DNAAlignEditor: DNA alignment editor tool
Sanchez-Villeda, Hector; Schroeder, Steven; Flint-Garcia, Sherry; Guill, Katherine E; Yamasaki, Masanori; McMullen, Michael D
2008-01-01
Background With advances in DNA re-sequencing methods and Next-Generation parallel sequencing approaches, there has been a large increase in genomic efforts to define and analyze the sequence variability present among individuals within a species. For very polymorphic species such as maize, this has lead to a need for intuitive, user-friendly software that aids the biologist, often with naïve programming capability, in tracking, editing, displaying, and exporting multiple individual sequence alignments. To fill this need we have developed a novel DNA alignment editor. Results We have generated a nucleotide sequence alignment editor (DNAAlignEditor) that provides an intuitive, user-friendly interface for manual editing of multiple sequence alignments with functions for input, editing, and output of sequence alignments. The color-coding of nucleotide identity and the display of associated quality score aids in the manual alignment editing process. DNAAlignEditor works as a client/server tool having two main components: a relational database that collects the processed alignments and a user interface connected to database through universal data access connectivity drivers. DNAAlignEditor can be used either as a stand-alone application or as a network application with multiple users concurrently connected. Conclusion We anticipate that this software will be of general interest to biologists and population genetics in editing DNA sequence alignments and analyzing natural sequence variation regardless of species, and will be particularly useful for manual alignment editing of sequences in species with high levels of polymorphism. PMID:18366684
Graph edit distance from spectral seriation.
Robles-Kelly, Antonio; Hancock, Edwin R
2005-03-01
This paper is concerned with computing graph edit distance. One of the criticisms that can be leveled at existing methods for computing graph edit distance is that they lack some of the formality and rigor of the computation of string edit distance. Hence, our aim is to convert graphs to string sequences so that string matching techniques can be used. To do this, we use a graph spectral seriation method to convert the adjacency matrix into a string or sequence order. We show how the serial ordering can be established using the leading eigenvector of the graph adjacency matrix. We pose the problem of graph-matching as a maximum a posteriori probability (MAP) alignment of the seriation sequences for pairs of graphs. This treatment leads to an expression in which the edit cost is the negative logarithm of the a posteriori sequence alignment probability. We compute the edit distance by finding the sequence of string edit operations which minimizes the cost of the path traversing the edit lattice. The edit costs are determined by the components of the leading eigenvectors of the adjacency matrix and by the edge densities of the graphs being matched. We demonstrate the utility of the edit distance on a number of graph clustering problems.
Scherer, N M; Basso, D M
2008-09-16
DNATagger is a web-based tool for coloring and editing DNA, RNA and protein sequences and alignments. It is dedicated to the visualization of protein coding sequences and also protein sequence alignments to facilitate the comprehension of evolutionary processes in sequence analysis. The distinctive feature of DNATagger is the use of codons as informative units for coloring DNA and RNA sequences. The codons are colored according to their corresponding amino acids. It is the first program that colors codons in DNA sequences without being affected by "out-of-frame" gaps of alignments. It can handle single gaps and gaps inside the triplets. The program also provides the possibility to edit the alignments and change color patterns and translation tables. DNATagger is a JavaScript application, following the W3C guidelines, designed to work on standards-compliant web browsers. It therefore requires no installation and is platform independent. The web-based DNATagger is available as free and open source software at http://www.inf.ufrgs.br/~dmbasso/dnatagger/.
PFAAT version 2.0: a tool for editing, annotating, and analyzing multiple sequence alignments.
Caffrey, Daniel R; Dana, Paul H; Mathur, Vidhya; Ocano, Marco; Hong, Eun-Jong; Wang, Yaoyu E; Somaroo, Shyamal; Caffrey, Brian E; Potluri, Shobha; Huang, Enoch S
2007-10-11
By virtue of their shared ancestry, homologous sequences are similar in their structure and function. Consequently, multiple sequence alignments are routinely used to identify trends that relate to function. This type of analysis is particularly productive when it is combined with structural and phylogenetic analysis. Here we describe the release of PFAAT version 2.0, a tool for editing, analyzing, and annotating multiple sequence alignments. Support for multiple annotations is a key component of this release as it provides a framework for most of the new functionalities. The sequence annotations are accessible from the alignment and tree, where they are typically used to label sequences or hyperlink them to related databases. Sequence annotations can be created manually or extracted automatically from UniProt entries. Once a multiple sequence alignment is populated with sequence annotations, sequences can be easily selected and sorted through a sophisticated search dialog. The selected sequences can be further analyzed using statistical methods that explicitly model relationships between the sequence annotations and residue properties. Residue annotations are accessible from the alignment viewer and are typically used to designate binding sites or properties for a particular residue. Residue annotations are also searchable, and allow one to quickly select alignment columns for further sequence analysis, e.g. computing percent identities. Other features include: novel algorithms to compute sequence conservation, mapping conservation scores to a 3D structure in Jmol, displaying secondary structure elements, and sorting sequences by residue composition. PFAAT provides a framework whereby end-users can specify knowledge for a protein family in the form of annotation. The annotations can be combined with sophisticated analysis to test hypothesis that relate to sequence, structure and function.
Local alignment of two-base encoded DNA sequence
Homer, Nils; Merriman, Barry; Nelson, Stanley F
2009-01-01
Background DNA sequence comparison is based on optimal local alignment of two sequences using a similarity score. However, some new DNA sequencing technologies do not directly measure the base sequence, but rather an encoded form, such as the two-base encoding considered here. In order to compare such data to a reference sequence, the data must be decoded into sequence. The decoding is deterministic, but the possibility of measurement errors requires searching among all possible error modes and resulting alignments to achieve an optimal balance of fewer errors versus greater sequence similarity. Results We present an extension of the standard dynamic programming method for local alignment, which simultaneously decodes the data and performs the alignment, maximizing a similarity score based on a weighted combination of errors and edits, and allowing an affine gap penalty. We also present simulations that demonstrate the performance characteristics of our two base encoded alignment method and contrast those with standard DNA sequence alignment under the same conditions. Conclusion The new local alignment algorithm for two-base encoded data has substantial power to properly detect and correct measurement errors while identifying underlying sequence variants, and facilitating genome re-sequencing efforts based on this form of sequence data. PMID:19508732
REDIdb: the RNA editing database.
Picardi, Ernesto; Regina, Teresa Maria Rosaria; Brennicke, Axel; Quagliariello, Carla
2007-01-01
The RNA Editing Database (REDIdb) is an interactive, web-based database created and designed with the aim to allocate RNA editing events such as substitutions, insertions and deletions occurring in a wide range of organisms. The database contains both fully and partially sequenced DNA molecules for which editing information is available either by experimental inspection (in vitro) or by computational detection (in silico). Each record of REDIdb is organized in a specific flat-file containing a description of the main characteristics of the entry, a feature table with the editing events and related details and a sequence zone with both the genomic sequence and the corresponding edited transcript. REDIdb is a relational database in which the browsing and identification of editing sites has been simplified by means of two facilities to either graphically display genomic or cDNA sequences or to show the corresponding alignment. In both cases, all editing sites are highlighted in colour and their relative positions are detailed by mousing over. New editing positions can be directly submitted to REDIdb after a user-specific registration to obtain authorized secure access. This first version of REDIdb database stores 9964 editing events and can be freely queried at http://biologia.unical.it/py_script/search.html.
A Lossy Compression Technique Enabling Duplication-Aware Sequence Alignment
Freschi, Valerio; Bogliolo, Alessandro
2012-01-01
In spite of the recognized importance of tandem duplications in genome evolution, commonly adopted sequence comparison algorithms do not take into account complex mutation events involving more than one residue at the time, since they are not compliant with the underlying assumption of statistical independence of adjacent residues. As a consequence, the presence of tandem repeats in sequences under comparison may impair the biological significance of the resulting alignment. Although solutions have been proposed, repeat-aware sequence alignment is still considered to be an open problem and new efficient and effective methods have been advocated. The present paper describes an alternative lossy compression scheme for genomic sequences which iteratively collapses repeats of increasing length. The resulting approximate representations do not contain tandem duplications, while retaining enough information for making their comparison even more significant than the edit distance between the original sequences. This allows us to exploit traditional alignment algorithms directly on the compressed sequences. Results confirm the validity of the proposed approach for the problem of duplication-aware sequence alignment. PMID:22518086
K2 and K2*: efficient alignment-free sequence similarity measurement based on Kendall statistics.
Lin, Jie; Adjeroh, Donald A; Jiang, Bing-Hua; Jiang, Yue
2018-05-15
Alignment-free sequence comparison methods can compute the pairwise similarity between a huge number of sequences much faster than sequence-alignment based methods. We propose a new non-parametric alignment-free sequence comparison method, called K2, based on the Kendall statistics. Comparing to the other state-of-the-art alignment-free comparison methods, K2 demonstrates competitive performance in generating the phylogenetic tree, in evaluating functionally related regulatory sequences, and in computing the edit distance (similarity/dissimilarity) between sequences. Furthermore, the K2 approach is much faster than the other methods. An improved method, K2*, is also proposed, which is able to determine the appropriate algorithmic parameter (length) automatically, without first considering different values. Comparative analysis with the state-of-the-art alignment-free sequence similarity methods demonstrates the superiority of the proposed approaches, especially with increasing sequence length, or increasing dataset sizes. The K2 and K2* approaches are implemented in the R language as a package and is freely available for open access (http://community.wvu.edu/daadjeroh/projects/K2/K2_1.0.tar.gz). yueljiang@163.com. Supplementary data are available at Bioinformatics online.
A genome-wide map of hyper-edited RNA reveals numerous new sites.
Porath, Hagit T; Carmi, Shai; Levanon, Erez Y
2014-08-27
Adenosine-to-inosine editing is one of the most frequent post-transcriptional modifications, manifested as A-to-G mismatches when comparing RNA sequences with their source DNA. Recently, a number of RNA-seq data sets have been screened for the presence of A-to-G editing, and hundreds of thousands of editing sites identified. Here we show that existing screens missed the majority of sites by ignoring reads with excessive ('hyper') editing that do not easily align to the genome. We show that careful alignment and examination of the unmapped reads in RNA-seq studies reveal numerous new sites, usually many more than originally discovered, and in precisely those regions that are most heavily edited. Specifically, we discover 327,096 new editing sites in the heavily studied Illumina Human BodyMap data and more than double the number of detected sites in several published screens. We also identify thousands of new sites in mouse, rat, opossum and fly. Our results establish that hyper-editing events account for the majority of editing sites.
IVisTMSA: Interactive Visual Tools for Multiple Sequence Alignments.
Pervez, Muhammad Tariq; Babar, Masroor Ellahi; Nadeem, Asif; Aslam, Naeem; Naveed, Nasir; Ahmad, Sarfraz; Muhammad, Shah; Qadri, Salman; Shahid, Muhammad; Hussain, Tanveer; Javed, Maryam
2015-01-01
IVisTMSA is a software package of seven graphical tools for multiple sequence alignments. MSApad is an editing and analysis tool. It can load 409% more data than Jalview, STRAP, CINEMA, and Base-by-Base. MSA comparator allows the user to visualize consistent and inconsistent regions of reference and test alignments of more than 21-MB size in less than 12 seconds. MSA comparator is 5,200% efficient and more than 40% efficient as compared to BALiBASE c program and FastSP, respectively. MSA reconstruction tool provides graphical user interfaces for four popular aligners and allows the user to load several sequence files at a time. FASTA generator converts seven formats of alignments of unlimited size into FASTA format in a few seconds. MSA ID calculator calculates identity matrix of more than 11,000 sequences with a sequence length of 2,696 base pairs in less than 100 seconds. Tree and Distance Matrix calculation tools generate phylogenetic tree and distance matrix, respectively, using neighbor joining% identity and BLOSUM 62 matrix.
Roux, Pierre-François; Frésard, Laure; Boutin, Morgane; Leroux, Sophie; Klopp, Christophe; Djari, Anis; Esquerré, Diane; Martin, Pascal G P; Zerjal, Tatiana; Gourichon, David; Pitel, Frédérique; Lagarrigue, Sandrine
2015-12-04
RNA editing is a posttranscriptional process leading to differences between genomic DNA and transcript sequences, potentially enhancing transcriptome diversity. With recent advances in high-throughput sequencing, many efforts have been made to describe mRNA editing at the transcriptome scale, especially in mammals, yielding contradictory conclusions regarding the extent of this phenomenon. We show, by detailed description of the 25 studies focusing so far on mRNA editing at the whole-transcriptome scale, that systematic sequencing artifacts are considered in most studies whereas biological replication is often neglected and multi-alignment not properly evaluated, which ultimately impairs the legitimacy of results. We recently developed a rigorous strategy to identify mRNA editing using mRNA and genomic DNA sequencing, taking into account sequencing and mapping artifacts, and biological replicates. We applied this method to screen for mRNA editing in liver and white adipose tissue from eight chickens and confirm the small extent of mRNA recoding in this species. Among the 25 unique edited sites identified, three events were previously described in mammals, attesting that this phenomenon is conserved throughout evolution. Deeper investigations on five sites revealed the impact of tissular context, genotype, age, feeding conditions, and sex on mRNA editing levels. More specifically, this analysis highlighted that the editing level at the site located on COG3 was strongly regulated by four of these factors. By comprehensively characterizing the mRNA editing landscape in chickens, our results highlight how this phenomenon is limited and suggest regulation of editing levels by various genetic and environmental factors. Copyright © 2016 Roux et al.
Roux, Pierre-François; Frésard, Laure; Boutin, Morgane; Leroux, Sophie; Klopp, Christophe; Djari, Anis; Esquerré, Diane; Martin, Pascal GP; Zerjal, Tatiana; Gourichon, David; Pitel, Frédérique; Lagarrigue, Sandrine
2015-01-01
RNA editing is a posttranscriptional process leading to differences between genomic DNA and transcript sequences, potentially enhancing transcriptome diversity. With recent advances in high-throughput sequencing, many efforts have been made to describe mRNA editing at the transcriptome scale, especially in mammals, yielding contradictory conclusions regarding the extent of this phenomenon. We show, by detailed description of the 25 studies focusing so far on mRNA editing at the whole-transcriptome scale, that systematic sequencing artifacts are considered in most studies whereas biological replication is often neglected and multi-alignment not properly evaluated, which ultimately impairs the legitimacy of results. We recently developed a rigorous strategy to identify mRNA editing using mRNA and genomic DNA sequencing, taking into account sequencing and mapping artifacts, and biological replicates. We applied this method to screen for mRNA editing in liver and white adipose tissue from eight chickens and confirm the small extent of mRNA recoding in this species. Among the 25 unique edited sites identified, three events were previously described in mammals, attesting that this phenomenon is conserved throughout evolution. Deeper investigations on five sites revealed the impact of tissular context, genotype, age, feeding conditions, and sex on mRNA editing levels. More specifically, this analysis highlighted that the editing level at the site located on COG3 was strongly regulated by four of these factors. By comprehensively characterizing the mRNA editing landscape in chickens, our results highlight how this phenomenon is limited and suggest regulation of editing levels by various genetic and environmental factors. PMID:26637431
DNA Translator and Aligner: HyperCard utilities to aid phylogenetic analysis of molecules.
Eernisse, D J
1992-04-01
DNA Translator and Aligner are molecular phylogenetics HyperCard stacks for Macintosh computers. They manipulate sequence data to provide graphical gene mapping, conversions, translations and manual multiple-sequence alignment editing. DNA Translator is able to convert documented GenBank or EMBL documented sequences into linearized, rescalable gene maps whose gene sequences are extractable by clicking on the corresponding map button or by selection from a scrolling list. Provided gene maps, complete with extractable sequences, consist of nine metazoan, one yeast, and one ciliate mitochondrial DNAs and three green plant chloroplast DNAs. Single or multiple sequences can be manipulated to aid in phylogenetic analysis. Sequences can be translated between nucleic acids and proteins in either direction with flexible support of alternate genetic codes and ambiguous nucleotide symbols. Multiple aligned sequence output from diverse sources can be converted to Nexus, Hennig86 or PHYLIP format for subsequent phylogenetic analysis. Input or output alignments can be examined with Aligner, a convenient accessory stack included in the DNA Translator package. Aligner is an editor for the manual alignment of up to 100 sequences that toggles between display of matched characters and normal unmatched sequences. DNA Translator also generates graphic displays of amino acid coding and codon usage frequency relative to all other, or only synonymous, codons for approximately 70 select organism-organelle combinations. Codon usage data is compatible with spreadsheet or UWGCG formats for incorporation of additional molecules of interest. The complete package is available via anonymous ftp and is free for non-commercial uses.
Brody, Thomas; Yavatkar, Amarendra S; Park, Dong Sun; Kuzin, Alexander; Ross, Jermaine; Odenwald, Ward F
2017-06-01
Flavivirus and Filovirus infections are serious epidemic threats to human populations. Multi-genome comparative analysis of these evolving pathogens affords a view of their essential, conserved sequence elements as well as progressive evolutionary changes. While phylogenetic analysis has yielded important insights, the growing number of available genomic sequences makes comparisons between hundreds of viral strains challenging. We report here a new approach for the comparative analysis of these hemorrhagic fever viruses that can superimpose an unlimited number of one-on-one alignments to identify important features within genomes of interest. We have adapted EvoPrinter alignment algorithms for the rapid comparative analysis of Flavivirus or Filovirus sequences including Zika and Ebola strains. The user can input a full genome or partial viral sequence and then view either individual comparisons or generate color-coded readouts that superimpose hundreds of one-on-one alignments to identify unique or shared identity SNPs that reveal ancestral relationships between strains. The user can also opt to select a database genome in order to access a library of pre-aligned genomes of either 1,094 Flaviviruses or 460 Filoviruses for rapid comparative analysis with all database entries or a select subset. Using EvoPrinter search and alignment programs, we show the following: 1) superimposing alignment data from many related strains identifies lineage identity SNPs, which enable the assessment of sublineage complexity within viral outbreaks; 2) whole-genome SNP profile screens uncover novel Dengue2 and Zika recombinant strains and their parental lineages; 3) differential SNP profiling identifies host cell A-to-I hyper-editing within Ebola and Marburg viruses, and 4) hundreds of superimposed one-on-one Ebola genome alignments highlight ultra-conserved regulatory sequences, invariant amino acid codons and evolutionarily variable protein-encoding domains within a single genome. EvoPrinter allows for the assessment of lineage complexity within Flavivirus or Filovirus outbreaks, identification of recombinant strains, highlights sequences that have undergone host cell A-to-I editing, and identifies unique input and database SNPs within highly conserved sequences. EvoPrinter's ability to superimpose alignment data from hundreds of strains onto a single genome has allowed us to identify unique Zika virus sublineages that are currently spreading in South, Central and North America, the Caribbean, and in China. This new set of integrated alignment programs should serve as a useful addition to existing tools for the comparative analysis of these viruses.
Thomas, Sean; Martinez, L L Isadora Trejo; Westenberger, Scott J; Sturm, Nancy R
2007-05-24
The structurally complex network of minicircles and maxicircles comprising the mitochondrial DNA of kinetoplastids mirrors the complexity of the RNA editing process that is required for faithful expression of encrypted maxicircle genes. Although a few of the guide RNAs that direct this editing process have been discovered on maxicircles, guide RNAs are mostly found on the minicircles. The nuclear and maxicircle genomes have been sequenced and assembled for Trypanosoma cruzi, the causative agent of Chagas disease, however the complement of 1.4-kb minicircles, carrying four guide RNA genes per molecule in this parasite, has been less thoroughly characterised. Fifty-four CL Brener and 53 Esmeraldo strain minicircle sequence reads were extracted from T. cruzi whole genome shotgun sequencing data. With these sequences and all published T. cruzi minicircle sequences, 108 unique guide RNAs from all known T. cruzi minicircle sequences and two guide RNAs from the CL Brener maxicircle were predicted using a local alignment algorithm and mapped onto predicted or experimentally determined sequences of edited maxicircle open reading frames. For half of the sequences no statistically significant guide RNA could be assigned. Likely positions of these unidentified gRNAs in T. cruzi minicircle sequences are estimated using a simple Hidden Markov Model. With the local alignment predictions as a standard, the HMM had an ~85% chance of correctly identifying at least 20 nucleotides of guide RNA from a given minicircle sequence. Inter-minicircle recombination was documented. Variable regions contain species-specific areas of distinct nucleotide preference. Two maxicircle guide RNA genes were found. The identification of new minicircle sequences and the further characterization of all published minicircles are presented, including the first observation of recombination between minicircles. Extrapolation suggests a level of 4% recombinants in the population, supporting a relatively high recombination rate that may serve to minimize the persistence of gRNA pseudogenes. Characteristic nucleotide preferences observed within variable regions provide potential clues regarding the transcription and maturation of T. cruzi guide RNAs. Based on these preferences, a method of predicting T. cruzi guide RNAs using only primary minicircle sequence data was created.
STELLAR: fast and exact local alignments
2011-01-01
Background Large-scale comparison of genomic sequences requires reliable tools for the search of local alignments. Practical local aligners are in general fast, but heuristic, and hence sometimes miss significant matches. Results We present here the local pairwise aligner STELLAR that has full sensitivity for ε-alignments, i.e. guarantees to report all local alignments of a given minimal length and maximal error rate. The aligner is composed of two steps, filtering and verification. We apply the SWIFT algorithm for lossless filtering, and have developed a new verification strategy that we prove to be exact. Our results on simulated and real genomic data confirm and quantify the conjecture that heuristic tools like BLAST or BLAT miss a large percentage of significant local alignments. Conclusions STELLAR is very practical and fast on very long sequences which makes it a suitable new tool for finding local alignments between genomic sequences under the edit distance model. Binaries are freely available for Linux, Windows, and Mac OS X at http://www.seqan.de/projects/stellar. The source code is freely distributed with the SeqAn C++ library version 1.3 and later at http://www.seqan.de. PMID:22151882
Fast discovery and visualization of conserved regions in DNA sequences using quasi-alignment
2013-01-01
Background Next Generation Sequencing techniques are producing enormous amounts of biological sequence data and analysis becomes a major computational problem. Currently, most analysis, especially the identification of conserved regions, relies heavily on Multiple Sequence Alignment and its various heuristics such as progressive alignment, whose run time grows with the square of the number and the length of the aligned sequences and requires significant computational resources. In this work, we present a method to efficiently discover regions of high similarity across multiple sequences without performing expensive sequence alignment. The method is based on approximating edit distance between segments of sequences using p-mer frequency counts. Then, efficient high-throughput data stream clustering is used to group highly similar segments into so called quasi-alignments. Quasi-alignments have numerous applications such as identifying species and their taxonomic class from sequences, comparing sequences for similarities, and, as in this paper, discovering conserved regions across related sequences. Results In this paper, we show that quasi-alignments can be used to discover highly similar segments across multiple sequences from related or different genomes efficiently and accurately. Experiments on a large number of unaligned 16S rRNA sequences obtained from the Greengenes database show that the method is able to identify conserved regions which agree with known hypervariable regions in 16S rRNA. Furthermore, the experiments show that the proposed method scales well for large data sets with a run time that grows only linearly with the number and length of sequences, whereas for existing multiple sequence alignment heuristics the run time grows super-linearly. Conclusion Quasi-alignment-based algorithms can detect highly similar regions and conserved areas across multiple sequences. Since the run time is linear and the sequences are converted into a compact clustering model, we are able to identify conserved regions fast or even interactively using a standard PC. Our method has many potential applications such as finding characteristic signature sequences for families of organisms and studying conserved and variable regions in, for example, 16S rRNA. PMID:24564200
Fast discovery and visualization of conserved regions in DNA sequences using quasi-alignment.
Nagar, Anurag; Hahsler, Michael
2013-01-01
Next Generation Sequencing techniques are producing enormous amounts of biological sequence data and analysis becomes a major computational problem. Currently, most analysis, especially the identification of conserved regions, relies heavily on Multiple Sequence Alignment and its various heuristics such as progressive alignment, whose run time grows with the square of the number and the length of the aligned sequences and requires significant computational resources. In this work, we present a method to efficiently discover regions of high similarity across multiple sequences without performing expensive sequence alignment. The method is based on approximating edit distance between segments of sequences using p-mer frequency counts. Then, efficient high-throughput data stream clustering is used to group highly similar segments into so called quasi-alignments. Quasi-alignments have numerous applications such as identifying species and their taxonomic class from sequences, comparing sequences for similarities, and, as in this paper, discovering conserved regions across related sequences. In this paper, we show that quasi-alignments can be used to discover highly similar segments across multiple sequences from related or different genomes efficiently and accurately. Experiments on a large number of unaligned 16S rRNA sequences obtained from the Greengenes database show that the method is able to identify conserved regions which agree with known hypervariable regions in 16S rRNA. Furthermore, the experiments show that the proposed method scales well for large data sets with a run time that grows only linearly with the number and length of sequences, whereas for existing multiple sequence alignment heuristics the run time grows super-linearly. Quasi-alignment-based algorithms can detect highly similar regions and conserved areas across multiple sequences. Since the run time is linear and the sequences are converted into a compact clustering model, we are able to identify conserved regions fast or even interactively using a standard PC. Our method has many potential applications such as finding characteristic signature sequences for families of organisms and studying conserved and variable regions in, for example, 16S rRNA.
Khalil, Karim; Elayat, Medhat; Khalifa, Elsayed; Daghash, Samer; Elaswad, Ahmed; Miller, Michael; Abdelrahman, Hisham; Ye, Zhi; Odin, Ramjie; Drescher, David; Vo, Khoi; Gosh, Kamal; Bugg, William; Robinson, Dalton; Dunham, Rex
2017-08-04
The myostatin (MSTN) gene is important because of its role in regulation of skeletal muscle growth in all vertebrates. In this study, CRISPR/Cas9 was utilized to successfully target the channel catfish, Ictalurus punctatus, muscle suppressor gene MSTN. CRISPR/Cas9 induced high rates (88-100%) of mutagenesis in the target protein-encoding sites of MSTN. MSTN-edited fry had more muscle cells (p < 0.001) than controls, and the mean body weight of gene-edited fry increased by 29.7%. The nucleic acid alignment of the mutated sequences against the wild-type sequence revealed multiple insertions and deletions. These results demonstrate that CRISPR/Cas9 is a highly efficient tool for editing the channel catfish genome, and opens ways for facilitating channel catfish genetic enhancement and functional genomics. This approach may produce growth-enhanced channel catfish and increase productivity.
Alignment-Annotator web server: rendering and annotating sequence alignments.
Gille, Christoph; Fähling, Michael; Weyand, Birgit; Wieland, Thomas; Gille, Andreas
2014-07-01
Alignment-Annotator is a novel web service designed to generate interactive views of annotated nucleotide and amino acid sequence alignments (i) de novo and (ii) embedded in other software. All computations are performed at server side. Interactivity is implemented in HTML5, a language native to web browsers. The alignment is initially displayed using default settings and can be modified with the graphical user interfaces. For example, individual sequences can be reordered or deleted using drag and drop, amino acid color code schemes can be applied and annotations can be added. Annotations can be made manually or imported (BioDAS servers, the UniProt, the Catalytic Site Atlas and the PDB). Some edits take immediate effect while others require server interaction and may take a few seconds to execute. The final alignment document can be downloaded as a zip-archive containing the HTML files. Because of the use of HTML the resulting interactive alignment can be viewed on any platform including Windows, Mac OS X, Linux, Android and iOS in any standard web browser. Importantly, no plugins nor Java are required and therefore Alignment-Anotator represents the first interactive browser-based alignment visualization. http://www.bioinformatics.org/strap/aa/ and http://strap.charite.de/aa/. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Alignment-Annotator web server: rendering and annotating sequence alignments
Gille, Christoph; Fähling, Michael; Weyand, Birgit; Wieland, Thomas; Gille, Andreas
2014-01-01
Alignment-Annotator is a novel web service designed to generate interactive views of annotated nucleotide and amino acid sequence alignments (i) de novo and (ii) embedded in other software. All computations are performed at server side. Interactivity is implemented in HTML5, a language native to web browsers. The alignment is initially displayed using default settings and can be modified with the graphical user interfaces. For example, individual sequences can be reordered or deleted using drag and drop, amino acid color code schemes can be applied and annotations can be added. Annotations can be made manually or imported (BioDAS servers, the UniProt, the Catalytic Site Atlas and the PDB). Some edits take immediate effect while others require server interaction and may take a few seconds to execute. The final alignment document can be downloaded as a zip-archive containing the HTML files. Because of the use of HTML the resulting interactive alignment can be viewed on any platform including Windows, Mac OS X, Linux, Android and iOS in any standard web browser. Importantly, no plugins nor Java are required and therefore Alignment-Anotator represents the first interactive browser-based alignment visualization. Availability: http://www.bioinformatics.org/strap/aa/ and http://strap.charite.de/aa/. PMID:24813445
CRISPR-DAV: CRISPR NGS data analysis and visualization pipeline.
Wang, Xuning; Tilford, Charles; Neuhaus, Isaac; Mintier, Gabe; Guo, Qi; Feder, John N; Kirov, Stefan
2017-12-01
The simplicity and precision of CRISPR/Cas9 system has brought in a new era of gene editing. Screening for desired clones with CRISPR-mediated genomic edits in a large number of samples is made possible by next generation sequencing (NGS) due to its multiplexing. Here we present CRISPR-DAV (CRISPR Data Analysis and Visualization) pipeline to analyze the CRISPR NGS data in a high throughput manner. In the pipeline, Burrows-Wheeler Aligner and Assembly Based ReAlignment are used for small and large indel detection, and results are presented in a comprehensive set of charts and interactive alignment view. CRISPR-DAV is available at GitHub and Docker Hub repositories: https://github.com/pinetree1/crispr-dav.git and https://hub.docker.com/r/pinetree1/crispr-dav/. xuning.wang@bms.com. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Trypanosome RNA Editing Mediator Complex proteins have distinct functions in gRNA utilization.
Simpson, Rachel M; Bruno, Andrew E; Chen, Runpu; Lott, Kaylen; Tylec, Brianna L; Bard, Jonathan E; Sun, Yijun; Buck, Michael J; Read, Laurie K
2017-07-27
Uridine insertion/deletion RNA editing is an essential process in kinetoplastid parasites whereby mitochondrial mRNAs are modified through the specific insertion and deletion of uridines to generate functional open reading frames, many of which encode components of the mitochondrial respiratory chain. The roles of numerous non-enzymatic editing factors have remained opaque given the limitations of conventional methods to interrogate the order and mechanism by which editing progresses and thus roles of individual proteins. Here, we examined whole populations of partially edited sequences using high throughput sequencing and a novel bioinformatic platform, the Trypanosome RNA Editing Alignment Tool (TREAT), to elucidate the roles of three proteins in the RNA Editing Mediator Complex (REMC). We determined that the factors examined function in the progression of editing through a gRNA; however, they have distinct roles and REMC is likely heterogeneous in composition. We provide the first evidence that editing can proceed through numerous paths within a single gRNA and that non-linear modifications are essential, generating commonly observed junction regions. Our data support a model in which RNA editing is executed via multiple paths that necessitate successive re-modification of junction regions facilitated, in part, by the REMC variant containing TbRGG2 and MRB8180. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Zheng, Yun; Ji, Bo; Song, Renhua; Wang, Shengpeng; Li, Ting; Zhang, Xiaotuo; Chen, Kun; Li, Tianqing; Li, Jinyan
2016-01-01
Various types of mutation and editing (M/E) events in microRNAs (miRNAs) can change the stabilities of pre-miRNAs and/or complementarities between miRNAs and their targets. Small RNA (sRNA) high-throughput sequencing (HTS) profiles can contain many mutated and edited miRNAs. Systematic detection of miRNA mutation and editing sites from the huge volume of sRNA HTS profiles is computationally difficult, as high sensitivity and low false positive rate (FPR) are both required. We propose a novel method (named MiRME) for an accurate and fast detection of miRNA M/E sites using a progressive sequence alignment approach which refines sensitivity and improves FPR step-by-step. From 70 sRNA HTS profiles with over 1.3 billion reads, MiRME has detected thousands of statistically significant M/E sites, including 3′-editing sites, 57 A-to-I editing sites (of which 32 are novel), as well as some putative non-canonical editing sites. We demonstrated that a few non-canonical editing sites were not resulted from mutations in genome by integrating the analysis of genome HTS profiles of two human cell lines, suggesting the existence of new editing types to further diversify the functions of miRNAs. Compared with six existing studies or methods, MiRME has shown much superior performance for the identification and visualization of the M/E sites of miRNAs from the ever-increasing sRNA HTS profiles. PMID:27229138
Integrating a New Medicinal Chemistry and Pharmacology Course Sequence into the PharmD Curriculum
Engels, Melanie; Garcia, George
2015-01-01
Objective. To evaluate the implementation of an integrated medicinal chemistry/pharmacology course sequence and its alignment with a therapeutics series. Design. Each topic was divided into modules consisting of 2-hour blocks, and the content was integrated and aligned with the therapeutics series. Recitation sessions emphasizing application skills in an interactive environment followed each of three 2-hour blocks. To ensure that students achieved competency in each unit, students failing any unit examination were encouraged to undergo remediation. Assessment. Student feedback was collected by an independent researcher through social media and focus groups and relayed anonymously to course directors for midcourse improvements. Responses from surveys, interviews, and student ratings of faculty members and of courses were used to implement changes for future editions of the courses. Conclusion. The majority of students and faculty members felt the integration and alignment processes were beneficial changes to the curriculum. Elements of the new sequence, including remediation, were viewed positively by students and faculty members as well. PMID:25741029
The current status and portability of our sequence handling software.
Staden, R
1986-01-01
I describe the current status of our sequence analysis software. The package contains a comprehensive suite of programs for managing large shotgun sequencing projects, a program containing 61 functions for analysing single sequences and a program for comparing pairs of sequences for similarity. The programs that have been described before have been improved by the addition of new functions and by being made very much easier to use. The major interactive programs have 125 pages of online help available from within them. Several new programs are described including screen editing of aligned gel readings for shotgun sequencing projects; a method to highlight errors in aligned gel readings, new methods for searching for putative signals in sequences. We use the programs on a VAX computer but the whole package has been rewritten to make it easy to transport it to other machines. I believe the programs will now run on any machine with a FORTRAN77 compiler and sufficient memory. We are currently putting the programs onto an IBM PC XT/AT and another micro running under UNIX. PMID:3511446
EdiPy: a resource to simulate the evolution of plant mitochondrial genes under the RNA editing.
Picardi, Ernesto; Quagliariello, Carla
2006-02-01
EdiPy is an online resource appropriately designed to simulate the evolution of plant mitochondrial genes in a biologically realistic fashion. EdiPy takes into account the presence of sites subjected to RNA editing and provides multiple artificial alignments corresponding to both genomic and cDNA sequences. Each artificial data set can successively be submitted to main and widespread evolutionary and phylogenetic software packages such as PAUP, Phyml, PAML and Phylip. As an online bioinformatic resource, EdiPy is available at the following web page: http://biologia.unical.it/py_script/index.html.
Fast online and index-based algorithms for approximate search of RNA sequence-structure patterns
2013-01-01
Background It is well known that the search for homologous RNAs is more effective if both sequence and structure information is incorporated into the search. However, current tools for searching with RNA sequence-structure patterns cannot fully handle mutations occurring on both these levels or are simply not fast enough for searching large sequence databases because of the high computational costs of the underlying sequence-structure alignment problem. Results We present new fast index-based and online algorithms for approximate matching of RNA sequence-structure patterns supporting a full set of edit operations on single bases and base pairs. Our methods efficiently compute semi-global alignments of structural RNA patterns and substrings of the target sequence whose costs satisfy a user-defined sequence-structure edit distance threshold. For this purpose, we introduce a new computing scheme to optimally reuse the entries of the required dynamic programming matrices for all substrings and combine it with a technique for avoiding the alignment computation of non-matching substrings. Our new index-based methods exploit suffix arrays preprocessed from the target database and achieve running times that are sublinear in the size of the searched sequences. To support the description of RNA molecules that fold into complex secondary structures with multiple ordered sequence-structure patterns, we use fast algorithms for the local or global chaining of approximate sequence-structure pattern matches. The chaining step removes spurious matches from the set of intermediate results, in particular of patterns with little specificity. In benchmark experiments on the Rfam database, our improved online algorithm is faster than the best previous method by up to factor 45. Our best new index-based algorithm achieves a speedup of factor 560. Conclusions The presented methods achieve considerable speedups compared to the best previous method. This, together with the expected sublinear running time of the presented index-based algorithms, allows for the first time approximate matching of RNA sequence-structure patterns in large sequence databases. Beyond the algorithmic contributions, we provide with RaligNAtor a robust and well documented open-source software package implementing the algorithms presented in this manuscript. The RaligNAtor software is available at http://www.zbh.uni-hamburg.de/ralignator. PMID:23865810
REDIdb 3.0: A Comprehensive Collection of RNA Editing Events in Plant Organellar Genomes.
Lo Giudice, Claudio; Pesole, Graziano; Picardi, Ernesto
2018-01-01
RNA editing is an important epigenetic mechanism by which genome-encoded transcripts are modified by substitutions, insertions and/or deletions. It was first discovered in kinetoplastid protozoa followed by its reporting in a wide range of organisms. In plants, RNA editing occurs mostly by cytidine (C) to uridine (U) conversion in translated regions of organelle mRNAs and tends to modify affected codons restoring evolutionary conserved aminoacid residues. RNA editing has also been described in non-protein coding regions such as group II introns and structural RNAs. Despite its impact on organellar transcriptome and proteome complexity, current primary databases still do not provide a specific field for RNA editing events. To overcome these limitations, we developed REDIdb a specialized database for RNA editing modifications in plant organelles. Hereafter we describe its third release containing more than 26,000 events in a completely novel web interface to accommodate RNA editing in its genomics, biological and evolutionary context through whole genome maps and multiple sequence alignments. REDIdb is freely available at http://srv00.recas.ba.infn.it/redidb/index.html.
Walking tree heuristics for biological string alignment, gene location, and phylogenies
NASA Astrophysics Data System (ADS)
Cull, P.; Holloway, J. L.; Cavener, J. D.
1999-03-01
Basic biological information is stored in strings of nucleic acids (DNA, RNA) or amino acids (proteins). Teasing out the meaning of these strings is a central problem of modern biology. Matching and aligning strings brings out their shared characteristics. Although string matching is well-understood in the edit-distance model, biological strings with transpositions and inversions violate this model's assumptions. We propose a family of heuristics called walking trees to align biologically reasonable strings. Both edit-distance and walking tree methods can locate specific genes within a large string when the genes' sequences are given. When we attempt to match whole strings, the walking tree matches most genes, while the edit-distance method fails. We also give examples in which the walking tree matches substrings even if they have been moved or inverted. The edit-distance method was not designed to handle these problems. We include an example in which the walking tree "discovered" a gene. Calculating scores for whole genome matches gives a method for approximating evolutionary distance. We show two evolutionary trees for the picornaviruses which were computed by the walking tree heuristic. Both of these trees show great similarity to previously constructed trees. The point of this demonstration is that WHOLE genomes can be matched and distances calculated. The first tree was created on a Sequent parallel computer and demonstrates that the walking tree heuristic can be efficiently parallelized. The second tree was created using a network of work stations and demonstrates that there is suffient parallelism in the phylogenetic tree calculation that the sequential walking tree can be used effectively on a network.
MollDE: a homology modeling framework you can click with.
Canutescu, Adrian A; Dunbrack, Roland L
2005-06-15
Molecular Integrated Development Environment (MolIDE) is an integrated application designed to provide homology modeling tools and protocols under a uniform, user-friendly graphical interface. Its main purpose is to combine the most frequent modeling steps in a semi-automatic, interactive way, guiding the user from the target protein sequence to the final three-dimensional protein structure. The typical basic homology modeling process is composed of building sequence profiles of the target sequence family, secondary structure prediction, sequence alignment with PDB structures, assisted alignment editing, side-chain prediction and loop building. All of these steps are available through a graphical user interface. MolIDE's user-friendly and streamlined interactive modeling protocol allows the user to focus on the important modeling questions, hiding from the user the raw data generation and conversion steps. MolIDE was designed from the ground up as an open-source, cross-platform, extensible framework. This allows developers to integrate additional third-party programs to MolIDE. http://dunbrack.fccc.edu/molide/molide.php rl_dunbrack@fccc.edu.
Wiegers, Evita C; Philips, Bart W J; Heerschap, Arend; van der Graaf, Marinette
2017-12-01
J-difference editing is often used to select resonances of compounds with coupled spins in 1 H-MR spectra. Accurate phase and frequency alignment prior to subtracting J-difference-edited MR spectra is important to avoid artefactual contributions to the edited resonance. In-vivo J-difference-edited MR spectra were aligned by maximizing the normalized scalar product between two spectra (i.e., the correlation over a spectral region). The performance of our correlation method was compared with alignment by spectral registration and by alignment of the highest point in two spectra. The correlation method was tested at different SNR levels and for a broad range of phase and frequency shifts. In-vivo application of the proposed correlation method showed reduced subtraction errors and increased fit reliability in difference spectra as compared with conventional peak alignment. The correlation method and the spectral registration method generally performed equally well. However, better alignment using the correlation method was obtained for spectra with a low SNR (down to ~2) and for relatively large frequency shifts. Our correlation method for simultaneously phase and frequency alignment is able to correct both small and large phase and frequency drifts and also performs well at low SNR levels.
Bioinformatics prediction of siRNAs as potential antiviral agents against dengue viruses
Villegas-Rosales, Paula M; Méndez-Tenorio, Alfonso; Ortega-Soto, Elizabeth; Barrón, Blanca L
2012-01-01
Dengue virus (DENV 1-4) represents the major emerging arthropod-borne viral infection in the world. Currently, there is neither an available vaccine nor a specific treatment. Hence, there is a need of antiviral drugs for these viral infections; we describe the prediction of short interfering RNA (siRNA) as potential therapeutic agents against the four DENV serotypes. Our strategy was to carry out a series of multiple alignments using ClustalX program to find conserved sequences among the four DENV serotype genomes to obtain a consensus sequence for siRNAs design. A highly conserved sequence among the four DENV serotypes, located in the encoding sequence for NS4B and NS5 proteins was found. A total of 2,893 complete DENV genomes were downloaded from the NCBI, and after a depuration procedure to identify identical sequences, 220 complete DENV genomes were left. They were edited to select the NS4B and NS5 sequences, which were aligned to obtain a consensus sequence. Three different servers were used for siRNA design, and the resulting siRNAs were aligned to identify the most prevalent sequences. Three siRNAs were chosen, one targeted the genome region that codifies for NS4B protein and the other two; the region for NS5 protein. Predicted secondary structure for DENV genomes was used to demonstrate that the siRNAs were able to target the viral genome forming double stranded structures, necessary to activate the RNA silencing machinery. PMID:22829722
Automated sequence analysis and editing software for HIV drug resistance testing.
Struck, Daniel; Wallis, Carole L; Denisov, Gennady; Lambert, Christine; Servais, Jean-Yves; Viana, Raquel V; Letsoalo, Esrom; Bronze, Michelle; Aitken, Sue C; Schuurman, Rob; Stevens, Wendy; Schmit, Jean Claude; Rinke de Wit, Tobias; Perez Bercoff, Danielle
2012-05-01
Access to antiretroviral treatment in resource-limited-settings is inevitably paralleled by the emergence of HIV drug resistance. Monitoring treatment efficacy and HIV drugs resistance testing are therefore of increasing importance in resource-limited settings. Yet low-cost technologies and procedures suited to the particular context and constraints of such settings are still lacking. The ART-A (Affordable Resistance Testing for Africa) consortium brought together public and private partners to address this issue. To develop an automated sequence analysis and editing software to support high throughput automated sequencing. The ART-A Software was designed to automatically process and edit ABI chromatograms or FASTA files from HIV-1 isolates. The ART-A Software performs the basecalling, assigns quality values, aligns query sequences against a set reference, infers a consensus sequence, identifies the HIV type and subtype, translates the nucleotide sequence to amino acids and reports insertions/deletions, premature stop codons, ambiguities and mixed calls. The results can be automatically exported to Excel to identify mutations. Automated analysis was compared to manual analysis using a panel of 1624 PR-RT sequences generated in 3 different laboratories. Discrepancies between manual and automated sequence analysis were 0.69% at the nucleotide level and 0.57% at the amino acid level (668,047 AA analyzed), and discordances at major resistance mutations were recorded in 62 cases (4.83% of differences, 0.04% of all AA) for PR and 171 (6.18% of differences, 0.03% of all AA) cases for RT. The ART-A Software is a time-sparing tool for pre-analyzing HIV and viral quasispecies sequences in high throughput laboratories and highlighting positions requiring attention. Copyright © 2012 Elsevier B.V. All rights reserved.
Wasabi: An Integrated Platform for Evolutionary Sequence Analysis and Data Visualization.
Veidenberg, Andres; Medlar, Alan; Löytynoja, Ari
2016-04-01
Wasabi is an open source, web-based environment for evolutionary sequence analysis. Wasabi visualizes sequence data together with a phylogenetic tree within a modern, user-friendly interface: The interface hides extraneous options, supports context sensitive menus, drag-and-drop editing, and displays additional information, such as ancestral sequences, associated with specific tree nodes. The Wasabi environment supports reproducibility by automatically storing intermediate analysis steps and includes built-in functions to share data between users and publish analysis results. For computational analysis, Wasabi supports PRANK and PAGAN for phylogeny-aware alignment and alignment extension, and it can be easily extended with other tools. Along with drag-and-drop import of local files, Wasabi can access remote data through URL and import sequence data, GeneTrees and EPO alignments directly from Ensembl. To demonstrate a typical workflow using Wasabi, we reproduce key findings from recent comparative genomics studies, including a reanalysis of the EGLN1 gene from the tiger genome study: These case studies can be browsed within Wasabi at http://wasabiapp.org:8000?id=usecases. Wasabi runs inside a web browser and does not require any installation. One can start using it at http://wasabiapp.org. All source code is licensed under the AGPLv3. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Evaluation of microRNA alignment techniques
Kaspi, Antony; El-Osta, Assam
2016-01-01
Genomic alignment of small RNA (smRNA) sequences such as microRNAs poses considerable challenges due to their short length (∼21 nucleotides [nt]) as well as the large size and complexity of plant and animal genomes. While several tools have been developed for high-throughput mapping of longer mRNA-seq reads (>30 nt), there are few that are specifically designed for mapping of smRNA reads including microRNAs. The accuracy of these mappers has not been systematically determined in the case of smRNA-seq. In addition, it is unknown whether these aligners accurately map smRNA reads containing sequence errors and polymorphisms. By using simulated read sets, we determine the alignment sensitivity and accuracy of 16 short-read mappers and quantify their robustness to mismatches, indels, and nontemplated nucleotide additions. These were explored in the context of a plant genome (Oryza sativa, ∼500 Mbp) and a mammalian genome (Homo sapiens, ∼3.1 Gbp). Analysis of simulated and real smRNA-seq data demonstrates that mapper selection impacts differential expression results and interpretation. These results will inform on best practice for smRNA mapping and enable more accurate smRNA detection and quantification of expression and RNA editing. PMID:27284164
SlideSort: all pairs similarity search for short reads
Shimizu, Kana; Tsuda, Koji
2011-01-01
Motivation: Recent progress in DNA sequencing technologies calls for fast and accurate algorithms that can evaluate sequence similarity for a huge amount of short reads. Searching similar pairs from a string pool is a fundamental process of de novo genome assembly, genome-wide alignment and other important analyses. Results: In this study, we designed and implemented an exact algorithm SlideSort that finds all similar pairs from a string pool in terms of edit distance. Using an efficient pattern growth algorithm, SlideSort discovers chains of common k-mers to narrow down the search. Compared to existing methods based on single k-mers, our method is more effective in reducing the number of edit distance calculations. In comparison to backtracking methods such as BWA, our method is much faster in finding remote matches, scaling easily to tens of millions of sequences. Our software has an additional function of single link clustering, which is useful in summarizing short reads for further processing. Availability: Executable binary files and C++ libraries are available at http://www.cbrc.jp/~shimizu/slidesort/ for Linux and Windows. Contact: slidesort@m.aist.go.jp; shimizu-kana@aist.go.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21148542
Xu, Yi-Hua; Manoharan, Herbert T; Pitot, Henry C
2007-09-01
The bisulfite genomic sequencing technique is one of the most widely used techniques to study sequence-specific DNA methylation because of its unambiguous ability to reveal DNA methylation status to the order of a single nucleotide. One characteristic feature of the bisulfite genomic sequencing technique is that a number of sample sequence files will be produced from a single DNA sample. The PCR products of bisulfite-treated DNA samples cannot be sequenced directly because they are heterogeneous in nature; therefore they should be cloned into suitable plasmids and then sequenced. This procedure generates an enormous number of sample DNA sequence files as well as adding extra bases belonging to the plasmids to the sequence, which will cause problems in the final sequence comparison. Finding the methylation status for each CpG in each sample sequence is not an easy job. As a result CpG PatternFinder was developed for this purpose. The main functions of the CpG PatternFinder are: (i) to analyze the reference sequence to obtain CpG and non-CpG-C residue position information. (ii) To tailor sample sequence files (delete insertions and mark deletions from the sample sequence files) based on a configuration of ClustalW multiple alignment. (iii) To align sample sequence files with a reference file to obtain bisulfite conversion efficiency and CpG methylation status. And, (iv) to produce graphics, highlighted aligned sequence text and a summary report which can be easily exported to Microsoft Office suite. CpG PatternFinder is designed to operate cooperatively with BioEdit, a freeware on the internet. It can handle up to 100 files of sample DNA sequences simultaneously, and the total CpG pattern analysis process can be finished in minutes. CpG PatternFinder is an ideal software tool for DNA methylation studies to determine the differential methylation pattern in a large number of individuals in a population. Previously we developed the CpG Analyzer program; CpG PatternFinder is our further effort to create software tools for DNA methylation studies.
Gifford, Robert J.; Rhee, Soo-Yon; Eriksson, Nicolas; Liu, Tommy F.; Kiuchi, Mark; Das, Amar K.; Shafer, Robert W.
2008-01-01
Design Promiscuous guanine (G) to adenine (A) substitutions catalysed by apolipoprotein B RNA-editing catalytic component (APOBEC) enzymes are observed in a proportion of HIV-1 sequences in vivo and can introduce artifacts into some genetic analyses. The potential impact of undetected lethal editing on genotypic estimation of transmitted drug resistance was assessed. Methods Classifiers of lethal, APOBEC-mediated editing were developed by analysis of lentiviral pol gene sequence variation and evaluated using control sets of HIV-1 sequences. The potential impact of sequence editing on genotypic estimation of drug resistance was assessed in sets of sequences obtained from 77 studies of 25 or more therapy-naive individuals, using mixture modelling approaches to determine the maximum likelihood classification of sequences as lethally edited as opposed to viable. Results Analysis of 6437 protease and reverse transcriptase sequences from therapy-naive individuals using a novel classifier of lethal, APOBEC3G-mediated sequence editing, the polypeptide-like 3G (APOBEC3G)-mediated defectives (A3GD) index’, detected lethal editing in association with spurious ‘transmitted drug resistance’ in nearly 3% of proviral sequences obtained from whole blood and 0.2% of samples obtained from plasma. Conclusion Screening for lethally edited sequences in datasets containing a proportion of proviral DNA, such as those likely to be obtained for epidemiological surveillance of transmitted drug resistance in the developing world, can eliminate rare but potentially significant errors in genotypic estimation of transmitted drug resistance. PMID:18356601
Diesel Technology: Steering and Suspension. Second Edition. Teacher Edition [and] Student Edition.
ERIC Educational Resources Information Center
Miller, Roger; Scarberry, Terry; Tesch, Carl; Kellum, Mary
These teacher and student editions on steering and suspension are part of the diesel mechanics series of instructional materials. The series aligns with the medium/heavy duty truck task list developed by the National Automotive Technicians Education Foundation and used by the National Institute for Automotive Service Excellence in the…
Diesel Technology: Safety Skills. Teacher Edition [and] Student Edition. Second Edition.
ERIC Educational Resources Information Center
Kellum, Mary
Teacher and student editions of this document are one in a series of competency-based instructional materials for diesel technology programs. The series aligns with the medium/heavy diesel duty truck task list used by the National Institute for Automotive Service Excellence in the certification of medium/heavy duty truck technicians. Introductory…
ModeRNA server: an online tool for modeling RNA 3D structures.
Rother, Magdalena; Milanowska, Kaja; Puton, Tomasz; Jeleniewicz, Jaroslaw; Rother, Kristian; Bujnicki, Janusz M
2011-09-01
The diverse functional roles of non-coding RNA molecules are determined by their underlying structure. ModeRNA server is an online tool for RNA 3D structure modeling by the comparative approach, based on a template RNA structure and a user-defined target-template sequence alignment. It offers an option to search for potential templates, given the target sequence. The server also provides tools for analyzing, editing and formatting of RNA structure files. It facilitates the use of the ModeRNA software and offers new options in comparison to the standalone program. ModeRNA server was implemented using the Python language and the Django web framework. It is freely available at http://iimcb.genesilico.pl/modernaserver. iamb@genesilico.pl.
A single alteration 20 nt 5′ to an editing target inhibits chloroplast RNA editing in vivo
Reed, Martha L.; Peeters, Nemo M.; Hanson, Maureen R.
2001-01-01
Transcripts of typical dicot plant plastid genes undergo C→U RNA editing at approximately 30 locations, but there is no consensus sequence surrounding the C targets of editing. The cis-acting elements required for editing of the C located at tobacco rpoB editing site II were investigated by introducing translatable chimeric minigenes containing sequence –20 to +6 surrounding the C target of editing. When the –20 to +6 sequence specified by the homologous region present in the black pine chloroplast genome was incorporated, virtually no editing of the transcripts occurred in transgenic tobacco plastids. Nucleotides that differ between the black pine and tobacco sequence were tested for their role in C→U editing by designing chimeric genes containing one or more of these divergent nucleotides. Surprisingly, the divergent nucleotide that had the strongest negative effect on editing of the minigene transcript was located –20 nt 5′ to the C target of editing. Expression of transgene transcripts carrying the 27 nt sequence did not affect the editing extent of the endogenous rpoB transcripts, even though the chimeric transcripts were much more abundant than those of the endogenous gene. In plants carrying a 93 nt rpoB editing site sequence, transgene transcripts accumulated to a level three times greater than transgene transcripts in the plants carrying the 27 nt rpoB editing sites and resulted in editing of the endogenous transcripts from 100 to 50%. Both a lower affinity of the 27 nt site for a trans-acting factor and lower abundance of the transcript could explain why expression of minigene transcripts containing the 27 nt sequence did not affect endogenous editing. PMID:11266552
@TOME-2: a new pipeline for comparative modeling of protein-ligand complexes.
Pons, Jean-Luc; Labesse, Gilles
2009-07-01
@TOME 2.0 is new web pipeline dedicated to protein structure modeling and small ligand docking based on comparative analyses. @TOME 2.0 allows fold recognition, template selection, structural alignment editing, structure comparisons, 3D-model building and evaluation. These tasks are routinely used in sequence analyses for structure prediction. In our pipeline the necessary software is efficiently interconnected in an original manner to accelerate all the processes. Furthermore, we have also connected comparative docking of small ligands that is performed using protein-protein superposition. The input is a simple protein sequence in one-letter code with no comment. The resulting 3D model, protein-ligand complexes and structural alignments can be visualized through dedicated Web interfaces or can be downloaded for further studies. These original features will aid in the functional annotation of proteins and the selection of templates for molecular modeling and virtual screening. Several examples are described to highlight some of the new functionalities provided by this pipeline. The server and its documentation are freely available at http://abcis.cbs.cnrs.fr/AT2/
@TOME-2: a new pipeline for comparative modeling of protein–ligand complexes
Pons, Jean-Luc; Labesse, Gilles
2009-01-01
@TOME 2.0 is new web pipeline dedicated to protein structure modeling and small ligand docking based on comparative analyses. @TOME 2.0 allows fold recognition, template selection, structural alignment editing, structure comparisons, 3D-model building and evaluation. These tasks are routinely used in sequence analyses for structure prediction. In our pipeline the necessary software is efficiently interconnected in an original manner to accelerate all the processes. Furthermore, we have also connected comparative docking of small ligands that is performed using protein–protein superposition. The input is a simple protein sequence in one-letter code with no comment. The resulting 3D model, protein–ligand complexes and structural alignments can be visualized through dedicated Web interfaces or can be downloaded for further studies. These original features will aid in the functional annotation of proteins and the selection of templates for molecular modeling and virtual screening. Several examples are described to highlight some of the new functionalities provided by this pipeline. The server and its documentation are freely available at http://abcis.cbs.cnrs.fr/AT2/ PMID:19443448
A trace display and editing program for data from fluorescence based sequencing machines.
Gleeson, T; Hillier, L
1991-12-11
'Ted' (Trace editor) is a graphical editor for sequence and trace data from automated fluorescence sequencing machines. It provides facilities for viewing sequence and trace data (in top or bottom strand orientation), for editing the base sequence, for automated or manual trimming of the head (vector) and tail (uncertain data) from the sequence, for vertical and horizontal trace scaling, for keeping a history of sequence editing, and for output of the edited sequence. Ted has been used extensively in the C.elegans genome sequencing project, both as a stand-alone program and integrated into the Staden sequence assembly package, and has greatly aided in the efficiency and accuracy of sequence editing. It runs in the X windows environment on Sun workstations and is available from the authors. Ted currently supports sequence and trace data from the ABI 373A and Pharmacia A.L.F. sequencers.
Leong, Wai-Mun; Ripen, Adiratna Mat; Mirsafian, Hoda; Mohamad, Saharuddin Bin; Merican, Amir Feisal
2018-06-07
High-depth next generation sequencing data provide valuable insights into the number and distribution of RNA editing events. Here, we report the RNA editing events at cellular level of human primary monocyte using high-depth whole genomic and transcriptomic sequencing data. We identified over a ten thousand putative RNA editing sites and 69% of the sites were A-to-I editing sites. The sites enriched in repetitive sequences and intronic regions. High-depth sequencing datasets revealed that 90% of the canonical sites were edited at lower frequencies (<0.7). Single and multiple human monocytes and brain tissues samples were analyzed through genome sequence independent approach. The later approach was observed to identify more editing sites. Monocytes was observed to contain more C-to-U editing sites compared to brain tissues. Our results establish comparable pipeline that can address current limitations as well as demonstrate the potential for highly sensitive detection of RNA editing events in single cell type. Copyright © 2018 Elsevier Inc. All rights reserved.
RNA editing: trypanosomes rewrite the genetic code.
Stuart, K
1998-01-01
The understanding of how genetic information is stored and expressed has advanced considerably since the "central dogma" asserted that genetic information flows from the nucleotide sequence of DNA to that of messenger RNA (mRNA) which in turn specifies the amino acid sequence of a protein. It was found that genetic information can be stored as RNA (e.g. in RNA viruses) and can flow from RNA to DNA by reverse transcriptase enzyme activity. In addition, some genes contain introns, nucleotide sequences that are removed from their RNA (by RNA splicing) and thus are not represented in the resultant protein. Furthermore, alternative splicing was found to produce variant proteins from a single gene. More recently, the study of trypanosome parasites revealed an unexpected and indeed counter-intuitive genetic complexity. Genetic information for a single protein can be dispersed among several (DNA) genes in these organisms. One of these genes specifies an encrypted precursor mRNA that is converted to a functional mRNA by a process called RNA editing that inserts and deletes uridylate nucleotides. The sequence of the edited mRNA is specified by multiple small RNAs, named guide RNAs, (gRNAs) each of which is encoded in a separate gene. Thus, edited mRNA sequences are assembled from multiple genes by the transfer of information from one type of RNA to another. The existence of editing was surprising but has stimulated the discovery of other types of RNA editing. The Stuart laboratory has been exploring RNA editing in trypanosomes from the time of its discovery. They found dramatic differences between the mitochondrial gene sequences and those of the corresponding mRNAs, which indicated editing by the insertion and deletion of uridylates. Some editing was modest; simply eliminating shifts in sequence register of minimally extending the protein coding sequence. However, editing of many mRNAs was startingly extensive. The RNA sequence was essentially entirely remodeled with its sequence more the result of editing than the gene sequence. The identities of genes for such extensively edited RNA were not recognizable from the DNA sequence but they were readily identifiable from the edited mRNA sequence. Thus, despite the complex and extensive editing the resultant mRNA sequence is precise. Characterization of partially edited RNAs indicated that editing proceeds in the direction opposite to that used to specify the protein which reflects the use of the gRNAs. The numerous gRNAs that are used for editing are encoded in the DNA molecules whose role was previously a mystery. Using information gained in our earlier studies, the Stuart group developed an in vitro system that reproduces the fundamental process of editing in order to resolve the mechanism by which it occurs. They determined that editing entails a series of enzymatic steps rather than the mechanism used in RNA splicing. They also showed that chimeric gRNA-mRNA molecules are aberrant by-products of editing rather than intermediates in the process as had been proposed. Additional studies are exploring precisely how the number of added and deleted uridylates is specified by the gRNA. The Stuart laboratory showed that editing is performed by an aggregation of enzymes that catalyze the separate steps of editing. It also developed a method to purify this multimolecule complex that contains several, perhaps tens of, proteins. This will allow the study of its composition and the functions of its component parts. Indeed, the gene for one component has been identified and its detailed characterization begun. These studies are developing tools to explore related processes. An early finding in the lab was that the various mRNAs are differentially edited during the life cycle of the parasite. The pattern of this editing indicates that editing serves to regulate the alternation between two modes of energy generation. This regulation is coordinated with other events that are occurring during the life c
Diesel Technology: Engines. Second Edition. Teacher Edition [and] Student Edition.
ERIC Educational Resources Information Center
Barbieri, Dave; Miller, Roger; Kellum, Mary
This diesel technology series offers secondary and postsecondary students an opportunity for learning required skills in the diesel industry. It aligns with the medium/heavy duty truck task list developed by the National Automotive Technicians Education Foundation and used by the National Institute for Automotive Service Excellence in…
Bazak, Lily; Haviv, Ami; Barak, Michal; Jacob-Hirsch, Jasmine; Deng, Patricia; Zhang, Rui; Isaacs, Farren J; Rechavi, Gideon; Li, Jin Billy; Eisenberg, Eli; Levanon, Erez Y
2014-03-01
RNA molecules transmit the information encoded in the genome and generally reflect its content. Adenosine-to-inosine (A-to-I) RNA editing by ADAR proteins converts a genomically encoded adenosine into inosine. It is known that most RNA editing in human takes place in the primate-specific Alu sequences, but the extent of this phenomenon and its effect on transcriptome diversity are not yet clear. Here, we analyzed large-scale RNA-seq data and detected ∼1.6 million editing sites. As detection sensitivity increases with sequencing coverage, we performed ultradeep sequencing of selected Alu sequences and showed that the scope of editing is much larger than anticipated. We found that virtually all adenosines within Alu repeats that form double-stranded RNA undergo A-to-I editing, although most sites exhibit editing at only low levels (<1%). Moreover, using high coverage sequencing, we observed editing of transcripts resulting from residual antisense expression, doubling the number of edited sites in the human genome. Based on bioinformatic analyses and deep targeted sequencing, we estimate that there are over 100 million human Alu RNA editing sites, located in the majority of human genes. These findings set the stage for exploring how this primate-specific massive diversification of the transcriptome is utilized.
Discriminative Prediction of A-To-I RNA Editing Events from DNA Sequence
Sun, Jiangming; Singh, Pratibha; Bagge, Annika; Valtat, Bérengère; Vikman, Petter; Spégel, Peter; Mulder, Hindrik
2016-01-01
RNA editing is a post-transcriptional alteration of RNA sequences that, via insertions, deletions or base substitutions, can affect protein structure as well as RNA and protein expression. Recently, it has been suggested that RNA editing may be more frequent than previously thought. A great impediment, however, to a deeper understanding of this process is the paramount sequencing effort that needs to be undertaken to identify RNA editing events. Here, we describe an in silico approach, based on machine learning, that ameliorates this problem. Using 41 nucleotide long DNA sequences, we show that novel A-to-I RNA editing events can be predicted from known A-to-I RNA editing events intra- and interspecies. The validity of the proposed method was verified in an independent experimental dataset. Using our approach, 203 202 putative A-to-I RNA editing events were predicted in the whole human genome. Out of these, 9% were previously reported. The remaining sites require further validation, e.g., by targeted deep sequencing. In conclusion, the approach described here is a useful tool to identify potential A-to-I RNA editing events without the requirement of extensive RNA sequencing. PMID:27764195
AlignMe—a membrane protein sequence alignment web server
Stamm, Marcus; Staritzbichler, René; Khafizov, Kamil; Forrest, Lucy R.
2014-01-01
We present a web server for pair-wise alignment of membrane protein sequences, using the program AlignMe. The server makes available two operational modes of AlignMe: (i) sequence to sequence alignment, taking two sequences in fasta format as input, combining information about each sequence from multiple sources and producing a pair-wise alignment (PW mode); and (ii) alignment of two multiple sequence alignments to create family-averaged hydropathy profile alignments (HP mode). For the PW sequence alignment mode, four different optimized parameter sets are provided, each suited to pairs of sequences with a specific similarity level. These settings utilize different types of inputs: (position-specific) substitution matrices, secondary structure predictions and transmembrane propensities from transmembrane predictions or hydrophobicity scales. In the second (HP) mode, each input multiple sequence alignment is converted into a hydrophobicity profile averaged over the provided set of sequence homologs; the two profiles are then aligned. The HP mode enables qualitative comparison of transmembrane topologies (and therefore potentially of 3D folds) of two membrane proteins, which can be useful if the proteins have low sequence similarity. In summary, the AlignMe web server provides user-friendly access to a set of tools for analysis and comparison of membrane protein sequences. Access is available at http://www.bioinfo.mpg.de/AlignMe PMID:24753425
Corruption of genomic databases with anomalous sequence.
Lamperti, E D; Kittelberger, J M; Smith, T F; Villa-Komaroff, L
1992-06-11
We describe evidence that DNA sequences from vectors used for cloning and sequencing have been incorporated accidentally into eukaryotic entries in the GenBank database. These incorporations were not restricted to one type of vector or to a single mechanism. Many minor instances may have been the result of simple editing errors, but some entries contained large blocks of vector sequence that had been incorporated by contamination or other accidents during cloning. Some cases involved unusual rearrangements and areas of vector distant from the normal insertion sites. Matches to vector were found in 0.23% of 20,000 sequences analyzed in GenBank Release 63. Although the possibility of anomalous sequence incorporation has been recognized since the inception of GenBank and should be easy to avoid, recent evidence suggests that this problem is increasing more quickly than the database itself. The presence of anomalous sequence may have serious consequences for the interpretation and use of database entries, and will have an impact on issues of database management. The incorporated vector fragments described here may also be useful for a crude estimate of the fidelity of sequence information in the database. In alignments with well-defined ends, the matching sequences showed 96.8% identity to vector; when poorer matches with arbitrary limits were included, the aggregate identity to vector sequence was 94.8%.
2013-01-01
Background Adenosine-to-inosine (A-to-I) RNA editing is recognized as a cellular mechanism for generating both RNA and protein diversity. Inosine base pairs with cytidine during reverse transcription and therefore appears as guanosine during sequencing of cDNA. Current approaches of RNA editing identification largely depend on the comparison between transcriptomes and genomic DNA (gDNA) sequencing datasets from the same individuals, and it has been challenging to identify editing candidates from transcriptomes in the absence of gDNA information. Results We have developed a new strategy to accurately predict constitutive RNA editing sites from publicly available human RNA-seq datasets in the absence of relevant genomic sequences. Our approach establishes new parameters to increase the ability to map mismatches and to minimize sequencing/mapping errors and unreported genome variations. We identified 695 novel constitutive A-to-I editing sites that appear in clusters (named “editing boxes”) in multiple samples and which exhibit spatial and dynamic regulation across human tissues. Some of these editing boxes are enriched in non-repetitive regions lacking inverted repeat structures and contain an extremely high conversion frequency of As to Is. We validated a number of editing boxes in multiple human cell lines and confirmed that ADAR1 is responsible for the observed promiscuous editing events in non-repetitive regions, further expanding our knowledge of the catalytic substrate of A-to-I RNA editing by ADAR enzymes. Conclusions The approach we present here provides a novel way of identifying A-to-I RNA editing events by analyzing only RNA-seq datasets. This method has allowed us to gain new insights into RNA editing and should also aid in the identification of more constitutive A-to-I editing sites from additional transcriptomes. PMID:23537002
A novel approach to multiple sequence alignment using hadoop data grids.
Sudha Sadasivam, G; Baktavatchalam, G
2010-01-01
Multiple alignment of protein sequences helps to determine evolutionary linkage and to predict molecular structures. The factors to be considered while aligning multiple sequences are speed and accuracy of alignment. Although dynamic programming algorithms produce accurate alignments, they are computation intensive. In this paper we propose a time efficient approach to sequence alignment that also produces quality alignment. The dynamic nature of the algorithm coupled with data and computational parallelism of hadoop data grids improves the accuracy and speed of sequence alignment. The principle of block splitting in hadoop coupled with its scalability facilitates alignment of very large sequences.
Genome-Wide Analysis of A-to-I RNA Editing.
Savva, Yiannis A; Laurent, Georges St; Reenan, Robert A
2016-01-01
Adenosine (A)-to-inosine (I) RNA editing is a fundamental posttranscriptional modification that ensures the deamination of A-to-I in double-stranded (ds) RNA molecules. Intriguingly, the A-to-I RNA editing system is particularly active in the nervous system of higher eukaryotes, altering a plethora of noncoding and coding sequences. Abnormal RNA editing is highly associated with many neurological phenotypes and neurodevelopmental disorders. However, the molecular mechanisms underlying RNA editing-mediated pathogenesis still remain enigmatic and have attracted increasing attention from researchers. Over the last decade, methods available to perform genome-wide transcriptome analysis, have evolved rapidly. Within the RNA editing field researchers have adopted next-generation sequencing technologies to identify RNA-editing sites within genomes and to elucidate the underlying process. However, technical challenges associated with editing site discovery have hindered efforts to uncover comprehensive editing site datasets, resulting in the general perception that the collections of annotated editing sites represent only a small minority of the total number of sites in a given organism, tissue, or cell type of interest. Additionally to doubts about sensitivity, existing RNA-editing site lists often contain high percentages of false positives, leading to uncertainty about their validity and usefulness in downstream studies. An accurate investigation of A-to-I editing requires properly validated datasets of editing sites with demonstrated and transparent levels of sensitivity and specificity. Here, we describe a high signal-to-noise method for RNA-editing site detection using single-molecule sequencing (SMS). With this method, authentic RNA-editing sites may be differentiated from artifacts. Machine learning approaches provide a procedure to improve upon and experimentally validate sequencing outcomes through use of computationally predicted, iterative feedback loops. Subsequent use of extensive Sanger sequencing validations can generate accurate editing site lists. This approach has broad application and accurate genome-wide editing analysis of various tissues from clinical specimens or various experimental organisms is now a possibility.
Chou, A; Burke, J
1999-05-01
DNA sequence clustering has become a valuable method in support of gene discovery and gene expression analysis. Our interest lies in leveraging the sequence diversity within clusters of expressed sequence tags (ESTs) to model gene structure for the study of gene variants that arise from, among other things, alternative mRNA splicing, polymorphism, and divergence after gene duplication, fusion, and translocation events. In previous work, CRAW was developed to discover gene variants from assembled clusters of ESTs. Most importantly, novel gene features (the differing units between gene variants, for example alternative exons, polymorphisms, transposable elements, etc.) that are specialized to tissue, disease, population, or developmental states can be identified when these tools collate DNA source information with gene variant discrimination. While the goal is complete automation of novel feature and gene variant detection, current methods are far from perfect and hence the development of effective tools for visualization and exploratory data analysis are of paramount importance in the process of sifting through candidate genes and validating targets. We present CRAWview, a Java based visualization extension to CRAW. Features that vary between gene forms are displayed using an automatically generated color coded index. The reporting format of CRAWview gives a brief, high level summary report to display overlap and divergence within clusters of sequences as well as the ability to 'drill down' and see detailed information concerning regions of interest. Additionally, the alignment viewing and editing capabilities of CRAWview make it possible to interactively correct frame-shifts and otherwise edit cluster assemblies. We have implemented CRAWview as a Java application across windows NT/95 and UNIX platforms. A beta version of CRAWview will be freely available to academic users from Pangea Systems (http://www.pangeasystems.com). Contact :
Mehedi, Masfique; Hoenen, Thomas; Robertson, Shelly; Ricklefs, Stacy; Dolan, Michael A; Taylor, Travis; Falzarano, Darryl; Ebihara, Hideki; Porcella, Stephen F; Feldmann, Heinz
2013-01-01
Ebolavirus (EBOV), the causative agent of a severe hemorrhagic fever and a biosafety level 4 pathogen, increases its genome coding capacity by producing multiple transcripts encoding for structural and nonstructural glycoproteins from a single gene. This is achieved through RNA editing, during which non-template adenosine residues are incorporated into the EBOV mRNAs at an editing site encoding for 7 adenosine residues. However, the mechanism of EBOV RNA editing is currently not understood. In this study, we report for the first time that minigenomes containing the glycoprotein gene editing site can undergo RNA editing, thereby eliminating the requirement for a biosafety level 4 laboratory to study EBOV RNA editing. Using a newly developed dual-reporter minigenome, we have characterized the mechanism of EBOV RNA editing, and have identified cis-acting sequences that are required for editing, located between 9 nt upstream and 9 nt downstream of the editing site. Moreover, we show that a secondary structure in the upstream cis-acting sequence plays an important role in RNA editing. EBOV RNA editing is glycoprotein gene-specific, as a stretch encoding for 7 adenosine residues located in the viral polymerase gene did not serve as an editing site, most likely due to an absence of the necessary cis-acting sequences. Finally, the EBOV protein VP30 was identified as a trans-acting factor for RNA editing, constituting a novel function for this protein. Overall, our results provide novel insights into the RNA editing mechanism of EBOV, further understanding of which might result in novel intervention strategies against this viral pathogen.
Picardi, Ernesto; Gallo, Angela; Galeano, Federica; Tomaselli, Sara; Pesole, Graziano
2012-01-01
RNA editing is a post-transcriptional process occurring in a wide range of organisms. In human brain, the A-to-I RNA editing, in which individual adenosine (A) bases in pre-mRNA are modified to yield inosine (I), is the most frequent event. Modulating gene expression, RNA editing is essential for cellular homeostasis. Indeed, its deregulation has been linked to several neurological and neurodegenerative diseases. To date, many RNA editing sites have been identified by next generation sequencing technologies employing massive transcriptome sequencing together with whole genome or exome sequencing. While genome and transcriptome reads are not always available for single individuals, RNA-Seq data are widespread through public databases and represent a relevant source of yet unexplored RNA editing sites. In this context, we propose a simple computational strategy to identify genomic positions enriched in novel hypothetical RNA editing events by means of a new two-steps mapping procedure requiring only RNA-Seq data and no a priori knowledge of RNA editing characteristics and genomic reads. We assessed the suitability of our procedure by confirming A-to-I candidates using conventional Sanger sequencing and performing RNA-Seq as well as whole exome sequencing of human spinal cord tissue from a single individual. PMID:22957051
SARA-Coffee web server, a tool for the computation of RNA sequence and structure multiple alignments
Di Tommaso, Paolo; Bussotti, Giovanni; Kemena, Carsten; Capriotti, Emidio; Chatzou, Maria; Prieto, Pablo; Notredame, Cedric
2014-01-01
This article introduces the SARA-Coffee web server; a service allowing the online computation of 3D structure based multiple RNA sequence alignments. The server makes it possible to combine sequences with and without known 3D structures. Given a set of sequences SARA-Coffee outputs a multiple sequence alignment along with a reliability index for every sequence, column and aligned residue. SARA-Coffee combines SARA, a pairwise structural RNA aligner with the R-Coffee multiple RNA aligner in a way that has been shown to improve alignment accuracy over most sequence aligners when enough structural data is available. The server can be accessed from http://tcoffee.crg.cat/apps/tcoffee/do:saracoffee. PMID:24972831
Using structure to explore the sequence alignment space of remote homologs.
Kuziemko, Andrew; Honig, Barry; Petrey, Donald
2011-10-01
Protein structure modeling by homology requires an accurate sequence alignment between the query protein and its structural template. However, sequence alignment methods based on dynamic programming (DP) are typically unable to generate accurate alignments for remote sequence homologs, thus limiting the applicability of modeling methods. A central problem is that the alignment that is "optimal" in terms of the DP score does not necessarily correspond to the alignment that produces the most accurate structural model. That is, the correct alignment based on structural superposition will generally have a lower score than the optimal alignment obtained from sequence. Variations of the DP algorithm have been developed that generate alternative alignments that are "suboptimal" in terms of the DP score, but these still encounter difficulties in detecting the correct structural alignment. We present here a new alternative sequence alignment method that relies heavily on the structure of the template. By initially aligning the query sequence to individual fragments in secondary structure elements and combining high-scoring fragments that pass basic tests for "modelability", we can generate accurate alignments within a small ensemble. Our results suggest that the set of sequences that can currently be modeled by homology can be greatly extended.
Zhou, Carol L Ecale
2015-01-01
In order to better define regions of similarity among related protein structures, it is useful to identify the residue-residue correspondences among proteins. Few codes exist for constructing a one-to-many multiple sequence alignment derived from a set of structure or sequence alignments, and a need was evident for creating such a tool for combining pairwise structure alignments that would allow for insertion of gaps in the reference structure. This report describes a new Python code, CombAlign, which takes as input a set of pairwise sequence alignments (which may be structure based) and generates a one-to-many, gapped, multiple structure- or sequence-based sequence alignment (MSSA). The use and utility of CombAlign was demonstrated by generating gapped MSSAs using sets of pairwise structure-based sequence alignments between structure models of the matrix protein (VP40) and pre-small/secreted glycoprotein (sGP) of Reston Ebolavirus and the corresponding proteins of several other filoviruses. The gapped MSSAs revealed structure-based residue-residue correspondences, which enabled identification of structurally similar versus differing regions in the Reston proteins compared to each of the other corresponding proteins. CombAlign is a new Python code that generates a one-to-many, gapped, multiple structure- or sequence-based sequence alignment (MSSA) given a set of pairwise sequence alignments (which may be structure based). CombAlign has utility in assisting the user in distinguishing structurally conserved versus divergent regions on a reference protein structure relative to other closely related proteins. CombAlign was developed in Python 2.6, and the source code is available for download from the GitHub code repository.
Pairagon: a highly accurate, HMM-based cDNA-to-genome aligner.
Lu, David V; Brown, Randall H; Arumugam, Manimozhiyan; Brent, Michael R
2009-07-01
The most accurate way to determine the intron-exon structures in a genome is to align spliced cDNA sequences to the genome. Thus, cDNA-to-genome alignment programs are a key component of most annotation pipelines. The scoring system used to choose the best alignment is a primary determinant of alignment accuracy, while heuristics that prevent consideration of certain alignments are a primary determinant of runtime and memory usage. Both accuracy and speed are important considerations in choosing an alignment algorithm, but scoring systems have received much less attention than heuristics. We present Pairagon, a pair hidden Markov model based cDNA-to-genome alignment program, as the most accurate aligner for sequences with high- and low-identity levels. We conducted a series of experiments testing alignment accuracy with varying sequence identity. We first created 'perfect' simulated cDNA sequences by splicing the sequences of exons in the reference genome sequences of fly and human. The complete reference genome sequences were then mutated to various degrees using a realistic mutation simulator and the perfect cDNAs were aligned to them using Pairagon and 12 other aligners. To validate these results with natural sequences, we performed cross-species alignment using orthologous transcripts from human, mouse and rat. We found that aligner accuracy is heavily dependent on sequence identity. For sequences with 100% identity, Pairagon achieved accuracy levels of >99.6%, with one quarter of the errors of any other aligner. Furthermore, for human/mouse alignments, which are only 85% identical, Pairagon achieved 87% accuracy, higher than any other aligner. Pairagon source and executables are freely available at http://mblab.wustl.edu/software/pairagon/
REDO: RNA Editing Detection in Plant Organelles Based on Variant Calling Results.
Wu, Shuangyang; Liu, Wanfei; Aljohi, Hasan Awad; Alromaih, Sarah A; Alanazi, Ibrahim O; Lin, Qiang; Yu, Jun; Hu, Songnian
2018-05-01
RNA editing is a post-transcriptional or cotranscriptional process that changes the sequence of the precursor transcript by substitutions, insertions, or deletions. Almost all of the land plants undergo RNA editing in organelles (plastids and mitochondria). Although several software tools have been developed to identify RNA editing events, there has been a great challenge to distinguish true RNA editing events from genome variation, sequencing errors, and other factors. Here we introduce REDO, a comprehensive application tool for identifying RNA editing events in plant organelles based on variant call format files from RNA-sequencing data. REDO is a suite of Perl scripts that illustrate a bunch of attributes of RNA editing events in figures and tables. REDO can also detect RNA editing events in multiple samples simultaneously and identify the significant differential proportion of RNA editing loci. Comparing with similar tools, such as REDItools, REDO runs faster with higher accuracy, and more specificity at the cost of slightly lower sensitivity. Moreover, REDO annotates each RNA editing site in RNAs, whereas REDItools reports only possible RNA editing sites in genome, which need additional steps to obtain RNA editing profiles for RNAs. Overall, REDO can identify potential RNA editing sites easily and provide several functions such as detailed annotations, statistics, figures, and significantly differential proportion of RNA editing sites among different samples.
Mitochondrial tRNA 5'-editing in Dictyostelium discoideum and Polysphondylium pallidum.
Abad, Maria G; Long, Yicheng; Kinchen, R Dimitri; Schindel, Elinor T; Gray, Michael W; Jackman, Jane E
2014-05-30
Mitochondrial tRNA (mt-tRNA) 5'-editing was first described more than 20 years ago; however, the first candidates for 5'-editing enzymes were only recently identified in a eukaryotic microbe (protist), the slime mold Dictyostelium discoideum. In this organism, eight of 18 mt-tRNAs are predicted to be edited based on the presence of genomically encoded mismatched nucleotides in their aminoacyl-acceptor stem sequences. Here, we demonstrate that mt-tRNA 5'-editing occurs at all predicted sites in D. discoideum as evidenced by changes in the sequences of isolated mt-tRNAs compared with the expected sequences encoded by the mitochondrial genome. We also identify two previously unpredicted editing events in which G-U base pairs are edited in the absence of any other genomically encoded mismatches. A comparison of 5'-editing in D. discoideum with 5'-editing in another slime mold, Polysphondylium pallidum, suggests organism-specific idiosyncrasies in the treatment of U-G/G-U pairs. In vitro activities of putative D. discoideum editing enzymes are consistent with the observed editing reactions and suggest an overall lack of tRNA substrate specificity exhibited by the repair component of the editing enzyme. Although the presence of terminal mismatches in mt-tRNA sequences is highly predictive of the occurrence of mt-tRNA 5'-editing, the variability in treatment of U-G/G-U base pairs observed here indicates that direct experimental evidence of 5'-editing must be obtained to understand the complete spectrum of mt-tRNA editing events in any species. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Fine-tuning structural RNA alignments in the twilight zone.
Bremges, Andreas; Schirmer, Stefanie; Giegerich, Robert
2010-04-30
A widely used method to find conserved secondary structure in RNA is to first construct a multiple sequence alignment, and then fold the alignment, optimizing a score based on thermodynamics and covariance. This method works best around 75% sequence similarity. However, in a "twilight zone" below 55% similarity, the sequence alignment tends to obscure the covariance signal used in the second phase. Therefore, while the overall shape of the consensus structure may still be found, the degree of conservation cannot be estimated reliably. Based on a combination of available methods, we present a method named planACstar for improving structure conservation in structural alignments in the twilight zone. After constructing a consensus structure by alignment folding, planACstar abandons the original sequence alignment, refolds the sequences individually, but consistent with the consensus, aligns the structures, irrespective of sequence, by a pure structure alignment method, and derives an improved sequence alignment from the alignment of structures, to be re-submitted to alignment folding, etc.. This circle may be iterated as long as structural conservation improves, but normally, one step suffices. Employing the tools ClustalW, RNAalifold, and RNAforester, we find that for sequences with 30-55% sequence identity, structural conservation can be improved by 10% on average, with a large variation, measured in terms of RNAalifold's own criterion, the structure conservation index.
Jain, Varsha; Patel, Brijesh; Umar, Farhat Paul; Ajithakumar, H. M.; Gurjar, Suraj K.; Gupta, I. D.; Verma, Archana
2017-01-01
Aim: This study was conducted with the objective to identify single nucleotide polymorphism (SNP) in protein phosphatase 1 regulatory subunit 11 (PPP1R11) gene in Murrah bulls. Materials and Methods: Genomic DNA was isolated by phenol–chloroform extraction method from the frozen semen samples of 65 Murrah bulls maintained at Artificial Breeding Research Centre, ICAR-National Dairy Research Institute, Karnal. The quality and concentration of DNA was checked by spectrophotometer reading and agarose gel electrophoresis. The target region of PPP1R11 gene was amplified using four sets of primer designed based on Bos taurus reference sequence. The amplified products were sequenced and aligned using Clustal Omega for identification of SNPs. Animals were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) using EcoNI restriction enzyme. Results: The sequences in the NCBI accession number NW_005785016.1 for Bubalus bubalis were compared and aligned with the edited sequences of Murrah bulls with Clustal Omega software. A total of 10 SNPs were found, out of which 1 at 5’UTR, 3 at intron 1, and 6 at intron 2 region. PCR-RFLP using restriction enzyme EcoNI revealed only AA genotype indicating monomorphism in PPP1R11 gene of all Murrah animals included in the study. Conclusion: A total of 10 SNPs were found. PCR-RFLP revealed only AA genotype indicating monomorphism in PPP1R11 gene of all Murrah animals included in the study, due to which association analysis with conception rate was not feasible. PMID:28344410
Veeranagouda, Yaligara; Debono-Lagneaux, Delphine; Fournet, Hamida; Thill, Gilbert; Didier, Michel
2018-01-16
The emergence of clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR-Cas9) gene editing systems has enabled the creation of specific mutants at low cost, in a short time and with high efficiency, in eukaryotic cells. Since a CRISPR-Cas9 system typically creates an array of mutations in targeted sites, a successful gene editing project requires careful selection of edited clones. This process can be very challenging, especially when working with multiallelic genes and/or polyploid cells (such as cancer and plants cells). Here we described a next-generation sequencing method called CRISPR-Cas9 Edited Site Sequencing (CRES-Seq) for the efficient and high-throughput screening of CRISPR-Cas9-edited clones. CRES-Seq facilitates the precise genotyping up to 96 CRISPR-Cas9-edited sites (CRES) in a single MiniSeq (Illumina) run with an approximate sequencing cost of $6/clone. CRES-Seq is particularly useful when multiple genes are simultaneously targeted by CRISPR-Cas9, and also for screening of clones generated from multiallelic genes/polyploid cells. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.
libFLASM: a software library for fixed-length approximate string matching.
Ayad, Lorraine A K; Pissis, Solon P P; Retha, Ahmad
2016-11-10
Approximate string matching is the problem of finding all factors of a given text that are at a distance at most k from a given pattern. Fixed-length approximate string matching is the problem of finding all factors of a text of length n that are at a distance at most k from any factor of length ℓ of a pattern of length m. There exist bit-vector techniques to solve the fixed-length approximate string matching problem in time [Formula: see text] and space [Formula: see text] under the edit and Hamming distance models, where w is the size of the computer word; as such these techniques are independent of the distance threshold k or the alphabet size. Fixed-length approximate string matching is a generalisation of approximate string matching and, hence, has numerous direct applications in computational molecular biology and elsewhere. We present and make available libFLASM, a free open-source C++ software library for solving fixed-length approximate string matching under both the edit and the Hamming distance models. Moreover we describe how fixed-length approximate string matching is applied to solve real problems by incorporating libFLASM into established applications for multiple circular sequence alignment as well as single and structured motif extraction. Specifically, we describe how it can be used to improve the accuracy of multiple circular sequence alignment in terms of the inferred likelihood-based phylogenies; and we also describe how it is used to efficiently find motifs in molecular sequences representing regulatory or functional regions. The comparison of the performance of the library to other algorithms show how it is competitive, especially with increasing distance thresholds. Fixed-length approximate string matching is a generalisation of the classic approximate string matching problem. We present libFLASM, a free open-source C++ software library for solving fixed-length approximate string matching. The extensive experimental results presented here suggest that other applications could benefit from using libFLASM, and thus further maintenance and development of libFLASM is desirable.
Iterative refinement of structure-based sequence alignments by Seed Extension
Kim, Changhoon; Tai, Chin-Hsien; Lee, Byungkook
2009-01-01
Background Accurate sequence alignment is required in many bioinformatics applications but, when sequence similarity is low, it is difficult to obtain accurate alignments based on sequence similarity alone. The accuracy improves when the structures are available, but current structure-based sequence alignment procedures still mis-align substantial numbers of residues. In order to correct such errors, we previously explored the possibility of replacing the residue-based dynamic programming algorithm in structure alignment procedures with the Seed Extension algorithm, which does not use a gap penalty. Here, we describe a new procedure called RSE (Refinement with Seed Extension) that iteratively refines a structure-based sequence alignment. Results RSE uses SE (Seed Extension) in its core, which is an algorithm that we reported recently for obtaining a sequence alignment from two superimposed structures. The RSE procedure was evaluated by comparing the correctly aligned fractions of residues before and after the refinement of the structure-based sequence alignments produced by popular programs. CE, DaliLite, FAST, LOCK2, MATRAS, MATT, TM-align, SHEBA and VAST were included in this analysis and the NCBI's CDD root node set was used as the reference alignments. RSE improved the average accuracy of sequence alignments for all programs tested when no shift error was allowed. The amount of improvement varied depending on the program. The average improvements were small for DaliLite and MATRAS but about 5% for CE and VAST. More substantial improvements have been seen in many individual cases. The additional computation times required for the refinements were negligible compared to the times taken by the structure alignment programs. Conclusion RSE is a computationally inexpensive way of improving the accuracy of a structure-based sequence alignment. It can be used as a standalone procedure following a regular structure-based sequence alignment or to replace the traditional iterative refinement procedures based on residue-level dynamic programming algorithm in many structure alignment programs. PMID:19589133
A generalized global alignment algorithm.
Huang, Xiaoqiu; Chao, Kun-Mao
2003-01-22
Homologous sequences are sometimes similar over some regions but different over other regions. Homologous sequences have a much lower global similarity if the different regions are much longer than the similar regions. We present a generalized global alignment algorithm for comparing sequences with intermittent similarities, an ordered list of similar regions separated by different regions. A generalized global alignment model is defined to handle sequences with intermittent similarities. A dynamic programming algorithm is designed to compute an optimal general alignment in time proportional to the product of sequence lengths and in space proportional to the sum of sequence lengths. The algorithm is implemented as a computer program named GAP3 (Global Alignment Program Version 3). The generalized global alignment model is validated by experimental results produced with GAP3 on both DNA and protein sequences. The GAP3 program extends the ability of standard global alignment programs to recognize homologous sequences of lower similarity. The GAP3 program is freely available for academic use at http://bioinformatics.iastate.edu/aat/align/align.html.
Functions of the RNA Editing Enzyme ADAR1 and Their Relevance to Human Diseases.
Song, Chunzi; Sakurai, Masayuki; Shiromoto, Yusuke; Nishikura, Kazuko
2016-12-17
Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in double-stranded RNA (dsRNA). Among the three types of mammalian ADARs, ADAR1 has long been recognized as an essential enzyme for normal development. The interferon-inducible ADAR1p150 is involved in immune responses to both exogenous and endogenous triggers, whereas the functions of the constitutively expressed ADAR1p110 are variable. Recent findings that ADAR1 is involved in the recognition of self versus non-self dsRNA provide potential explanations for its links to hematopoiesis, type I interferonopathies, and viral infections. Editing in both coding and noncoding sequences results in diseases ranging from cancers to neurological abnormalities. Furthermore, editing of noncoding sequences, like microRNAs, can regulate protein expression, while editing of Alu sequences can affect translational efficiency and editing of proximal sequences. Novel identifications of long noncoding RNA and retrotransposons as editing targets further expand the effects of A-to-I editing. Besides editing, ADAR1 also interacts with other dsRNA-binding proteins in editing-independent manners. Elucidating the disease-specific patterns of editing and/or ADAR1 expression may be useful in making diagnoses and prognoses. In this review, we relate the mechanisms of ADAR1's actions to its pathological implications, and suggest possible mechanisms for the unexplained associations between ADAR1 and human diseases.
Functions of the RNA Editing Enzyme ADAR1 and Their Relevance to Human Diseases
Song, Chunzi; Sakurai, Masayuki; Shiromoto, Yusuke; Nishikura, Kazuko
2016-01-01
Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in double-stranded RNA (dsRNA). Among the three types of mammalian ADARs, ADAR1 has long been recognized as an essential enzyme for normal development. The interferon-inducible ADAR1p150 is involved in immune responses to both exogenous and endogenous triggers, whereas the functions of the constitutively expressed ADAR1p110 are variable. Recent findings that ADAR1 is involved in the recognition of self versus non-self dsRNA provide potential explanations for its links to hematopoiesis, type I interferonopathies, and viral infections. Editing in both coding and noncoding sequences results in diseases ranging from cancers to neurological abnormalities. Furthermore, editing of noncoding sequences, like microRNAs, can regulate protein expression, while editing of Alu sequences can affect translational efficiency and editing of proximal sequences. Novel identifications of long noncoding RNA and retrotransposons as editing targets further expand the effects of A-to-I editing. Besides editing, ADAR1 also interacts with other dsRNA-binding proteins in editing-independent manners. Elucidating the disease-specific patterns of editing and/or ADAR1 expression may be useful in making diagnoses and prognoses. In this review, we relate the mechanisms of ADAR1′s actions to its pathological implications, and suggest possible mechanisms for the unexplained associations between ADAR1 and human diseases. PMID:27999332
COACH: profile-profile alignment of protein families using hidden Markov models.
Edgar, Robert C; Sjölander, Kimmen
2004-05-22
Alignments of two multiple-sequence alignments, or statistical models of such alignments (profiles), have important applications in computational biology. The increased amount of information in a profile versus a single sequence can lead to more accurate alignments and more sensitive homolog detection in database searches. Several profile-profile alignment methods have been proposed and have been shown to improve sensitivity and alignment quality compared with sequence-sequence methods (such as BLAST) and profile-sequence methods (e.g. PSI-BLAST). Here we present a new approach to profile-profile alignment we call Comparison of Alignments by Constructing Hidden Markov Models (HMMs) (COACH). COACH aligns two multiple sequence alignments by constructing a profile HMM from one alignment and aligning the other to that HMM. We compare the alignment accuracy of COACH with two recently published methods: Yona and Levitt's prof_sim and Sadreyev and Grishin's COMPASS. On two sets of reference alignments selected from the FSSP database, we find that COACH is able, on average, to produce alignments giving the best coverage or the fewest errors, depending on the chosen parameter settings. COACH is freely available from www.drive5.com/lobster
Frésard, Laure; Leroux, Sophie; Roux, Pierre-François; Klopp, Christophe; Fabre, Stéphane; Esquerré, Diane; Dehais, Patrice; Djari, Anis; Gourichon, David; Lagarrigue, Sandrine; Pitel, Frédérique
2015-01-01
RNA editing results in a post-transcriptional nucleotide change in the RNA sequence that creates an alternative nucleotide not present in the DNA sequence. This leads to a diversification of transcription products with potential functional consequences. Two nucleotide substitutions are mainly described in animals, from adenosine to inosine (A-to-I) and from cytidine to uridine (C-to-U). This phenomenon is described in more details in mammals, notably since the availability of next generation sequencing technologies allowing whole genome screening of RNA-DNA differences. The number of studies recording RNA editing in other vertebrates like chicken is still limited. We chose to use high throughput sequencing technologies to search for RNA editing in chicken, and to extend the knowledge of its conservation among vertebrates. We performed sequencing of RNA and DNA from 8 embryos. Being aware of common pitfalls inherent to sequence analyses that lead to false positive discovery, we stringently filtered our datasets and found fewer than 40 reliable candidates. Conservation of particular sites of RNA editing was attested by the presence of 3 edited sites previously detected in mammals. We then characterized editing levels for selected candidates in several tissues and at different time points, from 4.5 days of embryonic development to adults, and observed a clear tissue-specificity and a gradual increase of editing level with time. By characterizing the RNA editing landscape in chicken, our results highlight the extent of evolutionary conservation of this phenomenon within vertebrates, attest to its tissue and stage specificity and provide support of the absence of non A-to-I events from the chicken transcriptome.
Frésard, Laure; Leroux, Sophie; Roux, Pierre-François; Klopp, Christophe; Fabre, Stéphane; Esquerré, Diane; Dehais, Patrice; Djari, Anis; Gourichon, David
2015-01-01
RNA editing results in a post-transcriptional nucleotide change in the RNA sequence that creates an alternative nucleotide not present in the DNA sequence. This leads to a diversification of transcription products with potential functional consequences. Two nucleotide substitutions are mainly described in animals, from adenosine to inosine (A-to-I) and from cytidine to uridine (C-to-U). This phenomenon is described in more details in mammals, notably since the availability of next generation sequencing technologies allowing whole genome screening of RNA-DNA differences. The number of studies recording RNA editing in other vertebrates like chicken is still limited. We chose to use high throughput sequencing technologies to search for RNA editing in chicken, and to extend the knowledge of its conservation among vertebrates. We performed sequencing of RNA and DNA from 8 embryos. Being aware of common pitfalls inherent to sequence analyses that lead to false positive discovery, we stringently filtered our datasets and found fewer than 40 reliable candidates. Conservation of particular sites of RNA editing was attested by the presence of 3 edited sites previously detected in mammals. We then characterized editing levels for selected candidates in several tissues and at different time points, from 4.5 days of embryonic development to adults, and observed a clear tissue-specificity and a gradual increase of editing level with time. By characterizing the RNA editing landscape in chicken, our results highlight the extent of evolutionary conservation of this phenomenon within vertebrates, attest to its tissue and stage specificity and provide support of the absence of non A-to-I events from the chicken transcriptome. PMID:26024316
Quantifying Genome Editing Outcomes at Endogenous Loci using SMRT Sequencing
Clark, Joseph; Punjya, Niraj; Sebastiano, Vittorio; Bao, Gang; Porteus, Matthew H
2014-01-01
SUMMARY Targeted genome editing with engineered nucleases has transformed the ability to introduce precise sequence modifications at almost any site within the genome. A major obstacle to probing the efficiency and consequences of genome editing is that no existing method enables the frequency of different editing events to be simultaneously measured across a cell population at any endogenous genomic locus. We have developed a novel method for quantifying individual genome editing outcomes at any site of interest using single molecule real time (SMRT) DNA sequencing. We show that this approach can be applied at various loci, using multiple engineered nuclease platforms including TALENs, RNA guided endonucleases (CRISPR/Cas9), and ZFNs, and in different cell lines to identify conditions and strategies in which the desired engineering outcome has occurred. This approach facilitates the evaluation of new gene editing technologies and permits sensitive quantification of editing outcomes in almost every experimental system used. PMID:24685129
Shih, Arthur Chun-Chieh; Lee, DT; Peng, Chin-Lin; Wu, Yu-Wei
2007-01-01
Background When aligning several hundreds or thousands of sequences, such as epidemic virus sequences or homologous/orthologous sequences of some big gene families, to reconstruct the epidemiological history or their phylogenies, how to analyze and visualize the alignment results of many sequences has become a new challenge for computational biologists. Although there are several tools available for visualization of very long sequence alignments, few of them are applicable to the alignments of many sequences. Results A multiple-logo alignment visualization tool, called Phylo-mLogo, is presented in this paper. Phylo-mLogo calculates the variabilities and homogeneities of alignment sequences by base frequencies or entropies. Different from the traditional representations of sequence logos, Phylo-mLogo not only displays the global logo patterns of the whole alignment of multiple sequences, but also demonstrates their local homologous logos for each clade hierarchically. In addition, Phylo-mLogo also allows the user to focus only on the analysis of some important, structurally or functionally constrained sites in the alignment selected by the user or by built-in automatic calculation. Conclusion With Phylo-mLogo, the user can symbolically and hierarchically visualize hundreds of aligned sequences simultaneously and easily check the changes of their amino acid sites when analyzing many homologous/orthologous or influenza virus sequences. More information of Phylo-mLogo can be found at URL . PMID:17319966
Roca, Alberto I
2014-01-01
The 2013 BioVis Contest provided an opportunity to evaluate different paradigms for visualizing protein multiple sequence alignments. Such data sets are becoming extremely large and thus taxing current visualization paradigms. Sequence Logos represent consensus sequences but have limitations for protein alignments. As an alternative, ProfileGrids are a new protein sequence alignment visualization paradigm that represents an alignment as a color-coded matrix of the residue frequency occurring at every homologous position in the aligned protein family. The JProfileGrid software program was used to analyze the BioVis contest data sets to generate figures for comparison with the Sequence Logo reference images. The ProfileGrid representation allows for the clear and effective analysis of protein multiple sequence alignments. This includes both a general overview of the conservation and diversity sequence patterns as well as the interactive ability to query the details of the protein residue distributions in the alignment. The JProfileGrid software is free and available from http://www.ProfileGrid.org.
Fine-tuning structural RNA alignments in the twilight zone
2010-01-01
Background A widely used method to find conserved secondary structure in RNA is to first construct a multiple sequence alignment, and then fold the alignment, optimizing a score based on thermodynamics and covariance. This method works best around 75% sequence similarity. However, in a "twilight zone" below 55% similarity, the sequence alignment tends to obscure the covariance signal used in the second phase. Therefore, while the overall shape of the consensus structure may still be found, the degree of conservation cannot be estimated reliably. Results Based on a combination of available methods, we present a method named planACstar for improving structure conservation in structural alignments in the twilight zone. After constructing a consensus structure by alignment folding, planACstar abandons the original sequence alignment, refolds the sequences individually, but consistent with the consensus, aligns the structures, irrespective of sequence, by a pure structure alignment method, and derives an improved sequence alignment from the alignment of structures, to be re-submitted to alignment folding, etc.. This circle may be iterated as long as structural conservation improves, but normally, one step suffices. Conclusions Employing the tools ClustalW, RNAalifold, and RNAforester, we find that for sequences with 30-55% sequence identity, structural conservation can be improved by 10% on average, with a large variation, measured in terms of RNAalifold's own criterion, the structure conservation index. PMID:20433706
Zhou, Hong; Zhou, Michael; Li, Daisy; Manthey, Joseph; Lioutikova, Ekaterina; Wang, Hong; Zeng, Xiao
2017-11-17
The beauty and power of the genome editing mechanism, CRISPR Cas9 endonuclease system, lies in the fact that it is RNA-programmable such that Cas9 can be guided to any genomic loci complementary to a 20-nt RNA, single guide RNA (sgRNA), to cleave double stranded DNA, allowing the introduction of wanted mutations. Unfortunately, it has been reported repeatedly that the sgRNA can also guide Cas9 to off-target sites where the DNA sequence is homologous to sgRNA. Using human genome and Streptococcus pyogenes Cas9 (SpCas9) as an example, this article mathematically analyzed the probabilities of off-target homologies of sgRNAs and discovered that for large genome size such as human genome, potential off-target homologies are inevitable for sgRNA selection. A highly efficient computationl algorithm was developed for whole genome sgRNA design and off-target homology searches. By means of a dynamically constructed sequence-indexed database and a simplified sequence alignment method, this algorithm achieves very high efficiency while guaranteeing the identification of all existing potential off-target homologies. Via this algorithm, 1,876,775 sgRNAs were designed for the 19,153 human mRNA genes and only two sgRNAs were found to be free of off-target homology. By means of the novel and efficient sgRNA homology search algorithm introduced in this article, genome wide sgRNA design and off-target analysis were conducted and the results confirmed the mathematical analysis that for a sgRNA sequence, it is almost impossible to escape potential off-target homologies. Future innovations on the CRISPR Cas9 gene editing technology need to focus on how to eliminate the Cas9 off-target activity.
Picardi, Ernesto; Quagliariello, Carla
2008-03-26
In plant mitochondria, the post-transcriptional RNA editing process converts C to U at a number of specific sites of the mRNA sequence and usually restores phylogenetically conserved codons and the encoded amino acid residues. Sites undergoing RNA editing evolve at a higher rate than sites not modified by the process. As a result, editing sites strongly affect the evolution of plant mitochondrial genomes, representing an important source of sequence variability and potentially informative characters. To date no clear and convincing evidence has established whether or not editing sites really affect the topology of reconstructed phylogenetic trees. For this reason, we investigated here the effect of RNA editing on the tree building process of twenty different plant mitochondrial gene sequences and by means of computer simulations. Based on our simulation study we suggest that the editing 'noise' in tree topology inference is mainly manifested at the cDNA level. In particular, editing sites tend to confuse tree topologies when artificial genomic and cDNA sequences are generated shorter than 500 bp and with an editing percentage higher than 5.0%. Similar results have been also obtained with genuine plant mitochondrial genes. In this latter instance, indeed, the topology incongruence increases when the editing percentage goes up from about 3.0 to 14.0%. However, when the average gene length is higher than 1,000 bp (rps3, matR and atp1) no differences in the comparison between inferred genomic and cDNA topologies could be detected. Our findings by the here reported in silico and in vivo computer simulation system seem to strongly suggest that editing sites contribute in the generation of misleading phylogenetic trees if the analyzed mitochondrial gene sequence is highly edited (higher than 3.0%) and reduced in length (shorter than 500 bp). In the current lack of direct experimental evidence the results presented here encourage, thus, the use of genomic mitochondrial rather than cDNA sequences for reconstructing phylogenetic events in land plants.
Opticalman 1 and C, Rate Training Manual. [1972 Revised Edition].
ERIC Educational Resources Information Center
Naval Personnel Program Support Activity, Washington, DC.
In this revised edition of an earlier publication (ED 070 574), fundamentals of optical instruments on board ships are presented in this rate training manual for regular navy and naval reserve personnel. The manual includes nine chapters: Introduction; Administration and Supervision; Nature of Light; Optical Alignment Instruments; Night Vision…
Simultaneous phylogeny reconstruction and multiple sequence alignment
Yue, Feng; Shi, Jian; Tang, Jijun
2009-01-01
Background A phylogeny is the evolutionary history of a group of organisms. To date, sequence data is still the most used data type for phylogenetic reconstruction. Before any sequences can be used for phylogeny reconstruction, they must be aligned, and the quality of the multiple sequence alignment has been shown to affect the quality of the inferred phylogeny. At the same time, all the current multiple sequence alignment programs use a guide tree to produce the alignment and experiments showed that good guide trees can significantly improve the multiple alignment quality. Results We devise a new algorithm to simultaneously align multiple sequences and search for the phylogenetic tree that leads to the best alignment. We also implemented the algorithm as a C program package, which can handle both DNA and protein data and can take simple cost model as well as complex substitution matrices, such as PAM250 or BLOSUM62. The performance of the new method are compared with those from other popular multiple sequence alignment tools, including the widely used programs such as ClustalW and T-Coffee. Experimental results suggest that this method has good performance in terms of both phylogeny accuracy and alignment quality. Conclusion We present an algorithm to align multiple sequences and reconstruct the phylogenies that minimize the alignment score, which is based on an efficient algorithm to solve the median problems for three sequences. Our extensive experiments suggest that this method is very promising and can produce high quality phylogenies and alignments. PMID:19208110
Neuwald, Andrew F
2009-08-01
The patterns of sequence similarity and divergence present within functionally diverse, evolutionarily related proteins contain implicit information about corresponding biochemical similarities and differences. A first step toward accessing such information is to statistically analyze these patterns, which, in turn, requires that one first identify and accurately align a very large set of protein sequences. Ideally, the set should include many distantly related, functionally divergent subgroups. Because it is extremely difficult, if not impossible for fully automated methods to align such sequences correctly, researchers often resort to manual curation based on detailed structural and biochemical information. However, multiply-aligning vast numbers of sequences in this way is clearly impractical. This problem is addressed using Multiply-Aligned Profiles for Global Alignment of Protein Sequences (MAPGAPS). The MAPGAPS program uses a set of multiply-aligned profiles both as a query to detect and classify related sequences and as a template to multiply-align the sequences. It relies on Karlin-Altschul statistics for sensitivity and on PSI-BLAST (and other) heuristics for speed. Using as input a carefully curated multiple-profile alignment for P-loop GTPases, MAPGAPS correctly aligned weakly conserved sequence motifs within 33 distantly related GTPases of known structure. By comparison, the sequence- and structurally based alignment methods hmmalign and PROMALS3D misaligned at least 11 and 23 of these regions, respectively. When applied to a dataset of 65 million protein sequences, MAPGAPS identified, classified and aligned (with comparable accuracy) nearly half a million putative P-loop GTPase sequences. A C++ implementation of MAPGAPS is available at http://mapgaps.igs.umaryland.edu. Supplementary data are available at Bioinformatics online.
Enhanced spatio-temporal alignment of plantar pressure image sequences using B-splines.
Oliveira, Francisco P M; Tavares, João Manuel R S
2013-03-01
This article presents an enhanced methodology to align plantar pressure image sequences simultaneously in time and space. The temporal alignment of the sequences is accomplished using B-splines in the time modeling, and the spatial alignment can be attained using several geometric transformation models. The methodology was tested on a dataset of 156 real plantar pressure image sequences (3 sequences for each foot of the 26 subjects) that was acquired using a common commercial plate during barefoot walking. In the alignment of image sequences that were synthetically deformed both in time and space, an outstanding accuracy was achieved with the cubic B-splines. This accuracy was significantly better (p < 0.001) than the one obtained using the best solution proposed in our previous work. When applied to align real image sequences with unknown transformation involved, the alignment based on cubic B-splines also achieved superior results than our previous methodology (p < 0.001). The consequences of the temporal alignment on the dynamic center of pressure (COP) displacement was also assessed by computing the intraclass correlation coefficients (ICC) before and after the temporal alignment of the three image sequence trials of each foot of the associated subject at six time instants. The results showed that, generally, the ICCs related to the medio-lateral COP displacement were greater when the sequences were temporally aligned than the ICCs of the original sequences. Based on the experimental findings, one can conclude that the cubic B-splines are a remarkable solution for the temporal alignment of plantar pressure image sequences. These findings also show that the temporal alignment can increase the consistency of the COP displacement on related acquired plantar pressure image sequences.
Accurate multiple sequence-structure alignment of RNA sequences using combinatorial optimization.
Bauer, Markus; Klau, Gunnar W; Reinert, Knut
2007-07-27
The discovery of functional non-coding RNA sequences has led to an increasing interest in algorithms related to RNA analysis. Traditional sequence alignment algorithms, however, fail at computing reliable alignments of low-homology RNA sequences. The spatial conformation of RNA sequences largely determines their function, and therefore RNA alignment algorithms have to take structural information into account. We present a graph-based representation for sequence-structure alignments, which we model as an integer linear program (ILP). We sketch how we compute an optimal or near-optimal solution to the ILP using methods from combinatorial optimization, and present results on a recently published benchmark set for RNA alignments. The implementation of our algorithm yields better alignments in terms of two published scores than the other programs that we tested: This is especially the case with an increasing number of input sequences. Our program LARA is freely available for academic purposes from http://www.planet-lisa.net.
FASMA: a service to format and analyze sequences in multiple alignments.
Costantini, Susan; Colonna, Giovanni; Facchiano, Angelo M
2007-12-01
Multiple sequence alignments are successfully applied in many studies for under- standing the structural and functional relations among single nucleic acids and protein sequences as well as whole families. Because of the rapid growth of sequence databases, multiple sequence alignments can often be very large and difficult to visualize and analyze. We offer a new service aimed to visualize and analyze the multiple alignments obtained with different external algorithms, with new features useful for the comparison of the aligned sequences as well as for the creation of a final image of the alignment. The service is named FASMA and is available at http://bioinformatica.isa.cnr.it/FASMA/.
2014-01-01
Background The 2013 BioVis Contest provided an opportunity to evaluate different paradigms for visualizing protein multiple sequence alignments. Such data sets are becoming extremely large and thus taxing current visualization paradigms. Sequence Logos represent consensus sequences but have limitations for protein alignments. As an alternative, ProfileGrids are a new protein sequence alignment visualization paradigm that represents an alignment as a color-coded matrix of the residue frequency occurring at every homologous position in the aligned protein family. Results The JProfileGrid software program was used to analyze the BioVis contest data sets to generate figures for comparison with the Sequence Logo reference images. Conclusions The ProfileGrid representation allows for the clear and effective analysis of protein multiple sequence alignments. This includes both a general overview of the conservation and diversity sequence patterns as well as the interactive ability to query the details of the protein residue distributions in the alignment. The JProfileGrid software is free and available from http://www.ProfileGrid.org. PMID:25237393
B-MIC: An Ultrafast Three-Level Parallel Sequence Aligner Using MIC.
Cui, Yingbo; Liao, Xiangke; Zhu, Xiaoqian; Wang, Bingqiang; Peng, Shaoliang
2016-03-01
Sequence alignment is the central process for sequence analysis, where mapping raw sequencing data to reference genome. The large amount of data generated by NGS is far beyond the process capabilities of existing alignment tools. Consequently, sequence alignment becomes the bottleneck of sequence analysis. Intensive computing power is required to address this challenge. Intel recently announced the MIC coprocessor, which can provide massive computing power. The Tianhe-2 is the world's fastest supercomputer now equipped with three MIC coprocessors each compute node. A key feature of sequence alignment is that different reads are independent. Considering this property, we proposed a MIC-oriented three-level parallelization strategy to speed up BWA, a widely used sequence alignment tool, and developed our ultrafast parallel sequence aligner: B-MIC. B-MIC contains three levels of parallelization: firstly, parallelization of data IO and reads alignment by a three-stage parallel pipeline; secondly, parallelization enabled by MIC coprocessor technology; thirdly, inter-node parallelization implemented by MPI. In this paper, we demonstrate that B-MIC outperforms BWA by a combination of those techniques using Inspur NF5280M server and the Tianhe-2 supercomputer. To the best of our knowledge, B-MIC is the first sequence alignment tool to run on Intel MIC and it can achieve more than fivefold speedup over the original BWA while maintaining the alignment precision.
Soundararajan, Ramani; Stearns, Timothy M.; Griswold, Anthony J.; Mehta, Arpit; Czachor, Alexander; Fukumoto, Jutaro; Lockey, Richard F.; King, Benjamin L.; Kolliputi, Narasaiah
2015-01-01
RNA editing is a post-transcriptional modification of RNA. The majority of these changes result from adenosine deaminase acting on RNA (ADARs) catalyzing the conversion of adenosine residues to inosine in double-stranded RNAs (dsRNAs). Massively parallel sequencing has enabled the identification of RNA editing sites in human transcriptomes. In this study, we sequenced DNA and RNA from human lungs and identified RNA editing sites with high confidence via a computational pipeline utilizing stringent analysis thresholds. We identified a total of 3,447 editing sites that overlapped in three human lung samples, and with 50% of these sites having canonical A-to-G base changes. Approximately 27% of the edited sites overlapped with Alu repeats, and showed A-to-G clustering (>3 clusters in 100 bp). The majority of edited sites mapped to either 3′ untranslated regions (UTRs) or introns close to splice sites; whereas, only few sites were in exons resulting in non-synonymous amino acid changes. Interestingly, we identified 652 A-to-G editing events in the 3′ UTR of 205 target genes that mapped to 932 potential miRNA target binding sites. Several of these miRNA edited sites were validated in silico. Additionally, we validated several A-to-G edited sites by Sanger sequencing. Altogether, our study suggests a role for RNA editing in miRNA-mediated gene regulation and splicing in human lungs. In this study, we have generated a RNA editome of human lung tissue that can be compared with other RNA editomes across different lung tissues to delineate a role for RNA editing in normal and diseased states. PMID:26486088
Soundararajan, Ramani; Stearns, Timothy M; Griswold, Anthony L; Mehta, Arpit; Czachor, Alexander; Fukumoto, Jutaro; Lockey, Richard F; King, Benjamin L; Kolliputi, Narasaiah
2015-11-03
RNA editing is a post-transcriptional modification of RNA. The majority of these changes result from adenosine deaminase acting on RNA (ADARs) catalyzing the conversion of adenosine residues to inosine in double-stranded RNAs (dsRNAs). Massively parallel sequencing has enabled the identification of RNA editing sites in human transcriptomes. In this study, we sequenced DNA and RNA from human lungs and identified RNA editing sites with high confidence via a computational pipeline utilizing stringent analysis thresholds. We identified a total of 3,447 editing sites that overlapped in three human lung samples, and with 50% of these sites having canonical A-to-G base changes. Approximately 27% of the edited sites overlapped with Alu repeats, and showed A-to-G clustering (>3 clusters in 100 bp). The majority of edited sites mapped to either 3' untranslated regions (UTRs) or introns close to splice sites; whereas, only few sites were in exons resulting in non-synonymous amino acid changes. Interestingly, we identified 652 A-to-G editing events in the 3' UTR of 205 target genes that mapped to 932 potential miRNA target binding sites. Several of these miRNA edited sites were validated in silico. Additionally, we validated several A-to-G edited sites by Sanger sequencing. Altogether, our study suggests a role for RNA editing in miRNA-mediated gene regulation and splicing in human lungs. In this study, we have generated a RNA editome of human lung tissue that can be compared with other RNA editomes across different lung tissues to delineate a role for RNA editing in normal and diseased states.
RNA Editome in Rhesus Macaque Shaped by Purifying Selection
Yang, Xin-Zhuang; Tan, Bertrand Chin-Ming; Fang, Huaying; Liu, Chu-Jun; Shi, Mingming; Ye, Zhi-Qiang; Zhang, Yong E.; Deng, Minghua; Zhang, Xiuqin; Li, Chuan-Yun
2014-01-01
Understanding of the RNA editing process has been broadened considerably by the next generation sequencing technology; however, several issues regarding this regulatory step remain unresolved – the strategies to accurately delineate the editome, the mechanism by which its profile is maintained, and its evolutionary and functional relevance. Here we report an accurate and quantitative profile of the RNA editome for rhesus macaque, a close relative of human. By combining genome and transcriptome sequencing of multiple tissues from the same animal, we identified 31,250 editing sites, of which 99.8% are A-to-G transitions. We verified 96.6% of editing sites in coding regions and 97.5% of randomly selected sites in non-coding regions, as well as the corresponding levels of editing by multiple independent means, demonstrating the feasibility of our experimental paradigm. Several lines of evidence supported the notion that the adenosine deamination is associated with the macaque editome – A-to-G editing sites were flanked by sequences with the attributes of ADAR substrates, and both the sequence context and the expression profile of ADARs are relevant factors in determining the quantitative variance of RNA editing across different sites and tissue types. In support of the functional relevance of some of these editing sites, substitution valley of decreased divergence was detected around the editing site, suggesting the evolutionary constraint in maintaining some of these editing substrates with their double-stranded structure. These findings thus complement the “continuous probing” model that postulates tinkering-based origination of a small proportion of functional editing sites. In conclusion, the macaque editome reported here highlights RNA editing as a widespread functional regulation in primate evolution, and provides an informative framework for further understanding RNA editing in human. PMID:24722121
Genome-wide identification of RNA editing in hepatocellular carcinoma.
Kang, Lin; Liu, Xiaoqiao; Gong, Zhoulin; Zheng, Hancheng; Wang, Jun; Li, Yingrui; Yang, Huanming; Hardwick, James; Dai, Hongyue; Poon, Ronnie T P; Lee, Nikki P; Mao, Mao; Peng, Zhiyu; Chen, Ronghua
2015-02-01
We did whole-transcriptome sequencing and whole-genome sequencing on nine pairs of Hepatocellular carcinoma (HCC) tumors and matched adjacent tissues to identify RNA editing events. We identified mean 26,982 editing sites with mean 89.5% canonical A→G edits in each sample using an improved bioinformatics pipeline. The editing rate was significantly higher in tumors than adjacent normal tissues. Comparing the difference between tumor and normal tissues of each patient, we found 7 non-synonymous tissue specific editing events including 4 tumor-specific edits and 3 normal-specific edits in the coding region, as well as 292 edits varying in editing degree. The significant expression changes of 150 genes associated with RNA editing were found in tumors, with 3 of the 4 most significant genes being cancer related. Our results show that editing might be related to higher gene expression. These findings indicate that RNA editing modification may play an important role in the development of HCC. Copyright © 2014 Elsevier Inc. All rights reserved.
Diesel Technology: Electrical and Electronic Systems. Teacher Edition [and] Student Edition.
ERIC Educational Resources Information Center
Ready, Allan; Kauffman, Ricky; Bogle, Jerry
This document contains the materials for a competency-based course in diesel technology and electrical and electronic systems that is tied to measurable and observable learning outcomes identified and validated by an advisory committee of business and industry representatives and teachers. The competencies addressed align with the medium/heavy…
Overcoming Sequence Misalignments with Weighted Structural Superposition
Khazanov, Nickolay A.; Damm-Ganamet, Kelly L.; Quang, Daniel X.; Carlson, Heather A.
2012-01-01
An appropriate structural superposition identifies similarities and differences between homologous proteins that are not evident from sequence alignments alone. We have coupled our Gaussian-weighted RMSD (wRMSD) tool with a sequence aligner and seed extension (SE) algorithm to create a robust technique for overlaying structures and aligning sequences of homologous proteins (HwRMSD). HwRMSD overcomes errors in the initial sequence alignment that would normally propagate into a standard RMSD overlay. SE can generate a corrected sequence alignment from the improved structural superposition obtained by wRMSD. HwRMSD’s robust performance and its superiority over standard RMSD are demonstrated over a range of homologous proteins. Its better overlay results in corrected sequence alignments with good agreement to HOMSTRAD. Finally, HwRMSD is compared to established structural alignment methods: FATCAT, SSM, CE, and Dalilite. Most methods are comparable at placing residue pairs within 2 Å, but HwRMSD places many more residue pairs within 1 Å, providing a clear advantage. Such high accuracy is essential in drug design, where small distances can have a large impact on computational predictions. This level of accuracy is also needed to correct sequence alignments in an automated fashion, especially for omics-scale analysis. HwRMSD can align homologs with low sequence identity and large conformational differences, cases where both sequence-based and structural-based methods may fail. The HwRMSD pipeline overcomes the dependency of structural overlays on initial sequence pairing and removes the need to determine the best sequence-alignment method, substitution matrix, and gap parameters for each unique pair of homologs. PMID:22733542
NASA Astrophysics Data System (ADS)
Walsh, Edward J.
1999-10-01
The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet, 2nd edition
D. Fennell Evans and Hakan Wennerstroem. Advances in Interfacial Engineering Series. Wiley-VCH: New York, 1999. xl + 632 pp. ISBN 0-471-24247-0. 89.95.
Commercial Nuclear Power: Assuring Safety for the Future
Charles B. Ramsey and Mohammed Modarres. Wiley-Interscience: New York, 1998. xxviii + 508 pp. ISBN 0-471-29186-2. 79.95.
Advances in Medicinal Chemistry, Vol. 4
Bruce E. Maryanoff and Allen B. Reitz, Eds. JAI Press: Stamford, CT, 1999. ISBN 1-7623-0064-7. 109.50.
Advances in Strained and Interesting Organic Molecules, Vol. 7
Brian Halton, Ed. JAI Press: Stamford, CT, 1999. xii + 259 pp. ISBN 0-7623-0530-4. 109.50.
Advances in Electron Transfer Chemistry, Vol. 6
Patrick S. Mariano, Ed. JAI Press: Stamford, CT, 1999. x + 171 pp. ISBN 0-7623-0213-5. 109.50.
Automating Science and Engineering Laboratories with Visual Basic
Mark F. Russo and Martin M. Echols. Wiley-Interscience Series on Laboratory Automation. Wiley-Interscience: New York, 1999. xx + 355 pp. ISBN 0-471-25493-2. 49.95.
Plantwide Process Control
Kelvin T. Erickson and John L. Hedrick. Wiley Series in Chemical Engineering. Wiley-Interscience: New York, 1999. xii + 547 pp. ISBN 0-471-17835-7. 89.95.
Heme Peroxidases
H. Brian Dunford. Wiley-VCH: New York, 1999. xiii + 507 pp. ISBN 0-471-24244-6. 195.00.
Industrial Ecology: Environmental Chemistry and Hazardous Wastes
Stanley E. Manahan. Lewis: Boca Raton, FL, 1999. 318 pp. ISBN 1-56670-381-6. 69.95.
Reviews in Computational Chemistry, Vol. 13
Kenny B. Lipkowitz and Donald B. Boyd. Wiley-VCH: New York, 1999. xxxiii + 426 pp. ISBN 0-471-33135-x. 135.00.
Surfaces, Interfaces, and Colloids: Principles and Applications, 2nd edition
Drew Myers. Wiley-VCH: New York, 1999. xx + 501 pp. ISBN 0-471-33060-4. 94.95.
Onium Ions
George A. Olah, Kenneth K. Laali, Qi Wang, and G. K. Surya Prakash. Wiley-Interscience: New York, 1998. xv + 509 pp. ISBN 0-471-14877-6. 110.00.
Environmental Soil and Water Chemistry: Principles and Applications V. P. Evangelou. Wiley-Interscience: New York, 1998. xix + 564 pp. ISBN 0-471-16515-8. 79.95.
1001 Chemicals in Everyday Products, 2nd edition
Grace Ross Lewis. Wiley-Interscience: New York, 1999. x + 388 pp. ISBN 0-471-29212-5. 39.95.
Organic Coatings: Science and Technology, 2nd edition
Zeno W. Wicks Jr., Frank N. Jones, and S. Peter Pappas. Wiley-Interscience: New York, 1999. xxi + 630 pp. ISBN 0-471-24507-0. 125.00.
Progress in Inorganic Chemistry, Vol. 48
Kenneth D. Karlin, Ed. Wiley-Interscience: New York, 1999. vi + 603 pp. ISBN 0-471-32623-2. 145.00.
Occupational Biomechanics, 3rd edition
Don B. Chaffin, Gunnar B. Andersson, and Bernard J. Martin. Wiley-Interscience: New York, 1999. xvii + 579 pp. ISBN 0-471-24697-2. 69.95.
Advances in Photochemistry, Vol. 25
Douglas C. Neckers, David H. Volman, and Gunther Von Bünau. Wiley-Interscience: New York, 1999. xi + 238 pp. ISBN 0-471-32708-5. 110.00.
Distillation
Johann G. Stichlmair and James R. Fair. Wiley-VCH: New York, 1998. xiii + 524 pp. ISBN 0-471-25241-7. 94.95.
Ammonia - Principles and Industrial Practice
Maz Appl. Wiley-VCH: New York, 1999. ix + 301 pp. ISBN 3-527-29593-3. 160.00.
Precursor-Derived Ceramics: Synthesis, Structure, and High-Temperature Mechanical Properties
Fritz Aldinger, Fumihiro Wakai, and Joachim Bill, Eds. Wiley-VCH: New York, 1999. xv + 298 pp. ISBN 3-527-29814-2. 180.00.
Advances in Sonochemisty, Vol. 5
Timothy J. Mason. JAI Press: Stamford, CT, 1999. xi + 311 pp. ISBN 0-7623-0331-x. 109.50.
Fluid Metals: The Liquid-Vapor Transition of Metals
Friedrich Hensel and William W. Warren Jr. Princeton University Press: Princeton, NJ. 1999. xvii + 243 pp. ISBN 0-691-05830-x. 69.50.
Direct Phasing in Crystallography: Fundamentals and Applications
Carmelo Giacovazzo. Oxford University Press: New York, 1999. xxiii + 767 pp. ISBN 0-19-850072-6. 140.00.
Practical Environmental Analysis
M. Radojevic and V. N. Bashkin. Royal Society of Chemistry: Cambridge, UK. 1999. xx + 466 pp. ISBN 0-85404-594-5. £32.00.
Advances in Dendritic Macromolecules, Vol. 4 George R. Newkome, Ed. JAI Press: Stamford, CT, 1999. x + 207 pp. ISBN 0-7623-0347-6. 109.50.
Advances in Quantitative Structure-Property Relationships, Vol. 2
Marvin Charton. JAI Press: Stamford, CT, 1999. ix + 257 pp. ISBN 0-7623-0067-1. 109.50.
Pesticide Residues in Foods: Methods, Techniques, and Regulations
W. George Fong, H. Anson Moye, James N. Seiber, and John P. Toth. Chemical Analysis, Vol. 151.Wiley-Interscience: New York, 1999. xiv + 358 pp. ISBN 0-471-57400-7. $84.95.
The number of reduced alignments between two DNA sequences
2014-01-01
Background In this study we consider DNA sequences as mathematical strings. Total and reduced alignments between two DNA sequences have been considered in the literature to measure their similarity. Results for explicit representations of some alignments have been already obtained. Results We present exact, explicit and computable formulas for the number of different possible alignments between two DNA sequences and a new formula for a class of reduced alignments. Conclusions A unified approach for a wide class of alignments between two DNA sequences has been provided. The formula is computable and, if complemented by software development, will provide a deeper insight into the theory of sequence alignment and give rise to new comparison methods. AMS Subject Classification Primary 92B05, 33C20, secondary 39A14, 65Q30 PMID:24684679
QUASAR--scoring and ranking of sequence-structure alignments.
Birzele, Fabian; Gewehr, Jan E; Zimmer, Ralf
2005-12-15
Sequence-structure alignments are a common means for protein structure prediction in the fields of fold recognition and homology modeling, and there is a broad variety of programs that provide such alignments based on sequence similarity, secondary structure or contact potentials. Nevertheless, finding the best sequence-structure alignment in a pool of alignments remains a difficult problem. QUASAR (quality of sequence-structure alignments ranking) provides a unifying framework for scoring sequence-structure alignments that aids finding well-performing combinations of well-known and custom-made scoring schemes. Those scoring functions can be benchmarked against widely accepted quality scores like MaxSub, TMScore, Touch and APDB, thus enabling users to test their own alignment scores against 'standard-of-truth' structure-based scores. Furthermore, individual score combinations can be optimized with respect to benchmark sets based on known structural relationships using QUASAR's in-built optimization routines.
The twilight zone of cis element alignments.
Sebastian, Alvaro; Contreras-Moreira, Bruno
2013-02-01
Sequence alignment of proteins and nucleic acids is a routine task in bioinformatics. Although the comparison of complete peptides, genes or genomes can be undertaken with a great variety of tools, the alignment of short DNA sequences and motifs entails pitfalls that have not been fully addressed yet. Here we confront the structural superposition of transcription factors with the sequence alignment of their recognized cis elements. Our goals are (i) to test TFcompare (http://floresta.eead.csic.es/tfcompare), a structural alignment method for protein-DNA complexes; (ii) to benchmark the pairwise alignment of regulatory elements; (iii) to define the confidence limits and the twilight zone of such alignments and (iv) to evaluate the relevance of these thresholds with elements obtained experimentally. We find that the structure of cis elements and protein-DNA interfaces is significantly more conserved than their sequence and measures how this correlates with alignment errors when only sequence information is considered. Our results confirm that DNA motifs in the form of matrices produce better alignments than individual sequences. Finally, we report that empirical and theoretically derived twilight thresholds are useful for estimating the natural plasticity of regulatory sequences, and hence for filtering out unreliable alignments.
The twilight zone of cis element alignments
Sebastian, Alvaro; Contreras-Moreira, Bruno
2013-01-01
Sequence alignment of proteins and nucleic acids is a routine task in bioinformatics. Although the comparison of complete peptides, genes or genomes can be undertaken with a great variety of tools, the alignment of short DNA sequences and motifs entails pitfalls that have not been fully addressed yet. Here we confront the structural superposition of transcription factors with the sequence alignment of their recognized cis elements. Our goals are (i) to test TFcompare (http://floresta.eead.csic.es/tfcompare), a structural alignment method for protein–DNA complexes; (ii) to benchmark the pairwise alignment of regulatory elements; (iii) to define the confidence limits and the twilight zone of such alignments and (iv) to evaluate the relevance of these thresholds with elements obtained experimentally. We find that the structure of cis elements and protein–DNA interfaces is significantly more conserved than their sequence and measures how this correlates with alignment errors when only sequence information is considered. Our results confirm that DNA motifs in the form of matrices produce better alignments than individual sequences. Finally, we report that empirical and theoretically derived twilight thresholds are useful for estimating the natural plasticity of regulatory sequences, and hence for filtering out unreliable alignments. PMID:23268451
Adeno-associated virus inverted terminal repeats stimulate gene editing.
Hirsch, M L
2015-02-01
Advancements in genome editing have relied on technologies to specifically damage DNA which, in turn, stimulates DNA repair including homologous recombination (HR). As off-target concerns complicate the therapeutic translation of site-specific DNA endonucleases, an alternative strategy to stimulate gene editing based on fragile DNA was investigated. To do this, an episomal gene-editing reporter was generated by a disruptive insertion of the adeno-associated virus (AAV) inverted terminal repeat (ITR) into the egfp gene. Compared with a non-structured DNA control sequence, the ITR induced DNA damage as evidenced by increased gamma-H2AX and Mre11 foci formation. As local DNA damage stimulates HR, ITR-mediated gene editing was investigated using DNA oligonucleotides as repair substrates. The AAV ITR stimulated gene editing >1000-fold in a replication-independent manner and was not biased by the polarity of the repair oligonucleotide. Analysis of additional human DNA sequences demonstrated stimulation of gene editing to varying degrees. In particular, inverted yet not direct, Alu repeats induced gene editing, suggesting a role for DNA structure in the repair event. Collectively, the results demonstrate that inverted DNA repeats stimulate gene editing via double-strand break repair in an episomal context and allude to efficient gene editing of the human chromosome using fragile DNA sequences.
High-throughput sequence alignment using Graphics Processing Units
Schatz, Michael C; Trapnell, Cole; Delcher, Arthur L; Varshney, Amitabh
2007-01-01
Background The recent availability of new, less expensive high-throughput DNA sequencing technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed. These data are being generated for several purposes, including genotyping, genome resequencing, metagenomics, and de novo genome assembly projects. Sequence alignment programs such as MUMmer have proven essential for analysis of these data, but researchers will need ever faster, high-throughput alignment tools running on inexpensive hardware to keep up with new sequence technologies. Results This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise local sequence alignment program that runs on commodity Graphics Processing Units (GPUs) in common workstations. MUMmerGPU uses the new Compute Unified Device Architecture (CUDA) from nVidia to align multiple query sequences against a single reference sequence stored as a suffix tree. By processing the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU by 3.5-fold in total application time when aligning reads from recent sequencing projects using Solexa/Illumina, 454, and Sanger sequencing technologies. Conclusion MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to handle the increasing volume of data produced by new, high-throughput sequencing technologies. MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster on the relatively low-cost GPU than on the CPU. PMID:18070356
Score distributions of gapped multiple sequence alignments down to the low-probability tail
NASA Astrophysics Data System (ADS)
Fieth, Pascal; Hartmann, Alexander K.
2016-08-01
Assessing the significance of alignment scores of optimally aligned DNA or amino acid sequences can be achieved via the knowledge of the score distribution of random sequences. But this requires obtaining the distribution in the biologically relevant high-scoring region, where the probabilities are exponentially small. For gapless local alignments of infinitely long sequences this distribution is known analytically to follow a Gumbel distribution. Distributions for gapped local alignments and global alignments of finite lengths can only be obtained numerically. To obtain result for the small-probability region, specific statistical mechanics-based rare-event algorithms can be applied. In previous studies, this was achieved for pairwise alignments. They showed that, contrary to results from previous simple sampling studies, strong deviations from the Gumbel distribution occur in case of finite sequence lengths. Here we extend the studies to multiple sequence alignments with gaps, which are much more relevant for practical applications in molecular biology. We study the distributions of scores over a large range of the support, reaching probabilities as small as 10-160, for global and local (sum-of-pair scores) multiple alignments. We find that even after suitable rescaling, eliminating the sequence-length dependence, the distributions for multiple alignment differ from the pairwise alignment case. Furthermore, we also show that the previously discussed Gaussian correction to the Gumbel distribution needs to be refined, also for the case of pairwise alignments.
Accurate identification of RNA editing sites from primitive sequence with deep neural networks.
Ouyang, Zhangyi; Liu, Feng; Zhao, Chenghui; Ren, Chao; An, Gaole; Mei, Chuan; Bo, Xiaochen; Shu, Wenjie
2018-04-16
RNA editing is a post-transcriptional RNA sequence alteration. Current methods have identified editing sites and facilitated research but require sufficient genomic annotations and prior-knowledge-based filtering steps, resulting in a cumbersome, time-consuming identification process. Moreover, these methods have limited generalizability and applicability in species with insufficient genomic annotations or in conditions of limited prior knowledge. We developed DeepRed, a deep learning-based method that identifies RNA editing from primitive RNA sequences without prior-knowledge-based filtering steps or genomic annotations. DeepRed achieved 98.1% and 97.9% area under the curve (AUC) in training and test sets, respectively. We further validated DeepRed using experimentally verified U87 cell RNA-seq data, achieving 97.9% positive predictive value (PPV). We demonstrated that DeepRed offers better prediction accuracy and computational efficiency than current methods with large-scale, mass RNA-seq data. We used DeepRed to assess the impact of multiple factors on editing identification with RNA-seq data from the Association of Biomolecular Resource Facilities and Sequencing Quality Control projects. We explored developmental RNA editing pattern changes during human early embryogenesis and evolutionary patterns in Drosophila species and the primate lineage using DeepRed. Our work illustrates DeepRed's state-of-the-art performance; it may decipher the hidden principles behind RNA editing, making editing detection convenient and effective.
Multiple DNA and protein sequence alignment on a workstation and a supercomputer.
Tajima, K
1988-11-01
This paper describes a multiple alignment method using a workstation and supercomputer. The method is based on the alignment of a set of aligned sequences with the new sequence, and uses a recursive procedure of such alignment. The alignment is executed in a reasonable computation time on diverse levels from a workstation to a supercomputer, from the viewpoint of alignment results and computational speed by parallel processing. The application of the algorithm is illustrated by several examples of multiple alignment of 12 amino acid and DNA sequences of HIV (human immunodeficiency virus) env genes. Colour graphic programs on a workstation and parallel processing on a supercomputer are discussed.
Salehi, Abdolreza; Rivera, Rocío Melissa
2018-01-01
RNA editing increases the diversity of the transcriptome and proteome. Adenosine-to-inosine (A-to-I) editing is the predominant type of RNA editing in mammals and it is catalyzed by the adenosine deaminases acting on RNA (ADARs) family. Here, we used a largescale computational analysis of transcriptomic data from brain, heart, colon, lung, spleen, kidney, testes, skeletal muscle and liver, from three adult animals in order to identify RNA editing sites in bovine. We developed a computational pipeline and used a rigorous strategy to identify novel editing sites from RNA-Seq data in the absence of corresponding DNA sequence information. Our methods take into account sequencing errors, mapping bias, as well as biological replication to reduce the probability of obtaining a false-positive result. We conducted a detailed characterization of sequence and structural features related to novel candidate sites and found 1,600 novel canonical A-to-I editing sites in the nine bovine tissues analyzed. Results show that these sites 1) occur frequently in clusters and short interspersed nuclear elements (SINE) repeats, 2) have a preference for guanines depletion/enrichment in the flanking 5′/3′ nucleotide, 3) occur less often in coding sequences than other regions of the genome, and 4) have low evolutionary conservation. Further, we found that a positive correlation exists between expression of ADAR family members and tissue-specific RNA editing. Most of the genes with predicted A-to-I editing in each tissue were significantly enriched in biological terms relevant to the function of the corresponding tissue. Lastly, the results highlight the importance of the RNA editome in nervous system regulation. The present study extends the list of RNA editing sites in bovine and provides pipelines that may be used to investigate the editome in other organisms. PMID:29470549
Nair, Pradeep S; John, Eugene B
2007-01-01
Aligning specific sequences against a very large number of other sequences is a central aspect of bioinformatics. With the widespread availability of personal computers in biology laboratories, sequence alignment is now often performed locally. This makes it necessary to analyse the performance of personal computers for sequence aligning bioinformatics benchmarks. In this paper, we analyse the performance of a personal computer for the popular BLAST and FASTA sequence alignment suites. Results indicate that these benchmarks have a large number of recurring operations and use memory operations extensively. It seems that the performance can be improved with a bigger L1-cache.
DIALIGN P: fast pair-wise and multiple sequence alignment using parallel processors.
Schmollinger, Martin; Nieselt, Kay; Kaufmann, Michael; Morgenstern, Burkhard
2004-09-09
Parallel computing is frequently used to speed up computationally expensive tasks in Bioinformatics. Herein, a parallel version of the multi-alignment program DIALIGN is introduced. We propose two ways of dividing the program into independent sub-routines that can be run on different processors: (a) pair-wise sequence alignments that are used as a first step to multiple alignment account for most of the CPU time in DIALIGN. Since alignments of different sequence pairs are completely independent of each other, they can be distributed to multiple processors without any effect on the resulting output alignments. (b) For alignments of large genomic sequences, we use a heuristics by splitting up sequences into sub-sequences based on a previously introduced anchored alignment procedure. For our test sequences, this combined approach reduces the program running time of DIALIGN by up to 97%. By distributing sub-routines to multiple processors, the running time of DIALIGN can be crucially improved. With these improvements, it is possible to apply the program in large-scale genomics and proteomics projects that were previously beyond its scope.
An Accurate Scalable Template-based Alignment Algorithm
Gardner, David P.; Xu, Weijia; Miranker, Daniel P.; Ozer, Stuart; Cannone, Jamie J.; Gutell, Robin R.
2013-01-01
The rapid determination of nucleic acid sequences is increasing the number of sequences that are available. Inherent in a template or seed alignment is the culmination of structural and functional constraints that are selecting those mutations that are viable during the evolution of the RNA. While we might not understand these structural and functional, template-based alignment programs utilize the patterns of sequence conservation to encapsulate the characteristics of viable RNA sequences that are aligned properly. We have developed a program that utilizes the different dimensions of information in rCAD, a large RNA informatics resource, to establish a profile for each position in an alignment. The most significant include sequence identity and column composition in different phylogenetic taxa. We have compared our methods with a maximum of eight alternative alignment methods on different sets of 16S and 23S rRNA sequences with sequence percent identities ranging from 50% to 100%. The results showed that CRWAlign outperformed the other alignment methods in both speed and accuracy. A web-based alignment server is available at http://www.rna.ccbb.utexas.edu/SAE/2F/CRWAlign. PMID:24772376
Puton, Tomasz; Kozlowski, Lukasz P.; Rother, Kristian M.; Bujnicki, Janusz M.
2013-01-01
We present a continuous benchmarking approach for the assessment of RNA secondary structure prediction methods implemented in the CompaRNA web server. As of 3 October 2012, the performance of 28 single-sequence and 13 comparative methods has been evaluated on RNA sequences/structures released weekly by the Protein Data Bank. We also provide a static benchmark generated on RNA 2D structures derived from the RNAstrand database. Benchmarks on both data sets offer insight into the relative performance of RNA secondary structure prediction methods on RNAs of different size and with respect to different types of structure. According to our tests, on the average, the most accurate predictions obtained by a comparative approach are generated by CentroidAlifold, MXScarna, RNAalifold and TurboFold. On the average, the most accurate predictions obtained by single-sequence analyses are generated by CentroidFold, ContextFold and IPknot. The best comparative methods typically outperform the best single-sequence methods if an alignment of homologous RNA sequences is available. This article presents the results of our benchmarks as of 3 October 2012, whereas the rankings presented online are continuously updated. We will gladly include new prediction methods and new measures of accuracy in the new editions of CompaRNA benchmarks. PMID:23435231
Simple chained guide trees give high-quality protein multiple sequence alignments
Boyce, Kieran; Sievers, Fabian; Higgins, Desmond G.
2014-01-01
Guide trees are used to decide the order of sequence alignment in the progressive multiple sequence alignment heuristic. These guide trees are often the limiting factor in making large alignments, and considerable effort has been expended over the years in making these quickly or accurately. In this article we show that, at least for protein families with large numbers of sequences that can be benchmarked with known structures, simple chained guide trees give the most accurate alignments. These also happen to be the fastest and simplest guide trees to construct, computationally. Such guide trees have a striking effect on the accuracy of alignments produced by some of the most widely used alignment packages. There is a marked increase in accuracy and a marked decrease in computational time, once the number of sequences goes much above a few hundred. This is true, even if the order of sequences in the guide tree is random. PMID:25002495
Bertine, Mélanie; Charpentier, Charlotte; Visseaux, Benoit; Storto, Alexandre; Collin, Gilles; Larrouy, Lucile; Damond, Florence; Matheron, Sophie; Brun-Vézinet, Françoise; Descamps, Diane
2015-04-24
In HIV-1, hypermutation introduced by APOBEC3F/3G cytidine deaminase activity leads to defective viruses. In-vivo impact of APOBEC3F/3G editing on HIV-2 sequences remains unknown. The objective of this study was to assess the level of APOBEC3F/3G editing in HIV-2-infected antiretroviral-naive patients. Direct sequencing of vif and pol regions was performed on HIV-2 proviral DNA from antiretroviral-naive patients included in the French Agence Nationale de Recherches sur le SIDA et les hépatites virales CO5 HIV-2 cohort. Hypermutated sequences were identified using Hypermut2.0 program. HIV-1 proviral sequences from Genbank were also assessed. Among 82 antiretroviral-naive HIV-2-infected patients assessed, 15 (28.8%) and five (16.7%) displayed Vif proviral defective sequences in HIV-2 groups A and B, respectively. A lower proportion of defective sequences was observed in protease-reverse transcriptase region. A higher median number of G-to-A mutations was observed in HIV-2 group B than in group A, both in Vif and protease-reverse transcriptase regions (P = 0.02 and P = 0.006, respectively). Compared with HIV-1 Vif sequences, a higher number of Vif defective sequences was observed in HIV-2 group A (P = 0.00001) and group B sequences (P = 0.013). We showed for the first time a high level of APOBEC3F/3G editing in HIV-2 sequences from antiretroviral-naive patients. Our study reported a group effect with a significantly higher level of APOBEC3F/3G editing in HIV-2 group B than in group A sequences.
High-speed multiple sequence alignment on a reconfigurable platform.
Oliver, Tim; Schmidt, Bertil; Maskell, Douglas; Nathan, Darran; Clemens, Ralf
2006-01-01
Progressive alignment is a widely used approach to compute multiple sequence alignments (MSAs). However, aligning several hundred sequences by popular progressive alignment tools requires hours on sequential computers. Due to the rapid growth of sequence databases biologists have to compute MSAs in a far shorter time. In this paper we present a new approach to MSA on reconfigurable hardware platforms to gain high performance at low cost. We have constructed a linear systolic array to perform pairwise sequence distance computations using dynamic programming. This results in an implementation with significant runtime savings on a standard FPGA.
MaxAlign: maximizing usable data in an alignment.
Gouveia-Oliveira, Rodrigo; Sackett, Peter W; Pedersen, Anders G
2007-08-28
The presence of gaps in an alignment of nucleotide or protein sequences is often an inconvenience for bioinformatical studies. In phylogenetic and other analyses, for instance, gapped columns are often discarded entirely from the alignment. MaxAlign is a program that optimizes the alignment prior to such analyses. Specifically, it maximizes the number of nucleotide (or amino acid) symbols that are present in gap-free columns - the alignment area - by selecting the optimal subset of sequences to exclude from the alignment. MaxAlign can be used prior to phylogenetic and bioinformatical analyses as well as in other situations where this form of alignment improvement is useful. In this work we test MaxAlign's performance in these tasks and compare the accuracy of phylogenetic estimates including and excluding gapped columns from the analysis, with and without processing with MaxAlign. In this paper we also introduce a new simple measure of tree similarity, Normalized Symmetric Similarity (NSS) that we consider useful for comparing tree topologies. We demonstrate how MaxAlign is helpful in detecting misaligned or defective sequences without requiring manual inspection. We also show that it is not advisable to exclude gapped columns from phylogenetic analyses unless MaxAlign is used first. Finally, we find that the sequences removed by MaxAlign from an alignment tend to be those that would otherwise be associated with low phylogenetic accuracy, and that the presence of gaps in any given sequence does not seem to disturb the phylogenetic estimates of other sequences. The MaxAlign web-server is freely available online at http://www.cbs.dtu.dk/services/MaxAlign where supplementary information can also be found. The program is also freely available as a Perl stand-alone package.
Cho, Charles J; Jung, Jaeeun; Jiang, Lushang; Lee, Eun Ji; Kim, Dae-Soo; Kim, Byung Sik; Kim, Hee Sung; Jung, Hwoon-Yong; Song, Ho-June; Hwang, Sung Wook; Park, Yangsoon; Jung, Min Kyo; Pack, Chan Gi; Myung, Seung-Jae; Chang, Suhwan
2018-04-25
Adenosine deaminase acting on RNA 1 (ADAR1) is known to mediate deamination of adenosine-to-inosine through binding to double-stranded RNA, the phenomenon known as RNA editing. Currently, the function of ADAR1 in gastric cancer is unclear. This study was aimed at investigating RNA editing-dependent and editing-independent functions of ADAR1 in gastric cancer, especially focusing on its influence on editing of 3' untranslated regions (UTRs) and subsequent changes in expression of messenger RNAs (mRNAs) as well as microRNAs (miRNAs). RNA-sequencing and small RNA-sequencing were performed on AGS and MKN-45 cells with a stable ADAR1 knockdown. Changed frequencies of editing and mRNA and miRNA expression were then identified by bioinformatic analyses. Targets of RNA editing were further validated in patients' samples. In the Alu region of both gastric cell lines, editing was most commonly of the A-to-I type in 3'-UTR or intron. mRNA and protein levels of PHACTR4 increased in ADAR1 knockdown cells, because of the loss of seed sequences in 3'-UTR of PHACTR4 mRNA that are required for miRNA-196a-3p binding. Immunohistochemical analyses of tumor and paired normal samples from 16 gastric cancer patients showed that ADAR1 expression was higher in tumors than in normal tissues and inversely correlated with PHACTR4 staining. On the other hand, decreased miRNA-148a-3p expression in ADAR1 knockdown cells led to increased mRNA and protein expression of NFYA, demonstrating ADAR1's editing-independent function. ADAR1 regulates post-transcriptional gene expression in gastric cancer through both RNA editing-dependent and editing-independent mechanisms.
Kück, Patrick; Meusemann, Karen; Dambach, Johannes; Thormann, Birthe; von Reumont, Björn M; Wägele, Johann W; Misof, Bernhard
2010-03-31
Methods of alignment masking, which refers to the technique of excluding alignment blocks prior to tree reconstructions, have been successful in improving the signal-to-noise ratio in sequence alignments. However, the lack of formally well defined methods to identify randomness in sequence alignments has prevented a routine application of alignment masking. In this study, we compared the effects on tree reconstructions of the most commonly used profiling method (GBLOCKS) which uses a predefined set of rules in combination with alignment masking, with a new profiling approach (ALISCORE) based on Monte Carlo resampling within a sliding window, using different data sets and alignment methods. While the GBLOCKS approach excludes variable sections above a certain threshold which choice is left arbitrary, the ALISCORE algorithm is free of a priori rating of parameter space and therefore more objective. ALISCORE was successfully extended to amino acids using a proportional model and empirical substitution matrices to score randomness in multiple sequence alignments. A complex bootstrap resampling leads to an even distribution of scores of randomly similar sequences to assess randomness of the observed sequence similarity. Testing performance on real data, both masking methods, GBLOCKS and ALISCORE, helped to improve tree resolution. The sliding window approach was less sensitive to different alignments of identical data sets and performed equally well on all data sets. Concurrently, ALISCORE is capable of dealing with different substitution patterns and heterogeneous base composition. ALISCORE and the most relaxed GBLOCKS gap parameter setting performed best on all data sets. Correspondingly, Neighbor-Net analyses showed the most decrease in conflict. Alignment masking improves signal-to-noise ratio in multiple sequence alignments prior to phylogenetic reconstruction. Given the robust performance of alignment profiling, alignment masking should routinely be used to improve tree reconstructions. Parametric methods of alignment profiling can be easily extended to more complex likelihood based models of sequence evolution which opens the possibility of further improvements.
RNA editing of non-coding RNA and its role in gene regulation.
Daniel, Chammiran; Lagergren, Jens; Öhman, Marie
2015-10-01
It has for a long time been known that repetitive elements, particularly Alu sequences in human, are edited by the adenosine deaminases acting on RNA, ADAR, family. The functional interpretation of these events has been even more difficult than that of editing events in coding sequences, but today there is an emerging understanding of their downstream effects. A surprisingly large fraction of the human transcriptome contains inverted Alu repeats, often forming long double stranded structures in RNA transcripts, typically occurring in introns and UTRs of protein coding genes. Alu repeats are also common in other primates, and similar inverted repeats can frequently be found in non-primates, although the latter are less prone to duplex formation. In human, as many as 700,000 Alu elements have been identified as substrates for RNA editing, of which many are edited at several sites. In fact, recent advancements in transcriptome sequencing techniques and bioinformatics have revealed that the human editome comprises at least a hundred million adenosine to inosine (A-to-I) editing sites in Alu sequences. Although substantial additional efforts are required in order to map the editome, already present knowledge provides an excellent starting point for studying cis-regulation of editing. In this review, we will focus on editing of long stem loop structures in the human transcriptome and how it can effect gene expression. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
2011-01-01
Background Global positioning systems (GPS) are increasingly being used in health research to determine the location of study participants. Combining GPS data with data collected via travel/activity diaries allows researchers to assess where people travel in conjunction with data about trip purpose and accompaniment. However, linking GPS and diary data is problematic and to date the only method has been to match the two datasets manually, which is time consuming and unlikely to be practical for larger data sets. This paper assesses the feasibility of a new sequence alignment method of linking GPS and travel diary data in comparison with the manual matching method. Methods GPS and travel diary data obtained from a study of children's independent mobility were linked using sequence alignment algorithms to test the proof of concept. Travel diaries were assessed for quality by counting the number of errors and inconsistencies in each participant's set of diaries. The success of the sequence alignment method was compared for higher versus lower quality travel diaries, and for accompanied versus unaccompanied trips. Time taken and percentage of trips matched were compared for the sequence alignment method and the manual method. Results The sequence alignment method matched 61.9% of all trips. Higher quality travel diaries were associated with higher match rates in both the sequence alignment and manual matching methods. The sequence alignment method performed almost as well as the manual method and was an order of magnitude faster. However, the sequence alignment method was less successful at fully matching trips and at matching unaccompanied trips. Conclusions Sequence alignment is a promising method of linking GPS and travel diary data in large population datasets, especially if limitations in the trip detection algorithm are addressed. PMID:22142322
A Novel Partial Sequence Alignment Tool for Finding Large Deletions
Aruk, Taner; Ustek, Duran; Kursun, Olcay
2012-01-01
Finding large deletions in genome sequences has become increasingly more useful in bioinformatics, such as in clinical research and diagnosis. Although there are a number of publically available next generation sequencing mapping and sequence alignment programs, these software packages do not correctly align fragments containing deletions larger than one kb. We present a fast alignment software package, BinaryPartialAlign, that can be used by wet lab scientists to find long structural variations in their experiments. For BinaryPartialAlign, we make use of the Smith-Waterman (SW) algorithm with a binary-search-based approach for alignment with large gaps that we called partial alignment. BinaryPartialAlign implementation is compared with other straight-forward applications of SW. Simulation results on mtDNA fragments demonstrate the effectiveness (runtime and accuracy) of the proposed method. PMID:22566777
Fast single-pass alignment and variant calling using sequencing data
USDA-ARS?s Scientific Manuscript database
Sequencing research requires efficient computation. Few programs use already known information about DNA variants when aligning sequence data to the reference map. New program findmap.f90 reads the previous variant list before aligning sequence, calling variant alleles, and summing the allele counts...
Designing stereoscopic information visualization for 3D-TV: What can we can learn from S3D gaming?
NASA Astrophysics Data System (ADS)
Schild, Jonas; Masuch, Maic
2012-03-01
This paper explores graphical design and spatial alignment of visual information and graphical elements into stereoscopically filmed content, e.g. captions, subtitles, and especially more complex elements in 3D-TV productions. The method used is a descriptive analysis of existing computer- and video games that have been adapted for stereoscopic display using semi-automatic rendering techniques (e.g. Nvidia 3D Vision) or games which have been specifically designed for stereoscopic vision. Digital games often feature compelling visual interfaces that combine high usability with creative visual design. We explore selected examples of game interfaces in stereoscopic vision regarding their stereoscopic characteristics, how they draw attention, how we judge effect and comfort and where the interfaces fail. As a result, we propose a list of five aspects which should be considered when designing stereoscopic visual information: explicit information, implicit information, spatial reference, drawing attention, and vertical alignment. We discuss possible consequences, opportunities and challenges for integrating visual information elements into 3D-TV content. This work shall further help to improve current editing systems and identifies a need for future editing systems for 3DTV, e.g., live editing and real-time alignment of visual information into 3D footage.
Query-seeded iterative sequence similarity searching improves selectivity 5–20-fold
Li, Weizhong; Lopez, Rodrigo
2017-01-01
Abstract Iterative similarity search programs, like psiblast, jackhmmer, and psisearch, are much more sensitive than pairwise similarity search methods like blast and ssearch because they build a position specific scoring model (a PSSM or HMM) that captures the pattern of sequence conservation characteristic to a protein family. But models are subject to contamination; once an unrelated sequence has been added to the model, homologs of the unrelated sequence will also produce high scores, and the model can diverge from the original protein family. Examination of alignment errors during psiblast PSSM contamination suggested a simple strategy for dramatically reducing PSSM contamination. psiblast PSSMs are built from the query-based multiple sequence alignment (MSA) implied by the pairwise alignments between the query model (PSSM, HMM) and the subject sequences in the library. When the original query sequence residues are inserted into gapped positions in the aligned subject sequence, the resulting PSSM rarely produces alignment over-extensions or alignments to unrelated sequences. This simple step, which tends to anchor the PSSM to the original query sequence and slightly increase target percent identity, can reduce the frequency of false-positive alignments more than 20-fold compared with psiblast and jackhmmer, with little loss in search sensitivity. PMID:27923999
Biclustering as a method for RNA local multiple sequence alignment.
Wang, Shu; Gutell, Robin R; Miranker, Daniel P
2007-12-15
Biclustering is a clustering method that simultaneously clusters both the domain and range of a relation. A challenge in multiple sequence alignment (MSA) is that the alignment of sequences is often intended to reveal groups of conserved functional subsequences. Simultaneously, the grouping of the sequences can impact the alignment; precisely the kind of dual situation biclustering is intended to address. We define a representation of the MSA problem enabling the application of biclustering algorithms. We develop a computer program for local MSA, BlockMSA, that combines biclustering with divide-and-conquer. BlockMSA simultaneously finds groups of similar sequences and locally aligns subsequences within them. Further alignment is accomplished by dividing both the set of sequences and their contents. The net result is both a multiple sequence alignment and a hierarchical clustering of the sequences. BlockMSA was tested on the subsets of the BRAliBase 2.1 benchmark suite that display high variability and on an extension to that suite to larger problem sizes. Also, alignments were evaluated of two large datasets of current biological interest, T box sequences and Group IC1 Introns. The results were compared with alignments computed by ClustalW, MAFFT, MUCLE and PROBCONS alignment programs using Sum of Pairs (SPS) and Consensus Count. Results for the benchmark suite are sensitive to problem size. On problems of 15 or greater sequences, BlockMSA is consistently the best. On none of the problems in the test suite are there appreciable differences in scores among BlockMSA, MAFFT and PROBCONS. On the T box sequences, BlockMSA does the most faithful job of reproducing known annotations. MAFFT and PROBCONS do not. On the Intron sequences, BlockMSA, MAFFT and MUSCLE are comparable at identifying conserved regions. BlockMSA is implemented in Java. Source code and supplementary datasets are available at http://aug.csres.utexas.edu/msa/
SFESA: a web server for pairwise alignment refinement by secondary structure shifts.
Tong, Jing; Pei, Jimin; Grishin, Nick V
2015-09-03
Protein sequence alignment is essential for a variety of tasks such as homology modeling and active site prediction. Alignment errors remain the main cause of low-quality structure models. A bioinformatics tool to refine alignments is needed to make protein alignments more accurate. We developed the SFESA web server to refine pairwise protein sequence alignments. Compared to the previous version of SFESA, which required a set of 3D coordinates for a protein, the new server will search a sequence database for the closest homolog with an available 3D structure to be used as a template. For each alignment block defined by secondary structure elements in the template, SFESA evaluates alignment variants generated by local shifts and selects the best-scoring alignment variant. A scoring function that combines the sequence score of profile-profile comparison and the structure score of template-derived contact energy is used for evaluation of alignments. PROMALS pairwise alignments refined by SFESA are more accurate than those produced by current advanced alignment methods such as HHpred and CNFpred. In addition, SFESA also improves alignments generated by other software. SFESA is a web-based tool for alignment refinement, designed for researchers to compute, refine, and evaluate pairwise alignments with a combined sequence and structure scoring of alignment blocks. To our knowledge, the SFESA web server is the only tool that refines alignments by evaluating local shifts of secondary structure elements. The SFESA web server is available at http://prodata.swmed.edu/sfesa.
MANGO: a new approach to multiple sequence alignment.
Zhang, Zefeng; Lin, Hao; Li, Ming
2007-01-01
Multiple sequence alignment is a classical and challenging task for biological sequence analysis. The problem is NP-hard. The full dynamic programming takes too much time. The progressive alignment heuristics adopted by most state of the art multiple sequence alignment programs suffer from the 'once a gap, always a gap' phenomenon. Is there a radically new way to do multiple sequence alignment? This paper introduces a novel and orthogonal multiple sequence alignment method, using multiple optimized spaced seeds and new algorithms to handle these seeds efficiently. Our new algorithm processes information of all sequences as a whole, avoiding problems caused by the popular progressive approaches. Because the optimized spaced seeds are provably significantly more sensitive than the consecutive k-mers, the new approach promises to be more accurate and reliable. To validate our new approach, we have implemented MANGO: Multiple Alignment with N Gapped Oligos. Experiments were carried out on large 16S RNA benchmarks showing that MANGO compares favorably, in both accuracy and speed, against state-of-art multiple sequence alignment methods, including ClustalW 1.83, MUSCLE 3.6, MAFFT 5.861, Prob-ConsRNA 1.11, Dialign 2.2.1, DIALIGN-T 0.2.1, T-Coffee 4.85, POA 2.0 and Kalign 2.0.
Embedding strategies for effective use of information from multiple sequence alignments.
Henikoff, S.; Henikoff, J. G.
1997-01-01
We describe a new strategy for utilizing multiple sequence alignment information to detect distant relationships in searches of sequence databases. A single sequence representing a protein family is enriched by replacing conserved regions with position-specific scoring matrices (PSSMs) or consensus residues derived from multiple alignments of family members. In comprehensive tests of these and other family representations, PSSM-embedded queries produced the best results overall when used with a special version of the Smith-Waterman searching algorithm. Moreover, embedding consensus residues instead of PSSMs improved performance with readily available single sequence query searching programs, such as BLAST and FASTA. Embedding PSSMs or consensus residues into a representative sequence improves searching performance by extracting multiple alignment information from motif regions while retaining single sequence information where alignment is uncertain. PMID:9070452
Selvan, A. Sakthivel; Gupta, I. D.; Verma, A.; Chaudhari, M. V.; Magotra, A.
2016-01-01
Aim: The present study was undertaken with the objectives to characterize and to analyze combined genotypes of cluster of differentiation 14 (CD14) gene to explore its association with clinical mastitis in Karan Fries (KF) cows maintained in the National Dairy Research Institute herd, Karnal. Materials and Methods: Genomic DNA was extracted using blood of randomly selected 94 KF lactating cattle by phenol-chloroform method. After checking its quality and quantity, polymerase chain reaction (PCR) was carried out using six sets of reported gene-specific primers to amplify complete KF CD14 gene. The forward and reverse sequences for each PCR fragments were assembled to form complete sequence for the respective region of KF CD14 gene. The multiple sequence alignments of the edited sequence with the corresponding reference with reported Bos taurus sequence (EU148610.1) were performed with ClustalW software to identify single nucleotide polymorphisms (SNPs). Basic Local Alignment Search Tool analysis was performed to compare the sequence identity of KF CD14 gene with other species. The restriction fragment length polymorphism (RFLP) analysis was carried out in all KF cows using Helicobacter pylori 188I (Hpy188I) (contig 2) and Haemophilus influenzae I (HinfI) (contig 4) restriction enzyme (RE). Cows were assigned genotypes obtained by PCR-RFLP analysis, and association study was done using Chi-square (χ2) test. The genotypes of both contigs (loci) number 2 and 4 were combined with respect to each animal to construct combined genotype patterns. Results: Two types of sequences of KF were obtained: One with 2630 bp having one insertion at 616 nucleotide (nt) position and one deletion at 1117 nt position, and the another sequence was of 2629 bp having only one deletion at 615 nt position. ClustalW, multiple alignments of KF CD14 gene sequence with B. taurus cattle sequence (EU148610.1), revealed 24 nt changes (SNPs). Cows were also screened using PCR-RFLP with Hpy188I (contig 2) and HinfI (contig 4) RE, which revealed three genotypes each that differed significantly regarding mastitis incidence. The maximum possible combination of these two loci shown nine combined genotype patterns and it was observed only eight combined genotypes out of nine: AACC, AACD, AADD, ABCD, ABDD, BBCC, BBCD, and BBDD. The combined genotype ABCC was not observed in the studied population of KF cows. Out of 94 animals, AACD combined genotype animals (10.63%) were found to be not affected with mastitis, and ABDD combined genotyped animals was observed having the highest mastitis incidence of 15.96%. Conclusion: AACD typed cows were found to be least susceptible to mastitis incidence as compared to other combined genotypes. PMID:27536026
Selvan, A Sakthivel; Gupta, I D; Verma, A; Chaudhari, M V; Magotra, A
2016-07-01
The present study was undertaken with the objectives to characterize and to analyze combined genotypes of cluster of differentiation 14 (CD14) gene to explore its association with clinical mastitis in Karan Fries (KF) cows maintained in the National Dairy Research Institute herd, Karnal. Genomic DNA was extracted using blood of randomly selected 94 KF lactating cattle by phenol-chloroform method. After checking its quality and quantity, polymerase chain reaction (PCR) was carried out using six sets of reported gene-specific primers to amplify complete KF CD14 gene. The forward and reverse sequences for each PCR fragments were assembled to form complete sequence for the respective region of KF CD14 gene. The multiple sequence alignments of the edited sequence with the corresponding reference with reported Bos taurus sequence (EU148610.1) were performed with ClustalW software to identify single nucleotide polymorphisms (SNPs). Basic Local Alignment Search Tool analysis was performed to compare the sequence identity of KF CD14 gene with other species. The restriction fragment length polymorphism (RFLP) analysis was carried out in all KF cows using Helicobacter pylori 188I (Hpy188I) (contig 2) and Haemophilus influenzae I (HinfI) (contig 4) restriction enzyme (RE). Cows were assigned genotypes obtained by PCR-RFLP analysis, and association study was done using Chi-square (χ (2)) test. The genotypes of both contigs (loci) number 2 and 4 were combined with respect to each animal to construct combined genotype patterns. Two types of sequences of KF were obtained: One with 2630 bp having one insertion at 616 nucleotide (nt) position and one deletion at 1117 nt position, and the another sequence was of 2629 bp having only one deletion at 615 nt position. ClustalW, multiple alignments of KF CD14 gene sequence with B. taurus cattle sequence (EU148610.1), revealed 24 nt changes (SNPs). Cows were also screened using PCR-RFLP with Hpy188I (contig 2) and HinfI (contig 4) RE, which revealed three genotypes each that differed significantly regarding mastitis incidence. The maximum possible combination of these two loci shown nine combined genotype patterns and it was observed only eight combined genotypes out of nine: AACC, AACD, AADD, ABCD, ABDD, BBCC, BBCD, and BBDD. The combined genotype ABCC was not observed in the studied population of KF cows. Out of 94 animals, AACD combined genotype animals (10.63%) were found to be not affected with mastitis, and ABDD combined genotyped animals was observed having the highest mastitis incidence of 15.96%. AACD typed cows were found to be least susceptible to mastitis incidence as compared to other combined genotypes.
PASTA: Ultra-Large Multiple Sequence Alignment for Nucleotide and Amino-Acid Sequences.
Mirarab, Siavash; Nguyen, Nam; Guo, Sheng; Wang, Li-San; Kim, Junhyong; Warnow, Tandy
2015-05-01
We introduce PASTA, a new multiple sequence alignment algorithm. PASTA uses a new technique to produce an alignment given a guide tree that enables it to be both highly scalable and very accurate. We present a study on biological and simulated data with up to 200,000 sequences, showing that PASTA produces highly accurate alignments, improving on the accuracy and scalability of the leading alignment methods (including SATé). We also show that trees estimated on PASTA alignments are highly accurate--slightly better than SATé trees, but with substantial improvements relative to other methods. Finally, PASTA is faster than SATé, highly parallelizable, and requires relatively little memory.
ACTG: novel peptide mapping onto gene models.
Choi, Seunghyuk; Kim, Hyunwoo; Paek, Eunok
2017-04-15
In many proteogenomic applications, mapping peptide sequences onto genome sequences can be very useful, because it allows us to understand origins of the gene products. Existing software tools either take the genomic position of a peptide start site as an input or assume that the peptide sequence exactly matches the coding sequence of a given gene model. In case of novel peptides resulting from genomic variations, especially structural variations such as alternative splicing, these existing tools cannot be directly applied unless users supply information about the variant, either its genomic position or its transcription model. Mapping potentially novel peptides to genome sequences, while allowing certain genomic variations, requires introducing novel gene models when aligning peptide sequences to gene structures. We have developed a new tool called ACTG (Amino aCids To Genome), which maps peptides to genome, assuming all possible single exon skipping, junction variation allowing three edit distances from the original splice sites, exon extension and frame shift. In addition, it can also consider SNVs (single nucleotide variations) during mapping phase if a user provides the VCF (variant call format) file as an input. Available at http://prix.hanyang.ac.kr/ACTG/search.jsp . eunokpaek@hanyang.ac.kr. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Pairwise Sequence Alignment Library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeff Daily, PNNL
2015-05-20
Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, amore » novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.« less
SPARSE: quadratic time simultaneous alignment and folding of RNAs without sequence-based heuristics.
Will, Sebastian; Otto, Christina; Miladi, Milad; Möhl, Mathias; Backofen, Rolf
2015-08-01
RNA-Seq experiments have revealed a multitude of novel ncRNAs. The gold standard for their analysis based on simultaneous alignment and folding suffers from extreme time complexity of [Formula: see text]. Subsequently, numerous faster 'Sankoff-style' approaches have been suggested. Commonly, the performance of such methods relies on sequence-based heuristics that restrict the search space to optimal or near-optimal sequence alignments; however, the accuracy of sequence-based methods breaks down for RNAs with sequence identities below 60%. Alignment approaches like LocARNA that do not require sequence-based heuristics, have been limited to high complexity ([Formula: see text] quartic time). Breaking this barrier, we introduce the novel Sankoff-style algorithm 'sparsified prediction and alignment of RNAs based on their structure ensembles (SPARSE)', which runs in quadratic time without sequence-based heuristics. To achieve this low complexity, on par with sequence alignment algorithms, SPARSE features strong sparsification based on structural properties of the RNA ensembles. Following PMcomp, SPARSE gains further speed-up from lightweight energy computation. Although all existing lightweight Sankoff-style methods restrict Sankoff's original model by disallowing loop deletions and insertions, SPARSE transfers the Sankoff algorithm to the lightweight energy model completely for the first time. Compared with LocARNA, SPARSE achieves similar alignment and better folding quality in significantly less time (speedup: 3.7). At similar run-time, it aligns low sequence identity instances substantially more accurate than RAF, which uses sequence-based heuristics. © The Author 2015. Published by Oxford University Press.
Ortuño, Francisco M; Valenzuela, Olga; Rojas, Fernando; Pomares, Hector; Florido, Javier P; Urquiza, Jose M; Rojas, Ignacio
2013-09-01
Multiple sequence alignments (MSAs) are widely used approaches in bioinformatics to carry out other tasks such as structure predictions, biological function analyses or phylogenetic modeling. However, current tools usually provide partially optimal alignments, as each one is focused on specific biological features. Thus, the same set of sequences can produce different alignments, above all when sequences are less similar. Consequently, researchers and biologists do not agree about which is the most suitable way to evaluate MSAs. Recent evaluations tend to use more complex scores including further biological features. Among them, 3D structures are increasingly being used to evaluate alignments. Because structures are more conserved in proteins than sequences, scores with structural information are better suited to evaluate more distant relationships between sequences. The proposed multiobjective algorithm, based on the non-dominated sorting genetic algorithm, aims to jointly optimize three objectives: STRIKE score, non-gaps percentage and totally conserved columns. It was significantly assessed on the BAliBASE benchmark according to the Kruskal-Wallis test (P < 0.01). This algorithm also outperforms other aligners, such as ClustalW, Multiple Sequence Alignment Genetic Algorithm (MSA-GA), PRRP, DIALIGN, Hidden Markov Model Training (HMMT), Pattern-Induced Multi-sequence Alignment (PIMA), MULTIALIGN, Sequence Alignment Genetic Algorithm (SAGA), PILEUP, Rubber Band Technique Genetic Algorithm (RBT-GA) and Vertical Decomposition Genetic Algorithm (VDGA), according to the Wilcoxon signed-rank test (P < 0.05), whereas it shows results not significantly different to 3D-COFFEE (P > 0.05) with the advantage of being able to use less structures. Structural information is included within the objective function to evaluate more accurately the obtained alignments. The source code is available at http://www.ugr.es/~fortuno/MOSAStrE/MO-SAStrE.zip.
Kramer, Marianne C; Anderson, Stephen J; Gregory, Brian D
2018-06-05
During and after transcription, the fate of an RNA molecule is almost entirely directed by the cohorts of interacting RNA-binding proteins (RBPs). RBPs regulate all stages of the life cycle of a messenger RNA (mRNA) molecule, including splicing, polyadenylation, transport out of the nucleus, RNA stability, and translation. In addition to these functions, RBPs can function to modify or edit the sequences encoded by the RNA. While the sequence for each transcript is determined in the genome, by the time an RNA reaches its final fate, the sequence may have been edited, where one nucleotide is converted to another, or modified, where a chemical group, or sometimes others moieties, are covalently linked to a nucleotide base. These changes to the RNA sequence have major consequences on the function of the RNA. Additionally, variation in the levels of the RBPs that perform the editing or modification can drastically affect the fitness of an organism. Here, we review RBPs that are known to edit or modify RNA ribonucleotides, focusing on the RNA editing ability of the pentatricopeptide repeat (PPR) proteins and the RBPs that modify adenosine to N 6 - methyladenosine. Copyright © 2018 Elsevier Ltd. All rights reserved.
Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments.
Daily, Jeff
2016-02-10
Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. A faster intra-sequence local pairwise alignment implementation is described and benchmarked, including new global and semi-global variants. Using a 375 residue query sequence a speed of 136 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon E5-2670 24-core processor system, the highest reported for an implementation based on Farrar's 'striped' approach. Rognes's SWIPE optimal database search application is still generally the fastest available at 1.2 to at best 2.4 times faster than Parasail for sequences shorter than 500 amino acids. However, Parasail was faster for longer sequences. For global alignments, Parasail's prefix scan implementation is generally the fastest, faster even than Farrar's 'striped' approach, however the opal library is faster for single-threaded applications. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. Applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.
PASTA: Ultra-Large Multiple Sequence Alignment for Nucleotide and Amino-Acid Sequences
Mirarab, Siavash; Nguyen, Nam; Guo, Sheng; Wang, Li-San; Kim, Junhyong
2015-01-01
Abstract We introduce PASTA, a new multiple sequence alignment algorithm. PASTA uses a new technique to produce an alignment given a guide tree that enables it to be both highly scalable and very accurate. We present a study on biological and simulated data with up to 200,000 sequences, showing that PASTA produces highly accurate alignments, improving on the accuracy and scalability of the leading alignment methods (including SATé). We also show that trees estimated on PASTA alignments are highly accurate—slightly better than SATé trees, but with substantial improvements relative to other methods. Finally, PASTA is faster than SATé, highly parallelizable, and requires relatively little memory. PMID:25549288
A Novel Center Star Multiple Sequence Alignment Algorithm Based on Affine Gap Penalty and K-Band
NASA Astrophysics Data System (ADS)
Zou, Quan; Shan, Xiao; Jiang, Yi
Multiple sequence alignment is one of the most important topics in computational biology, but it cannot deal with the large data so far. As the development of copy-number variant(CNV) and Single Nucleotide Polymorphisms(SNP) research, many researchers want to align numbers of similar sequences for detecting CNV and SNP. In this paper, we propose a novel multiple sequence alignment algorithm based on affine gap penalty and k-band. It can align more quickly and accurately, that will be helpful for mining CNV and SNP. Experiments prove the performance of our algorithm.
ERIC Educational Resources Information Center
Pearson Education, Inc., 2011
2011-01-01
With the June 2, 2010, release of the Common Core State Standards, state-led education standards developed for K-12 English Language Arts and Mathematics, Pearson Learning Assessments and content experts conducted an in-depth study to analyze how the "Stanford 10 Achievement Test Series," Tenth Edition (Stanford 10) and Stanford 10…
Fukuda, Masatora; Kurihara, Kei; Yamaguchi, Shota; Oyama, Yui; Deshimaru, Masanobu
2014-01-01
Adenosine-to-inosine (A-to-I) RNA editing is an endogenous regulatory mechanism involved in various biological processes. Site-specific, editing-state–dependent degradation of target RNA may be a powerful tool both for analyzing the mechanism of RNA editing and for regulating biological processes. Previously, we designed an artificial hammerhead ribozyme (HHR) for selective, site-specific RNA cleavage dependent on the A-to-I RNA editing state. In the present work, we developed an improved strategy for constructing a trans-acting HHR that specifically cleaves target editing sites in the adenosine but not the inosine state. Specificity for unedited sites was achieved by utilizing a sequence encoding the intrinsic cleavage specificity of a natural HHR. We used in vitro selection methods in an HHR library to select for an extended HHR containing a tertiary stabilization motif that facilitates HHR folding into an active conformation. By using this method, we successfully constructed highly active HHRs with unedited-specific cleavage. Moreover, using HHR cleavage followed by direct sequencing, we demonstrated that this ribozyme could cleave serotonin 2C receptor (HTR2C) mRNA extracted from mouse brain, depending on the site-specific editing state. This unedited-specific cleavage also enabled us to analyze the effect of editing state at the E and C sites on editing at other sites by using direct sequencing for the simultaneous quantification of the editing ratio at multiple sites. Our approach has the potential to elucidate the mechanism underlying the interdependencies of different editing states in substrate RNA with multiple editing sites. PMID:24448449
Using reconfigurable hardware to accelerate multiple sequence alignment with ClustalW.
Oliver, Tim; Schmidt, Bertil; Nathan, Darran; Clemens, Ralf; Maskell, Douglas
2005-08-15
Aligning hundreds of sequences using progressive alignment tools such as ClustalW requires several hours on state-of-the-art workstations. We present a new approach to compute multiple sequence alignments in far shorter time using reconfigurable hardware. This results in an implementation of ClustalW with significant runtime savings on a standard off-the-shelf FPGA.
Fast alignment-free sequence comparison using spaced-word frequencies.
Leimeister, Chris-Andre; Boden, Marcus; Horwege, Sebastian; Lindner, Sebastian; Morgenstern, Burkhard
2014-07-15
Alignment-free methods for sequence comparison are increasingly used for genome analysis and phylogeny reconstruction; they circumvent various difficulties of traditional alignment-based approaches. In particular, alignment-free methods are much faster than pairwise or multiple alignments. They are, however, less accurate than methods based on sequence alignment. Most alignment-free approaches work by comparing the word composition of sequences. A well-known problem with these methods is that neighbouring word matches are far from independent. To reduce the statistical dependency between adjacent word matches, we propose to use 'spaced words', defined by patterns of 'match' and 'don't care' positions, for alignment-free sequence comparison. We describe a fast implementation of this approach using recursive hashing and bit operations, and we show that further improvements can be achieved by using multiple patterns instead of single patterns. To evaluate our approach, we use spaced-word frequencies as a basis for fast phylogeny reconstruction. Using real-world and simulated sequence data, we demonstrate that our multiple-pattern approach produces better phylogenies than approaches relying on contiguous words. Our program is freely available at http://spaced.gobics.de/. © The Author 2014. Published by Oxford University Press.
Alignment methods: strategies, challenges, benchmarking, and comparative overview.
Löytynoja, Ari
2012-01-01
Comparative evolutionary analyses of molecular sequences are solely based on the identities and differences detected between homologous characters. Errors in this homology statement, that is errors in the alignment of the sequences, are likely to lead to errors in the downstream analyses. Sequence alignment and phylogenetic inference are tightly connected and many popular alignment programs use the phylogeny to divide the alignment problem into smaller tasks. They then neglect the phylogenetic tree, however, and produce alignments that are not evolutionarily meaningful. The use of phylogeny-aware methods reduces the error but the resulting alignments, with evolutionarily correct representation of homology, can challenge the existing practices and methods for viewing and visualising the sequences. The inter-dependency of alignment and phylogeny can be resolved by joint estimation of the two; methods based on statistical models allow for inferring the alignment parameters from the data and correctly take into account the uncertainty of the solution but remain computationally challenging. Widely used alignment methods are based on heuristic algorithms and unlikely to find globally optimal solutions. The whole concept of one correct alignment for the sequences is questionable, however, as there typically exist vast numbers of alternative, roughly equally good alignments that should also be considered. This uncertainty is hidden by many popular alignment programs and is rarely correctly taken into account in the downstream analyses. The quest for finding and improving the alignment solution is complicated by the lack of suitable measures of alignment goodness. The difficulty of comparing alternative solutions also affects benchmarks of alignment methods and the results strongly depend on the measure used. As the effects of alignment error cannot be predicted, comparing the alignments' performance in downstream analyses is recommended.
AmpliVar: mutation detection in high-throughput sequence from amplicon-based libraries.
Hsu, Arthur L; Kondrashova, Olga; Lunke, Sebastian; Love, Clare J; Meldrum, Cliff; Marquis-Nicholson, Renate; Corboy, Greg; Pham, Kym; Wakefield, Matthew; Waring, Paul M; Taylor, Graham R
2015-04-01
Conventional means of identifying variants in high-throughput sequencing align each read against a reference sequence, and then call variants at each position. Here, we demonstrate an orthogonal means of identifying sequence variation by grouping the reads as amplicons prior to any alignment. We used AmpliVar to make key-value hashes of sequence reads and group reads as individual amplicons using a table of flanking sequences. Low-abundance reads were removed according to a selectable threshold, and reads above this threshold were aligned as groups, rather than as individual reads, permitting the use of sensitive alignment tools. We show that this approach is more sensitive, more specific, and more computationally efficient than comparable methods for the analysis of amplicon-based high-throughput sequencing data. The method can be extended to enable alignment-free confirmation of variants seen in hybridization capture target-enrichment data. © 2015 WILEY PERIODICALS, INC.
Wright, Imogen A.; Travers, Simon A.
2014-01-01
The challenge presented by high-throughput sequencing necessitates the development of novel tools for accurate alignment of reads to reference sequences. Current approaches focus on using heuristics to map reads quickly to large genomes, rather than generating highly accurate alignments in coding regions. Such approaches are, thus, unsuited for applications such as amplicon-based analysis and the realignment phase of exome sequencing and RNA-seq, where accurate and biologically relevant alignment of coding regions is critical. To facilitate such analyses, we have developed a novel tool, RAMICS, that is tailored to mapping large numbers of sequence reads to short lengths (<10 000 bp) of coding DNA. RAMICS utilizes profile hidden Markov models to discover the open reading frame of each sequence and aligns to the reference sequence in a biologically relevant manner, distinguishing between genuine codon-sized indels and frameshift mutations. This approach facilitates the generation of highly accurate alignments, accounting for the error biases of the sequencing machine used to generate reads, particularly at homopolymer regions. Performance improvements are gained through the use of graphics processing units, which increase the speed of mapping through parallelization. RAMICS substantially outperforms all other mapping approaches tested in terms of alignment quality while maintaining highly competitive speed performance. PMID:24861618
PASS2: an automated database of protein alignments organised as structural superfamilies.
Bhaduri, Anirban; Pugalenthi, Ganesan; Sowdhamini, Ramanathan
2004-04-02
The functional selection and three-dimensional structural constraints of proteins in nature often relates to the retention of significant sequence similarity between proteins of similar fold and function despite poor sequence identity. Organization of structure-based sequence alignments for distantly related proteins, provides a map of the conserved and critical regions of the protein universe that is useful for the analysis of folding principles, for the evolutionary unification of protein families and for maximizing the information return from experimental structure determination. The Protein Alignment organised as Structural Superfamily (PASS2) database represents continuously updated, structural alignments for evolutionary related, sequentially distant proteins. An automated and updated version of PASS2 is, in direct correspondence with SCOP 1.63, consisting of sequences having identity below 40% among themselves. Protein domains have been grouped into 628 multi-member superfamilies and 566 single member superfamilies. Structure-based sequence alignments for the superfamilies have been obtained using COMPARER, while initial equivalencies have been derived from a preliminary superposition using LSQMAN or STAMP 4.0. The final sequence alignments have been annotated for structural features using JOY4.0. The database is supplemented with sequence relatives belonging to different genomes, conserved spatially interacting and structural motifs, probabilistic hidden markov models of superfamilies based on the alignments and useful links to other databases. Probabilistic models and sensitive position specific profiles obtained from reliable superfamily alignments aid annotation of remote homologues and are useful tools in structural and functional genomics. PASS2 presents the phylogeny of its members both based on sequence and structural dissimilarities. Clustering of members allows us to understand diversification of the family members. The search engine has been improved for simpler browsing of the database. The database resolves alignments among the structural domains consisting of evolutionarily diverged set of sequences. Availability of reliable sequence alignments of distantly related proteins despite poor sequence identity and single-member superfamilies permit better sampling of structures in libraries for fold recognition of new sequences and for the understanding of protein structure-function relationships of individual superfamilies. PASS2 is accessible at http://www.ncbs.res.in/~faculty/mini/campass/pass2.html
A survey and evaluations of histogram-based statistics in alignment-free sequence comparison.
Luczak, Brian B; James, Benjamin T; Girgis, Hani Z
2017-12-06
Since the dawn of the bioinformatics field, sequence alignment scores have been the main method for comparing sequences. However, alignment algorithms are quadratic, requiring long execution time. As alternatives, scientists have developed tens of alignment-free statistics for measuring the similarity between two sequences. We surveyed tens of alignment-free k-mer statistics. Additionally, we evaluated 33 statistics and multiplicative combinations between the statistics and/or their squares. These statistics are calculated on two k-mer histograms representing two sequences. Our evaluations using global alignment scores revealed that the majority of the statistics are sensitive and capable of finding similar sequences to a query sequence. Therefore, any of these statistics can filter out dissimilar sequences quickly. Further, we observed that multiplicative combinations of the statistics are highly correlated with the identity score. Furthermore, combinations involving sequence length difference or Earth Mover's distance, which takes the length difference into account, are always among the highest correlated paired statistics with identity scores. Similarly, paired statistics including length difference or Earth Mover's distance are among the best performers in finding the K-closest sequences. Interestingly, similar performance can be obtained using histograms of shorter words, resulting in reducing the memory requirement and increasing the speed remarkably. Moreover, we found that simple single statistics are sufficient for processing next-generation sequencing reads and for applications relying on local alignment. Finally, we measured the time requirement of each statistic. The survey and the evaluations will help scientists with identifying efficient alternatives to the costly alignment algorithm, saving thousands of computational hours. The source code of the benchmarking tool is available as Supplementary Materials. © The Author 2017. Published by Oxford University Press.
Hayes, Michael L; Giang, Karolyn; Mulligan, R Michael
2012-05-14
Pentatricopeptide repeat (PPR) proteins are required for numerous RNA processing events in plant organelles including C-to-U editing, splicing, stabilization, and cleavage. Fifteen PPR proteins are known to be required for RNA editing at 21 sites in Arabidopsis chloroplasts, and belong to the PLS class of PPR proteins. In this study, we investigate the co-evolution of four PPR genes (CRR4, CRR21, CLB19, and OTP82) and their six editing targets in Brassicaceae species. PPR genes are composed of approximately 10 to 20 tandem repeats and each repeat has two α-helical regions, helix A and helix B, that are separated by short coil regions. Each repeat and structural feature was examined to determine the selective pressures on these regions. All of the PPR genes examined are under strong negative selection. Multiple independent losses of editing site targets are observed for both CRR21 and OTP82. In several species lacking the known editing target for CRR21, PPR genes are truncated near the 17th PPR repeat. The coding sequences of the truncated CRR21 genes are maintained under strong negative selection; however, the 3' UTR sequences beyond the truncation site have substantially diverged. Phylogenetic analyses of four PPR genes show that sequences corresponding to helix A are high compared to helix B sequences. Differential evolutionary selection of helix A versus helix B is observed in both plant and mammalian PPR genes. PPR genes and their cognate editing sites are mutually constrained in evolution. Editing sites are frequently lost by replacement of an edited C with a genomic T. After the loss of an editing site, the PPR genes are observed with three outcomes: first, few changes are detected in some cases; second, the PPR gene is present as a pseudogene; and third, the PPR gene is present but truncated in the C-terminal region. The retention of truncated forms of CRR21 that are maintained under strong negative selection even in the absence of an editing site target suggests that unrecognized function(s) might exist for this PPR protein. PPR gene sequences that encode helix A are under strong selection, and could be involved in RNA substrate recognition.
BioWord: A sequence manipulation suite for Microsoft Word
2012-01-01
Background The ability to manipulate, edit and process DNA and protein sequences has rapidly become a necessary skill for practicing biologists across a wide swath of disciplines. In spite of this, most everyday sequence manipulation tools are distributed across several programs and web servers, sometimes requiring installation and typically involving frequent switching between applications. To address this problem, here we have developed BioWord, a macro-enabled self-installing template for Microsoft Word documents that integrates an extensive suite of DNA and protein sequence manipulation tools. Results BioWord is distributed as a single macro-enabled template that self-installs with a single click. After installation, BioWord will open as a tab in the Office ribbon. Biologists can then easily manipulate DNA and protein sequences using a familiar interface and minimize the need to switch between applications. Beyond simple sequence manipulation, BioWord integrates functionality ranging from dyad search and consensus logos to motif discovery and pair-wise alignment. Written in Visual Basic for Applications (VBA) as an open source, object-oriented project, BioWord allows users with varying programming experience to expand and customize the program to better meet their own needs. Conclusions BioWord integrates a powerful set of tools for biological sequence manipulation within a handy, user-friendly tab in a widely used word processing software package. The use of a simple scripting language and an object-oriented scheme facilitates customization by users and provides a very accessible educational platform for introducing students to basic bioinformatics algorithms. PMID:22676326
Mikaeili, F; Mirhendi, H; Mohebali, M; Hosseini, M; Sharbatkhori, M; Zarei, Z; Kia, E B
2015-07-01
The study was conducted to determine the sequence variation in two mitochondrial genes, namely cytochrome c oxidase 1 (pcox1) and NADH dehydrogenase 1 (pnad1) within and among isolates of Toxocara cati, Toxocara canis and Toxascaris leonina. Genomic DNA was extracted from 32 isolates of T. cati, 9 isolates of T. canis and 19 isolates of T. leonina collected from cats and dogs in different geographical areas of Iran. Mitochondrial genes were amplified by polymerase chain reaction (PCR) and sequenced. Sequence data were aligned using the BioEdit software and compared with published sequences in GenBank. Phylogenetic analysis was performed using Bayesian inference and maximum likelihood methods. Based on pairwise comparison, intra-species genetic diversity within Iranian isolates of T. cati, T. canis and T. leonina amounted to 0-2.3%, 0-1.3% and 0-1.0% for pcox1 and 0-2.0%, 0-1.7% and 0-2.6% for pnad1, respectively. Inter-species sequence variation among the three ascaridoid nematodes was significantly higher, being 9.5-16.6% for pcox1 and 11.9-26.7% for pnad1. Sequence and phylogenetic analysis of the pcox1 and pnad1 genes indicated that there is significant genetic diversity within and among isolates of T. cati, T. canis and T. leonina from different areas of Iran, and these genes can be used for studying genetic variation of ascaridoid nematodes.
BioWord: a sequence manipulation suite for Microsoft Word.
Anzaldi, Laura J; Muñoz-Fernández, Daniel; Erill, Ivan
2012-06-07
The ability to manipulate, edit and process DNA and protein sequences has rapidly become a necessary skill for practicing biologists across a wide swath of disciplines. In spite of this, most everyday sequence manipulation tools are distributed across several programs and web servers, sometimes requiring installation and typically involving frequent switching between applications. To address this problem, here we have developed BioWord, a macro-enabled self-installing template for Microsoft Word documents that integrates an extensive suite of DNA and protein sequence manipulation tools. BioWord is distributed as a single macro-enabled template that self-installs with a single click. After installation, BioWord will open as a tab in the Office ribbon. Biologists can then easily manipulate DNA and protein sequences using a familiar interface and minimize the need to switch between applications. Beyond simple sequence manipulation, BioWord integrates functionality ranging from dyad search and consensus logos to motif discovery and pair-wise alignment. Written in Visual Basic for Applications (VBA) as an open source, object-oriented project, BioWord allows users with varying programming experience to expand and customize the program to better meet their own needs. BioWord integrates a powerful set of tools for biological sequence manipulation within a handy, user-friendly tab in a widely used word processing software package. The use of a simple scripting language and an object-oriented scheme facilitates customization by users and provides a very accessible educational platform for introducing students to basic bioinformatics algorithms.
ERIC Educational Resources Information Center
Council of the Great City Schools, 2017
2017-01-01
In the ongoing effort to improve instructional standards in our nation's urban public schools, the Council of the Great City Schools has released resources to help districts determine the quality and alignment of instructional materials at each grade level; to ensure that materials for English language learners are rigorous and aligned to district…
Guzzi, Pietro Hiram; Milenkovic, Tijana
2018-05-01
Analogous to genomic sequence alignment that allows for across-species transfer of biological knowledge between conserved sequence regions, biological network alignment can be used to guide the knowledge transfer between conserved regions of molecular networks of different species. Hence, biological network alignment can be used to redefine the traditional notion of a sequence-based homology to a new notion of network-based homology. Analogous to genomic sequence alignment, there exist local and global biological network alignments. Here, we survey prominent and recent computational approaches of each network alignment type and discuss their (dis)advantages. Then, as it was recently shown that the two approach types are complementary, in the sense that they capture different slices of cellular functioning, we discuss the need to reconcile the two network alignment types and present a recent first step in this direction. We conclude with some open research problems on this topic and comment on the usefulness of network alignment in other domains besides computational biology.
Analyses of deep mammalian sequence alignments and constraint predictions for 1% of the human genome
Margulies, Elliott H.; Cooper, Gregory M.; Asimenos, George; Thomas, Daryl J.; Dewey, Colin N.; Siepel, Adam; Birney, Ewan; Keefe, Damian; Schwartz, Ariel S.; Hou, Minmei; Taylor, James; Nikolaev, Sergey; Montoya-Burgos, Juan I.; Löytynoja, Ari; Whelan, Simon; Pardi, Fabio; Massingham, Tim; Brown, James B.; Bickel, Peter; Holmes, Ian; Mullikin, James C.; Ureta-Vidal, Abel; Paten, Benedict; Stone, Eric A.; Rosenbloom, Kate R.; Kent, W. James; Bouffard, Gerard G.; Guan, Xiaobin; Hansen, Nancy F.; Idol, Jacquelyn R.; Maduro, Valerie V.B.; Maskeri, Baishali; McDowell, Jennifer C.; Park, Morgan; Thomas, Pamela J.; Young, Alice C.; Blakesley, Robert W.; Muzny, Donna M.; Sodergren, Erica; Wheeler, David A.; Worley, Kim C.; Jiang, Huaiyang; Weinstock, George M.; Gibbs, Richard A.; Graves, Tina; Fulton, Robert; Mardis, Elaine R.; Wilson, Richard K.; Clamp, Michele; Cuff, James; Gnerre, Sante; Jaffe, David B.; Chang, Jean L.; Lindblad-Toh, Kerstin; Lander, Eric S.; Hinrichs, Angie; Trumbower, Heather; Clawson, Hiram; Zweig, Ann; Kuhn, Robert M.; Barber, Galt; Harte, Rachel; Karolchik, Donna; Field, Matthew A.; Moore, Richard A.; Matthewson, Carrie A.; Schein, Jacqueline E.; Marra, Marco A.; Antonarakis, Stylianos E.; Batzoglou, Serafim; Goldman, Nick; Hardison, Ross; Haussler, David; Miller, Webb; Pachter, Lior; Green, Eric D.; Sidow, Arend
2007-01-01
A key component of the ongoing ENCODE project involves rigorous comparative sequence analyses for the initially targeted 1% of the human genome. Here, we present orthologous sequence generation, alignment, and evolutionary constraint analyses of 23 mammalian species for all ENCODE targets. Alignments were generated using four different methods; comparisons of these methods reveal large-scale consistency but substantial differences in terms of small genomic rearrangements, sensitivity (sequence coverage), and specificity (alignment accuracy). We describe the quantitative and qualitative trade-offs concomitant with alignment method choice and the levels of technical error that need to be accounted for in applications that require multisequence alignments. Using the generated alignments, we identified constrained regions using three different methods. While the different constraint-detecting methods are in general agreement, there are important discrepancies relating to both the underlying alignments and the specific algorithms. However, by integrating the results across the alignments and constraint-detecting methods, we produced constraint annotations that were found to be robust based on multiple independent measures. Analyses of these annotations illustrate that most classes of experimentally annotated functional elements are enriched for constrained sequences; however, large portions of each class (with the exception of protein-coding sequences) do not overlap constrained regions. The latter elements might not be under primary sequence constraint, might not be constrained across all mammals, or might have expendable molecular functions. Conversely, 40% of the constrained sequences do not overlap any of the functional elements that have been experimentally identified. Together, these findings demonstrate and quantify how many genomic functional elements await basic molecular characterization. PMID:17567995
Eddy, Sean R.
2008-01-01
Sequence database searches require accurate estimation of the statistical significance of scores. Optimal local sequence alignment scores follow Gumbel distributions, but determining an important parameter of the distribution (λ) requires time-consuming computational simulation. Moreover, optimal alignment scores are less powerful than probabilistic scores that integrate over alignment uncertainty (“Forward” scores), but the expected distribution of Forward scores remains unknown. Here, I conjecture that both expected score distributions have simple, predictable forms when full probabilistic modeling methods are used. For a probabilistic model of local sequence alignment, optimal alignment bit scores (“Viterbi” scores) are Gumbel-distributed with constant λ = log 2, and the high scoring tail of Forward scores is exponential with the same constant λ. Simulation studies support these conjectures over a wide range of profile/sequence comparisons, using 9,318 profile-hidden Markov models from the Pfam database. This enables efficient and accurate determination of expectation values (E-values) for both Viterbi and Forward scores for probabilistic local alignments. PMID:18516236
Flexible, fast and accurate sequence alignment profiling on GPGPU with PaSWAS.
Warris, Sven; Yalcin, Feyruz; Jackson, Katherine J L; Nap, Jan Peter
2015-01-01
To obtain large-scale sequence alignments in a fast and flexible way is an important step in the analyses of next generation sequencing data. Applications based on the Smith-Waterman (SW) algorithm are often either not fast enough, limited to dedicated tasks or not sufficiently accurate due to statistical issues. Current SW implementations that run on graphics hardware do not report the alignment details necessary for further analysis. With the Parallel SW Alignment Software (PaSWAS) it is possible (a) to have easy access to the computational power of NVIDIA-based general purpose graphics processing units (GPGPUs) to perform high-speed sequence alignments, and (b) retrieve relevant information such as score, number of gaps and mismatches. The software reports multiple hits per alignment. The added value of the new SW implementation is demonstrated with two test cases: (1) tag recovery in next generation sequence data and (2) isotype assignment within an immunoglobulin 454 sequence data set. Both cases show the usability and versatility of the new parallel Smith-Waterman implementation.
Single-Stranded γPNAs for In Vivo Site-Specific Genome Editing via Watson-Crick Recognition
Bahal, Raman; Quijano, Elias; McNeer, Nicole Ali; Liu, Yanfeng; Bhunia, Dinesh C.; López-Giráldez, Francesco; Fields, Rachel J.; Saltzman, W. Mark; Ly, Danith H.; Glazer, Peter M.
2014-01-01
Triplex-forming peptide nucleic acids (PNAs) facilitate gene editing by stimulating recombination of donor DNAs within genomic DNA via site-specific formation of altered helical structures that further stimulate DNA repair. However, PNAs designed for triplex formation are sequence restricted to homopurine sites. Herein we describe a novel strategy where next generation single-stranded gamma PNAs (γPNAs) containing miniPEG substitutions at the gamma position can target genomic DNA in mouse bone marrow at mixed-sequence sites to induce targeted gene editing. In addition to enhanced binding, γPNAs confer increased solubility and improved formulation into poly(lactic-co-glycolic acid) (PLGA) nanoparticles for efficient intracellular delivery. Single-stranded γPNAs induce targeted gene editing at frequencies of 0.8% in mouse bone marrow cells treated ex vivo and 0.1% in vivo via IV injection, without detectable toxicity. These results suggest that γPNAs may provide a new tool for induced gene editing based on Watson-Crick recognition without sequence restriction. PMID:25174576
Single-stranded γPNAs for in vivo site-specific genome editing via Watson-Crick recognition.
Bahal, Raman; Quijano, Elias; McNeer, Nicole A; Liu, Yanfeng; Bhunia, Dinesh C; Lopez-Giraldez, Francesco; Fields, Rachel J; Saltzman, William M; Ly, Danith H; Glazer, Peter M
2014-01-01
Triplex-forming peptide nucleic acids (PNAs) facilitate gene editing by stimulating recombination of donor DNAs within genomic DNA via site-specific formation of altered helical structures that further stimulate DNA repair. However, PNAs designed for triplex formation are sequence restricted to homopurine sites. Herein we describe a novel strategy where next generation single-stranded gamma PNAs (γPNAs) containing miniPEG substitutions at the gamma position can target genomic DNA in mouse bone marrow at mixed-sequence sites to induce targeted gene editing. In addition to enhanced binding, γPNAs confer increased solubility and improved formulation into poly(lactic-co-glycolic acid) (PLGA) nanoparticles for efficient intracellular delivery. Single-stranded γPNAs induce targeted gene editing at frequencies of 0.8% in mouse bone marrow cells treated ex vivo and 0.1% in vivo via IV injection, without detectable toxicity. These results suggest that γPNAs may provide a new tool for induced gene editing based on Watson-Crick recognition without sequence restriction.
Jensen, Kristopher Torp; Fløe, Lasse; Petersen, Trine Skov; Huang, Jinrong; Xu, Fengping; Bolund, Lars; Luo, Yonglun; Lin, Lin
2017-07-01
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) systems have emerged as the method of choice for genome editing, but large variations in on-target efficiencies continue to limit their applicability. Here, we investigate the effect of chromatin accessibility on Cas9-mediated gene editing efficiency for 20 gRNAs targeting 10 genomic loci in HEK293T cells using both SpCas9 and the eSpCas9(1.1) variant. Our study indicates that gene editing is more efficient in euchromatin than in heterochromatin, and we validate this finding in HeLa cells and in human fibroblasts. Furthermore, we investigate the gRNA sequence determinants of CRISPR-Cas9 activity using a surrogate reporter system and find that the efficiency of Cas9-mediated gene editing is dependent on guide sequence secondary structure formation. This knowledge can aid in the further improvement of tools for gRNA design. © 2017 Federation of European Biochemical Societies.
Viewing multiple sequence alignments with the JavaScript Sequence Alignment Viewer (JSAV)
Martin, Andrew C. R.
2014-01-01
The JavaScript Sequence Alignment Viewer (JSAV) is designed as a simple-to-use JavaScript component for displaying sequence alignments on web pages. The display of sequences is highly configurable with options to allow alternative coloring schemes, sorting of sequences and ’dotifying’ repeated amino acids. An option is also available to submit selected sequences to another web site, or to other JavaScript code. JSAV is implemented purely in JavaScript making use of the JQuery and JQuery-UI libraries. It does not use any HTML5-specific options to help with browser compatibility. The code is documented using JSDOC and is available from http://www.bioinf.org.uk/software/jsav/. PMID:25653836
Viewing multiple sequence alignments with the JavaScript Sequence Alignment Viewer (JSAV).
Martin, Andrew C R
2014-01-01
The JavaScript Sequence Alignment Viewer (JSAV) is designed as a simple-to-use JavaScript component for displaying sequence alignments on web pages. The display of sequences is highly configurable with options to allow alternative coloring schemes, sorting of sequences and 'dotifying' repeated amino acids. An option is also available to submit selected sequences to another web site, or to other JavaScript code. JSAV is implemented purely in JavaScript making use of the JQuery and JQuery-UI libraries. It does not use any HTML5-specific options to help with browser compatibility. The code is documented using JSDOC and is available from http://www.bioinf.org.uk/software/jsav/.
SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes.
Pruesse, Elmar; Peplies, Jörg; Glöckner, Frank Oliver
2012-07-15
In the analysis of homologous sequences, computation of multiple sequence alignments (MSAs) has become a bottleneck. This is especially troublesome for marker genes like the ribosomal RNA (rRNA) where already millions of sequences are publicly available and individual studies can easily produce hundreds of thousands of new sequences. Methods have been developed to cope with such numbers, but further improvements are needed to meet accuracy requirements. In this study, we present the SILVA Incremental Aligner (SINA) used to align the rRNA gene databases provided by the SILVA ribosomal RNA project. SINA uses a combination of k-mer searching and partial order alignment (POA) to maintain very high alignment accuracy while satisfying high throughput performance demands. SINA was evaluated in comparison with the commonly used high throughput MSA programs PyNAST and mothur. The three BRAliBase III benchmark MSAs could be reproduced with 99.3, 97.6 and 96.1 accuracy. A larger benchmark MSA comprising 38 772 sequences could be reproduced with 98.9 and 99.3% accuracy using reference MSAs comprising 1000 and 5000 sequences. SINA was able to achieve higher accuracy than PyNAST and mothur in all performed benchmarks. Alignment of up to 500 sequences using the latest SILVA SSU/LSU Ref datasets as reference MSA is offered at http://www.arb-silva.de/aligner. This page also links to Linux binaries, user manual and tutorial. SINA is made available under a personal use license.
Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daily, Jeffrey A.
Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. As a result, a faster intra-sequence pairwise alignment implementation is described and benchmarked. Using a 375 residue query sequence a speed of 136 billion cell updates permore » second (GCUPS) was achieved on a dual Intel Xeon E5-2670 12-core processor system, the highest reported for an implementation based on Farrar’s ’striped’ approach. When using only a single thread, parasail was 1.7 times faster than Rognes’s SWIPE. For many score matrices, parasail is faster than BLAST. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. In conclusion, applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.« less
Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments
Daily, Jeffrey A.
2016-02-10
Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. As a result, a faster intra-sequence pairwise alignment implementation is described and benchmarked. Using a 375 residue query sequence a speed of 136 billion cell updates permore » second (GCUPS) was achieved on a dual Intel Xeon E5-2670 12-core processor system, the highest reported for an implementation based on Farrar’s ’striped’ approach. When using only a single thread, parasail was 1.7 times faster than Rognes’s SWIPE. For many score matrices, parasail is faster than BLAST. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. In conclusion, applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.« less
BarraCUDA - a fast short read sequence aligner using graphics processing units
2012-01-01
Background With the maturation of next-generation DNA sequencing (NGS) technologies, the throughput of DNA sequencing reads has soared to over 600 gigabases from a single instrument run. General purpose computing on graphics processing units (GPGPU), extracts the computing power from hundreds of parallel stream processors within graphics processing cores and provides a cost-effective and energy efficient alternative to traditional high-performance computing (HPC) clusters. In this article, we describe the implementation of BarraCUDA, a GPGPU sequence alignment software that is based on BWA, to accelerate the alignment of sequencing reads generated by these instruments to a reference DNA sequence. Findings Using the NVIDIA Compute Unified Device Architecture (CUDA) software development environment, we ported the most computational-intensive alignment component of BWA to GPU to take advantage of the massive parallelism. As a result, BarraCUDA offers a magnitude of performance boost in alignment throughput when compared to a CPU core while delivering the same level of alignment fidelity. The software is also capable of supporting multiple CUDA devices in parallel to further accelerate the alignment throughput. Conclusions BarraCUDA is designed to take advantage of the parallelism of GPU to accelerate the alignment of millions of sequencing reads generated by NGS instruments. By doing this, we could, at least in part streamline the current bioinformatics pipeline such that the wider scientific community could benefit from the sequencing technology. BarraCUDA is currently available from http://seqbarracuda.sf.net PMID:22244497
Schuster, W; Wissinger, B; Unseld, M; Brennicke, A
1990-01-01
A number of cytosines are altered to be recognized as uridines in transcripts of the nad3 locus in mitochondria of the higher plant Oenothera. Such nucleotide modifications can be found at 16 different sites within the nad3 coding region. Most of these alterations in the mRNA sequence change codon identities to specify amino acids better conserved in evolution. Individual cDNA clones differ in their degree of editing at five nucleotide positions, three of which are silent, while two lead to codon alterations specifying different amino acids. None of the cDNA clones analysed is maximally edited at all possible sites, suggesting slow processing or lowered stringency of editing at these nucleotides. Differentially edited transcripts could be editing intermediates or could code for differing polypeptides. Two edited nucleotides in an open reading frame located upstream of nad3 change two amino acids in the deduced polypeptide. Part of the well-conserved ribosomal protein gene rps12 also encoded downstream of nad3 in other plants, is lost in Oenothera mitochondria by recombination events. The functional rps12 protein must be imported from the cytoplasm since the deleted sequences of this gene are not found in the Oenothera mitochondrial genome. The pseudogene sequence is not edited at any nucleotide position. Images Fig. 3. Fig. 4. Fig. 7. PMID:1688531
RNA Editing in Plant Mitochondria
NASA Astrophysics Data System (ADS)
Hiesel, Rudolf; Wissinger, Bernd; Schuster, Wolfgang; Brennicke, Axel
1989-12-01
Comparative sequence analysis of genomic and complementary DNA clones from several mitochondrial genes in the higher plant Oenothera revealed nucleotide sequence divergences between the genomic and the messenger RNA-derived sequences. These sequence alterations could be most easily explained by specific post-transcriptional nucleotide modifications. Most of the nucleotide exchanges in coding regions lead to altered codons in the mRNA that specify amino acids better conserved in evolution than those encoded by the genomic DNA. Several instances show that the genomic arginine codon CGG is edited in the mRNA to the tryptophan codon TGG in amino acid positions that are highly conserved as tryptophan in the homologous proteins of other species. This editing suggests that the standard genetic code is used in plant mitochondria and resolves the frequent coincidence of CGG codons and tryptophan in different plant species. The apparently frequent and non-species-specific equivalency of CGG and TGG codons in particular suggests that RNA editing is a common feature of all higher plant mitochondria.
2018-01-01
Abstract The fourth edition (following editions in 1992, 1998, 2004) of Brain maps: structure of the rat brain is presented here as an open access internet resource for the neuroscience community. One new feature is a set of 10 hierarchical nomenclature tables that define and describe all parts of the rat nervous system within the framework of a strictly topographic system devised previously for the human nervous system. These tables constitute a global ontology for knowledge management systems dealing with neural circuitry. A second new feature is an aligned atlas of bilateral flatmaps illustrating rat nervous system development from the neural plate stage to the adult stage, where most gray matter regions, white matter tracts, ganglia, and nerves listed in the nomenclature tables are illustrated schematically. These flatmaps are convenient for future development of online applications analogous to “Google Maps” for systems neuroscience. The third new feature is a completely revised Atlas of the rat brain in spatially aligned transverse sections that can serve as a framework for 3‐D modeling. Atlas parcellation is little changed from the preceding edition, but the nomenclature for rat is now aligned with an emerging panmammalian neuroanatomical nomenclature. All figures are presented in Adobe Illustrator vector graphics format that can be manipulated, modified, and resized as desired, and freely used with a Creative Commons license. PMID:29277900
Borozan, Ivan; Watt, Stuart; Ferretti, Vincent
2015-05-01
Alignment-based sequence similarity searches, while accurate for some type of sequences, can produce incorrect results when used on more divergent but functionally related sequences that have undergone the sequence rearrangements observed in many bacterial and viral genomes. Here, we propose a classification model that exploits the complementary nature of alignment-based and alignment-free similarity measures with the aim to improve the accuracy with which DNA and protein sequences are characterized. Our model classifies sequences using a combined sequence similarity score calculated by adaptively weighting the contribution of different sequence similarity measures. Weights are determined independently for each sequence in the test set and reflect the discriminatory ability of individual similarity measures in the training set. Because the similarity between some sequences is determined more accurately with one type of measure rather than another, our classifier allows different sets of weights to be associated with different sequences. Using five different similarity measures, we show that our model significantly improves the classification accuracy over the current composition- and alignment-based models, when predicting the taxonomic lineage for both short viral sequence fragments and complete viral sequences. We also show that our model can be used effectively for the classification of reads from a real metagenome dataset as well as protein sequences. All the datasets and the code used in this study are freely available at https://collaborators.oicr.on.ca/vferretti/borozan_csss/csss.html. ivan.borozan@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
Borozan, Ivan; Watt, Stuart; Ferretti, Vincent
2015-01-01
Motivation: Alignment-based sequence similarity searches, while accurate for some type of sequences, can produce incorrect results when used on more divergent but functionally related sequences that have undergone the sequence rearrangements observed in many bacterial and viral genomes. Here, we propose a classification model that exploits the complementary nature of alignment-based and alignment-free similarity measures with the aim to improve the accuracy with which DNA and protein sequences are characterized. Results: Our model classifies sequences using a combined sequence similarity score calculated by adaptively weighting the contribution of different sequence similarity measures. Weights are determined independently for each sequence in the test set and reflect the discriminatory ability of individual similarity measures in the training set. Because the similarity between some sequences is determined more accurately with one type of measure rather than another, our classifier allows different sets of weights to be associated with different sequences. Using five different similarity measures, we show that our model significantly improves the classification accuracy over the current composition- and alignment-based models, when predicting the taxonomic lineage for both short viral sequence fragments and complete viral sequences. We also show that our model can be used effectively for the classification of reads from a real metagenome dataset as well as protein sequences. Availability and implementation: All the datasets and the code used in this study are freely available at https://collaborators.oicr.on.ca/vferretti/borozan_csss/csss.html. Contact: ivan.borozan@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25573913
Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) Version 3.0 User Guide
User Guide to describe the complete functionality of the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) Version 3.0 online tool. The US Environmental Protection Agency Sequence Alignment to Predict Across Species Susceptibility tool (SeqAPASS; https://seqa...
SPARSE: quadratic time simultaneous alignment and folding of RNAs without sequence-based heuristics
Will, Sebastian; Otto, Christina; Miladi, Milad; Möhl, Mathias; Backofen, Rolf
2015-01-01
Motivation: RNA-Seq experiments have revealed a multitude of novel ncRNAs. The gold standard for their analysis based on simultaneous alignment and folding suffers from extreme time complexity of O(n6). Subsequently, numerous faster ‘Sankoff-style’ approaches have been suggested. Commonly, the performance of such methods relies on sequence-based heuristics that restrict the search space to optimal or near-optimal sequence alignments; however, the accuracy of sequence-based methods breaks down for RNAs with sequence identities below 60%. Alignment approaches like LocARNA that do not require sequence-based heuristics, have been limited to high complexity (≥ quartic time). Results: Breaking this barrier, we introduce the novel Sankoff-style algorithm ‘sparsified prediction and alignment of RNAs based on their structure ensembles (SPARSE)’, which runs in quadratic time without sequence-based heuristics. To achieve this low complexity, on par with sequence alignment algorithms, SPARSE features strong sparsification based on structural properties of the RNA ensembles. Following PMcomp, SPARSE gains further speed-up from lightweight energy computation. Although all existing lightweight Sankoff-style methods restrict Sankoff’s original model by disallowing loop deletions and insertions, SPARSE transfers the Sankoff algorithm to the lightweight energy model completely for the first time. Compared with LocARNA, SPARSE achieves similar alignment and better folding quality in significantly less time (speedup: 3.7). At similar run-time, it aligns low sequence identity instances substantially more accurate than RAF, which uses sequence-based heuristics. Availability and implementation: SPARSE is freely available at http://www.bioinf.uni-freiburg.de/Software/SPARSE. Contact: backofen@informatik.uni-freiburg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25838465
GATA: A graphic alignment tool for comparative sequenceanalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nix, David A.; Eisen, Michael B.
2005-01-01
Several problems exist with current methods used to align DNA sequences for comparative sequence analysis. Most dynamic programming algorithms assume that conserved sequence elements are collinear. This assumption appears valid when comparing orthologous protein coding sequences. Functional constraints on proteins provide strong selective pressure against sequence inversions, and minimize sequence duplications and feature shuffling. For non-coding sequences this collinearity assumption is often invalid. For example, enhancers contain clusters of transcription factor binding sites that change in number, orientation, and spacing during evolution yet the enhancer retains its activity. Dotplot analysis is often used to estimate non-coding sequence relatedness. Yet dotmore » plots do not actually align sequences and thus cannot account well for base insertions or deletions. Moreover, they lack an adequate statistical framework for comparing sequence relatedness and are limited to pairwise comparisons. Lastly, dot plots and dynamic programming text outputs fail to provide an intuitive means for visualizing DNA alignments.« less
BigFoot: Bayesian alignment and phylogenetic footprinting with MCMC
Satija, Rahul; Novák, Ádám; Miklós, István; Lyngsø, Rune; Hein, Jotun
2009-01-01
Background We have previously combined statistical alignment and phylogenetic footprinting to detect conserved functional elements without assuming a fixed alignment. Considering a probability-weighted distribution of alignments removes sensitivity to alignment errors, properly accommodates regions of alignment uncertainty, and increases the accuracy of functional element prediction. Our method utilized standard dynamic programming hidden markov model algorithms to analyze up to four sequences. Results We present a novel approach, implemented in the software package BigFoot, for performing phylogenetic footprinting on greater numbers of sequences. We have developed a Markov chain Monte Carlo (MCMC) approach which samples both sequence alignments and locations of slowly evolving regions. We implement our method as an extension of the existing StatAlign software package and test it on well-annotated regions controlling the expression of the even-skipped gene in Drosophila and the α-globin gene in vertebrates. The results exhibit how adding additional sequences to the analysis has the potential to improve the accuracy of functional predictions, and demonstrate how BigFoot outperforms existing alignment-based phylogenetic footprinting techniques. Conclusion BigFoot extends a combined alignment and phylogenetic footprinting approach to analyze larger amounts of sequence data using MCMC. Our approach is robust to alignment error and uncertainty and can be applied to a variety of biological datasets. The source code and documentation are publicly available for download from PMID:19715598
BigFoot: Bayesian alignment and phylogenetic footprinting with MCMC.
Satija, Rahul; Novák, Adám; Miklós, István; Lyngsø, Rune; Hein, Jotun
2009-08-28
We have previously combined statistical alignment and phylogenetic footprinting to detect conserved functional elements without assuming a fixed alignment. Considering a probability-weighted distribution of alignments removes sensitivity to alignment errors, properly accommodates regions of alignment uncertainty, and increases the accuracy of functional element prediction. Our method utilized standard dynamic programming hidden markov model algorithms to analyze up to four sequences. We present a novel approach, implemented in the software package BigFoot, for performing phylogenetic footprinting on greater numbers of sequences. We have developed a Markov chain Monte Carlo (MCMC) approach which samples both sequence alignments and locations of slowly evolving regions. We implement our method as an extension of the existing StatAlign software package and test it on well-annotated regions controlling the expression of the even-skipped gene in Drosophila and the alpha-globin gene in vertebrates. The results exhibit how adding additional sequences to the analysis has the potential to improve the accuracy of functional predictions, and demonstrate how BigFoot outperforms existing alignment-based phylogenetic footprinting techniques. BigFoot extends a combined alignment and phylogenetic footprinting approach to analyze larger amounts of sequence data using MCMC. Our approach is robust to alignment error and uncertainty and can be applied to a variety of biological datasets. The source code and documentation are publicly available for download from http://www.stats.ox.ac.uk/~satija/BigFoot/
Colorimetric analysis of four editions of the Hardy-Rand-Rittler pseudoisochromatic tests.
Dain, Stephen J
2004-01-01
At the Göttingen meeting of the International Colour Vision Society, I reported on a comparison of the second edition of the American Optical Hardy-Rand-Rittler Pseudoisochromatic plates (AO HRR) with the Richmond Products third edition of the same test and concluded that the chromaticities were exceptionally poorly matched and that the new edition was a "pale imitation of the real thing" (unpublished). This conclusion led to our abandoning a clinical trial. In 2002, Richmond Products has published a fourth edition and, in 2003, Waggoner has published a modified HRR with additional (Ishihara style) plates and the tetartan confusion figures removed. As a precursor to any clinical trial, the colors used in the plates have been measured and comparisons drawn between the four editions. While the two most recent editions much more closely resemble the original AO HRR and the chromaticities are much better aligned on the dichromatic confusion lines, the excitation purities (and therefore the degree of difficulty) of the plates are less well matched in the Richmond Products editions. In addition, there is a significant degree of metamerism in the third edition and Waggoner edition that makes variations in illuminant more critical to performance.
Chen, Albert P.; Zierhut, Matthew L.; Ozturk-Isik, Esin; Vigneron, Daniel B.; Nelson, Sarah J.
2010-01-01
The purpose of this study was to implement a new lactate-edited 3D 1H magnetic resonance spectroscopic imaging (MRSI) sequence at 3 T and demonstrate the feasibility of using this sequence for measuring lactate in patients with gliomas. A 3D PRESS MRSI sequence incorporating shortened, high bandwidth 180° pulses, new dual BASING lactate-editing pulses, high bandwidth very selective suppression (VSS) pulses and a flyback echo-planar readout was implemented at 3 T. Over-prescription factor of PRESS voxels was optimized using phantom to minimize chemical shift artifacts. The lactate-edited flyback sequence was compared with lactate-edited MRSI using conventional elliptical k-space sampling in a phantom and volunteers, and then applied to patients with gliomas. The results demonstrated the feasibility of detecting lactate within a short scan time of 9.5 min in both phantoms and patients. Over-prescription of voxels gave less chemical shift artifacts allowing detection of lactate on the majority of the selected volume. The normalized SNR of brain metabolites using the flyback encoding were comparable to the SNR of brain metabolites using conventional phase encoding MRSI. The specialized lactate-edited 3D MRSI sequence was able to detect lactate in brain tumor patients at 3 T. The implementation of this technique means that brain lactate can be evaluated in a routine clinical setting to study its potential as a marker for prognosis and response to therapy. PMID:20652745
The Technique of Film Editing. Enlarged Edition.
ERIC Educational Resources Information Center
Reisz, Karel; Millar, Gavin
Film editing is discussed from the point of view, not only of the person in the cutting room, but also of the person who has responsibility for the final film. Part I outlines the history of editing from the silent film to 1953. It discusses the practice of editing for action, dialogue, comedy, and montage sequences, as well as in documentaries,…
Evolutionary distances in the twilight zone--a rational kernel approach.
Schwarz, Roland F; Fletcher, William; Förster, Frank; Merget, Benjamin; Wolf, Matthias; Schultz, Jörg; Markowetz, Florian
2010-12-31
Phylogenetic tree reconstruction is traditionally based on multiple sequence alignments (MSAs) and heavily depends on the validity of this information bottleneck. With increasing sequence divergence, the quality of MSAs decays quickly. Alignment-free methods, on the other hand, are based on abstract string comparisons and avoid potential alignment problems. However, in general they are not biologically motivated and ignore our knowledge about the evolution of sequences. Thus, it is still a major open question how to define an evolutionary distance metric between divergent sequences that makes use of indel information and known substitution models without the need for a multiple alignment. Here we propose a new evolutionary distance metric to close this gap. It uses finite-state transducers to create a biologically motivated similarity score which models substitutions and indels, and does not depend on a multiple sequence alignment. The sequence similarity score is defined in analogy to pairwise alignments and additionally has the positive semi-definite property. We describe its derivation and show in simulation studies and real-world examples that it is more accurate in reconstructing phylogenies than competing methods. The result is a new and accurate way of determining evolutionary distances in and beyond the twilight zone of sequence alignments that is suitable for large datasets.
Long Read Alignment with Parallel MapReduce Cloud Platform
Al-Absi, Ahmed Abdulhakim; Kang, Dae-Ki
2015-01-01
Genomic sequence alignment is an important technique to decode genome sequences in bioinformatics. Next-Generation Sequencing technologies produce genomic data of longer reads. Cloud platforms are adopted to address the problems arising from storage and analysis of large genomic data. Existing genes sequencing tools for cloud platforms predominantly consider short read gene sequences and adopt the Hadoop MapReduce framework for computation. However, serial execution of map and reduce phases is a problem in such systems. Therefore, in this paper, we introduce Burrows-Wheeler Aligner's Smith-Waterman Alignment on Parallel MapReduce (BWASW-PMR) cloud platform for long sequence alignment. The proposed cloud platform adopts a widely accepted and accurate BWA-SW algorithm for long sequence alignment. A custom MapReduce platform is developed to overcome the drawbacks of the Hadoop framework. A parallel execution strategy of the MapReduce phases and optimization of Smith-Waterman algorithm are considered. Performance evaluation results exhibit an average speed-up of 6.7 considering BWASW-PMR compared with the state-of-the-art Bwasw-Cloud. An average reduction of 30% in the map phase makespan is reported across all experiments comparing BWASW-PMR with Bwasw-Cloud. Optimization of Smith-Waterman results in reducing the execution time by 91.8%. The experimental study proves the efficiency of BWASW-PMR for aligning long genomic sequences on cloud platforms. PMID:26839887
Wright, Imogen A; Travers, Simon A
2014-07-01
The challenge presented by high-throughput sequencing necessitates the development of novel tools for accurate alignment of reads to reference sequences. Current approaches focus on using heuristics to map reads quickly to large genomes, rather than generating highly accurate alignments in coding regions. Such approaches are, thus, unsuited for applications such as amplicon-based analysis and the realignment phase of exome sequencing and RNA-seq, where accurate and biologically relevant alignment of coding regions is critical. To facilitate such analyses, we have developed a novel tool, RAMICS, that is tailored to mapping large numbers of sequence reads to short lengths (<10 000 bp) of coding DNA. RAMICS utilizes profile hidden Markov models to discover the open reading frame of each sequence and aligns to the reference sequence in a biologically relevant manner, distinguishing between genuine codon-sized indels and frameshift mutations. This approach facilitates the generation of highly accurate alignments, accounting for the error biases of the sequencing machine used to generate reads, particularly at homopolymer regions. Performance improvements are gained through the use of graphics processing units, which increase the speed of mapping through parallelization. RAMICS substantially outperforms all other mapping approaches tested in terms of alignment quality while maintaining highly competitive speed performance. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Long Read Alignment with Parallel MapReduce Cloud Platform.
Al-Absi, Ahmed Abdulhakim; Kang, Dae-Ki
2015-01-01
Genomic sequence alignment is an important technique to decode genome sequences in bioinformatics. Next-Generation Sequencing technologies produce genomic data of longer reads. Cloud platforms are adopted to address the problems arising from storage and analysis of large genomic data. Existing genes sequencing tools for cloud platforms predominantly consider short read gene sequences and adopt the Hadoop MapReduce framework for computation. However, serial execution of map and reduce phases is a problem in such systems. Therefore, in this paper, we introduce Burrows-Wheeler Aligner's Smith-Waterman Alignment on Parallel MapReduce (BWASW-PMR) cloud platform for long sequence alignment. The proposed cloud platform adopts a widely accepted and accurate BWA-SW algorithm for long sequence alignment. A custom MapReduce platform is developed to overcome the drawbacks of the Hadoop framework. A parallel execution strategy of the MapReduce phases and optimization of Smith-Waterman algorithm are considered. Performance evaluation results exhibit an average speed-up of 6.7 considering BWASW-PMR compared with the state-of-the-art Bwasw-Cloud. An average reduction of 30% in the map phase makespan is reported across all experiments comparing BWASW-PMR with Bwasw-Cloud. Optimization of Smith-Waterman results in reducing the execution time by 91.8%. The experimental study proves the efficiency of BWASW-PMR for aligning long genomic sequences on cloud platforms.
HIA: a genome mapper using hybrid index-based sequence alignment.
Choi, Jongpill; Park, Kiejung; Cho, Seong Beom; Chung, Myungguen
2015-01-01
A number of alignment tools have been developed to align sequencing reads to the human reference genome. The scale of information from next-generation sequencing (NGS) experiments, however, is increasing rapidly. Recent studies based on NGS technology have routinely produced exome or whole-genome sequences from several hundreds or thousands of samples. To accommodate the increasing need of analyzing very large NGS data sets, it is necessary to develop faster, more sensitive and accurate mapping tools. HIA uses two indices, a hash table index and a suffix array index. The hash table performs direct lookup of a q-gram, and the suffix array performs very fast lookup of variable-length strings by exploiting binary search. We observed that combining hash table and suffix array (hybrid index) is much faster than the suffix array method for finding a substring in the reference sequence. Here, we defined the matching region (MR) is a longest common substring between a reference and a read. And, we also defined the candidate alignment regions (CARs) as a list of MRs that is close to each other. The hybrid index is used to find candidate alignment regions (CARs) between a reference and a read. We found that aligning only the unmatched regions in the CAR is much faster than aligning the whole CAR. In benchmark analysis, HIA outperformed in mapping speed compared with the other aligners, without significant loss of mapping accuracy. Our experiments show that the hybrid of hash table and suffix array is useful in terms of speed for mapping NGS sequencing reads to the human reference genome sequence. In conclusion, our tool is appropriate for aligning massive data sets generated by NGS sequencing.
Heuristics for multiobjective multiple sequence alignment.
Abbasi, Maryam; Paquete, Luís; Pereira, Francisco B
2016-07-15
Aligning multiple sequences arises in many tasks in Bioinformatics. However, the alignments produced by the current software packages are highly dependent on the parameters setting, such as the relative importance of opening gaps with respect to the increase of similarity. Choosing only one parameter setting may provide an undesirable bias in further steps of the analysis and give too simplistic interpretations. In this work, we reformulate multiple sequence alignment from a multiobjective point of view. The goal is to generate several sequence alignments that represent a trade-off between maximizing the substitution score and minimizing the number of indels/gaps in the sum-of-pairs score function. This trade-off gives to the practitioner further information about the similarity of the sequences, from which she could analyse and choose the most plausible alignment. We introduce several heuristic approaches, based on local search procedures, that compute a set of sequence alignments, which are representative of the trade-off between the two objectives (substitution score and indels). Several algorithm design options are discussed and analysed, with particular emphasis on the influence of the starting alignment and neighborhood search definitions on the overall performance. A perturbation technique is proposed to improve the local search, which provides a wide range of high-quality alignments. The proposed approach is tested experimentally on a wide range of instances. We performed several experiments with sequences obtained from the benchmark database BAliBASE 3.0. To evaluate the quality of the results, we calculate the hypervolume indicator of the set of score vectors returned by the algorithms. The results obtained allow us to identify reasonably good choices of parameters for our approach. Further, we compared our method in terms of correctly aligned pairs ratio and columns correctly aligned ratio with respect to reference alignments. Experimental results show that our approaches can obtain better results than TCoffee and Clustal Omega in terms of the first ratio.
Ajawatanawong, Pravech; Atkinson, Gemma C; Watson-Haigh, Nathan S; Mackenzie, Bryony; Baldauf, Sandra L
2012-07-01
Analyses of multiple sequence alignments generally focus on well-defined conserved sequence blocks, while the rest of the alignment is largely ignored or discarded. This is especially true in phylogenomics, where large multigene datasets are produced through automated pipelines. However, some of the most powerful phylogenetic markers have been found in the variable length regions of multiple alignments, particularly insertions/deletions (indels) in protein sequences. We have developed Sequence Feature and Indel Region Extractor (SeqFIRE) to enable the automated identification and extraction of indels from protein sequence alignments. The program can also extract conserved blocks and identify fast evolving sites using a combination of conservation and entropy. All major variables can be adjusted by the user, allowing them to identify the sets of variables most suited to a particular analysis or dataset. Thus, all major tasks in preparing an alignment for further analysis are combined in a single flexible and user-friendly program. The output includes a numbered list of indels, alignments in NEXUS format with indels annotated or removed and indel-only matrices. SeqFIRE is a user-friendly web application, freely available online at www.seqfire.org/.
Alu elements shape the primate transcriptome by cis-regulation of RNA editing
2014-01-01
Background RNA editing by adenosine to inosine deamination is a widespread phenomenon, particularly frequent in the human transcriptome, largely due to the presence of inverted Alu repeats and their ability to form double-stranded structures – a requisite for ADAR editing. While several hundred thousand editing sites have been identified within these primate-specific repeats, the function of Alu-editing has yet to be elucidated. Results We show that inverted Alu repeats, expressed in the primate brain, can induce site-selective editing in cis on sites located several hundred nucleotides from the Alu elements. Furthermore, a computational analysis, based on available RNA-seq data, finds that site-selective editing occurs significantly closer to edited Alu elements than expected. These targets are poorly edited upon deletion of the editing inducers, as well as in homologous transcripts from organisms lacking Alus. Sequences surrounding sites near edited Alus in UTRs, have been subjected to a lesser extent of evolutionary selection than those far from edited Alus, indicating that their editing generally depends on cis-acting Alus. Interestingly, we find an enrichment of primate-specific editing within encoded sequence or the UTRs of zinc finger-containing transcription factors. Conclusions We propose a model whereby primate-specific editing is induced by adjacent Alu elements that function as recruitment elements for the ADAR editing enzymes. The enrichment of site-selective editing with potentially functional consequences on the expression of transcription factors indicates that editing contributes more profoundly to the transcriptomic regulation and repertoire in primates than previously thought. PMID:24485196
Spatio-temporal alignment of pedobarographic image sequences.
Oliveira, Francisco P M; Sousa, Andreia; Santos, Rubim; Tavares, João Manuel R S
2011-07-01
This article presents a methodology to align plantar pressure image sequences simultaneously in time and space. The spatial position and orientation of a foot in a sequence are changed to match the foot represented in a second sequence. Simultaneously with the spatial alignment, the temporal scale of the first sequence is transformed with the aim of synchronizing the two input footsteps. Consequently, the spatial correspondence of the foot regions along the sequences as well as the temporal synchronizing is automatically attained, making the study easier and more straightforward. In terms of spatial alignment, the methodology can use one of four possible geometric transformation models: rigid, similarity, affine, or projective. In the temporal alignment, a polynomial transformation up to the 4th degree can be adopted in order to model linear and curved time behaviors. Suitable geometric and temporal transformations are found by minimizing the mean squared error (MSE) between the input sequences. The methodology was tested on a set of real image sequences acquired from a common pedobarographic device. When used in experimental cases generated by applying geometric and temporal control transformations, the methodology revealed high accuracy. In addition, the intra-subject alignment tests from real plantar pressure image sequences showed that the curved temporal models produced better MSE results (P < 0.001) than the linear temporal model. This article represents an important step forward in the alignment of pedobarographic image data, since previous methods can only be applied on static images.
Protein alignment algorithms with an efficient backtracking routine on multiple GPUs.
Blazewicz, Jacek; Frohmberg, Wojciech; Kierzynka, Michal; Pesch, Erwin; Wojciechowski, Pawel
2011-05-20
Pairwise sequence alignment methods are widely used in biological research. The increasing number of sequences is perceived as one of the upcoming challenges for sequence alignment methods in the nearest future. To overcome this challenge several GPU (Graphics Processing Unit) computing approaches have been proposed lately. These solutions show a great potential of a GPU platform but in most cases address the problem of sequence database scanning and computing only the alignment score whereas the alignment itself is omitted. Thus, the need arose to implement the global and semiglobal Needleman-Wunsch, and Smith-Waterman algorithms with a backtracking procedure which is needed to construct the alignment. In this paper we present the solution that performs the alignment of every given sequence pair, which is a required step for progressive multiple sequence alignment methods, as well as for DNA recognition at the DNA assembly stage. Performed tests show that the implementation, with performance up to 6.3 GCUPS on a single GPU for affine gap penalties, is very efficient in comparison to other CPU and GPU-based solutions. Moreover, multiple GPUs support with load balancing makes the application very scalable. The article shows that the backtracking procedure of the sequence alignment algorithms may be designed to fit in with the GPU architecture. Therefore, our algorithm, apart from scores, is able to compute pairwise alignments. This opens a wide range of new possibilities, allowing other methods from the area of molecular biology to take advantage of the new computational architecture. Performed tests show that the efficiency of the implementation is excellent. Moreover, the speed of our GPU-based algorithms can be almost linearly increased when using more than one graphics card.
Genome editing via delivery of Cas9 ribonucleoprotein.
DeWitt, Mark A; Corn, Jacob E; Carroll, Dana
2017-05-15
The CRISPR-Cas genome editing system is very powerful. The format of the CRISPR reagents and the means of delivery are often important factors in targeting efficiency. Delivery of recombinant Cas9 protein and guide RNA (gRNA) as a preformed ribonucleoprotein (RNP) complex has recently emerged as a powerful and general approach to genome editing. Here we outline methods to produce and deliver Cas9 RNPs. A donor DNA carrying desired sequence changes can also be included to program precise sequence introduction or replacement. RNP delivery limits exposure to genome editing reagents, reduces off-target events, drives high rates of homology-dependent repair, and can be applied to embryos to rapidly generate animal models. RNP delivery thus minimizes some of the pitfalls of alternative editing modalities and is rapidly being adopted by the genome editing community. Copyright © 2017 Elsevier Inc. All rights reserved.
Joseph, Agnel Praveen; Srinivasan, Narayanaswamy; de Brevern, Alexandre G
2012-09-01
Comparison of multiple protein structures has a broad range of applications in the analysis of protein structure, function and evolution. Multiple structure alignment tools (MSTAs) are necessary to obtain a simultaneous comparison of a family of related folds. In this study, we have developed a method for multiple structure comparison largely based on sequence alignment techniques. A widely used Structural Alphabet named Protein Blocks (PBs) was used to transform the information on 3D protein backbone conformation as a 1D sequence string. A progressive alignment strategy similar to CLUSTALW was adopted for multiple PB sequence alignment (mulPBA). Highly similar stretches identified by the pairwise alignments are given higher weights during the alignment. The residue equivalences from PB based alignments are used to obtain a three dimensional fit of the structures followed by an iterative refinement of the structural superposition. Systematic comparisons using benchmark datasets of MSTAs underlines that the alignment quality is better than MULTIPROT, MUSTANG and the alignments in HOMSTRAD, in more than 85% of the cases. Comparison with other rigid-body and flexible MSTAs also indicate that mulPBA alignments are superior to most of the rigid-body MSTAs and highly comparable to the flexible alignment methods. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
REDItools: high-throughput RNA editing detection made easy.
Picardi, Ernesto; Pesole, Graziano
2013-07-15
The reliable detection of RNA editing sites from massive sequencing data remains challenging and, although several methodologies have been proposed, no computational tools have been released to date. Here, we introduce REDItools a suite of python scripts to perform high-throughput investigation of RNA editing using next-generation sequencing data. REDItools are in python programming language and freely available at http://code.google.com/p/reditools/. ernesto.picardi@uniba.it or graziano.pesole@uniba.it Supplementary data are available at Bioinformatics online.
Coval: Improving Alignment Quality and Variant Calling Accuracy for Next-Generation Sequencing Data
Kosugi, Shunichi; Natsume, Satoshi; Yoshida, Kentaro; MacLean, Daniel; Cano, Liliana; Kamoun, Sophien; Terauchi, Ryohei
2013-01-01
Accurate identification of DNA polymorphisms using next-generation sequencing technology is challenging because of a high rate of sequencing error and incorrect mapping of reads to reference genomes. Currently available short read aligners and DNA variant callers suffer from these problems. We developed the Coval software to improve the quality of short read alignments. Coval is designed to minimize the incidence of spurious alignment of short reads, by filtering mismatched reads that remained in alignments after local realignment and error correction of mismatched reads. The error correction is executed based on the base quality and allele frequency at the non-reference positions for an individual or pooled sample. We demonstrated the utility of Coval by applying it to simulated genomes and experimentally obtained short-read data of rice, nematode, and mouse. Moreover, we found an unexpectedly large number of incorrectly mapped reads in ‘targeted’ alignments, where the whole genome sequencing reads had been aligned to a local genomic segment, and showed that Coval effectively eliminated such spurious alignments. We conclude that Coval significantly improves the quality of short-read sequence alignments, thereby increasing the calling accuracy of currently available tools for SNP and indel identification. Coval is available at http://sourceforge.net/projects/coval105/. PMID:24116042
Lau, Joann M; Robinson, David L
2009-01-01
With rapid advances in biotechnology and molecular biology, instructors are challenged to not only provide undergraduate students with hands-on experiences in these disciplines but also to engage them in the "real-world" scientific process. Two common topics covered in biotechnology or molecular biology courses are gene-cloning and bioinformatics, but to provide students with a continuous laboratory-based research experience in these techniques is difficult. To meet these challenges, we have partnered with Bio-Rad Laboratories in the development of the "Cloning and Sequencing Explorer Series," which combines wet-lab experiences (e.g., DNA extraction, polymerase chain reaction, ligation, transformation, and restriction digestion) with bioinformatics analysis (e.g., evaluation of DNA sequence quality, sequence editing, Basic Local Alignment Search Tool searches, contig construction, intron identification, and six-frame translation) to produce a sequence publishable in the National Center for Biotechnology Information GenBank. This 6- to 8-wk project-based exercise focuses on a pivotal gene of glycolysis (glyceraldehyde-3-phosphate dehydrogenase), in which students isolate, sequence, and characterize the gene from a plant species or cultivar not yet published in GenBank. Student achievement was evaluated using pre-, mid-, and final-test assessments, as well as with a survey to assess student perceptions. Student confidence with basic laboratory techniques and knowledge of bioinformatics tools were significantly increased upon completion of this hands-on exercise.
USDA-ARS?s Scientific Manuscript database
BACKGROUND: Next-generation sequencing projects commonly commence by aligning reads to a reference genome assembly. While improvements in alignment algorithms and computational hardware have greatly enhanced the efficiency and accuracy of alignments, a significant percentage of reads often remain u...
SeqLib: a C ++ API for rapid BAM manipulation, sequence alignment and sequence assembly
Wala, Jeremiah; Beroukhim, Rameen
2017-01-01
Abstract We present SeqLib, a C ++ API and command line tool that provides a rapid and user-friendly interface to BAM/SAM/CRAM files, global sequence alignment operations and sequence assembly. Four C libraries perform core operations in SeqLib: HTSlib for BAM access, BWA-MEM and BLAT for sequence alignment and Fermi for error correction and sequence assembly. Benchmarking indicates that SeqLib has lower CPU and memory requirements than leading C ++ sequence analysis APIs. We demonstrate an example of how minimal SeqLib code can extract, error-correct and assemble reads from a CRAM file and then align with BWA-MEM. SeqLib also provides additional capabilities, including chromosome-aware interval queries and read plotting. Command line tools are available for performing integrated error correction, micro-assemblies and alignment. Availability and Implementation: SeqLib is available on Linux and OSX for the C ++98 standard and later at github.com/walaj/SeqLib. SeqLib is released under the Apache2 license. Additional capabilities for BLAT alignment are available under the BLAT license. Contact: jwala@broadinstitue.org; rameen@broadinstitute.org PMID:28011768
SeqLib: a C ++ API for rapid BAM manipulation, sequence alignment and sequence assembly.
Wala, Jeremiah; Beroukhim, Rameen
2017-03-01
We present SeqLib, a C ++ API and command line tool that provides a rapid and user-friendly interface to BAM/SAM/CRAM files, global sequence alignment operations and sequence assembly. Four C libraries perform core operations in SeqLib: HTSlib for BAM access, BWA-MEM and BLAT for sequence alignment and Fermi for error correction and sequence assembly. Benchmarking indicates that SeqLib has lower CPU and memory requirements than leading C ++ sequence analysis APIs. We demonstrate an example of how minimal SeqLib code can extract, error-correct and assemble reads from a CRAM file and then align with BWA-MEM. SeqLib also provides additional capabilities, including chromosome-aware interval queries and read plotting. Command line tools are available for performing integrated error correction, micro-assemblies and alignment. SeqLib is available on Linux and OSX for the C ++98 standard and later at github.com/walaj/SeqLib. SeqLib is released under the Apache2 license. Additional capabilities for BLAT alignment are available under the BLAT license. jwala@broadinstitue.org ; rameen@broadinstitute.org. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
RNA editing of microRNA prevents RNA-induced silencing complex recognition of target mRNA
Cui, Yalei; Huang, Tianzhi; Zhang, Xiaobo
2015-01-01
MicroRNAs (miRNAs) integrate with Argonaut (Ago) to create the RNA-induced silencing complex, and regulate gene expression by silencing target mRNAs. RNA editing of miRNA may affect miRNA processing, assembly of the Ago complex and target mRNA binding. However, the function of edited miRNA, assembled within the Ago complex, has not been extensively investigated. In this study, sequence analysis of the Ago complex of Marsupenaeus japonicus shrimp infected with white spot syndrome virus (WSSV) revealed that host ADAR (adenosine deaminase acting on RNA) catalysed A-to-I RNA editing of a viral miRNA (WSSV-miR-N12) at the +16 site. This editing of the non-seed sequence did not affect association of the edited miRNA with the Ago protein, but inhibited interaction between the miRNA and its target gene (wsv399). The WSSV early gene wsv399 inhibited WSSV infection. As a result, the RNA editing of miRNA caused virus latency. Our results highlight a novel example of miRNA editing in the miRNA-induced silencing complex. PMID:26674414
Tissue-selective restriction of RNA editing of CaV1.3 by splicing factor SRSF9.
Huang, Hua; Kapeli, Katannya; Jin, Wenhao; Wong, Yuk Peng; Arumugam, Thiruma Valavan; Koh, Joanne Huifen; Srimasorn, Sumitra; Mallilankaraman, Karthik; Chua, John Jia En; Yeo, Gene W; Soong, Tuck Wah
2018-05-04
Adenosine DeAminases acting on RNA (ADAR) catalyzes adenosine-to-inosine (A-to-I) conversion within RNA duplex structures. While A-to-I editing is often dynamically regulated in a spatial-temporal manner, the mechanisms underlying its tissue-selective restriction remain elusive. We have previously reported that transcripts of voltage-gated calcium channel CaV1.3 are subject to brain-selective A-to-I RNA editing by ADAR2. Here, we show that editing of CaV1.3 mRNA is dependent on a 40 bp RNA duplex formed between exon 41 and an evolutionarily conserved editing site complementary sequence (ECS) located within the preceding intron. Heterologous expression of a mouse minigene that contained the ECS, intermediate intronic sequence and exon 41 with ADAR2 yielded robust editing. Interestingly, editing of CaV1.3 was potently inhibited by serine/arginine-rich splicing factor 9 (SRSF9). Mechanistically, the inhibitory effect of SRSF9 required direct RNA interaction. Selective down-regulation of SRSF9 in neurons provides a basis for the neuron-specific editing of CaV1.3 transcripts.
Application of binomial-edited CPMG to shale characterization
Washburn, Kathryn E.; Birdwell, Justin E.
2014-01-01
Unconventional shale resources may contain a significant amount of hydrogen in organic solids such as kerogen, but it is not possible to directly detect these solids with many NMR systems. Binomial-edited pulse sequences capitalize on magnetization transfer between solids, semi-solids, and liquids to provide an indirect method of detecting solid organic materials in shales. When the organic solids can be directly measured, binomial-editing helps distinguish between different phases. We applied a binomial-edited CPMG pulse sequence to a range of natural and experimentally-altered shale samples. The most substantial signal loss is seen in shales rich in organic solids while fluids associated with inorganic pores seem essentially unaffected. This suggests that binomial-editing is a potential method for determining fluid locations, solid organic content, and kerogen–bitumen discrimination.
Ribosomal protein S14 transcripts are edited in Oenothera mitochondria.
Schuster, W; Unseld, M; Wissinger, B; Brennicke, A
1990-01-01
The gene encoding ribosomal protein S14 (rps14) in Oenothera mitochondria is located upstream of the cytochrome b gene (cob). Sequence analysis of independently derived cDNA clones covering the entire rps14 coding region shows two nucleotides edited from the genomic DNA to the mRNA derived sequences by C to U modifications. A third editing event occurs four nucleotides upstream of the AUG initiation codon and improves a potential ribosome binding site. A CGG codon specifying arginine in a position conserved in evolution between chloroplasts and E. coli as a UGG tryptophan codon is not edited in any of the cDNAs analysed. An inverted repeat 3' of an unidentified open reading frame is located upstream of the rps14 gene. The inverted repeat sequence is highly conserved at analogous regions in other Oenothera mitochondrial loci. Images PMID:2326162
Pedra, Joao H F; Brandt, Amanda; Li, Hong-Mei; Westerman, Rick; Romero-Severson, Jeanne; Pollack, Richard J; Murdock, Larry L; Pittendrigh, Barry R
2003-11-01
Genomics information relating to human body lice is surprisingly scarce, and this has constrained studies of their physiology, immunology and vector biology. To identify novel body louse genes, we used engorged adult lice to generate a cDNA library. Initially, 1152 clones were screened for inserts, edited for removal of vector sequences and base pairs of poor quality, and viewed for splicing variations, gene families and polymorphism. Computational methods identified 506 inferred open reading frames including the first predicted louse defensin. The inferred defensin aligns well with other insect defensins and has highly conserved cysteine residues, as are known for other defensin sequences. Two cysteine and five serine proteinases were categorized according to their inferred catalytic sites. We also discovered seven putative ubiquitin-pathway genes and four iron metabolizing deduced enzymes. Finally, glutathione-S-transferases and cytochrome P450 genes were among the detoxification enzymes found. Results from this first systematic effort to discover human body louse genes should promote further studies in Phthiraptera and lice.
Miyata, Y; Sugita, C; Maruyama, K; Sugita, M
2008-03-01
RNA editing of cytidine (C) to uridine (U) transitions occurs in plastids and mitochondria of most land plants. In this study, we amplified and sequenced the group I intron-containing tRNA Leu gene, trnL-CAA, from Takakia lepidozioides, a moss. DNA sequence analysis revealed that the T. lepidozioides tRNA Leu gene consisted of a 35-bp 5' exon, a 469-bp group I intron and a 50-bp 3' exon. The intron was inserted between the first and second position of the tRNA Leu anticodon. In general, plastid tRNA Leu genes with a group I intron code for a TAA anticodon in most land plants. This strongly suggests that the first nucleotide of the CAA anticodon could be edited in T. lepidozioides plastids. To investigate this possibility, we analysed cDNAs derived from the trnL-CAA transcripts. We demonstrated that the first nucleotide C of the anticodon was edited to create a canonical UAA anticodon in T. lepidozioides plastids. cDNA sequencing analyses of the spliced or unspliced tRNA Leu transcripts revealed that, while the spliced tRNA was completely edited, editing in the unspliced tRNAs were only partial. This is the first experimental evidence that the anticodon editing of tRNA occurs before RNA splicing in plastids. This suggests that this editing is a prerequisite to splicing of pre-tRNA Leu.
DNA Multiple Sequence Alignment Guided by Protein Domains: The MSA-PAD 2.0 Method.
Balech, Bachir; Monaco, Alfonso; Perniola, Michele; Santamaria, Monica; Donvito, Giacinto; Vicario, Saverio; Maggi, Giorgio; Pesole, Graziano
2018-01-01
Multiple sequence alignment (MSA) is a fundamental component in many DNA sequence analyses including metagenomics studies and phylogeny inference. When guided by protein profiles, DNA multiple alignments assume a higher precision and robustness. Here we present details of the use of the upgraded version of MSA-PAD (2.0), which is a DNA multiple sequence alignment framework able to align DNA sequences coding for single/multiple protein domains guided by PFAM or user-defined annotations. MSA-PAD has two alignment strategies, called "Gene" and "Genome," accounting for coding domains order and genomic rearrangements, respectively. Novel options were added to the present version, where the MSA can be guided by protein profiles provided by the user. This allows MSA-PAD 2.0 to run faster and to add custom protein profiles sometimes not present in PFAM database according to the user's interest. MSA-PAD 2.0 is currently freely available as a Web application at https://recasgateway.cloud.ba.infn.it/ .
Reduced levels of protein recoding by A-to-I RNA editing in Alzheimer's disease
Khermesh, Khen; D'Erchia, Anna Maria; Barak, Michal; Annese, Anita; Wachtel, Chaim; Levanon, Erez Y.; Picardi, Ernesto; Eisenberg, Eli
2016-01-01
Adenosine to inosine (A-to-I) RNA editing, catalyzed by the ADAR enzyme family, acts on dsRNA structures within pre-mRNA molecules. Editing of the coding part of the mRNA may lead to recoding, amino acid substitution in the resulting protein, possibly modifying its biochemical and biophysical properties. Altered RNA editing patterns have been observed in various neurological pathologies. Here, we present a comprehensive study of recoding by RNA editing in Alzheimer's disease (AD), the most common cause of irreversible dementia. We have used a targeted resequencing approach supplemented by a microfluidic-based high-throughput PCR coupled with next-generation sequencing to accurately quantify A-to-I RNA editing levels in a preselected set of target sites, mostly located within the coding sequence of synaptic genes. Overall, editing levels decreased in AD patients’ brain tissues, mainly in the hippocampus and to a lesser degree in the temporal and frontal lobes. Differential RNA editing levels were observed in 35 target sites within 22 genes. These results may shed light on a possible association between the neurodegenerative processes typical for AD and deficient RNA editing. PMID:26655226
ADAR2 induces reproducible changes in sequence and abundance of mature microRNAs in the mouse brain
Vesely, Cornelia; Tauber, Stefanie; Sedlazeck, Fritz J.; Tajaddod, Mansoureh; von Haeseler, Arndt; Jantsch, Michael F.
2014-01-01
Adenosine deaminases that act on RNA (ADARs) deaminate adenosines to inosines in double-stranded RNAs including miRNA precursors. A to I editing is widespread and required for normal life. By comparing deep sequencing data of brain miRNAs from wild-type and ADAR2 deficient mouse strains, we detect editing sites and altered miRNA processing at high sensitivity. We detect 48 novel editing events in miRNAs. Some editing events reach frequencies of up to 80%. About half of all editing events depend on ADAR2 while some miRNAs are preferentially edited by ADAR1. Sixty-four percent of all editing events are located within the seed region of mature miRNAs. For the highly edited miR-3099, we experimentally prove retargeting of the edited miRNA to novel 3′ UTRs. We show further that an abundant editing event in miR-497 promotes processing by Drosha of the corresponding pri-miRNA. We also detect reproducible changes in the abundance of specific miRNAs in ADAR2-deficient mice that occur independent of adjacent A to I editing events. This indicates that ADAR2 binding but not editing of miRNA precursors may influence their processing. Correlating with changes in miRNA abundance we find misregulation of putative targets of these miRNAs in the presence or absence of ADAR2. PMID:25260591
Integrated design, execution, and analysis of arrayed and pooled CRISPR genome-editing experiments.
Canver, Matthew C; Haeussler, Maximilian; Bauer, Daniel E; Orkin, Stuart H; Sanjana, Neville E; Shalem, Ophir; Yuan, Guo-Cheng; Zhang, Feng; Concordet, Jean-Paul; Pinello, Luca
2018-05-01
CRISPR (clustered regularly interspaced short palindromic repeats) genome-editing experiments offer enormous potential for the evaluation of genomic loci using arrayed single guide RNAs (sgRNAs) or pooled sgRNA libraries. Numerous computational tools are available to help design sgRNAs with optimal on-target efficiency and minimal off-target potential. In addition, computational tools have been developed to analyze deep-sequencing data resulting from genome-editing experiments. However, these tools are typically developed in isolation and oftentimes are not readily translatable into laboratory-based experiments. Here, we present a protocol that describes in detail both the computational and benchtop implementation of an arrayed and/or pooled CRISPR genome-editing experiment. This protocol provides instructions for sgRNA design with CRISPOR (computational tool for the design, evaluation, and cloning of sgRNA sequences), experimental implementation, and analysis of the resulting high-throughput sequencing data with CRISPResso (computational tool for analysis of genome-editing outcomes from deep-sequencing data). This protocol allows for design and execution of arrayed and pooled CRISPR experiments in 4-5 weeks by non-experts, as well as computational data analysis that can be performed in 1-2 d by both computational and noncomputational biologists alike using web-based and/or command-line versions.
Lahrech, H; Briguet, A
1990-11-01
It is shown that the modified stimulated echo sequence, [theta](+/- x +/- y)-t1-[theta](+ x)-t2/2-[2 theta](+ x)-t2/2- [theta](+ x)-t1-Acq(+/- x +/- y), denoted as MSTE[2 theta]x according to the exciter phase of the 2 theta pulse, is able to perform proton spectral editing without difference spectra. On the other hand, this sequence appears to be suitable for spatial localization. Sensitivity and spatial selectivity of MSTE and conventional stimulated echo sequence (STE) are briefly compared. MSTE is applied to editing lactate in the rat brain using the locally restricted excitation of a surface coil.
enoLOGOS: a versatile web tool for energy normalized sequence logos
Workman, Christopher T.; Yin, Yutong; Corcoran, David L.; Ideker, Trey; Stormo, Gary D.; Benos, Panayiotis V.
2005-01-01
enoLOGOS is a web-based tool that generates sequence logos from various input sources. Sequence logos have become a popular way to graphically represent DNA and amino acid sequence patterns from a set of aligned sequences. Each position of the alignment is represented by a column of stacked symbols with its total height reflecting the information content in this position. Currently, the available web servers are able to create logo images from a set of aligned sequences, but none of them generates weighted sequence logos directly from energy measurements or other sources. With the advent of high-throughput technologies for estimating the contact energy of different DNA sequences, tools that can create logos directly from binding affinity data are useful to researchers. enoLOGOS generates sequence logos from a variety of input data, including energy measurements, probability matrices, alignment matrices, count matrices and aligned sequences. Furthermore, enoLOGOS can represent the mutual information of different positions of the consensus sequence, a unique feature of this tool. Another web interface for our software, C2H2-enoLOGOS, generates logos for the DNA-binding preferences of the C2H2 zinc-finger transcription factor family members. enoLOGOS and C2H2-enoLOGOS are accessible over the web at . PMID:15980495
Animation control of surface motion capture.
Tejera, Margara; Casas, Dan; Hilton, Adrian
2013-12-01
Surface motion capture (SurfCap) of actor performance from multiple view video provides reconstruction of the natural nonrigid deformation of skin and clothing. This paper introduces techniques for interactive animation control of SurfCap sequences which allow the flexibility in editing and interactive manipulation associated with existing tools for animation from skeletal motion capture (MoCap). Laplacian mesh editing is extended using a basis model learned from SurfCap sequences to constrain the surface shape to reproduce natural deformation. Three novel approaches for animation control of SurfCap sequences, which exploit the constrained Laplacian mesh editing, are introduced: 1) space–time editing for interactive sequence manipulation; 2) skeleton-driven animation to achieve natural nonrigid surface deformation; and 3) hybrid combination of skeletal MoCap driven and SurfCap sequence to extend the range of movement. These approaches are combined with high-level parametric control of SurfCap sequences in a hybrid surface and skeleton-driven animation control framework to achieve natural surface deformation with an extended range of movement by exploiting existing MoCap archives. Evaluation of each approach and the integrated animation framework are presented on real SurfCap sequences for actors performing multiple motions with a variety of clothing styles. Results demonstrate that these techniques enable flexible control for interactive animation with the natural nonrigid surface dynamics of the captured performance and provide a powerful tool to extend current SurfCap databases by incorporating new motions from MoCap sequences.
Malhis, Nawar; Butterfield, Yaron S N; Ester, Martin; Jones, Steven J M
2009-01-01
A plethora of alignment tools have been created that are designed to best fit different types of alignment conditions. While some of these are made for aligning Illumina Sequence Analyzer reads, none of these are fully utilizing its probability (prb) output. In this article, we will introduce a new alignment approach (Slider) that reduces the alignment problem space by utilizing each read base's probabilities given in the prb files. Compared with other aligners, Slider has higher alignment accuracy and efficiency. In addition, given that Slider matches bases with probabilities other than the most probable, it significantly reduces the percentage of base mismatches. The result is that its SNP predictions are more accurate than other SNP prediction approaches used today that start from the most probable sequence, including those using base quality.
BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment
Boel, Annekatrien; Steyaert, Woutert; De Rocker, Nina; Menten, Björn; Callewaert, Bert; De Paepe, Anne; Coucke, Paul; Willaert, Andy
2016-01-01
Targeted mutagenesis by the CRISPR/Cas9 system is currently revolutionizing genetics. The ease of this technique has enabled genome engineering in-vitro and in a range of model organisms and has pushed experimental dimensions to unprecedented proportions. Due to its tremendous progress in terms of speed, read length, throughput and cost, Next-Generation Sequencing (NGS) has been increasingly used for the analysis of CRISPR/Cas9 genome editing experiments. However, the current tools for genome editing assessment lack flexibility and fall short in the analysis of large amounts of NGS data. Therefore, we designed BATCH-GE, an easy-to-use bioinformatics tool for batch analysis of NGS-generated genome editing data, available from https://github.com/WouterSteyaert/BATCH-GE.git. BATCH-GE detects and reports indel mutations and other precise genome editing events and calculates the corresponding mutagenesis efficiencies for a large number of samples in parallel. Furthermore, this new tool provides flexibility by allowing the user to adapt a number of input variables. The performance of BATCH-GE was evaluated in two genome editing experiments, aiming to generate knock-out and knock-in zebrafish mutants. This tool will not only contribute to the evaluation of CRISPR/Cas9-based experiments, but will be of use in any genome editing experiment and has the ability to analyze data from every organism with a sequenced genome. PMID:27461955
Di Pietro, C; Di Pietro, V; Emmanuele, G; Ferro, A; Maugeri, T; Modica, E; Pigola, G; Pulvirenti, A; Purrello, M; Ragusa, M; Scalia, M; Shasha, D; Travali, S; Zimmitti, V
2003-01-01
In this paper we present a new Multiple Sequence Alignment (MSA) algorithm called AntiClusAl. The method makes use of the commonly use idea of aligning homologous sequences belonging to classes generated by some clustering algorithm, and then continue the alignment process ina bottom-up way along a suitable tree structure. The final result is then read at the root of the tree. Multiple sequence alignment in each cluster makes use of the progressive alignment with the 1-median (center) of the cluster. The 1-median of set S of sequences is the element of S which minimizes the average distance from any other sequence in S. Its exact computation requires quadratic time. The basic idea of our proposed algorithm is to make use of a simple and natural algorithmic technique based on randomized tournaments which has been successfully applied to large size search problems in general metric spaces. In particular a clustering algorithm called Antipole tree and an approximate linear 1-median computation are used. Our algorithm compared with Clustal W, a widely used tool to MSA, shows a better running time results with fully comparable alignment quality. A successful biological application showing high aminoacid conservation during evolution of Xenopus laevis SOD2 is also cited.
2012-01-01
Background The complete sequences of chloroplast genomes provide wealthy information regarding the evolutionary history of species. With the advance of next-generation sequencing technology, the number of completely sequenced chloroplast genomes is expected to increase exponentially, powerful computational tools annotating the genome sequences are in urgent need. Results We have developed a web server CPGAVAS. The server accepts a complete chloroplast genome sequence as input. First, it predicts protein-coding and rRNA genes based on the identification and mapping of the most similar, full-length protein, cDNA and rRNA sequences by integrating results from Blastx, Blastn, protein2genome and est2genome programs. Second, tRNA genes and inverted repeats (IR) are identified using tRNAscan, ARAGORN and vmatch respectively. Third, it calculates the summary statistics for the annotated genome. Fourth, it generates a circular map ready for publication. Fifth, it can create a Sequin file for GenBank submission. Last, it allows the extractions of protein and mRNA sequences for given list of genes and species. The annotation results in GFF3 format can be edited using any compatible annotation editing tools. The edited annotations can then be uploaded to CPGAVAS for update and re-analyses repeatedly. Using known chloroplast genome sequences as test set, we show that CPGAVAS performs comparably to another application DOGMA, while having several superior functionalities. Conclusions CPGAVAS allows the semi-automatic and complete annotation of a chloroplast genome sequence, and the visualization, editing and analysis of the annotation results. It will become an indispensible tool for researchers studying chloroplast genomes. The software is freely accessible from http://www.herbalgenomics.org/cpgavas. PMID:23256920
HSA: a heuristic splice alignment tool.
Bu, Jingde; Chi, Xuebin; Jin, Zhong
2013-01-01
RNA-Seq methodology is a revolutionary transcriptomics sequencing technology, which is the representative of Next generation Sequencing (NGS). With the high throughput sequencing of RNA-Seq, we can acquire much more information like differential expression and novel splice variants from deep sequence analysis and data mining. But the short read length brings a great challenge to alignment, especially when the reads span two or more exons. A two steps heuristic splice alignment tool is generated in this investigation. First, map raw reads to reference with unspliced aligner--BWA; second, split initial unmapped reads into three equal short reads (seeds), align each seed to the reference, filter hits, search possible split position of read and extend hits to a complete match. Compare with other splice alignment tools like SOAPsplice and Tophat2, HSA has a better performance in call rate and efficiency, but its results do not as accurate as the other software to some extent. HSA is an effective spliced aligner of RNA-Seq reads mapping, which is available at https://github.com/vlcc/HSA.
A distributed system for fast alignment of next-generation sequencing data.
Srimani, Jaydeep K; Wu, Po-Yen; Phan, John H; Wang, May D
2010-12-01
We developed a scalable distributed computing system using the Berkeley Open Interface for Network Computing (BOINC) to align next-generation sequencing (NGS) data quickly and accurately. NGS technology is emerging as a promising platform for gene expression analysis due to its high sensitivity compared to traditional genomic microarray technology. However, despite the benefits, NGS datasets can be prohibitively large, requiring significant computing resources to obtain sequence alignment results. Moreover, as the data and alignment algorithms become more prevalent, it will become necessary to examine the effect of the multitude of alignment parameters on various NGS systems. We validate the distributed software system by (1) computing simple timing results to show the speed-up gained by using multiple computers, (2) optimizing alignment parameters using simulated NGS data, and (3) computing NGS expression levels for a single biological sample using optimal parameters and comparing these expression levels to that of a microarray sample. Results indicate that the distributed alignment system achieves approximately a linear speed-up and correctly distributes sequence data to and gathers alignment results from multiple compute clients.
Richardson, Aaron O; Rice, Danny W; Young, Gregory J; Alverson, Andrew J; Palmer, Jeffrey D
2013-04-15
The mitochondrial genomes of flowering plants vary greatly in size, gene content, gene order, mutation rate and level of RNA editing. However, the narrow phylogenetic breadth of available genomic data has limited our ability to reconstruct these traits in the ancestral flowering plant and, therefore, to infer subsequent patterns of evolution across angiosperms. We sequenced the mitochondrial genome of Liriodendron tulipifera, the first from outside the monocots or eudicots. This 553,721 bp mitochondrial genome has evolved remarkably slowly in virtually all respects, with an extraordinarily low genome-wide silent substitution rate, retention of genes frequently lost in other angiosperm lineages, and conservation of ancestral gene clusters. The mitochondrial protein genes in Liriodendron are the most heavily edited of any angiosperm characterized to date. Most of these sites are also edited in various other lineages, which allowed us to polarize losses of editing sites in other parts of the angiosperm phylogeny. Finally, we added comprehensive gene sequence data for two other magnoliids, Magnolia stellata and the more distantly related Calycanthus floridus, to measure rates of sequence evolution in Liriodendron with greater accuracy. The Magnolia genome has evolved at an even lower rate, revealing a roughly 5,000-fold range of synonymous-site divergence among angiosperms whose mitochondrial gene space has been comprehensively sequenced. Using Liriodendron as a guide, we estimate that the ancestral flowering plant mitochondrial genome contained 41 protein genes, 14 tRNA genes of mitochondrial origin, as many as 7 tRNA genes of chloroplast origin, >700 sites of RNA editing, and some 14 colinear gene clusters. Many of these gene clusters, genes and RNA editing sites have been variously lost in different lineages over the course of the ensuing ∽200 million years of angiosperm evolution.
An Evolutionary Landscape of A-to-I RNA Editome across Metazoan Species
Hung, Li-Yuan; Chen, Yen-Ju; Mai, Te-Lun; Chen, Chia-Ying; Yang, Min-Yu; Chiang, Tai-Wei; Wang, Yi-Da
2018-01-01
Abstract Adenosine-to-inosine (A-to-I) editing is widespread across the kingdom Metazoa. However, for the lack of comprehensive analysis in nonmodel animals, the evolutionary history of A-to-I editing remains largely unexplored. Here, we detect high-confidence editing sites using clustering and conservation strategies based on RNA sequencing data alone, without using single-nucleotide polymorphism information or genome sequencing data from the same sample. We thereby unveil the first evolutionary landscape of A-to-I editing maps across 20 metazoan species (from worm to human), providing unprecedented evidence on how the editing mechanism gradually expands its territory and increases its influence along the history of evolution. Our result revealed that highly clustered and conserved editing sites tended to have a higher editing level and a higher magnitude of the ADAR motif. The ratio of the frequencies of nonsynonymous editing to that of synonymous editing remarkably increased with increasing the conservation level of A-to-I editing. These results thus suggest potentially functional benefit of highly clustered and conserved editing sites. In addition, spatiotemporal dynamics analyses reveal a conserved enrichment of editing and ADAR expression in the central nervous system throughout more than 300 Myr of divergent evolution in complex animals and the comparability of editing patterns between invertebrates and between vertebrates during development. This study provides evolutionary and dynamic aspects of A-to-I editome across metazoan species, expanding this important but understudied class of nongenomically encoded events for comprehensive characterization. PMID:29294013
Swanson, Larry W
2018-04-15
The fourth edition (following editions in 1992, 1998, 2004) of Brain maps: structure of the rat brain is presented here as an open access internet resource for the neuroscience community. One new feature is a set of 10 hierarchical nomenclature tables that define and describe all parts of the rat nervous system within the framework of a strictly topographic system devised previously for the human nervous system. These tables constitute a global ontology for knowledge management systems dealing with neural circuitry. A second new feature is an aligned atlas of bilateral flatmaps illustrating rat nervous system development from the neural plate stage to the adult stage, where most gray matter regions, white matter tracts, ganglia, and nerves listed in the nomenclature tables are illustrated schematically. These flatmaps are convenient for future development of online applications analogous to "Google Maps" for systems neuroscience. The third new feature is a completely revised Atlas of the rat brain in spatially aligned transverse sections that can serve as a framework for 3-D modeling. Atlas parcellation is little changed from the preceding edition, but the nomenclature for rat is now aligned with an emerging panmammalian neuroanatomical nomenclature. All figures are presented in Adobe Illustrator vector graphics format that can be manipulated, modified, and resized as desired, and freely used with a Creative Commons license. © 2018 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.
Model for Codon Position Bias in RNA Editing
NASA Astrophysics Data System (ADS)
Liu, Tsunglin; Bundschuh, Ralf
2005-08-01
RNA editing can be crucial for the expression of genetic information via inserting, deleting, or substituting a few nucleotides at specific positions in an RNA sequence. Within coding regions in an RNA sequence, editing usually occurs with a certain bias in choosing the positions of the editing sites. In the mitochondrial genes of Physarum polycephalum, many more editing events have been observed at the third codon position than at the first and second, while in some plant mitochondria the second codon position dominates. Here we propose an evolutionary model that explains this bias as the basis of selection at the protein level. The model predicts a distribution of the three positions rather close to the experimental observation in Physarum. This suggests that the codon position bias in Physarum is mainly a consequence of selection at the protein level.
A model for codon position bias in RNA editing
NASA Astrophysics Data System (ADS)
Bundschuh, Ralf; Liu, Tsunglin
2006-03-01
RNA editing can be crucial for the expression of genetic information via inserting, deleting, or substituting a few nucleotides at specific positions in an RNA sequence. Within coding regions in an RNA sequence, editing usually occurs with a certain bias in choosing the positions of the editing sites. In the mitochondrial genes of Physarum polycephalum, many more editing events have been observed at the third codon position than at the first and second, while in some plant mitochondria the second codon position dominates. Here we propose an evolutionary model that explains this bias as the basis of selection at the protein level. The model predicts a distribution of the three positions rather close to the experimental observation in Physarum. This suggests that the codon position bias in Physarum is mainly a consequence of selection at the protein level.
Bellerophon: A program to detect chimeric sequences in multiple sequence alignments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huber, Thomas; Faulkner, Geoffrey; Hugenholtz, Philip
2003-12-23
Bellerophon is a program for detecting chimeric sequences in multiple sequence datasets by an adaption of partial treeing analysis. Bellerophon was specifically developed to detect 16S rRNA gene chimeras in PCR-clone libraries of environmental samples but can be applied to other nucleotide sequence alignments.
Zaboikin, Michail; Zaboikina, Tatiana; Freter, Carl; Srinivasakumar, Narasimhachar
2017-01-01
Genome editing using transcription-activator like effector nucleases or RNA guided nucleases allows one to precisely engineer desired changes within a given target sequence. The genome editing reagents introduce double stranded breaks (DSBs) at the target site which can then undergo DNA repair by non-homologous end joining (NHEJ) or homology directed recombination (HDR) when a template DNA molecule is available. NHEJ repair results in indel mutations at the target site. As PCR amplified products from mutant target regions are likely to exhibit different melting profiles than PCR products amplified from wild type target region, we designed a high resolution melting analysis (HRMA) for rapid identification of efficient genome editing reagents. We also designed TaqMan assays using probes situated across the cut site to discriminate wild type from mutant sequences present after genome editing. The experiments revealed that the sensitivity of the assays to detect NHEJ-mediated DNA repair could be enhanced by selection of transfected cells to reduce the contribution of unmodified genomic DNA from untransfected cells to the DNA melting profile. The presence of donor template DNA lacking the target sequence at the time of genome editing further enhanced the sensitivity of the assays for detection of mutant DNA molecules by excluding the wild-type sequences modified by HDR. A second TaqMan probe that bound to an adjacent site, outside of the primary target cut site, was used to directly determine the contribution of HDR to DNA repair in the presence of the donor template sequence. The TaqMan qPCR assay, designed to measure the contribution of NHEJ and HDR in DNA repair, corroborated the results from HRMA. The data indicated that genome editing reagents can produce DSBs at high efficiency in HEK293T cells but a significant proportion of these are likely masked by reversion to wild type as a result of HDR. Supplying a donor plasmid to provide a template for HDR (that eliminates a PCR amplifiable target) revealed these cryptic DSBs and facilitated the determination of the true efficacy of genome editing reagents. The results indicated that in HEK293T cells, approximately 40% of the DSBs introduced by genome editing, were available for participation in HDR.
Generic accelerated sequence alignment in SeqAn using vectorization and multi-threading.
Rahn, René; Budach, Stefan; Costanza, Pascal; Ehrhardt, Marcel; Hancox, Jonny; Reinert, Knut
2018-05-03
Pairwise sequence alignment is undoubtedly a central tool in many bioinformatics analyses. In this paper, we present a generically accelerated module for pairwise sequence alignments applicable for a broad range of applications. In our module, we unified the standard dynamic programming kernel used for pairwise sequence alignments and extended it with a generalized inter-sequence vectorization layout, such that many alignments can be computed simultaneously by exploiting SIMD (Single Instruction Multiple Data) instructions of modern processors. We then extended the module by adding two layers of thread-level parallelization, where we a) distribute many independent alignments on multiple threads and b) inherently parallelize a single alignment computation using a work stealing approach producing a dynamic wavefront progressing along the minor diagonal. We evaluated our alignment vectorization and parallelization on different processors, including the newest Intel® Xeon® (Skylake) and Intel® Xeon Phi™ (KNL) processors, and use cases. The instruction set AVX512-BW (Byte and Word), available on Skylake processors, can genuinely improve the performance of vectorized alignments. We could run single alignments 1600 times faster on the Xeon Phi™ and 1400 times faster on the Xeon® than executing them with our previous sequential alignment module. The module is programmed in C++ using the SeqAn (Reinert et al., 2017) library and distributed with version 2.4. under the BSD license. We support SSE4, AVX2, AVX512 instructions and included UME::SIMD, a SIMD-instruction wrapper library, to extend our module for further instruction sets. We thoroughly test all alignment components with all major C++ compilers on various platforms. rene.rahn@fu-berlin.de.
He, Peng; Huang, Sheng; Xiao, Guanghui; Zhang, Yuzhou; Yu, Jianing
2016-12-01
RNA editing is a posttranscriptional modification process that alters the RNA sequence so that it deviates from the genomic DNA sequence. RNA editing mainly occurs in chloroplasts and mitochondrial genomes, and the number of editing sites varies in terrestrial plants. Why and how RNA editing systems evolved remains a mystery. Ginkgo biloba is one of the oldest seed plants and has an important evolutionary position. Determining the patterns and distribution of RNA editing in the ancient plant provides insights into the evolutionary trend of RNA editing, and helping us to further understand their biological significance. In this paper, we investigated 82 protein-coding genes in the chloroplast genome of G. biloba and identified 255 editing sites, which is the highest number of RNA editing events reported in a gymnosperm. All of the editing sites were C-to-U conversions, which mainly occurred in the second codon position, biased towards to the U_A context, and caused an increase in hydrophobic amino acids. RNA editing could change the secondary structures of 82 proteins, and create or eliminate a transmembrane region in five proteins as determined in silico. Finally, the evolutionary tendencies of RNA editing in different gene groups were estimated using the nonsynonymous-synonymous substitution rate selection mode. The G. biloba chloroplast genome possesses the highest number of RNA editing events reported so far in a seed plant. Most of the RNA editing sites can restore amino acid conservation, increase hydrophobicity, and even influence protein structures. Similar purifying selections constitute the dominant evolutionary force at the editing sites of essential genes, such as the psa, some psb and pet groups, and a positive selection occurred in the editing sites of nonessential genes, such as most ndh and a few psb genes.
New powerful statistics for alignment-free sequence comparison under a pattern transfer model.
Liu, Xuemei; Wan, Lin; Li, Jing; Reinert, Gesine; Waterman, Michael S; Sun, Fengzhu
2011-09-07
Alignment-free sequence comparison is widely used for comparing gene regulatory regions and for identifying horizontally transferred genes. Recent studies on the power of a widely used alignment-free comparison statistic D2 and its variants D*2 and D(s)2 showed that their power approximates a limit smaller than 1 as the sequence length tends to infinity under a pattern transfer model. We develop new alignment-free statistics based on D2, D*2 and D(s)2 by comparing local sequence pairs and then summing over all the local sequence pairs of certain length. We show that the new statistics are much more powerful than the corresponding statistics and the power tends to 1 as the sequence length tends to infinity under the pattern transfer model. Copyright © 2011 Elsevier Ltd. All rights reserved.
Differential evolution-simulated annealing for multiple sequence alignment
NASA Astrophysics Data System (ADS)
Addawe, R. C.; Addawe, J. M.; Sueño, M. R. K.; Magadia, J. C.
2017-10-01
Multiple sequence alignments (MSA) are used in the analysis of molecular evolution and sequence structure relationships. In this paper, a hybrid algorithm, Differential Evolution - Simulated Annealing (DESA) is applied in optimizing multiple sequence alignments (MSAs) based on structural information, non-gaps percentage and totally conserved columns. DESA is a robust algorithm characterized by self-organization, mutation, crossover, and SA-like selection scheme of the strategy parameters. Here, the MSA problem is treated as a multi-objective optimization problem of the hybrid evolutionary algorithm, DESA. Thus, we name the algorithm as DESA-MSA. Simulated sequences and alignments were generated to evaluate the accuracy and efficiency of DESA-MSA using different indel sizes, sequence lengths, deletion rates and insertion rates. The proposed hybrid algorithm obtained acceptable solutions particularly for the MSA problem evaluated based on the three objectives.
New Powerful Statistics for Alignment-free Sequence Comparison Under a Pattern Transfer Model
Liu, Xuemei; Wan, Lin; Li, Jing; Reinert, Gesine; Waterman, Michael S.; Sun, Fengzhu
2011-01-01
Alignment-free sequence comparison is widely used for comparing gene regulatory regions and for identifying horizontally transferred genes. Recent studies on the power of a widely used alignment-free comparison statistic D2 and its variants D2∗ and D2s showed that their power approximates a limit smaller than 1 as the sequence length tends to infinity under a pattern transfer model. We develop new alignment-free statistics based on D2, D2∗ and D2s by comparing local sequence pairs and then summing over all the local sequence pairs of certain length. We show that the new statistics are much more powerful than the corresponding statistics and the power tends to 1 as the sequence length tends to infinity under the pattern transfer model. PMID:21723298
GuiTope: an application for mapping random-sequence peptides to protein sequences.
Halperin, Rebecca F; Stafford, Phillip; Emery, Jack S; Navalkar, Krupa Arun; Johnston, Stephen Albert
2012-01-03
Random-sequence peptide libraries are a commonly used tool to identify novel ligands for binding antibodies, other proteins, and small molecules. It is often of interest to compare the selected peptide sequences to the natural protein binding partners to infer the exact binding site or the importance of particular residues. The ability to search a set of sequences for similarity to a set of peptides may sometimes enable the prediction of an antibody epitope or a novel binding partner. We have developed a software application designed specifically for this task. GuiTope provides a graphical user interface for aligning peptide sequences to protein sequences. All alignment parameters are accessible to the user including the ability to specify the amino acid frequency in the peptide library; these frequencies often differ significantly from those assumed by popular alignment programs. It also includes a novel feature to align di-peptide inversions, which we have found improves the accuracy of antibody epitope prediction from peptide microarray data and shows utility in analyzing phage display datasets. Finally, GuiTope can randomly select peptides from a given library to estimate a null distribution of scores and calculate statistical significance. GuiTope provides a convenient method for comparing selected peptide sequences to protein sequences, including flexible alignment parameters, novel alignment features, ability to search a database, and statistical significance of results. The software is available as an executable (for PC) at http://www.immunosignature.com/software and ongoing updates and source code will be available at sourceforge.net.
2010-01-01
Background Adenosine to inosine (A-to-I) RNA-editing is an essential post-transcriptional mechanism that occurs in numerous sites in the human transcriptome, mainly within Alu repeats. It has been shown to have consistent levels of editing across individuals in a few targets in the human brain and altered in several human pathologies. However, the variability across human individuals of editing levels in other tissues has not been studied so far. Results Here, we analyzed 32 skin samples, looking at A-to-I editing level in three genes within coding sequences and in the Alu repeats of six different genes. We observed highly consistent editing levels across different individuals as well as across tissues, not only in coding targets but, surprisingly, also in the non evolutionary conserved Alu repeats. Conclusions Our findings suggest that A-to-I RNA-editing of Alu elements is a tightly regulated process and, as such, might have been recruited in the course of primate evolution for post-transcriptional regulatory mechanisms. PMID:21029430
ARYANA: Aligning Reads by Yet Another Approach
2014-01-01
Motivation Although there are many different algorithms and software tools for aligning sequencing reads, fast gapped sequence search is far from solved. Strong interest in fast alignment is best reflected in the $106 prize for the Innocentive competition on aligning a collection of reads to a given database of reference genomes. In addition, de novo assembly of next-generation sequencing long reads requires fast overlap-layout-concensus algorithms which depend on fast and accurate alignment. Contribution We introduce ARYANA, a fast gapped read aligner, developed on the base of BWA indexing infrastructure with a completely new alignment engine that makes it significantly faster than three other aligners: Bowtie2, BWA and SeqAlto, with comparable generality and accuracy. Instead of the time-consuming backtracking procedures for handling mismatches, ARYANA comes with the seed-and-extend algorithmic framework and a significantly improved efficiency by integrating novel algorithmic techniques including dynamic seed selection, bidirectional seed extension, reset-free hash tables, and gap-filling dynamic programming. As the read length increases ARYANA's superiority in terms of speed and alignment rate becomes more evident. This is in perfect harmony with the read length trend as the sequencing technologies evolve. The algorithmic platform of ARYANA makes it easy to develop mission-specific aligners for other applications using ARYANA engine. Availability ARYANA with complete source code can be obtained from http://github.com/aryana-aligner PMID:25252881
ARYANA: Aligning Reads by Yet Another Approach.
Gholami, Milad; Arbabi, Aryan; Sharifi-Zarchi, Ali; Chitsaz, Hamidreza; Sadeghi, Mehdi
2014-01-01
Although there are many different algorithms and software tools for aligning sequencing reads, fast gapped sequence search is far from solved. Strong interest in fast alignment is best reflected in the $10(6) prize for the Innocentive competition on aligning a collection of reads to a given database of reference genomes. In addition, de novo assembly of next-generation sequencing long reads requires fast overlap-layout-concensus algorithms which depend on fast and accurate alignment. We introduce ARYANA, a fast gapped read aligner, developed on the base of BWA indexing infrastructure with a completely new alignment engine that makes it significantly faster than three other aligners: Bowtie2, BWA and SeqAlto, with comparable generality and accuracy. Instead of the time-consuming backtracking procedures for handling mismatches, ARYANA comes with the seed-and-extend algorithmic framework and a significantly improved efficiency by integrating novel algorithmic techniques including dynamic seed selection, bidirectional seed extension, reset-free hash tables, and gap-filling dynamic programming. As the read length increases ARYANA's superiority in terms of speed and alignment rate becomes more evident. This is in perfect harmony with the read length trend as the sequencing technologies evolve. The algorithmic platform of ARYANA makes it easy to develop mission-specific aligners for other applications using ARYANA engine. ARYANA with complete source code can be obtained from http://github.com/aryana-aligner.
AlexSys: a knowledge-based expert system for multiple sequence alignment construction and analysis
Aniba, Mohamed Radhouene; Poch, Olivier; Marchler-Bauer, Aron; Thompson, Julie Dawn
2010-01-01
Multiple sequence alignment (MSA) is a cornerstone of modern molecular biology and represents a unique means of investigating the patterns of conservation and diversity in complex biological systems. Many different algorithms have been developed to construct MSAs, but previous studies have shown that no single aligner consistently outperforms the rest. This has led to the development of a number of ‘meta-methods’ that systematically run several aligners and merge the output into one single solution. Although these methods generally produce more accurate alignments, they are inefficient because all the aligners need to be run first and the choice of the best solution is made a posteriori. Here, we describe the development of a new expert system, AlexSys, for the multiple alignment of protein sequences. AlexSys incorporates an intelligent inference engine to automatically select an appropriate aligner a priori, depending only on the nature of the input sequences. The inference engine was trained on a large set of reference multiple alignments, using a novel machine learning approach. Applying AlexSys to a test set of 178 alignments, we show that the expert system represents a good compromise between alignment quality and running time, making it suitable for high throughput projects. AlexSys is freely available from http://alnitak.u-strasbg.fr/∼aniba/alexsys. PMID:20530533
RNA editing of microRNA prevents RNA-induced silencing complex recognition of target mRNA.
Cui, Yalei; Huang, Tianzhi; Zhang, Xiaobo
2015-12-01
MicroRNAs (miRNAs) integrate with Argonaut (Ago) to create the RNA-induced silencing complex, and regulate gene expression by silencing target mRNAs. RNA editing of miRNA may affect miRNA processing, assembly of the Ago complex and target mRNA binding. However, the function of edited miRNA, assembled within the Ago complex, has not been extensively investigated. In this study, sequence analysis of the Ago complex of Marsupenaeus japonicus shrimp infected with white spot syndrome virus (WSSV) revealed that host ADAR (adenosine deaminase acting on RNA) catalysed A-to-I RNA editing of a viral miRNA (WSSV-miR-N12) at the +16 site. This editing of the non-seed sequence did not affect association of the edited miRNA with the Ago protein, but inhibited interaction between the miRNA and its target gene (wsv399). The WSSV early gene wsv399 inhibited WSSV infection. As a result, the RNA editing of miRNA caused virus latency. Our results highlight a novel example of miRNA editing in the miRNA-induced silencing complex. © 2015 The Authors.
Munger, Steven C.; Raghupathy, Narayanan; Choi, Kwangbom; Simons, Allen K.; Gatti, Daniel M.; Hinerfeld, Douglas A.; Svenson, Karen L.; Keller, Mark P.; Attie, Alan D.; Hibbs, Matthew A.; Graber, Joel H.; Chesler, Elissa J.; Churchill, Gary A.
2014-01-01
Massively parallel RNA sequencing (RNA-seq) has yielded a wealth of new insights into transcriptional regulation. A first step in the analysis of RNA-seq data is the alignment of short sequence reads to a common reference genome or transcriptome. Genetic variants that distinguish individual genomes from the reference sequence can cause reads to be misaligned, resulting in biased estimates of transcript abundance. Fine-tuning of read alignment algorithms does not correct this problem. We have developed Seqnature software to construct individualized diploid genomes and transcriptomes for multiparent populations and have implemented a complete analysis pipeline that incorporates other existing software tools. We demonstrate in simulated and real data sets that alignment to individualized transcriptomes increases read mapping accuracy, improves estimation of transcript abundance, and enables the direct estimation of allele-specific expression. Moreover, when applied to expression QTL mapping we find that our individualized alignment strategy corrects false-positive linkage signals and unmasks hidden associations. We recommend the use of individualized diploid genomes over reference sequence alignment for all applications of high-throughput sequencing technology in genetically diverse populations. PMID:25236449
Iterative pass optimization of sequence data
NASA Technical Reports Server (NTRS)
Wheeler, Ward C.
2003-01-01
The problem of determining the minimum-cost hypothetical ancestral sequences for a given cladogram is known to be NP-complete. This "tree alignment" problem has motivated the considerable effort placed in multiple sequence alignment procedures. Wheeler in 1996 proposed a heuristic method, direct optimization, to calculate cladogram costs without the intervention of multiple sequence alignment. This method, though more efficient in time and more effective in cladogram length than many alignment-based procedures, greedily optimizes nodes based on descendent information only. In their proposal of an exact multiple alignment solution, Sankoff et al. in 1976 described a heuristic procedure--the iterative improvement method--to create alignments at internal nodes by solving a series of median problems. The combination of a three-sequence direct optimization with iterative improvement and a branch-length-based cladogram cost procedure, provides an algorithm that frequently results in superior (i.e., lower) cladogram costs. This iterative pass optimization is both computation and memory intensive, but economies can be made to reduce this burden. An example in arthropod systematics is discussed. c2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.
Transcription Factor Map Alignment of Promoter Regions
Blanco, Enrique; Messeguer, Xavier; Smith, Temple F; Guigó, Roderic
2006-01-01
We address the problem of comparing and characterizing the promoter regions of genes with similar expression patterns. This remains a challenging problem in sequence analysis, because often the promoter regions of co-expressed genes do not show discernible sequence conservation. In our approach, thus, we have not directly compared the nucleotide sequence of promoters. Instead, we have obtained predictions of transcription factor binding sites, annotated the predicted sites with the labels of the corresponding binding factors, and aligned the resulting sequences of labels—to which we refer here as transcription factor maps (TF-maps). To obtain the global pairwise alignment of two TF-maps, we have adapted an algorithm initially developed to align restriction enzyme maps. We have optimized the parameters of the algorithm in a small, but well-curated, collection of human–mouse orthologous gene pairs. Results in this dataset, as well as in an independent much larger dataset from the CISRED database, indicate that TF-map alignments are able to uncover conserved regulatory elements, which cannot be detected by the typical sequence alignments. PMID:16733547
RNA editing with CRISPR-Cas13.
Cox, David B T; Gootenberg, Jonathan S; Abudayyeh, Omar O; Franklin, Brian; Kellner, Max J; Joung, Julia; Zhang, Feng
2017-11-24
Nucleic acid editing holds promise for treating genetic disease, particularly at the RNA level, where disease-relevant sequences can be rescued to yield functional protein products. Type VI CRISPR-Cas systems contain the programmable single-effector RNA-guided ribonuclease Cas13. We profiled type VI systems in order to engineer a Cas13 ortholog capable of robust knockdown and demonstrated RNA editing by using catalytically inactive Cas13 (dCas13) to direct adenosine-to-inosine deaminase activity by ADAR2 (adenosine deaminase acting on RNA type 2) to transcripts in mammalian cells. This system, referred to as RNA Editing for Programmable A to I Replacement (REPAIR), which has no strict sequence constraints, can be used to edit full-length transcripts containing pathogenic mutations. We further engineered this system to create a high-specificity variant and minimized the system to facilitate viral delivery. REPAIR presents a promising RNA-editing platform with broad applicability for research, therapeutics, and biotechnology. Copyright © 2017, American Association for the Advancement of Science.
Cox, David B.T.; Gootenberg, Jonathan S.; Abudayyeh, Omar O.; Franklin, Brian; Kellner, Max J.; Joung, Julia; Zhang, Feng
2017-01-01
Nucleic acid editing holds promise for treating genetic disease, particularly at the RNA level, where disease-relevant sequences can be rescued to yield functional protein products. Type VI CRISPR-Cas systems contain the programmable single-effector RNA-guided RNases Cas13. Here, we profile Type VI systems to engineer a Cas13 ortholog capable of robust knockdown and demonstrate RNA editing by using catalytically-inactive Cas13 (dCas13) to direct adenosine to inosine deaminase activity by ADAR2 to transcripts in mammalian cells. This system, referred to as RNA Editing for Programmable A to I Replacement (REPAIR), has no strict sequence constraints, can be used to edit full-length transcripts containing pathogenic mutations. We further engineer this system to create a high specificity variant, REPAIRv2, that is 919 times more specific than REPAIRv1 as well as minimize the system to ease viral delivery. REPAIR presents a promising RNA editing platform with broad applicability for research, therapeutics, and biotechnology. PMID:29070703
Havlíčková, Martina; Limberková, Radomíra; Smíšková, Dita; Herrmannová, Kristýna; Jiřincová, Helena; Nováková, Ludmila; Lexová, Pavla; Kynčl, Jan; Arientová, Simona; Marešová, Vilma
2016-03-01
The aim of the study was to map the incidence of mumps in the Czech Republic in terms of clinical symptoms, epidemiological links, and characteristics of circulating genotypes. Patients with suspected mumps examined in the Infectious Diseases Clinic of the Na Bulovce Hospital in 2013 were enrolled in the study. Buccal swab specimens were tested by means of nucleic acid detection (RT-qPCR) and when positive, they were cultured in tissue culture. Sequencing was carried out using the BigDye Terminator v3.1 Cycle Sequencing Kit and Genetic Analyzer 3500. The SeqScape software was used for the analysis of sequencing data and filtering out low quality reads. The phylogenetic analysis and genotyping were performed using the Mega 6 software. To generate the phylogenetic tree, all sequences were aligned by the MAFFT tool and the alignment obtained was edited using the BioEdit software. In all patients, selected biochemical markers (C-reactive protein, white blood cell count and serum amylase) were measured. The EPIDAT system used for reporting infectious diseases, record keeping, and data analysis in the Czech Republic was the source of statistical data. Eighty-nine patients with suspected mumps were examined in the Na Bulovce Hospital and 65 of them were laboratory confirmed with mumps: 40 males (61.5%) and 25 females (38.5%). The mean age of the study cohort was 25.9 years (median age of 23 years, age range from 10 to 73 years) and 14 patients were under 18 years of age. Thirty-four (52.3%) patients were vaccinated in childhood, 28 (43.1%) were unvaccinated, and for three persons, vaccination data were not available. A severe course of the disease was reported in 15 (23.1%) patients. Fourteen of them needed hospitalization because of orchitis (9 males) and meningitis (5 patients). One patient with orchitis was treated on an outpatient basis. The need for hospitalization tended to be lower in the unvaccinated patients (14.7% vs. 35.7%, p=0.076). In 2013, 1,553 cases of mumps were reported to the EPIDAT system. Of these, 640 were laboratory confirmed. The most often reported complications were orchitis (90 cases, i.e. 10.3%) and meningitis (21 cases, i.e. 1.4%). Orchitis was diagnosed in 30.3% of the unvaccinated and in 6.4% of the vaccinated males. Meningitis occurred in 3.1% of the unvaccinated and in 1.0% of the vaccinated patients. Despite the emergence of mumps among the vaccinated population, the present study has confirmed a positive effect of the vaccine, particularly on the incidence of complications and inflammatory markers. All 30 sequenced mumps virus strains were assigned to group G. A secondary vaccine failure due to waning immunity seems to be a plausible explanation for the rise in mumps cases. Copyright© by the National Institute of Public Health, Prague 2015.
Liu, Kevin; Warnow, Tandy J; Holder, Mark T; Nelesen, Serita M; Yu, Jiaye; Stamatakis, Alexandros P; Linder, C Randal
2012-01-01
Highly accurate estimation of phylogenetic trees for large data sets is difficult, in part because multiple sequence alignments must be accurate for phylogeny estimation methods to be accurate. Coestimation of alignments and trees has been attempted but currently only SATé estimates reasonably accurate trees and alignments for large data sets in practical time frames (Liu K., Raghavan S., Nelesen S., Linder C.R., Warnow T. 2009b. Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science. 324:1561-1564). Here, we present a modification to the original SATé algorithm that improves upon SATé (which we now call SATé-I) in terms of speed and of phylogenetic and alignment accuracy. SATé-II uses a different divide-and-conquer strategy than SATé-I and so produces smaller more closely related subsets than SATé-I; as a result, SATé-II produces more accurate alignments and trees, can analyze larger data sets, and runs more efficiently than SATé-I. Generally, SATé is a metamethod that takes an existing multiple sequence alignment method as an input parameter and boosts the quality of that alignment method. SATé-II-boosted alignment methods are significantly more accurate than their unboosted versions, and trees based upon these improved alignments are more accurate than trees based upon the original alignments. Because SATé-I used maximum likelihood (ML) methods that treat gaps as missing data to estimate trees and because we found a correlation between the quality of tree/alignment pairs and ML scores, we explored the degree to which SATé's performance depends on using ML with gaps treated as missing data to determine the best tree/alignment pair. We present two lines of evidence that using ML with gaps treated as missing data to optimize the alignment and tree produces very poor results. First, we show that the optimization problem where a set of unaligned DNA sequences is given and the output is the tree and alignment of those sequences that maximize likelihood under the Jukes-Cantor model is uninformative in the worst possible sense. For all inputs, all trees optimize the likelihood score. Second, we show that a greedy heuristic that uses GTR+Gamma ML to optimize the alignment and the tree can produce very poor alignments and trees. Therefore, the excellent performance of SATé-II and SATé-I is not because ML is used as an optimization criterion for choosing the best tree/alignment pair but rather due to the particular divide-and-conquer realignment techniques employed.
Rubin, D A; Dores, R M
1995-06-01
In order to obtain a more resolute phylogeny of teleosts based on growth hormone (GH) sequences, phylogenetic analyses were performed in which deletions (gaps), which appear to be order specific, were upheld to maintain GH's structural information. Sequences were analyzed at 194 amino acid positions. In addition, the two closest genealogically related groups to the teleosts, Amia calva and Acipenser guldenstadti, were used as outgroups. Modified sequence alignments were also analyzed to determine clade stability. Analyses indicated, in the most parsimonious cladogram, that molecular and morphological relationships for the orders of fishes are congruent. With GH molecular sequence data it was possible to resolve all clades at the familial level. Analyses of the primary sequence data indicate that: (a) the halecomorphean and chondrostean GH sequences are the appropriate outgroups for generating the most parsimonious cladogram for teleosts; (b) proper alignment of teleost GH sequence by the inclusion of gaps is necessary for resolution of the Percomorpha; and (c) removal of sequence information by deleting improperly aligned sequence decreases the phylogenetic signal obtained.
Worley, K C; Wiese, B A; Smith, R F
1995-09-01
BEAUTY (BLAST enhanced alignment utility) is an enhanced version of the NCBI's BLAST data base search tool that facilitates identification of the functions of matched sequences. We have created new data bases of conserved regions and functional domains for protein sequences in NCBI's Entrez data base, and BEAUTY allows this information to be incorporated directly into BLAST search results. A Conserved Regions Data Base, containing the locations of conserved regions within Entrez protein sequences, was constructed by (1) clustering the entire data base into families, (2) aligning each family using our PIMA multiple sequence alignment program, and (3) scanning the multiple alignments to locate the conserved regions within each aligned sequence. A separate Annotated Domains Data Base was constructed by extracting the locations of all annotated domains and sites from sequences represented in the Entrez, PROSITE, BLOCKS, and PRINTS data bases. BEAUTY performs a BLAST search of those Entrez sequences with conserved regions and/or annotated domains. BEAUTY then uses the information from the Conserved Regions and Annotated Domains data bases to generate, for each matched sequence, a schematic display that allows one to directly compare the relative locations of (1) the conserved regions, (2) annotated domains and sites, and (3) the locally aligned regions matched in the BLAST search. In addition, BEAUTY search results include World-Wide Web hypertext links to a number of external data bases that provide a variety of additional types of information on the function of matched sequences. This convenient integration of protein families, conserved regions, annotated domains, alignment displays, and World-Wide Web resources greatly enhances the biological informativeness of sequence similarity searches. BEAUTY searches can be performed remotely on our system using the "BCM Search Launcher" World-Wide Web pages (URL is < http:/ /gc.bcm.tmc.edu:8088/ search-launcher/launcher.html > ).
van der Kwast, Reginald V C T; van Ingen, Eva; Parma, Laura; Peters, Hendrika A B; Quax, Paul H A; Nossent, A Yaël
2018-02-02
Adenosine-to-inosine editing of microRNAs has the potential to cause a shift in target site selection. 2'-O-ribose-methylation of adenosine residues, however, has been shown to inhibit adenosine-to-inosine editing. To investigate whether angiomiR miR487b is subject to adenosine-to-inosine editing or 2'-O-ribose-methylation during neovascularization. Complementary DNA was prepared from C57BL/6-mice subjected to hindlimb ischemia. Using Sanger sequencing and endonuclease digestion, we identified and validated adenosine-to-inosine editing of the miR487b seed sequence. In the gastrocnemius muscle, pri-miR487b editing increased from 6.7±0.4% before to 11.7±1.6% ( P =0.02) 1 day after ischemia. Edited pri-miR487b is processed into a novel microRNA, edited miR487b, which is also upregulated after ischemia. We confirmed editing of miR487b in multiple human primary vascular cell types. Short interfering RNA-mediated knockdown demonstrated that editing is adenosine deaminase acting on RNA 1 and 2 dependent. Using reverse-transcription at low dNTP concentrations followed by quantitative-PCR, we found that the same adenosine residue is methylated in mice and human primary cells. In the murine gastrocnemius, the estimated methylation fraction increased from 32.8±14% before to 53.6±12% 1 day after ischemia. Short interfering RNA knockdown confirmed that methylation is fibrillarin dependent. Although we could not confirm that methylation directly inhibits editing, we do show that adenosine deaminase acting on RNA 1 and 2 and fibrillarin negatively influence each other's expression. Using multiple luciferase reporter gene assays, we could demonstrate that editing results in a complete switch of target site selection. In human primary cells, we confirmed the shift in miR487b targeting after editing, resulting in a edited miR487b targetome that is enriched for multiple proangiogenic pathways. Furthermore, overexpression of edited miR487b, but not wild-type miR487b, stimulates angiogenesis in both in vitro and ex vivo assays. MiR487b is edited in the seed sequence in mice and humans, resulting in a novel, proangiogenic microRNA with a unique targetome. The rate of miR487b editing, as well as 2'-O-ribose-methylation, is increased in murine muscle tissue during postischemic neovascularization. Our findings suggest miR487b editing plays an intricate role in postischemic neovascularization. © 2017 American Heart Association, Inc.
NASA Technical Reports Server (NTRS)
Wheeler, Ward C.
2003-01-01
A method to align sequence data based on parsimonious synapomorphy schemes generated by direct optimization (DO; earlier termed optimization alignment) is proposed. DO directly diagnoses sequence data on cladograms without an intervening multiple-alignment step, thereby creating topology-specific, dynamic homology statements. Hence, no multiple-alignment is required to generate cladograms. Unlike general and globally optimal multiple-alignment procedures, the method described here, implied alignment (IA), takes these dynamic homologies and traces them back through a single cladogram, linking the unaligned sequence positions in the terminal taxa via DO transformation series. These "lines of correspondence" link ancestor-descendent states and, when displayed as linearly arrayed columns without hypothetical ancestors, are largely indistinguishable from standard multiple alignment. Since this method is based on synapomorphy, the treatment of certain classes of insertion-deletion (indel) events may be different from that of other alignment procedures. As with all alignment methods, results are dependent on parameter assumptions such as indel cost and transversion:transition ratios. Such an IA could be used as a basis for phylogenetic search, but this would be questionable since the homologies derived from the implied alignment depend on its natal cladogram and any variance, between DO and IA + Search, due to heuristic approach. The utility of this procedure in heuristic cladogram searches using DO and the improvement of heuristic cladogram cost calculations are discussed. c2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.
2010-01-01
Background Multiple sequence alignments are used to study gene or protein function, phylogenetic relations, genome evolution hypotheses and even gene polymorphisms. Virtually without exception, all available tools focus on conserved segments or residues. Small divergent regions, however, are biologically important for specific quantitative polymerase chain reaction, genotyping, molecular markers and preparation of specific antibodies, and yet have received little attention. As a consequence, they must be selected empirically by the researcher. AlignMiner has been developed to fill this gap in bioinformatic analyses. Results AlignMiner is a Web-based application for detection of conserved and divergent regions in alignments of conserved sequences, focusing particularly on divergence. It accepts alignments (protein or nucleic acid) obtained using any of a variety of algorithms, which does not appear to have a significant impact on the final results. AlignMiner uses different scoring methods for assessing conserved/divergent regions, Entropy being the method that provides the highest number of regions with the greatest length, and Weighted being the most restrictive. Conserved/divergent regions can be generated either with respect to the consensus sequence or to one master sequence. The resulting data are presented in a graphical interface developed in AJAX, which provides remarkable user interaction capabilities. Users do not need to wait until execution is complete and can.even inspect their results on a different computer. Data can be downloaded onto a user disk, in standard formats. In silico and experimental proof-of-concept cases have shown that AlignMiner can be successfully used to designing specific polymerase chain reaction primers as well as potential epitopes for antibodies. Primer design is assisted by a module that deploys several oligonucleotide parameters for designing primers "on the fly". Conclusions AlignMiner can be used to reliably detect divergent regions via several scoring methods that provide different levels of selectivity. Its predictions have been verified by experimental means. Hence, it is expected that its usage will save researchers' time and ensure an objective selection of the best-possible divergent region when closely related sequences are analysed. AlignMiner is freely available at http://www.scbi.uma.es/alignminer. PMID:20525162
Salient Features of Endonuclease Platforms for Therapeutic Genome Editing.
Certo, Michael T; Morgan, Richard A
2016-03-01
Emerging gene-editing technologies are nearing a revolutionary phase in genetic medicine: precisely modifying or repairing causal genetic defects. This may include any number of DNA sequence manipulations, such as knocking out a deleterious gene, introducing a particular mutation, or directly repairing a defective sequence by site-specific recombination. All of these edits can currently be achieved via programmable rare-cutting endonucleases to create targeted DNA breaks that can engage and exploit endogenous DNA repair pathways to impart site-specific genetic changes. Over the past decade, several distinct technologies for introducing site-specific DNA breaks have been developed, yet the different biological origins of these gene-editing technologies bring along inherent differences in parameters that impact clinical implementation. This review aims to provide an accessible overview of the various endonuclease-based gene-editing platforms, highlighting the strengths and weakness of each with respect to therapeutic applications.
Salient Features of Endonuclease Platforms for Therapeutic Genome Editing
Certo, Michael T; Morgan, Richard A
2016-01-01
Emerging gene-editing technologies are nearing a revolutionary phase in genetic medicine: precisely modifying or repairing causal genetic defects. This may include any number of DNA sequence manipulations, such as knocking out a deleterious gene, introducing a particular mutation, or directly repairing a defective sequence by site-specific recombination. All of these edits can currently be achieved via programmable rare-cutting endonucleases to create targeted DNA breaks that can engage and exploit endogenous DNA repair pathways to impart site-specific genetic changes. Over the past decade, several distinct technologies for introducing site-specific DNA breaks have been developed, yet the different biological origins of these gene-editing technologies bring along inherent differences in parameters that impact clinical implementation. This review aims to provide an accessible overview of the various endonuclease-based gene-editing platforms, highlighting the strengths and weakness of each with respect to therapeutic applications. PMID:26796671
Spreadsheet-based program for alignment of overlapping DNA sequences.
Anbazhagan, R; Gabrielson, E
1999-06-01
Molecular biology laboratories frequently face the challenge of aligning small overlapping DNA sequences derived from a long DNA segment. Here, we present a short program that can be used to adapt Excel spreadsheets as a tool for aligning DNA sequences, regardless of their orientation. The program runs on any Windows or Macintosh operating system computer with Excel 97 or Excel 98. The program is available for use as an Excel file, which can be downloaded from the BioTechniques Web site. Upon execution, the program opens a specially designed customized workbook and is capable of identifying overlapping regions between two sequence fragments and displaying the sequence alignment. It also performs a number of specialized functions such as recognition of restriction enzyme cutting sites and CpG island mapping without costly specialized software.
Suzuki, Hidetsugu; Asahara, Hiroshi
2015-08-01
Genome editing is a genetic technology by which any DNA sequence is inserted, replaced or deleted. Genome editing has been making rapid progress recently, with the development of new techniques such as ZFN, TALEN and CRISPR/Cas9. Genome editing can be applied to various fields ranging from the production of knock out animals to gene therapy. This section summarizes these new genome editing technologies and its applications.
Rayon-Estrada, Violeta; Harjanto, Dewi; Hamilton, Claire E; Berchiche, Yamina A; Gantman, Emily Conn; Sakmar, Thomas P; Bulloch, Karen; Gagnidze, Khatuna; Harroch, Sheila; McEwen, Bruce S; Papavasiliou, F Nina
2017-12-12
Epitranscriptomics refers to posttranscriptional alterations on an mRNA sequence that are dynamic and reproducible, and affect gene expression in a similar way to epigenetic modifications. However, the functional relevance of those modifications for the transcript, the cell, and the organism remain poorly understood. Here, we focus on RNA editing and show that Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-1 (APOBEC1), together with its cofactor RBM47, mediates robust editing in different tissues. The majority of editing events alter the sequence of the 3'UTR of targeted transcripts, and we focus on one cell type (monocytes) and on a small set of highly edited transcripts within it to show that editing alters gene expression by modulating translation (but not RNA stability or localization). We further show that specific cellular processes (phagocytosis and transendothelial migration) are enriched for transcripts that are targets of editing and that editing alters their function. Finally, we survey bone marrow progenitors and demonstrate that common monocyte progenitor cells express high levels of APOBEC1 and are susceptible to loss of the editing enzyme. Overall, APOBEC1-mediated transcriptome diversification is required for the fine-tuning of protein expression in monocytes, suggesting an epitranscriptomic mechanism for the proper maintenance of homeostasis in innate immune cells. Copyright © 2017 the Author(s). Published by PNAS.
Blom, Mozes P K
2015-08-05
Recently developed molecular methods enable geneticists to target and sequence thousands of orthologous loci and infer evolutionary relationships across the tree of life. Large numbers of genetic markers benefit species tree inference but visual inspection of alignment quality, as traditionally conducted, is challenging with thousands of loci. Furthermore, due to the impracticality of repeated visual inspection with alternative filtering criteria, the potential consequences of using datasets with different degrees of missing data remain nominally explored in most empirical phylogenomic studies. In this short communication, I describe a flexible high-throughput pipeline designed to assess alignment quality and filter exonic sequence data for subsequent inference. The stringency criteria for alignment quality and missing data can be adapted based on the expected level of sequence divergence. Each alignment is automatically evaluated based on the stringency criteria specified, significantly reducing the number of alignments that require visual inspection. By developing a rapid method for alignment filtering and quality assessment, the consistency of phylogenetic estimation based on exonic sequence alignments can be further explored across distinct inference methods, while accounting for different degrees of missing data.
Exact calculation of distributions on integers, with application to sequence alignment.
Newberg, Lee A; Lawrence, Charles E
2009-01-01
Computational biology is replete with high-dimensional discrete prediction and inference problems. Dynamic programming recursions can be applied to several of the most important of these, including sequence alignment, RNA secondary-structure prediction, phylogenetic inference, and motif finding. In these problems, attention is frequently focused on some scalar quantity of interest, a score, such as an alignment score or the free energy of an RNA secondary structure. In many cases, score is naturally defined on integers, such as a count of the number of pairing differences between two sequence alignments, or else an integer score has been adopted for computational reasons, such as in the test of significance of motif scores. The probability distribution of the score under an appropriate probabilistic model is of interest, such as in tests of significance of motif scores, or in calculation of Bayesian confidence limits around an alignment. Here we present three algorithms for calculating the exact distribution of a score of this type; then, in the context of pairwise local sequence alignments, we apply the approach so as to find the alignment score distribution and Bayesian confidence limits.
Low incidence of SNVs and indels in trio genomes of Cas9-mediated multiplex edited sheep.
Wang, Xiaolong; Liu, Jing; Niu, Yiyuan; Li, Yan; Zhou, Shiwei; Li, Chao; Ma, Baohua; Kou, Qifang; Petersen, Bjoern; Sonstegard, Tad; Huang, Xingxu; Jiang, Yu; Chen, Yulin
2018-05-25
The simplicity of the CRISPR/Cas9 system has enabled its widespread applications in generating animal models, functional genomic screening and in treating genetic and infectious diseases. However, unintended mutations produced by off-target CRISPR/Cas9 nuclease activity may lead to negative consequences. Especially, a very recent study found that gene editing can introduce hundreds of unintended mutations into the genome, and have attracted wide attention. To address the off-target concerns, urgent characterization of the CRISPR/Cas9-mediated off-target mutagenesis is highly anticipated. Here we took advantage of our previously generated gene-edited sheep and performed family trio-based whole genome sequencing which is capable of discriminating variants in the edited progenies that are inherited, naturally generated, or induced by genetic modification. Three family trios were re-sequenced at a high average depth of genomic coverage (~ 25.8×). After developing a pipeline to comprehensively analyze the sequence data for de novo single nucleotide variants, indels and structural variations from the genome; we only found a single unintended event in the form of a 2.4 kb inversion induced by site-specific double-strand breaks between two sgRNA targeting sites at the MSTN locus with a low incidence. We provide the first report on the fidelity of CRISPR-based modification for sheep genomes targeted simultaneously for gene breaks at three coding sequence locations. The trio-based sequencing approach revealed almost negligible off-target modifications, providing timely evidences of the safe application of genome editing in vivo with CRISPR/Cas9.
Analysis of Ribosome Inactivating Protein (RIP): A Bioinformatics Approach
NASA Astrophysics Data System (ADS)
Jothi, G. Edward Gnana; Majilla, G. Sahaya Jose; Subhashini, D.; Deivasigamani, B.
2012-10-01
In spite of the medical advances in recent years, the world is in need of different sources to encounter certain health issues.Ribosome Inactivating Proteins (RIPs) were found to be one among them. In order to get easy access about RIPs, there is a need to analyse RIPs towards constructing a database on RIPs. Also, multiple sequence alignment was done towards screening for homologues of significant RIPs from rare sources against RIPs from easily available sources in terms of similarity. Protein sequences were retrieved from SWISS-PROT and are further analysed using pair wise and multiple sequence alignment.Analysis shows that, 151 RIPs have been characterized to date. Amongst them, there are 87 type I, 37 type II, 1 type III and 25 unknown RIPs. The sequence length information of various RIPs about the availability of full or partial sequence was also found. The multiple sequence alignment of 37 type I RIP using the online server Multalin, indicates the presence of 20 conserved residues. Pairwise alignment and multiple sequence alignment of certain selected RIPs in two groups namely Group I and Group II were carried out and the consensus level was found to be 98%, 98% and 90% respectively.
A statistical physics perspective on alignment-independent protein sequence comparison.
Chattopadhyay, Amit K; Nasiev, Diar; Flower, Darren R
2015-08-01
Within bioinformatics, the textual alignment of amino acid sequences has long dominated the determination of similarity between proteins, with all that implies for shared structure, function and evolutionary descent. Despite the relative success of modern-day sequence alignment algorithms, so-called alignment-free approaches offer a complementary means of determining and expressing similarity, with potential benefits in certain key applications, such as regression analysis of protein structure-function studies, where alignment-base similarity has performed poorly. Here, we offer a fresh, statistical physics-based perspective focusing on the question of alignment-free comparison, in the process adapting results from 'first passage probability distribution' to summarize statistics of ensemble averaged amino acid propensity values. In this article, we introduce and elaborate this approach. © The Author 2015. Published by Oxford University Press.
Multiple alignment-free sequence comparison
Ren, Jie; Song, Kai; Sun, Fengzhu; Deng, Minghua; Reinert, Gesine
2013-01-01
Motivation: Recently, a range of new statistics have become available for the alignment-free comparison of two sequences based on k-tuple word content. Here, we extend these statistics to the simultaneous comparison of more than two sequences. Our suite of statistics contains, first, and , extensions of statistics for pairwise comparison of the joint k-tuple content of all the sequences, and second, , and , averages of sums of pairwise comparison statistics. The two tasks we consider are, first, to identify sequences that are similar to a set of target sequences, and, second, to measure the similarity within a set of sequences. Results: Our investigation uses both simulated data as well as cis-regulatory module data where the task is to identify cis-regulatory modules with similar transcription factor binding sites. We find that although for real data, all of our statistics show a similar performance, on simulated data the Shepp-type statistics are in some instances outperformed by star-type statistics. The multiple alignment-free statistics are more sensitive to contamination in the data than the pairwise average statistics. Availability: Our implementation of the five statistics is available as R package named ‘multiAlignFree’ at be http://www-rcf.usc.edu/∼fsun/Programs/multiAlignFree/multiAlignFreemain.html. Contact: reinert@stats.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23990418
Heuristic reusable dynamic programming: efficient updates of local sequence alignment.
Hong, Changjin; Tewfik, Ahmed H
2009-01-01
Recomputation of the previously evaluated similarity results between biological sequences becomes inevitable when researchers realize errors in their sequenced data or when the researchers have to compare nearly similar sequences, e.g., in a family of proteins. We present an efficient scheme for updating local sequence alignments with an affine gap model. In principle, using the previous matching result between two amino acid sequences, we perform a forward-backward alignment to generate heuristic searching bands which are bounded by a set of suboptimal paths. Given a correctly updated sequence, we initially predict a new score of the alignment path for each contour to select the best candidates among them. Then, we run the Smith-Waterman algorithm in this confined space. Furthermore, our heuristic alignment for an updated sequence shows that it can be further accelerated by using reusable dynamic programming (rDP), our prior work. In this study, we successfully validate "relative node tolerance bound" (RNTB) in the pruned searching space. Furthermore, we improve the computational performance by quantifying the successful RNTB tolerance probability and switch to rDP on perturbation-resilient columns only. In our searching space derived by a threshold value of 90 percent of the optimal alignment score, we find that 98.3 percent of contours contain correctly updated paths. We also find that our method consumes only 25.36 percent of the runtime cost of sparse dynamic programming (sDP) method, and to only 2.55 percent of that of a normal dynamic programming with the Smith-Waterman algorithm.
Sequence Diversity Diagram for comparative analysis of multiple sequence alignments.
Sakai, Ryo; Aerts, Jan
2014-01-01
The sequence logo is a graphical representation of a set of aligned sequences, commonly used to depict conservation of amino acid or nucleotide sequences. Although it effectively communicates the amount of information present at every position, this visual representation falls short when the domain task is to compare between two or more sets of aligned sequences. We present a new visual presentation called a Sequence Diversity Diagram and validate our design choices with a case study. Our software was developed using the open-source program called Processing. It loads multiple sequence alignment FASTA files and a configuration file, which can be modified as needed to change the visualization. The redesigned figure improves on the visual comparison of two or more sets, and it additionally encodes information on sequential position conservation. In our case study of the adenylate kinase lid domain, the Sequence Diversity Diagram reveals unexpected patterns and new insights, for example the identification of subgroups within the protein subfamily. Our future work will integrate this visual encoding into interactive visualization tools to support higher level data exploration tasks.
SSAW: A new sequence similarity analysis method based on the stationary discrete wavelet transform.
Lin, Jie; Wei, Jing; Adjeroh, Donald; Jiang, Bing-Hua; Jiang, Yue
2018-05-02
Alignment-free sequence similarity analysis methods often lead to significant savings in computational time over alignment-based counterparts. A new alignment-free sequence similarity analysis method, called SSAW is proposed. SSAW stands for Sequence Similarity Analysis using the Stationary Discrete Wavelet Transform (SDWT). It extracts k-mers from a sequence, then maps each k-mer to a complex number field. Then, the series of complex numbers formed are transformed into feature vectors using the stationary discrete wavelet transform. After these steps, the original sequence is turned into a feature vector with numeric values, which can then be used for clustering and/or classification. Using two different types of applications, namely, clustering and classification, we compared SSAW against the the-state-of-the-art alignment free sequence analysis methods. SSAW demonstrates competitive or superior performance in terms of standard indicators, such as accuracy, F-score, precision, and recall. The running time was significantly better in most cases. These make SSAW a suitable method for sequence analysis, especially, given the rapidly increasing volumes of sequence data required by most modern applications.
CAFE: aCcelerated Alignment-FrEe sequence analysis.
Lu, Yang Young; Tang, Kujin; Ren, Jie; Fuhrman, Jed A; Waterman, Michael S; Sun, Fengzhu
2017-07-03
Alignment-free genome and metagenome comparisons are increasingly important with the development of next generation sequencing (NGS) technologies. Recently developed state-of-the-art k-mer based alignment-free dissimilarity measures including CVTree, $d_2^*$ and $d_2^S$ are more computationally expensive than measures based solely on the k-mer frequencies. Here, we report a standalone software, aCcelerated Alignment-FrEe sequence analysis (CAFE), for efficient calculation of 28 alignment-free dissimilarity measures. CAFE allows for both assembled genome sequences and unassembled NGS shotgun reads as input, and wraps the output in a standard PHYLIP format. In downstream analyses, CAFE can also be used to visualize the pairwise dissimilarity measures, including dendrograms, heatmap, principal coordinate analysis and network display. CAFE serves as a general k-mer based alignment-free analysis platform for studying the relationships among genomes and metagenomes, and is freely available at https://github.com/younglululu/CAFE. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Brown, Roger B; Madrid, Nathaniel J; Suzuki, Hideaki; Ness, Scott A
2017-01-01
RNA-sequencing (RNA-seq) has become the standard method for unbiased analysis of gene expression but also provides access to more complex transcriptome features, including alternative RNA splicing, RNA editing, and even detection of fusion transcripts formed through chromosomal translocations. However, differences in library methods can adversely affect the ability to recover these different types of transcriptome data. For example, some methods have bias for one end of transcripts or rely on low-efficiency steps that limit the complexity of the resulting library, making detection of rare transcripts less likely. We tested several commonly used methods of RNA-seq library preparation and found vast differences in the detection of advanced transcriptome features, such as alternatively spliced isoforms and RNA editing sites. By comparing several different protocols available for the Ion Proton sequencer and by utilizing detailed bioinformatics analysis tools, we were able to develop an optimized random primer based RNA-seq technique that is reliable at uncovering rare transcript isoforms and RNA editing features, as well as fusion reads from oncogenic chromosome rearrangements. The combination of optimized libraries and rapid Ion Proton sequencing provides a powerful platform for the transcriptome analysis of research and clinical samples.
Identification of single-nucleotide variants in RNA-seq data. Current version focuses on detection of RNA editing sites without requiring genome sequence data. New version is under development to separately identify RNA editing sites and genetic variants using RNA-seq data alone.
Comparison of Insertional RNA Editing in Myxomycetes
Chen, Cai; Frankhouser, David; Bundschuh, Ralf
2012-01-01
RNA editing describes the process in which individual or short stretches of nucleotides in a messenger or structural RNA are inserted, deleted, or substituted. A high level of RNA editing has been observed in the mitochondrial genome of Physarum polycephalum. The most frequent editing type in Physarum is the insertion of individual Cs. RNA editing is extremely accurate in Physarum; however, little is known about its mechanism. Here, we demonstrate how analyzing two organisms from the Myxomycetes, namely Physarum polycephalum and Didymium iridis, allows us to test hypotheses about the editing mechanism that can not be tested from a single organism alone. First, we show that using the recently determined full transcriptome information of Physarum dramatically improves the accuracy of computational editing site prediction in Didymium. We use this approach to predict genes in the mitochondrial genome of Didymium and identify six new edited genes as well as one new gene that appears unedited. Next we investigate sequence conservation in the vicinity of editing sites between the two organisms in order to identify sites that harbor the information for the location of editing sites based on increased conservation. Our results imply that the information contained within only nine or ten nucleotides on either side of the editing site (a distance previously suggested through experiments) is not enough to locate the editing sites. Finally, we show that the codon position bias in C insertional RNA editing of these two organisms is correlated with the selection pressure on the respective genes thereby directly testing an evolutionary theory on the origin of this codon bias. Beyond revealing interesting properties of insertional RNA editing in Myxomycetes, our work suggests possible approaches to be used when finding sequence motifs for any biological process fails. PMID:22383871
RNA Editing During Sexual Development Occurs in Distantly Related Filamentous Ascomycetes
Teichert, Ines; Dahlmann, Tim A.; Kück, Ulrich
2017-01-01
RNA editing is a post-transcriptional process that modifies RNA molecules leading to transcript sequences that differ from their template DNA. A-to-I editing was found to be widely distributed in nuclear transcripts of metazoa, but was detected in fungi only recently in a study of the filamentous ascomycete Fusarium graminearum that revealed extensive A-to-I editing of mRNAs in sexual structures (fruiting bodies). Here, we searched for putative RNA editing events in RNA-seq data from Sordaria macrospora and Pyronema confluens, two distantly related filamentous ascomycetes, and in data from the Taphrinomycete Schizosaccharomyces pombe. Like F. graminearum, S. macrospora is a member of the Sordariomycetes, whereas P. confluens belongs to the early-diverging group of Pezizomycetes. We found extensive A-to-I editing in RNA-seq data from sexual mycelium from both filamentous ascomycetes, but not in vegetative structures. A-to-I editing was not detected in different stages of meiosis of S. pombe. A comparison of A-to-I editing in S. macrospora with F. graminearum and P. confluens, respectively, revealed little conservation of individual editing sites. An analysis of RNA-seq data from two sterile developmental mutants of S. macrospora showed that A-to-I editing is strongly reduced in these strains. Sequencing of cDNA fragments containing more than one editing site from P. confluens showed that at the beginning of sexual development, transcripts were incompletely edited or unedited, whereas in later stages transcripts were more extensively edited. Taken together, these data suggest that A-to-I RNA editing is an evolutionary conserved feature during fruiting body development in filamentous ascomycetes. PMID:28338982
RNA Editing During Sexual Development Occurs in Distantly Related Filamentous Ascomycetes.
Teichert, Ines; Dahlmann, Tim A; Kück, Ulrich; Nowrousian, Minou
2017-04-01
RNA editing is a post-transcriptional process that modifies RNA molecules leading to transcript sequences that differ from their template DNA. A-to-I editing was found to be widely distributed in nuclear transcripts of metazoa, but was detected in fungi only recently in a study of the filamentous ascomycete Fusarium graminearum that revealed extensive A-to-I editing of mRNAs in sexual structures (fruiting bodies). Here, we searched for putative RNA editing events in RNA-seq data from Sordaria macrospora and Pyronema confluens, two distantly related filamentous ascomycetes, and in data from the Taphrinomycete Schizosaccharomyces pombe. Like F. graminearum, S. macrospora is a member of the Sordariomycetes, whereas P. confluens belongs to the early-diverging group of Pezizomycetes. We found extensive A-to-I editing in RNA-seq data from sexual mycelium from both filamentous ascomycetes, but not in vegetative structures. A-to-I editing was not detected in different stages of meiosis of S. pombe. A comparison of A-to-I editing in S. macrospora with F. graminearum and P. confluens, respectively, revealed little conservation of individual editing sites. An analysis of RNA-seq data from two sterile developmental mutants of S. macrospora showed that A-to-I editing is strongly reduced in these strains. Sequencing of cDNA fragments containing more than one editing site from P. confluens showed that at the beginning of sexual development, transcripts were incompletely edited or unedited, whereas in later stages transcripts were more extensively edited. Taken together, these data suggest that A-to-I RNA editing is an evolutionary conserved feature during fruiting body development in filamentous ascomycetes. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Xu, Qifang; Dunbrack, Roland L
2012-11-01
Automating the assignment of existing domain and protein family classifications to new sets of sequences is an important task. Current methods often miss assignments because remote relationships fail to achieve statistical significance. Some assignments are not as long as the actual domain definitions because local alignment methods often cut alignments short. Long insertions in query sequences often erroneously result in two copies of the domain assigned to the query. Divergent repeat sequences in proteins are often missed. We have developed a multilevel procedure to produce nearly complete assignments of protein families of an existing classification system to a large set of sequences. We apply this to the task of assigning Pfam domains to sequences and structures in the Protein Data Bank (PDB). We found that HHsearch alignments frequently scored more remotely related Pfams in Pfam clans higher than closely related Pfams, thus, leading to erroneous assignment at the Pfam family level. A greedy algorithm allowing for partial overlaps was, thus, applied first to sequence/HMM alignments, then HMM-HMM alignments and then structure alignments, taking care to join partial alignments split by large insertions into single-domain assignments. Additional assignment of repeat Pfams with weaker E-values was allowed after stronger assignments of the repeat HMM. Our database of assignments, presented in a database called PDBfam, contains Pfams for 99.4% of chains >50 residues. The Pfam assignment data in PDBfam are available at http://dunbrack2.fccc.edu/ProtCid/PDBfam, which can be searched by PDB codes and Pfam identifiers. They will be updated regularly.
DEMO: Sequence Alignment to Predict Across Species Susceptibility
The US Environmental Protection Agency Sequence Alignment to Predict Across Species Susceptibility tool (SeqAPASS; https://seqapass.epa.gov/seqapass/) was developed to comparatively evaluate protein sequence and structural similarity across species as a means to extrapolate toxic...
Spacecraft alignment estimation. [for onboard sensors
NASA Technical Reports Server (NTRS)
Shuster, Malcolm D.; Bierman, Gerald J.
1988-01-01
A numerically well-behaved factorized methodology is developed for estimating spacecraft sensor alignments from prelaunch and inflight data without the need to compute the spacecraft attitude or angular velocity. Such a methodology permits the estimation of sensor alignments (or other biases) in a framework free of unknown dynamical variables. In actual mission implementation such an algorithm is usually better behaved than one that must compute sensor alignments simultaneously with the spacecraft attitude, for example by means of a Kalman filter. In particular, such a methodology is less sensitive to data dropouts of long duration, and the derived measurement used in the attitude-independent algorithm usually makes data checking and editing of outliers much simpler than would be the case in the filter.
Quinn, Terrance; Sinkala, Zachariah
2014-01-01
We develop a general method for computing extreme value distribution (Gumbel, 1958) parameters for gapped alignments. Our approach uses mixture distribution theory to obtain associated BLOSUM matrices for gapped alignments, which in turn are used for determining significance of gapped alignment scores for pairs of biological sequences. We compare our results with parameters already obtained in the literature.
Robust temporal alignment of multimodal cardiac sequences
NASA Astrophysics Data System (ADS)
Perissinotto, Andrea; Queirós, Sandro; Morais, Pedro; Baptista, Maria J.; Monaghan, Mark; Rodrigues, Nuno F.; D'hooge, Jan; Vilaça, João. L.; Barbosa, Daniel
2015-03-01
Given the dynamic nature of cardiac function, correct temporal alignment of pre-operative models and intraoperative images is crucial for augmented reality in cardiac image-guided interventions. As such, the current study focuses on the development of an image-based strategy for temporal alignment of multimodal cardiac imaging sequences, such as cine Magnetic Resonance Imaging (MRI) or 3D Ultrasound (US). First, we derive a robust, modality-independent signal from the image sequences, estimated by computing the normalized cross-correlation between each frame in the temporal sequence and the end-diastolic frame. This signal is a resembler for the left-ventricle (LV) volume curve over time, whose variation indicates different temporal landmarks of the cardiac cycle. We then perform the temporal alignment of these surrogate signals derived from MRI and US sequences of the same patient through Dynamic Time Warping (DTW), allowing to synchronize both sequences. The proposed framework was evaluated in 98 patients, which have undergone both 3D+t MRI and US scans. The end-systolic frame could be accurately estimated as the minimum of the image-derived surrogate signal, presenting a relative error of 1.6 +/- 1.9% and 4.0 +/- 4.2% for the MRI and US sequences, respectively, thus supporting its association with key temporal instants of the cardiac cycle. The use of DTW reduces the desynchronization of the cardiac events in MRI and US sequences, allowing to temporally align multimodal cardiac imaging sequences. Overall, a generic, fast and accurate method for temporal synchronization of MRI and US sequences of the same patient was introduced. This approach could be straightforwardly used for the correct temporal alignment of pre-operative MRI information and intra-operative US images.
Zhu, Hu; Urban, Daniel J.; Blashka, Jared; McPheeters, Matthew T.; Kroeze, Wesley K.; Mieczkowski, Piotr; Overholser, James C.; Jurjus, George J.; Dieter, Lesa; Mahajan, Gouri J.; Rajkowska, Grazyna; Wang, Zefeng; Sullivan, Patrick F.; Stockmeier, Craig A.; Roth, Bryan L.
2012-01-01
A-to-I RNA editing is a post-transcriptional modification of single nucleotides in RNA by adenosine deamination, which thereby diversifies the gene products encoded in the genome. Thousands of potential RNA editing sites have been identified by recent studies (e.g. see Li et al, Science 2009); however, only a handful of these sites have been independently confirmed. Here, we systematically and quantitatively examined 109 putative coding region A-to-I RNA editing sites in three sets of normal human brain samples by ultra-high-throughput sequencing (uHTS). Forty of 109 putative sites, including 25 previously confirmed sites, were validated as truly edited in our brain samples, suggesting an overestimation of A-to-I RNA editing in these putative sites by Li et al (2009). To evaluate RNA editing in human disease, we analyzed 29 of the confirmed sites in subjects with major depressive disorder and schizophrenia using uHTS. In striking contrast to many prior studies, we did not find significant alterations in the frequency of RNA editing at any of the editing sites in samples from these patients, including within the 5HT2C serotonin receptor (HTR2C). Our results indicate that uHTS is a fast, quantitative and high-throughput method to assess RNA editing in human physiology and disease and that many prior studies of RNA editing may overestimate both the extent and disease-related variability of RNA editing at the sites we examined in the human brain. PMID:22912834
Evolutionary profiles from the QR factorization of multiple sequence alignments
Sethi, Anurag; O'Donoghue, Patrick; Luthey-Schulten, Zaida
2005-01-01
We present an algorithm to generate complete evolutionary profiles that represent the topology of the molecular phylogenetic tree of the homologous group. The method, based on the multidimensional QR factorization of numerically encoded multiple sequence alignments, removes redundancy from the alignments and orders the protein sequences by increasing linear dependence, resulting in the identification of a minimal basis set of sequences that spans the evolutionary space of the homologous group of proteins. We observe a general trend that these smaller, more evolutionarily balanced profiles have comparable and, in many cases, better performance in database searches than conventional profiles containing hundreds of sequences, constructed in an iterative and computationally intensive procedure. For more diverse families or superfamilies, with sequence identity <30%, structural alignments, based purely on the geometry of the protein structures, provide better alignments than pure sequence-based methods. Merging the structure and sequence information allows the construction of accurate profiles for distantly related groups. These structure-based profiles outperformed other sequence-based methods for finding distant homologs and were used to identify a putative class II cysteinyl-tRNA synthetase (CysRS) in several archaea that eluded previous annotation studies. Phylogenetic analysis showed the putative class II CysRSs to be a monophyletic group and homology modeling revealed a constellation of active site residues similar to that in the known class I CysRS. PMID:15741270
Spreadsheet macros for coloring sequence alignments.
Haygood, M G
1993-12-01
This article describes a set of Microsoft Excel macros designed to color amino acid and nucleotide sequence alignments for review and preparation of visual aids. The colored alignments can then be modified to emphasize features of interest. Procedures for importing and coloring sequences are described. The macro file adds a new menu to the menu bar containing sequence-related commands to enable users unfamiliar with Excel to use the macros more readily. The macros were designed for use with Macintosh computers but will also run with the DOS version of Excel.
Validation of Splicing Events in Transcriptome Sequencing Data
Kaisers, Wolfgang; Ptok, Johannes; Schwender, Holger; Schaal, Heiner
2017-01-01
Genomic alignments of sequenced cellular messenger RNA contain gapped alignments which are interpreted as consequence of intron removal. The resulting gap-sites, genomic locations of alignment gaps, are landmarks representing potential splice-sites. As alignment algorithms report gap-sites with a considerable false discovery rate, validations are required. We describe two quality scores, gap quality score (gqs) and weighted gap information score (wgis), developed for validation of putative splicing events: While gqs solely relies on alignment data wgis additionally considers information from the genomic sequence. FASTQ files obtained from 54 human dermal fibroblast samples were aligned against the human genome (GRCh38) using TopHat and STAR aligner. Statistical properties of gap-sites validated by gqs and wgis were evaluated by their sequence similarity to known exon-intron borders. Within the 54 samples, TopHat identifies 1,000,380 and STAR reports 6,487,577 gap-sites. Due to the lack of strand information, however, the percentage of identified GT-AG gap-sites is rather low. While gap-sites from TopHat contain ≈89% GT-AG, gap-sites from STAR only contain ≈42% GT-AG dinucleotide pairs in merged data from 54 fibroblast samples. Validation with gqs yields 156,251 gap-sites from TopHat alignments and 166,294 from STAR alignments. Validation with wgis yields 770,327 gap-sites from TopHat alignments and 1,065,596 from STAR alignments. Both alignment algorithms, TopHat and STAR, report gap-sites with considerable false discovery rate, which can drastically be reduced by validation with gqs and wgis. PMID:28545234
Yu, Jia; Blom, Jochen; Sczyrba, Alexander; Goesmann, Alexander
2017-09-10
The introduction of next generation sequencing has caused a steady increase in the amounts of data that have to be processed in modern life science. Sequence alignment plays a key role in the analysis of sequencing data e.g. within whole genome sequencing or metagenome projects. BLAST is a commonly used alignment tool that was the standard approach for more than two decades, but in the last years faster alternatives have been proposed including RapSearch, GHOSTX, and DIAMOND. Here we introduce HAMOND, an application that uses Apache Hadoop to parallelize DIAMOND computation in order to scale-out the calculation of alignments. HAMOND is fault tolerant and scalable by utilizing large cloud computing infrastructures like Amazon Web Services. HAMOND has been tested in comparative genomics analyses and showed promising results both in efficiency and accuracy. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
MUSCLE: multiple sequence alignment with high accuracy and high throughput.
Edgar, Robert C
2004-01-01
We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting, progressive alignment using a new profile function we call the log-expectation score, and refinement using tree-dependent restricted partitioning. The speed and accuracy of MUSCLE are compared with T-Coffee, MAFFT and CLUSTALW on four test sets of reference alignments: BAliBASE, SABmark, SMART and a new benchmark, PREFAB. MUSCLE achieves the highest, or joint highest, rank in accuracy on each of these sets. Without refinement, MUSCLE achieves average accuracy statistically indistinguishable from T-Coffee and MAFFT, and is the fastest of the tested methods for large numbers of sequences, aligning 5000 sequences of average length 350 in 7 min on a current desktop computer. The MUSCLE program, source code and PREFAB test data are freely available at http://www.drive5. com/muscle.
ExpEdit: a webserver to explore human RNA editing in RNA-Seq experiments.
Picardi, Ernesto; D'Antonio, Mattia; Carrabino, Danilo; Castrignanò, Tiziana; Pesole, Graziano
2011-05-01
ExpEdit is a web application for assessing RNA editing in human at known or user-specified sites supported by transcript data obtained by RNA-Seq experiments. Mapping data (in SAM/BAM format) or directly sequence reads [in FASTQ/short read archive (SRA) format] can be provided as input to carry out a comparative analysis against a large collection of known editing sites collected in DARNED database as well as other user-provided potentially edited positions. Results are shown as dynamic tables containing University of California, Santa Cruz (UCSC) links for a quick examination of the genomic context. ExpEdit is freely available on the web at http://www.caspur.it/ExpEdit/.
Biological intuition in alignment-free methods: response to Posada.
Ragan, Mark A; Chan, Cheong Xin
2013-08-01
A recent editorial in Journal of Molecular Evolution highlights opportunities and challenges facing molecular evolution in the era of next-generation sequencing. Abundant sequence data should allow more-complex models to be fit at higher confidence, making phylogenetic inference more reliable and improving our understanding of evolution at the molecular level. However, concern that approaches based on multiple sequence alignment may be computationally infeasible for large datasets is driving the development of so-called alignment-free methods for sequence comparison and phylogenetic inference. The recent editorial characterized these approaches as model-free, not based on the concept of homology, and lacking in biological intuition. We argue here that alignment-free methods have not abandoned models or homology, and can be biologically intuitive.
RNA editing in nascent RNA affects pre-mRNA splicing
Hsiao, Yun-Hua Esther; Bahn, Jae Hoon; Yang, Yun; Lin, Xianzhi; Tran, Stephen; Yang, Ei-Wen; Quinones-Valdez, Giovanni
2018-01-01
In eukaryotes, nascent RNA transcripts undergo an intricate series of RNA processing steps to achieve mRNA maturation. RNA editing and alternative splicing are two major RNA processing steps that can introduce significant modifications to the final gene products. By tackling these processes in isolation, recent studies have enabled substantial progress in understanding their global RNA targets and regulatory pathways. However, the interplay between individual steps of RNA processing, an essential aspect of gene regulation, remains poorly understood. By sequencing the RNA of different subcellular fractions, we examined the timing of adenosine-to-inosine (A-to-I) RNA editing and its impact on alternative splicing. We observed that >95% A-to-I RNA editing events occurred in the chromatin-associated RNA prior to polyadenylation. We report about 500 editing sites in the 3′ acceptor sequences that can alter splicing of the associated exons. These exons are highly conserved during evolution and reside in genes with important cellular function. Furthermore, we identified a second class of exons whose splicing is likely modulated by RNA secondary structures that are recognized by the RNA editing machinery. The genome-wide analyses, supported by experimental validations, revealed remarkable interplay between RNA editing and splicing and expanded the repertoire of functional RNA editing sites. PMID:29724793
RNA editing in nascent RNA affects pre-mRNA splicing.
Hsiao, Yun-Hua Esther; Bahn, Jae Hoon; Yang, Yun; Lin, Xianzhi; Tran, Stephen; Yang, Ei-Wen; Quinones-Valdez, Giovanni; Xiao, Xinshu
2018-06-01
In eukaryotes, nascent RNA transcripts undergo an intricate series of RNA processing steps to achieve mRNA maturation. RNA editing and alternative splicing are two major RNA processing steps that can introduce significant modifications to the final gene products. By tackling these processes in isolation, recent studies have enabled substantial progress in understanding their global RNA targets and regulatory pathways. However, the interplay between individual steps of RNA processing, an essential aspect of gene regulation, remains poorly understood. By sequencing the RNA of different subcellular fractions, we examined the timing of adenosine-to-inosine (A-to-I) RNA editing and its impact on alternative splicing. We observed that >95% A-to-I RNA editing events occurred in the chromatin-associated RNA prior to polyadenylation. We report about 500 editing sites in the 3' acceptor sequences that can alter splicing of the associated exons. These exons are highly conserved during evolution and reside in genes with important cellular function. Furthermore, we identified a second class of exons whose splicing is likely modulated by RNA secondary structures that are recognized by the RNA editing machinery. The genome-wide analyses, supported by experimental validations, revealed remarkable interplay between RNA editing and splicing and expanded the repertoire of functional RNA editing sites. © 2018 Hsiao et al.; Published by Cold Spring Harbor Laboratory Press.
A Mathematical Optimization Problem in Bioinformatics
ERIC Educational Resources Information Center
Heyer, Laurie J.
2008-01-01
This article describes the sequence alignment problem in bioinformatics. Through examples, we formulate sequence alignment as an optimization problem and show how to compute the optimal alignment with dynamic programming. The examples and sample exercises have been used by the author in a specialized course in bioinformatics, but could be adapted…
Therapeutic gene editing: delivery and regulatory perspectives.
Shim, Gayong; Kim, Dongyoon; Park, Gyu Thae; Jin, Hyerim; Suh, Soo-Kyung; Oh, Yu-Kyoung
2017-06-01
Gene-editing technology is an emerging therapeutic modality for manipulating the eukaryotic genome by using target-sequence-specific engineered nucleases. Because of the exceptional advantages that gene-editing technology offers in facilitating the accurate correction of sequences in a genome, gene editing-based therapy is being aggressively developed as a next-generation therapeutic approach to treat a wide range of diseases. However, strategies for precise engineering and delivery of gene-editing nucleases, including zinc finger nucleases, transcription activator-like effector nuclease, and CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated nuclease Cas9), present major obstacles to the development of gene-editing therapies, as with other gene-targeting therapeutics. Currently, viral and non-viral vectors are being studied for the delivery of these nucleases into cells in the form of DNA, mRNA, or proteins. Clinical trials are already ongoing, and in vivo studies are actively investigating the applicability of CRISPR/Cas9 techniques. However, the concept of correcting the genome poses major concerns from a regulatory perspective, especially in terms of safety. This review addresses current research trends and delivery strategies for gene editing-based therapeutics in non-clinical and clinical settings and considers the associated regulatory issues.
Optimized guide RNA structure for genome editing via Cas9
Xu, Jianyong; Lian, Wei; Jia, Yuning; Li, Lingyun; Huang, Zhong
2017-01-01
The genome editing tool Cas9-gRNA (guide RNA) has been successfully applied in different cell types and organisms with high efficiency. However, more efforts need to be made to enhance both efficiency and specificity. In the current study, we optimized the guide RNA structure of Streptococcus pyogenes CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas (CRISPR-associated) system to improve its genome editing efficiency. Comparing with the original functional structure of guide RNA, which is composed of crRNA and tracrRNA, the widely used chimeric gRNA has shorter crRNA and tracrRNA sequence. The deleted RNA sequence could form extra loop structure, which might enhance the stability of the guide RNA structure and subsequently the genome editing efficiency. Thus the genome editing efficiency of different forms of guide RNA was tested. And we found that the chimeric structure of gRNA with original full length of crRNA and tracrRNA showed higher genome editing efficiency than the conventional chimeric structure or other types of gRNA we tested. Therefore our data here uncovered the new type of gRNA structure with higher genome editing efficiency. PMID:29212218
Therapeutic gene editing: delivery and regulatory perspectives
Shim, Gayong; Kim, Dongyoon; Park, Gyu Thae; Jin, Hyerim; Suh, Soo-Kyung; Oh, Yu-Kyoung
2017-01-01
Gene-editing technology is an emerging therapeutic modality for manipulating the eukaryotic genome by using target-sequence-specific engineered nucleases. Because of the exceptional advantages that gene-editing technology offers in facilitating the accurate correction of sequences in a genome, gene editing-based therapy is being aggressively developed as a next-generation therapeutic approach to treat a wide range of diseases. However, strategies for precise engineering and delivery of gene-editing nucleases, including zinc finger nucleases, transcription activator-like effector nuclease, and CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats-associated nuclease Cas9), present major obstacles to the development of gene-editing therapies, as with other gene-targeting therapeutics. Currently, viral and non-viral vectors are being studied for the delivery of these nucleases into cells in the form of DNA, mRNA, or proteins. Clinical trials are already ongoing, and in vivo studies are actively investigating the applicability of CRISPR/Cas9 techniques. However, the concept of correcting the genome poses major concerns from a regulatory perspective, especially in terms of safety. This review addresses current research trends and delivery strategies for gene editing-based therapeutics in non-clinical and clinical settings and considers the associated regulatory issues. PMID:28392568
SEAN: SNP prediction and display program utilizing EST sequence clusters.
Huntley, Derek; Baldo, Angela; Johri, Saurabh; Sergot, Marek
2006-02-15
SEAN is an application that predicts single nucleotide polymorphisms (SNPs) using multiple sequence alignments produced from expressed sequence tag (EST) clusters. The algorithm uses rules of sequence identity and SNP abundance to determine the quality of the prediction. A Java viewer is provided to display the EST alignments and predicted SNPs.
Madina, Bhaskara R.; Kumar, Vikas; Metz, Richard; Mooers, Blaine H.M.; Bundschuh, Ralf; Cruz-Reyes, Jorge
2014-01-01
Mitochondrial mRNAs in kinetoplastids require extensive U-insertion/deletion editing that progresses 3′-to-5′ in small blocks, each directed by a guide RNA (gRNA), and exhibits substrate and developmental stage-specificity by unsolved mechanisms. Here, we address compositionally related factors, collectively known as the mitochondrial RNA-binding complex 1 (MRB1) or gRNA-binding complex (GRBC), that contain gRNA, have a dynamic protein composition, and transiently associate with several mitochondrial factors including RNA editing core complexes (RECC) and ribosomes. MRB1 controls editing by still unknown mechanisms. We performed the first next-generation sequencing study of native subcomplexes of MRB1, immunoselected via either RNA helicase 2 (REH2), that binds RNA and associates with unwinding activity, or MRB3010, that affects an early editing step. The particles contain either REH2 or MRB3010 but share the core GAP1 and other proteins detected by RNA photo-crosslinking. Analyses of the first editing blocks indicate an enrichment of several initiating gRNAs in the MRB3010-purified complex. Our data also indicate fast evolution of mRNA 3′ ends and strain-specific alternative 3′ editing within 3′ UTR or C-terminal protein-coding sequence that could impact mitochondrial physiology. Moreover, we found robust specific copurification of edited and pre-edited mRNAs, suggesting that these particles may bind both mRNA and gRNA editing substrates. We propose that multiple subcomplexes of MRB1 with different RNA/protein composition serve as a scaffold for specific assembly of editing substrates and RECC, thereby forming the editing holoenzyme. The MRB3010-subcomplex may promote early editing through its preferential recruitment of initiating gRNAs. PMID:24865612
Mango: multiple alignment with N gapped oligos.
Zhang, Zefeng; Lin, Hao; Li, Ming
2008-06-01
Multiple sequence alignment is a classical and challenging task. The problem is NP-hard. The full dynamic programming takes too much time. The progressive alignment heuristics adopted by most state-of-the-art works suffer from the "once a gap, always a gap" phenomenon. Is there a radically new way to do multiple sequence alignment? In this paper, we introduce a novel and orthogonal multiple sequence alignment method, using both multiple optimized spaced seeds and new algorithms to handle these seeds efficiently. Our new algorithm processes information of all sequences as a whole and tries to build the alignment vertically, avoiding problems caused by the popular progressive approaches. Because the optimized spaced seeds have proved significantly more sensitive than the consecutive k-mers, the new approach promises to be more accurate and reliable. To validate our new approach, we have implemented MANGO: Multiple Alignment with N Gapped Oligos. Experiments were carried out on large 16S RNA benchmarks, showing that MANGO compares favorably, in both accuracy and speed, against state-of-the-art multiple sequence alignment methods, including ClustalW 1.83, MUSCLE 3.6, MAFFT 5.861, ProbConsRNA 1.11, Dialign 2.2.1, DIALIGN-T 0.2.1, T-Coffee 4.85, POA 2.0, and Kalign 2.0. We have further demonstrated the scalability of MANGO on very large datasets of repeat elements. MANGO can be downloaded at http://www.bioinfo.org.cn/mango/ and is free for academic usage.
Method and apparatus for biological sequence comparison
Marr, T.G.; Chang, W.I.
1997-12-23
A method and apparatus are disclosed for comparing biological sequences from a known source of sequences, with a subject (query) sequence. The apparatus takes as input a set of target similarity levels (such as evolutionary distances in units of PAM), and finds all fragments of known sequences that are similar to the subject sequence at each target similarity level, and are long enough to be statistically significant. The invention device filters out fragments from the known sequences that are too short, or have a lower average similarity to the subject sequence than is required by each target similarity level. The subject sequence is then compared only to the remaining known sequences to find the best matches. The filtering member divides the subject sequence into overlapping blocks, each block being sufficiently large to contain a minimum-length alignment from a known sequence. For each block, the filter member compares the block with every possible short fragment in the known sequences and determines a best match for each comparison. The determined set of short fragment best matches for the block provide an upper threshold on alignment values. Regions of a certain length from the known sequences that have a mean alignment value upper threshold greater than a target unit score are concatenated to form a union. The current block is compared to the union and provides an indication of best local alignment with the subject sequence. 5 figs.
Method and apparatus for biological sequence comparison
Marr, Thomas G.; Chang, William I-Wei
1997-01-01
A method and apparatus for comparing biological sequences from a known source of sequences, with a subject (query) sequence. The apparatus takes as input a set of target similarity levels (such as evolutionary distances in units of PAM), and finds all fragments of known sequences that are similar to the subject sequence at each target similarity level, and are long enough to be statistically significant. The invention device filters out fragments from the known sequences that are too short, or have a lower average similarity to the subject sequence than is required by each target similarity level. The subject sequence is then compared only to the remaining known sequences to find the best matches. The filtering member divides the subject sequence into overlapping blocks, each block being sufficiently large to contain a minimum-length alignment from a known sequence. For each block, the filter member compares the block with every possible short fragment in the known sequences and determines a best match for each comparison. The determined set of short fragment best matches for the block provide an upper threshold on alignment values. Regions of a certain length from the known sequences that have a mean alignment value upper threshold greater than a target unit score are concatenated to form a union. The current block is compared to the union and provides an indication of best local alignment with the subject sequence.
Maleki, Ehsan; Babashah, Hossein; Koohi, Somayyeh; Kavehvash, Zahra
2017-07-01
This paper presents an optical processing approach for exploring a large number of genome sequences. Specifically, we propose an optical correlator for global alignment and an extended moiré matching technique for local analysis of spatially coded DNA, whose output is fed to a novel three-dimensional artificial neural network for local DNA alignment. All-optical implementation of the proposed 3D artificial neural network is developed and its accuracy is verified in Zemax. Thanks to its parallel processing capability, the proposed structure performs local alignment of 4 million sequences of 150 base pairs in a few seconds, which is much faster than its electrical counterparts, such as the basic local alignment search tool.
Accelerated probabilistic inference of RNA structure evolution
Holmes, Ian
2005-01-01
Background Pairwise stochastic context-free grammars (Pair SCFGs) are powerful tools for evolutionary analysis of RNA, including simultaneous RNA sequence alignment and secondary structure prediction, but the associated algorithms are intensive in both CPU and memory usage. The same problem is faced by other RNA alignment-and-folding algorithms based on Sankoff's 1985 algorithm. It is therefore desirable to constrain such algorithms, by pre-processing the sequences and using this first pass to limit the range of structures and/or alignments that can be considered. Results We demonstrate how flexible classes of constraint can be imposed, greatly reducing the computational costs while maintaining a high quality of structural homology prediction. Any score-attributed context-free grammar (e.g. energy-based scoring schemes, or conditionally normalized Pair SCFGs) is amenable to this treatment. It is now possible to combine independent structural and alignment constraints of unprecedented general flexibility in Pair SCFG alignment algorithms. We outline several applications to the bioinformatics of RNA sequence and structure, including Waterman-Eggert N-best alignments and progressive multiple alignment. We evaluate the performance of the algorithm on test examples from the RFAM database. Conclusion A program, Stemloc, that implements these algorithms for efficient RNA sequence alignment and structure prediction is available under the GNU General Public License. PMID:15790387
Editing of the grapevine mitochondrial cytochrome b mRNA and molecular modeling of the protein.
Islas-Osuna, María A; Silva-Moreno, Begonia; Caceres-Carrizosa, Nidia; García-Robles, Jesús M; Sotelo-Mundo, Rogerio R; Yepiz-Plascencia, Gloria M
2006-05-01
Cytochrome b (COB), the central catalytic subunit of ubiquinol cytochrome c reductase, is a component of the transmembrane electron transfer chain that generates proton motive force. Some plant COB mRNAs are processed by RNA editing, which changes the gene coding sequence. This report presents the sequences of the grapevine (Vitis vinifera L.) mitochondrial gene for apocytochrome b (cob), the edited mRNA and the deduced protein. Grapevine COB is 393 amino acids long and is 98% identical to homologs in rapeseed, Arabidopsis thaliana and Oenothera sp. Twenty-one C-U editing sites were identified in the grapevine cob mRNA, resulting in 20 amino acid changes. These changes increase the overall hydrophobicity of the protein and result in a more conserved protein. Molecular modeling of grapevine COB shows that residues changed by RNA editing fit the secondary structure characteristic of an integral membrane protein. This is the first complete mitochondrial gene reported for grapevine. Novel RNA editing sites were identified in grapevine cob, which have not been previously reported for other plants.
Partial DNA-guided Cas9 enables genome editing with reduced off-target activity
Yin, Hao; Song, Chun-Qing; Suresh, Sneha; Kwan, Suet-Yan; Wu, Qiongqiong; Walsh, Stephen; Ding, Junmei; Bogorad, Roman L; Zhu, Lihua Julie; Wolfe, Scot A; Koteliansky, Victor; Xue, Wen; Langer, Robert; Anderson, Daniel G
2018-01-01
CRISPR–Cas9 is a versatile RNA-guided genome editing tool. Here we demonstrate that partial replacement of RNA nucleotides with DNA nucleotides in CRISPR RNA (crRNA) enables efficient gene editing in human cells. This strategy of partial DNA replacement retains on-target activity when used with both crRNA and sgRNA, as well as with multiple guide sequences. Partial DNA replacement also works for crRNA of Cpf1, another CRISPR system. We find that partial DNA replacement in the guide sequence significantly reduces off-target genome editing through focused analysis of off-target cleavage, measurement of mismatch tolerance and genome-wide profiling of off-target sites. Using the structure of the Cas9–sgRNA complex as a guide, the majority of the 3′ end of crRNA can be replaced with DNA nucleotide, and the 5 - and 3′-DNA-replaced crRNA enables efficient genome editing. Cas9 guided by a DNA–RNA chimera may provide a generalized strategy to reduce both the cost and the off-target genome editing in human cells. PMID:29377001
A 'new lease of life': FnCpf1 possesses DNA cleavage activity for genome editing in human cells.
Tu, Mengjun; Lin, Li; Cheng, Yilu; He, Xiubin; Sun, Huihui; Xie, Haihua; Fu, Junhao; Liu, Changbao; Li, Jin; Chen, Ding; Xi, Haitao; Xue, Dongyu; Liu, Qi; Zhao, Junzhao; Gao, Caixia; Song, Zongming; Qu, Jia; Gu, Feng
2017-11-02
Cpf1 nucleases were recently reported to be highly specific and programmable nucleases with efficiencies comparable to those of SpCas9. AsCpf1 and LbCpf1 require a single crRNA and recognize a 5'-TTTN-3' protospacer adjacent motif (PAM) at the 5' end of the protospacer for genome editing. For widespread application in precision site-specific human genome editing, the range of sequences that AsCpf1 and LbCpf1 can recognize is limited due to the size of this PAM. To address this limitation, we sought to identify a novel Cpf1 nuclease with simpler PAM requirements. Specifically, here we sought to test and engineer FnCpf1, one reported Cpf1 nuclease (FnCpf1) only requires 5'-TTN-3' as a PAM but does not exhibit detectable levels of nuclease-induced indels at certain locus in human cells. Surprisingly, we found that FnCpf1 possesses DNA cleavage activity in human cells at multiple loci. We also comprehensively and quantitatively examined various FnCpf1 parameters in human cells, including spacer sequence, direct repeat sequence and the PAM sequence. Our study identifies FnCpf1 as a new member of the Cpf1 family for human genome editing with distinctive characteristics, which shows promise as a genome editing tool with the potential for both research and therapeutic applications. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
A ‘new lease of life’: FnCpf1 possesses DNA cleavage activity for genome editing in human cells
Tu, Mengjun; Lin, Li; Cheng, Yilu; He, Xiubin; Sun, Huihui; Xie, Haihua; Fu, Junhao; Liu, Changbao; Li, Jin; Chen, Ding; Xi, Haitao; Xue, Dongyu; Liu, Qi; Zhao, Junzhao; Gao, Caixia; Song, Zongming; Qu, Jia
2017-01-01
Abstract Cpf1 nucleases were recently reported to be highly specific and programmable nucleases with efficiencies comparable to those of SpCas9. AsCpf1 and LbCpf1 require a single crRNA and recognize a 5′-TTTN-3′ protospacer adjacent motif (PAM) at the 5′ end of the protospacer for genome editing. For widespread application in precision site-specific human genome editing, the range of sequences that AsCpf1 and LbCpf1 can recognize is limited due to the size of this PAM. To address this limitation, we sought to identify a novel Cpf1 nuclease with simpler PAM requirements. Specifically, here we sought to test and engineer FnCpf1, one reported Cpf1 nuclease (FnCpf1) only requires 5′-TTN-3′ as a PAM but does not exhibit detectable levels of nuclease-induced indels at certain locus in human cells. Surprisingly, we found that FnCpf1 possesses DNA cleavage activity in human cells at multiple loci. We also comprehensively and quantitatively examined various FnCpf1 parameters in human cells, including spacer sequence, direct repeat sequence and the PAM sequence. Our study identifies FnCpf1 as a new member of the Cpf1 family for human genome editing with distinctive characteristics, which shows promise as a genome editing tool with the potential for both research and therapeutic applications. PMID:28977650
Mapping contacts between gRNA and mRNA in trypanosome RNA editing.
Leung, S S; Koslowsky, D J
1999-02-01
All guide RNAs (gRNAs) identified to date have defined 5' anchor sequences, guiding sequences and a non-encoded 3' uridylate tail. The 5' anchor is required for in vitro editing and is thought to be responsible for selection and binding to the pre-edited mRNA. Little is known, however, about how the gRNAs are used to direct RNA editing. Utilizing the photo-reactive crosslinking agent, azidophenacyl (APA), attached to the 5'- or 3'-terminus of the gRNA, we have begun to map the structural relationships between the different defined regions of the gRNA with the pre-edited mRNA. Analyses of crosslinked conjugates produced with a 5'-terminal APA group confirm that the anchor of the gRNA is correctly positioning the interacting molecules. 3' Crosslinks (X-linker placed at the 3'-end of a U10tail) have also been mapped for three different gRNA/mRNA pairs. In all cases, analyses indicate that the U-tail can interact with a range of nucleotides located upstream of the first edited site. It appears that the U-tail prefers purine-rich sites, close to the first few editing sites. These results suggest that the U-tail may act in concert with the anchor to melt out secondary structure in the mRNA in the immediate editing domain, possibly increasing the accessibility of the editing complex to the proper editing sites.
SW#db: GPU-Accelerated Exact Sequence Similarity Database Search.
Korpar, Matija; Šošić, Martin; Blažeka, Dino; Šikić, Mile
2015-01-01
In recent years we have witnessed a growth in sequencing yield, the number of samples sequenced, and as a result-the growth of publicly maintained sequence databases. The increase of data present all around has put high requirements on protein similarity search algorithms with two ever-opposite goals: how to keep the running times acceptable while maintaining a high-enough level of sensitivity. The most time consuming step of similarity search are the local alignments between query and database sequences. This step is usually performed using exact local alignment algorithms such as Smith-Waterman. Due to its quadratic time complexity, alignments of a query to the whole database are usually too slow. Therefore, the majority of the protein similarity search methods prior to doing the exact local alignment apply heuristics to reduce the number of possible candidate sequences in the database. However, there is still a need for the alignment of a query sequence to a reduced database. In this paper we present the SW#db tool and a library for fast exact similarity search. Although its running times, as a standalone tool, are comparable to the running times of BLAST, it is primarily intended to be used for exact local alignment phase in which the database of sequences has already been reduced. It uses both GPU and CPU parallelization and was 4-5 times faster than SSEARCH, 6-25 times faster than CUDASW++ and more than 20 times faster than SSW at the time of writing, using multiple queries on Swiss-prot and Uniref90 databases.
Li, Yang; Chen, Daipeng; Qi, Zhaomei; Wang, Qinhu; Wang, Jianhua; Jiang, Cong; Xu, Jin-Rong
2017-01-01
Although fungi lack adenosine deaminase acting on RNA (ADAR) enzymes, adenosine to inosine (A-to-I) RNA editing was reported recently in Fusarium graminearum during sexual reproduction. In this study, we profiled the A-to-I editing landscape and characterized its functional and adaptive properties in the model filamentous fungus Neurospora crassa. A total of 40,677 A-to-I editing sites were identified, and approximately half of them displayed stage-specific editing or editing levels at different sexual stages. RNA-sequencing analysis with the Δstc-1 and Δsad-1 mutants confirmed A-to-I editing occurred before ascus development but became more prevalent during ascosporogenesis. Besides fungal-specific sequence and secondary structure preference, 63.5% of A-to-I editing sites were in the coding regions and 81.3% of them resulted in nonsynonymous recoding, resulting in a significant increase in the proteome complexity. Many genes involved in RNA silencing, DNA methylation, and histone modifications had extensive recoding, including sad-1, sms-3, qde-1, and dim-2. Fifty pseudogenes harbor premature stop codons that require A-to-I editing to encode full-length proteins. Unlike in humans, nonsynonymous editing events in N. crassa are generally beneficial and favored by positive selection. Almost half of the nonsynonymous editing sites in N. crassa are conserved and edited in Neurospora tetrasperma. Furthermore, hundreds of them are conserved in F. graminearum and had higher editing levels. Two unknown genes with editing sites conserved between Neurospora and Fusarium were experimentally shown to be important for ascosporogenesis. This study comprehensively analyzed A-to-I editing in N. crassa and showed that RNA editing is stage-specific and generally adaptive, and may be functionally related to repeat induced point mutation and meiotic silencing by unpaired DNA. PMID:28847945
Improve homology search sensitivity of PacBio data by correcting frameshifts.
Du, Nan; Sun, Yanni
2016-09-01
Single-molecule, real-time sequencing (SMRT) developed by Pacific BioSciences produces longer reads than secondary generation sequencing technologies such as Illumina. The long read length enables PacBio sequencing to close gaps in genome assembly, reveal structural variations, and identify gene isoforms with higher accuracy in transcriptomic sequencing. However, PacBio data has high sequencing error rate and most of the errors are insertion or deletion errors. During alignment-based homology search, insertion or deletion errors in genes will cause frameshifts and may only lead to marginal alignment scores and short alignments. As a result, it is hard to distinguish true alignments from random alignments and the ambiguity will incur errors in structural and functional annotation. Existing frameshift correction tools are designed for data with much lower error rate and are not optimized for PacBio data. As an increasing number of groups are using SMRT, there is an urgent need for dedicated homology search tools for PacBio data. In this work, we introduce Frame-Pro, a profile homology search tool for PacBio reads. Our tool corrects sequencing errors and also outputs the profile alignments of the corrected sequences against characterized protein families. We applied our tool to both simulated and real PacBio data. The results showed that our method enables more sensitive homology search, especially for PacBio data sets of low sequencing coverage. In addition, we can correct more errors when comparing with a popular error correction tool that does not rely on hybrid sequencing. The source code is freely available at https://sourceforge.net/projects/frame-pro/ yannisun@msu.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuiken, Carla; Foley, Brian; Leitner, Thomas
This compendium is an annual printed summary of the data contained in the HIV sequence database. In these compendia we try to present a judicious selection of the data in such a way that it is of maximum utility to HIV researchers. Each of the alignments attempts to display the genetic variability within the different species, groups and subtypes of the virus. This compendium contains sequences published before January 1, 2010. Hence, though it is called the 2010 Compendium, its contents correspond to the 2009 curated alignments on our website. The number of sequences in the HIV database is stillmore » increasing exponentially. In total, at the time of printing, there were 339,306 sequences in the HIV Sequence Database, an increase of 45% since last year. The number of near complete genomes (>7000 nucleotides) increased to 2576 by end of 2009, reflecting a smaller increase than in previous years. However, as in previous years, the compendium alignments contain only a small fraction of these. Included in the alignments are a small number of sequences representing each of the subtypes and the more prevalent circulating recombinant forms (CRFs) such as 01 and 02, as well as a few outgroup sequences (group O and N and SIV-CPZ). Of the rarer CRFs we included one representative each. A more complete version of all alignments is available on our website, http://www.hiv.lanl.gov/content/sequence/NEWALIGN/align.html. Reprints are available from our website in the form of both HTML and PDF files. As always, we are open to complaints and suggestions for improvement. Inquiries and comments regarding the compendium should be addressed to seq-info@lanl.gov.« less
Optimization of sequence alignment for simple sequence repeat regions.
Jighly, Abdulqader; Hamwieh, Aladdin; Ogbonnaya, Francis C
2011-07-20
Microsatellites, or simple sequence repeats (SSRs), are tandemly repeated DNA sequences, including tandem copies of specific sequences no longer than six bases, that are distributed in the genome. SSR has been used as a molecular marker because it is easy to detect and is used in a range of applications, including genetic diversity, genome mapping, and marker assisted selection. It is also very mutable because of slipping in the DNA polymerase during DNA replication. This unique mutation increases the insertion/deletion (INDELs) mutation frequency to a high ratio - more than other types of molecular markers such as single nucleotide polymorphism (SNPs).SNPs are more frequent than INDELs. Therefore, all designed algorithms for sequence alignment fit the vast majority of the genomic sequence without considering microsatellite regions, as unique sequences that require special consideration. The old algorithm is limited in its application because there are many overlaps between different repeat units which result in false evolutionary relationships. To overcome the limitation of the aligning algorithm when dealing with SSR loci, a new algorithm was developed using PERL script with a Tk graphical interface. This program is based on aligning sequences after determining the repeated units first, and the last SSR nucleotides positions. This results in a shifting process according to the inserted repeated unit type.When studying the phylogenic relations before and after applying the new algorithm, many differences in the trees were obtained by increasing the SSR length and complexity. However, less distance between different linage had been observed after applying the new algorithm. The new algorithm produces better estimates for aligning SSR loci because it reflects more reliable evolutionary relations between different linages. It reduces overlapping during SSR alignment, which results in a more realistic phylogenic relationship.
Dunbrack, Roland L.
2012-01-01
Motivation: Automating the assignment of existing domain and protein family classifications to new sets of sequences is an important task. Current methods often miss assignments because remote relationships fail to achieve statistical significance. Some assignments are not as long as the actual domain definitions because local alignment methods often cut alignments short. Long insertions in query sequences often erroneously result in two copies of the domain assigned to the query. Divergent repeat sequences in proteins are often missed. Results: We have developed a multilevel procedure to produce nearly complete assignments of protein families of an existing classification system to a large set of sequences. We apply this to the task of assigning Pfam domains to sequences and structures in the Protein Data Bank (PDB). We found that HHsearch alignments frequently scored more remotely related Pfams in Pfam clans higher than closely related Pfams, thus, leading to erroneous assignment at the Pfam family level. A greedy algorithm allowing for partial overlaps was, thus, applied first to sequence/HMM alignments, then HMM–HMM alignments and then structure alignments, taking care to join partial alignments split by large insertions into single-domain assignments. Additional assignment of repeat Pfams with weaker E-values was allowed after stronger assignments of the repeat HMM. Our database of assignments, presented in a database called PDBfam, contains Pfams for 99.4% of chains >50 residues. Availability: The Pfam assignment data in PDBfam are available at http://dunbrack2.fccc.edu/ProtCid/PDBfam, which can be searched by PDB codes and Pfam identifiers. They will be updated regularly. Contact: Roland.Dunbracks@fccc.edu PMID:22942020
pyPaSWAS: Python-based multi-core CPU and GPU sequence alignment.
Warris, Sven; Timal, N Roshan N; Kempenaar, Marcel; Poortinga, Arne M; van de Geest, Henri; Varbanescu, Ana L; Nap, Jan-Peter
2018-01-01
Our previously published CUDA-only application PaSWAS for Smith-Waterman (SW) sequence alignment of any type of sequence on NVIDIA-based GPUs is platform-specific and therefore adopted less than could be. The OpenCL language is supported more widely and allows use on a variety of hardware platforms. Moreover, there is a need to promote the adoption of parallel computing in bioinformatics by making its use and extension more simple through more and better application of high-level languages commonly used in bioinformatics, such as Python. The novel application pyPaSWAS presents the parallel SW sequence alignment code fully packed in Python. It is a generic SW implementation running on several hardware platforms with multi-core systems and/or GPUs that provides accurate sequence alignments that also can be inspected for alignment details. Additionally, pyPaSWAS support the affine gap penalty. Python libraries are used for automated system configuration, I/O and logging. This way, the Python environment will stimulate further extension and use of pyPaSWAS. pyPaSWAS presents an easy Python-based environment for accurate and retrievable parallel SW sequence alignments on GPUs and multi-core systems. The strategy of integrating Python with high-performance parallel compute languages to create a developer- and user-friendly environment should be considered for other computationally intensive bioinformatics algorithms.
Two Influential Primate Classifications Logically Aligned
Franz, Nico M.; Pier, Naomi M.; Reeder, Deeann M.; Chen, Mingmin; Yu, Shizhuo; Kianmajd, Parisa; Bowers, Shawn; Ludäscher, Bertram
2016-01-01
Classifications and phylogenies of perceived natural entities change in the light of new evidence. Taxonomic changes, translated into Code-compliant names, frequently lead to name:meaning dissociations across succeeding treatments. Classification standards such as the Mammal Species of the World (MSW) may experience significant levels of taxonomic change from one edition to the next, with potential costs to long-term, large-scale information integration. This circumstance challenges the biodiversity and phylogenetic data communities to express taxonomic congruence and incongruence in ways that both humans and machines can process, that is, to logically represent taxonomic alignments across multiple classifications. We demonstrate that such alignments are feasible for two classifications of primates corresponding to the second and third MSW editions. Our approach has three main components: (i) use of taxonomic concept labels, that is name sec. author (where sec. means according to), to assemble each concept hierarchy separately via parent/child relationships; (ii) articulation of select concepts across the two hierarchies with user-provided Region Connection Calculus (RCC-5) relationships; and (iii) the use of an Answer Set Programming toolkit to infer and visualize logically consistent alignments of these input constraints. Our use case entails the Primates sec. Groves (1993; MSW2–317 taxonomic concepts; 233 at the species level) and Primates sec. Groves (2005; MSW3–483 taxonomic concepts; 376 at the species level). Using 402 RCC-5 input articulations, the reasoning process yields a single, consistent alignment and 153,111 Maximally Informative Relations that constitute a comprehensive meaning resolution map for every concept pair in the Primates sec. MSW2/MSW3. The complete alignment, and various partitions thereof, facilitate quantitative analyses of name:meaning dissociation, revealing that nearly one in three taxonomic names are not reliable across treatments—in the sense of the same name identifying congruent taxonomic meanings. The RCC-5 alignment approach is potentially widely applicable in systematics and can achieve scalable, precise resolution of semantically evolving name usages in synthetic, next-generation biodiversity, and phylogeny data platforms. PMID:27009895
Wan, Shixiang; Zou, Quan
2017-01-01
Multiple sequence alignment (MSA) plays a key role in biological sequence analyses, especially in phylogenetic tree construction. Extreme increase in next-generation sequencing results in shortage of efficient ultra-large biological sequence alignment approaches for coping with different sequence types. Distributed and parallel computing represents a crucial technique for accelerating ultra-large (e.g. files more than 1 GB) sequence analyses. Based on HAlign and Spark distributed computing system, we implement a highly cost-efficient and time-efficient HAlign-II tool to address ultra-large multiple biological sequence alignment and phylogenetic tree construction. The experiments in the DNA and protein large scale data sets, which are more than 1GB files, showed that HAlign II could save time and space. It outperformed the current software tools. HAlign-II can efficiently carry out MSA and construct phylogenetic trees with ultra-large numbers of biological sequences. HAlign-II shows extremely high memory efficiency and scales well with increases in computing resource. THAlign-II provides a user-friendly web server based on our distributed computing infrastructure. HAlign-II with open-source codes and datasets was established at http://lab.malab.cn/soft/halign.
CLAST: CUDA implemented large-scale alignment search tool.
Yano, Masahiro; Mori, Hiroshi; Akiyama, Yutaka; Yamada, Takuji; Kurokawa, Ken
2014-12-11
Metagenomics is a powerful methodology to study microbial communities, but it is highly dependent on nucleotide sequence similarity searching against sequence databases. Metagenomic analyses with next-generation sequencing technologies produce enormous numbers of reads from microbial communities, and many reads are derived from microbes whose genomes have not yet been sequenced, limiting the usefulness of existing sequence similarity search tools. Therefore, there is a clear need for a sequence similarity search tool that can rapidly detect weak similarity in large datasets. We developed a tool, which we named CLAST (CUDA implemented large-scale alignment search tool), that enables analyses of millions of reads and thousands of reference genome sequences, and runs on NVIDIA Fermi architecture graphics processing units. CLAST has four main advantages over existing alignment tools. First, CLAST was capable of identifying sequence similarities ~80.8 times faster than BLAST and 9.6 times faster than BLAT. Second, CLAST executes global alignment as the default (local alignment is also an option), enabling CLAST to assign reads to taxonomic and functional groups based on evolutionarily distant nucleotide sequences with high accuracy. Third, CLAST does not need a preprocessed sequence database like Burrows-Wheeler Transform-based tools, and this enables CLAST to incorporate large, frequently updated sequence databases. Fourth, CLAST requires <2 GB of main memory, making it possible to run CLAST on a standard desktop computer or server node. CLAST achieved very high speed (similar to the Burrows-Wheeler Transform-based Bowtie 2 for long reads) and sensitivity (equal to BLAST, BLAT, and FR-HIT) without the need for extensive database preprocessing or a specialized computing platform. Our results demonstrate that CLAST has the potential to be one of the most powerful and realistic approaches to analyze the massive amount of sequence data from next-generation sequencing technologies.
Comparative modeling without implicit sequence alignments.
Kolinski, Andrzej; Gront, Dominik
2007-10-01
The number of known protein sequences is about thousand times larger than the number of experimentally solved 3D structures. For more than half of the protein sequences a close or distant structural analog could be identified. The key starting point in a classical comparative modeling is to generate the best possible sequence alignment with a template or templates. With decreasing sequence similarity, the number of errors in the alignments increases and these errors are the main causes of the decreasing accuracy of the molecular models generated. Here we propose a new approach to comparative modeling, which does not require the implicit alignment - the model building phase explores geometric, evolutionary and physical properties of a template (or templates). The proposed method requires prior identification of a template, although the initial sequence alignment is ignored. The model is built using a very efficient reduced representation search engine CABS to find the best possible superposition of the query protein onto the template represented as a 3D multi-featured scaffold. The criteria used include: sequence similarity, predicted secondary structure consistency, local geometric features and hydrophobicity profile. For more difficult cases, the new method qualitatively outperforms existing schemes of comparative modeling. The algorithm unifies de novo modeling, 3D threading and sequence-based methods. The main idea is general and could be easily combined with other efficient modeling tools as Rosetta, UNRES and others.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foley, Brian Thomas; Leitner, Thomas Kenneth; Apetrei, Cristian
This compendium is an annual printed summary of the data contained in the HIV sequence database. We try to present a judicious selection of the data in such a way that it is of maximum utility to HIV researchers. Each of the alignments attempts to display the genetic variability within the different species, groups and subtypes of the virus. This compendium contains sequences published before January 1, 2015. Hence, though it is published in 2015 and called the 2015 Compendium, its contents correspond to the 2014 curated alignments on our website. The number of sequences in the HIV database ismore » still increasing. In total, at the end of 2014, there were 624,121 sequences in the HIV Sequence Database, an increase of 7% since the previous year. This is the first year that the number of new sequences added to the database has decreased compared to the previous year. The number of near complete genomes (>7000 nucleotides) increased to 5834 by end of 2014. However, as in previous years, the compendium alignments contain only a fraction of these. A more complete version of all alignments is available on our website, http://www.hiv.lanl.gov/ content/sequence/NEWALIGN/align.html As always, we are open to complaints and suggestions for improvement. Inquiries and comments regarding the compendium should be addressed to seq-info@lanl.gov.« less
Rapid Threat Organism Recognition Pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Kelly P.; Solberg, Owen D.; Schoeniger, Joseph S.
2013-05-07
The RAPTOR computational pipeline identifies microbial nucleic acid sequences present in sequence data from clinical samples. It takes as input raw short-read genomic sequence data (in particular, the type generated by the Illumina sequencing platforms) and outputs taxonomic evaluation of detected microbes in various human-readable formats. This software was designed to assist in the diagnosis or characterization of infectious disease, by detecting pathogen sequences in nucleic acid sequence data from clinical samples. It has also been applied in the detection of algal pathogens, when algal biofuel ponds became unproductive. RAPTOR first trims and filters genomic sequence reads based on qualitymore » and related considerations, then performs a quick alignment to the human (or other host) genome to filter out host sequences, then performs a deeper search against microbial genomes. Alignment to a protein sequence database is optional. Alignment results are summarized and placed in a taxonomic framework using the Lowest Common Ancestor algorithm.« less
PARTS: Probabilistic Alignment for RNA joinT Secondary structure prediction
Harmanci, Arif Ozgun; Sharma, Gaurav; Mathews, David H.
2008-01-01
A novel method is presented for joint prediction of alignment and common secondary structures of two RNA sequences. The joint consideration of common secondary structures and alignment is accomplished by structural alignment over a search space defined by the newly introduced motif called matched helical regions. The matched helical region formulation generalizes previously employed constraints for structural alignment and thereby better accommodates the structural variability within RNA families. A probabilistic model based on pseudo free energies obtained from precomputed base pairing and alignment probabilities is utilized for scoring structural alignments. Maximum a posteriori (MAP) common secondary structures, sequence alignment and joint posterior probabilities of base pairing are obtained from the model via a dynamic programming algorithm called PARTS. The advantage of the more general structural alignment of PARTS is seen in secondary structure predictions for the RNase P family. For this family, the PARTS MAP predictions of secondary structures and alignment perform significantly better than prior methods that utilize a more restrictive structural alignment model. For the tRNA and 5S rRNA families, the richer structural alignment model of PARTS does not offer a benefit and the method therefore performs comparably with existing alternatives. For all RNA families studied, the posterior probability estimates obtained from PARTS offer an improvement over posterior probability estimates from a single sequence prediction. When considering the base pairings predicted over a threshold value of confidence, the combination of sensitivity and positive predictive value is superior for PARTS than for the single sequence prediction. PARTS source code is available for download under the GNU public license at http://rna.urmc.rochester.edu. PMID:18304945
Is multiple-sequence alignment required for accurate inference of phylogeny?
Höhl, Michael; Ragan, Mark A
2007-04-01
The process of inferring phylogenetic trees from molecular sequences almost always starts with a multiple alignment of these sequences but can also be based on methods that do not involve multiple sequence alignment. Very little is known about the accuracy with which such alignment-free methods recover the correct phylogeny or about the potential for increasing their accuracy. We conducted a large-scale comparison of ten alignment-free methods, among them one new approach that does not calculate distances and a faster variant of our pattern-based approach; all distance-based alignment-free methods are freely available from http://www.bioinformatics.org.au (as Python package decaf+py). We show that most methods exhibit a higher overall reconstruction accuracy in the presence of high among-site rate variation. Under all conditions that we considered, variants of the pattern-based approach were significantly better than the other alignment-free methods. The new pattern-based variant achieved a speed-up of an order of magnitude in the distance calculation step, accompanied by a small loss of tree reconstruction accuracy. A method of Bayesian inference from k-mers did not improve on classical alignment-free (and distance-based) methods but may still offer other advantages due to its Bayesian nature. We found the optimal word length k of word-based methods to be stable across various data sets, and we provide parameter ranges for two different alphabets. The influence of these alphabets was analyzed to reveal a trade-off in reconstruction accuracy between long and short branches. We have mapped the phylogenetic accuracy for many alignment-free methods, among them several recently introduced ones, and increased our understanding of their behavior in response to biologically important parameters. In all experiments, the pattern-based approach emerged as superior, at the expense of higher resource consumption. Nonetheless, no alignment-free method that we examined recovers the correct phylogeny as accurately as does an approach based on maximum-likelihood distance estimates of multiply aligned sequences.
Clustalnet: the joining of Clustal and CORBA.
Campagne, F
2000-07-01
Performing sequence alignment operations from a different program than the original sequence alignment code, and/or through a network connection, is often required. Interactive alignment editors and large-scale biological data analysis are common examples where such a flexibility is important. Interoperability between the alignment engine and the client should be obtained regardless of the architectures and programming languages of the server and client. Clustalnet, a Clustal alignment CORBA server is described, which was developed on the basis of Clustalw. This server brings the robustness of the algorithms and implementations of Clustal to a new level of reuse. A Clustalnet server object can be accessed from a program, transparently through the network. We present interfaces to perform the alignment operations and to control these operations via immutable contexts. The interfaces that select the contexts do not depend on the nature of the operation to be performed, making the design modular. The IDL interfaces presented here are not specific to Clustal and can be implemented on top of different sequence alignment algorithm implementations.
Modular and configurable optimal sequence alignment software: Cola.
Zamani, Neda; Sundström, Görel; Höppner, Marc P; Grabherr, Manfred G
2014-01-01
The fundamental challenge in optimally aligning homologous sequences is to define a scoring scheme that best reflects the underlying biological processes. Maximising the overall number of matches in the alignment does not always reflect the patterns by which nucleotides mutate. Efficiently implemented algorithms that can be parameterised to accommodate more complex non-linear scoring schemes are thus desirable. We present Cola, alignment software that implements different optimal alignment algorithms, also allowing for scoring contiguous matches of nucleotides in a nonlinear manner. The latter places more emphasis on short, highly conserved motifs, and less on the surrounding nucleotides, which can be more diverged. To illustrate the differences, we report results from aligning 14,100 sequences from 3' untranslated regions of human genes to 25 of their mammalian counterparts, where we found that a nonlinear scoring scheme is more consistent than a linear scheme in detecting short, conserved motifs. Cola is freely available under LPGL from https://github.com/nedaz/cola.
Ranwez, Vincent
2016-01-01
Multiple sequence alignment (MSA) is a crucial step in many molecular analyses and many MSA tools have been developed. Most of them use a greedy approach to construct a first alignment that is then refined by optimizing the sum of pair score (SP-score). The SP-score estimation is thus a bottleneck for most MSA tools since it is repeatedly required and is time consuming. Given an alignment of n sequences and L sites, I introduce here optimized solutions reaching O(nL) time complexity for affine gap cost, instead of O(n2L), which are easy to implement.
Genome-editing Technologies for Gene and Cell Therapy.
Maeder, Morgan L; Gersbach, Charles A
2016-03-01
Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed.
Genome-editing Technologies for Gene and Cell Therapy
Maeder, Morgan L; Gersbach, Charles A
2016-01-01
Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed. PMID:26755333
Singh, Aditya; Bhatia, Prateek
2016-12-01
Sanger sequencing platforms, such as applied biosystems instruments, generate chromatogram files. Generally, for 1 region of a sequence, we use both forward and reverse primers to sequence that area, in that way, we have 2 sequences that need to be aligned and a consensus generated before mutation detection studies. This work is cumbersome and takes time, especially if the gene is large with many exons. Hence, we devised a rapid automated command system to filter, build, and align consensus sequences and also optionally extract exonic regions, translate them in all frames, and perform an amino acid alignment starting from raw sequence data within a very short time. In full capabilities of Automated Mutation Analysis Pipeline (ASAP), it is able to read "*.ab1" chromatogram files through command line interface, convert it to the FASTQ format, trim the low-quality regions, reverse-complement the reverse sequence, create a consensus sequence, extract the exonic regions using a reference exonic sequence, translate the sequence in all frames, and align the nucleic acid and amino acid sequences to reference nucleic acid and amino acid sequences, respectively. All files are created and can be used for further analysis. ASAP is available as Python 3.x executable at https://github.com/aditya-88/ASAP. The version described in this paper is 0.28.
Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm.
Rani, R Ranjani; Ramyachitra, D
2016-12-01
Multiple sequence alignment (MSA) is a widespread approach in computational biology and bioinformatics. MSA deals with how the sequences of nucleotides and amino acids are sequenced with possible alignment and minimum number of gaps between them, which directs to the functional, evolutionary and structural relationships among the sequences. Still the computation of MSA is a challenging task to provide an efficient accuracy and statistically significant results of alignments. In this work, the Bacterial Foraging Optimization Algorithm was employed to align the biological sequences which resulted in a non-dominated optimal solution. It employs Multi-objective, such as: Maximization of Similarity, Non-gap percentage, Conserved blocks and Minimization of gap penalty. BAliBASE 3.0 benchmark database was utilized to examine the proposed algorithm against other methods In this paper, two algorithms have been proposed: Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC) and Bacterial Foraging Optimization Algorithm. It was found that Hybrid Genetic Algorithm with Artificial Bee Colony performed better than the existing optimization algorithms. But still the conserved blocks were not obtained using GA-ABC. Then BFO was used for the alignment and the conserved blocks were obtained. The proposed Multi-Objective Bacterial Foraging Optimization Algorithm (MO-BFO) was compared with widely used MSA methods Clustal Omega, Kalign, MUSCLE, MAFFT, Genetic Algorithm (GA), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC). The final results show that the proposed MO-BFO algorithm yields better alignment than most widely used methods. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A-to-I RNA Editing Contributes to Proteomic Diversity in Cancer. | Office of Cancer Genomics
Adenosine (A) to inosine (I) RNA editing introduces many nucleotide changes in cancer transcriptomes. However, due to the complexity of post-transcriptional regulation, the contribution of RNA editing to proteomic diversity in human cancers remains unclear. Here, we performed an integrated analysis of TCGA genomic data and CPTAC proteomic data. Despite limited site diversity, we demonstrate that A-to-I RNA editing contributes to proteomic diversity in breast cancer through changes in amino acid sequences. We validate the presence of editing events at both RNA and protein levels.
Fast and accurate phylogeny reconstruction using filtered spaced-word matches
Sohrabi-Jahromi, Salma; Morgenstern, Burkhard
2017-01-01
Abstract Motivation: Word-based or ‘alignment-free’ algorithms are increasingly used for phylogeny reconstruction and genome comparison, since they are much faster than traditional approaches that are based on full sequence alignments. Existing alignment-free programs, however, are less accurate than alignment-based methods. Results: We propose Filtered Spaced Word Matches (FSWM), a fast alignment-free approach to estimate phylogenetic distances between large genomic sequences. For a pre-defined binary pattern of match and don’t-care positions, FSWM rapidly identifies spaced word-matches between input sequences, i.e. gap-free local alignments with matching nucleotides at the match positions and with mismatches allowed at the don’t-care positions. We then estimate the number of nucleotide substitutions per site by considering the nucleotides aligned at the don’t-care positions of the identified spaced-word matches. To reduce the noise from spurious random matches, we use a filtering procedure where we discard all spaced-word matches for which the overall similarity between the aligned segments is below a threshold. We show that our approach can accurately estimate substitution frequencies even for distantly related sequences that cannot be analyzed with existing alignment-free methods; phylogenetic trees constructed with FSWM distances are of high quality. A program run on a pair of eukaryotic genomes of a few hundred Mb each takes a few minutes. Availability and Implementation: The program source code for FSWM including a documentation, as well as the software that we used to generate artificial genome sequences are freely available at http://fswm.gobics.de/ Contact: chris.leimeister@stud.uni-goettingen.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28073754
Fast and accurate phylogeny reconstruction using filtered spaced-word matches.
Leimeister, Chris-André; Sohrabi-Jahromi, Salma; Morgenstern, Burkhard
2017-04-01
Word-based or 'alignment-free' algorithms are increasingly used for phylogeny reconstruction and genome comparison, since they are much faster than traditional approaches that are based on full sequence alignments. Existing alignment-free programs, however, are less accurate than alignment-based methods. We propose Filtered Spaced Word Matches (FSWM) , a fast alignment-free approach to estimate phylogenetic distances between large genomic sequences. For a pre-defined binary pattern of match and don't-care positions, FSWM rapidly identifies spaced word-matches between input sequences, i.e. gap-free local alignments with matching nucleotides at the match positions and with mismatches allowed at the don't-care positions. We then estimate the number of nucleotide substitutions per site by considering the nucleotides aligned at the don't-care positions of the identified spaced-word matches. To reduce the noise from spurious random matches, we use a filtering procedure where we discard all spaced-word matches for which the overall similarity between the aligned segments is below a threshold. We show that our approach can accurately estimate substitution frequencies even for distantly related sequences that cannot be analyzed with existing alignment-free methods; phylogenetic trees constructed with FSWM distances are of high quality. A program run on a pair of eukaryotic genomes of a few hundred Mb each takes a few minutes. The program source code for FSWM including a documentation, as well as the software that we used to generate artificial genome sequences are freely available at http://fswm.gobics.de/. chris.leimeister@stud.uni-goettingen.de. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
Alverson, Andrew J.; Wei, XiaoXin; Rice, Danny W.; Stern, David B.; Barry, Kerrie; Palmer, Jeffrey D.
2010-01-01
The mitochondrial genomes of seed plants are unusually large and vary in size by at least an order of magnitude. Much of this variation occurs within a single family, the Cucurbitaceae, whose genomes range from an estimated 390 to 2,900 kb in size. We sequenced the mitochondrial genomes of Citrullus lanatus (watermelon: 379,236 nt) and Cucurbita pepo (zucchini: 982,833 nt)—the two smallest characterized cucurbit mitochondrial genomes—and determined their RNA editing content. The relatively compact Citrullus mitochondrial genome actually contains more and longer genes and introns, longer segmental duplications, and more discernibly nuclear-derived DNA. The large size of the Cucurbita mitochondrial genome reflects the accumulation of unprecedented amounts of both chloroplast sequences (>113 kb) and short repeated sequences (>370 kb). A low mutation rate has been hypothesized to underlie increases in both genome size and RNA editing frequency in plant mitochondria. However, despite its much larger genome, Cucurbita has a significantly higher synonymous substitution rate (and presumably mutation rate) than Citrullus but comparable levels of RNA editing. The evolution of mutation rate, genome size, and RNA editing are apparently decoupled in Cucurbitaceae, reflecting either simple stochastic variation or governance by different factors. PMID:20118192
Geiss, K T; Abbas, G M; Makaroff, C A
1994-04-01
The mitochondrial gene coding for subunit 4 of the NADH dehydrogenase complex I (nad4) has been isolated and characterized from lettuce, Lactuca sativa. Analysis of nad4 genes in a number of plants by Southern hybridization had previously suggested that the intron content varied between species. Characterization of the lettuce gene confirms this observation. Lettuce nad4 contains two exons and one group IIA intron, whereas previously sequenced nad4 genes from turnip and wheat contain three group IIA introns. Northern analysis identified a transcript of 1600 nucleotides, which represents the mature nad4 mRNA and a primary transcript of 3200 nucleotides. Sequence analysis of lettuce and turnip nad4 cDNAs was used to confirm the intron/exon border sequences and to examine RNA editing patterns. Editing is observed at the 5' and 3' ends of the lettuce transcript, but is absent from sequences that correspond to exons two, three and the 5' end of exon four in turnip and wheat. In contrast, turnip transcripts are highly edited in this region, suggesting that homologous recombination of an edited and spliced cDNA intermediate was involved in the loss of introns two and three from an ancestral lettuce nad4 gene.
SVM-dependent pairwise HMM: an application to protein pairwise alignments.
Orlando, Gabriele; Raimondi, Daniele; Khan, Taushif; Lenaerts, Tom; Vranken, Wim F
2017-12-15
Methods able to provide reliable protein alignments are crucial for many bioinformatics applications. In the last years many different algorithms have been developed and various kinds of information, from sequence conservation to secondary structure, have been used to improve the alignment performances. This is especially relevant for proteins with highly divergent sequences. However, recent works suggest that different features may have different importance in diverse protein classes and it would be an advantage to have more customizable approaches, capable to deal with different alignment definitions. Here we present Rigapollo, a highly flexible pairwise alignment method based on a pairwise HMM-SVM that can use any type of information to build alignments. Rigapollo lets the user decide the optimal features to align their protein class of interest. It outperforms current state of the art methods on two well-known benchmark datasets when aligning highly divergent sequences. A Python implementation of the algorithm is available at http://ibsquare.be/rigapollo. wim.vranken@vub.be. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Harnessing CRISPR-Cas systems for bacterial genome editing.
Selle, Kurt; Barrangou, Rodolphe
2015-04-01
Manipulation of genomic sequences facilitates the identification and characterization of key genetic determinants in the investigation of biological processes. Genome editing via clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) constitutes a next-generation method for programmable and high-throughput functional genomics. CRISPR-Cas systems are readily reprogrammed to induce sequence-specific DNA breaks at target loci, resulting in fixed mutations via host-dependent DNA repair mechanisms. Although bacterial genome editing is a relatively unexplored and underrepresented application of CRISPR-Cas systems, recent studies provide valuable insights for the widespread future implementation of this technology. This review summarizes recent progress in bacterial genome editing and identifies fundamental genetic and phenotypic outcomes of CRISPR targeting in bacteria, in the context of tool development, genome homeostasis, and DNA repair. Copyright © 2015 Elsevier Ltd. All rights reserved.
Xu, Duo; Jaber, Yousef; Pavlidis, Pavlos; Gokcumen, Omer
2017-09-26
Constructing alignments and phylogenies for a given locus from large genome sequencing studies with relevant outgroups allow novel evolutionary and anthropological insights. However, no user-friendly tool has been developed to integrate thousands of recently available and anthropologically relevant genome sequences to construct complete sequence alignments and phylogenies. Here, we provide VCFtoTree, a user friendly tool with a graphical user interface that directly accesses online databases to download, parse and analyze genome variation data for regions of interest. Our pipeline combines popular sequence datasets and tree building algorithms with custom data parsing to generate accurate alignments and phylogenies using all the individuals from the 1000 Genomes Project, Neanderthal and Denisovan genomes, as well as reference genomes of Chimpanzee and Rhesus Macaque. It can also be applied to other phased human genomes, as well as genomes from other species. The output of our pipeline includes an alignment in FASTA format and a tree file in newick format. VCFtoTree fulfills the increasing demand for constructing alignments and phylogenies for a given loci from thousands of available genomes. Our software provides a user friendly interface for a wider audience without prerequisite knowledge in programming. VCFtoTree can be accessed from https://github.com/duoduoo/VCFtoTree_3.0.0 .
Treangen, Todd J; Ondov, Brian D; Koren, Sergey; Phillippy, Adam M
2014-01-01
Whole-genome sequences are now available for many microbial species and clades, however existing whole-genome alignment methods are limited in their ability to perform sequence comparisons of multiple sequences simultaneously. Here we present the Harvest suite of core-genome alignment and visualization tools for the rapid and simultaneous analysis of thousands of intraspecific microbial strains. Harvest includes Parsnp, a fast core-genome multi-aligner, and Gingr, a dynamic visual platform. Together they provide interactive core-genome alignments, variant calls, recombination detection, and phylogenetic trees. Using simulated and real data we demonstrate that our approach exhibits unrivaled speed while maintaining the accuracy of existing methods. The Harvest suite is open-source and freely available from: http://github.com/marbl/harvest.
In silico Analysis of 2085 Clones from a Normalized Rat Vestibular Periphery 3′ cDNA Library
Roche, Joseph P.; Cioffi, Joseph A.; Kwitek, Anne E.; Erbe, Christy B.; Popper, Paul
2005-01-01
The inserts from 2400 cDNA clones isolated from a normalized Rattus norvegicus vestibular periphery cDNA library were sequenced and characterized. The Wackym-Soares vestibular 3′ cDNA library was constructed from the saccular and utricular maculae, the ampullae of all three semicircular canals and Scarpa's ganglia containing the somata of the primary afferent neurons, microdissected from 104 male and female rats. The inserts from 2400 randomly selected clones were sequenced from the 5′ end. Each sequence was analyzed using the BLAST algorithm compared to the Genbank nonredundant, rat genome, mouse genome and human genome databases to search for high homology alignments. Of the initial 2400 clones, 315 (13%) were found to be of poor quality and did not yield useful information, and therefore were eliminated from the analysis. Of the remaining 2085 sequences, 918 (44%) were found to represent 758 unique genes having useful annotations that were identified in databases within the public domain or in the published literature; these sequences were designated as known characterized sequences. 1141 sequences (55%) aligned with 1011 unique sequences had no useful annotations and were designated as known but uncharacterized sequences. Of the remaining 26 sequences (1%), 24 aligned with rat genomic sequences, but none matched previously described rat expressed sequence tags or mRNAs. No significant alignment to the rat or human genomic sequences could be found for the remaining 2 sequences. Of the 2085 sequences analyzed, 86% were singletons. The known, characterized sequences were analyzed with the FatiGO online data-mining tool (http://fatigo.bioinfo.cnio.es/) to identify level 5 biological process gene ontology (GO) terms for each alignment and to group alignments with similar or identical GO terms. Numerous genes were identified that have not been previously shown to be expressed in the vestibular system. Further characterization of the novel cDNA sequences may lead to the identification of genes with vestibular-specific functions. Continued analysis of the rat vestibular periphery transcriptome should provide new insights into vestibular function and generate new hypotheses. Physiological studies are necessary to further elucidate the roles of the identified genes and novel sequences in vestibular function. PMID:16103642
Bellerophon: a program to detect chimeric sequences in multiple sequence alignments.
Huber, Thomas; Faulkner, Geoffrey; Hugenholtz, Philip
2004-09-22
Bellerophon is a program for detecting chimeric sequences in multiple sequence datasets by an adaption of partial treeing analysis. Bellerophon was specifically developed to detect 16S rRNA gene chimeras in PCR-clone libraries of environmental samples but can be applied to other nucleotide sequence alignments. Bellerophon is available as an interactive web server at http://foo.maths.uq.edu.au/~huber/bellerophon.pl
Sequence alignment visualization in HTML5 without Java.
Gille, Christoph; Birgit, Weyand; Gille, Andreas
2014-01-01
Java has been extensively used for the visualization of biological data in the web. However, the Java runtime environment is an additional layer of software with an own set of technical problems and security risks. HTML in its new version 5 provides features that for some tasks may render Java unnecessary. Alignment-To-HTML is the first HTML-based interactive visualization for annotated multiple sequence alignments. The server side script interpreter can perform all tasks like (i) sequence retrieval, (ii) alignment computation, (iii) rendering, (iv) identification of a homologous structural models and (v) communication with BioDAS-servers. The rendered alignment can be included in web pages and is displayed in all browsers on all platforms including touch screen tablets. The functionality of the user interface is similar to legacy Java applets and includes color schemes, highlighting of conserved and variable alignment positions, row reordering by drag and drop, interlinked 3D visualization and sequence groups. Novel features are (i) support for multiple overlapping residue annotations, such as chemical modifications, single nucleotide polymorphisms and mutations, (ii) mechanisms to quickly hide residue annotations, (iii) export to MS-Word and (iv) sequence icons. Alignment-To-HTML, the first interactive alignment visualization that runs in web browsers without additional software, confirms that to some extend HTML5 is already sufficient to display complex biological data. The low speed at which programs are executed in browsers is still the main obstacle. Nevertheless, we envision an increased use of HTML and JavaScript for interactive biological software. Under GPL at: http://www.bioinformatics.org/strap/toHTML/.
eShadow: A tool for comparing closely related sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovcharenko, Ivan; Boffelli, Dario; Loots, Gabriela G.
2004-01-15
Primate sequence comparisons are difficult to interpret due to the high degree of sequence similarity shared between such closely related species. Recently, a novel method, phylogenetic shadowing, has been pioneered for predicting functional elements in the human genome through the analysis of multiple primate sequence alignments. We have expanded this theoretical approach to create a computational tool, eShadow, for the identification of elements under selective pressure in multiple sequence alignments of closely related genomes, such as in comparisons of human to primate or mouse to rat DNA. This tool integrates two different statistical methods and allows for the dynamic visualizationmore » of the resulting conservation profile. eShadow also includes a versatile optimization module capable of training the underlying Hidden Markov Model to differentially predict functional sequences. This module grants the tool high flexibility in the analysis of multiple sequence alignments and in comparing sequences with different divergence rates. Here, we describe the eShadow comparative tool and its potential uses for analyzing both multiple nucleotide and protein alignments to predict putative functional elements. The eShadow tool is publicly available at http://eshadow.dcode.org/« less
Towards a new era in medicine: therapeutic genome editing.
Porteus, Matthew H
2015-12-22
Genome editing is the process of precisely modifying the nucleotide sequence of the genome. It has provided a powerful approach to research questions but, with the development of a new set of tools, it is now possible to achieve frequencies of genome editing that are high enough to be useful therapeutically. Genome editing is being developed to treat not only monogenic diseases but also infectious diseases and diseases that have both a genetic and an environmental component.
Swain, Timothy D
2018-01-01
The recent rapid proliferation of novel taxon identification in the Zoanthidea has been accompanied by a parallel propagation of gene trees as a tool of species discovery, but not a corresponding increase in our understanding of phylogeny. This disparity is caused by the trade-off between the capabilities of automated DNA sequence alignment and data content of genes applied to phylogenetic inference in this group. Conserved genes or segments are easily aligned across the order, but produce poorly resolved trees; hypervariable genes or segments contain the evolutionary signal necessary for resolution and robust support, but sequence alignment is daunting. Staggered alignments are a form of phylogeny-informed sequence alignment composed of a mosaic of local and universal regions that allow phylogenetic inference to be applied to all nucleotides from both hypervariable and conserved gene segments. Comparisons between species tree phylogenies inferred from all data (staggered alignment) and hypervariable-excluded data (standard alignment) demonstrate improved confidence and greater topological agreement with other sources of data for the complete-data tree. This novel phylogeny is the most comprehensive to date (in terms of taxa and data) and can serve as an expandable tool for evolutionary hypothesis testing in the Zoanthidea. Spanish language abstract available in Text S1. Translation by L. O. Swain, DePaul University, Chicago, Illinois, 60604, USA. Copyright © 2017 Elsevier Inc. All rights reserved.
A to I editing in disease is not fake news.
Bajad, Prajakta; Jantsch, Michael F; Keegan, Liam; O'Connell, Mary
2017-09-02
Adenosine deaminases acting on RNA (ADARs) are zinc-containing enzymes that deaminate adenosine bases to inosines within dsRNA regions in transcripts. In short, structured dsRNA hairpins individual adenosine bases may be targeted specifically and edited with up to one hundred percent efficiency, leading to the production of alternative protein variants. However, the majority of editing events occur within longer stretches of dsRNA formed by pairing of repetitive sequences. Here, many different adenosine bases are potential targets but editing efficiency is usually much lower. Recent work shows that ADAR-mediated RNA editing is also required to prevent aberrant activation of antiviral innate immune sensors that detect viral dsRNA in the cytoplasm. Missense mutations in the ADAR1 RNA editing enzyme cause a fatal auto-inflammatory disease, Aicardi-Goutières syndrome (AGS) in affected children. In addition RNA editing by ADARs has been observed to increase in many cancers and also can contribute to vascular disease. Thus the role of RNA editing in the progression of various diseases can no longer be ignored. The ability of ADARs to alter the sequence of RNAs has also been used to artificially target model RNAs in vitro and in cells for RNA editing. Potentially this approach may be used to repair genetic defects and to alter genetic information at the RNA level. In this review we focus on the role of ADARs in disease development and progression and on their potential use to artificially modify RNAs in a targeted manner.
SNPServer: a real-time SNP discovery tool.
Savage, David; Batley, Jacqueline; Erwin, Tim; Logan, Erica; Love, Christopher G; Lim, Geraldine A C; Mongin, Emmanuel; Barker, Gary; Spangenberg, German C; Edwards, David
2005-07-01
SNPServer is a real-time flexible tool for the discovery of SNPs (single nucleotide polymorphisms) within DNA sequence data. The program uses BLAST, to identify related sequences, and CAP3, to cluster and align these sequences. The alignments are parsed to the SNP discovery software autoSNP, a program that detects SNPs and insertion/deletion polymorphisms (indels). Alternatively, lists of related sequences or pre-assembled sequences may be entered for SNP discovery. SNPServer and autoSNP use redundancy to differentiate between candidate SNPs and sequence errors. For each candidate SNP, two measures of confidence are calculated, the redundancy of the polymorphism at a SNP locus and the co-segregation of the candidate SNP with other SNPs in the alignment. SNPServer is available at http://hornbill.cspp.latrobe.edu.au/snpdiscovery.html.
GASP: Gapped Ancestral Sequence Prediction for proteins
Edwards, Richard J; Shields, Denis C
2004-01-01
Background The prediction of ancestral protein sequences from multiple sequence alignments is useful for many bioinformatics analyses. Predicting ancestral sequences is not a simple procedure and relies on accurate alignments and phylogenies. Several algorithms exist based on Maximum Parsimony or Maximum Likelihood methods but many current implementations are unable to process residues with gaps, which may represent insertion/deletion (indel) events or sequence fragments. Results Here we present a new algorithm, GASP (Gapped Ancestral Sequence Prediction), for predicting ancestral sequences from phylogenetic trees and the corresponding multiple sequence alignments. Alignments may be of any size and contain gaps. GASP first assigns the positions of gaps in the phylogeny before using a likelihood-based approach centred on amino acid substitution matrices to assign ancestral amino acids. Important outgroup information is used by first working down from the tips of the tree to the root, using descendant data only to assign probabilities, and then working back up from the root to the tips using descendant and outgroup data to make predictions. GASP was tested on a number of simulated datasets based on real phylogenies. Prediction accuracy for ungapped data was similar to three alternative algorithms tested, with GASP performing better in some cases and worse in others. Adding simple insertions and deletions to the simulated data did not have a detrimental effect on GASP accuracy. Conclusions GASP (Gapped Ancestral Sequence Prediction) will predict ancestral sequences from multiple protein alignments of any size. Although not as accurate in all cases as some of the more sophisticated maximum likelihood approaches, it can process a wide range of input phylogenies and will predict ancestral sequences for gapped and ungapped residues alike. PMID:15350199
Ishino, Yoshizumi; Krupovic, Mart; Forterre, Patrick
2018-04-01
Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas systems are well-known acquired immunity systems that are widespread in archaea and bacteria. The RNA-guided nucleases from CRISPR-Cas systems are currently regarded as the most reliable tools for genome editing and engineering. The first hint of their existence came in 1987, when an unusual repetitive DNA sequence, which subsequently was defined as a CRISPR, was discovered in the Escherichia coli genome during an analysis of genes involved in phosphate metabolism. Similar sequence patterns were then reported in a range of other bacteria as well as in halophilic archaea, suggesting an important role for such evolutionarily conserved clusters of repeated sequences. A critical step toward functional characterization of the CRISPR-Cas systems was the recognition of a link between CRISPRs and the associated Cas proteins, which were initially hypothesized to be involved in DNA repair in hyperthermophilic archaea. Comparative genomics, structural biology, and advanced biochemistry could then work hand in hand, not only culminating in the explosion of genome editing tools based on CRISPR-Cas9 and other class II CRISPR-Cas systems but also providing insights into the origin and evolution of this system from mobile genetic elements denoted casposons. To celebrate the 30th anniversary of the discovery of CRISPR, this minireview briefly discusses the fascinating history of CRISPR-Cas systems, from the original observation of an enigmatic sequence in E. coli to genome editing in humans. Copyright © 2018 American Society for Microbiology.
[Tale nucleases--new tool for genome editing].
Glazkova, D V; Shipulin, G A
2014-01-01
The ability to introduce targeted changes in the genome of living cells or entire organisms enables researchers to meet the challenges of basic life sciences, biotechnology and medicine. Knockdown of target genes in the zygotes gives the opportunity to investigate the functions of these genes in different organisms. Replacement of single nucleotide in the DNA sequence allows to correct mutations in genes and thus to cure hereditary diseases. Adding transgene to specific genomic.loci can be used in biotechnology for generation of organisms with certain properties or cell lines for biopharmaceutical production. Such manipulations of gene sequences in their natural chromosomal context became possible after the emergence of the technology called "genome editing". This technology is based on the induction of a double-strand break in a specific genomic target DNA using endonucleases that recognize the unique sequences in the genome and on subsequent recovery of DNA integrity through the use of cellular repair mechanisms. A necessary tool for the genome editing is a custom-designed endonuclease which is able to recognize selected sequences. The emergence of a new type of programmable endonucleases, which were constructed on the basis of bacterial proteins--TAL-effectors (Transcription activators like effector), has become an important stage in the development of technology and promoted wide spread of the genome editing. This article reviews the history of the discovery of TAL effectors and creation of TALE nucleases, and describes their advantages over zinc finger endonucleases that appeared earlier. A large section is devoted to description of genetic modifications that can be performed using the genome editing.
GABA editing with macromolecule suppression using an improved MEGA-SPECIAL sequence.
Gu, Meng; Hurd, Ralph; Noeske, Ralph; Baltusis, Laima; Hancock, Roeland; Sacchet, Matthew D; Gotlib, Ian H; Chin, Frederick T; Spielman, Daniel M
2018-01-01
The most common γ-aminobutyric-acid (GABA) editing approach, MEGA-PRESS, uses J-editing to measure GABA distinct from larger overlapping metabolites, but suffers contamination from coedited macromolecules (MMs) comprising 40 to 60% of the observed signal. MEGA-SPECIAL is an alternative method with better MM suppression, but is not widely used primarily because of its relatively poor spatial localization. Our goal was to develop an improved MM-suppressed GABA editing sequence at 3 Tesla. We modified a single-voxel MEGA-SPECIAL sequence with an oscillating readout gradient for improved spatial localization, and used very selective 30-ms editing pulses for improved suppression of coedited MMs. Simulation and in vivo experiments confirmed excellent MM suppression, insensitive to the range of B 0 frequency drifts typically encountered in vivo. Both intersubject and intrasubject studies showed that MMs, when suppressed by the improved MEGA-SPECIAL method, contributed approximately 40% to the corresponding MEGA-PRESS measurements. From the intersubject study, the coefficient of variation for GABA+/Cre (MEGA-PRESS) was 11.2% versus 7% for GABA/Cre (improved MEGA-SPECIAL), demonstrating significantly reduced variance (P = 0.005), likely coming from coedited MMs. This improved MEGA-SPECIAL sequence provides unbiased GABA measurements with reduced variance as compared with conventional MEGA-PRESS. This approach is also relatively insensitive to the range of B 0 drifts typically observed in in vivo human studies. Magn Reson Med 79:41-47, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Design of multiple sequence alignment algorithms on parallel, distributed memory supercomputers.
Church, Philip C; Goscinski, Andrzej; Holt, Kathryn; Inouye, Michael; Ghoting, Amol; Makarychev, Konstantin; Reumann, Matthias
2011-01-01
The challenge of comparing two or more genomes that have undergone recombination and substantial amounts of segmental loss and gain has recently been addressed for small numbers of genomes. However, datasets of hundreds of genomes are now common and their sizes will only increase in the future. Multiple sequence alignment of hundreds of genomes remains an intractable problem due to quadratic increases in compute time and memory footprint. To date, most alignment algorithms are designed for commodity clusters without parallelism. Hence, we propose the design of a multiple sequence alignment algorithm on massively parallel, distributed memory supercomputers to enable research into comparative genomics on large data sets. Following the methodology of the sequential progressiveMauve algorithm, we design data structures including sequences and sorted k-mer lists on the IBM Blue Gene/P supercomputer (BG/P). Preliminary results show that we can reduce the memory footprint so that we can potentially align over 250 bacterial genomes on a single BG/P compute node. We verify our results on a dataset of E.coli, Shigella and S.pneumoniae genomes. Our implementation returns results matching those of the original algorithm but in 1/2 the time and with 1/4 the memory footprint for scaffold building. In this study, we have laid the basis for multiple sequence alignment of large-scale datasets on a massively parallel, distributed memory supercomputer, thus enabling comparison of hundreds instead of a few genome sequences within reasonable time.
Phylo-VISTA: Interactive visualization of multiple DNA sequence alignments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Nameeta; Couronne, Olivier; Pennacchio, Len A.
The power of multi-sequence comparison for biological discovery is well established. The need for new capabilities to visualize and compare cross-species alignment data is intensified by the growing number of genomic sequence datasets being generated for an ever-increasing number of organisms. To be efficient these visualization algorithms must support the ability to accommodate consistently a wide range of evolutionary distances in a comparison framework based upon phylogenetic relationships. Results: We have developed Phylo-VISTA, an interactive tool for analyzing multiple alignments by visualizing a similarity measure for multiple DNA sequences. The complexity of visual presentation is effectively organized using a frameworkmore » based upon interspecies phylogenetic relationships. The phylogenetic organization supports rapid, user-guided interspecies comparison. To aid in navigation through large sequence datasets, Phylo-VISTA leverages concepts from VISTA that provide a user with the ability to select and view data at varying resolutions. The combination of multiresolution data visualization and analysis, combined with the phylogenetic framework for interspecies comparison, produces a highly flexible and powerful tool for visual data analysis of multiple sequence alignments. Availability: Phylo-VISTA is available at http://www-gsd.lbl. gov/phylovista. It requires an Internet browser with Java Plugin 1.4.2 and it is integrated into the global alignment program LAGAN at http://lagan.stanford.edu« less
A new version of the RDP (Ribosomal Database Project)
NASA Technical Reports Server (NTRS)
Maidak, B. L.; Cole, J. R.; Parker, C. T. Jr; Garrity, G. M.; Larsen, N.; Li, B.; Lilburn, T. G.; McCaughey, M. J.; Olsen, G. J.; Overbeek, R.;
1999-01-01
The Ribosomal Database Project (RDP-II), previously described by Maidak et al. [ Nucleic Acids Res. (1997), 25, 109-111], is now hosted by the Center for Microbial Ecology at Michigan State University. RDP-II is a curated database that offers ribosomal RNA (rRNA) nucleotide sequence data in aligned and unaligned forms, analysis services, and associated computer programs. During the past two years, data alignments have been updated and now include >9700 small subunit rRNA sequences. The recent development of an ObjectStore database will provide more rapid updating of data, better data accuracy and increased user access. RDP-II includes phylogenetically ordered alignments of rRNA sequences, derived phylogenetic trees, rRNA secondary structure diagrams, and various software programs for handling, analyzing and displaying alignments and trees. The data are available via anonymous ftp (ftp.cme.msu. edu) and WWW (http://www.cme.msu.edu/RDP). The WWW server provides ribosomal probe checking, approximate phylogenetic placement of user-submitted sequences, screening for possible chimeric rRNA sequences, automated alignment, and a suggested placement of an unknown sequence on an existing phylogenetic tree. Additional utilities also exist at RDP-II, including distance matrix, T-RFLP, and a Java-based viewer of the phylogenetic trees that can be used to create subtrees.
Sun, Yongmei; Li, Xing; Wu, Di; Pan, Qi; Ji, Yuefeng; Ren, Hong; Ding, Keyue
2016-01-01
RNA editing is one of the post- or co-transcriptional processes that can lead to amino acid substitutions in protein sequences, alternative pre-mRNA splicing, and changes in gene expression levels. Although several methods have been suggested to identify RNA editing sites, there remains challenges to be addressed in distinguishing true RNA editing sites from its counterparts on genome and technical artifacts. In addition, there lacks a software framework to identify and visualize potential RNA editing sites. Here, we presented a software - 'RED' (RNA Editing sites Detector) - for the identification of RNA editing sites by integrating multiple rule-based and statistical filters. The potential RNA editing sites can be visualized at the genome and the site levels by graphical user interface (GUI). To improve performance, we used MySQL database management system (DBMS) for high-throughput data storage and query. We demonstrated the validity and utility of RED by identifying the presence and absence of C→U RNA-editing sites experimentally validated, in comparison with REDItools, a command line tool to perform high-throughput investigation of RNA editing. In an analysis of a sample data-set with 28 experimentally validated C→U RNA editing sites, RED had sensitivity and specificity of 0.64 and 0.5. In comparison, REDItools had a better sensitivity (0.75) but similar specificity (0.5). RED is an easy-to-use, platform-independent Java-based software, and can be applied to RNA-seq data without or with DNA sequencing data. The package is freely available under the GPLv3 license at http://github.com/REDetector/RED or https://sourceforge.net/projects/redetector.
Sun, Yongmei; Li, Xing; Wu, Di; Pan, Qi; Ji, Yuefeng; Ren, Hong; Ding, Keyue
2016-01-01
RNA editing is one of the post- or co-transcriptional processes that can lead to amino acid substitutions in protein sequences, alternative pre-mRNA splicing, and changes in gene expression levels. Although several methods have been suggested to identify RNA editing sites, there remains challenges to be addressed in distinguishing true RNA editing sites from its counterparts on genome and technical artifacts. In addition, there lacks a software framework to identify and visualize potential RNA editing sites. Here, we presented a software − ‘RED’ (RNA Editing sites Detector) − for the identification of RNA editing sites by integrating multiple rule-based and statistical filters. The potential RNA editing sites can be visualized at the genome and the site levels by graphical user interface (GUI). To improve performance, we used MySQL database management system (DBMS) for high-throughput data storage and query. We demonstrated the validity and utility of RED by identifying the presence and absence of C→U RNA-editing sites experimentally validated, in comparison with REDItools, a command line tool to perform high-throughput investigation of RNA editing. In an analysis of a sample data-set with 28 experimentally validated C→U RNA editing sites, RED had sensitivity and specificity of 0.64 and 0.5. In comparison, REDItools had a better sensitivity (0.75) but similar specificity (0.5). RED is an easy-to-use, platform-independent Java-based software, and can be applied to RNA-seq data without or with DNA sequencing data. The package is freely available under the GPLv3 license at http://github.com/REDetector/RED or https://sourceforge.net/projects/redetector. PMID:26930599
ERIC Educational Resources Information Center
DeVenney, William S.; And Others
This text is one of the sequence of textbooks produced for low achievers in the seventh and eighth grades by the School Mathematics Study Group (SMSG). There are eight texts in the sequence, of which this is the sixth. This set of volumes differs from the regular editions of SMSG junior high school texts in that very little reading is required.…
Grosche, Christopher; Funk, Helena T.; Maier, Uwe G.; Zauner, Stefan
2012-01-01
RNA editing is a post-transcriptional process that can act upon transcripts from mitochondrial, nuclear, and chloroplast genomes. In chloroplasts, single-nucleotide conversions in mRNAs via RNA editing occur at different frequencies across the plant kingdom. These range from several hundred edited sites in some mosses and ferns to lower frequencies in seed plants and the complete lack of RNA editing in the liverwort Marchantia polymorpha. Here, we report the sequence and edited sites of the chloroplast genome from the liverwort Pellia endiviifolia. The type and frequency of chloroplast RNA editing display a pattern highly similar to that in seed plants. Analyses of the C to U conversions and the genomic context in which the editing sites are embedded provide evidence in favor of the hypothesis that chloroplast RNA editing evolved to compensate mutations in the first land plants. PMID:23221608
JVM: Java Visual Mapping tool for next generation sequencing read.
Yang, Ye; Liu, Juan
2015-01-01
We developed a program JVM (Java Visual Mapping) for mapping next generation sequencing read to reference sequence. The program is implemented in Java and is designed to deal with millions of short read generated by sequence alignment using the Illumina sequencing technology. It employs seed index strategy and octal encoding operations for sequence alignments. JVM is useful for DNA-Seq, RNA-Seq when dealing with single-end resequencing. JVM is a desktop application, which supports reads capacity from 1 MB to 10 GB.
Genetic Architectures of Quantitative Variation in RNA Editing Pathways
Gu, Tongjun; Gatti, Daniel M.; Srivastava, Anuj; Snyder, Elizabeth M.; Raghupathy, Narayanan; Simecek, Petr; Svenson, Karen L.; Dotu, Ivan; Chuang, Jeffrey H.; Keller, Mark P.; Attie, Alan D.; Braun, Robert E.; Churchill, Gary A.
2016-01-01
RNA editing refers to post-transcriptional processes that alter the base sequence of RNA. Recently, hundreds of new RNA editing targets have been reported. However, the mechanisms that determine the specificity and degree of editing are not well understood. We examined quantitative variation of site-specific editing in a genetically diverse multiparent population, Diversity Outbred mice, and mapped polymorphic loci that alter editing ratios globally for C-to-U editing and at specific sites for A-to-I editing. An allelic series in the C-to-U editing enzyme Apobec1 influences the editing efficiency of Apob and 58 additional C-to-U editing targets. We identified 49 A-to-I editing sites with polymorphisms in the edited transcript that alter editing efficiency. In contrast to the shared genetic control of C-to-U editing, most of the variable A-to-I editing sites were determined by local nucleotide polymorphisms in proximity to the editing site in the RNA secondary structure. Our results indicate that RNA editing is a quantitative trait subject to genetic variation and that evolutionary constraints have given rise to distinct genetic architectures in the two canonical types of RNA editing. PMID:26614740
RNA editing is induced by type I interferon in esophageal squamous cell carcinoma.
Zhang, Jinyao; Chen, Zhaoli; Tang, Zefang; Huang, Jianbing; Hu, Xueda; He, Jie
2017-07-01
In recent years, abnormal RNA editing has been shown to play an important role in the development of esophageal squamous cell carcinoma, as such abnormal editing is catalyzed by ADAR (adenosine deaminases acting on RNA). However, the regulatory mechanism of ADAR1 in esophageal squamous cell carcinomas remains largely unknown. In this study, we investigated ADAR1 expression and its association with RNA editing in esophageal squamous cell carcinomas. RNA sequencing applied to esophageal squamous cell carcinoma clinical samples showed that ADAR1 expression was correlated with the expression of STAT1, STAT2, and IRF9. In vitro experiments showed that the abundance of ADAR1 protein was associated with the induced activation of the JAK/STAT pathway by type I interferon. RNA sequencing results showed that treatment with type I interferon caused an increase in the number and degree of RNA editing in esophageal squamous cell carcinoma cell lines. In conclusion, the activation of the JAK/STAT pathway is a regulatory mechanism of ADAR1 expression and causes abnormal RNA editing profile in esophageal squamous cell carcinoma. This mechanism may serve as a new target for esophageal squamous cell carcinoma therapy.
In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting.
Chen, Xiaoyu; Janssen, Josephine M; Liu, Jin; Maggio, Ignazio; 't Jong, Anke E J; Mikkers, Harald M M; Gonçalves, Manuel A F V
2017-09-22
Precise genome editing involves homologous recombination between donor DNA and chromosomal sequences subjected to double-stranded DNA breaks made by programmable nucleases. Ideally, genome editing should be efficient, specific, and accurate. However, besides constituting potential translocation-initiating lesions, double-stranded DNA breaks (targeted or otherwise) are mostly repaired through unpredictable and mutagenic non-homologous recombination processes. Here, we report that the coordinated formation of paired single-stranded DNA breaks, or nicks, at donor plasmids and chromosomal target sites by RNA-guided nucleases based on CRISPR-Cas9 components, triggers seamless homology-directed gene targeting of large genetic payloads in human cells, including pluripotent stem cells. Importantly, in addition to significantly reducing the mutagenicity of the genome modification procedure, this in trans paired nicking strategy achieves multiplexed, single-step, gene targeting, and yields higher frequencies of accurately edited cells when compared to the standard double-stranded DNA break-dependent approach.CRISPR-Cas9-based gene editing involves double-strand breaks at target sequences, which are often repaired by mutagenic non-homologous end-joining. Here the authors use Cas9 nickases to generate coordinated single-strand breaks in donor and target DNA for precise homology-directed gene editing.
Efficient CRISPR/Cas9-based gene knockout in watermelon.
Tian, Shouwei; Jiang, Linjian; Gao, Qiang; Zhang, Jie; Zong, Mei; Zhang, Haiying; Ren, Yi; Guo, Shaogui; Gong, Guoyi; Liu, Fan; Xu, Yong
2017-03-01
CRISPR/Cas9 system can precisely edit genomic sequence and effectively create knockout mutations in T0 generation watermelon plants. Genome editing offers great advantage to reveal gene function and generate agronomically important mutations to crops. Recently, RNA-guided genome editing system using the type II clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) has been applied to several plant species, achieving successful targeted mutagenesis. Here, we report the genome of watermelon, an important fruit crop, can also be precisely edited by CRISPR/Cas9 system. ClPDS, phytoene desaturase in watermelon, was selected as the target gene because its mutant bears evident albino phenotype. CRISPR/Cas9 system performed genome editing, such as insertions or deletions at the expected position, in transfected watermelon protoplast cells. More importantly, all transgenic watermelon plants harbored ClPDS mutations and showed clear or mosaic albino phenotype, indicating that CRISPR/Cas9 system has technically 100% of genome editing efficiency in transgenic watermelon lines. Furthermore, there were very likely no off-target mutations, indicated by examining regions that were highly homologous to sgRNA sequences. Our results show that CRISPR/Cas9 system is a powerful tool to effectively create knockout mutations in watermelon.
Vertical decomposition with Genetic Algorithm for Multiple Sequence Alignment
2011-01-01
Background Many Bioinformatics studies begin with a multiple sequence alignment as the foundation for their research. This is because multiple sequence alignment can be a useful technique for studying molecular evolution and analyzing sequence structure relationships. Results In this paper, we have proposed a Vertical Decomposition with Genetic Algorithm (VDGA) for Multiple Sequence Alignment (MSA). In VDGA, we divide the sequences vertically into two or more subsequences, and then solve them individually using a guide tree approach. Finally, we combine all the subsequences to generate a new multiple sequence alignment. This technique is applied on the solutions of the initial generation and of each child generation within VDGA. We have used two mechanisms to generate an initial population in this research: the first mechanism is to generate guide trees with randomly selected sequences and the second is shuffling the sequences inside such trees. Two different genetic operators have been implemented with VDGA. To test the performance of our algorithm, we have compared it with existing well-known methods, namely PRRP, CLUSTALX, DIALIGN, HMMT, SB_PIMA, ML_PIMA, MULTALIGN, and PILEUP8, and also other methods, based on Genetic Algorithms (GA), such as SAGA, MSA-GA and RBT-GA, by solving a number of benchmark datasets from BAliBase 2.0. Conclusions The experimental results showed that the VDGA with three vertical divisions was the most successful variant for most of the test cases in comparison to other divisions considered with VDGA. The experimental results also confirmed that VDGA outperformed the other methods considered in this research. PMID:21867510
CMSA: a heterogeneous CPU/GPU computing system for multiple similar RNA/DNA sequence alignment.
Chen, Xi; Wang, Chen; Tang, Shanjiang; Yu, Ce; Zou, Quan
2017-06-24
The multiple sequence alignment (MSA) is a classic and powerful technique for sequence analysis in bioinformatics. With the rapid growth of biological datasets, MSA parallelization becomes necessary to keep its running time in an acceptable level. Although there are a lot of work on MSA problems, their approaches are either insufficient or contain some implicit assumptions that limit the generality of usage. First, the information of users' sequences, including the sizes of datasets and the lengths of sequences, can be of arbitrary values and are generally unknown before submitted, which are unfortunately ignored by previous work. Second, the center star strategy is suited for aligning similar sequences. But its first stage, center sequence selection, is highly time-consuming and requires further optimization. Moreover, given the heterogeneous CPU/GPU platform, prior studies consider the MSA parallelization on GPU devices only, making the CPUs idle during the computation. Co-run computation, however, can maximize the utilization of the computing resources by enabling the workload computation on both CPU and GPU simultaneously. This paper presents CMSA, a robust and efficient MSA system for large-scale datasets on the heterogeneous CPU/GPU platform. It performs and optimizes multiple sequence alignment automatically for users' submitted sequences without any assumptions. CMSA adopts the co-run computation model so that both CPU and GPU devices are fully utilized. Moreover, CMSA proposes an improved center star strategy that reduces the time complexity of its center sequence selection process from O(mn 2 ) to O(mn). The experimental results show that CMSA achieves an up to 11× speedup and outperforms the state-of-the-art software. CMSA focuses on the multiple similar RNA/DNA sequence alignment and proposes a novel bitmap based algorithm to improve the center star strategy. We can conclude that harvesting the high performance of modern GPU is a promising approach to accelerate multiple sequence alignment. Besides, adopting the co-run computation model can maximize the entire system utilization significantly. The source code is available at https://github.com/wangvsa/CMSA .
Kumar, Yadhu; Westram, Ralf; Kipfer, Peter; Meier, Harald; Ludwig, Wolfgang
2006-01-01
Background Availability of high-resolution RNA crystal structures for the 30S and 50S ribosomal subunits and the subsequent validation of comparative secondary structure models have prompted the biologists to use three-dimensional structure of ribosomal RNA (rRNA) for evaluating sequence alignments of rRNA genes. Furthermore, the secondary and tertiary structural features of rRNA are highly useful and successfully employed in designing rRNA targeted oligonucleotide probes intended for in situ hybridization experiments. RNA3D, a program to combine sequence alignment information with three-dimensional structure of rRNA was developed. Integration into ARB software package, which is used extensively by the scientific community for phylogenetic analysis and molecular probe designing, has substantially extended the functionality of ARB software suite with 3D environment. Results Three-dimensional structure of rRNA is visualized in OpenGL 3D environment with the abilities to change the display and overlay information onto the molecule, dynamically. Phylogenetic information derived from the multiple sequence alignments can be overlaid onto the molecule structure in a real time. Superimposition of both statistical and non-statistical sequence associated information onto the rRNA 3D structure can be done using customizable color scheme, which is also applied to a textual sequence alignment for reference. Oligonucleotide probes designed by ARB probe design tools can be mapped onto the 3D structure along with the probe accessibility models for evaluation with respect to secondary and tertiary structural conformations of rRNA. Conclusion Visualization of three-dimensional structure of rRNA in an intuitive display provides the biologists with the greater possibilities to carry out structure based phylogenetic analysis. Coupled with secondary structure models of rRNA, RNA3D program aids in validating the sequence alignments of rRNA genes and evaluating probe target sites. Superimposition of the information derived from the multiple sequence alignment onto the molecule dynamically allows the researchers to observe any sequence inherited characteristics (phylogenetic information) in real-time environment. The extended ARB software package is made freely available for the scientific community via . PMID:16672074
CAFE: aCcelerated Alignment-FrEe sequence analysis
Lu, Yang Young; Tang, Kujin; Ren, Jie; Fuhrman, Jed A.; Waterman, Michael S.
2017-01-01
Abstract Alignment-free genome and metagenome comparisons are increasingly important with the development of next generation sequencing (NGS) technologies. Recently developed state-of-the-art k-mer based alignment-free dissimilarity measures including CVTree, \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$d_2^*$\\end{document} and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$d_2^S$\\end{document} are more computationally expensive than measures based solely on the k-mer frequencies. Here, we report a standalone software, aCcelerated Alignment-FrEe sequence analysis (CAFE), for efficient calculation of 28 alignment-free dissimilarity measures. CAFE allows for both assembled genome sequences and unassembled NGS shotgun reads as input, and wraps the output in a standard PHYLIP format. In downstream analyses, CAFE can also be used to visualize the pairwise dissimilarity measures, including dendrograms, heatmap, principal coordinate analysis and network display. CAFE serves as a general k-mer based alignment-free analysis platform for studying the relationships among genomes and metagenomes, and is freely available at https://github.com/younglululu/CAFE. PMID:28472388
Neuberger, Ulf; Kickingereder, Philipp; Helluy, Xavier; Fischer, Manuel; Bendszus, Martin; Heiland, Sabine
2017-12-01
Non-invasive detection of 2-hydroxyglutarate (2HG) by magnetic resonance spectroscopy is attractive since it is related to tumor metabolism. Here, we compare the detection accuracy of 2HG in a controlled phantom setting via widely used localized spectroscopy sequences quantified by linear combination of metabolite signals vs. a more complex approach applying a J-difference editing technique at 9.4T. Different phantoms, comprised out of a concentration series of 2HG and overlapping brain metabolites, were measured with an optimized point-resolved-spectroscopy sequence (PRESS) and an in-house developed J-difference editing sequence. The acquired spectra were post-processed with LCModel and a simulated metabolite set (PRESS) or with a quantification formula for J-difference editing. Linear regression analysis demonstrated a high correlation of real 2HG values with those measured with the PRESS method (adjusted R-squared: 0.700, p<0.001) as well as with those measured with the J-difference editing method (adjusted R-squared: 0.908, p<0.001). The regression model with the J-difference editing method however had a significantly higher explanatory value over the regression model with the PRESS method (p<0.0001). Moreover, with J-difference editing 2HG was discernible down to 1mM, whereas with the PRESS method 2HG values were not discernable below 2mM and with higher systematic errors, particularly in phantoms with high concentrations of N-acetyl-asparate (NAA) and glutamate (Glu). In summary, quantification of 2HG with linear combination of metabolite signals shows high systematic errors particularly at low 2HG concentration and high concentration of confounding metabolites such as NAA and Glu. In contrast, J-difference editing offers a more accurate quantification even at low 2HG concentrations, which outweighs the downsides of longer measurement time and more complex postprocessing. Copyright © 2017. Published by Elsevier GmbH.
Fröhlich, K U
1994-04-01
A new method for the presentation of alignments of long sequences is described. The degree of identity for the aligned sequences is averaged for sections of a fixed number of residues. The resulting values are converted to shades of gray, with white corresponding to lack of identity and black corresponding to perfect identity. A sequence alignment is represented as a bar filled with varying shades of gray. The display is compact and allows for a fast and intuitive recognition of the distribution of regions with a high similarity. It is well suited for the presentation of alignments of long sequences, e.g. of protein superfamilies, in plenary lectures. The method is implemented as a HyperCard stack for Apple Macintosh computers. Several options for the modification of the output are available (e.g. background reduction, size of the summation window, consideration of amino acid similarity, inclusion of graphic markers to indicate specific domains). The output is a PostScript file which can be printed, imported as EPS or processed further with Adobe Illustrator.
Therapeutic Gene Editing Safety and Specificity.
Lux, Christopher T; Scharenberg, Andrew M
2017-10-01
Therapeutic gene editing is significant for medical advancement. Safety is intricately linked to the specificity of the editing tools used to cut at precise genomic targets. Improvements can be achieved by thoughtful design of nucleases and repair templates, analysis of off-target editing, and careful utilization of viral vectors. Advancements in DNA repair mechanisms and development of new generations of tools improve targeting of specific sequences while minimizing risks. It is important to plot a safe course for future clinical trials. This article reviews safety and specificity for therapeutic gene editing to spur dialogue and advancement. Copyright © 2017 Elsevier Inc. All rights reserved.
Recent advances in the use of ZFN-mediated gene editing for human gene therapy.
Chandrasegaran, Srinivasan
2017-01-01
Targeted genome editing with programmable nucleases has revolutionized biomedical research. The ability to make site-specific modifications to the human genome, has invoked a paradigm shift in gene therapy. Using gene editing technologies, the sequence in the human genome can now be precisely engineered to achieve a therapeutic effect. Zinc finger nucleases (ZFNs) were the first programmable nucleases designed to target and cleave custom sites. This article summarizes the advances in the use of ZFN-mediated gene editing for human gene therapy and discusses the challenges associated with translating this gene editing technology into clinical use.
Hagopian, Raffi; Davidson, John R; Datta, Ruchira S; Samad, Bushra; Jarvis, Glen R; Sjölander, Kimmen
2010-07-01
We present the jump-start simultaneous alignment and tree construction using hidden Markov models (SATCHMO-JS) web server for simultaneous estimation of protein multiple sequence alignments (MSAs) and phylogenetic trees. The server takes as input a set of sequences in FASTA format, and outputs a phylogenetic tree and MSA; these can be viewed online or downloaded from the website. SATCHMO-JS is an extension of the SATCHMO algorithm, and employs a divide-and-conquer strategy to jump-start SATCHMO at a higher point in the phylogenetic tree, reducing the computational complexity of the progressive all-versus-all HMM-HMM scoring and alignment. Results on a benchmark dataset of 983 structurally aligned pairs from the PREFAB benchmark dataset show that SATCHMO-JS provides a statistically significant improvement in alignment accuracy over MUSCLE, Multiple Alignment using Fast Fourier Transform (MAFFT), ClustalW and the original SATCHMO algorithm. The SATCHMO-JS webserver is available at http://phylogenomics.berkeley.edu/satchmo-js. The datasets used in these experiments are available for download at http://phylogenomics.berkeley.edu/satchmo-js/supplementary/.
DNA-Free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins.
Malnoy, Mickael; Viola, Roberto; Jung, Min-Hee; Koo, Ok-Jae; Kim, Seokjoong; Kim, Jin-Soo; Velasco, Riccardo; Nagamangala Kanchiswamy, Chidananda
2016-01-01
The combined availability of whole genome sequences and genome editing tools is set to revolutionize the field of fruit biotechnology by enabling the introduction of targeted genetic changes with unprecedented control and accuracy, both to explore emergent phenotypes and to introduce new functionalities. Although plasmid-mediated delivery of genome editing components to plant cells is very efficient, it also presents some drawbacks, such as possible random integration of plasmid sequences in the host genome. Additionally, it may well be intercepted by current process-based GMO regulations, complicating the path to commercialization of improved varieties. Here, we explore direct delivery of purified CRISPR/Cas9 ribonucleoproteins (RNPs) to the protoplast of grape cultivar Chardonnay and apple cultivar such as Golden delicious fruit crop plants for efficient targeted mutagenesis. We targeted MLO-7 , a susceptible gene in order to increase resistance to powdery mildew in grape cultivar and DIPM-1, DIPM-2 , and DIPM-4 in the apple to increase resistance to fire blight disease. Furthermore, efficient protoplast transformation, the molar ratio of Cas9 and sgRNAs were optimized for each grape and apple cultivar. The targeted mutagenesis insertion and deletion rate was analyzed using targeted deep sequencing. Our results demonstrate that direct delivery of CRISPR/Cas9 RNPs to the protoplast system enables targeted gene editing and paves the way to the generation of DNA-free genome edited grapevine and apple plants.
Approximate matching of regular expressions.
Myers, E W; Miller, W
1989-01-01
Given a sequence A and regular expression R, the approximate regular expression matching problem is to find a sequence matching R whose optimal alignment with A is the highest scoring of all such sequences. This paper develops an algorithm to solve the problem in time O(MN), where M and N are the lengths of A and R. Thus, the time requirement is asymptotically no worse than for the simpler problem of aligning two fixed sequences. Our method is superior to an earlier algorithm by Wagner and Seiferas in several ways. First, it treats real-valued costs, in addition to integer costs, with no loss of asymptotic efficiency. Second, it requires only O(N) space to deliver just the score of the best alignment. Finally, its structure permits implementation techniques that make it extremely fast in practice. We extend the method to accommodate gap penalties, as required for typical applications in molecular biology, and further refine it to search for sub-strings of A that strongly align with a sequence in R, as required for typical data base searches. We also show how to deliver an optimal alignment between A and R in only O(N + log M) space using O(MN log M) time. Finally, an O(MN(M + N) + N2log N) time algorithm is presented for alignment scoring schemes where the cost of a gap is an arbitrary increasing function of its length.
Sequence comparison alignment-free approach based on suffix tree and L-words frequency.
Soares, Inês; Goios, Ana; Amorim, António
2012-01-01
The vast majority of methods available for sequence comparison rely on a first sequence alignment step, which requires a number of assumptions on evolutionary history and is sometimes very difficult or impossible to perform due to the abundance of gaps (insertions/deletions). In such cases, an alternative alignment-free method would prove valuable. Our method starts by a computation of a generalized suffix tree of all sequences, which is completed in linear time. Using this tree, the frequency of all possible words with a preset length L-L-words--in each sequence is rapidly calculated. Based on the L-words frequency profile of each sequence, a pairwise standard Euclidean distance is then computed producing a symmetric genetic distance matrix, which can be used to generate a neighbor joining dendrogram or a multidimensional scaling graph. We present an improvement to word counting alignment-free approaches for sequence comparison, by determining a single optimal word length and combining suffix tree structures to the word counting tasks. Our approach is, thus, a fast and simple application that proved to be efficient and powerful when applied to mitochondrial genomes. The algorithm was implemented in Python language and is freely available on the web.
Minimap2: pairwise alignment for nucleotide sequences.
Li, Heng
2018-05-10
Recent advances in sequencing technologies promise ultra-long reads of ∼100 kilo bases (kb) in average, full-length mRNA or cDNA reads in high throughput and genomic contigs over 100 mega bases (Mb) in length. Existing alignment programs are unable or inefficient to process such data at scale, which presses for the development of new alignment algorithms. Minimap2 is a general-purpose alignment program to map DNA or long mRNA sequences against a large reference database. It works with accurate short reads of ≥ 100bp in length, ≥1kb genomic reads at error rate ∼15%, full-length noisy Direct RNA or cDNA reads, and assembly contigs or closely related full chromosomes of hundreds of megabases in length. Minimap2 does split-read alignment, employs concave gap cost for long insertions and deletions (INDELs) and introduces new heuristics to reduce spurious alignments. It is 3-4 times as fast as mainstream short-read mappers at comparable accuracy, and is ≥30 times faster than long-read genomic or cDNA mappers at higher accuracy, surpassing most aligners specialized in one type of alignment. https://github.com/lh3/minimap2. hengli@broadinstitute.org.
Genome alignment with graph data structures: a comparison
2014-01-01
Background Recent advances in rapid, low-cost sequencing have opened up the opportunity to study complete genome sequences. The computational approach of multiple genome alignment allows investigation of evolutionarily related genomes in an integrated fashion, providing a basis for downstream analyses such as rearrangement studies and phylogenetic inference. Graphs have proven to be a powerful tool for coping with the complexity of genome-scale sequence alignments. The potential of graphs to intuitively represent all aspects of genome alignments led to the development of graph-based approaches for genome alignment. These approaches construct a graph from a set of local alignments, and derive a genome alignment through identification and removal of graph substructures that indicate errors in the alignment. Results We compare the structures of commonly used graphs in terms of their abilities to represent alignment information. We describe how the graphs can be transformed into each other, and identify and classify graph substructures common to one or more graphs. Based on previous approaches, we compile a list of modifications that remove these substructures. Conclusion We show that crucial pieces of alignment information, associated with inversions and duplications, are not visible in the structure of all graphs. If we neglect vertex or edge labels, the graphs differ in their information content. Still, many ideas are shared among all graph-based approaches. Based on these findings, we outline a conceptual framework for graph-based genome alignment that can assist in the development of future genome alignment tools. PMID:24712884
Liao, Weinan; Ren, Jie; Wang, Kun; Wang, Shun; Zeng, Feng; Wang, Ying; Sun, Fengzhu
2016-11-23
The comparison between microbial sequencing data is critical to understand the dynamics of microbial communities. The alignment-based tools analyzing metagenomic datasets require reference sequences and read alignments. The available alignment-free dissimilarity approaches model the background sequences with Fixed Order Markov Chain (FOMC) yielding promising results for the comparison of microbial communities. However, in FOMC, the number of parameters grows exponentially with the increase of the order of Markov Chain (MC). Under a fixed high order of MC, the parameters might not be accurately estimated owing to the limitation of sequencing depth. In our study, we investigate an alternative to FOMC to model background sequences with the data-driven Variable Length Markov Chain (VLMC) in metatranscriptomic data. The VLMC originally designed for long sequences was extended to apply to high-throughput sequencing reads and the strategies to estimate the corresponding parameters were developed. The flexible number of parameters in VLMC avoids estimating the vast number of parameters of high-order MC under limited sequencing depth. Different from the manual selection in FOMC, VLMC determines the MC order adaptively. Several beta diversity measures based on VLMC were applied to compare the bacterial RNA-Seq and metatranscriptomic datasets. Experiments show that VLMC outperforms FOMC to model the background sequences in transcriptomic and metatranscriptomic samples. A software pipeline is available at https://d2vlmc.codeplex.com.
Villard, Pierre; Malausa, Thibaut
2013-07-01
SP-Designer is an open-source program providing a user-friendly tool for the design of specific PCR primer pairs from a DNA sequence alignment containing sequences from various taxa. SP-Designer selects PCR primer pairs for the amplification of DNA from a target species on the basis of several criteria: (i) primer specificity, as assessed by interspecific sequence polymorphism in the annealing regions, (ii) the biochemical characteristics of the primers and (iii) the intended PCR conditions. SP-Designer generates tables, detailing the primer pair and PCR characteristics, and a FASTA file locating the primer sequences in the original sequence alignment. SP-Designer is Windows-compatible and freely available from http://www2.sophia.inra.fr/urih/sophia_mart/sp_designer/info_sp_designer.php. © 2013 John Wiley & Sons Ltd.
Aligner optimization increases accuracy and decreases compute times in multi-species sequence data.
Robinson, Kelly M; Hawkins, Aziah S; Santana-Cruz, Ivette; Adkins, Ricky S; Shetty, Amol C; Nagaraj, Sushma; Sadzewicz, Lisa; Tallon, Luke J; Rasko, David A; Fraser, Claire M; Mahurkar, Anup; Silva, Joana C; Dunning Hotopp, Julie C
2017-09-01
As sequencing technologies have evolved, the tools to analyze these sequences have made similar advances. However, for multi-species samples, we observed important and adverse differences in alignment specificity and computation time for bwa- mem (Burrows-Wheeler aligner-maximum exact matches) relative to bwa-aln. Therefore, we sought to optimize bwa-mem for alignment of data from multi-species samples in order to reduce alignment time and increase the specificity of alignments. In the multi-species cases examined, there was one majority member (i.e. Plasmodium falciparum or Brugia malayi ) and one minority member (i.e. human or the Wolbachia endosymbiont w Bm) of the sequence data. Increasing bwa-mem seed length from the default value reduced the number of read pairs from the majority sequence member that incorrectly aligned to the reference genome of the minority sequence member. Combining both source genomes into a single reference genome increased the specificity of mapping, while also reducing the central processing unit (CPU) time. In Plasmodium , at a seed length of 18 nt, 24.1 % of reads mapped to the human genome using 1.7±0.1 CPU hours, while 83.6 % of reads mapped to the Plasmodium genome using 0.2±0.0 CPU hours (total: 107.7 % reads mapping; in 1.9±0.1 CPU hours). In contrast, 97.1 % of the reads mapped to a combined Plasmodium- human reference in only 0.7±0.0 CPU hours. Overall, the results suggest that combining all references into a single reference database and using a 23 nt seed length reduces the computational time, while maximizing specificity. Similar results were found for simulated sequence reads from a mock metagenomic data set. We found similar improvements to computation time in a publicly available human-only data set.
Lenis, Vasileios Panagiotis E; Swain, Martin; Larkin, Denis M
2018-05-01
Cross-species whole-genome sequence alignment is a critical first step for genome comparative analyses, ranging from the detection of sequence variants to studies of chromosome evolution. Animal genomes are large and complex, and whole-genome alignment is a computationally intense process, requiring expensive high-performance computing systems due to the need to explore extensive local alignments. With hundreds of sequenced animal genomes available from multiple projects, there is an increasing demand for genome comparative analyses. Here, we introduce G-Anchor, a new, fast, and efficient pipeline that uses a strictly limited but highly effective set of local sequence alignments to anchor (or map) an animal genome to another species' reference genome. G-Anchor makes novel use of a databank of highly conserved DNA sequence elements. We demonstrate how these elements may be aligned to a pair of genomes, creating anchors. These anchors enable the rapid mapping of scaffolds from a de novo assembled genome to chromosome assemblies of a reference species. Our results demonstrate that G-Anchor can successfully anchor a vertebrate genome onto a phylogenetically related reference species genome using a desktop or laptop computer within a few hours and with comparable accuracy to that achieved by a highly accurate whole-genome alignment tool such as LASTZ. G-Anchor thus makes whole-genome comparisons accessible to researchers with limited computational resources. G-Anchor is a ready-to-use tool for anchoring a pair of vertebrate genomes. It may be used with large genomes that contain a significant fraction of evolutionally conserved DNA sequences and that are not highly repetitive, polypoid, or excessively fragmented. G-Anchor is not a substitute for whole-genome aligning software but can be used for fast and accurate initial genome comparisons. G-Anchor is freely available and a ready-to-use tool for the pairwise comparison of two genomes.
NASA Astrophysics Data System (ADS)
Lestari, D.; Bustamam, A.; Novianti, T.; Ardaneswari, G.
2017-07-01
DNA sequence can be defined as a succession of letters, representing the order of nucleotides within DNA, using a permutation of four DNA base codes including adenine (A), guanine (G), cytosine (C), and thymine (T). The precise code of the sequences is determined using DNA sequencing methods and technologies, which have been developed since the 1970s and currently become highly developed, advanced and highly throughput sequencing technologies. So far, DNA sequencing has greatly accelerated biological and medical research and discovery. However, in some cases DNA sequencing could produce any ambiguous and not clear enough sequencing results that make them quite difficult to be determined whether these codes are A, T, G, or C. To solve these problems, in this study we can introduce other representation of DNA codes namely Quaternion Q = (PA, PT, PG, PC), where PA, PT, PG, PC are the probability of A, T, G, C bases that could appear in Q and PA + PT + PG + PC = 1. Furthermore, using Quaternion representations we are able to construct the improved scoring matrix for global sequence alignment processes, by applying a dot product method. Moreover, this scoring matrix produces better and higher quality of the match and mismatch score between two DNA base codes. In implementation, we applied the Needleman-Wunsch global sequence alignment algorithm using Octave, to analyze our target sequence which contains some ambiguous sequence data. The subject sequences are the DNA sequences of Streptococcus pneumoniae families obtained from the Genebank, meanwhile the target DNA sequence are received from our collaborator database. As the results we found the Quaternion representations improve the quality of the sequence alignment score and we can conclude that DNA sequence target has maximum similarity with Streptococcus pneumoniae.
Image correlation method for DNA sequence alignment.
Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván
2012-01-01
The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment.
Jones, David T; Kandathil, Shaun M
2018-04-26
In addition to substitution frequency data from protein sequence alignments, many state-of-the-art methods for contact prediction rely on additional sources of information, or features, of protein sequences in order to predict residue-residue contacts, such as solvent accessibility, predicted secondary structure, and scores from other contact prediction methods. It is unclear how much of this information is needed to achieve state-of-the-art results. Here, we show that using deep neural network models, simple alignment statistics contain sufficient information to achieve state-of-the-art precision. Our prediction method, DeepCov, uses fully convolutional neural networks operating on amino-acid pair frequency or covariance data derived directly from sequence alignments, without using global statistical methods such as sparse inverse covariance or pseudolikelihood estimation. Comparisons against CCMpred and MetaPSICOV2 show that using pairwise covariance data calculated from raw alignments as input allows us to match or exceed the performance of both of these methods. Almost all of the achieved precision is obtained when considering relatively local windows (around 15 residues) around any member of a given residue pairing; larger window sizes have comparable performance. Assessment on a set of shallow sequence alignments (fewer than 160 effective sequences) indicates that the new method is substantially more precise than CCMpred and MetaPSICOV2 in this regime, suggesting that improved precision is attainable on smaller sequence families. Overall, the performance of DeepCov is competitive with the state of the art, and our results demonstrate that global models, which employ features from all parts of the input alignment when predicting individual contacts, are not strictly needed in order to attain precise contact predictions. DeepCov is freely available at https://github.com/psipred/DeepCov. d.t.jones@ucl.ac.uk.
Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation
Tang, Weixin; Hu, Johnny H.; Liu, David R.
2017-01-01
Programmable sequence-specific genome editing agents such as CRISPR-Cas9 have greatly advanced our ability to manipulate the human genome. Although canonical forms of genome-editing agents and programmable transcriptional regulators are constitutively active, precise temporal and spatial control over genome editing and transcriptional regulation activities would enable the more selective and potentially safer use of these powerful technologies. Here, by incorporating ligand-responsive self-cleaving catalytic RNAs (aptazymes) into guide RNAs, we developed a set of aptazyme-embedded guide RNAs that enable small molecule-controlled nuclease-mediated genome editing and small molecule-controlled base editing, as well as small molecule-dependent transcriptional activation in mammalian cells. PMID:28656978
Sequence harmony: detecting functional specificity from alignments
Feenstra, K. Anton; Pirovano, Walter; Krab, Klaas; Heringa, Jaap
2007-01-01
Multiple sequence alignments are often used for the identification of key specificity-determining residues within protein families. We present a web server implementation of the Sequence Harmony (SH) method previously introduced. SH accurately detects subfamily specific positions from a multiple alignment by scoring compositional differences between subfamilies, without imposing conservation. The SH web server allows a quick selection of subtype specific sites from a multiple alignment given a subfamily grouping. In addition, it allows the predicted sites to be directly mapped onto a protein structure and displayed. We demonstrate the use of the SH server using the family of plant mitochondrial alternative oxidases (AOX). In addition, we illustrate the usefulness of combining sequence and structural information by showing that the predicted sites are clustered into a few distinct regions in an AOX homology model. The SH web server can be accessed at www.ibi.vu.nl/programs/seqharmwww. PMID:17584793
Gene editing tools: state-of-the-art and the road ahead for the model and non-model fishes.
Barman, Hirak Kumar; Rasal, Kiran Dashrath; Chakrapani, Vemulawada; Ninawe, A S; Vengayil, Doyil T; Asrafuzzaman, Syed; Sundaray, Jitendra K; Jayasankar, Pallipuram
2017-10-01
Advancements in the DNA sequencing technologies and computational biology have revolutionized genome/transcriptome sequencing of non-model fishes at an affordable cost. This has led to a paradigm shift with regard to our heightened understandings of structure-functional relationships of genes at a global level, from model animals/fishes to non-model large animals/fishes. Whole genome/transcriptome sequencing technologies were supplemented with the series of discoveries in gene editing tools, which are being used to modify genes at pre-determined positions using programmable nucleases to explore their respective in vivo functions. For a long time, targeted gene disruption experiments were mostly restricted to embryonic stem cells, advances in gene editing technologies such as zinc finger nuclease, transcriptional activator-like effector nucleases and CRISPR (clustered regulatory interspaced short palindromic repeats)/CRISPR-associated nucleases have facilitated targeted genetic modifications beyond stem cells to a wide range of somatic cell lines across species from laboratory animals to farmed animals/fishes. In this review, we discuss use of different gene editing tools and the strategic implications in fish species for basic and applied biology research.
Protospacer Adjacent Motif (PAM)-Distal Sequences Engage CRISPR Cas9 DNA Target Cleavage
Ethier, Sylvain; Schmeing, T. Martin; Dostie, Josée; Pelletier, Jerry
2014-01-01
The clustered regularly interspaced short palindromic repeat (CRISPR)-associated enzyme Cas9 is an RNA-guided nuclease that has been widely adapted for genome editing in eukaryotic cells. However, the in vivo target specificity of Cas9 is poorly understood and most studies rely on in silico predictions to define the potential off-target editing spectrum. Using chromatin immunoprecipitation followed by sequencing (ChIP-seq), we delineate the genome-wide binding panorama of catalytically inactive Cas9 directed by two different single guide (sg) RNAs targeting the Trp53 locus. Cas9:sgRNA complexes are able to load onto multiple sites with short seed regions adjacent to 5′NGG3′ protospacer adjacent motifs (PAM). Yet among 43 ChIP-seq sites harboring seed regions analyzed for mutational status, we find editing only at the intended on-target locus and one off-target site. In vitro analysis of target site recognition revealed that interactions between the 5′ end of the guide and PAM-distal target sequences are necessary to efficiently engage Cas9 nucleolytic activity, providing an explanation for why off-target editing is significantly lower than expected from ChIP-seq data. PMID:25275497
The Self-Inactivating KamiCas9 System for the Editing of CNS Disease Genes.
Merienne, Nicolas; Vachey, Gabriel; de Longprez, Lucie; Meunier, Cécile; Zimmer, Virginie; Perriard, Guillaume; Canales, Mathieu; Mathias, Amandine; Herrgott, Lucas; Beltraminelli, Tim; Maulet, Axelle; Dequesne, Thomas; Pythoud, Catherine; Rey, Maria; Pellerin, Luc; Brouillet, Emmanuel; Perrier, Anselme L; du Pasquier, Renaud; Déglon, Nicole
2017-09-19
Neurodegenerative disorders are a major public health problem because of the high frequency of these diseases. Genome editing with the CRISPR/Cas9 system is making it possible to modify the sequence of genes linked to these disorders. We designed the KamiCas9 self-inactivating editing system to achieve transient expression of the Cas9 protein and high editing efficiency. In the first application, the gene responsible for Huntington's disease (HD) was targeted in adult mouse neuronal and glial cells. Mutant huntingtin (HTT) was efficiently inactivated in mouse models of HD, leading to an improvement in key markers of the disease. Sequencing of potential off-targets with the constitutive Cas9 system in differentiated human iPSC revealed a very low incidence with only one site above background level. This off-target frequency was significantly reduced with the KamiCas9 system. These results demonstrate the potential of the self-inactivating CRISPR/Cas9 editing for applications in the context of neurodegenerative diseases. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Efficient genome editing of differentiated renal epithelial cells.
Hofherr, Alexis; Busch, Tilman; Huber, Nora; Nold, Andreas; Bohn, Albert; Viau, Amandine; Bienaimé, Frank; Kuehn, E Wolfgang; Arnold, Sebastian J; Köttgen, Michael
2017-02-01
Recent advances in genome editing technologies have enabled the rapid and precise manipulation of genomes, including the targeted introduction, alteration, and removal of genomic sequences. However, respective methods have been described mainly in non-differentiated or haploid cell types. Genome editing of well-differentiated renal epithelial cells has been hampered by a range of technological issues, including optimal design, efficient expression of multiple genome editing constructs, attainable mutation rates, and best screening strategies. Here, we present an easily implementable workflow for the rapid generation of targeted heterozygous and homozygous genomic sequence alterations in renal cells using transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeat (CRISPR) system. We demonstrate the versatility of established protocols by generating novel cellular models for studying autosomal dominant polycystic kidney disease (ADPKD). Furthermore, we show that cell culture-validated genetic modifications can be readily applied to mouse embryonic stem cells (mESCs) for the generation of corresponding mouse models. The described procedure for efficient genome editing can be applied to any cell type to study physiological and pathophysiological functions in the context of precisely engineered genotypes.
Transcriptome-wide identification of A > I RNA editing sites by inosine specific cleavage
Cattenoz, Pierre B.; Taft, Ryan J.; Westhof, Eric; Mattick, John S.
2013-01-01
Adenosine to inosine (A > I) RNA editing, which is catalyzed by the ADAR family of proteins, is one of the fundamental mechanisms by which transcriptomic diversity is generated. Indeed, a number of genome-wide analyses have shown that A > I editing is not limited to a few mRNAs, as originally thought, but occurs widely across the transcriptome, especially in the brain. Importantly, there is increasing evidence that A > I editing is essential for animal development and nervous system function. To more efficiently characterize the complete catalog of ADAR events in the mammalian transcriptome we developed a high-throughput protocol to identify A > I editing sites, which exploits the capacity of glyoxal to protect guanosine, but not inosine, from RNAse T1 treatment, thus facilitating extraction of RNA fragments with inosine bases at their termini for high-throughput sequencing. Using this method we identified 665 editing sites in mouse brain RNA, including most known sites and suite of novel sites that include nonsynonymous changes to protein-coding genes, hyperediting of genes known to regulate p53, and alterations to non-protein-coding RNAs. This method is applicable to any biological system for the de novo discovery of A > I editing sites, and avoids the complicated informatic and practical issues associated with editing site identification using traditional RNA sequencing data. This approach has the potential to substantially increase our understanding of the extent and function of RNA editing, and thereby to shed light on the role of transcriptional plasticity in evolution, development, and cognition. PMID:23264566
A-to-I RNA editing promotes developmental stage–specific gene and lncRNA expression
Goldstein, Boaz; Agranat-Tamir, Lily; Light, Dean; Ben-Naim Zgayer, Orna; Fishman, Alla; Lamm, Ayelet T.
2017-01-01
A-to-I RNA editing is a conserved widespread phenomenon in which adenosine (A) is converted to inosine (I) by adenosine deaminases (ADARs) in double-stranded RNA regions, mainly noncoding. Mutations in ADAR enzymes in Caenorhabditis elegans cause defects in normal development but are not lethal as in human and mouse. Previous studies in C. elegans indicated competition between RNA interference (RNAi) and RNA editing mechanisms, based on the observation that worms that lack both mechanisms do not exhibit defects, in contrast to the developmental defects observed when only RNA editing is absent. To study the effects of RNA editing on gene expression and function, we established a novel screen that enabled us to identify thousands of RNA editing sites in nonrepetitive regions in the genome. These include dozens of genes that are edited at their 3′ UTR region. We found that these genes are mainly germline and neuronal genes, and that they are down-regulated in the absence of ADAR enzymes. Moreover, we discovered that almost half of these genes are edited in a developmental-specific manner, indicating that RNA editing is a highly regulated process. We found that many pseudogenes and other lncRNAs are also extensively down-regulated in the absence of ADARs in the embryo but not in the fourth larval (L4) stage. This down-regulation is not observed upon additional knockout of RNAi. Furthermore, levels of siRNAs aligned to pseudogenes in ADAR mutants are enhanced. Taken together, our results suggest a role for RNA editing in normal growth and development by regulating silencing via RNAi. PMID:28031250
Genetic and Functional Heterogeneity of Tumors in Neurofibromatosis 2
2016-07-01
mapped to the human genome build 37 (hg19) through BWA v. 0.5.9 [1] with parameters -q 5 -l 32 -k 2 –o 1. The resulting alignments were further sorted...see Table 2). Table 2 – Isogenic human arachnoidal cell (AC) clones with NF2 (exon 8) inactivating mutations generated by CRISPR/Cas genome editing...libraries were aligned to the human genome (GrCH37, Ensembl build 71) using Gsnap [19] version 2014_12_19. Expression levels of genes in the units of count
The Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed to address needs for rapid, cost effective methods of species extrapolation of chemical susceptibility. Specifically, the SeqAPASS tool compares the primary sequence (Level 1), functiona...
MISTICA: Minimum Spanning Tree-based Coarse Image Alignment for Microscopy Image Sequences
Ray, Nilanjan; McArdle, Sara; Ley, Klaus; Acton, Scott T.
2016-01-01
Registration of an in vivo microscopy image sequence is necessary in many significant studies, including studies of atherosclerosis in large arteries and the heart. Significant cardiac and respiratory motion of the living subject, occasional spells of focal plane changes, drift in the field of view, and long image sequences are the principal roadblocks. The first step in such a registration process is the removal of translational and rotational motion. Next, a deformable registration can be performed. The focus of our study here is to remove the translation and/or rigid body motion that we refer to here as coarse alignment. The existing techniques for coarse alignment are unable to accommodate long sequences often consisting of periods of poor quality images (as quantified by a suitable perceptual measure). Many existing methods require the user to select an anchor image to which other images are registered. We propose a novel method for coarse image sequence alignment based on minimum weighted spanning trees (MISTICA) that overcomes these difficulties. The principal idea behind MISTICA is to re-order the images in shorter sequences, to demote nonconforming or poor quality images in the registration process, and to mitigate the error propagation. The anchor image is selected automatically making MISTICA completely automated. MISTICA is computationally efficient. It has a single tuning parameter that determines graph width, which can also be eliminated by way of additional computation. MISTICA outperforms existing alignment methods when applied to microscopy image sequences of mouse arteries. PMID:26415193
MISTICA: Minimum Spanning Tree-Based Coarse Image Alignment for Microscopy Image Sequences.
Ray, Nilanjan; McArdle, Sara; Ley, Klaus; Acton, Scott T
2016-11-01
Registration of an in vivo microscopy image sequence is necessary in many significant studies, including studies of atherosclerosis in large arteries and the heart. Significant cardiac and respiratory motion of the living subject, occasional spells of focal plane changes, drift in the field of view, and long image sequences are the principal roadblocks. The first step in such a registration process is the removal of translational and rotational motion. Next, a deformable registration can be performed. The focus of our study here is to remove the translation and/or rigid body motion that we refer to here as coarse alignment. The existing techniques for coarse alignment are unable to accommodate long sequences often consisting of periods of poor quality images (as quantified by a suitable perceptual measure). Many existing methods require the user to select an anchor image to which other images are registered. We propose a novel method for coarse image sequence alignment based on minimum weighted spanning trees (MISTICA) that overcomes these difficulties. The principal idea behind MISTICA is to reorder the images in shorter sequences, to demote nonconforming or poor quality images in the registration process, and to mitigate the error propagation. The anchor image is selected automatically making MISTICA completely automated. MISTICA is computationally efficient. It has a single tuning parameter that determines graph width, which can also be eliminated by the way of additional computation. MISTICA outperforms existing alignment methods when applied to microscopy image sequences of mouse arteries.
QuickProbs 2: Towards rapid construction of high-quality alignments of large protein families
Gudyś, Adam; Deorowicz, Sebastian
2017-01-01
The ever-increasing size of sequence databases caused by the development of high throughput sequencing, poses to multiple alignment algorithms one of the greatest challenges yet. As we show, well-established techniques employed for increasing alignment quality, i.e., refinement and consistency, are ineffective when large protein families are investigated. We present QuickProbs 2, an algorithm for multiple sequence alignment. Based on probabilistic models, equipped with novel column-oriented refinement and selective consistency, it offers outstanding accuracy. When analysing hundreds of sequences, Quick-Probs 2 is noticeably better than ClustalΩ and MAFFT, the previous leaders for processing numerous protein families. In the case of smaller sets, for which consistency-based methods are the best performing, QuickProbs 2 is also superior to the competitors. Due to low computational requirements of selective consistency and utilization of massively parallel architectures, presented algorithm has similar execution times to ClustalΩ, and is orders of magnitude faster than full consistency approaches, like MSAProbs or PicXAA. All these make QuickProbs 2 an excellent tool for aligning families ranging from few, to hundreds of proteins. PMID:28139687
Adhikari, Badri; Hou, Jie; Cheng, Jianlin
2018-03-01
In this study, we report the evaluation of the residue-residue contacts predicted by our three different methods in the CASP12 experiment, focusing on studying the impact of multiple sequence alignment, residue coevolution, and machine learning on contact prediction. The first method (MULTICOM-NOVEL) uses only traditional features (sequence profile, secondary structure, and solvent accessibility) with deep learning to predict contacts and serves as a baseline. The second method (MULTICOM-CONSTRUCT) uses our new alignment algorithm to generate deep multiple sequence alignment to derive coevolution-based features, which are integrated by a neural network method to predict contacts. The third method (MULTICOM-CLUSTER) is a consensus combination of the predictions of the first two methods. We evaluated our methods on 94 CASP12 domains. On a subset of 38 free-modeling domains, our methods achieved an average precision of up to 41.7% for top L/5 long-range contact predictions. The comparison of the three methods shows that the quality and effective depth of multiple sequence alignments, coevolution-based features, and machine learning integration of coevolution-based features and traditional features drive the quality of predicted protein contacts. On the full CASP12 dataset, the coevolution-based features alone can improve the average precision from 28.4% to 41.6%, and the machine learning integration of all the features further raises the precision to 56.3%, when top L/5 predicted long-range contacts are evaluated. And the correlation between the precision of contact prediction and the logarithm of the number of effective sequences in alignments is 0.66. © 2017 Wiley Periodicals, Inc.
galaxie--CGI scripts for sequence identification through automated phylogenetic analysis.
Nilsson, R Henrik; Larsson, Karl-Henrik; Ursing, Björn M
2004-06-12
The prevalent use of similarity searches like BLAST to identify sequences and species implicitly assumes the reference database to be of extensive sequence sampling. This is often not the case, restraining the correctness of the outcome as a basis for sequence identification. Phylogenetic inference outperforms similarity searches in retrieving correct phylogenies and consequently sequence identities, and a project was initiated to design a freely available script package for sequence identification through automated Web-based phylogenetic analysis. Three CGI scripts were designed to facilitate qualified sequence identification from a Web interface. Query sequences are aligned to pre-made alignments or to alignments made by ClustalW with entries retrieved from a BLAST search. The subsequent phylogenetic analysis is based on the PHYLIP package for inferring neighbor-joining and parsimony trees. The scripts are highly configurable. A service installation and a version for local use are found at http://andromeda.botany.gu.se/galaxiewelcome.html and http://galaxie.cgb.ki.se
DNA Barcode Sequence Identification Incorporating Taxonomic Hierarchy and within Taxon Variability
Little, Damon P.
2011-01-01
For DNA barcoding to succeed as a scientific endeavor an accurate and expeditious query sequence identification method is needed. Although a global multiple–sequence alignment can be generated for some barcoding markers (e.g. COI, rbcL), not all barcoding markers are as structurally conserved (e.g. matK). Thus, algorithms that depend on global multiple–sequence alignments are not universally applicable. Some sequence identification methods that use local pairwise alignments (e.g. BLAST) are unable to accurately differentiate between highly similar sequences and are not designed to cope with hierarchic phylogenetic relationships or within taxon variability. Here, I present a novel alignment–free sequence identification algorithm–BRONX–that accounts for observed within taxon variability and hierarchic relationships among taxa. BRONX identifies short variable segments and corresponding invariant flanking regions in reference sequences. These flanking regions are used to score variable regions in the query sequence without the production of a global multiple–sequence alignment. By incorporating observed within taxon variability into the scoring procedure, misidentifications arising from shared alleles/haplotypes are minimized. An explicit treatment of more inclusive terminals allows for separate identifications to be made for each taxonomic level and/or for user–defined terminals. BRONX performs better than all other methods when there is imperfect overlap between query and reference sequences (e.g. mini–barcode queries against a full–length barcode database). BRONX consistently produced better identifications at the genus–level for all query types. PMID:21857897
EGenBio: A Data Management System for Evolutionary Genomics and Biodiversity
Nahum, Laila A; Reynolds, Matthew T; Wang, Zhengyuan O; Faith, Jeremiah J; Jonna, Rahul; Jiang, Zhi J; Meyer, Thomas J; Pollock, David D
2006-01-01
Background Evolutionary genomics requires management and filtering of large numbers of diverse genomic sequences for accurate analysis and inference on evolutionary processes of genomic and functional change. We developed Evolutionary Genomics and Biodiversity (EGenBio; ) to begin to address this. Description EGenBio is a system for manipulation and filtering of large numbers of sequences, integrating curated sequence alignments and phylogenetic trees, managing evolutionary analyses, and visualizing their output. EGenBio is organized into three conceptual divisions, Evolution, Genomics, and Biodiversity. The Genomics division includes tools for selecting pre-aligned sequences from different genes and species, and for modifying and filtering these alignments for further analysis. Species searches are handled through queries that can be modified based on a tree-based navigation system and saved. The Biodiversity division contains tools for analyzing individual sequences or sequence alignments, whereas the Evolution division contains tools involving phylogenetic trees. Alignments are annotated with analytical results and modification history using our PRAED format. A miscellaneous Tools section and Help framework are also available. EGenBio was developed around our comparative genomic research and a prototype database of mtDNA genomes. It utilizes MySQL-relational databases and dynamic page generation, and calls numerous custom programs. Conclusion EGenBio was designed to serve as a platform for tools and resources to ease combined analysis in evolution, genomics, and biodiversity. PMID:17118150
Community detection in sequence similarity networks based on attribute clustering
Chowdhary, Janamejaya; Loeffler, Frank E.; Smith, Jeremy C.
2017-07-24
Networks are powerful tools for the presentation and analysis of interactions in multi-component systems. A commonly studied mesoscopic feature of networks is their community structure, which arises from grouping together similar nodes into one community and dissimilar nodes into separate communities. Here in this paper, the community structure of protein sequence similarity networks is determined with a new method: Attribute Clustering Dependent Communities (ACDC). Sequence similarity has hitherto typically been quantified by the alignment score or its expectation value. However, pair alignments with the same score or expectation value cannot thus be differentiated. To overcome this deficiency, the method constructs,more » for pair alignments, an extended alignment metric, the link attribute vector, which includes the score and other alignment characteristics. Rescaling components of the attribute vectors qualitatively identifies a systematic variation of sequence similarity within protein superfamilies. The problem of community detection is then mapped to clustering the link attribute vectors, selection of an optimal subset of links and community structure refinement based on the partition density of the network. ACDC-predicted communities are found to be in good agreement with gold standard sequence databases for which the "ground truth" community structures (or families) are known. ACDC is therefore a community detection method for sequence similarity networks based entirely on pair similarity information. A serial implementation of ACDC is available from https://cmb.ornl.gov/resources/developments« less
Community detection in sequence similarity networks based on attribute clustering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhary, Janamejaya; Loeffler, Frank E.; Smith, Jeremy C.
Networks are powerful tools for the presentation and analysis of interactions in multi-component systems. A commonly studied mesoscopic feature of networks is their community structure, which arises from grouping together similar nodes into one community and dissimilar nodes into separate communities. Here in this paper, the community structure of protein sequence similarity networks is determined with a new method: Attribute Clustering Dependent Communities (ACDC). Sequence similarity has hitherto typically been quantified by the alignment score or its expectation value. However, pair alignments with the same score or expectation value cannot thus be differentiated. To overcome this deficiency, the method constructs,more » for pair alignments, an extended alignment metric, the link attribute vector, which includes the score and other alignment characteristics. Rescaling components of the attribute vectors qualitatively identifies a systematic variation of sequence similarity within protein superfamilies. The problem of community detection is then mapped to clustering the link attribute vectors, selection of an optimal subset of links and community structure refinement based on the partition density of the network. ACDC-predicted communities are found to be in good agreement with gold standard sequence databases for which the "ground truth" community structures (or families) are known. ACDC is therefore a community detection method for sequence similarity networks based entirely on pair similarity information. A serial implementation of ACDC is available from https://cmb.ornl.gov/resources/developments« less
Parallel algorithms for large-scale biological sequence alignment on Xeon-Phi based clusters.
Lan, Haidong; Chan, Yuandong; Xu, Kai; Schmidt, Bertil; Peng, Shaoliang; Liu, Weiguo
2016-07-19
Computing alignments between two or more sequences are common operations frequently performed in computational molecular biology. The continuing growth of biological sequence databases establishes the need for their efficient parallel implementation on modern accelerators. This paper presents new approaches to high performance biological sequence database scanning with the Smith-Waterman algorithm and the first stage of progressive multiple sequence alignment based on the ClustalW heuristic on a Xeon Phi-based compute cluster. Our approach uses a three-level parallelization scheme to take full advantage of the compute power available on this type of architecture; i.e. cluster-level data parallelism, thread-level coarse-grained parallelism, and vector-level fine-grained parallelism. Furthermore, we re-organize the sequence datasets and use Xeon Phi shuffle operations to improve I/O efficiency. Evaluations show that our method achieves a peak overall performance up to 220 GCUPS for scanning real protein sequence databanks on a single node consisting of two Intel E5-2620 CPUs and two Intel Xeon Phi 7110P cards. It also exhibits good scalability in terms of sequence length and size, and number of compute nodes for both database scanning and multiple sequence alignment. Furthermore, the achieved performance is highly competitive in comparison to optimized Xeon Phi and GPU implementations. Our implementation is available at https://github.com/turbo0628/LSDBS-mpi .
Fourment, Mathieu; Gibbs, Mark J
2008-02-05
Viruses of the Bunyaviridae have segmented negative-stranded RNA genomes and several of them cause significant disease. Many partial sequences have been obtained from the segments so that GenBank searches give complex results. Sequence databases usually use HTML pages to mediate remote sorting, but this approach can be limiting and may discourage a user from exploring a database. The VirusBanker database contains Bunyaviridae sequences and alignments and is presented as two spreadsheets generated by a Java program that interacts with a MySQL database on a server. Sequences are displayed in rows and may be sorted using information that is displayed in columns and includes data relating to the segment, gene, protein, species, strain, sequence length, terminal sequence and date and country of isolation. Bunyaviridae sequences and alignments may be downloaded from the second spreadsheet with titles defined by the user from the columns, or viewed when passed directly to the sequence editor, Jalview. VirusBanker allows large datasets of aligned nucleotide and protein sequences from the Bunyaviridae to be compiled and winnowed rapidly using criteria that are formulated heuristically.
Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system.
Kiro, Ruth; Shitrit, Dror; Qimron, Udi
2014-01-01
The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system has recently been used to engineer genomes of various organisms, but surprisingly, not those of bacteriophages (phages). Here we present a method to genetically engineer the Escherichia coli phage T7 using the type I-E CRISPR-Cas system. T7 phage genome is edited by homologous recombination with a DNA sequence flanked by sequences homologous to the desired location. Non-edited genomes are targeted by the CRISPR-Cas system, thus enabling isolation of the desired recombinant phages. This method broadens CRISPR Cas-based editing to phages and uses a CRISPR-Cas type other than type II. The method may be adjusted to genetically engineer any bacteriophage genome.
Apollo: a sequence annotation editor
Lewis, SE; Searle, SMJ; Harris, N; Gibson, M; Iyer, V; Richter, J; Wiel, C; Bayraktaroglu, L; Birney, E; Crosby, MA; Kaminker, JS; Matthews, BB; Prochnik, SE; Smith, CD; Tupy, JL; Rubin, GM; Misra, S; Mungall, CJ; Clamp, ME
2002-01-01
The well-established inaccuracy of purely computational methods for annotating genome sequences necessitates an interactive tool to allow biological experts to refine these approximations by viewing and independently evaluating the data supporting each annotation. Apollo was developed to meet this need, enabling curators to inspect genome annotations closely and edit them. FlyBase biologists successfully used Apollo to annotate the Drosophila melanogaster genome and it is increasingly being used as a starting point for the development of customized annotation editing tools for other genome projects. PMID:12537571
PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing.
Malina, Abba; Cameron, Christopher J F; Robert, Francis; Blanchette, Mathieu; Dostie, Josée; Pelletier, Jerry
2015-12-08
In CRISPR-Cas9 genome editing, the underlying principles for selecting guide RNA (gRNA) sequences that would ensure for efficient target site modification remain poorly understood. Here we show that target sites harbouring multiple protospacer adjacent motifs (PAMs) are refractory to Cas9-mediated repair in situ. Thus we refine which substrates should be avoided in gRNA design, implicating PAM density as a novel sequence-specific feature that inhibits in vivo Cas9-driven DNA modification.
PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing
Malina, Abba; Cameron, Christopher J. F.; Robert, Francis; Blanchette, Mathieu; Dostie, Josée; Pelletier, Jerry
2015-01-01
In CRISPR-Cas9 genome editing, the underlying principles for selecting guide RNA (gRNA) sequences that would ensure for efficient target site modification remain poorly understood. Here we show that target sites harbouring multiple protospacer adjacent motifs (PAMs) are refractory to Cas9-mediated repair in situ. Thus we refine which substrates should be avoided in gRNA design, implicating PAM density as a novel sequence-specific feature that inhibits in vivo Cas9-driven DNA modification. PMID:26644285
Alachiotis, Nikolaos; Vogiatzi, Emmanouella; Pavlidis, Pavlos; Stamatakis, Alexandros
2013-01-01
Automated DNA sequencers generate chromatograms that contain raw sequencing data. They also generate data that translates the chromatograms into molecular sequences of A, C, G, T, or N (undetermined) characters. Since chromatogram translation programs frequently introduce errors, a manual inspection of the generated sequence data is required. As sequence numbers and lengths increase, visual inspection and manual correction of chromatograms and corresponding sequences on a per-peak and per-nucleotide basis becomes an error-prone, time-consuming, and tedious process. Here, we introduce ChromatoGate (CG), an open-source software that accelerates and partially automates the inspection of chromatograms and the detection of sequencing errors for bidirectional sequencing runs. To provide users full control over the error correction process, a fully automated error correction algorithm has not been implemented. Initially, the program scans a given multiple sequence alignment (MSA) for potential sequencing errors, assuming that each polymorphic site in the alignment may be attributed to a sequencing error with a certain probability. The guided MSA assembly procedure in ChromatoGate detects chromatogram peaks of all characters in an alignment that lead to polymorphic sites, given a user-defined threshold. The threshold value represents the sensitivity of the sequencing error detection mechanism. After this pre-filtering, the user only needs to inspect a small number of peaks in every chromatogram to correct sequencing errors. Finally, we show that correcting sequencing errors is important, because population genetic and phylogenetic inferences can be misled by MSAs with uncorrected mis-calls. Our experiments indicate that estimates of population mutation rates can be affected two- to three-fold by uncorrected errors. PMID:24688709
Alachiotis, Nikolaos; Vogiatzi, Emmanouella; Pavlidis, Pavlos; Stamatakis, Alexandros
2013-01-01
Automated DNA sequencers generate chromatograms that contain raw sequencing data. They also generate data that translates the chromatograms into molecular sequences of A, C, G, T, or N (undetermined) characters. Since chromatogram translation programs frequently introduce errors, a manual inspection of the generated sequence data is required. As sequence numbers and lengths increase, visual inspection and manual correction of chromatograms and corresponding sequences on a per-peak and per-nucleotide basis becomes an error-prone, time-consuming, and tedious process. Here, we introduce ChromatoGate (CG), an open-source software that accelerates and partially automates the inspection of chromatograms and the detection of sequencing errors for bidirectional sequencing runs. To provide users full control over the error correction process, a fully automated error correction algorithm has not been implemented. Initially, the program scans a given multiple sequence alignment (MSA) for potential sequencing errors, assuming that each polymorphic site in the alignment may be attributed to a sequencing error with a certain probability. The guided MSA assembly procedure in ChromatoGate detects chromatogram peaks of all characters in an alignment that lead to polymorphic sites, given a user-defined threshold. The threshold value represents the sensitivity of the sequencing error detection mechanism. After this pre-filtering, the user only needs to inspect a small number of peaks in every chromatogram to correct sequencing errors. Finally, we show that correcting sequencing errors is important, because population genetic and phylogenetic inferences can be misled by MSAs with uncorrected mis-calls. Our experiments indicate that estimates of population mutation rates can be affected two- to three-fold by uncorrected errors.
American Indian Standards for History.
ERIC Educational Resources Information Center
Bureau of Indian Affairs (Dept. of Interior), Washington, DC. Office of Indian Education Programs.
This document presents American Indian history standards that are closely aligned with the 1996 expanded edition of the U.S. national standards for history. The American Indian standards should be used in conjunction with the national standards document itself and therefore, follow the same format, organization, and language. The Indian-specific…
Diesel Technology: Safety Skills. [Teacher and Student Editions.
ERIC Educational Resources Information Center
Kellum, Mary
Competency-based teacher and student materials are provided for three units on safety skills as part of a diesel technology curriculum. The units cover the following topics: general safety; workplace safety; and first aid. The materials are based on the curriculum-alignment concept of first stating the objectives, then developing instructional…
Editing Citrus Genome via SaCas9/sgRNA System
Jia, Hongge; Xu, Jin; Orbović, Vladimir; Zhang, Yunzeng; Wang, Nian
2017-01-01
SaCas9/sgRNA, derived from Staphylococcus aureus, is an alternative system for genome editing to Streptococcus pyogenes SpCas9/sgRNA. The smaller SaCas9 recognizes a different protospacer adjacent motif (PAM) sequence from SpCas9. SaCas9/sgRNA has been employed to edit the genomes of Arabidopsis, tobacco and rice. In this study, we aimed to test its potential in genome editing of citrus. Transient expression of SaCas9/sgRNA in Duncan grapefruit via Xcc-facilitated agroinfiltration showed it can successfully modify CsPDS and Cs2g12470. Subsequently, binary vector GFP-p1380N-SaCas9/35S-sgRNA1:AtU6-sgRNA2 was developed to edit two target sites of Cs7g03360 in transgenic Carrizo citrange. Twelve GFP-positive Carrizo transformants were successfully established, designated as #Cz1 to #Cz12. Based on targeted next generation sequencing results, the mutation rates for the two targets ranged from 15.55 to 39.13% for sgRNA1 and 49.01 to 79.67% for sgRNA2. Therefore, SaCas9/sgRNA can be used as an alternative tool to SpCas9/sgRNA for citrus genome editing. PMID:29312390
Two Influential Primate Classifications Logically Aligned.
Franz, Nico M; Pier, Naomi M; Reeder, Deeann M; Chen, Mingmin; Yu, Shizhuo; Kianmajd, Parisa; Bowers, Shawn; Ludäscher, Bertram
2016-07-01
Classifications and phylogenies of perceived natural entities change in the light of new evidence. Taxonomic changes, translated into Code-compliant names, frequently lead to name:meaning dissociations across succeeding treatments. Classification standards such as the Mammal Species of the World (MSW) may experience significant levels of taxonomic change from one edition to the next, with potential costs to long-term, large-scale information integration. This circumstance challenges the biodiversity and phylogenetic data communities to express taxonomic congruence and incongruence in ways that both humans and machines can process, that is, to logically represent taxonomic alignments across multiple classifications. We demonstrate that such alignments are feasible for two classifications of primates corresponding to the second and third MSW editions. Our approach has three main components: (i) use of taxonomic concept labels, that is name sec. author (where sec. means according to), to assemble each concept hierarchy separately via parent/child relationships; (ii) articulation of select concepts across the two hierarchies with user-provided Region Connection Calculus (RCC-5) relationships; and (iii) the use of an Answer Set Programming toolkit to infer and visualize logically consistent alignments of these input constraints. Our use case entails the Primates sec. Groves (1993; MSW2-317 taxonomic concepts; 233 at the species level) and Primates sec. Groves (2005; MSW3-483 taxonomic concepts; 376 at the species level). Using 402 RCC-5 input articulations, the reasoning process yields a single, consistent alignment and 153,111 Maximally Informative Relations that constitute a comprehensive meaning resolution map for every concept pair in the Primates sec. MSW2/MSW3. The complete alignment, and various partitions thereof, facilitate quantitative analyses of name:meaning dissociation, revealing that nearly one in three taxonomic names are not reliable across treatments-in the sense of the same name identifying congruent taxonomic meanings. The RCC-5 alignment approach is potentially widely applicable in systematics and can achieve scalable, precise resolution of semantically evolving name usages in synthetic, next-generation biodiversity, and phylogeny data platforms. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society of Systematic Biologists.
Rainetová, P; Jiřincová, H; Musílek, M; Nováková, L; Vodičková, I; Štruncová, V; Švecová, M; Pazdiora, P; Piskunová, N; Trubač, P; Zajíc, T; Havlíčková, M
2015-06-01
Introducing enterovirus sequencing as an advanced approach to classify the viruses isolated according to the novel nomenclature and to characterize isolates in detail. Seventy-five specimens collected from 64 patients in two hospitals, Liberec Regional Hospital, and Plzeň University Hospital, were analyzed. The study patients' age ranged from four to 54 years, with a median of 15 years in males and 16 years in females. In most patients, the reasons for admission were intense headache, fever, vomiting, tiredness, meningeal symptoms, intestinal symptoms (in two patients), and skin symptoms (in one patient). The specimens collected were rectal and throat swabs, cerebrospinal fluid (CSF) and stool specimens. Molecular detection and typing were performed using the RT-PCR method. A segment of the 5´non-coding RNA was selected for typing. Specimens were amplified using single-step PCR with external primers and with the same primers extended to include M13 sequences (Generi-Biotech). The LASERGENE software (DIASTAR) was used in sequence editing, alignment, and quality check. The sequences obtained were checked against the central GenBank sequence database using the BLAST algorithm. The identification of the study isolates resulted in 61 ECHO viruses 30, three coxsackie viruses B1, one coxsackie virus B3, one coxsackie virus A9, one enterovirus 86, one enterovirus 71, Two ECHO viruses 13/coxsackie virus B5, one ECHO virus 7/30/coxsackie virus B4, one coxsackie virus B4/enterovirus B, one enterovirus 87/ECHO virus 30/enterovirus B, and one ECHO virus 3. All viruses isolated, except enterovirus 71 classified into group A, were of group B. The enteroviruses were identified unambigously, although the sequencing only targeted a short, conserved segment that showed considerable variability. The sequencing was an effective alternative to enterovirus identification by the neutralisation test and allowed for detailed characterization of the isolates. The predominance of ECHO 30 as the cause of aseptic meningitis is in accordance with the literature data.
Incorporating evolution of transcription factor binding sites into annotated alignments.
Bais, Abha S; Grossmann, Stefen; Vingron, Martin
2007-08-01
Identifying transcription factor binding sites (TFBSs) is essential to elucidate putative regulatory mechanisms. A common strategy is to combine cross-species conservation with single sequence TFBS annotation to yield "conserved TFBSs". Most current methods in this field adopt a multi-step approach that segregates the two aspects. Again, it is widely accepted that the evolutionary dynamics of binding sites differ from those of the surrounding sequence. Hence, it is desirable to have an approach that explicitly takes this factor into account. Although a plethora of approaches have been proposed for the prediction of conserved TFBSs, very few explicitly model TFBS evolutionary properties, while additionally being multi-step. Recently, we introduced a novel approach to simultaneously align and annotate conserved TFBSs in a pair of sequences. Building upon the standard Smith-Waterman algorithm for local alignments, SimAnn introduces additional states for profiles to output extended alignments or annotated alignments. That is, alignments with parts annotated as gaplessly aligned TFBSs (pair-profile hits)are generated. Moreover,the pair- profile related parameters are derived in a sound statistical framework. In this article, we extend this approach to explicitly incorporate evolution of binding sites in the SimAnn framework. We demonstrate the extension in the theoretical derivations through two position-specific evolutionary models, previously used for modelling TFBS evolution. In a simulated setting, we provide a proof of concept that the approach works given the underlying assumptions,as compared to the original work. Finally, using a real dataset of experimentally verified binding sites in human-mouse sequence pairs,we compare the new approach (eSimAnn) to an existing multi-step tool that also considers TFBS evolution. Although it is widely accepted that binding sites evolve differently from the surrounding sequences, most comparative TFBS identification methods do not explicitly consider this.Additionally, prediction of conserved binding sites is carried out in a multi-step approach that segregates alignment from TFBS annotation. In this paper, we demonstrate how the simultaneous alignment and annotation approach of SimAnn can be further extended to incorporate TFBS evolutionary relationships. We study how alignments and binding site predictions interplay at varying evolutionary distances and for various profile qualities.
Kann, Maricel G.; Sheetlin, Sergey L.; Park, Yonil; Bryant, Stephen H.; Spouge, John L.
2007-01-01
The sequencing of complete genomes has created a pressing need for automated annotation of gene function. Because domains are the basic units of protein function and evolution, a gene can be annotated from a domain database by aligning domains to the corresponding protein sequence. Ideally, complete domains are aligned to protein subsequences, in a ‘semi-global alignment’. Local alignment, which aligns pieces of domains to subsequences, is common in high-throughput annotation applications, however. It is a mature technique, with the heuristics and accurate E-values required for screening large databases and evaluating the screening results. Hidden Markov models (HMMs) provide an alternative theoretical framework for semi-global alignment, but their use is limited because they lack heuristic acceleration and accurate E-values. Our new tool, GLOBAL, overcomes some limitations of previous semi-global HMMs: it has accurate E-values and the possibility of the heuristic acceleration required for high-throughput applications. Moreover, according to a standard of truth based on protein structure, two semi-global HMM alignment tools (GLOBAL and HMMer) had comparable performance in identifying complete domains, but distinctly outperformed two tools based on local alignment. When searching for complete protein domains, therefore, GLOBAL avoids disadvantages commonly associated with HMMs, yet maintains their superior retrieval performance. PMID:17596268
BAYESIAN PROTEIN STRUCTURE ALIGNMENT.
Rodriguez, Abel; Schmidler, Scott C
The analysis of the three-dimensional structure of proteins is an important topic in molecular biochemistry. Structure plays a critical role in defining the function of proteins and is more strongly conserved than amino acid sequence over evolutionary timescales. A key challenge is the identification and evaluation of structural similarity between proteins; such analysis can aid in understanding the role of newly discovered proteins and help elucidate evolutionary relationships between organisms. Computational biologists have developed many clever algorithmic techniques for comparing protein structures, however, all are based on heuristic optimization criteria, making statistical interpretation somewhat difficult. Here we present a fully probabilistic framework for pairwise structural alignment of proteins. Our approach has several advantages, including the ability to capture alignment uncertainty and to estimate key "gap" parameters which critically affect the quality of the alignment. We show that several existing alignment methods arise as maximum a posteriori estimates under specific choices of prior distributions and error models. Our probabilistic framework is also easily extended to incorporate additional information, which we demonstrate by including primary sequence information to generate simultaneous sequence-structure alignments that can resolve ambiguities obtained using structure alone. This combined model also provides a natural approach for the difficult task of estimating evolutionary distance based on structural alignments. The model is illustrated by comparison with well-established methods on several challenging protein alignment examples.
Statistical Physics Approaches to RNA Editing
NASA Astrophysics Data System (ADS)
Bundschuh, Ralf
2012-02-01
The central dogma of molecular Biology states that DNA is transcribed base by base into RNA which is in turn translated into proteins. However, some organisms edit their RNA before translation by inserting, deleting, or substituting individual or short stretches of bases. In many instances the mechanisms by which an organism recognizes the positions at which to edit or by which it performs the actual editing are unknown. One model system that stands out by its very high rate of on average one out of 25 bases being edited are the Myxomycetes, a class of slime molds. In this talk we will show how the computational methods and concepts from statistical Physics can be used to analyze DNA and protein sequence data to predict editing sites in these slime molds and to guide experiments that identified previously unknown types of editing as well as the complete set of editing events in the slime mold Physarum polycephalum.
Tso, Kai-Yuen; Lee, Sau Dan; Lo, Kwok-Wai; Yip, Kevin Y
2014-12-23
Patient-derived tumor xenografts in mice are widely used in cancer research and have become important in developing personalized therapies. When these xenografts are subject to DNA sequencing, the samples could contain various amounts of mouse DNA. It has been unclear how the mouse reads would affect data analyses. We conducted comprehensive simulations to compare three alignment strategies at different mutation rates, read lengths, sequencing error rates, human-mouse mixing ratios and sequenced regions. We also sequenced a nasopharyngeal carcinoma xenograft and a cell line to test how the strategies work on real data. We found the "filtering" and "combined reference" strategies performed better than aligning reads directly to human reference in terms of alignment and variant calling accuracies. The combined reference strategy was particularly good at reducing false negative variants calls without significantly increasing the false positive rate. In some scenarios the performance gain of these two special handling strategies was too small for special handling to be cost-effective, but it was found crucial when false non-synonymous SNVs should be minimized, especially in exome sequencing. Our study systematically analyzes the effects of mouse contamination in the sequencing data of human-in-mouse xenografts. Our findings provide information for designing data analysis pipelines for these data.
Acceleration of the Smith-Waterman algorithm using single and multiple graphics processors
NASA Astrophysics Data System (ADS)
Khajeh-Saeed, Ali; Poole, Stephen; Blair Perot, J.
2010-06-01
Finding regions of similarity between two very long data streams is a computationally intensive problem referred to as sequence alignment. Alignment algorithms must allow for imperfect sequence matching with different starting locations and some gaps and errors between the two data sequences. Perhaps the most well known application of sequence matching is the testing of DNA or protein sequences against genome databases. The Smith-Waterman algorithm is a method for precisely characterizing how well two sequences can be aligned and for determining the optimal alignment of those two sequences. Like many applications in computational science, the Smith-Waterman algorithm is constrained by the memory access speed and can be accelerated significantly by using graphics processors (GPUs) as the compute engine. In this work we show that effective use of the GPU requires a novel reformulation of the Smith-Waterman algorithm. The performance of this new version of the algorithm is demonstrated using the SSCA#1 (Bioinformatics) benchmark running on one GPU and on up to four GPUs executing in parallel. The results indicate that for large problems a single GPU is up to 45 times faster than a CPU for this application, and the parallel implementation shows linear speed up on up to 4 GPUs.
NASA Technical Reports Server (NTRS)
Mathews, William S.; Liu, Ning; Francis, Laurie K.; OReilly, Taifun L.; Schrock, Mitchell; Page, Dennis N.; Morris, John R.; Joswig, Joseph C.; Crockett, Thomas M.; Shams, Khawaja S.
2011-01-01
Previously, it was time-consuming to hand-edit data and then set up simulation runs to find the effect and impact of the input data on a spacecraft. MPS Editor provides the user the capability to create/edit/update models and sequences, and immediately try them out using what appears to the user as one piece of software. MPS Editor provides an integrated sequencing environment for users. It provides them with software that can be utilized during development as well as actual operations. In addition, it provides them with a single, consistent, user friendly interface. MPS Editor uses the Eclipse Rich Client Platform to provide an environment that can be tailored to specific missions. It provides the capability to create and edit, and includes an Activity Dictionary to build the simulation spacecraft models, build and edit sequences of commands, and model the effects of those commands on the spacecraft. MPS Editor is written in Java using the Eclipse Rich Client Platform. It is currently built with four perspectives: the Activity Dictionary Perspective, the Project Adaptation Perspective, the Sequence Building Perspective, and the Sequence Modeling Perspective. Each perspective performs a given task. If a mission doesn't require that task, the unneeded perspective is not added to that project's delivery. In the Activity Dictionary Perspective, the user builds the project-specific activities, observations, calibrations, etc. Typically, this is used during the development phases of the mission, although it can be used later to make changes and updates to the Project Activity Dictionary. In the Adaptation Perspective, the user creates the spacecraft models such as power, data store, etc. Again, this is typically used during development, but will be used to update or add models of the spacecraft. The Sequence Building Perspective allows the user to create a sequence of activities or commands that go to the spacecraft. It provides a simulation of the activities and commands that have been created.
King, Brian R; Aburdene, Maurice; Thompson, Alex; Warres, Zach
2014-01-01
Digital signal processing (DSP) techniques for biological sequence analysis continue to grow in popularity due to the inherent digital nature of these sequences. DSP methods have demonstrated early success for detection of coding regions in a gene. Recently, these methods are being used to establish DNA gene similarity. We present the inter-coefficient difference (ICD) transformation, a novel extension of the discrete Fourier transformation, which can be applied to any DNA sequence. The ICD method is a mathematical, alignment-free DNA comparison method that generates a genetic signature for any DNA sequence that is used to generate relative measures of similarity among DNA sequences. We demonstrate our method on a set of insulin genes obtained from an evolutionarily wide range of species, and on a set of avian influenza viral sequences, which represents a set of highly similar sequences. We compare phylogenetic trees generated using our technique against trees generated using traditional alignment techniques for similarity and demonstrate that the ICD method produces a highly accurate tree without requiring an alignment prior to establishing sequence similarity.
RNA Editing and Its Molecular Mechanism in Plant Organelles
Ichinose, Mizuho; Sugita, Mamoru
2016-01-01
RNA editing by cytidine (C) to uridine (U) conversions is widespread in plant mitochondria and chloroplasts. In some plant taxa, “reverse” U-to-C editing also occurs. However, to date, no instance of RNA editing has yet been reported in green algae and the complex thalloid liverworts. RNA editing may have evolved in early land plants 450 million years ago. However, in some plant species, including the liverwort, Marchantia polymorpha, editing may have been lost during evolution. Most RNA editing events can restore the evolutionarily conserved amino acid residues in mRNAs or create translation start and stop codons. Therefore, RNA editing is an essential process to maintain genetic information at the RNA level. Individual RNA editing sites are recognized by plant-specific pentatricopeptide repeat (PPR) proteins that are encoded in the nuclear genome. These PPR proteins are characterized by repeat elements that bind specifically to RNA sequences upstream of target editing sites. In flowering plants, non-PPR proteins also participate in multiple RNA editing events as auxiliary factors. C-to-U editing can be explained by cytidine deamination. The proteins discovered to date are important factors for RNA editing but a bona fide RNA editing enzyme has yet to be identified. PMID:28025543
EggLib: processing, analysis and simulation tools for population genetics and genomics
2012-01-01
Background With the considerable growth of available nucleotide sequence data over the last decade, integrated and flexible analytical tools have become a necessity. In particular, in the field of population genetics, there is a strong need for automated and reliable procedures to conduct repeatable and rapid polymorphism analyses, coalescent simulations, data manipulation and estimation of demographic parameters under a variety of scenarios. Results In this context, we present EggLib (Evolutionary Genetics and Genomics Library), a flexible and powerful C++/Python software package providing efficient and easy to use computational tools for sequence data management and extensive population genetic analyses on nucleotide sequence data. EggLib is a multifaceted project involving several integrated modules: an underlying computationally efficient C++ library (which can be used independently in pure C++ applications); two C++ programs; a Python package providing, among other features, a high level Python interface to the C++ library; and the egglib script which provides direct access to pre-programmed Python applications. Conclusions EggLib has been designed aiming to be both efficient and easy to use. A wide array of methods are implemented, including file format conversion, sequence alignment edition, coalescent simulations, neutrality tests and estimation of demographic parameters by Approximate Bayesian Computation (ABC). Classes implementing different demographic scenarios for ABC analyses can easily be developed by the user and included to the package. EggLib source code is distributed freely under the GNU General Public License (GPL) from its website http://egglib.sourceforge.net/ where a full documentation and a manual can also be found and downloaded. PMID:22494792
EggLib: processing, analysis and simulation tools for population genetics and genomics.
De Mita, Stéphane; Siol, Mathieu
2012-04-11
With the considerable growth of available nucleotide sequence data over the last decade, integrated and flexible analytical tools have become a necessity. In particular, in the field of population genetics, there is a strong need for automated and reliable procedures to conduct repeatable and rapid polymorphism analyses, coalescent simulations, data manipulation and estimation of demographic parameters under a variety of scenarios. In this context, we present EggLib (Evolutionary Genetics and Genomics Library), a flexible and powerful C++/Python software package providing efficient and easy to use computational tools for sequence data management and extensive population genetic analyses on nucleotide sequence data. EggLib is a multifaceted project involving several integrated modules: an underlying computationally efficient C++ library (which can be used independently in pure C++ applications); two C++ programs; a Python package providing, among other features, a high level Python interface to the C++ library; and the egglib script which provides direct access to pre-programmed Python applications. EggLib has been designed aiming to be both efficient and easy to use. A wide array of methods are implemented, including file format conversion, sequence alignment edition, coalescent simulations, neutrality tests and estimation of demographic parameters by Approximate Bayesian Computation (ABC). Classes implementing different demographic scenarios for ABC analyses can easily be developed by the user and included to the package. EggLib source code is distributed freely under the GNU General Public License (GPL) from its website http://egglib.sourceforge.net/ where a full documentation and a manual can also be found and downloaded.
Sequence analysis of Leukemia DNA
NASA Astrophysics Data System (ADS)
Nacong, Nasria; Lusiyanti, Desy; Irawan, Muhammad. Isa
2018-03-01
Cancer is a very deadly disease, one of which is leukemia disease or better known as blood cancer. The cancer cell can be detected by taking DNA in laboratory test. This study focused on local alignment of leukemia and non leukemia data resulting from NCBI in the form of DNA sequences by using Smith-Waterman algorithm. SmithWaterman algorithm was invented by TF Smith and MS Waterman in 1981. These algorithms try to find as much as possible similarity of a pair of sequences, by giving a negative value to the unequal base pair (mismatch), and positive values on the same base pair (match). So that will obtain the maximum positive value as the end of the alignment, and the minimum value as the initial alignment. This study will use sequences of leukemia and 3 sequences of non leukemia.
CRISPR/Cas9 for genome editing: progress, implications and challenges.
Zhang, Feng; Wen, Yan; Guo, Xiong
2014-09-15
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) protein 9 system provides a robust and multiplexable genome editing tool, enabling researchers to precisely manipulate specific genomic elements, and facilitating the elucidation of target gene function in biology and diseases. CRISPR/Cas9 comprises of a nonspecific Cas9 nuclease and a set of programmable sequence-specific CRISPR RNA (crRNA), which can guide Cas9 to cleave DNA and generate double-strand breaks at target sites. Subsequent cellular DNA repair process leads to desired insertions, deletions or substitutions at target sites. The specificity of CRISPR/Cas9-mediated DNA cleavage requires target sequences matching crRNA and a protospacer adjacent motif locating at downstream of target sequences. Here, we review the molecular mechanism, applications and challenges of CRISPR/Cas9-mediated genome editing and clinical therapeutic potential of CRISPR/Cas9 in future. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Genome Editing in Mouse Spermatogonial Stem/Progenitor Cells Using Engineered Nucleases
Fanslow, Danielle A.; Wirt, Stacey E.; Barker, Jenny C.; Connelly, Jon P.; Porteus, Matthew H.; Dann, Christina Tenenhaus
2014-01-01
Editing the genome to create specific sequence modifications is a powerful way to study gene function and promises future applicability to gene therapy. Creation of precise modifications requires homologous recombination, a very rare event in most cell types that can be stimulated by introducing a double strand break near the target sequence. One method to create a double strand break in a particular sequence is with a custom designed nuclease. We used engineered nucleases to stimulate homologous recombination to correct a mutant gene in mouse “GS” (germline stem) cells, testicular derived cell cultures containing spermatogonial stem cells and progenitor cells. We demonstrated that gene-corrected cells maintained several properties of spermatogonial stem/progenitor cells including the ability to colonize following testicular transplantation. This proof of concept for genome editing in GS cells impacts both cell therapy and basic research given the potential for GS cells to be propagated in vitro, contribute to the germline in vivo following testicular transplantation or become reprogrammed to pluripotency in vitro. PMID:25409432
Kuraku, Shigehiro; Zmasek, Christian M; Nishimura, Osamu; Katoh, Kazutaka
2013-07-01
We report a new web server, aLeaves (http://aleaves.cdb.riken.jp/), for homologue collection from diverse animal genomes. In molecular comparative studies involving multiple species, orthology identification is the basis on which most subsequent biological analyses rely. It can be achieved most accurately by explicit phylogenetic inference. More and more species are subjected to large-scale sequencing, but the resultant resources are scattered in independent project-based, and multi-species, but separate, web sites. This complicates data access and is becoming a serious barrier to the comprehensiveness of molecular phylogenetic analysis. aLeaves, launched to overcome this difficulty, collects sequences similar to an input query sequence from various data sources. The collected sequences can be passed on to the MAFFT sequence alignment server (http://mafft.cbrc.jp/alignment/server/), which has been significantly improved in interactivity. This update enables to switch between (i) sequence selection using the Archaeopteryx tree viewer, (ii) multiple sequence alignment and (iii) tree inference. This can be performed as a loop until one reaches a sensible data set, which minimizes redundancy for better visibility and handling in phylogenetic inference while covering relevant taxa. The work flow achieved by the seamless link between aLeaves and MAFFT provides a convenient online platform to address various questions in zoology and evolutionary biology.
Kuraku, Shigehiro; Zmasek, Christian M.; Nishimura, Osamu; Katoh, Kazutaka
2013-01-01
We report a new web server, aLeaves (http://aleaves.cdb.riken.jp/), for homologue collection from diverse animal genomes. In molecular comparative studies involving multiple species, orthology identification is the basis on which most subsequent biological analyses rely. It can be achieved most accurately by explicit phylogenetic inference. More and more species are subjected to large-scale sequencing, but the resultant resources are scattered in independent project-based, and multi-species, but separate, web sites. This complicates data access and is becoming a serious barrier to the comprehensiveness of molecular phylogenetic analysis. aLeaves, launched to overcome this difficulty, collects sequences similar to an input query sequence from various data sources. The collected sequences can be passed on to the MAFFT sequence alignment server (http://mafft.cbrc.jp/alignment/server/), which has been significantly improved in interactivity. This update enables to switch between (i) sequence selection using the Archaeopteryx tree viewer, (ii) multiple sequence alignment and (iii) tree inference. This can be performed as a loop until one reaches a sensible data set, which minimizes redundancy for better visibility and handling in phylogenetic inference while covering relevant taxa. The work flow achieved by the seamless link between aLeaves and MAFFT provides a convenient online platform to address various questions in zoology and evolutionary biology. PMID:23677614
Li, Yushuang; Yang, Jiasheng; Zhang, Yi
2016-01-01
In this paper, we have proposed a novel alignment-free method for comparing the similarity of protein sequences. We first encode a protein sequence into a 440 dimensional feature vector consisting of a 400 dimensional Pseudo-Markov transition probability vector among the 20 amino acids, a 20 dimensional content ratio vector, and a 20 dimensional position ratio vector of the amino acids in the sequence. By evaluating the Euclidean distances among the representing vectors, we compare the similarity of protein sequences. We then apply this method into the ND5 dataset consisting of the ND5 protein sequences of 9 species, and the F10 and G11 datasets representing two of the xylanases containing glycoside hydrolase families, i.e., families 10 and 11. As a result, our method achieves a correlation coefficient of 0.962 with the canonical protein sequence aligner ClustalW in the ND5 dataset, much higher than those of other 5 popular alignment-free methods. In addition, we successfully separate the xylanases sequences in the F10 family and the G11 family and illustrate that the F10 family is more heat stable than the G11 family, consistent with a few previous studies. Moreover, we prove mathematically an identity equation involving the Pseudo-Markov transition probability vector and the amino acids content ratio vector. PMID:27918587
Sequence of the tomato chloroplast DNA and evolutionary comparison of solanaceous plastid genomes.
Kahlau, Sabine; Aspinall, Sue; Gray, John C; Bock, Ralph
2006-08-01
Tomato, Solanum lycopersicum (formerly Lycopersicon esculentum), has long been one of the classical model species of plant genetics. More recently, solanaceous species have become a model of evolutionary genomics, with several EST projects and a tomato genome project having been initiated. As a first contribution toward deciphering the genetic information of tomato, we present here the complete sequence of the tomato chloroplast genome (plastome). The size of this circular genome is 155,461 base pairs (bp), with an average AT content of 62.14%. It contains 114 genes and conserved open reading frames (ycfs). Comparison with the previously sequenced plastid DNAs of Nicotiana tabacum and Atropa belladonna reveals patterns of plastid genome evolution in the Solanaceae family and identifies varying degrees of conservation of individual plastid genes. In addition, we discovered several new sites of RNA editing by cytidine-to-uridine conversion. A detailed comparison of editing patterns in the three solanaceous species highlights the dynamics of RNA editing site evolution in chloroplasts. To assess the level of intraspecific plastome variation in tomato, the plastome of a second tomato cultivar was sequenced. Comparison of the two genotypes (IPA-6, bred in South America, and Ailsa Craig, bred in Europe) revealed no nucleotide differences, suggesting that the plastomes of modern tomato cultivars display very little, if any, sequence variation.
5-HT(2C) receptor RNA editing in the amygdala of C57BL/6J, DBA/2J, and BALB/cJ mice.
Hackler, Elizabeth A; Airey, David C; Shannon, Caitlin C; Sodhi, Monsheel S; Sanders-Bush, Elaine
2006-05-01
Post-transcriptional RNA editing of the G-protein coupled 5-hydroxytryptamine-2C (5-HT(2C)) receptor predicts an array of 24 receptor isoforms, some of which are characterized by reduced constitutive activity and potency to initiate intracellular signaling. The amygdala is integral to anxiety, fear, and related psychiatric diseases. Activation of 5-HT(2C) receptors within the amygdala is anxiogenic. Here, we describe the RNA editing profiles from amygdala of two inbred mouse strains (BALB/cJ and DBA/2J) known to be more anxious than a third (C57BL/6J). We confirmed the strain anxiety differences using light<-->dark exploration, and we discovered that BALB/cJ and DBA/2J are each characterized by a higher functioning RNA editing profile than C57BL/6J. BALB/cJ and DBA/2J exhibit a roughly two-fold reduction in C site editing, and a corresponding two-fold reduction in the edited isoform VSV. C57BL/6J is characterized by a relative decrease in the unedited highly functional isoform INI. We estimated the heritability of editing at the C site to be approximately 40%. By sequencing genomic DNA, we found complete conservation between C57BL/6J, BALB/cJ, DBA/2J and 37 other inbred strains for the RNA edited region of Htr2c, suggesting Htr2c DNA sequence does not influence variation in Htr2c RNA editing between inbred strains of mice. We did, however, discover that serotonin turnover is reduced in BALB/cJ and DBA/2J, consistent with emerging evidence that synaptic serotonin levels regulate RNA editing. These results encourage further study of the causes and consequences of 5-HT(2C) receptor RNA editing in the amygdala of mice.
A-to-I RNA Editing Contributes to Proteomic Diversity in Cancer.
Peng, Xinxin; Xu, Xiaoyan; Wang, Yumeng; Hawke, David H; Yu, Shuangxing; Han, Leng; Zhou, Zhicheng; Mojumdar, Kamalika; Jeong, Kang Jin; Labrie, Marilyne; Tsang, Yiu Huen; Zhang, Minying; Lu, Yiling; Hwu, Patrick; Scott, Kenneth L; Liang, Han; Mills, Gordon B
2018-05-14
Adenosine (A) to inosine (I) RNA editing introduces many nucleotide changes in cancer transcriptomes. However, due to the complexity of post-transcriptional regulation, the contribution of RNA editing to proteomic diversity in human cancers remains unclear. Here, we performed an integrated analysis of TCGA genomic data and CPTAC proteomic data. Despite limited site diversity, we demonstrate that A-to-I RNA editing contributes to proteomic diversity in breast cancer through changes in amino acid sequences. We validate the presence of editing events at both RNA and protein levels. The edited COPA protein increases proliferation, migration, and invasion of cancer cells in vitro. Our study suggests an important contribution of A-to-I RNA editing to protein diversity in cancer and highlights its translational potential. Copyright © 2018 Elsevier Inc. All rights reserved.
Harrison, Thomas; Ruiz, Jaime; Sloan, Daniel B.; Ben-Hur, Asa; Boucher, Christina
2016-01-01
Pentatricopeptide repeat containing proteins (PPRs) bind to RNA transcripts originating from mitochondria and plastids. There are two classes of PPR proteins. The P class contains tandem P-type motif sequences, and the PLS class contains alternating P, L and S type sequences. In this paper, we describe a novel tool that predicts PPR-RNA interaction; specifically, our method, which we call aPPRove, determines where and how a PLS-class PPR protein will bind to RNA when given a PPR and one or more RNA transcripts by using a combinatorial binding code for site specificity proposed by Barkan et al. Our results demonstrate that aPPRove successfully locates how and where a PPR protein belonging to the PLS class can bind to RNA. For each binding event it outputs the binding site, the amino-acid-nucleotide interaction, and its statistical significance. Furthermore, we show that our method can be used to predict binding events for PLS-class proteins using a known edit site and the statistical significance of aligning the PPR protein to that site. In particular, we use our method to make a conjecture regarding an interaction between CLB19 and the second intronic region of ycf3. The aPPRove web server can be found at www.cs.colostate.edu/~approve. PMID:27560805
Diving into marine genomics with CRISPR/Cas9 systems.
Momose, Tsuyoshi; Concordet, Jean-Paul
2016-12-01
More and more genomes are sequenced and a great range of biological questions can be examined at the genomic level in a growing number of organisms. Testing the function of genome features, from gene networks, genome organization, conserved non-coding sequences to microRNAs, and, more generally, experimentally addressing the genotype-phenotype relationship is now possible owing to the clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 revolution of genome editing. In the present review, we give a brief overview of the CRISPR/Cas9 toolbox and different strategies for genome editing currently available. We list the first examples of applications to marine organisms and also draw from studies in more common laboratory models to suggest both guidelines for design of genome editing experiments as well as discuss challenges specific to marine organisms. In addition, we discuss future perspectives, including applications of CRISPR/Cas9 to base editing and targeted reprogramming of gene transcription. Copyright © 2016 Elsevier B.V. All rights reserved.
DNA Editing of LTR Retrotransposons Reveals the Impact of APOBECs on Vertebrate Genomes
Knisbacher, Binyamin A.; Levanon, Erez Y.
2016-01-01
Long terminal repeat retrotransposons (LTR) are widespread in vertebrates and their dynamism facilitates genome evolution. However, these endogenous retroviruses (ERVs) must be restricted to maintain genomic stability. The APOBECs, a protein family that can edit C-to-U in DNA, do so by interfering with reverse transcription and hypermutating retrotransposon DNA. In some cases, a retrotransposon may integrate into the genome despite being hypermutated. Such an event introduces a unique sequence into the genome, increasing retrotransposon diversity and the probability of developing new function at the locus of insertion. The prevalence of this phenomenon and its effects on vertebrate genomes are still unclear. In this study, we screened ERV sequences in the genomes of 123 diverse species and identified hundreds of thousands of edited sites in multiple vertebrate lineages, including placental mammals, marsupials, and birds. Numerous edited ERVs carry high mutation loads, some with greater than 350 edited sites, profoundly damaging their open-reading frames. For many of the species studied, this is the first evidence that APOBECs are active players in their innate immune system. Unexpectedly, some birds and especially zebra finch and medium ground-finch (one of Darwin’s finches) are exceptionally enriched in DNA editing. We demonstrate that edited retrotransposons may be preferentially retained in active genomic regions, as reflected from their enrichment in genes, exons, promoters, and transcription start sites, thereby raising the probability of their exaptation for novel function. In conclusion, DNA editing of retrotransposons by APOBECs has a substantial role in vertebrate innate immunity and may boost genome evolution. PMID:26541172
A-to-I RNA editing promotes developmental stage-specific gene and lncRNA expression.
Goldstein, Boaz; Agranat-Tamir, Lily; Light, Dean; Ben-Naim Zgayer, Orna; Fishman, Alla; Lamm, Ayelet T
2017-03-01
A-to-I RNA editing is a conserved widespread phenomenon in which adenosine (A) is converted to inosine (I) by adenosine deaminases (ADARs) in double-stranded RNA regions, mainly noncoding. Mutations in ADAR enzymes in Caenorhabditis elegans cause defects in normal development but are not lethal as in human and mouse. Previous studies in C. elegans indicated competition between RNA interference (RNAi) and RNA editing mechanisms, based on the observation that worms that lack both mechanisms do not exhibit defects, in contrast to the developmental defects observed when only RNA editing is absent. To study the effects of RNA editing on gene expression and function, we established a novel screen that enabled us to identify thousands of RNA editing sites in nonrepetitive regions in the genome. These include dozens of genes that are edited at their 3' UTR region. We found that these genes are mainly germline and neuronal genes, and that they are down-regulated in the absence of ADAR enzymes. Moreover, we discovered that almost half of these genes are edited in a developmental-specific manner, indicating that RNA editing is a highly regulated process. We found that many pseudogenes and other lncRNAs are also extensively down-regulated in the absence of ADARs in the embryo but not in the fourth larval (L4) stage. This down-regulation is not observed upon additional knockout of RNAi. Furthermore, levels of siRNAs aligned to pseudogenes in ADAR mutants are enhanced. Taken together, our results suggest a role for RNA editing in normal growth and development by regulating silencing via RNAi. © 2017 Goldstein et al.; Published by Cold Spring Harbor Laboratory Press.
On the Impact of Widening Vector Registers on Sequence Alignment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daily, Jeffrey A.; Kalyanaraman, Anantharaman; Krishnamoorthy, Sriram
2016-09-22
Vector extensions, such as SSE, have been part of the x86 since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. In this paper, we demonstrate that the trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based onmore » striped data layouts. We present a practically efficient SIMD implementation of a parallel scan based sequence alignment algorithm that can better exploit wider SIMD units. We conduct comprehensive workload and use case analyses to characterize the relative behavior of the striped and scan approaches and identify the best choice of algorithm based on input length and SIMD width.« less
Functional interrogation of non-coding DNA through CRISPR genome editing
Canver, Matthew C.; Bauer, Daniel E.; Orkin, Stuart H.
2017-01-01
Methodologies to interrogate non-coding regions have lagged behind coding regions despite comprising the vast majority of the genome. However, the rapid evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing has provided a multitude of novel techniques for laboratory investigation including significant contributions to the toolbox for studying non-coding DNA. CRISPR-mediated loss-of-function strategies rely on direct disruption of the underlying sequence or repression of transcription without modifying the targeted DNA sequence. CRISPR-mediated gain-of-function approaches similarly benefit from methods to alter the targeted sequence through integration of customized sequence into the genome as well as methods to activate transcription. Here we review CRISPR-based loss- and gain-of-function techniques for the interrogation of non-coding DNA. PMID:28288828
Carbone, Ignazio; White, James B; Miadlikowska, Jolanta; Arnold, A Elizabeth; Miller, Mark A; Kauff, Frank; U'Ren, Jana M; May, Georgiana; Lutzoni, François
2017-04-15
High-quality phylogenetic placement of sequence data has the potential to greatly accelerate studies of the diversity, systematics, ecology and functional biology of diverse groups. We developed the Tree-Based Alignment Selector (T-BAS) toolkit to allow evolutionary placement and visualization of diverse DNA sequences representing unknown taxa within a robust phylogenetic context, and to permit the downloading of highly curated, single- and multi-locus alignments for specific clades. In its initial form, T-BAS v1.0 uses a core phylogeny of 979 taxa (including 23 outgroup taxa, as well as 61 orders, 175 families and 496 genera) representing all 13 classes of largest subphylum of Fungi-Pezizomycotina (Ascomycota)-based on sequence alignments for six loci (nr5.8S, nrLSU, nrSSU, mtSSU, RPB1, RPB2 ). T-BAS v1.0 has three main uses: (i) Users may download alignments and voucher tables for members of the Pezizomycotina directly from the reference tree, facilitating systematics studies of focal clades. (ii) Users may upload sequence files with reads representing unknown taxa and place these on the phylogeny using either BLAST or phylogeny-based approaches, and then use the displayed tree to select reference taxa to include when downloading alignments. The placement of unknowns can be performed for large numbers of Sanger sequences obtained from fungal cultures and for alignable, short reads of environmental amplicons. (iii) User-customizable metadata can be visualized on the tree. T-BAS Version 1.0 is available online at http://tbas.hpc.ncsu.edu . Registration is required to access the CIPRES Science Gateway and NSF XSEDE's large computational resources. icarbon@ncsu.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Genome engineering in human cells.
Song, Minjung; Kim, Young-Hoon; Kim, Jin-Soo; Kim, Hyongbum
2014-01-01
Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.
[Efficient genome editing in human pluripotent stem cells through CRISPR/Cas9].
Liu, Gai-gai; Li, Shuang; Wei, Yu-da; Zhang, Yong-xian; Ding, Qiu-rong
2015-11-01
The RNA-guided CRISPR (clustered regularly interspaced short palindromic repeat)-associated Cas9 nuclease has offered a new platform for genome editing with high efficiency. Here, we report the use of CRISPR/Cas9 technology to target a specific genomic region in human pluripotent stem cells. We show that CRISPR/Cas9 can be used to disrupt a gene by introducing frameshift mutations to gene coding region; to knock in specific sequences (e.g. FLAG tag DNA sequence) to targeted genomic locus via homology directed repair; to induce large genomic deletion through dual-guide multiplex. Our results demonstrate the versatile application of CRISPR/Cas9 in stem cell genome editing, which can be widely utilized for functional studies of genes or genome loci in human pluripotent stem cells.
Efficient pairwise RNA structure prediction using probabilistic alignment constraints in Dynalign
2007-01-01
Background Joint alignment and secondary structure prediction of two RNA sequences can significantly improve the accuracy of the structural predictions. Methods addressing this problem, however, are forced to employ constraints that reduce computation by restricting the alignments and/or structures (i.e. folds) that are permissible. In this paper, a new methodology is presented for the purpose of establishing alignment constraints based on nucleotide alignment and insertion posterior probabilities. Using a hidden Markov model, posterior probabilities of alignment and insertion are computed for all possible pairings of nucleotide positions from the two sequences. These alignment and insertion posterior probabilities are additively combined to obtain probabilities of co-incidence for nucleotide position pairs. A suitable alignment constraint is obtained by thresholding the co-incidence probabilities. The constraint is integrated with Dynalign, a free energy minimization algorithm for joint alignment and secondary structure prediction. The resulting method is benchmarked against the previous version of Dynalign and against other programs for pairwise RNA structure prediction. Results The proposed technique eliminates manual parameter selection in Dynalign and provides significant computational time savings in comparison to prior constraints in Dynalign while simultaneously providing a small improvement in the structural prediction accuracy. Savings are also realized in memory. In experiments over a 5S RNA dataset with average sequence length of approximately 120 nucleotides, the method reduces computation by a factor of 2. The method performs favorably in comparison to other programs for pairwise RNA structure prediction: yielding better accuracy, on average, and requiring significantly lesser computational resources. Conclusion Probabilistic analysis can be utilized in order to automate the determination of alignment constraints for pairwise RNA structure prediction methods in a principled fashion. These constraints can reduce the computational and memory requirements of these methods while maintaining or improving their accuracy of structural prediction. This extends the practical reach of these methods to longer length sequences. The revised Dynalign code is freely available for download. PMID:17445273
SPHINX--an algorithm for taxonomic binning of metagenomic sequences.
Mohammed, Monzoorul Haque; Ghosh, Tarini Shankar; Singh, Nitin Kumar; Mande, Sharmila S
2011-01-01
Compared with composition-based binning algorithms, the binning accuracy and specificity of alignment-based binning algorithms is significantly higher. However, being alignment-based, the latter class of algorithms require enormous amount of time and computing resources for binning huge metagenomic datasets. The motivation was to develop a binning approach that can analyze metagenomic datasets as rapidly as composition-based approaches, but nevertheless has the accuracy and specificity of alignment-based algorithms. This article describes a hybrid binning approach (SPHINX) that achieves high binning efficiency by utilizing the principles of both 'composition'- and 'alignment'-based binning algorithms. Validation results with simulated sequence datasets indicate that SPHINX is able to analyze metagenomic sequences as rapidly as composition-based algorithms. Furthermore, the binning efficiency (in terms of accuracy and specificity of assignments) of SPHINX is observed to be comparable with results obtained using alignment-based algorithms. A web server for the SPHINX algorithm is available at http://metagenomics.atc.tcs.com/SPHINX/.
Adaptive Local Realignment of Protein Sequences.
DeBlasio, Dan; Kececioglu, John
2018-06-11
While mutation rates can vary markedly over the residues of a protein, multiple sequence alignment tools typically use the same values for their scoring-function parameters across a protein's entire length. We present a new approach, called adaptive local realignment, that in contrast automatically adapts to the diversity of mutation rates along protein sequences. This builds upon a recent technique known as parameter advising, which finds global parameter settings for an aligner, to now adaptively find local settings. Our approach in essence identifies local regions with low estimated accuracy, constructs a set of candidate realignments using a carefully-chosen collection of parameter settings, and replaces the region if a realignment has higher estimated accuracy. This new method of local parameter advising, when combined with prior methods for global advising, boosts alignment accuracy as much as 26% over the best default setting on hard-to-align protein benchmarks, and by 6.4% over global advising alone. Adaptive local realignment has been implemented within the Opal aligner using the Facet accuracy estimator.
Reconstructing evolutionary trees in parallel for massive sequences.
Zou, Quan; Wan, Shixiang; Zeng, Xiangxiang; Ma, Zhanshan Sam
2017-12-14
Building the evolutionary trees for massive unaligned DNA sequences is challenging and crucial. However, reconstructing evolutionary tree for ultra-large sequences is hard. Massive multiple sequence alignment is also challenging and time/space consuming. Hadoop and Spark are developed recently, which bring spring light for the classical computational biology problems. In this paper, we tried to solve the multiple sequence alignment and evolutionary reconstruction in parallel. HPTree, which is developed in this paper, can deal with big DNA sequence files quickly. It works well on the >1GB files, and gets better performance than other evolutionary reconstruction tools. Users could use HPTree for reonstructing evolutioanry trees on the computer clusters or cloud platform (eg. Amazon Cloud). HPTree could help on population evolution research and metagenomics analysis. In this paper, we employ the Hadoop and Spark platform and design an evolutionary tree reconstruction software tool for unaligned massive DNA sequences. Clustering and multiple sequence alignment are done in parallel. Neighbour-joining model was employed for the evolutionary tree building. We opened our software together with source codes via http://lab.malab.cn/soft/HPtree/ .
Integrative network alignment reveals large regions of global network similarity in yeast and human.
Kuchaiev, Oleksii; Przulj, Natasa
2011-05-15
High-throughput methods for detecting molecular interactions have produced large sets of biological network data with much more yet to come. Analogous to sequence alignment, efficient and reliable network alignment methods are expected to improve our understanding of biological systems. Unlike sequence alignment, network alignment is computationally intractable. Hence, devising efficient network alignment heuristics is currently a foremost challenge in computational biology. We introduce a novel network alignment algorithm, called Matching-based Integrative GRAph ALigner (MI-GRAAL), which can integrate any number and type of similarity measures between network nodes (e.g. proteins), including, but not limited to, any topological network similarity measure, sequence similarity, functional similarity and structural similarity. Hence, we resolve the ties in similarity measures and find a combination of similarity measures yielding the largest contiguous (i.e. connected) and biologically sound alignments. MI-GRAAL exposes the largest functional, connected regions of protein-protein interaction (PPI) network similarity to date: surprisingly, it reveals that 77.7% of proteins in the baker's yeast high-confidence PPI network participate in such a subnetwork that is fully contained in the human high-confidence PPI network. This is the first demonstration that species as diverse as yeast and human contain so large, continuous regions of global network similarity. We apply MI-GRAAL's alignments to predict functions of un-annotated proteins in yeast, human and bacteria validating our predictions in the literature. Furthermore, using network alignment scores for PPI networks of different herpes viruses, we reconstruct their phylogenetic relationship. This is the first time that phylogeny is exactly reconstructed from purely topological alignments of PPI networks. Supplementary files and MI-GRAAL executables: http://bio-nets.doc.ic.ac.uk/MI-GRAAL/.
Solving the problem of Trans-Genomic Query with alignment tables.
Parker, Douglass Stott; Hsiao, Ruey-Lung; Xing, Yi; Resch, Alissa M; Lee, Christopher J
2008-01-01
The trans-genomic query (TGQ) problem--enabling the free query of biological information, even across genomes--is a central challenge facing bioinformatics. Solutions to this problem can alter the nature of the field, moving it beyond the jungle of data integration and expanding the number and scope of questions that can be answered. An alignment table is a binary relationship on locations (sequence segments). An important special case of alignment tables are hit tables ? tables of pairs of highly similar segments produced by alignment tools like BLAST. However, alignment tables also include general binary relationships, and can represent any useful connection between sequence locations. They can be curated, and provide a high-quality queryable backbone of connections between biological information. Alignment tables thus can be a natural foundation for TGQ, as they permit a central part of the TGQ problem to be reduced to purely technical problems involving tables of locations.Key challenges in implementing alignment tables include efficient representation and indexing of sequence locations. We define a location datatype that can be incorporated naturally into common off-the-shelf database systems. We also describe an implementation of alignment tables in BLASTGRES, an extension of the open-source POSTGRESQL database system that provides indexing and operators on locations required for querying alignment tables. This paper also reviews several successful large-scale applications of alignment tables for Trans-Genomic Query. Tables with millions of alignments have been used in queries about alternative splicing, an area of genomic analysis concerning the way in which a single gene can yield multiple transcripts. Comparative genomics is a large potential application area for TGQ and alignment tables.
A Single Multiplex crRNA Array for FnCpf1-Mediated Human Genome Editing.
Sun, Huihui; Li, Fanfan; Liu, Jie; Yang, Fayu; Zeng, Zhenhai; Lv, Xiujuan; Tu, Mengjun; Liu, Yeqing; Ge, Xianglian; Liu, Changbao; Zhao, Junzhao; Zhang, Zongduan; Qu, Jia; Song, Zongming; Gu, Feng
2018-06-15
Cpf1 has been harnessed as a tool for genome manipulation in various species because of its simplicity and high efficiency. Our recent study demonstrated that FnCpf1 could be utilized for human genome editing with notable advantages for target sequence selection due to the flexibility of the protospacer adjacent motif (PAM) sequence. Multiplex genome editing provides a powerful tool for targeting members of multigene families, dissecting gene networks, modeling multigenic disorders in vivo, and applying gene therapy. However, there are no reports at present that show FnCpf1-mediated multiplex genome editing via a single customized CRISPR RNA (crRNA) array. In the present study, we utilize a single customized crRNA array to simultaneously target multiple genes in human cells. In addition, we also demonstrate that a single customized crRNA array to target multiple sites in one gene could be achieved. Collectively, FnCpf1, a powerful genome-editing tool for multiple genomic targets, can be harnessed for effective manipulation of the human genome. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Next stop for the CRISPR revolution: RNA-guided epigenetic regulators.
Vora, Suhani; Tuttle, Marcelle; Cheng, Jenny; Church, George
2016-09-01
Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins offer a breakthrough platform for cheap, programmable, and effective sequence-specific DNA targeting. The CRISPR-Cas system is naturally equipped for targeted DNA cutting through its native nuclease activity. As such, groups researching a broad spectrum of biological organisms have quickly adopted the technology with groundbreaking applications to genomic sequence editing in over 20 different species. However, the biological code of life is not only encoded in genetics but also in epigenetics as well. While genetic sequence editing is a powerful ability, we must also be able to edit and regulate transcriptional and epigenetic code. Taking inspiration from work on earlier sequence-specific targeting technologies such as zinc fingers (ZFs) and transcription activator-like effectors (TALEs), researchers quickly expanded the CRISPR-Cas toolbox to include transcriptional activation, repression, and epigenetic modification. In this review, we highlight advances that extend the CRISPR-Cas toolkit for transcriptional and epigenetic regulation, as well as best practice guidelines for these tools, and a perspective on future applications. © 2016 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
Lu, Emily; Elizondo-Riojas, Miguel-Angel; Chang, Jeffrey T; Volk, David E
2014-06-10
Next-generation sequencing results from bead-based aptamer libraries have demonstrated that traditional DNA/RNA alignment software is insufficient. This is particularly true for X-aptamers containing specialty bases (W, X, Y, Z, ...) that are identified by special encoding. Thus, we sought an automated program that uses the inherent design scheme of bead-based X-aptamers to create a hypothetical reference library and Markov modeling techniques to provide improved alignments. Aptaligner provides this feature as well as length error and noise level cutoff features, is parallelized to run on multiple central processing units (cores), and sorts sequences from a single chip into projects and subprojects.
Fourment, Mathieu; Gibbs, Mark J
2008-01-01
Background Viruses of the Bunyaviridae have segmented negative-stranded RNA genomes and several of them cause significant disease. Many partial sequences have been obtained from the segments so that GenBank searches give complex results. Sequence databases usually use HTML pages to mediate remote sorting, but this approach can be limiting and may discourage a user from exploring a database. Results The VirusBanker database contains Bunyaviridae sequences and alignments and is presented as two spreadsheets generated by a Java program that interacts with a MySQL database on a server. Sequences are displayed in rows and may be sorted using information that is displayed in columns and includes data relating to the segment, gene, protein, species, strain, sequence length, terminal sequence and date and country of isolation. Bunyaviridae sequences and alignments may be downloaded from the second spreadsheet with titles defined by the user from the columns, or viewed when passed directly to the sequence editor, Jalview. Conclusion VirusBanker allows large datasets of aligned nucleotide and protein sequences from the Bunyaviridae to be compiled and winnowed rapidly using criteria that are formulated heuristically. PMID:18251994
Huo, Wenying; Zhao, Guannan; Yin, Jinggang; Ouyang, Xuan; Wang, Yinan; Yang, Chuanhe; Wang, Baojing; Dong, Peixin; Wang, Zhixiang; Watari, Hidemichi; Chaum, Edward; Pfeffer, Lawrence M; Yue, Junming
2017-01-01
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) mediated genome editing is a powerful approach for loss of function studies. Here we report that lentiviral CRISPR/Cas9 vectors are highly efficient in introducing mutations in the precursor miRNA sequence, thus leading to the loss of miRNA expression and function. We constructed four different lentiviral CRISPR/Cas9 vectors that target different regions of the precursor miR-21 sequence and found that these lentiviral CRISPR/Cas9 miR-21 gRNA vectors induced mutations in the precursor sequences as shown by DNA surveyor mutation assay and Sanger sequencing. Two miR-21 lentiviral CRISPR/Cas9 gRNA vectors were selected to probe miR-21 function in ovarian cancer SKOV3 and OVCAR3 cell lines. Our data demonstrate that disruption of pre-miR-21 sequences leads to reduced cell proliferation, migration and invasion. Moreover, CRISPR/Cas9-mediated miR-21 gene editing sensitizes both SKOV3 and OVCAR3 cells to chemotherapeutic drug treatment. Disruption of miR-21 leads to the inhibition of epithelial to mesenchymal transition (EMT) in both SKOV3 and OVCAR3 cells as evidenced by the upregulation of epithelial cell marker E-cadherin and downregulation of mesenchymal marker genes, vimentin and Snai2. The miR-21 target genes PDCD4 and SPRY2 were upregulated in cells transduced with miR-21gRNAs compared to controls. Our study indicates that lentiviral CRISPR/Cas9-mediated miRNA gene editing is an effective approach to address miRNA function, and disruption of miR-21 inhibits EMT in ovarian cancer cells.
Huo, Wenying; Zhao, Guannan; Yin, Jinggang; Ouyang, Xuan; Wang, Yinan; Yang, Chuanhe; Wang, Baojing; Dong, Peixin; Wang, Zhixiang; Watari, Hidemichi; Chaum, Edward; Pfeffer, Lawrence M.; Yue, Junming
2017-01-01
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) mediated genome editing is a powerful approach for loss of function studies. Here we report that lentiviral CRISPR/Cas9 vectors are highly efficient in introducing mutations in the precursor miRNA sequence, thus leading to the loss of miRNA expression and function. We constructed four different lentiviral CRISPR/Cas9 vectors that target different regions of the precursor miR-21 sequence and found that these lentiviral CRISPR/Cas9 miR-21 gRNA vectors induced mutations in the precursor sequences as shown by DNA surveyor mutation assay and Sanger sequencing. Two miR-21 lentiviral CRISPR/Cas9 gRNA vectors were selected to probe miR-21 function in ovarian cancer SKOV3 and OVCAR3 cell lines. Our data demonstrate that disruption of pre-miR-21 sequences leads to reduced cell proliferation, migration and invasion. Moreover, CRISPR/Cas9-mediated miR-21 gene editing sensitizes both SKOV3 and OVCAR3 cells to chemotherapeutic drug treatment. Disruption of miR-21 leads to the inhibition of epithelial to mesenchymal transition (EMT) in both SKOV3 and OVCAR3 cells as evidenced by the upregulation of epithelial cell marker E-cadherin and downregulation of mesenchymal marker genes, vimentin and Snai2. The miR-21 target genes PDCD4 and SPRY2 were upregulated in cells transduced with miR-21gRNAs compared to controls. Our study indicates that lentiviral CRISPR/Cas9-mediated miRNA gene editing is an effective approach to address miRNA function, and disruption of miR-21 inhibits EMT in ovarian cancer cells. PMID:28123598
Genome editing with CompoZr custom zinc finger nucleases (ZFNs).
Hansen, Keith; Coussens, Matthew J; Sago, Jack; Subramanian, Shilpi; Gjoka, Monika; Briner, Dave
2012-06-14
Genome editing is a powerful technique that can be used to elucidate gene function and the genetic basis of disease. Traditional gene editing methods such as chemical-based mutagenesis or random integration of DNA sequences confer indiscriminate genetic changes in an overall inefficient manner and require incorporation of undesirable synthetic sequences or use of aberrant culture conditions, potentially confusing biological study. By contrast, transient ZFN expression in a cell can facilitate precise, heritable gene editing in a highly efficient manner without the need for administration of chemicals or integration of synthetic transgenes. Zinc finger nucleases (ZFNs) are enzymes which bind and cut distinct sequences of double-stranded DNA (dsDNA). A functional CompoZr ZFN unit consists of two individual monomeric proteins that bind a DNA "half-site" of approximately 15-18 nucleotides (see Figure 1). When two ZFN monomers "home" to their adjacent target sites the DNA-cleavage domains dimerize and create a double-strand break (DSB) in the DNA. Introduction of ZFN-mediated DSBs in the genome lays a foundation for highly efficient genome editing. Imperfect repair of DSBs in a cell via the non-homologous end-joining (NHEJ) DNA repair pathway can result in small insertions and deletions (indels). Creation of indels within the gene coding sequence of a cell can result in frameshift and subsequent functional knockout of a gene locus at high efficiency. While this protocol describes the use of ZFNs to create a gene knockout, integration of transgenes may also be conducted via homology-directed repair at the ZFN cut site. The CompoZr Custom ZFN Service represents a systematic, comprehensive, and well-characterized approach to targeted gene editing for the scientific community with ZFN technology. Sigma scientists work closely with investigators to 1) perform due diligence analysis including analysis of relevant gene structure, biology, and model system pursuant to the project goals, 2) apply this knowledge to develop a sound targeting strategy, 3) then design, build, and functionally validate ZFNs for activity in a relevant cell line. The investigator receives positive control genomic DNA and primers, and ready-to-use ZFN reagents supplied in both plasmid DNA and in-vitro transcribed mRNA format. These reagents may then be delivered for transient expression in the investigator's cell line or cell type of choice. Samples are then tested for gene editing at the locus of interest by standard molecular biology techniques including PCR amplification, enzymatic digest, and electrophoresis. After positive signal for gene editing is detected in the initial population, cells are single-cell cloned and genotyped for identification of mutant clones/alleles.
Notredame, Cedric
2018-05-02
Cedric Notredame from the Centre for Genomic Regulation gives a presentation on New Challenges of the Computation of Multiple Sequence Alignments in the High-Throughput Era at the JGI/Argonne HPC Workshop on January 26, 2010.
ADOMA: A Command Line Tool to Modify ClustalW Multiple Alignment Output.
Zaal, Dionne; Nota, Benjamin
2016-01-01
We present ADOMA, a command line tool that produces alternative outputs from ClustalW multiple alignments of nucleotide or protein sequences. ADOMA can simplify the output of alignments by showing only the different residues between sequences, which is often desirable when only small differences such as single nucleotide polymorphisms are present (e.g., between different alleles). Another feature of ADOMA is that it can enhance the ClustalW output by coloring the residues in the alignment. This tool is easily integrated into automated Linux pipelines for next-generation sequencing data analysis, and may be useful for researchers in a broad range of scientific disciplines including evolutionary biology and biomedical sciences. The source code is freely available at https://sourceforge. net/projects/adoma/. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Improvements on a privacy-protection algorithm for DNA sequences with generalization lattices.
Li, Guang; Wang, Yadong; Su, Xiaohong
2012-10-01
When developing personal DNA databases, there must be an appropriate guarantee of anonymity, which means that the data cannot be related back to individuals. DNA lattice anonymization (DNALA) is a successful method for making personal DNA sequences anonymous. However, it uses time-consuming multiple sequence alignment and a low-accuracy greedy clustering algorithm. Furthermore, DNALA is not an online algorithm, and so it cannot quickly return results when the database is updated. This study improves the DNALA method. Specifically, we replaced the multiple sequence alignment in DNALA with global pairwise sequence alignment to save time, and we designed a hybrid clustering algorithm comprised of a maximum weight matching (MWM)-based algorithm and an online algorithm. The MWM-based algorithm is more accurate than the greedy algorithm in DNALA and has the same time complexity. The online algorithm can process data quickly when the database is updated. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
2012-01-01
Background Hawthorn is the common name of all plant species in the genus Crataegus, which belongs to the Rosaceae family. Crataegus are considered useful medicinal plants because of their high content of proanthocyanidins (PAs) and other related compounds. To improve PAs production in Crataegus tissues, the sequences of genes encoding PAs biosynthetic enzymes are required. Findings Different bioinformatics tools, including BLAST, multiple sequence alignment and alignment PCR analysis were used to design primers suitable for the amplification of DNA fragments from 10 candidate genes encoding enzymes involved in PAs biosynthesis in C. aronia. DNA sequencing results proved the utility of the designed primers. The primers were used successfully to amplify DNA fragments of different PAs biosynthesis genes in different Rosaceae plants. Conclusion To the best of our knowledge, this is the first use of the alignment PCR approach to isolate DNA sequences encoding PAs biosynthetic enzymes in Rosaceae plants. PMID:22883984
Zuiter, Afnan Saeid; Sawwan, Jammal; Al Abdallat, Ayed
2012-08-10
Hawthorn is the common name of all plant species in the genus Crataegus, which belongs to the Rosaceae family. Crataegus are considered useful medicinal plants because of their high content of proanthocyanidins (PAs) and other related compounds. To improve PAs production in Crataegus tissues, the sequences of genes encoding PAs biosynthetic enzymes are required. Different bioinformatics tools, including BLAST, multiple sequence alignment and alignment PCR analysis were used to design primers suitable for the amplification of DNA fragments from 10 candidate genes encoding enzymes involved in PAs biosynthesis in C. aronia. DNA sequencing results proved the utility of the designed primers. The primers were used successfully to amplify DNA fragments of different PAs biosynthesis genes in different Rosaceae plants. To the best of our knowledge, this is the first use of the alignment PCR approach to isolate DNA sequences encoding PAs biosynthetic enzymes in Rosaceae plants.
Bringing the fathead minnow (Pimephales promelas) into the ...
The fathead minnow (Pimephales promelas) is a well-established ecotoxicological model organism that has been widely used for regulatory ecotoxicity testing and research for over a half century. Throughout this time, a lot of knowledge has been gained about the fathead minnow’s biological responses to various xenobiotics. However, despite its importance as a model organism, the fathead minnow still has few publicly available gene sequences. Recently, Burns et al. (2015; Environ. Toxicol. Chem. 35:212) described the sequencing and de-novo assembly of the fathead minnow genome. Two draft genome assemblies are now publicly available on the GenBank database. However, on their own the draft assemblies remain of limited use to researchers who are primarily interested in the functional units of the genome, i.e. the genes. In the present study, an annotation pipeline, consisting of gene prediction, evidence alignment, and data synthesis, was applied to the fathead minnow SOAPdenovo assembly. Ab initio gene prediction was performed using AUGUSTUS, which provided a starting point of 43,345 gene predictions. Fathead minnow Expressed Sequence Tags (ESTs) and zebrafish protein-coding sequences (CDSs) were then aligned to the assembly using the corresponding spliced alignment methods of the program Exonerate. Of the over 240,000 EST alignments, 73% were successfully aligned with 90% or greater sequence identity and query coverage. Similarly, 39% of nearly 45,000 zebrafish co
Bastien, Olivier; Maréchal, Eric
2008-08-07
Confidence in pairwise alignments of biological sequences, obtained by various methods such as Blast or Smith-Waterman, is critical for automatic analyses of genomic data. Two statistical models have been proposed. In the asymptotic limit of long sequences, the Karlin-Altschul model is based on the computation of a P-value, assuming that the number of high scoring matching regions above a threshold is Poisson distributed. Alternatively, the Lipman-Pearson model is based on the computation of a Z-value from a random score distribution obtained by a Monte-Carlo simulation. Z-values allow the deduction of an upper bound of the P-value (1/Z-value2) following the TULIP theorem. Simulations of Z-value distribution is known to fit with a Gumbel law. This remarkable property was not demonstrated and had no obvious biological support. We built a model of evolution of sequences based on aging, as meant in Reliability Theory, using the fact that the amount of information shared between an initial sequence and the sequences in its lineage (i.e., mutual information in Information Theory) is a decreasing function of time. This quantity is simply measured by a sequence alignment score. In systems aging, the failure rate is related to the systems longevity. The system can be a machine with structured components, or a living entity or population. "Reliability" refers to the ability to operate properly according to a standard. Here, the "reliability" of a sequence refers to the ability to conserve a sufficient functional level at the folded and maturated protein level (positive selection pressure). Homologous sequences were considered as systems 1) having a high redundancy of information reflected by the magnitude of their alignment scores, 2) which components are the amino acids that can independently be damaged by random DNA mutations. From these assumptions, we deduced that information shared at each amino acid position evolved with a constant rate, corresponding to the information hazard rate, and that pairwise sequence alignment scores should follow a Gumbel distribution, which parameters could find some theoretical rationale. In particular, one parameter corresponds to the information hazard rate. Extreme value distribution of alignment scores, assessed from high scoring segments pairs following the Karlin-Altschul model, can also be deduced from the Reliability Theory applied to molecular sequences. It reflects the redundancy of information between homologous sequences, under functional conservative pressure. This model also provides a link between concepts of biological sequence analysis and of systems biology.
Improving transmission efficiency of large sequence alignment/map (SAM) files.
Sakib, Muhammad Nazmus; Tang, Jijun; Zheng, W Jim; Huang, Chin-Tser
2011-01-01
Research in bioinformatics primarily involves collection and analysis of a large volume of genomic data. Naturally, it demands efficient storage and transfer of this huge amount of data. In recent years, some research has been done to find efficient compression algorithms to reduce the size of various sequencing data. One way to improve the transmission time of large files is to apply a maximum lossless compression on them. In this paper, we present SAMZIP, a specialized encoding scheme, for sequence alignment data in SAM (Sequence Alignment/Map) format, which improves the compression ratio of existing compression tools available. In order to achieve this, we exploit the prior knowledge of the file format and specifications. Our experimental results show that our encoding scheme improves compression ratio, thereby reducing overall transmission time significantly.
D-GENIES: dot plot large genomes in an interactive, efficient and simple way.
Cabanettes, Floréal; Klopp, Christophe
2018-01-01
Dot plots are widely used to quickly compare sequence sets. They provide a synthetic similarity overview, highlighting repetitions, breaks and inversions. Different tools have been developed to easily generated genomic alignment dot plots, but they are often limited in the input sequence size. D-GENIES is a standalone and web application performing large genome alignments using minimap2 software package and generating interactive dot plots. It enables users to sort query sequences along the reference, zoom in the plot and download several image, alignment or sequence files. D-GENIES is an easy-to-install, open-source software package (GPL) developed in Python and JavaScript. The source code is available at https://github.com/genotoul-bioinfo/dgenies and it can be tested at http://dgenies.toulouse.inra.fr/.
Strategic Planning in Higher Education: A Guide for Leaders. Second Edition [with CD-ROM
ERIC Educational Resources Information Center
Tromp, Sherrie A.; Ruben, Brent D.
2010-01-01
"Strategic Planning in Higher Education" unveils a comprehensive approach to planning that has proved successful at Rutgers University. The SPHE framework, developed by authors Tromp and Ruben, provides a blueprint for planning--a step-by-step approach that guides leaders on strategic thinking; helps them align organizational goals with…
Content-Based Curriculum for High-Ability Learners, Second Edition
ERIC Educational Resources Information Center
VanTassel-Baska, Joyce, Ed.; Little, Catherine A., Ed.
2011-01-01
The newly updated "Content-Based Curriculum for High-Ability Learners" provides a solid introduction to curriculum development in gifted and talented education. Written by experts in the field of gifted education, this text uses cutting-edge design techniques and aligns the core content with national and state standards. In addition to a revision…
GeneSilico protein structure prediction meta-server.
Kurowski, Michal A; Bujnicki, Janusz M
2003-07-01
Rigorous assessments of protein structure prediction have demonstrated that fold recognition methods can identify remote similarities between proteins when standard sequence search methods fail. It has been shown that the accuracy of predictions is improved when refined multiple sequence alignments are used instead of single sequences and if different methods are combined to generate a consensus model. There are several meta-servers available that integrate protein structure predictions performed by various methods, but they do not allow for submission of user-defined multiple sequence alignments and they seldom offer confidentiality of the results. We developed a novel WWW gateway for protein structure prediction, which combines the useful features of other meta-servers available, but with much greater flexibility of the input. The user may submit an amino acid sequence or a multiple sequence alignment to a set of methods for primary, secondary and tertiary structure prediction. Fold-recognition results (target-template alignments) are converted into full-atom 3D models and the quality of these models is uniformly assessed. A consensus between different FR methods is also inferred. The results are conveniently presented on-line on a single web page over a secure, password-protected connection. The GeneSilico protein structure prediction meta-server is freely available for academic users at http://genesilico.pl/meta.
GeneSilico protein structure prediction meta-server
Kurowski, Michal A.; Bujnicki, Janusz M.
2003-01-01
Rigorous assessments of protein structure prediction have demonstrated that fold recognition methods can identify remote similarities between proteins when standard sequence search methods fail. It has been shown that the accuracy of predictions is improved when refined multiple sequence alignments are used instead of single sequences and if different methods are combined to generate a consensus model. There are several meta-servers available that integrate protein structure predictions performed by various methods, but they do not allow for submission of user-defined multiple sequence alignments and they seldom offer confidentiality of the results. We developed a novel WWW gateway for protein structure prediction, which combines the useful features of other meta-servers available, but with much greater flexibility of the input. The user may submit an amino acid sequence or a multiple sequence alignment to a set of methods for primary, secondary and tertiary structure prediction. Fold-recognition results (target-template alignments) are converted into full-atom 3D models and the quality of these models is uniformly assessed. A consensus between different FR methods is also inferred. The results are conveniently presented on-line on a single web page over a secure, password-protected connection. The GeneSilico protein structure prediction meta-server is freely available for academic users at http://genesilico.pl/meta. PMID:12824313
Holm, Liisa; Laakso, Laura M
2016-07-08
The Dali server (http://ekhidna2.biocenter.helsinki.fi/dali) is a network service for comparing protein structures in 3D. In favourable cases, comparing 3D structures may reveal biologically interesting similarities that are not detectable by comparing sequences. The Dali server has been running in various places for over 20 years and is used routinely by crystallographers on newly solved structures. The latest update of the server provides enhanced analytics for the study of sequence and structure conservation. The server performs three types of structure comparisons: (i) Protein Data Bank (PDB) search compares one query structure against those in the PDB and returns a list of similar structures; (ii) pairwise comparison compares one query structure against a list of structures specified by the user; and (iii) all against all structure comparison returns a structural similarity matrix, a dendrogram and a multidimensional scaling projection of a set of structures specified by the user. Structural superimpositions are visualized using the Java-free WebGL viewer PV. The structural alignment view is enhanced by sequence similarity searches against Uniprot. The combined structure-sequence alignment information is compressed to a stack of aligned sequence logos. In the stack, each structure is structurally aligned to the query protein and represented by a sequence logo. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Genome Editing Tools in Plants
Mohanta, Tapan Kumar; Bashir, Tufail; Hashem, Abeer; Bae, Hanhong
2017-01-01
Genome editing tools have the potential to change the genomic architecture of a genome at precise locations, with desired accuracy. These tools have been efficiently used for trait discovery and for the generation of plants with high crop yields and resistance to biotic and abiotic stresses. Due to complex genomic architecture, it is challenging to edit all of the genes/genomes using a particular genome editing tool. Therefore, to overcome this challenging task, several genome editing tools have been developed to facilitate efficient genome editing. Some of the major genome editing tools used to edit plant genomes are: Homologous recombination (HR), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), pentatricopeptide repeat proteins (PPRs), the CRISPR/Cas9 system, RNA interference (RNAi), cisgenesis, and intragenesis. In addition, site-directed sequence editing and oligonucleotide-directed mutagenesis have the potential to edit the genome at the single-nucleotide level. Recently, adenine base editors (ABEs) have been developed to mutate A-T base pairs to G-C base pairs. ABEs use deoxyadeninedeaminase (TadA) with catalytically impaired Cas9 nickase to mutate A-T base pairs to G-C base pairs. PMID:29257124
Schuster, W; Brennicke, A
1991-01-01
An intact gene for the ribosomal protein S19 (rps19) is absent from Oenothera mitochondria. The conserved rps19 reading frame found in the mitochondrial genome is interrupted by a termination codon. This rps19 pseudogene is cotranscribed with the downstream rps3 gene and is edited on both sides of the translational stop. Editing, however, changes the amino acid sequence at positions that were well conserved before editing. Other strange editings create translational stops in open reading frames coding for functional proteins. In coxI and rps3 mRNAs CGA codons are edited to UGA stop codons only five and three codons, respectively, downstream to the initiation codon. These aberrant editings in essential open reading frames and in the rps19 pseudogene appear to have been shifted to these positions from other editing sites. These observations suggest a requirement for a continuous evolutionary constraint on the editing specificities in plant mitochondria. Images PMID:1762921
DUK - A Fast and Efficient Kmer Based Sequence Matching Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mingkun; Copeland, Alex; Han, James
2011-03-21
A new tool, DUK, is developed to perform matching task. Matching is to find whether a query sequence partially or totally matches given reference sequences or not. Matching is similar to alignment. Indeed many traditional analysis tasks like contaminant removal use alignment tools. But for matching, there is no need to know which bases of a query sequence matches which position of a reference sequence, it only need know whether there exists a match or not. This subtle difference can make matching task much faster than alignment. DUK is accurate, versatile, fast, and has efficient memory usage. It uses Kmermore » hashing method to index reference sequences and Poisson model to calculate p-value. DUK is carefully implemented in C++ in object oriented design. The resulted classes can also be used to develop other tools quickly. DUK have been widely used in JGI for a wide range of applications such as contaminant removal, organelle genome separation, and assembly refinement. Many real applications and simulated dataset demonstrate its power.« less
APOBEC3A cytidine deaminase induces RNA editing in monocytes and macrophages
Sharma, Shraddha; Patnaik, Santosh K.; Thomas Taggart, R.; Kannisto, Eric D.; Enriquez, Sally M.; Gollnick, Paul; Baysal, Bora E.
2015-01-01
The extent, regulation and enzymatic basis of RNA editing by cytidine deamination are incompletely understood. Here we show that transcripts of hundreds of genes undergo site-specific C>U RNA editing in macrophages during M1 polarization and in monocytes in response to hypoxia and interferons. This editing alters the amino acid sequences for scores of proteins, including many that are involved in pathogenesis of viral diseases. APOBEC3A, which is known to deaminate cytidines of single-stranded DNA and to inhibit viruses and retrotransposons, mediates this RNA editing. Amino acid residues of APOBEC3A that are known to be required for its DNA deamination and anti-retrotransposition activities were also found to affect its RNA deamination activity. Our study demonstrates the cellular RNA editing activity of a member of the APOBEC3 family of innate restriction factors and expands the understanding of C>U RNA editing in mammals. PMID:25898173
Non-viral delivery of genome-editing nucleases for gene therapy.
Wang, M; Glass, Z A; Xu, Q
2017-03-01
Manipulating the genetic makeup of mammalian cells using programmable nuclease-based genome-editing technology has recently evolved into a powerful avenue that holds great potential for treating genetic disorders. There are four types of genome-editing nucleases, including meganucleases, zinc finger nucleases, transcription activator-like effector nucleases and clustered, regularly interspaced, short palindromic repeat-associated nucleases such as Cas9. These nucleases have been harnessed to introduce precise and specific changes of the genome sequence at virtually any genome locus of interest. The therapeutic relevance of these genome-editing technologies, however, is challenged by the safe and efficient delivery of nuclease into targeted cells. Herein, we summarize recent advances that have been made on non-viral delivery of genome-editing nucleases. In particular, we focus on non-viral delivery of Cas9/sgRNA ribonucleoproteins for genome editing. In addition, the future direction for developing non-viral delivery of programmable nucleases for genome editing is discussed.
Shin, Jeong Hong; Jung, Soobin; Ramakrishna, Suresh; Kim, Hyongbum Henry; Lee, Junwon
2018-07-07
Genome editing technology using programmable nucleases has rapidly evolved in recent years. The primary mechanism to achieve precise integration of a transgene is mainly based on homology-directed repair (HDR). However, an HDR-based genome-editing approach is less efficient than non-homologous end-joining (NHEJ). Recently, a microhomology-mediated end-joining (MMEJ)-based transgene integration approach was developed, showing feasibility both in vitro and in vivo. We expanded this method to achieve targeted sequence substitution (TSS) of mutated sequences with normal sequences using double-guide RNAs (gRNAs), and a donor template flanking the microhomologies and target sequence of the gRNAs in vitro and in vivo. Our method could realize more efficient sequence substitution than the HDR-based method in vitro using a reporter cell line, and led to the survival of a hereditary tyrosinemia mouse model in vivo. The proposed MMEJ-based TSS approach could provide a novel therapeutic strategy, in addition to HDR, to achieve gene correction from a mutated sequence to a normal sequence. Copyright © 2018 Elsevier Inc. All rights reserved.
Small RNA and A-to-I Editing in Autism Spectrum Disorders
NASA Astrophysics Data System (ADS)
Eran, Alal
One in every 88 children is diagnosed with Autism Spectrum Disorders (ASDs), a set of neurodevelopmental conditions characterized by social impairments, communication deficits, and repetitive behavior. ASDs have a substantial genetic component, but the specific cause of most cases remains unknown. Understanding gene-environment interactions underlying ASD is essential for improving early diagnosis and identifying critical targets for intervention and prevention. Towards this goal, we surveyed adenosine-to-inosine (A-to-I) RNA editing in autistic brains. A-to-I editing is an epigenetic mechanism that fine-tunes synaptic function in response to environmental stimuli, shown to modulate complex behavior in animals. We used ultradeep sequencing to quantify A-to-I receding of candidate synaptic genes in postmortem cerebella from individuals with ASD and neurotypical controls. We found unexpectedly wide distributions of human A-to-I editing levels, whose extremes were consistently populated by individuals with ASD. We correlated A-to-I editing with isoform usage, identified clusters of correlated sites, and examined differential editing patterns. Importantly, we found that individuals with ASD commonly use a dysfunctional form of the editing enzyme ADARB1. We next profiled small RNAs thought to regulate A-to-I editing, which originate from one of the most commonly altered loci in ASD, 15q11. Deep targeted sequencing of SNORD115 and SNORD116 transcripts enabled their high-resolution detection in human brains, and revealed a strong gender bias underlying their expression. The consistent 2-fold upregulation of 15q11 small RNAs in male vs. female cerebella could be important in delineating the role of this locus in ASD, a male dominant disorder. Overall, these studies provide an accurate population-level view of small RNA and A-to-I editing in human cerebella, and suggest that A-to-I editing of synaptic genes may be informative for assessing the epigenetic risk for autism. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)
Looking forward to genetically edited fruit crops.
Nagamangala Kanchiswamy, Chidananda; Sargent, Daniel James; Velasco, Riccardo; Maffei, Massimo E; Malnoy, Mickael
2015-02-01
The availability of genome sequences for many fruit crops has redefined the boundaries of genetic engineering and genetically modified (GM) crop plants. However commercialization of GM crops is hindered by numerous regulatory and social hurdles. Here, we focus on recently developed genome-editing tools for fruit crop improvement and their importance from the consumer perspective. Challenges and opportunities for the deployment of new genome-editing tools for fruit plants are also discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Generation of Knock-in Mouse by Genome Editing.
Fujii, Wataru
2017-01-01
Knock-in mice are useful for evaluating endogenous gene expressions and functions in vivo. Instead of the conventional gene-targeting method using embryonic stem cells, an exogenous DNA sequence can be inserted into the target locus in the zygote using genome editing technology. In this chapter, I describe the generation of epitope-tagged mice using engineered endonuclease and single-stranded oligodeoxynucleotide through the mouse zygote as an example of how to generate a knock-in mouse by genome editing.
TotalReCaller: improved accuracy and performance via integrated alignment and base-calling.
Menges, Fabian; Narzisi, Giuseppe; Mishra, Bud
2011-09-01
Currently, re-sequencing approaches use multiple modules serially to interpret raw sequencing data from next-generation sequencing platforms, while remaining oblivious to the genomic information until the final alignment step. Such approaches fail to exploit the full information from both raw sequencing data and the reference genome that can yield better quality sequence reads, SNP-calls, variant detection, as well as an alignment at the best possible location in the reference genome. Thus, there is a need for novel reference-guided bioinformatics algorithms for interpreting analog signals representing sequences of the bases ({A, C, G, T}), while simultaneously aligning possible sequence reads to a source reference genome whenever available. Here, we propose a new base-calling algorithm, TotalReCaller, to achieve improved performance. A linear error model for the raw intensity data and Burrows-Wheeler transform (BWT) based alignment are combined utilizing a Bayesian score function, which is then globally optimized over all possible genomic locations using an efficient branch-and-bound approach. The algorithm has been implemented in soft- and hardware [field-programmable gate array (FPGA)] to achieve real-time performance. Empirical results on real high-throughput Illumina data were used to evaluate TotalReCaller's performance relative to its peers-Bustard, BayesCall, Ibis and Rolexa-based on several criteria, particularly those important in clinical and scientific applications. Namely, it was evaluated for (i) its base-calling speed and throughput, (ii) its read accuracy and (iii) its specificity and sensitivity in variant calling. A software implementation of TotalReCaller as well as additional information, is available at: http://bioinformatics.nyu.edu/wordpress/projects/totalrecaller/ fabian.menges@nyu.edu.
Ndhlovu, Andrew; Durand, Pierre M.; Hazelhurst, Scott
2015-01-01
The evolutionary rate at codon sites across protein-coding nucleotide sequences represents a valuable tier of information for aligning sequences, inferring homology and constructing phylogenetic profiles. However, a comprehensive resource for cataloguing the evolutionary rate at codon sites and their corresponding nucleotide and protein domain sequence alignments has not been developed. To address this gap in knowledge, EvoDB (an Evolutionary rates DataBase) was compiled. Nucleotide sequences and their corresponding protein domain data including the associated seed alignments from the PFAM-A (protein family) database were used to estimate evolutionary rate (ω = dN/dS) profiles at codon sites for each entry. EvoDB contains 98.83% of the gapped nucleotide sequence alignments and 97.1% of the evolutionary rate profiles for the corresponding information in PFAM-A. As the identification of codon sites under positive selection and their position in a sequence profile is usually the most sought after information for molecular evolutionary biologists, evolutionary rate profiles were determined under the M2a model using the CODEML algorithm in the PAML (Phylogenetic Analysis by Maximum Likelihood) suite of software. Validation of nucleotide sequences against amino acid data was implemented to ensure high data quality. EvoDB is a catalogue of the evolutionary rate profiles and provides the corresponding phylogenetic trees, PFAM-A alignments and annotated accession identifier data. In addition, the database can be explored and queried using known evolutionary rate profiles to identify domains under similar evolutionary constraints and pressures. EvoDB is a resource for evolutionary, phylogenetic studies and presents a tier of information untapped by current databases. Database URL: http://www.bioinf.wits.ac.za/software/fire/evodb PMID:26140928
Ndhlovu, Andrew; Durand, Pierre M; Hazelhurst, Scott
2015-01-01
The evolutionary rate at codon sites across protein-coding nucleotide sequences represents a valuable tier of information for aligning sequences, inferring homology and constructing phylogenetic profiles. However, a comprehensive resource for cataloguing the evolutionary rate at codon sites and their corresponding nucleotide and protein domain sequence alignments has not been developed. To address this gap in knowledge, EvoDB (an Evolutionary rates DataBase) was compiled. Nucleotide sequences and their corresponding protein domain data including the associated seed alignments from the PFAM-A (protein family) database were used to estimate evolutionary rate (ω = dN/dS) profiles at codon sites for each entry. EvoDB contains 98.83% of the gapped nucleotide sequence alignments and 97.1% of the evolutionary rate profiles for the corresponding information in PFAM-A. As the identification of codon sites under positive selection and their position in a sequence profile is usually the most sought after information for molecular evolutionary biologists, evolutionary rate profiles were determined under the M2a model using the CODEML algorithm in the PAML (Phylogenetic Analysis by Maximum Likelihood) suite of software. Validation of nucleotide sequences against amino acid data was implemented to ensure high data quality. EvoDB is a catalogue of the evolutionary rate profiles and provides the corresponding phylogenetic trees, PFAM-A alignments and annotated accession identifier data. In addition, the database can be explored and queried using known evolutionary rate profiles to identify domains under similar evolutionary constraints and pressures. EvoDB is a resource for evolutionary, phylogenetic studies and presents a tier of information untapped by current databases. © The Author(s) 2015. Published by Oxford University Press.
cljam: a library for handling DNA sequence alignment/map (SAM) with parallel processing.
Takeuchi, Toshiki; Yamada, Atsuo; Aoki, Takashi; Nishimura, Kunihiro
2016-01-01
Next-generation sequencing can determine DNA bases and the results of sequence alignments are generally stored in files in the Sequence Alignment/Map (SAM) format and the compressed binary version (BAM) of it. SAMtools is a typical tool for dealing with files in the SAM/BAM format. SAMtools has various functions, including detection of variants, visualization of alignments, indexing, extraction of parts of the data and loci, and conversion of file formats. It is written in C and can execute fast. However, SAMtools requires an additional implementation to be used in parallel with, for example, OpenMP (Open Multi-Processing) libraries. For the accumulation of next-generation sequencing data, a simple parallelization program, which can support cloud and PC cluster environments, is required. We have developed cljam using the Clojure programming language, which simplifies parallel programming, to handle SAM/BAM data. Cljam can run in a Java runtime environment (e.g., Windows, Linux, Mac OS X) with Clojure. Cljam can process and analyze SAM/BAM files in parallel and at high speed. The execution time with cljam is almost the same as with SAMtools. The cljam code is written in Clojure and has fewer lines than other similar tools.
Kumar, Rajnish; Mishra, Bharat Kumar; Lahiri, Tapobrata; Kumar, Gautam; Kumar, Nilesh; Gupta, Rahul; Pal, Manoj Kumar
2017-06-01
Online retrieval of the homologous nucleotide sequences through existing alignment techniques is a common practice against the given database of sequences. The salient point of these techniques is their dependence on local alignment techniques and scoring matrices the reliability of which is limited by computational complexity and accuracy. Toward this direction, this work offers a novel way for numerical representation of genes which can further help in dividing the data space into smaller partitions helping formation of a search tree. In this context, this paper introduces a 36-dimensional Periodicity Count Value (PCV) which is representative of a particular nucleotide sequence and created through adaptation from the concept of stochastic model of Kolekar et al. (American Institute of Physics 1298:307-312, 2010. doi: 10.1063/1.3516320 ). The PCV construct uses information on physicochemical properties of nucleotides and their positional distribution pattern within a gene. It is observed that PCV representation of gene reduces computational cost in the calculation of distances between a pair of genes while being consistent with the existing methods. The validity of PCV-based method was further tested through their use in molecular phylogeny constructs in comparison with that using existing sequence alignment methods.
Budavari, Tamas; Langmead, Ben; Wheelan, Sarah J.; Salzberg, Steven L.; Szalay, Alexander S.
2015-01-01
When computing alignments of DNA sequences to a large genome, a key element in achieving high processing throughput is to prioritize locations in the genome where high-scoring mappings might be expected. We formulated this task as a series of list-processing operations that can be efficiently performed on graphics processing unit (GPU) hardware.We followed this approach in implementing a read aligner called Arioc that uses GPU-based parallel sort and reduction techniques to identify high-priority locations where potential alignments may be found. We then carried out a read-by-read comparison of Arioc’s reported alignments with the alignments found by several leading read aligners. With simulated reads, Arioc has comparable or better accuracy than the other read aligners we tested. With human sequencing reads, Arioc demonstrates significantly greater throughput than the other aligners we evaluated across a wide range of sensitivity settings. The Arioc software is available at https://github.com/RWilton/Arioc. It is released under a BSD open-source license. PMID:25780763
Establishing homologies in protein sequences
NASA Technical Reports Server (NTRS)
Dayhoff, M. O.; Barker, W. C.; Hunt, L. T.
1983-01-01
Computer-based statistical techniques used to determine homologies between proteins occurring in different species are reviewed. The technique is based on comparison of two protein sequences, either by relating all segments of a given length in one sequence to all segments of the second or by finding the best alignment of the two sequences. Approaches discussed include selection using printed tabulations, identification of very similar sequences, and computer searches of a database. The use of the SEARCH, RELATE, and ALIGN programs (Dayhoff, 1979) is explained; sample data are presented in graphs, diagrams, and tables and the construction of scoring matrices is considered.
CoSMoS: Conserved Sequence Motif Search in the proteome
Liu, Xiao I; Korde, Neeraj; Jakob, Ursula; Leichert, Lars I
2006-01-01
Background With the ever-increasing number of gene sequences in the public databases, generating and analyzing multiple sequence alignments becomes increasingly time consuming. Nevertheless it is a task performed on a regular basis by researchers in many labs. Results We have now created a database called CoSMoS to find the occurrences and at the same time evaluate the significance of sequence motifs and amino acids encoded in the whole genome of the model organism Escherichia coli K12. We provide a precomputed set of multiple sequence alignments for each individual E. coli protein with all of its homologues in the RefSeq database. The alignments themselves, information about the occurrence of sequence motifs together with information on the conservation of each of the more than 1.3 million amino acids encoded in the E. coli genome can be accessed via the web interface of CoSMoS. Conclusion CoSMoS is a valuable tool to identify highly conserved sequence motifs, to find regions suitable for mutational studies in functional analyses and to predict important structural features in E. coli proteins. PMID:16433915
Batzir, Nurit Assia; Tovin, Adi; Hendel, Ayal
2017-06-01
Genome editing with engineered nucleases is a rapidly growing field thanks to transformative technologies that allow researchers to precisely alter genomes for numerous applications including basic research, biotechnology, and human gene therapy. The genome editing process relies on creating a site-specific DNA double-strand break (DSB) by engineered nucleases and then allowing the cell's repair machinery to repair the break such that precise changes are made to the DNA sequence. The recent development of CRISPR-Cas systems as easily accessible and programmable tools for genome editing accelerates the progress towards using genome editing as a new approach to human therapeutics. Here we review how genome editing using engineered nucleases works and how using different genome editing outcomes can be used as a tool set for treating human diseases. We then review the major challenges of therapeutic genome editing and we discuss how its potential enhancement through CRISPR guide RNA and Cas9 protein modifications could resolve some of these challenges. Copyright© of YS Medical Media ltd.
Changing genetic information through RNA editing
NASA Technical Reports Server (NTRS)
Maas, S.; Rich, A.
2000-01-01
RNA editing, the post-transcriptional alteration of a gene-encoded sequence, is a widespread phenomenon in eukaryotes. As a consequence of RNA editing, functionally distinct proteins can be produced from a single gene. The molecular mechanisms involved include single or multiple base insertions or deletions as well as base substitutions. In mammals, one type of substitutional RNA editing, characterized by site-specific base-modification, was shown to modulate important physiological processes. The underlying reaction mechanism of substitutional RNA editing involves hydrolytic deamination of cytosine or adenosine bases to uracil or inosine, respectively. Protein factors have been characterized that are able to induce RNA editing in vitro. A supergene family of RNA-dependent deaminases has emerged with the recent addition of adenosine deaminases specific for tRNA. Here we review the developments that have substantially increased our understanding of base-modification RNA editing over the past few years, with an emphasis on mechanistic differences, evolutionary aspects and the first insights into the regulation of editing activity.
Subbotin, S A; Vierstraete, A; De Ley, P; Rowe, J; Waeyenberge, L; Moens, M; Vanfleteren, J R
2001-10-01
The ITS1, ITS2, and 5.8S gene sequences of nuclear ribosomal DNA from 40 taxa of the family Heteroderidae (including the genera Afenestrata, Cactodera, Heterodera, Globodera, Punctodera, Meloidodera, Cryphodera, and Thecavermiculatus) were sequenced and analyzed. The ITS regions displayed high levels of sequence divergence within Heteroderinae and compared to outgroup taxa. Unlike recent findings in root knot nematodes, ITS sequence polymorphism does not appear to complicate phylogenetic analysis of cyst nematodes. Phylogenetic analyses with maximum-parsimony, minimum-evolution, and maximum-likelihood methods were performed with a range of computer alignments, including elision and culled alignments. All multiple alignments and phylogenetic methods yielded similar basic structure for phylogenetic relationships of Heteroderidae. The cyst-forming nematodes are represented by six main clades corresponding to morphological characters and host specialization, with certain clades assuming different positions depending on alignment procedure and/or method of phylogenetic inference. Hypotheses of monophyly of Punctoderinae and Heteroderinae are, respectively, strongly and moderately supported by the ITS data across most alignments. Close relationships were revealed between the Avenae and the Sacchari groups and between the Humuli group and the species H. salixophila within Heteroderinae. The Goettingiana group occupies a basal position within this subfamily. The validity of the genera Afenestrata and Bidera was tested and is discussed based on molecular data. We conclude that ITS sequence data are appropriate for studies of relationships within the different species groups and less so for recovery of more ancient speciations within Heteroderidae. Copyright 2001 Academic Press.
Functional interrogation of non-coding DNA through CRISPR genome editing.
Canver, Matthew C; Bauer, Daniel E; Orkin, Stuart H
2017-05-15
Methodologies to interrogate non-coding regions have lagged behind coding regions despite comprising the vast majority of the genome. However, the rapid evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing has provided a multitude of novel techniques for laboratory investigation including significant contributions to the toolbox for studying non-coding DNA. CRISPR-mediated loss-of-function strategies rely on direct disruption of the underlying sequence or repression of transcription without modifying the targeted DNA sequence. CRISPR-mediated gain-of-function approaches similarly benefit from methods to alter the targeted sequence through integration of customized sequence into the genome as well as methods to activate transcription. Here we review CRISPR-based loss- and gain-of-function techniques for the interrogation of non-coding DNA. Copyright © 2017 Elsevier Inc. All rights reserved.
Alview: Portable Software for Viewing Sequence Reads in BAM Formatted Files.
Finney, Richard P; Chen, Qing-Rong; Nguyen, Cu V; Hsu, Chih Hao; Yan, Chunhua; Hu, Ying; Abawi, Massih; Bian, Xiaopeng; Meerzaman, Daoud M
2015-01-01
The name Alview is a contraction of the term Alignment Viewer. Alview is a compiled to native architecture software tool for visualizing the alignment of sequencing data. Inputs are files of short-read sequences aligned to a reference genome in the SAM/BAM format and files containing reference genome data. Outputs are visualizations of these aligned short reads. Alview is written in portable C with optional graphical user interface (GUI) code written in C, C++, and Objective-C. The application can run in three different ways: as a web server, as a command line tool, or as a native, GUI program. Alview is compatible with Microsoft Windows, Linux, and Apple OS X. It is available as a web demo at https://cgwb.nci.nih.gov/cgi-bin/alview. The source code and Windows/Mac/Linux executables are available via https://github.com/NCIP/alview.
Zhang, Jianwei; Kudrna, Dave; Mu, Ting; Li, Weiming; Copetti, Dario; Yu, Yeisoo; Goicoechea, Jose Luis; Lei, Yang; Wing, Rod A
2016-10-15
Next generation sequencing technologies have revolutionized our ability to rapidly and affordably generate vast quantities of sequence data. Once generated, raw sequences are assembled into contigs or scaffolds. However, these assemblies are mostly fragmented and inaccurate at the whole genome scale, largely due to the inability to integrate additional informative datasets (e.g. physical, optical and genetic maps). To address this problem, we developed a semi-automated software tool-Genome Puzzle Master (GPM)-that enables the integration of additional genomic signposts to edit and build 'new-gen-assemblies' that result in high-quality 'annotation-ready' pseudomolecules. With GPM, loaded datasets can be connected to each other via their logical relationships which accomplishes tasks to 'group,' 'merge,' 'order and orient' sequences in a draft assembly. Manual editing can also be performed with a user-friendly graphical interface. Final pseudomolecules reflect a user's total data package and are available for long-term project management. GPM is a web-based pipeline and an important part of a Laboratory Information Management System (LIMS) which can be easily deployed on local servers for any genome research laboratory. The GPM (with LIMS) package is available at https://github.com/Jianwei-Zhang/LIMS CONTACTS: jzhang@mail.hzau.edu.cn or rwing@mail.arizona.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
GoPro HERO 4 Black recording of scleral buckle placement during retinal detachment repair.
Ho, Vincent Y; Shah, Vaishali G; Yates, David M; Shah, Gaurav K
2017-08-01
GoPro and Google Glass technology have previously been used to record procedures in ophthalmology and other medical fields. In this manuscript, GoPro's latest HERO 4 Black edition camera (GoPro Inc, San Mateo, Calif.) will be used to record the placement of a scleral buckle during retinal detachment surgery. GoPro HERO 4 Black edition camera, which records 4K-quality video with a resolution of 3840 (pixels) x 2160 (lines), was mounted on a head strap to record placement of a scleral buckle for a retinal detachment. Excellent video quality was achieved with the 4K SuperView setting. Bluetooth connection with an Apple iPad (Apple Inc, Cupertino, Calif.) provided live streaming and use of the GoPro App. Zoom, horizontal/vertical alignment, exposure, and contrast adjustments were made with postproduction editing on GoPro Studio software. Video recording with the GoPro HERO 4 Black edition camera is an excellent way to document extraocular procedures to improve medical education, self-training, or medicolegal documentation. Copyright © 2017 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.
A-to-I editing of coding and non-coding RNAs by ADARs
Nishikura, Kazuko
2016-01-01
Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in double-stranded RNA. This A-to-I editing occurs not only in protein-coding regions of mRNAs, but also frequently in non-coding regions that contain inverted Alu repeats. Editing of coding sequences can result in the expression of functionally altered proteins that are not encoded in the genome, whereas the significance of Alu editing remains largely unknown. Certain microRNA (miRNA) precursors are also edited, leading to reduced expression or altered function of mature miRNAs. Conversely, recent studies indicate that ADAR1 forms a complex with Dicer to promote miRNA processing, revealing a new function of ADAR1 in the regulation of RNA interference. PMID:26648264
Orthogonal-blendshape-based editing system for facial motion capture data.
Li, Qing; Deng, Zhigang
2008-01-01
The authors present a novel data-driven 3D facial motion capture data editing system using automated construction of an orthogonal blendshape face model and constrained weight propagation, aiming to bridge the popular facial motion capture technique and blendshape approach. In this work, a 3D facial-motion-capture-editing problem is transformed to a blendshape-animation-editing problem. Given a collected facial motion capture data set, we construct a truncated PCA space spanned by the greatest retained eigenvectors and a corresponding blendshape face model for each anatomical region of the human face. As such, modifying blendshape weights (PCA coefficients) is equivalent to editing their corresponding motion capture sequence. In addition, a constrained weight propagation technique allows animators to balance automation and flexible controls.
TaxI: a software tool for DNA barcoding using distance methods
Steinke, Dirk; Vences, Miguel; Salzburger, Walter; Meyer, Axel
2005-01-01
DNA barcoding is a promising approach to the diagnosis of biological diversity in which DNA sequences serve as the primary key for information retrieval. Most existing software for evolutionary analysis of DNA sequences was designed for phylogenetic analyses and, hence, those algorithms do not offer appropriate solutions for the rapid, but precise analyses needed for DNA barcoding, and are also unable to process the often large comparative datasets. We developed a flexible software tool for DNA taxonomy, named TaxI. This program calculates sequence divergences between a query sequence (taxon to be barcoded) and each sequence of a dataset of reference sequences defined by the user. Because the analysis is based on separate pairwise alignments this software is also able to work with sequences characterized by multiple insertions and deletions that are difficult to align in large sequence sets (i.e. thousands of sequences) by multiple alignment algorithms because of computational restrictions. Here, we demonstrate the utility of this approach with two datasets of fish larvae and juveniles from Lake Constance and juvenile land snails under different models of sequence evolution. Sets of ribosomal 16S rRNA sequences, characterized by multiple indels, performed as good as or better than cox1 sequence sets in assigning sequences to species, demonstrating the suitability of rRNA genes for DNA barcoding. PMID:16214755
Global Network Alignment in the Context of Aging.
Faisal, Fazle Elahi; Zhao, Han; Milenkovic, Tijana
2015-01-01
Analogous to sequence alignment, network alignment (NA) can be used to transfer biological knowledge across species between conserved network regions. NA faces two algorithmic challenges: 1) Which cost function to use to capture "similarities" between nodes in different networks? 2) Which alignment strategy to use to rapidly identify "high-scoring" alignments from all possible alignments? We "break down" existing state-of-the-art methods that use both different cost functions and different alignment strategies to evaluate each combination of their cost functions and alignment strategies. We find that a combination of the cost function of one method and the alignment strategy of another method beats the existing methods. Hence, we propose this combination as a novel superior NA method. Then, since human aging is hard to study experimentally due to long lifespan, we use NA to transfer aging-related knowledge from well annotated model species to poorly annotated human. By doing so, we produce novel human aging-related knowledge, which complements currently available knowledge about aging that has been obtained mainly by sequence alignment. We demonstrate significant similarity between topological and functional properties of our novel predictions and those of known aging-related genes. We are the first to use NA to learn more about aging.
A parallel approach of COFFEE objective function to multiple sequence alignment
NASA Astrophysics Data System (ADS)
Zafalon, G. F. D.; Visotaky, J. M. V.; Amorim, A. R.; Valêncio, C. R.; Neves, L. A.; de Souza, R. C. G.; Machado, J. M.
2015-09-01
The computational tools to assist genomic analyzes show even more necessary due to fast increasing of data amount available. With high computational costs of deterministic algorithms for sequence alignments, many works concentrate their efforts in the development of heuristic approaches to multiple sequence alignments. However, the selection of an approach, which offers solutions with good biological significance and feasible execution time, is a great challenge. Thus, this work aims to show the parallelization of the processing steps of MSA-GA tool using multithread paradigm in the execution of COFFEE objective function. The standard objective function implemented in the tool is the Weighted Sum of Pairs (WSP), which produces some distortions in the final alignments when sequences sets with low similarity are aligned. Then, in studies previously performed we implemented the COFFEE objective function in the tool to smooth these distortions. Although the nature of COFFEE objective function implies in the increasing of execution time, this approach presents points, which can be executed in parallel. With the improvements implemented in this work, we can verify the execution time of new approach is 24% faster than the sequential approach with COFFEE. Moreover, the COFFEE multithreaded approach is more efficient than WSP, because besides it is slightly fast, its biological results are better.
Sequence-similar, structure-dissimilar protein pairs in the PDB.
Kosloff, Mickey; Kolodny, Rachel
2008-05-01
It is often assumed that in the Protein Data Bank (PDB), two proteins with similar sequences will also have similar structures. Accordingly, it has proved useful to develop subsets of the PDB from which "redundant" structures have been removed, based on a sequence-based criterion for similarity. Similarly, when predicting protein structure using homology modeling, if a template structure for modeling a target sequence is selected by sequence alone, this implicitly assumes that all sequence-similar templates are equivalent. Here, we show that this assumption is often not correct and that standard approaches to create subsets of the PDB can lead to the loss of structurally and functionally important information. We have carried out sequence-based structural superpositions and geometry-based structural alignments of a large number of protein pairs to determine the extent to which sequence similarity ensures structural similarity. We find many examples where two proteins that are similar in sequence have structures that differ significantly from one another. The source of the structural differences usually has a functional basis. The number of such proteins pairs that are identified and the magnitude of the dissimilarity depend on the approach that is used to calculate the differences; in particular sequence-based structure superpositioning will identify a larger number of structurally dissimilar pairs than geometry-based structural alignments. When two sequences can be aligned in a statistically meaningful way, sequence-based structural superpositioning provides a meaningful measure of structural differences. This approach and geometry-based structure alignments reveal somewhat different information and one or the other might be preferable in a given application. Our results suggest that in some cases, notably homology modeling, the common use of nonredundant datasets, culled from the PDB based on sequence, may mask important structural and functional information. We have established a data base of sequence-similar, structurally dissimilar protein pairs that will help address this problem (http://luna.bioc.columbia.edu/rachel/seqsimstrdiff.htm).
Identification of true EST alignments for recognising transcribed regions.
Ma, Chuang; Wang, Jia; Li, Lun; Duan, Mo-Jie; Zhou, Yan-Hong
2011-01-01
Transcribed regions can be determined by aligning Expressed Sequence Tags (ESTs) with genome sequences. The kernel of this strategy is to effectively distinguish true EST alignments from spurious ones. In this study, three measures including Direction Check, Identity Check and Terminal Check were introduced to more effectively eliminate spurious EST alignments. On the basis of these introduced measures and other widely used measures, a computational tool, named ESTCleanser, has been developed to identify true EST alignments for obtaining reliable transcribed regions. The performance of ESTCleanser has been evaluated on the well-annotated human ENCyclopedia of DNA Elements (ENCODE) regions using human ESTs in the dbEST database. The evaluation results show that the accuracy of ESTCleanser at exon and intron levels is more remarkably enhanced than that of UCSC-spliced EST alignments. This work would be helpful to EST-based researches on finding new genes, complementing genome annotation, recognising alternative splicing events and Single Nucleotide Polymorphisms (SNPs), etc.
Prediction of β-turns in proteins from multiple alignment using neural network
Kaur, Harpreet; Raghava, Gajendra Pal Singh
2003-01-01
A neural network-based method has been developed for the prediction of β-turns in proteins by using multiple sequence alignment. Two feed-forward back-propagation networks with a single hidden layer are used where the first-sequence structure network is trained with the multiple sequence alignment in the form of PSI-BLAST–generated position-specific scoring matrices. The initial predictions from the first network and PSIPRED-predicted secondary structure are used as input to the second structure-structure network to refine the predictions obtained from the first net. A significant improvement in prediction accuracy has been achieved by using evolutionary information contained in the multiple sequence alignment. The final network yields an overall prediction accuracy of 75.5% when tested by sevenfold cross-validation on a set of 426 nonhomologous protein chains. The corresponding Qpred, Qobs, and Matthews correlation coefficient values are 49.8%, 72.3%, and 0.43, respectively, and are the best among all the previously published β-turn prediction methods. The Web server BetaTPred2 (http://www.imtech.res.in/raghava/betatpred2/) has been developed based on this approach. PMID:12592033
Grohmann, L; Brennicke, A; Schuster, W
1992-01-01
The Oenothera mitochondrial genome contains only a gene fragment for ribosomal protein S12 (rps12), while other plants encode a functional gene in the mitochondrion. The complete Oenothera rps12 gene is located in the nucleus. The transit sequence necessary to target this protein to the mitochondrion is encoded by a 5'-extension of the open reading frame. Comparison of the amino acid sequence encoded by the nuclear gene with the polypeptides encoded by edited mitochondrial cDNA and genomic sequences of other plants suggests that gene transfer between mitochondrion and nucleus started from edited mitochondrial RNA molecules. Mechanisms and requirements of gene transfer and activation are discussed. Images PMID:1454526
CRISPR/Cas9 in Genome Editing and Beyond.
Wang, Haifeng; La Russa, Marie; Qi, Lei S
2016-06-02
The Cas9 protein (CRISPR-associated protein 9), derived from type II CRISPR (clustered regularly interspaced short palindromic repeats) bacterial immune systems, is emerging as a powerful tool for engineering the genome in diverse organisms. As an RNA-guided DNA endonuclease, Cas9 can be easily programmed to target new sites by altering its guide RNA sequence, and its development as a tool has made sequence-specific gene editing several magnitudes easier. The nuclease-deactivated form of Cas9 further provides a versatile RNA-guided DNA-targeting platform for regulating and imaging the genome, as well as for rewriting the epigenetic status, all in a sequence-specific manner. With all of these advances, we have just begun to explore the possible applications of Cas9 in biomedical research and therapeutics. In this review, we describe the current models of Cas9 function and the structural and biochemical studies that support it. We focus on the applications of Cas9 for genome editing, regulation, and imaging, discuss other possible applications and some technical considerations, and highlight the many advantages that CRISPR/Cas9 technology offers.
CRISPR/Cas9-Based Multiplex Genome Editing in Monocot and Dicot Plants.
Ma, Xingliang; Liu, Yao-Guang
2016-07-01
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome targeting system has been applied to a variety of organisms, including plants. Compared to other genome-targeting technologies such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), the CRISPR/Cas9 system is easier to use and has much higher editing efficiency. In addition, multiple "single guide RNAs" (sgRNAs) with different target sequences can be designed to direct the Cas9 protein to multiple genomic sites for simultaneous multiplex editing. Here, we present a procedure for highly efficient multiplex genome targeting in monocot and dicot plants using a versatile and robust CRISPR/Cas9 vector system, emphasizing the construction of binary constructs with multiple sgRNA expression cassettes in one round of cloning using Golden Gate ligation. We also describe the genotyping of targeted mutations in transgenic plants by direct Sanger sequencing followed by decoding of superimposed sequencing chromatograms containing biallelic or heterozygous mutations using the Web-based tool DSDecode. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Rigden, Daniel J; Thomas, Jens M H; Simkovic, Felix; Simpkin, Adam; Winn, Martyn D; Mayans, Olga; Keegan, Ronan M
2018-03-01
Molecular replacement (MR) is the predominant route to solution of the phase problem in macromolecular crystallography. Although routine in many cases, it becomes more effortful and often impossible when the available experimental structures typically used as search models are only distantly homologous to the target. Nevertheless, with current powerful MR software, relatively small core structures shared between the target and known structure, of 20-40% of the overall structure for example, can succeed as search models where they can be isolated. Manual sculpting of such small structural cores is rarely attempted and is dependent on the crystallographer's expertise and understanding of the protein family in question. Automated search-model editing has previously been performed on the basis of sequence alignment, in order to eliminate, for example, side chains or loops that are not present in the target, or on the basis of structural features (e.g. solvent accessibility) or crystallographic parameters (e.g. B factors). Here, based on recent work demonstrating a correlation between evolutionary conservation and protein rigidity/packing, novel automated ways to derive edited search models from a given distant homologue over a range of sizes are presented. A variety of structure-based metrics, many readily obtained from online webservers, can be fed to the MR pipeline AMPLE to produce search models that succeed with a set of test cases where expertly manually edited comparators, further processed in diverse ways with MrBUMP, fail. Further significant performance gains result when the structure-based distance geometry method CONCOORD is used to generate ensembles from the distant homologue. To our knowledge, this is the first such approach whereby a single structure is meaningfully transformed into an ensemble for the purposes of MR. Additional cases further demonstrate the advantages of the approach. CONCOORD is freely available and computationally inexpensive, so these novel methods offer readily available new routes to solve difficult MR cases.
Simpkin, Adam; Mayans, Olga; Keegan, Ronan M.
2018-01-01
Molecular replacement (MR) is the predominant route to solution of the phase problem in macromolecular crystallography. Although routine in many cases, it becomes more effortful and often impossible when the available experimental structures typically used as search models are only distantly homologous to the target. Nevertheless, with current powerful MR software, relatively small core structures shared between the target and known structure, of 20–40% of the overall structure for example, can succeed as search models where they can be isolated. Manual sculpting of such small structural cores is rarely attempted and is dependent on the crystallographer’s expertise and understanding of the protein family in question. Automated search-model editing has previously been performed on the basis of sequence alignment, in order to eliminate, for example, side chains or loops that are not present in the target, or on the basis of structural features (e.g. solvent accessibility) or crystallographic parameters (e.g. B factors). Here, based on recent work demonstrating a correlation between evolutionary conservation and protein rigidity/packing, novel automated ways to derive edited search models from a given distant homologue over a range of sizes are presented. A variety of structure-based metrics, many readily obtained from online webservers, can be fed to the MR pipeline AMPLE to produce search models that succeed with a set of test cases where expertly manually edited comparators, further processed in diverse ways with MrBUMP, fail. Further significant performance gains result when the structure-based distance geometry method CONCOORD is used to generate ensembles from the distant homologue. To our knowledge, this is the first such approach whereby a single structure is meaningfully transformed into an ensemble for the purposes of MR. Additional cases further demonstrate the advantages of the approach. CONCOORD is freely available and computationally inexpensive, so these novel methods offer readily available new routes to solve difficult MR cases. PMID:29533226
DNA and RNA editing of retrotransposons accelerate mammalian genome evolution.
Knisbacher, Binyamin A; Levanon, Erez Y
2015-04-01
Genome evolution is commonly viewed as a gradual process that is driven by random mutations that accumulate over time. However, DNA- and RNA-editing enzymes have been identified that can accelerate evolution by actively modifying the genomically encoded information. The apolipoprotein B mRNA editing enzymes, catalytic polypeptide-like (APOBECs) are potent restriction factors that can inhibit retroelements by cytosine-to-uridine editing of retroelement DNA after reverse transcription. In some cases, a retroelement may successfully integrate into the genome despite being hypermutated. Such events introduce unique sequences into the genome and are thus a source of genomic innovation. adenosine deaminases that act on RNA (ADARs) catalyze adenosine-to-inosine editing in double-stranded RNA, commonly formed by oppositely oriented retroelements. The RNA editing confers plasticity to the transcriptome by generating many transcript variants from a single genomic locus. If the editing produces a beneficial variant, the genome may maintain the locus that produces the RNA-edited transcript for its novel function. Here, we discuss how these two powerful editing mechanisms, which both target inserted retroelements, facilitate expedited genome evolution. © 2015 New York Academy of Sciences.
CloudAligner: A fast and full-featured MapReduce based tool for sequence mapping.
Nguyen, Tung; Shi, Weisong; Ruden, Douglas
2011-06-06
Research in genetics has developed rapidly recently due to the aid of next generation sequencing (NGS). However, massively-parallel NGS produces enormous amounts of data, which leads to storage, compatibility, scalability, and performance issues. The Cloud Computing and MapReduce framework, which utilizes hundreds or thousands of shared computers to map sequencing reads quickly and efficiently to reference genome sequences, appears to be a very promising solution for these issues. Consequently, it has been adopted by many organizations recently, and the initial results are very promising. However, since these are only initial steps toward this trend, the developed software does not provide adequate primary functions like bisulfite, pair-end mapping, etc., in on-site software such as RMAP or BS Seeker. In addition, existing MapReduce-based applications were not designed to process the long reads produced by the most recent second-generation and third-generation NGS instruments and, therefore, are inefficient. Last, it is difficult for a majority of biologists untrained in programming skills to use these tools because most were developed on Linux with a command line interface. To urge the trend of using Cloud technologies in genomics and prepare for advances in second- and third-generation DNA sequencing, we have built a Hadoop MapReduce-based application, CloudAligner, which achieves higher performance, covers most primary features, is more accurate, and has a user-friendly interface. It was also designed to be able to deal with long sequences. The performance gain of CloudAligner over Cloud-based counterparts (35 to 80%) mainly comes from the omission of the reduce phase. In comparison to local-based approaches, the performance gain of CloudAligner is from the partition and parallel processing of the huge reference genome as well as the reads. The source code of CloudAligner is available at http://cloudaligner.sourceforge.net/ and its web version is at http://mine.cs.wayne.edu:8080/CloudAligner/. Our results show that CloudAligner is faster than CloudBurst, provides more accurate results than RMAP, and supports various input as well as output formats. In addition, with the web-based interface, it is easier to use than its counterparts.
Taylor, James; Tyekucheva, Svitlana; King, David C; Hardison, Ross C; Miller, Webb; Chiaromonte, Francesca
2006-12-01
Genomic sequence signals - such as base composition, presence of particular motifs, or evolutionary constraint - have been used effectively to identify functional elements. However, approaches based only on specific signals known to correlate with function can be quite limiting. When training data are available, application of computational learning algorithms to multispecies alignments has the potential to capture broader and more informative sequence and evolutionary patterns that better characterize a class of elements. However, effective exploitation of patterns in multispecies alignments is impeded by the vast number of possible alignment columns and by a limited understanding of which particular strings of columns may characterize a given class. We have developed a computational method, called ESPERR (evolutionary and sequence pattern extraction through reduced representations), which uses training examples to learn encodings of multispecies alignments into reduced forms tailored for the prediction of chosen classes of functional elements. ESPERR produces a greatly improved Regulatory Potential score, which can discriminate regulatory regions from neutral sites with excellent accuracy ( approximately 94%). This score captures strong signals (GC content and conservation), as well as subtler signals (with small contributions from many different alignment patterns) that characterize the regulatory elements in our training set. ESPERR is also effective for predicting other classes of functional elements, as we show for DNaseI hypersensitive sites and highly conserved regions with developmental enhancer activity. Our software, training data, and genome-wide predictions are available from our Web site (http://www.bx.psu.edu/projects/esperr).