression systems, the existing purification and packaging protocols are not sufficiently optimised and standardised. Here, a simple alkaline treatment method was employed for the complete removal of internal RNA from bacteria- and yeast-produced HBc VLPs and for the conversion of these VLPs into empty particles, without any damage to the VLP structure. The empty HBc VLPs were able to effectively package the added DNA and RNA sequences. Furthermore, the alkaline hydrolysis technology appeared efficient for the purification and packaging of four different HBc variants carrying lysine residues on the HBc VLP spikes. Utilising the introduced lysine residues and the intrinsic aspartic and glutamic acid residues exposed on the tips of the HBc spikes for chemical coupling of the chosen peptide and/or nucleic acid sequences ensured a standard and easy protocol for the further development of versatile HBc VLP-based vaccine and gene therapy applications.

  13. SITE TECHNOLOGY CAPSULE: ROCHEM SEPARATION SYSTEMS, INC. - DISC TUBE MODULE TECHNOLOGY

    EPA Science Inventory

    SITE Program demonstration of the Rochem Disc Tube Module™(DTM) developed by Rochem Separations Systems, Inc. The demonstration test was conducted at the central landfill superfund site in Johnston, Rhode island in August, 1994. The DTM technology is an innovative membrane filt...

  14. R&D Opportunities for Membranes and Separation Technologies in Building Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetzler, William; Guernsey, Matt; Bargach, Youssef

    This report recommends innovative membrane and separation technologies that can assist the Building Technologies Office in achieving its 2030 goal. This report identifies research and development (R&D) initiatives across several building applications where further investigations could result in impactful savings.

  15. Molecular separations using nanostructured porous thin films fabricated by glancing angle deposition

    NASA Astrophysics Data System (ADS)

    Bezuidenhout, Louis Wentzel

    Biomolecular separation techniques are an enabling technology that indirectly in.uence many aspects of our lives. Advances have led to faster analyses, reduced costs, higher specificity, and new analytical techniques, impacting areas such as health care, environmental monitoring, polymer sciences, agriculture, and nutrition. Further development of separations technology is anticipated to follow the path of computing technology such that miniaturization through the development of microfluidics technology, lab-on-a-chip systems, and other integrative, multi-component systems will further extend our analysis capabilities. Creation of new and improvement of existing separation technologies is an integral part of the pathway to miniaturized systems. the work of this thesis investigates molecular separations using porous nanostructured films fabricated by the thin film process glancing angle deposition (GLAD). Structural architecture, pore size and shape, and film density can be finely controlled to produce high-surface area thin films with engineered morphology. The characteristic size scales and structural control of GLAD films are well-suited to biomolecules and separation techniques, motivating investigation into the utility and performance of GLAD films for biomolecular separations. This project consisted of three phases. First, chromatographic separation of dye molecules on silica GLAD films was demonstrated by thin layer chromatography Direct control of film nanostructure altered the separation characteristics; most strikingly, anisotropic structures provided two-dimensional analyte migration. Second, nanostructures made with GLAD were integrated in PDMS microfluidic channels using a sacrificial etching process; DNA molecules (10/48 kbp and 6/10/20 kbp mixtures) were electrophoretically separated on a microfluidic chip using a porous bed of SiO2 vertical posts. Third, mass spectrometry of proteins and drugs in the mass range of 100-1300 m/z was performed using laser desorption/ionization (LDI) on silicon GLAD films, and the influence of film thickness, porosity, structure, and substrate on performance was characterized. The application of GLAD nanostructured thin films to biomolecular separations is demonstrated and validated in this thesis. Chromatographic separation of dye molecules, electrophoretic separation of DNA molecules, and mass spectrometric isolation of small proteins and drug molecules by laser desorption ionization were demonstrated using GLAD films. All three methods yielded promising results and establish GLAD as a potential technology for biomolecular separations.

  16. Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation.

    PubMed

    Li, Jian; Kang, Ruimei; Tang, Xiaohua; She, Houde; Yang, Yaoxia; Zha, Fei

    2016-04-14

    Oil-polluted water has become a worldwide problem due to increasing industrial oily wastewater as well as frequent oil-spill pollution. Compared with underwater superoleophobic (water-removing) filtration membranes, superhydrophobic/superoleophilic (oil-removing) materials have advantages as they can be used for the filtration of heavy oil or the absorption of floating oil from water/oil mixtures. However, most of the superhydrophobic materials used for oil/water separation lose their superhydrophobicity when exposed to hot (e.g. >50 °C) water and strong corrosive liquids. Herein, we demonstrate superhydrophobic overlapped candle soot (CS) and silica coated meshes that can repel hot water (about 92 °C) and strong corrosive liquids, and were used for the gravity driven separation of oil-water mixtures in hot water and strong acidic, alkaline, and salty environments. To the best of our knowledge, we are unaware of any previously reported studies on the use of superhydrophobic materials for the separation of oil from hot water and corrosive aqueous media. In addition, the as-prepared robust superhydrophobic CS and silica coated meshes can separate a series of oils and organic solvents like kerosene, toluene, petroleum ether, heptane and chloroform from water with a separation efficiency larger than 99.0%. Moreover, the as-prepared coated mesh still maintained a separation efficiency above 98.5% and stable recyclability after 55 cycles of separation. The robust superhydrophobic meshes developed in this work can therefore be practically used as a highly efficient filtration membrane for the separation of oil from harsh water conditions, benefiting the environment and human health.

  17. Nickel-hydrogen separator development

    NASA Technical Reports Server (NTRS)

    Gonzalez-Sanabria, O. D.

    1986-01-01

    The separator technology is a critical element in the nickel-hydrogen (Ni-H2) systems. Previous research and development work carried out at NASA Lewis Research Center has determined that separators made from zirconium oxide (ZrO2) and potassium titanate (PKT) fibers will function satisfactorily in Ni-H2 cells without exhibiting the problems associated with the asbestos separators. A program has been established to transfer the separator technology into a commercial production line. A detailed plan of this program will be presented and the preliminary results will be discussed.

  18. An integrated microbial electrolysis-anaerobic digestion process combined with pretreatment of wastewater solids to improve hydrogen production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beegle, Jeff R.; Borole, Abhijeet P.

    A combined anaerobic digestion (AD) and microbial electrolysis cell (MEC) system, named here as ADMEC, was investigated in this paper to evaluate the energy recovery from pretreated wastewater solids. Alkaline and thermal hydrolysis pretreatment methods increased the solubility of organic compounds present in the raw solids by 25% and 20%, respectively. The soluble phase from pretreatment was separated and used for microbial electrolysis, whereas the insoluble fraction was fed into semi-continuous digesters. The digester effluent was later utilized as a second MEC substrate. The pretreatment had variable effects on AD and MEC performance. The methane content in AD biogas wasmore » higher in pretreated groups, 78.29 ± 2.89% and 73.2 ± 1.79%, for alkaline and thermal, than the control, 50.26 ± 0.53%, but the overall biogas production rates were lower than the control, 20 and 30 mL CH 4 gCOD -1 d -1 for alkaline and thermal compared to 80 mL CH 4 gCOD -1 d -1. The effluent streams from thermally pretreated digesters were the best substrate for microbial electrolysis, in terms of hydrogen production and efficiency. The MECs produced 1.7 ± 0.2 L-H 2 per L per day, 0.3 ± 0.1 L-H 2 per L per day, and 0.29 ± 0.1 L-H 2 per L per day, for thermal, alkaline, and control reactors. The productivity was lower compared to acetate and propionate controls, which yielded 5.79 ± 0.03 L-H 2 per L per day and 3.49 ± 0.10 L-H 2 per L per day, respectively. The pretreatment solubilized fractions were not ideal substrates for microbial electrolysis. Finally, a chemical oxygen demand (COD) mass balance showed that pretreatment shifts the electron flux away from methane and biomass sinks towards hydrogen production.« less

  19. Sphagnum establishment in alkaline fens: Importance of weather and water chemistry.

    PubMed

    Vicherová, Eliška; Hájek, Michal; Šmilauer, Petr; Hájek, Tomáš

    2017-02-15

    Sphagnum expansion to alkaline fens has accelerated during the last decades in Europe, leading to changes in diversity, habitat distributions and carbon storage. The causes are still not clearly understood and involve an interplay between climate change, hydrology, nutrient supply and Sphagnum physiology. We conducted a 4-year field experiment in eight fens in Central European highlands and assessed survival and establishment of individual apical shoot fragments of S. flexuosum, S. warnstorfii and S. squarrosum transplanted along the microtopographical gradient. In a laboratory experiment, we tested combined effects of desiccation and high calcium bicarbonate concentration on Sphagnum survival. We found that in unflooded positions, living shoots of Sphagnum and brown mosses lowered [Ca 2+ ] and pH in their capillary water, in contrast to dead fragments; yet without differences between species. Survival and expansion of Sphagnum fragments, which did not die of acute calcium toxicity during first weeks/months, was negatively affected by dry weather and alkaline water chemistry, reflecting Sphagnum intolerance to desiccation and to combined high [Ca 2+ ] and pH. Shoot fragments expanded to patches only when precipitation was high. Interestingly, non-toxic concentration of calcium bicarbonate reduced desiccation damage in Sphagnum, probably through protection of membranes or other cell components. This mechanism would facilitate Sphagnum survival in elevated, frequently desiccated microhabitats of calcareous fens such as brown-moss hummocks. However, since water-retaining capacity of few Sphagnum shoots is insufficient to change water chemistry in its surroundings, surface acidification may occur only once the environment (e.g. sufficient humidity) enabled expansion to larger mats. Then, the retained rainwater together with hardly decomposable Sphagnum litter would separate mire surface from groundwater, speeding up successional shift towards poor fens. Sphagnum expansion to alkaline fens is therefore more likely in humid regions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. An integrated microbial electrolysis-anaerobic digestion process combined with pretreatment of wastewater solids to improve hydrogen production

    DOE PAGES

    Beegle, Jeff R.; Borole, Abhijeet P.

    2017-08-17

    A combined anaerobic digestion (AD) and microbial electrolysis cell (MEC) system, named here as ADMEC, was investigated in this paper to evaluate the energy recovery from pretreated wastewater solids. Alkaline and thermal hydrolysis pretreatment methods increased the solubility of organic compounds present in the raw solids by 25% and 20%, respectively. The soluble phase from pretreatment was separated and used for microbial electrolysis, whereas the insoluble fraction was fed into semi-continuous digesters. The digester effluent was later utilized as a second MEC substrate. The pretreatment had variable effects on AD and MEC performance. The methane content in AD biogas wasmore » higher in pretreated groups, 78.29 ± 2.89% and 73.2 ± 1.79%, for alkaline and thermal, than the control, 50.26 ± 0.53%, but the overall biogas production rates were lower than the control, 20 and 30 mL CH 4 gCOD -1 d -1 for alkaline and thermal compared to 80 mL CH 4 gCOD -1 d -1. The effluent streams from thermally pretreated digesters were the best substrate for microbial electrolysis, in terms of hydrogen production and efficiency. The MECs produced 1.7 ± 0.2 L-H 2 per L per day, 0.3 ± 0.1 L-H 2 per L per day, and 0.29 ± 0.1 L-H 2 per L per day, for thermal, alkaline, and control reactors. The productivity was lower compared to acetate and propionate controls, which yielded 5.79 ± 0.03 L-H 2 per L per day and 3.49 ± 0.10 L-H 2 per L per day, respectively. The pretreatment solubilized fractions were not ideal substrates for microbial electrolysis. Finally, a chemical oxygen demand (COD) mass balance showed that pretreatment shifts the electron flux away from methane and biomass sinks towards hydrogen production.« less

  1. Methodology of analysis of very weak acids by isotachophoresis with electrospray-ionization mass-spectrometric detection: Anionic electrolyte systems for the medium-alkaline pH range.

    PubMed

    Malá, Zdena; Gebauer, Petr

    2018-01-15

    This work describes for the first time a functional electrolyte system setup for anionic isotachophoresis (ITP) with electrospray-ionization mass-spectrometric (ESI-MS) detection in the neutral to medium-alkaline pH range. So far no application was published on the analysis of very weak acids by anionic ITP-MS although there is a broad spectrum of potential analytes with pK a values in the range 5-10, where application of this technique promises interesting gains in both sensitivity and specificity. The problem so far was the lack of anionic ESI-compatible ITP systems in the mentioned pH range as all typical volatile anionic system components are fully ionized at neutral and alkaline pH and thus too fast to suit as terminators. We propose an original solution of the problem based on the combination of two ITP methods: (i) use of the hydroxyl ion as a natural and ESI-compatible terminator, and (ii) use of configurations based on moving-boundary ITP. The former method ensures effective stacking of analytes by an alkaline terminator of sufficiently low mobility and the latter offers increased flexibility for tuning of the separation window and selectivity according to actual needs. A theoretical description of the proposed model is presented and applied to the design of very simple functional electrolyte configurations. The properties of example systems are demonstrated by both computer simulation and experiments with a group of model analytes. Potential effects of carbon dioxide present in the solutions are demonstrated for particular systems. Experimental results confirm that the proposed methodology is well capable of performing sensitive and selective ITP-MS analyses of very weak acidic analytes (e.g. sulfonamides or chlorophenols). Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: In vitro and in vivo study.

    PubMed

    Kruse, Carla R; Singh, Mansher; Targosinski, Stefan; Sinha, Indranil; Sørensen, Jens A; Eriksson, Elof; Nuutila, Kristo

    2017-04-01

    Wound microenvironment plays a major role in the process of wound healing. It contains various external and internal factors that participate in wound pathophysiology. The pH is an important factor that influences wound healing by changing throughout the healing process. Several previous studies have investigated the role of pH in relation to pathogens but studies concentrating on the effects of pH on wound healing itself are inconclusive. The purpose of this study was to comprehensively and in a controlled fashion investigate the effect of pH on wound healing by studying its effect on human primary keratinocyte and fibroblast function in vitro and on wound healing in vivo. In vitro, primary human keratinocytes and fibroblasts were cultured in different levels of pH (5.5-12.5) and the effect on cell viability, proliferation, and migration was studied. A rat full-thickness wound model was used to investigate the effect of pH (5.5-9.5) on wound healing in vivo. The effect of pH on inflammation was monitored by measuring IL-1 α concentrations from wounds and cell cultures exposed to different pH environments. Our results showed that both skin cell types tolerated wide range of pH very well. They further demonstrated that both acidic and alkaline environments decelerated cell migration in comparison to neutral environments and interestingly alkaline conditions significantly enhanced cell proliferation. Results from the in vivo experiments indicated that a prolonged, strongly acidic wound environment prevents both wound closure and reepithelialization while a prolonged alkaline environment did not have any negative impact on wound closure or reepithelialization. Separately, both in vitro and in vivo studies showed that prolonged acidic conditions significantly increased the expression of IL-1 α in fibroblast cultures and in wound fluid, whereas prolonged alkaline conditions did not result in elevated amounts of IL-1 α. © 2017 by the Wound Healing Society.

  3. ROCHEM SEPARATION SYSTEMS, INC. DISC TUBE™ MODULE TECHNOLOGY - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    SITE program demonstration of the Rochem Disc Tube™ Module (DTM) developed by Rochem Separation systems Inc. The demonstration test was conducted at the central landfill Superfund site in Johnston, Rhode Island in August 1994. The DTM technology is an innovative membrane filtra...

  4. All-solid-state Al-air batteries with polymer alkaline gel electrolyte

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Zuo, Chuncheng; Liu, Zihui; Yu, Ying; Zuo, Yuxin; Song, Yu

    2014-04-01

    Aluminum-air (Al-air) battery is one of the most promising candidates for next-generation energy storage systems because of its high capacity and energy density, and abundance. The polyacrylic acid (PAA)-based alkaline gel electrolyte is used in all-solid-state Al-air batteries instead of aqueous electrolytes to prevent leakage. The optimal gel electrolyte exhibits an ionic conductivity of 460 mS cm-1, which is close to that of aqueous electrolytes. The Al-air battery peak capacity and energy density considering only Al can reach 1166 mAh g-1-Al and 1230 mWh g-1-Al, respectively, during constant current discharge. The battery prototype also exhibits a high power density of 91.13 mW cm-2. For the battery is a laminated structure, area densities of 29.2 mAh cm-2 and 30.8 mWh cm-2 are presented to appraise the performance of the whole cell. A novel design to inhibit anodic corrosion is proposed by separating the Al anode from the gel electrolyte when not in use, thereby effectively maintaining the available capacity of the battery.

  5. Soil Fertility Map for Food Legumes Production Areas in China

    NASA Astrophysics Data System (ADS)

    Li, Ling; Yang, Tao; Redden, Robert; He, Weifeng; Zong, Xuxiao

    2016-05-01

    Given the limited resources of fossil energy, and the environmental risks of excess fertilizer on crops, it is time to reappraise the potential role of food legume biological nitrogen fixation (BNF) as sources of nitrogen for cropping systems in China. 150 soil samples across 17 provinces and 2 municipalities of China were collected and analyzed. A distribution map of the soil fertilities and their patterns of distribution was constructed. The pH results indicated that soils were neutral to slightly alkaline overall. The soil organic matter (SOM) and the available nitrogen (AN) content were relatively low, while the available phosphorus (AP) and available potassium (AK) contents were from moderate to high. Production areas of food legumes (faba bean, pea, adzuki bean, mung bean and common bean) were clearly separated into 4 soil fertility type clusters. In addition, regions with SOM, AN, AP and AK deficiency, high acidity and high alkalinity were listed as target areas for further soil improvement. The potential was considered for biological nitrogen fixation to substitute for the application of mineral nitrogen fertiliser.

  6. Haemoglobin Rahere (beta Lys-Thr): A new high affinity haemoglobin associated with decreased 2, 3-diphosphoglycerate binding and relative polycythaemia.

    PubMed Central

    Lorkin, P A; Stephens, A D; Beard, M E; Wrigley, P F; Adams, L; Lehmann, H

    1975-01-01

    A new haemoglobin with increased oxygen affinity, beta82 (EF6) lysine leads to threonine (Hb Rahere), was found during the investigation of a patient who was found to have a raised haemoglobin concentration after a routine blood count. The substitution affects one of the 2, 3-diphosphoglycerate binding sites, resulting in an increased affinity for oxygen, but both the haem-haem interaction and the alkaline Bohr effect are normal in the haemolysate. This variant had the same mobility as haemoglobin A on electrophoresis at alkaline pH but was detected by measuring the whole blood oxygen affinity; it could be separated from haemoglobin A, however, by electrophoresis in agar at acid pH. The raised haemoglobin concentration was mainly due to a reduction in plasma volume (a relative polycythaemia) and was associated with a persistently raised white blood count. This case emphasises the need to measure the oxygen affinity of haemoglobin in all patients with absolute or relative polycythaemia when some obvious cause is not evident. PMID:124

  7. Uranium Anodic Dissolution under Slightly Alkaline Conditions Progress Report Full-Scale Demonstration with DU Foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelis, A.; Brown, M. A.; Wiedmeyer, S.

    2014-02-18

    Argonne National Laboratory (Argonne) is developing an alternative method for digesting irradiated low enriched uranium (LEU) foil targets to produce 99Mo in neutral/alkaline media. This method consists of the electrolytic dissolution of irradiated uranium foil in sodium bicarbonate solution, followed by precipitation of base-insoluble fission and activation products, and uranyl-carbonate species with CaO. The addition of CaO is vital for the effective anion exchange separation of 99MoO 4 2- from the fission products, since most of the interfering anions (e.g., CO 3 2-) are removed from the solution, while molybdate remains in solution. An anion exchange is used to retainmore » and to purify the 99Mo from the filtrate. The electrochemical dissolver has been designed and fabricated in 304 stainless-steel (SS), and tested for the dissolution of a full-size depleted uranium (DU) target, wrapped in Al foil. Future work will include testing with low-burn-up DU foil at Argonne and later with high-burn-up LEU foils at Oak Ridge National Laboratory.« less

  8. Antifreeze and cryoprotective activities of ice-binding collagen peptides from pig skin.

    PubMed

    Cao, Hui; Zhao, Ying; Zhu, Yu Bing; Xu, Fei; Yu, Jing Song; Yuan, Min

    2016-03-01

    A novel "hyperactive" ice-binding peptide from porcine collagen was prepared by alkaline protease hydrolysis and a series of column chromatography separations, and then its antifreeze and cryoprotective properties were reported. Using differential scanning calorimetry (DSC), the thermal hysteresis (TH) of ice-binding collagen peptides was closely related to their concentration and crystal fraction. Collagen hydrolysates with maximal TH were obtained by hydrolysis at pH 8.0, DH 15.0%, and 5% alkaline protease at 55°C. After purification by column chromatography, the AP-3 ice-binding collagen peptide (GLLGPLGPRGLL) with 1162.8Da molecular weights exhibited the highest TH (5.28°C), which can be classified as "hyperactive". Recrystallisation and melt-resistance of ice cream were improved by AP-3 ice-binding collagen peptide at 0.2% (w/v) in a similar manner to natural antifreeze proteins. Moreover, the addition of AP-3 collagen peptides in ice cream greatly elevated the glass transition temperature (Tg) to -17.64°C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Soil Fertility Map for Food Legumes Production Areas in China

    PubMed Central

    Li, Ling; Yang, Tao; Redden, Robert; He, Weifeng; Zong, Xuxiao

    2016-01-01

    Given the limited resources of fossil energy, and the environmental risks of excess fertilizer on crops, it is time to reappraise the potential role of food legume biological nitrogen fixation (BNF) as sources of nitrogen for cropping systems in China. 150 soil samples across 17 provinces and 2 municipalities of China were collected and analyzed. A distribution map of the soil fertilities and their patterns of distribution was constructed. The pH results indicated that soils were neutral to slightly alkaline overall. The soil organic matter (SOM) and the available nitrogen (AN) content were relatively low, while the available phosphorus (AP) and available potassium (AK) contents were from moderate to high. Production areas of food legumes (faba bean, pea, adzuki bean, mung bean and common bean) were clearly separated into 4 soil fertility type clusters. In addition, regions with SOM, AN, AP and AK deficiency, high acidity and high alkalinity were listed as target areas for further soil improvement. The potential was considered for biological nitrogen fixation to substitute for the application of mineral nitrogen fertiliser. PMID:27212262

  10. Anaerobic digestion of alkaline bleaching wastewater from a kraft pulp and paper mill using UASB technique.

    PubMed

    Larsson, Madeleine; Truong, Xu-Bin; Björn, Annika; Ejlertsson, Jörgen; Bastviken, David; Svensson, Bo H; Karlsson, Anna

    2015-01-01

    Anaerobic digestion of alkaline kraft elemental chlorine-free bleaching wastewater in two mesophilic, lab-scale upflow anaerobic sludge bed reactors resulted in significantly higher biogas production (250±50 vs. 120±30 NmL g [Formula: see text]) and reduction of filtered total organic carbon (fTOC) (60±5 vs. 43±6%) for wastewater from processing of hardwood (HW) compared with softwood (SW). In all cases, the gas production was likely underestimated due to poor gas separation in the reactors. Despite changes in wastewater characteristics, a stable anaerobic process was maintained with hydraulic retention times (HRTs) between 7 and 14 h. Lowering the HRT (from 13.5 to 8.5 h) did not significantly affect the process, and the stable performance at 8.5 h leaves room for further decreases in HRT. The results show that this type of wastewater is suitable for a full-scale implementation, but the difference in methane potential between SW and HW is important to consider both regarding process dimensioning and biogas yield optimization.

  11. Tissue sources of serum alkaline phosphatase in 34 hyperthyroid cats: a qualitative and quantitative study.

    PubMed

    Foster, D J; Thoday, K L

    2000-02-01

    The concentration of serum alkaline phosphatase (SALP) is commonly elevated in hyperthyroid cats. Agarose gel electrophoresis, in tris -barbital-sodium barbital buffer, with and without the separation enhancer neuraminidase, was used to investigate the sources of the constituent isoenzymes of SALP in serum samples from 34 hyperthyroid cats, comparing them to sera from five healthy cats and to tissue homogenates from liver, kidney, bone and duodenum. Contrary to previous reports, treatment of serum with neuraminidase made differentiation of the various isoenzymes more difficult to achieve. A single band corresponding to the liver isoenzyme (LALP) was found in 100 per cent of healthy cats. Eighty-eight per cent of the hyperthyroid cats showed two bands, corresponding to the liver and bone (BALP) isoenzymes while 12 per cent showed a LALP band alone. In hyperthyroid cats, there was a significant correlation between the serum L-thyroxine concentrations and the SALP concentrations. These findings suggest pathological changes in both bone and liver in most cases of feline thyrotoxicosis. Copyright 2000 Harcourt Publishers LtdCopyright 2000 Harcourt Publishers Ltd.

  12. Alkaline phosphatase labeled SERS active sandwich immunoassay for detection of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Bozkurt, Akif Goktug; Buyukgoz, Guluzar Gorkem; Soforoglu, Mehmet; Tamer, Ugur; Suludere, Zekiye; Boyaci, Ismail Hakki

    2018-04-01

    In this study, a sandwich immunoassay method utilizing enzymatic activity of alkaline phosphatase (ALP) on 5-bromo-4-chloro-3-indolyl phosphate (BCIP) for Escherichia coli (E. coli) detection was developed using surface enhanced Raman spectroscopy (SERS). For this purpose, spherical magnetic gold coated core-shell nanoparticles (MNPs-Au) and rod shape gold nanoparticles (Au-NRs) were synthesized and modified for immunomagnetic separation (IMS) of E. coli from the solution. In order to specify the developed method to ALP activity, Au-NRs were labeled with this enzyme. After successful construction of the immunoassay, BCIP substrate was added to produce the SERS-active product; 5-bromo-4-chloro-3-indole (BCI). A good linearity (R2 = 0.992) was established between the specific SERS intensity of BCI at 600 cm- 1 and logarithmic E. coli concentration in the range of 1.7 × 101-1.7 × 106 cfu mL- 1. LOD and LOQ values were also calculated and found to be 10 cfu mL- 1 and 30 cfu mL- 1, respectively.

  13. The chemical nature of the products obtained by the action of cabbage-leaf phospholipase D on lysolecithin: the structure of lysolecithin

    PubMed Central

    Long, C.; Odavić, R.; Sargent, Elizabeth J.

    1967-01-01

    1. Lysolecithin, prepared by the action of snake-venom phospholipase A on ovolecithin, when incubated with Savoy-cabbage phospholipase D, in the presence of Ca2+ ions, gave two degradation products (designated A and B) in the form of their calcium salts. 2. These calcium salts were separated quantitatively by solvent fractionation and converted into the corresponding sodium salts. 3. Substance B proved to be a lysophosphatidic acid of conventional structure (1-monoacyl-l-3-glycerophosphoric acid). When the phosphate group was removed by means of prostatic acid phosphomonoesterase, a 1-monoglyceride was formed quantitatively. Alkaline hydrolysis gave the theoretical yield of l-3-glycerophosphate. 4. Substance A, on the other hand, had all the properties expected for a cyclic phosphate of a 1-monoglyceride. It was unaffected by phosphomonoesterase. On alkaline hydrolysis, the acyl group was removed and ring opening of the presumed cyclic phosphate group gave an approximately equimolar mixture of 2- and l-3-glycerophosphates. 5. The structures of substances A and B confirm lysolecithin as 1-monoacyl-l-3-glycerylphosphorylcholine. PMID:4291559

  14. Fuel Cell Research and Development for Future NASA Missions

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.; Hoberecht, Mark; Loyselle, Patricia; Burke, Kenneth; Bents, David; Farmer, Serene; Kohout, Lisa

    2006-01-01

    NASA has been using fuel cell systems since the early days of space flight. Polymer Exchange Membrane Fuel cells provided the primary power for the Gemini and Apollo missions and more recently, alkaline fuel cells serve as the primary power source for the Space Shuttle. NASA's current investments in fuel cell technology support both Exploration and Aeronautics programs. This presentation provides an overview of NASA's fuel cell development programs.

  15. Acid and alkaline solubilization (pH shift) process: a better approach for the utilization of fish processing waste and by-products.

    PubMed

    Surasani, Vijay Kumar Reddy

    2018-05-22

    Several technologies and methods have been developed over the years to address the environmental pollution and nutritional losses associated with the dumping of fish processing waste and low-cost fish and by-products. Despite the continuous efforts put in this field, none of the developed technologies was successful in addressing the issues due to various technical problems. To solve the problems associated with the fish processing waste and low-value fish and by-products, a process called pH shift/acid and alkaline solubilization process was developed. In this process, proteins are first solubilized using acid and alkali followed by precipitating them at their isoelectric pH to recover functional and stable protein isolates from underutilized fish species and by-products. Many studies were conducted using pH shift process to recover proteins from fish and fish by-products and found to be most successful in recovering proteins with increased yields than conventional surimi (three cycle washing) process and with good functional properties. In this paper, problems associated with conventional processing, advantages and principle of pH shift processing, effect of pH shift process on the quality and storage stability of recovered isolates, applications protein isolates, etc. are discussed in detail for better understanding.

  16. Separation of organic ion exchange resins from sludge -- engineering study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, J.B.

    1998-08-25

    This engineering study evaluates the use of physical separation technologies to separate organic ion exchange resin from KE Basin sludge prior to nitric acid dissolution. This separation is necessitate to prevent nitration of the organics in the acid dissolver. The technologies under consideration are: screening, sedimentation, elutriation. The recommended approach is to first screen the Sludge and resin 300 microns then subject the 300 microns plus material to elutriation.

  17. Crosscutting Technology Development at the Center for Advanced Separation Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher E. Hull

    2006-09-30

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  18. CROSSCUTTING TECHNOLOGY DEVELOPMENT AT THE CENTER FOR ADVANCED SEPARATION TECHNOLOGIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher E. Hull

    2006-05-15

    This Technical Progress Report describes progress made on the twenty nine subprojects awarded in the second year of Cooperative Agreement DE-FC26-02NT41607: Crosscutting Technology Development at the Center for Advanced Separation Technologies. This work is summarized in the body of the main report: the individual sub-project Technical Progress Reports are attached as Appendices.

  19. Biopolymer - A beginning towards back to nature

    NASA Astrophysics Data System (ADS)

    Gautam, S.; Gautam, A.

    2018-05-01

    Biopolymer is regarded as a polymer which can be biodegradable. Polyhydroxyalkanoates (PHAs) is one of the biopolymer which can be recovered from biomass. PHAs are naturally conserved in the cytoplasm of the bacterial cell during the growth. Bacteria/microbes store their energy from carbon sources in the form of hydrocarbons. Intracellular stored compounds are tightly linked with entire cell resulting difficulty of separation. The work aims to extract PHAs from biomass effectively. Chemical and mechanical separation of PHA can be done from biomass. A pretreatment of cells before chemical and mechanical separation is also effective for separation of PHA and has been carried out. Chemical extraction of PHA includes digestion of cell wall in acidic or alkaline medium and releasing PHA in broth, later sedimentation recovers PHA. In recent work different chemical methods were carried out to extract PHA of medium chain length. In one of these, sodium hypochlorite was used to denature the protein and chloroform was used for extraction of purified PHA. A recovery upto 96.6%, PHA by dried weight of cell, was obtained which is quite high comparing to reported literature. Other chemical disruption by sodium chloride, sodium hydroxide and hydrogen peroxide with and without pretreatment have also been carried out.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, J.T.; Surkalo, H.

    Current world oil prices have forced a reevaluation of many enhanced oil recovery processes. One very promising approach is the use of low-cost alkaline chemicals combined with surfactants and polymers. It has been determined from the testing of hundreds of oils that acid number and API gravity are simplistic screening criteria and are of very little value in many cases. Oil recovery experiments in the laboratory have resulted in residual oil saturations as low as with the micellar-polymer technology for as little as 10% of the chemical costs. Indications are that this technology has the potential for producing incremental oilmore » for less than $3 per barrel.« less

  1. Light Weight Design Nickel-Alkaline Cells Using Fiber Electrodes

    NASA Technical Reports Server (NTRS)

    Pickett, David F.; Willis, Bob; Britton, Doris; Saelens, Johan

    2005-01-01

    Using fiber electrode technology, currently produced by Bekaert Corporation (Bekaert), Electro Energy, Inc., (EEI) Mobile Energy Products Group (formerly, Eagle-Picher Technologies, LLC., Power Systems Department) in Colorado Springs, CO has demonstrated that it is feasible to manufacture flight weight nickel-hydrogen cells having about twice the specific energy (80 vs. 40 watt-hr/kg) as state-of-the-art nickel-hydrogen cells that are flown on geosynchronous communications satellites. Although lithium-ion battery technology has made large in-roads to replace the nickel-alkaline technology (nickel-cadmium, nickel-metal hydride), the technology offered here competes with lithium-ion weight and offers alternatives not present in the lithium-ion chemistry such as ability to undergo continuous overcharge, reversal on discharge and sustain rate capability sufficient to start automotive and aircraft engines at subzero temperatures. In development to date seven 50 ampere-hour nickel-hydrogen have been constructed, acceptance tested and briefly tested in a low earth orbit (LEO) cycle regime. The effort was jointly funded by Electro Energy, Inc. and NASA Glenn Research Center, Cleveland, OH. Five of the seven cells have been shipped to NASA GRC for further cycle testing. Two of the cells experienced failure due to internal short circuits during initial cycle testing at EEL Destructive Physical Analysis (DPA) of one of the cells has shown the failure mode to be due to inadequate hydrogen catalyst electrodes that were not capacity balanced with the higher energy density nickel oxide electrodes. In the investigators opinion, rebuild of the cells using proper electrode balance would result in cells that could sustain over 30,000 cycles at moderate depths-of-discharge in a LEO regime or endure over 20 years of geosynchronous orbit (GEO) cycling while realizing a two-fold increase in specific energy for the battery or a 1.1 kg weight savings per 50 ampere-hour cell. Additional information is included in the original extended abstract.

  2. Posttranslational heterogeneity of bone alkaline phosphatase in metabolic bone disease.

    PubMed

    Langlois, M R; Delanghe, J R; Kaufman, J M; De Buyzere, M L; Van Hoecke, M J; Leroux-Roels, G G

    1994-09-01

    Bone alkaline phosphatase is a marker of osteoblast activity. In order to study the posttranscriptional modification (glycosylation) of bone alkaline phosphatase in bone disease, we investigated the relationship between mass and catalytic activity of bone alkaline phosphatase in patients with osteoporosis and hyperthyroidism. Serum bone alkaline phosphatase activity was measured after lectin precipitation using the Iso-ALP test kit. Mass concentration of bone alkaline phosphatase was determined with an immunoradiometric assay (Tandem-R Ostase). In general, serum bone alkaline phosphatase mass and activity concentration correlated well. The activity : mass ratio of bone alkaline phosphatase was low in hyperthyroidism. Activation energy of the reaction catalysed by bone alkaline phosphatase was high in osteoporosis and in hyperthyroidism. Experiments with neuraminidase digestion further demonstrated that the thermodynamic heterogeneity of bone alkaline phosphatase can be explained by a different glycosylation of the enzyme.

  3. [Application of simultaneous determination of inorganic ionic species by advanced ion chromatography for water quality monitoring of river water and wastewater].

    PubMed

    Nakatani, Nobutake; Kozaki, Daisuke; Tanaka, Kazuhiko

    2012-04-01

    In this study, our recent work on advanced ion chromatographic methods for the simultaneous determination of inorganic ionic species such as common anions (SO4(2-), Cl(-) and NO3(-)) and cations (Na+, NH4+, K+, Mg2+, and Ca2+), nutrients (phosphate and silicate) and hydrogen ion/alkalinity are summarized first. Then, the applications using these methods for monitoring environmental water quality are also presented. For the determination of common anions and cations with nutrients, the separation was successfully performed by a polymethacrylate-based weakly acidic cation-exchange column of TSKgel Super IC-A/C (Tosoh, 150 mm x 6.0 mm i. d.) and a mixture solution of 100 mmol/L ascorbic acid and 4 mmol/L 18-crown-6 as acidic eluent with dual detection of conductivity and spectrophotometry. For the determination of hydrogen ion/alkalinity, the separation was conducted by TSKgel ODS-100Z column (Tosoh, 150 mm x 4.5 mm i. d.) modified with lithium dodecylsulfate and an eluent of 40 mmol/L LiCl/0.1 mmol/L lithium dodecylsulfate/0.05 mmol/L H2SO4 with conductivity detector. The differences of ion concentration between untreated and treated wastewater showed the variation of ionic species during biological treatment process in a sewage treatment plant. Occurrence and distribution of water-quality conditions were related to the bioavailability and human activity in watershed. From these results, our advanced ion chromatographic methods have contributed significantly for water quality monitoring of environmental waters.

  4. Insect symbionts as valuable grist for the biotechnological mill: an alkaliphilic silkworm gut bacterium for efficient lactic acid production.

    PubMed

    Liang, Xili; Sun, Chao; Chen, Bosheng; Du, Kaiqian; Yu, Ting; Luang-In, Vijitra; Lu, Xingmeng; Shao, Yongqi

    2018-06-01

    Insects constitute the most abundant and diverse animal class and act as hosts to an extraordinary variety of symbiotic microorganisms. These microbes living inside the insects play critical roles in host biology and are also valuable bioresources. Enterococcus mundtii EMB156, isolated from the larval gut (gut pH >10) of the model organism Bombyx mori (Lepidoptera: Bombycidae), efficiently produces lactic acid, an important metabolite for industrial production of bioplastic materials. E. mundtii EMB156 grows well under alkaline conditions and stably converts various carbon sources into lactic acid, offering advantages in downstream fermentative processes. High-yield lactic acid production can be achieved by the strain EMB156 from renewable biomass substrates under alkaline pretreatments. Single-molecule real-time (SMRT) sequencing technology revealed its 3.01 Mbp whole genome sequence. A total of 2956 protein-coding sequences, 65 tRNA genes, and 6 rRNA operons were predicted in the EMB156 chromosome. Remarkable genomic features responsible for lactic acid fermentation included key enzymes involved in the pentose phosphate (PP)/glycolytic pathway, and an alpha amylase and xylose isomerase were characterized in EMB156. This genomic information coincides with the phenotype of E. mundtii EMB156, reflecting its metabolic flexibility in efficient lactate fermentation, and established a foundation for future biotechnological application. Interestingly, enzyme activities of amylase were quite stable in high-pH broths, indicating a possible mechanism for strong EMB156 growth in an alkaline environment, thereby facilitating lactic acid production. Together, these findings implied that valuable lactic acid-producing bacteria can be discovered efficiently by screening under the extremely alkaline conditions, as exemplified by gut microbial symbionts of Lepidoptera insects.

  5. Enhanced alkaline hydrolysis and biodegradability studies of nitrocellulose-bearing missile propellant

    NASA Technical Reports Server (NTRS)

    Sidhoum, Mohammed; Christodoulatos, Christos; Su, Tsan-Liang; Redis, Mercurios

    1995-01-01

    Large amounts of energetic materials which have been accumulated over the years in various manufacturing and military installations must be disposed of in an environmentally sound manner. Historically, the method of choice for destruction of obsolete or aging energetic materials has been open burning or open detonation (OB/OD). This destruction approach has become undesirable due to air pollution problems. Therefore, there is a need for new technologies which will effectively and economically deal with the disposal of energetic materials. Along those lines, we have investigated a chemical/biological process for the safe destruction and disposal of a double base solid rocket propellant (AHH), which was used in several 8 inch projectile systems. The solid propellant is made of nitrocellulose and nitroglycerin as energetic components, two lead salts which act as ballistic modifiers, triacetin as a plasticizer and 2-Nitrodiphenylamine (2-NDPA) as a stabilizer. A process train is being developed to convert the organic components of the propellant to biodegradable products and remove the lead from the process stream. The solid propellant is first hydrolyzed through an enhanced alkaline hydrolysis process step. Following lead removal and neutralization, the digested liquor rich in nitrates and nitrites is found to be easily biodegradable. The digestion rate of the intact ground propellant as well as the release of nitrite and nitrate groups were substantially increased when ultrasound were supplied to the alkaline reaction medium compared to the conventional alkaline hydrolysis. The effects of reaction time, temperature, sodium hydroxide concentration and other relevant parameters on the digestion efficiency and biodegradability have been studied. The present work indicates that the AHH propellant can be disposed of safely with a combination of physiochemical and biological processes.

  6. Chelating resin immobilizing carboxymethylated polyethyleneimine for selective solid-phase extraction of trace elements: Effect of the molecular weight of polyethyleneimine and its carboxymethylation rate.

    PubMed

    Kagaya, Shigehiro; Kajiwara, Takehiro; Gemmei-Ide, Makoto; Kamichatani, Waka; Inoue, Yoshinori

    2016-01-15

    The effect of the molecular weight of polyethyleneimine (PEI), defined as a compound having two or more ethyleneamine units, and of its carboxymethylation rate (CM/N), represented by the ratio of ion-exchange capacity to the amount of N on the resin, on the selective solid-phase extraction ability of the chelating resin immobilizing carboxymethylated (CM) PEI was investigated. The chelating resins (24 types) were prepared by immobilization of diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, PEI300 (MW=ca. 300), and PEI600 (MW=ca. 600) on methacrylate resins, followed by carboxymethylation with various amounts of sodium monochloroacetate. When resins with approximately the same CM/N ratio (0.242-0.271) were used, the recovery of Cd, Co, Cu, Fe, Ni, Pb, Ti, Zn, and alkaline earth elements increased with increasing the molecular weight of PEIs under acidic and weakly acidic conditions; however, the extraction behavior of Mo and V was only slightly affected. This was probably due to the increase in N content of the resin, resulting in an increase in carboxylic acid groups; the difference in the molecular weight of PEIs immobilized on the resin exerts an insignificant influence on the selective extraction ability. The CM/N ratio considerably affected the extraction behavior for various elements. Under acidic and neutral conditions, the recovery of Cd, Co, Cu, Fe, Ni, Pb, Ti, and Zn increased with increasing CM/N values. However, under these conditions, the recovery of alkaline earth elements was considerably low when a resin with low CM/N ratio was used. This is presumably attributed to the different stability constants of the complexes of these elements with aminocarboxylic acids and amines, and to the electrostatic repulsion between the elements and the protonated amino groups in the CM-PEI. The recovery of Mo and V decreased or varied with increasing CM/N values, suggesting that the extraction of these elements occurred mainly by the anion-exchange reaction. For the separation and preconcentration of trace elements in samples containing large amounts of alkali and alkaline earth elements, the CM-PEI600 resin with CM/N=0.131 (Cu(II) extraction capacity, 0.37mmol g(-)(1)) was found to be the most suitable because it scarcely extracts alkali and alkaline earth elements under acidic and neutral conditions. This resin proved to be convenient for separating and preconcentrating Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in the certified reference materials (EnviroMAT EU-L-1 wastewater and ES-L-1 ground water) and commercially available table salt. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Separations in the STATS report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choppin, G.R.

    1996-12-31

    The Separations Technology and Transmutation Systems (STATS) Committee formed a Subcommittee on Separations. This subcommittee was charged with evaluating the separations proposed for the several reactor and accelerator transmutation systems. It was also asked to review the processing options for the safe management of high-level waste generated by the defense programs, in particular, the special problems involved in dealing with the waste at the U.S. Department of Energy (DOE) facility in Hanford, Washington. Based on the evaluations from the Subcommittee on Separations, the STATS Committee concluded that for the reactor transmutation programs, aqueous separations involving a combination of PUREX andmore » TRUEX solvent extraction processes could be used. However, additional research and development (R&D) would be required before full plant-scale use of the TRUEX technology could be employed. Alternate separations technology for the reactor transmutation program involves pyroprocessing. This process would require a significant amount of R&D before its full-scale application can be evaluated.« less

  8. The ADvanced SEParation (ADSEP)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The ADvanced SEParation (ADSEP) commercial payload is making use of major advances in separation technology: The Phase Partitioning Experiment (PPE); the Micorencapsulation experiment; and the Hemoglobin Separation Experiment (HSE). Using ADSEP, commercial researchers will attempt to determine the partition coefficients for model particles in a two-phase system. With this information, researchers can develop a higher resolution, more effective cell isolation procedure that can be used for many different types of research and for improved health care. The advanced separation technology is already being made available for use in ground-based laboratories.

  9. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: STORMWATER SOURCE AREA TREATMENT DEVICE — BAYSAVER TECHNOLOGIES, INC. BAYSAVER SEPARATION SYSTEM, MODEL 10K

    EPA Science Inventory

    Verification testing of the BaySaver Separation System, Model 10K was conducted on a 10 acre drainage basin near downtown Griffin, Georgia. The system consists of two water tight pre-cast concrete manholes and a high-density polyethylene BaySaver Separator Unit. The BaySaver Mod...

  10. Effect of alkalinity on nitrite accumulation in treatment of coal chemical industry wastewater using moving bed biofilm reactor.

    PubMed

    Hou, Baolin; Han, Hongjun; Jia, Shengyong; Zhuang, Haifeng; Zhao, Qian; Xu, Peng

    2014-05-01

    Nitrogen removal via nitrite (the nitrite pathway) is more suitable for carbon-limited industrial wastewater. Partial nitrification to nitrite is the primary step to achieve nitrogen removal via nitrite. The effect of alkalinity on nitrite accumulation in a continuous process was investigated by progressively increasing the alkalinity dosage ratio (amount of alkalinity to ammonia ratio, mol/mol). There is a close relationship among alkalinity, pH and the state of matter present in aqueous solution. When alkalinity was insufficient (compared to the theoretical alkalinity amount), ammonia removal efficiency increased first and then decreased at each alkalinity dosage ratio, with an abrupt removal efficiency peak. Generally, ammonia removal efficiency rose with increasing alkalinity dosage ratio. Ammonia removal efficiency reached to 88% from 23% when alkalinity addition was sufficient. Nitrite accumulation could be achieved by inhibiting nitrite oxidizing bacteria (NOB) by free ammonia (FA) in the early period and free nitrous acid in the later period of nitrification when alkalinity was not adequate. Only FA worked to inhibit the activity of NOB when alkalinity addition was sufficient. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  11. Prophylactic treatment with alkaline phosphatase in cardiac surgery induces endogenous alkaline phosphatase release.

    PubMed

    Kats, Suzanne; Brands, Ruud; Hamad, Mohamed A Soliman; Seinen, Willem; Scharnhorst, Volkher; Wulkan, Raymond W; Schönberger, Jacques P; Oeveren, Wim van

    2012-02-01

    Laboratory and clinical data have implicated endotoxin as an important factor in the inflammatory response to cardiopulmonary bypass. We assessed the effects of the administration of bovine intestinal alkaline phosphatase (bIAP), an endotoxin detoxifier, on alkaline phosphatase levels in patients undergoing coronary artery bypass grafting. A total of 63 patients undergoing coronary artery bypass grafting were enrolled and prospectively randomized. Bovine intestinal alkaline phosphatase (n=32) or placebo (n=31) was administered as an intravenous bolus followed by continuous infusion for 36 hours. The primary endpoint was to evaluate alkaline phosphatase levels in both groups and to find out if administration of bIAP to patients undergoing CABG would lead to endogenous alkaline phosphatase release. No significant adverse effects were identified in either group. In all the 32 patients of the bIAP-treated group, we found an initial rise of plasma alkaline phosphatase levels due to bolus administration (464.27±176.17 IU/L). A significant increase of plasma alkaline phosphatase at 4-6 hours postoperatively was observed (354.97±95.00 IU/L) as well. Using LHA inhibition, it was shown that this second peak was caused by the generation of tissue non specific alkaline phosphatase (TNSALP-type alkaline phosphatase). Intravenous bolus administration plus 8 hours continuous infusion of alkaline phosphatase in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass results in endogenous alkaline phosphatase release. This endogenous alkaline phosphatase may play a role in the immune defense system.

  12. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - REMOVAL OF PRECURSORS TO DISINFECTION BY-PRODUCTS IN DRINKING WATER, PCI MEMBRANE SYSTEMS FYNE PROCESS MODEL ROP 1434 WITH AFC-30 NANOFILTRATON AT BARROW, AK - NSF 00/19/EPADW395

    EPA Science Inventory

    Equipment testing and verification of PCI Membrane Systems Inc. Fyne Process nanofiltraton systems Model ROP 1434 equipped with a C10 module containing AFC-30 tubular membranes was conducted from 3/16-5/11/2000 in Barrow, AS. The source water was a moderate alkalinity, moderately...

  13. Demonstration/Validation of the Snap Sampler Passive Groundwater Sampling Device at the Former McClellan Air Force Base

    DTIC Science & Technology

    2011-02-01

    and Development Center Fe Iron gpd Gallons per Day HDPE High Density Polyethylene Hg Mercury ICP Inductively Coupled Plasma ICP/MS...Inductively Coupled Plasma Mass Spectrometry IROD Interim Record of Decision ITRC Interstate Technology and Regulatory Council K Potassium Kow...alkaline earth metals, alkali metals, and a metalloid, were sampled. This particular demonstration took place at the McClellan Air Force Base (AFB) in

  14. The key to success: Gelled-electrolyte and optimized separators for stationary lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Toniazzo, Valérie

    The lead acid technology is nowadays considered one of the best suited for stationary applications. Both gel and AGM batteries are complementary technologies and can provide reliability and efficiency due to the constant optimization of the battery design and components. However, gelled-electrolyte batteries remain the preferred technology due to a better manufacturing background and show better performance mainly at low and moderate discharge rates. Especially, using the gel technology allows to get rid of the numerous problems encountered in most AGM batteries: drainage, stratification, short circuits due to dendrites, and mostly premature capacity loss due to the release of internal cell compression. These limitations are the result of the evident lack of an optimal separation system. In gel batteries, on the contrary, highly efficient polymeric separators are nowadays available. Especially, microporous separators based on PVC and silica have shown the best efficiency for nearly 30 years all over the world, and especially in Europe, where the gel technology was born. The improved performance of these separators is explained by the unique extrusion process, which leads to excellent wettability, and optimized physical properties. Because they are the key for the battery success, continuous research and development on separators have led to improved properties, which render the separator even better adapted to the more recent gel technology: the pore size distribution has been optimized to allow good oxygen transfer while avoiding dendrite growth, the pore volume has been increased, the electrical resistance and acid displacement reduced to such an extent that the electrical output of batteries has been raised both in terms of higher capacity and longer cycle life.

  15. Effectiveness of the addition of alkaline materials at surface coal mines in preventing or abating acid mine drainage--Part 2. Mine site case studies

    USGS Publications Warehouse

    Brady, Keith; Smith, Michael W.; Beam, Richard L.; Cravotta,, Charles A.

    1990-01-01

    The effectiveness of preventing or ameliorating acid mine drainage (AMD) through the application of alkaline additives is evaluated for eight surface coal mines in Pennsylvania. Many of the mine sites had overburden characteristics that made prediction of post‐mining water quality uncertain. Alkaline materials were applied at rates ranging from 42 to greater than 1,000 tons as calcium carbonate per acre. In addition, two sites that were mined and reclaimed without alkaline additives are included for comparative purposes. Overburden sulfur concentration and "neutralization potential" (NP) data for multiple strata at each mine site were used to compute the cumulative, mass‐weighted "maximum potential acidity" (MPA) and "net neutralization potential" (NNP = NP ‐ MPA) by using three different calculation methods. Post‐reclamation water‐quality data were used to compute the net alkalinity (= alkalinity ‐ acidity). The most conservative determination of NNP, whereby MPA is calculated by multiplying the total sulfur concentration, in weight percent, by 62.5 instead of 31.25, yielded the best agreement with net alkalinity (patching signs on NNP and net alkalinity). The error in prediction using each method was that the reclaimed overburden was computed to be alkaline overall (NNP > 0), but the post‐reclamation water was acid (net alkalinity < 0). In general, alkaline addition rates were probably insufficient to neutralize, or too late to prevent, acid production in the mine spoil. At six of the seven mine sites that had overburden with insufficient NP relative to MPA (NNP < 0), the addition of alkaline materials failed to create alkaline mine drainage; AMD was formed or persisted. A control site which also had insufficient alkaline material, but did not incorporate alkaline additives, generated severe AMD. Two sites that had substantial, natural alkaline overburden produced alkaline drainage. Although the addition rates appear to be inadequate, other factors, such as unequal distribution and exposure of the acid‐forming or neutralizing materials and hydrogeological variability, complicate the evaluation of relative effectiveness of using different alkaline materials and placement of the acid‐ or alkaline‐producing materials.

  16. Exosome separation using microfluidic systems: size-based, immunoaffinity-based and dynamic methodologies.

    PubMed

    Yang, Fang; Liao, Xiangzhi; Tian, Yuan; Li, Guiying

    2017-04-01

    Exosomes, nanovesicles secreted by most types of cells, exist in virtually all bodily fluids. Their rich nucleic acid and protein content make them potentially valuable biomarkers for noninvasive molecular diagnostics. They also show promise, after further development, to serve as a drug delivery system. Unfortunately, existing exosome separation technologies, such as ultracentrifugation and methods incorporating magnetic beads, are time-consuming, laborious and separate only exosomes of low purity. Thus, a more effective separation method is highly desirable. Microfluidic platforms are ideal tools for exosome separation, since they enable fast, cost-efficient, portable and precise processing of nanoparticles and small volumes of liquid samples. Recently, several microfluidic-based exosome separation technologies have been studied. In this article, the advantages of the most recent technologies, as well as their limitations, challenges and potential uses in novel microfluidic exosome separation and collection applications is reviewed. This review outlines the uses of new powerful microfluidic exosome detection tools for biologists and clinicians, as well as exosome separation tools for microfluidic engineers. Current challenges of exosome separation methodologies are also described, in order to highlight areas for future research and development. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Isolation of plasma membrane fractions from the intestinal epithelial model T84.

    PubMed

    Kaoutzani, P; Parkos, C A; Delp-Archer, C; Madara, J L

    1993-05-01

    The human intestinal epithelial cell line T84 is widely used as a model for studies of Cl- secretion and crypt cell biology. We report a fractionation approach that permits separation of purified apical and basolateral T84 plasma membrane domains. T84 cellular membranes were isolated by nitrogen cavitation and differential centrifugation from monolayers grown on permeable supports. Membranes were then fractionated by isopycnic sucrose density gradient sedimentation, and fractions were assessed, using enzymatic and Western blot techniques, for apical (alkaline phosphatase) and basolateral (Na(+)-K(+)-ATPase) plasma membrane markers and for cytosolic, lysosomal, Golgi, and mitochondrial markers. Buffer conditions were defined that permitted separation of enriched apical and basolateral markers. The validity of the selected markers for the apical and basolateral domains was verified by selective apical and basolateral surface labeling studies using trace iodinated wheat germ agglutinin or biotinylation. This approach allows for separation of apical and basolateral plasma membranes of T84 cells for biochemical analyses and should thus be of broad utility in studies of this model polarized and transporting epithelium.

  18. Better Absorbents for Ammonia Separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malmali, Mahdi; Le, Giang; Hendrickson, Jennifer

    Making ammonia from renewable wind energy at a competitive price may be possible if the conventional ammonia condenser is replaced with an ammonia absorber. Such a process change requires an ammonia selective absorbent. Supported metal halide sorbents for this separation display outstanding dynamic capacity close to their equilibrium thermodynamic limits. Alkaline earth chlorides and bromides supported on silica and zeolite Y are the most promising. MgCl 2 and CaBr 2 at 40% loading on silica show capacities of 60-70 mg NH3/gsorbent at 150 °C and 4 bar. Overall, cations with smaller atomic numbers show more affinity to ammonia; bromides holdmore » ammonia more strongly than chlorides. Different solvents and metal halide mixtures do not show significant changes in the absorption capacity. Finally, these absorbents can be incorporated into ammonia reaction-absorption syntheses to achieve faster production rates.« less

  19. Tailorable Surface Morphology of 3D Scaffolds by Combining Additive Manufacturing with Thermally Induced Phase Separation.

    PubMed

    Di Luca, Andrea; de Wijn, Joost R; van Blitterswijk, Clemens A; Camarero-Espinosa, Sandra; Moroni, Lorenzo

    2017-08-01

    The functionalization of biomaterials substrates used for cell culture is gearing towards an increasing control over cell activity. Although a number of biomaterials have been successfully modified by different strategies to display tailored physical and chemical surface properties, it is still challenging to step from 2D substrates to 3D scaffolds with instructive surface properties for cell culture and tissue regeneration. In this study, additive manufacturing and thermally induced phase separation are combined to create 3D scaffolds with tunable surface morphology from polymer gels. Surface features vary depending on the gel concentration, the exchanging temperature, and the nonsolvent used. When preosteoblasts (MC-3T3 cells) are cultured on these scaffolds, a significant increase in alkaline phosphatase activity is measured for submicron surface topography, suggesting a potential role on early cell differentiation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Better Absorbents for Ammonia Separation

    DOE PAGES

    Malmali, Mahdi; Le, Giang; Hendrickson, Jennifer; ...

    2018-03-30

    Making ammonia from renewable wind energy at a competitive price may be possible if the conventional ammonia condenser is replaced with an ammonia absorber. Such a process change requires an ammonia selective absorbent. Supported metal halide sorbents for this separation display outstanding dynamic capacity close to their equilibrium thermodynamic limits. Alkaline earth chlorides and bromides supported on silica and zeolite Y are the most promising. MgCl 2 and CaBr 2 at 40% loading on silica show capacities of 60-70 mg NH3/gsorbent at 150 °C and 4 bar. Overall, cations with smaller atomic numbers show more affinity to ammonia; bromides holdmore » ammonia more strongly than chlorides. Different solvents and metal halide mixtures do not show significant changes in the absorption capacity. Finally, these absorbents can be incorporated into ammonia reaction-absorption syntheses to achieve faster production rates.« less

  1. Comparison of digestion methods for total elemental analysis of peat and separation of its organic and inorganic components

    USGS Publications Warehouse

    Papp, C.S.E.; Harms, T.F.

    1985-01-01

    In order to find the most efficient digestion method for the total elemental recovery in peat, ten samples were subjected to different techniques and analysed for Ca, Mg, Fe, AI, Na, K, Mn, P, Zn, Cu, Li, Cd, Co, Ni, Pb and Si using atomic-absorption spectrophotometry. The most satisfactory procedures were dry ashing followed by hydrofluoric acid treatment and wet digestion using a mixture of hot nitric, perchloric and hydrofluoric acids. The wet digestion offers the advantage of a single decomposition method for the determination of Ca, Mg, Fe, AI, K, Na, Mn, Cu, Li, Zn and P. An alkaline fusion technique was required for the determination of Si. Hydrogen peroxide was used to separate the peat into its organic and inorganic components, leading to the total recovery of the elements for both fractions.

  2. Chromatographic resolution of a salt into its parent acid and base constituents.

    PubMed

    Davankov, Vadim; Tsyurupa, Maria

    2006-12-08

    Based on the results of the earlier proposed process of separation of mixtures of mineral electrolytes by size-exclusion chromatography (SEC), it has been suggested that a mineral salt must spontaneously resolve, at least partially, into its parent acid and base constituents, provided that the separating media discriminates the anion and cation of the salt according to their size. Indeed, migration of a zone of an aqueous salt solution through a bed of neutral nanoporous hypercrosslinked polystyrene-type packing was shown to result in the generation of acidic and alkaline effluent fractions. The principle of spontaneous salt resolution has been extended to other types of discriminating interactions between the stationary phase and the two ions of the salt. The idea was exemplified by the resolution of ammonium acetate, due to hydrophobic retention of the acetate, into fractions enriched in ammoniac and then acetic acid.

  3. Environmental Remediation and Conversion of Carbon Dioxide (CO2) into Useful Green Products by Accelerated Carbonation Technology

    PubMed Central

    Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk

    2010-01-01

    This paper reviews the application of carbonation technology to the environmental industry as a way of reducing carbon dioxide (CO2), a green house gas, including the presentation of related projects of our research group. An alternative technology to very slow natural carbonation is the co-called ‘accelerated carbonation’, which completes its fast reaction within few hours by using pure CO2. Carbonation technology is widely applied to solidify or stabilize solid combustion residues from municipal solid wastes, paper mill wastes, etc. and contaminated soils, and to manufacture precipitated calcium carbonate (PCC). Carbonated products can be utilized as aggregates in the concrete industry and as alkaline fillers in the paper (or recycled paper) making industry. The quantity of captured CO2 in carbonated products can be evaluated by measuring mass loss of heated samples by thermo-gravimetric (TG) analysis. The industrial carbonation technology could contribute to both reduction of CO2 emissions and environmental remediation. PMID:20195442

  4. Nanotechnology and chip level systems for pressure driven liquid chromatography and emerging analytical separation techniques: a review.

    PubMed

    Lavrik, N V; Taylor, L T; Sepaniak, M J

    2011-05-23

    Pressure driven liquid chromatography (LC) is a powerful and versatile separation technique particularly suitable for differentiating species present in extremely small quantities. This paper briefly reviews main historical trends and focuses on more recently developed technological approaches in miniaturization and on-chip integration of LC columns. The review emphasizes enabling technologies as well as main technological challenges specific to pressure driven separations and highlights emerging concepts that could ultimately overcome fundamental limitations of conventional LC columns. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Continuation of Crosscutting Technology Development at Cast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Roe-Hoan

    2012-03-31

    This Final Technical Report describes progress made on the sub-projects awarded in the Cooperative Agreement DE-FC26-05NT42457: Continuation of Crosscutting Technology Development at Center for Advanced Separation Technologies (CAST). The final reports for each sub-project are attached in the appendix. Much of the research to be conducted with Cooperative Agreement funds will be longer-term, high-risk, basic research and will be carried out in five broad areas: a) Solid-solid separation b) Solid-liquid separation c) Chemical/Biological Extraction d) Modeling and Control, and e) Environmental Control.

  6. The impact of pH on floc structure characteristic of polyferric chloride in a low DOC and high alkalinity surface water treatment.

    PubMed

    Cao, Baichuan; Gao, Baoyu; Liu, Xin; Wang, Mengmeng; Yang, Zhonglian; Yue, Qinyan

    2011-11-15

    The adjustment of pH is an important way to enhance removal efficiency in coagulation units, and in this process, the floc size, strength and structure can be changed, influencing the subsequent solid/liquid separation effect. In this study, an inorganic polymer coagulant, polyferric chloride (PFC) was used in a low dissolved organic carbon (DOC) and high alkalinity surface water treatment. The influence of coagulation pH on removal efficiency, floc growth, strength, re-growth capability and fractal dimension was examined. The optimum dosage was predetermined as 0.150 mmol/L, and excellent particle and organic matter removal appeared in the pH range of 5.50-5.75. The structure characteristics of flocs formed under four pH conditions were investigated through the analysis of floc size, effect of shear and particle scattering properties by a laser scattering instrument. The results indicated that flocs formed at neutral pH condition gave the largest floc size and the highest growth rate. During the coagulation period, the fractal dimension of floc aggregates increased in the first minutes and then decreased and larger flocs generally had smaller fractal dimensions. The floc strength, which was assessed by the relationship of floc diameter and velocity gradient, decreased with the increase of coagulation pH. Flocs formed at pH 4.00 had better recovery capability when exposed to lower shear forces, while flocs formed at neutral and alkaline conditions had better performance under higher shear forces. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Basic mechanism of button battery ingestion injuries and novel mitigation strategies after diagnosis and removal.

    PubMed

    Jatana, Kris R; Rhoades, Keith; Milkovich, Scott; Jacobs, Ian N

    2017-06-01

    Button battery (BB) injuries continue to be a significant source of morbidity and mortality, and there is a need to confirm the mechanism of injury for development of additional mitigation strategies. Cadaveric piglet esophageal model. Lithium, silver oxide, alkaline, and zinc-air BBs were placed in thawed sections of cadaveric piglet esophagus, bathed in normal saline. Severity of gross visual burn, pH, and temperature were recorded every 30 minutes for 6 hours. In other esophageal tissue specimens, the lithium BB was removed after 24, 36, and 48 hours and the site was irrigated with either 0.25% or 3% acetic acid. Separately, ReaLemon® juice, orange juice, Coke®, Dasani® water, Pepsi®, and saline were infused over a vertically suspended esophagus with a CR2032 lithium battery every 5 minutes for 2 hours while tissue temperature and pH were measured. A gradual rise in tissue pH and minimal change in temperature was noted for all BBs. ReaLemon® and orange juice applied every 5 minutes were most effective at neutralization of tissue pH with minimal change in tissue temperature. After BB removal (24, 36, 48 hours), irrigation of esophageal tissue specimens with 50-150 mL 0.25% acetic acid neutralized the highly alkaline tissue pH. BB appear to cause an isothermic hydrolysis reaction resulting in an alkaline caustic injury. Potential new mitigation strategies include application of neutralizing weakly acidic solutions that may reduce esophageal injury progression. NA Laryngoscope, 127:1276-1282, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  8. Effects of parsley (Petroselinum crispum) extract versus glibornuride on the liver of streptozotocin-induced diabetic rats.

    PubMed

    Ozsoy-Sacan, Ozlem; Yanardag, Refiye; Orak, Haci; Ozgey, Yasemin; Yarat, Aysen; Tunali, Tugba

    2006-03-08

    Parsley (Petroselinum crispum) is one of the medicinal herbs used by diabetics in Turkey. The aim of this study is to investigate the effects of parsley (2g/kg) and glibornuride (5mg/kg) on the liver tissue of streptozotocin-induced diabetic rats. Swiss albino rats were divided into six groups: control; control+parsley; control+glibornuride; diabetic; diabetic+parsley; diabetic+glibornuride. Diabetes was induced by intraperitoneal injection of 65 mg/kg streptozotocin (STZ). Parsley extract and glibornuride were given daily to both diabetic and control rats separately, until the end of the experiment, at day 42. The drugs were administered to one diabetic and one control group from days 14 to 42. On day 42, liver tissues were taken from each rat. In STZ-diabetic group, blood glucose levels, serum alkaline phosphatase activity, uric acid, sialic acid, sodium and potassium levels, liver lipid peroxidation (LPO), and non-enzymatic glycosylation (NEG) levels increased, while liver glutathione (GSH) levels and body weight decreased. In the diabetic group given parsley, blood glucose, serum alkaline phosphatase activity, sialic acid, uric acid, potassium and sodium levels, and liver LPO and NEG levels decreased, but GSH levels increased. The diabetic group, given glibornuride, blood glucose, serum alkaline phosphatase activity, serum sialic acid, uric acid, potassium, and liver NEG levels decreased, but liver LPO, GSH, serum sodium levels, and body weight increased. It was concluded that probably, due to its antioxidant property, parsley extract has a protective effect comparable to glibornuride against hepatotoxicity caused by diabetes.

  9. The Archaen volcanic facies in the Migori segment, Nyanza greenstone belt, Kenya: stratigraphy, geochemistry and mineralisation

    NASA Astrophysics Data System (ADS)

    Ichang'l, D. W.; MacLean, W. H.

    The Migori segment is an 80 by 20 km portion of the Nyanza greenstone belt which forms the northern part of the Archean Tanzanian Craton in western Kenya, northern Tanzania and southeastern Uganda. It consists of two volcanic centres, each with central, proximal and distal volcanic facies, comprising the Migori Group, the Macalder and Lolgorien Subgroups, and eleven volcano-sedimentary formations. The centres are separated by a basin of tuffs and greywacke turbidites. The volcanics are bimodal mafic basalt and dolerite ( Zr/Y = 3.8 - 6.5, La N/Yb N = 1.0 - 2.4) , and felsic calc-alkaline dacite-rhyolite ( Zr/Y = 10 - 21, La N/Yb N = 19 - 42 ) and high-K dacite ( Zr/Y = 9 - 16, La N/Yb N = 21 - 22 ). Felsic units form approximately three-fourths of the volcanic stratigraphy. Basalts, calc-alkaline dacites and rhyolites were deposited in a submarine environment, but the voluminous high-K dacites were erupted subaerially. The turbidites contain units of iron-formations. Granitic intrusions are chemically continuous with the high-K dacites. The felsic volcanics are anologous to those found at modern volcanic arc subduction settings involving continental crust. The Macalder ZnCuAuAg volcanogenic massive sulphide deposits is in central facies basalts-greywacke-rhyolite. Gold mineralisation occurs in proximal facies tuffs and iron formation, and in oblique and semi-conformable quartz veins. Greenstones in the Nyanza belt are dominated by calc-alkaline felsic volcanics in constrast to the komatiite-tholeiitic basalt volcanism in the Kaapvaal Craton of South Africa, and a mixture of the two types in the Zimbabwe Craton.

  10. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes (granular...

  11. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes (granular...

  12. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes (granular...

  13. Hybrid alkali-hydrodynamic disintegration of waste-activated sludge before two-stage anaerobic digestion process.

    PubMed

    Grübel, Klaudiusz; Suschka, Jan

    2015-05-01

    The first step of anaerobic digestion, the hydrolysis, is regarded as the rate-limiting step in the degradation of complex organic compounds, such as waste-activated sludge (WAS). The aim of lab-scale experiments was to pre-hydrolyze the sludge by means of low intensive alkaline sludge conditioning before applying hydrodynamic disintegration, as the pre-treatment procedure. Application of both processes as a hybrid disintegration sludge technology resulted in a higher organic matter release (soluble chemical oxygen demand (SCOD)) to the liquid sludge phase compared with the effects of processes conducted separately. The total SCOD after alkalization at 9 pH (pH in the range of 8.96-9.10, SCOD = 600 mg O2/L) and after hydrodynamic (SCOD = 1450 mg O2/L) disintegration equaled to 2050 mg/L. However, due to the synergistic effect, the obtained SCOD value amounted to 2800 mg/L, which constitutes an additional chemical oxygen demand (COD) dissolution of about 35 %. Similarly, the synergistic effect after alkalization at 10 pH was also obtained. The applied hybrid pre-hydrolysis technology resulted in a disintegration degree of 28-35%. The experiments aimed at selection of the most appropriate procedures in terms of optimal sludge digestion results, including high organic matter degradation (removal) and high biogas production. The analyzed soft hybrid technology influenced the effectiveness of mesophilic/thermophilic anaerobic digestion in a positive way and ensured the sludge minimization. The adopted pre-treatment technology (alkalization + hydrodynamic cavitation) resulted in 22-27% higher biogas production and 13-28% higher biogas yield. After two stages of anaerobic digestion (mesophilic conditions (MAD) + thermophilic anaerobic digestion (TAD)), the highest total solids (TS) reduction amounted to 45.6% and was received for the following sample at 7 days MAD + 17 days TAD. About 7% higher TS reduction was noticed compared with the sample after 9 days MAD + 15 days TAD. Similar results were obtained for volatile solids (VS) reduction after two-stage anaerobic digestion. The highest decrease of VS was obtained when the first stage, the mesophilic digestion which lasted 7 days, was followed by thermophilic digestion for 17 days.

  14. Field Evaluation of the Restorative Capacity of the Aquifer Downgradient of a Uranium In-Situ Recovery Mining Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimus, Paul William

    A two-part field study was conducted in Smith Ranch-Highland in-situ recovery (ISR) near Douglas, Wyoming, to evaluate the restorative capacity of the aquifer downgradient (i.e., hydrologically downstream) of a Uranium ISR mining site with respect to the transport of uranium and other potential contaminants in groundwater after mining has ceased. The study was partially conducted by checking the Uranium content and the alkalinity of separate wells, some wells had been restored and others had not. A map and in-depth procedures of the study are included.

  15. Geology of the Mahd Adh Dhahab District, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Afifi, A.M.

    1990-01-01

    Major-element data show that the Mahd Group was produced from separate basaltic and dacitic-rhyolitic magmas that overlapped without mixing. The alkalis and alkaline-earth elements were particularly mobile during metamorphism (which caused widespread albitization of feldspars) and also during hydrothermal alteration (which added secondary microcline). This mobility adversely affected rubidium-strontium whole-rock systematics, which makes whole-rock isochron dates obtained from these rocks questionable. The new geological data presented here are combined with the geochronologic data of Calvez and Kemp (1982) to re-interpret the geologic history of this area.

  16. Electrophoretic separation of proteins in space

    NASA Technical Reports Server (NTRS)

    Brown, R. K.

    1976-01-01

    Commercially available and synthetic wide range and short range ampholytes used in the isoelectric focusing of proteins was analyzed by ion exchange chromatography. A pH gradient over the pH range 3.8 to 11.0 was used to elute the ampholytes from a column of a sulfonated polystyrene resin. The wide range ampholytes were resolved into some 60 to 70 ninhydrin positive components. The recovery obtained with the method was quantitative. Acid short range ampholytes have approximately 35 components which elute readily from the ion exchange resin. Basic short range ampholytes gave about 50 components, most of which eluted at alkaline pH.

  17. Distillation process using microchannel technology

    DOEpatents

    Tonkovich, Anna Lee [Dublin, OH; Simmons, Wayne W [Dublin, OH; Silva, Laura J [Dublin, OH; Qiu, Dongming [Carbondale, IL; Perry, Steven T [Galloway, OH; Yuschak, Thomas [Dublin, OH; Hickey, Thomas P [Dublin, OH; Arora, Ravi [Dublin, OH; Smith, Amanda [Galloway, OH; Litt, Robert Dwayne [Westerville, OH; Neagle, Paul [Westerville, OH

    2009-11-03

    The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.

  18. Environmental consequences of future biogas technologies based on separated slurry.

    PubMed

    Hamelin, Lorie; Wesnæs, Marianne; Wenzel, Henrik; Petersen, Bjørn M

    2011-07-01

    This consequential life cycle assessment study highlights the key environmental aspects of producing biogas from separated pig and cow slurry, a relatively new but probable scenario for future biogas production, as it avoids the reliance on constrained carbon cosubstrates. Three scenarios involving different slurry separation technologies have been assessed and compared to a business-as-usual reference slurry management scenario. The results show that the environmental benefits of such biogas production are highly dependent upon the efficiency of the separation technology used to concentrate the volatile solids in the solid fraction. The biogas scenario involving the most efficient separation technology resulted in a dry matter separation efficiency of 87% and allowed a net reduction of the global warming potential of 40%, compared to the reference slurry management. This figure comprises the whole slurry life cycle, including the flows bypassing the biogas plant. This study includes soil carbon balances and a method for quantifying the changes in yield resulting from increased nitrogen availability as well as for quantifying mineral fertilizers displacement. Soil carbon balances showed that between 13 and 50% less carbon ends up in the soil pool with the different biogas alternatives, as opposed to the reference slurry management.

  19. Flight Deck-Based Delegated Separation: Evaluation of an On-Board Interval Management System with Synthetic and Enhanced Vision Technology

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Shelton, Kevin J.; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.; Norman, Rober M.; Ellis, Kyle K. E.; Barmore, Bryan E.

    2011-01-01

    An emerging Next Generation Air Transportation System concept - Equivalent Visual Operations (EVO) - can be achieved using an electronic means to provide sufficient visibility of the external world and other required flight references on flight deck displays that enable the safety, operational tempos, and visual flight rules (VFR)-like procedures for all weather conditions. Synthetic and enhanced flight vision system technologies are critical enabling technologies to EVO. Current research evaluated concepts for flight deck-based interval management (FIM) operations, integrated with Synthetic Vision and Enhanced Vision flight-deck displays and technologies. One concept involves delegated flight deck-based separation, in which the flight crews were paired with another aircraft and responsible for spacing and maintaining separation from the paired aircraft, termed, "equivalent visual separation." The operation required the flight crews to acquire and maintain an "equivalent visual contact" as well as to conduct manual landings in low-visibility conditions. The paper describes results that evaluated the concept of EVO delegated separation, including an off-nominal scenario in which the lead aircraft was not able to conform to the assigned spacing resulting in a loss of separation.

  20. Root Damage under Alkaline Stress Is Associated with Reactive Oxygen Species Accumulation in Rice (Oryza sativa L.)

    PubMed Central

    Zhang, Hui; Liu, Xiao-Long; Zhang, Rui-Xue; Yuan, Hai-Yan; Wang, Ming-Ming; Yang, Hao-Yu; Ma, Hong-Yuan; Liu, Duo; Jiang, Chang-Jie; Liang, Zheng-Wei

    2017-01-01

    Alkaline stress (high pH) severely damages root cells, and consequently, inhibits rice (Oryza sativa L.) seedling growth. In this study, we demonstrate the accumulation of reactive oxygen species (ROS) in root cells under alkaline stress. Seedlings of two rice cultivars with different alkaline tolerances, ‘Dongdao-4’ (moderately alkaline-tolerant) and ‘Jiudao-51’ (alkaline-sensitive), were subjected to alkaline stress simulated by 15 mM sodium carbonate (Na2CO3). Alkaline stress greatly reduced seedling survival rate, shoot and root growth, and root vigor. Moreover, severe root cell damage was observed under alkaline stress, as shown by increased membrane injury, malondialdehyde accumulation, and Evan’s Blue staining. The expression of the cell death-related genes OsKOD1, OsHsr203j, OsCP1, and OsNAC4 was consistently upregulated, while that of a cell death-suppressor gene, OsBI1, was downregulated. Analysis of the ROS contents revealed that alkaline stress induced a marked accumulation of superoxide anions (O2•-) and hydrogen peroxide (H2O2) in rice roots. The application of procyanidins (a potent antioxidant) to rice seedlings 24 h prior to alkaline treatment significantly alleviated alkalinity-induced root damage and promoted seedling growth inhibition, which were concomitant with reduced ROS accumulation. These results suggest that root cell damage, and consequently growth inhibition, of rice seedlings under alkaline stress is closely associated with ROS accumulation. The antioxidant activity of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase increased under alkaline stress in the roots, probably in response to the cellular damage induced by oxidative stress. However, this response mechanism may be overwhelmed by the excess ROS accumulation observed under stress, resulting in oxidative damage to root cells. Our findings provide physiological insights into the molecular mechanisms of alkalinity-induced damage to root cells, and will contribute to the improvement of alkaline stress tolerance in rice plants. PMID:28943882

  1. Root Damage under Alkaline Stress Is Associated with Reactive Oxygen Species Accumulation in Rice (Oryza sativa L.).

    PubMed

    Zhang, Hui; Liu, Xiao-Long; Zhang, Rui-Xue; Yuan, Hai-Yan; Wang, Ming-Ming; Yang, Hao-Yu; Ma, Hong-Yuan; Liu, Duo; Jiang, Chang-Jie; Liang, Zheng-Wei

    2017-01-01

    Alkaline stress (high pH) severely damages root cells, and consequently, inhibits rice ( Oryza sativa L.) seedling growth. In this study, we demonstrate the accumulation of reactive oxygen species (ROS) in root cells under alkaline stress. Seedlings of two rice cultivars with different alkaline tolerances, 'Dongdao-4' (moderately alkaline-tolerant) and 'Jiudao-51' (alkaline-sensitive), were subjected to alkaline stress simulated by 15 mM sodium carbonate (Na 2 CO 3 ). Alkaline stress greatly reduced seedling survival rate, shoot and root growth, and root vigor. Moreover, severe root cell damage was observed under alkaline stress, as shown by increased membrane injury, malondialdehyde accumulation, and Evan's Blue staining. The expression of the cell death-related genes OsKOD1 , OsHsr203j , OsCP1 , and OsNAC4 was consistently upregulated, while that of a cell death-suppressor gene, OsBI1 , was downregulated. Analysis of the ROS contents revealed that alkaline stress induced a marked accumulation of superoxide anions ([Formula: see text]) and hydrogen peroxide (H 2 O 2 ) in rice roots. The application of procyanidins (a potent antioxidant) to rice seedlings 24 h prior to alkaline treatment significantly alleviated alkalinity-induced root damage and promoted seedling growth inhibition, which were concomitant with reduced ROS accumulation. These results suggest that root cell damage, and consequently growth inhibition, of rice seedlings under alkaline stress is closely associated with ROS accumulation. The antioxidant activity of superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase increased under alkaline stress in the roots, probably in response to the cellular damage induced by oxidative stress. However, this response mechanism may be overwhelmed by the excess ROS accumulation observed under stress, resulting in oxidative damage to root cells. Our findings provide physiological insights into the molecular mechanisms of alkalinity-induced damage to root cells, and will contribute to the improvement of alkaline stress tolerance in rice plants.

  2. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... alkaline cleaning baths to remove mineral and animal fats or oils from the steel, and those rinsing...

  3. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... alkaline cleaning baths to remove mineral and animal fats or oils from the steel, and those rinsing...

  4. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... alkaline cleaning baths to remove mineral and animal fats or oils from the steel, and those rinsing...

  5. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... alkaline cleaning baths to remove mineral and animal fats or oils from the steel, and those rinsing...

  6. 40 CFR 420.110 - Applicability; description of the alkaline cleaning subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alkaline cleaning subcategory. 420.110 Section 420.110 Protection of Environment ENVIRONMENTAL PROTECTION... Alkaline Cleaning Subcategory § 420.110 Applicability; description of the alkaline cleaning subcategory... alkaline cleaning baths to remove mineral and animal fats or oils from the steel, and those rinsing...

  7. Microgravity

    NASA Image and Video Library

    1998-10-01

    The ADvanced SEParation (ADSEP) commercial payload is making use of major advances in separation technology: The Phase Partitioning Experiment (PPE); the Micorencapsulation experiment; and the Hemoglobin Separation Experiment (HSE). Using ADSEP, commercial researchers will attempt to determine the partition coefficients for model particles in a two-phase system. With this information, researchers can develop a higher resolution, more effective cell isolation procedure that can be used for many different types of research and for improved health care. The advanced separation technology is already being made available for use in ground-based laboratories.

  8. Activity–stability relationship in the surface electrochemistry of the oxygen evolution reaction

    DOE PAGES

    Chang, Seo Hyoung; Connell, Justin G.; Danilovic, Nemanja; ...

    2014-07-25

    Understanding the functional links between the stability and reactivity of oxide materials during the oxygen evolution reaction (OER) is one key to enabling a vibrant hydrogen economy capable of competing with fossil fuel-based technologies. In this work, by focusing on the surface chemistry of monometallic Ru oxide in acidic and alkaline environments, we found that the kinetics of the OER are almost entirely controlled by the stability of the Ru surface atoms. The same activity–stability relationship was found for more complex, polycrystalline and single-crystalline SrRuO 3 thin films in alkaline solutions. We propose that the electrochemical transformation of either watermore » (acidic solutions) or hydroxyl ions (alkaline solutions) to di-oxygen molecules takes place at defect sites that are inherently present on every electrode surface. During the OER, surface defects are also created by the corrosion of the Ru ions. The dissolution is triggered by the potential-dependent change in the valence state ( n) of Ru: from stable but inactive Ru 4+ to unstable but active Ru n>4+. We conclude that if the oxide is stable then it is completely inactive for the OER. As a result, a practical consequence is that the best materials for the OER should balance stability and activity in such a way that the dissolution rate of the oxide is neither too fast nor too slow.« less

  9. Hyper-X Stage Separation: Simulation Development and Results

    NASA Technical Reports Server (NTRS)

    Reubush, David E.; Martin, John G.; Robinson, Jeffrey S.; Bose, David M.; Strovers, Brian K.

    2001-01-01

    This paper provides an overview of stage separation simulation development and results for NASA's Hyper-X program; a focused hypersonic technology effort designed to move hypersonic, airbreathing vehicle technology from the laboratory environment to the flight environment. This paper presents an account of the development of the current 14 degree of freedom stage separation simulation tool (SepSim) and results from use of the tool in a Monte Carlo analysis to evaluate the risk of failure for the separation event. Results from use of the tool show that there is only a very small risk of failure in the separation event.

  10. 21 CFR 862.1050 - Alkaline phosphatase or isoenzymes test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Alkaline phosphatase or isoenzymes test system... Test Systems § 862.1050 Alkaline phosphatase or isoenzymes test system. (a) Identification. An alkaline phosphatase or isoenzymes test system is a device intended to measure alkaline phosphatase or its isoenzymes...

  11. Global Variability and Changes in Ocean Total Alkalinity from Aquarius Satellite

    NASA Astrophysics Data System (ADS)

    Fine, R. A.; Willey, D. A.; Millero, F. J., Jr.

    2016-02-01

    To document effects of ocean acidification it is important to have an understanding of the processes and parameters that influence alkalinity. Alkalinity is a gauge on the ability of seawater to neutralize acids. We use Aquarius satellite data, which allow unprecedented global mapping of surface total alkalinity as it correlates strongly with salinity and to a lesser extent with temperature. Spatial variability in total alkalinity and salinity exceed temporal variability, the latter includes seasonal and differences compared to climatological data. The northern hemisphere has more spatial and monthly variability in total alkalinity and salinity, while less variability in Southern Ocean alkalinity is due to less salinity variability and upwelling of waters enriched in alkalinity. Satellite alkalinity data are providing a global baseline that can be used for comparing with future carbon data, and for evaluating spatial and temporal variability and past trends. For the first time it is shown that recent satellite derived total alkalinity in the subtropics have increased as compared with climatological data; this is reflective of large scale changes in the global water cycle. Total alkalinity increases imply increased dissolution of calcareous minerals and difficulty for calcifying organisms to make their shells.

  12. Selective separation of Eu{sup 3+} using polymer-enhanced ultrafiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norton, M.V.

    1994-03-01

    A process to selectively remove {sup 241}Am from liquid radioactive waste was investigated as an actinide separation method applicable to Hanford and other waste sites. The experimental procedures involved removal of Eu, a nonradioactive surrogate for Am, from aqueous solutions at pH 5 using organic polymers in conjunction with ultrafiltration. Commercially available polyacrylic acid (60,000 MW) and Pacific Northwest Laboratory`s (PNL) synthesized E3 copolymer ({approximately}10,000 MW) were tested. Test solutions containing 10 {mu}g/mL of Eu were dosed vath each polymer at various concentrations in order to bind Eu (i.e., by complexation and/or cation exchange) for subsequent rejection by an ultrafiltrationmore » coupon. Test solutions were filtered with and without polymer to determine if enhanced Eu separation could be achieved from polymer treatment. Both polymers significantly increased Eu removal. Optimum concentrations were 20 {mu}g/mL of polyacrylic acid and 100 {mu}g/mL of E3 for 100% Eu rejection by the Amicon PM10 membrane at 55 psi. In addition to enhancement of removal, the polymers selectively bound Eu over Na, suggesting that selective separation of Eu was possible. This suggests that polymer-enhanced ultrafiltration is a potential process for separation of {sup 241}Am from Hanford tank waste, further investigation of binding agents and membranes effective under very alkaline and high ionic strength is warranted. This process also has potential applications for selective separation of toxic metals from industrial process streams.« less

  13. Characterization of Non-pertechnetate Species Relevant to the Hanford Tank Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Sayandev; Andersen, Amity; Du, Yingge

    Among radioactive constituents present in the tank waste stored at the U.S. DOE Hanford Site, technetium-99 (Tc), which is generated from the fission of 235U and 239Pu in high yields, presents a unique challenge in that it has a long half-life ( = 292 keV; T1/2 = 2.11105 y) and exists predominately in soluble forms in the liquid supernatant and salt cake fractions of the waste. In the strongly alkaline environments prevalent in most of the tank waste, its dominant chemical form is pertechnetate (TcO 4 -, oxidation state +7). However, attempts to remove Tc from the Hanford tank wastemore » using ion-exchange processes specific to TcO 4 - only met with limited success, particularly when processing tank waste samples containing elevated concentrations of organic complexants. This suggests that a significant fraction of the soluble Tc can be present as low-valent Tc (oxidation state < +7) (non-pertechnetate). The chemical identities of these non-pertechnetate species are poorly understood. Previous analysis of the SY-101 and SY-103 tank waste samples provided strong evidence that non-pertechnetate can be comprised of [fac-Tc(CO) 3] + complexes containing Tc in oxidation state +1 (Lukens et al. 2004). During the last three years, our team has expanded this work and demonstrated that high-ionic-strength solutions typifying tank waste supernatants promote oxidative stability of the [fac-Tc(CO) 3] + species (Rapko et al. 2013a; 2013b; Levitskaia et al. 2014; Chatterjee et al. 2015). Obtained results also suggest possible stabilization of Tc(VI) and potentially Tc(IV) oxidation states in the high-ionic-strength alkaline matrices particularly in the presence of organic chelators, so that Tc(IV, VI) can serve as important redox intermediates facilitating the reduction of Tc(VII) to Tc(I). Designing strategies for effective Tc management, including separation and immobilization, necessitates understanding the molecular structure of the non-pertechnetate species and their identification in the actual tank waste samples, which would facilitate development of new treatment technologies effective for dissimilar Tc species. The key FY 2016 results are summarized below.« less

  14. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation1

    PubMed Central

    Li, Juan; Xu, Heng-Hao; Liu, Wen-Cheng; Zhang, Xiao-Wei

    2015-01-01

    Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag+) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co2+) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag+/Co2+-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes. PMID:26109425

  15. PROJECT W-551 DETERMINATION DATA FOR EARLY LAW INTERIM PRETREATMENT SYSTEM SELECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEDESCHI AR

    This report provides the detailed assessment forms and data for selection of the solids separation and cesium separation technology for project W-551, Interim Pretreatment System. This project will provide early pretreated low activity waste feed to the Waste Treatment Plant to allow Waste Treatment Plan Low Activity Waste facility operation prior to construction completion of the Pretreatment and High Level Waste facilities. The candidate solids separations technologies are rotary microfiltration and crossflow filtration, and the candidate cesium separation technologies are fractional crystallization, caustic-side solvent extraction, and ion-exchange using spherical resorcinol-formaldehyde resin. This data was used to prepare a cross-cutting technologymore » summary, reported in RPP-RPT-37740.« less

  16. Numerical Prediction Methods (Reynolds-Averaged Navier-Stokes Simulations of Transonic Separated Flows)

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel; Lomax, Harvard

    1981-01-01

    During the past five years, numerous pioneering archival publications have appeared that have presented computer solutions of the mass-weighted, time-averaged Navier-Stokes equations for transonic problems pertinent to the aircraft industry. These solutions have been pathfinders of developments that could evolve into a major new technological capability, namely the computational Navier-Stokes technology, for the aircraft industry. So far these simulations have demonstrated that computational techniques, and computer capabilities have advanced to the point where it is possible to solve forms of the Navier-Stokes equations for transonic research problems. At present there are two major shortcomings of the technology: limited computer speed and memory, and difficulties in turbulence modelling and in computation of complex three-dimensional geometries. These limitations and difficulties are the pacing items of the continuing developments, although the one item that will most likely turn out to be the most crucial to the progress of this technology is turbulence modelling. The objective of this presentation is to discuss the state of the art of this technology and suggest possible future areas of research. We now discuss some of the flow conditions for which the Navier-Stokes equations appear to be required. On an airfoil there are four different types of interaction of a shock wave with a boundary layer: (1) shock-boundary-layer interaction with no separation, (2) shock-induced turbulent separation with immediate reattachment (we refer to this as a shock-induced separation bubble), (3) shock-induced turbulent separation without reattachment, and (4) shock-induced separation bubble with trailing edge separation.

  17. Evaluation of Innovative Volatile Organic Compound and Hazardous Air Pollutant Control Technologies for U.S. Air Force Paint Spray Booths

    DTIC Science & Technology

    1990-10-01

    adsorption/incineration * Membrane vapor separation/condensation * Supercritical fluid oxidation • UV/ozone destruction * Molten salt combustion process...separation/ separate air stream contaminants 9 Oxygenated solvents condensation * Chlorinated hydrocarbons Supercritical fluid * Technology utilizing high...testing or full-scale unit capacity; they are: * Supercritical fluid oxidation • UV/ozone destruction * Molten salt incineration * Infrared incineration

  18. Integral Engine Inlet Particle Separator. Volume 1. Technology Program

    DTIC Science & Technology

    1975-07-01

    inlet particle separators for future Army aircraft gas turbine engines . Appropriate technical personnel of this Directorate have reviewed this report...USAAMRDL-TR-75-31A I - / INTEGRAL ENGINE INLET PARTICLE SEPARATOR Volume I-- Technology Program General Electric Company Aircraft Engine Group...N1 i 9ap mm tm~qu INTRODUCTION The adverse environments in which Army equipment operates impose severe )enalties upon gas turbine engine performance

  19. Heterologous expression, biochemical characterization, and overproduction of alkaline α-amylase from Bacillus alcalophilus in Bacillus subtilis

    PubMed Central

    2011-01-01

    Background Alkaline α-amylases have potential applications for hydrolyzing starch under high pH conditions in the starch and textile industries and as ingredients in detergents for automatic dishwashers and laundries. While the alkaline α-amylase gains increased industrial interest, the yield of alkaline α-amylases from wild-type microbes is low, and the combination of genetic engineering and process optimization is necessary to achieve the overproduction of alkaline α-amylase. Results The alkaline α-amylase gene from Bacillus alcalophilus JN21 (CCTCC NO. M 2011229) was cloned and expressed in Bacillus subtilis strain WB600 with vector pMA5. The recombinant alkaline α-amylase was stable at pH from 7.0 to 11.0 and temperature below 40°C. The optimum pH and temperature of alkaline α-amylase was 9.0 and 50°C, respectively. Using soluble starch as the substrate, the Km and Vmax of alkaline α-amylase were 9.64 g/L and 0.80 g/(L·min), respectively. The effects of medium compositions (starch, peptone, and soybean meal) and temperature on the recombinant production of alkaline α-amylase in B. subtilis were investigated. Under the optimal conditions (starch concentration 0.6% (w/v), peptone concentration 1.45% (w/v), soybean meal concentration 1.3% (w/v), and temperature 37°C), the highest yield of alkaline α-amylase reached 415 U/mL. The yield of alkaline α-amylase in a 3-L fermentor reached 441 U/mL, which was 79 times that of native alkaline α-amylase from B. alcalophilus JN21. Conclusions This is the first report concerning the heterologous expression of alkaline α-amylase in B. subtilis, and the obtained results make it feasible to achieve the industrial production of alkaline α-amylase with the recombinant B. subtilis. PMID:21978209

  20. Proton Exchange Membrane (PEM) Fuel Cell Status and Remaining Challenges for Manned Space-Flight Applications

    NASA Technical Reports Server (NTRS)

    Reaves, Will F.; Hoberecht, Mark A.

    2003-01-01

    The Fuel Cell has been used for manned space flight since the Gemini program. Its power output and water production capability over long durations for the mass and volume are critical for manned space-flight requirements. The alkaline fuel cell used on the Shuttle, while very reliable and capable for it s application, has operational sensitivities, limited life, and an expensive recycle cost. The PEM fuel cell offers many potential improvements in those areas. NASA Glenn Research Center is currently leading a PEM fuel cell development and test program intended to move the technology closer to the point required for manned space-flight consideration. This paper will address the advantages of PEM fuel cell technology and its potential for future space flight as compared to existing alkaline fuel cells. It will also cover the technical hurdles that must be overcome. In addition, a description of the NASA PEM fuel cell development program will be presented, and the current status of this effort discussed. The effort is a combination of stack and ancillary component hardware development, culminating in breadboard and engineering model unit assembly and test. Finally, a detailed roadmap for proceeding fiom engineering model hardware to qualification and flight hardware will be proposed. Innovative test engineering and potential payload manifesting may be required to actually validate/certify a PEM fuel cell for manned space flight.

  1. Bütschli dynamic droplet system.

    PubMed

    Armstrong, Rachel; Hanczyc, Martin

    2013-01-01

    Dynamical oil-water systems such as droplets display lifelike properties and may lend themselves to chemical programming to perform useful work, specifically with respect to the built environment. We present Bütschli water-in-oil droplets as a model for further investigation into the development of a technology with living properties. Otto Bütschli first described the system in 1898, when he used alkaline water droplets in olive oil to initiate a saponification reaction. This simple recipe produced structures that moved and exhibited characteristics that resembled, at least superficially, the amoeba. We reconstructed the Bütschli system and observed its life span under a light microscope, observing chemical patterns and droplet behaviors in nearly three hundred replicate experiments. Self-organizing patterns were observed, and during this dynamic, embodied phase the droplets provided a means of introducing temporal and spatial order in the system with the potential for chemical programmability. The authors propose that the discrete formation of dynamic droplets, characterized by their lifelike behavior patterns, during a variable window of time (from 30 s to 30 min after the addition of alkaline water to the oil phase), qualify this system as an example of living technology. The analysis of the Bütschli droplets suggests that a set of conditions may precede the emergence of lifelike characteristics and exemplifies the richness of this rudimentary chemical system, not only for artificial life investigations but also for possible real-world applications in architectural practice.

  2. Humic acids: Structural properties and multiple functionalities for novel technological developments.

    PubMed

    de Melo, Bruna Alice Gomes; Motta, Fernanda Lopes; Santana, Maria Helena Andrade

    2016-05-01

    Humic acids (HAs) are macromolecules that comprise humic substances (HS), which are organic matter distributed in terrestrial soil, natural water, and sediment. HAs differ from the other HS fractions (fulvic acid and humins) in that they are soluble in alkaline media, partially soluble in water, and insoluble in acidic media. Due to their amphiphilic character, HAs form micelle-like structures in neutral to acidic conditions, which are useful in agriculture, pollution remediation, medicine and pharmaceuticals. HAs have undefined compositions that vary according to the origin, process of obtainment, and functional groups present in their structures, such as quinones, phenols, and carboxylic acids. Quinones are responsible for the formation of reactive oxygen species (ROS) in HAs, which are useful for wound healing and have fungicidal/bactericidal properties. Phenols and carboxylic acids deprotonate in neutral and alkaline media and are responsible for various other functions, such as the antioxidant and anti-inflammatory properties of HAs. In particular, the presence of phenolic groups in HAs provides antioxidant properties due to their free radical scavenging capacity. This paper describes the main multifunctionalities of HAs associated with their structures and properties, focusing on human health applications, and we note perspectives that may lead to novel technological developments. To the best of our knowledge, this is the first review to address this topic from this approach. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review.

    PubMed

    Singh, Joginder; Suhag, Meenakshi; Dhaka, Anil

    2015-03-06

    Lignocellulosic materials can be explored as one of the sustainable substrates for bioethanol production through microbial intervention as they are abundant, cheap and renewable. But at the same time, their recalcitrant structure makes the conversion process more cumbersome owing to their chemical composition which adversely affects the efficiency of bioethanol production. Therefore, the technical approaches to overcome recalcitrance of biomass feedstock has been developed to remove the barriers with the help of pretreatment methods which make cellulose more accessible to the hydrolytic enzymes, secreted by the microorganisms, for its conversion to glucose. Pretreatment of lignocellulosic biomass in cost effective manner is a major challenge to bioethanol technology research and development. Hence, in this review, we have discussed various aspects of three commonly used pretreatment methods, viz., steam explosion, acid and alkaline, applied on various lignocellulosic biomasses to augment their digestibility alongwith the challenges associated with their processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A new method of auxiliary purification for motor vehicle exhaust.

    PubMed

    Li, Dingqi

    2018-07-01

    As a result of the limitations of current purification technologies, purification efficiency is relatively low, particularly during startup or in the case of other abnormal automobile exhaust. Therefore, a new method of auxiliary purification is proposed in this paper. The acidic solution of potassium permanganate can oxidize carbon monoxide, nitrogen oxides and sulfur dioxide at relatively high temperatures and the alkaline solution of potassium permanganate can selectively absorb nitrogen oxide and sulfur dioxide. Therefore, we carried out the experiment using a solution of potassium permanganate and sulfuric acid as well as a solution of sodium carbonate and potassium permanganate, which served as the reagents for the auxiliary purification. The results of the test showed that after auxiliary purification by the acidic solution of potassium permanganate and the alkaline solution of potassium permanganate, the concentrations of carbon monoxide, hydrocarbons, nitrogen oxides and solid particles in the emissions were considerably lower than the concentrations prior to purification. It is possible to reduce the motor vehicle exhaust by the auxiliary purification of the solutions.

  5. A novel kind of TSV slurry with guanidine hydrochloride

    NASA Astrophysics Data System (ADS)

    Jiao, Hong; Yuling, Liu; Baoguo, Zhang; Xinhuan, Niu; Liying, Han

    2015-10-01

    The effect of a novel alkaline TSV (through-silicon-via) slurry with guanidine hydrochloride (GH) on CMP (chemical mechanical polishing) was investigated. The novel alkaline TSV slurry was free of any inhibitors. During the polishing process, the guanidine hydrochloride serves as an effective surface-complexing agent for TSV CMP applications, the removal rate of barrier (Ti) can be chemically controlled through tuned selectivity with respect to the removal rate of copper and dielectric, which is helpful to modifying the dishing and gaining an excellent topography performance in TSV manufacturing. In this paper, we mainly studied the working mechanism of the components of slurry and the skillful application guanidine hydrochloride in the TSV slurry. Project supported by the Major National Science and Technology Special Projects (No. 2009ZX02308), the Fund Project of Hebei Provincial Department of Education, China (No. QN2014208), the Natural Science Foundation of Hebei Province, China (No. E2013202247), and Colleges and Universities Scientific research project of Hebei Province, China (No. Z2014088).

  6. Significant advantages of sulfur-doped graphene in neutral media as electrocatalyst for oxygen reduction comparing with Pt/C

    NASA Astrophysics Data System (ADS)

    Shi, Xinxin; Zhang, Jiaona; Huang, Tinglin

    2018-02-01

    Sulfur-doped graphene (SDG) has been found to be an efficient electrocatalyst for oxygen reduction reaction. However, previous studies on the catalytic activity of SDG have been mainly confined to O2-saturated alkaline media which is a typical alkaline fuel cell environment. Air-cathode microbial fuel cells (ACMFCs), as a novel energy conversion and wastewater treatment technology, use the oxygen from air as cathodic reactant in neutral media with low concentration of O2. Thus, it is meaningful to explore the catalytic performance of SDG in such ACMFC environment. The result showed that in ACMFC environment, the peak current density of SDG in CV test was surprisingly 4.5 times higher than that of Pt/C, indicating a much stronger catalytic activity of SDG. Moreover, SDG exhibited a stronger tolerance against the crossover of glucose (a typical anodic fuel in ACMFC) and better stability than Pt/C in neutral media.

  7. Comparison of sidestream treatment technologies: post aerobic digestion and Anammox.

    PubMed

    Bauer, Heidi; Johnson, Thomas D; Johnson, Bruce R; Oerke, David; Graziano, Steven

    2016-01-01

    Post aerobic digestion (PAD) and anaerobic ammonium oxidation (Anammox) are sidestream treatment technologies which are both excellent options for the reduction of nitrogen recycled back to the liquid stream without the need for supplemental carbon or alkalinity. However, the achievement of this goal is where the similarities between the two technologies end. PAD is an advanced digestion process where aerobic digestion is designed to follow anaerobic digestion. Other benefits of PAD include volatile solids reduction, odor reduction, and struvite formation reduction. Anammox harnesses a specific species of autotrophic bacteria that can help achieve partial nitritation/deammonification. Other benefits of Anammox include lower energy consumption due to requiring less oxygen compared with conventional nitrification. This manuscript describes the unique benefits and challenges of each technology. Example installations are presented with a narrative of how and why the technology was selected. A whole plant simulator is used to compare and contrast the mass balances and net present value costs on an 'apples to apples' basis. The discussion includes descriptions of conditions under which each technology would potentially be the most beneficial and cost-effective against a baseline facility without sidestream treatment.

  8. Clinical utility of a wheat-germ precipitation assay for determination of bone alkaline phosphatase concentrations in patients with different metabolic bone diseases.

    PubMed

    Braga, V; Dorizzi, R; Brocco, G; Rossini, M; Zamberlan, N; Gatti, D; Adami, S

    1995-07-01

    Bone alkaline phosphatase was evaluated by wheat-germ lectin precipitation in several clinical conditions. The study included 33 premenopausal healthy women, 46 postmenopausal apparently healthy women, 19 growing children, 24 patients with Paget's disease, 31 patients with primary hyperparathyroidism and 66 patients with hepatobiliary diseases. In postmenopausal women the mean T score (i.e.: the number of SD below or above the mean for premenopausal women) was 2.6 +/- 1.3 (SD) for bone alkaline phosphatase and 1.61 +/- 1.21 for total alkaline phosphatase (p < 0.001). The T score for bone alkaline phosphatase provided a better discrimination from normals for both Paget's disease (22.1 +/- 27.8 versus 12.8 +/- 16 p < 0.001) and primary hyperparathyroidism (8.2 +/- 4.3 versus 4.6 +/- 3.7 p < 0.005 for bone alkaline phosphatase and total alkaline phosphatase respectively). After treatment with intravenous bisphosphonate the percent decrease of bone alkaline phosphatase was larger than that of total alkaline phosphatase both in patients with Paget's disease (-46% versus -72% p < 0.01) and in patients with primary hyperparathyroidism (-21% versus -47% p < 0.02) and an estimate of the precision (delta mean/SD of the delta mean) for bone alkaline phosphatase was 1.9-3.7 times higher than that of total alkaline phosphatase. In twelve osteoporotic patients treated for six months with oral alendronate the decrease in bone turnover was detected with significantly higher precision with bone alkaline phosphatase than with total alkaline phosphatase (p < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Water-quality conditions during low flow in the lower Youghiogheny River basin, Pennsylvania, October 5-7, 1998

    USGS Publications Warehouse

    Sams, James I.; Schroeder, Karl T.; Ackman, Terry E.; Crawford, J.K.; Otto, Kim L.

    2001-01-01

    In October 1998, a chemical synoptic survey was conducted by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, National Energy Technology Laboratory, in the Lower Youghiogheny River Basin in Pennsylvania to give a snapshot of present (1998) water quality during low-flow conditions. Water samples from 38 sites—12 mainstem sites, 22 tributaries, and 4 mine discharges that discharge directly to the Youghiogheny River—were used to identify sources of contaminants from mining operations. Specific conductance, water temperature, pH, and dissolved oxygen were measured in the field at each site and concentrations of major ions and trace elements were measured in the laboratory.zUnaccounted for gains and losses in streamflow were measured during the study. Unaccounted for losses in streamflow might be attributed to water loss through streambed fractures. Extensive mine tunnels are present in the basin and loss of water to these tunnels seems likely. Unaccounted for gains in streamflow may be from unmeasured tributaries or surface seeps, but most of the gains are suspected to come from artesian flow through fractures in the streambed from underground mine pools. Influent flows of rust-colored water were noted in some river sections.The pH values for all the samples collected during this survey were above 5.8, and most (33 of 38 samples) were above 7.0. Samples from the four mine-discharge sites also had pH values between 6.3 and 6.7. The lowest pH (5.8) was in a tributary, Galley Run. All 38 sampling sites had net alkalinity.The alkalinity load in the Youghiogheny River increased between Connellsville and McKeesport from 35 to 79 tons per day. Above Smithton, the measured alkalinity load in the Lower Youghiogheny River agreed well with the estimated alkalinity load. Below Smithton, measured alkalinity loads in the Lower Youghiogheny River are greater than calculated loads, resulting in unaccounted for gains in alkalinity. These gains are believed to be from seeps in the streambed. Approximately one-third of the load of total alkalinity in the Youghiogheny River at McKeesport is attributed to Sewickley Creek, which contributes 14 tons per day.Sulfate concentrations in the Youghiogheny River steadily increase from 33 milligrams per liter at Connellsville to 77 milligrams per liter near McKeesport. The measured concentrations of sulfate exceeded Pennsylvania water-quality standards at four tributary sites (Galley Run, Hickman Run, Sewickley Creek, and Gillespie Run) and all four mine-discharge sites but not at any main-stem sites. A large increase in sulfate load between West Newton and Sutersville can be attributed almost entirely to the contribution from Sewickley Creek (49 tons per day). Approximately 25 percent of the load measured between Connellsville and McKeesport is unaccounted for. These gains are believed to be from seeps in the streambed from underground mine pools.Similar patterns also were observed for loads of sodium, calcium, and magnesium. Unmeasured inputs from mine drainage are believed to be the source of these loads. Elevated concentrations (above background levels) of chemicals associated with drainage from coal-mining operations were measured in samples from tributaries, especially from Galley Run, Gillespie Run, and Sewickley Creek, and from the mine-discharge sites. The synoptic survey conducted for this study was successful in identifying generalized reaches of the Youghiogheny River where unaccounted for loads of constituents associated with mining activities are entering the river. However, the survey was not able to pinpoint the location of these loads. Remote-sensing techniques, such as thermal infrared imaging by the National Energy Technology Laboratory, could be useful for determining the precise locations of these inputs.

  10. Analysis of differentially expressed genes and adaptive mechanisms of Prunus triloba Lindl. under alkaline stress.

    PubMed

    Liu, Jia; Wang, Yongqing; Li, Qingtian

    2017-01-01

    Prunus triloba Lindl. is a naturally salt-alkaline-tolerant plant with several unique characteristics, and it can be used as the rootstock of Chinese plum ( Prunus salicina Lindl.) in saline-alkaline soils. To comprehensively investigate the alkaline acclimation mechanisms in P. triloba , a series of analyses were conducted under alkaline stress, including analyses of the kinetics of molecular and physiological changes, and leaf microstructure. To understand the kinetics of molecular changes under short-term alkaline stress, we used Illumina HiSeq 2500 platform to identify alkaline stress-related differentially expressed genes (DEGs) in P. triloba . Approximately 53.0 million high-quality clean reads were generated from 59.6 million raw reads, and a total of 124,786 unigenes were obtained after de novo assembly of P. triloba transcriptome data. After alkaline stress treatment, a total of 8948 unigenes were identified as DEGs. Based on these DEGs, a Gene Ontology (GO) enrichment analysis was conducted, suggesting that 28 genes may play an important role in the early alkaline stress response. In addition, analysis of DEGs with the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that pathways were significant at different treatment time points. A significant positive correlation was found between the quantitative real-time PCR (qRT-PCR) results and the RNA-Seq data for seven alkaline-related genes, confirming the reliability of the RNA-Seq results. Based on physiological analysis of P. triloba in response to long-term alkaline stress, we found that the internal microstructures of the leaves of P. triloba changed to adapt to long-term alkaline stress. Various physiological indexes indicated that the degree of membrane injury increased with increasing duration of alkaline stress, affecting photosynthesis in P. triloba seedlings. This represents the first investigation into the physiology and transcriptome of P. triloba in response to alkaline stress. The results of this study can enrich the genomic resources available for P. triloba , as well as deepening our understanding of molecular and physiological alkaline tolerance mechanisms in P. triloba . This will also provide new insights into our understanding of alkaline acclimation mechanisms in Chinese plum ( Prunus salicina ) trees.

  11. Densely quaternized poly(arylene ether)s with distinct phase separation for highly anion-conductive membranes

    NASA Astrophysics Data System (ADS)

    Hu, Yuanfang; Wang, Bingxi; Li, Xiao; Chen, Dongyang; Zhang, Weiying

    2018-05-01

    To develop high performance anion exchange membranes (AEMs), a novel bisphenol monomer bearing eight benzylmethyl groups at the outer edge of the molecule was synthesized, which after condensation polymerization with various amounts of 4,4‧-dihydroxydiphenylsulfone and 4,4‧-difluorobenzophenone yielded novel poly(arylene ether)s with densely located benzylmethyl groups. These benzylmethyl groups were then converted to quaternary ammonium groups by radical-initiated bromination and quaternization in tandem, leading to the emergence of densely quaternized poly(arylene ether sulfone)s (QA-PAEs) with controlled ion exchange capacities (IECs) ranging from 1.61 to 2.32 mmol g-1. Both small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) studies revealed distinct phase separation in the QA-PAEs. The QA-PAE-40 with an IEC of 2.32 mmol g-1 exhibited a Br- conductivity of 9.2 mS cm-1 and a SO42- conductivity of 14.0 mS cm-1 at room temperature, much higher than those of a control membrane with a similar IEC but without obvious phase separation. Therefore, phase separation of AEMs was validated to be advantageous for the efficient conducting of anions. The experimental results also showed that the QA-PAEs were promising AEM materials, especially for non-alkaline applications.

  12. Oxidative Stability of Tc(I) Tricarbonyl Species Relevant to the Hanford Tank Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Sayandev; Hall, Gabriel B.; Levitskaia, Tatiana G.

    Technetium (Tc), which exists predominately in the liquid supernatant and salt cake fractions of the nuclear tank waste stored at the U.S. DOE Hanford Site, is one of the most difficult contaminants to dispose of and/or remediate. In the strongly alkaline environments prevalent in the tank waste, its dominant chemical form is pertechnetate (TcO 4 -, oxidation state +7). However, based on experimentation to-date, a significant fraction of the soluble Tc cannot be effectively separated from the wastes and may be present as a non-pertechnetate species. The presence of a non pertechnetate species significantly complicates disposition of low-activity waste (LAW),more » and the development of methods to either convert them to pertechnetate or to separate the non-pertechnetate species directly is needed. The challenge is the uncertainty regarding the nature and stability of the alkaline-soluble, low-valence, non pertechnetate species in the liquid tank waste. One objective of the Tc management project is to address this knowledge gap. This fiscal year (FY) 2015 report summarizes experimental work exploring the oxidative stability of model low-valence Tc(I) tricarbonyl species, derived from the [Tc(CO) 3] + moiety. These compounds are of interest due to their implied presence in several Hanford tank waste supernatants. Work in part was initiated in FY 2014, and a series of samples containing non-pertechnetate Tc generated ex situ or in situ in pseudo-Hanford tank supernatant simulant solutions was prepared and monitored for oxidation to Tc(VII) (Levitskaia et al. 2014). This experimentation continued in FY 2015, and new series of samples containing Tc(I) as [Tc(CO) 3] +•Ligand was tested. The monitoring method used for these studies was a combination of 99Tc NMR and EPR spectroscopies.« less

  13. A Review of Biorefinery Separations for Bioproduct Production via Thermocatalytic Processing.

    PubMed

    Nguyen, Hannah; DeJaco, Robert F; Mittal, Nitish; Siepmann, J Ilja; Tsapatsis, Michael; Snyder, Mark A; Fan, Wei; Saha, Basudeb; Vlachos, Dionisios G

    2017-06-07

    With technological advancement of thermocatalytic processes for valorizing renewable biomass carbon, development of effective separation technologies for selective recovery of bioproducts from complex reaction media and their purification becomes essential. The high thermal sensitivity of biomass intermediates and their low volatility and high reactivity, along with the use of dilute solutions, make the bioproducts separations energy intensive and expensive. Novel separation techniques, including solvent extraction in biphasic systems and reactive adsorption using zeolite and carbon sorbents, membranes, and chromatography, have been developed. In parallel with experimental efforts, multiscale simulations have been reported for predicting solvent selection and adsorption separation. We discuss various separations that are potentially valuable to future biorefineries and the factors controlling separation performance. Particular emphasis is given to current gaps and opportunities for future development.

  14. Hydrothermal Synthesis of Platinum-Group-Metal-Free Catalysts: Structural Elucidation and Oxygen Reduction Catalysis

    DOE PAGES

    Gokhale, Rohan; Tsui, Lok-Kun; Roach, Kristin; ...

    2017-12-07

    In this paper, a hydrothermal approach to generate a platinum-group-metal-free (PGM-free) Fe-N-C catalyst for the oxygen reduction reaction (ORR) is introduced. The process involves partial carbonization by hydrothermal means followed by thermal treatment to obtain the final catalysts. Detailed X-ray scattering analysis of the glucose-imidazole catalysts (termed as GLU-IMID-C catalysts), obtained for the first time with the use of CarbonXS GUI program, reveals the presence of face-centered cubic (FCC) iron nanoparticles embedded in partially graphitic carbon in all catalyst variations. We also report the physical characterization of these catalysts by using X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller surface area analysis, and transmissionmore » electron microscopy. The electrocatalytic behavior of the catalysts towards oxygen reduction is studied separately in acidic and alkaline electrolytes by rotating ring disk electrode measurements. The catalysts exhibit high ORR activity in acidic (0.5 M H 2SO 4) and alkaline (0.1 M KOH) electrolytes. Lastly, a precursor structure-performance relationship of these catalysts and their performance trends in both electrolytes has been discussed in this work.« less

  15. Separating nano graphene oxide from the residual strong-acid filtrate of the modified Hummers method with alkaline solution

    NASA Astrophysics Data System (ADS)

    Hu, Xuebing; Yu, Yun; Wang, Yongqing; Zhou, Jianer; Song, Lixin

    2015-02-01

    In the modified Hummers method for preparing graphene oxide, the yellow slurry can be obtained. After filtering through a quantitative filter paper, the strong-acid filtrate containing the unprecipitated nano graphene oxide was gained. The corresponding filtrate was added gradually with an alkaline (NaOH or KOH) solution at room temperature. The unprecipitated nano graphene oxide could undergo fast aggregation when the pH value of the filtrate was about 1.7 and formed the stable floccules. X-ray diffraction analysis shows the dominant peak of the floccules is about 11°, which accords to the peak of graphene oxide. Spectra of X-ray photoelectron spectroscopy confirm the presence in the floccules of an abundance of oxygen functional groups and the purified graphene oxide floccules can be obtained. Atomic force microscopy measurement shows the graphene oxide floccules consists of sheet-like objects, mostly containing only a few layers (about 5 layers). Zeta potential analysis demonstrates the surface charge of the graphene oxide is pH-sensitive and its isoelectric point is ∼1.7. The flocculation mechanism of graphene oxide ascribes to the acid-base interaction with the surface functional groups of the carbon layers.

  16. Gradient RP-HPLC method for the determination of potential impurities in atazanavir sulfate.

    PubMed

    Chitturi, Sreenivasa Rao; Somannavar, Yallappa Somappa; Peruri, Badarinadh Gupta; Nallapati, Sreenivas; Sharma, Hemant Kumar; Budidet, Shankar Reddy; Handa, Vijay Kumar; Vurimindi, Hima Bindu

    2011-04-28

    This paper proposes a simple and selective RP-HPLC method for the determination of process impurities and degradation products (degradants) of atazanavir sulfate (ATV) drug substance. Chromatographic separation was achieved on Ascentis(®) Express C8, (150mm×4.6mm, 2.7μm) column thermostated at 30°C under gradient elution by a binary mixture of potassium dihydrogen phosphate (pH 3.5, 0.02M) and ACN at a flow rate of 1.0ml/min. A photodiode array (PDA) detector set at 250nm was used for detection. Stress testing (forced degradation) of ATV was carried out under acidic, alkaline, oxidative, photolytic, thermal and humidity conditions. In presence of alkali, ATV transformed into cyclized products and the order of degradation reaction is determined by the method of initial rates. The unknown process impurities and alkaline degradants are isolated by preparative LC and characterized by ESI-MS/MS, (1)H NMR, and FT-IR spectral data. The developed method is validated with respect to sensitivity (lod and loq), linearity, precision, accuracy and robustness and can be implemented for routine quality control analysis and stability testing of ATV. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. High H⁻ ionic conductivity in barium hydride.

    PubMed

    Verbraeken, Maarten C; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T S

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H(-)) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm(-1) at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  18. Determination of hexavalent chromium in traditional Chinese medicines by high-performance liquid chromatography with inductively coupled plasma mass spectrometry.

    PubMed

    Li, Peng; Li, Li-Min; Xia, Jing; Cao, Shuai; Hu, Xin; Lian, Hong-Zhen; Ji, Shen

    2015-12-01

    An analytical method that combined high-performance liquid chromatography with inductively coupled plasma mass spectrometry has been developed for the determination of hexavalent chromium in traditional Chinese medicines. Hexavalent chromium was extracted using the alkaline solution. The parameters such as the concentration of alkaline and the extraction temperature have been optimized to minimize the interconversion between trivalent chromium and hexavalent chromium. The extracted hexavalent chromium was separated on a weak anion exchange column in isocratic mode, followed by inductively coupled plasma mass spectrometry determination. To obtain a better chromatographic resolution and sensitivity, 75 mM NH4 NO3 at pH 7 was selected as the mobile phase. The linearity of the proposed method was investigated in the range of 0.2-5.0 μg L(-1) (r(2) = 0.9999) for hexavalent chromium. The limits of detection and quantitation are 0.1 and 0.3 μg L(-1) , respectively. The developed method was successfully applied to the determination of hexavalent chromium in Chloriti lapis and Lumbricus with satisfactory recoveries of 95.8-112.8%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Hydrothermal Synthesis of Platinum-Group-Metal-Free Catalysts: Structural Elucidation and Oxygen Reduction Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gokhale, Rohan; Tsui, Lok-Kun; Roach, Kristin

    In this paper, a hydrothermal approach to generate a platinum-group-metal-free (PGM-free) Fe-N-C catalyst for the oxygen reduction reaction (ORR) is introduced. The process involves partial carbonization by hydrothermal means followed by thermal treatment to obtain the final catalysts. Detailed X-ray scattering analysis of the glucose-imidazole catalysts (termed as GLU-IMID-C catalysts), obtained for the first time with the use of CarbonXS GUI program, reveals the presence of face-centered cubic (FCC) iron nanoparticles embedded in partially graphitic carbon in all catalyst variations. We also report the physical characterization of these catalysts by using X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller surface area analysis, and transmissionmore » electron microscopy. The electrocatalytic behavior of the catalysts towards oxygen reduction is studied separately in acidic and alkaline electrolytes by rotating ring disk electrode measurements. The catalysts exhibit high ORR activity in acidic (0.5 M H 2SO 4) and alkaline (0.1 M KOH) electrolytes. Lastly, a precursor structure-performance relationship of these catalysts and their performance trends in both electrolytes has been discussed in this work.« less

  20. Electrocatalysis for oxygen electrodes in fuel cells and water electrolyzers for space applications

    NASA Technical Reports Server (NTRS)

    Prakash, Jai; Tryk, Donald; Yeager, Ernest

    1989-01-01

    In most instances separate electrocatalysts are needed to promote the reduction of O2 in the fuel cell mode and to generate O2 in the energy storage-water electrolysis mode in aqueous electrochemical systems operating at low and moderate temperatures (T greater than or equal to 200 C). Interesting exceptions are the lead and bismuth ruthenate pyrochlores in alkaline electrolytes. These catalysts on high area carbon supports have high catalytic activity for both O2 reduction and generation. Rotating ring-disk electrode measurements provide evidence that the O2 reduction proceeds by a parallel four-electron pathway. The ruthenates can also be used as self-supported catalysts to avoid the problems associated with carbon oxidation, but the electrode performance so far achieved in the research at Case Western Reserve University (CWRU) is considerably less. At the potentials involved in the anodic mode the ruthenate pyrochlores have substantial equilibrium solubility in concentrated alkaline electrolyte. This results in the loss of catalyst into the bulk solution and a decline in catalytic activity. Furthermore, the hydrogen generation counter electrode may become contaminated with reduction products from the pyrochlores (lead, ruthenium).

  1. Enhanced enzymatic hydrolysis and ethanol production from cashew apple bagasse pretreated with alkaline hydrogen peroxide.

    PubMed

    da Costa, Jessyca Aline; Marques, José Edvan; Gonçalves, Luciana Rocha Barros; Rocha, Maria Valderez Ponte

    2015-03-01

    The effect of combinations and ratios between different enzymes has been investigated in order to assess the optimal conditions for hydrolysis of cashew apple bagasse pretreated with alkaline hydrogen peroxide (the solids named CAB-AHP). The separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes were evaluated in the ethanol production. The enzymatic hydrolysis conducted with cellulase complex and β-glucosidase in a ratio of 0.61:0.39, enzyme loading of 30FPU/g(CAB-AHP) and 66CBU/g(CAB-AHP), respectively, using 4% cellulose from CAB-AHP, turned out to be the most effective conditions, with glucose and xylose yields of 511.68 mg/g(CAB-AHP) and 237.8 mg/g(CAB-AHP), respectively. Fermentation of the pure hydrolysate by Kluyveromyces marxianus ATCC 36907 led to an ethanol yield of 61.8kg/ton(CAB), corresponding to 15 g/L ethanol and productivity of 3.75 g/( Lh). The ethanol production obtained for SSF process using K. marxianus ATCC 36907 was 18 g/L corresponding to 80% yield and 74.2kg/ton(CAB). Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Calcination/dissolution chemistry development Fiscal year 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, C.H.

    1995-09-01

    The task {open_quotes}IPC Liaison and Chemistry of Thermal Reconstitution{close_quotes} is a $300,000 program that was conducted in Fiscal Year (FY) 1995 with U.S. Department of Energy (DOE) Office of Research and Development (EM-53) Efficient Separations and Processing Crosscutting Program supported under technical task plan (TTP) RL4-3-20-04. The principal investigator was Cal Delegard of the Westinghouse Hanford Company (WHC). The task encompassed the following two subtasks related to the chemistry of alkaline Hanford Site tank waste: (1) Technical Liaison with the Institute of Physical Chemistry of the Russian Academy of Science (IPC/RAS) and its research into the chemistry of transuranic elementsmore » (TRU) and technetium (Tc) in alkaline media. (2) Laboratory investigation of the chemistry of calcination/dissolution (C/D) (or thermal reconstitution) as an alternative to the present reference Hanford Site tank waste pretreatment flowsheet, Enhanced Sludge Washing (ESW). This report fulfills the milestone for the C/D subtask to {open_quotes}Provide End-of-Year Report on C/D Laboratory Test Results{close_quotes} due 30 September 1995. A companion report, fulfilling the milestone to provide an end-of-year report on the IPC/RAS liaison, also has been prepared.« less

  3. NASA PEMFC Development Background and History

    NASA Technical Reports Server (NTRS)

    Hoberecht, Mark

    2011-01-01

    NASA has been developing proton-exchange-membrane (PEM) fuel cell power systems for the past decade, as an upgraded technology to the alkaline fuel cells which presently provide power for the Shuttle Orbiter. All fuel cell power systems consist of one or more fuel cell stacks in combination with appropriate balance-of-plant hardware. Traditional PEM fuel cells are characterized as flow-through, in which recirculating reactant streams remove product water from the fuel cell stack. NASA recently embarked on the development of non-flow-through fuel cell systems, in which reactants are dead-ended into the fuel cell stack and product water is removed by internal wicks. This simplifies the fuel cell power system by eliminating the need for pumps to provide reactant circulation, and mechanical water separators to remove the product water from the recirculating reactant streams. By eliminating these mechanical components, the resulting fuel cell power system has lower mass, volume, and parasitic power requirements, along with higher reliability and longer life. Four vendors have designed and fabricated non-flow-through fuel cell stacks under NASA funding. One of these vendors is considered the "baseline" vendor, and the remaining three vendors are competing for the "alternate" role. Each has undergone testing of their stack hardware integrated with a NASA balance-of-plant. Future Exploration applications for this hardware include primary fuel cells for a Lunar Lander and regenerative fuel cells for Surface Systems.

  4. Demonstration of Removal, Separation, and Recovery of Heavy Metals from Industrial Wastestreams Using Molecular Recognition Technology (MRT)

    DTIC Science & Technology

    2002-11-01

    Treatment Plant”, TM-2123-ENV, April 1995. 3. Ford, K.H., 1996, “ Heavy Metal Adsorption/ Biosorption Studies for Zero Discharge Industrial Wastewater...SEPARATION, AND RECOVERY OF HEAVY METALS FROM INDUSTRIAL WASTESTREAMS USING MOLECULAR RECOGNITION TECHNOLOGY (MRT) Final Report by Dr. Katherine...GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER DEMONSTRATION OF REMOVAL, SEPARATION, AND RECOVERY OF HEAVY METALS FROM INDUSTRIAL WASTEWATERS USING

  5. Space science to the twenty-first century and the technological implications for implementation

    NASA Technical Reports Server (NTRS)

    Herman, D. H.

    1979-01-01

    The paper presents the specific plan for NASA space science missions to the 21st century and highlights the major technological advances that must be effected to accomplish the planned missions. Separate consideration is given to plans for astrophysics, planetary exploration, the solar terrestrial area, and life sciences. The technological consequences of the plans in these separate areas are discussed.

  6. JPRS Report (Erratum), Science & Technology, Japan, Selections from MITI White Paper on Industrial Technology Trends and Issues

    DTIC Science & Technology

    1989-08-30

    year period in the following products: Technology Field Product New materials Composite materials Amorphous alloys Macromolecule separation...plastics 8. Composite materials B. Parts 9. Optical fiber 10. Semiconductor lasers 11. CCD 12. Semiconductor memory elements 13. Microcomputers...separation. Composite materials (containing carbon fiber) (1) Aerospace users required strict specifi cations for carbon fiber, resulting in

  7. Comparative assessment of button cells using a normalized index for potential pollution by heavy metals.

    PubMed

    Moreno-Merino, Luis; Jiménez-Hernández, Maria Emilia; de la Losa, Almudena; Huerta-Muñoz, Virginia

    2015-09-01

    Many household batteries worldwide still end up in landfills or are incinerated due to inefficient collection and recycling schemes. Toxic heavy metals from improperly discarded button cells pose a serious risk to human health and the environment, as they can pollute air, soil and water. This paper analyses a series of button cells selected from batteries available on the retail market, and compares their polluting potential. A total of 64 batteries were subjected to chemical analyses of 19 elements - including metals and metalloids - , and energy density measurements. The samples were from four different brands of each of the four most common button cell technologies (alkaline, zinc-air, silver oxide and lithium). An energy-normalized index - the Weighted Potential Pollution Index (WPPI) - was proposed to compare the polluting potential of the different batteries. The higher the battery WPPI score, the greater the content in toxic elements and the lower the energy output. The results of the chemical composition and energy density varied depending on the construction technology of the button cells. However, significant differences in both variables were also found when comparing different brands within the same technology. The differences in WPPI values confirmed the existence of a significant margin to reduce the environmental impact of discarded button cells simply by avoiding the most polluting options. The choice of the battery with the most favourable WPPI produced a reduction in potential pollution of 3-53% for silver oxide batteries, 4-39% for alkaline, 20-28% for zinc-air and 12-26% for lithium. Comparative potential pollution could be assessed when selecting batteries using an energy-normalized index such as WPPI to reduce the environmental impact of improperly disposed button cells. Published by Elsevier B.V.

  8. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation.

    PubMed

    Li, Juan; Xu, Heng-Hao; Liu, Wen-Cheng; Zhang, Xiao-Wei; Lu, Ying-Tang

    2015-08-01

    Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag(+)) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co(2+)) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag(+)/Co(2+)-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes. © 2015 American Society of Plant Biologists. All Rights Reserved.

  9. Effect of liposomes on the rate of alkaline hydrolysis of indomethacin and acemetacin.

    PubMed

    Matos, C; Chaimovich, H; Lima, J L; Cuccovia, I M; Reis, S

    2001-03-01

    The anti-inflammatory, analgesic, and antipyretic drugs indomethacin (INDO) and acemetacin (ACE), extensively used for the treatment of diseases of degenerative or inflammatory character, exhibit marked gastric irritant action, have low water solubility at neutral pH, and decompose in alkali. Alternative formulations are being investigated to obtain products with lower toxicity and higher stability. Here we examine the effect of liposome charge on the rate of alkaline decomposition of INDO and ACE using micelles as reference. Binding of ACE and INDO to zwitterionic hexadecylphosphocholine (HDPC) micelles and phosphatidylcholine (PC) liposomes was analyzed using a two-phase separation model to quantify the effect of these aggregates on the rate of alkaline degradation. The substrate association constants to HDPC micelles were 1335 and 2192 M(-1) for INDO and ACE, respectively, whereas the corresponding values for PC vesicles were 612 and 3050 M(-1). The difference was attributed to the additional hydrophobicity of ACE. The inhibitory effect of HDPC micelles and PC vesicles was quantified by calculating the ratio between the rate constants in water (k(w)) and in the aggregate (k(m)). The values of the k(w)/k(m) ratios for INDO and ACE in HDPC micelles were, respectively, 80 and 42, and in PC liposomes these ratios were 21 and 3.7, respectively. Positively charged micelles of hexadecyltrimethylammonium chloride (CTAC) and vesicles containing varying proportions of dioctadecyldimethylammonium chloride (DODAC) and PC increase the rate of INDO and ACE alkaline decomposition. Vesicle effects were very sensitive to the DODAC/PC ratio, with rates increasing with the proportion of DODAC. The data were analyzed quantitatively using a pseudophase model with explicit consideration of ion exchange. The calculated second-order rate constants in micelles and vesicles were lower than that in water. The charge density in the liposome necessary to increase the entrapment efficiency and decrease drug decomposition can be modulated, by judicious choice of pH and ionic strength. These manipulations can lead to more stable formulation with increased efficiency in drug entrapment and controlled effects on drug stability.

  10. Rethinking CCD's Significance in Estimating Late Neogene Whole Ocean Carbonate Budget

    NASA Astrophysics Data System (ADS)

    Si, W.; Rosenthal, Y.

    2017-12-01

    The global averaged calcite compensation depth (CCD) record is conventionally used to reconstruct two correlatable parameters of the carbonate system - the alkalinity budget of the ocean and/or the saturation state of the ocean. Accordingly, the available CCD reconstructions have been interpreted to suggest either relative stable (Pearson and Palmer, 2000) or increased alkalinity of the ocean over the past 15 Ma (Tyrrell and Zeebe, 2004; Pälike et al., 2012). However, CCD alone is insufficient to constrain the carbonate system because the weathering flux of alkalinity into the ocean is not only balanced by CaCO3 dissolution on the seafloor but also by the biologic production in the euphotic zone and, the CCD records cannot be readily interpreted as changes in either process. Here, we present evidence of the co-evolution of surface CaCO3 production and deepsea dissolution through the late Neogene. By examining separately the mass accumulation rates (MAR) of coccoliths, planktonic foraminifera, and quantifying dissolution (using a proxy revised from Broecker et al., 1999) in seventeen deepsea cores from multiple depth-transects, we find that 1) MAR of dissolution-resistant coccoliths was substantially higher in the mid Miocene and declining on a global scale towards the present; 2) unlike coccoliths, MAR of planktonic foraminifera, shows no apparent secular trend through that time; 3) the revised dissolution index, shows significantly improved preservation of planktonic foraminiferal shells over that time, particularly at intermediate water depth and exhibits close association between changes in preservation with key climatic events. Our new records have two immediate implications. First, the substantially weakened pelagic biogenic carbonate production from mid Miocene to present alone could account for the improved preservation of deepsea carbonates without calling for a scenario of increased weathering input. Second, with the constrain of global averaged CCD records, the net accumulation of pelagic carbonate has declined over the course of late Neogene. Hence, the weathering alkalinity input should have decreased since 15 Ma, as oppose to the weathering hypothesis (Raymo et al., 1988).

  11. Petrochemistry of Mafic Rocks Within the Northern Cache Creek Terrane, NW British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    English, J. M.; Johnston, S. T.; Mihalynuk, M. G.

    2002-12-01

    The Cache Creek terrane is a belt of oceanic rocks that extend the length of the Cordillera in British Columbia. Fossil fauna in this belt are exotic with respect to the remainder of the Canadian Cordillera, as they are of equatorial Tethyan affinity, contrasting with coeval faunas in adjacent terranes that show closer linkages with ancestral North America. Preliminary results reported here from geochemical studies of mafic rocks within the Nakina area of NW British Columbia further constrain the origin of this enigmatic terrane. The terrane is typified by tectonically imbricated slices of chert, argillite, limestone, wacke and volcaniclastic rocks, as well as mafic and ultramafic rocks. These lithologies are believed to represent two separate lithotectonic elements: Upper Triassic to Lower Jurassic, subduction-related accretionary complexes, and dismembered basement assemblages emplaced during the closure of the Cache Creek ocean in the Middle Jurassic. Petrochemical analysis revealed four distinct mafic igneous assemblages that include: magmatic 'knockers' of the Nimbus serpentinite mélange, metabasalts of 'Blackcaps' Mountain, augite-phyric breccias of 'Laughing Moose' Creek, and volcanic pediments to the reef-forming carbonates of the Horsefeed Formation. Major and trace element analysis classifies the 'Laughing Moose' breccias and the carbonate-associated volcanics as alkaline in nature, whereas the rest are subalkaline. Tectonic discrimination diagrams show that the alkaline rocks are of within-plate affinity, while the 'Blackcaps' basalts and 'knockers' from within the mélange typically straddle the island-arc tholeiite and the mid-ocean ridge boundaries. However, primitive mantle normalized multi-element plots indicate that these subalkaline rocks have pronounced negative Nb anomalies, a characteristic arc signature. The spatial association of alkaline volcanic rocks with extensive carbonate domains points to the existence of seamounts within the Cache Creek ocean. However, the precise origin of the 'Laughing Moose' breccias remains somewhat uncertain and may be related to a subsequent rifting event. To conclude, preliminary data from the Nakina region show it to be dominated by two different petrogenetic components: alkaline volcanic rocks of within-plate affinity, and primitive arc-related, subalkaline mafic rocks. An accretionary complex/ oceanic arc origin may provide a mechanism to explain the lithological diversity within the Nakina area.

  12. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass

    PubMed Central

    Davidson, Jesse A.; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan

    2016-01-01

    Rationale Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. Objectives 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Methods and Research Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Conclusions Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post-operative alkaline phosphatase activity leads to impaired capacity to clear adenosine monophosphate. AP supplementation improves serum clearance of adenosine monophosphate to adenosine. These findings represent a potential therapeutic mechanism for alkaline phosphatase infusion during cardiac surgery. New and Noteworthy We identify alkaline phosphatase (AP) as the primary soluble ectonucleotidase in infants undergoing cardiopulmonary bypass and show decreased capacity to clear AMP when AP activity decreases post-bypass. Supplementation of AP ex vivo improves this capacity and may represent the beneficial therapeutic mechanism of AP infusion seen in phase 2 studies. PMID:27384524

  13. Alkaline Phosphatase, Soluble Extracellular Adenine Nucleotides, and Adenosine Production after Infant Cardiopulmonary Bypass.

    PubMed

    Davidson, Jesse A; Urban, Tracy; Tong, Suhong; Twite, Mark; Woodruff, Alan; Wischmeyer, Paul E; Klawitter, Jelena

    2016-01-01

    Decreased alkaline phosphatase activity after infant cardiac surgery is associated with increased post-operative cardiovascular support requirements. In adults undergoing coronary artery bypass grafting, alkaline phosphatase infusion may reduce inflammation. Mechanisms underlying these effects have not been explored but may include decreased conversion of extracellular adenine nucleotides to adenosine. 1) Evaluate the association between alkaline phosphatase activity and serum conversion of adenosine monophosphate to adenosine after infant cardiac surgery; 2) assess if inhibition/supplementation of serum alkaline phosphatase modulates this conversion. Pre/post-bypass serum samples were obtained from 75 infants <4 months of age. Serum conversion of 13C5-adenosine monophosphate to 13C5-adenosine was assessed with/without selective inhibition of alkaline phosphatase and CD73. Low and high concentration 13C5-adenosine monophosphate (simulating normal/stress concentrations) were used. Effects of alkaline phosphatase supplementation on adenosine monophosphate clearance were also assessed. Changes in serum alkaline phosphatase activity were strongly correlated with changes in 13C5-adenosine production with or without CD73 inhibition (r = 0.83; p<0.0001). Serum with low alkaline phosphatase activity (≤80 U/L) generated significantly less 13C5-adenosine, particularly in the presence of high concentration 13C5-adenosine monophosphate (10.4μmol/L vs 12.9μmol/L; p = 0.0004). Inhibition of alkaline phosphatase led to a marked decrease in 13C5-adenosine production (11.9μmol/L vs 2.7μmol/L; p<0.0001). Supplementation with physiologic dose human tissue non-specific alkaline phosphatase or high dose bovine intestinal alkaline phosphatase doubled 13C5-adenosine monophosphate conversion to 13C5-adenosine (p<0.0001). Alkaline phosphatase represents the primary serum ectonucleotidase after infant cardiac surgery and low post-operative alkaline phosphatase activity leads to impaired capacity to clear adenosine monophosphate. AP supplementation improves serum clearance of adenosine monophosphate to adenosine. These findings represent a potential therapeutic mechanism for alkaline phosphatase infusion during cardiac surgery. We identify alkaline phosphatase (AP) as the primary soluble ectonucleotidase in infants undergoing cardiopulmonary bypass and show decreased capacity to clear AMP when AP activity decreases post-bypass. Supplementation of AP ex vivo improves this capacity and may represent the beneficial therapeutic mechanism of AP infusion seen in phase 2 studies.

  14. New Bedford Harbor Superfund Project, Acushnet River Estuary Engineering Feasibility Study of Dredging and Dredged Material Disposal Alternatives. Report 9. Laboratory-Scale Application of Solidification/Stabilization Technology

    DTIC Science & Technology

    1989-01-01

    force) per square inch to kilopascals, multiply by 6.894757. ** Flue - gas desulfurization . 27 1.0 sediment process, UCS measurements for solidified...Dredging Control Technoloqies 11 Evaluation of Conceptual Dredging and Disposal Alternatives 12 Executive Summary Destroy this report when no longer needed...solubility of metals by controlling the pH and alkalinity. Additional metal immobilization can be obtained by modify- ing the process to include

  15. Laboratory Demonstration of Abiotic Technologies for Removal of RDX from a Process Waste Stream

    DTIC Science & Technology

    2010-06-01

    Americas , Inc. San Diego, CA). Previous batch studies had determined the need for periodic current switching to keep the cathode clear of deposited...summarized in Table 24. Current was supplied to the reactor cell through the constructed leads by a 30V– 300A power supply (TDK Lambda Americas , Inc. San...C., D. A. Kubose, and D. J. Glover . 1977. Kinetic isotope effects and inter- mediate formation for the aqueous alkaline homogenous hydrolysis of 1,3,5

  16. Technologies for Decreasing Mining Losses

    NASA Astrophysics Data System (ADS)

    Valgma, Ingo; Väizene, Vivika; Kolats, Margit; Saarnak, Martin

    2013-12-01

    In case of stratified deposits like oil shale deposit in Estonia, mining losses depend on mining technologies. Current research focuses on extraction and separation possibilities of mineral resources. Selective mining, selective crushing and separation tests have been performed, showing possibilities of decreasing mining losses. Rock crushing and screening process simulations were used for optimizing rock fractions. In addition mine backfilling, fine separation, and optimized drilling and blasting have been analyzed. All tested methods show potential and depend on mineral usage. Usage in addition depends on the utilization technology. The questions like stability of the material flow and influences of the quality fluctuations to the final yield are raised.

  17. Reclaiming the spent alkaline zinc manganese dioxide batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ya; Cui, Yan; Zuo, Xiaoxi

    2014-10-15

    Highlights: • The spent Zn–Mn batteries collected from manufacturers is the target waste. • A facile reclaiming process is presented. • The zinc is reclaimed to valuable electrolytic zinc by electrodepositing method. • The manganese elements are to produce valuable LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} battery material. • The reclamation process features environmental friendliness and saving resource. - Abstract: A process for reclaiming the materials in spent alkaline zinc manganese dioxide (Zn–Mn) batteries collected from the manufacturers to prepare valuable electrolytic zinc and LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} materials is presented. After dismantling battery cans, the iron cans, covers, electric rods, organicmore » separator, label, sealing materials, and electrolyte are separated through the washing, magnetic separation, filtrating, and sieving operations. Then, the powder residues react with H{sub 2}SO{sub 4} (2 mol L{sup −1}) solution to dissolve zinc under a liquid/solid ratio of 3:1 at room temperature, and subsequently, the electrolytic Zn with purity of ⩾99.8% is recovered in an electrolytic cell with a cathode efficiency of ⩾85% under the conditions of 37–40 °C and 300 A m{sup −2}. The most of MnO{sub 2} and a small quantity of electrolytic MnO{sub 2} are recovered from the filtration residue and the electrodeposit on the anode of electrolytic cell, respectively. The recovered manganese oxides are used to synthesize LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} material of lithium-ion battery. The as-synthesized LiNi{sub 0.5}Mn{sub 1.5}O{sub 4} discharges 118.3 mAh g{sup −1} capacity and 4.7 V voltage plateau, which is comparable to the sample synthesized using commercial electrolytic MnO{sub 2}. This process can recover the substances in the spent Zn–Mn batteries and innocuously treat the wastewaters, indicating that it is environmentally acceptable and applicable.« less

  18. Selective and cost-effective protocol to separate bioactive triterpene acids from plant matrices using alkalinized ethanol: Application to leaves of Myrtaceae species

    PubMed Central

    Lima, Adélia M. Belem; Siani, Antonio Carlos; Nakamura, Marcos Jun; D’Avila, Luiz Antonio

    2015-01-01

    Background: Triterpenes as betulinic (BA), oleanolic (OA) and ursolic acids (UA) have increasingly gained therapeutic relevance due to their wide scope of pharmacological activities. To fit large-scale demands, exploitable sources of these compounds have to be found and simple, cost-effective methods to extract them developed. Leaf material represents the best plant sustainable raw material. To obtain triterpene acid-rich extracts from leaves of Eugenia, Psidium and Syzygium species (Myrtaceae) by directly treating the dry plant material with alkalinized hydrated ethanol. This procedure was adapted from earlier methods to effect depolymerization of the leaf cutin. Materials and Methods: Extracts were prepared by shaking the milled dry leaves in freshly prepared 2% NaOH in 95% EtOH solution (1:4 w/v) at room temperature for 6 h. Working up the product in acidic aqueous medium led to clear precipitates in which BA, OA and UA were quantified by gas chromatography. Results: Pigment-free and low-polyphenol content extracts (1.2–2.8%) containing 6–50% of total triterpene acids were obtained for the six species assayed. UA (7–20%) predominated in most extracts, but BA preponderated in Eugenia florida (39%). Carried out in parallel, n-hexane defatted leaves led to up to 9% enhancement of total acids in the extracts. The hydroalcoholate treatment of Myrtaceae species dry leaves proved to be a cost-effective and environmentally friendly method to obtain triterpene acids, providing them be resistant to alkaline medium. These combined techniques might be applicable to other plant species and tissues. PMID:26246721

  19. Control of nitrification/denitrification in an onsite two-chamber intermittently aerated membrane bioreactor with alkalinity and carbon addition: Model and experiment.

    PubMed

    Perera, Mahamalage Kusumitha; Englehardt, James D; Tchobanoglous, George; Shamskhorzani, Reza

    2017-05-15

    Denitrifying membrane bioreactors (MBRs) are being found useful in water reuse treatment systems, including net-zero water (nearly closed-loop), non-reverse osmosis-based, direct potable reuse (DPR) systems. In such systems nitrogen may need to be controlled in the MBR to meet the nitrate drinking water standard in the finished water. To achieve efficient nitrification and denitrification, the addition of alkalinity and external carbon may be required, and control of the carbon feed rate is then important. In this work, an onsite, two-chamber aerobic nitrifying/denitrifying MBR, representing one unit process of a net-zero water, non-reverse osmosis-based DPR system, was modeled as a basis for control of the MBR internal recycling rate, aeration rate, and external carbon feed rate. Specifically, a modification of the activated sludge model ASM2dSMP was modified further to represent the rate of recycling between separate aerobic and anoxic chambers, rates of carbon and alkalinity feed, and variable aeration schedule, and was demonstrated versus field data. The optimal aeration pattern for the modeled reactor configuration and influent matrix was found to be 30 min of aeration in a 2 h cycle (104 m 3 air/d per 1 m 3 /d average influent), to ultimately meet the nitrate drinking water standard. Optimal recycling ratios (inter-chamber flow to average daily flow) were found to be 1.5 and 3 during rest and mixing periods, respectively. The model can be used to optimize aeration pattern and recycling ratio in such MBRs, with slight modifications to reflect reactor configuration, influent matrix, and target nitrogen species concentrations, though some recalibration may be required. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The evaluation of different sorbents for the preconcentration of phenoxyacetic acid herbicides and their metabolites from soils.

    PubMed

    Moret, Sònia; Sánchez, Juan M; Salvadó, Victòria; Hidalgo, Manuela

    2005-12-16

    A procedure using alkaline extraction, solid-phase extraction (SPE) and HPLC is developed to analyze the polar herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA) together with their main metabolites in soils. An ion-pairing HPLC method is used for the determination as it permits the baseline separation of these highly polar herbicides and their main metabolites. The use of a highly cross-linked polystyrene-divinylbenzene sorbent (PS-DVB) gives the best results for the analysis of these compounds. This sorbent allows the direct preconcentration of the analytes at the high pH values obtained after quantitative alkaline extraction of the herbicides from soil samples. Different parameters are evaluated for the SPE preconcentration step. The high polarity of the main analytes of interest (2,4-D and MCPA) makes it necessary to work at low flow rates (< or =0.5 mL min(-1)) in order for these compounds to be retained by the PS-DVB sorbent. A two stage desorption from the SPE sorbent is required to obtain the analytes in solvents that are appropriate for HPLC determination. A first desorption with a 50:50 methanol:water mixture elutes the most polar analytes (2,4-D, MCPA and 2CP). The second elution step with methanol permits the analysis of the other phenol derivatives. The humic and fulvic substances present in the soil are not efficiently retained by PS-DVB sorbents at alkaline pH's and so do not interfere in the analysis. This method has been successfully applied in the analysis of soil samples from a golf course treated with a commercial product containing esters of 2,4-D and MCPA as the active components.

Top