Sample records for sepiolite

  1. In situ stabilization remediation of cadmium contaminated soils of wastewater irrigation region using sepiolite.

    PubMed

    Sun, Yuebing; Sun, Guohong; Xu, Yingming; Wang, Lin; Lin, Dasong; Liang, Xuefeng; Shi, Xin

    2012-01-01

    The effects of immobilization remediation of Cd-contaminated soils using sepiolite on soil pH, enzyme activities and microbial communities, TCLP-Cd (toxicity characteristic leaching procedure-Cd) concentration, and spinach (Spinacia oleracea) growth and Cd uptake and accumulation were investigated. Results showed that the addition of sepiolite could increase soil pH, while the TCLP-Cd concentration in soil was decreased with increasing sepiolite. The changes of soil enzyme activities and bacteria number indicated that a certain metabolic recovery occurred after the sepiolite treatments, and spinach shoot biomass increased by 58.5%-65.5% in comparison with the control group when the concentration of sepiolite was < or = 10 g/kg. However, the Cd concentrations in the shoots and roots of spinach decreased with an increase in the rate of sepiolite, experiencing 38.4%-59.1% and 12.6%-43.6% reduction, respectively, in contrast to the control. The results indicated that sepiolite has the potential for success on a field scale in reducing Cd entry into the food chain.

  2. Assessment of natural sepiolite on cadmium stabilization, microbial communities, and enzyme activities in acidic soil.

    PubMed

    Sun, Yuebing; Sun, Guohong; Xu, Yingming; Wang, Lin; Liang, Xuefeng; Lin, Dasong; Hu, Fazhi

    2013-05-01

    A pot trial was conducted to assess the efficiency of sepiolite-induced cadmium (Cd) immobilization in ultisoils. Under Cd concentrations of 1.25, 2.5, and 5 mg kg(-1), the available Cd in the soil after the application of 1-10 % sepiolite decreased by a maximum of 44.4, 23.0, and 17.0 %, respectively, compared with no sepiolite treatments. The increase in the values of soil enzyme activities and microbial number proved that a certain metabolic recovery occurred after sepiolite treatment. The dry biomass of spinach (Spinacia oleracea) increased with increasing sepiolite concentration in the soil. However, the concentration (dry weight) of Cd in the spinach shoots decreased with the increase in sepiolite dose, with maximum reduction of 92.2, 90.0, and 84.9 %, respectively, compared with that of unamended soils. Under a Cd level of 1.25 mg kg(-1), the Cd concentration in the edible parts of spinach at 1 % sepiolite amendment was lower than 0.2 mg kg(-1) fresh weight, the maximum permissible concentration (MPC) of Cd in vegetable. Even at higher Cd concentrations (2.5 and 5 mg kg(-1)), safe spinach was produced when the sepiolite treatment was up to 5 %. The results showed that sepiolite-assisted remediation could potentially succeed on a field scale by decreasing Cd entry into the food chain.

  3. Environmental influences on the occurrences of sepiolite and palygorskite: a brief review

    USGS Publications Warehouse

    Jones, Blair F.; Conko, Kathryn M.

    2011-01-01

    Sepiolite is a hydrous magnesium silicate formed by precipitation of near-surface brackish or saline waters, under semi-arid climatic conditions. Four major influences on the distribution of sepiolite are source materials, climate, physical parameters and associated phase relations. Two major pathways governing the occurrence of sepiolite and palygorskite are direct precipitation from solution, and the transformation of precursor phases by dissolution–precipitation. Sepiolite is most commonly found as a result of the former process, whereas palygorskite is often characterized as a product of the latter. Thus, sepiolite typically occurs in lacustrine, often saline, strata, while palygorskite is commonly found in conjunction with soils, alluvium, or most abundantly, calcretes. Here, we review briefly some examples of sepiolite deposits in Spain, Turkey, Argentina, USA, and the African countries of Kenya, Morocco, Tunisia, Senegal, Somalia and South Africa.

  4. Co and Fe-catalysts supported on sepiolite: effects of preparation conditions on their catalytic behaviors in high temperature gas flow treatment of dye.

    PubMed

    Lin, Xiangfeng; Fang, Jian; Chen, Menglin; Huang, Zhi; Su, Chengyuan

    2016-08-01

    An efficient adsorbent/catalyst Co and Fe-catalysts loaded on sepiolite (Co-Fe/sepiolite) was successfully prepared for high temperature gas flow catalytic reaction by a simple impregnation method. The impact of preparation conditions (such as pH value of impregnation solution, impregnation time, calcination temperature, and time) on catalytic activity was studied. We found that the catalytic activity of Co-Fe/sepiolite was strongly influenced by all the investigated parameters. The regeneration efficiency (RE) was used to evaluate the catalytic activity. The RE is more noticeable at pH 5.0 of impregnation solution, impregnation time 18 h, calcination temperature 650 °C, and calcination time 3 h. This Co-Fe/sepiolite has great adsorption capacity in absorbing dye. It is used for an adsorbent to adsorb dye from wastewater solution under dynamic adsorption and saturated with dye, then regenerated with high temperature gas flow for adsorption/oxidation cycles. The Co-Fe/sepiolite acts as a catalyst to degrade the dye during regeneration under high temperature gas flow. Hence, the Co-Fe/sepiolite is not only an adsorbent but also a catalyst. The Co-Fe/sepiolite is more stable than sepiolite when applied in the treatment of plant's wastewater. The Co-Fe/sepiolite can be reused in adsorption-regeneration cycle. The results indicate the usability of the proposed combined process, dye adsorption on Co-Fe/sepiolite followed by the catalytic oxidation in high temperature gas flow.

  5. Preparation of Ag@AgCl-doped TiO2/sepiolite and its photocatalytic mechanism under visible light.

    PubMed

    Liu, Shaomin; Zhu, Dinglong; Zhu, Jinglin; Yang, Qing; Wu, Huijun

    2017-10-01

    A cube-like Ag@AgCl-doped TiO 2 /sepiolite (denoted Ag@AgCl-TiO 2 /sepiolite) was successfully synthesized via a novel method. X-ray diffraction, scanning electron microscopy, energy dispersion X-ray fluorescence, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and diffuse reflectance ultraviolet-visible spectroscopy were performed to determine the structure and physicochemical properties of Ag@AgCl-TiO 2 /sepiolite. SEM micrographs revealed that Ag@AgCl nanoparticles and TiO 2 film are well deposited on the surface of tube-like sepiolite. As a result, Ag@AgCl-TiO 2 /sepiolite exhibits a red shift relative to TiO 2 /sepiolite. Photocatalytic experiments demonstrated that the dosage of catalysts plays an important role during photocatalysis. The photoelectrochemical activities of Ag@AgCl-TiO 2 /sepiolite and TiO 2 /sepiolite were also investigated. Photocurrent responses confirmed that the ability of Ag@AgCl-TiO 2 /sepiolite to separate photo-generated electron-hole pairs is stronger than that of TiO 2 /sepiolite. Methylene Blue degradation is also improved under alkaline conditions and visible light irradiation because more OH is produced by visible light excitation. This excellent catalytic ability is mainly attributed to the formed Ag nanoparticles and the Schottky barrier at the Ag/TiO 2 interface. Active species analysis indicated that O 2 - and h + are implicated as active species in photocatalysis. Therefore, catalysts are excited to produce abundant electron-hole pairs after they absorb photons in photocatalysis. Copyright © 2017. Published by Elsevier B.V.

  6. Sepiolite nanoplatform for the simultaneous assembly of magnetite and zinc oxide nanoparticles as photocatalyst for improving removal of organic pollutants.

    PubMed

    Akkari, M; Aranda, P; Mayoral, A; García-Hernández, M; Ben Haj Amara, A; Ruiz-Hitzky, E

    2017-10-15

    Novel ternary ZnO/Fe 3 O 4 -sepiolite nanostructured materials were developed in a two-step procedure based on the incorporation of ZnO nanoparticles on a substrate composed by magnetite nanoparticles previously assembled to the sepiolite fibrous silicate (Fe 3 O 4 -sepiolite). The structural and morphological characterization shows that both, ZnO and Fe 3 O 4 nanoparticles, were homogeneously dispersed on the surface of sepiolite. Therefore, the resulting material is characterized as a multifunctional nanoplatform simultaneously providing magnetic and photoactive properties. ZnO/Fe 3 O 4 -sepiolite materials exhibit superparamagnetic properties at room temperature, which is one of the sought properties in view to facilitate their recovery from the reaction medium after application as heterogeneous catalysts. ZnO/Fe 3 O 4 -sepiolite materials were tested as photocatalysts using methylene blue dye in water as model of a pollutant molecule, showing full decolorization after 2h of UV irradiation. Moreover, the photocatalytic activity of this nanoplataform may be maintained after reuse in several consecutive cycles of treatment. Remarkably, the ZnO/magnetite-sepiolite nanostructured material displays a similar activity as ZnO/sepiolite materials, but shows the additional advantage of easier recovery by means of a magnet which facilitates its reuse. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effect of aqueous Si/Mg ratio and pH on the nucleation and growth of sepiolite at 25 °C

    NASA Astrophysics Data System (ADS)

    Baldermann, Andre; Mavromatis, Vasileios; Frick, Paula M.; Dietzel, Martin

    2018-04-01

    Sepiolite [Mg4Si6O15(OH)2·6H2O] is a trioctahedral 2:1 Mg-silicate that has been often used to reconstruct the evolution of sedimentary environments and facies in the geological record. To date, however, the reaction paths underlying sepiolite formation are poorly constrained and most of the existing models are based on empirical observations. In order to shed light on the mechanisms controlling the formation of this mineral phase, in the present study, sepiolite was precipitated at 25 ± 1 °C from modified seawater and MgCl2 solutions undersaturated with respect to brucite and amorphous silica. Although a suite of hydrous Mg-silicates, such as kerolite, saponite, stevensite and talc, were oversaturated in the solutions at a higher level relative to sepiolite at any time of reaction, poorly crystallized, aluminous sepiolite was the only precipitate after 91 days. The precipitated sepiolite [Mg3.4-3.8Al0.1-0.4)∑3.8-3.9(Si5.9-6.0Al0-0.1)O15(OH)2·nH2O] shares a number of structural and chemical similarities with natural sepiolite, such as a fibrous crystal shape and an atomic Si/(Si + Mg+Al) ratio of ∼0.61. The proposed reaction path for the formation of sepiolite is based on the temporal evolution of the chemical compositions of the experimental solution and solids: (i) Nucleation and growth of Al-sepiolite occurred during the first 8 days of the experimental runs via condensation and polymerization of Sisbnd OH tetrahedra onto Mg-Al-O-OH template sheets at a precipitation rate of ∼2.19 ± 0.01 × 10-10 mol s-1. (ii) At decreasing pH and in the absence of [Al]aq this intermediate phase transformed into aluminous sepiolite at a slower crystal growth rate of ∼1.08 ± 0.02 × 10-12 mol s-1. This finding explains the high abundances of sepiolite in highly alkaline, evaporitic, lacustrine and soil environments, where the growth rates of sepiolite are considered faster (10-11 to 10-10 mol s-1, Brady, 1992). We propose that (i) low rates of Mg2+ ion dehydration and silica condensation and polymerization at the surface of the initial precipitate, (ii) the formation of MgS 040 aquo-complexes and (iii) the reduced sorption rates of [Si]aq and [Mg]aq at the active growth sites on sepiolite surfaces at pH ≤ 8.3 retard the precipitation of sepiolite in marine-diagenetic environments.

  8. Synthesis and photocatalytic activity of sepiolite supportednano-TiO2 composites prepared by a mild solid-state sintering process

    NASA Astrophysics Data System (ADS)

    Liao, L. M.; Wang, Z. Q.; Liang, H.; Feng, J.; Zhang, D.

    2016-08-01

    Supported nano-TiO2photocatalysts play an important role in water environment restoration because of their potential application to photocatalytic degradation of organic contaminants in waste water. With sepiolite as the support, the nano-TiO2/sepiolite composite photocatalysts were synthesized by an easily operated and mild solid-state sintering process.The microstructureand photocatalytic property of the sepiolite supportednano-TiO2 composites were characterized and analyzed by X-ray diffraction spectroscopy, UV-Visible spectroscopy and fluorescence spectroscopy. In addition, the influences of calcination temperature and load ratios on the photocatalytic activity of sepiolite supported nano-TiO2 composites were studied.The results indicated that appropriate ratios of sepiolite supports to nano-TiO2contributed to uniform dispersion of nanoparticles, and enhanced the absorption ability within the UV-Vis range, and consequently increased the photocatalytic activity of the composites.Under the preparation conditions of 90 wt. % TiO2 loading and calcinated at 400 °C, a maximum in photocatalytic activity ofnano-TiO2 sepiolite composite was obtained.

  9. Influence of the synthesis parameters on the properties of amidoxime grafted sepiolite nanocomposites

    NASA Astrophysics Data System (ADS)

    Taimur, Shaista; Yasin, Tariq

    2017-11-01

    Novel polyacrylonitrile (PAN) grafted sepiolite nanocomposites were synthesized via emulsion polymerization. The influence of synthesis parameters on the degree of grafting was studied by varying the concentrations of monomer, initiator and surfactant. The nitrile groups of PAN were chemically modified into amidoxime. Both the grafting and amidoxime percentages were determined gravimetrically and maximum grafting of 373% was achieved at 5% acrylonitrile, 1% surfactant and 0.1% initiator concentrations. The presence of vibration at 2242 cm-1 in Fourier transform infrared (FT-IR) spectrum and x-ray diffraction (XRD) reflection at 2θ = 16.9° (010) confirmed the grafting of PAN chains onto modified sepiolite. XRD patterns also indicated a decrease in crystallinity of sepiolite and appearance of new amorphous region in grafted nanocomposites. The morphological changes of sepiolite during silanization and grafting of PAN is also confirmed by field emission scanning electron microscope (FESEM). Transmission electron microscope (TEM) images clearly showed the shortening of fibers after silanization of sepiolite and the same were involved in heterogeneous nucleation in micelles. These developed amidoxime grafted sepiolite nanocomposites can be used as adsorbent for the metal recovery.

  10. Carbons for lithium batteries prepared using sepiolite as an inorganic template

    DOEpatents

    Sandi, Giselle; Winans, Randall E.; Gregar, K. Carrado

    2000-01-01

    A method of preparing an anode material using sepiolite clay having channel-like interstices in its lattice structure. Carbonaceous material is deposited in the channel-like interstices of the sepiolite clay and then the sepiolite clay is removed leaving the carbonaceous material. The carbonaceous material is formed into an anode. The anode is combined with suitable cathode and electrolyte materials to form a battery of the lithium-ion type.

  11. The animal food supplement sepiolite promotes a direct horizontal transfer of antibiotic resistance plasmids between bacterial species.

    PubMed

    Rodríguez-Beltrán, Jerónimo; Rodríguez-Rojas, Alexandro; Yubero, Elva; Blázquez, Jesús

    2013-06-01

    Animal fodder is routinely complemented with antibiotics together with other food supplements to improve growth. For instance, sepiolite is currently used as a dietary coadjuvant in animal feed, as it increases animal growth parameters and improves meat and derived final product quality. This type of food additive has so far been considered innocuous for the development and spread of antibiotic resistance. In this study, we demonstrate that sepiolite promotes the direct horizontal transfer of antibiotic resistance plasmids between bacterial species. The conditions needed for plasmid transfer (sepiolite and friction forces) occur in the digestive tracts of farm animals, which routinely receive sepiolite as a food additive. Furthermore, this effect may be aggravated by the use of antibiotics supplied as growth promoters.

  12. Sepiolite as a New Nanocarrier for DNA Transfer into Mammalian Cells: Proof of Concept, Issues and Perspectives.

    PubMed

    Piétrement, Olivier; Castro-Smirnov, Fidel Antonio; Le Cam, Eric; Aranda, Pilar; Ruiz-Hitzky, Eduardo; Lopez, Bernard S

    2017-12-29

    Sepiolite is a nanofibrous natural silicate that can be used as a nanocarrier for DNA transfer thanks to its strong interaction with DNA molecules and its ability to be naturally internalized into mammalian cells through both non-endocytic and endocytic pathways. Sepiolite, due to its ability to bind various biomolecules, could be a good candidate for use as a nanocarrier for the simultaneous vectorization of diverse biological molecules. In this paper, we review our recent work, issued from a starting collaboration with Prof. Ruiz-Hitzky, that includes diverse aspects on the characterization and main features of sepiolite/DNA nanohybrids, and we present an outlook for the further development of sepiolite for DNA transfer. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synchrotron Powder X-ray Diffraction Study of the Structure and Dehydration Behavior of Sepiolite

    NASA Astrophysics Data System (ADS)

    Post, J. E.; Bish, D. L.; Heaney, P. J.

    2006-05-01

    Sepiolite is a hydrous Mg-silicate clay mineral with fibrous morphology that typically occurs as fine-grained, poorly crystalline masses. It occurs in a wide variety of geological environments and has been mined for centuries because of its many uses, e.g. in the pharmaceutical, fertilizer, and pesticide industries. Its versatile functionality derives from the large surface area and microporosity that are characteristic of the material. In recent years, sepiolite has received considerable attention with regard to the adsorption of organics, for use as a support for catalysts, as a molecular sieve, and as an inorganic membrane for ultrafiltration. Because of its fine-grained and poorly crystalline nature, it has not been possible to study sepiolite's crystal structure using single-crystal X-ray diffraction methods, and consequently many details of the structure are still not well known. In this study, Rietveld refinements using synchrotron powder X-ray diffraction data were used to investigate the crystal structure and dehydration behavior of sepiolite from Durango, Mexico. The room- temperature (RT) sepiolite structure in air compares well with previous models but reveals an additional zeolitic water site. The RT structure under vacuum retained only ~1/8 of the zeolitic water and the volume decreased 1.3%. Real-time, temperature-resolved synchrotron powder X-ray diffraction data and Rietveld refinements were used to investigate the behavior of the sepiolite structure from 300 to 925 K. Rietveld refinements revealed that most of the zeolitic water is lost by ~390 K, accompanied by a decrease in the a and c unit-cell parameters. Above ~600 K the sepiolite structure folds as one-half of the crystallographically bound water is lost. Rietveld refinements of the "anhydrous" sepiolite structure reveal that, in general, unit-cell parameters a, b, â and volume steadily decrease with increasing temperature; there is an obvious change in slope at ~820 K suggesting a phase transformation coinciding with the loss of the remaining bound water molecule. These temperature-resolved real-time powder X-ray diffraction studies provide the first comprehensive description of the sepiolite structure and the complex changes it undergoes as it dehydrates. Additional heating and cooling in situ powder X-ray diffraction experiments are underway in order to investigate the relative stabilities and rehydration behaviors of the partially-hydrated sepiolite phases. The results of these studies should provide a more robust model for predicting and modifying the properties and applications of this critical industrial material and environmentally important mineral.

  14. Remediation mechanisms for Cd-contaminated soil using natural sepiolite at the field scale.

    PubMed

    Yin, Xiuling; Xu, Yingming; Huang, Rong; Huang, Qingqing; Xie, Zhonglei; Cai, Yanming; Liang, Xuefeng

    2017-12-13

    Remediation of heavy metal polluted agricultural soil is essential for human health and ecological safety and remediation mechanisms at the microscopic level are vital for their large-scale utilization. In this study, natural sepiolite was employed as an immobilization agent for in situ field-scale remediation of Cd-contaminated paddy soil and the remediation mechanisms were investigated in terms of soil chemistry and plant physiology. Natural sepiolite had a significant immobilization effect for bioavailable Cd contents in paddy soil, and consequently could lower the Cd concentrations of brown rice, husk, straw, and roots of rice plants by 54.7-73.7%, 44.0-62.5%, 26.5-67.2%, and 36.7-46.7%, respectively. Regarding soil chemistry, natural sepiolite increased the soil pH values and shifted the zeta potentials of soil particles to be more negative, enhancing the fixation or sorption of Cd on soil particles, and resulted in the reduction of HCl and DTPA extractable Cd concentrations in paddy soil. Natural sepiolite neither enhanced nor inhibited iron plaques on the rice root surface, but did change the chemical environments of Fe and S in rice root. Natural sepiolite improved the activities of antioxidant enzymes and enhanced the total antioxidant capacity to alleviate the stress of Cd. It also promotes the synthesis of GSH and NPT to complete the detoxification. In general, the remediation mechanisms of natural sepiolite for the Cd pollutant in paddy soil could be summarized as the collective effects of soil chemistry and plant physiology.

  15. Computational Study of the Structure of a Sepiolite/Thioindigo Mayan Pigment

    PubMed Central

    Alvarado, Manuel; Chianelli, Russell C.; Arrowood, Roy M.

    2012-01-01

    The interaction of thioindigo and the phyllosilicate clay sepiolite is investigated using density functional theory (DFT) and molecular orbital theory (MO). The best fit to experimental UV/Vis spectra occurs when a single thioindigo molecule attaches via Van der Waals forces to a tetrahedrally coordinated Al3+ cation with an additional nearby tetrahedrally coordinated Al3+ also present. The thioindigo molecule distorts from its planar structure, a behavior consistent with a color change. Due to the weak interaction between thioindigo and sepiolite we conclude that the thioindigo molecule must be trapped in a channel, an observation consistent with previous experimental studies. Future computational studies will look at the interaction of indigo with sepiolite. PMID:23193386

  16. The Impact of Sepiolite on Sensor Parameters during the Detection of Low Concentrations of Alcohols.

    PubMed

    Suchorska-Woźniak, Patrycja; Rac, Olga; Fiedot, Marta; Teterycz, Helena

    2016-11-09

    The article presents the results of the detection of low-concentration C1-C4 alcohols using a planar sensor, in which a sepiolite filter was applied next to the gas-sensitive layer based on tin dioxide. The sepiolite layer is composed of tubes that have a length of several microns, and the diameter of the single tube ranges from several to tens of nanometers. The sepiolite layer itself demonstrated no chemical activity in the presence of volatile organic compounds (VOC), and the passive filter made of this material did not modify the chemical composition of the gaseous atmosphere diffusing to the gas-sensitive layer. The test results revealed that the structural remodelling of the sepiolite that occurs under the influence of temperature, as well as the effect of the filter (a compound with ionic bonds) with molecules of water, has a significant impact on the improvement of the sensitivity of the sensor in relation to volatile organic compounds when compared to the sensor without a filter.

  17. The effect of alkaline cations on the Intercalation of Carbon Dioxide in Sepiolite Minerals: a Molecular Dynamics Investigation.

    NASA Astrophysics Data System (ADS)

    Tavanti, Francesco; Muniz-Miranda, Francesco; Pedone, Alfonso

    2018-03-01

    The ability of the sepiolite mineral to intercalate CO2 molecules inside its channels in the presence of different alkaline cations (K+, Na+ and Li+) has been studied by classical Molecular Dynamics simulations. Starting from an alkaline-free sepiolite crystalline model we built three models with stoichiometry Mg320Si440Al40O1200(OH)160X+40•480H2O. On these models, we gradually replaced the water molecules present in the channels with carbon dioxide and determined the energy of this exchange reaction as well as the structural organization and dynamics of carbon dioxide in the channels. The adsorption energy shows that the Li-containing sepiolite mineral retains more carbon dioxide with respect to those with sodium and potassium cations in the channels. Moreover, the ordered patterns of CO2 molecules observed in the alkaline-free sepiolite mineral are in part destabilized by the presence of cations decreasing the adsorption capacity of this clay mineral.

  18. Synchrotron Powder X-ray Diffraction Study of the Structure and Dehydration Behavior of Sepiolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post,J.; Bish, D.; Heaney, P.

    2007-01-01

    Rietveld refinements using synchrotron powder X-ray diffraction data were used to study the crystal structure and dehydration behavior of sepiolite from Durango, Mexico. The room-temperature (RT) sepiolite structure in air compares well with previous models but reveals an additional zeolitic H{sub 2}O site. The RT structure under vacuum retained only {approx}1/8 of the zeolitic H{sub 2}O and the volume decreased by 1.3%. Real-time, temperature-resolved synchrotron powder X-ray diffraction data and Rietveld refinements were used to investigate the behavior of the sepiolite structure from 300 to 925 K. Rietveld refinements revealed that most of the zeolitic H{sub 2}O is lost bymore » {approx}390 K, accompanied by a decrease in the a and c unit-cell parameters. Above {approx}600 K the sepiolite structure folds as one-half of the crystallographically bound H{sub 2}O is lost. Rietveld refinements of the 'anhydrous' sepiolite structure reveal that, in general, unit-cell parameters a and b and volume steadily decrease with increasing temperature; there is an obvious change in slope at {approx}820 K suggesting a phase transformation coinciding with the loss of the remaining bound H{sub 2}O molecule.« less

  19. Effect of Clinoptilolite and Sepiolite Nanoclays on Human and Parasitic Highly Phagocytic Cells

    PubMed Central

    Toledano-Magaña, Yanis; Flores-Santos, Leticia; Montes de Oca, Georgina; González-Montiel, Alfonso; Laclette, Juan-Pedro; Carrero, Julio-César

    2015-01-01

    Nanoclays have potential applications in biomedicine raising the need to evaluate their toxicity in in vitro models as a first approach to its biocompatibility. In this study, in vitro toxicity of clinoptilolite and sepiolite nanoclays (NC) was analyzed in highly phagocytic cultures of amoebas and human and mice macrophages. While amebic viability was significantly affected only by sepiolite NC at concentrations higher than 0.1 mg/mL, the effect on macrophage cultures was dependent on the origin of the cells. Macrophages derived from human peripheral blood monocytes were less affected in viability (25% decrease at 48 h), followed by the RAW 264.7 cell line (40%), and finally, macrophages derived from mice bone marrow monocytes (98%). Moreover, the cell line and mice macrophages die mainly by necrosis, whereas human macrophages exhibit increased apoptosis. Cytokine expression analysis in media of sepiolite NC treated cultures showed a proinflammatory profile (INFγ, IL-1α, IL-8, and IL-6), in contrast with clinoptilolite NC that induced lees cytokines with concomitant production of IL-10. The results show that sepiolite NC is more toxic to amoebas and macrophages than clinoptilolite NC, mostly in a time and dose-dependent manner. However, the effect of sepiolite NC was comparable with talc powder suggesting that both NC have low cytotoxicity in vitro. PMID:26090385

  20. The Impact of Sepiolite on Sensor Parameters during the Detection of Low Concentrations of Alcohols

    PubMed Central

    Suchorska-Woźniak, Patrycja; Rac, Olga; Fiedot, Marta; Teterycz, Helena

    2016-01-01

    The article presents the results of the detection of low-concentration C1–C4 alcohols using a planar sensor, in which a sepiolite filter was applied next to the gas-sensitive layer based on tin dioxide. The sepiolite layer is composed of tubes that have a length of several microns, and the diameter of the single tube ranges from several to tens of nanometers. The sepiolite layer itself demonstrated no chemical activity in the presence of volatile organic compounds (VOC), and the passive filter made of this material did not modify the chemical composition of the gaseous atmosphere diffusing to the gas-sensitive layer. The test results revealed that the structural remodelling of the sepiolite that occurs under the influence of temperature, as well as the effect of the filter (a compound with ionic bonds) with molecules of water, has a significant impact on the improvement of the sensitivity of the sensor in relation to volatile organic compounds when compared to the sensor without a filter. PMID:27834879

  1. Microwave-assisted nitric acid treatment of sepiolite and functionalization with polyethylenimine applied to CO2 capture and CO2/N2 separation

    NASA Astrophysics Data System (ADS)

    Vilarrasa-García, E.; Cecilia, J. A.; Bastos-Neto, M.; Cavalcante, C. L.; Azevedo, D. C. S.; Rodríguez-Castellón, E.

    2017-07-01

    Sepiolite was treated in HNO3 solutions with the assistance of microwave radiation. This treatment caused the progressive depletion of Mg2+, the gradual degradation of the sepiolite structure and the formation of an amorphous silica phase, which contributes to a noticeable increase of the surface area. The use of microwaves during acid treatment, after few minutes, led to materials with similar SBET to those obtained after 48 h with conventional heating methods. The influence of mineralogical impurities, crystallinity and chemical composition in the reactivity of sepiolite to this treatment was also studied. The obtained materials were impregnated with polyethylenimine and assessed for CO2 capture and CO2/N2 selectivity at different temperatures. Experimental equilibrium data were fitted to Langmuir and Sips models. The adsorption data revealed that sepiolite can be an interesting adsorbent for CO2 capture, achieving a capacity of 1.70 mmol g-1 at 338 K and 1 bar, providing a high CO2/N2 selectivity (440 mol CO2/mol N2).

  2. Removal of fluoroquinolone contaminants from environmental waters on sepiolite and its photo-induced regeneration.

    PubMed

    Sturini, Michela; Speltini, Andrea; Maraschi, Federica; Profumo, Antonella; Tarantino, Serena; Gualtieri, Alessandro F; Zema, Michele

    2016-05-01

    Sepiolite is studied as sorbent for removal of Fluoroquinolone (FQ) contaminants from water. Marbofloxacin (MAR) and Enrofloxacin (ENR) were chosen as model FQs since they are the two most commonly employed veterinary FQs in livestock farming in northern Italy. Adsorption experiments on two sepiolites (SP-1 and SSE16) were carried out in tap water at pH 7.5 to better mimic real conditions. The sorption experimental data were fitted by Freundlich, Langmuir and S-Logistic1 models. The latter better described MAR and ENR adsorptions. Adsorption capacities of SP-1 and SSE16, respectively, were 132 mg g(-1) and 121 mg g(-1) for MAR, and 112 mg g(-1) and 93 mg g(-1) for ENR. X-ray powder diffraction, performed on clay samples enriched with each FQ and on the pristine clays, showed no substantial differences between the two sepiolites and evidenced no significant structural changes after FQs uptake, as also verified by infrared spectroscopy. This indicates that adsorption occurs only on the external surface of the mineral and not in the intracrystalline microporosity, likely due to the interaction between the FQ carboxylic group and the sepiolite surface. For the first time solid-state photodegradation of the adsorbed FQs was investigated for regenerating the sorbent. Results showed that the adsorbed drugs are effectively photodegraded by solar light, thus allowing sepiolite to be reused. The efficiency of this material for remediation of contaminated water was proved on ditch water, collected downstream a swine farm, containing some tens of ng L(-1) of MAR and ENR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI).

    PubMed

    Fu, Rongbing; Yang, Yingpin; Xu, Zhen; Zhang, Xian; Guo, Xiaopin; Bi, Dongsu

    2015-11-01

    In this study, the synthesis and characterization of sepiolite-supported nanoscale zero-valent iron particles (S-NZVI) was investigated for the adsorption/reduction of Cr(VI) and Pb(II) ions. Nanoscale zero-valent iron (NZVI) supported on sepiolite was successfully used to remove Cr(VI) and Pb(II) from groundwater with high efficiency. The removal mechanism was proposed as a two-step interaction including both the physical adsorption of Cr(VI) and Pb(II) on the surface or inner layers of the sepiolite-supported NZVI particles and the subsequent reduction of Cr(VI) to Cr(III) and Pb(II) to Pb(0) by NZVI. The immobilization of the NZVI particles on the surface of sepiolite could help to overcome the disadvantage of NZVI particles, which have strong tendency to agglomerate into larger particles, resulting in an adverse effect on both the effective surface area and reaction performance. The techniques of XRD, XPS, BET, Zeta potential, and TEM were used to characterize the S-NZVI and interaction between S-NZVI and heavy metals. The appropriate S-NZVI dosage was 1.6 g L(-1). The removal efficiency of Cr(VI) and Pb(II) by S-NZVI was not affected to any considerable extent by the presence of co-existing ions, such as H2PO4(-), SiO3(2-), Ca(2+) and HCO3(-). The Cr(VI) and Pb(II) removal kinetics followed a pseudo-first-order rate expression, and both Langmuir isotherm model and Freundlich isotherm model were proposed. The results suggested that supporting NZVI on sepiolite had the potential to become a promising technique for in situ heavy metal-contaminated groundwater remediation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Thioindigo Interaction with Palygorskite and Sepiolite

    NASA Astrophysics Data System (ADS)

    Ramirez, Alejandra; Chianelli, Russell; Komarneni, Sridhar; Kumar, Swati

    2007-10-01

    Pigments developed by the Mayan civilization are now known to be significantly `environmentally friendly' a technical skill developed circa 250-900 C.E! [1]. One such pigment called Maya Blue, has been the focus of numerous studies and is believed to be a mixture of palygorskite clay and indigo dye [2,3]. Several derivatives of this pigment have been now developed with intriguing properties. For instance, the dye, textitthioindigo, reacts with the palygorskite clay to exhibit a broad range of colors from red to blue under UV-Vis excitation. The range of colors produced with sepiolite clays is smaller. We present spectroscopic analyses of pigments derived from thioindigo:palygorskite and thioindigo:sepiolite mixtures. ^27Al MAS-NMR spectra of sepiolite mixtures clearly showed changes in the Al coordination upon reacting with thioindigo. However, palygorskite-dye mixtures showed only slight changes in Al coordination. Future work will involve ^27Al MAS-NMR analyses of thioindigo and clays rich in tetrahedrally coordinated Al to confirm the coordination changes in Al in the presence of thioindigo.

  5. Phospholipid-sepiolite biomimetic interfaces for the immobilization of enzymes.

    PubMed

    Wicklein, Bernd; Darder, Margarita; Aranda, Pilar; Ruiz-Hitzky, Eduardo

    2011-11-01

    Biomimetic interfaces based on phosphatidylcholine (PC) assembled to the natural silicate sepiolite were prepared for the stable immobilization of the urease and cholesterol oxidase enzymes. This is an important issue in practical advanced applications such as biocatalysis or biosensing. The supported lipid bilayer (BL-PC), prepared from PC adsorption, was used for immobilization of enzymes and the resulting biomimetic systems were compared to several other supported layers including a lipid monolayer (ML-PC), a mixed phosphatidylcholine/octyl-galactoside layer (PC-OGal), a cetyltrimethylammonium monolayer (CTA), and also to the bare sepiolite surface. Interfacial characteristics of these layers were investigated with a focus on layer packing density, hydrophilicity/hydrophobicity, and surface charge, which are being considered as key points for enzyme immobilization and stabilization of their biological activity. Cytoplasmic urease and membrane-bound cholesterol oxidase, which served as model enzymes, were immobilized on the different PC-based hybrid materials to probe their biomimetic character. Enzymatic activity was assessed by cyclic voltammetry and UV-vis spectrophotometry. The resulting enzyme/bio-organoclay hybrids were applied as active phase of a voltammetric urea biosensor and cholesterol bioreactor, respectively. Urease supported on sepiolite/BL-PC proved to maintain its enzymatic activity over several months while immobilized cholesterol oxidase demonstrated high reusability as biocatalyst. The results emphasize the good preservation of bioactivity due to the accommodation of the enzymatic system within the biomimetic lipid interface on sepiolite.

  6. Use of clay to remediate cadmium contaminated soil under different water management regimes.

    PubMed

    Li, Jianrui; Xu, Yingming

    2017-07-01

    We examined in situ remediation of sepiolite on cadmium-polluted soils with diverse water regimes, and several variables including brown rice Cd, exchangeable Cd, pH, and available Fe/P. pH, available Fe/P in soils increased gradually during continuous flooding, which contributed to Cd absorption on colloids. In control group (untreated soils), compared to conventional irrigation, brown rice Cd in continuous flooding reduced by 37.9%, and that in wetting irrigation increased by 31.0% (p<0.05). In contrast to corresponding controls, brown rice Cd in sepiolite treated soils reduced by 44.4%, 34.5% and 36.8% under continuous flooding, conventional irrigation and wetting irrigation (p<0.05), and exchangeable Cd in amended soils reduced by 27.5-49.0%, 14.3-40.5%, and 24.9-32.8% under three water management regimes (p<0.05). Compared to corresponding controls, decreasing amplitudes of exchangeable Cd and brown rice Cd in sepiolite treated soils were higher in continuous flooding than in conventional irrigation and wetting irrigation. Continuous flooding management promoted soil Cd immobilization by sepiolite. Copyright © 2017. Published by Elsevier Inc.

  7. Reliability and stability of immobilization remediation of Cd polluted soils using sepiolite under pot and field trials.

    PubMed

    Sun, Yuebing; Xu, Yi; Xu, Yingming; Wang, Lin; Liang, Xuefeng; Li, Ye

    2016-01-01

    Long-term effectiveness and persistence are two important criterias to evaluate alternative remediation technology of heavy metal polluted soils. Pot and field studies showed addition of sepiolite was effective in immobilizing Cd in polluted soils, with significant reduction in TCLP extracts (0.6%-49.6% and 4.0%-32.5% reduction in pot and field experiments, respectively) and plant uptake (14.4%-84.1% and 22.8%-61.4% declines in pot and field studies, correspondingly). However, the applications of sepiolite offered a limited guarantee for the safety of edible vegetables in Cd-polluted soils, depending on the soil type, the Cd pollution type and level, and the dose and application frequency of chemical amendments. Bioassays, such as plant growth, soil enzymatic activities and microbial community diversity, indicated a certain degree of recovery of soil metabolic function. Therefore, sepiolite-assisted in situ remediation is cost-effective, environmentally friendly, and technically applicable, and can be successfully used to reduce Cd enter into the food chain on field scale. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. The effect of EGDMA on tensile and thermal properties of irradiated low density polyethylene/sepiolite nanocomposites

    NASA Astrophysics Data System (ADS)

    Ghazali, Siti Nadia Aini; Mohamad, Zurina; Majid, Rohah A.; Appadu, Sivanesan

    2017-07-01

    This study presents the influence of ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent through electron beam crosslinking process. Therefore, the effects of EGDMA on irradiated low density polyethylene/sepiolite (LDPE/SEP) nanocomposites on the tensile and thermal properties at 4 part per hundred resin (phr) sepiolite were investigated. The LDPE/SEP nanocomposites were prepared by melt mixing using twin screw extruder at 160 ˚C with a screw speed of 50 rpm. The nanocomposites were then undergone injection moulding process followed by irradiated using 2 MeV electron beam machine at doses ranging from 0 to 200 kGy in the air at ambient temperature. It was found that the tensile strength and Young's modulus were slightly increased with the presence of co-agent. The sample containing 4 phr sepiolite at 200 kGy showed 9% increase in tensile strength when EGDMA was added. However, the result of thermogravimetry analysis (TGA) showed some reduction in thermal stability of nanocomposites on 100 kGy irradiation dose. EGDMA had reduced the optimum irradiation dose without having any adverse effect on tensile and thermal properties.

  9. Microwave hydrothermal-assisted preparation of novel spinel-NiFe2O4/natural mineral composites as microwave catalysts for degradation of aquatic organic pollutants.

    PubMed

    Shen, Manli; Fu, Lu; Tang, Jianhua; Liu, Mingyu; Song, Youtao; Tian, Fangyuan; Zhao, Zhigang; Zhang, Zhaohong; Dionysiou, Dionysios D

    2018-05-15

    In this study, novel spinel-NiFe 2 O 4 /natural mineral (sepiolite, diatomite and kaolinite) composites were developed using microwave (MW) hydrothermal method, and applied in MW-induced catalytic degradation (NiFe 2 O 4 /natural mineral/MW) of organic pollutants such as sodium dodecyl benzene sulfonate (SDBS), azo fuchsine (AF), methyl parathion (MP), and crystal violet (CVL) in solution. Catalytic activities of three NiFe 2 O 4 /natural mineral composites were compared. The effects of material synthesis process parameters such as molar ratios of NiFe 2 O 4 and natural mineral, and pH of precursor solutions for synthesizing catalysts, and degradation parameters such as MW irradiation time and catalyst reuse cycles were also investigated. The principle on NiFe 2 O 4 /natural mineral/MW degradation was provided. The results reveal that organic pollutants in wastewater can be removed completely using NiFe 2 O 4 /natural mineral/MW within minutes. NiFe 2 O 4 /sepiolite shows higher catalytic activity than the others. The calculated degradation rate constants are 1.865, 0.672, 0.472, and 0.329 min -1 for SDBS, AF, MP, and CVL, respectively, using NiFe 2 O 4 /sepiolite/MW system. The performance of NiFe 2 O 4 /natural mineral can be maintained for three reuse cycles. Active species OH, O 2 - , and h + play main roles in NiFe 2 O 4 /sepiolite/MW degradation. Hence, NiFe 2 O 4 /sepiolite/MW technology with rapid and cost-effective degradation, magnetic separation, and no secondary pollution, demonstrates to be promising in treating organic contaminants in wastewater. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Contrasting frictional behaviour of fault gouges containing Mg-rich phyllosilicates

    NASA Astrophysics Data System (ADS)

    Sanchez Roa, C.; Faulkner, D.; Jimenez Millan, J.; Nieto, F.

    2015-12-01

    The clay mineralogy of fault gouges has important implications on frictional properties and stability of fault planes. We studied the specific case of the Galera fault zone where fault gouges containing Mg-rich phyllosilicates appear as hydrothermal deposits related to high salinity fluids enriched in Mg2+. These deposits are dominated by sepiolite and palygorskite, both fibrous clay minerals with similar composition to Mg-smectite. The frictional strengths of sepiolite and palygorskite have not yet been determined, however, as they are part of the clay mineral group, it has been assumed that their frictional behaviour would be in line with platy clay minerals. We performed frictional sliding experiments on powdered pure standards and fault rocks in order to establish the frictional behaviour of sepiolite and palygorskite using a triaxial deformation apparatus with a servo-controlled axial loading system and fluid pressure pump. Friction coefficients for palygorskite and sepiolite as monomineralic samples were found to be 0.65 to 0.7 for dry experiments, and 0.45 to 0.5 for water-saturated experiments. Although these fibrous minerals are part of the phyllosilicates group, they show higher friction coefficients and their mechanical behaviour is less stable than platy clay minerals. This difference is a consequence of their stronger structural framework and the discontinuity of water layers. Our results present a contrast in mechanical behaviour between Mg-rich fibrous and platy clay minerals in fault gouges, where smectite is known to considerably reduce friction coefficients and to increase the stability of the fault plane leading to creeping processes. Transformations between saponite and sepiolite have been previously observed and could modify the deformation regime of a fault zone. Constraining the stability conditions and possible mineral reactions or transformations in fault gouges could help us understand the general role of clay minerals in fault stability.

  11. Degradation of bromamine acid by nanoscale zero-valent iron (nZVI) supported on sepiolite.

    PubMed

    Fei, Xuening; Cao, Lingyun; Zhou, Lifeng; Gu, Yingchun; Wang, Xiaoyang

    2012-01-01

    Sepiolite, a natural nano-material, was chosen as a carrier to prepare supported nanoscale zero-valent iron (nZVI). The effects of preparation conditions, including mass ratio of nZVI and activated sepiolite and preparation pH value, on properties of the supported nZVI were investigated. The results showed that the optimal mass ratio of nZVI and sepiolite was 1.12:1 and the optimal pH value was 7. The supported nZVI was characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and energy dispersive spectrometer (EDS), and furthermore an analogy model of the supported nZVI was set up. Compared with the nZVI itself, the supported nZVI was more stable in air and possessed better water dispersibility, which were beneficial for the degradation of bromamine acid aqueous solution. The degradation characteristics, such as effects of supported nZVI dosage, initial concentration and initial pH value of the solution on the decolorization efficiency were also investigated. The results showed that in an acidic environment the supported nZVI with a dosage of 2 g/L showed high activity in the degradation of bromamine acid with an initial concentration of 1,000 mg/L, and the degree of decolorization could reach up to 98%.

  12. On the preparation of TiO2-sepiolite hybrid materials for the photocatalytic degradation of TCE: influence of TiO2 distribution in the mineralization.

    PubMed

    Suárez, Silvia; Coronado, Juan M; Portela, Raquel; Martín, Juan Carlos; Yates, Malcolm; Avila, Pedro; Sánchez, Benigno

    2008-08-15

    Hybrid structured photocatalysts based on sepiolite, an adsorbent, and TiO2 were prepared by extrusion of ceramic dough and conformed as plates. The influence of the photocatalyst configuration was studied either by including TiO2 in the extrusion process (incorporated materials) or by coating the sepiolite plates with a TiO2 film (coated materials). The influence of the OH- surface concentration in the photocatalytic performance was studied by treating the ceramic plates at different temperatures. The samples were characterized by N2 adsorption-desorption, MIP, SEM, XRD, and UV-vis-NIR spectroscopy and tested in the photocatalytic degradation of trichloroethylene (TCE) as a target VOC molecule. Most of the catalysts presented high photoactivity, but considerable differences were observed when the CO2 selectivity was analyzed. The results demonstrate that there is a significant effect of the catalyst configuration on the selectivity of the process. An intimate contact between the sepiolite fibers and TiO2 particles for incorporated materials with a corncob-like structure favored the migration of nondesirable reaction products such as COCl2 and dichloroacetyl chloride (DCAC) to the adsorbent, reacting with OH- groups of the adsorbent and favoring the TCE mimeralization.

  13. Synthesis of modified sepiolite-g-polystyrene sulfonic acid nanohybrids by radiation induced graft polymerization

    NASA Astrophysics Data System (ADS)

    Taimur, Shaista; Hassan, Muhammad Inaam ul; Yasin, Tariq; Ali, Syed Wasim

    2018-07-01

    In this study, polystyrene (PS) grafted sepiolite nanohybrid (MS-g-PS) was synthesized by using simultaneous radiation grafting technique in the presence of dichloromethane (DCM) as solvent. The radiation grafting process was carried out under inert atmosphere at room temperature using gamma rays from a Co-60 irradiator. The degree of grafting was affected by absorbed dose and monomer concentration in the mixture. Sulfonation of synthesized nanohybrid was carried out with sulfuric acid. Both the grafting of styrene and its sulfonate derivative were verified by Fourier transform infrared spectroscopy (FT-IR). The structural and morphological investigations of these nanohybrids have been investigated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The gravimetric investigations showed that grafting yield increases with the absorbed dose. Results showed that the system allows the controlled grafting of styrene onto sepiolite (Sep) in DCM.

  14. Formation of hydrous Mg-silicates at low temperatures: New insights from sepiolite precipitation experiments

    NASA Astrophysics Data System (ADS)

    Baldermann, Andre; Mavromatis, Vasileios; Dietzel, Martin

    2017-04-01

    The spatiotemporal changes in the distribution and abundance of hydrous Mg-silicates have been frequently used to reconstruct sedimentary facies in modern and past epicontinental seas and lakes, lacustrine settings and in marine environments; albeit the physicochemical conditions and the mineral-forming processes of hydrous Mg-silicates remain questionable. In this experimental study, sepiolite [Mg4Si6O15(OH)2ṡ6H2O] was precipitated from silica-doped seawater and silica-doped synthetic MgCl2-brines over a three months period at aqueous Si/Mg molar ratios ranging from 1:27.5 to 1:110, initial pH of 8.3 ± 0.03 at 25 ± 1°C. The evolution of the solution chemistry and solid-phase composition was monitored using UV-vis spectroscopy, ICP-OES, XRD, ATR-FTIR and TEM analysis. The reactive fluids were, at any time, undersaturated in respect to amorphous silica [SiO2ṡnH2O] and brucite [Mg(OH)2]; thus, a Mg-rich phyllosilicate with a modulated, sepiolite-like structure was the only precipitates in our experiments. The crystallites were poorly crystalline, fibrous (20 to 100 nm in length) and had a (MgO+Al2O3)/SiO2 ratio of 0.44 ± 0.02, which is almost equal to that of ideal and naturally-grown sepiolite. An increase in the intensity of the striking infrared lattice vibration at ˜1205 cm-1 is in accord with an elevated Si/Mg molar ratio of the reactive solutions. This feature results from the periodic inversion of the Si tetrahedra in the evolving 2:1 layer and subsequently denotes the formation of "polysome units" in sepiolite-palygorskite group minerals. For the first time, we determined the apparent growth rate of sepiolite to be 172 ± 16 × 10-6 up to 279 ± 29 × 10-6 mole L-1ṡday-1, which mainly depended on the evolution of pH of the reactive fluids. The presence of MgSO40 aquo-complexes seems to have insignificant influence on the precipitation rate of sepiolite. Our results demonstrate that hydrous Mg-silicates can form in most (peri)marine and diagenetic environments, if sufficient time and an additional source of silicic acid is provided through, i.e. dissolution of marine silicifiers, volcanic ash and/or silicate detritus. We suppose that the low crystallinity degree of the incipient precipitates, the presence of reactive intermediates and the formation of polyphase products at low temperatures could mask the widespread precipitation of hydrous Mg-silicates in modern (marine) sediments.

  15. Adsorption of arsenic ions on Brazilian sepiolite: effect of contact time, pH, concentration, and calorimetric investigation.

    PubMed

    Guerra, Denis L; Batista, Adriano C; da Costa, Paulo C Corrêa; Viana, Rúbia R; Airoldi, Claudio

    2010-06-01

    The original sepiolite clay mineral has been collected from Amazon region, Brazil. The compound 2-aminomethylpyridine (AMP) was anchored onto Amazon sepiolite surface by heterogeneous route. The natural (SPT) and modified (SPT(AMP)) sepiolite samples were characterized by elemental analysis, SEM, N(2) adsorption, and nuclear magnetic nuclei of (29)Si and (13)C. The well-defined peaks obtained in the (13)C NMR spectrum in the 0-160 ppm region confirmed the attachment of organic functional groups as pendant chains bonded into the porous clay. The ability of these materials to remove As(V) from aqueous solution was followed by a series of adsorption isotherms at room temperature and pH 4.0. The maximum number of moles adsorbed was determined to be 7.26×10(-2) and 11.70×10(-2) mmol g(-1) for SPT and SPT(AMP), respectively. In order to evaluate the clay samples as adsorbents in dynamic system, a glass column was fulfilled with clay samples (1.0 g) and it was fed with 2.0×10(-2) mmol dm(-3) As(V) at pH 4.0. The energetic effects caused by metal cations adsorption were determined through calorimetric titrations. Thermodynamics indicated the existence of favorable conditions for such As(V)-nitrogen interactions. Copyright © 2010. Published by Elsevier Inc.

  16. NO removal by nonthermal plasma with modified sepiolite catalyst

    NASA Astrophysics Data System (ADS)

    Chen, M. G.; Yu, D. X.; Rong, J. F.; Wan, Y. L.; Li, G. C.; Ni, Y. M.; Fan, X.; Hou, G. H.; Xu, N.

    2013-03-01

    Non-Thermal Plasma (NTP) combined with a catalyst is one of the effective ways to remove NO from auto exhaust gas. Sepiolite Ore Powder (SOP), which was modified by acid washing, copper nitrate soaking, drying and calcinations, served as the Modified Sepiolite Catalyst (MSC) for NO removal in a rod-cylinder Dielectric Barrier Discharge (DBD) reactor. The characteristic of the MSC was characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The experiment showed that the acid concentration, washing time, the packed site of MSC and input voltage of the NTP impacted the NO removal rate effectively. The NO removal rate increased and then decreased with an increase in the acid concentration and the washing time, and the NO removal rate increased monotonously with the increased input voltage. The NO removal rate was higher at the beginning, decreased gradually then maintained stability after 10 min. Thus, the result indicated that MSC has a good ability for adsorption and storage of NO.

  17. [Immobilization remediation of Cd and Pb contaminated soil: remediation potential and soil environmental quality].

    PubMed

    Sun, Yue-Bing; Wang, Peng-Chao; Xu, Ying-Ming; Sun, Yang; Qin, Xu; Zhao, Li-Jie; Wang, Lin; Liang, Xue-Feng

    2014-12-01

    A pot experiment was conducted to investigate the immobilization remediation effects of sepiolite on soils artificially combined contamination by Cd and Pb using a set of various pH and speciation of Cd and Pb in soil, heavy metal concentration in Oryza sativa L., and soil enzyme activity and microbial quantity. Results showed that the addition of sepiolite increased the soil pH, and the exchangeable fraction of heavy metals was converted into Fe-Mn oxide, organic and residual forms, the concentration of exchangeable form of Cd and Pb reduced by 1.4% - 72.9% and 11.8% - 51.4%, respectively, when compared with the control. The contents of heavy metals decreased with increasing sepiolite, with the maximal Cd reduction of 39.8%, 36.4%, 55.2% and 32.4%, respectively, and 22.1%, 54.6%, 43.5% and 17.8% for Pb, respectively, in the stems, leaves, brown rice and husk in contrast to CK. The addition of sepiolite could improve the soil environmental quality, the catalase and urease activities and the amount of bacteria and actinomycete were increased to some extents. Although the fungi number and invertase activity were inhibited compared with the control group, it was not significantly different (P > 0.05). The significant correlation between pH, available heavy metal content, urease and invertase activities and heavy metal concentration in the plants indicated that these parameters could be used to evaluate the effectiveness of stabilization remediation of heavy metal contaminated soil.

  18. Geochronology and Geochemistry of Zircons from the IODP Site U1437 in the Rear of the Izu-Bonin Volcanic Arc

    NASA Astrophysics Data System (ADS)

    Andrews, G. D.; Schmitt, A. K.; Busby, C. J.; Brown, S. R.

    2015-12-01

    Zircons recovered from International Ocean Discovery Program Expedition 350 Site U1437 (31°47.390'N, 139°01.580'E) in the Izu-Bonin arc were analyzed by SIMS to constrain their age (U/Pb geochronology) and geochemistry (trace elements, δ18O); LA-ICP-MS ɛHf analyses are pending. Seven intervals were dated successfully: six tuffs and lapilli-tuffs between 680.99 and 1722.46 m below sea floor (mbsf) and a single peperitic rhyolitic intrusion at 1388.86 - 1390.07 mbsf. Thirty-two intervals which underwent mineral separation lacked zircon, or yielded zircon much older than age expectations for U1437. Geochronology results from separated zircons confirm and extend the shipboard age model to 1360.77 mbsf where Late Miocene (Tortonian) submarine volcanic rocks (11.3 ±0.7 Ma; n = 17) were sampled. In-situ measurement of zircons associated with magnetite crystals in the rhyolite intrusion yield an age of 13.6 ±1.7 Ma (n = 9). Zircon U contents are low (typically <300 ppm), with trace element ratios characteristic of oceanic lithosphere and near-mantle δ18O values (4-6 ‰). Individual Miocene zircon crystals are difficult to distinguish by age alone from those in the drilling mud (sepiolite) used during Expedition 350; the sepiolite is quarried by IMV Nevada in the Amargosa Valley. Our analysis of thirty-three zircons from the sepiolite finds that they have a broad and varied age distribution (2 - 2033 Ma) with a prominent peak at 12-14 Ma, bimodal δ18O values (peaks at 5-5.5 and 6.5-7.5 ‰), and dominantly continental trace element signatures. Three zircons from U1437 are tentatively identified as sepiolite-derived, but a single Eocene grain (51.7 ±2.4 Ma) recovered from 1722.46 mbsf has an age unlike those in the sepiolite, and potentially is genuinely xenocrystic. The majority of U1437 zircons thus crystallized from evolved melts lacking continental characteristics, although thermal and compositional conditions conducive for zircon crystallization appear to have been rarely attained.

  19. Solvothermal fabrication of TiO2/sepiolite composite gel with exposed {0 0 1} and {1 0 1} facets and its enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Liu, Ruirui; Ji, Zhijiang; Wang, Jing; Zhang, Jinjun

    2018-05-01

    A novel TiO2/sepiolite composite gel (TiSG) was fabricated in the presence of cetyltrimethylammonium bromide (CTAB) through a simple solvothermal reaction in an acetic acid-water solvent. A homogeneous anchoring of TiO2 nanoparticles with exposed {0 0 1} and {1 0 1} facets on sepiolite nanofibers was achieved. CTAB content, solvothermal temperature/time, and HAc content play crucial roles in the morphological and facet formation of TiSG. A possible mechanism for the formation of TiSG was further proposed. CTAB as capping/shape-controlling agent can strongly bind to the more reactive (0 0 1) facet of TiO2 and then mitigate the thermodynamically favored (0 0 1) plane growth. Eventually, the truncated octahedral TiO2 was obtained by controlling the growth rates in 〈0 0 1〉 and 〈1 0 1〉 directions. Sepiolite as a cross-linking agent provides sufficient crosslinking sites for TiO2 to induce three-dimensional (3D) network formation, thereby generating the composite gel. The synthesized TiSG samples were then used as photocatalysts, which exhibited increased methyl orange removal under UV-vis light (350-780 nm) by the synergistic effect of adsorption and in-situ photocatalytic degradation as compared to P25 and bare TiO2. The excellent photocatalytic performance of TiSG was mainly ascribed to the formations of 3D gel structure and surface heterojunctions between (0 0 1) and (1 0 1) facets.

  20. Oxidative stress inhibition and oxidant activity by fibrous clays.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio; Gómez-Vidales, Virginia

    2015-09-01

    Fibrous clays (sepiolite, palygorskite) are produced at 1.2m tonnes per year and have a wide range of industrial applications needing to replace long-fibre length asbestos. However, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the effect of sepiolite (Vallecas, Spain) and palygorskite (Torrejón El Rubio, Spain) on cell damage via oxidative stress (determined as the progress of lipid peroxidation, LP). The extent of LP was assessed using the Thiobarbituric Acid Reactive Substances assay. The oxidant activity by fibrous clays was quantified using Electron-Paramagnetic Resonance. Sepiolite and palygorskite inhibited LP, whereby corresponding IC50 values were 6557±1024 and 4250±289μgmL(-1). As evidenced by dose-response experiments LP inhibition by palygorskite was surface-controlled. Fibrous clay surfaces did not stabilize HO species, except for suspensions containing 5000μgmL(-1). A strong oxidant (or weak anti-oxidant) activity favours the inhibition of LP by fibrous clays. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Large scale structures in liquid crystal/clay colloids

    NASA Astrophysics Data System (ADS)

    van Duijneveldt, Jeroen S.; Klein, Susanne; Leach, Edward; Pizzey, Claire; Richardson, Robert M.

    2005-04-01

    Suspensions of three different clays in K15, a thermotropic liquid crystal, have been studied by optical microscopy and small angle x-ray scattering. The three clays were claytone AF, a surface treated natural montmorillonite, laponite RD, a synthetic hectorite, and mined sepiolite. The claytone and laponite were sterically stabilized whereas sepiolite formed a relatively stable suspension in K15 without any surface treatment. Micrographs of the different suspensions revealed that all three suspensions contained large scale structures. The nature of these aggregates was investigated using small angle x-ray scattering. For the clays with sheet-like particles, claytone and laponite, the flocs contain a mixture of stacked and single platelets. The basal spacing in the stacks was independent of particle concentration in the suspension and the phase of the solvent. The number of platelets in the stack and their percentage in the suspension varied with concentration and the aspect ratio of the platelets. The lath shaped sepiolite did not show any tendency to organize into ordered structures. Here the aggregates are networks of randomly oriented single rods.

  2. Use of sepiolite as an adsorbent for the removal of copper (II) from industrial waste leachate

    NASA Astrophysics Data System (ADS)

    Gamze Turan, N.; Ardali, Yüksel

    2013-04-01

    Land filling is the most common method of disposal of solid waste all over the world. As well as municipal solid waste, industrial wastes, which may contain hazardous substances, are also received by landfills in many countries. Leachate is one of the problems arising from landfills. When water percolates through solid wastes, contaminants are leached into solution. The major concern with the movement of leachate into the subsurface aquifer is the fate of the constituents found in leachate. The fate of heavy metals is the greatest interest in leachate. Several treatment technologies have been developed for eliminating heavy metals recently. Adsorption is one of the most interesting methods that it has been successfully applied for the heavy metal removal. Activated carbons were widely used as adsorbent materials because of their extended surface area, microporous structure, high adsorption capacity and high degree of surface reactivity. However, it is restricted due to its relatively high price, high operation costs, and problems with generation for the industrial scale applications. Recently, more research efforts have been focused on effective sorbents material in order to minimize the processing cost and solve their disposal problems in an environmentally sustainable way. Adsorption of metal ions onto clay minerals has been studied extensively because both metal ions and clays are common components in nature. The cost of clays is relatively low as compared to other alternative adsorbents. Furthermore, the high specific surface area, chemical and mechanical stability, variety of structural and surface properties and higher values of cation exchange capacities make the clays an excellent group of adsorbents. Sepiolite (Si12O30Mg8(OH)4(H2O)4•8H2O) is a natural, fibrous clay mineral with fine microporous channels running parallel to the length of the fibers. The structure of sepiolite, in some aspects, is similar to those of other 2:1 trioctahedral silicates, such as talc, but it has discontinuities and inversion of the silica sheets, which give rise to structural tunnels and blocks. In the inner blocks, all corners of the silica tetrahedral are connected to adjacent blocks, but in the outer blocks, some of the corners are Si atoms bound to hydroxyls (Si-OH). This unique structure allows the penetration of organic and inorganic species into the structure and assigns sepiolite an industrial importance in adsorption. The objective of the present study is to investigate the feasibility of using sepiolite for the adsorptive removal of Cu (II) from the industrial waste leachate. The adsorption capacities and sorption efficiencies are determined. The pseudo first order, the pseudo-second order, Elovich and the intra particle diffusion kinetic models are used to describe the kinetic data to estimate the rate constants. The adsorption of Cu (II) from the aqueous leachate of industrial wastes onto sepiolite was performed using a batch equilibrium technique. At first stage, one-factor-at-a-time experiments were performed to see the individual effects of initial pH, adsorbent dosage and contact time. The adsorption of Cu (II) was favorably influenced by an increase in the adsorbent dosage. The maximum percent removal of Cu (II) were observed at pH>6, and significantly decreased at lower pH value. The optimum contact time is found as 10 min. for the removal of Cu (II). The increment in contact time from 10 min. to 120 min. did not show a significant effect on efficiency. The maximum Cu (II) adsorption efficiencies were obtained at 94.45%. The pseudo second order kinetic model agrees very well with the dynamical behavior for the adsorption of Cu (II) from aqueous leachate of industrial waste onto sepiolite. The results indicate that the use of sepiolite that is locally available and almost free of cost as an adsorbent could be a viable alternative to activated carbon for the removal of Cu (II) ions from aqueous solutions.

  3. Sorption-desorption of cadmium in aqueous palygorskite, sepiolite, and calcite suspensions: isotherm hysteresis.

    PubMed

    Shirvani, Mehran; Kalbasi, Mahmoud; Shariatmadari, Hosein; Nourbakhsh, Farshid; Najafi, Bijan

    2006-12-01

    Sorption isotherms have been widely used to assess the heavy metal retention characteristics of soil particles. Desorption behavior of the retained metals, however, usually differ from that of sorption, leading to a lack of coincidence in the experimentally obtained sorption and desorption isotherms. In this study, we examine the nonsingularity of cadmium (Cd) sorption-desorption isotherms, to check the possible hysteresis and reversibility phenomena, in aqueous palygorskite, sepiolite and calcite systems. Sorption of Cd was carried out using a 24-h batch equilibration experiment with eight different Cd solution concentrations, equivalent to 20-100% of maximum sorption capacity of each mineral. Immediately after sorption, desorption took place using successive dilution method with five consecutive desorption steps. Both Cd sorption and desorption data were adequately described by Freundlich equation (0.81

  4. Anti-inflammatory, anti-bacterial, and cytotoxic activity of fibrous clays.

    PubMed

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio-; Ramírez-Apan, María Teresa; Gómez-Vidales, Virginia; Palacios, Eduardo; Montoya, Ascención; Ronquillo de Jesús, Elba

    2015-05-01

    Produced worldwide at 1.2m tons per year, fibrous clays are used in the production of pet litter, animal feed stuff to roof parcels, construction and rheological additives, and other applications needing to replace long-fiber length asbestos. To the authors' knowledge, however, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the anti-inflammatory, anti-bacterial, and cytotoxic activity by sepiolite (Vallecas, Spain) and palygorskite (Torrejon El Rubio, Spain). The anti-inflammatory activity was determined using the 12-O-tetradecanoylphorbol-13-acetate (TPA) and myeloperoxidase (MPO) methods. Histological cuts were obtained for quantifying leukocytes found in the epidermis. Palygorkite and sepiolite caused edema inhibition and migration of neutrophils ca. 68.64 and 45.54%, and 80 and 65%, respectively. Fibrous clays yielded high rates of infiltration, explained by cleavage of polysomes and exposure of silanol groups. Also, fibrous clays showed high inhibition of myeloperoxidase contents shortly after exposure, but decreased sharply afterwards. In contrast, tubular clays caused an increasing inhibition of myeloperoxidase with time. Thus, clay structure restricted the kinetics and mechanism of myeloperoxidase inhibition. Fibrous clays were screened in vitro against human cancer cell lines. Cytotoxicity was determined using the protein-binding dye sulforhodamine B (SRB). Exposing cancer human cells to sepiolite or palygorskite showed growth inhibition varying with cell line. This study shows that fibrous clays served as an effective anti-inflammatory, limited by chemical transfer and cellular-level signals responding exclusively to an early exposure to clay, and cell viability decreasing significantly only after exposure to high concentrations of sepiolite. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Removal of cyanobacterial blooms in Taihu Lake using local soils. I. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals.

    PubMed

    Pan, Gang; Zhang, Ming-Ming; Chen, Hao; Zou, Hua; Yan, Hai

    2006-05-01

    Algal removal abilities of 26 clays/minerals were classified into three categories according to the 8-h equilibrium removal efficiency (Q8h) and removal rate at a clay loading of 0.7 g/L. Type I clays (sepiolite, talc, ferric oxide, and kaolinite) had a Q8h > 90%, a t50 (time needed to remove 50% of the algae) < 15 min, and a t80 < 2.5 h. Type II clays (6 clays) had a Q8h 50-90%, a t50 < 2.5 h, and a t80 > 2.5 h. Type III clays (14 clays) with Q8h < 50%, t50 > 8 h and t80 > 14 h had no practical value in removal of algal blooms. When the clay loading was reduced to 0.2 g/L, Q8h for all the 25 materials decreased to below 60%, except for sepiolite whose Q8h remained about 97%. The high efficiency for sepiolite to flocculate M. aeruginosa cells in freshwaters was due to the mechanism of netting and bridging effect.

  6. Kinetic study of anaerobic digestion of fruit-processing wastewater in immobilized-cell bioreactors.

    PubMed

    Borja, R; Banks, C J

    1994-08-01

    The kinetics of the anaerobic digestion of a fruit-processing wastewater [chemical oxygen demand (COD) = 5.1 g/l] were investigated. Laboratory experiments were carried out in bioreactors containing supports of different chemical composition and features, namely bentonite and zeolite (aluminum silicates), sepiolite and saponite (magnesium silicates) and polyurethane foam, to which the microorganisms responsible for the process adhered. The influence of the support medium on the kinetics was compared with a control digester with suspended biomass. Assuming the overall anaerobic digestion process conforms to first-order kinetics, the specific rate constant, K0, was determined for each of the experimental reactors. The average values obtained were: 0.080 h-1 (bentonite); 0.103 h-1 (zeolite); 0.180 h-1 (sepiolite); 0.198 h-1 (saponite); 0.131 h-1 (polyurethane); and 0.037 h-1 (control). The results indicate that the support used to immobilize the micro-organisms had a marked influence on the digestion process; the results were significant at the 95% confidence level. Methanogenic activity increased linearly with COD, with the saponite and sepiolite supports showing the highest values. The yield coefficient of methane was 270 ml of methane (under standard temperature and pressure conditions)/g of COD. The average elimination of COD was 89.5%.

  7. Electrospun cellulose acetate composites containing supported metal nanoparticles for antifungal membranes.

    PubMed

    Quirós, Jennifer; Gonzalo, Soledad; Jalvo, Blanca; Boltes, Karina; Perdigón-Melón, José Antonio; Rosal, Roberto

    2016-09-01

    Electrospun cellulose acetate composites containing silver and copper nanoparticles supported in sepiolite and mesoporous silica were prepared and tested as fungistatic membranes against the fungus Aspergillus niger. The nanoparticles were in the 3-50nm range for sepiolite supported materials and limited by the size of mesopores (5-8nm) in the case of mesoporous silica. Sepiolite and silica were well dispersed within the fibers, with larger aggregates in the micrometer range, and allowed a controlled release of metals to create a fungistatic environment. The effect was assessed using digital image analysis to evaluate fungal growth rate and fluorescence readings using a viability stain. The results showed that silver and copper nanomaterials significantly impaired the growth of fungi when the spores were incubated either in direct contact with particles or included in cellulose acetate composite membranes. The fungistatic effect took place on germinating spores before hyphae growth conidiophore formation. After 24h the cultures were separated from fungistatic materials and showed growth impairment only due to the prior exposure. Growth reduction was important for all the particles and membranes with respect to non-exposed controls. The effect of copper and silver loaded materials was not significantly different from each other with average reductions around 70% for bare particles and 50% for membranes. Copper on sepiolite was particularly efficient with a decrease of metabolic activity of up to 80% with respect to controls. Copper materials induced rapid maturation and conidiation with fungi splitting in sets of subcolonies. Metal-loaded nanomaterials acted as reservoirs for the controlled release of metals. The amount of silver or copper released daily by composite membranes represented roughly 1% of their total load of metals. Supported nanomaterials encapsulated in nanofibers allow formulating active membranes with high antifungal performance at the same time minimizing the risk of nanoparticle release into the environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Isotropic-nematic phase transition in aqueous sepiolite suspensions.

    PubMed

    Woolston, Phillip; van Duijneveldt, Jeroen S

    2015-01-01

    Aqueous suspensions of sepiolite clay rods in water tend to form gels on increase of concentration. Here it is shown how addition of a small amount (0.1% of the clay mass) of a common stabiliser for clay suspensions, sodium polyacrylate, can allow the observation of an isotropic-nematic liquid crystal phase transition. This transition was found to move to higher clay concentrations upon adding NaCl, with samples containing 10(-3) M salt or above only displaying a gel phase. Even samples that initially formed liquid crystals had a tendency to form gels after several weeks, possibly due to Mg(2+) ions leaching from the clay mineral. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. A system of containment to prevent oil spills from sunken tankers.

    PubMed

    García-Olivares, Antonio; Agüero, Almudena; Haupt, Bernd J; Marcos, María J; Villar, María V; de Pablos, José L

    2017-09-01

    Worldwide tank spills represent 10% of the average annual input of oil in the sea. When such spills arise from wrecks at depth, neutralisation of environmental impacts is difficult to achieve. Extracting oil from sunken tankers is expensive, and, unfortunately, all of the oil cannot be extracted, as the Prestige case demonstrates. We propose an environmentally appropriate, cost-effective and proactive method to stop the long-term problem of leaks from sunken tankers similar to the Prestige. This method confines the wreck with a "sediment" capping of sepiolite mineral that emulates a natural sediment. A set of experiments and simulations shows that sepiolite has the characteristics necessary to accomplish the confinement of any current or future sunken tanker with minimal environmental perturbation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Organoclay hybrid materials as precursors of porous ZnO/silica-clay heterostructures for photocatalytic applications.

    PubMed

    Akkari, Marwa; Aranda, Pilar; Ben Haj Amara, Abdessalem; Ruiz-Hitzky, Eduardo

    2016-01-01

    In this study, ZnO/SiO 2 -clay heterostructures were successfully synthesized by a facile two-step process applied to two types of clays: montmorillonite layered silicate and sepiolite microfibrous clay mineral. In the first step, intermediate silica-organoclay hybrid heterostructures were prepared following a colloidal route based on the controlled hydrolysis of tetramethoxysilane in the presence of the starting organoclay. Later on, pre-formed ZnO nanoparticles (NP) dispersed in 2-propanol were incorporated under ultrasound irradiation to the silica-organoclay hybrid heterostructures dispersed in 2-propanol, and finally, the resulting solids were calcinated to eliminate the organic matter and to produce ZnO nanoparticles (NP) homogeneously assembled to the clay-SiO 2 framework. In the case of montmorillonite the resulting materials were identified as delaminated clays of ZnO/SiO 2 -clay composition, whereas for sepiolite, the resulting heterostructure is constituted by the assembling of ZnO NP to the sepiolite-silica substrate only affecting the external surface of the clay. The structural and morphological features of the prepared heterostructures were characterized by diverse physico-chemical techniques (such as XRD, FTIR, TEM, FE-SEM). The efficiency of these new porous ZnO/SiO 2 -clay heterostructures as potential photocatalysts in the degradation of organic dyes and the removal of pharmaceutical drugs in water solution was tested using methylene blue and ibuprofen compounds, respectively, as model of pollutants.

  11. Characterization of the reactivity of a silica derived from acid activation of sepiolite with silane by 29Si and 13C solid-state NMR.

    PubMed

    Valentín, J L; López-Manchado, M A; Posadas, P; Rodríguez, A; Marcos-Fernández, A; Ibarra, L

    2006-06-15

    The mechanism of the reaction between a silica sample coming from acid treatment of sepiolite (denominated Silsep) and an organosilane, namely bis(triethoxysilylpropyl)tetrasulfane (TESPT), has been evaluated by solid state NMR spectroscopy, being compared with the silanization reaction of a commercial silica. The effect of the silane concentration and temperature on the course of the reaction was considered. Experimental results indicate that the silanization reaction is more effective in the case of Silsep, favoring both the reaction of silane molecules with the filler surface and the reaction between neighboring silane molecules. This different behavior is attributed to structural factors, moisture, and number of acid centers on silica surface. Environmental scanning electron microscopy (ESEM) was used to deposit micrometric water drops on the surface of these samples and to evaluate the proportion and distribution of the organophylization process.

  12. Evaluation of the effectiveness of sepiolite, bentonite, and phosphate amendments on the stabilization remediation of cadmium-contaminated soils.

    PubMed

    Sun, Yuebing; Sun, Guohong; Xu, Yingming; Liu, Weitao; Liang, Xuefeng; Wang, Lin

    2016-01-15

    A pot trial was conducted to assess the effectiveness of sepiolite, bentonite, and phosphate on the immobilization remediation of cadmium (Cd)-contaminated soils using a set of variables, namely, physiological traits, sequential extraction procedure, plant growth and Cd concentration, and soil enzymatic activities and microbial population. Results showed that superoxide dismutase and peroxidase activities in the leaves of Oryza sativa L. and catalase activities in soils were stimulated after applying the amendments. However, soluble protein contents in leaves and urease and invertase activities in soils were reduced from 7.1% to 31.7%, 1.0%-23.3%, and 21.1%-62.5%, respectively, compared with the control. Results of the sequence extraction procedures revealed that the exchangeable fraction of Cd in soils was mostly converted into carbonated-associated forms. The water soluble plus exchangeable fraction (SE) of Cd in soil decreased when treated with single and compound materials of sepiolite, bentonite and phosphate, which resulted in 13.2%-69.2% reduction compared with that of CK (control test). The amendments led to decreased Cd concentrations in roots, stems, leaves, brown rice, and rice hull by 16.2%-54.5%, 16.6%-42.8%, 19.6%-59.6%, 5.0%-68.2%, and 6.2%-20.4%, respectively. Higher bacterial and actinomycete amount indicated that remediation measures improved soil environmental quality. Composite amendments could be more efficiently used for the stabilization remediation of Cd contaminated soils with low Cd uptake and translocation in the plants and available contents of Cd in soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Pharmaceutical grade phyllosilicate dispersions: the influence of shear history on floc structure.

    PubMed

    Viseras, C; Meeten, G H; Lopez-Galindo, A

    1999-05-10

    The effect of mixing conditions on the flow curves of some clay-water dispersions was studied. Two Spanish fibrous phyllosilicates (sepiolite from Vicálvaro and palygorskite from Turón) and a commercial bentonite (Bentopharm Copyright, UK) were selected as model clays. The disperse systems were made up using a rotor-stator mixer working at two different mixing rates (1000 and 8000 rpm), for periods of 1 and 10 min. Rheological measurements were taken and the corresponding flow curves obtained immediately after interposition and then after a period of 24 h under low shear caused by a roller apparatus. Aqueous sepiolite dispersions showed the highest viscosity and were easily interposed, whereas palygorskite dispersions were more difficult to obtain, resulting in low to medium viscosity gels. Bentonite dispersions provided medium viscosity systems, which greatly increased their viscosity after the low shear treatment (as a result of swelling), whereas the viscosity of the fibrous clays stayed at approximately the same values or even decreased. A linear relation was found between mixing energy and apparent viscosity in the bentonite systems, while apparent viscosity in the sepiolite samples was related to mixing power, with minor influence of mixing times. All the systems studied had thixotropic behaviour, changing from clearly positive to even negative thixotropy in some palygorskite systems. Finally, we studied the effect of drastic pH changes on the system structure. Results showed that rheological properties were highly sensitive to pH in the fibrous dispersions, but less sensitive behaviour was found in the laminar clay systems. Copyright.

  14. The search for asbestos within the Peter Mitchell Taconite iron ore mine, near Babbitt, Minnesota.

    PubMed

    Ross, Malcolm; Nolan, Robert P; Nord, Gordon L

    2008-10-01

    Asbestos crystallizes within rock formations undergoing intense deformation characterized by folding, faulting, shearing, and dilation. Some of these conditions have prevailed during formation of the taconite iron ore deposits in the eastern Mesabi Iron Range of Minnesota. This range includes the Peter Mitchell Taconite Mine at Babbitt, Minnesota. The mine pit is over 8 miles long, up to 1 mile wide. Fifty three samples were collected from 30 sites within areas of the pit where faulting, shearing and folding occur and where fibrous minerals might occur. Eight samples from seven collecting sites contain significant amounts of ferroactinolite amphibole that is partially to completely altered to fibrous ferroactinolite. Two samples from two other sites contain ferroactinolite degraded to ropy masses of fibers consisting mostly of ferrian sepiolite as defined by X-ray diffraction and TEM and SEM X-ray spectral analysis. Samples from five other sites contain unaltered amphiboles, however some of these samples also contain a very small number of fiber bundles composed of mixtures of grunerite, ferroactinolite, and ferrian sepiolite. It is proposed that the alteration of the amphiboles was caused by reaction with water-rich acidic fluids that moved through the mine faults and shear zones. The fibrous amphiboles and ferrian sepiolite collected at the Peter Mitchell Mine composes a tiny fraction of one percent of the total rock mass of this taconite deposit; an even a smaller amount of these mineral fragments enter the ambient air during mining and milling. These fibrous minerals thus do not present a significant health hazard to the miners nor to those non-occupationally exposed. No asbestos of any type was found in the mine pit.

  15. Treatment of oilfield wastewater in moving bed biofilm reactors using a novel suspended ceramic biocarrier.

    PubMed

    Dong, Zhiyong; Lu, Mang; Huang, Wenhui; Xu, Xiaochun

    2011-11-30

    In this study, a novel suspended ceramic carrier was prepared, which has high strength, optimum density (close to water), and high porosity. Two different carriers, unmodified and sepiolite-modified suspended ceramic carriers were used to feed two moving bed biofilm reactors (MBBRs) with a filling fraction of 50% to treat oilfield produced water. The hydraulic retention time (HRT) was varied from 36 to 10h. The results, during a monitoring period of 190 days, showed that removal efficiency of chemical oxygen demand was the highest in reactor 3 filled with the sepiolite-modified carriers, followed by reactor 2 filled with the unmodified carriers, with the lowest in reactor 1 (activated sludge reactor), at an HRT of 10h. Similar trends were found in the removal efficiencies of ammonia nitrogen and polycyclic aromatic hydrocarbons. Reactor 3 was more shock resistant than reactors 2 and 1. The results indicate that the suspended ceramic carrier is an excellent MBBR carrier. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Preparation and characterisation of silicone-based coatings filled with carbon nanotubes and natural sepiolite and their application as marine fouling-release coatings.

    PubMed

    Beigbeder, Alexandre; Degee, Philippe; Conlan, Sheelagh L; Mutton, Robert J; Clare, Anthony S; Pettitt, Michala E; Callow, Maureen E; Callow, James A; Dubois, Philippe

    2008-01-01

    This article reports on the preparation and partial characterisation of silicone-based coatings filled with low levels of either synthetic multiwall carbon nanotubes (MWCNTs) or natural sepiolite (NS). The antifouling and fouling-release properties of these coatings were explored through laboratory assays involving representative soft-fouling (Ulva) and hard-fouling (Balanus) organisms. The bulk mechanical properties of the coatings appeared unchanged by the addition of low amounts of filler, in contrast to the surface properties, which were modified on exposure to water. The release of Ulva sporelings (young plants) was improved by the addition of low amounts of both NS and MWCNTs. The most profound effect recorded was the significant reduction of adhesion strength of adult barnacles growing on a silicone elastomer containing a small amount (0.05%) of MWCNTs. All the data indicate that independent of the bulk properties, the surface properties affect settlement, and more particularly, the fouling-release behaviour, of the filled materials.

  17. Effects of a natural sepiolite bearing material and lime on the immobilization and persistence of cadmium in a contaminated acid agricultural soil.

    PubMed

    Cao, Xueying; Hu, Pengjie; Tan, Changyin; Wu, Longhua; Peng, Bo; Christie, Peter; Luo, Yongming

    2018-05-25

    Soil contamination with cadmium (Cd) represents a substantial threat to human health and environmental quality. Long-term effectiveness and persistence of remediation are two important criteria for the evaluation of amendment techniques used to remediate soils polluted with potentially toxic metals. In the current study, we investigated the remediation persistence of a natural sepiolite bearing material (NSBM, containing 15% sepiolite) and ground limestone (equivalent to > 98.0% CaO) on soil pH, Cd bioavailability, and Cd accumulation by pak choi (Brassica chinensis L.) during the growth of four consecutive crops in a Cd-contaminated acid soil with different amounts of NSBM (0, 0.2, 0.5, 1, 2, and 5%). Soil pH levels ranged from 5.21 to 7.76 during the first crop, 4.30 to 7.34 during the second, 4.23 to 7.80 during the third, and 4.33 to 6.98 during the fourth, and increased significantly with increasing the application rate of NSBM. Soil CaCl 2 -Cd and shoot Cd concentrations decreased by 8.11 to 99.2% and 6.58 to 94.5%, respectively, compared with the control throughout the four cropping seasons. A significant negative correlation was found between soil CaCl 2 -Cd and soil pH. Combined use of 0.1% lime and NSBM showed greater effects than NSBM alone, especially, when the application rate of NSBM was ˂ 2%. Moreover, pak choi tissue Cd concentrations in the treatments with NSBM addition alone at ≥ 2% or at ≥ 1% NSBM combined with 0.1% lime met the maximum permissible concentration (MPC) over the four crops, allowed by the Chinese and European regulations. Based on the present study, safe crop production in the test soil is possible at a soil pH > 6.38 and CaCl 2 -Cd < 14 μg kg -1 , and soil Cd immobilization by NSBM without or with lime is a potentially feasible method of controlling the transfer of soil Cd into the food chain.

  18. High emission reduction performance of a novel organic-inorganic composite filters containing sepiolite mineral nanofibers

    PubMed Central

    Wang, Fei; Zhang, Hui; Liang, Jinsheng; Tang, Qingguo; Li, Yanxia; Shang, Zengyao

    2017-01-01

    In this work, a new organic-inorganic composite filter was prepared. The thickness, pore size, air permeability, bursting strength and microstructure were characterized systematically, proving that coatings had regulatory effect on filters physical properties. Benefitting from the distinct coatings containing 5% sepiolite nanofibers after five times dilution, the physical properties of corresponding air filter exhibits the most favorable performance and meet the standard of air filter. When used as fuel filter, it satisfies the fuel filter standard and achieves the best performance after six times dilution. The contrast test on engine emission was taken based on auto filters coated with/without as prepared nanofibers. An obvious decrease in the emission of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NOx) can be observed after installation of composite filter on vehicles. Under the high idle condition, gasoline engine emission decreased by 8.13%, 11.35% and 44.91% for CO, HC and NOx, respectively. When tested in the low idle condition, engine emission reduced by 0.43%, 1.14% and 85.67% for CO, HC and NOx, respectively. The diesel engine emissions of CO, NOx and total amount of HC and NOx decreased by 32.26%, 3.28% and 4.66%, respectively. The results illustrate the composite installation exhibits satisfactory emission reduction effect. PMID:28252034

  19. High emission reduction performance of a novel organic-inorganic composite filters containing sepiolite mineral nanofibers

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zhang, Hui; Liang, Jinsheng; Tang, Qingguo; Li, Yanxia; Shang, Zengyao

    2017-03-01

    In this work, a new organic-inorganic composite filter was prepared. The thickness, pore size, air permeability, bursting strength and microstructure were characterized systematically, proving that coatings had regulatory effect on filters physical properties. Benefitting from the distinct coatings containing 5% sepiolite nanofibers after five times dilution, the physical properties of corresponding air filter exhibits the most favorable performance and meet the standard of air filter. When used as fuel filter, it satisfies the fuel filter standard and achieves the best performance after six times dilution. The contrast test on engine emission was taken based on auto filters coated with/without as prepared nanofibers. An obvious decrease in the emission of carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxide (NOx) can be observed after installation of composite filter on vehicles. Under the high idle condition, gasoline engine emission decreased by 8.13%, 11.35% and 44.91% for CO, HC and NOx, respectively. When tested in the low idle condition, engine emission reduced by 0.43%, 1.14% and 85.67% for CO, HC and NOx, respectively. The diesel engine emissions of CO, NOx and total amount of HC and NOx decreased by 32.26%, 3.28% and 4.66%, respectively. The results illustrate the composite installation exhibits satisfactory emission reduction effect.

  20. Rapid DNA transformation in Salmonella Typhimurium by the hydrogel exposure method.

    PubMed

    Elabed, Hamouda; Hamza, Rim; Bakhrouf, Amina; Gaddour, Kamel

    2016-07-01

    Even with advances in molecular cloning and DNA transformation, new or alternative methods that permit DNA penetration in Salmonella enterica subspecies enterica serovar Typhimurium are required in order to use this pathogen in biotechnological or medical applications. In this work, an adapted protocol of bacterial transformation with plasmid DNA based on the "Yoshida effect" was applied and optimized on Salmonella enterica serovar Typhimurium LT2 reference strain. The plasmid transference based on the use of sepiolite as acicular materials to promote cell piercing via friction forces produced by spreading on the surface of a hydrogel. The transforming mixture containing sepiolite nanofibers, bacterial cells to be transformed and plasmid DNA were plated directly on selective medium containing 2% agar. In order to improve the procedure, three variables were tested and the transformation of Salmonella cells was accomplished using plasmids pUC19 and pBR322. Using the optimized protocol on Salmonella LT2 strain, the efficiency was about 10(5) transformed cells per 10(9) subjected to transformation with 0.2μg plasmid DNA. In summary, the procedure is fast, offers opportune efficiency and promises to become one of the widely used transformation methods in laboratories. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Nutrients removal in hybrid fluidised bed bioreactors operated with aeration cycles.

    PubMed

    Martin, Martin; Enríquez, L López; Fernández-Polanco, M; Villaverde, S; Garcia-Encina, P A

    2007-01-01

    Abstract Two hybrid fluidised bed reactors filled with sepiolite and granular activated carbon (GAC) were operated with short cycled aeration for removing organic matter, total nitrogen and phosphorous, respectively. Both reactors were continuously operated with synthetic and/or industrial wastewater containing 350-500 mg COD/L, 110-130 mg NKT/L, 90-100 mg NH3-N/L and 12-15 mg P/L for 8 months. The reactor filled with sepiolite, treating only synthetic wastewater, removed COD, ammonia, total nitrogen and phosphorous up to 88, 91, 55 and 80% with a hydraulic retention time (HRT) of 10 h, respectively. These efficiencies correspond to removal rates of 0.95 kgCODm(-3)d(-1) and 0.16 kg total N m(-3)d(-1). The reactor filled with GAC was operated for 4 months with synthetic wastewater and 4 months with industrial wastewater, removing 98% of COD, 96% of ammonia, and 66% of total nitrogen, with an HRT of 13.6 h. No significant phosphorous removing activity was observed in this reactor. Microbial communities growing with both reactors were followed using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) techniques. The microbial fingerprints, i.e. DGGE profiles, indicated that biological communities in both reactors were stable along the operational period even when the operating conditions were changed.

  2. Enzymatic biosensors based on ingá-cipó peroxidase immobilised on sepiolite for TBHQ quantification.

    PubMed

    Regina de Oliveira, Tássia; Grawe, Gregory Ferreira; Moccelini, Sally Katiuce; Terezo, Ailton J; Castilho, Marilza

    2014-05-07

    Sepiolite clay mineral was used as a support for the immobilisation of the peroxidase enzyme from ingá-cipó (Inga edulis Mart.) and was used with graphite powder, multi-walled carbon nanotubes (CNTs), mineral oil, and nafion 0.5% (v/v) in the development of a new biosensor for the determination of the antioxidant tert-butylhydroquinone (TBHQ) by square-wave voltammetry (SWV). For the optimisation and application of the biosensor, several parameters were investigated to determine the optimum experimental conditions using SWV. The best performance was obtained using a 0.1 mol L(-1) phosphate buffer solution (pH 7.0), 4.0 × 10(-4) mol L(-1) hydrogen peroxide, a frequency of 50 Hz, a pulse amplitude of 60 mV, and a scan increment of 6 mV. The biosensor showed good repeatability and reproducibility and remained stable for a period of 20 weeks. The analytical curve revealed a linear response range of 1.65 to 9.82 mg L(-1) (r = 0.994) with detection and quantification limits of 0.41 and 1.25 mg L(-1). A recovery study of TBHQ in salad dressing samples yielded values from 99.6-104.8%. The proposed biosensor was successfully used for the determination of TBHQ in commercial salad dressing samples, giving a relative error of 5.4% in relation to the comparative method (chromatographic).

  3. One-dimensional filtration of pharmaceutical grade phyllosilicate dispersions.

    PubMed

    Viseras, C; Cerezo, P; Meeten, G H; Lopez-Galindo, A

    2001-04-17

    The filtration behaviour of some clay-water dispersions was studied. Two Spanish fibrous phyllosilicates (sepiolite from Vicálvaro and palygorskite from Turón) and a commercial bentonite (Bentopharm UK) with similar sizes and different morphologies (fibrous and/or laminar) were selected as model clays. Sepiolite from Vicálvaro is an almost pure fibrous sample, Bentopharm presents a high amount of laminar particles and palygorskite from Turón is made up of similar percentages of laminar and fibrous particles. The disperse systems were made up using a rotor-stator mixer working at two different mixing rates (1000 and 8000 rpm), for periods of 1 and 10 min. Filtration measurements were taken and the corresponding filtration curves obtained. Finally, the desorptivity (S) of the filtration cakes was calculated and correlated to the textural characteristics of the materials, the solid fraction and mixing conditions. Filtration behaviour of the dispersions depended on all three of these factors. Laminar dispersions presented lower S values than fibrous dispersions. In the 2% w/v dispersions the bridging forces between particles did not permit formation of an interconnected network as in 10% w/v dispersions and, consequently, filtration times increased with the solid fraction (i.e. S values decreased). Regarding stability to pH changes, the results showed that filtration behaviour was highly sensitive to basic pH in the fibrous clay dispersions and almost insensitive in the laminar clay dispersions.

  4. Synchrotron powder diffraction on Aztec blue pigments

    NASA Astrophysics Data System (ADS)

    Sánchez Del Río, M.; Gutiérrez-León, A.; Castro, G. R.; Rubio-Zuazo, J.; Solís, C.; Sánchez-Hernández, R.; Robles-Camacho, J.; Rojas-Gaytán, J.

    2008-01-01

    Some samples of raw blue pigments coming from an archaeological rescue mission in downtown Mexico City have been characterized using different techniques. The samples, some recovered as a part of a ritual offering, could be assigned to the late Aztec period (XVth century). The striking characteristic of these samples is that they seem to be raw pigments prior to any use in artworks, and it was possible to collect a few μg of pigment after manual grain selection under a microscopy monitoring. All pigments are made of indigo, an organic colorant locally known as añil or xiuhquilitl. The colorant is always found in combination with an inorganic matrix, studied by powder diffraction. In one case the mineral base is palygorskite, a rare clay mineral featuring micro-channels in its structure, well known as the main ingredient of the Maya blue pigment. However, other samples present the minerals sepiolite (a clay mineral of the palygorskite family) and calcite. Another sample contains barite, a mineral never reported in prehispanic paints. We present the results of characterization using high resolution powder diffraction recorded at the European Synchrotron Radiation Facility (BM25A, SpLine beamline) complemented with other techniques. All of them gave consistent results on the composition. A chemical test on resistance to acids was done, showing a high resistance for the palygorskite and eventually sepiolite compounds, in good agreement with the excellent resistance of the Maya blue.

  5. A preliminary evaluation of the nonfuel mineral potential of Somalia

    USGS Publications Warehouse

    Greenwood, W.R.

    1982-01-01

    Additional exploration in Somalia is warranted for a wide variety of metallic and nonmetallic deposits. In Precambrian rocks, deposit types favorable for exploration include: a banded iron formation; platinum-bearing mafic-ultramafic complexes; tin-bearing quartz veins; phosphorite; stratabound base-metal deposits; uranium associated with Precambrian(?) syenite; apatite, molybdenum, and alumina in alkalic rocks; Jurassic and Cretaceous black shales; possible bedded-barite and massive base- and precious-metal sulfide deposits; vein barite in Tertiary rocks in fault zones; sepiolite and bentonite for drilling muds and other industrial uses; celestite; possible Tertiary zeolite; and uranium deposits. Several of these deposit types could be Jointly developed and integrated into domestic industries; for example, phosphate and gypsum, or bentonite for pelletized iron from the banded iron deposits. Other deposits such as barite and sepiolite are of value because of their proximity to major drilling operations in the Arabian Gulf. Still other deposits, such as alumina and banded iron, might be marketable because of proximity to aluminum and iron-refining industries now being constructed in Saudi Arabia. Some deposits, such as celestite, can be developed with little capital investment; others, such as the iron deposits, would require large capital commitments. Exploration and evaluation for many of these deposits can be accomplished by Somali geologists with a few advisors. Most of the deposits require feasibility studies conducted by teams of economic geologists, extractive metallurgists, and economists. Some marginal deposits could be exploited if cooperative development schemes could be negotiated with governments in nearby countries.

  6. Innovative method and apparatus for the deep cleaning of soluble salts from mortars and lithic materials

    NASA Astrophysics Data System (ADS)

    Gaggero, Laura; Ferretti, Maurizio; Torrielli, Giulia; Caratto, Valentina

    2016-04-01

    Porous materials (e.g. plasters, mortars, concrete, and the like) used in the building industry or in artworks fail to develop, after their genesis, salts such as nitrates, carbonates (e.g. potassium carbonate, magnesium carbonate, calcium carbonate), chlorides (e.g. sodium chloride) and/or others, which are a concurrent cause of material deterioration phenomena. In the case of ancient or cultural heritage buildings, severe damage to structures and works of art, such as fresco paintings are possible. In general, in situ alteration pattern in mortars and frescoes by crystallization of soluble salts from solutions is caused by capillar rise or circulation in damp walls. Older buildings can be more subject to capillary rise of ion-rich waters, which, as water evaporates, create salt crystals inside the walls. If this pattern reveals overwhelming upon other environmental decay factors, the extraction of salts is the first restoration to recover the artpiece after the preliminary assessment and mitigation of the causes of soaking. A new method and apparatus, patented by University of Genoa [1] improves the quality and durability of decontamination by soluble salts, compared with conventional application of sepiolite or cellulose wraps. The conventional application of cellulose or sepiolite requires casting a more or less thick layer of wrap on the mortar, soaking with distilled water, and waiting until dry. The soluble salts result trapped within the wrap. A set of artificial samples reproducing the stratigraphy of frescoes was contaminated with saline solution of known concentration. The higher quality of the extraction was demonstrated by trapping the salts within layers of Japanese paper juxtaposed to the mortar; the extraction with the dedicated apparatus was operated in a significantly shorter time than with wraps (some hours vs. several days). Two cycles of about 15 minutes are effective in the deep cleaning from contaminant salts. The decontamination was demonstrated by conducibility tests on the juxtaposed Japanese paper. In addition, after the conventional treatment, a considerable amount of soluble salts was further extracted demonstrating that traditional wraps operate just a shallow cleaning, and soluble salts are liable to emerge later as efflorescence affecting the conservation after restoration. The optimum cleaning was obtained by finishing the innovative extraction with sepiolite/cellulose wraps. As a whole, the novel method and apparatus enhance the time for restoration and the final quality before consolidation and protection. [1] "Apparatus and method for treating porous materials" - M. Ferretti, L. Gaggero, G. Torrielli, PCT/IB2015/055129 (2015)

  7. Nanoscale zerovalent iron (nZVI) supported by natural and acid-activated sepiolites: the effect of the nZVI/support ratio on the composite properties and Cd2+ adsorption.

    PubMed

    Habish, Amal Juma; Lazarević, Slavica; Janković-Častvan, Ivona; Jokić, Bojan; Kovač, Janez; Rogan, Jelena; Janaćković, Đorđe; Petrović, Rada

    2017-01-01

    Natural (SEP) and partially acid-activated (AAS) sepiolites were used to prepare composites with nanoscale zerovalent iron (nZVI) at different (SEP or AAS)/nZVI ratios in order to achieve the best nZVI dispersibility and the highest adsorption capacity for Cd 2+ . Despite the higher surface area and pore volume of AAS, better nZVI dispersibility was achieved by using SEP as the support. On the other hand, a lower oxidation degree was achieved during the synthesis using AAS. X-ray photoelectron spectroscopy (XPS) analysis of the composite with the best nZVI dispersibility, before and after Cd 2+ adsorption, confirmed that the surface of the nZVI was composed of oxidized iron species. Metallic iron was not present on the surface, but it was detected in the subsurface region after sputtering. The content of zerovalent iron decreased after Cd 2+ adsorption as a result of iron oxidation during Cd 2+ adsorption. The XPS depth profile showed that cadmium was present not only at the surface of the composite but also in the subsurface region. The adsorption isotherms for Cd 2+ confirmed that the presence of SEP and AAS decreased the agglomeration of the nZVI particles in comparison to the pure nZVI, which provided a higher adsorption capacity. The results showed that the prevention of both aggregation and oxidation during the synthesis was necessary for obtaining an SEP/AAS-nZVI composite with a high adsorption capacity, but oxidation during adsorption was beneficial for Cd 2+ removal. The formation of strong bonds between Cd 2+ and the adsorbents sites of different energy until monolayer formation was proposed according to modeling of the adsorption isotherms.

  8. Upgrading of recycled plastics obtained from flexible packaging waste by adding nanosilicates

    NASA Astrophysics Data System (ADS)

    Garofalo, E.; Claro, M.; Scarfato, P.; Di Maio, L.; Incarnato, L.

    2015-12-01

    Currently, the growing consumption of polymer products creates large quantities of waste materials resulting in public concern in the environment and people life. The efficient treatment of polymer wastes is still a difficult challenge and the recycling process represents the best way to manage them. Recently, many researchers have tried to develop nanotechnology for polymer recycling. The products prepared through the addition of nanoparticles to post-used plastics could offer the combination of improved properties, low weight, easy of processing and low cost which is not easily and concurrently found by other methods of plastic recycling. In this study materials, obtained by the separation and mechanical recycling of post-consumer packaging films of small size (

  9. The dissolution of natural and artificial dusts in glutamic acid

    NASA Astrophysics Data System (ADS)

    Ling, Zhang; Faqin, Dong; Xiaochun, He

    2015-06-01

    This article describes the characteristics of natural dusts, industrial dusts, and artificial dusts, such as mineral phases, chemical components, morphological observation and size. Quartz and calcite are the main phases of natural dusts and industrial dusts with high SiO2 and CaO and low K2O and Na2O in the chemical composition. The dissolution and electrochemical action of dusts in glutamic acid liquor at the simulated human body temperature (37 °C) in 32 h was investigated. The potential harm that the dust could lead to in body glutamic acid acidic environment, namely biological activity, is of great importance for revealing the human toxicological mechanism. The changes of pH values and electric conductivity of suspension of those dusts were similar, increased slowly in the first 8 h, and then the pH values increased rapidly. The total amount of dissolved ions of K, Ca, Na, and Mg was 35.4 to 429 mg/kg, particularly Ca was maximal of 20 to 334 mg/kg. The total amount of dissolved ions of Fe, Zn, Mn, Pb, and Ba was 0.18 to 5.59 mg/kg and in Al and Si was 3.0 to 21.7 mg/kg. The relative solubility order of dusts in glutamic acid is wollastonite > serpentine > sepiolite, the cement plant industrial dusts > natural dusts > power plant industrial dusts. The wollastonite and cement plant industrial dusts have the highest solubility, which also have high content of CaO; this shows that there are a poorer corrosion-resisting ability and lower bio-resistibility. Sepiolite and power plant industrial dusts have lowest solubility, which also have high content of SiO2; this shows that there are a higher corrosion-resisting ability and stronger bio-resistibility.

  10. Capstone Report on the Application, Monitoring, and Performance of Permeable Reactive Barriers for Ground-Water Remediation: Volume 1: Performance Evaluations at Two Sites

    DTIC Science & Technology

    2003-08-01

    sepiolite , Mg 4 (OH) 2 Si 6 O 15 ·H 2 O...EC050801-3-5 EC050801-3-3 EC050801-3-2 EC050801-3-1 In te n si ty degrees 2-theta In te n si ty In te n si ty downgradient edge upgradient edge In te n...400 b ic a rb o n a te , m g /L 0 2 4 6 8 10 12 14 16 si lic a , m g /L Figure 4.12 Average (± 1 s.d.) concentrations of Na, K , Ca,

  11. Three-Phase Coexistence in Colloidal Rod-Plate Mixtures.

    PubMed

    Woolston, Phillip; van Duijneveldt, Jeroen S

    2015-09-01

    Aqueous suspensions of clay particles, such as montmorillonite (MMT) platelets and sepiolite (Sep) rods, tend to form gels at concentrations around 1 vol %. For Sep rods, adsorbing sodium polyacrylate to the surface allows for an isotropic-nematic phase separation to be seen instead. Here, MMT is added to such Sep suspensions, resulting in a complex phase behavior. Across a range of clay concentrations, separation into three phases is observed: a lower, nematic phase dominated by Sep rods, a MMT-rich middle layer, which is weakly birefringent and probably a gel, and a dilute top phase. Analysis of phase volumes suggests that the middle layer may contain as much as 6 vol % MMT.

  12. Phosphorus saturation and superficial fertilizer application as key parameters to assess the risk of diffuse phosphorus losses from agricultural soils in Brazil.

    PubMed

    Fischer, P; Pöthig, R; Gücker, B; Venohr, M

    2018-07-15

    In Brazil, a steady increase in phosphorus (P) fertilizer application and agricultural intensification has been reported for recent decades. The concomitant P accumulation in soils potentially threatens surface water bodies with eutrophication through diffuse P losses. Here, we demonstrated the applicability of a soil type-independent approach for estimating the degree of P saturation (DPS; a risk parameter of P loss) by a standard method of water-soluble phosphorus (WSP) for two major soil types (Oxisols, Entisols) of the São Francisco catchment in Brazil. Subsequently, soil Mehlich-1P (M1P) levels recommended by Brazilian agricultural institutions were transformed into DPS values. Recommended M1P values for optimal agronomic production corresponded to DPS values below critical thresholds of high risks of P losses (DPS=80%) for major crops of the catchment. Higher risks of reaching critical DPS values due to P accumulation were found for Entisols due to their total sorption capacities being only half those of Oxisols. For complementary information on soil mineralogy and its influence on P sorption and P binding forms, Fourier transformation infrared (FTIR) spectroscopic analyses were executed. FTIR analyses suggested the occurrence of the clay minerals palygorskite and sepiolite in some of the analyzed Entisols and the formation of crandallite as the soil specific P binding form in the investigated Oxisols. Palygorskite and sepiolite can enhance P solubility and hence the risk of P losses. In contrast, the reshaping of superphosphate grains into crandallite may explain the chemical processes leading to previously observed low dissolved P concentrations in surface runoff from Oxisols. To prevent high risk of P losses, we recommend avoiding superficial fertilizer application and establishing environmental thresholds for soil M1P based on DPS. These measures could help to prevent eutrophication of naturally oligotrophic surface waters, and subsequent adverse effects on biodiversity and ecosystem function. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Combined chemical and physical transformation method with RbCl and sepiolite for the transformation of various bacterial species.

    PubMed

    Ren, Jun; Lee, Haram; Yoo, Seung Min; Yu, Myeong-Sang; Park, Hansoo; Na, Dokyun

    2017-04-01

    DNA transformation that delivers plasmid DNAs into bacterial cells is fundamental in genetic manipulation to engineer and study bacteria. Developed transformation methods to date are optimized to specific bacterial species for high efficiency. Thus, there is always a demand for simple and species-independent transformation methods. We herein describe the development of a chemico-physical transformation method that combines a rubidium chloride (RbCl)-based chemical method and sepiolite-based physical method, and report its use for the simple and efficient delivery of DNA into various bacterial species. Using this method, the best transformation efficiency for Escherichia coli DH5α was 4.3×10 6 CFU/μg of pUC19 plasmid, which is higher than or comparable to the reported transformation efficiencies to date. This method also allowed the introduction of plasmid DNAs into Bacillus subtilis (5.7×10 3 CFU/μg of pSEVA3b67Rb), Bacillus megaterium (2.5×10 3 CFU/μg of pSPAsp-hp), Lactococcus lactis subsp. lactis (1.0×10 2 CFU/μg of pTRKH3-ermGFP), and Lactococcus lactis subsp. cremoris (2.2×10 2 CFU/μg of pMSP3535VA). Remarkably, even when the conventional chemical and physical methods failed to generate transformed cells in Bacillus sp. and Enterococcus faecalis, E. malodoratus and E. mundtii, our combined method showed a significant transformation efficiency (2.4×10 4 , 4.5×10 2 , 2×10 1 , and 0.5×10 1 CFU/μg of plasmid DNA). Based on our results, we anticipate that our simple and efficient transformation method should prove usefulness for introducing DNA into various bacterial species without complicated optimization of parameters affecting DNA entry into the cell. Copyright © 2017. Published by Elsevier B.V.

  14. Magnesium-rich minerals in sediment and suspended particulates of South Florida water bodies: implications for turbidity.

    PubMed

    Harris, W G; Fisher, M M; Cao, X; Osborne, T; Ellis, L

    2007-01-01

    Fine sediments in shallow water bodies such as Lake Okeechobee are prone to resuspension. Predominantly inorganic "mud" sediment that covers approximately 670 km2 of the lake has been recognized as a persistent source of turbidity. The objective of this study was to determine if mineral components of sediments in Lake Okeechobee and water conveyances of the northern Everglades also occur as suspended sediment and hence constitute a potential abiotic contributor to turbidity. Sediment samples were collected from nine stations within the lake and eight locations north of Water Conservation Area 2A in the Everglades. Water samples were also collected at selected locations. The silt and clay mineralogy of sediment and suspended particles was determined using X-ray diffraction, thermogravimetry, scanning-electron microscopy, energy-dispersive X-ray elemental microanalysis, and high-resolution transmission-electron microscopy. Clay fractions of the lake sediment contained the Mg silicate minerals sepiolite and palygorskite, along with smectite, dolomite, calcite, and kaolinite. Sediment silt fractions were dominated by carbonates and/or quartz, with smaller amounts of Ca phosphates and sepiolite. Mineralogy of the mud sediment was similar to that reported for geologic phosphate deposits. This suggests that the mud sediment might have accumulated by stream transport of minerals from these deposits. Suspended solids and mud-sediment mineralogy were similar, except that smectite was more abundant in suspended solids. Everglade samples also contained Mg-rich minerals. The small size, low density, and fibrous or platy nature of the prevalent mud sediment minerals make them an abiotic, hydrodynamically sensitive source of persistent turbidity in a shallow lake. Mitigation efforts focused exclusively on P-induced biogeochemical processes do not address the origin or effects of these minerals. Ecological management issues such as turbidity control, P retention, geologic P input, and suitability of dredging are related to mud-sediment properties and provenance.

  15. The pH-dependent surface charging and points of zero charge: V. Update.

    PubMed

    Kosmulski, Marek

    2011-01-01

    The points of zero charge (PZC) and isoelectric points (IEP) from the recent literature are discussed. This study is an update of the previous compilation [M. Kosmulski, Surface Charging and Points of Zero Charge, CRC, Boca Raton, FL, 2009] and of its previous update [J. Colloid Interface Sci. 337 (2009) 439]. In several recent publications, the terms PZC/IEP have been used outside their usual meaning. Only the PZC/IEP obtained according to the methods recommended by the present author are reported in this paper, and the other results are ignored. PZC/IEP of albite, sepiolite, and sericite, which have not been studied before, became available over the past 2 years. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Multifaceted role of clay minerals in pharmaceuticals

    PubMed Central

    Khurana, Inderpreet Singh; Kaur, Satvinder; Kaur, Harpreet; Khurana, Rajneet Kaur

    2015-01-01

    The desirable physical and physiochemical properties of clay minerals have led them to play a substantial role in pharmaceutical formulations. Clay minerals like kaolin, smectite and palygorskite-sepiolite are among the world's most valuable industrial minerals and of considerable importance. The elemental features of clay minerals which caused them to be used in pharmaceutical formulations are high specific area, sorption capacity, favorable rheological properties, chemical inertness, swelling capacity, reactivity to acids and inconsiderable toxicity. Of course, these are highly cost effectual. This special report on clay minerals provides a bird's eye view of the chemical composition and structure of these minerals and their influence on the release properties of active medicinal agents. Endeavor has been made to rope in myriad applications depicting the wide acceptability of these clay minerals. PMID:28031881

  17. A three-year in-situ study on the persistence of a combined amendment (limestone+sepiolite) for remedying paddy soil polluted with heavy metals.

    PubMed

    Wu, Yu-Jun; Zhou, Hang; Zou, Zi-Jin; Zhu, Wei; Yang, Wen-Tao; Peng, Pei-Qin; Zeng, Min; Liao, Bo-Han

    2016-08-01

    In order to study the persistence of a combined amendment (LS, limestone+sepiolite) for remedying paddy soil polluted with the heavy metals Pb and Cd, a three-year in-situ experiment was conducted in a paddy soil near a mining area in southern Hunan, China. LS was applied at rates of 0, 2, 4, and 8g/kg (w/w); rice was subsequently planted for the three consecutive years of 2012 (first season), 2013 (second season), and 2014 (third season). Experimental results indicated that LS significantly increased soil pH values for all three seasons, and the enhancement ranked as follows: first season>second season>third season. Under the experimental conditions, the effect of LS on decreasing exchangeable concentrations of soil Pb and Cd was as follows: first season (97.6-99.8% for Pb and 88.3-98.9% for Cd)>second season (80.7-97.7% for Pb and 28.3-88.0% for Cd)>third season (32.6-97.7% for Pb and 8.3-71.4% for Cd); the effect of LS on reducing Pb concentrations in brown rice was: first season (73.5-81.2%)>third season (29.6-68.1%)>second season (0-9.7%), and that for reducing Cd concentrations in brown rice was third season (72.7-81.0%)>first season (56.1-66.8%)>second season (20.9-32.3%). For all three seasons, the effect of LS on reducing Cd content in brown rice was better than that for Pb. The highest translocation factors for Pb and Cd were from rice straw to husk, implying that the husk of rice plants was the main organ in which heavy metals accumulated. The effect of LS for decreasing soil exchangeable Cd content was relatively persistent, but that for Pb gradually decreased with time, implying that LS was more suitable for the long-term remediation of Cd-polluted soil than Pb-polluted soil. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Identification of dangerous fibers: some examples in Northern Italy

    NASA Astrophysics Data System (ADS)

    Zanetti, Giovanna; Marini, Paola; Giorgis, Ilaria

    2016-04-01

    The presence of asbestiform minerals has to be foreseen in the planning of infrastructural activities: Asbestos can be a component of sedimentary rocks or of mafic and ultra mafic metamorphic rocks. Surveys and core drilling, in addition to providing important information on the quality of the rock and its geotechnical characteristics, allow for a prediction of the presence of asbestiform minerals in the areas affected by mining or infrastructural activities. During the excavation, workers can be exposed to the asbestos risk, therefore, the control of the air quality and of the excavated materials are fundamental for the safety of involved people. In this work some problems we met in the analysis of airborne filters and bulk samples from sites in northern Italy are presented. The asbestos fibers present in rocks as accessory minerals, are often different in habit and dimension from the well-known asbestos fibers used as industrial minerals and moreover can be erroneously identified as minerals morphologically and chemically similar present in the same rock or environment. In the case of tunnel muck it could be contaminated by substances used for the excavation that could modify colours and optical properties of asbestos minerals. In the PCOM (Phase Contrast Optical Microscope) analysis chrysotile, sepiolite and antigorite, due to their different refraction index, when the fibers have dimension > 0,5 micron and aren't contaminated by lubricant can be easely identified even if the morphology of chrysotile is very similar to that of sepiolite. In Electron Scanning Microscope (SEM) the discrimination between chrysotile and antigorite on the airborne filters is not always possible because the fibers of thin dimensions show similar habit and spectrum. In the case of the tremolite amphibole, morphology changes from prismatic to fibrous depending on its origin (p.eg. Monastero, Val Grana, Verrayes, Brachiello). Both prismatic and asbestiform tremolite (Gamble and Gibbs, 2007; Addison and McConnel, 2007) may show inhalable elements with width less than 3 micron, length more than 5 micron and width length ratio 1:3, whose dangerousness (fiber coming from fibrous tremolite or the cleavage fragments coming from prismatic tremolite) could be different and it is object of epidemiologic studies.

  19. Development of lightweight aggregates from stone cutting sludge, plastic wastes and sepiolite rejections for agricultural and environmental purposes.

    PubMed

    Moreno-Maroto, José Manuel; González-Corrochano, Beatriz; Alonso-Azcárate, Jacinto; Rodríguez, Luis; Acosta, Anselmo

    2017-09-15

    Three different wastes have been assessed for lightweight aggregate (LWA) manufacturing: granite and marble sludge (COR), sepiolite rejections (SEP) and polyethylene-hexene thermoplastics (P). A preliminary study of the physical and chemical properties of the raw materials was carried out to design proper batches. It was mixed 10% SEP with 90% COR to confer plasticity, and in turn, 0, 2.5, 5 and 10% (w/w) of P was added to check its suitability as a bloating agent. The mixtures were milled, kneaded with water, extruded, shaped into pellets, oven-dried and finally fired at 1100, 1125 and 1150 °C for 4, 8 and 16 min. The main technological properties of the aggregates related to bloating, density, porosity, loss on ignition, water absorption and compressive strength were measured. Scanning Electron Microscopy was used to study the microstructure of some LWAs. 23 out of 29 types of aggregate were lightweight, although neither bloating effect was observed, nor the typical cellular structure comprised of shell and core with relatively large pores was obtained, but a structure consisting of micropores and microchannels. The increase of temperature and time of firing involved a greater sintering, which in turn was translated into higher shrinkage, density and compressive strength values, but less porosity and water absorption. The addition of P did not involve any improvement, indeed it caused a significant decrease in compressive strength. The LWA sintered without P at the minimum time (4 min) and temperature of firing (1100 °C) was selected to assess its water suction capability. The results pointed out that this LWA could be suitable in hydroponics and/or water filtration systems, even better than the commercial LWA Arlita G3. A new and most environment-friendly perspective in LWA industry arises from here, promoting LWA production at relative low temperatures (prior to significant sintering occurs) and using non-plastic silty wastes instead of clays as major components. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Micromechanics of Friction in a Detailed Study of Mg-rich Phyllosilicates

    NASA Astrophysics Data System (ADS)

    Sanchez Roa, C.; Faulkner, D.; Boulton, C. J.; Jimenez Millan, J.; Nieto, F.

    2016-12-01

    Phyllosilicate minerals commonly occur within faults, which may accommodate slip either aseismically via creep mechanisms or seismically in earthquakes. The Mg-rich phyllosilicates talc, saponite, sepiolite, and palygorskite have different crystallography and habits. Sepiolite and palygorskite are fibrous due to their discontinuous tetrahedral layers, while saponite and talc are platy due to the continuity of their TOT and water layers. Friction experiments were conducted in a triaxial apparatus under 95 MPa effective normal stress with water and argon as pore fluids. Results show a marked contrast between friction coefficients of fibrous phyllosilicates, 0.57 to 0.63 for argon experiments and 0.4 to 0.5 for water-saturated experiments, and platy Mg-rich phyllosilicates, as low as 0.22 for argon experiments and 0.04 for water-saturated experiments. During velocity steps (where sliding velocity is increased or decreased by one order of magnitude), the two mineral groups exhibit distinctly dissimilar behaviours. After the direct effect of the change in sliding rate, fibrous phyllosilicates show a rapid exponential decay towards a new friction coefficient (a positive b value). Meanwhile, the friction coefficient of the platy phyllosilicates has a more linear evolution (a zero, or negative b value). This effect could be related to a difference in the sliding strength of the contact asperities which would be much higher for crystal surfaces of fibrous minerals with an indented surface due to the silicon tetrahedra inversions. The fibre-shaped crystals may consequently require higher amounts of volumetric work against the normal stress (dilatancy). SEM and TEM observations of the deformed samples showed a well-developed network of R1 Riedel shears in the fibrous materials; planar phyllosilicates show a more homogeneous matrix and incipient development of P foliation. Planar phyllosilicate grains align on their basal planes facilitating intergranular sliding, in contrast, the fibrous phyllosilicates appear to form an interlocking grid-like network that may promote dilatancy during velocity steps. The contrasting strength of Mg-rich phyllosilicates and analysis of their microstructures imply that phyllosilicate habit strongly influences the micromechanics of frictional sliding.

  1. Can Clays in Livestock Feed Promote Antibiotic Resistance and Virulence in Pathogenic Bacteria?

    PubMed Central

    Rodríguez-Rojas, Alexandro; Rodríguez-Beltrán, Jerónimo; Valverde, José Ramón; Blázquez, Jesús

    2015-01-01

    The use of antibiotics in animal husbandry has long been associated with the appearance of antibiotic resistance and virulence factor determinants. Nonetheless, the number of cases of human infection involving resistant or virulent microorganisms that originate in farms is increasing. While many antibiotics have been banned as dietary supplements in some countries, other additives thought to be innocuous in terms of the development and spread of antibiotic resistance are used as growth promoters. In fact, several clay materials are routinely added to animal feed with the aim of improving growth and animal product quality. However, recent findings suggest that sepiolite, a clay additive, mediates the direct transfer of plasmids between different bacterial species. We therefore hypothesize that clays present in animal feed facilitate the horizontal transfer of resistance determinants in the digestive tract of farm animals.

  2. Clay-induced DNA breaks as a path for genetic diversity, antibiotic resistance, and asbestos carcinogenesis.

    PubMed

    González-Tortuero, Enrique; Rodríguez-Beltrán, Jerónimo; Radek, Renate; Blázquez, Jesús; Rodríguez-Rojas, Alexandro

    2018-05-31

    Natural clays and synthetic nanofibres can have a severe impact on human health. After several decades of research, the molecular mechanism of how asbestos induces cancer is not well understood. Different fibres, including asbestos, can penetrate cell membranes and introduce foreign DNA in bacterial and eukaryotic cells. Incubating Escherichia coli under friction forces with sepiolite, a clayey material, or with asbestos, causes double-strand DNA breaks. Antibiotics and clays are used together in animal husbandry, the mutagenic effect of these fibres could be a pathway to antibiotic resistance due to the friction provided by peristalsis of the gut from farm animals in addition to horizontal gene transfer. Moreover, we raise the possibility that the same mechanism could generate bacteria diversity in natural scenarios, playing a role in the evolution of species. Finally, we provide a new model on how asbestos may promote mutagenesis and cancer based on the observed mechanical genotoxicity.

  3. Spectroscopic study of the dehydration and/or dehydroxylation of phyllosilicate and zeolite minerals

    NASA Astrophysics Data System (ADS)

    Che, Congcong; Glotch, Timothy D.; Bish, David L.; Michalski, Joseph R.; Xu, Wenqian

    2011-05-01

    Phyllosilicates on Mars mapped by infrared spectroscopic techniques could have been affected by dehydration and/or dehydroxylation associated with chemical weathering in hyperarid conditions, volcanism or shock heating associated with meteor impact. The effects of heat-induced dehydration and/or dehydroxylation on the infrared spectra of 14 phyllosilicates from four structural groups (kaolinite, smectite, sepiolite-palygorskite, and chlorite) and two natural zeolites are reported here. Pressed powders of size-separated phyllosilicate and natural zeolite samples were heated incrementally from 100°C to 900°C, cooled to room temperature, and measured using multiple spectroscopic techniques: midinfrared (400-4000 cm-1) attenuated total reflectance, midinfrared reflectance (400-1400 cm-1), and far-infrared reflectance (50-600 cm-1) spectroscopies. Correlated thermogravimetric analysis and X-ray diffraction data were also acquired in order to clarify the thermal transformation of each sample. For phyllosilicate samples, the OH stretching (˜3600 cm-1), OH bending (˜590-950 cm-1), and/or H2O bending (˜1630 cm-1) bands all become very weak or completely disappear upon heating to temperatures > 500°C. The spectral changes associated with SiO4 vibrations (˜1000 cm-1 and ˜500 cm-1) show large variations depending on the compositions and structures of phyllosilicates. The thermal behavior of phyllosilicate IR spectra is also affected by the type of octahedral cations. For example, spectral features of Al3+-rich smectites are more stable than those of Fe3+-rich smectites. The high-temperature (>800°C) spectral changes of trioctahedral Mg2+-rich phyllosilicates such as hectorite, saponite, and sepiolite result primarily from crystallization of enstatite. Phyllosilicates with moderate Mg2+ concentration (e.g., palygorskite, clinochlore) and dioctahedral montmorillonites (e.g., SAz-1 and SCa-3) with partial Mg2+-for-Al3+ substitution all have new spectral feature developed at ˜900 cm-1 upon heating to 800°C. Compared with phyllosilicates, spectral features of two natural zeolites, clinoptilolite and mordenite, are less affected by thermal treatments. Even after heating to 900°C, the IR spectral features attributed to Si (Al)-O stretching and bending vibration modes do not show significant differences from those of unheated zeolites.

  4. Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-06-08

    Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Testsmore » were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ~5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ~2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60°C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ~80°C and ~95°C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.« less

  5. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide.

    PubMed

    Wicklein, Bernd; Kocjan, Andraž; Salazar-Alvarez, German; Carosio, Federico; Camino, Giovanni; Antonietti, Markus; Bergström, Lennart

    2015-03-01

    High-performance thermally insulating materials from renewable resources are needed to improve the energy efficiency of buildings. Traditional fossil-fuel-derived insulation materials such as expanded polystyrene and polyurethane have thermal conductivities that are too high for retrofitting or for building new, surface-efficient passive houses. Tailored materials such as aerogels and vacuum insulating panels are fragile and susceptible to perforation. Here, we show that freeze-casting suspensions of cellulose nanofibres, graphene oxide and sepiolite nanorods produces super-insulating, fire-retardant and strong anisotropic foams that perform better than traditional polymer-based insulating materials. The foams are ultralight, show excellent combustion resistance and exhibit a thermal conductivity of 15 mW m(-1) K(-1), which is about half that of expanded polystyrene. At 30 °C and 85% relative humidity, the foams retained more than half of their initial strength. Our results show that nanoscale engineering is a promising strategy for producing foams with excellent properties using cellulose and other renewable nanosized fibrous materials.

  6. Advanced biohybrid materials based on nanoclays for biomedical applications

    NASA Astrophysics Data System (ADS)

    Ruiz-Hitzky, Eduardo; Darder, Margarita; Wicklein, Bernd; Fernandes, Francisco M.; Castro-Smirnov, Fidel A.; Martín del Burgo, M. Angeles; del Real, Gustavo; Aranda, Pilar

    2012-10-01

    Bio-nanohybrids prepared by assembling natural polymers (polysaccharides, proteins, nucleic acids, etc) to nanosized silicates (nanoclays) and related solids (layered double hydroxides, LDHs) give rise to the so-called bionanocomposites constituting a group of biomaterials with potential applications in medicine. In this way, biopolymers, including chitosan, pectin, alginate, xanthan gum, ι-carrageenan, gelatin, zein, and DNA, as well as phospholipids such as phosphatidylcholine, have been incorporated in layered host matrices by means of ion-exchange mechanisms producing intercalation composites. Also bio-nanohybrids have been prepared by the assembly of diverse bio-polymers with sepiolite, a natural microfibrous magnesium silicate, in this case through interactions affecting the external surface of this silicate. The properties and applications of these resulting biomaterials as active phases of ion-sensors and biosensors, for potential uses as scaffolds for tissue engineering, drug delivery, and gene transfection systems, are introduced and discussed in this work. It is also considered the use of synthetic bionanocomposites as new substrates to immobilize microorganisms, as for instance to bind Influenza virus particles, allowing their application as effective low-cost vaccine adjuvants and carriers.

  7. Degradation of oxadiazon in a bioreactor integrated in the water closed circuit of a plant nursery.

    PubMed

    Pinilla, Paloma; Ruiz, Juan; Lobo, María Carmen; Martínez-Iñigo, María José

    2008-05-01

    Hardy ornamental nursery stock (HONS) use fertigation as a rational supply of nutrients all along the growth cycle of plants. Nevertheless, that frequency of irrigation increases the risks of nutrient and herbicide leaching and subsequent contamination of the waste water. Therefore, systems of water treatment are required in plant nurseries. Pseudomonas fluorescens strain CG5 cells were immobilized on a ceramic support (sepiolite) contained in a 150 l-bioreactor for the biodegradation of the herbicide oxadiazon in the re-circulated leachates. Percolation and inundation operating processes were assayed in the bioreactor. The levels of oxadiazon in water samples were determined by solid phase extraction on C18 columns and gas chromatography with electron capture detection system. Fifty eight percolation cycles resulted in a significant reduction of oxadiazon up to just 5 microg l(-1) at the outlet. Similar herbicide elimination was achieved after two consecutive 68-h inundation periods. In addition, it was found that the nutrient content in the waste water at the bioreactor outlet was sufficient to support an adequate plant growth.

  8. Oligomerization reactions of ribonucleotides - The reaction of the 5'-phosphorimidazolide of nucleosides on montmorillonite and other minerals

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Ertem, Gozen

    1992-01-01

    The reaction of ImpA in the presence of Na(+)-montmorillonite 22A or Na(+)-Volclay in aqueous, pH 8 solution gives a 50-60 percent yield of dimers and trimers (pA)2 and (pA)3. The ratio of 3',5'-phosphodiester bond formation is twice as great as 2',5'-bond formation. The reaction requires the presence of Mg2+ and is inhibited by 0.4 M imidazole. N-methylimidazole enhances the rate of the reaction but does not cause major changes in yield or product composition. Higher yields were obtained when Li+- or Ca2+-montmorillonites were used in place of Na+-montmorillonite. Little or no phosphodiester bond formation was observed with Mg2+- or Al3+-montmorillonite. Montmorillonites other than 22A and Volclay exhibited litle or no catalysis. In addittion, little or no catalysis was exhibited in ferrugenous smectite, nontronite, allophane, imogolite or sepiolite. Oligomers were also formed by the reaction of ImpG, 2-methylImpG, ImpC and ImpU in the presence of Na+-montmorillonite. The pyrimidine nucleotides gave significantly lower yields of oligomers.

  9. New Biofuel Integrating Glycerol into Its Composition Through the Use of Covalent Immobilized Pig Pancreatic Lipase

    PubMed Central

    Luna, Diego; Posadillo, Alejandro; Caballero, Verónica; Verdugo, Cristóbal; Bautista, Felipa M.; Romero, Antonio A.; Sancho, Enrique D.; Luna, Carlos; Calero, Juan

    2012-01-01

    By using 1,3-specific Pig Pancreatic lipase (EC 3.1.1.3 or PPL), covalently immobilized on AlPO4/Sepiolite support as biocatalyst, a new second-generation biodiesel was obtained in the transesterification reaction of sunflower oil with ethanol and other alcohols of low molecular weight. The resulting biofuel is composed of fatty acid ethyl esters and monoglycerides (FAEE/MG) blended in a molar relation 2/1. This novel product, which integrates glycerol as monoacylglycerols (MG) into the biofuel composition, has similar physicochemical properties compared to those of conventional biodiesel and also avoids the removal step of this by-product. The biocatalyst was found to be strongly fixed to the inorganic support (75%). Nevertheless, the efficiency of the immobilized enzyme was reduced to half (49.1%) compared to that of the free PPL. The immobilized enzyme showed a remarkable stability as well as a great reusability (more than 40 successive reuses) without a significant loss of its initial catalytic activity. Immobilized and free enzymes exhibited different reaction mechanisms, according to the different results in the Arrhenius parameters (Ln A and Ea). However, the use of supported PPL was found to be very suitable for the repetitive production of biofuel due to its facile recyclability from the reaction mixture. PMID:22949849

  10. Enhancement of clover growth by inoculation of P-solubilizing fungi and arbuscular mycorrhizal fungi.

    PubMed

    Souchie, Edson L; Azcón, Rosario; Barea, Jose M; Silva, Eliane M R; Saggin-Júnior, Orivaldo J

    2010-09-01

    This study evaluated the synergism between several P-solubilizing fungi isolates and arbuscular mycorrhizal fungi to improve clover ( Trifolium pratense) growth in the presence of Araxá apatite. Clover was sown directly in plastic pots with 300g of sterilized washed sand, vermiculite and sepiolite 1:1:1 (v:v:v) as substrate, and grown in a controlled environment chamber. The substrate was fertilized with 3 g L(-1) of Araxá apatite. A completely randomized design, in 8×2 factorial scheme (eight P-solubilizing fungi treatments with or without arbuscular mycorrhizal fungi)and four replicates were used. The P-solubilizing fungi treatments consisted of five Brazilian P-solubilizing fungi isolates (PSF 7, 9, 20, 21 and 22), two Spanish isolates ( Aspergillus niger and the yeast Yarowia lipolytica) and control (non-inoculated treatment). The greatest clover growth rate was recorded when Aspergillus niger and PSF 21 were co-inoculated with arbuscular mycorrhizal fungi. Aspergillus niger, PSF 7 and PSF 21 were the most effective isolates on increasing clover growth in the presence of arbuscular mycorrhizal fungi. Greater mycorrhizal colonization resulted in greater clover growth rate in most PSF treatments. PSF 7 was the best isolate to improve the establishment of mycorrhizal and rhizobia symbiosis.

  11. Novel system for reducing leaching of the herbicide metribuzin using clay-gel-based formulations.

    PubMed

    Maqueda, Celia; Villaverde, Jaime; Sopeña, Fátima; Undabeytia, Tomás; Morillo, Esmeralda

    2008-12-24

    Metribuzin is an herbicide widely used for weed control that has been identified as a groundwater pollutant. It contaminates the environment even when it is used according to the manufacturer's instructions. To reduce herbicide leaching and increase weed control, new controlled release formulations were developed by entrapping metribuzin within a sepiolite-gel-based matrix using two clay/herbicide proportions (0.5/0.2 and 1/0.2) (loaded at 28.6 and 16.7% a.i.) as a gel (G28, G16) or as a powder after freeze-drying (LF28, LF16). The release of metribuzin from the control released formulations into water was retarded, when compared with commercial formulation (CF) except in the case of G28. The mobility of metribuzin from control released formulations into soil columns of sandy soil was greatly diminished in comparison with CF. Most of the metribuzin applied as control released formulations (G16, LF28 and LF16) was found at a depth of 0-8 cm depth. In contrast, residues from CF and G28 along the column were almost negligible. Bioassays from these control released formulations showed high efficacy at 0-12 cm depth. The use of these novel formulations could minimize the risk of groundwater contamination while maintaining weed control for a longer period.

  12. Uranium accumulation in modern and ancient Fe-oxide sediments: Examples from the Ashadze-2 hydrothermal sulfide field (Mid-Atlantic Ridge) and Yubileynoe massive sulfide deposit (South Urals, Russia)

    NASA Astrophysics Data System (ADS)

    Ayupova, N. R.; Melekestseva, I. Yu.; Maslennikov, V. V.; Tseluyko, A. S.; Blinov, I. A.; Beltenev, V. E.

    2018-05-01

    Fe-oxyhydroxide sediments (gossans) from the Ashadze-2 hydrothermal sulfide field (Mid-Atlantic Ridge) and hematite-carbonate-quartz rocks (gossanites) from the Yubileynoe Cu-Zn VHMS deposit (South Urals) are characterized by anomalously high U contents (up to 352 ppm and 73 ppm, respectively). In gossans from the Ashadze-2 hydrothermal sulfide field, rare isometric anhedral uraninite grains (up to 2 μm) with outer P- and Ca-rich rims, and numerous smaller (<1 μm) grains, occur in Fe-oxyhydroxides and sepiolite, associated with pyrite, isocubanite, chalcopyrite, galena, atacamite and halite. In gossanites from the Yubileynoe deposit, numerous uraninite particles (<3 μm) are associated with apatite, V-rich Mg-chlorite, micro-nodules of pyrite, Se-bearing galena, hessite and acanthite in a hematite-carbonate-quartz matrix. Small (1-3 μm) round grains of uraninite, which locally coalesce to large grains up to 10 μm in size, are associated with authigenic chalcopyrite. The similar diagenetic processes of U accumulation in modern and ancient Fe-oxyhydroxide sediments were the result of U fixation from seawater during the oxidation of sulfide minerals. Uraninite in gossanites was mainly deposited from diagenetic pore fluids, which circulated in the sulfide-hyaloclast-carbonate sediments.

  13. Environmental implication of subaqueous lava flows from a continental Large Igneous Province: Examples from the Moroccan Central Atlantic Magmatic Province (CAMP)

    NASA Astrophysics Data System (ADS)

    El Ghilani, S.; Youbi, N.; Madeira, J.; Chellai, E. H.; López-Galindo, A.; Martins, L.; Mata, J.

    2017-03-01

    The Late Triassic-Early Jurassic volcanic sequence of the Central Atlantic Magmatic Province (CAMP) of Morocco is classically subdivided into four stratigraphic units: the Lower, Middle, Upper and Recurrent Formations separated by intercalated sediments deposited during short hiatuses in volcanic activity. Although corresponding to a Large Igneous Province formed in continental environment, it contains subaqueous lava flows, including dominant pillowed flows but also occasional sheet flows. We present a study of the morphology, structure and morphometry of subaqueous lava flows from three sections located at the Marrakech High-Atlas (regions of Aït-Ourir, Jbel Imzar and Oued Lhar-Herissane), as well as an analysis of the sediments, in order to characterize them and to understand their environmental meaning. The analysis of clays by the diffraction method X-ray revealed the presence of illite, mica, phengite, céladonite, talc and small amounts of quartz, hematite, calcite and feldspar, as well as two pairs of interbedded irregular (chlorite Smectite/chlorite-Mica). Fibrous minerals such as sepiolite and palygorskite were not detected. The peperite of Herissane region (Central High Atlas) provided an excellent overview on the factors favoring the magma-sediment interaction. These are the products of a mixture of unconsolidated or poorly consolidated sediments, low permeability with a low viscosity magma. The attempt of dating palynology proved unfortunately without results.

  14. Gemstones and geosciences in space and time. Digital maps to the "Chessboard classification scheme of mineral deposits"

    NASA Astrophysics Data System (ADS)

    Dill, Harald G.; Weber, Berthold

    2013-12-01

    The gemstones, covering the spectrum from jeweler's to showcase quality, have been presented in a tripartite subdivision, by country, geology and geomorphology realized in 99 digital maps with more than 2600 mineralized sites. The various maps were designed based on the "Chessboard classification scheme of mineral deposits" proposed by Dill (2010a, 2010b) to reveal the interrelations between gemstone deposits and mineral deposits of other commodities and direct our thoughts to potential new target areas for exploration. A number of 33 categories were used for these digital maps: chromium, nickel, titanium, iron, manganese, copper, tin-tungsten, beryllium, lithium, zinc, calcium, boron, fluorine, strontium, phosphorus, zirconium, silica, feldspar, feldspathoids, zeolite, amphibole (tiger's eye), olivine, pyroxenoid, garnet, epidote, sillimanite-andalusite, corundum-spinel - diaspore, diamond, vermiculite-pagodite, prehnite, sepiolite, jet, and amber. Besides the political base map (gems by country) the mineral deposit is drawn on a geological map, illustrating the main lithologies, stratigraphic units and tectonic structure to unravel the evolution of primary gemstone deposits in time and space. The geomorphological map is to show the control of climate and subaerial and submarine hydrography on the deposition of secondary gemstone deposits. The digital maps are designed so as to be plotted as a paper version of different scale and to upgrade them for an interactive use and link them to gemological databases.

  15. Clarification of olive mill and winery wastewater by means of clay-polymer nanocomposites.

    PubMed

    Rytwo, Giora; Lavi, Roy; Rytwo, Yuval; Monchase, Hila; Dultz, Stefan; König, Tom N

    2013-01-01

    Highly polluted effluents from olive mills and wineries, among others, are unsuitable for discharge into standard sewage-treatment plants due to the large amounts of organic and suspended matter. Efficiency of all management practices for such effluents depends on an effective pretreatment that lowers the amount of suspended solids. Such pretreatments are usually based on three separate stages, taking a total of 2 to 6h: coagulation-neutralizing the colloids, flocculation-aggregating the colloids into larger particles, and separation via filtration or decanting. Previous studies have presented the concept of coagoflocculation based on the use of clay-polymer nanocomposites. This process adds a higher density clay particle to the flocs, accelerating the process to between 15 and 60 min. This study examined suitable nanocomposites based on different clays and polymers. The charge of the compounds increased proportionally to the polymer-to-clay ratio. X-ray diffraction (XRD) measurements indicated that in sepiolite-based nanocomposites there is no change in the structure of the mineral, whereas in smectite-based nanocomposites, the polymer intercalates between the clay layers and increases the spacing depending on the polymer-to-clay ratio. Efficiency of the coagoflocculation process was studied with a dispersion analyzer. Sequential addition of olive mill or winery effluents with a boosting dose of nanocomposites may yield a very efficient and rapid clarification pretreatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Networking and rheology of concentrated clay suspensions "matured" in mineral medicinal water.

    PubMed

    Aguzzi, Carola; Sánchez-Espejo, Rita; Cerezo, Pilar; Machado, José; Bonferoni, Cristina; Rossi, Silvia; Salcedo, Inmaculada; Viseras, César

    2013-09-10

    This work studied the influence of "maturation" conditions (time and agitation) on aggregation states, gel structure and rheological behaviour of a special kind of pharmaceutical semisolid products made of concentrated clay suspensions in mineral medicinal water. Maturation of the samples was carried out in distilled and sulphated mineral medicinal water, both in static conditions (without agitation) and with manual stirring once a week, during a maximum period of three months. At the measured pH interval (7.5-8.0), three-dimensional band-type networks resulting from face/face contacts were predominant in the laminar (disc-like) clay suspensions, whereas the fibrous (rod-like) particles formed micro-aggregates by van der Waals attractions. The high concentration of solids in the studied systems greatly determined their behaviour. Rod-like sepiolite particles tend to align the major axis in aggregates promoted by low shearing maturation, whereas aggregates of disc-like smectite particles did not have a preferential orientation and their complete swelling required long maturation time, being independent of stirring. Maturation of both kinds of suspensions resulted in improved rheological properties. Laminar clay suspensions became more structured with time, independently from static or dynamic maturation conditions, whereas for fibrous clay periodic agitation was also required. Rheological properties of the studied systems have been related to aggregation states and networking mechanisms, depending on the type of clay minerals constituents. Physical stability of the suspensions was not impaired by the specific composition of the Graena medicinal water. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Origin of dolomite in the phosphatic Hawthorne Group of Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Compton, J.S.; Hall, D.L.; Mallinson, D.J.

    1994-07-01

    In addition to large amounts of phosphorite, the Miocene Hawthorn Group of Florida contains abundant dolomite. Dolomite is present as disseminated silt-size rhombs, as friable dolosilt beds, and as pore-filling cement in dolostone beds and clasts. The dolomite formed during early burial diagenesis both in the sulfate-reduction zone, overlapping and extending below sediment depths of phosphorite formation, and in adjacent, nonphosphatic, shallow-water lagoonal environments. Much of the dolomite is closely associated with the fibrous, Mg-rich clay minerals palygorskite and sepiolite. The percent carbonate in the Hawthorn Group increases from north to south; the dominant carbonate mineral in north Florida ismore » dolomite, whereas dolomite and calcite are both abundant in south Florida. The [delta][sup 13]C values of the dolomite, from +1.82 to [minus]6.21[per thousand] PDB, suggest that metastable biogenic carbonate (aragonite and high-Mg calcite) and seawater were the predominant sources of carbonate. However, negative [delta][sup 13]C values of dolomite from northeast Florida suggest that as much as 30--40% of the carbonate was derived from degradation of organic matter. Degradation of organic matter enhanced dolomitization by removing sulfate ion and increasing the carbonate alkalinity of the pore waters. The oxygen and strontium isotopic values along with moderate Na contents indicate a marine origin. Evaporation of seawater or mixing of seawater and meteoric water were apparently not major factors in dolomite formation. The presence of dolomite, along with phosphorite, in reworked sequences can indicate deposition of organic-rich sediments from which most of the organic matter has since been removed.« less

  18. Mineralogy and geochemistry of the sediments of the Etosha Pan Region in northern Namibia: a reconstruction of the depositional environment

    NASA Astrophysics Data System (ADS)

    Buch, M. W.; Rose, D.

    1996-04-01

    The paper presents the results of mineralogical and chemical analyses of the clay fraction (<2 μm) of samples from boreholes in the Etosha Pan and smaller pans of the Owambo-Pans-Plain in the Etosha National Park, northern Namibia. Four mineral associations can be differentiated within the vertical succession of the profiles in the Etosha Pan: I) analcime/K-feldspar and mica association; II) analcime/K-feldspar and sepiolite (loughlinite) association; III) expandable sheet silicate (saponite/stevensite) association; and IV) calcite and dolomite association. These mineral associations are the expression of the seasonal saline-alkaline to calciferous, saline-alkaline environment of the present Etosha Pan. The sedimentological and pedological descriptions, combined with the results of the mineralogical and chemical analyses, show a clear differentiation of the profiles of the Etosha Pan in: i) disintegrated sedimentary rocks of the Andoni Formation (mineral association I); ii) par-autochthonous sediments (mineral associations I and II); and iii) allochthonous sediments (mineral associations III and IV). Based on this vertical mineralogical differentiation, four sedimentological-mineralogical/ chemical zones are defined for the actual floor of the Etosha Pan. The zonation shows that a thin cover of allochthonous sediments is only present along the southern margin of the Etosha Pan, including Fisher's Pan. The results support the hypothesis that the Etosha Pan is an erosional form rather than a palaeolake. In principle, the zonal configuration of the recent allochthonous and parautochthonous sediments identified on the Etosha Pan provides a small-scale depositional environment model for the formation of the Etosha limestone and sediments of the Andoni Formation during the Oligocene and Miocene. Thus, the findings help to reconstruct the depositional environment of the evolution of the extensive depocentre of the Etosha basin during the Late Tertiary.

  19. Sea water - basalt interactions and genesis of the coastal thermal waters of Maharashtra, India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muthuraman, K.

    1986-01-01

    The thermal waters close to the western coastal belt of India (in Maharashtra State) generally discharge Na-Ca-Cl and Ca-Na-Cl types of waters through the basic lava flows of late Cretaceous-early Tertiary age. Experimental work to study the reactions between the dilute sea water and basalt conducted in static autoclaves at selected elevated temperatures, indicates the possibility of producing chloride waters with relatively high calcium, similar to these thermal waters. In view of the increase in Ca in the resultant solutions during sea water-basalt reactions at elevated temperatures, the base temperatures computed by Na-K-Ca geothermometry would be far lower than themore » actual temperatures of the system. At lower temperatures (around 100/sup 0/C) absorption by K by basalt is possible and, hence, alkali geothermometry also may not be reliable for such systems. Anhydrite saturation temperature seems to be a reliable geothermometer for such coastal thermal water systems involving a sea water component. The results of the computer processing of the chemistry of some of these thermal waters using ''WATEQ'' are discussed. Two of these waters are oversaturated with diopside, tremolite, calcite and aragonite, indicating a rather low temperature of origin. In two other cases, interaction with ultramafic rocks is indicated, as these waters are oversaturated with diopside, tremolite, talc, chrysotile, sepiolite and its precipitate. There is no clear evidence to show that the thermal waters of the west coast of India emerge directly from either marine evaporites or oil field waters. It is proposed that the majority of these thermal waters should have originated through interaction of an admixture of sea water and meteoric water with the local basalt flows at some elevated temperatures.« less

  20. Evaluation of free water and water activity measurements as functional alternatives to total moisture content in broiler excreta and litter samples.

    PubMed

    van der Hoeven-Hangoor, E; Rademaker, C J; Paton, N D; Verstegen, M W A; Hendriks, W H

    2014-07-01

    Litter moisture contents vary greatly between and within practical poultry barns. The current experiment was designed to measure the effects of 8 different dietary characteristics on litter and excreta moisture content. Additionally, free water content and water activity of the excreta and litter were evaluated as additional quality measures. The dietary treatments consisted of nonstarch polysaccharide content (NSP; corn vs. wheat), particle size of insoluble fiber (coarse vs. finely ground oat hulls), viscosity of a nonfermentable fiber (low- and high-viscosity carboxymethyl cellulose), inclusion of a clay mineral (sepiolite), and inclusion of a laxative electrolyte (MgSO4). The 8 treatments were randomly assigned to cages within blocks, resulting in 12 replicates per treatment with 6 birds per replicate. Limited effects of the dietary treatments were noted on excreta and litter water activity, and indications were observed that this measurement is limited in high-moisture samples. Increasing dietary NSP content by feeding a corn-based diet (low NSP) compared with a wheat-based diet (high NSP) increased water intake, excreta moisture and free water, and litter moisture content. Adding insoluble fibers to the wheat-based diet reduced excreta and litter moisture content, as well as litter water activity. Fine grinding of the oat hulls diminished the effect on litter moisture and water activity. However, excreta moisture and free water content were similar when fed finely or coarsely ground oat hulls. The effects of changing viscosity and adding a clay mineral or laxative deviated from results observed in previous studies. Findings of the current experiment indicate a potential for excreta free water measurement as an additional parameter to assess excreta quality besides total moisture. The exact implication of this parameter warrants further investigation. © 2014 Poultry Science Association Inc.

  1. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert

    PubMed Central

    Wierzchos, Jacek; DiRuggiero, Jocelyne; Vítek, Petr; Artieda, Octavio; Souza-Egipsy, Virginia; Škaloud, Pavel; Tisza, Michel; Davila, Alfonso F.; Vílchez, Carlos; Garbayo, Inés; Ascaso, Carmen

    2015-01-01

    The Atacama Desert, northern Chile, is one of the driest deserts on Earth and, as such, a natural laboratory to explore the limits of life and the strategies evolved by microorganisms to adapt to extreme environments. Here we report the exceptional adaptation strategies of chlorophototrophic and eukaryotic algae, and chlorophototrophic and prokaryotic cyanobacteria to the hyperarid and extremely high solar radiation conditions occurring in this desert. Our approach combined several microscopy techniques, spectroscopic analytical methods, and molecular analyses. We found that the major adaptation strategy was to avoid the extreme environmental conditions by colonizing cryptoendolithic, as well as, hypoendolithic habitats within gypsum deposits. The cryptoendolithic colonization occurred a few millimeters beneath the gypsum surface and showed a succession of organized horizons of algae and cyanobacteria, which has never been reported for endolithic microbial communities. The presence of cyanobacteria beneath the algal layer, in close contact with sepiolite inclusions, and their hypoendolithic colonization suggest that occasional liquid water might persist within these sub-microhabitats. We also identified the presence of abundant carotenoids in the upper cryptoendolithic algal habitat and scytonemin in the cyanobacteria hypoendolithic habitat. This study illustrates that successful lithobiontic microbial colonization at the limit for microbial life is the result of a combination of adaptive strategies to avoid excess solar irradiance and extreme evapotranspiration rates, taking advantage of the complex structural and mineralogical characteristics of gypsum deposits—conceptually called “rock's habitable architecture.” Additionally, self-protection by synthesis and accumulation of secondary metabolites likely produces a shielding effect that prevents photoinhibition and lethal photooxidative damage to the chlorophototrophs, representing another level of adaptation. PMID:26441871

  2. Stenian Estuarine System and Early Neoproterozoic Microbial Records of Capiru Formation, Southern Ribeira Belt.

    NASA Astrophysics Data System (ADS)

    Cury, L. F.; Santos, L. D. R.; Leandro, R.; Lange, L.; Bahniuk Rumbelsperger, A.

    2017-12-01

    The Capiru formation is a low-grade metasedimentary sequence composed by slates, rhythmic phyllites, quartzites and marbles, disposed and disrupted in tectonic blocks delimited by thrust and strike-slip faults related to oblique collisions in the southern Ribeira Belt, Curitiba terrane, southern Brazil. The rocks of the Capiru formation crops out as a thrust-folded belt, delimited on the north by the transcurrent faults of Lancinha Shear Zone (LSZ), and to the south by thrust faults with large isograde variation. Three lithological sequences are recognized mainly by their compositional and stratigraphic records, including a (i) ferruginous sequence with quartzites, metasandstones and metaconglomerates with goethite/hematite cements and phyllites with magnetite; ii) metadolomites with stromatolites, interbeded with pelitic layers and iii) a metapelitic sequence with metarhythmites and metasandstones with well preserved organic-rich material. The records of two tectonic-metamorphic events related to thrust and transpressive tectonics are heterogeneously developed in all sequences, still been recognized sections with the original stratigraphic succession. The stratigraphic record suggests an estuarine environment with rising sea level developing tidal flats and tidal channels. U-Pb detrital zircon analyses characterizes Rhyacian ages (between 2.2-2.1 Ga) as the main sources, and Stenian ages (between 1.08-1.20 Ga) as maximum age for sedimentation. The metapelites mineral assemblage is composed by quartz, muscovite, sericite, illite, kaolinite, sepiolite, magnetite, goethite, hematite and carbonaceous material with bulk organic carbon content (BOC) ranging from 0.09 to 1.21 (%), a precambrian microbial activity record. The metadolomites are characterized by the presence of stromatolites in different types and dimensions, with microbial activity records supported by SEM-EDS (up to 91% C), with EPS-like morphologies within microporosity, NaCl compounds and clay minerals, probably indicative of microorganism contribution during the deposition.

  3. Characteristics of Hydrothermal Mineralization in Ultraslow Spreading Ridges

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Yang, Q.; Ji, F.; Dick, H. J.

    2014-12-01

    Hydrothermal activity is a major component of the processes that shape the composition and structure of the ocean crust, providing a major pathway for the exchange of heat and elements between the Earth's crust and oceans, and a locus for intense biological activity on the seafloor and underlying crust. In other hand, the structure and composition of hydrothermal systems are the result of complex interactions between heat sources, fluids, wall rocks, tectonic controls and even biological processes. Ultraslow spreading ridges, including the Southwest Indian Ridge, the Gakkel Ridge, are most remarkable end member in plate-boundary structures (Dick et al., 2003), featured with extensive tectonic amagmatic spreading and frequent exposure of peridotite and gabbro. With intensive surveys in last decades, it is suggested that ultraslow ridges are several times more effective than faster-spreading ridges in sustaining hydrothermal activities. This increased efficiency could attributed to deep mining of heat and even exothermic serpentinisation (Baker et al., 2004). Distinct from in faster spreading ridges, one characteristics of hydrothermal mineralization on seafloor in ultraslow spreading ridges, including the active Dragon Flag hydrothermal field at 49.6 degree of the Southwest Indian Ridge, is abundant and pervasive distribution of lower temperature precipitated minerals ( such as Fe-silica or silica, Mn (Fe) oxides, sepiolite, pyrite, marcasite etc. ) in hydrothermal fields. Structures formed by lower temperature activities in active and dead hydrothermal fields are also obviously. High temperature precipitated minerals such as chalcopyrite etc. are rare or very limited in hydrothermal chimneys. Distribution of diverse low temperature hydrothermal activities is consistence with the deep heating mechanisms and hydrothermal circulations in the complex background of ultraslow spreading tectonics. Meanwhile, deeper and larger mineralization at certain locations along the ultraslow spreading ridges is also presumable.

  4. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert.

    PubMed

    Wierzchos, Jacek; DiRuggiero, Jocelyne; Vítek, Petr; Artieda, Octavio; Souza-Egipsy, Virginia; Škaloud, Pavel; Tisza, Michel; Davila, Alfonso F; Vílchez, Carlos; Garbayo, Inés; Ascaso, Carmen

    2015-01-01

    The Atacama Desert, northern Chile, is one of the driest deserts on Earth and, as such, a natural laboratory to explore the limits of life and the strategies evolved by microorganisms to adapt to extreme environments. Here we report the exceptional adaptation strategies of chlorophototrophic and eukaryotic algae, and chlorophototrophic and prokaryotic cyanobacteria to the hyperarid and extremely high solar radiation conditions occurring in this desert. Our approach combined several microscopy techniques, spectroscopic analytical methods, and molecular analyses. We found that the major adaptation strategy was to avoid the extreme environmental conditions by colonizing cryptoendolithic, as well as, hypoendolithic habitats within gypsum deposits. The cryptoendolithic colonization occurred a few millimeters beneath the gypsum surface and showed a succession of organized horizons of algae and cyanobacteria, which has never been reported for endolithic microbial communities. The presence of cyanobacteria beneath the algal layer, in close contact with sepiolite inclusions, and their hypoendolithic colonization suggest that occasional liquid water might persist within these sub-microhabitats. We also identified the presence of abundant carotenoids in the upper cryptoendolithic algal habitat and scytonemin in the cyanobacteria hypoendolithic habitat. This study illustrates that successful lithobiontic microbial colonization at the limit for microbial life is the result of a combination of adaptive strategies to avoid excess solar irradiance and extreme evapotranspiration rates, taking advantage of the complex structural and mineralogical characteristics of gypsum deposits-conceptually called "rock's habitable architecture." Additionally, self-protection by synthesis and accumulation of secondary metabolites likely produces a shielding effect that prevents photoinhibition and lethal photooxidative damage to the chlorophototrophs, representing another level of adaptation.

  5. Morphology and genesis of carbonate soils on the Kyle Canyon fan, Nevada, U.S.A.

    USGS Publications Warehouse

    Reheis, M.C.; Sowers, J.M.; Taylor, E.M.; McFadden, L.D.; Harden, J.W.

    1992-01-01

    The physical and chemical properties of soils formed in an arid climate on calcareous alluvium of the Kyle Canyon alluvial fan, southern Nevada, were studied in order to infer the rates and relative importance of various soil-forming processes. These studies included field and microscopic observations and analyses of thin sections, major oxides, extractable iron, and clay minerals. The results are interpreted to reflect five major pedogenic processes: (1) The calcic horizons and calcretes of Kyle Canyon soils form by precipitation of CaCO3, derived from eolian dust and alluvium, as clast coats, matrix cement, and massive layers. (2) The A and uppermost B horizons are essentially dust-derived, for they contain large amounts of detrital material not present in the alluvial parent material, and their major-oxide content is similar to that of modern dust. (3) Clay particles are translocated from A into B horizons. (4) Iron-bearing minerals in the near-surface B horizons are slowly oxidized. (5) Carbonate and aluminosilicate grains are both displaced and replaced by pedogenic CaCO3; the silica released by replacement of aluminosilicates may be locally precipitated as amorphous or opaline silica and (or) incorporated into newly formed palygorskite and sepiolite. Rates of soil development at Kyle Canyon are approximate due to uncertainties in age estimates. Some soil field properties change at rates that are similar to rates for soils formed in rhyolitic parent material near Mercury, Nevada. The rate of accumulation of CaCO3 (3-5 g m-2 yr-1) at Kyle Canyon is an order of magnitude faster than that near Mercury, but is comparable to rates calculated for soils in southern New Mexico and Utah. ?? 1992.

  6. Factors Affecting the Design of Slow Release Formulations of Herbicides Based on Clay-Surfactant Systems. A Methodological Approach

    PubMed Central

    Galán-Jiménez, María del Carmen; Mishael, Yael-Golda; Nir, Shlomo; Morillo, Esmeralda; Undabeytia, Tomás

    2013-01-01

    A search for clay-surfactant based formulations with high percentage of the active ingredient, which can yield slow release of active molecules is described. The active ingredients were the herbicides metribuzin (MZ), mesotrione (MS) and flurtamone (FL), whose solubilities were examined in the presence of four commercial surfactants; (i) neutral: two berols (B048, B266) and an alkylpolyglucoside (AG6202); (ii) cationic: an ethoxylated amine (ET/15). Significant percent of active ingredient (a.i.) in the clay/surfactant/herbicide formulations could be achieved only when most of the surfactant was added as micelles. MZ and FL were well solubilized by berols, whereas MS by ET/15. Sorption of surfactants on the clay mineral sepiolite occurred mostly by sorption of micelles, and the loadings exceeded the CEC. Higher loadings were determined for B266 and ET/15. The sorption of surfactants was modeled by using the Langmuir-Scatchard equation which permitted the determination of binding coefficients that could be used for further predictions of the sorbed amounts of surfactants under a wide range of clay/surfactant ratios. A possibility was tested of designing clay-surfactant based formulations of certain herbicides by assuming the same ratio between herbicides and surfactants in the formulations as for herbicides incorporated in micelles in solution. Calculations indicated that satisfactory FL formulations could not be synthesized. The experimental fractions of herbicides in the formulations were in agreement with the predicted ones for MS and MZ. The validity of this approach was confirmed in in vitro release tests that showed a slowing down of the release of a.i. from the designed formulations relative to the technical products. Soil dissipation studies with MS formulations also showed improved bioactivity of the clay-surfactant formulation relative to the commercial one. This methodological approach can be extended to other clay-surfactant systems for encapsulation and slow release of target molecules of interest. PMID:23527087

  7. Laboratory Far-infrared Spectroscopy Of Terrestrial Phyllosilicates To Support Analysis Of Cosmic Dust Spectra.

    NASA Astrophysics Data System (ADS)

    Yesiltas, Mehmet; Brusentsova, T.; Peale, R.; Maukonen, D.; Figueiredo, P.; Harlow, G. H.; Ebel, D. S.; Nissinboim, A.; Sherman, K.; Lisse, C. M.

    2012-01-01

    Poster Abstract: 219th AAS Meeting M. Yesiltas1, T. Brusentsova1, R. E. Peale1, D. Maukonen1, P. Figueiredo1, G. E. Harlow2, D. S. Ebel2, A. Nissinboim2, K. Sherman2, and C. M. Lisse3 Remote spectral detection of hydrated minerals is of general interest in the solar system and dusty circumstellar disks. This paper presents spectroscopy of terrestrial phyllosilicate minerals in the wavelength range 15 - 250 µm to support interpretation of returned data from far-IR space-missions such as the Herschel Space Observatory. The far-IR spectral region beyond 15 micron wavelength is especially diagnostic of mineral composition and crystal structure. Relatively little far-IR spectral data exists in the literature on suitably-characterized naturally-occurring phyllosilicate minerals in the wavelength range 60-210 microns corresponding to the PACS instrument of Herschel Space Observatory. Extending the database of laboratory far-IR spectra of terrestrial mineral analogs is therefore desirable and timely. Seventeen phyllosilicate minerals expected in various astronomical environments were sampled from the American Museum of Natural History for diversity and astrophysical relevancy, based on their identification in Stardust, in stratospheric IDP samples, or in meteorites. These include serpentines (Antigorite and Chrysotile), smectites (Talc, Pyrophyllite, Vermiculite, Montmorillonite, Beidellite, Saponite, Nontronite and Hectorite), chlorites (Clinochlore), micas (Muscovite, Paragonite, Margarite, Clintonite, Biotite and Illite), and kaolinites (Dickite, Nacrite, Kaolinite, Halloysite, Attapulgite and Sepiolite). Spectra of micron-sized powder suspensions in polyethelyne pellets reveal prominent and characteristic far-IR features, which differ significantly in some cases from already published spectra, where available. Acknowledgements : This research was supported by NASA-JPL Contract # 1327221. 1Department of Physics, University of Central Florida, Orlando FL 32816 USA2American Museum of Natural History, New York NY 10024 USA3Johns Hopkins University Applied Physics Laboratory, Laurel MD 20723 USA

  8. Hyperspectral image analysis for the determination of alteration minerals in geothermal fields: Çürüksu (Denizli) Graben, Turkey

    NASA Astrophysics Data System (ADS)

    Uygur, Merve; Karaman, Muhittin; Kumral, Mustafa

    2016-04-01

    Çürüksu (Denizli) Graben hosts various geothermal fields such as Kızıldere, Yenice, Gerali, Karahayıt, and Tekkehamam. Neotectonic activities, which are caused by extensional tectonism, and deep circulation in sub-volcanic intrusions are heat sources of hydrothermal solutions. The temperature of hydrothermal solutions is between 53 and 260 degree Celsius. Phyllic, argillic, silicic, and carbonatization alterations and various hydrothermal minerals have been identified in various research studies of these areas. Surfaced hydrothermal alteration minerals are one set of potential indicators of geothermal resources. Developing the exploration tools to define the surface indicators of geothermal fields can assist in the recognition of geothermal resources. Thermal and hyperspectral imaging and analysis can be used for defining the surface indicators of geothermal fields. This study tests the hypothesis that hyperspectral image analysis based on EO-1 Hyperion images can be used for the delineation and definition of surfaced hydrothermal alteration in geothermal fields. Hyperspectral image analyses were applied to images covering the geothermal fields whose alteration characteristic are known. To reduce data dimensionality and identify spectral endmembers, Kruse's multi-step process was applied to atmospherically and geometrically-corrected hyperspectral images. Minimum Noise Fraction was used to reduce the spectral dimensions and isolate noise in the images. Extreme pixels were identified from high order MNF bands using the Pixel Purity Index. n-Dimensional Visualization was utilized for unique pixel identification. Spectral similarities between pixel spectral signatures and known endmember spectrum (USGS Spectral Library) were compared with Spectral Angle Mapper Classification. EO-1 Hyperion hyperspectral images and hyperspectral analysis are sensitive to hydrothermal alteration minerals, as their diagnostic spectral signatures span the visible and shortwave infrared seen in geothermal fields. Hyperspectral analysis results indicated that kaolinite, smectite, illite, montmorillonite, and sepiolite minerals were distributed in a wide area, which covered the hot spring outlet. Rectorite, lizardite, richterite, dumortierite, nontronite, erionite, and clinoptilolite were observed occasionally.

  9. Insightful understanding of the role of clay topology on the stability of biomimetic hybrid chitosan-clay thin films and CO2-dried porous aerogel microspheres.

    PubMed

    Frindy, Sana; Primo, Ana; Qaiss, Abou El Kacem; Bouhfid, Rachid; Lahcini, Mohamed; Garcia, Hermenegildo; Bousmina, Mosto; El Kadib, Abdelkrim

    2016-08-01

    Three natural clay-based microstructures, namely layered montmorillonite (MMT), nanotubular halloysite (HNT) and micro-fibrillar sepiolite (SP) were used for the synthesis of hybrid chitosan-clay thin films and porous aerogel microspheres. At a first glance, a decrease in the viscosity of the three gel-forming solutions was noticed as a result of breaking the mutual polymeric chains interaction by the clay microstructure. Upon casting, chitosan-clay films displayed enhanced hydrophilicity in the order CS

  10. Electrochemical and thermal studies of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Lu, Wenquan

    The structural, electrochemical, and thermal characteristics of carbonaceous anodes and LiNi0.8Co0.2O2 cathode in Li-ion cells were investigated using various electrochemical and calorimetric techniques. The electrode-electrolyte interface was investigated for various carbonaceous materials such as graphite with different shapes, surface modified graphite with copper, and novel carbon material derived from sepiolite template. The structural and morphological properties were determined using XRD, TGA, SEM, BET techniques. The electrochemical characteristics were studied using conventional electrochemical techniques such as galvanostatic charge/discharge cycling, cyclic voltammetry, and impedance (AC and DC) methods. It was observed that the electrochemical active surface area instead of the BET area plays a critical role in the irreversible capacity loss associated with the carbonaceous anodes. It was also found that the exfoliation of carbon anodes especially in PC based electrolyte could be significantly reduced by protective copper coating of the natural graphite. LiNi0.8Co0.2O2 cathode material was found to possess high energy density and excellent cycling characteristics. The structural and electrochemical properties of LiNi0.8Co 0.2O2 synthesized by sol-gel and solid-state methods were studied. Results of the AC impedance spectroscopy carried out on LiNi 0.8Co0.2O2 cathodes revealed that the charge transfer resistance is a function of the state of charge. The solid state Li + diffusion was calculated to be around 10-13 cm2/s in the oxide particle by Warburg impedance method. In addition, the cell fabricated with LiNi0.8Co0.2O 2 cathode showed excellent energy and power performance under static and dynamic load conditions that prevail in Electric and Hybrid Vehicles. Thermal properties of the LiNi0.8Co0.2O2 cathode, carbonaceous anodes, and Li-ion cells fabricated with these electrodes were also investigated using isothermal microcalorimetry (IMC), differential scanning calorimetry (DSC) and accelerated rate calorimetry (ARC). Isothermal micro-calorimeter was used to investigate the thermal behavior of the Li-ion cell and its electrodes. The overall heat changes during charge-discharge processes were explained in terms of the irreversible (resistive) and reversible (entropic) heats. It was observed that the reversible heat strongly depends on the structural or phase change occurring in the electrodes during Li-ion insertion and extraction reactions. It was also found that the contribution of the reversible heat to the overall cell heat generation rate was significant only at low cycling rates.

  11. 40Ar/39Ar dating and zircon chronochemistry for the Izu-Bonin rear arc, IODP site U1437

    NASA Astrophysics Data System (ADS)

    Schmitt, A. K.; Konrad, K.; Andrews, G. D.; Horie, K.; Brown, S. R.; Koppers, A. A. P.; Busby, C.; Tamura, Y.

    2016-12-01

    The scientific objective of IODP Expedition 350 drilling at Site U1437 (31°47.390'N, 139°01.580'E) was to reveal the "missing half of the subduction factory": the rear arc of a long-lived intraoceanic subduction zone. Site U1437 lies in a 50 km long and 20 km wide volcano-bounded basin, 90 km west of the Izu arc front, and is the only IODP site drilled in the rear arc. The Izu rear arc is dominated by Miocene basaltic to dacitic seamount chains, which strike at a high angle to the arc front. Radiometric dating targeted a single igneous unit (1390 mbsf), and fine to coarse volcaniclastic units for which we present zircon and 40Ar/39Ar (hornblende, plagioclase, and groundmass) age determinations. All zircons analyzed as grain separates were screened for contamination from drill-mud (Andrews et al., 2016) by analyzing trace elements and, where material was available, O and Hf isotope compositions. Igneous Unit 1 is a rhyolite sheet and yielded concordant in-situ and crystal separate U-Pb zircon ages (13.7±0.3 Ma; MSWD = 1.3; n = 40 spots), whereas the 40Ar/39Ar hornblende plateau age (12.9±0.3; MSWD = 1.1; n = 9 steps) is slightly younger, possibly reflecting pre-eruptive zircon crystallization, or alteration of hornblende. U-Pb zircon and 40Ar/39Ar plateau ages from samples above igneous Unit 1 are concordant with biostratigraphic and paleomagnetic ages (available to 1300 mbsf), but plagioclase and groundmass samples below 1300 m become younger with depth, hinting at post-depositional alteration. A single zircon from 1600 mbsf yielded a U-Pb age of 15.4±1.8 Ma; its trace element composition resembles other igneous zircons from U1437, and is tentatively interpreted as a Middle Miocene age for the lowermost lithostratigraphic unit VII. Oxygen and Hf isotopic values of igneous zircon indicate mantle origins, with some influence of assimilation of hydrothermally altered oceanic crust evident in sub-mantle oxygen isotopic compositions. Lessons from site U1437 are that integrated chronochemistry is essential for achieving accurate age models in oceanic drilling. Reference: Andrews, G. D., Schmitt, A. K., Busby, C. J., Brown, S. R., Blum, P., & Harvey, J. (2016). Age and compositional data of zircon from sepiolite drilling mud to identify contamination of ocean drilling samples. G3. doi: 10.1002/2016GC006397.

  12. Toxicological evaluation of clay minerals and derived nanocomposites: a review.

    PubMed

    Maisanaba, Sara; Pichardo, Silvia; Puerto, María; Gutiérrez-Praena, Daniel; Cameán, Ana M; Jos, Angeles

    2015-04-01

    Clays and clay minerals are widely used in many facets of our society. This review addresses the main clays of each phyllosilicate groups, namely, kaolinite, montmorillonite (Mt) and sepiolite, placing special emphasis on Mt and kaolinite, which are the clays that are more frequently used in food packaging, one of the applications that are currently exhibiting higher development. The improvements in the composite materials obtained from clays and polymeric matrices are remarkable and well known, but the potential toxicological effects of unmodified or modified clay minerals and derived nanocomposites are currently being investigated with increased interest. In this sense, this work focused on a review of the published reports related to the analysis of the toxicological profile of commercial and novel modified clays and derived nanocomposites. An exhaustive review of the main in vitro and in vivo toxicological studies, antimicrobial activity assessments, and the human and environmental impacts of clays and derived nanocomposites was performed. From the analysis of the scientific literature different conclusions can be derived. Thus, in vitro studies suggest that clays in general induce cytotoxicity (with dependence on the clay, concentration, experimental system, etc.) with different underlying mechanisms such as necrosis/apoptosis, oxidative stress or genotoxicity. However, most of in vivo experiments performed in rodents showed no clear evidences of systemic toxicity even at doses of 5000mg/kg. Regarding to humans, pulmonary exposure is the most frequent, and although clays are usually mixed with other minerals, they have been reported to induce pneumoconiosis per se. Oral exposure is also common both intentionally and unintentionally. Although they do not show a high toxicity through this pathway, toxic effects could be induced due to the increased or reduced exposure to mineral elements. Finally, there are few studies about the effects of clay minerals on wildlife, with laboratory trials showing contradictory outcomes. Clay minerals have different applications in the environment, thus with a strict control of the concentrations used, they can provide beneficial uses. Despite the extensive number of reports available, there is also a need of systematic in vitro-in vivo extrapolation studies, with still scarce information on toxicity biomarkers such as inmunomodulatory effects or alteration of the genetic expression. In conclusion, a case by case toxicological evaluation is required taking into account that different clays have their own toxicological profiles, their modification can change this profile, and the potential increase of the human/environmental exposure to clay minerals due to their novel applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Experimental examination of the Mg-silicate-carbonate system at ambient temperature: Implications for alkaline chemical sedimentation and lacustrine carbonate formation

    NASA Astrophysics Data System (ADS)

    Tutolo, Benjamin M.; Tosca, Nicholas J.

    2018-03-01

    Despite their clear economic significance, Cretaceous presalt carbonates of the South Atlantic continental margins are not well-described by published facies models. This knowledge gap arises, in part, because the chemical processes that generate distinctive sedimentary products in alkaline, non-marine environments are poorly understood. Here, we use constraints inferred from reported mineralogical and geochemical features of presalt carbonate rocks to design and perform a suite of laboratory experiments to quantify the processes of alkaline chemical sedimentation. Using real-time observations of in-situ fluid chemistry, post-experiment analysis of precipitated solids, and geochemical modeling tools, we illustrate that spherulitic carbonates and Mg-silicate clays observed in presalt carbonates were likely precipitated from elevated pH (∼10-10.5) waters with high concentrations of silica and alkali cations typical of intermediate to felsic rocks, such as Na+ and K+. Charge balance constraints require that these cations were not counterbalanced to any significant degree by anions typical of seawater, such as Cl- and SO4-, which implies minimal seawater involvement in presalt deposition. Experimental data suggest that, at this alkaline pH, only modest concentrations (i.e., ∼0.5-1 mmol/kg) of Ca++ would have been required to precipitate spheroidal CaCO3. Given the rapid rates of CaCO3 nucleation and growth under such conditions, it is unlikely that Ca++ concentrations in lake waters ever exceeded these values, and sustained chemical fluxes are therefore required for extensive sediment accumulation. Moreover, our experiments indicate that the original mineralogy of presalt CaCO3 could have been calcite or aragonite, but the differing time scales of precipitation between CaCO3 and Mg-silicates would have tended to skew the Mg/Ca ratio in solution towards elevated values which favor aragonite. Mg-silicate nucleation and growth rates measured during our experiments suggest that elevated SiO2(aq) and high pH would have limited (to 1-2 mmol/kg) the Mg++ concentrations required to precipitate poorly crystalline Mg-silicates, which, through time, crystallize to minerals such as sepiolite and stevensite. Although our results provide robust constraints on the geochemistry of Mg-silicate-carbonate interactions during alkaline lake sedimentation, they leave open the potential for biological contributions to sedimentation within the presalt basins, as well as the hydrogeochemical mechanisms that maintained a productive carbonate factory of the scale observed along the South Atlantic margins.

  14. A Tale of two Cities: Causes of Different Toxic Lead Releases From Lead and Brass Plumbing Components

    NASA Astrophysics Data System (ADS)

    Maynard, J. B.; Mast, D.; Hart, P.

    2006-05-01

    High lead (Pb) levels in drinking water have become a major health issue for many water distribution systems, especially Washington DC. This Pb comes from the dissolution of Pb minerals that coat lead service lines and Pb-containing brasses and solders. Using a variety of spectroscopic techniques (XRF, XRD, FTIR, laser micro-Raman), we studied pipe samples from Washington DC and from a similar utility system that has not had Pb releases. Both utilities use surface water and until recently both used chlorine as a disinfectant. DC switched to choramine disinfection, whereas the second utility did not. We found that both utilities have a similar array of Pb minerals present in their pipes, and that these minerals occur in distinct layers. From the pipe surface towards the water the sequence is litharge (PbO), cerussite (PbCO3), plattnerite (PbO2) and pyromorphite (Pb5[PO4]3F). We have also seen that the surface layer for DC is more discontinuous than in the pipes from utility 2 and the litharge from deeper layers is exposed. This mineral is especially soluble and may contribute to the extra Pb found in the DC water. We speculate that the switch to chloramine disinfection produced a lowering of the Eh at the scale surface with consequent dissolution of PbO2 followed by physical disruption of the pipe scales. Phosphate addition is now being practiced by both utilities for Pb control, and the PO4 content of the DC scales is increasing. XRD analysis shows a decrease in litharge and a corresponding increase in pyromorphite. For both utilities, we found that by far the most severe corrosion and scale buildup occurs at the junctions between brass and lead pipes. We attribute this to a galvanic corrosion of the brass by the adjacent lead sections. A consequence is that a portion of the Pb detected at customer's taps is coming not from the Pb service branches but from accelerated corrosion of Pb-containing brasses. Further reductions in Pb levels will require that releases from brass also be addressed. In addition to the Pb minerals found, which are all fairly well crystallized, there is in both utilities a surface layer of x-ray amorphous manganese oxide, which has a Raman spectrum similar to ramsdellite. For Utility 2, there is also an x-ray amorphous magnesium silicate. We speculate that this may be a form of sepiolite.

  15. A call to expand regulation to all carcinogenic fibrous minerals

    NASA Astrophysics Data System (ADS)

    Baumann, F.; Steele, I.; Ambrosi, J.; Carbone, M.

    2013-05-01

    The regulatory term "asbestos" groups only the six fibrous minerals that were commercially used among approximately 400. The carcinogenicity of these six regulated minerals has been largely demonstrated and is related to fiber structure, fiber length/diameter ratio, and bio-persistence. From a public perception, the generic term "asbestos" refers to the fibrous minerals that cause asbestosis, mesothelioma and other cancers. However, other non-regulated fibrous minerals are potentially as dangerous as the regulatory asbestos because they share similar physical and chemical properties, epidemiological studies have demonstrated their relationship with asbestos-related diseases, and both in vitro and in vivo experiments have established the toxicity of these minerals. For example, the non-regulated asbestiform winchite and richterite minerals that contaminated the vermiculite mined from Libby, Montana, (USA) were associated with mesothelioma, lung cancer and asbestosis observed among the area's residents and miners. Many other examples of non-regulated carcinogenic fibrous minerals include, but are not limited to, antigorite, arfvedsonite, balangeroite, carlosturanite, erionite, fluoro-edenite, hornblende, mordenite, palygorskite, and sepiolite. To propose a regulatory definition that would provide protection from all carcinogenic fibers, we have conducted an interdisciplinary literature review to compare the characteristics of "asbestos" and of non-regulated mineral fibers that relate to carcinogenicity. We specifically studied two non-regulated fibrous minerals that are associated with asbestos-related diseases: the serpentine antigorite and the zeolite erionite. Both examples underscore the problem of regulation based on commercial, rather than scientific principles: 1) the occurrence of fibrous antigorite in materials used to pave roads has been correlated with high mesothelioma rates in New Caledonia. Antigorite was also the cause of asbestosis in Poland, and in vitro and in vivo studies have shown its toxic and carcinogenic properties; 2) the carcinogenic properties of erionite have been demonstrated, and erionite has been associated with a mesothelioma epidemic in Anatolia, Turkey. Erionite is also widespread in areas of north central USA, where it is contained in gravel paving stone, and is cause for concern due to increased commercial traffic. Numerous studies have shown that non-regulated fibrous materials pose similar health hazards to regulated "asbestos". An increase in human activities in areas where these fibrous minerals are present, such as in surficial rock and soil, will result in the generation of airborne dust, exposing people to carcinogenic fibers. The current limited regulation leads people to believe that only the six mineral fibers referred to as "asbestos" are dangerous. We propose that fibrous minerals should be regulated as a single group, as they have similar deleterious effects on the human body. Regulations would be simplified and more effective if they embrace all carcinogenic fibrous minerals.

  16. Petrographic and geochemical evidence for the formation of primary, bacterially induced lacustrine dolomite: La Roda 'white earth' (Pliocene, Central Spain)

    USGS Publications Warehouse

    Garcia, Del; Cura, M.A.; Calvo, J.P.; Ordonez, S.; Jones, B.F.; Canaveras, J.C.

    2001-01-01

    Upper Pliocene dolomites ('white earth') from La Roda, Spain, offer a good opportunity to evaluate the process of dolomite formation in lakes. The relatively young nature of the deposits could allow a link between dolomites precipitated in modern lake systems and those present in older lacustrine formations. The La Roda Mg-carbonates (dolomite unit) occur as a 3??5- to 4-m- thick package of poorly indurated, white, massive dolomite beds with interbedded thin deposits of porous carbonate displaying root and desiccation traces as well as local lenticular gypsum moulds. The massive dolomite beds consist mainly of loosely packed 1- to 2-??m-sized aggregates of dolomite crystals exhibiting poorly developed faces, which usually results in a subrounded morphology of the crystals. Minute rhombs of dolomite are sparse within the aggregates. Both knobbly textures and clumps of spherical bodies covering the crystal surfaces indicate that bacteria were involved in the formation of the dolomites. In addition, aggregates of euhedral dolomite crystals are usually present in some more clayey (sepiolite) interbeds. The thin porous carbonate (mostly dolomite) beds exhibit both euhedral and subrounded, bacterially induced dolomite crystals. The carbonate is mainly Ca-dolomite (51-54 mol% CaCO3), showing a low degree of ordering (degree of ordering ranges from 0??27 to 0??48). Calcite is present as a subordinate mineral in some samples. Sr, Mn and Fe contents show very low correlation coefficients with Mg/Ca ratios, whereas SiO2 and K contents are highly correlated. ??18O- and ??13C-values in dolomites range from -3??07??? to 5??40??? PDB (mean = 0??06, ?? = 1??75) and from -6??34??? to -0??39??? PDB (mean = -3??55, ?? = 1??33) respectively. Samples containing significant amounts of both dolomite and calcite do not in general show significant enrichment or depletion in 18O and 13C between the two minerals. The correlation coefficient between ??18O and ??13C for dolomite is extremely low and negative (r = -0??05), whereas it is higher and positive (r = 0??47) for calcite. The lacustrine dolomite deposit from La Roda is interpreted mainly as a result of primary precipitation of dolomite in a shallow, hydrologically closed perennial lake. The lake was supplied by highly saturated HCO3-/CO32- groundwater that leached dolomitic Mesozoic formations. Precipitation of dolomite from alkaline lake waters took place under a semi-arid to arid climate. However, according to our isotopic data, strong evaporative conditions were not required for the formation of the La Roda dolomite. A significant contribution by bacteria to the formation of the dolomites is assumed in view of both petrographic and geochemical evidence.

  17. Calcic soils and calcretes in the southwestern United States

    USGS Publications Warehouse

    Bachman, George Odell; Machette, Michael N.

    1977-01-01

    Secondary calcium carbonate of diverse origins, 'caliche' of many authors, is widespread in the southwestern United States. 'Caliche' includes various carbonates such as calcic soils and products of groundwater cementation. The term 'caliche' is generally avoided in this report in favor of such terms as calcrete, calcic soils, and pervasively cemented deposits. Criteria for the recognition of various types of calcrete of diverse origins include field relations and laboratory data. Calcic soils provide a comprehensive set of characteristics that aid in their recognition in the field. These characteristics include a distinctive morphology that is zoned horizontally and can frequently be traced over tens to hundreds of square kilometers. The major process in the formation of pedogenic calcrete and calic soils is the leaching of calcium carbonate from upper soil horizons by downward percolating soil solutions and reprecipitation of the carbonate in alluvial horizons near the base of the soil profile. The formation of pedogenic calcrete involves many factors including climate, source of carbonate, and tectonic stability of the geomorphic surface on which the calcrete is deposited. Most of the carbonate in pedogenic calcrete is probably derived from windblown sand, dust, and rain. Calcic soils and pedogenic calcretes follow a six-stage sequence morphologic development and is based on a classification devised by Gile, Peterson and Grossman in 1966. The .six morphologic stages of carbonate deposition in soils are related to the relative age of the soil and are as follows: I. The first or youngest stage includes filamentous or faint coatings of carbonate on detrital grains. II. The second stage includes pebble coatings which are continuous; firm carbonate nodules are few to common. III. The third stage includes coalesced nodules which occur in a friable or disseminated carbonate matrix. IV. The fourth stage includes platy, firmly cemented matrix which engulfs nodules; horizon is plugged to downward moving solutions. V. The fifth stage includes soils which are platy to tabular, dense, strongly cemented. A well-developed laminar layer occurs on the upper surface. VI. The sixth and most advanced stage is massive, multilaminar, and strongly cemented calcrete with abundant pisoliths, the upper surface of which may be brecciated. Pisoliths may indicate many generations of brecciation and reformation. In general calcic soils include stages I through III and are friable to moderately indurated; whereas pedogenic calcretes include stages IV through VI and are dense and strongly indurated. In a single pedon the morphologic stage of carbonate deposition decreases downward in the profile. The stage of development may be used in local regions for correlation and determination of relative ages of soils and geomorphic surfaces. Some structures observed in pedogenic calcretes may be present in other types of calcrete but the horizontal zonation typical of deposits of soil processes is absent. Laminar structure in particular is not restricted to pedogenic deposits and is common in many varieties of calcrete. Very little chemical change occurs in the noncalcareous nonclayey fractions of calcretes with age; but clay minerals within calcretes undergo a complex history of authigenesis. There is a depletion of magnesium in the calcareous portion and an enrichment of magnesium in the clayey portion of a calcrete with age. In keeping with this relationship, montmorillonite, or mixed layer montmorillonite-illite, is common in younger calcretes; whereas the high magnesium-silicate clays, sepiolite and palygorskite, are common in older calcretes. This indicates that the magnesium depleted from the carbonate is redistributed authigenically in clay minerals. The mobility of carbonate introduces many problems in attempts to date calcretes directly. Although the relative ages of soils within a province may be determined by quant

Top