Title Sequences, Dress, Settings, and Such.
ERIC Educational Resources Information Center
Bell, John
Comparisons of television shows along genre lines suggest significant elements of aural/visual richness as well as valuable categories of comparison for future use in other comparisons. An examination of two sitcoms and two police shows produced roughly 25 years apart--"Make Room for Daddy" with "The Cosby Show" and "Naked…
Fanning, T; Singer, M
1987-01-01
Recent work suggests that one or more members of the highly repeated LINE-1 (L1) DNA family found in all mammals may encode one or more proteins. Here we report the sequence of a portion of an L1 cloned from the domestic cat (Felis catus). These data permit comparison of the L1 sequences in four mammalian orders (Carnivore, Lagomorph, Rodent and Primate) and the comparison supports the suggested coding potential. In two separate, noncontiguous regions in the carboxy terminal half of the proteins predicted from the DNA sequences, there are several strongly conserved segments. In one region, these share homology with known or suspected reverse transcriptases, as described by others in rodents and primates. In the second region, closer to the carboxy terminus, the strongly conserved segments are over 90% homologous among the four orders. One of the latter segments is cysteine rich and resembles the putative metal binding domains of nucleic acid binding proteins, including those of TFIIIA and retroviruses. PMID:3562227
Oono, Ryoko
2017-01-01
High-throughput sequencing technology has helped microbial community ecologists explore ecological and evolutionary patterns at unprecedented scales. The benefits of a large sample size still typically outweigh that of greater sequencing depths per sample for accurate estimations of ecological inferences. However, excluding or not sequencing rare taxa may mislead the answers to the questions 'how and why are communities different?' This study evaluates the confidence intervals of ecological inferences from high-throughput sequencing data of foliar fungal endophytes as case studies through a range of sampling efforts, sequencing depths, and taxonomic resolutions to understand how technical and analytical practices may affect our interpretations. Increasing sampling size reliably decreased confidence intervals across multiple community comparisons. However, the effects of sequencing depths on confidence intervals depended on how rare taxa influenced the dissimilarity estimates among communities and did not significantly decrease confidence intervals for all community comparisons. A comparison of simulated communities under random drift suggests that sequencing depths are important in estimating dissimilarities between microbial communities under neutral selective processes. Confidence interval analyses reveal important biases as well as biological trends in microbial community studies that otherwise may be ignored when communities are only compared for statistically significant differences.
2017-01-01
High-throughput sequencing technology has helped microbial community ecologists explore ecological and evolutionary patterns at unprecedented scales. The benefits of a large sample size still typically outweigh that of greater sequencing depths per sample for accurate estimations of ecological inferences. However, excluding or not sequencing rare taxa may mislead the answers to the questions ‘how and why are communities different?’ This study evaluates the confidence intervals of ecological inferences from high-throughput sequencing data of foliar fungal endophytes as case studies through a range of sampling efforts, sequencing depths, and taxonomic resolutions to understand how technical and analytical practices may affect our interpretations. Increasing sampling size reliably decreased confidence intervals across multiple community comparisons. However, the effects of sequencing depths on confidence intervals depended on how rare taxa influenced the dissimilarity estimates among communities and did not significantly decrease confidence intervals for all community comparisons. A comparison of simulated communities under random drift suggests that sequencing depths are important in estimating dissimilarities between microbial communities under neutral selective processes. Confidence interval analyses reveal important biases as well as biological trends in microbial community studies that otherwise may be ignored when communities are only compared for statistically significant differences. PMID:29253889
Sequence of the tomato chloroplast DNA and evolutionary comparison of solanaceous plastid genomes.
Kahlau, Sabine; Aspinall, Sue; Gray, John C; Bock, Ralph
2006-08-01
Tomato, Solanum lycopersicum (formerly Lycopersicon esculentum), has long been one of the classical model species of plant genetics. More recently, solanaceous species have become a model of evolutionary genomics, with several EST projects and a tomato genome project having been initiated. As a first contribution toward deciphering the genetic information of tomato, we present here the complete sequence of the tomato chloroplast genome (plastome). The size of this circular genome is 155,461 base pairs (bp), with an average AT content of 62.14%. It contains 114 genes and conserved open reading frames (ycfs). Comparison with the previously sequenced plastid DNAs of Nicotiana tabacum and Atropa belladonna reveals patterns of plastid genome evolution in the Solanaceae family and identifies varying degrees of conservation of individual plastid genes. In addition, we discovered several new sites of RNA editing by cytidine-to-uridine conversion. A detailed comparison of editing patterns in the three solanaceous species highlights the dynamics of RNA editing site evolution in chloroplasts. To assess the level of intraspecific plastome variation in tomato, the plastome of a second tomato cultivar was sequenced. Comparison of the two genotypes (IPA-6, bred in South America, and Ailsa Craig, bred in Europe) revealed no nucleotide differences, suggesting that the plastomes of modern tomato cultivars display very little, if any, sequence variation.
Comparison between genotyping by sequencing and SNP-chip genotyping in QTL mapping in wheat
USDA-ARS?s Scientific Manuscript database
Array- or chip-based single nucleotide polymorphism (SNP) markers are widely used in genomic studies because of their abundance in a genome and cost less per data point compared to older marker technologies. Genotyping by sequencing (GBS), a relatively newer approach of genotyping, suggests equal or...
Conservation and diversification of Msx protein in metazoan evolution.
Takahashi, Hirokazu; Kamiya, Akiko; Ishiguro, Akira; Suzuki, Atsushi C; Saitou, Naruya; Toyoda, Atsushi; Aruga, Jun
2008-01-01
Msx (/msh) family genes encode homeodomain (HD) proteins that control ontogeny in many animal species. We compared the structures of Msx genes from a wide range of Metazoa (Porifera, Cnidaria, Nematoda, Arthropoda, Tardigrada, Platyhelminthes, Mollusca, Brachiopoda, Annelida, Echiura, Echinodermata, Hemichordata, and Chordata) to gain an understanding of the role of these genes in phylogeny. Exon-intron boundary analysis suggested that the position of the intron located N-terminally to the HDs was widely conserved in all the genes examined, including those of cnidarians. Amino acid (aa) sequence comparison revealed 3 new evolutionarily conserved domains, as well as very strong conservation of the HDs. Two of the three domains were associated with Groucho-like protein binding in both a vertebrate and a cnidarian Msx homolog, suggesting that the interaction between Groucho-like proteins and Msx proteins was established in eumetazoan ancestors. Pairwise comparison among the collected HDs and their C-flanking aa sequences revealed that the degree of sequence conservation varied depending on the animal taxa from which the sequences were derived. Highly conserved Msx genes were identified in the Vertebrata, Cephalochordata, Hemichordata, Echinodermata, Mollusca, Brachiopoda, and Anthozoa. The wide distribution of the conserved sequences in the animal phylogenetic tree suggested that metazoan ancestors had already acquired a set of conserved domains of the current Msx family genes. Interestingly, although strongly conserved sequences were recovered from the Vertebrata, Cephalochordata, and Anthozoa, the sequences from the Urochordata and Hydrozoa showed weak conservation. Because the Vertebrata-Cephalochordata-Urochordata and Anthozoa-Hydrozoa represent sister groups in the Chordata and Cnidaria, respectively, Msx sequence diversification may have occurred differentially in the course of evolution. We speculate that selective loss of the conserved domains in Msx family proteins contributed to the diversification of animal body organization.
Preference uncertainty, preference learning, and paired comparison experiments
David C. Kingsley; Thomas C. Brown
2010-01-01
Results from paired comparison experiments suggest that as respondents progress through a sequence of binary choices they become more consistent, apparently fine-tuning their preferences. Consistency may be indicated by the variance of the estimated valuation distribution measured by the error term in the random utility model. A significant reduction in the variance is...
Incorrectly predicted genes in rice?
Cruveiller, Stéphane; Jabbari, Kamel; Clay, Oliver; Bernardi, Giorgio
2004-05-26
Between one third and one half of the proposed rice genes appear to have no homologs in other species, including Arabidopsis. Compositional considerations, and a comparison of curated rice sequences with ex novo predictions, suggest that many or most of the putative genes without homologs may be false positive predictions, i.e., sequences that are never translated into functional proteins in vivo.
Crotoxin: Structural Studies, Mechanism of Action and Cloning of Its Gene
1987-03-01
other venoms and examine their toxin neutral- izing ability. The amino acid sequences of both crotoxin subunits were determined Is a prelude to cloning...be examined for their potential as anti-idiotype vaccines The complete amino acid sequence of the basic subunit and two of the three dic subunit chains...of crotoxin from the venom of C.d. terrificus has been de rmined. Sequence comparison data suggest that the non-toxic, acidic subunit was derived
Resolution of the African hominoid trichotomy by use of a mitochondrial gene sequence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruvolo, M.; Disotell, T.R.; Allard, M.W.
1991-02-15
Mitochondrial DNA sequences encoding the cytochrome oxidase subunit II gene have been determined for five primate species, siamang (Hylobates syndactylus), lowland gorilla (Gorilla gorilla), pygmy chimpanzee (Pan paniscus), crab-eating macaque (Macaca fascicularis), and green monkey (Cercopithecus aethiops), and compared with published sequences of other primate and nonprimate species. Comparisons of cytochrome oxidase subunit II gene sequences provide clear-cut evidence from the mitochondrial genome for the separation of the African ape trichotomy into two evolutionary lineages, one leading to gorillas and the other to humans and chimpanzees. Several different tree-building methods support this same phylogenetic tree topology. The comparisons also yieldmore » trees in which a substantial length separates the divergence point of gorillas from that of humans and chimpanzees, suggesting that the lineage most immediately ancestral to humans and chimpanzees may have been in existence for a relatively long time.« less
Adel, Susan; Kakularam, Kumar Reddy; Horn, Thomas; Reddanna, Pallu; Kuhn, Hartmut; Heydeck, Dagmar
2015-01-01
Mammalian lipoxygenases (LOXs) have been implicated in cell differentiation and in the biosynthesis of pro- and anti-inflammatory lipid mediators. The initial draft sequence of the Homo neanderthalensis genome (coverage of 1.3-fold) suggested defective leukotriene signaling in this archaic human subspecies since expression of essential proteins appeared to be corrupted. Meanwhile high quality genomic sequence data became available for two extinct human subspecies (H. neanderthalensis, Homo denisovan) and completion of the human 1000 genome project provided a comprehensive database characterizing the genetic variability of the human genome. For this study we extracted the nucleotide sequences of selected eicosanoid relevant genes (ALOX5, ALOX15, ALOX12, ALOX15B, ALOX12B, ALOXE3, COX1, COX2, LTA4H, LTC4S, ALOX5AP, CYSLTR1, CYSLTR2, BLTR1, BLTR2) from the corresponding databases. Comparison of the deduced amino acid sequences in connection with site-directed mutagenesis studies and structural modeling suggested that the major enzymes and receptors of leukotriene signaling as well as the two cyclooxygenase isoforms were fully functional in these two extinct human subspecies. Copyright © 2014 Elsevier Inc. All rights reserved.
Desjardin, Dennis E; Hemmes, Don E; Perry, Brian A
2014-01-01
Pseudobaeospora wipapatiae is described as new based on material collected in alien wet habitats on the island of Hawaii. Unique features of this beautiful species include deep ruby-colored basidiomes with two-spored basidia, amyloid cheilocystidia and a hymeniderm pileipellis with abundant pileocystidia that is initially deep ruby in KOH then changes to lilac gray. Phylogenetic analysis of nuclear large ribosomal subunit sequence data suggest a close relationship between Pseudobaeospora and Tricholoma. BLAST comparisons of internal transcribed spacer and 5.8S nuclear ribosomal subunit regions sequence data reveal greatest similarity with existing sequences of Pseudobaeospora species. A comprehensive description, color photograph, illustrations of salient micromorphological features and comparisons with phenetically similar taxa are provided. © 2014 by The Mycological Society of America.
The accelerated build-up of the red sequence in high-redshift galaxy clusters
NASA Astrophysics Data System (ADS)
Cerulo, P.; Couch, W. J.; Lidman, C.; Demarco, R.; Huertas-Company, M.; Mei, S.; Sánchez-Janssen, R.; Barrientos, L. F.; Muñoz, R. P.
2016-04-01
We analyse the evolution of the red sequence in a sample of galaxy clusters at redshifts 0.8 < z < 1.5 taken from the HAWK-I Cluster Survey (HCS). The comparison with the low-redshift (0.04 < z < 0.08) sample of the WIde-field Nearby Galaxy-cluster Survey (WINGS) and other literature results shows that the slope and intrinsic scatter of the cluster red sequence have undergone little evolution since z = 1.5. We find that the luminous-to-faint ratio and the slope of the faint end of the luminosity distribution of the HCS red sequence are consistent with those measured in WINGS, implying that there is no deficit of red galaxies at magnitudes fainter than M_V^{ast } at high redshifts. We find that the most massive HCS clusters host a population of bright red sequence galaxies at MV < -22.0 mag, which are not observed in low-mass clusters. Interestingly, we also note the presence of a population of very bright (MV < -23.0 mag) and massive (log (M*/M⊙) > 11.5) red sequence galaxies in the WINGS clusters, which do not include only the brightest cluster galaxies and which are not present in the HCS clusters, suggesting that they formed at epochs later than z = 0.8. The comparison with the luminosity distribution of a sample of passive red sequence galaxies drawn from the COSMOS/UltraVISTA field in the photometric redshift range 0.8 < zphot < 1.5 shows that the red sequence in clusters is more developed at the faint end, suggesting that halo mass plays an important role in setting the time-scales for the build-up of the red sequence.
Optimal choice of word length when comparing two Markov sequences using a χ 2-statistic.
Bai, Xin; Tang, Kujin; Ren, Jie; Waterman, Michael; Sun, Fengzhu
2017-10-03
Alignment-free sequence comparison using counts of word patterns (grams, k-tuples) has become an active research topic due to the large amount of sequence data from the new sequencing technologies. Genome sequences are frequently modelled by Markov chains and the likelihood ratio test or the corresponding approximate χ 2 -statistic has been suggested to compare two sequences. However, it is not known how to best choose the word length k in such studies. We develop an optimal strategy to choose k by maximizing the statistical power of detecting differences between two sequences. Let the orders of the Markov chains for the two sequences be r 1 and r 2 , respectively. We show through both simulations and theoretical studies that the optimal k= max(r 1 ,r 2 )+1 for both long sequences and next generation sequencing (NGS) read data. The orders of the Markov chains may be unknown and several methods have been developed to estimate the orders of Markov chains based on both long sequences and NGS reads. We study the power loss of the statistics when the estimated orders are used. It is shown that the power loss is minimal for some of the estimators of the orders of Markov chains. Our studies provide guidelines on choosing the optimal word length for the comparison of Markov sequences.
Vandenbol, M; Jauniaux, J C; Grenson, M
1989-11-15
The complete nucleotide (nt) sequence of the PUT4 gene, whose product is required for high-affinity proline active transport in the yeast Saccharomyces cerevisiae, is presented. The sequence contains a single long open reading frame of 1881 nt, encoding a polypeptide with a calculated Mr of 68,795. The predicted protein is strongly hydrophobic and exhibits six potential glycosylation sites. Its hydropathy profile suggests the presence of twelve membrane-spanning regions flanked by hydrophilic N- and C-terminal domains. The N terminus does not resemble signal sequences found in secreted proteins. These features are characteristic of integral membrane proteins catalyzing translocation of ligands across cellular membranes. Protein sequence comparisons indicate strong resemblance to the arginine and histidine permeases of S. cerevisiae, but no marked sequence similarity to the proline permease of Escherichia coli or to other known prokaryotic or eukaryotic transport proteins. The strong similarity between the three yeast amino acid permeases suggests a common ancestor for the three proteins.
Shams, S; Martola, J; Cavallin, L; Granberg, T; Shams, M; Aspelin, P; Wahlund, L O; Kristoffersen-Wiberg, M
2015-06-01
Cerebral microbleeds are thought to have potentially important clinical implications in dementia and stroke. However, the use of both T2* and SWI MR imaging sequences for microbleed detection has complicated the cross-comparison of study results. We aimed to determine the impact of microbleed sequences on microbleed detection and associated clinical parameters. Patients from our memory clinic (n = 246; 53% female; mean age, 62) prospectively underwent 3T MR imaging, with conventional thick-section T2*, thick-section SWI, and conventional thin-section SWI. Microbleeds were assessed separately on thick-section SWI, thin-section SWI, and T2* by 3 raters, with varying neuroradiologic experience. Clinical and radiologic parameters from the dementia investigation were analyzed in association with the number of microbleeds in negative binomial regression analyses. Prevalence and number of microbleeds were higher on thick-/thin-section SWI (20/21%) compared with T2*(17%). There was no difference in microbleed prevalence/number between thick- and thin-section SWI. Interrater agreement was excellent for all raters and sequences. Univariate comparisons of clinical parameters between patients with and without microbleeds yielded no difference across sequences. In the regression analysis, only minor differences in clinical associations with the number of microbleeds were noted across sequences. Due to the increased detection of microbleeds, we recommend SWI as the sequence of choice in microbleed detection. Microbleeds and their association with clinical parameters are robust to the effects of varying MR imaging sequences, suggesting that comparison of results across studies is possible, despite differing microbleed sequences. © 2015 by American Journal of Neuroradiology.
Bergman, Casey M.; Haddrill, Penelope R.
2015-01-01
To contribute to our general understanding of the evolutionary forces that shape variation in genome sequences in nature, we have sequenced genomes from 50 isofemale lines and six pooled samples from populations of Drosophila melanogaster on three continents. Analysis of raw and reference-mapped reads indicates the quality of these genomic sequence data is very high. Comparison of the predicted and experimentally-determined Wolbachia infection status of these samples suggests that strain or sample swaps are unlikely to have occurred in the generation of these data. Genome sequences are freely available in the European Nucleotide Archive under accession ERP009059. Isofemale lines can be obtained from the Drosophila Species Stock Center. PMID:25717372
Bergman, Casey M; Haddrill, Penelope R
2015-01-01
To contribute to our general understanding of the evolutionary forces that shape variation in genome sequences in nature, we have sequenced genomes from 50 isofemale lines and six pooled samples from populations of Drosophila melanogaster on three continents. Analysis of raw and reference-mapped reads indicates the quality of these genomic sequence data is very high. Comparison of the predicted and experimentally-determined Wolbachia infection status of these samples suggests that strain or sample swaps are unlikely to have occurred in the generation of these data. Genome sequences are freely available in the European Nucleotide Archive under accession ERP009059. Isofemale lines can be obtained from the Drosophila Species Stock Center.
Eisenberg, S P; Brewer, M T; Verderber, E; Heimdal, P; Brandhuber, B J; Thompson, R C
1991-01-01
Interleukin 1 receptor antagonist (IL-1ra) is a protein that binds to the IL-1 receptor and blocks the binding of both IL-1 alpha and -beta without inducing a signal of its own. Human IL-1ra has some sequence identity to human IL-1 beta, but the evolutionary relationship between these proteins has been unclear. We show that the genes for human, mouse, and rat IL-1ra are similar to the genes for IL-1 alpha and IL-1 beta in intron-exon organization, indicating that gene duplication events were important in the creation of this gene family. Furthermore, an analysis of sequence comparisons and mutation rates for IL-1 alpha, IL-1 beta, and IL-1ra suggests that the duplication giving rise to the IL-1ra gene was an early event in the evolution of the gene family. Comparisons between the mature sequences for IL-1ra, IL-1 alpha, and IL-1 beta suggest that IL-1ra has a beta-stranded structure like to IL-1 alpha and IL-1 beta, consistent with the three proteins being related. The N-terminal sequences of IL-1ra appear to be derived from a region of the genome different than those of IL-1 alpha and IL-1 beta, thus explaining their different modes of biosynthesis and suggesting an explanation for their different biological activities. Images PMID:1828896
Ikram, Najmul; Qadir, Muhammad Abdul; Afzal, Muhammad Tanvir
2018-01-01
Sequence similarity is a commonly used measure to compare proteins. With the increasing use of ontologies, semantic (function) similarity is getting importance. The correlation between these measures has been applied in the evaluation of new semantic similarity methods, and in protein function prediction. In this research, we investigate the relationship between the two similarity methods. The results suggest absence of a strong correlation between sequence and semantic similarities. There is a large number of proteins with low sequence similarity and high semantic similarity. We observe that Pearson's correlation coefficient is not sufficient to explain the nature of this relationship. Interestingly, the term semantic similarity values above 0 and below 1 do not seem to play a role in improving the correlation. That is, the correlation coefficient depends only on the number of common GO terms in proteins under comparison, and the semantic similarity measurement method does not influence it. Semantic similarity and sequence similarity have a distinct behavior. These findings are of significant effect for future works on protein comparison, and will help understand the semantic similarity between proteins in a better way.
Jonas, V; Lin, C R; Kawashima, E; Semon, D; Swanson, L W; Mermod, J J; Evans, R M; Rosenfeld, M G
1985-01-01
Two mRNAs generated as a consequence of alternative RNA processing events in expression of the human calcitonin gene encode the protein precursors of either calcitonin or calcitonin gene-related peptide (CGRP). Both calcitonin and CGRP RNAs and their encoded peptide products are expressed in the human pituitary and in medullary thyroid tumors. On the basis of sequence comparison, it is suggested that both the calcitonin and CGRP exons arose from a common primordial sequence, suggesting that duplication and rearrangement events are responsible for the generation of this complex transcription unit. Images PMID:3872459
Initial genome sequencing and analysis of multiple myeloma
Chapman, Michael A.; Lawrence, Michael S.; Keats, Jonathan J.; Cibulskis, Kristian; Sougnez, Carrie; Schinzel, Anna C.; Harview, Christina L.; Brunet, Jean-Philippe; Ahmann, Gregory J.; Adli, Mazhar; Anderson, Kenneth C.; Ardlie, Kristin G.; Auclair, Daniel; Baker, Angela; Bergsagel, P. Leif; Bernstein, Bradley E.; Drier, Yotam; Fonseca, Rafael; Gabriel, Stacey B.; Hofmeister, Craig C.; Jagannath, Sundar; Jakubowiak, Andrzej J.; Krishnan, Amrita; Levy, Joan; Liefeld, Ted; Lonial, Sagar; Mahan, Scott; Mfuko, Bunmi; Monti, Stefano; Perkins, Louise M.; Onofrio, Robb; Pugh, Trevor J.; Vincent Rajkumar, S.; Ramos, Alex H.; Siegel, David S.; Sivachenko, Andrey; Trudel, Suzanne; Vij, Ravi; Voet, Douglas; Winckler, Wendy; Zimmerman, Todd; Carpten, John; Trent, Jeff; Hahn, William C.; Garraway, Levi A.; Meyerson, Matthew; Lander, Eric S.; Getz, Gad; Golub, Todd R.
2013-01-01
Multiple myeloma is an incurable malignancy of plasma cells, and its pathogenesis is poorly understood. Here we report the massively parallel sequencing of 38 tumor genomes and their comparison to matched normal DNAs. Several new and unexpected oncogenic mechanisms were suggested by the pattern of somatic mutation across the dataset. These include the mutation of genes involved in protein translation (seen in nearly half of the patients), genes involved in histone methylation, and genes involved in blood coagulation. In addition, a broader than anticipated role of NF-κB signaling was suggested by mutations in 11 members of the NF-κB pathway. Of potential immediate clinical relevance, activating mutations of the kinase BRAF were observed in 4% of patients, suggesting the evaluation of BRAF inhibitors in multiple myeloma clinical trials. These results indicate that cancer genome sequencing of large collections of samples will yield new insights into cancer not anticipated by existing knowledge. PMID:21430775
Montoya-Ruiz, Carolina; Cajimat, Maria N B; Milazzo, Mary Louise; Diaz, Francisco J; Rodas, Juan David; Valbuena, Gustavo; Fulhorst, Charles F
2015-07-01
The results of a previous study suggested that Cherrie's cane rat (Zygodontomys cherriei) is the principal host of Necoclí virus (family Bunyaviridae, genus Hantavirus) in Colombia. Bayesian analyses of complete nucleocapsid protein gene sequences and complete glycoprotein precursor gene sequences in this study confirmed that Necoclí virus is phylogenetically closely related to Maporal virus, which is principally associated with the delicate pygmy rice rat (Oligoryzomys delicatus) in western Venezuela. In pairwise comparisons, nonidentities between the complete amino acid sequence of the nucleocapsid protein of Necoclí virus and the complete amino acid sequences of the nucleocapsid proteins of other hantaviruses were ≥8.7%. Likewise, nonidentities between the complete amino acid sequence of the glycoprotein precursor of Necoclí virus and the complete amino acid sequences of the glycoprotein precursors of other hantaviruses were ≥11.7%. Collectively, the unique association of Necoclí virus with Z. cherriei in Colombia, results of the Bayesian analyses of complete nucleocapsid protein gene sequences and complete glycoprotein precursor gene sequences, and results of the pairwise comparisons of amino acid sequences strongly support the notion that Necoclí virus represents a novel species in the genus Hantavirus. Further work is needed to determine whether Calabazo virus (a hantavirus associated with Z. brevicauda cherriei in Panama) and Necoclí virus are conspecific.
Ringwald, M; Schuh, R; Vestweber, D; Eistetter, H; Lottspeich, F; Engel, J; Dölz, R; Jähnig, F; Epplen, J; Mayer, S
1987-01-01
We have determined the amino acid sequence of the Ca2+-dependent cell adhesion molecule uvomorulin as it appears on the cell surface. The extracellular part of the molecule exhibits three internally repeated domains of 112 residues which are most likely generated by gene duplication. Each of the repeated domains contains two highly conserved units which could represent putative Ca2+-binding sites. Secondary structure predictions suggest that the putative Ca2+-binding units are located in external loops at the surface of the protein. The protein sequence exhibits a single membrane-spanning region and a cytoplasmic domain. Sequence comparison reveals extensive homology to the chicken L-CAM. Both uvomorulin and L-CAM are identical in 65% of their entire amino acid sequence suggesting a common origin for both CAMs. Images Fig. 1. Fig. 4. Fig. 7. PMID:3501370
Evolutionary growth process of highly conserved sequences in vertebrate genomes.
Ishibashi, Minaka; Noda, Akiko Ogura; Sakate, Ryuichi; Imanishi, Tadashi
2012-08-01
Genome sequence comparison between evolutionarily distant species revealed ultraconserved elements (UCEs) among mammals under strong purifying selection. Most of them were also conserved among vertebrates. Because they tend to be located in the flanking regions of developmental genes, they would have fundamental roles in creating vertebrate body plans. However, the evolutionary origin and selection mechanism of these UCEs remain unclear. Here we report that UCEs arose in primitive vertebrates, and gradually grew in vertebrate evolution. We searched for UCEs in two teleost fishes, Tetraodon nigroviridis and Oryzias latipes, and found 554 UCEs with 100% identity over 100 bps. Comparison of teleost and mammalian UCEs revealed 43 pairs of common, jawed-vertebrate UCEs (jUCE) with high sequence identities, ranging from 83.1% to 99.2%. Ten of them retain lower similarities to the Petromyzon marinus genome, and the substitution rates of four non-exonic jUCEs were reduced after the teleost-mammal divergence, suggesting that robust conservation had been acquired in the jawed vertebrate lineage. Our results indicate that prototypical UCEs originated before the divergence of jawed and jawless vertebrates and have been frozen as perfect conserved sequences in the jawed vertebrate lineage. In addition, our comparative sequence analyses of UCEs and neighboring regions resulted in a discovery of lineage-specific conserved sequences. They were added progressively to prototypical UCEs, suggesting step-wise acquisition of novel regulatory roles. Our results indicate that conserved non-coding elements (CNEs) consist of blocks with distinct evolutionary history, each having been frozen since different evolutionary era along the vertebrate lineage. Copyright © 2012 Elsevier B.V. All rights reserved.
Factor structure of paediatric timed motor examination and its relationship with IQ
MARTIN, REBECCA; TIGERA, CASSIE; DENCKLA, MARTHA B; MAHONE, E MARK
2012-01-01
AIM Brain systems supporting higher cognitive and motor control develop in a parallel manner, dependent on functional integrity and maturation of related regions, suggesting neighbouring neural circuitry. Concurrent examination of motor and cognitive control can provide a window into neurological development. However, identification of performance-based measures that do not correlate with IQ has been a challenge. METHOD Timed motor performance from the Physical and Neurological Examination of Subtle Signs and IQ were analysed in 136 children aged 6 to 16 (mean age 10y 2.6mo, SD 2y 6.4mo; 98 female, 38male) attending an outpatient neuropsychology clinic and 136 right-handed comparison individuals aged 6 to 16 (mean age 10y 3.1mo, SD 2y 6.1mo; 98 female, 38male). Timed activities – three repetitive movements (toe tapping, hand patting, finger tapping) and three sequenced movements (heel–toe tap, hand pronate/supinate, finger sequencing) each performed on the right and left – were included in exploratory factor analyses. RESULTS Among comparison individuals, factor analysis yielded two factors – repetitive and sequenced movements – with the sequenced factor significantly predictive of Verbal IQ (VIQ) (ΔR2=0.018, p=0.019), but not the repetitive factor (ΔR2=0.004, p=0.39). Factor analysis within the clinical group yielded two similar factors (repetitive and sequenced), both significantly predictive of VIQ, (ΔR2=0.028, p=0.015; ΔR2=0.046, p=0.002 respectively). INTERPRETATION Among typical children, repetitive timed tasks may be independent of IQ; however, sequenced tasks share more variance, implying shared neural substrates. Among neurologically vulnerable populations, however, both sequenced and repetitive movements covary with IQ, suggesting that repetitive speed is more indicative of underlying neurological integrity. PMID:20412260
Vasala, A; Dupont, L; Baumann, M; Ritzenthaler, P; Alatossava, T
1993-01-01
Virulent phage LL-H and temperate phage mv4 are two related bacteriophages of Lactobacillus delbrueckii. The gene clusters encoding structural proteins of these two phages have been sequenced and further analyzed. Six open reading frames (ORF-1 to ORF-6) were detected. Protein sequencing and Western immunoblotting experiments confirmed that ORF-3 (g34) encoded the main capsid protein Gp34. The presence of a putative late promoter in front of the phage LL-H g34 gene was suggested by primer extension experiments. Comparative sequence analysis between phage LL-H and phage mv4 revealed striking similarities in the structure and organization of this gene cluster, suggesting that the genes encoding phage structural proteins belong to a highly conservative module. Images PMID:8497043
Wang, Xiao-Wei; Zhao, Qiong-Yi; Luan, Jun-Bo; Wang, Yu-Jun; Yan, Gen-Hong; Liu, Shu-Sheng
2012-10-04
Genomic divergence between invasive and native species may provide insight into the molecular basis underlying specific characteristics that drive the invasion and displacement of closely related species. In this study, we sequenced the transcriptome of an indigenous species, Asia II 3, of the Bemisia tabaci complex and compared its genetic divergence with the transcriptomes of two invasive whiteflies species, Middle East Asia Minor 1 (MEAM1) and Mediterranean (MED), respectively. More than 16 million reads of 74 base pairs in length were obtained for the Asia II 3 species using the Illumina sequencing platform. These reads were assembled into 52,535 distinct sequences (mean size: 466 bp) and 16,596 sequences were annotated with an E-value above 10-5. Protein family comparisons revealed obvious diversification among the transcriptomes of these species suggesting species-specific adaptations during whitefly evolution. On the contrary, substantial conservation of the whitefly transcriptomes was also evident, despite their differences. The overall divergence of coding sequences between the orthologous gene pairs of Asia II 3 and MEAM1 is 1.73%, which is comparable to the average divergence of Asia II 3 and MED transcriptomes (1.84%) and much higher than that of MEAM1 and MED (0.83%). This is consistent with the previous phylogenetic analyses and crossing experiments suggesting these are distinct species. We also identified hundreds of highly diverged genes and compiled sequence identify data into gene functional groups and found the most divergent gene classes are Cytochrome P450, Glutathione metabolism and Oxidative phosphorylation. These results strongly suggest that the divergence of genes related to metabolism might be the driving force of the MEAM1 and Asia II 3 differentiation. We also analyzed single nucleotide polymorphisms within the orthologous gene pairs of indigenous and invasive whiteflies which are helpful for the investigation of association between allelic and phenotypes. Our data present the most comprehensive sequences for the indigenous whitefly species Asia II 3. The extensive comparisons of Asia II 3, MEAM1 and MED transcriptomes will serve as an invaluable resource for revealing the genetic basis of whitefly invasion and the molecular mechanisms underlying their biological differences.
2012-01-01
Background Genomic divergence between invasive and native species may provide insight into the molecular basis underlying specific characteristics that drive the invasion and displacement of closely related species. In this study, we sequenced the transcriptome of an indigenous species, Asia II 3, of the Bemisia tabaci complex and compared its genetic divergence with the transcriptomes of two invasive whiteflies species, Middle East Asia Minor 1 (MEAM1) and Mediterranean (MED), respectively. Results More than 16 million reads of 74 base pairs in length were obtained for the Asia II 3 species using the Illumina sequencing platform. These reads were assembled into 52,535 distinct sequences (mean size: 466 bp) and 16,596 sequences were annotated with an E-value above 10-5. Protein family comparisons revealed obvious diversification among the transcriptomes of these species suggesting species-specific adaptations during whitefly evolution. On the contrary, substantial conservation of the whitefly transcriptomes was also evident, despite their differences. The overall divergence of coding sequences between the orthologous gene pairs of Asia II 3 and MEAM1 is 1.73%, which is comparable to the average divergence of Asia II 3 and MED transcriptomes (1.84%) and much higher than that of MEAM1 and MED (0.83%). This is consistent with the previous phylogenetic analyses and crossing experiments suggesting these are distinct species. We also identified hundreds of highly diverged genes and compiled sequence identify data into gene functional groups and found the most divergent gene classes are Cytochrome P450, Glutathione metabolism and Oxidative phosphorylation. These results strongly suggest that the divergence of genes related to metabolism might be the driving force of the MEAM1 and Asia II 3 differentiation. We also analyzed single nucleotide polymorphisms within the orthologous gene pairs of indigenous and invasive whiteflies which are helpful for the investigation of association between allelic and phenotypes. Conclusions Our data present the most comprehensive sequences for the indigenous whitefly species Asia II 3. The extensive comparisons of Asia II 3, MEAM1 and MED transcriptomes will serve as an invaluable resource for revealing the genetic basis of whitefly invasion and the molecular mechanisms underlying their biological differences. PMID:23036081
HATAKEYAMA, YOSHINORI; SHIBUYA, NORIHIRO; NISHIYAMA, TAKASHI; NAKASHIMA, NOBUHIKO
2004-01-01
The intergenic region (IGR) located upstream of the capsid protein gene in dicistroviruses contains an internal ribosome entry site (IRES). Translation initiation mediated by the IRES does not require initiator methionine tRNA. Comparison of the IGRs among dicistroviruses suggested that Taura syndrome virus (TSV) and acute bee paralysis virus have an extra side stem loop in the predicted IRES. We examined whether the side stem is responsible for translation activity mediated by the IGR using constructs with compensatory mutations. In vitro translation analysis showed that TSV has an IGR-IRES that is structurally distinct from those previously described. Because IGR-IRES elements determine the translation initiation site by virtue of their own tertiary structure formation, the discovery of this initiation mechanism suggests the possibility that eukaryotic mRNAs might have more extensive coding regions than previously predicted. To test this hypothesis, we searched full-length cDNA databases and whole genome sequences of eukaryotes using the pattern matching program, Scan For Matches, with parameters that can extract sequences containing secondary structure elements resembling those of IGR-IRES. Our search yielded several sequences, but their predicted secondary structures were suggested to be unstable in comparison to those of dicistroviruses. These results suggest that RNAs structurally similar to dicistroviruses are not common. If some eukaryotic mRNAs are translated independently of an initiator methionine tRNA, their structures are likely to be significantly distinct from those of dicistroviruses. PMID:15100433
Vibration-Rotation Bands of HF and DF
1977-09-23
98 IZa. Comparison of Observed and Calculated Line Positions of HF, Av = I Sequence ........................... 99 f2b. Comparison of Observed and...Calculated Line Positions of HF, Av = 2 Sequence ........................... 102 12c. Comparison of Observed and Calculated Line Positions of HF, Av = 3...Sequence ........................... 107 i2d. Comparison of Observed and Calculated Line Positions ofHF, Av = 4 Sequence ........................... fi
Lee, Michael D.; Walworth, Nathan G.; Sylvan, Jason B.; Edwards, Katrina J.; Orcutt, Beth N.
2015-01-01
Areas of exposed basalt along mid-ocean ridges and at seafloor outcrops serve as conduits of fluid flux into and out of a subsurface ocean, and microbe–mineral interactions can influence alteration reactions at the rock–water interface. Located on the eastern flank of the East Pacific Rise, Dorado Outcrop is a site of low-temperature (<20°C) hydrothermal venting and represents a new end-member in the current survey of seafloor basalt biomes. Consistent with prior studies, a survey of 16S rRNA gene sequence diversity using universal primers targeting the V4 hypervariable region revealed much greater richness and diversity on the seafloor rocks than in surrounding seawater. Overall, Gamma-, Alpha-, and Deltaproteobacteria, and Thaumarchaeota dominated the sequenced communities, together making up over half of the observed diversity, though bacterial sequences were more abundant than archaeal in all samples. The most abundant bacterial reads were closely related to the obligate chemolithoautotrophic, sulfur-oxidizing Thioprofundum lithotrophicum, suggesting carbon and sulfur cycling as dominant metabolic pathways in this system. Representatives of Thaumarchaeota were detected in relatively high abundance on the basalts in comparison to bottom water, possibly indicating ammonia oxidation. In comparison to other sequence datasets from globally distributed seafloor basalts, this study reveals many overlapping and cosmopolitan phylogenetic groups and also suggests that substrate age correlates with community structure. PMID:26779122
Lashbrook, C C; Gonzalez-Bosch, C; Bennett, A B
1994-01-01
Two structurally divergent endo-beta-1,4-glucanase (EGase) cDNAs were cloned from tomato. Although both cDNAs (Cel1 and Cel2) encode potentially glycosylated, basic proteins of 51 to 53 kD and possess multiple amino acid domains conserved in both plant and microbial EGases, Cel1 and Cel2 exhibit only 50% amino acid identity at the overall sequence level. Amino acid sequence comparisons to other plant EGases indicate that tomato Cel1 is most similar to bean abscission zone EGase (68%), whereas Cel2 exhibits greatest sequence identity to avocado fruit EGase (57%). Sequence comparisons suggest the presence of at least two structurally divergent EGase families in plants. Unlike ripening avocado fruit and bean abscission zones in which a single EGase mRNA predominates, EGase expression in tomato reflects the overlapping accumulation of both Cel1 and Cel2 transcripts in ripening fruit and in plant organs undergoing cell separation. Cel1 mRNA contributes significantly to total EGase mRNA accumulation within plant organs undergoing cell separation (abscission zones and mature anthers), whereas Cel2 mRNA is most abundant in ripening fruit. The overlapping expression of divergent EGase genes within a single species may suggest that multiple activities are required for the cooperative disassembly of cell wall components during fruit ripening, floral abscission, and anther dehiscence. PMID:7994180
Bentley, Stephen D.; Corton, Craig; Brown, Susan E.; Barron, Andrew; Clark, Louise; Doggett, Jon; Harris, Barbara; Ormond, Doug; Quail, Michael A.; May, Georgiana; Francis, David; Knudson, Dennis; Parkhill, Julian; Ishimaru, Carol A.
2008-01-01
Clavibacter michiganensis subsp. sepedonicus is a plant-pathogenic bacterium and the causative agent of bacterial ring rot, a devastating agricultural disease under strict quarantine control and zero tolerance in the seed potato industry. This organism appears to be largely restricted to an endophytic lifestyle, proliferating within plant tissues and unable to persist in the absence of plant material. Analysis of the genome sequence of C. michiganensis subsp. sepedonicus and comparison with the genome sequences of related plant pathogens revealed a dramatic recent evolutionary history. The genome contains 106 insertion sequence elements, which appear to have been active in extensive rearrangement of the chromosome compared to that of Clavibacter michiganensis subsp. michiganensis. There are 110 pseudogenes with overrepresentation in functions associated with carbohydrate metabolism, transcriptional regulation, and pathogenicity. Genome comparisons also indicated that there is substantial gene content diversity within the species, probably due to differential gene acquisition and loss. These genomic features and evolutionary dating suggest that there was recent adaptation for life in a restricted niche where nutrient diversity and perhaps competition are low, correlated with a reduced ability to exploit previously occupied complex niches outside the plant. Toleration of factors such as multiplication and integration of insertion sequence elements, genome rearrangements, and functional disruption of many genes and operons seems to indicate that there has been general relaxation of selective pressure on a large proportion of the genome. PMID:18192393
Species Choice for Comparative Genomics: Being Greedy Works
Pardi, Fabio; Goldman, Nick
2005-01-01
Several projects investigating genetic function and evolution through sequencing and comparison of multiple genomes are now underway. These projects consume many resources, and appropriate planning should be devoted to choosing which species to sequence, potentially involving cooperation among different sequencing centres. A widely discussed criterion for species choice is the maximisation of evolutionary divergence. Our mathematical formalization of this problem surprisingly shows that the best long-term cooperative strategy coincides with the seemingly short-term “greedy” strategy of always choosing the next best single species. Other criteria influencing species choice, such as medical relevance or sequencing costs, can also be accommodated in our approach, suggesting our results' broad relevance in scientific policy decisions. PMID:16327885
The complete genomic sequence of a tentative new polerovirus identified in barley in South Korea.
Zhao, Fumei; Lim, Seungmo; Yoo, Ran Hee; Igori, Davaajargal; Kim, Sang-Min; Kwak, Do Yeon; Kim, Sun Lim; Lee, Bong Choon; Moon, Jae Sun
2016-07-01
The complete nucleotide sequence of a new barley polerovirus, tentatively named barley virus G (BVG), which was isolated in Gimje, South Korea, has been determined using an RNA sequencing technique combined with polymerase chain reaction methods. The viral genomic RNA of BVG is 5,620 nucleotides long and contains six typical open reading frames commonly observed in other poleroviruses. Sequence comparisons revealed that BVG is most closely related to maize yellow dwarf virus-RMV, with the highest amino acid identities being less than 90 % for all of the corresponding proteins. These results suggested that BVG is a member of a new species in the genus Polerovirus.
Chen, Tsute; Siddiqui, Huma; Olsen, Ingar
2017-01-01
Currently, genome sequences of a total of 19 Porphyromonas gingivalis strains are available, including eight completed genomes (strains W83, ATCC 33277, TDC60, HG66, A7436, AJW4, 381, and A7A1-28) and 11 high-coverage draft sequences (JCVI SC001, F0185, F0566, F0568, F0569, F0570, SJD2, W4087, W50, Ando, and MP4-504) that are assembled into fewer than 300 contigs. The objective was to compare these genomes at both nucleotide and protein sequence levels in order to understand their phylogenetic and functional relatedness. Four copies of 16S rRNA gene sequences were identified in each of the eight complete genomes and one in the other 11 unfinished genomes. These 43 16S rRNA sequences represent only 24 unique sequences and the derived phylogenetic tree suggests a possible evolutionary history for these strains. Phylogenomic comparison based on shared proteins and whole genome nucleotide sequences consistently showed two groups with closely related members: one consisted of ATCC 33277, 381, and HG66, another of W83, W50, and A7436. At least 1,037 core/shared proteins were identified in the 19 P. gingivalis genomes based on the most stringent detecting parameters. Comparative functional genomics based on genome-wide comparisons between NCBI and RAST annotations, as well as additional approaches, revealed functions that are unique or missing in individual P. gingivalis strains, or species-specific in all P. gingivalis strains, when compared to a neighboring species P. asaccharolytica . All the comparative results of this study are available online for download at ftp://www.homd.org/publication_data/20160425/.
Chen, Tsute; Siddiqui, Huma; Olsen, Ingar
2017-01-01
Currently, genome sequences of a total of 19 Porphyromonas gingivalis strains are available, including eight completed genomes (strains W83, ATCC 33277, TDC60, HG66, A7436, AJW4, 381, and A7A1-28) and 11 high-coverage draft sequences (JCVI SC001, F0185, F0566, F0568, F0569, F0570, SJD2, W4087, W50, Ando, and MP4-504) that are assembled into fewer than 300 contigs. The objective was to compare these genomes at both nucleotide and protein sequence levels in order to understand their phylogenetic and functional relatedness. Four copies of 16S rRNA gene sequences were identified in each of the eight complete genomes and one in the other 11 unfinished genomes. These 43 16S rRNA sequences represent only 24 unique sequences and the derived phylogenetic tree suggests a possible evolutionary history for these strains. Phylogenomic comparison based on shared proteins and whole genome nucleotide sequences consistently showed two groups with closely related members: one consisted of ATCC 33277, 381, and HG66, another of W83, W50, and A7436. At least 1,037 core/shared proteins were identified in the 19 P. gingivalis genomes based on the most stringent detecting parameters. Comparative functional genomics based on genome-wide comparisons between NCBI and RAST annotations, as well as additional approaches, revealed functions that are unique or missing in individual P. gingivalis strains, or species-specific in all P. gingivalis strains, when compared to a neighboring species P. asaccharolytica. All the comparative results of this study are available online for download at ftp://www.homd.org/publication_data/20160425/. PMID:28261563
Hobbs, A A; Rosen, J M
1982-01-01
The complete sequences of rat alpha- and gamma-casein mRNAs have been determined. The 1402-nucleotide alpha- and 864-nucleotide gamma-casein mRNAs both encode 15 amino acid signal peptides and mature proteins of 269 and 164 residues, respectively. Considerable homology between the 5' non-coding regions, and the regions encoding the signal peptides and the phosphorylation sites, in these mRNAs as compared to several other rodent casein mRNAs, was observed. Significant homology was also detected between rat alpha- and bovine alpha s1-casein. Comparison of the rodent and bovine sequences suggests that the caseins evolved at about the time of the appearance of the primitive mammals. This may have occurred by intragenic duplication of a nucleotide sequence encoding a primitive phosphorylation site, -(Ser)n-Glu-Glu-, and intergenic duplication resulting in the small casein multigene family. A unique feature of the rat alpha-casein sequence is an insertion in the coding region containing 10 repeated elements of 18 nucleotides each. This insertion appears to have occurred 7-12 million years ago, just prior to the divergence of rat and mouse. Images PMID:6298707
Scarlatti, G; Leitner, T; Halapi, E; Wahlberg, J; Marchisio, P; Clerici-Schoeller, M A; Wigzell, H; Fenyö, E M; Albert, J; Uhlén, M
1993-01-01
We have compared the variable region 3 sequences from 10 human immunodeficiency virus type 1 (HIV-1)-infected infants to virus sequences from the corresponding mothers. The sequences were derived from DNA of uncultured peripheral blood mononuclear cells (PBMC), DNA of cultured PBMC, and RNA from serum collected at or shortly after delivery. The infected infants, in contrast to the mothers, harbored homogeneous virus populations. Comparison of sequences from the children and clones derived from DNA of the corresponding mothers showed that the transmitted virus represented either a minor or a major virus population of the mother. In contrast to an earlier study, we found no evidence of selection of minor virus variants during transmission. Furthermore, the transmitted virus variant did not show any characteristic molecular features. In some cases the transmitted virus was more related to the virus RNA population of the mother and in other cases it was more related to the virus DNA population. This suggests that either cell-free or cell-associated virus may be transmitted. These data will help AIDS researchers to understand the mechanism of transmission and to plan strategies for prevention of transmission. PMID:8446584
HIV Type 1 Transmission Networks Among Men Having Sex with Men and Heterosexuals in Kenya
Faria, Nuno Rodrigues; Hassan, Amin; Hamers, Raph L.; Mutua, Gaudensia; Anzala, Omu; Mandaliya, Kishor; Cane, Patricia; Berkley, James A.; Rinke de Wit, Tobias F.; Wallis, Carole; Graham, Susan M.; Price, Matthew A.; Coutinho, Roel A.; Sanders, Eduard J.
2014-01-01
Abstract We performed a molecular phylogenetic study on HIV-1 polymerase sequences of men who have sex with men (MSM) and heterosexual patient samples in Kenya to characterize any observed HIV-1 transmission networks. HIV-1 polymerase sequences were obtained from samples in Nairobi and coastal Kenya from 84 MSM, 226 other men, and 364 women from 2005 to 2010. Using Bayesian phylogenetics, we tested whether sequences clustered by sexual orientation and geographic location. In addition, we used trait diffusion analyses to identify significant epidemiological links and to quantify the number of transmissions between risk groups. Finally, we compared 84 MSM sequences with all HIV-1 sequences available online at GenBank. Significant clustering of sequences from MSM at both coastal Kenya and Nairobi was found, with evidence of HIV-1 transmission between both locations. Although a transmission pair between a coastal MSM and woman was confirmed, no significant HIV-1 transmission was evident between MSM and the comparison population for the predominant subtype A (60%). However, a weak but significant link was evident when studying all subtypes together. GenBank comparison did not reveal other important transmission links. Our data suggest infrequent intermingling of MSM and heterosexual HIV-1 epidemics in Kenya. PMID:23947948
Hall, L; Laird, J E; Craig, R K
1984-01-01
Nucleotide sequence analysis of cloned guinea-pig casein B cDNA sequences has identified two casein B variants related to the bovine and rat alpha s1 caseins. Amino acid homology was largely confined to the known bovine or predicted rat phosphorylation sites and within the 'signal' precursor sequence. Comparison of the deduced nucleotide sequence of the guinea-pig and rat alpha s1 casein mRNA species showed greater sequence conservation in the non-coding than in the coding regions, suggesting a functional and possibly regulatory role for the non-coding regions of casein mRNA. The results provide insight into the evolution of the casein genes, and raise questions as to the role of conserved nucleotide sequences within the non-coding regions of mRNA species. Images Fig. 1. PMID:6548375
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidge, T. J.
2012-12-20
The stellar contents of the open clusters King 12, NGC 7788, and NGC 7790 are investigated using MegaCam images. Comparisons with isochrones yield an age <20 Myr for King 12, 20-40 Myr for NGC 7788, and 60-80 Myr for NGC 7790 based on the properties of stars near the main-sequence turnoff (MSTO) in each cluster. The reddening of NGC 7788 is much larger than previously estimated. The luminosity functions (LFs) of King 12 and NGC 7788 show breaks that are attributed to the onset of pre-main-sequence (PMS) objects, and comparisons with models of PMS evolution yield ages that are consistentmore » with those measured from stars near the MSTO. In contrast, the r' LF of main-sequence stars in NGC 7790 is matched to r' = 20 by a model that is based on the solar neighborhood mass function. The structural properties of all three clusters are investigated by examining the two-point angular correlation function of blue main-sequence stars. King 12 and NGC 7788 are each surrounded by a stellar halo that extends out to a radius of 5 arcmin ({approx}3.4 pc). It is suggested that these halos form in response to large-scale mass ejection early in the evolution of the clusters, as predicted by models. In contrast, blue main-sequence stars in NGC 7790 are traced out to a radius of {approx}7.5 arcmin ({approx}5.5 pc), with no evidence of a halo. It is suggested that all three clusters may have originated in the same star-forming complex, but not in the same giant molecular cloud.« less
Comparison of large-insert, small-insert and pyrosequencing libraries for metagenomic analysis.
Danhorn, Thomas; Young, Curtis R; DeLong, Edward F
2012-11-01
The development of DNA sequencing methods for characterizing microbial communities has evolved rapidly over the past decades. To evaluate more traditional, as well as newer methodologies for DNA library preparation and sequencing, we compared fosmid, short-insert shotgun and 454 pyrosequencing libraries prepared from the same metagenomic DNA samples. GC content was elevated in all fosmid libraries, compared with shotgun and 454 libraries. Taxonomic composition of the different libraries suggested that this was caused by a relative underrepresentation of dominant taxonomic groups with low GC content, notably Prochlorales and the SAR11 cluster, in fosmid libraries. While these abundant taxa had a large impact on library representation, we also observed a positive correlation between taxon GC content and fosmid library representation in other low-GC taxa, suggesting a general trend. Analysis of gene category representation in different libraries indicated that the functional composition of a library was largely a reflection of its taxonomic composition, and no additional systematic biases against particular functional categories were detected at the level of sequencing depth in our samples. Another important but less predictable factor influencing the apparent taxonomic and functional library composition was the read length afforded by the different sequencing technologies. Our comparisons and analyses provide a detailed perspective on the influence of library type on the recovery of microbial taxa in metagenomic libraries and underscore the different uses and utilities of more traditional, as well as contemporary 'next-generation' DNA library construction and sequencing technologies for exploring the genomics of the natural microbial world.
Nikolaidis, Nikolas; Nei, Masatoshi
2004-03-01
We have identified the Hsp70 gene superfamily of the nematode Caenorhabditis briggsae and investigated the evolution of these genes in comparison with Hsp70 genes from C. elegans, Drosophila, and yeast. The Hsp70 genes are classified into three monophyletic groups according to their subcellular localization, namely, cytoplasm (CYT), endoplasmic reticulum (ER), and mitochondria (MT). The Hsp110 genes can be classified into the polyphyletic CYT group and the monophyletic ER group. The different Hsp70 and Hsp110 groups appeared to evolve following the model of divergent evolution. This model can also explain the evolution of the ER and MT genes. On the other hand, the CYT genes are divided into heat-inducible and constitutively expressed genes. The constitutively expressed genes have evolved more or less following the birth-and-death process, and the rates of gene birth and gene death are different between the two nematode species. By contrast, some heat-inducible genes show an intraspecies phylogenetic clustering. This suggests that they are subject to sequence homogenization resulting from gene conversion-like events. In addition, the heat-inducible genes show high levels of sequence conservation in both intra-species and inter-species comparisons, and in most cases, amino acid sequence similarity is higher than nucleotide sequence similarity. This indicates that purifying selection also plays an important role in maintaining high sequence similarity among paralogous Hsp70 genes. Therefore, we suggest that the CYT heat-inducible genes have been subjected to a combination of purifying selection, birth-and-death process, and gene conversion-like events.
Luque, Daniel; Gómez-Blanco, Josué; Garriga, Damiá; Brilot, Axel F.; González, José M.; Havens, Wendy M.; Carrascosa, José L.; Trus, Benes L.; Verdaguer, Nuria; Ghabrial, Said A.; Castón, José R.
2014-01-01
Viruses evolve so rapidly that sequence-based comparison is not suitable for detecting relatedness among distant viruses. Structure-based comparisons suggest that evolution led to a small number of viral classes or lineages that can be grouped by capsid protein (CP) folds. Here, we report that the CP structure of the fungal dsRNA Penicillium chrysogenum virus (PcV) shows the progenitor fold of the dsRNA virus lineage and suggests a relationship between lineages. Cryo-EM structure at near-atomic resolution showed that the 982-aa PcV CP is formed by a repeated α-helical core, indicative of gene duplication despite lack of sequence similarity between the two halves. Superimposition of secondary structure elements identified a single “hotspot” at which variation is introduced by insertion of peptide segments. Structural comparison of PcV and other distantly related dsRNA viruses detected preferential insertion sites at which the complexity of the conserved α-helical core, made up of ancestral structural motifs that have acted as a skeleton, might have increased, leading to evolution of the highly varied current structures. Analyses of structural motifs only apparent after systematic structural comparisons indicated that the hallmark fold preserved in the dsRNA virus lineage shares a long (spinal) α-helix tangential to the capsid surface with the head-tailed phage and herpesvirus viral lineage. PMID:24821769
A strategy for detecting the conservation of folding-nucleus residues in protein superfamilies.
Michnick, S W; Shakhnovich, E
1998-01-01
Nucleation-growth theory predicts that fast-folding peptide sequences fold to their native structure via structures in a transition-state ensemble that share a small number of native contacts (the folding nucleus). Experimental and theoretical studies of proteins suggest that residues participating in folding nuclei are conserved among homologs. We attempted to determine if this is true in proteins with highly diverged sequences but identical folds (superfamilies). We describe a strategy based on comparisons of residue conservation in natural superfamily sequences with simulated sequences (generated with a Monte-Carlo sequence design strategy) for the same proteins. The basic assumptions of the strategy were that natural sequences will conserve residues needed for folding and stability plus function, the simulated sequences contain no functional conservation, and nucleus residues make native contacts with each other. Based on these assumptions, we identified seven potential nucleus residues in ubiquitin superfamily members. Non-nucleus conserved residues were also identified; these are proposed to be involved in stabilizing native interactions. We found that all superfamily members conserved the same potential nucleus residue positions, except those for which the structural topology is significantly different. Our results suggest that the conservation of the nucleus of a specific fold can be predicted by comparing designed simulated sequences with natural highly diverged sequences that fold to the same structure. We suggest that such a strategy could be used to help plan protein folding and design experiments, to identify new superfamily members, and to subdivide superfamilies further into classes having a similar folding mechanism.
Simian immunodeficiency viruses from African green monkeys display unusual genetic diversity.
Johnson, P R; Fomsgaard, A; Allan, J; Gravell, M; London, W T; Olmsted, R A; Hirsch, V M
1990-01-01
African green monkeys are asymptomatic carriers of simian immunodeficiency viruses (SIV), commonly called SIVagm. As many as 50% of African green monkeys in the wild may be SIV seropositive. This high seroprevalence rate and the potential for genetic variation of lentiviruses suggested to us that African green monkeys may harbor widely differing genotypes of SIVagm. To investigate this hypothesis, we determined the entire nucleotide sequence of an infectious proviral molecular clone of SIVagm (155-4) and partial sequences (long terminal repeat and Gag) of three other distinct SIVagm isolates (90, gri-1, and ver-1). Comparisons among the SIVagm isolates revealed extreme diversity at the nucleotide and amino acid levels. Long terminal repeat nucleotide sequences varied up to 35% and Gag protein sequences varied up to 30%. The variability among SIVagm isolates exceeded the variability among any other group of primate lentiviruses. Our data suggest that SIVagm has been in the African green monkey population for a long time and may be the oldest primate lentivirus group in existence. PMID:2304139
Cerenius, Lage; Liu, Haipeng; Zhang, Yanjiao; Rimphanitchayakit, Vichien; Tassanakajon, Anchalee; Gunnar Andersson, M; Söderhäll, Kenneth; Söderhäll, Irene
2010-01-01
Crustacean hemocytes were found to produce a large number of transcripts coding for Kazal-type proteinase inhibitors (KPIs). A detailed study performed with the crayfish Pacifastacus leniusculus and the shrimp Penaeus monodon revealed the presence of at least 26 and 20 different Kazal domains from the hemocyte KPIs, respectively. Comparisons with KPIs from other taxa indicate that the sequences of these domains evolve rapidly. A few conserved positions, e.g. six invariant cysteines were present in all domain sequences whereas the position of P1 amino acid, a determinant for substrate specificity, varied highly. A study with a single crayfish animal suggested that even at the individual level considerable sequence variability among hemocyte KPIs produced exist. Expression analysis of four crayfish KPI transcripts in hematopoietic tissue cells and different hemocyte types suggest that some of these KPIs are likely to be involved in hematopoiesis or hemocyte release as they were produced in particular hemocyte types or maturation stages only.
Bhatia, S; Singh Negi, M; Lakshmikumaran, M
1996-11-01
EcoRI restriction of the B. nigra rDNA recombinants, isolated from a lambda genomic library, showed that the 3.9-kb fragment corresponded to the Intergenic Spacer (IGS), which was sequenced and found to be 3,928 bp in size. Sequence and dot-matrix analyses showed that the organization of the B. nigra rDNA IGS was typical of most rDNA spacers, consisting of a central repetitive region and flanking unique sequences on either side. The repetitive region was composed of two repeat families-RF 'A' and RF 'B.' The B. nigra RF 'A' consisted of a tandem array of three full-length copies of a 106-bp sequence element. RF 'B' was composed of 66 tandemly repeated elements. Each 'B' element was only 21-bp in size and this is the smallest repeat unit identified in plant rDNA to date. The putative transcription initiation site (TIS) was identified as nucleotide position 3,110. Based on the sequence analysis it was suggested that the present organization of the repeat families was generated by successive cycles of deletions and amplifications and was being maintained by homogenization processes such as gene conversion and crossing-over.A detailed comparison of the rDNA IGS sequences of the three diploid Brassica species-namely, B. nigra, B. campestris, and B. oleracea-was carried out. First, comparisons revealed that B. campestris and B. oleracea were close to each other as the repeat families in both showed high sequence homology between each other. Second, the repeat elements in both the species were organized in an interspersed manner. Third, a 52-bp sequence, present just downstream of the repeats in B. campestris, was found to be identical to the B. oleracea repeats, thereby suggesting a common progenitor. On the other hand, in B. nigra no interspersion pattern of organization of repeats was observed. Further, the B. nigra RF 'A' was identified as distinct from the repeat families of B. campestris and B. oleracea. Based on this analysis, it was suggested that during speciation B. campestris and B. oleracea evolved in one lineage whereas B. nigra diverged into a separate lineage. The comparative analysis of the IGS helped in identifying not only conserved ancestral sequence motifs of possible functional significance such as promoters and enhancers, but also sequences which showed variation between the three diploid species and were therefore identified as species-specific sequences.
Gönner, Lorenz; Vitay, Julien; Hamker, Fred H.
2017-01-01
Hippocampal place-cell sequences observed during awake immobility often represent previous experience, suggesting a role in memory processes. However, recent reports of goals being overrepresented in sequential activity suggest a role in short-term planning, although a detailed understanding of the origins of hippocampal sequential activity and of its functional role is still lacking. In particular, it is unknown which mechanism could support efficient planning by generating place-cell sequences biased toward known goal locations, in an adaptive and constructive fashion. To address these questions, we propose a model of spatial learning and sequence generation as interdependent processes, integrating cortical contextual coding, synaptic plasticity and neuromodulatory mechanisms into a map-based approach. Following goal learning, sequential activity emerges from continuous attractor network dynamics biased by goal memory inputs. We apply Bayesian decoding on the resulting spike trains, allowing a direct comparison with experimental data. Simulations show that this model (1) explains the generation of never-experienced sequence trajectories in familiar environments, without requiring virtual self-motion signals, (2) accounts for the bias in place-cell sequences toward goal locations, (3) highlights their utility in flexible route planning, and (4) provides specific testable predictions. PMID:29075187
Freeman, R M; Plutzky, J; Neel, B G
1992-01-01
src homology 2 (SH2) domains direct binding to specific phosphotyrosyl proteins. Recently, SH2-containing protein-tyrosine-phosphatases (PTPs) were identified. Using degenerate oligonucleotides and the PCR, we have cloned a cDNA for an additional PTP, SH-PTP2, which contains two SH2 domains and is expressed ubiquitously. When expressed in Escherichia coli, SH-PTP2 displays tyrosine-specific phosphatase activity. Strong sequence similarity between SH-PTP2 and the Drosophila gene corkscrew (csw) and their similar patterns of expression suggest that SH-PTP2 is the human corkscrew homolog. Sequence comparisons between SH-PTP2, SH-PTP1, corkscrew, and other SH2-containing proteins suggest the existence of a subfamily of SH2 domains found specifically in PTPs, whereas comparison of the PTP domains of the SH2-containing PTPs with other tyrosine phosphatases suggests the existence of a subfamily of PTPs containing SH2 domains. Since corkscrew, a member of the terminal class signal transduction pathway, acts in concert with D-raf to positively transduce the signal generated by the receptor tyrosine kinase torso, these findings suggest several mechanisms by which SH-PTP2 may participate in mammalian signal transduction. Images PMID:1280823
Seo, Wonhyo; Servat, Alexandre; Cliquet, Florence; Akinbowale, Jenkins; Prehaud, Christophe; Lafon, Monique; Sabeta, Claude
Rabies is a fatal zoonotic disease and infections generally lead to a fatal encephalomyelitis in both humans and animals. In South Africa, domestic (dogs) and the wildlife (yellow mongoose) host species maintain the canid and mongoose rabies variants respectively. In this study, pathogenicity differences of South African canid and mongoose rabies viruses were investigated in a murine model, by assessing the progression of clinical signs and survivorship. Comparison of glycoprotein gene sequences revealed amino acid differences that may underpin the observed pathogenicity differences. Cumulatively, our results suggest that the canid rabies virus may be more neurovirulent in mice than the mongoose rabies variant. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Sarcocystis nesbitti was first described by Mandour in 1969 from rhesus monkey muscle. Its definitive host remains unknown. 18SrRNA gene of Sarcocystis nesbitti was amplified, sequenced, and subjected to phylogenetic analysis. Among those congeners available for comparison, it shares closest affinit...
Ortiz de Orué Lucana, Darío; Fedosov, Sergey N.; Wedderhoff, Ina; Che, Edith N.; Torda, Andrew E.
2014-01-01
The extracellular protein HbpS from Streptomyces reticuli interacts with iron ions and heme. It also acts in concert with the two-component sensing system SenS-SenR in response to oxidative stress. Sequence comparisons suggested that the protein may bind a cobalamin. UV-visible spectroscopy confirmed binding (Kd = 34 μm) to aquo-cobalamin (H2OCbl+) but not to other cobalamins. Competition experiments with the H2OCbl+-coordinating ligand CN− and comparison of mutants identified a histidine residue (His-156) that coordinates the cobalt ion of H2OCbl+ and substitutes for water. HbpS·Cobalamin lacks the Asp-X-His-X-X-Gly motif seen in some cobalamin binding enzymes. Preliminary tests showed that a related HbpS protein from a different species also binds H2OCbl+. Furthermore, analyses of HbpS-heme binding kinetics are consistent with the role of HbpS as a heme-sensor and suggested a role in heme transport. Given the high occurrence of HbpS-like sequences among Gram-positive and Gram-negative bacteria, our findings suggest a great functional versatility among these proteins. PMID:25342754
Windsor, Aaron J.; Schranz, M. Eric; Formanová, Nataša; Gebauer-Jung, Steffi; Bishop, John G.; Schnabelrauch, Domenica; Kroymann, Juergen; Mitchell-Olds, Thomas
2006-01-01
Comparative genomics provides insight into the evolutionary dynamics that shape discrete sequences as well as whole genomes. To advance comparative genomics within the Brassicaceae, we have end sequenced 23,136 medium-sized insert clones from Boechera stricta, a wild relative of Arabidopsis (Arabidopsis thaliana). A significant proportion of these sequences, 18,797, are nonredundant and display highly significant similarity (BLASTn e-value ≤ 10−30) to low copy number Arabidopsis genomic regions, including more than 9,000 annotated coding sequences. We have used this dataset to identify orthologous gene pairs in the two species and to perform a global comparison of DNA regions 5′ to annotated coding regions. On average, the 500 nucleotides upstream to coding sequences display 71.4% identity between the two species. In a similar analysis, 61.4% identity was observed between 5′ noncoding sequences of Brassica oleracea and Arabidopsis, indicating that regulatory regions are not as diverged among these lineages as previously anticipated. By mapping the B. stricta end sequences onto the Arabidopsis genome, we have identified nearly 2,000 conserved blocks of microsynteny (bracketing 26% of the Arabidopsis genome). A comparison of fully sequenced B. stricta inserts to their homologous Arabidopsis genomic regions indicates that indel polymorphisms >5 kb contribute substantially to the genome size difference observed between the two species. Further, we demonstrate that microsynteny inferred from end-sequence data can be applied to the rapid identification and cloning of genomic regions of interest from nonmodel species. These results suggest that among diploid relatives of Arabidopsis, small- to medium-scale shotgun sequencing approaches can provide rapid and cost-effective benefits to evolutionary and/or functional comparative genomic frameworks. PMID:16607030
NASA Astrophysics Data System (ADS)
Et-Touhami, M.; Et-Touhami, M.; Olsen, P. E.; Puffer, J.
2001-05-01
Previously very sparse biostratigraphic data suggested that the Early Mesozoic tholeiitic effusive and intrusive magmatism in the various basins of the Maghreb occurred over a long time (Ladinian-Hettangian). However, a detailed comparison of the stratigraphy underlying, interbedded with, and overlying the basalts in these basins shows not only remarkable similarities with each other, but also with sequences in the latest Triassic and earliest Jurassic of eastern North America. There, the sequences have been shown to be cyclical, controlled by Milankovitch-type climate cycles; the same seems to be true in at least part of the Maghreb. Thus, the Moroccan basins have cyclical sequences surrounding and interbedded with one or two basaltic units. In the Argana and Khemisset basins the Tr-J boundary is identified by palynology to be below the lowest basalt, and the remarkably close lithological similarity between the pre-basalt sequence in the other Moroccan basins and to the North American basins - especially the Fundy basin - suggests a tight correlation in time. Likewise, the strata above the lowest basalt in Morocco show a similar pattern to what is seen above the lowest basalt formation in eastern North America, as do the overlying sequences. Furthermore, geochemistry on basalts in the Argana, Bou Fekrane, Khemisset, and Iouawen basins indicate they are high-Ti quartz-normative tholeiites as are the Orange Mountain Basalt (Fundy basin) and the North Mountain Basalt (Newark basin). The remarkable lithostratigraphic similarity across the Maghreb of these strata suggest contemporaneous and synchronous eruption over a time span of less than 200 ky, based on Milankovitch calibration, and within a ~20 ky interval after the Triassic-Jurassic boundary. Differences with previous interpretations of the biostratigraphy can be rationalized as a result of: 1, an over-reliance on comparisons with northern European palynology; 2, over-interpretation of poorly preserved fossils; and 3, rarity of early Jurassic non-marine ostracode assemblages.
Nucleotide sequences of Japanese isolates of citrus vein enation virus.
Nakazono-Nagaoka, Eiko; Fujikawa, Takashi; Iwanami, Toru
2017-03-01
The genomic sequences of five Japanese isolates of citrus vein enation virus (CVEV) isolates that induce vein enation were determined and compared with that of the Spanish isolate VE-1. The nucleotide sequences of all Japanese isolates were 5,983 nt in length. The genomic RNA of Japanese isolates had five potential open reading frames (ORF 0, ORF 1, ORF 2, ORF 3, and ORF 5) in the positive-sense strand. The nucleotide sequence identity among the Japanese isolates and Spanish isolate VE-1 ranged from 98.0% to 99.8%. Comparison of the partial amino acid sequences of ten Japanese isolates and three Spanish isolates suggested that four amino acid residues, at positions of 83, 104, and 113 in ORF 2 and position 41 in ORF 5, might be unique to some Japanese isolates.
Host Cell Virus Entry Mediated by Australian Bat Lyssavirus Envelope G glycoprotein
2013-10-24
39 Figure 7. Comparison of the amino acid sequences of Saccolaimus and Pteropus ABLV G mature protein... sequence analysis revealed that the PCR products were identical. Sequence comparisons of the ABLV N and other lyssavirus N proteins showed that ABLV...Saccolaimus flaviventris) (129). Nucleoprotein sequence comparisons revealed that the Saccolaimus N protein shared 96% amino acid homology with the Pteropus
Identification and Resolution of Microdiversity through Metagenomic Sequencing of Parallel Consortia
Maezato, Yukari; Wu, Yu-Wei; Romine, Margaret F.; Lindemann, Stephen R.
2015-01-01
To gain a predictive understanding of the interspecies interactions within microbial communities that govern community function, the genomic complement of every member population must be determined. Although metagenomic sequencing has enabled the de novo reconstruction of some microbial genomes from environmental communities, microdiversity confounds current genome reconstruction techniques. To overcome this issue, we performed short-read metagenomic sequencing on parallel consortia, defined as consortia cultivated under the same conditions from the same natural community with overlapping species composition. The differences in species abundance between the two consortia allowed reconstruction of near-complete (at an estimated >85% of gene complement) genome sequences for 17 of the 20 detected member species. Two Halomonas spp. indistinguishable by amplicon analysis were found to be present within the community. In addition, comparison of metagenomic reads against the consensus scaffolds revealed within-species variation for one of the Halomonas populations, one of the Rhodobacteraceae populations, and the Rhizobiales population. Genomic comparison of these representative instances of inter- and intraspecies microdiversity suggests differences in functional potential that may result in the expression of distinct roles in the community. In addition, isolation and complete genome sequence determination of six member species allowed an investigation into the sensitivity and specificity of genome reconstruction processes, demonstrating robustness across a wide range of sequence coverage (9× to 2,700×) within the metagenomic data set. PMID:26497460
Identification and Resolution of Microdiversity through Metagenomic Sequencing of Parallel Consortia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, William C.; Maezato, Yukari; Wu, Yu-Wei
2015-10-23
To gain a predictive understanding of the interspecies interactions within microbial communities that govern community function, the genomic complement of every member population must be determined. Although metagenomic sequencing has enabled thede novoreconstruction of some microbial genomes from environmental communities, microdiversity confounds current genome reconstruction techniques. To overcome this issue, we performed short-read metagenomic sequencing on parallel consortia, defined as consortia cultivated under the same conditions from the same natural community with overlapping species composition. The differences in species abundance between the two consortia allowed reconstruction of near-complete (at an estimated >85% of gene complement) genome sequences for 17 ofmore » the 20 detected member species. TwoHalomonasspp. indistinguishable by amplicon analysis were found to be present within the community. In addition, comparison of metagenomic reads against the consensus scaffolds revealed within-species variation for one of theHalomonaspopulations, one of theRhodobacteraceaepopulations, and theRhizobialespopulation. Genomic comparison of these representative instances of inter- and intraspecies microdiversity suggests differences in functional potential that may result in the expression of distinct roles in the community. In addition, isolation and complete genome sequence determination of six member species allowed an investigation into the sensitivity and specificity of genome reconstruction processes, demonstrating robustness across a wide range of sequence coverage (9× to 2,700×) within the metagenomic data set.« less
Weaver, Keith E; Kwong, Stephen M; Firth, Neville; Francia, Maria Victoria
2009-03-01
The pheromone-responsive conjugative plasmids of Enterococcus faecalis and the multiresistance plasmids pSK1 and pSK41 of Staphylococcus aureus are among the best studied plasmids native to Gram-positive bacteria. Although these plasmids seem largely restricted to their native hosts, protein sequence comparison of their replication initiator proteins indicates that they are clearly related. Homology searches indicate that these replicons are representatives of a large family of plasmids and a few phage that are widespread among the low G+C Gram-positive bacteria. We propose to name this family the RepA_N family of replicons after the annotated conserved domain that the initiator protein contains. Detailed sequence comparisons indicate that the initiator protein phylogeny is largely congruent with that of the host, suggesting that the replicons have evolved along with their current hosts and that intergeneric transfer has been rare. However, related proteins were identified on chromosomal regions bearing characteristics indicative of ICE elements, and the phylogeny of these proteins displayed evidence of more frequent intergeneric transfer. Comparison of stability determinants associated with the RepA_N replicons suggests that they have a modular evolution as has been observed in other plasmid families.
Weaver, Keith E.; Kwong, Stephen M.; Firth, Neville; Francia, Maria Victoria
2009-01-01
The pheromone-responsive conjugative plasmids of Enterococcus faecalis and the multi-resistance plasmids pSK1 and pSK41 of Staphylococcus aureus are among the best studied plasmids native to Gram-positive bacteria. Although these plasmids seem largely restricted to their native hosts, protein sequence comparison of their replication initiator proteins indicates that they are clearly related. Homology searches indicate that these replicons are representatives of a large family of plasmids and a few phage that are widespread among the low G+C Gram-positive bacteria. We propose to name this family the RepA_N family of replicons after the annotated conserved domain that the initiator protein contains. Detailed sequence comparisons indicate that the initiator protein phylogeny is largely congruent with that of the host, suggesting that the replicons have evolved along with their current hosts and that intergeneric transfer has been rare. However, related proteins were identified on chromosomal regions bearing characteristics indicative of ICE elements, and the phylogeny of these proteins displayed evidence of more frequent intergeneric transfer. Comparison of stability determinants associated with the RepA_N replicons suggests that they have a modular evolution as has been observed in other plasmid families. PMID:19100285
Intestinal flora of FAP patients containing APC-like sequences.
Hainova, K; Adamcikova, Z; Ciernikova, S; Stevurkova, V; Tyciakova, S; Zajac, V
2014-01-01
Colorectal cancer mortality is one of the most common cause of cancer-related mortality. A multiple risk factors are associated with colorectal cancer, including hereditary, enviromental and inflammatory syndromes affecting the gastrointestinal tract. Familial adenomatous polyposis (FAP) is characterized by the emergence of hundreds to thousands of colorectal adenomatous polyps and FAP syndrome is caused by mutations within the adenomatous polyposis coli (APC) tumor suppressor gene. We analyzed 21 rectal bacterial subclones isolated from FAP patient 41-1 with confirmed 5bp ACAAA deletion within codons 1060-1063 for the presence of APC-like sequences in longest exon 15. The studied section was defined by primers 15Efor-15Erev, what correlates with mutation cluster region (MCR) in which the 75% of all APC germline mutations were detected. More than 90% homology was showed by sequencing and subsequent software comparison. The expression of APC-like sequences was demostrated by Western blot analysis using monoclonal and polyclonal antibodies against APC protein. To study missing link between the DNA analysis (PCR, DNA sequencing) and protein expresion experiments (Western blotting) we analyzed bacterial transcripts containing the 15Efor-15Erev sequence of APC gene by reverse transcription-PCR, what indicated that an APC gene derived fragment may be produced. We observed 97-100 % homology after computer comparison of cDNA PCR products. Our results suggest that presence of APC-like sequences in intestinal/rectal bacteria is enrichment of bacterial genetic information in which horizontal gene transfer between humans and microflora play an important role.
Short-term memory stores organized by information domain.
Noyce, Abigail L; Cestero, Nishmar; Shinn-Cunningham, Barbara G; Somers, David C
2016-04-01
Vision and audition have complementary affinities, with vision excelling in spatial resolution and audition excelling in temporal resolution. Here, we investigated the relationships among the visual and auditory modalities and spatial and temporal short-term memory (STM) using change detection tasks. We created short sequences of visual or auditory items, such that each item within a sequence arose at a unique spatial location at a unique time. On each trial, two successive sequences were presented; subjects attended to either space (the sequence of locations) or time (the sequence of inter item intervals) and reported whether the patterns of locations or intervals were identical. Each subject completed blocks of unimodal trials (both sequences presented in the same modality) and crossmodal trials (Sequence 1 visual, Sequence 2 auditory, or vice versa) for both spatial and temporal tasks. We found a strong interaction between modality and task: Spatial performance was best on unimodal visual trials, whereas temporal performance was best on unimodal auditory trials. The order of modalities on crossmodal trials also mattered, suggesting that perceptual fidelity at encoding is critical to STM. Critically, no cost was attributable to crossmodal comparison: In both tasks, performance on crossmodal trials was as good as or better than on the weaker unimodal trials. STM representations of space and time can guide change detection in either the visual or the auditory modality, suggesting that the temporal or spatial organization of STM may supersede sensory-specific organization.
Swallow Event Sequencing: Comparing Healthy Older and Younger Adults.
Herzberg, Erica G; Lazarus, Cathy L; Steele, Catriona M; Molfenter, Sonja M
2018-04-23
Previous research has established that a great deal of variation exists in the temporal sequence of swallowing events for healthy adults. Yet, the impact of aging on swallow event sequence is not well understood. Kendall et al. (Dysphagia 18(2):85-91, 2003) suggested there are 4 obligatory paired-event sequences in swallowing. We directly compared adherence to these sequences, as well as event latencies, and quantified the percentage of unique sequences in two samples of healthy adults: young (< 45) and old (> 65). The 8 swallowing events that contribute to the sequences were reliably identified from videofluoroscopy in a sample of 23 healthy seniors (10 male, mean age 74.7) and 20 healthy young adults (10 male, mean age 31.5) with no evidence of penetration-aspiration or post-swallow residue. Chi-square analyses compared the proportions of obligatory pairs and unique sequences by age group. Compared to the older subjects, younger subjects had significantly lower adherence to two obligatory sequences: Upper Esophageal Sphincter (UES) opening occurs before (or simultaneous with) the bolus arriving at the UES and UES maximum distention occurs before maximum pharyngeal constriction. The associated latencies were significantly different between age groups as well. Further, significantly fewer unique swallow sequences were observed in the older group (61%) compared with the young (82%) (χ 2 = 31.8; p < 0.001). Our findings suggest that paired swallow event sequences may not be robust across the age continuum and that variation in swallow sequences appears to decrease with aging. These findings provide normative references for comparisons to older individuals with dysphagia.
Genomic characterization and taxonomic position of a rhabdovirus from a hybrid snakehead.
Zeng, Weiwei; Wang, Qing; Wang, Yingying; Liu, Cun; Liang, Hongru; Fang, Xiang; Wu, Shuqin
2014-09-01
A new rhabdovirus, tentatively designated as hybrid snakehead rhabdovirus C1207 (HSHRV-C1207), was first isolated from a moribund hybrid snakehead (Channa maculata×Channa argus) in China. We present the complete genome sequence of HSHRV-C1207 and a comprehensive sequence comparison between HSHRV-C1207 and other rhabdoviruses. Sequence alignment and phylogenetic analysis revealed that HSHRV-C1207 shared the highest degree of homology with Monopterus albus rhabdovirus and Siniperca chuatsi rhabdovirus. All three viruses clustered into a single group that was distinct from the recognized genera in the family Rhabdoviridae. Our analysis suggests that HSHRV-C1207, as well as MARV and SCRV, should be assigned to a new rhabdovirus genus.
USDA-ARS?s Scientific Manuscript database
Emerging evidence suggests that swine are a scientifically acceptable intermediate species between rodents and humans to model immune function relevant to humans. The swine genome has recently been sequenced and several preliminary structural and functional analysis of the porcine immunome have been...
Financsek, I; Mizumoto, K; Mishima, Y; Muramatsu, M
1982-01-01
The transcription initiation site of the human ribosomal RNA gene (rDNA) was located by using the single-strand specific nuclease protection method and by determining the first nucleotide of the in vitro capped 45S preribosomal RNA. The sequence of 1,211 nucleotides surrounding the initiation site was determined. The sequenced region was found to consist of 75% G and C and to contain a number of short direct and inverted repeats and palindromes. By comparison of the corresponding initiation regions of three mammalian species, several conserved sequences were found upstream and downstream from the transcription starting point. Two short A + T-rich sequences are present on human, mouse, and rat ribosomal RNA genes between the initiation site and 40 nucleotides upstream, and a C + T cluster is located at a position around -60. At and downstream from the initiation site, a common sequence, T-AG-C-T-G-A-C-A-C-G-C-T-G-T-C-C-T-CT-T, was found in the three genes from position -1 through +18. The strong conservation of these sequences suggests their functional significance in rDNA. The S1 nuclease protection experiments with cloned rDNA fragments indicated the presence in human 45S RNA of molecules several hundred nucleotides shorter than the supposed primary transcript. The first 19 nucleotides of these molecules appear identical--except for one mismatch--to the nucleotide sequence of the 5' end of a supposed early processing product of the mouse 45S RNA. Images PMID:6954460
Nowrousian, Minou; Stajich, Jason E.; Chu, Meiling; Engh, Ines; Espagne, Eric; Halliday, Karen; Kamerewerd, Jens; Kempken, Frank; Knab, Birgit; Kuo, Hsiao-Che; Osiewacz, Heinz D.; Pöggeler, Stefanie; Read, Nick D.; Seiler, Stephan; Smith, Kristina M.; Zickler, Denise; Kück, Ulrich; Freitag, Michael
2010-01-01
Filamentous fungi are of great importance in ecology, agriculture, medicine, and biotechnology. Thus, it is not surprising that genomes for more than 100 filamentous fungi have been sequenced, most of them by Sanger sequencing. While next-generation sequencing techniques have revolutionized genome resequencing, e.g. for strain comparisons, genetic mapping, or transcriptome and ChIP analyses, de novo assembly of eukaryotic genomes still presents significant hurdles, because of their large size and stretches of repetitive sequences. Filamentous fungi contain few repetitive regions in their 30–90 Mb genomes and thus are suitable candidates to test de novo genome assembly from short sequence reads. Here, we present a high-quality draft sequence of the Sordaria macrospora genome that was obtained by a combination of Illumina/Solexa and Roche/454 sequencing. Paired-end Solexa sequencing of genomic DNA to 85-fold coverage and an additional 10-fold coverage by single-end 454 sequencing resulted in ∼4 Gb of DNA sequence. Reads were assembled to a 40 Mb draft version (N50 of 117 kb) with the Velvet assembler. Comparative analysis with Neurospora genomes increased the N50 to 498 kb. The S. macrospora genome contains even fewer repeat regions than its closest sequenced relative, Neurospora crassa. Comparison with genomes of other fungi showed that S. macrospora, a model organism for morphogenesis and meiosis, harbors duplications of several genes involved in self/nonself-recognition. Furthermore, S. macrospora contains more polyketide biosynthesis genes than N. crassa. Phylogenetic analyses suggest that some of these genes may have been acquired by horizontal gene transfer from a distantly related ascomycete group. Our study shows that, for typical filamentous fungi, de novo assembly of genomes from short sequence reads alone is feasible, that a mixture of Solexa and 454 sequencing substantially improves the assembly, and that the resulting data can be used for comparative studies to address basic questions of fungal biology. PMID:20386741
Nowrousian, Minou; Stajich, Jason E; Chu, Meiling; Engh, Ines; Espagne, Eric; Halliday, Karen; Kamerewerd, Jens; Kempken, Frank; Knab, Birgit; Kuo, Hsiao-Che; Osiewacz, Heinz D; Pöggeler, Stefanie; Read, Nick D; Seiler, Stephan; Smith, Kristina M; Zickler, Denise; Kück, Ulrich; Freitag, Michael
2010-04-08
Filamentous fungi are of great importance in ecology, agriculture, medicine, and biotechnology. Thus, it is not surprising that genomes for more than 100 filamentous fungi have been sequenced, most of them by Sanger sequencing. While next-generation sequencing techniques have revolutionized genome resequencing, e.g. for strain comparisons, genetic mapping, or transcriptome and ChIP analyses, de novo assembly of eukaryotic genomes still presents significant hurdles, because of their large size and stretches of repetitive sequences. Filamentous fungi contain few repetitive regions in their 30-90 Mb genomes and thus are suitable candidates to test de novo genome assembly from short sequence reads. Here, we present a high-quality draft sequence of the Sordaria macrospora genome that was obtained by a combination of Illumina/Solexa and Roche/454 sequencing. Paired-end Solexa sequencing of genomic DNA to 85-fold coverage and an additional 10-fold coverage by single-end 454 sequencing resulted in approximately 4 Gb of DNA sequence. Reads were assembled to a 40 Mb draft version (N50 of 117 kb) with the Velvet assembler. Comparative analysis with Neurospora genomes increased the N50 to 498 kb. The S. macrospora genome contains even fewer repeat regions than its closest sequenced relative, Neurospora crassa. Comparison with genomes of other fungi showed that S. macrospora, a model organism for morphogenesis and meiosis, harbors duplications of several genes involved in self/nonself-recognition. Furthermore, S. macrospora contains more polyketide biosynthesis genes than N. crassa. Phylogenetic analyses suggest that some of these genes may have been acquired by horizontal gene transfer from a distantly related ascomycete group. Our study shows that, for typical filamentous fungi, de novo assembly of genomes from short sequence reads alone is feasible, that a mixture of Solexa and 454 sequencing substantially improves the assembly, and that the resulting data can be used for comparative studies to address basic questions of fungal biology.
Haygood, M G
1990-01-01
Flashlight fishes (family Anomalopidae) have light organs that contain luminous bacterial symbionts. Although the symbionts have not yet been successfully cultured, the luciferase genes have been cloned directly from the light organ of the Caribbean species, Kryptophanaron alfredi. The goal of this project was to evaluate the relationship of the symbiont to free-living luminous bacteria by comparison of genes coding for bacterial luciferase (lux genes). Hybridization of a lux AB probe from the Kryptophanaron alfredi symbiont to DNAs from 9 strains (8 species) of luminous bacteria showed that none of the strains tested had lux genes highly similar to the symbiont. The most similar were a group consisting of Vibrio harveyi, Vibrio splendidus and Vibrio orientalis. The nucleotide sequence of the luciferase alpha subunit gene luxA) of the Kryptophanaron alfredi symbiont was determined in order to do a more detailed comparison with published luxA sequences from Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi. The hybridization results, sequence comparisons and the mol% G + C of the Kryptophanaron alfredi symbiont luxA gene suggest that the symbiont may be considered as a new species of luminous Vibrio related to Vibrio harveyi.
Schizophrenia patients demonstrate a dissociation on declarative and non-declarative memory tests.
Perry, W; Light, G A; Davis, H; Braff, D L
2000-12-15
Declarative memory refers to the recall and recognition of factual information. In contrast, non-declarative memory entails a facilitation of memory based on prior exposure and is typically assessed with priming and perceptual-motor sequencing tasks. In this study, schizophrenia patients were compared to normal comparison subjects on two computerized memory tasks: the Word-stem Priming Test (n=30) and the Pattern Sequence Learning Test (n=20). Word-stem Priming includes recall, recognition (declarative) and priming (non-declarative) components of memory. The schizophrenia patients demonstrated an impaired performance on recall of words with relative improvement during the recognition portion of the test. Furthermore, they performed normally on the priming portion of the test. Thus, on tests of declarative memory, the patients had retrieval deficits with intact performance on the non-declarative memory component. The Pattern Sequence Learning Test utilizes a serial reaction time paradigm to assess non-declarative memory. The schizophrenia patients' serial reaction time was significantly slower than that of comparison subjects. However, the patients' rate of acquisition was not different from the normal comparison group. The data suggest that patients with schizophrenia process more slowly than normal, but have an intact non-declarative memory. The schizophrenia patients' dissociation on declarative vs. non-declarative memory tests is discussed in terms of possible underlying structural impairment.
The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus)
Ming, Ray; Hou, Shaobin; Feng, Yun; Yu, Qingyi; Dionne-Laporte, Alexandre; Saw, Jimmy H.; Senin, Pavel; Wang, Wei; Ly, Benjamin V.; Lewis, Kanako L. T.; Salzberg, Steven L.; Feng, Lu; Jones, Meghan R.; Skelton, Rachel L.; Murray, Jan E.; Chen, Cuixia; Qian, Wubin; Shen, Junguo; Du, Peng; Eustice, Moriah; Tong, Eric; Tang, Haibao; Lyons, Eric; Paull, Robert E.; Michael, Todd P.; Wall, Kerr; Rice, Danny W.; Albert, Henrik; Wang, Ming-Li; Zhu, Yun J.; Schatz, Michael; Nagarajan, Niranjan; Acob, Ricelle A.; Guan, Peizhu; Blas, Andrea; Wai, Ching Man; Ackerman, Christine M.; Ren, Yan; Liu, Chao; Wang, Jianmei; Wang, Jianping; Na, Jong-Kuk; Shakirov, Eugene V.; Haas, Brian; Thimmapuram, Jyothi; Nelson, David; Wang, Xiyin; Bowers, John E.; Gschwend, Andrea R.; Delcher, Arthur L.; Singh, Ratnesh; Suzuki, Jon Y.; Tripathi, Savarni; Neupane, Kabi; Wei, Hairong; Irikura, Beth; Paidi, Maya; Jiang, Ning; Zhang, Wenli; Presting, Gernot; Windsor, Aaron; Navajas-Pérez, Rafael; Torres, Manuel J.; Feltus, F. Alex; Porter, Brad; Li, Yingjun; Burroughs, A. Max; Luo, Ming-Cheng; Liu, Lei; Christopher, David A.; Mount, Stephen M.; Moore, Paul H.; Sugimura, Tak; Jiang, Jiming; Schuler, Mary A.; Friedman, Vikki; Mitchell-Olds, Thomas; Shippen, Dorothy E.; dePamphilis, Claude W.; Palmer, Jeffrey D.; Freeling, Michael; Paterson, Andrew H.; Gonsalves, Dennis; Wang, Lei; Alam, Maqsudul
2010-01-01
Papaya, a fruit crop cultivated in tropical and subtropical regions, is known for its nutritional benefits and medicinal applications. Here we report a 3× draft genome sequence of ‘SunUp’ papaya, the first commercial virus-resistant transgenic fruit tree1 to be sequenced. The papaya genome is three times the size of the Arabidopsis genome, but contains fewer genes, including significantly fewer disease-resistance gene analogues. Comparison of the five sequenced genomes suggests a minimal angiosperm gene set of 13,311. A lack of recent genome duplication, atypical of other angiosperm genomes sequenced so far2–5, may account for the smaller papaya gene number in most functional groups. Nonetheless, striking amplifications in gene number within particular functional groups suggest roles in the evolution of tree-like habit, deposition and remobilization of starch reserves, attraction of seed dispersal agents, and adaptation to tropical daylengths. Transgenesis at three locations is closely associated with chloroplast insertions into the nuclear genome, and with topoisomerase I recognition sites. Papaya offers numerous advantages as a system for fruit-tree functional genomics, and this draft genome sequence provides the foundation for revealing the basis of Carica's distinguishing morpho-physiological, medicinal and nutritional properties. PMID:18432245
The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus).
Ming, Ray; Hou, Shaobin; Feng, Yun; Yu, Qingyi; Dionne-Laporte, Alexandre; Saw, Jimmy H; Senin, Pavel; Wang, Wei; Ly, Benjamin V; Lewis, Kanako L T; Salzberg, Steven L; Feng, Lu; Jones, Meghan R; Skelton, Rachel L; Murray, Jan E; Chen, Cuixia; Qian, Wubin; Shen, Junguo; Du, Peng; Eustice, Moriah; Tong, Eric; Tang, Haibao; Lyons, Eric; Paull, Robert E; Michael, Todd P; Wall, Kerr; Rice, Danny W; Albert, Henrik; Wang, Ming-Li; Zhu, Yun J; Schatz, Michael; Nagarajan, Niranjan; Acob, Ricelle A; Guan, Peizhu; Blas, Andrea; Wai, Ching Man; Ackerman, Christine M; Ren, Yan; Liu, Chao; Wang, Jianmei; Wang, Jianping; Na, Jong-Kuk; Shakirov, Eugene V; Haas, Brian; Thimmapuram, Jyothi; Nelson, David; Wang, Xiyin; Bowers, John E; Gschwend, Andrea R; Delcher, Arthur L; Singh, Ratnesh; Suzuki, Jon Y; Tripathi, Savarni; Neupane, Kabi; Wei, Hairong; Irikura, Beth; Paidi, Maya; Jiang, Ning; Zhang, Wenli; Presting, Gernot; Windsor, Aaron; Navajas-Pérez, Rafael; Torres, Manuel J; Feltus, F Alex; Porter, Brad; Li, Yingjun; Burroughs, A Max; Luo, Ming-Cheng; Liu, Lei; Christopher, David A; Mount, Stephen M; Moore, Paul H; Sugimura, Tak; Jiang, Jiming; Schuler, Mary A; Friedman, Vikki; Mitchell-Olds, Thomas; Shippen, Dorothy E; dePamphilis, Claude W; Palmer, Jeffrey D; Freeling, Michael; Paterson, Andrew H; Gonsalves, Dennis; Wang, Lei; Alam, Maqsudul
2008-04-24
Papaya, a fruit crop cultivated in tropical and subtropical regions, is known for its nutritional benefits and medicinal applications. Here we report a 3x draft genome sequence of 'SunUp' papaya, the first commercial virus-resistant transgenic fruit tree to be sequenced. The papaya genome is three times the size of the Arabidopsis genome, but contains fewer genes, including significantly fewer disease-resistance gene analogues. Comparison of the five sequenced genomes suggests a minimal angiosperm gene set of 13,311. A lack of recent genome duplication, atypical of other angiosperm genomes sequenced so far, may account for the smaller papaya gene number in most functional groups. Nonetheless, striking amplifications in gene number within particular functional groups suggest roles in the evolution of tree-like habit, deposition and remobilization of starch reserves, attraction of seed dispersal agents, and adaptation to tropical daylengths. Transgenesis at three locations is closely associated with chloroplast insertions into the nuclear genome, and with topoisomerase I recognition sites. Papaya offers numerous advantages as a system for fruit-tree functional genomics, and this draft genome sequence provides the foundation for revealing the basis of Carica's distinguishing morpho-physiological, medicinal and nutritional properties.
Phylogenetic tree of 16s rRNA sequences from sulfate-reducing bacteria in a sandy marine sediment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devereux, R.; Mundfrom, G.W.
1994-01-01
Phylogenetic divergence among sulfate-reducing bateria in an estuarine sediment sample was investigated by PCR amplification and comparison of partial 16S rDNA sequences. Twenty unique 16S rDNA sequences were found, 12 from delta subclass bacteria based on overall sequence similarity (82-91%). Two successive PCR amplifications were used to obtain and clone the 16S rDNA. The first reaction used templates derived from phosphate-buffered saline washed sediment with primers designed to amplify nearly full-length bacterial domain 16S rDNA. A produce from a first reaction was used as template in a second reaction with primers designed to selectivity amplify a region of 16S rDNAmore » genes of sulfate-reducing bacteria. A phylogenetic tree incorporating the cloned sequences suggests the presence of yet to be cultivated lines of sulfate-reducing bacteria within the sediment sample.« less
Yusoff, K; Millar, N S; Chambers, P; Emmerson, P T
1987-01-01
The nucleotide sequence of the L gene of the Beaudette C strain of Newcastle disease virus (NDV) has been determined. The L gene is 6704 nucleotides long and encodes a protein of 2204 amino acids with a calculated molecular weight of 248822. Mung bean nuclease mapping of the 5' terminus of the L gene mRNA indicates that the transcription of the L gene is initiated 11 nucleotides upstream of the translational start site. Comparison with the amino acid sequences of the L genes of Sendai virus and vesicular stomatitis virus (VSV) suggests that there are several regions of homology between the sequences. These data provide further evidence for an evolutionary relationship between the Paramyxoviridae and the Rhabdoviridae. A non-coding sequence of 46 nucleotides downstream of the presumed polyadenylation site of the L gene may be part of a negative strand leader RNA. Images PMID:3035486
Sequence stratigraphy of the Triassic in the Barentsz Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skjold, L.JU.; Van Veen, P.M.; Gjelberg, J.
1990-05-01
A regional study of the Triassic in the Barentsz Sea (20-32{degree}E, 71-74{degree}N) revealed sequences that correlate seismically for hundreds of kilometers. Recent offshore drilling results enabled them to establish a biostratigraphic time framework. Comparisons with information from onshore outcrops (such as the Svalbard Archipelago) aided the piecing together of these superregional sequences. Seismic character analysis identified three units with composite progradational patterns (Induan, Olenekian, and Anisian). Fluvial, deltaic, and marine deposits can be distinguished and located relative to the paleocoastlines. Corresponding downlap surfaces suggest the development of condensed intervals, predicted to consist of organic-rich source rocks, as was later confirmedmore » by drilling. Regional predictions based on this sequence-stratigraphic approach have proved valuable when correlating and evaluating well information. The sequences identified also help define third-order sea level curves for the area; these improve published curves thought to have global significance.« less
Congenital amusia: a short-term memory deficit for non-verbal, but not verbal sounds.
Tillmann, Barbara; Schulze, Katrin; Foxton, Jessica M
2009-12-01
Congenital amusia refers to a lifelong disorder of music processing and is linked to pitch-processing deficits. The present study investigated congenital amusics' short-term memory for tones, musical timbres and words. Sequences of five events (tones, timbres or words) were presented in pairs and participants had to indicate whether the sequences were the same or different. The performance of congenital amusics confirmed a memory deficit for tone sequences, but showed normal performance for word sequences. For timbre sequences, amusics' memory performance was impaired in comparison to matched controls. Overall timbre performance was found to be correlated with melodic contour processing (as assessed by the Montreal Battery of Evaluation of Amusia). The present findings show that amusics' deficits extend to non-verbal sound material other than pitch, in this case timbre, while not affecting memory for verbal material. This is in line with previous suggestions about the domain-specificity of congenital amusia.
A sequence-based survey of the complex structural organization of tumor genomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Colin; Raphael, Benjamin J.; Volik, Stanislav
2008-04-03
The genomes of many epithelial tumors exhibit extensive chromosomal rearrangements. All classes of genome rearrangements can be identified using End Sequencing Profiling (ESP), which relies on paired-end sequencing of cloned tumor genomes. In this study, brain, breast, ovary and prostate tumors along with three breast cancer cell lines were surveyed with ESP yielding the largest available collection of sequence-ready tumor genome breakpoints and providing evidence that some rearrangements may be recurrent. Sequencing and fluorescence in situ hybridization (FISH) confirmed translocations and complex tumor genome structures that include coamplification and packaging of disparate genomic loci with associated molecular heterogeneity. Comparison ofmore » the tumor genomes suggests recurrent rearrangements. Some are likely to be novel structural polymorphisms, whereas others may be bona fide somatic rearrangements. A recurrent fusion transcript in breast tumors and a constitutional fusion transcript resulting from a segmental duplication were identified. Analysis of end sequences for single nucleotide polymorphisms (SNPs) revealed candidate somatic mutations and an elevated rate of novel SNPs in an ovarian tumor. These results suggest that the genomes of many epithelial tumors may be far more dynamic and complex than previously appreciated and that genomic fusions including fusion transcripts and proteins may be common, possibly yielding tumor-specific biomarkers and therapeutic targets.« less
Hong, Mee Yeon; Lee, Eun Mee; Jo, Yong Hun; Park, Hae Chul; Kim, Seong Ryul; Hwang, Jae Sam; Jin, Byung Rae; Kang, Pil Don; Kim, Ki-Gyoung; Han, Yeon Soo; Kim, Iksoo
2008-04-30
The 15,360-bp long complete mitogenome of Caligula boisduvalii possesses a gene arrangement and content identical to other completely sequenced lepidopteran mitogenomes, but different from the common arrangement found in most insect order, as the result of the movement of tRNA(Met) to a position 5'-upstream of tRNA Ile. The 330-bp A+T-rich region is apparently capable of forming a stem-and-loop structure, which harbors the conserved flanking sequences at both ends. Dissimilar to what has been seen in other sequenced lepidopteran insects, the initiation codon for C. boisduvalii COI appears to be TTG, which is a rare, but apparently possible initiation codon. The ATP8, ATP6, ND4L, and ND6 genes, which neighbor another PCG at their 3' end, all harbored potential sequences for the formation of a hairpin structure. This is suggestive of the importance of such structures for the precise cleavage of the mRNA of mature PCGs. Phylogenetic analyses of available sequenced species of Bombycoidea, Pyraloidea, and Tortricidea supported the morphology-based current hypothesis that Bombycoidea and Pyraloidea are monophyletic (Obtectomera). As previously suggested, Bombycidae (Bombyx mori and B. mandarina) and Saturniidae (Antheraea pernyi and C. boisduvalii) formed a reciprocal monophyletic group.
Brown, J. R.; Beckenbach, K.; Beckenbach, A. T.; Smith, M. J.
1996-01-01
The extent of mtDNA length variation and heteroplasmy as well as DNA sequences of the control region and two tRNA genes were determined for four North American sturgeon species: Acipenser transmontanus, A. medirostris, A. fulvescens and A. oxyrhnychus. Across the Continental Divide, a division in the occurrence of length variation and heteroplasmy was observed that was concordant with species biogeography as well as with phylogenies inferred from restriction fragment length polymorphisms (RFLP) of whole mtDNA and pairwise comparisons of unique sequences of the control region. In all species, mtDNA length variation was due to repeated arrays of 78-82-bp sequences each containing a D-loop strand synthesis termination associated sequence (TAS). Individual repeats showed greater sequence conservation within individuals and species rather than between species, which is suggestive of concerted evolution. Differences in the frequencies of multiple copy genomes and heteroplasmy among the four species may be ascribed to differences in the rates of recurrent mutation. A mechanism that may offset the high rate of mutation for increased copy number is suggested on the basis that an increase in the number of functional TAS motifs might reduce the frequency of successfully initiated H-strand replications. PMID:8852850
Differential Effects of Alcohol on Working Memory: Distinguishing Multiple Processes
Saults, J. Scott; Cowan, Nelson; Sher, Kenneth J.; Moreno, Matthew V.
2008-01-01
We assessed effects of alcohol consumption on different types of working memory (WM) tasks in an attempt to characterize the nature of alcohol effects on cognition. The WM tasks varied in two properties of materials to be retained in a two-stimulus comparison procedure. Conditions included (1) spatial arrays of colors, (2) temporal sequences of colors, (3) spatial arrays of spoken digits, and (4) temporal sequences of spoken digits. Alcohol consumption impaired memory for auditory and visual sequences, but not memory for simultaneous arrays of auditory or visual stimuli. These results suggest that processes needed to encode and maintain stimulus sequences, such as rehearsal, are more sensitive to alcohol intoxication than other WM mechanisms needed to maintain multiple concurrent items, such as focusing attention on them. These findings help to resolve disparate findings from prior research into alcohol’s effect on WM and on divided attention. The results suggest that moderate doses of alcohol impair WM by affecting certain mnemonic strategies and executive processes rather than by shrinking the basic holding capacity of WM. PMID:18179311
Differential effects of alcohol on working memory: distinguishing multiple processes.
Saults, J Scott; Cowan, Nelson; Sher, Kenneth J; Moreno, Matthew V
2007-12-01
The authors assessed effects of alcohol consumption on different types of working memory (WM) tasks in an attempt to characterize the nature of alcohol effects on cognition. The WM tasks varied in 2 properties of materials to be retained in a 2-stimulus comparison procedure. Conditions included (a) spatial arrays of colors, (b) temporal sequences of colors, (c) spatial arrays of spoken digits, and (d) temporal sequences of spoken digits. Alcohol consumption impaired memory for auditory and visual sequences but not memory for simultaneous arrays of auditory or visual stimuli. These results suggest that processes needed to encode and maintain stimulus sequences, such as rehearsal, are more sensitive to alcohol intoxication than other WM mechanisms needed to maintain multiple concurrent items, such as focusing attention on them. These findings help to resolve disparate findings from prior research on alcohol's effect on WM and on divided attention. The results suggest that moderate doses of alcohol impair WM by affecting certain mnemonic strategies and executive processes rather than by shrinking the basic holding capacity of WM. (c) 2008 APA, all rights reserved.
Algorithm, applications and evaluation for protein comparison by Ramanujan Fourier transform.
Zhao, Jian; Wang, Jiasong; Hua, Wei; Ouyang, Pingkai
2015-12-01
The amino acid sequence of a protein determines its chemical properties, chain conformation and biological functions. Protein sequence comparison is of great importance to identify similarities of protein structures and infer their functions. Many properties of a protein correspond to the low-frequency signals within the sequence. Low frequency modes in protein sequences are linked to the secondary structures, membrane protein types, and sub-cellular localizations of the proteins. In this paper, we present Ramanujan Fourier transform (RFT) with a fast algorithm to analyze the low-frequency signals of protein sequences. The RFT method is applied to similarity analysis of protein sequences with the Resonant Recognition Model (RRM). The results show that the proposed fast RFT method on protein comparison is more efficient than commonly used discrete Fourier transform (DFT). RFT can detect common frequencies as significant feature for specific protein families, and the RFT spectrum heat-map of protein sequences demonstrates the information conservation in the sequence comparison. The proposed method offers a new tool for pattern recognition, feature extraction and structural analysis on protein sequences. Copyright © 2015 Elsevier Ltd. All rights reserved.
Singh, Pushpendra; Benjak, Andrej; Schuenemann, Verena J.; Herbig, Alexander; Avanzi, Charlotte; Busso, Philippe; Nieselt, Kay; Krause, Johannes; Vera-Cabrera, Lucio; Cole, Stewart T.
2015-01-01
Mycobacterium lepromatosis is an uncultured human pathogen associated with diffuse lepromatous leprosy and a reactional state known as Lucio's phenomenon. By using deep sequencing with and without DNA enrichment, we obtained the near-complete genome sequence of M. lepromatosis present in a skin biopsy from a Mexican patient, and compared it with that of Mycobacterium leprae, which has undergone extensive reductive evolution. The genomes display extensive synteny and are similar in size (∼3.27 Mb). Protein-coding genes share 93% nucleotide sequence identity, whereas pseudogenes are only 82% identical. The events that led to pseudogenization of 50% of the genome likely occurred before divergence from their most recent common ancestor (MRCA), and both M. lepromatosis and M. leprae have since accumulated new pseudogenes or acquired specific deletions. Functional comparisons suggest that M. lepromatosis has lost several enzymes required for amino acid synthesis whereas M. leprae has a defective heme pathway. M. lepromatosis has retained all functions required to infect the Schwann cells of the peripheral nervous system and therefore may also be neuropathogenic. A phylogeographic survey of 227 leprosy biopsies by differential PCR revealed that 221 contained M. leprae whereas only six, all from Mexico, harbored M. lepromatosis. Phylogenetic comparisons indicate that M. lepromatosis is closer than M. leprae to the MRCA, and a Bayesian dating analysis suggests that they diverged from their MRCA approximately 13.9 Mya. Thus, despite their ancient separation, the two leprosy bacilli are remarkably conserved and still cause similar pathologic conditions. PMID:25831531
Analysis of septins across kingdoms reveals orthology and new motifs.
Pan, Fangfang; Malmberg, Russell L; Momany, Michelle
2007-07-01
Septins are cytoskeletal GTPase proteins first discovered in the fungus Saccharomyces cerevisiae where they organize the septum and link nuclear division with cell division. More recently septins have been found in animals where they are important in processes ranging from actin and microtubule organization to embryonic patterning and where defects in septins have been implicated in human disease. Previous studies suggested that many animal septins fell into independent evolutionary groups, confounding cross-kingdom comparison. In the current work, we identified 162 septins from fungi, microsporidia and animals and analyzed their phylogenetic relationships. There was support for five groups of septins with orthology between kingdoms. Group 1 (which includes S. cerevisiae Cdc10p and human Sept9) and Group 2 (which includes S. cerevisiae Cdc3p and human Sept7) contain sequences from fungi and animals. Group 3 (which includes S. cerevisiae Cdc11p) and Group 4 (which includes S. cerevisiae Cdc12p) contain sequences from fungi and microsporidia. Group 5 (which includes Aspergillus nidulans AspE) contains sequences from filamentous fungi. We suggest a modified nomenclature based on these phylogenetic relationships. Comparative sequence alignments revealed septin derivatives of already known G1, G3 and G4 GTPase motifs, four new motifs from two to twelve amino acids long and six conserved single amino acid positions. One of these new motifs is septin-specific and several are group specific. Our studies provide an evolutionary history for this important family of proteins and a framework and consistent nomenclature for comparison of septin orthologs across kingdoms.
2014-01-01
Background Deciphering of the information content of eukaryotic promoters has remained confined to universal landmarks and conserved sequence elements such as enhancers and transcription factor binding motifs, which are considered sufficient for gene activation and regulation. Gene-specific sequences, interspersed between the canonical transacting factor binding sites or adjoining them within a promoter, are generally taken to be devoid of any regulatory information and have therefore been largely ignored. An unanswered question therefore is, do gene-specific sequences within a eukaryotic promoter have a role in gene activation? Here, we present an exhaustive experimental analysis of a gene-specific sequence adjoining the heat shock element (HSE) in the proximal promoter of the small heat shock protein gene, αB-crystallin (cryab). These sequences are highly conserved between the rodents and the humans. Results Using human retinal pigment epithelial cells in culture as the host, we have identified a 10-bp gene-specific promoter sequence (GPS), which, unlike an enhancer, controls expression from the promoter of this gene, only when in appropriate position and orientation. Notably, the data suggests that GPS in comparison with the HSE works in a context-independent fashion. Additionally, when moved upstream, about a nucleosome length of DNA (−154 bp) from the transcription start site (TSS), the activity of the promoter is markedly inhibited, suggesting its involvement in local promoter access. Importantly, we demonstrate that deletion of the GPS results in complete loss of cryab promoter activity in transgenic mice. Conclusions These data suggest that gene-specific sequences such as the GPS, identified here, may have critical roles in regulating gene-specific activity from eukaryotic promoters. PMID:24589182
Wide distribution of O157-antigen biosynthesis gene clusters in Escherichia coli.
Iguchi, Atsushi; Shirai, Hiroki; Seto, Kazuko; Ooka, Tadasuke; Ogura, Yoshitoshi; Hayashi, Tetsuya; Osawa, Kayo; Osawa, Ro
2011-01-01
Most Escherichia coli O157-serogroup strains are classified as enterohemorrhagic E. coli (EHEC), which is known as an important food-borne pathogen for humans. They usually produce Shiga toxin (Stx) 1 and/or Stx2, and express H7-flagella antigen (or nonmotile). However, O157 strains that do not produce Stxs and express H antigens different from H7 are sometimes isolated from clinical and other sources. Multilocus sequence analysis revealed that these 21 O157:non-H7 strains tested in this study belong to multiple evolutionary lineages different from that of EHEC O157:H7 strains, suggesting a wide distribution of the gene set encoding the O157-antigen biosynthesis in multiple lineages. To gain insight into the gene organization and the sequence similarity of the O157-antigen biosynthesis gene clusters, we conducted genomic comparisons of the chromosomal regions (about 59 kb in each strain) covering the O-antigen gene cluster and its flanking regions between six O157:H7/non-H7 strains. Gene organization of the O157-antigen gene cluster was identical among O157:H7/non-H7 strains, but was divided into two distinct types at the nucleotide sequence level. Interestingly, distribution of the two types did not clearly follow the evolutionary lineages of the strains, suggesting that horizontal gene transfer of both types of O157-antigen gene clusters has occurred independently among E. coli strains. Additionally, detailed sequence comparison revealed that some positions of the repetitive extragenic palindromic (REP) sequences in the regions flanking the O-antigen gene clusters were coincident with possible recombination points. From these results, we conclude that the horizontal transfer of the O157-antigen gene clusters induced the emergence of multiple O157 lineages within E. coli and speculate that REP sequences may involve one of the driving forces for exchange and evolution of O-antigen loci.
Genetic diversity and epidemiology of infectious hematopoietic necrosis virus in Alaska
Emmenegger, E.G; Meyers, T.R.; Burton, T.O.; Kurath, G.
2000-01-01
Forty-two infectious hematopoietic necrosis virus (IHNV) isolates from Alaska were analyzed using the ribonuclease protection assay (RPA) and nucleotide sequencing. RPA analyses, utilizing 4 probes, N5, N3 (N gene), GF (G gene), and NV (NV gene), determined that the haplotypes of all 3 genes demonstrated a consistent spatial pattern. Virus isolates belonging to the most common haplotype groups were distributed throughout Alaska, whereas isolates in small haplotype groups were obtained from only 1 site (hatchery, lake, etc.). The temporal pattern of the GF haplotypes suggested a 'genetic acclimation' of the G gene, possibly due to positive selection on the glycoprotein. A pairwise comparison of the sequence data determined that the maximum nucleotide diversity of the isolates was 2.75% (10 mismatches) for the NV gene, and 1.99% (6 mismatches) for a 301 base pair region of the G gene, indicating that the genetic diversity of IHNV within Alaska is notably lower than in the more southern portions of the IHNV North American range. Phylogenetic analysis of representative Alaskan sequences and sequences of 12 previously characterized IHNV strains from Washington, Oregon, Idaho, California (USA) and British Columbia (Canada) distinguished the isolates into clusters that correlated with geographic origin and indicated that the Alaskan and British Columbia isolates may have a common viral ancestral lineage. Comparisons of multiple isolates from the same site provided epidemiological insights into viral transmission patterns and indicated that viral evolution, viral introduction, and genetic stasis were the mechanisms involved with IHN virus population dynamics in Alaska. The examples of genetic stasis and the overall low sequence heterogeneity of the Alaskan isolates suggested that they are evolutionarily constrained. This study establishes a baseline of genetic fingerprint patterns and sequence groups representing the genetic diversity of Alaskan IHNV isolates. This information could be used to determine the source of an IHN outbreak and to facilitate decisions in fisheries management of Alaskan salmonid stocks.
Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers.
Cervera, M T; Ruiz-García, L; Martínez-Zapater, J M
2002-12-01
AFLP analysis using restriction enzyme isoschizomers that differ in their sensitivity to methylation of their recognition sites has been used to analyse the methylation state of anonymous CCGG sequences in Arabidopsis thaliana. The technique was modified to improve the quality of fingerprints and to visualise larger numbers of scorable fragments. Sequencing of amplified fragments indicated that detection was generally associated with non-methylation of the cytosine to which the isoschizomer is sensitive. Comparison of EcoRI/ HpaII and EcoRI/ MspI patterns in different ecotypes revealed that 35-43% of CCGG sites were differentially digested by the isoschizomers. Interestingly, the pattern of digestion among different plants belonging to the same ecotype is highly conserved, with the rate of intra-ecotype methylation-sensitive polymorphisms being less than 1%. However, pairwise comparisons of methylation patterns between samples belonging to different ecotypes revealed differences in up to 34% of the methylation-sensitive polymorphisms. The lack of correlation between inter-ecotype similarity matrices based on methylation-insensitive or methylation-sensitive polymorphisms suggests that whatever the mechanisms regulating methylation may be, they are not related to nucleotide sequence variation.
On the normalization of the minimum free energy of RNAs by sequence length.
Trotta, Edoardo
2014-01-01
The minimum free energy (MFE) of ribonucleic acids (RNAs) increases at an apparent linear rate with sequence length. Simple indices, obtained by dividing the MFE by the number of nucleotides, have been used for a direct comparison of the folding stability of RNAs of various sizes. Although this normalization procedure has been used in several studies, the relationship between normalized MFE and length has not yet been investigated in detail. Here, we demonstrate that the variation of MFE with sequence length is not linear and is significantly biased by the mathematical formula used for the normalization procedure. For this reason, the normalized MFEs strongly decrease as hyperbolic functions of length and produce unreliable results when applied for the comparison of sequences with different sizes. We also propose a simple modification of the normalization formula that corrects the bias enabling the use of the normalized MFE for RNAs longer than 40 nt. Using the new corrected normalized index, we analyzed the folding free energies of different human RNA families showing that most of them present an average MFE density more negative than expected for a typical genomic sequence. Furthermore, we found that a well-defined and restricted range of MFE density characterizes each RNA family, suggesting the use of our corrected normalized index to improve RNA prediction algorithms. Finally, in coding and functional human RNAs the MFE density appears scarcely correlated with sequence length, consistent with a negligible role of thermodynamic stability demands in determining RNA size.
On the Normalization of the Minimum Free Energy of RNAs by Sequence Length
Trotta, Edoardo
2014-01-01
The minimum free energy (MFE) of ribonucleic acids (RNAs) increases at an apparent linear rate with sequence length. Simple indices, obtained by dividing the MFE by the number of nucleotides, have been used for a direct comparison of the folding stability of RNAs of various sizes. Although this normalization procedure has been used in several studies, the relationship between normalized MFE and length has not yet been investigated in detail. Here, we demonstrate that the variation of MFE with sequence length is not linear and is significantly biased by the mathematical formula used for the normalization procedure. For this reason, the normalized MFEs strongly decrease as hyperbolic functions of length and produce unreliable results when applied for the comparison of sequences with different sizes. We also propose a simple modification of the normalization formula that corrects the bias enabling the use of the normalized MFE for RNAs longer than 40 nt. Using the new corrected normalized index, we analyzed the folding free energies of different human RNA families showing that most of them present an average MFE density more negative than expected for a typical genomic sequence. Furthermore, we found that a well-defined and restricted range of MFE density characterizes each RNA family, suggesting the use of our corrected normalized index to improve RNA prediction algorithms. Finally, in coding and functional human RNAs the MFE density appears scarcely correlated with sequence length, consistent with a negligible role of thermodynamic stability demands in determining RNA size. PMID:25405875
Cloning and sequence analysis of Hemonchus contortus HC58cDNA.
Muleke, Charles I; Ruofeng, Yan; Lixin, Xu; Xinwen, Bo; Xiangrui, Li
2007-06-01
The complete coding sequence of Hemonchus contortus HC58cDNA was generated by rapid amplification of cDNA ends and polymerase chain reaction using primers based on the 5' and 3' ends of the parasite mRNA, accession no. AF305964. The HC58cDNA gene was 851 bp long, with open reading frame of 717 bp, precursors to 239 amino acids coding for approximately 27 kDa protein. Analysis of amino acid sequence revealed conserved residues of cysteine, histidine, asparagine, occluding loop pattern, hemoglobinase motif and glutamine of the oxyanion hole characteristic of cathepsin B like proteases (CBL). Comparison of the predicted amino acid sequences showed the protein shared 33.5-58.7% identity to cathepsin B homologues in the papain clan CA family (family C1). Phylogenetic analysis revealed close evolutionary proximity of the protein sequence to counterpart sequences in the CBL, suggesting that HC58cDNA was a member of the papain family.
Variant calling in low-coverage whole genome sequencing of a Native American population sample.
Bizon, Chris; Spiegel, Michael; Chasse, Scott A; Gizer, Ian R; Li, Yun; Malc, Ewa P; Mieczkowski, Piotr A; Sailsbery, Josh K; Wang, Xiaoshu; Ehlers, Cindy L; Wilhelmsen, Kirk C
2014-01-30
The reduction in the cost of sequencing a human genome has led to the use of genotype sampling strategies in order to impute and infer the presence of sequence variants that can then be tested for associations with traits of interest. Low-coverage Whole Genome Sequencing (WGS) is a sampling strategy that overcomes some of the deficiencies seen in fixed content SNP array studies. Linkage-disequilibrium (LD) aware variant callers, such as the program Thunder, may provide a calling rate and accuracy that makes a low-coverage sequencing strategy viable. We examined the performance of an LD-aware variant calling strategy in a population of 708 low-coverage whole genome sequences from a community sample of Native Americans. We assessed variant calling through a comparison of the sequencing results to genotypes measured in 641 of the same subjects using a fixed content first generation exome array. The comparison was made using the variant calling routines GATK Unified Genotyper program and the LD-aware variant caller Thunder. Thunder was found to improve concordance in a coverage dependent fashion, while correctly calling nearly all of the common variants as well as a high percentage of the rare variants present in the sample. Low-coverage WGS is a strategy that appears to collect genetic information intermediate in scope between fixed content genotyping arrays and deep-coverage WGS. Our data suggests that low-coverage WGS is a viable strategy with a greater chance of discovering novel variants and associations than fixed content arrays for large sample association analyses.
Fowler, Elizabeth V; Peters, Jennifer M; Gatton, Michelle L; Chen, Nanhua; Cheng, Qin
2002-03-01
In Plasmodium falciparum a highly polymorphic multi-copy gene family, var, encodes the variant surface antigen P. falciparum erythrocyte membrane protein 1 (PfEMP1), which has an important role in cytoadherence and immune evasion. Using previously described universal PCR primers for the first Duffy binding-like domain (DBLalpha) of var we analysed the DBLalpha repertoires of Dd2 (originally from Thailand) and eight isolates from the Solomon Islands (n=4), Philippines (n=2), Papua New Guinea (n=1) and Africa (n=1). We found 15-32 unique DBLalpha sequence types among these isolates and estimated detectable DBLalpha repertoire sizes ranging from 33-38 to 52-57 copies per genome. Our data suggest that var gene repertoires generally consist of 40-50 copies per genome. Eighteen DBLalpha sequences appeared in more than one Asia-Pacific isolate with the number of sequences shared between any two isolates ranging from 0 to 6 (mean=2.0 +/-1.6). At the amino acid level DBLalpha sequence similarity within isolates ranged from 45.2 +/- 7.1 to 50.2 +/- 6.9%, and was not significantly different from the DBLalpha amino acid sequence similarity among isolates (P>0.1). Comparisons with published sequences also revealed little overlap among DBLalpha sequences from different regions. High DBLalpha sequence diversity and minimal overlap among these isolates suggest that the global var gene repertoire is immense, and may potentially be selected for by the host's protective immune response to the var gene products, PfEMP1.
Grohmann, L; Brennicke, A; Schuster, W
1992-01-01
The Oenothera mitochondrial genome contains only a gene fragment for ribosomal protein S12 (rps12), while other plants encode a functional gene in the mitochondrion. The complete Oenothera rps12 gene is located in the nucleus. The transit sequence necessary to target this protein to the mitochondrion is encoded by a 5'-extension of the open reading frame. Comparison of the amino acid sequence encoded by the nuclear gene with the polypeptides encoded by edited mitochondrial cDNA and genomic sequences of other plants suggests that gene transfer between mitochondrion and nucleus started from edited mitochondrial RNA molecules. Mechanisms and requirements of gene transfer and activation are discussed. Images PMID:1454526
Zhang, Wenwei; Cheng, Zhuomin; Xu, Lei; Wu, Maosen; Waterhouse, Peter; Zhou, Guanghe; Li, Shifang
2009-01-01
The complete nucleotide sequence of the ssRNA genome of a Chinese GPV isolate of barley yellow dwarf virus (BYDV) was determined. It comprised 5673 nucleotides, and the deduced genome organization resembled that of members of the genus Polerovirus. It was most closely related to cereal yellow dwarf virus-RPV (77% nt identity over the entire genome; coat protein amino acid identity 79%). The GPV isolate also differs in vector specificity from other BYDV strains. Biological properties, phylogenetic analyses and detailed sequence comparisons suggest that GPV should be considered a member of a new species within the genus, and the name Wheat yellow dwarf virus-GPV is proposed.
Wada, H; Satoh, N
1994-01-01
Almost the entire sequences of 18S rDNA were determined for two chaetognaths, five echinoderms, a hemichordate, and two urochordates (a larvacean and a salp). Phylogenetic comparisons of the sequences, together with those of other deuterostomes (an ascidian, a cephalochordate, and vertebrates) and protostomes (an arthropod and a mollusc), suggest the monophyly of the deuterostomes, with the exception of the chaetognaths. Chaetognaths may not be a group of deuterostomes. The deuterostome group closest to vertebrates was the group of cephalochordates. Ascidians, larvaceans, and salps seem to form a discrete group (urochordates), in which the early divergence of larvaceans is evident. These results support the hypothesis that chordates evolved from free-living ancestors. PMID:8127885
Liu, Ruifang; Koyanagi, Kanako O; Chen, Sunlu; Kishima, Yuji
2012-12-01
In plant genomes, the incorporation of DNA segments is not a common method of artificial gene transfer. Nevertheless, various segments of pararetroviruses have been found in plant genomes in recent decades. The rice genome contains a number of segments of endogenous rice tungro bacilliform virus-like sequences (ERTBVs), many of which are present between AT dinucleotide repeats (ATrs). Comparison of genomic sequences between two closely related rice subspecies, japonica and indica, allowed us to verify the preferential insertion of ERTBVs into ATrs. In addition to ERTBVs, the comparative analyses showed that ATrs occasionally incorporate repeat sequences including transposable elements, and a wide range of other sequences. Besides the known genomic sequences, the insertion sequences also represented DNAs of unclear origins together with ERTBVs, suggesting that ATrs have integrated episomal DNAs that would have been suspended in the nucleus. Such insertion DNAs might be trapped by ATrs in the genome in a host-dependent manner. Conversely, other simple mono- and dinucleotide sequence repeats (SSR) were less frequently involved in insertion events relative to ATrs. Therefore, ATrs could be regarded as hot spots of double-strand breaks that induce non-homologous end joining. The insertions within ATrs occasionally generated new gene-related sequences or involved structural modifications of existing genes. Likewise, in a comparison between Arabidopsis thaliana and Arabidopsis lyrata, the insertions preferred ATrs to other SSRs. Therefore ATrs in plant genomes could be considered as genomic dumping sites that have trapped various DNA molecules and may have exerted a powerful evolutionary force. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.
Blackburn, Michael B; Sparks, Michael E; Gundersen-Rindal, Dawn E
2016-12-01
The genome of Chromobacterium subtsugae strain PRAA4-1, a betaproteobacterium producing insecticidal compounds, was sequenced and compared with the genome of C. violaceum ATCC 12472. The genome of C. subtsugae displayed a reduction in genes devoted to capsular and extracellular polysaccharide, possessed no genes encoding nitrate reductases, and exhibited many more phage-related sequences than were observed for C. violaceum. The genomes of both species possess a number of gene clusters predicted to encode biosynthetic complexes for secondary metabolites; these clusters suggest they produce overlapping, but distinct assortments of metabolites.
The mitogenome of Onchocerca volvulus from the Brazilian Amazonia focus.
Crainey, James L; Silva, Túllio R R da; Encinas, Fernando; Marín, Michel A; Vicente, Ana Carolina P; Luz, Sérgio L B
2016-01-01
We report here the first complete mitochondria genome of Onchocerca volvulus from a focus outside of Africa. An O. volvulus mitogenome from the Brazilian Amazonia focus was obtained using a combination of high-throughput and Sanger sequencing technologies. Comparisons made between this mitochondrial genome and publicly available mitochondrial sequences identified 46 variant nucleotide positions and suggested that our Brazilian mitogenome is more closely related to Cameroon-origin mitochondria than West African-origin mitochondria. As well as providing insights into the origins of Latin American onchocerciasis, the Brazilian Amazonia focus mitogenome may also have value as an epidemiological resource.
Brylinski, Michal; Konieczny, Leszek; Kononowicz, Andrzej; Roterman, Irena
2008-03-21
The well-known procedure implemented in ClustalW oriented on the sequence comparison was applied to structure comparison. The consensus sequence as well as consensus structure has been defined for proteins belonging to serpine family. The structure of early stage intermediate was the object for similarity search. The high values of W(sequence) appeared to be accordant with high values of W(structure) making possible structure comparison using common criteria for sequence and structure comparison. Since the early stage structural form has been created according to limited conformational sub-space which does not include the beta-structure (this structure is mediated by C7eq structural form), is particularly important to see, that the C7eq structural form may be treated as the seed for beta-structure present in the final native structure of protein. The applicability of ClustalW procedure to structure comparison makes these two comparisons unified.
Dobinson, K F; Harris, R E; Hamer, J E
1993-01-01
The fungal phytopathogen Magnaporthe grisea parasitizes a wide variety of gramineous hosts. In the course of investigating the genetic relationship between pathogen genotype and host specificity we identified a retroelement that is present in some strains of M. grisea that infect finger millet and goosegrass (members of the plant genus Eleusine). The element, designated grasshopper (grh), is present in multiple copies and dispersed throughout the genome. DNA sequence analysis showed that grasshopper contains 198 base pair direct, long terminal repeats (LTRs) with features characteristic of retroviral and retrotransposon LTRs. Within the element we identified an open reading frame with sequences homologous to the reverse transcriptase, RNaseH, and integrase domains of retroelement pol genes. Comparison of the open reading frame with sequences from other retroelements showed that grh is related to the gypsy family of retrotransposons. Comparisons of the distribution of the grasshopper element with other dispersed repeated DNA sequences in M. grisea indicated that grasshopper was present in a broadly dispersed subgroup of Eleusine pathogens, suggesting that the element was acquired subsequent to the evolution of this host-specific form. We present arguments that the amplification of different retroelements within populations of M. grisea is a consequence of the clonal organization of the fungal populations.
Jones, Christopher M; Stres, Blaz; Rosenquist, Magnus; Hallin, Sara
2008-09-01
Denitrification is a facultative respiratory pathway in which nitrite (NO2(-)), nitric oxide (NO), and nitrous oxide (N2O) are successively reduced to nitrogen gas (N(2)), effectively closing the nitrogen cycle. The ability to denitrify is widely dispersed among prokaryotes, and this polyphyletic distribution has raised the possibility of horizontal gene transfer (HGT) having a substantial role in the evolution of denitrification. Comparisons of 16S rRNA and denitrification gene phylogenies in recent studies support this possibility; however, these results remain speculative as they are based on visual comparisons of phylogenies from partial sequences. We reanalyzed publicly available nirS, nirK, norB, and nosZ partial sequences using Bayesian and maximum likelihood phylogenetic inference. Concomitant analysis of denitrification genes with 16S rRNA sequences from the same organisms showed substantial differences between the trees, which were supported by examining the posterior probability of monophyletic constraints at different taxonomic levels. Although these differences suggest HGT of denitrification genes, the presence of structural variants for nirK, norB, and nosZ makes it difficult to determine HGT from other evolutionary events. Additional analysis using phylogenetic networks and likelihood ratio tests of phylogenies based on full-length sequences retrieved from genomes also revealed significant differences in tree topologies among denitrification and 16S rRNA gene phylogenies, with the exception of the nosZ gene phylogeny within the data set of the nirK-harboring genomes. However, inspection of codon usage and G + C content plots from complete genomes gave no evidence for recent HGT. Instead, the close proximity of denitrification gene copies in the genomes of several denitrifying bacteria suggests duplication. Although HGT cannot be ruled out as a factor in the evolution of denitrification genes, our analysis suggests that other phenomena, such gene duplication/divergence and lineage sorting, may have differently influenced the evolution of each denitrification gene.
Gonzalez, P; Barroso, G; Labarère, J
1998-10-05
The Basidiomycota Agrocybe aegerita (Aa) mitochondrial cox1 gene (6790 nucleotides), encoding a protein of 527aa (58377Da), is split by four large subgroup IB introns possessing site-specific endonucleases assumed to be involved in intron mobility. When compared to other fungal COX1 proteins, the Aa protein is closely related to the COX1 one of the Basidiomycota Schizophyllum commune (Sc). This clade reveals a relationship with the studied Ascomycota ones, with the exception of Schizosaccharomyces pombe (Sp) which ranges in an out-group position compared with both higher fungi divisions. When comparison is extended to other kingdoms, fungal COX1 sequences are found to be more related to algae and plant ones (more than 57.5% aa similarity) than to animal sequences (53.6% aa similarity), contrasting with the previously established close relationship between fungi and animals, based on comparisons of nuclear genes. The four Aa cox1 introns are homologous to Ascomycota or algae cox1 introns sharing the same location within the exonic sequences. The percentages of identity of the intronic nucleotide sequences suggest a possible acquisition by lateral transfers of ancestral copies or of their derived sequences. These identities extend over the whole intronic sequences, arguing in favor of a transfer of the complete intron rather than a transfer limited to the encoded ORF. The intron i4 shares 74% of identity, at the nucleotidic level, with the Podospora anserina (Pa) intron i14, and up to 90.5% of aa similarity between the encoded proteins, i.e. the highest values reported to date between introns of two phylogenetically distant species. This low divergence argues for a recent lateral transfer between the two species. On the contrary, the low sequence identities (below 36%) observed between Aa i1 and the homologous Sp i1 or Prototheca wickeramii (Pw) i1 suggest a long evolution time after the separation of these sequences. The introns i2 and i3 possessed intermediate percentages of identity with their homologous Ascomycota introns. This is the first report of the complete nucleotide sequence and molecular organization of a mitochondrial cox1 gene of any member of the Basidiomycota division.
ERIC Educational Resources Information Center
Limongelli, Carla; Sciarrone, Filippo; Temperini, Marco; Vaste, Giulia
2011-01-01
LS-Lab provides automatic support to comparison/evaluation of the Learning Object Sequences produced by different Curriculum Sequencing Algorithms. Through this framework a teacher can verify the correspondence between the behaviour of different sequencing algorithms and her pedagogical preferences. In fact the teacher can compare algorithms…
Finding functional features in Saccharomyces genomes by phylogenetic footprinting.
Cliften, Paul; Sudarsanam, Priya; Desikan, Ashwin; Fulton, Lucinda; Fulton, Bob; Majors, John; Waterston, Robert; Cohen, Barak A; Johnston, Mark
2003-07-04
The sifting and winnowing of DNA sequence that occur during evolution cause nonfunctional sequences to diverge, leaving phylogenetic footprints of functional sequence elements in comparisons of genome sequences. We searched for such footprints among the genome sequences of six Saccharomyces species and identified potentially functional sequences. Comparison of these sequences allowed us to revise the catalog of yeast genes and identify sequence motifs that may be targets of transcriptional regulatory proteins. Some of these conserved sequence motifs reside upstream of genes with similar functional annotations or similar expression patterns or those bound by the same transcription factor and are thus good candidates for functional regulatory sequences.
Assessing pooled BAC and whole genome shotgun strategies for assembly of complex genomes.
Haiminen, Niina; Feltus, F Alex; Parida, Laxmi
2011-04-15
We investigate if pooling BAC clones and sequencing the pools can provide for more accurate assembly of genome sequences than the "whole genome shotgun" (WGS) approach. Furthermore, we quantify this accuracy increase. We compare the pooled BAC and WGS approaches using in silico simulations. Standard measures of assembly quality focus on assembly size and fragmentation, which are desirable for large whole genome assemblies. We propose additional measures enabling easy and visual comparison of assembly quality, such as rearrangements and redundant sequence content, relative to the known target sequence. The best assembly quality scores were obtained using 454 coverage of 15× linear and 5× paired (3kb insert size) reads (15L-5P) on Arabidopsis. This regime gave similarly good results on four additional plant genomes of very different GC and repeat contents. BAC pooling improved assembly scores over WGS assembly, coverage and redundancy scores improving the most. BAC pooling works better than WGS, however, both require a physical map to order the scaffolds. Pool sizes up to 12Mbp work well, suggesting this pooling density to be effective in medium-scale re-sequencing applications such as targeted sequencing of QTL intervals for candidate gene discovery. Assuming the current Roche/454 Titanium sequencing limitations, a 12 Mbp region could be re-sequenced with a full plate of linear reads and a half plate of paired-end reads, yielding 15L-5P coverage after read pre-processing. Our simulation suggests that massively over-sequencing may not improve accuracy. Our scoring measures can be used generally to evaluate and compare results of simulated genome assemblies.
Van Hoeck, Arne; Horemans, Nele; Monsieurs, Pieter; Cao, Hieu Xuan; Vandenhove, Hildegarde; Blust, Ronny
2015-01-01
Freshwater duckweed, comprising the smallest, fastest growing and simplest macrophytes has various applications in agriculture, phytoremediation and energy production. Lemna minor, the so-called common duckweed, is a model system of these aquatic plants for ecotoxicological bioassays, genetic transformation tools and industrial applications. Given the ecotoxic relevance and high potential for biomass production, whole-genome information of this cosmopolitan duckweed is needed. The 472 Mbp assembly of the L. minor genome (2n = 40; estimated 481 Mbp; 98.1 %) contains 22,382 protein-coding genes and 61.5 % repetitive sequences. The repeat content explains 94.5 % of the genome size difference in comparison with the greater duckweed, Spirodela polyrhiza (2n = 40; 158 Mbp; 19,623 protein-coding genes; and 15.79 % repetitive sequences). Comparison of proteins from other monocot plants, protein ortholog identification, OrthoMCL, suggests 1356 duckweed-specific groups (3367 proteins, 15.0 % total L. minor proteins) and 795 Lemna-specific groups (2897 proteins, 12.9 % total L. minor proteins). Interestingly, proteins involved in biosynthetic processes in response to various stimuli and hydrolase activities are enriched in the Lemna proteome in comparison with the Spirodela proteome. The genome sequence and annotation of L. minor protein-coding genes provide new insights in biological understanding and biomass production applications of Lemna species.
Salton, S R
1991-09-01
A nervous system-specific mRNA that is rapidly induced in PC12 cells to a greater extent by nerve growth factor (NGF) than by epidermal growth factor treatment has been cloned. The polypeptide deduced from the nucleic acid sequence of the NGF33.1 cDNA clone contains regions of amino acid sequence identity with that predicted by the cDNA clone VGF, and further analysis suggests that both NGF33.1 and VGF cDNA clones very likely correspond to the same mRNA (VGF). In this report both the nucleic acid sequence that corresponds to VGF mRNA and the polypeptide predicted by the NGF33.1 cDNA clone are presented. Genomic Southern analysis and database comparison did not detect additional sequences with high homology to the VGF gene. Induction of VGF mRNA by depolarization and phorbol 12-myristate 13-acetate treatment was greater than by serum stimulation or protein kinase A pathway activation. These studies suggest that VGF mRNA is induced to the greatest extent by NGF treatment and that VGF is one of the most rapidly regulated neuronal mRNAs identified in PC12 cells.
Thomas C. Brown; David Kingsley; George L. Peterson; Nicholas E. Flores; Andrea Clarke; Andrej Birjulin
2008-01-01
We examined the reliability of a large set of paired comparison value judgments involving public goods, private goods, and sums of money. As respondents progressed through a random sequence of paired choices they were each given, their response time decreased and they became more consistent, apparently fine-tuning their responses, suggesting that respondents tend to...
Edwards, Jan; Beckman, Mary E.
2009-01-01
While broad-focus comparisons of consonant inventories across children acquiring different language can suggest that phonological development follows a universal sequence, finer-grained statistical comparisons can reveal systematic differences. This cross-linguistic study of word-initial lingual obstruents examined some effects of language-specific frequencies on consonant mastery. Repetitions of real words were elicited from 2- and 3-year-old children who were monolingual speakers of English, Cantonese, Greek, or Japanese. The repetitions were recorded and transcribed by an adult native speaker for each language. Results found support for both language-universal effects in phonological acquisition and for language-specific influences related to phoneme and phoneme sequence frequency. These results suggest that acquisition patterns that are common across languages arise in two ways. One influence is direct, via the universal constraints imposed by the physiology and physics of speech production and perception, and how these predict which contrasts will be easy and which will be difficult for the child to learn to control. The other influence is indirect, via the way universal principles of ease of perception and production tend to influence the lexicons of many languages through commonly attested sound changes. PMID:19890438
Parenchymal signal intensity in 3-T body MRI of dogs with hematopoietic neoplasia.
Feeney, Daniel A; Sharkey, Leslie C; Steward, Susan M; Bahr, Katherine L; Henson, Michael S; Ito, Daisuke; O'Brien, Timothy D; Jessen, Carl R; Husbands, Brian D; Borgatti, Antonella; Modiano, Jaime F
2013-04-01
We performed a preliminary study involving 10 dogs to assess the applicability of body MRI for staging of canine diffuse hematopoietic neoplasia. T1-weighted (before and after intravenous gadolinium), T2-weighted, in-phase, out-of-phase, and short tau inversion recovery pulse sequences were used. By using digital region of interest (ROI) and visual comparison techniques, relative parenchymal organ (medial iliac lymph nodes, liver, spleen, kidney cortex, and kidney medulla) signal intensity was quantified as less than, equal to, or greater than that of skeletal muscle in 2 clinically normal young adult dogs and 10 dogs affected with either B-cell lymphoma (n = 7) or myelodysplastic syndrome (n = 3). Falciform fat and urinary bladder were evaluated to provide additional perspective regarding signal intensity from the pulse sequences. Dogs with nonfocal disease could be distinguished from normal dogs according to both the visual and ROI signal-intensity relationships. In normal dogs, liver signal intensity on the T2-weighted sequence was greater than that of skeletal muscle by using either the visual or ROI approach. However in affected dogs, T2-weighted liver signal intensity was less than that of skeletal muscle by using either the ROI approach (10 of 10 dogs) or the visual approach (9 of 10 dogs). These findings suggest that the comparison of relative signal intensity among organs may have merit as a research model for infiltrative parenchymal disease (ROI approach) or metabolic effects of disease; this comparison may have practical clinical applicability (visual comparison approach) as well.
Parenchymal Signal Intensity in 3-T Body MRI of Dogs with Hematopoietic Neoplasia
Feeney, Daniel A; Sharkey, Leslie C; Steward, Susan M; Bahr, Katherine L; Henson, Michael S; Ito, Daisuke; O'Brien, Timothy D; Jessen, Carl R; Husbands, Brian D; Borgatti, Antonella; Modiano, Jaime F
2013-01-01
We performed a preliminary study involving 10 dogs to assess the applicability of body MRI for staging of canine diffuse hematopoietic neoplasia. T1-weighted (before and after intravenous gadolinium), T2-weighted, in-phase, out-of-phase, and short tau inversion recovery pulse sequences were used. By using digital region of interest (ROI) and visual comparison techniques, relative parenchymal organ (medial iliac lymph nodes, liver, spleen, kidney cortex, and kidney medulla) signal intensity was quantified as less than, equal to, or greater than that of skeletal muscle in 2 clinically normal young adult dogs and 10 dogs affected with either B-cell lymphoma (n = 7) or myelodysplastic syndrome (n = 3). Falciform fat and urinary bladder were evaluated to provide additional perspective regarding signal intensity from the pulse sequences. Dogs with nonfocal disease could be distinguished from normal dogs according to both the visual and ROI signal-intensity relationships. In normal dogs, liver signal intensity on the T2-weighted sequence was greater than that of skeletal muscle by using either the visual or ROI approach. However in affected dogs, T2-weighted liver signal intensity was less than that of skeletal muscle by using either the ROI approach (10 of 10 dogs) or the visual approach (9 of 10 dogs). These findings suggest that the comparison of relative signal intensity among organs may have merit as a research model for infiltrative parenchymal disease (ROI approach) or metabolic effects of disease; this comparison may have practical clinical applicability (visual comparison approach) as well. PMID:23582424
Chen, Jie; Moinard, Magalie; Xu, Jianping; Wang, Shouxian; Foulongne-Oriol, Marie; Zhao, Ruilin; Hyde, Kevin D.; Callac, Philippe
2016-01-01
The internal transcribed spacer (ITS) region of the nuclear ribosomal RNA gene cluster is widely used in fungal taxonomy and phylogeographic studies. The medicinal and edible mushroom Agaricus subrufescens has a worldwide distribution with a high level of polymorphism in the ITS region. A previous analysis suggested notable ITS sequence heterogeneity within the wild French isolate CA487. The objective of this study was to investigate the pattern and potential mechanism of ITS sequence heterogeneity within this strain. Using PCR, cloning, and sequencing, we identified three types of ITS sequences, A, B, and C with a balanced distribution, which differed from each other at 13 polymorphic positions. The phylogenetic comparisons with samples from different continents revealed that the type C sequence was similar to those found in Oceanian and Asian specimens of A. subrufescens while types A and B sequences were close to those found in the Americas or in Europe. We further investigated the inheritance of these three ITS sequence types by analyzing their distribution among single-spore isolates from CA487. In this analysis, three co-dominant markers were used firstly to distinguish the homokaryotic offspring from the heterokaryotic offspring. The homokaryotic offspring were then analyzed for their ITS types. Our genetic analyses revealed that types A and B were two alleles segregating at one locus ITSI, while type C was not allelic with types A and B but was located at another unlinked locus ITSII. Furthermore, type C was present in only one of the two constitutive haploid nuclei (n) of the heterokaryotic (n+n) parent CA487. These data suggest that there was a relatively recent introduction of the type C sequence and a duplication of the ITS locus in this strain. Whether other genes were also transferred and duplicated and their impacts on genome structure and stability remain to be investigated. PMID:27228131
Takagi, M; Kobayashi, N; Sugimoto, M; Fujii, T; Watari, J; Yano, K
1987-01-01
The expression of a LEU gene from Candida maltosa (designated as C-LEU2) isolated previously (Kawamura et al. 1983) was shown to be regulated, when transferred into Saccharomyces cerevisiae, by leucine and threonine in the medium, as in the case of LEU2 gene of S. cerevisiae. The coding region together with the regulatory region was subcloned and the nucleotide sequence was determined. When the sequence of the coding region was compared with that of LEU2, the homology was 72% for base pairs and 76% for deduced amino acids. Comparison of the regulatory region of C-LEU2 with those of LEU1 and LEU2 suggested a few short consensus sequences which are involved in regulation of gene expression by leucine and threonine in the medium.
Chen, Jianchi; Civerolo, Edwin L; Jarret, Robert L; Van Sluys, Marie-Anne; de Oliveira, Mariana C
2005-02-01
Xylella fastidiosa causes many important plant diseases including Pierce's disease (PD) in grape and almond leaf scorch disease (ALSD). DNA-based methodologies, such as randomly amplified polymorphic DNA (RAPD) analysis, have been playing key roles in genetic information collection of the bacterium. This study further analyzed the nucleotide sequences of selected RAPDs from X. fastidiosa strains in conjunction with the available genome sequence databases and unveiled several previously unknown novel genetic traits. These include a sequence highly similar to those in the phage family of Podoviridae. Genome comparisons among X. fastidiosa strains suggested that the "phage" is currently active. Two other RAPDs were also related to horizontal gene transfer: one was part of a broadly distributed cryptic plasmid and the other was associated with conjugal transfer. One RAPD inferred a genomic rearrangement event among X. fastidiosa PD strains and another identified a single nucleotide polymorphism of evolutionary value.
Recognition of Yeast Species from Gene Sequence Comparisons
USDA-ARS?s Scientific Manuscript database
This review discusses recognition of yeast species from gene sequence comparisons, which have been responsible for doubling the number of known yeasts over the past decade. The resolution provided by various single gene sequences is examined for both ascomycetous and basidiomycetous species, and th...
The Evolution of Cataclysmic Variables as Revealed by Their Donor Stars
NASA Astrophysics Data System (ADS)
Knigge, Christian; Baraffe, Isabelle; Patterson, Joseph
2011-06-01
We present an attempt to reconstruct the complete evolutionary path followed by cataclysmic variables (CVs), based on the observed mass-radius relationship of their donor stars. Along the way, we update the semi-empirical CV donor sequence presented previously by one of us, present a comprehensive review of the connection between CV evolution and the secondary stars in these systems, and reexamine most of the commonly used magnetic braking (MB) recipes, finding that even conceptually similar ones can differ greatly in both magnitude and functional form. The great advantage of using donor radii to infer mass-transfer and angular-momentum-loss (AML) rates is that they sample the longest accessible timescales and are most likely to represent the true secular (evolutionary average) rates. We show explicitly that if CVs exhibit long-term mass-transfer-rate fluctuations, as is often assumed, the expected variability timescales are so long that other tracers of the mass-transfer rate—including white dwarf (WD) temperatures—become unreliable. We carefully explore how much of the radius difference between CV donors and models of isolated main-sequence stars may be due to mechanisms other than mass loss. The tidal and rotational deformation of Roche-lobe-filling stars produces ~= 4.5% radius inflation below the period gap and ~= 7.9% above. A comparison of stellar models to mass-radius data for non-interacting stars suggests a real offset of ~= 1.5% for fully convective stars (i.e., donors below the gap) and ~= 4.9% for partially radiative ones (donors above the gap). We also show that donor bloating due to irradiation is probably smaller than, and at most comparable to, these effects. After calibrating our models to account for these issues, we fit self-consistent evolution sequences to our compilation of donor masses and radii. In the standard model of CV evolution, AMLs below the period gap are assumed to be driven solely by gravitational radiation (GR), while AMLs above the gap are usually described by an MB law first suggested by Rappaport et al. We adopt simple scaled versions of these AML recipes and find that these are able to match the data quite well. The optimal scaling factors turn out to be f GR = 2.47 ± 0.22 below the gap and f MB = 0.66 ± 0.05 above (the errors here are purely statistical, and the standard model corresponds to f GR = f MB = 1). This revised model describes the mass-radius data significantly better than the standard model. Some of the most important implications and applications of our results are as follows. (1) The revised evolution sequence yields correct locations for the minimum period and the upper edge of the period gap; the standard sequence does not. (2) The observed spectral types of CV donors are compatible with both standard and revised models. (3) A direct comparison of predicted and observed WD temperatures suggests an even higher value for f GR, but this comparison is sensitive to the assumed mean WD mass and the possible existence of mass-transfer-rate fluctuations. (4) The predicted absolute magnitudes of donor stars in the near-infrared form a lower envelope around the observed absolute magnitudes for systems with parallax distances. This is true for all of our sequences, so any of them can be used to set firm lower limits on (or obtain rough estimates of) the distances toward CVs based only on P orb and single epoch near-IR measurements. (5) Both standard and revised sequences predict that short-period CVs should be susceptible to dwarf nova (DN) eruptions, consistent with observations. However, both sequences also predict that the fraction of DNe among long-period CVs should decline with P orb above the period gap. Observations suggest the opposite behavior, and we discuss the possible explanations for this discrepancy. (6) Approximate orbital period distributions constructed from our evolution sequences suggest that the ratio of long-period CVs to short-period, pre-bounce CVs is about 3 × higher for the revised sequence than the standard one. This may resolve a long-standing problem in CV evolution. Tables describing our donor and evolution sequences are provided in electronically readable form.
Ren, Ting; Liang, Shiri; Zhao, Ayong; He, Ke
2016-02-10
To understand the phyletic evolution of geese, the complete mitogenome of the Zhedong goose was sequenced for the first time. It is composed of 37 genes and 1 control region, and the structure and arrangement of all genes sequenced are identical to those of other goose breeds. We confirmed the accuracy of the mitogenome sequence through RT-PCR and found numts from amplification in genomic DNA. Comparisons of the phylogenetic trees and sequences of geese that were suggested a clade of Chinese geese, except the Yili goose, were classified in the Euro clade. Several breed-specific mutations and Chinese breed-specific mutations were found. Our results suggest that Chinese geese evolved from the swan goose, splitting from their common ancestors at different times, which was consistent with studies before. Furthermore, numts in most genes of Zhedong goose clustered with European geese in the phylogenetic tree, suggesting that the haplotypes in the Euro clade might be more ancient. However, the mitogenome of the swan goose shows distinctive evolutionary positions in some genes, which suggest its unclear relationship with Chinese geese and European geese. The current study added to the understanding of the evolution of geese and provided evidence that the typing of numts is an encouraging way for the evolutionary study of geese and the mitochondrial genomes of geese deserve further investigation. Copyright © 2015 Elsevier B.V. All rights reserved.
Target Site Recognition by a Diversity-Generating Retroelement
Guo, Huatao; Tse, Longping V.; Nieh, Angela W.; Czornyj, Elizabeth; Williams, Steven; Oukil, Sabrina; Liu, Vincent B.; Miller, Jeff F.
2011-01-01
Diversity-generating retroelements (DGRs) are in vivo sequence diversification machines that are widely distributed in bacterial, phage, and plasmid genomes. They function to introduce vast amounts of targeted diversity into protein-encoding DNA sequences via mutagenic homing. Adenine residues are converted to random nucleotides in a retrotransposition process from a donor template repeat (TR) to a recipient variable repeat (VR). Using the Bordetella bacteriophage BPP-1 element as a prototype, we have characterized requirements for DGR target site function. Although sequences upstream of VR are dispensable, a 24 bp sequence immediately downstream of VR, which contains short inverted repeats, is required for efficient retrohoming. The inverted repeats form a hairpin or cruciform structure and mutational analysis demonstrated that, while the structure of the stem is important, its sequence can vary. In contrast, the loop has a sequence-dependent function. Structure-specific nuclease digestion confirmed the existence of a DNA hairpin/cruciform, and marker coconversion assays demonstrated that it influences the efficiency, but not the site of cDNA integration. Comparisons with other phage DGRs suggested that similar structures are a conserved feature of target sequences. Using a kanamycin resistance determinant as a reporter, we found that transplantation of the IMH and hairpin/cruciform-forming region was sufficient to target the DGR diversification machinery to a heterologous gene. In addition to furthering our understanding of DGR retrohoming, our results suggest that DGRs may provide unique tools for directed protein evolution via in vivo DNA diversification. PMID:22194701
The limits of protein sequence comparison?
Pearson, William R; Sierk, Michael L
2010-01-01
Modern sequence alignment algorithms are used routinely to identify homologous proteins, proteins that share a common ancestor. Homologous proteins always share similar structures and often have similar functions. Over the past 20 years, sequence comparison has become both more sensitive, largely because of profile-based methods, and more reliable, because of more accurate statistical estimates. As sequence and structure databases become larger, and comparison methods become more powerful, reliable statistical estimates will become even more important for distinguishing similarities that are due to homology from those that are due to analogy (convergence). The newest sequence alignment methods are more sensitive than older methods, but more accurate statistical estimates are needed for their full power to be realized. PMID:15919194
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steindorff, Andrei S.; Noronha, Elilane F.; Ulhoa, Cirano J.
2015-03-17
Biological control is a complex process which requires many mechanisms and a high diversity of biochemical pathways. The species of Trichoderma harzianum are well known for their biocontrol activity against many plant pathogens. To gain new insights into the biocontrol mechanism used by T. harzianum, we sequenced the isolate TR274 genome using Illumina. The assembly was performed using AllPaths-LG with a maximum coverage of 100x. The assembly resulted in 2282 contigs with a N50 of 37033bp. The genome size generated was 40.8 Mb and the GC content was 47.7%, similar to other Trichoderma genomes. Using the JGI Annotation Pipeline wemore » predicted 13,932 genes with a high transcriptome support. CEGMA tests suggested 100% genome completeness and 97.9% of RNA-SEQ reads were mapped to the genome. The phylogenetic comparison using orthologous proteins with all Trichoderma genomes sequenced at JGI, corroborates the Trichoderma (T. asperellum and T. atroviride), Longibrachiatum (T. reesei and T. longibrachiatum) and Pachibasium (T. harzianum and T. virens) section division described previously. The comparison between two Trichoderma harzianum species suggests a high genome similarity but some strain-specific expansions. Analyses of the secondary metabolites, CAZymes, transporters, proteases, transcription factors were performed. The Pachybasium section expanded virtually all categories analyzed compared with the other sections, specially Longibrachiatum section, that shows a clear contraction. These results suggests that these proteins families have an important role in their respective phenotypes. Future analysis will improve the understanding of this complex genus and give some insights about its lifestyle and the interactions with the environment.« less
Gallus, Susanne; Lammers, Fritjof
2016-01-01
The autonomous transposable element LINE-1 is a highly abundant element that makes up between 15% and 20% of therian mammal genomes. Since their origin before the divergence of marsupials and placental mammals, LINE-1 elements have contributed actively to the genome landscape. A previous in silico screen of the Tasmanian devil genome revealed a lack of functional coding LINE-1 sequences. In this study we present the results of an in vitro analysis from a partial LINE-1 reverse transcriptase coding sequence in five marsupial species. Our experimental screen supports the in silico findings of the genome-wide degradation of LINE-1 sequences in the Tasmanian devil, and identifies a high frequency of degraded LINE-1 sequences in other Australian marsupials. The comparison between the experimentally obtained LINE-1 sequences and reference genome assemblies suggests that conclusions from in silico analyses of retrotransposition activity can be influenced by incomplete genome assemblies from short reads. PMID:27389686
Onofri, Chiara; de Meijer, Etienne P M; Mandolino, Giuseppe
2015-08-01
Sequence variants of THCA- and CBDA-synthases were isolated from different Cannabis sativa L. strains expressing various wild-type and mutant chemical phenotypes (chemotypes). Expressed and complete sequences were obtained from mature inflorescences. Each strain was shown to have a different specificity and/or ability to convert the precursor CBGA into CBDA and/or THCA type products. The comparison of the expressed sequences led to the identification of different mutations, all of them due to SNPs. These SNPs were found to relate to the cannabinoid composition of the inflorescence at maturity and are therefore proposed to have a functional significance. The amount of variation was found to be higher within the CBDAS sequence family than in the THCAS family, suggesting a more recent evolution of THCA-forming enzymes from the CBDAS group. We therefore consider CBDAS as the ancestral type of these synthases. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sadofsky, M; Connelly, S; Manley, J L; Alwine, J C
1985-01-01
Our previous studies of the 3'-end processing of simian virus 40 late mRNAs indicated the existence of an essential element (or elements) downstream of the AAUAAA signal. We report here the use of transient expression analysis to study a functional element which we located within the sequence AGGUUUUUU, beginning 59 nucleotides downstream of the recognized signal AAUAAA. Deletion of this element resulted in (i) at least a 75% drop in 3'-end processing at the normal site and (ii) appearance of readthrough transcripts with alternate 3' ends. Some flexibility in the downstream position of this element relative to the AAUAAA was noted by deletion analysis. Using computer sequence comparison, we located homologous regions within downstream sequences of other genes, suggesting a generalized sequence element. In addition, specific complementarity is noted between the downstream element and U4 RNA. The possibility that this complementarity could participate in 3'-end site selection is discussed. Images PMID:3016512
Haseloff, J; Goelet, P; Zimmern, D; Ahlquist, P; Dasgupta, R; Kaesberg, P
1984-01-01
The plant viruses alfalfa mosaic virus (AMV) and brome mosaic virus (BMV) each divide their genetic information among three RNAs while tobacco mosaic virus (TMV) contains a single genomic RNA. Amino acid sequence comparisons suggest that the single proteins encoded by AMV RNA 1 and BMV RNA 1 and by AMV RNA 2 and BMV RNA 2 are related to the NH2-terminal two-thirds and the COOH-terminal one-third, respectively, of the largest protein encoded by TMV. Separating these two domains in the TMV RNA sequence is an amber termination codon, whose partial suppression allows translation of the downstream domain. Many of the residues that the TMV read-through domain and the segmented plant viruses have in common are also conserved in a read-through domain found in the nonstructural polyprotein of the animal alphaviruses Sindbis and Middelburg. We suggest that, despite substantial differences in gene organization and expression, all of these viruses use related proteins for common functions in RNA replication. Reassortment of functional modules of coding and regulatory sequence from preexisting viral or cellular sources, perhaps via RNA recombination, may be an important mechanism in RNA virus evolution. PMID:6611550
Erickson, Harold P.
2009-01-01
Summary The eukaryotic cytoskeleton appears to have evolved from ancestral precursors related to prokaryotic FtsZ and MreB. FtsZ and MreB show 40−50% sequence identity across different bacterial and archaeal species. Here I suggest that this represents the limit of divergence that is consistent with maintaining their functions for cytokinesis and cell shape. Previous analyses have noted that tubulin and actin are highly conserved across eukaryotic species, but so divergent from their prokaryotic relatives as to be hardly recognizable from sequence comparisons. One suggestion for this extreme divergence of tubulin and actin is that it occurred as they evolved very different functions from FtsZ and MreB. I will present new arguments favoring this suggestion, and speculate on pathways. Moreover, the extreme conservation of tubulin and actin across eukaryotic species is not due to an intrinsic lack of variability, but is attributed to their acquisition of elaborate mechanisms for assembly dynamics and their interactions with multiple motor and binding proteins. A new structure-based sequence alignment identifies amino acids that are conserved from FtsZ to tubulins. The highly conserved amino acids are not those forming the subunit core or protofilament interface, but those involved in binding and hydrolysis of GTP. PMID:17563102
Guisinger, Mary M; Chumley, Timothy W; Kuehl, Jennifer V; Boore, Jeffrey L; Jansen, Robert K
2010-02-01
Plastid genomes of the grasses (Poaceae) are unusual in their organization and rates of sequence evolution. There has been a recent surge in the availability of grass plastid genome sequences, but a comprehensive comparative analysis of genome evolution has not been performed that includes any related families in the Poales. We report on the plastid genome of Typha latifolia, the first non-grass Poales sequenced to date, and we present comparisons of genome organization and sequence evolution within Poales. Our results confirm that grass plastid genomes exhibit acceleration in both genomic rearrangements and nucleotide substitutions. Poaceae have multiple structural rearrangements, including three inversions, three genes losses (accD, ycf1, ycf2), intron losses in two genes (clpP, rpoC1), and expansion of the inverted repeat (IR) into both large and small single-copy regions. These rearrangements are restricted to the Poaceae, and IR expansion into the small single-copy region correlates with the phylogeny of the family. Comparisons of 73 protein-coding genes for 47 angiosperms including nine Poaceae genera confirm that the branch leading to Poaceae has significantly accelerated rates of change relative to other monocots and angiosperms. Furthermore, rates of sequence evolution within grasses are lower, indicating a deceleration during diversification of the family. Overall there is a strong correlation between accelerated rates of genomic rearrangements and nucleotide substitutions in Poaceae, a phenomenon that has been noted recently throughout angiosperms. The cause of the correlation is unknown, but faulty DNA repair has been suggested in other systems including bacterial and animal mitochondrial genomes.
Solignac, Michel; Mougel, Florence; Vautrin, Dominique; Monnerot, Monique; Cornuet, Jean-Marie
2007-01-01
The honey bee is a key model for social behavior and this feature led to the selection of the species for genome sequencing. A genetic map is a necessary companion to the sequence. In addition, because there was originally no physical map for the honey bee genome project, a meiotic map was the only resource for organizing the sequence assembly on the chromosomes. We present the genetic (meiotic) map here and describe the main features that emerged from comparison with the sequence-based physical map. The genetic map of the honey bee is saturated and the chromosomes are oriented from the centromeric to the telomeric regions. The map is based on 2,008 markers and is about 40 Morgans (M) long, resulting in a marker density of one every 2.05 centiMorgans (cM). For the 186 megabases (Mb) of the genome mapped and assembled, this corresponds to a very high average recombination rate of 22.04 cM/Mb. Honey bee meiosis shows a relatively homogeneous recombination rate along and across chromosomes, as well as within and between individuals. Interference is higher than inferred from the Kosambi function of distance. In addition, numerous recombination hotspots are dispersed over the genome. The very large genetic length of the honey bee genome, its small physical size and an almost complete genome sequence with a relatively low number of genes suggest a very promising future for association mapping in the honey bee, particularly as the existence of haploid males allows easy bulk segregant analysis.
El-Mogharbel, Nisrine; Wakefield, Matthew; Deakin, Janine E; Tsend-Ayush, Enkhjargal; Grützner, Frank; Alsop, Amber; Ezaz, Tariq; Marshall Graves, Jennifer A
2007-01-01
We isolated and characterized a cluster of platypus DMRT genes and compared their arrangement, location, and sequence across vertebrates. The DMRT gene cluster on human 9p24.3 harbors, in order, DMRT1, DMRT3, and DMRT2, which share a DM domain. DMRT1 is highly conserved and involved in sexual development in vertebrates, and deletions in this region cause sex reversal in humans. Sequence comparisons of DMRT genes between species have been valuable in identifying exons, control regions, and conserved nongenic regions (CNGs). The addition of platypus sequences is expected to be particularly valuable, since monotremes fill a gap in the vertebrate genome coverage. We therefore isolated and fully sequenced platypus BAC clones containing DMRT3 and DMRT2 as well as DMRT1 and then generated multispecies alignments and ran prediction programs followed by experimental verification to annotate this gene cluster. We found that the three genes have 58-66% identity to their human orthologues, lie in the same order as in other vertebrates, and colocate on 1 of the 10 platypus sex chromosomes, X5. We also predict that optimal annotation of the newly sequenced platypus genome will be challenging. The analysis of platypus sequence revealed differences in structure and sequence of the DMRT gene cluster. Multispecies comparison was particularly effective for detecting CNGs, revealing several novel potential regulatory regions within DMRT3 and DMRT2 as well as DMRT1. RT-PCR indicated that platypus DMRT1 and DMRT3 are expressed specifically in the adult testis (and not ovary), but DMRT2 has a wider expression profile, as it does for other mammals. The platypus DMRT1 expression pattern, and its location on an X chromosome, suggests an involvement in monotreme sexual development.
Najm, Nour-Addeen; Meyer-Kayser, Elisabeth; Hoffmann, Lothar; Herb, Ingrid; Fensterer, Veronika; Pfister, Kurt; Silaghi, Cornelia
2014-06-01
Wild canines which are closely related to dogs constitute a potential reservoir for haemoparasites by both hosting tick species that infest dogs and harbouring tick-transmitted canine haemoparasites. In this study, the prevalence of Babesia spp. and Theileria spp. was investigated in German red foxes (Vulpes vulpes) and their ticks. DNA extracts of 261 spleen samples and 1953 ticks included 4 tick species: Ixodes ricinus (n=870), I. canisuga (n=585), I. hexagonus (n=485), and Dermacentor reticulatus (n=13) were examined for the presence of Babesia/Theileria spp. by a conventional PCR targeting the 18S rRNA gene. One hundred twenty-one out of 261 foxes (46.4%) were PCR-positive. Out of them, 44 samples were sequenced, and all sequences had 100% similarity to Theileria annae. Similarly, sequencing was carried out for 65 out of 118 PCR-positive ticks. Theileria annae DNA was detected in 61.5% of the sequenced samples, Babesia microti DNA was found in 9.2%, and Babesia venatorum in 7.6% of the sequenced samples. The foxes were most positive in June and October, whereas the peak of tick positivity was in October. Furthermore, the positivity of the ticks was higher for I. canisuga in comparison to the other tick species and for nymphs in comparison to adults. The high prevalence of T. annae DNA in red foxes in this study suggests a reservoir function of those animals for T. annae. To our knowledge, this is the first report of T. annae in foxes from Germany as well as the first detection of T. annae and B. microti in the fox tick I. canisuga. Detection of DNA of T. annae and B. microti in three tick species collected from foxes adds new potential vectors for these two pathogens and suggests a potential role of the red fox in their natural endemic cycles. Copyright © 2014 Elsevier GmbH. All rights reserved.
Bonfiglio, Silvia; Vanni, Irene; Rossella, Valeria; Truini, Anna; Lazarevic, Dejan; Dal Bello, Maria Giovanna; Alama, Angela; Mora, Marco; Rijavec, Erika; Genova, Carlo; Cittaro, Davide; Grossi, Francesco; Coco, Simona
2016-08-30
Next Generation Sequencing (NGS) has become a valuable tool for molecular landscape characterization of cancer genomes, leading to a better understanding of tumor onset and progression, and opening new avenues in translational oncology. Formalin-fixed paraffin-embedded (FFPE) tissue is the method of choice for storage of clinical samples, however low quality of FFPE genomic DNA (gDNA) can limit its use for downstream applications. To investigate the FFPE specimen suitability for NGS analysis and to establish the performance of two solution-based exome capture technologies, we compared the whole-exome sequencing (WES) data of gDNA extracted from 5 fresh frozen (FF) and 5 matched FFPE lung adenocarcinoma tissues using: SeqCap EZ Human Exome v.3.0 (Roche NimbleGen) and SureSelect XT Human All Exon v.5 (Agilent Technologies). Sequencing metrics on Illumina HiSeq were optimal for both exome systems and comparable among FFPE and FF samples, with a slight increase of PCR duplicates in FFPE, mainly in Roche NimbleGen libraries. Comparison of single nucleotide variants (SNVs) between FFPE-FF pairs reached overlapping values >90 % in both systems. Both WES showed high concordance with target re-sequencing data by Ion PGM™ in 22 lung-cancer genes, regardless the source of samples. Exon coverage of 623 cancer-related genes revealed high coverage efficiency of both kits, proposing WES as a valid alternative to target re-sequencing. High-quality and reliable data can be successfully obtained from WES of FFPE samples starting from a relatively low amount of input gDNA, suggesting the inclusion of NGS-based tests into clinical contest. In conclusion, our analysis suggests that the WES approach could be extended to a translational research context as well as to the clinic (e.g. to study rare malignancies), where the simultaneous analysis of the whole coding region of the genome may help in the detection of cancer-linked variants.
Fomukong, N G; Tang, T H; al-Maamary, S; Ibrahim, W A; Ramayah, S; Yates, M; Zainuddin, Z F; Dale, J W
1994-12-01
DNA fingerprinting with the insertion sequence IS6110 (also known as IS986) has become established as a major tool for investigating the spread of tuberculosis. Most strains of Mycobacterium tuberculosis have multiple copies of IS6110, but a small minority carry a single copy only. We have examined selected strains from Malaysia, Tanzania and Oman, in comparison with M. bovis isolates and BCG strains carrying one or two copies of IS6110. The insertion sequence appears to be present in the same position in all these strains, which suggests that in these organisms the element is defective in transposition and that the loss of transposability may have occurred at an early stage in the evolution of the M. tuberculosis complex.
Poyau, A; Buchet, K; Godinot, C
1999-12-03
The human SURF1 gene encoding a protein involved in cytochrome c oxidase (COX) assembly, is mutated in most patients presenting Leigh syndrome associated with COX deficiency. Proteins homologous to the human Surf1 have been identified in nine eukaryotes and six prokaryotes using database alignment tools, structure prediction and/or cDNA sequencing. Their sequence comparison revealed a remarkable Surf1 conservation during evolution and put forward at least four highly conserved domains that should be essential for Surf1 function. In Paracoccus denitrificans, the Surf1 homologue is found in the quinol oxidase operon, suggesting that Surf1 is associated with a primitive quinol oxidase which belongs to the same superfamily as cytochrome oxidase.
Trempe, Maxime; Sabourin, Maxime; Rohbanfard, Hassan; Proteau, Luc
2011-03-01
Motor learning is a process that extends beyond training sessions. Specifically, physical practice triggers a series of physiological changes in the CNS that are regrouped under the term "consolidation" (Stickgold and Walker 2007). These changes can result in between-session improvement or performance stabilization (Walker 2005). In a series of three experiments, we tested whether consolidation also occurs following observation. In Experiment 1, participants observed an expert model perform a sequence of arm movements. Although we found evidence of observation learning, no significant difference was revealed between participants asked to reproduce the observed sequence either 5 min or 24 h later (no between-session improvement). In Experiment 2, two groups of participants observed an expert model perform two distinct movement sequences (A and B) either 10 min or 8 h apart; participants then physically performed both sequences after a 24-h break. Participants in the 8-h group performed Sequence B less accurately compared to participants in the 5-min group, suggesting that the memory representation of the first sequence had been stabilized and that it interfered with the learning of the second sequence. Finally, in Experiment 3, the initial observation phase was replaced by a physical practice phase. In contrast with the results of Experiment 2, participants in the 8-h group performed Sequence B significantly more accurately compared to participants in the 5-min group. Together, our results suggest that the memory representation of a skill learned through observation undergoes consolidation. However, consolidation of an observed motor skill leads to distinct behavioural outcomes in comparison with physical practice.
Mead, David A.; Lucas, Susan; Copeland, Alex; Lapidus, Alla; Cheng, Jan-Feng; Bruce, David C.; Goodwin, Lynne A.; Pitluck, Sam; Chertkov, Olga; Zhang, Xiaojing; Detter, John C.; Han, Cliff S.; Tapia, Roxanne; Land, Miriam; Hauser, Loren J.; Chang, Yun-juan; Kyrpides, Nikos C.; Ivanova, Natalia N.; Ovchinnikova, Galina; Woyke, Tanja; Brumm, Catherine; Hochstein, Rebecca; Schoenfeld, Thomas; Brumm, Phillip
2012-01-01
Paenibacillus sp.Y412MC10 was one of a number of organisms isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. The isolate was initially classified as a Geobacillus sp. Y412MC10 based on its isolation conditions and similarity to other organisms isolated from hot springs at Yellowstone National Park. Comparison of 16 S rRNA sequences within the Bacillales indicated that Geobacillus sp.Y412MC10 clustered with Paenibacillus species, and the organism was most closely related to Paenibacillus lautus. Lucigen Corp. prepared genomic DNA and the genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute. The genome sequence was deposited at the NCBI in October 2009 (NC_013406). The genome of Paenibacillus sp. Y412MC10 consists of one circular chromosome of 7,121,665 bp with an average G+C content of 51.2%. Comparison to other Paenibacillus species shows the organism lacks nitrogen fixation, antibiotic production and social interaction genes reported in other paenibacilli. The Y412MC10 genome shows a high level of synteny and homology to the draft sequence of Paenibacillus sp. HGF5, an organism from the Human Microbiome Project (HMP) Reference Genomes. This, combined with genomic CAZyme analysis, suggests an intestinal, rather than environmental origin for Y412MC10. PMID:23408395
Mead, David A; Lucas, Susan; Copeland, Alex; Lapidus, Alla; Cheng, Jan-Feng; Bruce, David C; Goodwin, Lynne A; Pitluck, Sam; Chertkov, Olga; Zhang, Xiaojing; Detter, John C; Han, Cliff S; Tapia, Roxanne; Land, Miriam; Hauser, Loren J; Chang, Yun-Juan; Kyrpides, Nikos C; Ivanova, Natalia N; Ovchinnikova, Galina; Woyke, Tanja; Brumm, Catherine; Hochstein, Rebecca; Schoenfeld, Thomas; Brumm, Phillip
2012-07-30
Paenibacillus sp.Y412MC10 was one of a number of organisms isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Service. The isolate was initially classified as a Geobacillus sp. Y412MC10 based on its isolation conditions and similarity to other organisms isolated from hot springs at Yellowstone National Park. Comparison of 16 S rRNA sequences within the Bacillales indicated that Geobacillus sp.Y412MC10 clustered with Paenibacillus species, and the organism was most closely related to Paenibacillus lautus. Lucigen Corp. prepared genomic DNA and the genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute. The genome sequence was deposited at the NCBI in October 2009 (NC_013406). The genome of Paenibacillus sp. Y412MC10 consists of one circular chromosome of 7,121,665 bp with an average G+C content of 51.2%. Comparison to other Paenibacillus species shows the organism lacks nitrogen fixation, antibiotic production and social interaction genes reported in other paenibacilli. The Y412MC10 genome shows a high level of synteny and homology to the draft sequence of Paenibacillus sp. HGF5, an organism from the Human Microbiome Project (HMP) Reference Genomes. This, combined with genomic CAZyme analysis, suggests an intestinal, rather than environmental origin for Y412MC10.
ERIC Educational Resources Information Center
Noell, George H.; Gresham, Frank M.
2001-01-01
Describes design logic and potential uses of a variant of the multiple-baseline design. The multiple-baseline multiple-sequence (MBL-MS) consists of multiple-baseline designs that are interlaced with one another and include all possible sequences of treatments. The MBL-MS design appears to be primarily useful for comparison of treatments taking…
Archaeon and archaeal virus diversity classification via sequence entropy and fractal dimension
NASA Astrophysics Data System (ADS)
Tremberger, George, Jr.; Gallardo, Victor; Espinoza, Carola; Holden, Todd; Gadura, N.; Cheung, E.; Schneider, P.; Lieberman, D.; Cheung, T.
2010-09-01
Archaea are important potential candidates in astrobiology as their metabolism includes solar, inorganic and organic energy sources. Archaeal viruses would also be expected to be present in a sustainable archaeal exobiological community. Genetic sequence Shannon entropy and fractal dimension can be used to establish a two-dimensional measure for classification and phylogenetic study of these organisms. A sequence fractal dimension can be calculated from a numerical series consisting of the atomic numbers of each nucleotide. Archaeal 16S and 23S ribosomal RNA sequences were studied. Outliers in the 16S rRNA fractal dimension and entropy plot were found to be halophilic archaea. Positive correlation (R-square ~ 0.75, N = 18) was observed between fractal dimension and entropy across the studied species. The 16S ribosomal RNA sequence entropy correlates with the 23S ribosomal RNA sequence entropy across species with R-square 0.93, N = 18. Entropy values correspond positively with branch lengths of a published phylogeny. The studied archaeal virus sequences have high fractal dimensions of 2.02 or more. A comparison of selected extremophile sequences with archaeal sequences from the Humboldt Marine Ecosystem database (Wood-Hull Oceanography Institute, MIT) suggests the presence of continuous sequence expression as inferred from distributions of entropy and fractal dimension, consistent with the diversity expected in an exobiological archaeal community.
Therien, Jesse B; Artz, Jacob H; Poudel, Saroj; Hamilton, Trinity L; Liu, Zhenfeng; Noone, Seth M; Adams, Michael W W; King, Paul W; Bryant, Donald A; Boyd, Eric S; Peters, John W
2017-01-01
The first generation of biochemical studies of complex, iron-sulfur-cluster-containing [FeFe]-hydrogenases and Mo-nitrogenase were carried out on enzymes purified from Clostridium pasteurianum (strain W5). Previous studies suggested that two distinct [FeFe]-hydrogenases are expressed differentially under nitrogen-fixing and non-nitrogen-fixing conditions. As a result, the first characterized [FeFe]-hydrogenase (CpI) is presumed to have a primary role in central metabolism, recycling reduced electron carriers that accumulate during fermentation via proton reduction. A role for capturing reducing equivalents released as hydrogen during nitrogen fixation has been proposed for the second hydrogenase, CpII. Biochemical characterization of CpI and CpII indicated CpI has extremely high hydrogen production activity in comparison to CpII, while CpII has elevated hydrogen oxidation activity in comparison to CpI when assayed under the same conditions. This suggests that these enzymes have evolved a catalytic bias to support their respective physiological functions. Using the published genome of C. pasteurianum (strain W5) hydrogenase sequences were identified, including the already known [NiFe]-hydrogenase, CpI, and CpII sequences, and a third hydrogenase, CpIII was identified in the genome as well. Quantitative real-time PCR experiments were performed in order to analyze transcript abundance of the hydrogenases under diazotrophic and non-diazotrophic growth conditions. There is a markedly reduced level of CpI gene expression together with concomitant increases in CpII gene expression under nitrogen-fixing conditions. Structure-based analyses of the CpI and CpII sequences reveal variations in their catalytic sites that may contribute to their alternative physiological roles. This work demonstrates that the physiological roles of CpI and CpII are to evolve and to consume hydrogen, respectively, in concurrence with their catalytic activities in vitro , with CpII capturing excess reducing equivalents under nitrogen fixation conditions. Comparison of the primary sequences of CpI and CpII and their homologs provides an initial basis for identifying key structural determinants that modulate hydrogen production and hydrogen oxidation activities.
Therien, Jesse B.; Artz, Jacob H.; Poudel, Saroj; ...
2017-07-12
Here, the first generation of biochemical studies of complex, iron-sulfur-cluster-containing [FeFe]-hydrogenases and Mo-nitrogenase were carried out on enzymes purified from Clostridium pasteurianum (strain W5). Previous studies suggested that two distinct [FeFe]-hydrogenases are expressed differentially under nitrogen-fixing and non-nitrogen-fixing conditions. As a result, the first characterized [FeFe]-hydrogenase (CpI) is presumed to have a primary role in central metabolism, recycling reduced electron carriers that accumulate during fermentation via proton reduction. A role for capturing reducing equivalents released as hydrogen during nitrogen fixation has been proposed for the second hydrogenase, CpII. Biochemical characterization of CpI and CpII indicated CpI has extremely high hydrogenmore » production activity in comparison to CpII, while CpII has elevated hydrogen oxidation activity in comparison to CpI when assayed under the same conditions. This suggests that these enzymes have evolved a catalytic bias to support their respective physiological functions. Using the published genome of C. pasteurianum (strain W5) hydrogenase sequences were identified, including the already known [NiFe]-hydrogenase, CpI, and CpII sequences, and a third hydrogenase, CpIII was identified in the genome as well. Quantitative real-time PCR experiments were performed in order to analyze transcript abundance of the hydrogenases under diazotrophic and non-diazotrophic growth conditions. There is a markedly reduced level of CpI gene expression together with concomitant increases in CpII gene expression under nitrogen-fixing conditions. Structure-based analyses of the CpI and CpII sequences reveal variations in their catalytic sites that may contribute to their alternative physiological roles. This work demonstrates that the physiological roles of CpI and CpII are to evolve and to consume hydrogen, respectively, in concurrence with their catalytic activities in vitro, with CpII capturing excess reducing equivalents under nitrogen fixation conditions. Comparison of the primary sequences of CpI and CpII and their homologs provides an initial basis for identifying key structural determinants that modulate hydrogen production and hydrogen oxidation activities.« less
Therien, Jesse B.; Artz, Jacob H.; Poudel, Saroj; Hamilton, Trinity L.; Liu, Zhenfeng; Noone, Seth M.; Adams, Michael W. W.; King, Paul W.; Bryant, Donald A.; Boyd, Eric S.; Peters, John W.
2017-01-01
The first generation of biochemical studies of complex, iron-sulfur-cluster-containing [FeFe]-hydrogenases and Mo-nitrogenase were carried out on enzymes purified from Clostridium pasteurianum (strain W5). Previous studies suggested that two distinct [FeFe]-hydrogenases are expressed differentially under nitrogen-fixing and non-nitrogen-fixing conditions. As a result, the first characterized [FeFe]-hydrogenase (CpI) is presumed to have a primary role in central metabolism, recycling reduced electron carriers that accumulate during fermentation via proton reduction. A role for capturing reducing equivalents released as hydrogen during nitrogen fixation has been proposed for the second hydrogenase, CpII. Biochemical characterization of CpI and CpII indicated CpI has extremely high hydrogen production activity in comparison to CpII, while CpII has elevated hydrogen oxidation activity in comparison to CpI when assayed under the same conditions. This suggests that these enzymes have evolved a catalytic bias to support their respective physiological functions. Using the published genome of C. pasteurianum (strain W5) hydrogenase sequences were identified, including the already known [NiFe]-hydrogenase, CpI, and CpII sequences, and a third hydrogenase, CpIII was identified in the genome as well. Quantitative real-time PCR experiments were performed in order to analyze transcript abundance of the hydrogenases under diazotrophic and non-diazotrophic growth conditions. There is a markedly reduced level of CpI gene expression together with concomitant increases in CpII gene expression under nitrogen-fixing conditions. Structure-based analyses of the CpI and CpII sequences reveal variations in their catalytic sites that may contribute to their alternative physiological roles. This work demonstrates that the physiological roles of CpI and CpII are to evolve and to consume hydrogen, respectively, in concurrence with their catalytic activities in vitro, with CpII capturing excess reducing equivalents under nitrogen fixation conditions. Comparison of the primary sequences of CpI and CpII and their homologs provides an initial basis for identifying key structural determinants that modulate hydrogen production and hydrogen oxidation activities. PMID:28747909
Sequencing, Analysis, and Annotation of Expressed Sequence Tags for Camelus dromedarius
Al-Swailem, Abdulaziz M.; Shehata, Maher M.; Abu-Duhier, Faisel M.; Al-Yamani, Essam J.; Al-Busadah, Khalid A.; Al-Arawi, Mohammed S.; Al-Khider, Ali Y.; Al-Muhaimeed, Abdullah N.; Al-Qahtani, Fahad H.; Manee, Manee M.; Al-Shomrani, Badr M.; Al-Qhtani, Saad M.; Al-Harthi, Amer S.; Akdemir, Kadir C.; Otu, Hasan H.
2010-01-01
Despite its economical, cultural, and biological importance, there has not been a large scale sequencing project to date for Camelus dromedarius. With the goal of sequencing complete DNA of the organism, we first established and sequenced camel EST libraries, generating 70,272 reads. Following trimming, chimera check, repeat masking, cluster and assembly, we obtained 23,602 putative gene sequences, out of which over 4,500 potentially novel or fast evolving gene sequences do not carry any homology to other available genomes. Functional annotation of sequences with similarities in nucleotide and protein databases has been obtained using Gene Ontology classification. Comparison to available full length cDNA sequences and Open Reading Frame (ORF) analysis of camel sequences that exhibit homology to known genes show more than 80% of the contigs with an ORF>300 bp and ∼40% hits extending to the start codons of full length cDNAs suggesting successful characterization of camel genes. Similarity analyses are done separately for different organisms including human, mouse, bovine, and rat. Accompanying web portal, CAGBASE (http://camel.kacst.edu.sa/), hosts a relational database containing annotated EST sequences and analysis tools with possibility to add sequences from public domain. We anticipate our results to provide a home base for genomic studies of camel and other comparative studies enabling a starting point for whole genome sequencing of the organism. PMID:20502665
A new strategy for genome assembly using short sequence reads and reduced representation libraries.
Young, Andrew L; Abaan, Hatice Ozel; Zerbino, Daniel; Mullikin, James C; Birney, Ewan; Margulies, Elliott H
2010-02-01
We have developed a novel approach for using massively parallel short-read sequencing to generate fast and inexpensive de novo genomic assemblies comparable to those generated by capillary-based methods. The ultrashort (<100 base) sequences generated by this technology pose specific biological and computational challenges for de novo assembly of large genomes. To account for this, we devised a method for experimentally partitioning the genome using reduced representation (RR) libraries prior to assembly. We use two restriction enzymes independently to create a series of overlapping fragment libraries, each containing a tractable subset of the genome. Together, these libraries allow us to reassemble the entire genome without the need of a reference sequence. As proof of concept, we applied this approach to sequence and assembled the majority of the 125-Mb Drosophila melanogaster genome. We subsequently demonstrate the accuracy of our assembly method with meaningful comparisons against the current available D. melanogaster reference genome (dm3). The ease of assembly and accuracy for comparative genomics suggest that our approach will scale to future mammalian genome-sequencing efforts, saving both time and money without sacrificing quality.
UFO: a web server for ultra-fast functional profiling of whole genome protein sequences.
Meinicke, Peter
2009-09-02
Functional profiling is a key technique to characterize and compare the functional potential of entire genomes. The estimation of profiles according to an assignment of sequences to functional categories is a computationally expensive task because it requires the comparison of all protein sequences from a genome with a usually large database of annotated sequences or sequence families. Based on machine learning techniques for Pfam domain detection, the UFO web server for ultra-fast functional profiling allows researchers to process large protein sequence collections instantaneously. Besides the frequencies of Pfam and GO categories, the user also obtains the sequence specific assignments to Pfam domain families. In addition, a comparison with existing genomes provides dissimilarity scores with respect to 821 reference proteomes. Considering the underlying UFO domain detection, the results on 206 test genomes indicate a high sensitivity of the approach. In comparison with current state-of-the-art HMMs, the runtime measurements show a considerable speed up in the range of four orders of magnitude. For an average size prokaryotic genome, the computation of a functional profile together with its comparison typically requires about 10 seconds of processing time. For the first time the UFO web server makes it possible to get a quick overview on the functional inventory of newly sequenced organisms. The genome scale comparison with a large number of precomputed profiles allows a first guess about functionally related organisms. The service is freely available and does not require user registration or specification of a valid email address.
A Lossy Compression Technique Enabling Duplication-Aware Sequence Alignment
Freschi, Valerio; Bogliolo, Alessandro
2012-01-01
In spite of the recognized importance of tandem duplications in genome evolution, commonly adopted sequence comparison algorithms do not take into account complex mutation events involving more than one residue at the time, since they are not compliant with the underlying assumption of statistical independence of adjacent residues. As a consequence, the presence of tandem repeats in sequences under comparison may impair the biological significance of the resulting alignment. Although solutions have been proposed, repeat-aware sequence alignment is still considered to be an open problem and new efficient and effective methods have been advocated. The present paper describes an alternative lossy compression scheme for genomic sequences which iteratively collapses repeats of increasing length. The resulting approximate representations do not contain tandem duplications, while retaining enough information for making their comparison even more significant than the edit distance between the original sequences. This allows us to exploit traditional alignment algorithms directly on the compressed sequences. Results confirm the validity of the proposed approach for the problem of duplication-aware sequence alignment. PMID:22518086
Weigel, B J; Burgett, S G; Chen, V J; Skatrud, P L; Frolik, C A; Queener, S W; Ingolia, T D
1988-01-01
beta-Lactam antibiotics such as penicillins and cephalosporins are synthesized by a wide variety of microbes, including procaryotes and eucaryotes. Isopenicillin N synthetase catalyzes a key reaction in the biosynthetic pathway of penicillins and cephalosporins. The genes encoding this protein have previously been cloned from the filamentous fungi Cephalosporium acremonium and Penicillium chrysogenum and characterized. We have extended our analysis to the isopenicillin N synthetase genes from the fungus Aspergillus nidulans and the gram-positive procaryote Streptomyces lipmanii. The isopenicillin N synthetase genes from these organisms have been cloned and sequenced, and the proteins encoded by the open reading frames were expressed in Escherichia coli. Active isopenicillin N synthetase enzyme was recovered from extracts of E. coli cells prepared from cells containing each of the genes in expression vectors. The four isopenicillin N synthetase genes studied are closely related. Pairwise comparison of the DNA sequences showed between 62.5 and 75.7% identity; comparison of the predicted amino acid sequences showed between 53.9 and 80.6% identity. The close homology of the procaryotic and eucaryotic isopenicillin N synthetase genes suggests horizontal transfer of the genes during evolution. Images PMID:3045077
New powerful statistics for alignment-free sequence comparison under a pattern transfer model.
Liu, Xuemei; Wan, Lin; Li, Jing; Reinert, Gesine; Waterman, Michael S; Sun, Fengzhu
2011-09-07
Alignment-free sequence comparison is widely used for comparing gene regulatory regions and for identifying horizontally transferred genes. Recent studies on the power of a widely used alignment-free comparison statistic D2 and its variants D*2 and D(s)2 showed that their power approximates a limit smaller than 1 as the sequence length tends to infinity under a pattern transfer model. We develop new alignment-free statistics based on D2, D*2 and D(s)2 by comparing local sequence pairs and then summing over all the local sequence pairs of certain length. We show that the new statistics are much more powerful than the corresponding statistics and the power tends to 1 as the sequence length tends to infinity under the pattern transfer model. Copyright © 2011 Elsevier Ltd. All rights reserved.
New Powerful Statistics for Alignment-free Sequence Comparison Under a Pattern Transfer Model
Liu, Xuemei; Wan, Lin; Li, Jing; Reinert, Gesine; Waterman, Michael S.; Sun, Fengzhu
2011-01-01
Alignment-free sequence comparison is widely used for comparing gene regulatory regions and for identifying horizontally transferred genes. Recent studies on the power of a widely used alignment-free comparison statistic D2 and its variants D2∗ and D2s showed that their power approximates a limit smaller than 1 as the sequence length tends to infinity under a pattern transfer model. We develop new alignment-free statistics based on D2, D2∗ and D2s by comparing local sequence pairs and then summing over all the local sequence pairs of certain length. We show that the new statistics are much more powerful than the corresponding statistics and the power tends to 1 as the sequence length tends to infinity under the pattern transfer model. PMID:21723298
Multiple alignment-free sequence comparison
Ren, Jie; Song, Kai; Sun, Fengzhu; Deng, Minghua; Reinert, Gesine
2013-01-01
Motivation: Recently, a range of new statistics have become available for the alignment-free comparison of two sequences based on k-tuple word content. Here, we extend these statistics to the simultaneous comparison of more than two sequences. Our suite of statistics contains, first, and , extensions of statistics for pairwise comparison of the joint k-tuple content of all the sequences, and second, , and , averages of sums of pairwise comparison statistics. The two tasks we consider are, first, to identify sequences that are similar to a set of target sequences, and, second, to measure the similarity within a set of sequences. Results: Our investigation uses both simulated data as well as cis-regulatory module data where the task is to identify cis-regulatory modules with similar transcription factor binding sites. We find that although for real data, all of our statistics show a similar performance, on simulated data the Shepp-type statistics are in some instances outperformed by star-type statistics. The multiple alignment-free statistics are more sensitive to contamination in the data than the pairwise average statistics. Availability: Our implementation of the five statistics is available as R package named ‘multiAlignFree’ at be http://www-rcf.usc.edu/∼fsun/Programs/multiAlignFree/multiAlignFreemain.html. Contact: reinert@stats.ox.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23990418
Wallis, Michael
2008-01-15
Mammalian growth hormone (GH) sequences have been shown previously to display episodic evolution: the sequence is generally strongly conserved but on at least two occasions during mammalian evolution (on lineages leading to higher primates and ruminants) bursts of rapid evolution occurred. However, the number of mammalian orders studied previously has been relatively limited, and the availability of sequence data via mammalian genome projects provides the potential for extending the range of GH gene sequences examined. Complete or nearly complete GH gene sequences for six mammalian species for which no data were previously available have been extracted from the genome databases-Dasypus novemcinctus (nine-banded armadillo), Erinaceus europaeus (western European hedgehog), Myotis lucifugus (little brown bat), Procavia capensis (cape rock hyrax), Sorex araneus (European shrew), Spermophilus tridecemlineatus (13-lined ground squirrel). In addition incomplete data for several other species have been extended. Examination of the data in detail and comparison with previously available sequences has allowed assessment of the reliability of deduced sequences. Several of the new sequences differ substantially from the consensus sequence previously determined for eutherian GHs, indicating greater variability than previously recognised, and confirming the episodic pattern of evolution. The episodic pattern is not seen for signal sequences, 5' upstream sequence or synonymous substitutions-it is specific to the mature protein sequence, suggesting that it relates to the hormonal function. The substitutions accumulated during the course of GH evolution have occurred mainly on the side of the hormone facing away from the receptor, in a non-random fashion, and it is suggested that this may reflect interaction of the receptor-bound hormone with other proteins or small ligands.
Assessing pooled BAC and whole genome shotgun strategies for assembly of complex genomes
2011-01-01
Background We investigate if pooling BAC clones and sequencing the pools can provide for more accurate assembly of genome sequences than the "whole genome shotgun" (WGS) approach. Furthermore, we quantify this accuracy increase. We compare the pooled BAC and WGS approaches using in silico simulations. Standard measures of assembly quality focus on assembly size and fragmentation, which are desirable for large whole genome assemblies. We propose additional measures enabling easy and visual comparison of assembly quality, such as rearrangements and redundant sequence content, relative to the known target sequence. Results The best assembly quality scores were obtained using 454 coverage of 15× linear and 5× paired (3kb insert size) reads (15L-5P) on Arabidopsis. This regime gave similarly good results on four additional plant genomes of very different GC and repeat contents. BAC pooling improved assembly scores over WGS assembly, coverage and redundancy scores improving the most. Conclusions BAC pooling works better than WGS, however, both require a physical map to order the scaffolds. Pool sizes up to 12Mbp work well, suggesting this pooling density to be effective in medium-scale re-sequencing applications such as targeted sequencing of QTL intervals for candidate gene discovery. Assuming the current Roche/454 Titanium sequencing limitations, a 12 Mbp region could be re-sequenced with a full plate of linear reads and a half plate of paired-end reads, yielding 15L-5P coverage after read pre-processing. Our simulation suggests that massively over-sequencing may not improve accuracy. Our scoring measures can be used generally to evaluate and compare results of simulated genome assemblies. PMID:21496274
NASA Astrophysics Data System (ADS)
Holden, Todd; Gadura, N.; Dehipawala, S.; Cheung, E.; Tuffour, M.; Schneider, P.; Tremberger, G., Jr.; Lieberman, D.; Cheung, T.
2011-10-01
Technologically important extremophiles including oil eating microbes, uranium and rocket fuel perchlorate reduction microbes, electron producing microbes and electrode electrons feeding microbes were compared in terms of their 16S rRNA sequences, a standard targeted sequence in comparative phylogeny studies. Microbes that were reported to have survived a prolonged dormant duration were also studied. Examples included the recently discovered microbe that survives after 34,000 years in a salty environment while feeding off organic compounds from other trapped dead microbes. Shannon entropy of the 16S rRNA nucleotide composition and fractal dimension of the nucleotide sequence in terms of its atomic number fluctuation analyses suggest a selected range for these extremophiles as compared to other microbes; consistent with the experience of relatively mild evolutionary pressure. However, most of the microbes that have been reported to survive in prolonged dormant duration carry sequences with fractal dimension between 1.995 and 2.005 (N = 10 out of 13). Similar results are observed for halophiles, red-shifted chlorophyll and radiation resistant microbes. The results suggest that prolonged dormant duration, in analogous to high salty or radiation environment, would select high fractal 16S rRNA sequences. Path analysis in structural equation modeling supports a causal relation between entropy and fractal dimension for the studied 16S rRNA sequences (N = 7). Candidate choices for high fractal 16S rRNA microbes could offer protection for prolonged spaceflights. BioBrick gene network manipulation could include extremophile 16S rRNA sequences in synthetic biology and shed more light on exobiology and future colonization in shielded spaceflights. Whether the high fractal 16S rRNA sequences contain an asteroidlike extra-terrestrial source could be speculative but interesting.
Environmental distribution, abundance and activity of the Miscellaneous Crenarchaeotal Group
NASA Astrophysics Data System (ADS)
Lloyd, K. G.; Biddle, J.; Teske, A.
2011-12-01
Many marine sedimentary microbes have only been identified by 16S rRNA sequences. Consequently, little is known about the types of metabolism, activity levels, or relative abundance of these groups in marine sediments. We found that one of these uncultured groups, called the Miscellaneous Crenarchaeotal Group (MCG), dominated clone libraries made from reverse transcribed 16S rRNA, and 454 pyrosequenced 16S rRNA genes, in the White Oak River estuary. Primers suitable for quantitative PCR were developed for MCG and used to show that 16S rRNA DNA copy numbers from MCG account for nearly all the archaeal 16S rRNA genes present. RT-qPCR shows much less MCG rRNA than total archaeal rRNA, but comparisons of different primers for each group suggest bias in the RNA-based work relative to the DNA-based work. There is no evidence of a population shift with depth below the sulfate-methane transition zone, suggesting that the metabolism of MCG may not be tied to sulfur or methane cycles. We classified 2,771 new sequences within the SSU Silva 106 database that, along with the classified sequences in the Silva database was used to make an MCG database of 4,646 sequences that allowed us to increase the named subgroups of MCG from 7 to 19. Percent terrestrial sequences in each subgroup is positively correlated with percent of the marine sequences that are nearshore, suggesting that membership in the different subgroups is not random, but dictated by environmental selective pressures. Given their high phylogenetic diversity, ubiquitous distribution in anoxic environments, and high DNA copy number relative to total archaea, members of MCG are most likely anaerobic heterotrophs who are integral to the post-depositional marine carbon cycle.
Stepan, Ryan M; Sherwood, Julie S; Petermann, Shana R; Logue, Catherine M
2011-06-27
Salmonella species are recognized worldwide as a significant cause of human and animal disease. In this study the molecular profiles and characteristics of Salmonella enterica Senftenberg isolated from human cases of illness and those recovered from healthy or diagnostic cases in animals were assessed. Included in the study was a comparison with our own sequenced strain of S. Senfteberg recovered from production turkeys in North Dakota. Isolates examined in this study were subjected to antimicrobial susceptibility profiling using the National Antimicrobial Resistance Monitoring System (NARMS) panel which tested susceptibility to 15 different antimicrobial agents. The molecular profiles of all isolates were determined using Pulsed Field Gel Electrophoresis (PFGE) and the sequence types of the strains were obtained using Multi-Locus Sequence Type (MLST) analysis based on amplification and sequence interrogation of seven housekeeping genes (aroC, dnaN, hemD, hisD, purE, sucA, and thrA). PFGE data was input into BioNumerics analysis software to generate a dendrogram of relatedness among the strains. The study found 93 profiles among 98 S. Senftenberg isolates tested and there were primarily two sequence types associated with humans and animals (ST185 and ST14) with overlap observed in all host types suggesting that the distribution of S. Senftenberg sequence types is not host dependent. Antimicrobial resistance was observed among the animal strains, however no resistance was detected in human isolates suggesting that animal husbandry has a significant influence on the selection and promotion of antimicrobial resistance. The data demonstrates the circulation of at least two strain types in both animal and human health suggesting that S. Senftenberg is relatively homogeneous in its distribution. The data generated in this study could be used towards defining a pathotype for this serovar.
Shanks, Orin C.; Newton, Ryan J.; Kelty, Catherine A.; Huse, Susan M.; Sogin, Mitchell L.
2013-01-01
Microbial sewage communities consist of a combination of human fecal microorganisms and nonfecal microorganisms, which may be residents of urban sewer infrastructure or flowthrough originating from gray water or rainwater inputs. Together, these different microorganism sources form an identifiable community structure that may serve as a signature for sewage discharges and as candidates for alternative indicators specific for human fecal pollution. However, the structure and variability of this community across geographic space remains uncharacterized. We used massively parallel 454 pyrosequencing of the V6 region in 16S rRNA genes to profile microbial communities from 13 untreated sewage influent samples collected from a wide range of geographic locations in the United States. We obtained a total of 380,175 high-quality sequences for sequence-based clustering, taxonomic analyses, and profile comparisons. The sewage profile included a discernible core human fecal signature made up of several abundant taxonomic groups within Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria. DNA sequences were also classified into fecal, sewage infrastructure (i.e., nonfecal), and transient groups based on data comparisons with fecal samples. Across all sewage samples, an estimated 12.1% of sequences were fecal in origin, while 81.4% were consistently associated with the sewage infrastructure. The composition of feces-derived operational taxonomic units remained congruent across all sewage samples regardless of geographic locale; however, the sewage infrastructure community composition varied among cities, with city latitude best explaining this variation. Together, these results suggest that untreated sewage microbial communities harbor a core group of fecal bacteria across geographically dispersed wastewater sewage lines and that ambient water quality indicators targeting these select core microorganisms may perform well across the United States. PMID:23435885
Blake, Damer P; Oakes, Richard; Smith, Adrian L
2011-02-01
Eimeria maxima is one of the seven Eimeria spp. that infect the chicken and cause the disease coccidiosis. The well characterised immunogenicity and genetic diversity associated with E. maxima promote its use in genetics-led studies on avian coccidiosis. The development of a genetic map for E. maxima, presented here based upon 647 amplified fragment length polymorphism markers typed from 22 clonal hybrid lines and assembled into 13 major linkage groups, is a major new resource for work with this parasite. Comparison with genetic maps produced for other coccidial parasites indicates relatively high levels of genetic recombination. Conversion of ∼14% of the markers representing the major linkage groups to sequence characterised amplified region markers can provide a scaffold for the assembly of future genomic sequences as well as providing a foundation for more detailed genetic maps. Comparison with the Eimeria tenella genetic map produced 10years ago has revealed a less biased marker distribution, with no more than nine markers mapped within any unresolved heritable unit. Nonetheless, preliminary bioinformatic characterisation of the three largest publicly available genomic E. maxima sequences suggest that the feature-poor/feature-rich structure which has previously been found to define the first sequenced E. tenella chromosome also defines the E. maxima genome. The significance of such a segmented genome and the apparent potential for variation in genetic recombination will be relevant to haplotype stability and the longevity of future anticoccidial strategies based upon multiple loci targeted by novel chemotherapeutic drugs or recombinant subunit vaccines. Copyright © 2010 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Variation block-based genomics method for crop plants.
Kim, Yul Ho; Park, Hyang Mi; Hwang, Tae-Young; Lee, Seuk Ki; Choi, Man Soo; Jho, Sungwoong; Hwang, Seungwoo; Kim, Hak-Min; Lee, Dongwoo; Kim, Byoung-Chul; Hong, Chang Pyo; Cho, Yun Sung; Kim, Hyunmin; Jeong, Kwang Ho; Seo, Min Jung; Yun, Hong Tai; Kim, Sun Lim; Kwon, Young-Up; Kim, Wook Han; Chun, Hye Kyung; Lim, Sang Jong; Shin, Young-Ah; Choi, Ik-Young; Kim, Young Sun; Yoon, Ho-Sung; Lee, Suk-Ha; Lee, Sunghoon
2014-06-15
In contrast with wild species, cultivated crop genomes consist of reshuffled recombination blocks, which occurred by crossing and selection processes. Accordingly, recombination block-based genomics analysis can be an effective approach for the screening of target loci for agricultural traits. We propose the variation block method, which is a three-step process for recombination block detection and comparison. The first step is to detect variations by comparing the short-read DNA sequences of the cultivar to the reference genome of the target crop. Next, sequence blocks with variation patterns are examined and defined. The boundaries between the variation-containing sequence blocks are regarded as recombination sites. All the assumed recombination sites in the cultivar set are used to split the genomes, and the resulting sequence regions are termed variation blocks. Finally, the genomes are compared using the variation blocks. The variation block method identified recurring recombination blocks accurately and successfully represented block-level diversities in the publicly available genomes of 31 soybean and 23 rice accessions. The practicality of this approach was demonstrated by the identification of a putative locus determining soybean hilum color. We suggest that the variation block method is an efficient genomics method for the recombination block-level comparison of crop genomes. We expect that this method will facilitate the development of crop genomics by bringing genomics technologies to the field of crop breeding.
Metzger, Julia; Tonda, Raul; Beltran, Sergi; Agueda, Lídia; Gut, Marta; Distl, Ottmar
2014-07-04
Domestication has shaped the horse and lead to a group of many different types. Some have been under strong human selection while others developed in close relationship with nature. The aim of our study was to perform next generation sequencing of breed and non-breed horses to provide an insight into genetic influences on selective forces. Whole genome sequencing of five horses of four different populations revealed 10,193,421 single nucleotide polymorphisms (SNPs) and 1,361,948 insertion/deletion polymorphisms (indels). In comparison to horse variant databases and previous reports, we were able to identify 3,394,883 novel SNPs and 868,525 novel indels. We analyzed the distribution of individual variants and found significant enrichment of private mutations in coding regions of genes involved in primary metabolic processes, anatomical structures, morphogenesis and cellular components in non-breed horses and in contrast to that private mutations in genes affecting cell communication, lipid metabolic process, neurological system process, muscle contraction, ion transport, developmental processes of the nervous system and ectoderm in breed horses. Our next generation sequencing data constitute an important first step for the characterization of non-breed in comparison to breed horses and provide a large number of novel variants for future analyses. Functional annotations suggest specific variants that could play a role for the characterization of breed or non-breed horses.
Whole-Genome Sequencing of Sake Yeast Saccharomyces cerevisiae Kyokai no. 7
Akao, Takeshi; Yashiro, Isao; Hosoyama, Akira; Kitagaki, Hiroshi; Horikawa, Hiroshi; Watanabe, Daisuke; Akada, Rinji; Ando, Yoshinori; Harashima, Satoshi; Inoue, Toyohisa; Inoue, Yoshiharu; Kajiwara, Susumu; Kitamoto, Katsuhiko; Kitamoto, Noriyuki; Kobayashi, Osamu; Kuhara, Satoru; Masubuchi, Takashi; Mizoguchi, Haruhiko; Nakao, Yoshihiro; Nakazato, Atsumi; Namise, Masahiro; Oba, Takahiro; Ogata, Tomoo; Ohta, Akinori; Sato, Masahide; Shibasaki, Seiji; Takatsume, Yoshifumi; Tanimoto, Shota; Tsuboi, Hirokazu; Nishimura, Akira; Yoda, Koji; Ishikawa, Takeaki; Iwashita, Kazuhiro; Fujita, Nobuyuki; Shimoi, Hitoshi
2011-01-01
The term ‘sake yeast’ is generally used to indicate the Saccharomyces cerevisiae strains that possess characteristics distinct from others including the laboratory strain S288C and are well suited for sake brewery. Here, we report the draft whole-genome shotgun sequence of a commonly used diploid sake yeast strain, Kyokai no. 7 (K7). The assembled sequence of K7 was nearly identical to that of the S288C, except for several subtelomeric polymorphisms and two large inversions in K7. A survey of heterozygous bases between the homologous chromosomes revealed the presence of mosaic-like uneven distribution of heterozygosity in K7. The distribution patterns appeared to have resulted from repeated losses of heterozygosity in the ancestral lineage of K7. Analysis of genes revealed the presence of both K7-acquired and K7-lost genes, in addition to numerous others with segmentations and terminal discrepancies in comparison with those of S288C. The distribution of Ty element also largely differed in the two strains. Interestingly, two regions in chromosomes I and VII of S288C have apparently been replaced by Ty elements in K7. Sequence comparisons suggest that these gene conversions were caused by cDNA-mediated recombination of Ty elements. The present study advances our understanding of the functional and evolutionary genomics of the sake yeast. PMID:21900213
Powers, T. O.; Harris, T. S.; Hyman, B. C.
1993-01-01
Mitochondrial DNA sequences were obtained from the NADH dehydrogenase subunit 3 (ND3), large rRNA, and cytochrome b genes from Meloidogyne incognita and Romanomermis culicivorax. Both species show considerable genetic distance within these same genes when compared with Caenorhabditis elegans or Ascaris suum, two species previously analyzed. Caenorhabditis, Ascaris, and Meloidogyne were selected as representatives of three subclasses in the nematode class Secernentea: Rhabditia, Spiruria, and Diplogasteria, respectively. Romanomermis served as a representative out-group of the class Adenophorea. The divergence between the phytoparasitic lineage (represented by Meloidogyne) and the three other species is so great that virtually every variable position in these genes appears to have accumulated multiple mutations, obscuring the phylogenetic information obtainable from these comparisons. The 39 and 42% amino acid similarity between the M. incognita and C. elegans ND3 and cytochrome b coding sequences, respectively, are approximately the same as those of C. elegans-mouse comparisons for the same genes (26 and 44%). This discovery calls into question the feasibility of employing cloned C. elegans probes as reagents to isolate phytoparasitic nematode genes. The genetic distance between the phytoparasitic nematode lineage and C. elegans markedly contrasts with the 79% amino acid similarity between C. elegans and A. suum for the same sequences. The molecular data suggest that Caenorhabditis and Ascaris belong to the same subclass. PMID:19279810
Dikow, Nicola; Nygren, Anders Oh; Schouten, Jan P; Hartmann, Carolin; Krämer, Nikola; Janssen, Bart; Zschocke, Johannes
2007-06-01
Standard methods used for genomic methylation analysis allow the detection of complete absence of either methylated or non-methylated alleles but are usually unable to detect changes in the proportion of methylated and unmethylated alleles. We compare two methods for quantitative methylation analysis, using the chromosome 15q11-q13 imprinted region as model. Absence of the non-methylated paternal allele in this region leads to Prader-Willi syndrome (PWS) whilst absence of the methylated maternal allele results in Angelman syndrome (AS). A proportion of AS is caused by mosaic imprinting defects which may be missed with standard methods and require quantitative analysis for their detection. Sequence-based quantitative methylation analysis (SeQMA) involves quantitative comparison of peaks generated through sequencing reactions after bisulfite treatment. It is simple, cost-effective and can be easily established for a large number of genes. However, our results support previous suggestions that methods based on bisulfite treatment may be problematic for exact quantification of methylation status. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) avoids bisulfite treatment. It detects changes in both CpG methylation as well as copy number of up to 40 chromosomal sequences in one simple reaction. Once established in a laboratory setting, the method is more accurate, reliable and less time consuming.
Puthoff, D P; Neelam, A; Ehrenfried, M L; Scheffler, B E; Ballard, L; Song, Q; Campbell, K B; Cooper, B; Tucker, M L
2008-10-01
Hyphae, 2 to 8 days postinoculation (dpi), and haustoria, 5 dpi, were isolated from Uromyces appendiculatus infected bean leaves (Phaseolus vulgaris cv. Pinto 111) and a separate cDNA library prepared for each fungal preparation. Approximately 10,000 hyphae and 2,700 haustoria clones were sequenced from both the 5' and 3' ends. Assembly of all of the fungal sequences yielded 3,359 contigs and 927 singletons. The U. appendiculatus sequences were compared with sequence data for other rust fungi, Phakopsora pachyrhizi, Uromyces fabae, and Puccinia graminis. The U. appendiculatus haustoria library included a large number of genes with unknown cellular function; however, summation of sequences of known cellular function suggested that haustoria at 5 dpi had fewer transcripts linked to protein synthesis in favor of energy metabolism and nutrient uptake. In addition, open reading frames in the U. appendiculatus data set with an N-terminal signal peptide were identified and compared with other proteins putatively secreted from rust fungi. In this regard, a small family of putatively secreted RTP1-like proteins was identified in U. appendiculatus and P. graminis.
Whole-Genome Sequencing and Variant Analysis of Human Papillomavirus 16 Infections.
van der Weele, Pascal; Meijer, Chris J L M; King, Audrey J
2017-10-01
Human papillomavirus (HPV) is a strongly conserved DNA virus, high-risk types of which can cause cervical cancer in persistent infections. The most common type found in HPV-attributable cancer is HPV16, which can be subdivided into four lineages (A to D) with different carcinogenic properties. Studies have shown HPV16 sequence diversity in different geographical areas, but only limited information is available regarding HPV16 diversity within a population, especially at the whole-genome level. We analyzed HPV16 major variant diversity and conservation in persistent infections and performed a single nucleotide polymorphism (SNP) comparison between persistent and clearing infections. Materials were obtained in the Netherlands from a cohort study with longitudinal follow-up for up to 3 years. Our analysis shows a remarkably large variant diversity in the population. Whole-genome sequences were obtained for 57 persistent and 59 clearing HPV16 infections, resulting in 109 unique variants. Interestingly, persistent infections were completely conserved through time. One reinfection event was identified where the initial and follow-up samples clustered differently. Non-A1/A2 variants seemed to clear preferentially ( P = 0.02). Our analysis shows that population-wide HPV16 sequence diversity is very large. In persistent infections, the HPV16 sequence was fully conserved. Sequencing can identify HPV16 reinfections, although occurrence is rare. SNP comparison identified no strongly acting effect of the viral genome affecting HPV16 infection clearance or persistence in up to 3 years of follow-up. These findings suggest the progression of an early HPV16 infection could be host related. IMPORTANCE Human papillomavirus 16 (HPV16) is the predominant type found in cervical cancer. Progression of initial infection to cervical cancer has been linked to sequence properties; however, knowledge of variants circulating in European populations, especially with longitudinal follow-up, is limited. By sequencing a number of infections with known follow-up for up to 3 years, we gained initial insights into the genetic diversity of HPV16 and the effects of the viral genome on the persistence of infections. A SNP comparison between sequences obtained from clearing and persistent infections did not identify strongly acting DNA variations responsible for these infection outcomes. In addition, we identified an HPV16 reinfection event where sequencing of initial and follow-up samples showed different HPV16 variants. Based on conventional genotyping, this infection would incorrectly be considered a persistent HPV16 infection. In the context of vaccine efficacy and monitoring studies, such infections could potentially cause reduced reported efficacy or efficiency. Copyright © 2017 van der Weele et al.
NASA Astrophysics Data System (ADS)
Yu, Jianzhong; Ma, Xiaolei; Pan, Kehou; Yang, Guanpin; Yu, Wengong
2010-07-01
We constructed and characterized a normalized cDNA library of Nannochloropsis oculata CS-179, and obtained 905 nonredundant sequences (NRSs) ranging from 431-1 756 bp in length. Among them, 496 were very similar to nonredundant ones in the GenBank ( E ≤1.0e-05), and 349 ESTs had significant hits with the clusters of eukaryotic orthologous groups (KOG). Bases G and/or C at the third position of codons of 14 amino acid residues suggested a strong bias in the conserved domain of 362 NRSs (>60%). We also identified the unigenes encoding phosphorus and nitrogen transporters, suggesting that N. oculata could efficiently transport and metabolize phosphorus and nitrogen, and recognized the unigenes that involved in biosynthesis and storage of both fatty acids and polyunsaturated fatty acids (PUFAs), which will facilitate the demonstration of eicosapentaenoic acid (EPA) biosynthesis pathway of N. oculata. In comparison with the original cDNA library, the normalized library significantly increased the efficiencies of random sequencing and rarely expressed genes discovering, and decreased the frequency of abundant gene sequences.
Sammond, Deanne W.; Payne, Christina M.; Brunecky, Roman; Himmel, Michael E.; Crowley, Michael F.; Beckham, Gregg T.
2012-01-01
Cellulase enzymes deconstruct cellulose to glucose, and are often comprised of glycosylated linkers connecting glycoside hydrolases (GHs) to carbohydrate-binding modules (CBMs). Although linker modifications can alter cellulase activity, the functional role of linkers beyond domain connectivity remains unknown. Here we investigate cellulase linkers connecting GH Family 6 or 7 catalytic domains to Family 1 or 2 CBMs, from both bacterial and eukaryotic cellulases to identify conserved characteristics potentially related to function. Sequence analysis suggests that the linker lengths between structured domains are optimized based on the GH domain and CBM type, such that linker length may be important for activity. Longer linkers are observed in eukaryotic GH Family 6 cellulases compared to GH Family 7 cellulases. Bacterial GH Family 6 cellulases are found with structured domains in either N to C terminal order, and similar linker lengths suggest there is no effect of domain order on length. O-glycosylation is uniformly distributed across linkers, suggesting that glycans are required along entire linker lengths for proteolysis protection and, as suggested by simulation, for extension. Sequence comparisons show that proline content for bacterial linkers is more than double that observed in eukaryotic linkers, but with fewer putative O-glycan sites, suggesting alternative methods for extension. Conversely, near linker termini where linkers connect to structured domains, O-glycosylation sites are observed less frequently, whereas glycines are more prevalent, suggesting the need for flexibility to achieve proper domain orientations. Putative N-glycosylation sites are quite rare in cellulase linkers, while an N-P motif, which strongly disfavors the attachment of N-glycans, is commonly observed. These results suggest that linkers exhibit features that are likely tailored for optimal function, despite possessing low sequence identity. This study suggests that cellulase linkers may exhibit function in enzyme action, and highlights the need for additional studies to elucidate cellulase linker functions. PMID:23139804
Phylogenetic shadowing of primate sequences to find functional regions of the human genome.
Boffelli, Dario; McAuliffe, Jon; Ovcharenko, Dmitriy; Lewis, Keith D; Ovcharenko, Ivan; Pachter, Lior; Rubin, Edward M
2003-02-28
Nonhuman primates represent the most relevant model organisms to understand the biology of Homo sapiens. The recent divergence and associated overall sequence conservation between individual members of this taxon have nonetheless largely precluded the use of primates in comparative sequence studies. We used sequence comparisons of an extensive set of Old World and New World monkeys and hominoids to identify functional regions in the human genome. Analysis of these data enabled the discovery of primate-specific gene regulatory elements and the demarcation of the exons of multiple genes. Much of the information content of the comprehensive primate sequence comparisons could be captured with a small subset of phylogenetically close primates. These results demonstrate the utility of intraprimate sequence comparisons to discover common mammalian as well as primate-specific functional elements in the human genome, which are unattainable through the evaluation of more evolutionarily distant species.
Robertson, G R; Whalley, J M
1988-01-01
We have identified the equine herpesvirus 1 (EHV-1) thymidine kinase gene (TK) by DNA-mediated transformation and by DNA sequencing. Alignment of the amino acid sequence of the EHV-1 TK with the TKs from 3 other herpesviruses revealed regions of homology, some of which correspond to the previously identified substrate binding sites, while others have as yet, no assigned function. In particular, the strict conservation of an aspartate within the proposed nucleoside binding site suggests a role in ATP binding for this residue. Comparison of 5 herpes TKs with the thymidylate kinase of yeast revealed significant similarity which was strongest in those regions important to catalytic activity of the herpes TKs, and, therefore we propose that the herpes TK may be derived from a cellular thymidylate kinase. The implications for the evolution of enzyme activities within a pathway of nucleotide metabolism are discussed. PMID:2849761
Complexity of genetic sequences modified by horizontal gene transfer and degraded-DNA uptake
NASA Astrophysics Data System (ADS)
Tremberger, George; Dehipawala, S.; Nguyen, A.; Cheung, E.; Sullivan, R.; Holden, T.; Lieberman, D.; Cheung, T.
2015-09-01
Horizontal gene transfer has been a major vehicle for efficient transfer of genetic materials among living species and could be one of the sources for noncoding DNA incorporation into a genome. Our previous study of lnc- RNA sequence complexity in terms of fractal dimension and information entropy shows a tight regulation among the studied genes in numerous diseases. The role of sequence complexity in horizontal transferred genes was investigated with Mealybug in symbiotic relation with a 139K genome microbe and Deinococcus radiodurans as examples. The fractal dimension and entropy showed correlation R-sq of 0.82 (N = 6) for the studied Deinococcus radiodurans sequences. For comparison the Deinococcus radiodurans oxidative stress tolerant catalase and superoxide dismutase genes under extracellular dGMP growth condition showed R-sq ~ 0.42 (N = 6); and the studied arsenate reductase horizontal transferred genes for toxicity survival in several microorganisms showed no correlation. Simulation results showed that R-sq < 0.4 would be improbable at less than one percent chance, suggestive of additional selection pressure when compared to the R-sq ~ 0.29 (N = 21) in the studied transferred genes in Mealybug. The mild correlation of R-sq ~ 0.5 for fractal dimension versus transcription level in the studied Deinococcus radiodurans sequences upon extracellular dGMP growth condition would suggest that lower fractal dimension with less electron density fluctuation favors higher transcription level.
BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons
2011-01-01
Background Visualisation of genome comparisons is invaluable for helping to determine genotypic differences between closely related prokaryotes. New visualisation and abstraction methods are required in order to improve the validation, interpretation and communication of genome sequence information; especially with the increasing amount of data arising from next-generation sequencing projects. Visualising a prokaryote genome as a circular image has become a powerful means of displaying informative comparisons of one genome to a number of others. Several programs, imaging libraries and internet resources already exist for this purpose, however, most are either limited in the number of comparisons they can show, are unable to adequately utilise draft genome sequence data, or require a knowledge of command-line scripting for implementation. Currently, there is no freely available desktop application that enables users to rapidly visualise comparisons between hundreds of draft or complete genomes in a single image. Results BLAST Ring Image Generator (BRIG) can generate images that show multiple prokaryote genome comparisons, without an arbitrary limit on the number of genomes compared. The output image shows similarity between a central reference sequence and other sequences as a set of concentric rings, where BLAST matches are coloured on a sliding scale indicating a defined percentage identity. Images can also include draft genome assembly information to show read coverage, assembly breakpoints and collapsed repeats. In addition, BRIG supports the mapping of unassembled sequencing reads against one or more central reference sequences. Many types of custom data and annotations can be shown using BRIG, making it a versatile approach for visualising a range of genomic comparison data. BRIG is readily accessible to any user, as it assumes no specialist computational knowledge and will perform all required file parsing and BLAST comparisons automatically. Conclusions There is a clear need for a user-friendly program that can produce genome comparisons for a large number of prokaryote genomes with an emphasis on rapidly utilising unfinished or unassembled genome data. Here we present BRIG, a cross-platform application that enables the interactive generation of comparative genomic images via a simple graphical-user interface. BRIG is freely available for all operating systems at http://sourceforge.net/projects/brig/. PMID:21824423
BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons.
Alikhan, Nabil-Fareed; Petty, Nicola K; Ben Zakour, Nouri L; Beatson, Scott A
2011-08-08
Visualisation of genome comparisons is invaluable for helping to determine genotypic differences between closely related prokaryotes. New visualisation and abstraction methods are required in order to improve the validation, interpretation and communication of genome sequence information; especially with the increasing amount of data arising from next-generation sequencing projects. Visualising a prokaryote genome as a circular image has become a powerful means of displaying informative comparisons of one genome to a number of others. Several programs, imaging libraries and internet resources already exist for this purpose, however, most are either limited in the number of comparisons they can show, are unable to adequately utilise draft genome sequence data, or require a knowledge of command-line scripting for implementation. Currently, there is no freely available desktop application that enables users to rapidly visualise comparisons between hundreds of draft or complete genomes in a single image. BLAST Ring Image Generator (BRIG) can generate images that show multiple prokaryote genome comparisons, without an arbitrary limit on the number of genomes compared. The output image shows similarity between a central reference sequence and other sequences as a set of concentric rings, where BLAST matches are coloured on a sliding scale indicating a defined percentage identity. Images can also include draft genome assembly information to show read coverage, assembly breakpoints and collapsed repeats. In addition, BRIG supports the mapping of unassembled sequencing reads against one or more central reference sequences. Many types of custom data and annotations can be shown using BRIG, making it a versatile approach for visualising a range of genomic comparison data. BRIG is readily accessible to any user, as it assumes no specialist computational knowledge and will perform all required file parsing and BLAST comparisons automatically. There is a clear need for a user-friendly program that can produce genome comparisons for a large number of prokaryote genomes with an emphasis on rapidly utilising unfinished or unassembled genome data. Here we present BRIG, a cross-platform application that enables the interactive generation of comparative genomic images via a simple graphical-user interface. BRIG is freely available for all operating systems at http://sourceforge.net/projects/brig/.
Turetschek, Reinhard; Lyon, David; Desalegn, Getinet; Kaul, Hans-Peter; Wienkoop, Stefanie
2016-01-01
The proteomic study of non-model organisms, such as many crop plants, is challenging due to the lack of comprehensive genome information. Changing environmental conditions require the study and selection of adapted cultivars. Mutations, inherent to cultivars, hamper protein identification and thus considerably complicate the qualitative and quantitative comparison in large-scale systems biology approaches. With this workflow, cultivar-specific mutations are detected from high-throughput comparative MS analyses, by extracting sequence polymorphisms with de novo sequencing. Stringent criteria are suggested to filter for confidential mutations. Subsequently, these polymorphisms complement the initially used database, which is ready to use with any preferred database search algorithm. In our example, we thereby identified 26 specific mutations in two cultivars of Pisum sativum and achieved an increased number (17 %) of peptide spectrum matches.
Hayashi, T; Makino, K; Ohnishi, M; Kurokawa, K; Ishii, K; Yokoyama, K; Han, C G; Ohtsubo, E; Nakayama, K; Murata, T; Tanaka, M; Tobe, T; Iida, T; Takami, H; Honda, T; Sasakawa, C; Ogasawara, N; Yasunaga, T; Kuhara, S; Shiba, T; Hattori, M; Shinagawa, H
2001-02-28
Escherichia coli O157:H7 is a major food-borne infectious pathogen that causes diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. Here we report the complete chromosome sequence of an O157:H7 strain isolated from the Sakai outbreak, and the results of genomic comparison with a benign laboratory strain, K-12 MG1655. The chromosome is 5.5 Mb in size, 859 Kb larger than that of K-12. We identified a 4.1-Mb sequence highly conserved between the two strains, which may represent the fundamental backbone of the E. coli chromosome. The remaining 1.4-Mb sequence comprises of O157:H7-specific sequences, most of which are horizontally transferred foreign DNAs. The predominant roles of bacteriophages in the emergence of O157:H7 is evident by the presence of 24 prophages and prophage-like elements that occupy more than half of the O157:H7-specific sequences. The O157:H7 chromosome encodes 1632 proteins and 20 tRNAs that are not present in K-12. Among these, at least 131 proteins are assumed to have virulence-related functions. Genome-wide codon usage analysis suggested that the O157:H7-specific tRNAs are involved in the efficient expression of the strain-specific genes. A complete set of the genes specific to O157:H7 presented here sheds new insight into the pathogenicity and the physiology of O157:H7, and will open a way to fully understand the molecular mechanisms underlying the O157:H7 infection.
Evolutionary genomics of miniature inverted-repeat transposable elements (MITEs) in Brassica.
Nouroz, Faisal; Noreen, Shumaila; Heslop-Harrison, J S
2015-12-01
Miniature inverted-repeat transposable elements (MITEs) are truncated derivatives of autonomous DNA transposons, and are dispersed abundantly in most eukaryotic genomes. We aimed to characterize various MITEs families in Brassica in terms of their presence, sequence characteristics and evolutionary activity. Dot plot analyses involving comparison of homoeologous bacterial artificial chromosome (BAC) sequences allowed identification of 15 novel families of mobile MITEs. Of which, 5 were Stowaway-like with TA Target Site Duplications (TSDs), 4 Tourist-like with TAA/TTA TSDs, 5 Mutator-like with 9-10 bp TSDs and 1 novel MITE (BoXMITE1) flanked by 3 bp TSDs. Our data suggested that there are about 30,000 MITE-related sequences in Brassica rapa and B. oleracea genomes. In situ hybridization showed one abundant family was dispersed in the A-genome, while another was located near 45S rDNA sites. PCR analysis using primers flanking sequences of MITE elements detected MITE insertion polymorphisms between and within the three Brassica (AA, BB, CC) genomes, with many insertions being specific to single genomes and others showing evidence of more recent evolutionary insertions. Our BAC sequence comparison strategy enables identification of evolutionarily active MITEs with no prior knowledge of MITE sequences. The details of MITE families reported in Brassica enable their identification, characterization and annotation. Insertion polymorphisms of MITEs and their transposition activity indicated important mechanism of genome evolution and diversification. MITE families derived from known Mariner, Harbinger and Mutator DNA transposons were discovered, as well as some novel structures. The identification of Brassica MITEs will have broad applications in Brassica genomics, breeding, hybridization and phylogeny through their use as DNA markers.
NASA Technical Reports Server (NTRS)
Guillot, A.
1982-01-01
Male mice are enclosed in cages of different dimensions (cage A - 23x8x8 cm., cage B - 36x27x17 cm.), in an alternating light/dark regimen, at an ambient temperature of 22 to 23 C. The successions of the behavioral sequences of ultradian activity periods are noticed by direct observation during 11 consecutive hours in light. The experimental situation modifies the mean duration time and the behavioral organization of each activity period. However, the comparison of the overall activity time lengths and the comparison of the overall behavioral frequencies suggest that the energy spent per mouse is constant.
2014-01-01
Background Protein sequence similarities to any types of non-globular segments (coiled coils, low complexity regions, transmembrane regions, long loops, etc. where either positional sequence conservation is the result of a very simple, physically induced pattern or rather integral sequence properties are critical) are pertinent sources for mistaken homologies. Regretfully, these considerations regularly escape attention in large-scale annotation studies since, often, there is no substitute to manual handling of these cases. Quantitative criteria are required to suppress events of function annotation transfer as a result of false homology assignments. Results The sequence homology concept is based on the similarity comparison between the structural elements, the basic building blocks for conferring the overall fold of a protein. We propose to dissect the total similarity score into fold-critical and other, remaining contributions and suggest that, for a valid homology statement, the fold-relevant score contribution should at least be significant on its own. As part of the article, we provide the DissectHMMER software program for dissecting HMMER2/3 scores into segment-specific contributions. We show that DissectHMMER reproduces HMMER2/3 scores with sufficient accuracy and that it is useful in automated decisions about homology for instructive sequence examples. To generalize the dissection concept for cases without 3D structural information, we find that a dissection based on alignment quality is an appropriate surrogate. The approach was applied to a large-scale study of SMART and PFAM domains in the space of seed sequences and in the space of UniProt/SwissProt. Conclusions Sequence similarity core dissection with regard to fold-critical and other contributions systematically suppresses false hits and, additionally, recovers previously obscured homology relationships such as the one between aquaporins and formate/nitrite transporters that, so far, was only supported by structure comparison. PMID:24890864
Dual-echo ASL based assessment of motor networks: a feasibility study
NASA Astrophysics Data System (ADS)
Storti, Silvia Francesca; Boscolo Galazzo, Ilaria; Pizzini, Francesca B.; Menegaz, Gloria
2018-04-01
Objective. Dual-echo arterial spin labeling (DE-ASL) technique has been recently proposed for the simultaneous acquisition of ASL and blood-oxygenation-level-dependent (BOLD)-functional magnetic resonance imaging (fMRI) data. The assessment of this technique in detecting functional connectivity at rest or during motor and motor imagery tasks is still unexplored both per-se and in comparison with conventional methods. The purpose is to quantify the sensitivity of the DE-ASL sequence with respect to the conventional fMRI sequence (cvBOLD) in detecting brain activations, and to assess and compare the relevance of node features in decoding the network structure. Approach. Thirteen volunteers were scanned acquiring a pseudo-continuous DE-ASL sequence from which the concomitant BOLD (ccBOLD) simultaneously to the ASL can be extracted. The approach consists of two steps: (i) model-based analyses for assessing brain activations at individual and group levels, followed by statistical analysis for comparing the activation elicited by the three sequences under two conditions (motor and motor imagery), respectively; (ii) brain connectivity graph-theoretical analysis for assessing and comparing the network models properties. Main results. Our results suggest that cvBOLD and ccBOLD have comparable sensitivity in detecting the regions involved in the active task, whereas ASL offers a higher degree of co-localization with smaller activation volumes. The connectivity results and the comparative analysis of node features across sequences revealed that there are no strong changes between rest and tasks and that the differences between the sequences are limited to few connections. Significance. Considering the comparable sensitivity of the ccBOLD and cvBOLD sequences in detecting activated brain regions, the results demonstrate that DE-ASL can be successfully applied in functional studies allowing to obtain both ASL and BOLD information within a single sequence. Further, DE-ASL is a powerful technique for research and clinical applications allowing to perform quantitative comparisons as well as to characterize functional connectivity.
Ujino-Ihara, Tokuko; Kanamori, Hiroyuki; Yamane, Hiroko; Taguchi, Yuriko; Namiki, Nobukazu; Mukai, Yuzuru; Yoshimura, Kensuke; Tsumura, Yoshihiko
2005-12-01
To identify and characterize lineage-specific genes of conifers, two sets of ESTs (with 12791 and 5902 ESTs, representing 5373 and 3018 gene transcripts, respectively) were generated from the Cupressaceae species Cryptomeria japonica and Chamaecyparis obtusa. These transcripts were compared with non-redundant sets of genes generated from Pinaceae species, other gymnosperms and angiosperms. About 6% of tentative unique genes (Unigenes) of C. japonica and C. obtusa had homologs in other conifers but not angiosperms, and about 70% had apparent homologs in angiosperms. The calculated GC contents of orthologous genes showed that GC contents of coniferous genes are likely to be lower than those of angiosperms. Comparisons of the numbers of homologous genes in each species suggest that copy numbers of genes may be correlated between diverse seed plants. This correlation suggests that the multiplicity of such genes may have arisen before the divergence of gymnosperms and angiosperms.
Phocine Distemper Virus in Seals, East Coast, United States, 2006
Earle, J.A. Philip; Melia, Mary M.; Doherty, Nadine V.; Nielsen, Ole
2011-01-01
In 2006 and 2007, elevated numbers of deaths among seals, constituting an unusual mortality event, occurred off the coasts of Maine and Massachusetts, United States. We isolated a virus from seal tissue and confirmed it as phocine distemper virus (PDV). We compared the viral hemagglutinin, phosphoprotein, and fusion (F) and matrix (M) protein gene sequences with those of viruses from the 1988 and 2002 PDV epizootics. The virus showed highest similarity with a PDV 1988 Netherlands virus, which raises the possibility that the 2006 isolate from the United States might have emerged independently from 2002 PDVs and that multiple lineages of PDV might be circulating among enzootically infected North American seals. Evidence from comparison of sequences derived from different tissues suggested that mutations in the F and M genes occur in brain tissue that are not present in lung, liver, or blood, which suggests virus persistence in the central nervous system. PMID:21291591
Comparison of next generation sequencing technologies for transcriptome characterization
2009-01-01
Background We have developed a simulation approach to help determine the optimal mixture of sequencing methods for most complete and cost effective transcriptome sequencing. We compared simulation results for traditional capillary sequencing with "Next Generation" (NG) ultra high-throughput technologies. The simulation model was parameterized using mappings of 130,000 cDNA sequence reads to the Arabidopsis genome (NCBI Accession SRA008180.19). We also generated 454-GS20 sequences and de novo assemblies for the basal eudicot California poppy (Eschscholzia californica) and the magnoliid avocado (Persea americana) using a variety of methods for cDNA synthesis. Results The Arabidopsis reads tagged more than 15,000 genes, including new splice variants and extended UTR regions. Of the total 134,791 reads (13.8 MB), 119,518 (88.7%) mapped exactly to known exons, while 1,117 (0.8%) mapped to introns, 11,524 (8.6%) spanned annotated intron/exon boundaries, and 3,066 (2.3%) extended beyond the end of annotated UTRs. Sequence-based inference of relative gene expression levels correlated significantly with microarray data. As expected, NG sequencing of normalized libraries tagged more genes than non-normalized libraries, although non-normalized libraries yielded more full-length cDNA sequences. The Arabidopsis data were used to simulate additional rounds of NG and traditional EST sequencing, and various combinations of each. Our simulations suggest a combination of FLX and Solexa sequencing for optimal transcriptome coverage at modest cost. We have also developed ESTcalc http://fgp.huck.psu.edu/NG_Sims/ngsim.pl, an online webtool, which allows users to explore the results of this study by specifying individualized costs and sequencing characteristics. Conclusion NG sequencing technologies are a highly flexible set of platforms that can be scaled to suit different project goals. In terms of sequence coverage alone, the NG sequencing is a dramatic advance over capillary-based sequencing, but NG sequencing also presents significant challenges in assembly and sequence accuracy due to short read lengths, method-specific sequencing errors, and the absence of physical clones. These problems may be overcome by hybrid sequencing strategies using a mixture of sequencing methodologies, by new assemblers, and by sequencing more deeply. Sequencing and microarray outcomes from multiple experiments suggest that our simulator will be useful for guiding NG transcriptome sequencing projects in a wide range of organisms. PMID:19646272
Escorza-Treviño, S; Dizon, A E
2000-08-01
Mitochondrial DNA (mtDNA) control-region sequences and microsatellite loci length polymorphisms were used to estimate phylogeographical patterns (historical patterns underlying contemporary distribution), intraspecific population structure and gender-biased dispersal of Phocoenoides dalli dalli across its entire range. One-hundred and thirteen animals from several geographical strata were sequenced over 379 bp of mtDNA, resulting in 58 mtDNA haplotypes. Analysis using F(ST) values (based on haplotype frequencies) and phi(ST) values (based on frequencies and genetic distances between haplotypes) yielded statistically significant separation (bootstrap values P < 0.05) among most of the stocks currently used for management purposes. A minimum spanning network of haplotypes showed two very distinctive clusters, differentially occupied by western and eastern populations, with some common widespread haplotypes. This suggests some degree of phyletic radiation from west to east, superimposed on gene flow. Highly male-biased migration was detected for several population comparisons. Nuclear microsatellite DNA markers (119 individuals and six loci) provided additional support for population subdivision and gender-biased dispersal detected in the mtDNA sequences. Analysis using F(ST) values (based on allelic frequencies) yielded statistically significant separation between some, but not all, populations distinguished by mtDNA analysis. R(ST) values (based on frequencies of and genetic distance between alleles) showed no statistically significant subdivision. Again, highly male-biased dispersal was detected for all population comparisons, suggesting, together with morphological and reproductive data, the existence of sexual selection. Our molecular results argue for nine distinct dalli-type populations that should be treated as separate units for management purposes.
Carraher, Colm; Authier, Astrid; Steinwender, Bernd; Newcomb, Richard D.
2012-01-01
In insects, odorant receptors detect volatile cues involved in behaviours such as mate recognition, food location and oviposition. We have investigated the evolution of three odorant receptors from five species within the moth genera Ctenopseustis and Planotrotrix, family Tortricidae, which fall into distinct clades within the odorant receptor multigene family. One receptor is the orthologue of the co-receptor Or83b, now known as Orco (OR2), and encodes the obligate ion channel subunit of the receptor complex. In comparison, the other two receptors, OR1 and OR3, are ligand-binding receptor subunits, activated by volatile compounds produced by plants - methyl salicylate and citral, respectively. Rates of sequence evolution at non-synonymous sites were significantly higher in OR1 compared with OR2 and OR3. Within the dataset OR1 contains 109 variable amino acid positions that are distributed evenly across the entire protein including transmembrane helices, loop regions and termini, while OR2 and OR3 contain 18 and 16 variable sites, respectively. OR2 shows a high level of amino acid conservation as expected due to its essential role in odour detection; however we found unexpected differences in the rate of evolution between two ligand-binding odorant receptors, OR1 and OR3. OR3 shows high sequence conservation suggestive of a conserved role in odour reception, whereas the higher rate of evolution observed in OR1, particularly at non-synonymous sites, may be suggestive of relaxed constraint, perhaps associated with the loss of an ancestral role in sex pheromone reception. PMID:22701634
Metz, Edward C.; Robles-Sikisaka, Refugio; Vacquier, Victor D.
1998-01-01
Strong positive Darwinian selection acts on two sperm fertilization proteins, lysin and 18-kDa protein, from abalone (Haliotis). To understand the phylogenetic context for this dramatic molecular evolution, we obtained sequences of mitochondrial cytochrome c oxidase subunit I (mtCOI), and genomic sequences of lysin, 18-kDa, and a G protein subunit. Based on mtDNA differentiation, four north Pacific abalone species diverged within the past 2 million years (Myr), and remaining north Pacific species diverged over a period of 4–20 Myr. Between-species nonsynonymous differences in lysin and 18-kDa exons exceed nucleotide differences in introns by 3.5- to 24-fold. Remarkably, in some comparisons nonsynonymous substitutions in lysin and 18-kDa genes exceed synonymous substitutions in mtCOI. Lysin and 18-kDa intron/exon segments were sequenced from multiple red abalone individuals collected over a 1,200-km range. Only two nucleotide changes and two sites of slippage variation were detected in a total of >29,000 nucleotides surveyed. However, polymorphism in mtCOI and a G protein intron was found in this species. This finding suggests that positive selection swept one lysin allele and one 18-kDa allele to fixation. Similarities between mtCOI and lysin gene trees indicate that rapid adaptive evolution of lysin has occurred consistently through the history of the group. Comparisons with mtCOI molecular clock calibrations suggest that nonsynonymous substitutions accumulate 2–50 times faster in lysin and 18-kDa genes than in rapidly evolving mammalian genes. PMID:9724763
Kumar, Rakesh; Mandal, B; Geetanjali, A S; Jain, R K; Jaiwal, P K
2010-08-01
Watermelon bud necrosis virus (WBNV), a member of the genus Tospovirus, family Bunyaviridae is an important viral pathogen in watermelon cultivation in India. The complete genome sequence properties of WBNV are not available. In the present study, the complete M RNA sequence and the genome organisation of a WBNV isolate infecting watermelon in Delhi (WBNV-wDel) were determined. The M RNA was 4,794 nucleotides (nt) long and potentially coded for a movement protein (NSm) of 34.22 kDa (307 amino acids) on the viral sense strand and a Gn/Gc glycoprotein precursor of 127.15 kDa (1,121 amino acids) on the complementary strand. The two open reading frames were separated by an intergenic region of 402 nt. The 5' and 3' untranslated regions were 55 and 47 nt long, respectively, containing complementary termini typical of tospoviruses. WBNV-wDel was most closely related (79.1% identity) to Groundnut bud necrosis virus, an important tospovirus that occurs in several crops in India, and was different (63.3-75.2% identity) from the other cucurbit-infecting tospoviruses known to occur in Taiwan and Japan. Sequence analysis of NSm and Gn/Gc revealed phylogenetic incongruence between WBNV-wDel and another isolate originating from central India (WBNV-Wm-Som isolate). The Wm-Som isolate showed evolutionary divergence from the wDel isolate in the Gn/Gc protein (74.6% identity) potentially due to recombination with the other tospoviruses that are known to occur in India. This is the first report of a comparison of complete sequences of M RNA of WBNV.
Amazonian phylogeography: mtDNA sequence variation in arboreal echimyid rodents (Caviomorpha).
da Silva, M N; Patton, J L
1993-09-01
Patterns of evolutionary relationships among haplotype clades of sequences of the mitochondrial cytochrome b DNA gene are examined for five genera of arboreal rodents of the Caviomorph family Echimyidae from the Amazon Basin. Data are available for 798 bp of sequence from a total of 24 separate localities in Peru, Venezuela, Bolivia, and Brazil for Mesomys, Isothrix, Makalata, Dactylomys, and Echimys. Sequence divergence, corrected for multiple hits, is extensive, ranging from less than 1% for comparisons within populations of over 20% among geographic units within genera. Both the degree of differentiation and the geographic patterning of the variation suggest that more than one species composes the Amazonian distribution of the currently recognized Mesomys hispidus, Isothrix bistriata, Makalata didelphoides, and Dactylomys dactylinus. There is general concordance in the geographic range of haplotype clades for each of these taxa, and the overall level of differentiation within them is largely equivalent. These observations suggest that a common vicariant history underlies the respective diversification of each genus. However, estimated times of divergence based on the rate of third position transversion substitutions for the major clades within each genus typically range above 1 million years. Thus, allopatric isolation precipitating divergence must have been considerably earlier than the late Pleistocene forest fragmentation events commonly invoked for Amazonian biota.
Mills, D A; Flickinger, M C
1993-01-01
The lysA gene of Bacillus methanolicus MGA3 was cloned by complementation of an auxotrophic Escherichia coli lysA22 mutant with a genomic library of B. methanolicus MGA3 chromosomal DNA. Subcloning localized the B. methanolicus MGA3 lysA gene into a 2.3-kb SmaI-SstI fragment. Sequence analysis of the 2.3-kb fragment indicated an open reading frame encoding a protein of 48,223 Da, which was similar to the meso-diaminopimelate (DAP) decarboxylase amino acid sequences of Bacillus subtilis (62%) and Corynebacterium glutamicum (40%). Amino acid sequence analysis indicated several regions of conservation among bacterial DAP decarboxylases, eukaryotic ornithine decarboxylases, and arginine decarboxylases, suggesting a common structural arrangement for positioning of substrate and the cofactor pyridoxal 5'-phosphate. The B. methanolicus MGA3 DAP decarboxylase was shown to be a dimer (M(r) 86,000) with a subunit molecular mass of approximately 50,000 Da. This decarboxylase is inhibited by lysine (Ki = 0.93 mM) with a Km of 0.8 mM for DAP. The inhibition pattern suggests that the activity of this enzyme in lysine-overproducing strains of B. methanolicus MGA3 may limit lysine synthesis. Images PMID:8215365
Mills, D A; Flickinger, M C
1993-09-01
The lysA gene of Bacillus methanolicus MGA3 was cloned by complementation of an auxotrophic Escherichia coli lysA22 mutant with a genomic library of B. methanolicus MGA3 chromosomal DNA. Subcloning localized the B. methanolicus MGA3 lysA gene into a 2.3-kb SmaI-SstI fragment. Sequence analysis of the 2.3-kb fragment indicated an open reading frame encoding a protein of 48,223 Da, which was similar to the meso-diaminopimelate (DAP) decarboxylase amino acid sequences of Bacillus subtilis (62%) and Corynebacterium glutamicum (40%). Amino acid sequence analysis indicated several regions of conservation among bacterial DAP decarboxylases, eukaryotic ornithine decarboxylases, and arginine decarboxylases, suggesting a common structural arrangement for positioning of substrate and the cofactor pyridoxal 5'-phosphate. The B. methanolicus MGA3 DAP decarboxylase was shown to be a dimer (M(r) 86,000) with a subunit molecular mass of approximately 50,000 Da. This decarboxylase is inhibited by lysine (Ki = 0.93 mM) with a Km of 0.8 mM for DAP. The inhibition pattern suggests that the activity of this enzyme in lysine-overproducing strains of B. methanolicus MGA3 may limit lysine synthesis.
Soodyall, H.; Vigilant, L.; Hill, A. V.; Stoneking, M.; Jenkins, T.
1996-01-01
The intergenic COII/tRNA(Lys) 9-bp deletion in human mtDNA, which is found at varying frequencies in Asia, Southeast Asia, Polynesia, and the New World, was also found in 81 of 919 sub-Saharan Africans. Using mtDNA control-region sequence data from a subset of 41 individuals with the deletion, we identified 22 unique mtDNA types associated with the deletion in Africa. A comparison of the unique mtDNA types from sub-Saharan Africans and Asians with the 9-bp deletion revealed that sub-Saharan Africans and Asians have sequence profiles that differ in the locations and frequencies of variant sites. Both phylogenetic and mismatch-distribution analysis suggest that 9-bp deletion arose independently in sub-Saharan Africa and Asia and that the deletion has arisen more than once in Africa. Within Africa, the deletion was not found among Khoisan peoples and was rare to absent in western and southwestern African populations, but it did occur in Pygmy and Negroid populations from central Africa and in Malawi and southern African Bantu-speakers. The distribution of the 9-bp deletion in Africa suggests that the deletion could have arisen in central Africa and was then introduced to southern Africa via the recent "Bantu expansion." PMID:8644719
K2 and K2*: efficient alignment-free sequence similarity measurement based on Kendall statistics.
Lin, Jie; Adjeroh, Donald A; Jiang, Bing-Hua; Jiang, Yue
2018-05-15
Alignment-free sequence comparison methods can compute the pairwise similarity between a huge number of sequences much faster than sequence-alignment based methods. We propose a new non-parametric alignment-free sequence comparison method, called K2, based on the Kendall statistics. Comparing to the other state-of-the-art alignment-free comparison methods, K2 demonstrates competitive performance in generating the phylogenetic tree, in evaluating functionally related regulatory sequences, and in computing the edit distance (similarity/dissimilarity) between sequences. Furthermore, the K2 approach is much faster than the other methods. An improved method, K2*, is also proposed, which is able to determine the appropriate algorithmic parameter (length) automatically, without first considering different values. Comparative analysis with the state-of-the-art alignment-free sequence similarity methods demonstrates the superiority of the proposed approaches, especially with increasing sequence length, or increasing dataset sizes. The K2 and K2* approaches are implemented in the R language as a package and is freely available for open access (http://community.wvu.edu/daadjeroh/projects/K2/K2_1.0.tar.gz). yueljiang@163.com. Supplementary data are available at Bioinformatics online.
Skill-dependent proximal-to-distal sequence in team-handball throwing.
Wagner, Herbert; Pfusterschmied, Jürgen; Von Duvillard, Serge P; Müller, Erich
2012-01-01
The importance of proximal-to-distal sequencing in human performance throwing has been reported previously. However, a comprehensive comparison of the proximal-to-distal sequence in team-handball throwing in athletes with different training experience and competition is lacking. Therefore, the aim of the study was to compare the ball velocity and proximal-to-distal sequence in the team-handball standing throw with run-up of players of different skill (less experienced, experienced, and elite). Twenty-four male team-handball players (n = 8 for each group) performed five standing throws with run-up with maximal ball velocity and accuracy. Kinematics and ball trajectories were recorded with a Vicon motion capture system and joint movements were calculated. A specific proximal-to-distal sequence, where elbow flexion occurred before shoulder internal rotation, was found in all three groups. These results are in line with previous studies in team-handball. Furthermore, the results of the present study suggest that in the team-handball standing throw with run-up, increased playing experience is associated with an increase in ball velocity as well as a delayed start to trunk flexion.
Isolation and characterization of the chicken trypsinogen gene family.
Wang, K; Gan, L; Lee, I; Hood, L
1995-01-01
Based on genomic Southern hybridizations and cDNA sequence analyses, the chicken trypsinogen gene family can be divided into two multi-member subfamilies, a six-member trypsinogen I subfamily which encodes the cationic trypsin isoenzymes and a three-member trypsinogen II subfamily which encodes the anionic trypsin isoenzymes. The chicken cDNA and genomic clones containing these two subfamilies were isolated and characterized by DNA sequence analysis. The results indicated that the chicken trypsinogen genes encoded a signal peptide of 15 to 16 amino acid residues, an activation peptide of 9 to 10 residues and a trypsin of 223 amino acid residues. The chicken trypsinogens contain all the common catalytic and structural features for trypsins, including the catalytic triad His, Asp and Ser and the six disulphide bonds. The trypsinogen I and II subfamilies share approximately 70% sequence identity at the nucleotide and amino acid level. The sequence comparison among chicken trypsinogen subfamily members and trypsin sequences from other species suggested that the chicken trypsinogen genes may have evolved in coincidental or concerted fashion. Images Figure 6 Figure 7 PMID:7733885
Phylogenetic study on Shiraia bambusicola by rDNA sequence analyses.
Cheng, Tian-Fan; Jia, Xiao-Ming; Ma, Xiao-Hang; Lin, Hai-Ping; Zhao, Yu-Hua
2004-01-01
In this study, 18S rDNA and ITS-5.8S rDNA regions of four Shiraia bambusicola isolates collected from different species of bamboos were amplified by PCR with universal primer pairs NS1/NS8 and ITS5/ITS4, respectively, and sequenced. Phylogenetic analyses were conducted on three selected datasets of rDNA sequences. Maximum parsimony, distance and maximum likelihood criteria were used to infer trees. Morphological characteristics were also observed. The positioning of Shiraia in the order Pleosporales was well supported by bootstrap, which agreed with the placement by Amano (1980) according to their morphology. We did not find significant inter-hostal differences among these four isolates from different species of bamboos. From the results of analyses and comparison of their rDNA sequences, we conclude that Shiraia should be classified into Pleosporales as Amano (1980) proposed and suggest that it might be positioned in the family Phaeosphaeriaceae. Copyright 2004 WILEY-VCH Verlag GmbH & Co.
Relation between native ensembles and experimental structures of proteins
Best, Robert B.; Lindorff-Larsen, Kresten; DePristo, Mark A.; Vendruscolo, Michele
2006-01-01
Different experimental structures of the same protein or of proteins with high sequence similarity contain many small variations. Here we construct ensembles of “high-sequence similarity Protein Data Bank” (HSP) structures and consider the extent to which such ensembles represent the structural heterogeneity of the native state in solution. We find that different NMR measurements probing structure and dynamics of given proteins in solution, including order parameters, scalar couplings, and residual dipolar couplings, are remarkably well reproduced by their respective high-sequence similarity Protein Data Bank ensembles; moreover, we show that the effects of uncertainties in structure determination are insufficient to explain the results. These results highlight the importance of accounting for native-state protein dynamics in making comparisons with ensemble-averaged experimental data and suggest that even a modest number of structures of a protein determined under different conditions, or with small variations in sequence, capture a representative subset of the true native-state ensemble. PMID:16829580
Butler-Cole, Christine; Wagner, Mary J; Da Silva, Melissa; Brown, Gordon D; Burke, Robert D; Upton, Chris
2007-07-24
Profilins are critical to cytoskeletal dynamics in eukaryotes; however, little is known about their viral counterparts. In this study, a poxviral profilin homolog, ectromelia virus strain Moscow gene 141 (ECTV-PH), was investigated by a variety of experimental and bioinformatics techniques to characterize its interactions with cellular and viral proteins. Profilin-like proteins are encoded by all orthopoxviruses sequenced to date, and share over 90% amino acid (aa) identity. Sequence comparisons show highest similarity to mammalian type 1 profilins; however, a conserved 3 aa deletion in mammalian type 3 and poxviral profilins suggests that these homologs may be more closely related. Structural analysis shows that ECTV-PH can be successfully modelled onto both the profilin 1 crystal structure and profilin 3 homology model, though few of the surface residues thought to be required for binding actin, poly(L-proline), and PIP2 are conserved. Immunoprecipitation and mass spectrometry identified two proteins that interact with ECTV-PH within infected cells: alpha-tropomyosin, a 38 kDa cellular actin-binding protein, and the 84 kDa product of vaccinia virus strain Western Reserve (VACV-WR) 148, which is the truncated VACV counterpart of the orthopoxvirus A-type inclusion (ATI) protein. Western and far-western blots demonstrated that the interaction with alpha-tropomyosin is direct, and immunofluorescence experiments suggest that ECTV-PH and alpha-tropomyosin may colocalize to structures that resemble actin tails and cellular protrusions. Sequence comparisons of the poxviral ATI proteins show that although full-length orthologs are only present in cowpox and ectromelia viruses, an ~ 700 aa truncated ATI protein is conserved in over 90% of sequenced orthopoxviruses. Immunofluorescence studies indicate that ECTV-PH localizes to cytoplasmic inclusion bodies formed by both truncated and full-length versions of the viral ATI protein. Furthermore, colocalization of ECTV-PH and truncated ATI protein to protrusions from the cell surface was observed. These results suggest a role for ECTV-PH in intracellular transport of viral proteins or intercellular spread of the virus. Broader implications include better understanding of the virus-host relationship and mechanisms by which cells organize and control the actin cytoskeleton.
Kang, Hae Ji; Bennett, Shannon N.; Dizney, Laurie; Sumibcay, Laarni; Arai, Satoru; Ruedas, Luis A.; Song, Jin-Won; Yanagihara, Richard
2009-01-01
A genetically distinct hantavirus, designated Oxbow virus (OXBV), was detected in tissues of an American shrew mole (Neurotrichus gibbsii), captured in Gresham, Oregon, in September 2003. Pairwise analysis of full-length S- and M- and partial L-segment nucleotide and amino acid sequences of OXBV indicated low sequence similarity with rodent-borne hantaviruses. Phylogenetic analyses using maximum-likelihood and Bayesian methods, and host-parasite evolutionary comparisons, showed that OXBV and Asama virus, a hantavirus recently identified from the Japanese shrew mole (Urotrichus talpoides), were related to soricine shrew-borne hantaviruses from North America and Eurasia, respectively, suggesting parallel evolution associated with cross-species transmission. PMID:19394994
Smith, Gretchen N. L.; Conway, Christopher M.; Bauernschmidt, Althea; Pisoni, David B.
2015-01-01
Recent research suggests that language acquisition may rely on domain-general learning abilities, such as structured sequence processing, which is the ability to extract, encode, and represent structured patterns in a temporal sequence. If structured sequence processing supports language, then it may be possible to improve language function by enhancing this foundational learning ability. The goal of the present study was to use a novel computerized training task as a means to better understand the relationship between structured sequence processing and language function. Participants first were assessed on pre-training tasks to provide baseline behavioral measures of structured sequence processing and language abilities. Participants were then quasi-randomly assigned to either a treatment group involving adaptive structured visuospatial sequence training, a treatment group involving adaptive non-structured visuospatial sequence training, or a control group. Following four days of sequence training, all participants were assessed with the same pre-training measures. Overall comparison of the post-training means revealed no group differences. However, in order to examine the potential relations between sequence training, structured sequence processing, and language ability, we used a mediation analysis that showed two competing effects. In the indirect effect, adaptive sequence training with structural regularities had a positive impact on structured sequence processing performance, which in turn had a positive impact on language processing. This finding not only identifies a potential novel intervention to treat language impairments but also may be the first demonstration that structured sequence processing can be improved and that this, in turn, has an impact on language processing. However, in the direct effect, adaptive sequence training with structural regularities had a direct negative impact on language processing. This unexpected finding suggests that adaptive training with structural regularities might potentially interfere with language processing. Taken together, these findings underscore the importance of pursuing designs that promote a better understanding of the mechanisms underlying training-related changes, so that regimens can be developed that help reduce these types of negative effects while simultaneously maximizing the benefits to outcome measures of interest. PMID:25946222
Smith, Gretchen N L; Conway, Christopher M; Bauernschmidt, Althea; Pisoni, David B
2015-01-01
Recent research suggests that language acquisition may rely on domain-general learning abilities, such as structured sequence processing, which is the ability to extract, encode, and represent structured patterns in a temporal sequence. If structured sequence processing supports language, then it may be possible to improve language function by enhancing this foundational learning ability. The goal of the present study was to use a novel computerized training task as a means to better understand the relationship between structured sequence processing and language function. Participants first were assessed on pre-training tasks to provide baseline behavioral measures of structured sequence processing and language abilities. Participants were then quasi-randomly assigned to either a treatment group involving adaptive structured visuospatial sequence training, a treatment group involving adaptive non-structured visuospatial sequence training, or a control group. Following four days of sequence training, all participants were assessed with the same pre-training measures. Overall comparison of the post-training means revealed no group differences. However, in order to examine the potential relations between sequence training, structured sequence processing, and language ability, we used a mediation analysis that showed two competing effects. In the indirect effect, adaptive sequence training with structural regularities had a positive impact on structured sequence processing performance, which in turn had a positive impact on language processing. This finding not only identifies a potential novel intervention to treat language impairments but also may be the first demonstration that structured sequence processing can be improved and that this, in turn, has an impact on language processing. However, in the direct effect, adaptive sequence training with structural regularities had a direct negative impact on language processing. This unexpected finding suggests that adaptive training with structural regularities might potentially interfere with language processing. Taken together, these findings underscore the importance of pursuing designs that promote a better understanding of the mechanisms underlying training-related changes, so that regimens can be developed that help reduce these types of negative effects while simultaneously maximizing the benefits to outcome measures of interest.
Dynamics of actin evolution in dinoflagellates.
Kim, Sunju; Bachvaroff, Tsvetan R; Handy, Sara M; Delwiche, Charles F
2011-04-01
Dinoflagellates have unique nuclei and intriguing genome characteristics with very high DNA content making complete genome sequencing difficult. In dinoflagellates, many genes are found in multicopy gene families, but the processes involved in the establishment and maintenance of these gene families are poorly understood. Understanding the dynamics of gene family evolution in dinoflagellates requires comparisons at different evolutionary scales. Studies of closely related species provide fine-scale information relative to species divergence, whereas comparisons of more distantly related species provides broad context. We selected the actin gene family as a highly expressed conserved gene previously studied in dinoflagellates. Of the 142 sequences determined in this study, 103 were from the two closely related species, Dinophysis acuminata and D. caudata, including full length and partial cDNA sequences as well as partial genomic amplicons. For these two Dinophysis species, at least three types of sequences could be identified. Most copies (79%) were relatively similar and in nucleotide trees, the sequences formed two bushy clades corresponding to the two species. In comparisons within species, only eight to ten nucleotide differences were found between these copies. The two remaining types formed clades containing sequences from both species. One type included the most similar sequences in between-species comparisons with as few as 12 nucleotide differences between species. The second type included the most divergent sequences in comparisons between and within species with up to 93 nucleotide differences between sequences. In all the sequences, most variation occurred in synonymous sites or the 5' UnTranslated Region (UTR), although there was still limited amino acid variation between most sequences. Several potential pseudogenes were found (approximately 10% of all sequences depending on species) with incomplete open reading frames due to frameshifts or early stop codons. Overall, variation in the actin gene family fits best with the "birth and death" model of evolution based on recent duplications, pseudogenes, and incomplete lineage sorting. Divergence between species was similar to variation within species, so that actin may be too conserved to be useful for phylogenetic estimation of closely related species.
Defining Differential Genetic Signatures in CXCR4- and the CCR5-Utilizing HIV-1 Co-Linear Sequences
Aiamkitsumrit, Benjamas; Dampier, Will; Martin-Garcia, Julio; Nonnemacher, Michael R.; Pirrone, Vanessa; Ivanova, Tatyana; Zhong, Wen; Kilareski, Evelyn; Aldigun, Hazeez; Frantz, Brian; Rimbey, Matthew; Wojno, Adam; Passic, Shendra; Williams, Jean W.; Shah, Sonia; Blakey, Brandon; Parikh, Nirzari; Jacobson, Jeffrey M.; Moldover, Brian; Wigdahl, Brian
2014-01-01
The adaptation of human immunodeficiency virus type-1 (HIV-1) to an array of physiologic niches is advantaged by the plasticity of the viral genome, encoded proteins, and promoter. CXCR4-utilizing (X4) viruses preferentially, but not universally, infect CD4+ T cells, generating high levels of virus within activated HIV-1-infected T cells that can be detected in regional lymph nodes and peripheral blood. By comparison, the CCR5-utilizing (R5) viruses have a greater preference for cells of the monocyte-macrophage lineage; however, while R5 viruses also display a propensity to enter and replicate in T cells, they infect a smaller percentage of CD4+ T cells in comparison to X4 viruses. Additionally, R5 viruses have been associated with viral transmission and CNS disease and are also more prevalent during HIV-1 disease. Specific adaptive changes associated with X4 and R5 viruses were identified in co-linear viral sequences beyond the Env-V3. The in silico position-specific scoring matrix (PSSM) algorithm was used to define distinct groups of X4 and R5 sequences based solely on sequences in Env-V3. Bioinformatic tools were used to identify genetic signatures involving specific protein domains or long terminal repeat (LTR) transcription factor sites within co-linear viral protein R (Vpr), trans-activator of transcription (Tat), or LTR sequences that were preferentially associated with X4 or R5 Env-V3 sequences. A number of differential amino acid and nucleotide changes were identified across the co-linear Vpr, Tat, and LTR sequences, suggesting the presence of specific genetic signatures that preferentially associate with X4 or R5 viruses. Investigation of the genetic relatedness between X4 and R5 viruses utilizing phylogenetic analyses of complete sequences could not be used to definitively and uniquely identify groups of R5 or X4 sequences; in contrast, differences in the genetic diversities between X4 and R5 were readily identified within these co-linear sequences in HIV-1-infected patients. PMID:25265194
Poliovirus replication proteins: RNA sequence encoding P3-1b and the sites of proteolytic processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semler, B.L.; Anderson, C.W.; Kitamura, N.
1981-06-01
A partial amino-terminal amino acid sequence of each of the major proteins encoded by the replicase region of the poliovirus genome has been determined. A comparison of this sequence information with the amino acid sequence predicted from the RNA sequence that has been determined for the 3' region of the poliovirus genome has allowed us to locate precisely the proteolytic cleavage sites at which the initial polyprotein is processed to create the poliovirus products P3-1b (NCVP1b), P3-2 (NCVP2), P3-4b (NCVP4b), and P3-7c (NCVP7c). For each of these products, as well as for the small genome-linked protein VPg, proteolytic cleavage occursmore » between a glutamine and a glycine residue to create the amino terminus of each protein. This result suggests that a single proteinase may be responsible for all of these cleavages. The sequence data also allow the precise positioning of the genome-linked protein VPg within the precursor P3-1b just proximal to the amino terminus of polypeptide P3-2.« less
Molecular characterization of a novel luteovirus infecting apple by next-generation sequencing.
Shen, Pan; Tian, Xin; Zhang, Song; Ren, Fang; Li, Ping; Yu, Yun-Qi; Li, Ruhui; Zhou, Changyong; Cao, Mengji
2018-03-01
A new single-stranded positive-sense RNA virus, which shares the highest nucleotide (nt) sequence identity of 53.4% with the genome sequence of cherry-associated luteovirus South Korean isolate (ChALV-SK, genus Luteovirus), was discovered in this work. It is provisionally named apple-associated luteovirus (AaLV). The complete genome sequence of AaLV comprises 5,890 nt and contains eight open reading frames (ORFs), in a very similar arrangement that is typical of members of the genus Luteovirus. When compared with other members of the family Luteoviridae, ORF1 of AaLV was found to encompass another ORF, ORF1a, which encodes a putative 32.9-kDa protein. The ORF1-ORF2 region (RNA-dependent RNA polymerase, RdRP) showed the greatest amino acid (aa) sequence identity (59.7%) to that of cherry-associated luteovirus Czech Republic isolate (ChALV-CZ, genus Luteovirus). The results of genome sequence comparisons and phylogenetic analysis, suggest that AaLV should be a member of a novel species in the genus Luteovirus. To our knowledge, it is the sixth member of the genus Luteovirus reported to naturally infect rosaceous plants.
Miura, Naoki; Kucho, Ken-Ichi; Noguchi, Michiko; Miyoshi, Noriaki; Uchiumi, Toshiki; Kawaguchi, Hiroaki; Tanimoto, Akihide
2014-01-01
The microminipig, which weighs less than 10 kg at an early stage of maturity, has been reported as a potential experimental model animal. Its extremely small size and other distinct characteristics suggest the possibility of a number of differences between the genome of the microminipig and that of conventional pigs. In this study, we analyzed the genomes of two healthy microminipigs using a next-generation sequencer SOLiD™ system. We then compared the obtained genomic sequences with a genomic database for the domestic pig (Sus scrofa). The mapping coverage of sequenced tag from the microminipig to conventional pig genomic sequences was greater than 96% and we detected no clear, substantial genomic variance from these data. The results may indicate that the distinct characteristics of the microminipig derive from small-scale alterations in the genome, such as Single Nucleotide Polymorphisms or translational modifications, rather than large-scale deletion or insertion polymorphisms. Further investigation of the entire genomic sequence of the microminipig with methods enabling deeper coverage is required to elucidate the genetic basis of its distinct phenotypic traits. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Damak, Naourez; Abdeljalil, Salma; Taeib, Noomen Hadj; Gargouri, Ali
2015-08-01
The rhg gene encoding a rhamnogalacturonase was isolated from the novel strain A1 of Aspergillus niger. It consists of an ORF of 1.505 kb encoding a putative protein of 446 amino acids with a predicted molecular mass of 47 kDa, belonging to the family 28 of glycosyl hydrolases. The nature and position of amino acids comprising the active site as well as the three-dimensional structure were well conserved between the A. niger CTM10548 and fungal rhamnogalacturonases. The coding region of the rhg gene is interrupted by three short introns of 56 (introns 1 and 3) and 52 (intron 2) bp in length. The comparison of the peptide sequence with A. niger rhg sequences revealed that the A1 rhg should be an endo-rhamnogalacturonases, more homologous to rhg A than rhg B A. niger known enzymes. The comparison of rhg nucleotide sequence from A. niger A1 with rhg A from A. niger shows several base changes. Most of these changes (59 %) are located at the third base of codons suggesting maintaining the same enzyme function. We used the rhamnogalacturonase A from Aspergillus aculeatus as a template to build a structural model of rhg A1 that adopted a right-handed parallel β-helix.
Colihueque, Nelson; Gantz, Alberto; Rau, Jaime Ricardo; Parraguez, Margarita
2015-01-01
Abstract In this paper new mitochondrial COI sequences of Common Barn Owl Tyto alba (Scopoli, 1769) and Short-eared Owl Asio flammeus (Pontoppidan, 1763) from southern Chile are reported and compared with sequences from other parts of the World. The intraspecific genetic divergence (mean p-distance) was 4.6 to 5.5% for the Common Barn Owl in comparison with specimens from northern Europe and Australasia and 3.1% for the Short-eared Owl with respect to samples from north America, northern Europe and northern Asia. Phylogenetic analyses revealed three distinctive groups for the Common Barn Owl: (i) South America (Chile and Argentina) plus Central and North America, (ii) northern Europe and (iii) Australasia, and two distinctive groups for the Short-eared Owl: (i) South America (Chile and Argentina) and (ii) north America plus northern Europe and northern Asia. The level of genetic divergence observed in both species exceeds the upper limit of intraspecific comparisons reported previously for Strigiformes. Therefore, this suggests that further research is needed to assess the taxonomic status, particularly for the Chilean populations that, to date, have been identified as belonging to these species through traditional taxonomy. PMID:26668551
2011-01-01
Background Comparative genome mapping studies in Rosaceae have been conducted until now by aligning genetic maps within the same genus, or closely related genera and using a limited number of common markers. The growing body of genomics resources and sequence data for both Prunus and Fragaria permits detailed comparisons between these genera and the recently released Malus × domestica genome sequence. Results We generated a comparative analysis using 806 molecular markers that are anchored genetically to the Prunus and/or Fragaria reference maps, and physically to the Malus genome sequence. Markers in common for Malus and Prunus, and Malus and Fragaria, respectively were 784 and 148. The correspondence between marker positions was high and conserved syntenic blocks were identified among the three genera in the Rosaceae. We reconstructed a proposed ancestral genome for the Rosaceae. Conclusions A genome containing nine chromosomes is the most likely candidate for the ancestral Rosaceae progenitor. The number of chromosomal translocations observed between the three genera investigated was low. However, the number of inversions identified among Malus and Prunus was much higher than any reported genome comparisons in plants, suggesting that small inversions have played an important role in the evolution of these two genera or of the Rosaceae. PMID:21226921
Population Genomics of Paramecium Species.
Johri, Parul; Krenek, Sascha; Marinov, Georgi K; Doak, Thomas G; Berendonk, Thomas U; Lynch, Michael
2017-05-01
Population-genomic analyses are essential to understanding factors shaping genomic variation and lineage-specific sequence constraints. The dearth of such analyses for unicellular eukaryotes prompted us to assess genomic variation in Paramecium, one of the most well-studied ciliate genera. The Paramecium aurelia complex consists of ∼15 morphologically indistinguishable species that diverged subsequent to two rounds of whole-genome duplications (WGDs, as long as 320 MYA) and possess extremely streamlined genomes. We examine patterns of both nuclear and mitochondrial polymorphism, by sequencing whole genomes of 10-13 worldwide isolates of each of three species belonging to the P. aurelia complex: P. tetraurelia, P. biaurelia, P. sexaurelia, as well as two outgroup species that do not share the WGDs: P. caudatum and P. multimicronucleatum. An apparent absence of global geographic population structure suggests continuous or recent dispersal of Paramecium over long distances. Intergenic regions are highly constrained relative to coding sequences, especially in P. caudatum and P. multimicronucleatum that have shorter intergenic distances. Sequence diversity and divergence are reduced up to ∼100-150 bp both upstream and downstream of genes, suggesting strong constraints imposed by the presence of densely packed regulatory modules. In addition, comparison of sequence variation at non-synonymous and synonymous sites suggests similar recent selective pressures on paralogs within and orthologs across the deeply diverging species. This study presents the first genome-wide population-genomic analysis in ciliates and provides a valuable resource for future studies in evolutionary and functional genetics in Paramecium. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Akins, R A; Grant, D M; Stohl, L L; Bottorff, D A; Nargang, F E; Lambowitz, A M
1988-11-05
The Mauriceville and Varkud mitochondrial plasmids of Neurospora are closely related, closed circular DNAs (3.6 and 3.7 kb, respectively; 1 kb = 10(3) bases or base-pairs), whose characteristics suggest relationships to mitochondrial DNA introns and retrotransposons. Here, we characterized the structure of the Varkud plasmid, determined its complete nucleotide sequence and mapped its major transcripts. The Mauriceville and Varkud plasmids have more than 97% positional identity. Both plasmids contain a 710 amino acid open reading frame that encodes a reverse transcriptase-like protein. The amino acid sequence of this open reading frame is strongly conserved between the two plasmids (701/710 amino acids) as expected for a functionally important protein. Both plasmids have a 0.4 kb region that contains five PstI palindromes and a direct repeat of approximately 160 base-pairs. Comparison of sequences in this region suggests that the Varkud plasmid has diverged less from a common ancestor than has the Mauriceville plasmid. Two major transcripts of the Varkud plasmid were detected by Northern hybridization experiments: a full-length linear RNA of 3.7 kb and an additional prominent transcript of 4.9 kb, 1.2 kb longer than monomer plasmid. Remarkably, we find that the 4.9 kb transcript is a hybrid RNA consisting of the full-length 3.7 kb Varkud plasmid transcript plus a 5' leader of 1.2 kb that is derived from the 5' end of the mitochondrial small rRNA. This and other findings suggest that the Varkud plasmid, like certain RNA viruses, has a mechanism for joining heterologous RNAs to the 5' end of its major transcript, and that, under some circumstances, nucleotide sequences in mitochondria may be recombined at the RNA level.
Morey, Candice Coker; Cowan, Nelson; Morey, Richard D; Rouder, Jeffery N
2011-02-01
Prominent roles for general attention resources are posited in many models of working memory, but the manner in which these can be allocated differs between models or is not sufficiently specified. We varied the payoffs for correct responses in two temporally-overlapping recognition tasks, a visual array comparison task and a tone sequence comparison task. In the critical conditions, an increase in reward for one task corresponded to a decrease in reward for the concurrent task, but memory load remained constant. Our results show patterns of interference consistent with a trade-off between the tasks, suggesting that a shared resource can be flexibly divided, rather than only fully allotted to either of the tasks. Our findings support a role for a domain-general resource in models of working memory, and furthermore suggest that this resource is flexibly divisible.
Berstein, R M; Schluter, S F; Shen, S; Marchalonis, J J
1996-04-16
All immunoglobulins and T-cell receptors throughout phylogeny share regions of highly conserved amino acid sequence. To identify possible primitive immunoglobulins and immunoglobulin-like molecules, we utilized 3' RACE (rapid amplification of cDNA ends) and a highly conserved constant region consensus amino acid sequence to isolate a new immunoglobulin class from the sandbar shark Carcharhinus plumbeus. The immunoglobulin, termed IgW, in its secreted form consists of 782 amino acids and is expressed in both the thymus and the spleen. The molecule overall most closely resembles mu chains of the skate and human and a new putative antigen binding molecule isolated from the nurse shark (NAR). The full-length IgW chain has a variable region resembling human and shark heavy-chain (VH) sequences and a novel joining segment containing the WGXGT motif characteristic of H chains. However, unlike any other H-chain-type molecule, it contains six constant (C) domains. The first C domain contains the cysteine residue characteristic of C mu1 that would allow dimerization with a light (L) chain. The fourth and sixth domains also contain comparable cysteines that would enable dimerization with other H chains or homodimerization. Comparison of the sequences of IgW V and C domains shows homology greater than that found in comparisons among VH and C mu or VL, or CL thereby suggesting that IgW may retain features of the primordial immunoglobulin in evolution.
Krajewski, C; Fain, M G; Buckley, L; King, D G
1999-11-01
ki ctes over whether molecular sequence data should be partitioned for phylogenetic analysis often confound two types of heterogeneity among partitions. We distinguish historical heterogeneity (i.e., different partitions have different evolutionary relationships) from dynamic heterogeneity (i.e., different partitions show different patterns of sequence evolution) and explore the impact of the latter on phylogenetic accuracy and precision with a two-gene, mitochondrial data set for cranes. The well-established phylogeny of cranes allows us to contrast tree-based estimates of relevant parameter values with estimates based on pairwise comparisons and to ascertain the effects of incorporating different amounts of process information into phylogenetic estimates. We show that codon positions in the cytochrome b and NADH dehydrogenase subunit 6 genes are dynamically heterogenous under both Poisson and invariable-sites + gamma-rates versions of the F84 model and that heterogeneity includes variation in base composition and transition bias as well as substitution rate. Estimates of transition-bias and relative-rate parameters from pairwise sequence comparisons were comparable to those obtained as tree-based maximum likelihood estimates. Neither rate-category nor mixed-model partitioning strategies resulted in a loss of phylogenetic precision relative to unpartitioned analyses. We suggest that weighted-average distances provide a computationally feasible alternative to direct maximum likelihood estimates of phylogeny for mixed-model analyses of large, dynamically heterogenous data sets. Copyright 1999 Academic Press.
Korber, B T; Osmanov, S; Esparza, J; Myers, G
1994-11-01
The World Health Organization Global Programme on AIDS (WHO/GPA) is conducting a large-scale collaborative study of human immunodeficiency virus type 1 (HIV-1) variation, based in four potential vaccine-trial site countries: Brazil, Rwanda, Thailand, and Uganda. Through the course of this study, it was crucial to keep track of certain attributes of the samples from which the viral nucleotide sequences were derived (e.g., country of origin and viral culture characterization), so that meaningful sequence comparisons could be made. Here we describe a system developed in the context of the WHO/GPA study that summarizes such critical attributes by representing them as standardized characters directly incorporated into sequence names. This nomenclature allows linkage of clinical, phenotypic, and geographic information with molecular data. We propose that other investigators involved in human immunodeficiency virus (HIV) nucleotide sequencing efforts adopt a similar standardized sequence nomenclature to facilitate cross-study sequence comparison. HIV sequence data are being generated at an ever-increasing rate; directly coupled to this increase is our deepening understanding of biological parameters that influence or result from sequence variability. A standardized sequence nomenclature that includes relevant biological information would enable researchers to better utilize the growing body of sequence data, and enhance their ability to interpret the biological implications of their own data through facilitating comparisons with previously published work.
Andreotti, Renato; Pedroso, Marisela S; Caetano, Alexandre R; Martins, Natália F
2008-01-01
This paper reports the sequence analysis of Bm86 Campo Grande strain comparing it with Bm86 and Bm95 antigens from the preparations TickGardPLUS and Gavac, respectively. The PCR product was cloned into pMOSBlue and sequenced. The secondary structure prediction tool PSIPRED was used to calculate alpha helices and beta strand contents of the predicted polypeptide. The hydrophobicity profile was calculated using the algorithms from the Hopp and Woods method, in addition to identification of potential MHC class-I binding regions in the antigens. Pair-wise alignment revealed that the similarity between Bm86 Campo Grande strain and Bm86 is 0.2% higher than that between Bm86 Campo Grande strain and Bm95 antigens. The identities were 96.5% and 96.3% respectively. Major suggestive differences in hydrophobicity were predicted among the sequences in two specific regions.
López-Bueno, Alberto; Parras-Moltó, Marcos; López-Barrantes, Olivia; Belda, Sylvia; Alejo, Alí
2017-05-01
Molluscum contagiosum virus (MCV) is the sole member of the Molluscipoxvirus genus and causes a highly prevalent human disease of the skin characterized by the formation of a variable number of lesions that can persist for prolonged periods of time. Two major genotypes, subtype 1 and subtype 2, are recognized, although currently only a single complete genomic sequence corresponding to MCV subtype 1 is available. Using next-generation sequencing techniques, we report the complete genomic sequence of four new MCV isolates, including the first one derived from a subtype 2. Comparisons suggest a relatively distant evolutionary split between both MCV subtypes. Further, our data illustrate concurrent circulation of distinct viruses within a population and reveal the existence of recombination events among them. These results help identify a set of MCV genes with potentially relevant roles in molluscum contagiosum epidemiology and pathogenesis.
Analysis of methylated patterns and quality-related genes in tobacco (Nicotiana tabacum) cultivars.
Jiao, Junna; Jia, Yanlong; Lv, Zhuangwei; Sun, Chuanfei; Gao, Lijie; Yan, Xiaoxiao; Cui, Liusu; Tang, Zongxiang; Yan, Benju
2014-08-01
Methylation-sensitive amplified polymorphism was used in this study to investigate epigenetic information of four tobacco cultivars: Yunyan 85, NC89, K326, and Yunyan 87. The DNA fragments with methylated information were cloned by reamplified PCR and sequenced. The results of Blast alignments showed that the genes with methylation information included chitinase, nitrate reductase, chloroplast DNA, mitochondrial DNA, ornithine decarboxylase, ribulose carboxylase, and promoter sequences. Homologous comparison in three cloned gene sequences (nitrate reductase, ornithine decarboxylase, and ribulose decarboxylase) indicated that geographic factors had significant influence on the whole genome methylation. Introns also contained different information in different tobacco cultivars. These findings suggest that synthetic mechanisms for tobacco aromatic components could be affected by different environmental factors leading to variation of noncoding regions in the genome, which finally results in different fragrance and taste in different tobacco cultivars.
A Statistical Framework for the Functional Analysis of Metagenomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharon, Itai; Pati, Amrita; Markowitz, Victor
2008-10-01
Metagenomic studies consider the genetic makeup of microbial communities as a whole, rather than their individual member organisms. The functional and metabolic potential of microbial communities can be analyzed by comparing the relative abundance of gene families in their collective genomic sequences (metagenome) under different conditions. Such comparisons require accurate estimation of gene family frequencies. They present a statistical framework for assessing these frequencies based on the Lander-Waterman theory developed originally for Whole Genome Shotgun (WGS) sequencing projects. They also provide a novel method for assessing the reliability of the estimations which can be used for removing seemingly unreliable measurements.more » They tested their method on a wide range of datasets, including simulated genomes and real WGS data from sequencing projects of whole genomes. Results suggest that their framework corrects inherent biases in accepted methods and provides a good approximation to the true statistics of gene families in WGS projects.« less
Wang, Kaicheng; Lu, Chengping
2007-01-01
A total of 36 streptococcal strains, including seven S. equi ssp.zooepidemicus, two S. suis type 1 (SS1), 24 SS2, two SS9, and one SS7, were tested for glyceraldehyde-3-phosphate dehydrogenase gene (gapdh). Except from non-virulent SS2 strain T1 5, all strains harboured gapdh. The gapdh of Chinese Sichuan SS2 isolate ZY05719 and Jiangsu SS2 isolate HA9801 were sequenced and then compared with published sequences in the GenBank. The comparison revealed a 99.9 % and 99.8 % similarity of ZY05719 and HA9801, respectively, with the published sequence. Adherence assay data demonstrated a significant ((p<0.05)) reduction in adhesion of SS2 in HEp-2 cells pre-incubated with purified GAPDH compared to non pre-incubated controls, suggesting the GAPDH mediates SS2 bacterial adhesion to host cells.
Comparison of the Heme Iron Utilization Systems of Pathogenic Vibrios
O’Malley, S. M.; Mouton, S. L.; Occhino, D. A.; Deanda, M. T.; Rashidi, J. R.; Fuson, K. L.; Rashidi, C. E.; Mora, M. Y.; Payne, S. M.; Henderson, D. P.
1999-01-01
Vibrio alginolyticus, Vibrio fluvialis, and Vibrio parahaemolyticus utilized heme and hemoglobin as iron sources and contained chromosomal DNA similar to several Vibrio cholerae heme iron utilization genes. A V. parahaemolyticus gene that performed the function of V. cholerae hutA was isolated. A portion of the tonB1 locus of V. parahaemolyticus was sequenced and found to encode proteins similar in amino acid sequence to V. cholerae HutW, TonB1, and ExbB1. A recombinant plasmid containing the V. cholerae tonB1 and exbB1D1 genes complemented a V. alginolyticus heme utilization mutant. These data suggest that the heme iron utilization systems of the pathogenic vibrios tested, particularly V. parahaemolyticus and V. alginolyticus, are similar at the DNA level, the functional level, and, in the case of V. parahaemolyticus, the amino acid sequence or protein level to that of V. cholerae. PMID:10348876
Bowen, Lizabeth; Aldridge, B.M.; Miles, A. Keith; Stott, J.L.
2006-01-01
The major histocompatibility complex (MHC) is central to maintaining the immunologic vigor of individuals and populations. Classical MHC class II genes were targeted for partial sequencing in sea otters (Enhydra lutris) from populations in California, Washington, and Alaska. Sequences derived from sea otter peripheral blood leukocyte mRNAs were similar to those classified as DQA, DQB, DRA, and DRB in other species. Comparisons of the derived amino acid compositions supported the classification of these as functional molecules from at least one DQA, DQB, and DRA locus and at least two DRB loci. While limited in scope, phylogenetic analysis of the DRB peptide‐binding region suggested the possible existence of distinct clades demarcated by geographic region. These preliminary findings support the need for additional MHC gene sequencing and expansion to a comprehensive study targeting additional otters.
Dai, Qi; Yang, Yanchun; Wang, Tianming
2008-10-15
Many proposed statistical measures can efficiently compare biological sequences to further infer their structures, functions and evolutionary information. They are related in spirit because all the ideas for sequence comparison try to use the information on the k-word distributions, Markov model or both. Motivated by adding k-word distributions to Markov model directly, we investigated two novel statistical measures for sequence comparison, called wre.k.r and S2.k.r. The proposed measures were tested by similarity search, evaluation on functionally related regulatory sequences and phylogenetic analysis. This offers the systematic and quantitative experimental assessment of our measures. Moreover, we compared our achievements with these based on alignment or alignment-free. We grouped our experiments into two sets. The first one, performed via ROC (receiver operating curve) analysis, aims at assessing the intrinsic ability of our statistical measures to search for similar sequences from a database and discriminate functionally related regulatory sequences from unrelated sequences. The second one aims at assessing how well our statistical measure is used for phylogenetic analysis. The experimental assessment demonstrates that our similarity measures intending to incorporate k-word distributions into Markov model are more efficient.
Stability of Tandem Repeats in the Drosophila Melanogaster HSR-Omega Nuclear RNA
Hogan, N. C.; Slot, F.; Traverse, K. L.; Garbe, J. C.; Bendena, W. G.; Pardue, M. L.
1995-01-01
The Drosophila melanogaster Hsr-omega locus produces a nuclear RNA containing >5 kb of tandem repeat sequences. These repeats are unique to Hsr-omega and show concerted evolution similar to that seen with classical satellite DNAs. In D. melanogaster the monomer is ~280 bp. Sequences of 191/2 monomers differ by 8 +/- 5% (mean +/- SD), when all pairwise comparisons are considered. Differences are single nucleotide substitutions and 1-3 nucleotide deletions/insertions. Changes appear to be randomly distributed over the repeat unit. Outer repeats do not show the decrease in monomer homogeneity that might be expected if homogeneity is maintained by recombination. However, just outside the last complete repeat at each end, there are a few fragments of sequence similar to the monomer. The sequences in these flanking regions are not those predicted for sequences decaying in the absence of recombination. Instead, the fragmentation of the sequence homology suggests that flanking regions have undergone more severe disruptions, possibly during an insertion or amplification event. Hsr-omega alleles differing in the number of repeats are detected and appear to be stable over a few thousand generations; however, both increases and decreases in repeat numbers have been observed. The new alleles appear to be as stable as their predecessors. No alleles of less than ~5 kb nor more than ~16 kb of repeats were seen in any stocks examined. The evidence that there is a limit on the minimum number of repeats is consistent with the suggestion that these repeats are important in the function of the unusual Hsr-omega nuclear RNA. PMID:7540581
Evaluation of the genetic diversity of Plum pox virus in a single plum tree.
Predajňa, Lukáš; Šubr, Zdeno; Candresse, Thierry; Glasa, Miroslav
2012-07-01
Genetic diversity of Plum pox virus (PPV) and its distribution within a single perennial woody host (plum, Prunus domestica) has been evaluated. A plum tree was triply infected by chip-budding with PPV-M, PPV-D and PPV-Rec isolates in 2003 and left to develop untreated under open field conditions. In September 2010 leaf and fruit samples were collected from different parts of the tree canopy. A 745-bp NIb-CP fragment of PPV genome, containing the hypervariable region encoding the CP N-terminal end was amplified by RT-PCR from each sample and directly sequenced to determine the dominant sequence. In parallel, the PCR products were cloned and a total of 105 individual clones were sequenced. Sequence analysis revealed that after 7 years of infection, only PPV-M was still detectable in the tree and that the two other isolates (PPV-Rec and PPV-D) had been displaced. Despite the fact that the analysis targeted a relatively short portion of the genome, a substantial amount of intra-isolate variability was observed for PPV-M. A total of 51 different haplotypes could be identified from the 105 individual sequences, two of which were largely dominant. However, no clear-cut structuration of the viral population by the tree architecture could be highlighted although the results obtained suggest the possibility of intra-leaf/fruit differentiation of the viral population. Comparison of the consensus sequence with the original source isolate showed no difference, suggesting within-plant stability of this original isolate under open field conditions. Copyright © 2012 Elsevier B.V. All rights reserved.
Searching for evidence of selection in avian DNA barcodes.
Kerr, Kevin C R
2011-11-01
The barcode of life project has assembled a tremendous number of mitochondrial cytochrome c oxidase I (COI) sequences. Although these sequences were gathered to develop a DNA-based system for species identification, it has been suggested that further biological inferences may also be derived from this wealth of data. Recurrent selective sweeps have been invoked as an evolutionary mechanism to explain limited intraspecific COI diversity, particularly in birds, but this hypothesis has not been formally tested. In this study, I collated COI sequences from previous barcoding studies on birds and tested them for evidence of selection. Using this expanded data set, I re-examined the relationships between intraspecific diversity and interspecific divergence and sampling effort, respectively. I employed the McDonald-Kreitman test to test for neutrality in sequence evolution between closely related pairs of species. Because amino acid sequences were generally constrained between closely related pairs, I also included broader intra-order comparisons to quantify patterns of protein variation in avian COI sequences. Lastly, using 22 published whole mitochondrial genomes, I compared the evolutionary rate of COI against the other 12 protein-coding mitochondrial genes to assess intragenomic variability. I found no conclusive evidence of selective sweeps. Most evidence pointed to an overall trend of strong purifying selection and functional constraint. The COI protein did vary across the class Aves, but to a very limited extent. COI was the least variable gene in the mitochondrial genome, suggesting that other genes might be more informative for probing factors constraining mitochondrial variation within species. © 2011 Blackwell Publishing Ltd.
Panzer, Katrin; Yilmaz, Pelin; Weiß, Michael; Reich, Lothar; Richter, Michael; Wiese, Jutta; Schmaljohann, Rolf; Labes, Antje; Imhoff, Johannes F.; Glöckner, Frank Oliver; Reich, Marlis
2015-01-01
Molecular diversity surveys have demonstrated that aquatic fungi are highly diverse, and that they play fundamental ecological roles in aquatic systems. Unfortunately, comparative studies of aquatic fungal communities are few and far between, due to the scarcity of adequate datasets. We combined all publicly available fungal 18S ribosomal RNA (rRNA) gene sequences with new sequence data from a marine fungi culture collection. We further enriched this dataset by adding validated contextual data. Specifically, we included data on the habitat type of the samples assigning fungal taxa to ten different habitat categories. This dataset has been created with the intention to serve as a valuable reference dataset for aquatic fungi including a phylogenetic reference tree. The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases.The combined data enabled us to infer fungal community patterns in aquatic systems. Pairwise habitat comparisons showed significant phylogenetic differences, indicating that habitat strongly affects fungal community structure. Fungal taxonomic composition differed considerably even on phylum and class level. Freshwater fungal assemblage was most different from all other habitat types and was dominated by basal fungal lineages. For most communities, phylogenetic signals indicated clustering of sequences suggesting that environmental factors were the main drivers of fungal community structure, rather than species competition. Thus, the diversification process of aquatic fungi must be highly clade specific in some cases. PMID:26226014
Genome Fragmentation Is Not Confined to the Peridinin Plastid in Dinoflagellates
Espelund, Mari; Minge, Marianne A.; Gabrielsen, Tove M.; Nederbragt, Alexander J.; Shalchian-Tabrizi, Kamran; Otis, Christian; Turmel, Monique; Lemieux, Claude; Jakobsen, Kjetill S.
2012-01-01
When plastids are transferred between eukaryote lineages through series of endosymbiosis, their environment changes dramatically. Comparison of dinoflagellate plastids that originated from different algal groups has revealed convergent evolution, suggesting that the host environment mainly influences the evolution of the newly acquired organelle. Recently the genome from the anomalously pigmented dinoflagellate Karlodinium veneficum plastid was uncovered as a conventional chromosome. To determine if this haptophyte-derived plastid contains additional chromosomal fragments that resemble the mini-circles of the peridin-containing plastids, we have investigated its genome by in-depth sequencing using 454 pyrosequencing technology, PCR and clone library analysis. Sequence analyses show several genes with significantly higher copy numbers than present in the chromosome. These genes are most likely extrachromosomal fragments, and the ones with highest copy numbers include genes encoding the chaperone DnaK(Hsp70), the rubisco large subunit (rbcL), and two tRNAs (trnE and trnM). In addition, some photosystem genes such as psaB, psaA, psbB and psbD are overrepresented. Most of the dnaK and rbcL sequences are found as shortened or fragmented gene sequences, typically missing the 3′-terminal portion. Both dnaK and rbcL are associated with a common sequence element consisting of about 120 bp of highly conserved AT-rich sequence followed by a trnE gene, possibly serving as a control region. Decatenation assays and Southern blot analysis indicate that the extrachromosomal plastid sequences do not have the same organization or lengths as the minicircles of the peridinin dinoflagellates. The fragmentation of the haptophyte-derived plastid genome K. veneficum suggests that it is likely a sign of a host-driven process shaping the plastid genomes of dinoflagellates. PMID:22719952
Roessler, Christian G.; Hall, Branwen M.; Anderson, William J.; Ingram, Wendy M.; Roberts, Sue A.; Montfort, William R.; Cordes, Matthew H. J.
2008-01-01
Proteins that share common ancestry may differ in structure and function because of divergent evolution of their amino acid sequences. For a typical diverse protein superfamily, the properties of a few scattered members are known from experiment. A satisfying picture of functional and structural evolution in relation to sequence changes, however, may require characterization of a larger, well chosen subset. Here, we employ a “stepping-stone” method, based on transitive homology, to target sequences intermediate between two related proteins with known divergent properties. We apply the approach to the question of how new protein folds can evolve from preexisting folds and, in particular, to an evolutionary change in secondary structure and oligomeric state in the Cro family of bacteriophage transcription factors, initially identified by sequence-structure comparison of distant homologs from phages P22 and λ. We report crystal structures of two Cro proteins, Xfaso 1 and Pfl 6, with sequences intermediate between those of P22 and λ. The domains show 40% sequence identity but differ by switching of α-helix to β-sheet in a C-terminal region spanning ≈25 residues. Sedimentation analysis also suggests a correlation between helix-to-sheet conversion and strengthened dimerization. PMID:18227506
Klein, Donald A.; Flores, Romeo M.; Venot, Christophe; Gabbert, Kendra; Schmidt, Raleigh; Stricker, Gary D.; Pruden, Amy; Mandernack, Kevin
2008-01-01
Coalbed methane regeneration is of increasing interest, and is gaining global attention with respect to enhancement of gas recovery. The objective of this study is to determine if there are differences in methanogen nucleic acid sequences associated with low rank coals from the Powder River Basin, Wyoming, in comparison with sequences that can be recovered from coal bed-associated produced waters. Based on results obtained to date, the sequences from the coals appear to be associated with putatively deep-rooted thermophilic autotrophic methanogens, whereas the sequences from the waters are associated with thermophilic autotrophic and heterotrophic methanogens. The recovered sequences associated with coal thus appear to be both phylogenetically and functionally distinct from those that are more closely associated with the produced water. To be able to relate such recovered sequences to organisms that might be present and possibly active in these environments, it is suggested that direct observation, followed by isolation and single cell-based physiological/molecular analyses, be used to characterize methanogenic consortia possibly associated with coals and/or produced waters. It is also important to characterize the microenvironment where these microbes might be found, in both ecological and geological contexts, to be able to develop effective, ecologically relevant coalbed methane regeneration processes.
False positives complicate ancient pathogen identifications using high-throughput shotgun sequencing
2014-01-01
Background Identification of historic pathogens is challenging since false positives and negatives are a serious risk. Environmental non-pathogenic contaminants are ubiquitous. Furthermore, public genetic databases contain limited information regarding these species. High-throughput sequencing may help reliably detect and identify historic pathogens. Results We shotgun-sequenced 8 16th-century Mixtec individuals from the site of Teposcolula Yucundaa (Oaxaca, Mexico) who are reported to have died from the huey cocoliztli (‘Great Pestilence’ in Nahautl), an unknown disease that decimated native Mexican populations during the Spanish colonial period, in order to identify the pathogen. Comparison of these sequences with those deriving from the surrounding soil and from 4 precontact individuals from the site found a wide variety of contaminant organisms that confounded analyses. Without the comparative sequence data from the precontact individuals and soil, false positives for Yersinia pestis and rickettsiosis could have been reported. Conclusions False positives and negatives remain problematic in ancient DNA analyses despite the application of high-throughput sequencing. Our results suggest that several studies claiming the discovery of ancient pathogens may need further verification. Additionally, true single molecule sequencing’s short read lengths, inability to sequence through DNA lesions, and limited ancient-DNA-specific technical development hinder its application to palaeopathology. PMID:24568097
Tsoumani, Konstantina T.; Drosopoulou, Elena; Bourtzis, Kostas; Gariou-Papalexiou, Aggeliki; Mavragani-Tsipidou, Penelope; Zacharopoulou, Antigone; Mathiopoulos, Kostas D.
2015-01-01
Sex chromosomes have many unusual features relative to autosomes. The in depth exploration of their structure will improve our understanding of their origin and divergence (degeneration) as well as the evolution of genetic sex determination pathways which, most often are attributed to them. In Tephritids, the structure of Y chromosome, where the male-determining factor M is localized, is largely unexplored and limited data concerning its sequence content and evolution are available. In order to get insight into the structure and organization of the Y chromosome of the major olive insect pest, the olive fly Bactrocera oleae, we characterized sequences from a Pulse Field Gel Electrophoresis (PFGE)-isolated Y chromosome. Here, we report the discovery of the first olive fly LTR retrotransposon with increased presence on the Y chromosome. The element belongs to the BEL-Pao superfamily, however, its sequence comparison with the other members of the superfamily suggests that it constitutes a new family that we termed Achilles. Its ~7.5 kb sequence consists of the 5’LTR, the 5’non-coding sequence and the open reading frame (ORF), which encodes the polyprotein Gag-Pol. In situ hybridization to the B. oleae polytene chromosomes showed that Achilles is distributed in discrete bands dispersed on all five autosomes, in all centromeric regions and in the granular heterochromatic network corresponding to the mitotic sex chromosomes. The between sexes comparison revealed a variation in Achilles copy number, with male flies possessing 5–10 copies more than female (CI range: 18–38 and 12–33 copies respectively per genome). The examination of its transcriptional activity demonstrated the presence of at least one intact active copy in the genome, showing a differential level of expression between sexes as well as during embryonic development. The higher expression was detected in male germline tissues (testes). Moreover, the presence of Achilles-like elements in different species of the Tephritidae family suggests an ancient origin of this element. PMID:26398504
Phylo-VISTA: Interactive visualization of multiple DNA sequence alignments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Nameeta; Couronne, Olivier; Pennacchio, Len A.
The power of multi-sequence comparison for biological discovery is well established. The need for new capabilities to visualize and compare cross-species alignment data is intensified by the growing number of genomic sequence datasets being generated for an ever-increasing number of organisms. To be efficient these visualization algorithms must support the ability to accommodate consistently a wide range of evolutionary distances in a comparison framework based upon phylogenetic relationships. Results: We have developed Phylo-VISTA, an interactive tool for analyzing multiple alignments by visualizing a similarity measure for multiple DNA sequences. The complexity of visual presentation is effectively organized using a frameworkmore » based upon interspecies phylogenetic relationships. The phylogenetic organization supports rapid, user-guided interspecies comparison. To aid in navigation through large sequence datasets, Phylo-VISTA leverages concepts from VISTA that provide a user with the ability to select and view data at varying resolutions. The combination of multiresolution data visualization and analysis, combined with the phylogenetic framework for interspecies comparison, produces a highly flexible and powerful tool for visual data analysis of multiple sequence alignments. Availability: Phylo-VISTA is available at http://www-gsd.lbl. gov/phylovista. It requires an Internet browser with Java Plugin 1.4.2 and it is integrated into the global alignment program LAGAN at http://lagan.stanford.edu« less
Sequence information signal processor
Peterson, John C.; Chow, Edward T.; Waterman, Michael S.; Hunkapillar, Timothy J.
1999-01-01
An electronic circuit is used to compare two sequences, such as genetic sequences, to determine which alignment of the sequences produces the greatest similarity. The circuit includes a linear array of series-connected processors, each of which stores a single element from one of the sequences and compares that element with each successive element in the other sequence. For each comparison, the processor generates a scoring parameter that indicates which segment ending at those two elements produces the greatest degree of similarity between the sequences. The processor uses the scoring parameter to generate a similar scoring parameter for a comparison between the stored element and the next successive element from the other sequence. The processor also delivers the scoring parameter to the next processor in the array for use in generating a similar scoring parameter for another pair of elements. The electronic circuit determines which processor and alignment of the sequences produce the scoring parameter with the highest value.
Breaking the computational barriers of pairwise genome comparison.
Torreno, Oscar; Trelles, Oswaldo
2015-08-11
Conventional pairwise sequence comparison software algorithms are being used to process much larger datasets than they were originally designed for. This can result in processing bottlenecks that limit software capabilities or prevent full use of the available hardware resources. Overcoming the barriers that limit the efficient computational analysis of large biological sequence datasets by retrofitting existing algorithms or by creating new applications represents a major challenge for the bioinformatics community. We have developed C libraries for pairwise sequence comparison within diverse architectures, ranging from commodity systems to high performance and cloud computing environments. Exhaustive tests were performed using different datasets of closely- and distantly-related sequences that span from small viral genomes to large mammalian chromosomes. The tests demonstrated that our solution is capable of generating high quality results with a linear-time response and controlled memory consumption, being comparable or faster than the current state-of-the-art methods. We have addressed the problem of pairwise and all-versus-all comparison of large sequences in general, greatly increasing the limits on input data size. The approach described here is based on a modular out-of-core strategy that uses secondary storage to avoid reaching memory limits during the identification of High-scoring Segment Pairs (HSPs) between the sequences under comparison. Software engineering concepts were applied to avoid intermediate result re-calculation, to minimise the performance impact of input/output (I/O) operations and to modularise the process, thus enhancing application flexibility and extendibility. Our computationally-efficient approach allows tasks such as the massive comparison of complete genomes, evolutionary event detection, the identification of conserved synteny blocks and inter-genome distance calculations to be performed more effectively.
Sierra-Garcia, Isabel Natalia; Dellagnezze, Bruna M; Santos, Viviane P; Chaves B, Michel R; Capilla, Ramsés; Santos Neto, Eugenio V; Gray, Neil; Oliveira, Valeria M
2017-01-01
Microorganisms have shown their ability to colonize extreme environments including deep subsurface petroleum reservoirs. Physicochemical parameters may vary greatly among petroleum reservoirs worldwide and so do the microbial communities inhabiting these different environments. The present work aimed at the characterization of the microbiota in biodegraded and non-degraded petroleum samples from three Brazilian reservoirs and the comparison of microbial community diversity across oil reservoirs at local and global scales using 16S rRNA clone libraries. The analysis of 620 16S rRNA bacterial and archaeal sequences obtained from Brazilian oil samples revealed 42 bacterial OTUs and 21 archaeal OTUs. The bacterial community from the degraded oil was more diverse than the non-degraded samples. Non-degraded oil samples were overwhelmingly dominated by gammaproteobacterial sequences with a predominance of the genera Marinobacter and Marinobacterium. Comparisons of microbial diversity among oil reservoirs worldwide suggested an apparent correlation of prokaryotic communities with reservoir temperature and depth and no influence of geographic distance among reservoirs. The detailed analysis of the phylogenetic diversity across reservoirs allowed us to define a core microbiome encompassing three bacterial classes (Gammaproteobacteria, Clostridia, and Bacteroidia) and one archaeal class (Methanomicrobia) ubiquitous in petroleum reservoirs and presumably owning the abilities to sustain life in these environments.
NASA Astrophysics Data System (ADS)
Yemane, K.; Kelts, K.
This paper compares Karoo deposits within the Lower Beaufort (Late Permian) time interval from southern to central Africa. Facies aspects are summarized for selected sequences and depositional environments assessed in connection with the palaeogeography. The comparison shows that thickness of Lower Beaufort sequences varies greatly; sequences are over a kilometre thick at the southern tip, but decrease drastically to the north, northwest and northeast, and is commonly absent from the western part of the subcontinent. Depositional environments are continental except for small estuarine intervals from a sequence in Tanzania. The commonest lithologies comprise mudstones, siltstones, arkoses and carbonates. In spite of the dominance of fluvial facies, the records preserved by intervals of lacustrine sequences suggest that large lakes were major features of the palaeogeography, and that lacustrine environments may have been dominant deposition environments. The Lower Beaufort landscape is generally interpreted as an expansive cratonic lowland with meandering rivers and streams crossing vast floodplains, which were indented by concomitant shallow lakes of various sizes. The lakes from the Karoo tectono-sedimentary terrain were often ephemeral and closely linked with fluvial processes, but large, anoxic lakers are also documented. On the other hand, giant, freshwater lakes, covered large areas of the Zambezian tectono-sedimentary terrain and may have been locally connected. Evidence from abundant freshwater fossil assemblages, particularly from the Zambezian tectono-sedimentary terrain suggest that in spite of the generally semi-arid global climate of the Upper Permian, seasonal precipitation (monsoonal?) supplied enough moisture to sustain large perennial lakes. Because of the unique nature of the Permian cotinental configuration and palaeogeography, however, modern analogues of large systems are lacking. The general lithological and palaeontological correlability of Lower Beaufort sequences suggests a similar regional palaeoclimate, whereas the differences in distribution are taken to be a result of control of tectonic settings. From the widespread occurrences of lake deposits in the African subcontinent, over relatively long interval, we conclude that lake deposits provide more information for a better understanding of Karoo palaeogeography than previously thought, since such lacustrine sequences should hold sensitive, high resolution records for palaeoenvironmental interpretations.
Reaction schemes visualized in network form: the syntheses of strychnine as an example.
Proudfoot, John R
2013-05-24
Representation of synthesis sequences in a network form provides an effective method for the comparison of multiple reaction schemes and an opportunity to emphasize features such as reaction scale that are often relegated to experimental sections. An example of data formatting that allows construction of network maps in Cytoscape is presented, along with maps that illustrate the comparison of multiple reaction sequences, comparison of scaffold changes within sequences, and consolidation to highlight common key intermediates used across sequences. The 17 different synthetic routes reported for strychnine are used as an example basis set. The reaction maps presented required a significant data extraction and curation, and a standardized tabular format for reporting reaction information, if applied in a consistent way, could allow the automated combination of reaction information across different sources.
Liao, Weinan; Ren, Jie; Wang, Kun; Wang, Shun; Zeng, Feng; Wang, Ying; Sun, Fengzhu
2016-11-23
The comparison between microbial sequencing data is critical to understand the dynamics of microbial communities. The alignment-based tools analyzing metagenomic datasets require reference sequences and read alignments. The available alignment-free dissimilarity approaches model the background sequences with Fixed Order Markov Chain (FOMC) yielding promising results for the comparison of microbial communities. However, in FOMC, the number of parameters grows exponentially with the increase of the order of Markov Chain (MC). Under a fixed high order of MC, the parameters might not be accurately estimated owing to the limitation of sequencing depth. In our study, we investigate an alternative to FOMC to model background sequences with the data-driven Variable Length Markov Chain (VLMC) in metatranscriptomic data. The VLMC originally designed for long sequences was extended to apply to high-throughput sequencing reads and the strategies to estimate the corresponding parameters were developed. The flexible number of parameters in VLMC avoids estimating the vast number of parameters of high-order MC under limited sequencing depth. Different from the manual selection in FOMC, VLMC determines the MC order adaptively. Several beta diversity measures based on VLMC were applied to compare the bacterial RNA-Seq and metatranscriptomic datasets. Experiments show that VLMC outperforms FOMC to model the background sequences in transcriptomic and metatranscriptomic samples. A software pipeline is available at https://d2vlmc.codeplex.com.
Analysis of Epstein-Barr Virus Genomes and Expression Profiles in Gastric Adenocarcinoma.
Borozan, Ivan; Zapatka, Marc; Frappier, Lori; Ferretti, Vincent
2018-01-15
Epstein-Barr virus (EBV) is a causative agent of a variety of lymphomas, nasopharyngeal carcinoma (NPC), and ∼9% of gastric carcinomas (GCs). An important question is whether particular EBV variants are more oncogenic than others, but conclusions are currently hampered by the lack of sequenced EBV genomes. Here, we contribute to this question by mining whole-genome sequences of 201 GCs to identify 13 EBV-positive GCs and by assembling 13 new EBV genome sequences, almost doubling the number of available GC-derived EBV genome sequences and providing the first non-Asian EBV genome sequences from GC. Whole-genome sequence comparisons of all EBV isolates sequenced to date (85 from tumors and 57 from healthy individuals) showed that most GC and NPC EBV isolates were closely related although American Caucasian GC samples were more distant, suggesting a geographical component. However, EBV GC isolates were found to contain some consistent changes in protein sequences regardless of geographical origin. In addition, transcriptome data available for eight of the EBV-positive GCs were analyzed to determine which EBV genes are expressed in GC. In addition to the expected latency proteins (EBNA1, LMP1, and LMP2A), specific subsets of lytic genes were consistently expressed that did not reflect a typical lytic or abortive lytic infection, suggesting a novel mechanism of EBV gene regulation in the context of GC. These results are consistent with a model in which a combination of specific latent and lytic EBV proteins promotes tumorigenesis. IMPORTANCE Epstein-Barr virus (EBV) is a widespread virus that causes cancer, including gastric carcinoma (GC), in a small subset of individuals. An important question is whether particular EBV variants are more cancer associated than others, but more EBV sequences are required to address this question. Here, we have generated 13 new EBV genome sequences from GC, almost doubling the number of EBV sequences from GC isolates and providing the first EBV sequences from non-Asian GC. We further identify sequence changes in some EBV proteins common to GC isolates. In addition, gene expression analysis of eight of the EBV-positive GCs showed consistent expression of both the expected latency proteins and a subset of lytic proteins that was not consistent with typical lytic or abortive lytic expression. These results suggest that novel mechanisms activate expression of some EBV lytic proteins and that their expression may contribute to oncogenesis. Copyright © 2018 American Society for Microbiology.
Comparison and quantitative verification of mapping algorithms for whole genome bisulfite sequencing
USDA-ARS?s Scientific Manuscript database
Coupling bisulfite conversion with next-generation sequencing (Bisulfite-seq) enables genome-wide measurement of DNA methylation, but poses unique challenges for mapping. However, despite a proliferation of Bisulfite-seq mapping tools, no systematic comparison of their genomic coverage and quantitat...
Wettstein, P J; States, J S
1986-01-01
The extent of polymorphism and the rate of divergence of class I and class II sequences mapping to the mammalian major histocompatibility complex (MHC) have been the subject of experimentation and speculation. To provide further insight into the evolution of the MHC we have initiated the analysis of two geographically isolated subspecies of tassel-eared squirrels. In the preceding communication we described the number and polymorphism of TSLA class I and class II sequences in Kaibab squirrels (S. aberti kaibabensis), which live north of the Grand Canyon. In this report we present a parallel analysis of Abert squirrels (S. aberti aberti), which live south of the Grand Canyon in northern Arizona. Genomic DNA from 12 Abert squirrels was digested with restriction enzymes, electrophoresed, blotted, and hybridized with DR alpha, DR beta, DQ alpha, DQ beta, and HLA-B7 probes. The results of these hybridizations were remarkably similar to those obtained in Kaibab squirrels. The majority of class I and class II bands were identical in size and number, suggesting that Abert and Kaibab squirrels have not significantly diverged in the TSLA complex despite their geographical separation. Relative polymorphism of class II sequences was similar to that observed with Kaibab squirrels: beta sequences exhibited higher polymorphism than alpha sequences. As in Kaibab squirrels, a number of alpha and beta sequences were apparently carried on the same fragments. In comparison to class II beta sequences, there was limited polymorphism in class I sequences, although a diverse number of class I genotypes were observed. Attempts to identify segregating TSLA haplotypes were futile in that the only families of sequences with concordant distributions were DQ alpha and DQ beta. These observations and those obtained with Kaibab squirrels suggest that the present-day TSLA haplotypes of both subspecies are derived from a limited number of common, progenitor haplotypes through repeated intra-TSLA recombination.
2013-01-01
Background An unusually high incidence of aseptic meningitis caused by enteroviruses was noted in Alberta, Canada between March and October 2010. Sequence based typing was performed on the enterovirus positive samples to gain a better understanding of the molecular characteristics of the Coxsackie A9 (CVA-9) strain responsible for most cases in this outbreak. Methods Molecular typing was performed by amplification and sequencing of the VP2 region. The genomic sequence of one of the 2010 outbreak isolates was compared to a CVA-9 isolate from 2003 and the prototype sequence to study genetic drift and recombination. Results Of the 4323 samples tested, 213 were positive for enteroviruses (4.93%). The majority of the positives were detected in CSF samples (n = 157, 73.71%) and 81.94% of the sequenced isolates were typed as CVA-9. The sequenced CVA-9 positives were predominantly (94.16%) detected in patients ranging in age from 15 to 29 years and the peak months for detection were between March and October. Full genome sequence comparisons revealed that the CVA-9 viruses isolated in Alberta in 2003 and 2010 were highly homologous to the prototype CVA-9 in the structural VP1, VP2 and VP3 regions but divergent in the VP4, non-structural and non-coding regions. Conclusion The increase in cases of aseptic meningitis was associated with enterovirus CVA-9. Sequence divergence between the prototype strain of CVA-9 and the Alberta isolates suggests genetic drifting and/or recombination events, however the sequence was conserved in the antigenic regions determined by the VP1, VP2 and VP3 genes. These results suggest that the increase in CVA-9 cases likely did not result from the emergence of a radically different immune escape mutant. PMID:23521862
Evidence for the Concerted Evolution between Short Linear Protein Motifs and Their Flanking Regions
Chica, Claudia; Diella, Francesca; Gibson, Toby J.
2009-01-01
Background Linear motifs are short modules of protein sequences that play a crucial role in mediating and regulating many protein–protein interactions. The function of linear motifs strongly depends on the context, e.g. functional instances mainly occur inside flexible regions that are accessible for interaction. Sometimes linear motifs appear as isolated islands of conservation in multiple sequence alignments. However, they also occur in larger blocks of sequence conservation, suggesting an active role for the neighbouring amino acids. Results The evolution of regions flanking 116 functional linear motif instances was studied. The conservation of the amino acid sequence and order/disorder tendency of those regions was related to presence/absence of the instance. For the majority of the analysed instances, the pairs of sequences conserving the linear motif were also observed to maintain a similar local structural tendency and/or to have higher local sequence conservation when compared to pairs of sequences where one is missing the linear motif. Furthermore, those instances have a higher chance to co–evolve with the neighbouring residues in comparison to the distant ones. Those findings are supported by examples where the regulation of the linear motif–mediated interaction has been shown to depend on the modifications (e.g. phosphorylation) at neighbouring positions or is thought to benefit from the binding versatility of disordered regions. Conclusion The results suggest that flanking regions are relevant for linear motif–mediated interactions, both at the structural and sequence level. More interestingly, they indicate that the prediction of linear motif instances can be enriched with contextual information by performing a sequence analysis similar to the one presented here. This can facilitate the understanding of the role of these predicted instances in determining the protein function inside the broader context of the cellular network where they arise. PMID:19584925
Breakpoint structure of the Anopheles gambiae 2Rb chromosomal inversion.
Lobo, Neil F; Sangaré, Djibril M; Regier, Allison A; Reidenbach, Kyanne R; Bretz, David A; Sharakhova, Maria V; Emrich, Scott J; Traore, Sekou F; Costantini, Carlo; Besansky, Nora J; Collins, Frank H
2010-10-25
Alternative arrangements of chromosome 2 inversions in Anopheles gambiae are important sources of population structure, and are associated with adaptation to environmental heterogeneity. The forces responsible for their origin and maintenance are incompletely understood. Molecular characterization of inversion breakpoints provides insight into how they arose, and provides the basis for development of molecular karyotyping methods useful in future studies. Sequence comparison of regions near the cytological breakpoints of 2Rb allowed the molecular delineation of breakpoint boundaries. Comparisons were made between the standard 2R+b arrangement in the An. gambiae PEST reference genome and the inverted 2Rb arrangements in the An. gambiae M and S genome assemblies. Sequence differences between alternative 2Rb arrangements were exploited in the design of a PCR diagnostic assay, which was evaluated against the known chromosomal banding pattern of laboratory colonies and field-collected samples from Mali and Cameroon. The breakpoints of the 7.55 Mb 2Rb inversion are flanked by extensive runs of the same short (72 bp) tandemly organized sequence, which was likely responsible for chromosomal breakage and rearrangement. Application of the molecular diagnostic assay suggested that 2Rb has a single common origin in An. gambiae and its sibling species, Anopheles arabiensis, and also that the standard arrangement (2R+b) may have arisen twice through breakpoint reuse. The molecular diagnostic was reliable when applied to laboratory colonies, but its accuracy was lower in natural populations. The complex repetitive sequence flanking the 2Rb breakpoint region may be prone to structural and sequence-level instability. The 2Rb molecular diagnostic has immediate application in studies based on laboratory colonies, but its usefulness in natural populations awaits development of complementary molecular tools.
Heinzinger, N K; Fujimoto, S Y; Clark, M A; Moreno, M S; Barrett, E L
1995-01-01
The phs chromosomal locus of Salmonella typhimurium is essential for the dissimilatory anaerobic reduction of thiosulfate to hydrogen sulfide. Sequence analysis of the phs region revealed a functional operon with three open reading frames, designated phsA, phsB, and phsC, which encode peptides of 82.7, 21.3, and 28.5 kDa, respectively. The predicted products of phsA and phsB exhibited significant homology with the catalytic and electron transfer subunits of several other anaerobic molybdoprotein oxidoreductases, including Escherichia coli dimethyl sulfoxide reductase, nitrate reductase, and formate dehydrogenase. Simultaneous comparison of PhsA to seven homologous molybdoproteins revealed numerous similarities among all eight throughout the entire frame, hence, significant amino acid conservation among molybdoprotein oxidoreductases. Comparison of PhsB to six other homologous sequences revealed four highly conserved iron-sulfur clusters. The predicted phsC product was highly hydrophobic and similar in size to the hydrophobic subunits of the molybdoprotein oxidoreductases containing subunits homologous to phsA and phsB. Thus, phsABC appears to encode thiosulfate reductase. Single-copy phs-lac translational fusions required both anaerobiosis and thiosulfate for full expression, whereas multicopy phs-lac translational fusions responded to either thiosulfate or anaerobiosis, suggesting that oxygen and thiosulfate control of phs involves negative regulation. A possible role for thiosulfate reduction in anaerobic respiration was examined. Thiosulfate did not significantly augment the final densities of anaerobic cultures grown on any of the 18 carbon sources tested. on the other hand, washed stationary-phase cells depleted of ATP were shown to synthesize small amounts of ATP on the addition of the formate and thiosulfate, suggesting that the thiosulfate reduction plays a unique role in anaerobic energy conservation by S typhimurium. PMID:7751291
Hardwicke, Joseph T; Richards, Helen; Cafferky, Louise; Underwood, Imogen; ter Horst, Britt; Slator, Rona
2016-03-01
Pierre Robin sequence results from a cascade of events that occur during embryologic development and frequently presents with cleft palate. Some studies have shown speech outcomes to be worse in patients with Pierre Robin sequence after cleft palate repair. A cohort of Pierre Robin sequence patients who all required an airway intervention and nasogastric feeding in the neonatal period were identified and speech outcomes assessed at 5 years of age. A cleft- and sex-matched non-Pierre Robin sequence, cleft palate-only comparison group was also identified from the same institution and study period. A total of 24 patients with Pierre Robin sequence that required airway and nutritional support in the neonatal period were matched for age, sex, and cleft type to a group of 24 non-Pierre Robin sequence cleft patients. There was no significant difference in the incidence of oronasal fistula between the groups. Secondary surgery for velopharyngeal incompetence was significantly more (p = 0.017) in the Pierre Robin sequence group, who also had significantly greater nasality (p = 0.031) and cleft speech characteristic (p = 0.023) scores. The authors hypothesize that other factors may exist in Pierre Robin sequence that may lead to poor speech outcomes. The authors would suggest counseling parents of children with Pierre Robin sequence that have required a neonatal airway intervention, that speech development may be poorer than in other children with cleft palate, and that these children will have a significantly higher incidence of secondary speech surgery. Risk, II.
Ghouila, Amel; Florent, Isabelle; Guerfali, Fatma Zahra; Terrapon, Nicolas; Laouini, Dhafer; Yahia, Sadok Ben; Gascuel, Olivier; Bréhélin, Laurent
2014-01-01
Identification of protein domains is a key step for understanding protein function. Hidden Markov Models (HMMs) have proved to be a powerful tool for this task. The Pfam database notably provides a large collection of HMMs which are widely used for the annotation of proteins in sequenced organisms. This is done via sequence/HMM comparisons. However, this approach may lack sensitivity when searching for domains in divergent species. Recently, methods for HMM/HMM comparisons have been proposed and proved to be more sensitive than sequence/HMM approaches in certain cases. However, these approaches are usually not used for protein domain discovery at a genome scale, and the benefit that could be expected from their utilization for this problem has not been investigated. Using proteins of P. falciparum and L. major as examples, we investigate the extent to which HMM/HMM comparisons can identify new domain occurrences not already identified by sequence/HMM approaches. We show that although HMM/HMM comparisons are much more sensitive than sequence/HMM comparisons, they are not sufficiently accurate to be used as a standalone complement of sequence/HMM approaches at the genome scale. Hence, we propose to use domain co-occurrence--the general domain tendency to preferentially appear along with some favorite domains in the proteins--to improve the accuracy of the approach. We show that the combination of HMM/HMM comparisons and co-occurrence domain detection boosts protein annotations. At an estimated False Discovery Rate of 5%, it revealed 901 and 1098 new domains in Plasmodium and Leishmania proteins, respectively. Manual inspection of part of these predictions shows that it contains several domain families that were missing in the two organisms. All new domain occurrences have been integrated in the EuPathDomains database, along with the GO annotations that can be deduced.
Ghouila, Amel; Florent, Isabelle; Guerfali, Fatma Zahra; Terrapon, Nicolas; Laouini, Dhafer; Yahia, Sadok Ben; Gascuel, Olivier; Bréhélin, Laurent
2014-01-01
Identification of protein domains is a key step for understanding protein function. Hidden Markov Models (HMMs) have proved to be a powerful tool for this task. The Pfam database notably provides a large collection of HMMs which are widely used for the annotation of proteins in sequenced organisms. This is done via sequence/HMM comparisons. However, this approach may lack sensitivity when searching for domains in divergent species. Recently, methods for HMM/HMM comparisons have been proposed and proved to be more sensitive than sequence/HMM approaches in certain cases. However, these approaches are usually not used for protein domain discovery at a genome scale, and the benefit that could be expected from their utilization for this problem has not been investigated. Using proteins of P. falciparum and L. major as examples, we investigate the extent to which HMM/HMM comparisons can identify new domain occurrences not already identified by sequence/HMM approaches. We show that although HMM/HMM comparisons are much more sensitive than sequence/HMM comparisons, they are not sufficiently accurate to be used as a standalone complement of sequence/HMM approaches at the genome scale. Hence, we propose to use domain co-occurrence — the general domain tendency to preferentially appear along with some favorite domains in the proteins — to improve the accuracy of the approach. We show that the combination of HMM/HMM comparisons and co-occurrence domain detection boosts protein annotations. At an estimated False Discovery Rate of 5%, it revealed 901 and 1098 new domains in Plasmodium and Leishmania proteins, respectively. Manual inspection of part of these predictions shows that it contains several domain families that were missing in the two organisms. All new domain occurrences have been integrated in the EuPathDomains database, along with the GO annotations that can be deduced. PMID:24901648
2011-01-01
Background Salmonella species are recognized worldwide as a significant cause of human and animal disease. In this study the molecular profiles and characteristics of Salmonella enterica Senftenberg isolated from human cases of illness and those recovered from healthy or diagnostic cases in animals were assessed. Included in the study was a comparison with our own sequenced strain of S. Senfteberg recovered from production turkeys in North Dakota. Isolates examined in this study were subjected to antimicrobial susceptibility profiling using the National Antimicrobial Resistance Monitoring System (NARMS) panel which tested susceptibility to 15 different antimicrobial agents. The molecular profiles of all isolates were determined using Pulsed Field Gel Electrophoresis (PFGE) and the sequence types of the strains were obtained using Multi-Locus Sequence Type (MLST) analysis based on amplification and sequence interrogation of seven housekeeping genes (aroC, dnaN, hemD, hisD, purE, sucA, and thrA). PFGE data was input into BioNumerics analysis software to generate a dendrogram of relatedness among the strains. Results The study found 93 profiles among 98 S. Senftenberg isolates tested and there were primarily two sequence types associated with humans and animals (ST185 and ST14) with overlap observed in all host types suggesting that the distribution of S. Senftenberg sequence types is not host dependent. Antimicrobial resistance was observed among the animal strains, however no resistance was detected in human isolates suggesting that animal husbandry has a significant influence on the selection and promotion of antimicrobial resistance. Conclusion The data demonstrates the circulation of at least two strain types in both animal and human health suggesting that S. Senftenberg is relatively homogeneous in its distribution. The data generated in this study could be used towards defining a pathotype for this serovar. PMID:21708021
Shi, Jiaqin; Huang, Shunmou; Fu, Donghui; Yu, Jinyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong
2013-01-01
Despite their ubiquity and functional importance, microsatellites have been largely ignored in comparative genomics, mostly due to the lack of genomic information. In the current study, microsatellite distribution was characterized and compared in the whole genomes and both the coding and non-coding DNA sequences of the sequenced Brassica, Arabidopsis and other angiosperm species to investigate their evolutionary dynamics in plants. The variation in the microsatellite frequencies of these angiosperm species was much smaller than those for their microsatellite numbers and genome sizes, suggesting that microsatellite frequency may be relatively stable in plants. The microsatellite frequencies of these angiosperm species were significantly negatively correlated with both their genome sizes and transposable elements contents. The pattern of microsatellite distribution may differ according to the different genomic regions (such as coding and non-coding sequences). The observed differences in many important microsatellite characteristics (especially the distribution with respect to motif length, type and repeat number) of these angiosperm species were generally accordant with their phylogenetic distance, which suggested that the evolutionary dynamics of microsatellite distribution may be generally consistent with plant divergence/evolution. Importantly, by comparing these microsatellite characteristics (especially the distribution with respect to motif type) the angiosperm species (aside from a few species) all clustered into two obviously different groups that were largely represented by monocots and dicots, suggesting a complex and generally dichotomous evolutionary pattern of microsatellite distribution in angiosperms. Polyploidy may lead to a slight increase in microsatellite frequency in the coding sequences and a significant decrease in microsatellite frequency in the whole genome/non-coding sequences, but have little effect on the microsatellite distribution with respect to motif length, type and repeat number. Interestingly, several microsatellite characteristics seemed to be constant in plant evolution, which can be well explained by the general biological rules. PMID:23555856
Joseph, Agnel Praveen; Srinivasan, Narayanaswamy; de Brevern, Alexandre G
2012-09-01
Comparison of multiple protein structures has a broad range of applications in the analysis of protein structure, function and evolution. Multiple structure alignment tools (MSTAs) are necessary to obtain a simultaneous comparison of a family of related folds. In this study, we have developed a method for multiple structure comparison largely based on sequence alignment techniques. A widely used Structural Alphabet named Protein Blocks (PBs) was used to transform the information on 3D protein backbone conformation as a 1D sequence string. A progressive alignment strategy similar to CLUSTALW was adopted for multiple PB sequence alignment (mulPBA). Highly similar stretches identified by the pairwise alignments are given higher weights during the alignment. The residue equivalences from PB based alignments are used to obtain a three dimensional fit of the structures followed by an iterative refinement of the structural superposition. Systematic comparisons using benchmark datasets of MSTAs underlines that the alignment quality is better than MULTIPROT, MUSTANG and the alignments in HOMSTRAD, in more than 85% of the cases. Comparison with other rigid-body and flexible MSTAs also indicate that mulPBA alignments are superior to most of the rigid-body MSTAs and highly comparable to the flexible alignment methods. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Oduru, Sreedhar; Campbell, Janee L; Karri, SriTulasi; Hendry, William J; Khan, Shafiq A; Williams, Simon C
2003-01-01
Background Complete genome annotation will likely be achieved through a combination of computer-based analysis of available genome sequences combined with direct experimental characterization of expressed regions of individual genomes. We have utilized a comparative genomics approach involving the sequencing of randomly selected hamster testis cDNAs to begin to identify genes not previously annotated on the human, mouse, rat and Fugu (pufferfish) genomes. Results 735 distinct sequences were analyzed for their relatedness to known sequences in public databases. Eight of these sequences were derived from previously unidentified genes and expression of these genes in testis was confirmed by Northern blotting. The genomic locations of each sequence were mapped in human, mouse, rat and pufferfish, where applicable, and the structure of their cognate genes was derived using computer-based predictions, genomic comparisons and analysis of uncharacterized cDNA sequences from human and macaque. Conclusion The use of a comparative genomics approach resulted in the identification of eight cDNAs that correspond to previously uncharacterized genes in the human genome. The proteins encoded by these genes included a new member of the kinesin superfamily, a SET/MYND-domain protein, and six proteins for which no specific function could be predicted. Each gene was expressed primarily in testis, suggesting that they may play roles in the development and/or function of testicular cells. PMID:12783626
Schoch, Conrad L; Robbertse, Barbara; Robert, Vincent; Vu, Duong; Cardinali, Gianluigi; Irinyi, Laszlo; Meyer, Wieland; Nilsson, R Henrik; Hughes, Karen; Miller, Andrew N; Kirk, Paul M; Abarenkov, Kessy; Aime, M Catherine; Ariyawansa, Hiran A; Bidartondo, Martin; Boekhout, Teun; Buyck, Bart; Cai, Qing; Chen, Jie; Crespo, Ana; Crous, Pedro W; Damm, Ulrike; De Beer, Z Wilhelm; Dentinger, Bryn T M; Divakar, Pradeep K; Dueñas, Margarita; Feau, Nicolas; Fliegerova, Katerina; García, Miguel A; Ge, Zai-Wei; Griffith, Gareth W; Groenewald, Johannes Z; Groenewald, Marizeth; Grube, Martin; Gryzenhout, Marieka; Gueidan, Cécile; Guo, Liangdong; Hambleton, Sarah; Hamelin, Richard; Hansen, Karen; Hofstetter, Valérie; Hong, Seung-Beom; Houbraken, Jos; Hyde, Kevin D; Inderbitzin, Patrik; Johnston, Peter R; Karunarathna, Samantha C; Kõljalg, Urmas; Kovács, Gábor M; Kraichak, Ekaphan; Krizsan, Krisztina; Kurtzman, Cletus P; Larsson, Karl-Henrik; Leavitt, Steven; Letcher, Peter M; Liimatainen, Kare; Liu, Jian-Kui; Lodge, D Jean; Luangsa-ard, Janet Jennifer; Lumbsch, H Thorsten; Maharachchikumbura, Sajeewa S N; Manamgoda, Dimuthu; Martín, María P; Minnis, Andrew M; Moncalvo, Jean-Marc; Mulè, Giuseppina; Nakasone, Karen K; Niskanen, Tuula; Olariaga, Ibai; Papp, Tamás; Petkovits, Tamás; Pino-Bodas, Raquel; Powell, Martha J; Raja, Huzefa A; Redecker, Dirk; Sarmiento-Ramirez, J M; Seifert, Keith A; Shrestha, Bhushan; Stenroos, Soili; Stielow, Benjamin; Suh, Sung-Oui; Tanaka, Kazuaki; Tedersoo, Leho; Telleria, M Teresa; Udayanga, Dhanushka; Untereiner, Wendy A; Diéguez Uribeondo, Javier; Subbarao, Krishna V; Vágvölgyi, Csaba; Visagie, Cobus; Voigt, Kerstin; Walker, Donald M; Weir, Bevan S; Weiß, Michael; Wijayawardene, Nalin N; Wingfield, Michael J; Xu, J P; Yang, Zhu L; Zhang, Ning; Zhuang, Wen-Ying; Federhen, Scott
2014-01-01
DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Re-annotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi. Database URL: http://www.ncbi.nlm.nih.gov/bioproject/PRJNA177353. Published by Oxford University Press 2013. This work is written by US Government employees and is in the public domain in the US.
Rowe, Janet M; Fabre, Marie-Françoise; Gobena, Daniel; Wilson, William H; Wilhelm, Steven W
2011-05-01
Studies of the Phycodnaviridae have traditionally relied on the DNA polymerase (pol) gene as a biomarker. However, recent investigations have suggested that the major capsid protein (MCP) gene may be a reliable phylogenetic biomarker. We used MCP gene amplicons gathered across the North Atlantic to assess the diversity of Emiliania huxleyi-infecting Phycodnaviridae. Nucleotide sequences were examined across >6000 km of open ocean, with comparisons between concentrates of the virus-size fraction of seawater and of lysates generated by exposing host strains to these same virus concentrates. Analyses revealed that many sequences were only sampled once, while several were over-represented. Analyses also revealed nucleotide sequences distinct from previous coastal isolates. Examination of lysed cultures revealed a new richness in phylogeny, as MCP sequences previously unrepresented within the existing collection of E. huxleyi viruses (EhV) were associated with viruses lysing cultures. Sequences were compared with previously described EhV MCP sequences from the North Sea and a Norwegian Fjord, as well as from the Gulf of Maine. Principal component analysis indicates that location-specific distinctions exist despite the presence of sequences common across these environments. Overall, this investigation provides new sequence data and an assessment on the use of the MCP gene. © 2011 Federation of European Microbiological Societies Published by Blackwell Publishing Ltd. All rights reserved.
The response of cobalt-free Udimet 700 type alloy to modified heat treatments
NASA Technical Reports Server (NTRS)
Harf, F. H.
1986-01-01
A superalloy based on Udimet 700, in which all of the cobalt was replaced by nickel, was prepared from hot isostatically pressed prealloyed powders. This material was given various heat treatments consisting of partial solutioning and aging in a sequence of four different temperatures. Comparisons were made of microstructures and mechanical properties. Best results were obtained by partially solutioning at 1145 deg C and aging through a sequence of 870, 1030, 650 and 760 deg C. This heat treatment also provided significantly improved properties for wrought material of the same composition. The results suggest that cobalt free Udimet 700 should be considered as a substitute for Udimet 700 with the standard 17 percent cobalt content.
The response of cobalt-free Udimet 700 type alloy to modified heat treatments
NASA Technical Reports Server (NTRS)
Harf, F. H.
1985-01-01
A superalloy based on Udimet 700, in which all of the cobalt was replaced by nickel, was prepared from hot isostatically pressed prealloyed powders. This material was given various heat treatments consisting of partial solutioning and aging in a sequence of four different temperatures. Comparisons were made of microstructures and mechanical properties. Best results were obtained by partially solutioning at 1145 deg C and aging through a sequence of 870, 1030, 650 and 760 deg C. This heat treatment also provided significantly improved properties for wrought material of the same composition. The results suggest that cobalt free Udimet 700 should be considered as a substitute for Udimet 700 with the standard 17 percent cobalt content.
Dzurová, Lenka; Forneris, Federico; Savino, Simone; Galuszka, Petr; Vrabka, Josef; Frébort, Ivo
2015-08-01
The recently discovered cytokinin (CK)-specific phosphoribohydrolase "Lonely Guy" (LOG) is a key enzyme of CK biosynthesis, converting inactive CK nucleotides into biologically active free bases. We have determined the crystal structures of LOG from Claviceps purpurea (cpLOG) and its complex with the enzymatic product phosphoribose. The structures reveal a dimeric arrangement of Rossmann folds, with the ligands bound to large pockets at the interface between cpLOG monomers. Structural comparisons highlight the homology of cpLOG to putative lysine decarboxylases. Extended sequence analysis enabled identification of a distinguishing LOG sequence signature. Taken together, our data suggest phosphoribohydrolase activity for several proteins of unknown function. © 2015 Wiley Periodicals, Inc.
Chowdhury, S M Z H; Omar, A R; Aini, I; Hair-Bejo, M; Jamaluddin, A A; Md-Zain, B M; Kono, Y
2003-12-01
Specific-pathogen-free (SPF) chickens inoculated with low passage Chicken anaemia virus (CAV), SMSC-1 and 3-1 isolates produced lesions suggestive of CAV infection. Repeated passages of the isolates in cell culture until passage 60 (P60) and passage 123 produced viruses that showed a significantly reduced level of pathogenicity in SPF chickens compared to the low passage isolates. Sequence comparison indicated that nucleotide changes in only the coding region of the P60 passage isolates were thought to contribute to virus attenuation. Phylogenetic analysis indicated that SMSC-1 and 3-1 were highly divergent, but their P60 passage derivatives shared significant homology to a Japanese isolate A2.
BLAST and FASTA similarity searching for multiple sequence alignment.
Pearson, William R
2014-01-01
BLAST, FASTA, and other similarity searching programs seek to identify homologous proteins and DNA sequences based on excess sequence similarity. If two sequences share much more similarity than expected by chance, the simplest explanation for the excess similarity is common ancestry-homology. The most effective similarity searches compare protein sequences, rather than DNA sequences, for sequences that encode proteins, and use expectation values, rather than percent identity, to infer homology. The BLAST and FASTA packages of sequence comparison programs provide programs for comparing protein and DNA sequences to protein databases (the most sensitive searches). Protein and translated-DNA comparisons to protein databases routinely allow evolutionary look back times from 1 to 2 billion years; DNA:DNA searches are 5-10-fold less sensitive. BLAST and FASTA can be run on popular web sites, but can also be downloaded and installed on local computers. With local installation, target databases can be customized for the sequence data being characterized. With today's very large protein databases, search sensitivity can also be improved by searching smaller comprehensive databases, for example, a complete protein set from an evolutionarily neighboring model organism. By default, BLAST and FASTA use scoring strategies target for distant evolutionary relationships; for comparisons involving short domains or queries, or searches that seek relatively close homologs (e.g. mouse-human), shallower scoring matrices will be more effective. Both BLAST and FASTA provide very accurate statistical estimates, which can be used to reliably identify protein sequences that diverged more than 2 billion years ago.
Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne-Vibeke; Kruse, Torben A; Larsen, Martin Jakob
2016-01-01
Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths.
Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne-Vibeke; Kruse, Torben A.; Larsen, Martin Jakob
2016-01-01
Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths. PMID:27002637
A 3D sequence-independent representation of the protein data bank.
Fischer, D; Tsai, C J; Nussinov, R; Wolfson, H
1995-10-01
Here we address the following questions. How many structurally different entries are there in the Protein Data Bank (PDB)? How do the proteins populate the structural universe? To investigate these questions a structurally non-redundant set of representative entries was selected from the PDB. Construction of such a dataset is not trivial: (i) the considerable size of the PDB requires a large number of comparisons (there were more than 3250 structures of protein chains available in May 1994); (ii) the PDB is highly redundant, containing many structurally similar entries, not necessarily with significant sequence homology, and (iii) there is no clear-cut definition of structural similarity. The latter depend on the criteria and methods used. Here, we analyze structural similarity ignoring protein topology. To date, representative sets have been selected either by hand, by sequence comparison techniques which ignore the three-dimensional (3D) structures of the proteins or by using sequence comparisons followed by linear structural comparison (i.e. the topology, or the sequential order of the chains, is enforced in the structural comparison). Here we describe a 3D sequence-independent automated and efficient method to obtain a representative set of protein molecules from the PDB which contains all unique structures and which is structurally non-redundant. The method has two novel features. The first is the use of strictly structural criteria in the selection process without taking into account the sequence information. To this end we employ a fast structural comparison algorithm which requires on average approximately 2 s per pairwise comparison on a workstation. The second novel feature is the iterative application of a heuristic clustering algorithm that greatly reduces the number of comparisons required. We obtain a representative set of 220 chains with resolution better than 3.0 A, or 268 chains including lower resolution entries, NMR entries and models. The resulting set can serve as a basis for extensive structural classification and studies of 3D recurring motifs and of sequence-structure relationships. The clustering algorithm succeeds in classifying into the same structural family chains with no significant sequence homology, e.g. all the globins in one single group, all the trypsin-like serine proteases in another or all the immunoglobulin-like folds into a third. In addition, unexpected structural similarities of interest have been automatically detected between pairs of chains. A cluster analysis of the representative structures demonstrates the way the "structural universe' is populated.
Lepidopteran HMG-CoA reductase is a potential selective target for pest control
Li, Yuan-mei; Huang, Juan; Tobe, Stephen S.
2017-01-01
As a consequence of the negative impacts on the environment of some insecticides, discovery of eco-friendly insecticides and target has received global attention in recent years. Sequence alignment and structural comparison of the rate-limiting enzyme HMG-CoA reductase (HMGR) revealed differences between lepidopteran pests and other organisms, which suggested insect HMGR could be a selective insecticide target candidate. Inhibition of JH biosynthesis in vitro confirmed that HMGR inhibitors showed a potent lethal effect on the lepidopteran pest Manduca sexta, whereas there was little effect on JH biosynthesis in Apis mellifera and Diploptera punctata. The pest control application of these inhibitors demonstrated that they can be insecticide candidates with potent ovicidal activity, larvicidal activity and insect growth regulatory effects. The present study has validated that Lepidopteran HMGR can be a potent selective insecticide target, and the HMGR inhibitors (especially type II statins) could be selective insecticide candidates and lead compounds. Furthermore, we demonstrated that sequence alignment, homology modeling and structural comparison may be useful for determining potential enzymes or receptors which can be eco-friendly pesticide targets. PMID:28133568
Lepidopteran HMG-CoA reductase is a potential selective target for pest control.
Li, Yuan-Mei; Kai, Zhen-Peng; Huang, Juan; Tobe, Stephen S
2017-01-01
As a consequence of the negative impacts on the environment of some insecticides, discovery of eco-friendly insecticides and target has received global attention in recent years. Sequence alignment and structural comparison of the rate-limiting enzyme HMG-CoA reductase (HMGR) revealed differences between lepidopteran pests and other organisms, which suggested insect HMGR could be a selective insecticide target candidate. Inhibition of JH biosynthesis in vitro confirmed that HMGR inhibitors showed a potent lethal effect on the lepidopteran pest Manduca sexta , whereas there was little effect on JH biosynthesis in Apis mellifera and Diploptera punctata . The pest control application of these inhibitors demonstrated that they can be insecticide candidates with potent ovicidal activity, larvicidal activity and insect growth regulatory effects. The present study has validated that Lepidopteran HMGR can be a potent selective insecticide target, and the HMGR inhibitors (especially type II statins) could be selective insecticide candidates and lead compounds. Furthermore, we demonstrated that sequence alignment, homology modeling and structural comparison may be useful for determining potential enzymes or receptors which can be eco-friendly pesticide targets.
Ahmad, N; Baroudy, B M; Baker, R C; Chappey, C
1995-01-01
The human immunodeficiency virus type 1 (HIV-1) sequences from variable region 3 (V3) of the envelope gene were analyzed from seven infected mother-infant pairs following perinatal transmission. The V3 region sequences directly derived from the DNA of the uncultured peripheral blood mononuclear cells from infected mothers displayed a heterogeneous population. In contrast, the infants' sequences were less diverse than those of their mothers. In addition, the sequences from the younger infants' peripheral blood mononuclear cell DNA were more homogeneous than the older infants' sequences. All infants' sequences were different but displayed patterns similar to those seen in their mothers. In the mother-infant pair sequences analyzed, a minor genotype or subtype found in the mothers predominated in their infants. The conserved N-linked glycosylation site proximal to the first cysteine of the V3 loop was absent only in one infant's sequence set and in some variants of two other infants' sequences. Furthermore, the HIV-1 sequences of the epidemiologically linked mother-infant pairs were closer than the sequences of epidemiologically unlinked individuals, suggesting that the sequence comparison of mother-infant pairs done in order to identify genetic variants transmitted from mother to infant could be performed even in older infants. There was no evidence for transmission of a major genotype or multiple genotypes from mother to infant. In conclusion, a minor genotype of maternal virus is transmitted to the infants, and this finding could be useful in developing strategies to prevent maternal transmission of HIV-1 by means of perinatal interventions. PMID:7815476
Exploring the sequence-structure protein landscape in the glycosyltransferase family
Zhang, Ziding; Kochhar, Sunil; Grigorov, Martin
2003-01-01
To understand the molecular basis of glycosyltransferases’ (GTFs) catalytic mechanism, extensive structural information is required. Here, fold recognition methods were employed to assign 3D protein shapes (folds) to the currently known GTF sequences, available in public databases such as GenBank and Swissprot. First, GTF sequences were retrieved and classified into clusters, based on sequence similarity only. Intracluster sequence similarity was chosen sufficiently high to ensure that the same fold is found within a given cluster. Then, a representative sequence from each cluster was selected to compose a subset of GTF sequences. The members of this reduced set were processed by three different fold recognition methods: 3D-PSSM, FUGUE, and GeneFold. Finally, the results from different fold recognition methods were analyzed and compared to sequence-similarity search methods (i.e., BLAST and PSI-BLAST). It was established that the folds of about 70% of all currently known GTF sequences can be confidently assigned by fold recognition methods, a value which is higher than the fold identification rate based on sequence comparison alone (48% for BLAST and 64% for PSI-BLAST). The identified folds were submitted to 3D clustering, and we found that most of the GTF sequences adopt the typical GTF A or GTF B folds. Our results indicate a lack of evidence that new GTF folds (i.e., folds other than GTF A and B) exist. Based on cases where fold identification was not possible, we suggest several sequences as the most promising targets for a structural genomics initiative focused on the GTF protein family. PMID:14500887
Hamilton, P T; Reeve, J N
1985-01-01
DNA fragments cloned from the methanogenic archaebacterium Methanobrevibacter smithii which complement mutations in the purE and proC genes of E. coli have been sequenced. Sequence analyses, transposon mutagenesis and expression in E. coli minicells indicate that purE and proC complementations result from the synthesis of M. smithii polypeptides with molecular weights of 36,697 and 27,836 respectively. The encoding genes appear to be located in operons. The M. smithii genome contains 69% A/T basepairs (bp) which is reflected in unusual codon usages and intergenic regions containing approximately 85% A/T bp. An insertion element, designated ISM1, was found within the cloned M. smithii DNA located adjacent to the proC complementing region. ISM1 is 1381 bp in length, has 29 bp terminal inverted repeat sequences and contains one major ORF encoded in 87% of the ISM1 sequence. ISM1 is mobile, present in approximately 10 copies per genome and integration duplicates 8 bp at the site of insertion. The duplicated sequences show homology with sequences within the 29 bp terminal repeat sequence of ISM1. Comparison of our data with sequences from halophilic archaebacteria suggests that 5'GAANTTTCA and 5'TTTTAATATAAA may be consensus promoter sequences for archaebacteria. These sequences closely resemble the consensus sequences which precede Drosophila heat-shock genes (Pelham 1982; Davidson et al. 1983). Methanogens appear to employ the eubacterial system of mRNA: 16SrRNA hybridization to ensure initiation of translation; the consensus ribosome binding sequence is 5'AGGTGA.
Sequence comparison alignment-free approach based on suffix tree and L-words frequency.
Soares, Inês; Goios, Ana; Amorim, António
2012-01-01
The vast majority of methods available for sequence comparison rely on a first sequence alignment step, which requires a number of assumptions on evolutionary history and is sometimes very difficult or impossible to perform due to the abundance of gaps (insertions/deletions). In such cases, an alternative alignment-free method would prove valuable. Our method starts by a computation of a generalized suffix tree of all sequences, which is completed in linear time. Using this tree, the frequency of all possible words with a preset length L-L-words--in each sequence is rapidly calculated. Based on the L-words frequency profile of each sequence, a pairwise standard Euclidean distance is then computed producing a symmetric genetic distance matrix, which can be used to generate a neighbor joining dendrogram or a multidimensional scaling graph. We present an improvement to word counting alignment-free approaches for sequence comparison, by determining a single optimal word length and combining suffix tree structures to the word counting tasks. Our approach is, thus, a fast and simple application that proved to be efficient and powerful when applied to mitochondrial genomes. The algorithm was implemented in Python language and is freely available on the web.
Mitochondrial control-region sequence variation in aboriginal Australians.
van Holst Pellekaan, S; Frommer, M; Sved, J; Boettcher, B
1998-01-01
The mitochondrial D-loop hypervariable segment 1 (mt HVS1) between nucleotides 15997 and 16377 has been examined in aboriginal Australian people from the Darling River region of New South Wales (riverine) and from Yuendumu in central Australia (desert). Forty-seven unique HVS1 types were identified, varying at 49 nucleotide positions. Pairwise analysis by calculation of BEPPI (between population proportion index) reveals statistically significant structure in the populations, although some identical HVS1 types are seen in the two contrasting regions. mt HVS1 types may reflect more-ancient distributions than do linguistic diversity and other culturally distinguishing attributes. Comparison with sequences from five published global studies reveals that these Australians demonstrate greatest divergence from some Africans, least from Papua New Guinea highlanders, and only slightly more from some Pacific groups (Indonesian, Asian, Samoan, and coastal Papua New Guinea), although the HVS1 types vary at different nucleotide sites. Construction of a median network, displaying three main groups, suggests that several hypervariable nucleotide sites within the HVS1 are likely to have undergone mutation independently, making phylogenetic comparison with global samples by conventional methods difficult. Specific nucleotide-site variants are major separators in median networks constructed from Australian HVS1 types alone and for one global selection. The distribution of these, requiring extended study, suggests that they may be signatures of different groups of prehistoric colonizers into Australia, for which the time of colonization remains elusive. PMID:9463317
Mitogenome metadata: current trends and proposed standards.
Strohm, Jeff H T; Gwiazdowski, Rodger A; Hanner, Robert
2016-09-01
Mitogenome metadata are descriptive terms about the sequence, and its specimen description that allow both to be digitally discoverable and interoperable. Here, we review a sampling of mitogenome metadata published in the journal Mitochondrial DNA between 2005 and 2014. Specifically, we have focused on a subset of metadata fields that are available for GenBank records, and specified by the Genomics Standards Consortium (GSC) and other biodiversity metadata standards; and we assessed their presence across three main categories: collection, biological and taxonomic information. To do this we reviewed 146 mitogenome manuscripts, and their associated GenBank records, and scored them for 13 metadata fields. We also explored the potential for mitogenome misidentification using their sequence diversity, and taxonomic metadata on the Barcode of Life Datasystems (BOLD). For this, we focused on all Lepidoptera and Perciformes mitogenomes included in the review, along with additional mitogenome sequence data mined from Genbank. Overall, we found that none of 146 mitogenome projects provided all the metadata we looked for; and only 17 projects provided at least one category of metadata across the three main categories. Comparisons using mtDNA sequences from BOLD, suggest that some mitogenomes may be misidentified. Lastly, we appreciate the research potential of mitogenomes announced through this journal; and we conclude with a suggestion of 13 metadata fields, available on GenBank, that if provided in a mitogenomes's GenBank record, would increase their research value.
A comparison of serial order short-term memory effects across verbal and musical domains.
Gorin, Simon; Mengal, Pierre; Majerus, Steve
2018-04-01
Recent studies suggest that the mechanisms involved in the short-term retention of serial order information may be shared across short-term memory (STM) domains such as verbal and visuospatial STM. Given the intrinsic sequential organization of musical material, the study of STM for musical information may be particularly informative about serial order retention processes and their domain-generality. The present experiment examined serial order STM for verbal and musical sequences in participants with no advanced musical expertise and experienced musicians. Serial order STM for verbal information was assessed via a serial order reconstruction task for digit sequences. In the musical domain, serial order STM was assessed using a novel melodic sequence reconstruction task maximizing the retention of tone order information. We observed that performance for the verbal and musical tasks was characterized by sequence length as well as primacy and recency effects. Serial order errors in both tasks were characterized by similar transposition gradients and ratios of fill-in:infill errors. These effects were observed for both participant groups, although the transposition gradients and ratios of fill-in:infill errors showed additional specificities for musician participants in the musical task. The data support domain-general serial order STM effects but also suggest the existence of additional domain-specific effects. Implications for models of serial order STM in verbal and musical domains are discussed.
Marzocchi, W.; Vilardo, G.; Hill, D.P.; Ricciardi, G.P.; Ricco, C.
2001-01-01
We analyzed and compared the seismic activity that has occurred in the last two to three decades in three distinct volcanic areas: Phlegraean Fields, Italy; Vesuvius, Italy; and Long Valley, California. Our main goal is to identify and discuss common features and peculiarities in the temporal evolution of earthquake sequences that may reflect similarities and differences in the generating processes between these volcanic systems. In particular, we tried to characterize the time series of the number of events and of the seismic energy release in terms of stochastic, deterministic, and chaotic components. The time sequences from each area consist of thousands of earthquakes that allow a detailed quantitative analysis and comparison. The results obtained showed no evidence for either deterministic or chaotic components in the earthquake sequences in Long Valley caldera, which appears to be dominated by stochastic behavior. In contrast, earthquake sequences at Phlegrean Fields and Mount Vesuvius show a deterministic signal mainly consisting of a 24-hour periodicity. Our analysis suggests that the modulation in seismicity is in some way related to thermal diurnal processes, rather than luni-solar tidal effects. Independently from the process that generates these periodicities on the seismicity., it is suggested that the lack (or presence) of diurnal cycles is seismic swarms of volcanic areas could be closely linked to the presence (or lack) of magma motion.
ProteinWorldDB: querying radical pairwise alignments among protein sets from complete genomes.
Otto, Thomas Dan; Catanho, Marcos; Tristão, Cristian; Bezerra, Márcia; Fernandes, Renan Mathias; Elias, Guilherme Steinberger; Scaglia, Alexandre Capeletto; Bovermann, Bill; Berstis, Viktors; Lifschitz, Sergio; de Miranda, Antonio Basílio; Degrave, Wim
2010-03-01
Many analyses in modern biological research are based on comparisons between biological sequences, resulting in functional, evolutionary and structural inferences. When large numbers of sequences are compared, heuristics are often used resulting in a certain lack of accuracy. In order to improve and validate results of such comparisons, we have performed radical all-against-all comparisons of 4 million protein sequences belonging to the RefSeq database, using an implementation of the Smith-Waterman algorithm. This extremely intensive computational approach was made possible with the help of World Community Grid, through the Genome Comparison Project. The resulting database, ProteinWorldDB, which contains coordinates of pairwise protein alignments and their respective scores, is now made available. Users can download, compare and analyze the results, filtered by genomes, protein functions or clusters. ProteinWorldDB is integrated with annotations derived from Swiss-Prot, Pfam, KEGG, NCBI Taxonomy database and gene ontology. The database is a unique and valuable asset, representing a major effort to create a reliable and consistent dataset of cross-comparisons of the whole protein content encoded in hundreds of completely sequenced genomes using a rigorous dynamic programming approach. The database can be accessed through http://proteinworlddb.org
Phylogeographic history of grey wolves in Europe
2010-01-01
Background While it is generally accepted that patterns of intra-specific genetic differentiation are substantially affected by glacial history, population genetic processes occurring during Pleistocene glaciations are still poorly understood. In this study, we address the question of the genetic consequences of Pleistocene glaciations for European grey wolves. Combining our data with data from published studies, we analysed phylogenetic relationships and geographic distribution of mitochondrial DNA haplotypes for 947 contemporary European wolves. We also compared the contemporary wolf sequences with published sequences of 24 ancient European wolves. Results We found that haplotypes representing two haplogroups, 1 and 2, overlap geographically, but substantially differ in frequency between populations from south-western and eastern Europe. A comparison between haplotypes from Europe and other continents showed that both haplogroups are spread throughout Eurasia, while only haplogroup 1 occurs in contemporary North American wolves. All ancient wolf samples from western Europe that dated from between 44,000 and 1,200 years B.P. belonged to haplogroup 2, suggesting the long-term predominance of this haplogroup in this region. Moreover, a comparison of current and past frequencies and distributions of the two haplogroups in Europe suggested that haplogroup 2 became outnumbered by haplogroup 1 during the last several thousand years. Conclusions Parallel haplogroup replacement, with haplogroup 2 being totally replaced by haplogroup 1, has been reported for North American grey wolves. Taking into account the similarity of diets reported for the late Pleistocene wolves from Europe and North America, the correspondence between these haplogroup frequency changes may suggest that they were associated with ecological changes occurring after the Last Glacial Maximum. PMID:20409299
Chemale, Gustavo; Paneto, Greiciane Gaburro; Menezes, Meiga Aurea Mendes; de Freitas, Jorge Marcelo; Jacques, Guilherme Silveira; Cicarelli, Regina Maria Barretto; Fagundes, Paulo Roberto
2013-05-01
Mitochondrial DNA (mtDNA) analysis is usually a last resort in routine forensic DNA casework. However, it has become a powerful tool for the analysis of highly degraded samples or samples containing too little or no nuclear DNA, such as old bones and hair shafts. The gold standard methodology still constitutes the direct sequencing of polymerase chain reaction (PCR) products or cloned amplicons from the HVS-1 and HVS-2 (hypervariable segment) control region segments. Identifications using mtDNA are time consuming, expensive and can be very complex, depending on the amount and nature of the material being tested. The main goal of this work is to develop a less labour-intensive and less expensive screening method for mtDNA analysis, in order to aid in the exclusion of non-matching samples and as a presumptive test prior to final confirmatory DNA sequencing. We have selected 14 highly discriminatory single nucleotide polymorphisms (SNPs) based on simulations performed by Salas and Amigo (2010) to be typed using SNaPShot(TM) (Applied Biosystems, Foster City, CA, USA). The assay was validated by typing more than 100 HVS-1/HVS-2 sequenced samples. No differences were observed between the SNP typing and DNA sequencing when results were compared, with the exception of allelic dropouts observed in a few haplotypes. Haplotype diversity simulations were performed using 172 mtDNA sequences representative of the Brazilian population and a score of 0.9794 was obtained when the 14 SNPs were used, showing that the theoretical prediction approach for the selection of highly discriminatory SNPs suggested by Salas and Amigo (2010) was confirmed in the population studied. As the main goal of the work is to develop a screening assay to skip the sequencing of all samples in a particular case, a pair-wise comparison of the sequences was done using the selected SNPs. When both HVS-1/HVS-2 SNPs were used for simulations, at least two differences were observed in 93.2% of the comparisons performed. The assay was validated with casework samples. Results show that the method is straightforward and can be used for exclusionary purposes, saving time and laboratory resources. The assay confirms the theoretic prediction suggested by Salas and Amigo (2010). All forensic advantages, such as high sensitivity and power of discrimination, as also the disadvantages, such as the occurrence of allele dropouts, are discussed throughout the article. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
A perchlorate sensitive iodide transporter in frogs
Carr, Deborah L.; Carr, James A.; Willis, Ray E.; Pressley, Thomas A.
2008-01-01
Nucleotide sequence comparisons have identified a gene product in the genome database of African clawed frogs (Xenopus laevis) as a probable member of the solute carrier family of membrane transporters. To confirm its identity as a putative iodide transporter, we examined the function of this sequence after heterologous expression in mammalian cells. A green monkey kidney cell line transfected with the Xenopus nucleotide sequence had significantly greater 125I uptake than sham-transfected control cells. The uptake in carrier-transfected cells was significantly inhibited in the presence of perchlorate, a competitive inhibitor of mammalian Na+/iodide symporter. Tissue distributions of the sequence were also consistent with a role in iodide uptake. The mRNA encoding the carrier was found to be expressed in the thyroid gland, stomach, and kidney of tadpoles from X. laevis, as well as the bullfrog Rana catesbeiana. The ovaries of adult X. laevis also were found to express the carrier. Phylogenetic analysis suggested that the putative X. laevis iodide transporter is orthologous to vertebrate Na+-dependent iodide symporters. We conclude that the amphibian sequence encodes a protein that is indeed a functional Na+/iodide symporter in Xenopus laevis, as well as Rana catesbeiana. PMID:18275962
Yasuno, Rie; Wada, Hajime
1998-01-01
Lipoic acid is a coenzyme that is essential for the activity of enzyme complexes such as those of pyruvate dehydrogenase and glycine decarboxylase. We report here the isolation and characterization of LIP1 cDNA for lipoic acid synthase of Arabidopsis. The Arabidopsis LIP1 cDNA was isolated using an expressed sequence tag homologous to the lipoic acid synthase of Escherichia coli. This cDNA was shown to code for Arabidopsis lipoic acid synthase by its ability to complement a lipA mutant of E. coli defective in lipoic acid synthase. DNA-sequence analysis of the LIP1 cDNA revealed an open reading frame predicting a protein of 374 amino acids. Comparisons of the deduced amino acid sequence with those of E. coli and yeast lipoic acid synthase homologs showed a high degree of sequence similarity and the presence of a leader sequence presumably required for import into the mitochondria. Southern-hybridization analysis suggested that LIP1 is a single-copy gene in Arabidopsis. Western analysis with an antibody against lipoic acid synthase demonstrated that this enzyme is located in the mitochondrial compartment in Arabidopsis cells as a 43-kD polypeptide. PMID:9808738
Chromobacterium sphagni sp. nov., an insecticidal bacterium isolated from Sphagnum bogs.
Blackburn, Michael B; Farrar, Robert R; Sparks, Michael E; Kuhar, Daniel; Mitchell, Ashaki; Gundersen-Rindal, Dawn E
2017-09-01
Sixteen isolates of Gram-reaction-negative, motile, violet-pigmented bacteria were isolated from Sphagnum bogs in West Virginia and Maine, USA. 16S rRNA gene sequences and fatty acid analysis revealed a high degree of relatedness among the isolates, and genome sequencing of two isolates, IIBBL 14B-1T and IIBBL 37-2 (from West Virginia and Maine, respectively), revealed highly similar genomic sequences. The average nucleotide identity (gANI) calculated for these two isolates was found to be in excess of 99 %, but did not exceed 88 % when comparing either isolate with genomic sequences of Chromobacterium violaceum ATCC 12472T, C. haemolyticum DSM 19808T, C. piscinae ND17, C. subtsugae PRAA4-1T, C. vaccinii MWU205T or C. amazonense CBMAI 310T. Collectively, gANI and 16S rRNA gene sequence comparisons suggested that isolates IIBBL 14B-1T and IIBBL 37-2 were most closely related to C. subtsugae, but represented a distinct species. We propose the name Chromobacterium sphagni sp. nov. for this taxon; the type strain is IIBBL 14B-1T (=NRRL B-67130T=JCM 31882T).
Okamoto, Nobuhiko; Nakashima, Mitsuko; Tsurusaki, Yoshinori; Miyake, Noriko; Saitsu, Hirotomo; Matsumoto, Naomichi
2013-01-01
Next-generation sequencing (NGS) combined with enrichment of target genes enables highly efficient and low-cost sequencing of multiple genes for genetic diseases. The aim of this study was to validate the accuracy and sensitivity of our method for comprehensive mutation detection in autism spectrum disorder (ASD). We assessed the performance of the bench-top Ion Torrent PGM and Illumina MiSeq platforms as optimized solutions for mutation detection, using microdroplet PCR-based enrichment of 62 ASD associated genes. Ten patients with known mutations were sequenced using NGS to validate the sensitivity of our method. The overall read quality was better with MiSeq, largely because of the increased indel-related error associated with PGM. The sensitivity of SNV detection was similar between the two platforms, suggesting they are both suitable for SNV detection in the human genome. Next, we used these methods to analyze 28 patients with ASD, and identified 22 novel variants in genes associated with ASD, with one mutation detected by MiSeq only. Thus, our results support the combination of target gene enrichment and NGS as a valuable molecular method for investigating rare variants in ASD. PMID:24066114
Structure of the human protein kinase MPSK1 reveals an atypical activation loop architecture.
Eswaran, Jeyanthy; Bernad, Antonio; Ligos, Jose M; Guinea, Barbara; Debreczeni, Judit E; Sobott, Frank; Parker, Sirlester A; Najmanovich, Rafael; Turk, Benjamin E; Knapp, Stefan
2008-01-01
The activation segment of protein kinases is structurally highly conserved and central to regulation of kinase activation. Here we report an atypical activation segment architecture in human MPSK1 comprising a beta sheet and a large alpha-helical insertion. Sequence comparisons suggested that similar activation segments exist in all members of the MPSK1 family and in MAST kinases. The consequence of this nonclassical activation segment on substrate recognition was studied using peptide library screens that revealed a preferred substrate sequence of X-X-P/V/I-phi-H/Y-T*-N/G-X-X-X (phi is an aliphatic residue). In addition, we identified the GTPase DRG1 as an MPSK1 interaction partner and specific substrate. The interaction domain in DRG1 was mapped to the N terminus, leading to recruitment and phosphorylation at Thr100 within the GTPase domain. The presented data reveal an atypical kinase structural motif and suggest a role of MPSK1 regulating DRG1, a GTPase involved in regulation of cellular growth.
Arrieta-Montiel, Maria P; Shedge, Vikas; Davila, Jaime; Christensen, Alan C; Mackenzie, Sally A
2009-12-01
The plant mitochondrial genome is recombinogenic, with DNA exchange activity controlled to a large extent by nuclear gene products. One nuclear gene, MSH1, appears to participate in suppressing recombination in Arabidopsis at every repeated sequence ranging in size from 108 to 556 bp. Present in a wide range of plant species, these mitochondrial repeats display evidence of successful asymmetric DNA exchange in Arabidopsis when MSH1 is disrupted. Recombination frequency appears to be influenced by repeat sequence homology and size, with larger size repeats corresponding to increased DNA exchange activity. The extensive mitochondrial genomic reorganization of the msh1 mutant produced altered mitochondrial transcription patterns. Comparison of mitochondrial genomes from the Arabidopsis ecotypes C24, Col-0, and Ler suggests that MSH1 activity accounts for most or all of the polymorphisms distinguishing these genomes, producing ecotype-specific stoichiometric changes in each line. Our observations suggest that MSH1 participates in mitochondrial genome evolution by influencing the lineage-specific pattern of mitochondrial genetic variation in higher plants.
Glenney, Gavin W; Barbash, Patricia A; Coll, John A
2016-03-01
A novel herpesvirus was found by molecular methods in samples of Lake Trout Salvelinus namaycush from Lake Erie, Pennsylvania, and Lake Ontario, Keuka Lake, and Lake Otsego, New York. Based on PCR amplification and partial sequencing of polymerase, terminase, and glycoprotein genes, a number of isolates were identified as a novel virus, which we have named Namaycush herpesvirus (NamHV) salmonid herpesvirus 5 (SalHV5). Phylogenetic analyses of three NamHV genes indicated strong clustering with other members of the genus Salmonivirus, placing these isolates into family Alloherpesviridae. The NamHV isolates were identical in the three partially sequenced genes; however, they varied from other salmonid herpesviruses in nucleotide sequence identity. In all three of the genes sequenced, NamHV shared the highest sequence identity with Atlantic Salmon papillomatosis virus (ASPV; SalHV4) isolated from Atlantic Salmon Salmo salar in northern Europe, including northwestern Russia. These results lead one to believe that NamHV and ASPV have a common ancestor that may have made a relatively recent host jump from Atlantic Salmon to Lake Trout or vice versa. Partial nucleotide sequence comparisons between NamHV and ASPV for the polymerase and glycoprotein genes differ by >5% and >10%, respectively. Additional nucleotide sequence comparisons between NamHV and epizootic epitheliotropic disease virus (EEDV/SalHV3) in the terminase, glycoprotein, and polymerase genes differ by >5%, >20%, and >10%, respectively. Thus, NamHV and EEDV may be occupying discrete ecological niches in Lake Trout. Even though NamHV shared the highest genetic identity with ASPV, each of these viruses has a separate host species, which also implies speciation. Additionally, NamHV has been detected over the last 4 years in four separate water bodies across two states, which suggests that NamHV is a distinct, naturally replicating lineage. This, in combination with a divergence in nucleotide sequence from EEDV, indicates that NamHV is a new species in the genus Salmonivirus. Received April 20, 2015; accepted October 11, 2015.
IDENTIFICATION OF AVIAN-SPECIFIC FECAL METAGENOMIC SEQUENCES USING GENOME FRAGMENT ENRICHMENTS
Sequence analysis of microbial genomes has provided biologists the opportunity to compare genetic differences between closely related microorganisms. While random sequencing has also been used to study natural microbial communities, metagenomic comparisons via sequencing analysis...
NASA Astrophysics Data System (ADS)
Hamid, Nur Athirah Abd; Ismail, Ismanizan
2013-11-01
Polygonum minus, locally named as Kesum is an aromatic herb which is high in secondary metabolite content. Alcohol dehydrogenase is an important enzyme that catalyzes the reversible oxidation of alcohol and aldehyde with the presence of NAD(P)(H) as co-factor. The main focus of this research is to identify the gene of ADH. The total RNA was extracted from leaves of P. minus which was treated with 150 μM Jasmonic acid. Full-length cDNA sequence of ADH was isolated via rapid amplification cDNA end (RACE). Subsequently, in silico analysis was conducted on the full-length cDNA sequence and PCR was done on genomic DNA to determine the exon and intron organization. Two sequences of ADH, designated as PmADH1 and PmADH2 were successfully isolated. Both sequences have ORF of 801 bp which encode 266 aa residues. Nucleotide sequence comparison of PmADH1 and PmADH2 indicated that both sequences are highly similar at the ORF region but divergent in the 3' untranslated regions (UTR). The amino acid is differ at the 107 residue; PmADH1 contains Gly (G) residue while PmADH2 contains Cys (C) residue. The intron-exon organization pattern of both sequences are also same, with 3 introns and 4 exons. Based on in silico analysis, both sequences contain "classical" short chain alcohol dehydrogenases/reductases ((c) SDRs) conserved domain. The results suggest that both sequences are the members of short chain alcohol dehydrogenase family.
Antell, Gregory C.; Zhong, Wen; Kercher, Katherine; Passic, Shendra; Williams, Jean; Liu, Yucheng; James, Tony; Jacobson, Jeffrey M.; Szep, Zsofia
2017-01-01
Vpr is an HIV-1 accessory protein that plays numerous roles during viral replication, and some of which are cell type dependent. To test the hypothesis that HIV-1 tropism extends beyond the envelope into the vpr gene, studies were performed to identify the associations between coreceptor usage and Vpr variation in HIV-1-infected patients. Colinear HIV-1 Env-V3 and Vpr amino acid sequences were obtained from the LANL HIV-1 sequence database and from well-suppressed patients in the Drexel/Temple Medicine CNS AIDS Research and Eradication Study (CARES) Cohort. Genotypic classification of Env-V3 sequences as X4 (CXCR4-utilizing) or R5 (CCR5-utilizing) was used to group colinear Vpr sequences. To reveal the sequences associated with a specific coreceptor usage genotype, Vpr amino acid sequences were assessed for amino acid diversity and Jensen-Shannon divergence between the two groups. Five amino acid alphabets were used to comprehensively examine the impact of amino acid substitutions involving side chains with similar physiochemical properties. Positions 36, 37, 41, 89, and 96 of Vpr were characterized by statistically significant divergence across multiple alphabets when X4 and R5 sequence groups were compared. In addition, consensus amino acid switches were found at positions 37 and 41 in comparisons of the R5 and X4 sequence populations. These results suggest an evolutionary link between Vpr and gp120 in HIV-1-infected patients. PMID:28620613
Sequencing of individual chromosomes of plant pathogenic Fusarium oxysporum.
Kashiwa, Takeshi; Kozaki, Toshinori; Ishii, Kazuo; Turgeon, B Gillian; Teraoka, Tohru; Komatsu, Ken; Arie, Tsutomu
2017-01-01
A small chromosome in reference isolate 4287 of F. oxysporum f. sp. lycopersici (Fol) has been designated as a 'pathogenicity chromosome' because it carries several pathogenicity related genes such as the Secreted In Xylem (SIX) genes. Sequence assembly of small chromosomes in other isolates, based on a reference genome template, is difficult because of karyotype variation among isolates and a high number of sequences associated with transposable elements. These factors often result in misassembly of sequences, making it unclear whether other isolates possess the same pathogenicity chromosome harboring SIX genes as in the reference isolate. To overcome this difficulty, single chromosome sequencing after Contour-clamped Homogeneous Electric Field (CHEF) separation of chromosomes was performed, followed by de novo assembly of sequences. The assembled sequences of individual chromosomes were consistent with results of probing gels of CHEF separated chromosomes with SIX genes. Individual chromosome sequencing revealed that several SIX genes are located on a single small chromosome in two pathogenic forms of F. oxysporum, beyond the reference isolate 4287, and in the cabbage yellows fungus F. oxysporum f. sp. conglutinans. The particular combination of SIX genes on each small chromosome varied. Moreover, not all SIX genes were found on small chromosomes; depending on the isolate, some were on big chromosomes. This suggests that recombination of chromosomes and/or translocation of SIX genes may occur frequently. Our method improves sequence comparison of small chromosomes among isolates. Copyright © 2016 Elsevier Inc. All rights reserved.
Yoon, Min A; Hong, Suk-Joo; Lee, Kyu-Chong; Lee, Chang Hee
2018-06-12
This study aimed to compare 3-dimensional T1-weighted gradient-echo sequence (CAIPIRINHA-volumetric interpolated breath-hold examination [VIBE]) with 2-dimensional T1-weighted turbo spin-echo sequence for contrast-enhanced magnetic resonance imaging (MRI) of pelvic bone metastases at 3.0 T. Thirty-one contrast-enhanced MRIs of pelvic bone metastases were included. Two contrast-enhanced sequences were evaluated for the following parameters: overall image quality, sharpness of pelvic bone, iliac vessel clarity, artifact severity, and conspicuity and edge sharpness of the smallest metastases. Quantitative analysis was performed by calculating signal-to-noise ratio and contrast-to-noise ratio of the smallest metastases. Significant differences between the 2 sequences were assessed. CAIPIRINHA-VIBE had higher scores for overall image quality, pelvic bone sharpness, iliac vessel clarity, and edge sharpness of the metastatic lesions, and had less artifacts (all P < 0.05). There was no significant difference in conspicuity, signal-to-noise ratio, or contrast-to-noise ratio of the smallest metastases (P > 0.05). Our results suggest that CAIPIRINHA-VIBE may be superior to turbo spin-echo for contrast-enhanced MRI of pelvic bone metastases at 3.0 T.
Falk, K.; Batts, W.N.; Kvellestad, A.; Kurath, G.; Wiik-Nielsen, J.; Winton, J.R.
2008-01-01
Atlantic salmon paramyxovirus (ASPV) was isolated in 1995 from gills of farmed Atlantic salmon suffering from proliferative gill inflammation. The complete genome sequence of ASPV was determined, revealing a genome 16,968 nucleotides in length consisting of six non-overlapping genes coding for the nucleo- (N), phospho- (P), matrix- (M), fusion- (F), haemagglutinin-neuraminidase- (HN) and large polymerase (L) proteins in the order 3???-N-P-M-F-HN-L-5???. The various conserved features related to virus replication found in most paramyxoviruses were also found in ASPV. These include: conserved and complementary leader and trailer sequences, tri-nucleotide intergenic regions and highly conserved transcription start and stop signal sequences. The P gene expression strategy of ASPV was like that of the respiro-, morbilli- and henipaviruses, which express the P and C proteins from the primary transcript and edit a portion of the mRNA to encode V and W proteins. Sequence similarities among various features related to virus replication, pairwise comparisons of all deduced ASPV protein sequences with homologous regions from other members of the family Paramyxoviridae, and phylogenetic analyses of these amino acid sequences suggested that ASPV was a novel member of the sub-family Paramyxovirinae, most closely related to the respiroviruses. ?? 2008 Elsevier B.V. All rights reserved.
Robertson, Helen E; Lapraz, François; Egger, Bernhard; Telford, Maximilian J; Schiffer, Philipp H
2017-05-12
Acoels are small, ubiquitous - but understudied - marine worms with a very simple body plan. Their internal phylogeny is still not fully resolved, and the position of their proposed phylum Xenacoelomorpha remains debated. Here we describe mitochondrial genome sequences from the acoels Paratomella rubra and Isodiametra pulchra, and the complete mitochondrial genome of the acoel Archaphanostoma ylvae. The P. rubra and A. ylvae sequences are typical for metazoans in size and gene content. The larger I. pulchra mitochondrial genome contains both ribosomal genes, 21 tRNAs, but only 11 protein-coding genes. We find evidence suggesting a duplicated sequence in the I. pulchra mitochondrial genome. The P. rubra, I. pulchra and A. ylvae mitochondria have a unique genome organisation in comparison to other metazoan mitochondrial genomes. We found a large degree of protein-coding gene and tRNA overlap with little non-coding sequence in the compact P. rubra genome. Conversely, the A. ylvae and I. pulchra genomes have many long non-coding sequences between genes, likely driving genome size expansion in the latter. Phylogenetic trees inferred from mitochondrial genes retrieve Xenacoelomorpha as an early branching taxon in the deuterostomes. Sequence divergence analysis between P. rubra sampled in England and Spain indicates cryptic diversity.
Kravatsky, Yuri; Chechetkin, Vladimir; Fedoseeva, Daria; Gorbacheva, Maria; Kravatskaya, Galina; Kretova, Olga; Tchurikov, Nickolai
2017-11-23
The efficient development of antiviral drugs, including efficient antiviral small interfering RNAs (siRNAs), requires continuous monitoring of the strict correspondence between a drug and the related highly variable viral DNA/RNA target(s). Deep sequencing is able to provide an assessment of both the general target conservation and the frequency of particular mutations in the different target sites. The aim of this study was to develop a reliable bioinformatic pipeline for the analysis of millions of short, deep sequencing reads corresponding to selected highly variable viral sequences that are drug target(s). The suggested bioinformatic pipeline combines the available programs and the ad hoc scripts based on an original algorithm of the search for the conserved targets in the deep sequencing data. We also present the statistical criteria for the threshold of reliable mutation detection and for the assessment of variations between corresponding data sets. These criteria are robust against the possible sequencing errors in the reads. As an example, the bioinformatic pipeline is applied to the study of the conservation of RNA interference (RNAi) targets in human immunodeficiency virus 1 (HIV-1) subtype A. The developed pipeline is freely available to download at the website http://virmut.eimb.ru/. Brief comments and comparisons between VirMut and other pipelines are also presented.
Human somatostatin I: sequence of the cDNA.
Shen, L P; Pictet, R L; Rutter, W J
1982-01-01
RNA has been isolated from a human pancreatic somatostatinoma and used to prepare a cDNA library. After prescreening, clones containing somatostatin I sequences were identified by hybridization with an anglerfish somatostatin I-cloned cDNA probe. From the nucleotide sequence of two of these clones, we have deduced an essentially full-length mRNA sequence, including the preprosomatostatin coding region, 105 nucleotides from the 5' untranslated region and the complete 150-nucleotide 3' untranslated region. The coding region predicts a 116-amino acid precursor protein (Mr, 12.727) that contains somatostatin-14 and -28 at its COOH terminus. The predicted amino acid sequence of human somatostatin-28 is identical to that of somatostatin-28 isolated from the porcine and ovine species. A comparison of the amino acid sequences of human and anglerfish preprosomatostatin I indicated that the COOH-terminal region encoding somatostatin-14 and the adjacent 6 amino acids are highly conserved, whereas the remainder of the molecule, including the signal peptide region, is more divergent. However, many of the amino acid differences found in the pro region of the human and anglerfish proteins are conservative changes. This suggests that the propeptides have a similar secondary structure, which in turn may imply a biological function for this region of the molecule. Images PMID:6126875
The Neandertal genome and ancient DNA authenticity
Green, Richard E; Briggs, Adrian W; Krause, Johannes; Prüfer, Kay; Burbano, Hernán A; Siebauer, Michael; Lachmann, Michael; Pääbo, Svante
2009-01-01
Recent advances in high-thoughput DNA sequencing have made genome-scale analyses of genomes of extinct organisms possible. With these new opportunities come new difficulties in assessing the authenticity of the DNA sequences retrieved. We discuss how these difficulties can be addressed, particularly with regard to analyses of the Neandertal genome. We argue that only direct assays of DNA sequence positions in which Neandertals differ from all contemporary humans can serve as a reliable means to estimate human contamination. Indirect measures, such as the extent of DNA fragmentation, nucleotide misincorporations, or comparison of derived allele frequencies in different fragment size classes, are unreliable. Fortunately, interim approaches based on mtDNA differences between Neandertals and current humans, detection of male contamination through Y chromosomal sequences, and repeated sequencing from the same fossil to detect autosomal contamination allow initial large-scale sequencing of Neandertal genomes. This will result in the discovery of fixed differences in the nuclear genome between Neandertals and current humans that can serve as future direct assays for contamination. For analyses of other fossil hominins, which may become possible in the future, we suggest a similar ‘boot-strap' approach in which interim approaches are applied until sufficient data for more definitive direct assays are acquired. PMID:19661919
Zahraei Salehi, Taghi; Derakhshandeh, Abdollah; Tadjbakhsh, Hasan; Karimi, Vahid
2013-02-01
The ISS (increased serum survival) gene and its protein product (ISS) of avian pathogenic Escherichia coli (APEC) are important characteristics of resistance to the complement system. The aims of this study were to clone, sequence and characterize sequence diversity of the ISS gene between two predominant serogroups in Iran and among those previously deposited in Genbank. The ISS gene of 309 bp from the APEC χ1390 strain was amplified by PCR, cloned and sequenced using pTZ57R/T vector. The ISS gene from the χ1390 strain has 100% identity among different serogroups of APEC in different geographical regions throughout the world. Phylogenetic analysis shows two different phylogenic groups among the different strains. Strong association of nucleotide sequences among different E. coli strains suggests that it may be a conserved gene and could be a suitable antigen to control and detect avian pathogenic E. coli, at least in our region. Currently, our group is working on the ISS protein as candidate vaccine in SPF poultry. Copyright © 2012 Elsevier Ltd. All rights reserved.
Albertini, A M; Caramori, T; Crabb, W D; Scoffone, F; Galizzi, A
1991-01-01
We cloned and sequenced 8.3 kb of Bacillus subtilis DNA corresponding to the flaA locus involved in flagellar biosynthesis, motility, and chemotaxis. The DNA sequence revealed the presence of 10 complete and 2 incomplete open reading frames. Comparison of the deduced amino acid sequences to data banks showed similarities of nine of the deduced products to a number of proteins of Escherichia coli and Salmonella typhimurium for which a role in flagellar functioning has been directly demonstrated. In particular, the sequence data suggest that the flaA operon codes for the M-ring protein, components of the motor switch, and the distal part of the basal-body rod. The gene order is remarkably similar to that described for region III of the enterobacterial flagellar regulon. One of the open reading frames was translated into a protein with 48% amino acid identity to S. typhimurium FliI and 29% identity to the beta subunit of E. coli ATP synthase. PMID:1828465
Evolution of long centromeres in fire ants.
Huang, Yu-Ching; Lee, Chih-Chi; Kao, Chia-Yi; Chang, Ni-Chen; Lin, Chung-Chi; Shoemaker, DeWayne; Wang, John
2016-09-15
Centromeres are essential for accurate chromosome segregation, yet sequence conservation is low even among closely related species. Centromere drive predicts rapid turnover because some centromeric sequences may compete better than others during female meiosis. In addition to sequence composition, longer centromeres may have a transmission advantage. We report the first observations of extremely long centromeres, covering on average 34 % of the chromosomes, in the red imported fire ant Solenopsis invicta. By comparison, cytological examination of Solenopsis geminata revealed typical small centromeric constrictions. Bioinformatics and molecular analyses identified CenSol, the major centromeric satellite DNA repeat. We found that CenSol sequences are very similar between the two species but the CenSol copy number in S. invicta is much greater than that in S. geminata. In addition, centromere expansion in S. invicta is not correlated with the duplication of CenH3. Comparative analyses revealed that several closely related fire ant species also possess long centromeres. Our results are consistent with a model of simple runaway centromere expansion due to centromere drive. We suggest expanded centromeres may be more prevalent in hymenopteran insects, which use haplodiploid sex determination, than previously considered.
Kim, Jung-Mi; Yun, Suk-Hyun; Park, Seung-Moon; Ko, Han-Gyu; Kim, Dae-Hyuk
2013-01-01
dsRNA was found in malformed cultures of Lentinula edodes strain FMRI0339, one of the three most popular sawdust cultivated commercial strains of shiitake, and was also found in healthy-looking fruiting bodies and actively growing mycelia. Cloning of the partial genome of the dsRNA revealed the presence of the RdRp sequence of a novel L. edodes mycovirus (LeV), and sequence comparison of the cloned amplicon showed identical sequences sequence to known RNA-dependent RNA polymerase genes of LeV found in strain HKA. The meiotic stability of dsRNA was examined by measuring the ratio of the presence of dsRNA among sexual monokaryotic progeny. More than 40% of the monokaryotic progeny still contained the dsRNA, indicating the persistence of dsRNA during sexual reproduction. Comparing the mycelia growth of monokaryotic progeny suggested that there appeared to be a tendency toward a lower frequency of virus incidence in actively growing progeny. PMID:25288977
Nonneutral mitochondrial DNA variation in humans and chimpanzees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nachman, M.W.; Aquadro, C.F.; Brown, W.M.
1996-03-01
We sequenced the NADH dehydrogenase subunit 3 (ND3) gene from a sample of 61 humans, five common chimpanzees, and one gorilla to test whether patterns of mitochondrial DNA (mtDNA) variation are consistent with a neutral model of molecular evolution. Within humans and within chimpanzees, the ratio of replacement to silent nucleotide substitutions was higher than observed in comparisons between species, contrary to neutral expectations. To test the generality of this result, we reanalyzed published human RFLP data from the entire mitochondrial genome. Gains of restriction sites relative to a known human mtDNA sequence were used to infer unambiguous nucleotide substitutions.more » We also compared the complete mtDNA sequences of three humans. Both the RFLP data and the sequence data reveal a higher ratio of replacement to silent nucleotide substitutions within humans than is seen between species. This pattern is observed at most or all human mitochondrial genes and is inconsistent with a strictly neutral model. These data suggest that many mitochondrial protein polymorphisms are slightly deleterious, consistent with studies of human mitochondrial diseases. 59 refs., 2 figs., 8 tabs.« less
Beaton, Ainsley; Lood, Cédric; Cunningham-Oakes, Edward; MacFadyen, Alison; Mullins, Alex J; Bestawy, Walid El; Botelho, João; Chevalier, Sylvie; Dalzell, Chloe; Dolan, Stephen K; Faccenda, Alberto; Ghequire, Maarten G K; Higgins, Steven; Kutschera, Alexander; Murray, Jordan; Redway, Martha; Salih, Talal; Smith, Brian A; Smits, Nathan; Thomson, Ryan; Woodcock, Stuart; Cornelis, Pierre; Lavigne, Rob; van Noort, Vera
2018-01-01
Abstract Pseudomonas baetica strain a390T is the type strain of this recently described species and here we present its high-contiguity draft genome. To celebrate the 16th International Conference on Pseudomonas, the genome of P. baetica strain a390T was sequenced using a unique combination of Ion Torrent semiconductor and Oxford Nanopore methods as part of a collaborative community-led project. The use of high-quality Ion Torrent sequences with long Nanopore reads gave rapid, high-contiguity and -quality, 16-contig genome sequence. Whole genome phylogenetic analysis places P. baetica within the P. koreensis clade of the P. fluorescens group. Comparison of the main genomic features of P. baetica with a variety of other Pseudomonas spp. suggests that it is a highly adaptable organism, typical of the genus. This strain was originally isolated from the liver of a diseased wedge sole fish, and genotypic and phenotypic analyses show that it is tolerant to osmotic stress and to oxytetracycline. PMID:29579234
A new polymorphic and multicopy MHC gene family related to nonmammalian class I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leelayuwat, C.; Degli-Esposti, M.A.; Abraham, L.J.
1994-12-31
The authors have used genomic analysis to characterize a region of the central major histocompatibility complex (MHC) spanning {approximately} 300 kilobases (kb) between TNF and HLA-B. This region has been suggested to carry genetic factors relevant to the development of autoimmune diseases such as myasthenia gravis (MG) and insulin dependent diabetes mellitus (IDDM). Genomic sequence was analyzed for coding potential, using two neural network programs, GRAIL and GeneParser. A genomic probe, JAB, containing putative coding sequences (PERB11) located 60 kb centromeric of HLA-B, was used for northern analysis of human tissues. Multiple transcripts were detected. Southern analysis of genomic DNAmore » and overlapping YAC clones, covering the region from BAT1 to HLA-F, indicated that there are at least five copies of PERB11, four of which are located within this region of the MHC. The partial cDNA sequence of PERB11 was obtained from poly-A RNA derived from skeletal muscle. The putative amino acid sequence of PERB11 shares {approximately} 30% identity to MHC class I molecules from various species, including reptiles, chickens, and frogs, as well as to other MHC class I-like molecules, such as the IgG FcR of the mouse and rat and the human Zn-{alpha}2-glycoprotein. From direct comparison of amino acid sequences, it is concluded that PERB11 is a distinct molecule more closely related to nonmammalian than known mammalian MHC class I molecules. Genomic sequence analysis of PERB11 from five MHC ancestral haplotypes (AH) indicated that the gene is polymorphic at both DNA and protein level. The results suggest that the authors have identified a novel polymorphic gene family with multiple copies within the MHC. 48 refs., 10 figs., 2 tabs.« less
Subsurface microbial diversity in deep-granitic-fracture water in Colorado
Sahl, J.W.; Schmidt, R.; Swanner, E.D.; Mandernack, K.W.; Templeton, A.S.; Kieft, Thomas L.; Smith, R.L.; Sanford, W.E.; Callaghan, R.L.; Mitton, J.B.; Spear, J.R.
2008-01-01
A microbial community analysis using 16S rRNA gene sequencing was performed on borehole water and a granite rock core from Henderson Mine, a >1,000-meter-deep molybdenum mine near Empire, CO. Chemical analysis of borehole water at two separate depths (1,044 m and 1,004 m below the mine entrance) suggests that a sharp chemical gradient exists, likely from the mixing of two distinct subsurface fluids, one metal rich and one relatively dilute; this has created unique niches for microorganisms. The microbial community analyzed from filtered, oxic borehole water indicated an abundance of sequences from iron-oxidizing bacteria (Gallionella spp.) and was compared to the community from the same borehole after 2 weeks of being plugged with an expandable packer. Statistical analyses with UniFrac revealed a significant shift in community structure following the addition of the packer. Phospholipid fatty acid (PLFA) analysis suggested that Nitrosomonadales dominated the oxic borehole, while PLFAs indicative of anaerobic bacteria were most abundant in the samples from the plugged borehole. Microbial sequences were represented primarily by Firmicutes, Proteobacteria, and a lineage of sequences which did not group with any identified bacterial division; phylogenetic analyses confirmed the presence of a novel candidate division. This "Henderson candidate division" dominated the clone libraries from the dilute anoxic fluids. Sequences obtained from the granitic rock core (1,740 m below the surface) were represented by the divisions Proteobacteria (primarily the family Ralstoniaceae) and Firmicutes. Sequences grouping within Ralstoniaceae were also found in the clone libraries from metal-rich fluids yet were absent in more dilute fluids. Lineage-specific comparisons, combined with phylogenetic statistical analyses, show that geochemical variance has an important effect on microbial community structure in deep, subsurface systems. Copyright ?? 2008, American Society for Microbiology. All Rights Reserved.
Subsurface Microbial Diversity in Deep-Granitic-Fracture Water in Colorado▿
Sahl, Jason W.; Schmidt, Raleigh; Swanner, Elizabeth D.; Mandernack, Kevin W.; Templeton, Alexis S.; Kieft, Thomas L.; Smith, Richard L.; Sanford, William E.; Callaghan, Robert L.; Mitton, Jeffry B.; Spear, John R.
2008-01-01
A microbial community analysis using 16S rRNA gene sequencing was performed on borehole water and a granite rock core from Henderson Mine, a >1,000-meter-deep molybdenum mine near Empire, CO. Chemical analysis of borehole water at two separate depths (1,044 m and 1,004 m below the mine entrance) suggests that a sharp chemical gradient exists, likely from the mixing of two distinct subsurface fluids, one metal rich and one relatively dilute; this has created unique niches for microorganisms. The microbial community analyzed from filtered, oxic borehole water indicated an abundance of sequences from iron-oxidizing bacteria (Gallionella spp.) and was compared to the community from the same borehole after 2 weeks of being plugged with an expandable packer. Statistical analyses with UniFrac revealed a significant shift in community structure following the addition of the packer. Phospholipid fatty acid (PLFA) analysis suggested that Nitrosomonadales dominated the oxic borehole, while PLFAs indicative of anaerobic bacteria were most abundant in the samples from the plugged borehole. Microbial sequences were represented primarily by Firmicutes, Proteobacteria, and a lineage of sequences which did not group with any identified bacterial division; phylogenetic analyses confirmed the presence of a novel candidate division. This “Henderson candidate division” dominated the clone libraries from the dilute anoxic fluids. Sequences obtained from the granitic rock core (1,740 m below the surface) were represented by the divisions Proteobacteria (primarily the family Ralstoniaceae) and Firmicutes. Sequences grouping within Ralstoniaceae were also found in the clone libraries from metal-rich fluids yet were absent in more dilute fluids. Lineage-specific comparisons, combined with phylogenetic statistical analyses, show that geochemical variance has an important effect on microbial community structure in deep, subsurface systems. PMID:17981950
Sánchez-Navarro, J A; Pallás, V
1997-01-01
The complete nucleotide sequence of an isolate of prunus necrotic ringspot virus (PNRSV) RNA 3 has been determined. Elucidation of the amino acid sequence of the proteins encoded by the two large open reading frames (ORFs) allowed us to carry out comparative and phylogenetic studies on the movement (MP) and coat (CP) proteins in the ilarvirus group. Amino acid sequence comparison of the MP revealed a highly conserved basic sequence motif with an amphipathic alpha-helical structure preceding the conserved motif of the '30K superfamily' proposed by Mushegian and Koonin [26] for MP's. Within this '30K' motif a strictly conserved transmembrane domain is present in all ilarviruses sequenced so far. At the amino-terminal end, prune dwarf virus (PDV) has an extension not present in other ilarviruses but which is observed in all bromo- and cucumoviruses, suggesting a common ancestor or a recombinational event in the Bromoviridae family. Examination of the N-terminus of the CP's of all ilarviruses revealed a highly basic region, part of which resembles the Arg-rich motif that has been characterized in the RNA-binding protein family. This motif has also been found in the other members of the Bromoviridae family, suggesting its involvement in a structural function. Furthermore this region is required for infectivity in ilarviruses. The similarities found in this Arg-rich motif are discussed in terms of this process known as genome activation. Finally, phylogenetic analysis of both the MP and CP proteins revealed a higher relationship of A1MV to PNRSV, apple mosaic virus (ApMV) and PDV than any other member of the ilarvirus group. In that sense, A1MV should be considered as a true ilarvirus instead of forming a distinct group of viruses.
Amino acid racemization in amber-entombed insects: implications for DNA preservation
NASA Technical Reports Server (NTRS)
Bada, J. L.; Wang, X. S.; Poinar, H. N.; Paabo, S.; Poinar, G. O.
1994-01-01
DNA depurination and amino acid racemization take place at similar rates in aqueous solution at neutral pH. This relationship suggests that amino acid racemization may be useful in accessing the extent of DNA chain breakage in ancient biological remains. To test this suggestion, we have investigated the amino acids in insects entombed in fossilized tree resins ranging in age from <100 years to 130 million years. The amino acids present in 40 to 130 million year old amber-entombed insects resemble those in a modern fly and are probably the most ancient, unaltered amino acids found so far on Earth. In comparison to other geochemical environments on the surface of the Earth, the amino acid racemization rate in amber insect inclusions is retarded by a factor of >10(4). These results suggest that in amber insect inclusions DNA depurination rates would also likely be retarded in comparison to aqueous solution measurements, and thus DNA fragments containing many hundreds of base pairs should be preserved. This conclusion is consistent with the reported successful retrieval of DNA sequences from amber-entombed organisms.
NASA Astrophysics Data System (ADS)
Tremberger, G.; Dehipawala, Sunil; Cheung, E.; Holden, T.; Sullivan, R.; Nguyen, A.; Lieberman, D.; Cheung, T.
2015-09-01
All metallo-proteins need post-translation metal incorporation. In fact, the isotope ratio of Fe, Cu, and Zn in physiology and oncology have emerged as an important tool. The nickel containing F430 is the prosthetic group of the enzyme methyl coenzyme M reductase which catalyzes the release of methane in the final step of methano-genesis, a prime energy metabolism candidate for life exploration space mission in the solar system. The 3.5 Gyr early life sulfite reductase as a life switch energy metabolism had Fe-Mo clusters. The nitrogenase for nitrogen fixation 3 billion years ago had Mo. The early life arsenite oxidase needed for anoxygenic photosynthesis energy metabolism 2.8 billion years ago had Mo and Fe. The selection pressure in metal incorporation inside a protein would be quantifiable in terms of the related nucleotide sequence complexity with fractal dimension and entropy values. Simulation model showed that the studied metal-required energy metabolism sequences had at least ten times more selection pressure relatively in comparison to the horizontal transferred sequences in Mealybug, guided by the outcome histogram of the correlation R-sq values. The metal energy metabolism sequence group was compared to the circadian clock KaiC sequence group using magnesium atomic level bond shifting mechanism in the protein, and the simulation model would suggest a much higher selection pressure for the energy life switch sequence group. The possibility of using Kepler 444 as an example of ancient life in Galaxy with the associated exoplanets has been proposed and is further discussed in this report. Examples of arsenic metal bonding shift probed by Synchrotron-based X-ray spectroscopy data and Zn controlled FOXP2 regulated pathways in human and chimp brain studied tissue samples are studied in relationship to the sequence bioinformatics. The analysis results suggest that relatively large metal bonding shift amount is associated with low probability correlation R-sq outcome in the bioinformatics simulation.
Automated Finishing with Autofinish
Gordon, David; Desmarais, Cindy; Green, Phil
2001-01-01
Currently, the genome sequencing community is producing shotgun sequence data at a very high rate, but finishing (collecting additional directed sequence data to close gaps and improve the quality of the data) is not matching that rate. One reason for the difference is that shotgun sequencing is highly automated but finishing is not: Most finishing decisions, such as which directed reads to obtain and which specialized sequencing techniques to use, are made by people. If finishing rates are to increase to match shotgun sequencing rates, most finishing decisions also must be automated. The Autofinish computer program (which is part of the Consed computer software package) does this by automatically choosing finishing reads. Autofinish is able to suggest most finishing reads required for completion of each sequencing project, greatly reducing the amount of human attention needed. Autofinish sometimes completely finishes the project, with no human decisions required. It cannot solve the most complex problems, so we recommend that Autofinish be allowed to suggest reads for the first three rounds of finishing, and if the project still is not finished completely, a human finisher complete the work. We compared this Autofinish-Hybrid method of finishing against a human finisher in five different projects with a variety of shotgun depths by finishing each project twice—once with each method. This comparison shows that the Autofinish-Hybrid method saves many hours over a human finisher alone, while using roughly the same number and type of reads and closing gaps at roughly the same rate. Autofinish currently is in production use at several large sequencing centers. It is designed to be adaptable to the finishing strategy of the lab—it can finish using some or all of the following: resequencing reads, reverses, custom primer walks on either subclone templates or whole clone templates, PCR, or minilibraries. Autofinish has been used for finishing cDNA, genomic clones, and whole bacterial genomes (see http://www.phrap.org). PMID:11282977
Initial experience with 3D isotropic high-resolution 3 T MR arthrography of the wrist.
Sutherland, John K; Nozaki, Taiki; Kaneko, Yasuhito; J Yu, Hon; Rafijah, Gregory; Hitt, David; Yoshioka, Hiroshi
2016-01-16
Our study was performed to evaluate the image quality of 3 T MR wrist arthrograms with attention to ulnar wrist structures, comparing image quality of isotropic 3D proton density fat suppressed turbo spin echo (PDFS TSE) sequence versus standard 2D 3 T sequences as well as comparison with 1.5 T MR arthrograms. Eleven consecutive 3 T MR wrist arthrograms were performed and the following sequences evaluated: 3D isotropic PDFS, repetition time/echo time (TR/TE) 1400/28.3 ms, voxel size 0.35x0.35x0.35 mm, acquisition time 5 min; 2D coronal sequences with slice thickness 2 mm: T1 fat suppressed turbo spin echo (T1FS TSE) (TR/TE 600/20 ms); proton density (PD) TSE (TR/TE 3499/27 ms). A 1.5 T group of 18 studies with standard sequences were evaluated for comparison. All MR imaging followed fluoroscopically guided intra-articular injection of dilute gadolinium contrast. Qualitative assessment related to delineation of anatomic structures between 1.5 T and 3 T MR arthrograms was carried out using Mann-Whitney test and the differences in delineation of anatomic structures among each sequence in 3 T group were analyzed with Wilcoxon signed-rank test. Quantitative assessment of mean relative signal intensity (SI) and relative contrast measurements was performed using Wilcoxon signed-rank test. Mean qualitative scores for 3 T sequences were significantly higher than 1.5 T (p < 0.01), with isotropic 3D PDFS sequence having highest mean qualitative scores (p < 0.05). Quantitative analysis demonstrated no significant difference in relative signal intensity among the 3 T sequences. Significant differences were found in relative contrast between fluid-bone and fluid-fat comparing 3D and 2D PDFS (p < 0.01). 3D isotropic PDFS sequence showed promise in both qualitative and quantitative assessment, suggesting this may be useful for MR wrist arthrograms at 3 T. Primary reasons for diagnostic potential include the ability to make reformations in any obliquity to follow the components of ulnar side wrist structures including triangular fibrocartilage complex. Additionally, isotropic imaging provides thinner slice thickness with less partial volume averaging allowing for identification of subtle injuries.
Ortí, G; Meyer, A
1996-04-01
The rate and pattern of DNA evolution of ependymin, a single-copy gene coding for a highly expressed glycoprotein in the brain matrix of teleost fishes, is characterized and its phylogenetic utility for fish systematics is assessed. DNA sequences were determined from catfish, electric fish, and characiforms and compared with published ependymin sequences from cyprinids, salmon, pike, and herring. Among these groups, ependymin amino acid sequences were highly divergent (up to 60% sequence difference), but had surprisingly similar hydropathy profiles and invariant glycosylation sites, suggesting that functional properties of the proteins are conserved. Comparison of base composition at third codon positions and introns revealed AT-rich introns and GC-rich third codon positions, suggesting that the biased codon usage observed might not be due to mutational bias. Phylogenetic information content of third codon positions was surprisingly high and sufficient to recover the most basal nodes of the tree, in spite of the observation that pairwise distances (at third codon positions) were well above the presumed saturation level. This finding can be explained by the high proportion of phylogenetically informative nonsynonymous changes at third codon positions among these highly divergent proteins. Ependymin DNA sequences have established the first molecular evidence for the monophyly of a group containing salmonids and esociforms. In addition, ependymin suggests a sister group relationship of electric fish (Gymnotiformes) and Characiformes, constituting a significant departure from currently accepted classifications. However, relationships among characiform lineages were not completely resolved by ependymin sequences in spite of seemingly appropriate levels of variation among taxa and considerably low levels of homoplasy in the data (consistency index = 0.7). If the diversification of Characiformes took place in an "explosive" manner, over a relatively short period of time this pattern should also be observed using other phylogenetic markers. Poor conservation of ependymin's primary structure hinders the design of efficient primers for PCR that could be used in wide-ranging fish systematic studies. However, alternative methods like PCR amplification from cDNA used here should provide promising comparative sequence data for the resolution of phylogenetic relationships among other basal lineages of teleost fishes.
Fietz, Katharina; Graves, Jeff A; Olsen, Morten Tange
2013-01-01
Genetic data can provide a powerful tool for those interested in the biology, management and conservation of wildlife, but also lead to erroneous conclusions if appropriate controls are not taken at all steps of the analytical process. This particularly applies to data deposited in public repositories such as GenBank, whose utility relies heavily on the assumption of high data quality. Here we report on an in-depth reassessment and comparison of GenBank and chromatogram mtDNA sequence data generated in a previous study of Baltic grey seals. By re-editing the original chromatogram data we found that approximately 40% of the grey seal mtDNA haplotype sequences posted in GenBank contained errors. The re-analysis of the edited chromatogram data yielded overall similar results and conclusions as the original study. However, a significantly different outcome was observed when using the uncorrected dataset based on the GenBank haplotypes. We therefore suggest disregarding the existing GenBank data and instead using the correct haplotypes reported here. Our study serves as an illustrative example reiterating the importance of quality control through every step of a research project, from data generation to interpretation and submission to an online repository. Errors conducted in any step may lead to biased results and conclusions, and could impact management decisions.
Fietz, Katharina; Graves, Jeff A.; Olsen, Morten Tange
2013-01-01
Genetic data can provide a powerful tool for those interested in the biology, management and conservation of wildlife, but also lead to erroneous conclusions if appropriate controls are not taken at all steps of the analytical process. This particularly applies to data deposited in public repositories such as GenBank, whose utility relies heavily on the assumption of high data quality. Here we report on an in-depth reassessment and comparison of GenBank and chromatogram mtDNA sequence data generated in a previous study of Baltic grey seals. By re-editing the original chromatogram data we found that approximately 40% of the grey seal mtDNA haplotype sequences posted in GenBank contained errors. The re-analysis of the edited chromatogram data yielded overall similar results and conclusions as the original study. However, a significantly different outcome was observed when using the uncorrected dataset based on the GenBank haplotypes. We therefore suggest disregarding the existing GenBank data and instead using the correct haplotypes reported here. Our study serves as an illustrative example reiterating the importance of quality control through every step of a research project, from data generation to interpretation and submission to an online repository. Errors conducted in any step may lead to biased results and conclusions, and could impact management decisions. PMID:23977362
Liu, Chan; Zeng, Liangbin; Zhu, Siyuan; Wu, Lingqing; Wang, Yanzhou; Tang, Shouwei; Wang, Hongwu; Zheng, Xia; Zhao, Jian; Chen, Xiaorong; Dai, Qiuzhong; Liu, Touming
2017-11-15
Plentiful bast fiber, a high crude protein content, and vigorous vegetative growth make ramie a popular fiber and forage crop. Here, we report the draft genome of ramie, along with a genomic comparison and evolutionary analysis. The draft genome contained a sequence of approximately 335.6 Mb with 42,463 predicted genes. A high-density genetic map with 4,338 single nucleotide polymorphisms (SNPs) was developed and used to anchor the genome sequence, thus, creating an integrated genetic and physical map containing a 58.2-Mb genome sequence and 4,304 molecular markers. A genomic comparison identified 1,075 unique gene families in ramie, containing 4,082 genes. Among these unique genes, five were cellulose synthase genes that were specifically expressed in stem bark, and 3 encoded a WAT1-related protein, suggesting that they are probably related to high bast fiber yield. An evolutionary analysis detected 106 positively selected genes, 22 of which were related to nitrogen metabolism, indicating that they are probably responsible for the crude protein content and vegetative growth of domesticated varieties. This study is the first to characterize the genome and develop a high-density genetic map of ramie and provides a basis for the genetic and molecular study of this crop. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Molecular evolution of miraculin-like proteins in soybean Kunitz super-family.
Selvakumar, Purushotham; Gahloth, Deepankar; Tomar, Prabhat Pratap Singh; Sharma, Nidhi; Sharma, Ashwani Kumar
2011-12-01
Miraculin-like proteins (MLPs) belong to soybean Kunitz super-family and have been characterized from many plant families like Rutaceae, Solanaceae, Rubiaceae, etc. Many of them possess trypsin inhibitory activity and are involved in plant defense. MLPs exhibit significant sequence identity (~30-95%) to native miraculin protein, also belonging to Kunitz super-family compared with a typical Kunitz family member (~30%). The sequence and structure-function comparison of MLPs with that of a classical Kunitz inhibitor have demonstrated that MLPs have evolved to form a distinct group within Kunitz super-family. Sequence analysis of new genes along with available MLP sequences in the literature revealed three major groups for these proteins. A significant feature of Rutaceae MLP type 2 sequences is the presence of phosphorylation motif. Subtle changes are seen in putative reactive loop residues among different MLPs suggesting altered specificities to specific proteases. In phylogenetic analysis, Rutaceae MLP type 1 and type 2 proteins clustered together on separate branches, whereas native miraculin along with other MLPs formed distinct clusters. Site-specific positive Darwinian selection was observed at many sites in both the groups of Rutaceae MLP sequences with most of the residues undergoing positive selection located in loop regions. The results demonstrate the sequence and thereby the structure-function divergence of MLPs as a distinct group within soybean Kunitz super-family due to biotic and abiotic stresses of local environment.
Using video-oriented instructions to speed up sequence comparison.
Wozniak, A
1997-04-01
This document presents an implementation of the well-known Smith-Waterman algorithm for comparison of proteic and nucleic sequences, using specialized video instructions. These instructions, SIMD-like in their design, make possible parallelization of the algorithm at the instruction level. Benchmarks on an ULTRA SPARC running at 167 MHz show a speed-up factor of two compared to the same algorithm implemented with integer instructions on the same machine. Performance reaches over 18 million matrix cells per second on a single processor, giving to our knowledge the fastest implementation of the Smith-Waterman algorithm on a workstation. The accelerated procedure was introduced in LASSAP--a LArge Scale Sequence compArison Package software developed at INRIA--which handles parallelism at higher level. On a SUN Enterprise 6000 server with 12 processors, a speed of nearly 200 million matrix cells per second has been obtained. A sequence of length 300 amino acids is scanned against SWISSPROT R33 (1,8531,385 residues) in 29 s. This procedure is not restricted to databank scanning. It applies to all cases handled by LASSAP (intra- and inter-bank comparisons, Z-score computation, etc.
Digital signal processing methods for biosequence comparison.
Benson, D C
1990-01-01
A method is discussed for DNA or protein sequence comparison using a finite field fast Fourier transform, a digital signal processing technique; and statistical methods are discussed for analyzing the output of this algorithm. This method compares two sequences of length N in computing time proportional to N log N compared to N2 for methods currently used. This method makes it feasible to compare very long sequences. An example is given to show that the method correctly identifies sites of known homology. PMID:2349096
Jowitt, Thomas A; Murdoch, Alan D; Baldock, Clair; Berry, Richard; Day, Joanna M; Hardingham, Timothy E
2010-01-01
Structural investigation of proteins containing large stretches of sequences without predicted secondary structure is the focus of much increased attention. Here, we have produced an unglycosylated 30 kDa peptide from the chondroitin sulphate (CS)-attachment region of human aggrecan (CS-peptide), which was predicted to be intrinsically disordered and compared its structure with the adjacent aggrecan G3 domain. Biophysical analyses, including analytical ultracentrifugation, light scattering, and circular dichroism showed that the CS-peptide had an elongated and stiffened conformation in contrast to the globular G3 domain. The results suggested that it contained significant secondary structure, which was sensitive to urea, and we propose that the CS-peptide forms an elongated wormlike molecule based on a dynamic range of energetically equivalent secondary structures stabilized by hydrogen bonds. The dimensions of the structure predicted from small-angle X-ray scattering analysis were compatible with EM images of fully glycosylated aggrecan and a partly glycosylated aggrecan CS2-G3 construct. The semiordered structure identified in CS-peptide was not predicted by common structural algorithms and identified a potentially distinct class of semiordered structure within sequences currently identified as disordered. Sequence comparisons suggested some evidence for comparable structures in proteins encoded by other genes (PRG4, MUC5B, and CBP). The function of these semiordered sequences may serve to spatially position attached folded modules and/or to present polypeptides for modification, such as glycosylation, and to provide templates for the multiple pleiotropic interactions proposed for disordered proteins. Proteins 2010. © 2010 Wiley-Liss, Inc. PMID:20806220
Shien, J-H; Wang, Y-S; Chen, C-H; Shieh, H K; Hu, C-C; Chang, P-C
2008-10-01
Live attenuated vaccines have been used for control of the disease caused by goose parvovirus (GPV), but the mechanism involved in attenuation of GPV remains elusive. This report presents the complete nucleotide sequences of two live attenuated strains of GPV (82-0321V and VG32/1) that were independently developed in Taiwan and Europe, together with the parental strain of 82-0321V and a field strain isolated in Taiwan in 2006. Sequence comparisons showed that 82-0321V and VG32/1 had multiple deletions and substitutions in the inverted terminal repeats region when compared with their parental strain or the field virus, but these changes did not affect the formation of the hairpin structure essential for viral replication. Moreover, 82-0321V and VG32/1 had five amino acid changes in the non-structural protein, but these changes were located at positions distant from known functional motifs in the non-structural protein. In contrast, 82-0321V had nine changes and VG32/1 had 11 changes in their capsid proteins (VP1), and the majority of these changes occurred at positions close to the putative receptor binding sites of VP1, as predicted using the structure of adeno-associated virus 2 as the model system. Taken together, the results suggest that changes in sequence near the receptor binding sites of VP1 might be responsible for attenuation of GPV. This is the first report of complete nucleotide sequences of GPV other than the virulent B strain, and suggests a possible mechanism for attenuation of GPV.
Bartels, Daniela; Kespohl, Sebastian; Albaum, Stefan; Drüke, Tanja; Goesmann, Alexander; Herold, Julia; Kaiser, Olaf; Pühler, Alfred; Pfeiffer, Friedhelm; Raddatz, Günter; Stoye, Jens; Meyer, Folker; Schuster, Stephan C
2005-04-01
We provide the graphical tool BACCardI for the construction of virtual clone maps from standard assembler output files or BLAST based sequence comparisons. This new tool has been applied to numerous genome projects to solve various problems including (a) validation of whole genome shotgun assemblies, (b) support for contig ordering in the finishing phase of a genome project, and (c) intergenome comparison between related strains when only one of the strains has been sequenced and a large insert library is available for the other. The BACCardI software can seamlessly interact with various sequence assembly packages. Genomic assemblies generated from sequence information need to be validated by independent methods such as physical maps. The time-consuming task of building physical maps can be circumvented by virtual clone maps derived from read pair information of large insert libraries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boore, Jeffrey L.
2004-11-27
Although the phylogenetic relationships of many organisms have been convincingly resolved by the comparisons of nucleotide or amino acid sequences, others have remained equivocal despite great effort. Now that large-scale genome sequencing projects are sampling many lineages, it is becoming feasible to compare large data sets of genome-level features and to develop this as a tool for phylogenetic reconstruction that has advantages over conventional sequence comparisons. Although it is unlikely that these will address a large number of evolutionary branch points across the broad tree of life due to the infeasibility of such sampling, they have great potential for convincinglymore » resolving many critical, contested relationships for which no other data seems promising. However, it is important that we recognize potential pitfalls, establish reasonable standards for acceptance, and employ rigorous methodology to guard against a return to earlier days of scenario-driven evolutionary reconstructions.« less
Nabavi, Reza; Conneely, Brendan; McCarthy, Elaine; Good, Barbara; Shayan, Parviz; DE Waal, Theo
2014-09-01
Accurate identification of sheep nematodes is a critical point in epidemiological studies and monitoring of drug resistance in flocks. However, due to a close morphological similarity between the eggs and larval stages of many of these nematodes, such identification is not a trivial task. There are a number of studies showing that molecular targets in ribosomal DNA (Internal transcribed spacer 1, 2 and Intergenic spacer) are suitable for accurate identification of sheep bursate nematodes. The objective of present study was to compare the ITS1, ITS2 and IGS regions of Iranian common bursate nematodes in order to choose best target for specific identification methods. The first and second internal transcribed spacers (ITS1and ITS2) and intergenic spacer (IGS) of the ribosomal DNA (rDNA) of 5 common Iranian bursate nematodes of sheep were sequenced. The sequences of some non-Iranian isolates were used for comparison in order to evaluate the variation in sequence homology between geographically different nematode populations. Comparison of the ITS1 and ITS2 sequences of Iranian nematodes showed greatest similarity among Teladorsagia circumcincta and Marshallagia marshalli of 94% and 88%, respectively. While Trichostrongylus colubriformis and M. marshalli showed the highest homology (99%) in the IGS sequences. Comparison of the spacer sequences of Iranian with non-Iranian isolates showed significantly higher variation in Haemonchus contortus compared to the other species. Both the ITS1 and ITS2 sequences are convenient targets to have species-specific identification of Iranian bursate nematodes. On the other hand the IGS region may be a less suitable molecular target.
Fast alignment-free sequence comparison using spaced-word frequencies.
Leimeister, Chris-Andre; Boden, Marcus; Horwege, Sebastian; Lindner, Sebastian; Morgenstern, Burkhard
2014-07-15
Alignment-free methods for sequence comparison are increasingly used for genome analysis and phylogeny reconstruction; they circumvent various difficulties of traditional alignment-based approaches. In particular, alignment-free methods are much faster than pairwise or multiple alignments. They are, however, less accurate than methods based on sequence alignment. Most alignment-free approaches work by comparing the word composition of sequences. A well-known problem with these methods is that neighbouring word matches are far from independent. To reduce the statistical dependency between adjacent word matches, we propose to use 'spaced words', defined by patterns of 'match' and 'don't care' positions, for alignment-free sequence comparison. We describe a fast implementation of this approach using recursive hashing and bit operations, and we show that further improvements can be achieved by using multiple patterns instead of single patterns. To evaluate our approach, we use spaced-word frequencies as a basis for fast phylogeny reconstruction. Using real-world and simulated sequence data, we demonstrate that our multiple-pattern approach produces better phylogenies than approaches relying on contiguous words. Our program is freely available at http://spaced.gobics.de/. © The Author 2014. Published by Oxford University Press.
Bào, Yīmíng; Kuhn, Jens H
2018-01-01
During the last decade, genome sequence-based classification of viruses has become increasingly prominent. Viruses can be even classified based on coding-complete genome sequence data alone. Nevertheless, classification remains arduous as experts are required to establish phylogenetic trees to depict the evolutionary relationships of such sequences for preliminary taxonomic placement. Pairwise sequence comparison (PASC) of genomes is one of several novel methods for establishing relationships among viruses. This method, provided by the US National Center for Biotechnology Information as an open-access tool, circumvents phylogenetics, and yet PASC results are often in agreement with those of phylogenetic analyses. Computationally inexpensive, PASC can be easily performed by non-taxonomists. Here we describe how to use the PASC tool for the preliminary classification of novel viral hemorrhagic fever-causing viruses.
Insights from Human/Mouse genome comparisons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pennacchio, Len A.
2003-03-30
Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestrymore » of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.« less
NASA Astrophysics Data System (ADS)
Sun, S. M.; Slightom, J. L.; Hall, T. C.
1981-01-01
A plant gene coding for the major storage protein (phaseolin, G1-globulin) of the French bean was isolated from a genomic library constructed in the phage vector Charon 24A. Comparison of the nucleotide sequence of part of the gene with that of the cloned messenger RNA (cDNA) revealed the presence of three intervening sequences, all beginning with GTand ending with AG. The 5' and 3' boundaries of intervening sequences TVS-A (88 base pairs) and IVS-B (124 base pairs) are similar to those described for animal and viral genes, but the 3' boundary of IVS-C (129 base pairs) shows some differences. A sequence of 185 amino acids deduced from the cloned DMAs represents about 40% of a phaseolin polypeptide.
Vibrio chromosomes share common history.
Kirkup, Benjamin C; Chang, LeeAnn; Chang, Sarah; Gevers, Dirk; Polz, Martin F
2010-05-10
While most gamma proteobacteria have a single circular chromosome, Vibrionales have two circular chromosomes. Horizontal gene transfer is common among Vibrios, and in light of this genetic mobility, it is an open question to what extent the two chromosomes themselves share a common history since their formation. Single copy genes from each chromosome (142 genes from chromosome I and 42 genes from chromosome II) were identified from 19 sequenced Vibrionales genomes and their phylogenetic comparison suggests consistent phylogenies for each chromosome. Additionally, study of the gene organization and phylogeny of the respective origins of replication confirmed the shared history. Thus, while elements within the chromosomes may have experienced significant genetic mobility, the backbones share a common history. This allows conclusions based on multilocus sequence analysis (MLSA) for one chromosome to be applied equally to both chromosomes.
Bruce, A. Gregory; Ryan, Jonathan T.; Thomas, Mathew J.; Peng, Xinxia; Grundhoff, Adam; Tsai, Che-Chung
2013-01-01
The complete sequence of retroperitoneal fibromatosis-associated herpesvirus Macaca nemestrina (RFHVMn), the pig-tailed macaque homolog of Kaposi's sarcoma-associated herpesvirus (KSHV), was determined by next-generation sequence analysis of a Kaposi's sarcoma (KS)-like macaque tumor. Colinearity of genes was observed with the KSHV genome, and the core herpesvirus genes had strong sequence homology to the corresponding KSHV genes. RFHVMn lacked homologs of open reading frame 11 (ORF11) and KSHV ORFs K5 and K6, which appear to have been generated by duplication of ORFs K3 and K4 after the divergence of KSHV and RFHV. RFHVMn contained positional homologs of all other unique KSHV genes, although some showed limited sequence similarity. RFHVMn contained a number of candidate microRNA genes. Although there was little sequence similarity with KSHV microRNAs, one candidate contained the same seed sequence as the positional homolog, kshv-miR-K12-10a, suggesting functional overlap. RNA transcript splicing was highly conserved between RFHVMn and KSHV, and strong sequence conservation was noted in specific promoters and putative origins of replication, predicting important functional similarities. Sequence comparisons indicated that RFHVMn and KSHV developed in long-term synchrony with the evolution of their hosts, and both viruses phylogenetically group within the RV1 lineage of Old World primate rhadinoviruses. RFHVMn is the closest homolog of KSHV to be completely sequenced and the first sequenced RV1 rhadinovirus homolog of KSHV from a nonhuman Old World primate. The strong genetic and sequence similarity between RFHVMn and KSHV, coupled with similarities in biology and pathology, demonstrate that RFHVMn infection in macaques offers an important and relevant model for the study of KSHV in humans. PMID:24109218
ProteinWorldDB: querying radical pairwise alignments among protein sets from complete genomes
Otto, Thomas Dan; Catanho, Marcos; Tristão, Cristian; Bezerra, Márcia; Fernandes, Renan Mathias; Elias, Guilherme Steinberger; Scaglia, Alexandre Capeletto; Bovermann, Bill; Berstis, Viktors; Lifschitz, Sergio; de Miranda, Antonio Basílio; Degrave, Wim
2010-01-01
Motivation: Many analyses in modern biological research are based on comparisons between biological sequences, resulting in functional, evolutionary and structural inferences. When large numbers of sequences are compared, heuristics are often used resulting in a certain lack of accuracy. In order to improve and validate results of such comparisons, we have performed radical all-against-all comparisons of 4 million protein sequences belonging to the RefSeq database, using an implementation of the Smith–Waterman algorithm. This extremely intensive computational approach was made possible with the help of World Community Grid™, through the Genome Comparison Project. The resulting database, ProteinWorldDB, which contains coordinates of pairwise protein alignments and their respective scores, is now made available. Users can download, compare and analyze the results, filtered by genomes, protein functions or clusters. ProteinWorldDB is integrated with annotations derived from Swiss-Prot, Pfam, KEGG, NCBI Taxonomy database and gene ontology. The database is a unique and valuable asset, representing a major effort to create a reliable and consistent dataset of cross-comparisons of the whole protein content encoded in hundreds of completely sequenced genomes using a rigorous dynamic programming approach. Availability: The database can be accessed through http://proteinworlddb.org Contact: otto@fiocruz.br PMID:20089515
Novel Hepatozoon in vertebrates from the southern United States.
Allen, Kelly E; Yabsley, Michael J; Johnson, Eileen M; Reichard, Mason V; Panciera, Roger J; Ewing, Sidney A; Little, Susan E
2011-08-01
Novel Hepatozoon spp. sequences collected from previously unrecognized vertebrate hosts in North America were compared with documented Hepatozoon 18S rRNA sequences in an effort to examine phylogenetic relationships between the different Hepatozoon organisms found cycling in nature. An approximately 500-base pair fragment of 18S rDNA common to Hepatozoon spp. and some other apicomplexans was amplified and sequenced from the tissues or blood of 16 vertebrate host species from the southern United States, including 1 opossum (Didelphis virginiana), 2 bobcats (Lynx rufus), 1 domestic cat (Felis catus), 3 coyotes (Canis latrans), 1 gray fox (Urocyon cinereoargenteus), 4 raccoons (Procyon lotor), 1 pet boa constrictor (Boa constrictor imperator), 1 swamp rabbit (Sylvilagus aquaticus), 1 cottontail rabbit (Sylvilagus floridanus), 4 woodrats (Neotoma fuscipes and Neotoma micropus), 3 white-footed mice (Peromyscus leucopus), 8 cotton rats (Sigmodon hispidus), 1 cotton mouse (Peromyscus gossypinus), 1 eastern grey squirrel (Sciurus carolinensis), and 1 woodchuck (Marmota monax). Phylogenetic analyses and comparison with sequences in the existing database revealed distinct groups of Hepatozoon spp., with clusters formed by sequences obtained from scavengers and carnivores (opossum, raccoons, canids, and felids) and those obtained from rodents. Surprisingly, Hepatozoon spp. sequences from wild rabbits were most closely related to sequences obtained from carnivores (97.2% identical), and the sequence from the boa constrictor was most closely related to the rodent cluster (97.4% identical). These data are consistent with recent work identifying prey-predator transmission cycles in Hepatozoon spp. and suggest this pattern may be more common than previously recognized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Poulabi; Bahlo, Melanie; Schwartz, Jody R.
2002-01-01
Genome wide disease association analysis using SNPs is being explored as a method for dissecting complex genetic traits and a vast number of SNPs have been generated for this purpose. As there are cost and throughput limitations of genotyping large numbers of SNPs and statistical issues regarding the large number of dependent tests on the same data set, to make association analysis practical it has been proposed that SNPs should be prioritized based on likely functional importance. The most easily identifiable functional SNPs are coding SNPs (cSNPs) and accordingly cSNPs have been screened in a number of studies. SNPs inmore » gene regulatory sequences embedded in noncoding DNA are another class of SNPs suggested for prioritization due to their predicted quantitative impact on gene expression. The main challenge in evaluating these SNPs, in contrast to cSNPs is a lack of robust algorithms and databases for recognizing regulatory sequences in noncoding DNA. Approaches that have been previously used to delineate noncoding sequences with gene regulatory activity include cross-species sequence comparisons and the search for sequences recognized by transcription factors. We combined these two methods to sift through mouse human genomic sequences to identify putative gene regulatory elements and subsequently localized SNPs within these sequences in a 1 Megabase (Mb) region of human chromosome 5q31, orthologous to mouse chromosome 11 containing the Interleukin cluster.« less
USDA-ARS?s Scientific Manuscript database
Coat protein sequences of 33 Potyvirus isolates from legume and Passiflora spp. were sequenced to determine the identity of infecting viruses. Phylogenetic analysis of the sequences revealed the presence of seven distinct virus species....
Comparison and correlation of Simple Sequence Repeats distribution in genomes of Brucella species
Kiran, Jangampalli Adi Pradeep; Chakravarthi, Veeraraghavulu Praveen; Kumar, Yellapu Nanda; Rekha, Somesula Swapna; Kruti, Srinivasan Shanthi; Bhaskar, Matcha
2011-01-01
Computational genomics is one of the important tools to understand the distribution of closely related genomes including simple sequence repeats (SSRs) in an organism, which gives valuable information regarding genetic variations. The central objective of the present study was to screen the SSRs distributed in coding and non-coding regions among different human Brucella species which are involved in a range of pathological disorders. Computational analysis of the SSRs in the Brucella indicates few deviations from expected random models. Statistical analysis also reveals that tri-nucleotide SSRs are overrepresented and tetranucleotide SSRs underrepresented in Brucella genomes. From the data, it can be suggested that over expressed tri-nucleotide SSRs in genomic and coding regions might be responsible in the generation of functional variation of proteins expressed which in turn may lead to different pathogenicity, virulence determinants, stress response genes, transcription regulators and host adaptation proteins of Brucella genomes. Abbreviations SSRs - Simple Sequence Repeats, ORFs - Open Reading Frames. PMID:21738309
Diversity of immunoglobulin lambda light chain gene usage over developmental stages in the horse.
Tallmadge, Rebecca L; Tseng, Chia T; Felippe, M Julia B
2014-10-01
To further studies of neonatal immune responses to pathogens and vaccination, we investigated the dynamics of B lymphocyte development and immunoglobulin (Ig) gene diversity. Previously we demonstrated that equine fetal Ig VDJ sequences exhibit combinatorial and junctional diversity levels comparable to those of adult Ig VDJ sequences. Herein, RACE clones from fetal, neonatal, foal, and adult lymphoid tissue were assessed for Ig lambda light chain combinatorial, junctional, and sequence diversity. Remarkably, more lambda variable genes (IGLV) were used during fetal life than later stages and IGLV gene usage differed significantly with time, in contrast to the Ig heavy chain. Junctional diversity measured by CDR3L length was constant over time. Comparison of Ig lambda transcripts to germline revealed significant increases in nucleotide diversity over time, even during fetal life. These results suggest that the Ig lambda light chain provides an additional dimension of diversity to the equine Ig repertoire. Copyright © 2014 Elsevier Ltd. All rights reserved.
Galdino, Alexsandro S; Ulhoa, Cirano J; Moraes, Lídia Maria P; Prates, Maura V; Bloch, Carlos; Torres, Fernando A G
2008-03-01
A Cryptococcus flavus gene (AMY1) encoding an extracellular alpha-amylase has been cloned. The nucleotide sequence of the cDNA revealed an ORF of 1896 bp encoding for a 631 amino acid polypeptide with high sequence identity with a homologous protein isolated from Cryptococcus sp. S-2. The presence of four conserved signature regions, (I) (144)DVVVNH(149), (II) (235)GLRIDSLQQ(243), (III) (263)GEVFN(267), (IV) (327)FLENQD(332), placed the enzyme in the GH13 alpha-amylase family. Furthermore, sequence comparison suggests that the C. flavusalpha-amylase has a C-terminal starch-binding domain characteristic of the CBM20 family. AMY1 was successfully expressed in Saccharomyces cerevisiae. The time course of amylase secretion in S. cerevisiae resulted in a maximal extracellular amylolytic activity (3.93 U mL(-1)) at 60 h of incubation. The recombinant protein had an apparent molecular mass similar to the native enzyme (c. 67 kDa), part of which was due to N-glycosylation.
Application of a mitochondrial DNA control region frequency database for UK domestic cats.
Ottolini, Barbara; Lall, Gurdeep Matharu; Sacchini, Federico; Jobling, Mark A; Wetton, Jon H
2017-03-01
DNA variation in 402bp of the mitochondrial control region flanked by repeat sequences RS2 and RS3 was evaluated by Sanger sequencing in 152 English domestic cats, in order to determine the significance of matching DNA sequences between hairs found with a victim's body and the suspect's pet cat. Whilst 95% of English cats possessed one of the twelve globally widespread mitotypes, four new variants were observed, the most common of which (2% frequency) was shared with the evidential samples. No significant difference in mitotype frequency was seen between 32 individuals from the locality of the crime and 120 additional cats from the rest of England, suggesting a lack of local population structure. However, significant differences were observed in comparison with frequencies in other countries, including the closely neighbouring Netherlands, highlighting the importance of appropriate genetic databases when determining the evidential significance of mitochondrial DNA evidence. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Haarmann, Thomas; Machado, Caroline; Lübbe, Yvonne; Correia, Telmo; Schardl, Christopher L; Panaccione, Daniel G; Tudzynski, Paul
2005-06-01
The genomic region of Claviceps purpurea strain P1 containing the ergot alkaloid gene cluster [Tudzynski, P., Hölter, K., Correia, T., Arntz, C., Grammel, N., Keller, U., 1999. Evidence for an ergot alkaloid gene cluster in Claviceps purpurea. Mol. Gen. Genet. 261, 133-141] was explored by chromosome walking, and additional genes probably involved in the ergot alkaloid biosynthesis have been identified. The putative cluster sequence (extending over 68.5kb) contains 4 different nonribosomal peptide synthetase (NRPS) genes and several putative oxidases. Northern analysis showed that most of the genes were co-regulated (repressed by high phosphate), and identified probable flanking genes by lack of co-regulation. Comparison of the cluster sequences of strain P1, an ergotamine producer, with that of strain ECC93, an ergocristine producer, showed high conservation of most of the cluster genes, but significant variation in the NRPS modules, strongly suggesting that evolution of these chemical races of C. purpurea is determined by evolution of NRPS module specificity.
Cianciulli, Antonia; Calvello, Rosa; Panaro, Maria A
2015-04-01
In the homologous genes studied, the exons and introns alternated in the same order in mouse and human. We studied, in both species: corresponding short segments of introns, whole corresponding introns and complete homologous genes. We considered the total number of nucleotides and the number and orientation of the SINE inserts. Comparisons of mouse and human data series showed that at the level of individual relatively short segments of intronic sequences the stochastic variability prevails in the local structuring, but at higher levels of organization a deterministic component emerges, conserved in mouse and human during the divergent evolution, despite the ample re-editing of the intronic sequences and the fact that processes such as SINE spread had taken place in an independent way in the two species. Intron conservation is negatively correlated with the SINE occupancy, suggesting that virus inserts interfere with the conservation of the sequences inherited from the common ancestor. Copyright © 2015 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Single nucleotide polymorphism was employed in the construction of a high-resolution, expressed sequence tag (EST) map of Aegilops tauschii, the diploid source of the wheat D genome. Comparison of the map with the rice and sorghum genome sequences revealed 50 inversions and translocations; 2, 8, and...
Impact of treated wastewater for irrigation on soil microbial communities.
Ibekwe, A M; Gonzalez-Rubio, A; Suarez, D L
2018-05-01
The use of treated wastewater (TWW) for irrigation has been suggested as an alternative to use of fresh water because of the increasing scarcity of fresh water in arid and semiarid regions of the world. However, significant barriers exist to widespread adoption due to some potential contaminants that may have adverse effects on soil quality and or public health. In this study, we investigated the abundance and diversity of bacterial communities and the presence of potential pathogenic bacterial sequences in TWW in comparison to synthetic fresh water (SFW) using pyrosequencing. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity and abundance of different bacterial groups in TWW irrigated soils to soils treated with SFW. Shannon diversity index values (H') suggest that microbial diversity was not significantly different (P<0.086) between soils with TWW and SFW. Pyrosequencing detected sequences of 17 bacterial phyla with Proteobacteria (32.1%) followed by Firmicutes (26.5%) and Actinobacteria (14.3%). Most of the sequences associated with nitrifying bacteria, nitrogen-fixing bacteria, carbon degraders, denitrifying bacteria, potential pathogens, and fecal indicator bacteria were more abundant in TWW than in SFW. Therefore, TWW effluent may contain bacterial that may be very active in many soil functions as well as some potential pathogens. Published by Elsevier B.V.
Bhattacharya, D; Steinkötter, J; Melkonian, M
1993-12-01
Centrin (= caltractin) is a ubiquitous, cytoskeletal protein which is a member of the EF-hand superfamily of calcium-binding proteins. A centrin-coding cDNA was isolated and characterized from the prasinophyte green alga Scherffelia dubia. Centrin PCR amplification primers were used to isolate partial, homologous cDNA sequences from the green algae Tetraselmis striata and Spermatozopsis similis. Annealing analyses suggested that centrin is a single-copy-coding region in T. striata and S. similis and other green algae studied. Centrin-coding regions from S. dubia, S. similis and T. striata encode four colinear EF-hand domains which putatively bind calcium. Phylogenetic analyses, including homologous sequences from Chlamydomonas reinhardtii and the land plant Atriplex nummularia, demonstrate that the domains of centrins are congruent and arose from the two-fold duplication of an ancestral EF hand with Domains 1+3 and Domains 2+4 clustering. The domains of centrins are also congruent with those of calmodulins demonstrating that, like calmodulin, centrin is an ancient protein which arose within the ancestor of all eukaryotes via gene duplication. Phylogenetic relationships inferred from centrin-coding region comparisons mirror results of small subunit ribosomal RNA sequence analyses suggesting that centrin-coding regions are useful evolutionary markers within the green algae.
Zélé, Flore; Santos, Inês; Olivieri, Isabelle; Weill, Mylène; Duron, Olivier; Magalhães, Sara
2018-04-01
Bacterial endosymbionts are known as important players of the evolutionary ecology of their hosts. However, their distribution, prevalence and diversity are still largely unexplored. To this aim, we investigated infections by the most common bacterial reproductive manipulators in herbivorous spider mites of South-Western Europe. Across 16 populations belonging to three Tetranychus species, Wolbachia was the most prevalent (ca. 61%), followed by Cardinium (12%-15%), while only few individuals were infected by Rickettsia (0.9%-3%), and none carried Arsenophonus or Spiroplasma. These endosymbionts are here reported for the first time in Tetranychus evansi and Tetranychus ludeni, and showed variable infection frequencies between and within species, with several cases of coinfections. Moreover, Cardinium was more prevalent in Wolbachia-infected individuals, which suggests facilitation between these symbionts. Finally, sequence comparisons revealed no variation of the Wolbachia wsp and Rickettsia gtlA genes, but some diversity of the Cardinium 16S rRNA, both between and within populations of the three mite species. Some of the Cardinium sequences identified belonged to distantly-related clades, and the lack of association between these sequences and spider mite mitotypes suggests repeated host switching of Cardinium. Overall, our results reveal a complex community of symbionts in this system, opening the path for future studies.
Spermine Condenses DNA, but Not RNA Duplexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, Andrea M.; Tolokh, Igor S.; Pabit, Suzette A.
Interactions between the polyamine spermine and nucleic acids drive important cellular processes. Spermine condenses DNA, and some RNAs such as poly(rA):poly(rU). A large fraction of the spermine present in cells is bound to RNA, but apparently does not condense it. Here, we study the effect of spermine binding to short duplex RNA and DNA and compare our findings with predictions of molecular dynamics simulations. When small numbers of spermine are introduced, RNA with a designed sequence, containing a mixture of 14 GC pairs and 11 AU pairs, resists condensation relative to DNA of an equivalent sequence or to 25 basemore » pair poly(rA):poly(rU) RNA. Comparison of wide-angle x-ray scattering profiles with simulation suggests that spermine is sequestered deep within the major groove of mixed sequence RNA, preventing condensation by limiting opportunities to bridge to other molecules as well as stabilizing the RNA by locking it into a particular conformation. In contrast, for DNA, simulations suggest that spermine binds external to the duplex, offering opportunities for intermolecular interaction. The goal of this study is to explain how RNA can remain soluble, and available for interaction with other molecules in the cell, despite the presence of spermine at concentrations high enough to precipitate DNA.« less
Isolation and characterization of the pea cytochrome c oxidase Vb gene.
Kubo, Nakao; Arimura, Shin-Ichi; Tsutsumi, Nobuhiro; Kadowaki, Koh-Ichi; Hirai, Masashi
2006-11-01
Three copies of the gene that encodes cytochrome c oxidase subunit Vb were isolated from the pea (PscoxVb-1, PscoxVb-2, and PscoxVb-3). Northern Blot and reverse transcriptase-PCR analyses suggest that all 3 genes are transcribed in the pea. Each pea coxVb gene has an N-terminal extended sequence that can encode a mitochondrial targeting signal, called a presequence. The localization of green fluorescent proteins fused with the presequence strongly suggests the targeting of pea COXVb proteins to mitochondria. Each pea coxVb gene has 5 intron sites within the coding region. These are similar to Arabidopsis and rice, although the intron lengths vary greatly. A phylogenetic analysis of coxVb suggests the occurrence of gene duplication events during angiosperm evolution. In particular, 2 duplication events might have occurred in legumes, grasses, and Solanaceae. A comparison of amino acid sequences in COXVb or its counterpart shows the conservation of several amino acids within a zinc finger motif. Interestingly, a homology search analysis showed that bacterial protein COG4391 and a mitochondrial complex I 13 kDa subunit also have similar amino acid compositions around this motif. Such similarity might reflect evolutionary relationships among the 3 proteins.
An improved model for whole genome phylogenetic analysis by Fourier transform.
Yin, Changchuan; Yau, Stephen S-T
2015-10-07
DNA sequence similarity comparison is one of the major steps in computational phylogenetic studies. The sequence comparison of closely related DNA sequences and genomes is usually performed by multiple sequence alignments (MSA). While the MSA method is accurate for some types of sequences, it may produce incorrect results when DNA sequences undergone rearrangements as in many bacterial and viral genomes. It is also limited by its computational complexity for comparing large volumes of data. Previously, we proposed an alignment-free method that exploits the full information contents of DNA sequences by Discrete Fourier Transform (DFT), but still with some limitations. Here, we present a significantly improved method for the similarity comparison of DNA sequences by DFT. In this method, we map DNA sequences into 2-dimensional (2D) numerical sequences and then apply DFT to transform the 2D numerical sequences into frequency domain. In the 2D mapping, the nucleotide composition of a DNA sequence is a determinant factor and the 2D mapping reduces the nucleotide composition bias in distance measure, and thus improving the similarity measure of DNA sequences. To compare the DFT power spectra of DNA sequences with different lengths, we propose an improved even scaling algorithm to extend shorter DFT power spectra to the longest length of the underlying sequences. After the DFT power spectra are evenly scaled, the spectra are in the same dimensionality of the Fourier frequency space, then the Euclidean distances of full Fourier power spectra of the DNA sequences are used as the dissimilarity metrics. The improved DFT method, with increased computational performance by 2D numerical representation, can be applicable to any DNA sequences of different length ranges. We assess the accuracy of the improved DFT similarity measure in hierarchical clustering of different DNA sequences including simulated and real datasets. The method yields accurate and reliable phylogenetic trees and demonstrates that the improved DFT dissimilarity measure is an efficient and effective similarity measure of DNA sequences. Due to its high efficiency and accuracy, the proposed DFT similarity measure is successfully applied on phylogenetic analysis for individual genes and large whole bacterial genomes. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dehipawala, Sunil; Nguyen, A.; Tremberger, G.; Cheung, E.; Schneider, P.; Lieberman, D.; Holden, T.; Cheung, T.
2013-09-01
A paleo-experimental evolution report on elongation factor EF-Tu structural stability results has provided an opportunity to rewind the tape of life using the ancestral protein sequence reconstruction modeling approach; consistent with the book of life dogma in current biology and being an important component in the astrobiology community. Fractal dimension via the Higuchi fractal method and Shannon entropy of the DNA sequence classification could be used in a diagram that serves as a simple summary. Results from biomedical gene research provide examples on the diagram methodology. Comparisons between biomedical genes such as EEF2 (elongation factor 2 human, mouse, etc), WDR85 in epigenetics, HAR1 in human specificity, DLG1 in cognitive skill, and HLA-C in mosquito bite immunology with EF Tu DNA sequences have accounted for the reported circular dichroism thermo-stability data systematically; the results also infer a relatively less volatility geologic time period from 2 to 3 Gyr from adaptation viewpoint. Comparison to Thermotoga maritima MSB8 and Psychrobacter shows that Thermus thermophilus HB8 EF-Tu calibration sequence could be an outlier, consistent with free energy calculation by NUPACK. Diagram methodology allows computer simulation studies and HAR1 shows about 0.5% probability from chimp to human in terms of diagram location, and SNP simulation results such as amoebic meningoencephalitis NAF1 suggest correlation. Extensions to the studies of the translation and transcription elongation factor sequences in Megavirus Chiliensis, Megavirus Lba and Pandoravirus show that the studied Pandoravirus sequence could be an outlier with the highest fractal dimension and lowest entropy, as compared to chicken as a deviant in the DNMT3A DNA methylation gene sequences from zebrafish to human and to the less than one percent probability in computer simulation using the HAR1 0.5% probability as reference. The diagram methodology would be useful in ancestral gene reconstruction studies in astrobiology and also be applicable to the study of point mutation in conformational thermostabilization research with Synchrotron based X-ray data for drug applications such as Parkinson's disease.
USDA-ARS?s Scientific Manuscript database
Analysis of DNA methylation patterns relies increasingly on sequencing-based profiling methods. The four most frequently used sequencing-based technologies are the bisulfite-based methods MethylC-seq and reduced representation bisulfite sequencing (RRBS), and the enrichment-based techniques methylat...
Miotto, Olivo; Heiny, AT; Tan, Tin Wee; August, J Thomas; Brusic, Vladimir
2008-01-01
Background The identification of mutations that confer unique properties to a pathogen, such as host range, is of fundamental importance in the fight against disease. This paper describes a novel method for identifying amino acid sites that distinguish specific sets of protein sequences, by comparative analysis of matched alignments. The use of mutual information to identify distinctive residues responsible for functional variants makes this approach highly suitable for analyzing large sets of sequences. To support mutual information analysis, we developed the AVANA software, which utilizes sequence annotations to select sets for comparison, according to user-specified criteria. The method presented was applied to an analysis of influenza A PB2 protein sequences, with the objective of identifying the components of adaptation to human-to-human transmission, and reconstructing the mutation history of these components. Results We compared over 3,000 PB2 protein sequences of human-transmissible and avian isolates, to produce a catalogue of sites involved in adaptation to human-to-human transmission. This analysis identified 17 characteristic sites, five of which have been present in human-transmissible strains since the 1918 Spanish flu pandemic. Sixteen of these sites are located in functional domains, suggesting they may play functional roles in host-range specificity. The catalogue of characteristic sites was used to derive sequence signatures from historical isolates. These signatures, arranged in chronological order, reveal an evolutionary timeline for the adaptation of the PB2 protein to human hosts. Conclusion By providing the most complete elucidation to date of the functional components participating in PB2 protein adaptation to humans, this study demonstrates that mutual information is a powerful tool for comparative characterization of sequence sets. In addition to confirming previously reported findings, several novel characteristic sites within PB2 are reported. Sequence signatures generated using the characteristic sites catalogue characterize concisely the adaptation characteristics of individual isolates. Evolutionary timelines derived from signatures of early human influenza isolates suggest that characteristic variants emerged rapidly, and remained remarkably stable through subsequent pandemics. In addition, the signatures of human-infecting H5N1 isolates suggest that this avian subtype has low pandemic potential at present, although it presents more human adaptation components than most avian subtypes. PMID:18315849
NASA Astrophysics Data System (ADS)
Valladares, M. I.; Barba, P.; Ugidos, J. M.; Colmenero, J. R.; Armenteros, I.
The Upper Neoproterozoic-Lower Cambrian sedimentary succession in the central areas of the Central Iberian Zone has been subdivided into 12 mostly siliciclastic lithostratigraphic units, ranging in thickness between 1800 and 3900m. The lithology and facies of each unit are described and the facies associations are interpreted. The facies resulted mainly from turbidity currents and debris flows and, to a lesser extent, from submarine slides and traction flows. The facies associations suggest that sedimentation took place in slope and base-of-slope environments. Two depositional sequences are recognized, separated by a type-1 unconformity. The lower sequence is of Late Neoproterozoic age (units I-IV) and exhibits lowstand, transgressive, and highstand systems tracts. Most of the upper sequence is probably of Early Cambrian age (units V-XII). It begins at the base of unit V and possibly ends with the Tamames Limestone Formation. The upper sequence records a lowstand systems tract and minor-order sea-level oscillations. In the Cambrian units there are higher amounts of feldspar and smaller quantities of intrabasinal clasts than in the Neoproterozoic units. The modal data plot close to the Q-L and Qm-Lt sides of Q-F-L and Qm-F-Lt triangular diagrams, suggesting a provenance from a recycled orogen evolving into a provenance from a craton interior towards the top of the succession. The chemical results, based mainly on Al2O3, TiO2, Zr, and Nb abundances in shales from all the units, strongly suggest a gradual compositional change within this sedimentary succession. Together with the petrological data, the chemical results do not reveal any obvious coeval volcanic contribution to the sediments. On the basis of the chemical data, a comparison is made with other European zones containing detrital sediments composed of reworked crustal components.
Børsting, M W; Qvist, K B; Brockmann, E; Vindeløv, J; Pedersen, T L; Vogensen, F K; Ardö, Y
2015-01-01
Lactococcus lactis strains depend on a proteolytic system for growth in milk to release essential AA from casein. The cleavage specificities of the cell envelope proteinase (CEP) can vary between strains and environments and whether the enzyme is released or bound to the cell wall. Thirty-eight Lc. lactis strains were grouped according to their CEP AA sequences and according to identified peptides after hydrolysis of milk. Finally, AA positions in the substrate binding region were suggested by the use of a new CEP template based on Streptococcus C5a CEP. Aligning the CEP AA sequences of 38 strains of Lc. lactis showed that 21 strains, which were previously classified as group d, could be subdivided into 3 groups. Independently, similar subgroupings were found based on comparison of the Lc. lactis CEP AA sequences and based on normalized quantity of identified peptides released from αS1-casein and β-casein. A model structure of Lc. lactis CEP based on the crystal structure of Streptococcus C5a CEP was used to investigate the AA positions in the substrate-binding region. New AA positions were suggested, which could be relevant for the cleavage specificity of CEP; however, these could only explain 2 out of 3 found subgroups. The third subgroup could be explained by 1 to 5 AA positions located opposite the substrate binding region. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Bacterial diversity in the oral cavity of ten healthy individuals
Bik, Elisabeth M.; Long, Clara Davis; Armitage, Gary C.; Loomer, Peter; Emerson, Joanne; Mongodin, Emmanuel F.; Nelson, Karen E.; Gill, Steven R.; Fraser-Liggett, Claire M.; Relman, David A.
2010-01-01
The composition of the oral microbiota from 10 individuals with healthy oral tissues was determined using culture-independent techniques. From each individual, 26 specimens, each from different oral sites at a single point in time, were collected and pooled. An eleventh pool was constructed using portions of the subgingival specimens from all 10 individuals. The 16S rRNA gene was amplified using broad-range bacterial primers, and clone libraries from the individual and subgingival pools were constructed. From a total of 11 368 high-quality, non-chimeric, near full-length sequences, 247 species-level phylotypes (using a 99% sequence identity threshold) and 9 bacteria phyla were identified. At least 15 bacterial genera were conserved among all 10 individuals, with significant interindividual differences at the species and strain level. Comparisons of these oral bacterial sequences to near full-length sequences found previously in the large intestines and feces of other healthy individuals suggest that the mouth and intestinal tract harbor distinct sets of bacteria. Co-occurrence analysis demonstrated significant segregation of taxa when community membership was examined at the level of genus, but not at the level of species, suggesting that ecologically-significant, competitive interactions are more apparent at a broader taxonomic level than species. This study is one of the more comprehensive, high-resolution analyses of bacterial diversity within the healthy human mouth to date, and highlights the value of tools from macroecology for enhancing our understanding of bacterial ecology in human health. PMID:20336157
Baker, C S; Vant, M D; Dalebout, M L; Lento, G M; O'Brien, S J; Yuhki, N
2006-05-01
The molecular diversity and phylogenetic relationships of two class II genes of the baleen whale major histocompatibility complex were investigated and compared to toothed whales and out-groups. Amplification of the DQB exon 2 provided sequences showing high within-species and between-species nucleotide diversity and uninterrupted reading frames consistent with functional class II loci found in related mammals (e.g., ruminants). Cloning of amplified products indicated gene duplication in the humpback whale and triplication in the southern right whale, with average nucleotide diversity of 5.9 and 6.3%, respectively, for alleles of each species. Significantly higher nonsynonymous divergence at sites coding for peptide binding (32% for humpback and 40% for southern right) suggested that these loci were subject to positive (overdominant) selection. A population survey of humpback whales detected 23 alleles, differing by up to 21% of their inferred amino acid sequences. Amplification of the DRB exon 2 resulted in two groups of sequences. One was most similar to the DRB3 of the cow and present in all whales screened to date, including toothed whales. The second was most similar to the DRB2 of the cow and was found only in the bowhead and right whales. Both loci showed low diversity among species and apparent loss of function or altered function including interruption of reading frames. Finally, comparison of inferred protein sequence of the DRB3-like locus suggested convergence with the DQB, perhaps resulting from intergenic conversion or recombination.
ERIC Educational Resources Information Center
Du, Wenchong; Kelly, Steve W.
2013-01-01
The present study examines implicit sequence learning in adult dyslexics with a focus on comparing sequence transitions with different statistical complexities. Learning of a 12-item deterministic sequence was assessed in 12 dyslexic and 12 non-dyslexic university students. Both groups showed equivalent standard reaction time increments when the…
Sequence stratigraphic principles applied to the Miocene Hawthorn Group, west-central Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norton, V.L.; Randazzo, A.F.
1993-03-01
Sequence boundaries for the Miocene Hawthorn Group in the ROMP 20 drill core from Osprey, Sarasota County, FL were generally delineated by lithologic variations recognized from core slabs, thin section analysis, and geophysical logs. At least six depositional sequences representing third order sea level fluctuations were identified. Depositional environments were determined on the basis of the characteristic lithologic constituents including rip-up clasts, pellets, fossils, laminations, burrow, degree of induration, and grain sorting. The sequence boundaries appear to have formed when the rate of the eustatic fall exceeded basin subsidence rates producing a relative sea level fall at a depositional shorelinemore » break. As a result of the basinward facies shift associated with this sequence type, peritidal facies may directly overlie deeper water facies. Subaerial exposure and erosion can be expected. The sequence of facies representing progressively deeper water depositional environments, followed by a progressive shallowing, were present between bounding surfaces. Among the six sequences recognized, four were clearly delineated as representative of regression, subaerial exposure, and subsequent transgression. Two sequences were less clearly defined and probably represent transitional facies which had exposure surfaces developed. Comparison of the petrologically established sequence stratigraphy with published sea level curves resulted in a strong correlation between the number of sequences recognized and the number of coastal on-lap/off-lap cycles depicted for the early to middle Miocene. This correlation suggests that petrologic examination of core slabs, with supplemental thin section data, can provide useful information regarding the recognition of stratigraphic sequences and relative sea level fluctuations, particularly, in situations where seismic data may not be available.« less
Stratigraphy of the Grande Savane Ignimbrite Sequence, Dominica, Lesser Antilles
NASA Astrophysics Data System (ADS)
Schneider, S.; Smith, A. L.; Deuerling, K.; Killingsworth, N.; Daly, G.
2007-12-01
The island of Dominica, located in the central part of the Lesser Antilles island arc has eight potentially active volcanoes. One of these, Morne Diablotins, is a composite stratovolcano with several superimposed stratigraphic sequences ranging in age from Pliocene (4-2 Ma) to "Younger" Pleistocene (<1.8 Ma). The most recent major eruptive activity from this volcano was a series of Plinian eruptions that produced ignimbrites that gave dates of >22,000 and >40,000 years B.P. The ignimbrite sequences form four flow fans that reached both the east and west coasts of the island. One of these flow fans, the Grande Savane, on the west coast of the island, also extends off-shore for a distance of at least 14 km as a distinctive submarine fan. Stratigraphical studies of the on- shore deposits that make up this fan indicate an older sequence of block and ash flow deposits, within which occurs a distinctive vulcanian fall deposit. These are overlain, with no evidence of an intervening paleosol, by a sequence of ignimbrites containing welded horizons (ranging in thickness from around 4 m to 16m). The lack of fall deposits beneath the ignimbrites suggest they may have been formed by instantaneous continuous collapse of the eruption column. This whole succession is overlain by a series of planar and dune bedded pumiceous surge deposits with interbedded pumiceous lapilli fall and ash fall deposits, that extend laterally outside of the main area of ignimbrite deposition. Beds within this upper sequence often contain accretionary lapilli and gas cavities suggesting magma-water interaction. The youngest deposits from Morne Diablotins appear to be valley- fill deposits of both ignimbrite and block and ash flow. A comparison of the of the Grande Savane pyroclastic sequence with the Pointe Ronde (west coast) and Londonderry (east coast) pyroclastic flow fans will provide information on the eruptive history of this major Plinian episode.
Bartonella dromedarii sp. nov. isolated from domesticated camels (Camelus dromedarius) in Israel.
Rasis, Michal; Rudoler, Nir; Schwartz, David; Giladi, Michael
2014-11-01
Bartonella spp. are fastidious, Gram-negative bacilli that cause a wide spectrum of diseases in humans. Most Bartonella spp. have adapted to a specific host, generally a domestic or wild mammal. Dromedary camels (Camelus dromedarius) have become a focus of growing public-health interest because they have been identified as a reservoir host for the Middle East respiratory syndrome coronavirus. Nevertheless, data on camel zoonoses are limited. We aimed to study the occurrence of Bartonella bacteremia among dromedaries in Israel. Nine of 51 (17.6%) camels were found to be bacteremic with Bartonella spp.; bacteremia levels ranged from five to >1000 colony-forming units/mL. Phylogenetic reconstruction based on the concatenated sequences of gltA and rpoB genes demonstrated that the dromedary Bartonella isolates are closely related to other ruminant-derived Bartonella spp., with B. bovis being the nearest relative. Using electron microscopy, the novel isolates were shown to be flagellated, whereas B. bovis is nonflagellated. Sequence comparisons analysis of the housekeeping genes ftsZ, ribC, and groEL showed the highest homology to B. chomelii, B. capreoli, and B. birtlesii, respectively. Sequence analysis of the gltA and rpoB revealed ∼96% identity to B. bovis, a previously suggested cutoff value for sequence-based differentiation of Bartonella spp., suggesting that this approach does not have sufficient discriminatory power for differentiating ruminant-related Bartonella spp. A comprehensive multilocus sequence typing (MLST) analysis based on nine genetic loci (gltA, rpoB, ftsZ, internal transcribed spacer (ITS), 16S rRNA, ribC, groEL, nuoG, and SsrA) identified seven sequence types of the new dromedary isolates. This is the first description of a Bartonella sp. from camelids. On the basis of a distinct reservoir and ecological niche, sequence analyses, and expression of flagella, we designate these isolates as a novel Bartonella sp. named Bartonella dromedarii sp. nov. Further studies are required to explore its zoonotic potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feild, M.J.; Armstrong, F.B.
1987-05-01
E. coli JA199 pDU11 harbors a multicopy plasmid containing the ilv GEDAY gene cluster of S. typhimurium. TmB, gene product of ilv E, was purified, crystallized, and subjected to Edman degradation using a gas phase sequencer. The intact protein yielded an amino terminal 31 residue sequence. Both carboxymethylated apoenzyme and (/sup 3/H)-NaBH-reduced holoenzyme were then subjected to digestion by trypsin. The digests were fractionated using reversed phase HPLC, and the peptides isolated were sequenced. The borohydride-treated holoenzyme was used to isolate the cofactor-binding peptide. The peptide is 27 residues long and a comparison with known sequences of other aminotransferases revealedmore » limited homology. Peptides accounting for 211 of 288 predicted residues have been sequenced, including 9 residues of the carboxyl terminus. Comparison of peptides with the inferred amino acid sequence of the E. coli K-12 enzyme has helped determine the sequence of the amino terminal 59 residues; only two differences between the sequences are noted in this region.« less
Zhao, Shan; Lu, Xin; Zhang, Yueling; Zhao, Xianliang; Zhong, Mingqi; Li, Shengkang; Lun, Jingsheng
2013-01-01
Recent evidences suggest that invertebrates express families of immune molecules with high levels of sequence diversity. Hemocyanin is an important non-specific immune molecule present in the hemolymph of both mollusks and arthropods. In the present study, we characterized a novel alternative splicing variant of hemocyanin (cHE1) from Litopenaeus vannamei that produced mRNA transcript of 2579 bp in length. The isoform contained two additional sequences of 296 and 267 bp in the 5'- and 3'-terminus respectively, in comparison to that of wild type hemocyanin (cHE). Sequence of cHE1 shows 100% identity to that of hemocyanin genomic DNA (HE, which does not form an open reading frame), suggesting that cHE1 might be an alternative splicing variant due to intron retention. Moreover, cHE1 could be detected by RT-PCR from five tissues (heart, gill, stomach, intestine and brain), and from shrimps at stages from nauplius to mysis larva. Further, cHE1 mRNA transcripts were significantly increased in hearts after 12h of infection with Vibrio parahemolyticus or poly I: C, while no significant difference in the transcript levels of hepatopancreas cHE was detected in the pathogen-treated shrimps during the period. In summary, these studies suggested a novel splicing variant of hemocyanin in shrimp, which might be involved in shrimp resistance to pathogenic infection. Copyright © 2013 Elsevier B.V. All rights reserved.
The house spider genome reveals an ancient whole-genome duplication during arachnid evolution.
Schwager, Evelyn E; Sharma, Prashant P; Clarke, Thomas; Leite, Daniel J; Wierschin, Torsten; Pechmann, Matthias; Akiyama-Oda, Yasuko; Esposito, Lauren; Bechsgaard, Jesper; Bilde, Trine; Buffry, Alexandra D; Chao, Hsu; Dinh, Huyen; Doddapaneni, HarshaVardhan; Dugan, Shannon; Eibner, Cornelius; Extavour, Cassandra G; Funch, Peter; Garb, Jessica; Gonzalez, Luis B; Gonzalez, Vanessa L; Griffiths-Jones, Sam; Han, Yi; Hayashi, Cheryl; Hilbrant, Maarten; Hughes, Daniel S T; Janssen, Ralf; Lee, Sandra L; Maeso, Ignacio; Murali, Shwetha C; Muzny, Donna M; Nunes da Fonseca, Rodrigo; Paese, Christian L B; Qu, Jiaxin; Ronshaugen, Matthew; Schomburg, Christoph; Schönauer, Anna; Stollewerk, Angelika; Torres-Oliva, Montserrat; Turetzek, Natascha; Vanthournout, Bram; Werren, John H; Wolff, Carsten; Worley, Kim C; Bucher, Gregor; Gibbs, Richard A; Coddington, Jonathan; Oda, Hiroki; Stanke, Mario; Ayoub, Nadia A; Prpic, Nikola-Michael; Flot, Jean-François; Posnien, Nico; Richards, Stephen; McGregor, Alistair P
2017-07-31
The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence for a large-scale duplication of genes in some chelicerate lineages including two rounds of whole genome duplication (WGD) in horseshoe crabs. To investigate this further, we sequenced and analyzed the genome of the common house spider Parasteatoda tepidariorum. We found pervasive duplication of both coding and non-coding genes in this spider, including two clusters of Hox genes. Analysis of synteny conservation across the P. tepidariorum genome suggests that there has been an ancient WGD in spiders. Comparison with the genomes of other chelicerates, including that of the newly sequenced bark scorpion Centruroides sculpturatus, suggests that this event occurred in the common ancestor of spiders and scorpions, and is probably independent of the WGDs in horseshoe crabs. Furthermore, characterization of the sequence and expression of the Hox paralogs in P. tepidariorum suggests that many have been subject to neo-functionalization and/or sub-functionalization since their duplication. Our results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA. Given the extensive morphological diversity and ecological adaptations found among these animals, rivaling those of vertebrates, our study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes of polyploidization events across eukaryotes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanc, Guillaume; Agarkova, Irina; Grimwood, Jane
2012-02-13
Background Little is known about the mechanisms of adaptation of life to the extreme environmental conditions encountered in polar regions. Here we present the genome sequence of a unicellular green alga from the division chlorophyta, Coccomyxa subellipsoidea C-169, which we will hereafter refer to as C-169. This is the first eukaryotic microorganism from a polar environment to have its genome sequenced. Results The 48.8 Mb genome contained in 20 chromosomes exhibits significant synteny conservation with the chromosomes of its relatives Chlorella variabilis and Chlamydomonas reinhardtii. The order of the genes is highly reshuffled within synteny blocks, suggesting that intra-chromosomal rearrangementsmore » were more prevalent than inter-chromosomal rearrangements. Remarkably, Zepp retrotransposons occur in clusters of nested elements with strictly one cluster per chromosome probably residing at the centromere. Several protein families overrepresented in C. subellipsoidae include proteins involved in lipid metabolism, transporters, cellulose synthases and short alcohol dehydrogenases. Conversely, C-169 lacks proteins that exist in all other sequenced chlorophytes, including components of the glycosyl phosphatidyl inositol anchoring system, pyruvate phosphate dikinase and the photosystem 1 reaction center subunit N (PsaN). Conclusions We suggest that some of these gene losses and gains could have contributed to adaptation to low temperatures. Comparison of these genomic features with the adaptive strategies of psychrophilic microbes suggests that prokaryotes and eukaryotes followed comparable evolutionary routes to adapt to cold environments.« less
Espinosa, J. C.; Nonno, R.; Di Bari, M.; Aguilar-Calvo, P.; Pirisinu, L.; Fernández-Borges, N.; Vanni, I.; Vaccari, G.; Marín-Moreno, A.; Frassanito, P.; Lorenzo, P.; Agrimi, U.
2016-01-01
ABSTRACT Bank vole is a rodent species that shows differential susceptibility to the experimental transmission of different prion strains. In this work, the transmission features of a panel of diverse prions with distinct origins were assayed both in bank vole expressing methionine at codon 109 (Bv109M) and in transgenic mice expressing physiological levels of bank vole PrPC (the BvPrP-Tg407 mouse line). This work is the first systematic comparison of the transmission features of a collection of prion isolates, representing a panel of diverse prion strains, in a transgenic-mouse model and in its natural counterpart. The results showed very similar transmission properties in both the natural species and the transgenic-mouse model, demonstrating the key role of the PrP amino acid sequence in prion transmission susceptibility. However, differences in the PrPSc types propagated by Bv109M and BvPrP-Tg407 suggest that host factors other than PrPC modulate prion strain features. IMPORTANCE The differential susceptibility of bank voles to prion strains can be modeled in transgenic mice, suggesting that this selective susceptibility is controlled by the vole PrP sequence alone rather than by other species-specific factors. Differences in the phenotypes observed after prion transmissions in bank voles and in the transgenic mice suggest that host factors other than the PrPC sequence may affect the selection of the substrain replicating in the animal model. PMID:27654300
Bowen, D; Littlechild, J A; Fothergill, J E; Watson, H C; Hall, L
1988-01-01
Using oligonucleotide probes derived from amino acid sequencing information, the structural gene for phosphoglycerate kinase from the extreme thermophile, Thermus thermophilus, was cloned in Escherichia coli and its complete nucleotide sequence determined. The gene consists of an open reading frame corresponding to a protein of 390 amino acid residues (calculated Mr 41,791) with an extreme bias for G or C (93.1%) in the codon third base position. Comparison of the deduced amino acid sequence with that of the corresponding mesophilic yeast enzyme indicated a number of significant differences. These are discussed in terms of the unusual codon bias and their possible role in enhanced protein thermal stability. Images Fig. 1. PMID:3052437
Spatial but not temporal numerosity thresholds correlate with formal math skills in children.
Anobile, Giovanni; Arrighi, Roberto; Castaldi, Elisa; Grassi, Eleonora; Pedonese, Lara; Moscoso, Paula A M; Burr, David C
2018-03-01
Humans and other animals are able to make rough estimations of quantities using what has been termed the approximate number system (ANS). Much evidence suggests that sensitivity to numerosity correlates with symbolic math capacity, leading to the suggestion that the ANS may serve as a start-up tool to develop symbolic math. Many experiments have demonstrated that numerosity perception transcends the sensory modality of stimuli and their presentation format (sequential or simultaneous), but it remains an open question whether the relationship between numerosity and math generalizes over stimulus format and modality. Here we measured precision for estimating the numerosity of clouds of dots and sequences of flashes or clicks, as well as for paired comparisons of the numerosity of clouds of dots. Our results show that in children, formal math abilities correlate positively with sensitivity for estimation and paired-comparisons of the numerosity of visual arrays of dots. However, precision of numerosity estimation for sequences of flashes or sounds did not correlate with math, although sensitivities in all estimations tasks (for sequential or simultaneous stimuli) were strongly correlated with each other. In adults, we found no significant correlations between math scores and sensitivity to any of the psychophysical tasks. Taken together these results support the existence of a generalized number sense, and go on to demonstrate an intrinsic link between mathematics and perception of spatial, but not temporal numerosity. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Sessa, Jocelyn Anne; Larina, Ekaterina; Knoll, Katja; Garb, Matthew; Cochran, J. Kirk; Huber, Brian T.; MacLeod, Kenneth G.; Landman, Neil H.
2015-12-01
Ammonites are among the best-known fossils of the Phanerozoic, yet their habitat is poorly understood. Three common ammonite families (Baculitidae, Scaphitidae, and Sphenodiscidae) co-occur with well-preserved planktonic and benthic organisms at the type locality of the upper Maastrichtian Owl Creek Formation, offering an excellent opportunity to constrain their depth habitats through isotopic comparisons among taxa. Based on sedimentary evidence and the micro- and macrofauna at this site, we infer that the 9-m-thick sequence was deposited at a paleodepth of 70-150 m. Taxa present throughout the sequence include a diverse assemblage of ammonites, bivalves, and gastropods, abundant benthic foraminifera, and rare planktonic foraminifera. No stratigraphic trends are observed in the isotopic data of any taxon, and thus all of the data from each taxon are considered as replicates. Oxygen isotope-based temperature estimates from the baculites and scaphites overlap with those of the benthos and are distinct from those of the plankton. In contrast, sphenodiscid temperature estimates span a range that includes estimates of the planktonic foraminifera and of the warmer half of the benthic values. These results suggest baculites and scaphites lived close to the seafloor, whereas sphenodiscids sometimes inhabited the upper water column and/or lived closer to shore. In fact, the rarity and poorer preservation of the sphenodiscids relative to the baculites and scaphites suggests that the sphenodiscid shells may have only reached the Owl Creek locality by drifting seaward after death.
Grissa, Ibtissem; Vergnaud, Gilles; Pourcel, Christine
2009-01-01
Clustered regularly interspaced short palindromic repeats (CRISPRs) are DNA sequences composed of a succession of repeats (23- to 47-bp long) separated by unique sequences called spacers. Polymorphism can be observed in different strains of a species and may be used for genotyping. We describe protocols and bioinformatics tools that allow the identification of CRISPRs from sequenced genomes, their comparison, and their component determination (the direct repeats and the spacers). A schematic representation of the spacer organization can be produced, allowing an easy comparison between strains.
Cross, Megan; Lepage, Romain; Rajan, Siji; Biberacher, Sonja; Young, Neil D; Kim, Bo-Na; Coster, Mark J; Gasser, Robin B; Kim, Jeong-Sun; Hofmann, Andreas
2017-03-01
The trehalose biosynthetic pathway is of great interest for the development of novel therapeutics because trehalose is an essential disaccharide in many pathogens but is neither required nor synthesized in mammalian hosts. As such, trehalose-6-phosphate phosphatase (TPP), a key enzyme in trehalose biosynthesis, is likely an attractive target for novel chemotherapeutics. Based on a survey of genomes from a panel of parasitic nematodes and bacterial organisms and by way of a structure-based amino acid sequence alignment, we derive the topological structure of monoenzyme TPPs and classify them into 3 groups. Comparison of the functional roles of amino acid residues located in the active site for TPPs belonging to different groups reveal nuanced variations. Because current literature on this enzyme family shows a tendency to infer functional roles for individual amino acid residues, we investigated the roles of the strictly conserved aspartate tetrad in TPPs of the nematode Brugia malayi by using a conservative mutation approach. In contrast to aspartate-213, the residue inferred to carry out the nucleophilic attack on the substrate, we found that aspartate-215 and aspartate-428 of Bm TPP are involved in the chemistry steps of enzymatic hydrolysis of the substrate. Therefore, we suggest that homology-based inference of functionally important amino acids by sequence comparison for monoenzyme TPPs should only be carried out for each of the 3 groups.-Cross, M., Lepage, R., Rajan, S., Biberacher, S., Young, N. D., Kim, B.-N., Coster, M. J., Gasser, R. B., Kim, J.-S., Hofmann, A. Probing function and structure of trehalose-6-phosphate phosphatases from pathogenic organisms suggests distinct molecular groupings. © FASEB.
Hahn, Lars; Leimeister, Chris-André; Ounit, Rachid; Lonardi, Stefano; Morgenstern, Burkhard
2016-10-01
Many algorithms for sequence analysis rely on word matching or word statistics. Often, these approaches can be improved if binary patterns representing match and don't-care positions are used as a filter, such that only those positions of words are considered that correspond to the match positions of the patterns. The performance of these approaches, however, depends on the underlying patterns. Herein, we show that the overlap complexity of a pattern set that was introduced by Ilie and Ilie is closely related to the variance of the number of matches between two evolutionarily related sequences with respect to this pattern set. We propose a modified hill-climbing algorithm to optimize pattern sets for database searching, read mapping and alignment-free sequence comparison of nucleic-acid sequences; our implementation of this algorithm is called rasbhari. Depending on the application at hand, rasbhari can either minimize the overlap complexity of pattern sets, maximize their sensitivity in database searching or minimize the variance of the number of pattern-based matches in alignment-free sequence comparison. We show that, for database searching, rasbhari generates pattern sets with slightly higher sensitivity than existing approaches. In our Spaced Words approach to alignment-free sequence comparison, pattern sets calculated with rasbhari led to more accurate estimates of phylogenetic distances than the randomly generated pattern sets that we previously used. Finally, we used rasbhari to generate patterns for short read classification with CLARK-S. Here too, the sensitivity of the results could be improved, compared to the default patterns of the program. We integrated rasbhari into Spaced Words; the source code of rasbhari is freely available at http://rasbhari.gobics.de/.
Complete genome sequence of the plant pathogen Erwinia amylovora strain ATCC 49946
USDA-ARS?s Scientific Manuscript database
Erwinia amylovora causes the economically important disease fire blight that affects rosaceous plants, especially pear and apple. Here we report the complete genome sequence and annotation of strain ATCC 49946. The analysis of the sequence and its comparison with sequenced genomes of closely related...
AlignMe—a membrane protein sequence alignment web server
Stamm, Marcus; Staritzbichler, René; Khafizov, Kamil; Forrest, Lucy R.
2014-01-01
We present a web server for pair-wise alignment of membrane protein sequences, using the program AlignMe. The server makes available two operational modes of AlignMe: (i) sequence to sequence alignment, taking two sequences in fasta format as input, combining information about each sequence from multiple sources and producing a pair-wise alignment (PW mode); and (ii) alignment of two multiple sequence alignments to create family-averaged hydropathy profile alignments (HP mode). For the PW sequence alignment mode, four different optimized parameter sets are provided, each suited to pairs of sequences with a specific similarity level. These settings utilize different types of inputs: (position-specific) substitution matrices, secondary structure predictions and transmembrane propensities from transmembrane predictions or hydrophobicity scales. In the second (HP) mode, each input multiple sequence alignment is converted into a hydrophobicity profile averaged over the provided set of sequence homologs; the two profiles are then aligned. The HP mode enables qualitative comparison of transmembrane topologies (and therefore potentially of 3D folds) of two membrane proteins, which can be useful if the proteins have low sequence similarity. In summary, the AlignMe web server provides user-friendly access to a set of tools for analysis and comparison of membrane protein sequences. Access is available at http://www.bioinfo.mpg.de/AlignMe PMID:24753425
Innate Immune Complexity in the Purple Sea Urchin: Diversity of the Sp185/333 System
Smith, L. Courtney
2012-01-01
The California purple sea urchin, Strongylocentrotus purpuratus, is a long-lived echinoderm with a complex and sophisticated innate immune system. There are several large gene families that function in immunity in this species including the Sp185/333 gene family that has ∼50 (±10) members. The family shows intriguing sequence diversity and encodes a broad array of diverse yet similar proteins. The genes have two exons of which the second encodes the mature protein and has repeats and blocks of sequence called elements. Mosaics of element patterns plus single nucleotide polymorphisms-based variants of the elements result in significant sequence diversity among the genes yet maintains similar structure among the members of the family. Sequence of a bacterial artificial chromosome insert shows a cluster of six, tightly linked Sp185/333 genes that are flanked by GA microsatellites. The sequences between the GA microsatellites in which the Sp185/333 genes and flanking regions are located, are much more similar to each other than are the sequences outside the microsatellites suggesting processes such as gene conversion, recombination, or duplication. However, close linkage does not correspond with greater sequence similarity compared to randomly cloned and sequenced genes that are unlikely to be linked. There are three segmental duplications that are bounded by GAT microsatellites and include three almost identical genes plus flanking regions. RNA editing is detectible throughout the mRNAs based on comparisons to the genes, which, in combination with putative post-translational modifications to the proteins, results in broad arrays of Sp185/333 proteins that differ among individuals. The mature proteins have an N-terminal glycine-rich region, a central RGD motif, and a C-terminal histidine-rich region. The Sp185/333 proteins are localized to the cell surface and are found within vesicles in subsets of polygonal and small phagocytes. The coelomocyte proteome shows full-length and truncated proteins, including some with missense sequence. Current results suggest that both native Sp185/333 proteins and a recombinant protein bind bacteria and are likely important in sea urchin innate immunity. PMID:22566951
Kinematics and spectra of planetary nebulae with O VI-sequence nuclei
NASA Technical Reports Server (NTRS)
Johnson, H. M.
1976-01-01
Spectral features of NGC 5189 and NGC 6905 are tabulated. Fabry-Perot profiles around H alpha and O III lambda 5007 of NGC 5189, NGC 6905, NGC 246, and NGC 1535, are illustrated. The latter planetary nebula is a non-O VI-sequence, comparison object of high excitation. The kinematics of the four planetary nebulae are simply analyzed. Discussion of these data is motivated by the possibility of collisional excitation by high-speed ejecta from broad-lined O VI-sequence nuclei, and by the opportunity to make a comparison with conditions in the supernova remnant or ring nebula, G2.4 + 1.4, which contains an O VI-sequence nucleus of Population I.
Mathupala, S P; Lowe, S E; Podkovyrov, S M; Zeikus, J G
1993-08-05
The complete nucleotide sequence of the gene encoding the dual active amylopullulanase of Thermoanaerobacter ethanolicus 39E (formerly Clostridium thermohydrosulfuricum) was determined. The structural gene (apu) contained a single open reading frame 4443 base pairs in length, corresponding to 1481 amino acids, with an estimated molecular weight of 162,780. Analysis of the deduced sequence of apu with sequences of alpha-amylases and alpha-1,6 debranching enzymes enabled the identification of four conserved regions putatively involved in substrate binding and in catalysis. The conserved regions were localized within a 2.9-kilobase pair gene fragment, which encoded a M(r) 100,000 protein that maintained the dual activities and thermostability of the native enzyme. The catalytic residues of amylopullulanase were tentatively identified by using hydrophobic cluster analysis for comparison of amino acid sequences of amylopullulanase and other amylolytic enzymes. Asp597, Glu626, and Asp703 were individually modified to their respective amide form, or the alternate acid form, and in all cases both alpha-amylase and pullulanase activities were lost, suggesting the possible involvement of 3 residues in a catalytic triad, and the presence of a putative single catalytic site within the enzyme. These findings substantiate amylopullulanase as a new type of amylosaccharidase.
Determining divergence times with a protein clock: update and reevaluation
NASA Technical Reports Server (NTRS)
Feng, D. F.; Cho, G.; Doolittle, R. F.; Bada, J. L. (Principal Investigator)
1997-01-01
A recent study of the divergence times of the major groups of organisms as gauged by amino acid sequence comparison has been expanded and the data have been reanalyzed with a distance measure that corrects for both constraints on amino acid interchange and variation in substitution rate at different sites. Beyond that, the availability of complete genome sequences for several eubacteria and an archaebacterium has had a great impact on the interpretation of certain aspects of the data. Thus, the majority of the archaebacterial sequences are not consistent with currently accepted views of the Tree of Life which cluster the archaebacteria with eukaryotes. Instead, they are either outliers or mixed in with eubacterial orthologs. The simplest resolution of the problem is to postulate that many of these sequences were carried into eukaryotes by early eubacterial endosymbionts about 2 billion years ago, only very shortly after or even coincident with the divergence of eukaryotes and archaebacteria. The strong resemblances of these same enzymes among the major eubacterial groups suggest that the cyanobacteria and Gram-positive and Gram-negative eubacteria also diverged at about this same time, whereas the much greater differences between archaebacterial and eubacterial sequences indicate these two groups may have diverged between 3 and 4 billion years ago.
Specific DNA binding of the two chicken Deformed family homeodomain proteins, Chox-1.4 and Chox-a.
Sasaki, H; Yokoyama, E; Kuroiwa, A
1990-01-01
The cDNA clones encoding two chicken Deformed (Dfd) family homeobox containing genes Chox-1.4 and Chox-a were isolated. Comparison of their amino acid sequences with another chicken Dfd family homeodomain protein and with those of mouse homologues revealed that strong homologies are located in the amino terminal regions and around the homeodomains. Although homologies in other regions were relatively low, some short conserved sequences were also identified. E. coli-made full length proteins were purified and used for the production of specific antibodies and for DNA binding studies. The binding profiles of these proteins to the 5'-leader and 5'-upstream sequences of Chox-1.4 and Chox-a coding regions were analyzed by immunoprecipitation and DNase I footprint assays. These two Chox proteins bound to the same sites in the 5'-flanking sequences of their coding regions with various affinities and their binding affinities to each site were nearly the same. The consensus sequences of the high and low affinity binding sites were TAATGA(C/G) and CTAATTTT, respectively. A clustered binding site was identified in the 5'-upstream of the Chox-a gene, suggesting that this clustered binding site works as a cis-regulatory element for auto- and/or cross-regulation of Chox-a gene expression. Images PMID:1970866
Barrera, Maritza; Garrido-Haro, Ana; Vaca, María S.; Granda, Danilo; Acosta-Batallas, Alfredo
2017-01-01
In 2010, new Chinese strains of porcine epidemic diarrhea virus (PEDV), clinically more severe than the classical strains, emerged. These strains were spread to United States in 2013 through an intercontinental transmission from China with further spreading across the world, evidencing the emergent nature of these strains. In the present study, an analysis of PEDV field sequences from Ecuador was conducted by comparing all the PEDV S gene sequences available in the GenBank database. Phylogenetic comparisons and Bayesian phylogeographic inference based on complete S gene sequences were also conducted to track the origin and putative route of PEDV. The sequence from the PED-outbreak in Ecuador was grouped into the clade II of PEDV genogroup 2a together with other sequences of isolates from Mexico, Canada, and United States. The phylogeographic study revealed the emergence of the Chinese PEDV strains, followed by spreading to US in 2013, from US to Korea, and later the introduction of PEDV to Canada, Mexico, and Ecuador directly from the US. The sources of imports of live swine in Ecuador in 2014 were mainly from Chile and US. Thus, this movement of pigs is suggested as the main way for introducing PEDV to Ecuador. PMID:29379796
Tirosh, Y; Morpurgo, N; Cohen, M; Linial, M; Bloch, G
2012-06-01
We identified a predicted compact cysteine-rich sequence in the honey bee genome that we called 'Raalin'. Raalin transcripts are enriched in the brain of adult honey bee workers and drones, with only minimum expression in other tissues or in pre-adult stages. Open-reading frame (ORF) homologues of Raalin were identified in the transcriptomes of fruit flies, mosquitoes and moths. The Raalin-like gene from Drosophila melanogaster encodes for a short secreted protein that is maximally expressed in the adult brain with negligible expression in other tissues or pre-imaginal stages. Raalin-like sequences have also been found in the recently sequenced genomes of six ant species, but not in the jewel wasp Nasonia vitripennis. As in the honey bee, the Raalin-like sequences of ants do not have an ORF. A comparison of the genome region containing Raalin in the genomes of bees, ants and the wasp provides evolutionary support for an extensive genome rearrangement in this sequence. Our analyses identify a new family of ancient cysteine-rich short sequences in insects in which insertions and genome rearrangements may have disrupted this locus in the branch leading to the Hymenoptera. The regulated expression of this transcript suggests that it has a brain-specific function. © 2012 The Authors. Insect Molecular Biology © 2012 The Royal Entomological Society.
VizieR Online Data Catalog: KIC 8462852 GTC spectra (Deeg+, 2018)
NASA Astrophysics Data System (ADS)
Deeg, H. J.; Alonso, R.; Nespral, D.; Boyajian, T.
2018-01-01
Spectra obtained in the follow-up of KIC 8462852 (Boyajian's star) with OSIRIS at the GTC telescope. These spectra have been reduced as described in the paper and are contained in two directories, for target and comparison spectra: sp_target contains spectra of the target star (KIC 8462852) sp_compar contains spectra of the comparison star (KIC 8462763) At each pointing of the GTC, a sequence of 10-45 spectra was generated. The individual spectra are named: tpXXYY.dat for the target spectra and cpXXYY.dat for the comparison spectra, where XX is the pointing number, and YY is a sequence number. The format of each spectrum file is a two-column ascii file: Wavelength (Angstrom) | Flux (arbitrary units)) The files times_pXX.dat correspond to each of the pointings and contain the times of mid-exposure of each spectrum, in the HJD_UTC-2400000 framework. These times apply to both target and comparison spectra and are ordered by increasing sequence number. There are a total of 516 spectra of the target and 516 spectra of the comparison. (19 data files).
Li, Ying; Shi, Xiaohu; Liang, Yanchun; Xie, Juan; Zhang, Yu; Ma, Qin
2017-01-21
RNAs have been found to carry diverse functionalities in nature. Inferring the similarity between two given RNAs is a fundamental step to understand and interpret their functional relationship. The majority of functional RNAs show conserved secondary structures, rather than sequence conservation. Those algorithms relying on sequence-based features usually have limitations in their prediction performance. Hence, integrating RNA structure features is very critical for RNA analysis. Existing algorithms mainly fall into two categories: alignment-based and alignment-free. The alignment-free algorithms of RNA comparison usually have lower time complexity than alignment-based algorithms. An alignment-free RNA comparison algorithm was proposed, in which novel numerical representations RNA-TVcurve (triple vector curve representation) of RNA sequence and corresponding secondary structure features are provided. Then a multi-scale similarity score of two given RNAs was designed based on wavelet decomposition of their numerical representation. In support of RNA mutation and phylogenetic analysis, a web server (RNA-TVcurve) was designed based on this alignment-free RNA comparison algorithm. It provides three functional modules: 1) visualization of numerical representation of RNA secondary structure; 2) detection of single-point mutation based on secondary structure; and 3) comparison of pairwise and multiple RNA secondary structures. The inputs of the web server require RNA primary sequences, while corresponding secondary structures are optional. For the primary sequences alone, the web server can compute the secondary structures using free energy minimization algorithm in terms of RNAfold tool from Vienna RNA package. RNA-TVcurve is the first integrated web server, based on an alignment-free method, to deliver a suite of RNA analysis functions, including visualization, mutation analysis and multiple RNAs structure comparison. The comparison results with two popular RNA comparison tools, RNApdist and RNAdistance, showcased that RNA-TVcurve can efficiently capture subtle relationships among RNAs for mutation detection and non-coding RNA classification. All the relevant results were shown in an intuitive graphical manner, and can be freely downloaded from this server. RNA-TVcurve, along with test examples and detailed documents, are available at: http://ml.jlu.edu.cn/tvcurve/ .
Alignment-free sequence comparison (II): theoretical power of comparison statistics.
Wan, Lin; Reinert, Gesine; Sun, Fengzhu; Waterman, Michael S
2010-11-01
Rapid methods for alignment-free sequence comparison make large-scale comparisons between sequences increasingly feasible. Here we study the power of the statistic D2, which counts the number of matching k-tuples between two sequences, as well as D2*, which uses centralized counts, and D2S, which is a self-standardized version, both from a theoretical viewpoint and numerically, providing an easy to use program. The power is assessed under two alternative hidden Markov models; the first one assumes that the two sequences share a common motif, whereas the second model is a pattern transfer model; the null model is that the two sequences are composed of independent and identically distributed letters and they are independent. Under the first alternative model, the means of the tuple counts in the individual sequences change, whereas under the second alternative model, the marginal means are the same as under the null model. Using the limit distributions of the count statistics under the null and the alternative models, we find that generally, asymptotically D2S has the largest power, followed by D2*, whereas the power of D2 can even be zero in some cases. In contrast, even for sequences of length 140,000 bp, in simulations D2* generally has the largest power. Under the first alternative model of a shared motif, the power of D2*approaches 100% when sufficiently many motifs are shared, and we recommend the use of D2* for such practical applications. Under the second alternative model of pattern transfer,the power for all three count statistics does not increase with sequence length when the sequence is sufficiently long, and hence none of the three statistics under consideration canbe recommended in such a situation. We illustrate the approach on 323 transcription factor binding motifs with length at most 10 from JASPAR CORE (October 12, 2009 version),verifying that D2* is generally more powerful than D2. The program to calculate the power of D2, D2* and D2S can be downloaded from http://meta.cmb.usc.edu/d2. Supplementary Material is available at www.liebertonline.com/cmb.
Molecular diversity and distribution of marine fungi across 130 European environmental samples.
Richards, Thomas A; Leonard, Guy; Mahé, Frédéric; Del Campo, Javier; Romac, Sarah; Jones, Meredith D M; Maguire, Finlay; Dunthorn, Micah; De Vargas, Colomban; Massana, Ramon; Chambouvet, Aurélie
2015-11-22
Environmental DNA and culture-based analyses have suggested that fungi are present in low diversity and in low abundance in many marine environments, especially in the upper water column. Here, we use a dual approach involving high-throughput diversity tag sequencing from both DNA and RNA templates and fluorescent cell counts to evaluate the diversity and relative abundance of fungi across marine samples taken from six European near-shore sites. We removed very rare fungal operational taxonomic units (OTUs) selecting only OTUs recovered from multiple samples for a detailed analysis. This approach identified a set of 71 fungal 'OTU clusters' that account for 66% of all the sequences assigned to the Fungi. Phylogenetic analyses demonstrated that this diversity includes a significant number of chytrid-like lineages that had not been previously described, indicating that the marine environment encompasses a number of zoosporic fungi that are new to taxonomic inventories. Using the sequence datasets, we identified cases where fungal OTUs were sampled across multiple geographical sites and between different sampling depths. This was especially clear in one relatively abundant and diverse phylogroup tentatively named Novel Chytrid-Like-Clade 1 (NCLC1). For comparison, a subset of the water column samples was also investigated using fluorescent microscopy to examine the abundance of eukaryotes with chitin cell walls. Comparisons of relative abundance of RNA-derived fungal tag sequences and chitin cell-wall counts demonstrate that fungi constitute a low fraction of the eukaryotic community in these water column samples. Taken together, these results demonstrate the phylogenetic position and environmental distribution of 71 lineages, improving our understanding of the diversity and abundance of fungi in marine environments. © 2015 The Authors.
Molecular diversity and distribution of marine fungi across 130 European environmental samples
Richards, Thomas A.; Leonard, Guy; Mahé, Frédéric; del Campo, Javier; Romac, Sarah; Jones, Meredith D. M.; Maguire, Finlay; Dunthorn, Micah; De Vargas, Colomban; Massana, Ramon; Chambouvet, Aurélie
2015-01-01
Environmental DNA and culture-based analyses have suggested that fungi are present in low diversity and in low abundance in many marine environments, especially in the upper water column. Here, we use a dual approach involving high-throughput diversity tag sequencing from both DNA and RNA templates and fluorescent cell counts to evaluate the diversity and relative abundance of fungi across marine samples taken from six European near-shore sites. We removed very rare fungal operational taxonomic units (OTUs) selecting only OTUs recovered from multiple samples for a detailed analysis. This approach identified a set of 71 fungal ‘OTU clusters' that account for 66% of all the sequences assigned to the Fungi. Phylogenetic analyses demonstrated that this diversity includes a significant number of chytrid-like lineages that had not been previously described, indicating that the marine environment encompasses a number of zoosporic fungi that are new to taxonomic inventories. Using the sequence datasets, we identified cases where fungal OTUs were sampled across multiple geographical sites and between different sampling depths. This was especially clear in one relatively abundant and diverse phylogroup tentatively named Novel Chytrid-Like-Clade 1 (NCLC1). For comparison, a subset of the water column samples was also investigated using fluorescent microscopy to examine the abundance of eukaryotes with chitin cell walls. Comparisons of relative abundance of RNA-derived fungal tag sequences and chitin cell-wall counts demonstrate that fungi constitute a low fraction of the eukaryotic community in these water column samples. Taken together, these results demonstrate the phylogenetic position and environmental distribution of 71 lineages, improving our understanding of the diversity and abundance of fungi in marine environments. PMID:26582030
Yang, Yaodong; Mason, Annaliese S.; Lei, Xintao; Ma, Zilong
2013-01-01
MicroRNAs (miRNAs) are important regulators of gene expression at the post-transcriptional level in a wide range of species. Highly conserved miRNAs regulate ancestral transcription factors common to all plants, and control important basic processes such as cell division and meristem function. We selected 21 conserved miRNA families to analyze the distribution and maintenance of miRNAs. Recently, the first genome sequence in Palmaceae was released: date palm (Phoenix dactylifera). We conducted a systematic miRNA analysis in date palm, computationally identifying and characterizing the distribution and duplication of conserved miRNAs in this species compared to other published plant genomes. A total of 81 miRNAs belonging to 18 miRNA families were identified in date palm. The majority of miRNAs in date palm and seven other well-studied plant species were located in intergenic regions and located 4 to 5 kb away from the nearest protein-coding genes. Sequence comparison showed that 67% of date palm miRNA members were present in duplicated segments, and that 135 pairs of miRNA-containing segments were duplicated in Arabidopsis, tomato, orange, rice, apple, poplar and soybean with a high similarity of non coding sequences between duplicated segments, indicating genomic duplication was a major force for expansion of conserved miRNAs. Duplicated miRNA pairs in date palm showed divergence in pre-miRNA sequence and in number of promoters, implying that these duplicated pairs may have undergone divergent evolution. Comparisons between date palm and the seven other plant species for the gain/loss of miR167 loci in an ancient segment shared between monocots and dicots suggested that these conserved miRNAs were highly influenced by and diverged as a result of genomic duplication events. PMID:23951162
Xiao, Yong; Xia, Wei; Yang, Yaodong; Mason, Annaliese S; Lei, Xintao; Ma, Zilong
2013-01-01
MicroRNAs (miRNAs) are important regulators of gene expression at the post-transcriptional level in a wide range of species. Highly conserved miRNAs regulate ancestral transcription factors common to all plants, and control important basic processes such as cell division and meristem function. We selected 21 conserved miRNA families to analyze the distribution and maintenance of miRNAs. Recently, the first genome sequence in Palmaceae was released: date palm (Phoenix dactylifera). We conducted a systematic miRNA analysis in date palm, computationally identifying and characterizing the distribution and duplication of conserved miRNAs in this species compared to other published plant genomes. A total of 81 miRNAs belonging to 18 miRNA families were identified in date palm. The majority of miRNAs in date palm and seven other well-studied plant species were located in intergenic regions and located 4 to 5 kb away from the nearest protein-coding genes. Sequence comparison showed that 67% of date palm miRNA members were present in duplicated segments, and that 135 pairs of miRNA-containing segments were duplicated in Arabidopsis, tomato, orange, rice, apple, poplar and soybean with a high similarity of non coding sequences between duplicated segments, indicating genomic duplication was a major force for expansion of conserved miRNAs. Duplicated miRNA pairs in date palm showed divergence in pre-miRNA sequence and in number of promoters, implying that these duplicated pairs may have undergone divergent evolution. Comparisons between date palm and the seven other plant species for the gain/loss of miR167 loci in an ancient segment shared between monocots and dicots suggested that these conserved miRNAs were highly influenced by and diverged as a result of genomic duplication events.
Method and apparatus for biological sequence comparison
Marr, T.G.; Chang, W.I.
1997-12-23
A method and apparatus are disclosed for comparing biological sequences from a known source of sequences, with a subject (query) sequence. The apparatus takes as input a set of target similarity levels (such as evolutionary distances in units of PAM), and finds all fragments of known sequences that are similar to the subject sequence at each target similarity level, and are long enough to be statistically significant. The invention device filters out fragments from the known sequences that are too short, or have a lower average similarity to the subject sequence than is required by each target similarity level. The subject sequence is then compared only to the remaining known sequences to find the best matches. The filtering member divides the subject sequence into overlapping blocks, each block being sufficiently large to contain a minimum-length alignment from a known sequence. For each block, the filter member compares the block with every possible short fragment in the known sequences and determines a best match for each comparison. The determined set of short fragment best matches for the block provide an upper threshold on alignment values. Regions of a certain length from the known sequences that have a mean alignment value upper threshold greater than a target unit score are concatenated to form a union. The current block is compared to the union and provides an indication of best local alignment with the subject sequence. 5 figs.
Method and apparatus for biological sequence comparison
Marr, Thomas G.; Chang, William I-Wei
1997-01-01
A method and apparatus for comparing biological sequences from a known source of sequences, with a subject (query) sequence. The apparatus takes as input a set of target similarity levels (such as evolutionary distances in units of PAM), and finds all fragments of known sequences that are similar to the subject sequence at each target similarity level, and are long enough to be statistically significant. The invention device filters out fragments from the known sequences that are too short, or have a lower average similarity to the subject sequence than is required by each target similarity level. The subject sequence is then compared only to the remaining known sequences to find the best matches. The filtering member divides the subject sequence into overlapping blocks, each block being sufficiently large to contain a minimum-length alignment from a known sequence. For each block, the filter member compares the block with every possible short fragment in the known sequences and determines a best match for each comparison. The determined set of short fragment best matches for the block provide an upper threshold on alignment values. Regions of a certain length from the known sequences that have a mean alignment value upper threshold greater than a target unit score are concatenated to form a union. The current block is compared to the union and provides an indication of best local alignment with the subject sequence.
Comparison of Methods of Detection of Exceptional Sequences in Prokaryotic Genomes.
Rusinov, I S; Ershova, A S; Karyagina, A S; Spirin, S A; Alexeevski, A V
2018-02-01
Many proteins need recognition of specific DNA sequences for functioning. The number of recognition sites and their distribution along the DNA might be of biological importance. For example, the number of restriction sites is often reduced in prokaryotic and phage genomes to decrease the probability of DNA cleavage by restriction endonucleases. We call a sequence an exceptional one if its frequency in a genome significantly differs from one predicted by some mathematical model. An exceptional sequence could be either under- or over-represented, depending on its frequency in comparison with the predicted one. Exceptional sequences could be considered biologically meaningful, for example, as targets of DNA-binding proteins or as parts of abundant repetitive elements. Several methods to predict frequency of a short sequence in a genome, based on actual frequencies of certain its subsequences, are used. The most popular are methods based on Markov chain models. But any rigorous comparison of the methods has not previously been performed. We compared three methods for the prediction of short sequence frequencies: the maximum-order Markov chain model-based method, the method that uses geometric mean of extended Markovian estimates, and the method that utilizes frequencies of all subsequences including discontiguous ones. We applied them to restriction sites in complete genomes of 2500 prokaryotic species and demonstrated that the results depend greatly on the method used: lists of 5% of the most under-represented sites differed by up to 50%. The method designed by Burge and coauthors in 1992, which utilizes all subsequences of the sequence, showed a higher precision than the other two methods both on prokaryotic genomes and randomly generated sequences after computational imitation of selective pressure. We propose this method as the first choice for detection of exceptional sequences in prokaryotic genomes.
Holm, Liisa; Laakso, Laura M
2016-07-08
The Dali server (http://ekhidna2.biocenter.helsinki.fi/dali) is a network service for comparing protein structures in 3D. In favourable cases, comparing 3D structures may reveal biologically interesting similarities that are not detectable by comparing sequences. The Dali server has been running in various places for over 20 years and is used routinely by crystallographers on newly solved structures. The latest update of the server provides enhanced analytics for the study of sequence and structure conservation. The server performs three types of structure comparisons: (i) Protein Data Bank (PDB) search compares one query structure against those in the PDB and returns a list of similar structures; (ii) pairwise comparison compares one query structure against a list of structures specified by the user; and (iii) all against all structure comparison returns a structural similarity matrix, a dendrogram and a multidimensional scaling projection of a set of structures specified by the user. Structural superimpositions are visualized using the Java-free WebGL viewer PV. The structural alignment view is enhanced by sequence similarity searches against Uniprot. The combined structure-sequence alignment information is compressed to a stack of aligned sequence logos. In the stack, each structure is structurally aligned to the query protein and represented by a sequence logo. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Castejon, Maria; Menéndez, Maria Carmen; Comas, Iñaki; Vicente, Ana; Garcia, Maria J
2018-06-01
Bacterial whole-genome sequences contain informative features of their evolutionary pathways. Comparison of whole-genome sequences have become the method of choice for classification of prokaryotes, thus allowing the identification of bacteria from an evolutionary perspective, and providing data to resolve some current controversies. Currently, controversy exists about the assignment of members of the Mycobacterium avium complex, as is for the cases of Mycobacterium yongonense and 'Mycobacterium indicus pranii'. These two mycobacteria, closely related to Mycobacterium intracellulare on the basis of standard phenotypic and single gene-sequences comparisons, were not considered a member of such species on the basis on some particular differences displayed by a single strain. Whole-genome sequence comparison procedures, namely the average nucleotide identity and the genome distance, showed that those two mycobacteria should be considered members of the species M. intracellulare. The results were confirmed with other whole-genome comparison supplementary methods. According to the data provided, Mycobacterium yongonense and 'Mycobacterium indicus pranii' should be considered and renamed and included as members of M. intracellulare. This study highlights the problems caused when a novel species is accepted on the basis of a single strain, as was the case for M. yongonense. Based mainly on whole-genome sequence analysis, we conclude that M. yongonense should be reclassified as a subspecies of Mycobacterium intracellulareas Mycobacterium intracellularesubsp. yongonense and 'Mycobacterium indicus pranii' classified in the same subspecies as the type strain of Mycobacterium intracellulare and classified as Mycobacterium intracellularesubsp. intracellulare.
Learned Non-Rigid Object Motion is a View-Invariant Cue to Recognizing Novel Objects
Chuang, Lewis L.; Vuong, Quoc C.; Bülthoff, Heinrich H.
2012-01-01
There is evidence that observers use learned object motion to recognize objects. For instance, studies have shown that reversing the learned direction in which a rigid object rotated in depth impaired recognition accuracy. This motion reversal can be achieved by playing animation sequences of moving objects in reverse frame order. In the current study, we used this sequence-reversal manipulation to investigate whether observers encode the motion of dynamic objects in visual memory, and whether such dynamic representations are encoded in a way that is dependent on the viewing conditions. Participants first learned dynamic novel objects, presented as animation sequences. Following learning, they were then tested on their ability to recognize these learned objects when their animation sequence was shown in the same sequence order as during learning or in the reverse sequence order. In Experiment 1, we found that non-rigid motion contributed to recognition performance; that is, sequence-reversal decreased sensitivity across different tasks. In subsequent experiments, we tested the recognition of non-rigidly deforming (Experiment 2) and rigidly rotating (Experiment 3) objects across novel viewpoints. Recognition performance was affected by viewpoint changes for both experiments. Learned non-rigid motion continued to contribute to recognition performance and this benefit was the same across all viewpoint changes. By comparison, learned rigid motion did not contribute to recognition performance. These results suggest that non-rigid motion provides a source of information for recognizing dynamic objects, which is not affected by changes to viewpoint. PMID:22661939
Omaleki, Lida; Browning, Glenn F; Barber, Stuart R; Allen, Joanne L; Srikumaran, Subramaniam; Markham, Philip F
2014-11-07
Species within the genus Mannheimia are among the most important causes of ovine mastitis. Isolates of these species can express leukotoxin A (LktA), a primary virulence factor of these bacteria. To examine the significance of variation in the LktA, the sequences of the lktA genes in a panel of isolates from cases of ovine mastitis were compared. The cross-neutralising capacities of rat antisera raised against LktA of one Mannheimia glucosida, one haemolytic Mannheimia ruminalis, and two Mannheimia haemolytica isolates were also examined to assess the effect that variation in the lktA gene can have on protective immunity against leukotoxins with differing sequences. The lktA nucleotide distance between the M. haemolytica isolates was greater than between the M. glucosida isolates, with the M. haemolytica isolates divisible into two groups based on their lktA sequences. Comparison of the topology of phylogenetic trees of 16S rDNA and lktA sequences revealed differences in the relationships between some isolates, suggesting horizontal gene transfer. Cross neutralisation data obtained with monospecific anti-LktA rat sera were used to derive antigenic similarity coefficients for LktA from the four Mannheimia species isolates. Similarity coefficients indicated that LktA of the two M. haemolytica isolates were least similar, while LktA from M. glucosida was most similar to those for one of the M. haemolytica isolates and the haemolytic M. ruminalis isolate. The results suggested that vaccination with the M. glucosida leukotoxin would generate the greatest cross-protection against ovine mastitis caused by Mannheimia species with these alleles. Copyright © 2014 Elsevier B.V. All rights reserved.
Epitopes of human testis-specific lactate dehydrogenase deduced from a cDNA sequence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millan, J.L.; Driscoll, C.E.; LeVan, K.M.
The sequence and structure of human testis-specific L-lactate dehydrogenase (LDHC/sub 4/, LDHX; (L)-lactate:NAD/sup +/ oxidoreductase, EC 1.1.1.27) has been derived from analysis of a complementary DNA (cDNA) clone comprising the complete protein coding region of the enzyme. From the deduced amino acid sequence, human LDHC/sub 4/ is as different from rodent LDHC/sub 4/ (73% homology) as it is from human LDHA/sub 4/ (76% homology) and porcine LDHB/sub 4/ (68% homology). Subunit homologies are consistent with the conclusion that the LDHC gene arose by at least two independent duplication events. Furthermore, the lower degree of homology between mouse and human LDHC/submore » 4/ and the appearance of this isozyme late in evolution suggests a higher rate of mutation in the mammalian LDHC genes than in the LDHA and -B genes. Comparison of exposed amino acid residues of discrete anti-genic determinants of mouse and human LDHC/sub 4/ reveals significant differences. Knowledge of the human LDHC/sub 4/ sequence will help design human-specific peptides useful in the development of a contraceptive vaccine.« less
The genomes and comparative genomics of Lactobacillus delbrueckii phages.
Riipinen, Katja-Anneli; Forsman, Päivi; Alatossava, Tapani
2011-07-01
Lactobacillus delbrueckii phages are a great source of genetic diversity. Here, the genome sequences of Lb. delbrueckii phages LL-Ku, c5 and JCL1032 were analyzed in detail, and the genetic diversity of Lb. delbrueckii phages belonging to different taxonomic groups was explored. The lytic isometric group b phages LL-Ku (31,080 bp) and c5 (31,841 bp) showed a minimum nucleotide sequence identity of 90% over about three-fourths of their genomes. The genomic locations of their lysis modules were unique, and the genomes featured several putative overlapping transcription units of genes. LL-Ku and c5 virions displayed peptidoglycan hydrolytic activity associated with a ~36-kDa protein similar in size to the endolysin. Unexpectedly, the 49,433-bp genome of the prolate phage JCL1032 (temperate, group c) revealed a conserved gene order within its structural genes. Lb. delbrueckii phages representing groups a (a phage LL-H), b and c possessed only limited protein sequence homology. Genomic comparison of LL-Ku and c5 suggested that diversification of Lb. delbrueckii phages is mainly due to insertions, deletions and recombination. For the first time, the complete genome sequences of group b and c Lb. delbrueckii phages are reported.
The Impact of Normalization Methods on RNA-Seq Data Analysis
Zyprych-Walczak, J.; Szabelska, A.; Handschuh, L.; Górczak, K.; Klamecka, K.; Figlerowicz, M.; Siatkowski, I.
2015-01-01
High-throughput sequencing technologies, such as the Illumina Hi-seq, are powerful new tools for investigating a wide range of biological and medical problems. Massive and complex data sets produced by the sequencers create a need for development of statistical and computational methods that can tackle the analysis and management of data. The data normalization is one of the most crucial steps of data processing and this process must be carefully considered as it has a profound effect on the results of the analysis. In this work, we focus on a comprehensive comparison of five normalization methods related to sequencing depth, widely used for transcriptome sequencing (RNA-seq) data, and their impact on the results of gene expression analysis. Based on this study, we suggest a universal workflow that can be applied for the selection of the optimal normalization procedure for any particular data set. The described workflow includes calculation of the bias and variance values for the control genes, sensitivity and specificity of the methods, and classification errors as well as generation of the diagnostic plots. Combining the above information facilitates the selection of the most appropriate normalization method for the studied data sets and determines which methods can be used interchangeably. PMID:26176014
Whiteduck-Léveillée, Kerri; Whiteduck-Léveillée, Jenni; Cloutier, Michel; Tambong, James T; Xu, Renlin; Topp, Edward; Arts, Michael T; Chao, Jerry; Adam, Zaky; Lévesque, C André; Lapen, David R; Villemur, Richard; Khan, Izhar U H
2016-03-01
A study on the taxonomic classification of Arcobacter species was performed on the cultures isolated from various fecal sources where an Arcobacter strain AF1078(T) from human waste septic tank near Ottawa, Ontario, Canada was characterized using a polyphasic approach. Genetic investigations including 16S rRNA, atpA, cpn60, gyrA, gyrB and rpoB gene sequences of strain AF1078(T) are unique in comparison with other arcobacters. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the strain is most closely related to Arcobacter lanthieri and Arcobacter cibarius. Analyses of atpA, cpn60, gyrA, gyrB and rpoB gene sequences suggested that strain AF1078(T) formed a phylogenetic lineage independent of other species in the genus. Whole-genome sequence, DNA-DNA hybridization, fatty acid profile and phenotypic analysis further supported the conclusion that strain AF1078(T) represents a novel Arcobacter species, for which the name Arcobacter faecis sp. nov. is proposed, with type strain AF1078(T) (=LMG 28519(T); CCUG 66484(T)). Crown Copyright © 2015. Published by Elsevier GmbH. All rights reserved.
Dance experience sculpts aesthetic perception and related brain circuits
Kirsch, Louise P; Dawson, Kelvin; Cross, Emily S
2015-01-01
Previous research on aesthetic preferences demonstrates that people are more likely to judge a stimulus as pleasing if it is familiar. Although general familiarity and liking are related, it is less clear how motor familiarity, or embodiment, relates to a viewer's aesthetic appraisal. This study directly compared how learning to embody an action impacts the neural response when watching and aesthetically evaluating the same action. Twenty-two participants trained for 4 days on dance sequences. Each day they physically rehearsed one set of sequences, passively watched a second set, listened to the music of a third set, and a fourth set remained untrained. Functional MRI was obtained prior to and immediately following the training period, as were affective and physical ability ratings for each dance sequence. This approach enabled precise comparison of self-report methods of embodiment with nonbiased, empirical measures of action performance. Results suggest that after experience, participants most enjoy watching those dance sequences they danced or observed. Moreover, brain regions involved in mediating the aesthetic response shift from subcortical regions associated with dopaminergic reward processing to posterior temporal regions involved in processing multisensory integration, emotion, and biological motion. PMID:25773627
Kosushkin, S A; Borodulina, O R; Solov'eva, E N; Grechko, V V
2008-01-01
We have isolated and characterised sequences of a SINE family specific for squamate reptiles from a genome of lacertid lizard that we called Squam1. Copies are 360-390 bp in length and share a significant similarity with tRNA gene sequence on its 5'-end. This family was also detected by us in DNA of representatives of varanids, iguanids (anolis), gekkonids, and snakes. No signs of it were found in DNA of mammals, birds, amphibians, and crocodiles. Detailed analysis of primary structure of the retroposons obtained by us from genomic libraries or GenBank sequences was carried out. Most taxa possess 2-3 subfamilies of the SINE in their genomes with specific diagnostic features in their primary structure. Individual variability of copies in different families is about 85% and is just slightly lower on the genera level. Comparison of consensus sequences on family level reveals a high degree of structural similarity with a number of specific apomorphic features which makes it a useful marker of phylogeny for this group of reptiles. Snakes do not show specific affinity to varanids when compared to other lizards, as it was suggested earlier.
Monteiro, Rose A; Balsanelli, Eduardo; Tuleski, Thalita; Faoro, Helison; Cruz, Leonardo M; Wassem, Roseli; de Baura, Valter A; Tadra-Sfeir, Michelle Z; Weiss, Vinícius; DaRocha, Wanderson D; Muller-Santos, Marcelo; Chubatsu, Leda S; Huergo, Luciano F; Pedrosa, Fábio O; de Souza, Emanuel M
2012-05-01
Herbaspirillum rubrisubalbicans M1 causes the mottled stripe disease in sugarcane cv. B-4362. Inoculation of this cultivar with Herbaspirillum seropedicae SmR1 does not produce disease symptoms. A comparison of the genomic sequences of these closely related species may permit a better understanding of contrasting phenotype such as endophytic association and pathogenic life style. To achieve this goal, we constructed suppressive subtractive hybridization (SSH) libraries to identify DNA fragments present in one species and absent in the other. In a parallel approach, partial genomic sequence from H. rubrisubalbicans M1 was directly compared in silico with the H. seropedicae SmR1 genome. The genomic differences between the two organisms revealed by SSH suggested that lipopolysaccharide and adhesins are potential molecular factors involved in the different phenotypic behavior. The cluster wss probably involved in cellulose biosynthesis was found in H. rubrisubalbicans M1. Expression of this gene cluster was increased in H. rubrisubalbicans M1 cells attached to the surface of maize root, and knockout of wssD gene led to decrease in maize root surface attachment and endophytic colonization. The production of cellulose could be responsible for the maize attachment pattern of H. rubrisubalbicans M1 that is capable of outcompeting H. seropedicae SmR1. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Genomic analysis of the Chinese genotype 1F rubella virus that disappeared after 2002 in China.
Zhu, Zhen; Chen, Min-Hsin; Abernathy, Emily; Zhou, Shujie; Wang, Changyin; Icenogle, Joseph; Xu, Wenbo
2014-12-01
Genotype 1F was likely localized geographically to China as it has not been reported elsewhere. In this study, whole genome sequences of two rubella 1F virus isolates were completed. Both viruses contained 9,761 nt with a single nucleotide deletion in the intergenic region, compared to the NCBI rubella reference sequence (NC 001545). No evidence of recombination was found between 1F and other rubella viruses. The genetic distance between 1F viruses and 10 other rubella virus genotypes (1a, 1B, 1C, 1D, 1E, 1G, 1J 2A, 2B, and 2C) ranged from 3.9% to 8.6% by pairwise comparison. A region known to be hypervariable in other rubella genotypes was also the most variable region in the 1F genomes. Comparisons to all available rubella virus sequences from GenBank identified 22 nucleotide variations exclusively in 1F viruses. Among these unique variations, C9306U is located within the recommended molecular window for rubella virus genotyping assignment, could be useful to confirm 1F viruses. Using the Bayesian Markov Chain Monte Carlo (MCMC) method, the time of the most recent common ancestor for the genotype 1F was estimated between 1976 and 1995. Recent rubella molecular surveillance suggests that this indigenous strain may have circulated for less than three decades, as it has not been detected since 2002. © 2014 Wiley Periodicals, Inc.
Ma, Xin; Guo, Jing; Sun, Xiao
2016-01-01
DNA-binding proteins are fundamentally important in cellular processes. Several computational-based methods have been developed to improve the prediction of DNA-binding proteins in previous years. However, insufficient work has been done on the prediction of DNA-binding proteins from protein sequence information. In this paper, a novel predictor, DNABP (DNA-binding proteins), was designed to predict DNA-binding proteins using the random forest (RF) classifier with a hybrid feature. The hybrid feature contains two types of novel sequence features, which reflect information about the conservation of physicochemical properties of the amino acids, and the binding propensity of DNA-binding residues and non-binding propensities of non-binding residues. The comparisons with each feature demonstrated that these two novel features contributed most to the improvement in predictive ability. Furthermore, to improve the prediction performance of the DNABP model, feature selection using the minimum redundancy maximum relevance (mRMR) method combined with incremental feature selection (IFS) was carried out during the model construction. The results showed that the DNABP model could achieve 86.90% accuracy, 83.76% sensitivity, 90.03% specificity and a Matthews correlation coefficient of 0.727. High prediction accuracy and performance comparisons with previous research suggested that DNABP could be a useful approach to identify DNA-binding proteins from sequence information. The DNABP web server system is freely available at http://www.cbi.seu.edu.cn/DNABP/.
Liu, Yu; Koyutürk, Mehmet; Maxwell, Sean; Xiang, Min; Veigl, Martina; Cooper, Richard S; Tayo, Bamidele O; Li, Li; LaFramboise, Thomas; Wang, Zhenghe; Zhu, Xiaofeng; Chance, Mark R
2014-08-16
Sequences up to several megabases in length have been found to be present in individual genomes but absent in the human reference genome. These sequences may be common in populations, and their absence in the reference genome may indicate rare variants in the genomes of individuals who served as donors for the human genome project. As the reference genome is used in probe design for microarray technology and mapping short reads in next generation sequencing (NGS), this missing sequence could be a source of bias in functional genomic studies and variant analysis. One End Anchor (OEA) and/or orphan reads from paired-end sequencing have been used to identify novel sequences that are absent in reference genome. However, there is no study to investigate the distribution, evolution and functionality of those sequences in human populations. To systematically identify and study the missing common sequences (micSeqs), we extended the previous method by pooling OEA reads from large number of individuals and applying strict filtering methods to remove false sequences. The pipeline was applied to data from phase 1 of the 1000 Genomes Project. We identified 309 micSeqs that are present in at least 1% of the human population, but absent in the reference genome. We confirmed 76% of these 309 micSeqs by comparison to other primate genomes, individual human genomes, and gene expression data. Furthermore, we randomly selected fifteen micSeqs and confirmed their presence using PCR validation in 38 additional individuals. Functional analysis using published RNA-seq and ChIP-seq data showed that eleven micSeqs are highly expressed in human brain and three micSeqs contain transcription factor (TF) binding regions, suggesting they are functional elements. In addition, the identified micSeqs are absent in non-primates and show dynamic acquisition during primate evolution culminating with most micSeqs being present in Africans, suggesting some micSeqs may be important sources of human diversity. 76% of micSeqs were confirmed by a comparative genomics approach. Fourteen micSeqs are expressed in human brain or contain TF binding regions. Some micSeqs are primate-specific, conserved and may play a role in the evolution of primates.
Nucleotide sequence of the gene encoding the nitrogenase iron protein of Thiobacillus ferrooxidans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pretorius, I.M.; Rawlings, D.E.; O'Neill, E.G.
1987-01-01
The DNA sequence was determined for the cloned Thiobacillus ferrooxidans nifH and part of the nifD genes. The DNA chains were radiolabeled with (..cap alpha..-/sup 32/P)dCTP (3000 Ci/mmol) or (..cap alpha..-/sup 35/S)dCTP (400 Ci/mmol). A putative T. ferrooxidans nifH promoter was identified whose sequences showed perfect consensus with those of the Klebsiella pneumoniae nif promoter. Two putative consensus upstream activator sequences were also identified. The amino acid sequence was deduced from the DNA sequence. In a comparison of nifH DNA sequences from T. ferrooxidans and eight other nitrogen-fixing microbes, a Rhizobium sp. isolated from Parasponia andersonii showed the greatest homologymore » (74%) and Clostridium pasteurianum (nifH1) showed the least homology (54%). In the comparison of the amino acid sequences of the Fe proteins, the Rhizobium sp. and Rhizobium japonicum showed the greatest homology (both 86%) and C. pasteurianum (nifH1 gene product) demonstrated the least homology (56%) to the T. ferrooxidans Fe protein.« less
O'Farrell, C. L.; Strom, M.S.
1999-01-01
Virulence mechanisms utilized by the salmonid fish pathogen Renibacterium salmoninarum are poorly understood. One potential virulence factor is p57 (also designated MSA for major soluble antigen), an abundant 57 kDa soluble protein that is predominately localized on the bacterial cell surface with significant levels released into the extracellular milieu. Previous studies of an attenuated strain, MT 239, indicated that it differs from virulent strains in the amount of surface-associated p57. In this report, we show overall expression of p57 in R. salmoninarum MT 239 is considerably reduced as compared to a virulent strain, ATCC 33209. The amount of cell-associated p57 is decreased while the level of p57 in the culture supernatant is nearly equivalent between the strains. To determine if lowered amount of cell-associated p57 was due to a sequence defect in p57, a genetic comparison was performed. Two copies of the gene encoding p57 (msa1 and msa2) were found in 33209 and MT 239, as well as in several other virulent isolates. Both copies from 33209 and MT 239 were cloned and sequenced and found to be identical to each other, and identical between the 2 strains. A comparison of msa1 and msa2 within each strain showed that their sequences diverge 40 base pairs 5, to the open reading frame, while sequences 3' to the open reading frame are essentially identical for at least 225 base pairs. Northern blot analysis showed no difference in steady state levels of rosa mRNA between the 2 strains. These data suggest that while cell-surface localization of p57 may be important for R. salmoninarum virulence, the differences in localization, and total p57 expression between 33209 anti MT 239 are not due to differences in rosa sequence or differences in steady state transcript levels.
Kimura, M; Kimura, J; Hatakeyama, T
1988-11-21
The complete amino acid sequences of ribosomal proteins S11 from the Gram-positive eubacterium Bacillus stearothermophilus and of S19 from the archaebacterium Halobacterium marismortui have been determined. A search for homologous sequences of these proteins revealed that they belong to the ribosomal protein S11 family. Homologous proteins have previously been sequenced from Escherichia coli as well as from chloroplast, yeast and mammalian ribosomes. A pairwise comparison of the amino acid sequences showed that Bacillus protein S11 shares 68% identical residues with S11 from Escherichia coli and a slightly lower homology (52%) with the homologous chloroplast protein. The halophilic protein S19 is more related to the eukaryotic (45-49%) than to the eubacterial counterparts (35%).
A Draft Sequence of the Neandertal Genome
Green, Richard E.; Li, Heng; Zhai, Weiwei; Fritz, Markus Hsi-Yang; Hansen, Nancy F.; Durand, Eric Y.; Malaspinas, Anna-Sapfo; Jensen, Jeffrey D.; Marques-Bonet, Tomas; Alkan, Can; Prüfer, Kay; Meyer, Matthias; Burbano, Hernán A.; Good, Jeffrey M.; Schultz, Rigo; Aximu-Petri, Ayinuer; Butthof, Anne; Höber, Barbara; Höffner, Barbara; Siegemund, Madlen; Weihmann, Antje; Nusbaum, Chad; Lander, Eric S.; Russ, Carsten; Novod, Nathaniel; Affourtit, Jason; Egholm, Michael; Verna, Christine; Rudan, Pavao; Brajkovic, Dejana; Kucan, Željko; Gušic, Ivan; Doronichev, Vladimir B.; Golovanova, Liubov V.; Lalueza-Fox, Carles; de la Rasilla, Marco; Fortea, Javier; Rosas, Antonio; Schmitz, Ralf W.; Johnson, Philip L. F.; Eichler, Evan E.; Falush, Daniel; Birney, Ewan; Mullikin, James C.; Slatkin, Montgomery; Nielsen, Rasmus; Kelso, Janet; Lachmann, Michael; Reich, David; Pääbo, Svante
2016-01-01
Neandertals, the closest evolutionary relatives of present-day humans, lived in large parts of Europe and western Asia before disappearing 30,000 years ago. We present a draft sequence of the Neandertal genome composed of more than 4 billion nucleotides from three individuals. Comparisons of the Neandertal genome to the genomes of five present-day humans from different parts of the world identify a number of genomic regions that may have been affected by positive selection in ancestral modern humans, including genes involved in metabolism and in cognitive and skeletal development. We show that Neandertals shared more genetic variants with present-day humans in Eurasia than with present-day humans in sub-Saharan Africa, suggesting that gene flow from Neandertals into the ancestors of non-Africans occurred before the divergence of Eurasian groups from each other. PMID:20448178
Klebsormidium flaccidum genome reveals primary factors for plant terrestrial adaptation
Hori, Koichi; Maruyama, Fumito; Fujisawa, Takatomo; Togashi, Tomoaki; Yamamoto, Nozomi; Seo, Mitsunori; Sato, Syusei; Yamada, Takuji; Mori, Hiroshi; Tajima, Naoyuki; Moriyama, Takashi; Ikeuchi, Masahiko; Watanabe, Mai; Wada, Hajime; Kobayashi, Koichi; Saito, Masakazu; Masuda, Tatsuru; Sasaki-Sekimoto, Yuko; Mashiguchi, Kiyoshi; Awai, Koichiro; Shimojima, Mie; Masuda, Shinji; Iwai, Masako; Nobusawa, Takashi; Narise, Takafumi; Kondo, Satoshi; Saito, Hikaru; Sato, Ryoichi; Murakawa, Masato; Ihara, Yuta; Oshima-Yamada, Yui; Ohtaka, Kinuka; Satoh, Masanori; Sonobe, Kohei; Ishii, Midori; Ohtani, Ryosuke; Kanamori-Sato, Miyu; Honoki, Rina; Miyazaki, Daichi; Mochizuki, Hitoshi; Umetsu, Jumpei; Higashi, Kouichi; Shibata, Daisuke; Kamiya, Yuji; Sato, Naoki; Nakamura, Yasukazu; Tabata, Satoshi; Ida, Shigeru; Kurokawa, Ken; Ohta, Hiroyuki
2014-01-01
The colonization of land by plants was a key event in the evolution of life. Here we report the draft genome sequence of the filamentous terrestrial alga Klebsormidium flaccidum (Division Charophyta, Order Klebsormidiales) to elucidate the early transition step from aquatic algae to land plants. Comparison of the genome sequence with that of other algae and land plants demonstrate that K. flaccidum acquired many genes specific to land plants. We demonstrate that K. flaccidum indeed produces several plant hormones and homologues of some of the signalling intermediates required for hormone actions in higher plants. The K. flaccidum genome also encodes a primitive system to protect against the harmful effects of high-intensity light. The presence of these plant-related systems in K. flaccidum suggests that, during evolution, this alga acquired the fundamental machinery required for adaptation to terrestrial environments. PMID:24865297
Poulsen, Knud; Reinholdt, Jesper; Jespersgaard, Christina; Boye, Kit; Brown, Thomas A.; Hauge, Majbritt; Kilian, Mogens
1998-01-01
An analysis of 13 immunoglobulin A1 (IgA1) protease genes (iga) of strains of Streptococcus pneumoniae, Streptococcus oralis, Streptococcus mitis, and Streptococcus sanguis was carried out to obtain information on the structure, polymorphism, and phylogeny of this specific protease, which enables bacteria to evade functions of the predominant Ig isotype on mucosal surfaces. The analysis included cloning and sequencing of iga genes from S. oralis and S. mitis biovar 1, sequencing of an additional seven iga genes from S. sanguis biovars 1 through 4, and restriction fragment length polymorphism (RFLP) analyses of iga genes of another 10 strains of S. mitis biovar 1 and 6 strains of S. oralis. All 13 genes sequenced had the potential of encoding proteins with molecular masses of approximately 200 kDa containing the sequence motif HEMTH and an E residue 20 amino acids downstream, which are characteristic of Zn metalloproteinases. In addition, all had a typical gram-positive cell wall anchor motif, LPNTG, which, in contrast to such motifs in other known streptococcal and staphylococcal proteins, was located in their N-terminal parts. Repeat structures showing variation in number and sequence were present in all strains and may be of relevance to the immunogenicities of the enzymes. Protease activities in cultures of the streptococcal strains were associated with species of different molecular masses ranging from 130 to 200 kDa, suggesting posttranslational processing possibly as a result of autoproteolysis at post-proline peptide bonds in the N-terminal parts of the molecules. Comparison of deduced amino acid sequences revealed a 94% similarity between S. oralis and S. mitis IgA1 proteases and a 75 to 79% similarity between IgA1 proteases of these species and those of S. pneumoniae and S. sanguis, respectively. Combined with the results of RFLP analyses using different iga gene fragments as probes, the results of nucleotide sequence comparisons provide evidence of horizontal transfer of iga gene sequences among individual strains of S. sanguis as well as among S. mitis and the two species S. pneumoniae and S. oralis. While iga genes of S. sanguis and S. oralis were highly homogeneous, the genes of S. pneumoniae and S. mitis showed extensive polymorphism reflected in different degrees of antigenic diversity. PMID:9423856
Comparative structural analysis of Bru1 region homeologs in Saccharum spontaneum and S. officinarum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jisen; Sharma, Anupma; Yu, Qingyi
Here, sugarcane is a major sugar and biofuel crop, but genomic research and molecular breeding have lagged behind other major crops due to the complexity of auto-allopolyploid genomes. Sugarcane cultivars are frequently aneuploid with chromosome number ranging from 100 to 130, consisting of 70-80 % S. officinarum, 10-20 % S. spontaneum, and 10 % recombinants between these two species. Analysis of a genomic region in the progenitor autoploid genomes of sugarcane hybrid cultivars will reveal the nature and divergence of homologous chromosomes. As a result, to investigate the origin and evolution of haplotypes in the Bru1 genomic regions in sugarcanemore » cultivars, we identified two BAC clones from S. spontaneum and four from S. officinarum and compared to seven haplotype sequences from sugarcane hybrid R570. The results clarified the origin of seven homologous haplotypes in R570, four haplotypes originated from S. officinarum, two from S. spontaneum and one recombinant.. Retrotransposon insertions and sequences variations among the homologous haplotypes sequence divergence ranged from 18.2 % to 60.5 % with an average of 33. 7 %. Gene content and gene structure were relatively well conserved among the homologous haplotypes. Exon splitting occurred in haplotypes of the hybrid genome but not in its progenitor genomes. Tajima's D analysis revealed that S. spontaneum hapotypes in the Bru1 genomic regions were under strong directional selection. Numerous inversions, deletions, insertions and translocations were found between haplotypes within each genome. In conclusion, this is the first comparison among haplotypes of a modern sugarcane hybrid and its two progenitors. Tajima's D results emphasized the crucial role of this fungal disease resistance gene for enhancing the fitness of this species and indicating that the brown rust resistance gene in R570 is from S. spontaneum. Species-specific InDel, sequences similarity and phylogenetic analysis of homologous genes can be used for identifying the origin of S. spontaneum and S. officinarum haplotype in Saccharum hybrids. Comparison of exon splitting among the homologous haplotypes suggested that the genome rearrangements in Saccharum hybrids S. officinarum would be sufficient for proper genome assembly of this autopolyploid genome. Retrotransposon insertions and sequences variations among the homologous haplotypes sequence divergence may allow sequencing and assembling the autopolyploid Saccharum genomes and the auto-allopolyploid hybrid genomes using whole genome shotgun sequencing.« less
Comparative structural analysis of Bru1 region homeologs in Saccharum spontaneum and S. officinarum
Zhang, Jisen; Sharma, Anupma; Yu, Qingyi; ...
2016-06-10
Here, sugarcane is a major sugar and biofuel crop, but genomic research and molecular breeding have lagged behind other major crops due to the complexity of auto-allopolyploid genomes. Sugarcane cultivars are frequently aneuploid with chromosome number ranging from 100 to 130, consisting of 70-80 % S. officinarum, 10-20 % S. spontaneum, and 10 % recombinants between these two species. Analysis of a genomic region in the progenitor autoploid genomes of sugarcane hybrid cultivars will reveal the nature and divergence of homologous chromosomes. As a result, to investigate the origin and evolution of haplotypes in the Bru1 genomic regions in sugarcanemore » cultivars, we identified two BAC clones from S. spontaneum and four from S. officinarum and compared to seven haplotype sequences from sugarcane hybrid R570. The results clarified the origin of seven homologous haplotypes in R570, four haplotypes originated from S. officinarum, two from S. spontaneum and one recombinant.. Retrotransposon insertions and sequences variations among the homologous haplotypes sequence divergence ranged from 18.2 % to 60.5 % with an average of 33. 7 %. Gene content and gene structure were relatively well conserved among the homologous haplotypes. Exon splitting occurred in haplotypes of the hybrid genome but not in its progenitor genomes. Tajima's D analysis revealed that S. spontaneum hapotypes in the Bru1 genomic regions were under strong directional selection. Numerous inversions, deletions, insertions and translocations were found between haplotypes within each genome. In conclusion, this is the first comparison among haplotypes of a modern sugarcane hybrid and its two progenitors. Tajima's D results emphasized the crucial role of this fungal disease resistance gene for enhancing the fitness of this species and indicating that the brown rust resistance gene in R570 is from S. spontaneum. Species-specific InDel, sequences similarity and phylogenetic analysis of homologous genes can be used for identifying the origin of S. spontaneum and S. officinarum haplotype in Saccharum hybrids. Comparison of exon splitting among the homologous haplotypes suggested that the genome rearrangements in Saccharum hybrids S. officinarum would be sufficient for proper genome assembly of this autopolyploid genome. Retrotransposon insertions and sequences variations among the homologous haplotypes sequence divergence may allow sequencing and assembling the autopolyploid Saccharum genomes and the auto-allopolyploid hybrid genomes using whole genome shotgun sequencing.« less
Genomic Signatures of Speciation in Sympatric and Allopatric Hawaiian Picture-Winged Drosophila
Kang, Lin; Settlage, Robert; McMahon, Wyatt; Michalak, Katarzyna; Tae, Hongseok; Garner, Harold R.; Stacy, Elizabeth A.; Price, Donald K.; Michalak, Pawel
2016-01-01
The Hawaiian archipelago provides a natural arena for understanding adaptive radiation and speciation. The Hawaiian Drosophila are one of the most diverse endemic groups in Hawaiì with up to 1,000 species. We sequenced and analyzed entire genomes of recently diverged species of Hawaiian picture-winged Drosophila, Drosophila silvestris and Drosophila heteroneura from Hawaiì Island, in comparison with Drosophila planitibia, their sister species from Maui, a neighboring island where a common ancestor of all three had likely occurred. Genome-wide single nucleotide polymorphism patterns suggest the more recent origin of D. silvestris and D. heteroneura, as well as a pervasive influence of positive selection on divergence of the three species, with the signatures of positive selection more prominent in sympatry than allopatry. Positively selected genes were significantly enriched for functional terms related to sensory detection and mating, suggesting that sexual selection played an important role in speciation of these species. In particular, sequence variation in Olfactory receptor and Gustatory receptor genes seems to play a major role in adaptive radiation in Hawaiian pictured-winged Drosophila. PMID:27189993
Vines, D J; Warburton, M J
1999-01-25
Tripeptidyl peptidase I (TPP-I) is a lysosomal enzyme that cleaves tripeptides from the N-terminus of polypeptides. A comparison of TPP-I amino acid sequences with sequences derived from an EST database suggested that TPP-I is identical to a pepstatin-insensitive carboxyl proteinase of unknown specificity which is mutated in classical late infantile neuronal ceroid lipofuscinosis (LINCL), a lysosomal storage disease. Both TPP-I and the carboxyl proteinase have an M(r) of about 46 kDa and are, or are predicted to be, resistant to inhibitors of the four major classes of proteinases. Fibroblasts from LINCL patients have less than 5% of the normal TPP-I activity. The activities of other lysosomal enzymes, including proteinases, are in the normal range. LINCL fibroblasts are also defective at degrading short polypeptides and this defect can be induced in normal fibroblasts by treatment with a specific inhibitor or TPP-I. These results suggest that the cell damage, especially neuronal, observed in LINCL results from the defective degradation and consequent lysosomal storage of small peptides.
Pudupakam, Raghavendra Sumanth; Raghunath, Shobana; Pudupakam, Meghanath; Daggupati, Sreenivasulu
2017-03-01
Sequence analysis and phylogenetic studies based on non-structural protein-3 (NS3) gene are important in understanding the evolution and epidemiology of bluetongue virus (BTV). This study was aimed at characterizing the NS3 gene sequence of Indian BTV serotype-2 (BTV2) to elucidate its genetic relationship to global BTV isolates. The NS3 gene of BTV2 was amplified from infected BHK-21 cell cultures, cloned and subjected to sequence analysis. The generated NS3 gene sequence was compared with the corresponding sequences of different BTV serotypes across the world, and a phylogenetic relationship was established. The NS3 gene of BTV2 showed moderate levels of variability in comparison to different BTV serotypes, with nucleotide sequence identities ranging from 81% to 98%. The region showed high sequence homology of 93-99% at amino acid level with various BTV serotypes. The PPXY/PTAP late domain motifs, glycosylation sites, hydrophobic domains, and the amino acid residues critical for virus-host interactions were conserved in NS3 protein. Phylogenetic analysis revealed that BTV isolates segregate into four topotypes and that the Indian BTV2 in subclade IA is closely related to Asian and Australian origin strains. Analysis of the NS3 gene indicated that Indian BTV2 isolate is closely related to strains from Asia and Australia, suggesting a common origin of infection. Although the pattern of evolution of BTV2 isolate is different from other global isolates, the deduced amino acid sequence of NS3 protein demonstrated high molecular stability.
Pudupakam, Raghavendra Sumanth; Raghunath, Shobana; Pudupakam, Meghanath; Daggupati, Sreenivasulu
2017-01-01
Aim: Sequence analysis and phylogenetic studies based on non-structural protein-3 (NS3) gene are important in understanding the evolution and epidemiology of bluetongue virus (BTV). This study was aimed at characterizing the NS3 gene sequence of Indian BTV serotype-2 (BTV2) to elucidate its genetic relationship to global BTV isolates. Materials and Methods: The NS3 gene of BTV2 was amplified from infected BHK-21 cell cultures, cloned and subjected to sequence analysis. The generated NS3 gene sequence was compared with the corresponding sequences of different BTV serotypes across the world, and a phylogenetic relationship was established. Results: The NS3 gene of BTV2 showed moderate levels of variability in comparison to different BTV serotypes, with nucleotide sequence identities ranging from 81% to 98%. The region showed high sequence homology of 93-99% at amino acid level with various BTV serotypes. The PPXY/PTAP late domain motifs, glycosylation sites, hydrophobic domains, and the amino acid residues critical for virus-host interactions were conserved in NS3 protein. Phylogenetic analysis revealed that BTV isolates segregate into four topotypes and that the Indian BTV2 in subclade IA is closely related to Asian and Australian origin strains. Conclusion: Analysis of the NS3 gene indicated that Indian BTV2 isolate is closely related to strains from Asia and Australia, suggesting a common origin of infection. Although the pattern of evolution of BTV2 isolate is different from other global isolates, the deduced amino acid sequence of NS3 protein demonstrated high molecular stability. PMID:28435199
Proteolytic processing of the vitellogenin precursor in the boll weevil, Anthonomus grandis.
Heilmann, L J; Trewitt, P M; Kumaran, A K
1993-01-01
The soluble proteins of the eggs of the coleopteran insect Anthonomus grandis Boheman, the cotton boll weevil, consist almost entirely of two vitellin types with M(r)s of 160,000 and 47,000. We sequenced their N-terminal ends and one internal cyanogen bromide fragment of the large vitellin and compared these sequences with the deduced amino acid sequence from the vitellogenin gene. The results suggest that both the boll weevil vitellin proteins are products of the proteolytic cleavage of a single precursor protein. The smaller 47,000 M(r) vitellin protein is derived from the N-terminal portion of the precursor adjacent to an 18 amino acid signal peptide. The cleavage site between the large and small vitellins at amino acid 362 is adjacent to a pentapeptide sequence containing two pairs of arginine residues. Comparison of the boll weevil sequences with limited known sequences from the single 180,000 M(r) honey bee protein show that the honey bee vitellin N-terminal exhibits sequence homology to the N-terminal of the 47,000 M(r) boll weevil vitellin. Treatment of the vitellins with an N-glycosidase results in a decrease in molecular weight of both proteins, from 47,000 to 39,000 and from 160,000 to 145,000, indicating that about 10-15% of the molecular weight of each vitellin consists of N-linked carbohydrate. The molecular weight of the deglycosylated large vitellin is smaller than that predicted from the gene sequence, indicating possible further proteolytic processing at the C-terminal of that protein.
Luo, Chengwei; Tsementzi, Despina; Kyrpides, Nikos; Read, Timothy; Konstantinidis, Konstantinos T
2012-01-01
Next-generation sequencing (NGS) is commonly used in metagenomic studies of complex microbial communities but whether or not different NGS platforms recover the same diversity from a sample and their assembled sequences are of comparable quality remain unclear. We compared the two most frequently used platforms, the Roche 454 FLX Titanium and the Illumina Genome Analyzer (GA) II, on the same DNA sample obtained from a complex freshwater planktonic community. Despite the substantial differences in read length and sequencing protocols, the platforms provided a comparable view of the community sampled. For instance, derived assemblies overlapped in ~90% of their total sequences and in situ abundances of genes and genotypes (estimated based on sequence coverage) correlated highly between the two platforms (R(2)>0.9). Evaluation of base-call error, frameshift frequency, and contig length suggested that Illumina offered equivalent, if not better, assemblies than Roche 454. The results from metagenomic samples were further validated against DNA samples of eighteen isolate genomes, which showed a range of genome sizes and G+C% content. We also provide quantitative estimates of the errors in gene and contig sequences assembled from datasets characterized by different levels of complexity and G+C% content. For instance, we noted that homopolymer-associated, single-base errors affected ~1% of the protein sequences recovered in Illumina contigs of 10× coverage and 50% G+C; this frequency increased to ~3% when non-homopolymer errors were also considered. Collectively, our results should serve as a useful practical guide for choosing proper sampling strategies and data possessing protocols for future metagenomic studies.
GPU-based cloud service for Smith-Waterman algorithm using frequency distance filtration scheme.
Lee, Sheng-Ta; Lin, Chun-Yuan; Hung, Che Lun
2013-01-01
As the conventional means of analyzing the similarity between a query sequence and database sequences, the Smith-Waterman algorithm is feasible for a database search owing to its high sensitivity. However, this algorithm is still quite time consuming. CUDA programming can improve computations efficiently by using the computational power of massive computing hardware as graphics processing units (GPUs). This work presents a novel Smith-Waterman algorithm with a frequency-based filtration method on GPUs rather than merely accelerating the comparisons yet expending computational resources to handle such unnecessary comparisons. A user friendly interface is also designed for potential cloud server applications with GPUs. Additionally, two data sets, H1N1 protein sequences (query sequence set) and human protein database (database set), are selected, followed by a comparison of CUDA-SW and CUDA-SW with the filtration method, referred to herein as CUDA-SWf. Experimental results indicate that reducing unnecessary sequence alignments can improve the computational time by up to 41%. Importantly, by using CUDA-SWf as a cloud service, this application can be accessed from any computing environment of a device with an Internet connection without time constraints.
Domain similarity based orthology detection.
Bitard-Feildel, Tristan; Kemena, Carsten; Greenwood, Jenny M; Bornberg-Bauer, Erich
2015-05-13
Orthologous protein detection software mostly uses pairwise comparisons of amino-acid sequences to assert whether two proteins are orthologous or not. Accordingly, when the number of sequences for comparison increases, the number of comparisons to compute grows in a quadratic order. A current challenge of bioinformatic research, especially when taking into account the increasing number of sequenced organisms available, is to make this ever-growing number of comparisons computationally feasible in a reasonable amount of time. We propose to speed up the detection of orthologous proteins by using strings of domains to characterize the proteins. We present two new protein similarity measures, a cosine and a maximal weight matching score based on domain content similarity, and new software, named porthoDom. The qualities of the cosine and the maximal weight matching similarity measures are compared against curated datasets. The measures show that domain content similarities are able to correctly group proteins into their families. Accordingly, the cosine similarity measure is used inside porthoDom, the wrapper developed for proteinortho. porthoDom makes use of domain content similarity measures to group proteins together before searching for orthologs. By using domains instead of amino acid sequences, the reduction of the search space decreases the computational complexity of an all-against-all sequence comparison. We demonstrate that representing and comparing proteins as strings of discrete domains, i.e. as a concatenation of their unique identifiers, allows a drastic simplification of search space. porthoDom has the advantage of speeding up orthology detection while maintaining a degree of accuracy similar to proteinortho. The implementation of porthoDom is released using python and C++ languages and is available under the GNU GPL licence 3 at http://www.bornberglab.org/pages/porthoda .
Zopf, Agnes; Raim, Roman; Danzer, Martin; Niklas, Norbert; Spilka, Rita; Pröll, Johannes; Gabriel, Christian; Nechansky, Andreas; Roucka, Markus
2015-03-01
The detection of KRAS mutations in codons 12 and 13 is critical for anti-EGFR therapy strategies; however, only those methodologies with high sensitivity, specificity, and accuracy as well as the best cost and turnaround balance are suitable for routine daily testing. Here we compared the performance of compact sequencing using the novel hybcell technology with 454 next-generation sequencing (454-NGS), Sanger sequencing, and pyrosequencing, using an evaluation panel of 35 specimens. A total of 32 mutations and 10 wild-type cases were reported using 454-NGS as the reference method. Specificity ranged from 100% for Sanger sequencing to 80% for pyrosequencing. Sanger sequencing and hybcell-based compact sequencing achieved a sensitivity of 96%, whereas pyrosequencing had a sensitivity of 88%. Accuracy was 97% for Sanger sequencing, 85% for pyrosequencing, and 94% for hybcell-based compact sequencing. Quantitative results were obtained for 454-NGS and hybcell-based compact sequencing data, resulting in a significant correlation (r = 0.914). Whereas pyrosequencing and Sanger sequencing were not able to detect multiple mutated cell clones within one tumor specimen, 454-NGS and the hybcell-based compact sequencing detected multiple mutations in two specimens. Our comparison shows that the hybcell-based compact sequencing is a valuable alternative to state-of-the-art methodologies used for detection of clinically relevant point mutations.
Seismic stratigraphy and late Quaternary shelf history, south-central Monterey Bay, California
Chin, J.L.; Clifton, H.E.; Mullins, H.T.
1988-01-01
The south-central Monterey Bay shelf is a high-energy, wave-dominated, tectonically active coastal region on the central California continental margin. A prominent feature of this shelf is a sediment lobe off the mouth of the Salinas River that has surface expression. High-resolution seismic-reflection profiles reveal that an angular unconformity (Quaternary?) underlies the entire shelf and separates undeformed strata above it from deformed strata below it. The Salinas River lobe is a convex bulge on the shelf covering an area of approximately 72 km2 in water depths from 10 to 90 m. It reaches a maximum thickness of 35 m about 2.5 km seaward of the river mouth and thins in all directions away from this point. Adjacent shelf areas are characterized by only a thin (2 to 5 m thick) and uniform veneer of sediment. Acoustic stratigraphy of the lobe is complex and is characterized by at least three unconformity-bounded depositional sequences. Acoustically, these sequences are relatively well bedded. Acoustic foresets occur within the intermediate sequence and dip seaward at 0.7?? to 2.0??. Comparison with sedimentary sequences in uplifted onshore Pleistocene marine-terrace deposits of the Monterey Bay area, which were presumably formed in a similar setting under similar processes, suggests that a general interpretation can be formulated for seismic stratigraphic patterns. Depositional sequences are interpreted to represent shallowing-upwards progradational sequences of marine to nonmarine coastal deposits formed during interglacial highstands and/or during early stages of falling sea level. Acoustic foresets within the intermediate sequence are evidence of seaward progradation. Acoustic unconformities that separate depositional sequences are interpreted as having formed largely by shoreface planation and may be the only record of the intervening transgressions. The internal stratigraphy of the Salinas River lobe thus suggests that at least several late Quaternary regressions and transgressions may be recorded under the present shelf. This record may represent the last major eustatic cycle of sea level, an interval not observed in uplifted onshore Pleistocene marine terraces. ?? 1988.
Bull, Marta; Learn, Gerald; Genowati, Indira; McKernan, Jennifer; Hitti, Jane; Lockhart, David; Tapia, Kenneth; Holte, Sarah; Dragavon, Joan; Coombs, Robert; Mullins, James; Frenkel, Lisa
2009-09-22
Compartmentalization of HIV-1 between the genital tract and blood was noted in half of 57 women included in 12 studies primarily using cell-free virus. To further understand differences between genital tract and blood viruses of women with chronic HIV-1 infection cell-free and cell-associated virus populations were sequenced from these tissues, reasoning that integrated viral DNA includes variants archived from earlier in infection, and provides a greater array of genotypes for comparisons. Multiple sequences from single-genome-amplification of HIV-1 RNA and DNA from the genital tract and blood of each woman were compared in a cross-sectional study. Maximum likelihood phylogenies were evaluated for evidence of compartmentalization using four statistical tests. Genital tract and blood HIV-1 appears compartmentalized in 7/13 women by >/=2 statistical analyses. These subjects' phylograms were characterized by low diversity genital-specific viral clades interspersed between clades containing both genital and blood sequences. Many of the genital-specific clades contained monotypic HIV-1 sequences. In 2/7 women, HIV-1 populations were significantly compartmentalized across all four statistical tests; both had low diversity genital tract-only clades. Collapsing monotypic variants into a single sequence diminished the prevalence and extent of compartmentalization. Viral sequences did not demonstrate tissue-specific signature amino acid residues, differential immune selection, or co-receptor usage. In women with chronic HIV-1 infection multiple identical sequences suggest proliferation of HIV-1-infected cells, and low diversity tissue-specific phylogenetic clades are consistent with bursts of viral replication. These monotypic and tissue-specific viruses provide statistical support for compartmentalization of HIV-1 between the female genital tract and blood. However, the intermingling of these clades with clades comprised of both genital and blood sequences and the absence of tissue-specific genetic features suggests compartmentalization between blood and genital tract may be due to viral replication and proliferation of infected cells, and questions whether HIV-1 in the female genital tract is distinct from blood.
Comparison of Metabolic Pathways in Escherichia coli by Using Genetic Algorithms.
Ortegon, Patricia; Poot-Hernández, Augusto C; Perez-Rueda, Ernesto; Rodriguez-Vazquez, Katya
2015-01-01
In order to understand how cellular metabolism has taken its modern form, the conservation and variations between metabolic pathways were evaluated by using a genetic algorithm (GA). The GA approach considered information on the complete metabolism of the bacterium Escherichia coli K-12, as deposited in the KEGG database, and the enzymes belonging to a particular pathway were transformed into enzymatic step sequences by using the breadth-first search algorithm. These sequences represent contiguous enzymes linked to each other, based on their catalytic activities as they are encoded in the Enzyme Commission numbers. In a posterior step, these sequences were compared using a GA in an all-against-all (pairwise comparisons) approach. Individual reactions were chosen based on their measure of fitness to act as parents of offspring, which constitute the new generation. The sequences compared were used to construct a similarity matrix (of fitness values) that was then considered to be clustered by using a k-medoids algorithm. A total of 34 clusters of conserved reactions were obtained, and their sequences were finally aligned with a multiple-sequence alignment GA optimized to align all the reaction sequences included in each group or cluster. From these comparisons, maps associated with the metabolism of similar compounds also contained similar enzymatic step sequences, reinforcing the Patchwork Model for the evolution of metabolism in E. coli K-12, an observation that can be expanded to other organisms, for which there is metabolism information. Finally, our mapping of these reactions is discussed, with illustrations from a particular case.
Comparison of Metabolic Pathways in Escherichia coli by Using Genetic Algorithms
Ortegon, Patricia; Poot-Hernández, Augusto C.; Perez-Rueda, Ernesto; Rodriguez-Vazquez, Katya
2015-01-01
In order to understand how cellular metabolism has taken its modern form, the conservation and variations between metabolic pathways were evaluated by using a genetic algorithm (GA). The GA approach considered information on the complete metabolism of the bacterium Escherichia coli K-12, as deposited in the KEGG database, and the enzymes belonging to a particular pathway were transformed into enzymatic step sequences by using the breadth-first search algorithm. These sequences represent contiguous enzymes linked to each other, based on their catalytic activities as they are encoded in the Enzyme Commission numbers. In a posterior step, these sequences were compared using a GA in an all-against-all (pairwise comparisons) approach. Individual reactions were chosen based on their measure of fitness to act as parents of offspring, which constitute the new generation. The sequences compared were used to construct a similarity matrix (of fitness values) that was then considered to be clustered by using a k-medoids algorithm. A total of 34 clusters of conserved reactions were obtained, and their sequences were finally aligned with a multiple-sequence alignment GA optimized to align all the reaction sequences included in each group or cluster. From these comparisons, maps associated with the metabolism of similar compounds also contained similar enzymatic step sequences, reinforcing the Patchwork Model for the evolution of metabolism in E. coli K-12, an observation that can be expanded to other organisms, for which there is metabolism information. Finally, our mapping of these reactions is discussed, with illustrations from a particular case. PMID:25973143
Sul, Woo Jun; Cole, James R.; Jesus, Ederson da C.; Wang, Qiong; Farris, Ryan J.; Fish, Jordan A.; Tiedje, James M.
2011-01-01
High-throughput sequencing of 16S rRNA genes has increased our understanding of microbial community structure, but now even higher-throughput methods to the Illumina scale allow the creation of much larger datasets with more samples and orders-of-magnitude more sequences that swamp current analytic methods. We developed a method capable of handling these larger datasets on the basis of assignment of sequences into an existing taxonomy using a supervised learning approach (taxonomy-supervised analysis). We compared this method with a commonly used clustering approach based on sequence similarity (taxonomy-unsupervised analysis). We sampled 211 different bacterial communities from various habitats and obtained ∼1.3 million 16S rRNA sequences spanning the V4 hypervariable region by pyrosequencing. Both methodologies gave similar ecological conclusions in that β-diversity measures calculated by using these two types of matrices were significantly correlated to each other, as were the ordination configurations and hierarchical clustering dendrograms. In addition, our taxonomy-supervised analyses were also highly correlated with phylogenetic methods, such as UniFrac. The taxonomy-supervised analysis has the advantages that it is not limited by the exhaustive computation required for the alignment and clustering necessary for the taxonomy-unsupervised analysis, is more tolerant of sequencing errors, and allows comparisons when sequences are from different regions of the 16S rRNA gene. With the tremendous expansion in 16S rRNA data acquisition underway, the taxonomy-supervised approach offers the potential to provide more rapid and extensive community comparisons across habitats and samples. PMID:21873204
Comparison of Dixon Sequences for Estimation of Percent Breast Fibroglandular Tissue
Ledger, Araminta E. W.; Scurr, Erica D.; Hughes, Julie; Macdonald, Alison; Wallace, Toni; Thomas, Karen; Wilson, Robin; Leach, Martin O.; Schmidt, Maria A.
2016-01-01
Objectives To evaluate sources of error in the Magnetic Resonance Imaging (MRI) measurement of percent fibroglandular tissue (%FGT) using two-point Dixon sequences for fat-water separation. Methods Ten female volunteers (median age: 31 yrs, range: 23–50 yrs) gave informed consent following Research Ethics Committee approval. Each volunteer was scanned twice following repositioning to enable an estimation of measurement repeatability from high-resolution gradient-echo (GRE) proton-density (PD)-weighted Dixon sequences. Differences in measures of %FGT attributable to resolution, T1 weighting and sequence type were assessed by comparison of this Dixon sequence with low-resolution GRE PD-weighted Dixon data, and against gradient-echo (GRE) or spin-echo (SE) based T1-weighted Dixon datasets, respectively. Results %FGT measurement from high-resolution PD-weighted Dixon sequences had a coefficient of repeatability of ±4.3%. There was no significant difference in %FGT between high-resolution and low-resolution PD-weighted data. Values of %FGT from GRE and SE T1-weighted data were strongly correlated with that derived from PD-weighted data (r = 0.995 and 0.96, respectively). However, both sequences exhibited higher mean %FGT by 2.9% (p < 0.0001) and 12.6% (p < 0.0001), respectively, in comparison with PD-weighted data; the increase in %FGT from the SE T1-weighted sequence was significantly larger at lower breast densities. Conclusion Although measurement of %FGT at low resolution is feasible, T1 weighting and sequence type impact on the accuracy of Dixon-based %FGT measurements; Dixon MRI protocols for %FGT measurement should be carefully considered, particularly for longitudinal or multi-centre studies. PMID:27011312
ERIC Educational Resources Information Center
Le-Thi, Duyen; Rodgers, Michael P. H.; Pellicer-Sánchez, Ana
2017-01-01
This study investigates the relative effectiveness of different teaching approaches on the learning of formulaic sequences. Three comparisons were made in this study: the effects of explicit teaching of formulaic sequences versus teaching embedded in traditional coursebook instruction, the effects of the degree of salience of the sequences in the…
Brichtová, Eva; Šenkyřík, J
2017-05-01
A low radiation burden is essential during diagnostic procedures in pediatric patients due to their high tissue sensitivity. Using MR examination instead of the routinely used CT reduces the radiation exposure and the risk of adverse stochastic effects. Our retrospective study evaluated the possibility of using ultrafast single-shot (SSh) sequences and turbo spin echo (TSE) sequences in rapid MR brain imaging in pediatric patients with hydrocephalus and a programmable ventriculoperitoneal drainage system. SSh sequences seem to be suitable for examining pediatric patients due to the speed of using this technique, but significant susceptibility artifacts due to the programmable drainage valve degrade the image quality. Therefore, a rapid MR examination protocol based on TSE sequences, less sensitive to artifacts due to ferromagnetic components, has been developed. Of 61 pediatric patients who were examined using MR and the SSh sequence protocol, a group of 15 patients with hydrocephalus and a programmable drainage system also underwent TSE sequence MR imaging. The susceptibility artifact volume in both rapid MR protocols was evaluated using a semiautomatic volumetry system. A statistically significant decrease in the susceptibility artifact volume has been demonstrated in TSE sequence imaging in comparison with SSh sequences. Using TSE sequences reduced the influence of artifacts from the programmable valve, and the image quality in all cases was rated as excellent. In all patients, rapid MR examinations were performed without any need for intravenous sedation or general anesthesia. Our study results strongly suggest the superiority of the TSE sequence MR protocol compared to the SSh sequence protocol in pediatric patients with a programmable ventriculoperitoneal drainage system due to a significant reduction of susceptibility artifact volume. Both rapid sequence MR protocols provide quick and satisfactory brain imaging with no ionizing radiation and a reduced need for intravenous or general anesthesia.
W-curve alignments for HIV-1 genomic comparisons.
Cork, Douglas J; Lembark, Steven; Tovanabutra, Sodsai; Robb, Merlin L; Kim, Jerome H
2010-06-01
The W-curve was originally developed as a graphical visualization technique for viewing DNA and RNA sequences. Its ability to render features of DNA also makes it suitable for computational studies. Its main advantage in this area is utilizing a single-pass algorithm for comparing the sequences. Avoiding recursion during sequence alignments offers advantages for speed and in-process resources. The graphical technique also allows for multiple models of comparison to be used depending on the nucleotide patterns embedded in similar whole genomic sequences. The W-curve approach allows us to compare large numbers of samples quickly. We are currently tuning the algorithm to accommodate quirks specific to HIV-1 genomic sequences so that it can be used to aid in diagnostic and vaccine efforts. Tracking the molecular evolution of the virus has been greatly hampered by gap associated problems predominantly embedded within the envelope gene of the virus. Gaps and hypermutation of the virus slow conventional string based alignments of the whole genome. This paper describes the W-curve algorithm itself, and how we have adapted it for comparison of similar HIV-1 genomes. A treebuilding method is developed with the W-curve that utilizes a novel Cylindrical Coordinate distance method and gap analysis method. HIV-1 C2-V5 env sequence regions from a Mother/Infant cohort study are used in the comparison. The output distance matrix and neighbor results produced by the W-curve are functionally equivalent to those from Clustal for C2-V5 sequences in the mother/infant pairs infected with CRF01_AE. Significant potential exists for utilizing this method in place of conventional string based alignment of HIV-1 genomes, such as Clustal X. With W-curve heuristic alignment, it may be possible to obtain clinically useful results in a short time-short enough to affect clinical choices for acute treatment. A description of the W-curve generation process, including a comparison technique of aligning extremes of the curves to effectively phase-shift them past the HIV-1 gap problem, is presented. Besides yielding similar neighbor-joining phenogram topologies, most Mother and Infant C2-V5 sequences in the cohort pairs geometrically map closest to each other, indicating that W-curve heuristics overcame any gap problem.
Awua, Adolf K; Adanu, Richard M K; Wiredu, Edwin K; Afari, Edwin A; Zubuch, Vanessa A; Asmah, Richard H; Severini, Alberto
2017-04-21
In addition to being useful for classification, sequence variations of human Papillomavirus (HPV) genotypes have been implicated in differential oncogenic potential and a differential association with the different histological forms of invasive cervical cancer. These associations have also been indicated for HPV genotype lineages and sub-lineages. In order to better understand the potential implications of lineage variation in the occurrence of cervical cancers in Ghana, we studied the lineages of the three most prevalent HPV genotypes among women with normal cytology as baseline to further studies. Of previously collected self- and health personnel-collected cervical specimen, 54, which were positive for HPV16, 18 and 45, were selected and the long control region (LCR) of each HPV genotype was separately amplified by a nested PCR. DNA sequences of 41 isolates obtained with the forward and reverse primers by Sanger sequencing were analysed. Nucleotide sequence variations of the HPV16 genotypes were observed at 30 positions within the LCR (7460 - 7840). Of these, 19 were the known variations for the lineages B and C (African lineages), while the other 11 positions had variations unique to the HPV16 isolates of this study. For the HPV18 isolates, the variations were at 35 positions, 22 of which were known variations of Africa lineages and the other 13 were unique variations observed for the isolates obtained in this study (at positions 7799 and 7813). HPV45 isolates had variations at 35 positions and 2 (positions 7114 and 97) were unique to the isolates of this study. This study provides the first data on the lineages of HPV 16, 18 and 45 isolates from Ghana. Although the study did not obtain full genome sequence data for a comprehensive comparison with known lineages, these genotypes were predominately of the Africa lineages and had some unique sequence variations at positions that suggest potential oncogenic implications. These data will be useful for comparison with lineages of these genotypes from women with cervical lesion and all the forms of invasive cervical cancers.
Chapell, J D; Goral, M I; Rodgers, S E; dePamphilis, C W; Dermody, T S
1994-01-01
To better understand genetic diversity within mammalian reoviruses, we determined S2 nucleotide and deduced sigma 2 amino acid sequences of nine reovirus strains and compared these sequences with those of prototype strains of the three reovirus serotypes. The S2 gene and sigma 2 protein are highly conserved among the four type 1, one type 2, and seven type 3 strains studied. Phylogenetic analyses based on S2 nucleotide sequences of the 12 reovirus strains indicate that diversity within the S2 gene is independent of viral serotype. Additionally, we found marked topological differences between phylogenetic trees generated from S1 and S2 gene nucleotide sequences of the seven type 3 strains. These results demonstrate that reovirus S1 and S2 genes have distinct evolutionary histories, thus providing phylogenetic evidence for lateral transfer of reovirus genes in nature. When variability among the 12 sigma 2-encoding S2 nucleotide sequences was analyzed at synonymous positions, we found that approximately 60 nucleotides at the 5' terminus and 30 nucleotides at the 3' terminus were markedly conserved in comparison with other sigma 2-encoding regions of S2. Predictions of RNA secondary structures indicate that the more conserved S2 sequences participate in the formation of an extended region of duplex RNA interrupted by a pair of stem-loops. Among the 12 deduced sigma 2 amino acid sequences examined, substitutions were observed at only 11% of amino acid positions. This finding suggests that constraints on the structure or function of sigma 2, perhaps in part because of its location in the virion core, have limited sequence diversity within this protein. PMID:8289378
USDA-ARS?s Scientific Manuscript database
Sequence comparison between the full-length 2412 bp DNA gyrase subunit B (gyrB) gene of a novobiocin resistant Aeromonas hydrophila AH11NOVO vaccine strain and that of its virulent parent strain AH11P revealed 10 missense mutations. Similarly, sequence comparison between the full-length 4092 bp RNA ...
Church, Sheri A; Livingstone, Kevin; Lai, Zhao; Kozik, Alexander; Knapp, Steven J; Michelmore, Richard W; Rieseberg, Loren H
2007-02-01
Using likelihood-based variable selection models, we determined if positive selection was acting on 523 EST sequence pairs from two lineages of sunflower and lettuce. Variable rate models are generally not used for comparisons of sequence pairs due to the limited information and the inaccuracy of estimates of specific substitution rates. However, previous studies have shown that the likelihood ratio test (LRT) is reliable for detecting positive selection, even with low numbers of sequences. These analyses identified 56 genes that show a signature of selection, of which 75% were not identified by simpler models that average selection across codons. Subsequent mapping studies in sunflower show four of five of the positively selected genes identified by these methods mapped to domestication QTLs. We discuss the validity and limitations of using variable rate models for comparisons of sequence pairs, as well as the limitations of using ESTs for identification of positively selected genes.
Tong, Ying; Zheng, Kang; Zhao, Shufang; Xiao, Guanxiu; Luo, Chen
2012-11-01
Recent studies demonstrated that sequence divergence in both transcriptional regulatory region and coding region contributes to the subfunctionalization of duplicate gene. However, whether sequence divergence in the 3'-untranslated region (3'-UTR) has an impact on the subfunctionalization of duplicate genes remains unclear. Here, we identified two diverging duplicate vsx1 (visual system homeobox-1) loci in goldfish, named vsx1A1 and vsx1A2. Phylogenetic analysis suggests that vsx1A1 and vsx1A2 may arise from a duplication of vsx1 after the separation of goldfish and zebrafish. Sequence comparison revealed that divergence in both transcriptional and translational regulatory regions is higher than divergence in the introns. vsx1A2 expresses during blastula and gastrula stages and in adult retina but silences from segmentation stage to hatching stage, vsx1A1 starts expression from segmentation onward. Comparing to that zebrafish vsx1 expresses in all the developmental stages and in the adult retina, it appears that goldfish vsx1A1 and vsx1A2 are under going to share the functions of ancestral vsx1. The different but overlapping temporal expression patterns of vsx1A1 and vsx1A2 suggest that sequence divergence in the promoter region of duplicate vsx1 is not sufficient for partitioning the functions of ancestral vsx1. By comparing vsx1A1 and vsx1A2 3'-UTR-linked green fluorescent protein gene expression patterns, we demonstrated that the 3'-UTR of vsx1A1 remains but the 3'-UTR of vsx1A2 has lost the capability of mediating bipolar cell specific expression during retina development. These results indicate that sequence divergence in the 3'-UTRs has a clear effect on subfunctionalization of the duplicate genes. © 2012 WILEY PERIODICALS, INC.
NASA Astrophysics Data System (ADS)
Richey, J. Elizabeth
Research examining analogical comparison and self-explanation has produced a robust set of findings about learning and transfer supported by each instructional technique. However, it is unclear how the types of knowledge generated through each technique differ, which has important implications for cognitive theory as well as instructional practice. I conducted a pair of experiments to directly compare the effects of instructional prompts supporting self-explanation, analogical comparison, and the study of instructional explanations across a number of fine-grained learning process, motivation, metacognition, and transfer measures. Experiment 1 explored these questions using sequence extrapolation problems, and results showed no differences between self-explanation and analogical comparison support conditions on any measure. Experiment 2 explored the same questions in a science domain. I evaluated condition effects on transfer outcomes; self-reported self-explanation, analogical comparison, and metacognitive processes; and achievement goals. I also examined relations between transfer and self-reported processes and goals. Receiving materials with analogical comparison support and reporting greater levels of analogical comparison were both associated with worse transfer performance, while reporting greater levels of self-explanation was associated with better performance. Learners' self-reports of self-explanation and analogical comparison were not related to condition assignment, suggesting that the questionnaires did not measure the same processes promoted by the intervention, or that individual differences in processing are robust even when learners are instructed to engage in self-explanation or analogical comparison.
Zseq: An Approach for Preprocessing Next-Generation Sequencing Data.
Alkhateeb, Abedalrhman; Rueda, Luis
2017-08-01
Next-generation sequencing technology generates a huge number of reads (short sequences), which contain a vast amount of genomic data. The sequencing process, however, comes with artifacts. Preprocessing of sequences is mandatory for further downstream analysis. We present Zseq, a linear method that identifies the most informative genomic sequences and reduces the number of biased sequences, sequence duplications, and ambiguous nucleotides. Zseq finds the complexity of the sequences by counting the number of unique k-mers in each sequence as its corresponding score and also takes into the account other factors such as ambiguous nucleotides or high GC-content percentage in k-mers. Based on a z-score threshold, Zseq sweeps through the sequences again and filters those with a z-score less than the user-defined threshold. Zseq algorithm is able to provide a better mapping rate; it reduces the number of ambiguous bases significantly in comparison with other methods. Evaluation of the filtered reads has been conducted by aligning the reads and assembling the transcripts using the reference genome as well as de novo assembly. The assembled transcripts show a better discriminative ability to separate cancer and normal samples in comparison with another state-of-the-art method. Moreover, de novo assembled transcripts from the reads filtered by Zseq have longer genomic sequences than other tested methods. Estimating the threshold of the cutoff point is introduced using labeling rules with optimistic results.
Horizontal Transfer of Non-LTR Retrotransposons from Arthropods to Flowering Plants.
Gao, Dongying; Chu, Ye; Xia, Han; Xu, Chunming; Heyduk, Karolina; Abernathy, Brian; Ozias-Akins, Peggy; Leebens-Mack, James H; Jackson, Scott A
2018-02-01
Even though lateral movements of transposons across families and even phyla within multicellular eukaryotic kingdoms have been found, little is known about transposon transfer between the kingdoms Animalia and Plantae. We discovered a novel non-LTR retrotransposon, AdLINE3, in a wild peanut species. Sequence comparisons and phylogenetic analyses indicated that AdLINE3 is a member of the RTE clade, originally identified in a nematode and rarely reported in plants. We identified RTE elements in 82 plants, spanning angiosperms to algae, including recently active elements in some flowering plants. RTE elements in flowering plants were likely derived from a single family we refer to as An-RTE. Interestingly, An-RTEs show significant DNA sequence identity with non-LTR retroelements from 42 animals belonging to four phyla. Moreover, the sequence identity of RTEs between two arthropods and two plants was higher than that of homologous genes. Phylogenetic and evolutionary analyses of RTEs from both animals and plants suggest that the An-RTE family was likely transferred horizontally into angiosperms from an ancient aphid(s) or ancestral arthropod(s). Notably, some An-RTEs were recruited as coding sequences of functional genes participating in metabolic or other biochemical processes in plants. This is the first potential example of horizontal transfer of transposons between animals and flowering plants. Our findings help to understand exchanges of genetic material between the kingdom Animalia and Plantae and suggest arthropods likely impacted on plant genome evolution. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Benmansour, A.; Bascuro, B.; Monnier, A.F.; Vende, P.; Winton, J.R.; de Kinkelin, P.
1997-01-01
To evaluate the genetic diversity of viral haemorrhagic septicaemia virus (VHSV), the sequence of the glycoprotein genes (G) of 11 North American and European isolates were determined. Comparison with the G protein of representative members of the family Rhabdoviridae suggested that VHSV was a different virus species from infectious haemorrhagic necrosis virus (IHNV) and Hirame rhabdovirus (HIRRV). At a higher taxonomic level, VHSV, IHNV and HIRRV formed a group which was genetically closest to the genus Lyssavirus. Compared with each other, the G genes of VHSV displayed a dissimilar overall genetic diversity which correlated with differences in geographical origin. The multiple sequence alignment of the complete G protein, showed that the divergent positions were not uniformly distributed along the sequence. A central region (amino acid position 245-300) accumulated substitutions and appeared to be highly variable. The genetic heterogeneity within a single isolate was high, with an apparent internal mutation frequency of 1.2 x 10(-3) per nucleotide site, attesting the quasispecies nature of the viral population. The phylogeny separated VHSV strains according to the major geographical area of isolation: genotype I for continental Europe, genotype II for the British Isles, and genotype III for North America. Isolates from continental Europe exhibited the highest genetic variability, with sub-groups correlated partially with the serological classification. Neither neutralizing polyclonal sera, nor monoclonal antibodies, were able to discriminate between the genotypes. The overall structure of the phylogenetic tree suggests that VHSV genetic diversity and evolution fit within the model of random change and positive selection operating on quasispecies.
Sotelo, Elena; Fernández-Pinero, Jovita; Llorente, Francisco; Vázquez, Ana; Moreno, Ana; Agüero, Montserrat; Cordioli, Paolo; Tenorio, Antonio; Jiménez-Clavero, Miguel Ángel
2011-11-01
In recent years, West Nile virus (WNV) has re-emerged in the Western Mediterranean region. As a result, the number of complete WNV genome sequences available from this region has increased, allowing more detailed phylogenetic analyses, which may help to understand the evolutionary history of WNV circulating in the Western Mediterranean. To this aim, the present work describes six new complete WNV sequences from recent outbreaks and surveillance in Italy in 2008-2009 and in Spain in 2008 and 2010. Comparison with other sequences from different WNV clusters within lineage 1 (clade 1a) confirmed that all Western Mediterranean WNV isolates obtained since 1996 (except one from Tunisia, collected in 1997) cluster in a single monophyletic group (here called 'WMed' subtype). The analysis differentiated two subgroups within this subtype, which appear to have evolved from earlier WMed strains, suggesting a single introduction in the area, and further dissemination and evolution. Close similarities between WNV variants circulating in consecutive years, one in Spain, between 2007 and 2008, and another in Italy between 2008 and 2009, suggest that the virus possibly overwinters in Western Mediterranean sites. The NS3(249)-proline genotype, recently proposed as a virulence determinant for WNV, has arisen independently at least twice in the area. Overall, these results indicate that the frequent recurrence of outbreaks caused by phylogenetically homogeneous WNV in the Western Mediterranean since 1996 is consistent with a single introduction followed by viral persistence in endemic foci in the area, rather than resulting from independent introductions from exogenous endemic foci.
2013-01-01
Background The lack of genomic resources can present challenges for studies of non-model organisms. Transcriptome sequencing offers an attractive method to gather information about genes and gene expression without the need for a reference genome. However, it is unclear what sequencing depth is adequate to assemble the transcriptome de novo for these purposes. Results We assembled transcriptomes of animals from six different phyla (Annelids, Arthropods, Chordates, Cnidarians, Ctenophores, and Molluscs) at regular increments of reads using Velvet/Oases and Trinity to determine how read count affects the assembly. This included an assembly of mouse heart reads because we could compare those against the reference genome that is available. We found qualitative differences in the assemblies of whole-animals versus tissues. With increasing reads, whole-animal assemblies show rapid increase of transcripts and discovery of conserved genes, while single-tissue assemblies show a slower discovery of conserved genes though the assembled transcripts were often longer. A deeper examination of the mouse assemblies shows that with more reads, assembly errors become more frequent but such errors can be mitigated with more stringent assembly parameters. Conclusions These assembly trends suggest that representative assemblies are generated with as few as 20 million reads for tissue samples and 30 million reads for whole-animals for RNA-level coverage. These depths provide a good balance between coverage and noise. Beyond 60 million reads, the discovery of new genes is low and sequencing errors of highly-expressed genes are likely to accumulate. Finally, siphonophores (polymorphic Cnidarians) are an exception and possibly require alternate assembly strategies. PMID:23496952
Francis, Warren R; Christianson, Lynne M; Kiko, Rainer; Powers, Meghan L; Shaner, Nathan C; Haddock, Steven H D
2013-03-12
The lack of genomic resources can present challenges for studies of non-model organisms. Transcriptome sequencing offers an attractive method to gather information about genes and gene expression without the need for a reference genome. However, it is unclear what sequencing depth is adequate to assemble the transcriptome de novo for these purposes. We assembled transcriptomes of animals from six different phyla (Annelids, Arthropods, Chordates, Cnidarians, Ctenophores, and Molluscs) at regular increments of reads using Velvet/Oases and Trinity to determine how read count affects the assembly. This included an assembly of mouse heart reads because we could compare those against the reference genome that is available. We found qualitative differences in the assemblies of whole-animals versus tissues. With increasing reads, whole-animal assemblies show rapid increase of transcripts and discovery of conserved genes, while single-tissue assemblies show a slower discovery of conserved genes though the assembled transcripts were often longer. A deeper examination of the mouse assemblies shows that with more reads, assembly errors become more frequent but such errors can be mitigated with more stringent assembly parameters. These assembly trends suggest that representative assemblies are generated with as few as 20 million reads for tissue samples and 30 million reads for whole-animals for RNA-level coverage. These depths provide a good balance between coverage and noise. Beyond 60 million reads, the discovery of new genes is low and sequencing errors of highly-expressed genes are likely to accumulate. Finally, siphonophores (polymorphic Cnidarians) are an exception and possibly require alternate assembly strategies.
Kelley, G.O.; Bendorf, C.M.; Yun, S.C.; Kurath, G.; Hedrick, R.P.
2007-01-01
Infectious hematopoietic necrosis virus (IHNV) contains 3 major genogroups in North America with discreet geographic ranges designated as upper (U), middle (M), and lower (L). A comprehensive genotyping of 237 IHNV isolates from hatchery and wild salmonids in California revealed 25 different sequence types (a to y) all in the L genogroup; specifically, the genogroup contained 14 sequence types that were unique to individual isolates as well as 11 sequence types representing 2 or more identical isolates. The most evident trend was the phylogenetic and geographical division of the L genogroup into 2 distinct subgroups designated as LI and LII. Isolates within Subgroup LI were primarily found within waterways linked to southern Oregon and northern California coastal rivers. Isolates in Subgroup LII were concentrated within inland valley watersheds that included the Sacramento River, San Joaquin River, and their tributaries. The temporal and spatial patterns of virus occurrence suggested that infections among adult Chinook salmon in the hatchery or that spawn in the river are a major source of virus potentially infecting other migrating or resident salmonids in California. Serum neutralization results of the California isolates of IHNV corroborated a temporal trend of sequence divergence; specifically, 2 progressive shifts in which more recent virus isolates represent new serotypes. A comparison of the estimates of divergence rates for Subgroup LI (1 ?? ICT5 mutations per nucleotide site per year) indicated stasis similar to that observed in the U genogroup, while the Subgroup LII rate (1 ?? 10 3 mutations per nucleotide site per year) suggested a more active evolution similar to that of the M genogroup. ?? Inter-Research 2007.
Sakai, Hiroaki; Kanamori, Hiroyuki; Arai-Kichise, Yuko; Shibata-Hatta, Mari; Ebana, Kaworu; Oono, Youko; Kurita, Kanako; Fujisawa, Hiroko; Katagiri, Satoshi; Mukai, Yoshiyuki; Hamada, Masao; Itoh, Takeshi; Matsumoto, Takashi; Katayose, Yuichi; Wakasa, Kyo; Yano, Masahiro; Wu, Jianzhong
2014-01-01
Having a deep genetic structure evolved during its domestication and adaptation, the Asian cultivated rice (Oryza sativa) displays considerable physiological and morphological variations. Here, we describe deep whole-genome sequencing of the aus rice cultivar Kasalath by using the advanced next-generation sequencing (NGS) technologies to gain a better understanding of the sequence and structural changes among highly differentiated cultivars. The de novo assembled Kasalath sequences represented 91.1% (330.55 Mb) of the genome and contained 35 139 expressed loci annotated by RNA-Seq analysis. We detected 2 787 250 single-nucleotide polymorphisms (SNPs) and 7393 large insertion/deletion (indel) sites (>100 bp) between Kasalath and Nipponbare, and 2 216 251 SNPs and 3780 large indels between Kasalath and 93-11. Extensive comparison of the gene contents among these cultivars revealed similar rates of gene gain and loss. We detected at least 7.39 Mb of inserted sequences and 40.75 Mb of unmapped sequences in the Kasalath genome in comparison with the Nipponbare reference genome. Mapping of the publicly available NGS short reads from 50 rice accessions proved the necessity and the value of using the Kasalath whole-genome sequence as an additional reference to capture the sequence polymorphisms that cannot be discovered by using the Nipponbare sequence alone. PMID:24578372
Ishengoma, Edson; Agaba, Morris
2017-02-16
Toll-like receptors (TLRs) are the frontline actors in the innate immune response to various pathogens and are expected to be targets of natural selection in species adapted to habitats with contrasting pathogen burdens. The recent publication of genome sequences of giraffe and okapi together afforded the opportunity to examine the evolution of selected TLRs in broad range of terrestrial ungulates and cetaceans during their complex habitat diversification. Through direct sequence comparisons and standard evolutionary approaches, the extent of nucleotide and protein sequence diversity in seven Toll-like receptors (TLR2, TLR3, TLR4, TLR5, TLR7, TLR9 and TLR10) between giraffe and closely related species was determined. In addition, comparison of the patterning of key TLR motifs and domains between giraffe and related species was performed. The quantification of selection pressure and divergence on TLRs among terrestrial ungulates and cetaceans was also performed. Sequence analysis shows that giraffe has 94-99% nucleotide identity with okapi and cattle for all TLRs analyzed. Variations in the number of Leucine-rich repeats were observed in some of TLRs between giraffe, okapi and cattle. Patterning of key TLR domains did not reveal any significant differences in the domain architecture among giraffe, okapi and cattle. Molecular evolutionary analysis for selection pressure identifies positive selection on key sites for all TLRs examined suggesting that pervasive evolutionary pressure has taken place during the evolution of terrestrial ungulates and cetaceans. Analysis of positively selected sites showed some site to be part of Leucine-rich motifs suggesting functional relevance in species-specific recognition of pathogen associated molecular patterns. Notably, clade analysis reveals significant selection divergence between terrestrial ungulates and cetaceans in viral sensing TLR3. Mapping of giraffe TLR3 key substitutions to the structure of the receptor indicates that at least one of giraffe altered sites coincides with TLR3 residue known to play a critical role in receptor signaling activity. There is overall structural conservation in TLRs among giraffe, okapi and cattle indicating that the mechanism for innate immune response utilizing TLR pathways may not have changed very much during the evolution of these species. However, a broader phylogenetic analysis revealed signatures of adaptive evolution among terrestrial ungulates and cetaceans, including the observed selection divergence in TLR3. This suggests that long term ecological dynamics has led to species-specific innovation and functional variation in the mechanisms mediating innate immunity in terrestrial ungulates and cetaceans.
Zhang, Gaihua; Su, Zhen
2012-01-01
Work on protein structure prediction is very useful in biological research. To evaluate their accuracy, experimental protein structures or their derived data are used as the 'gold standard'. However, as proteins are dynamic molecular machines with structural flexibility such a standard may be unreliable. To investigate the influence of the structure flexibility, we analysed 3,652 protein structures of 137 unique sequences from 24 protein families. The results showed that (1) the three-dimensional (3D) protein structures were not rigid: the root-mean-square deviation (RMSD) of the backbone Cα of structures with identical sequences was relatively large, with the average of the maximum RMSD from each of the 137 sequences being 1.06 Å; (2) the derived data of the 3D structure was not constant, e.g. the highest ratio of the secondary structure wobble site was 60.69%, with the sequence alignments from structural comparisons of two proteins in the same family sometimes being completely different. Proteins may have several stable conformations and the data derived from resolved structures as a 'gold standard' should be optimized before being utilized as criteria to evaluate the prediction methods, e.g. sequence alignment from structural comparison. Helix/β-sheet transition exists in normal free proteins. The coil ratio of the 3D structure could affect its resolution as determined by X-ray crystallography.
Tartar, Aurélien; Boucias, Drion G; Becnel, James J; Adams, Byron J
2003-11-01
The Helicosporidia are invertebrate pathogens that have recently been identified as non-photosynthetic green algae (Chlorophyta). In order to confirm the algal nature of the genus Helicosporidium, the presence of a retained chloroplast genome in Helicosporidia cells was investigated. Fragments homologous to plastid 16S rRNA (rrn16) genes were amplified successfully from cellular DNA extracted from two different Helicosporidium isolates. The fragment sequences are 1269 and 1266 bp long, are very AT-rich (60.7 %) and are similar to homologous genes sequenced from non-photosynthetic green algae. Maximum-parsimony, maximum-likelihood and neighbour-joining methods were used to infer phylogenetic trees from an rrn16 sequence alignment. All trees depicted the Helicosporidia as sister taxa to the non-photosynthetic, pathogenic alga Prototheca zopfii. Moreover, the trees identified Helicosporidium spp. as members of a clade that included the heterotrophic species Prototheca spp. and the mesotrophic species Chlorella protothecoides. The clade is always strongly supported by bootstrap values, suggesting that all these organisms share a most recent common ancestor. Phylogenetic analyses inferred from plastid 16S rRNA genes confirmed that the Helicosporidia are non-photosynthetic green algae, close relatives of the genus Prototheca (Chlorophyta, Trebouxiophyceae). Such phylogenetic affinities suggest that Helicosporidium spp. are likely to possess Prototheca-like organelles and organelle genomes.
An archaebacterial homologue of the essential eubacterial cell division protein FtsZ.
Baumann, P; Jackson, S P
1996-06-25
Life falls into three fundamental domains--Archaea, Bacteria, and Eucarya (formerly archaebacteria, eubacteria, and eukaryotes,. respectively). Though Archaea lack nuclei and share many morphological features with Bacteria, molecular analyses, principally of the transcription and translation machineries, have suggested that Archaea are more related to Eucarya than to Bacteria. Currently, little is known about the archaeal cell division apparatus. In Bacteria, a crucial component of the cell division machinery is FtsZ, a GTPase that localizes to a ring at the site of septation. Interestingly, FtsZ is distantly related in sequence to eukaryotic tubulins, which also interact with GTP and are components of the eukaryotic cell cytoskeleton. By screening for the ability to bind radiolabeled nucleotides, we have identified a protein of the hyperthermophilic archaeon Pyrococcus woesei that interacts tightly and specifically with GTP. Furthermore, through screening an expression library of P. woesei genomic DNA, we have cloned the gene encoding this protein. Sequence comparisons reveal that the P. woesei GTP-binding protein is strikingly related in sequence to eubacterial FtsZ and is marginally more similar to eukaryotic tubulins than are bacterial FtsZ proteins. Phylogenetic analyses reinforce the notion that there is an evolutionary linkage between FtsZ and tubulins. These findings suggest that the archaeal cell division apparatus may be fundamentally similar to that of Bacteria and lead us to consider the evolutionary relationships between Archaea, Bacteria, and Eucarya.
Kodandaramaiah, U; Weingartner, E; Janz, N; Dalén, L; Nylin, S
2011-10-01
Experimental work on Polygonia c-album, a temperate polyphagous butterfly species, has shown that Swedish, Belgian, Norwegian and Estonian females are generalists with respect to host-plant preference, whereas females from UK and Spain are specialized on Urticaceae. Female preference is known to have a strong genetic component. We test whether the specialist and generalist populations form respective genetic clusters using data from mitochondrial sequences and 10 microsatellite loci. Results do not support this hypothesis, suggesting that the specialist and generalist traits have evolved more than once independently. Mitochondrial DNA variation suggests a rapid expansion scenario, with a single widespread haplotype occurring in high frequency, whereas microsatellite data indicate strong differentiation of the Moroccan population. Based on a comparison of polymorphism in the mitochondrial data and sequences from a nuclear gene, we show that the diversity in the former is significantly less than that expected under neutral evolution. Furthermore, we found that almost all butterfly samples were infected with a single strain of Wolbachia, a maternally inherited bacterium. We reason that indirect selection on the mitochondrial genome mediated by a recent sweep of Wolbachia infection has depleted variability in the mitochondrial sequences. We also surmise that P. c-album could have expanded out of a single glacial refugium and colonized Morocco recently. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.
Tyrosine Recombinase Retrotransposons and Transposons.
Poulter, Russell T M; Butler, Margi I
2015-04-01
Retrotransposons carrying tyrosine recombinases (YR) are widespread in eukaryotes. The first described tyrosine recombinase mobile element, DIRS1, is a retroelement from the slime mold Dictyostelium discoideum. The YR elements are bordered by terminal repeats related to their replication via free circular dsDNA intermediates. Site-specific recombination is believed to integrate the circle without creating duplications of the target sites. Recently a large number of YR retrotransposons have been described, including elements from fungi (mucorales and basidiomycetes), plants (green algae) and a wide range of animals including nematodes, insects, sea urchins, fish, amphibia and reptiles. YR retrotransposons can be divided into three major groups: the DIRS elements, PAT-like and the Ngaro elements. The three groups form distinct clades on phylogenetic trees based on alignments of reverse transcriptase/ribonuclease H (RT/RH) and YR sequences, and also having some structural distinctions. A group of eukaryote DNA transposons, cryptons, also carry tyrosine recombinases. These DNA transposons do not encode a reverse transcriptase. They have been detected in several pathogenic fungi and oomycetes. Sequence comparisons suggest that the crypton YRs are related to those of the YR retrotransposons. We suggest that the YR retrotransposons arose from the combination of a crypton-like YR DNA transposon and the RT/RH encoding sequence of a retrotransposon. This acquisition must have occurred at a very early point in the evolution of eukaryotes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, P.A.; Shuster, R.D.; Wooden, J.L.
1993-04-01
The southern Madison Range of southwestern Montana contains two distinct Precambrian lithologic assemblages: (1) a complex of tonalitic to granitic gneisses that has been thrust over (2) a medium-grade metasupracrustal sequence dominated by pelitic schist. Crystallization ages for the protolith of a granodioritic gneiss that intruded the metasupracrustal sequence ([approximately]2.6 Ga)-along with an intercalated meta-andesite ([approximately]2.7 Ga) confirm the sequence as Archean. Chemical (major and trace element), isotopic (Rb-Sr, Sm-Nd, Pb-Pb), and geochronologic (U-Pb zircon) data for selected components of the gneiss complex indicate two groups of gneisses: an older, tonalitic to trondhjemitic group ([approximately]3.3 Ga) and a younger, mostlymore » granitic group ([approximately]2.7 Ga). Both groups of gneisses exhibit the radiogenic Pb and nonradiogenic Nd isotopic signature characteristic of Middle and Late Archean rocks from throughout the Wyoming province. The older gneisses, in particular, appear to be compositionally, isotopically, and chronologically comparable to other Middle Archean gneisses from the northern part of the province (for example, Beartooth Mountains). The Late Archean gneisses, however, exhibit some distinct differences relative to their temporal counterparts, including (1) trace-element patterns that are more suggestive of crustal melts than subduction activity and (2) higher initial Sr isotopic ratios that suggest more involvement of older crust in their petrogenesis. These comparisons suggest that the juxtaposition of Late Archean terranes in the northern Wyoming province was the result, at least in part, of intracratonic processes. 41 refs., 6 figs., 2 tabs.« less
Espinosa, J C; Nonno, R; Di Bari, M; Aguilar-Calvo, P; Pirisinu, L; Fernández-Borges, N; Vanni, I; Vaccari, G; Marín-Moreno, A; Frassanito, P; Lorenzo, P; Agrimi, U; Torres, J M
2016-12-01
Bank vole is a rodent species that shows differential susceptibility to the experimental transmission of different prion strains. In this work, the transmission features of a panel of diverse prions with distinct origins were assayed both in bank vole expressing methionine at codon 109 (Bv109M) and in transgenic mice expressing physiological levels of bank vole PrP C (the BvPrP-Tg407 mouse line). This work is the first systematic comparison of the transmission features of a collection of prion isolates, representing a panel of diverse prion strains, in a transgenic-mouse model and in its natural counterpart. The results showed very similar transmission properties in both the natural species and the transgenic-mouse model, demonstrating the key role of the PrP amino acid sequence in prion transmission susceptibility. However, differences in the PrP Sc types propagated by Bv109M and BvPrP-Tg407 suggest that host factors other than PrP C modulate prion strain features. The differential susceptibility of bank voles to prion strains can be modeled in transgenic mice, suggesting that this selective susceptibility is controlled by the vole PrP sequence alone rather than by other species-specific factors. Differences in the phenotypes observed after prion transmissions in bank voles and in the transgenic mice suggest that host factors other than the PrP C sequence may affect the selection of the substrain replicating in the animal model. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Bonnin, Rémy A; Girlich, Delphine; Imanci, Dilek; Dortet, Laurent; Naas, Thierry
2015-11-19
We provide here the first genome sequence of a Serratia rubidaea isolate, a human-opportunistic pathogen. This reference sequence will permit a comparison of this species with others of the Serratia genus. Copyright © 2015 Bonnin et al.
Sedlar, Karel; Kolek, Jan; Provaznik, Ivo; Patakova, Petra
2017-02-20
The complete genome sequence of non-type strain Clostridium pasteurianum NRRL B-598 was introduced last year; it is an oxygen tolerant, spore-forming, mesophilic heterofermentative bacterium with high hydrogen production and acetone-butanol fermentation ability. The basic genome statistics have shown its similarity to C. beijerinckii rather than the C. pasteurianum species. Here, we present a comparative analysis of the strain with several other complete clostridial genome sequences. Besides a 16S rRNA gene sequence comparison, digital DNA-DNA hybridization (dDDH) and phylogenomic analysis confirmed an inaccuracy of the taxonomic status of strain Clostridium pasteurianum NRRL B-598. Therefore, we suggest its reclassification to be Clostridium beijerinckii NRRL B-598. This is a specific strain and is not identical to other C. beijerinckii strains. This misclassification explains its unexpected behavior, different from other C. pasteurianum strains; it also permits better understanding of the bacterium for a future genetic manipulation that might increase its biofuel production potential. Copyright © 2017 Elsevier B.V. All rights reserved.
Otero, Verónica; Rodríguez-Calleja, José-María; Otero, Andrés; García-López, María-Luisa
2013-01-01
A collection of 81 isolates of enteropathogenic Escherichia coli (EPEC) was obtained from samples of bulk tank sheep milk (62 isolates), ovine feces (4 isolates), sheep farm environment (water, 4 isolates; air, 1 isolate), and human stool samples (9 isolates). The strains were considered atypical EPEC organisms, carrying the eae gene without harboring the pEAF plasmid. Multilocus sequence typing (MLST) was carried out with seven housekeeping genes and 19 sequence types (ST) were detected, with none of them having been previously reported for atypical EPEC. The most frequent ST included 41 strains isolated from milk and human stool samples. Genetic typing by pulsed-field gel electrophoresis (PFGE) resulted in 57 patterns which grouped in 24 clusters. Comparison of strains isolated from the different samples showed phylogenetic relationships between milk and human isolates and also between milk and water isolates. The results obtained show a possible risk for humans due to the presence of atypical EPEC in ewes' milk and suggest a transmission route for this emerging pathogen through contaminated water. PMID:23872571
2011-01-01
The genomic DNA sequence of a novel enteric uncultured microphage, ΦCA82 from a turkey gastrointestinal system was determined utilizing metagenomics techniques. The entire circular, single-stranded nucleotide sequence of the genome was 5,514 nucleotides. The ΦCA82 genome is quite different from other microviruses as indicated by comparisons of nucleotide similarity, predicted protein similarity, and functional classifications. Only three genes showed significant similarity to microviral proteins as determined by local alignments using BLAST analysis. ORF1 encoded a predicted phage F capsid protein that was phylogenetically most similar to the Microviridae ΦMH2K member's major coat protein. The ΦCA82 genome also encoded a predicted minor capsid protein (ORF2) and putative replication initiation protein (ORF3) most similar to the microviral bacteriophage SpV4. The distant evolutionary relationship of ΦCA82 suggests that the divergence of this novel turkey microvirus from other microviruses may reflect unique evolutionary pressures encountered within the turkey gastrointestinal system. PMID:21714899
Melo, Silvana; Utsunomia, Ricardo; Penitente, Manolo; Sobrinho-Scudeler, Patrícia Elda; Porto-Foresti, Fábio; Oliveira, Claudio; Foresti, Fausto; Dergam, Jorge Abdala
2017-01-01
Abstract Within the genus Prochilodus Agassiz, 1829, five species are known to carry B chromosomes, i.e. chromosomes beyond the usual diploid number that have been traditionally considered as accessory for the genome. Chromosome microdissection and mapping of repetitive DNA sequences are effective tools to assess the DNA content and allow a better understanding about the origin and composition of these elements in an array of species. In this study, a novel characterization of B chromosomes in Prochilodus costatus Valenciennes, 1850 (2n=54) was reported for the first time and their sequence complementarity with the supernumerary chromosomes observed in Prochilodus lineatus (Valenciennes, 1836) and Prochilodus argenteus Agassiz, 1829 was investigated. The hybridization patterns obtained with chromosome painting using the micro B probe of P. costatus and the satDNA SATH1 mapping made it possible to assume homology of sequences between the B chromosomes of these congeneric species. Our results suggest that the origin of B chromosomes in the genus Prochilodus is a phylogenetically old event. PMID:28919971
Gagny, B; Rossignol, M; Silar, P
1997-12-01
We have cloned and sequenced the gene encoding the translation elongation factor eEF1A from two filamentous fungi, Podospora curvicolla and Sordaria macrospora. These fungi are close relatives of Podospora anserina and also show senescence syndromes. Comparison of the sequences of the deduced proteins with that of P. anserina reveals that the three proteins differ in several positions. Replacement of the P. anserina gene by either of the two exogenous genes does not entail any modification in P. anserina physiology; the longevity of the fungus is not affected. No alteration of in vivo translational accuracy was detected; however, the exogenous proteins nonetheless promoted a modification of the resistance to the aminoglycoside antibiotic paromomycin. These data suggest that optimization of life span between these closely related fungi has likely not been performed during evolution through modifications of eEF1A activity, despite the fact that mutations in this factor can drastically affect longevity. Copyright 1997 Academic Press.
Variability Studies of Two Prunus-Infecting Fabaviruses with the Aid of High-Throughput Sequencing
Sarkisova, Tatiana; Lenz, Ondřej; Přibylová, Jaroslava; Špak, Josef; Lotos, Leonidas; Beta, Christina; Katsiani, Asimina; Candresse, Thierry
2018-01-01
During their lifetime, perennial woody plants are expected to face multiple infection events. Furthermore, multiple genotypes of individual virus species may co-infect the same host. This may eventually lead to a situation where plants harbor complex communities of viral species/strains. Using high-throughput sequencing, we describe co-infection of sweet and sour cherry trees with diverse genomic variants of two closely related viruses, namely prunus virus F (PrVF) and cherry virus F (CVF). Both viruses are most homologous to members of the Fabavirus genus (Secoviridae family). The comparison of CVF and PrVF RNA2 genomic sequences suggests that the two viruses may significantly differ in their expression strategy. Indeed, similar to comoviruses, the smaller genomic segment of PrVF, RNA2, may be translated in two collinear proteins while CVF likely expresses only the shorter of these two proteins. Linked with the observation that identity levels between the coat proteins of these two viruses are significantly below the family species demarcation cut-off, these findings support the idea that CVF and PrVF represent two separate Fabavirus species. PMID:29670059
A clone-free, single molecule map of the domestic cow (Bos taurus) genome.
Zhou, Shiguo; Goldstein, Steve; Place, Michael; Bechner, Michael; Patino, Diego; Potamousis, Konstantinos; Ravindran, Prabu; Pape, Louise; Rincon, Gonzalo; Hernandez-Ortiz, Juan; Medrano, Juan F; Schwartz, David C
2015-08-28
The cattle (Bos taurus) genome was originally selected for sequencing due to its economic importance and unique biology as a model organism for understanding other ruminants, or mammals. Currently, there are two cattle genome sequence assemblies (UMD3.1 and Btau4.6) from groups using dissimilar assembly algorithms, which were complemented by genetic and physical map resources. However, past comparisons between these assemblies revealed substantial differences. Consequently, such discordances have engendered ambiguities when using reference sequence data, impacting genomic studies in cattle and motivating construction of a new optical map resource--BtOM1.0--to guide comparisons and improvements to the current sequence builds. Accordingly, our comprehensive comparisons of BtOM1.0 against the UMD3.1 and Btau4.6 sequence builds tabulate large-to-immediate scale discordances requiring mediation. The optical map, BtOM1.0, spanning the B. taurus genome (Hereford breed, L1 Dominette 01449) was assembled from an optical map dataset consisting of 2,973,315 (439 X; raw dataset size before assembly) single molecule optical maps (Rmaps; 1 Rmap = 1 restriction mapped DNA molecule) generated by the Optical Mapping System. The BamHI map spans 2,575.30 Mb and comprises 78 optical contigs assembled by a combination of iterative (using the reference sequence: UMD3.1) and de novo assembly techniques. BtOM1.0 is a high-resolution physical map featuring an average restriction fragment size of 8.91 Kb. Comparisons of BtOM1.0 vs. UMD3.1, or Btau4.6, revealed that Btau4.6 presented far more discordances (7,463) vs. UMD3.1 (4,754). Overall, we found that Btau4.6 presented almost double the number of discordances than UMD3.1 across most of the 6 categories of sequence vs. map discrepancies, which are: COMPLEX (misassembly), DELs (extraneous sequences), INSs (missing sequences), ITs (Inverted/Translocated sequences), ECs (extra restriction cuts) and MCs (missing restriction cuts). Alignments of UMD3.1 and Btau4.6 to BtOM1.0 reveal discordances commensurate with previous reports, and affirm the NCBI's current designation of UMD3.1 sequence assembly as the "reference assembly" and the Btau4.6 as the "alternate assembly." The cattle genome optical map, BtOM1.0, when used as a comprehensive and largely independent guide, will greatly assist improvements to existing sequence builds, and later serve as an accurate physical scaffold for studies concerning the comparative genomics of cattle breeds.
Richards, Vincent P.; Lang, Ping; Pavinski Bitar, Paulina D.; Lefébure, Tristan; Schukken, Ynte H.; Zadoks, Ruth N.; Stanhope, Michael J.
2011-01-01
In addition to causing severe invasive infections in humans, Streptococcus agalactiae, or group B Streptococcus (GBS), is also a major cause of bovine mastitis. Here we provide the first genome sequence for S. agalactiae isolated from a cow diagnosed with clinical mastitis (strain FSL S3-026). Comparison to eight S. agalactiae genomes obtained from human disease isolates revealed 183 genes specific to the bovine strain. Subsequent polymerase chain reaction (PCR) screening for the presence/absence of a subset of these loci in additional bovine and human strains revealed strong differentiation between the two groups (Fisher exact test: p < 0.0001). The majority of the bovine strain-specific genes (~85%) clustered tightly into eight genomic islands, suggesting these genes were acquired through lateral gene transfer (LGT). This bovine GBS also contained an unusually high proportion of insertion sequences (4.3% of the total genome), suggesting frequent genomic rearrangement. Comparison to other mastitis-causing species of bacteria provided strong evidence for two cases of interspecies LGT within the shared bovine environment: bovine S. agalactiae with Streptococcus uberis (nisin U operon) and Streptococcus dysgalactiae subsp. dysgalactiae (lactose operon). We also found evidence for LGT, involving the salivaricin operon, between the bovine S. agalactiae strain and either Streptococcus pyogenes or Streptococcus salivarius. Our findings provide insight intomechanismsfacilitatingenvironmentaladaptationandacquisitionofpotential virulence factors, while highlighting both the key role LGT has played in the recent evolution of the bovine S. agalactiae strain, and the importance of LGT among pathogens within a shared environment. PMID:21536150
eShadow: A tool for comparing closely related sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovcharenko, Ivan; Boffelli, Dario; Loots, Gabriela G.
2004-01-15
Primate sequence comparisons are difficult to interpret due to the high degree of sequence similarity shared between such closely related species. Recently, a novel method, phylogenetic shadowing, has been pioneered for predicting functional elements in the human genome through the analysis of multiple primate sequence alignments. We have expanded this theoretical approach to create a computational tool, eShadow, for the identification of elements under selective pressure in multiple sequence alignments of closely related genomes, such as in comparisons of human to primate or mouse to rat DNA. This tool integrates two different statistical methods and allows for the dynamic visualizationmore » of the resulting conservation profile. eShadow also includes a versatile optimization module capable of training the underlying Hidden Markov Model to differentially predict functional sequences. This module grants the tool high flexibility in the analysis of multiple sequence alignments and in comparing sequences with different divergence rates. Here, we describe the eShadow comparative tool and its potential uses for analyzing both multiple nucleotide and protein alignments to predict putative functional elements. The eShadow tool is publicly available at http://eshadow.dcode.org/« less
RECOVIR Software for Identifying Viruses
NASA Technical Reports Server (NTRS)
Chakravarty, Sugoto; Fox, George E.; Zhu, Dianhui
2013-01-01
Most single-stranded RNA (ssRNA) viruses mutate rapidly to generate a large number of strains with highly divergent capsid sequences. Determining the capsid residues or nucleotides that uniquely characterize these strains is critical in understanding the strain diversity of these viruses. RECOVIR (an acronym for "recognize viruses") software predicts the strains of some ssRNA viruses from their limited sequence data. Novel phylogenetic-tree-based databases of protein or nucleic acid residues that uniquely characterize these virus strains are created. Strains of input virus sequences (partial or complete) are predicted through residue-wise comparisons with the databases. RECOVIR uses unique characterizing residues to identify automatically strains of partial or complete capsid sequences of picorna and caliciviruses, two of the most highly diverse ssRNA virus families. Partition-wise comparisons of the database residues with the corresponding residues of more than 300 complete and partial sequences of these viruses resulted in correct strain identification for all of these sequences. This study shows the feasibility of creating databases of hitherto unknown residues uniquely characterizing the capsid sequences of two of the most highly divergent ssRNA virus families. These databases enable automated strain identification from partial or complete capsid sequences of these human and animal pathogens.
Shoguchi, Eiichi; Shinzato, Chuya; Hisata, Kanako; Satoh, Nori; Mungpakdee, Sutada
2015-01-01
Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis. Consequently, noncoding sequences and gene arrangements of dinoflagellate mitochondrial genomes have not been well characterized. Here we report that the continuous assembled genome (∼326 kb) of the dinoflagellate, Symbiodinium minutum, is AT-rich (∼64.3%) and that it contains three protein-coding genes. Based upon in silico analysis, the remaining 99% of the genome comprises transcriptomic noncoding sequences. RNA edited sites and unique, possible start and stop codons clarify conserved regions among dinoflagellates. Our massive transcriptome analysis shows that almost all regions of the genome are transcribed, including 27 possible fragmented ribosomal RNA genes and 12 uncharacterized small RNAs that are similar to mitochondrial RNA genes of the malarial parasite, Plasmodium falciparum. Gene map comparisons show that gene order is only slightly conserved between S. minutum and P. falciparum. However, small RNAs and intergenic sequences share sequence similarities with P. falciparum, suggesting that the function of noncoding sequences has been preserved despite development of very different genome structures. PMID:26199191
Song, Yang; Zhang, Yong; Fan, Qin; Cui, Hui; Yan, Dongmei; Zhu, Shuangli; Tang, Haishu; Sun, Qiang; Wang, Dongyan; Xu, Wenbo
2017-02-23
Human enterovirus B106 (EV-B106) is a new member of the enterovirus B species. To date, only three nucleotide sequences of EV-B106 have been published, and only one full-length genome sequence (the Yunnan strain 148/YN/CHN/12) is available in the GenBank database. In this study, we conducted phylogenetic characterisation of four EV-B106 strains isolated in Xinjiang, China. Pairwise comparisons of the nucleotide sequences and the deduced amino acid sequences revealed that the four Xinjiang EV-B106 strains had only 80.5-80.8% nucleotide identity and 95.4-97.3% amino acid identity with the Yunnan EV-B106 strain, indicating high mutagenicity. Similarity plots and bootscanning analyses revealed that frequent intertypic recombination occurred in all four Xinjiang EV-B106 strains in the non-structural region. These four strains may share a donor sequence with the EV-B85 strain, which circulated in Xinjiang in 2011, indicating extensive genetic exchanges between these strains. All Xinjiang EV-B106 strains were temperature-sensitive. An antibody seroprevalence study against EV-B106 in two Xinjiang prefectures also showed low titres of neutralizing antibodies, suggesting limited exposure and transmission in the population. This study contributes the whole genome sequences of EV-B106 to the GenBank database and provides valuable information regarding the molecular epidemiology of EV-B106 in China.
Song, Yang; Zhang, Yong; Fan, Qin; Cui, Hui; Yan, Dongmei; Zhu, Shuangli; Tang, Haishu; Sun, Qiang; Wang, Dongyan; Xu, Wenbo
2017-01-01
Human enterovirus B106 (EV-B106) is a new member of the enterovirus B species. To date, only three nucleotide sequences of EV-B106 have been published, and only one full-length genome sequence (the Yunnan strain 148/YN/CHN/12) is available in the GenBank database. In this study, we conducted phylogenetic characterisation of four EV-B106 strains isolated in Xinjiang, China. Pairwise comparisons of the nucleotide sequences and the deduced amino acid sequences revealed that the four Xinjiang EV-B106 strains had only 80.5–80.8% nucleotide identity and 95.4–97.3% amino acid identity with the Yunnan EV-B106 strain, indicating high mutagenicity. Similarity plots and bootscanning analyses revealed that frequent intertypic recombination occurred in all four Xinjiang EV-B106 strains in the non-structural region. These four strains may share a donor sequence with the EV-B85 strain, which circulated in Xinjiang in 2011, indicating extensive genetic exchanges between these strains. All Xinjiang EV-B106 strains were temperature-sensitive. An antibody seroprevalence study against EV-B106 in two Xinjiang prefectures also showed low titres of neutralizing antibodies, suggesting limited exposure and transmission in the population. This study contributes the whole genome sequences of EV-B106 to the GenBank database and provides valuable information regarding the molecular epidemiology of EV-B106 in China. PMID:28230168
Genomic structure of the human D-site binding protein (DBP) gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shutler, G.; Glassco, T.; Kang, Xiaolin
1996-06-15
The human gene for the D-Site Binding Protein (DBP) has been sequenced and characterized. This gene is a member of the b/ZIP family of transcription factors and is one of three genes forming the PAR sub-family. DBP has been implicated in the diurnal regulation of a variety of liver-specific genes. Examination of the genomic structure of DBP reveals that the gene is divided into four exons and is contained within a relatively compact region of approximately 6 kb. These exons appear to correspond to functional divisions the DBP protein. Exon 1 contains a long 5{prime} UTR, and conservation between themore » rat and the human genes of the presence of small open reading frames within this region suggests that is may play a role in translational control. Exon 2 contains a limited region of similarity to the other PAR domain genes, which may be part of a potential activation domain. Exon 3 contains the PAR domain and differs by only 1 of 71 amino acids between rat and human. Exon 4, containing both the basic and the leucine zipper domains, is likewise highly conserved. The overall degree of homology between the rat and the human cDNA sequences is 82% for the nucleic acid sequence and 92% for the protein sequence. comparison of the rat and human proximal promoters reveals extensive sequence conservation, with two previously characterized DNA binding sites being conserved at the functional and sequence levels. 31 refs., 4 figs.« less
Ngcapu, Sinaye; Theys, Kristof; Libin, Pieter; Marconi, Vincent C; Sunpath, Henry; Ndung'u, Thumbi; Gordon, Michelle L
2017-11-08
The South African national treatment programme includes nucleoside reverse transcriptase inhibitors (NRTIs) in both first and second line highly active antiretroviral therapy regimens. Mutations in the RNase H domain have been associated with resistance to NRTIs but primarily in HIV-1 subtype B studies. Here, we investigated the prevalence and association of RNase H mutations with NRTI resistance in sequences from HIV-1 subtype C infected individuals. RNase H sequences from 112 NRTI treated but virologically failing individuals and 28 antiretroviral therapy (ART)-naive individuals were generated and analysed. In addition, sequences from 359 subtype C ART-naive sequences were downloaded from Los Alamos database to give a total of 387 sequences from ART-naive individuals for the analysis. Fisher's exact test was used to identify mutations and Bayesian network learning was applied to identify novel NRTI resistance mutation pathways in RNase H domain. The mutations A435L, S468A, T470S, L484I, A508S, Q509L, L517I, Q524E and E529D were more prevalent in sequences from treatment-experienced compared to antiretroviral treatment naive individuals, however, only the E529D mutation remained significant after correction for multiple comparison. Our findings suggest a potential interaction between E529D and NRTI-treatment; however, site-directed mutagenesis is needed to understand the impact of this RNase H mutation.
Simonen, Marja-Leena; Roivainen, Merja; Iber, Jane; Burns, Cara; Hovi, Tapani
2010-01-01
In 1984, a wild type 3 poliovirus (PV3/FIN84) spread all over Finland causing nine cases of paralytic poliomyelitis and one case of aseptic meningitis. The outbreak was ended in 1985 with an intensive vaccination campaign. By limited sequence comparison with previously isolated PV3 strains, closest relatives of PV3/FIN84 were found among strains circulating in the Mediterranean region. Now we wanted to reanalyse the relationships using approaches currently exploited in poliovirus surveillance. Cell lysates of 22 strains isolated during the outbreak and stored frozen were subjected to RT-PCR amplification in three genomic regions without prior subculture. Sequences of the entire VP1 coding region, 150 nucleotides in the VP1-2A junction, most of the 5' non-coding region, partial sequences of the 3D RNA polymerase coding region and partial 3' non-coding region were compared within the outbreak and with sequences available in data banks. In addition, complete nucleotide sequences were obtained for 2 strains isolated from two different cases of disease during the outbreak. The results confirmed the previously described wide intraepidemic variation of the strains, including amino acid substitutions in antigenic sites, as well as the likely Mediterranean region origin of the strains. Simplot and bootscanning analyses of the complete genomes indicated complicated evolutionary history of the non-capsid coding regions of the genome suggesting several recombinations with different HEV-C viruses in the past.
Cloud, Joann L; Harmsen, Dag; Iwen, Peter C; Dunn, James J; Hall, Gerri; Lasala, Paul Rocco; Hoggan, Karen; Wilson, Deborah; Woods, Gail L; Mellmann, Alexander
2010-04-01
Correct identification of nonfermenting Gram-negative bacilli (NFB) is crucial for patient management. We compared phenotypic identifications of 96 clinical NFB isolates with identifications obtained by 5' 16S rRNA gene sequencing. Sequencing identified 88 isolates (91.7%) with >99% similarity to a sequence from the assigned species; 61.5% of sequencing results were concordant with phenotypic results, indicating the usability of sequencing to identify NFB.
Jeong, Young-Min; Kim, Namshin; Ahn, Byung Ohg; Oh, Mijin; Chung, Won-Hyong; Chung, Hee; Jeong, Seongmun; Lim, Ki-Byung; Hwang, Yoon-Jung; Kim, Goon-Bo; Baek, Seunghoon; Choi, Sang-Bong; Hyung, Dae-Jin; Lee, Seung-Won; Sohn, Seong-Han; Kwon, Soo-Jin; Jin, Mina; Seol, Young-Joo; Chae, Won Byoung; Choi, Keun Jin; Park, Beom-Seok; Yu, Hee-Ju; Mun, Jeong-Hwan
2016-07-01
This study presents a chromosome-scale draft genome sequence of radish that is assembled into nine chromosomal pseudomolecules. A comprehensive comparative genome analysis with the Brassica genomes provides genomic evidences on the evolution of the mesohexaploid radish genome. Radish (Raphanus sativus L.) is an agronomically important root vegetable crop and its origin and phylogenetic position in the tribe Brassiceae is controversial. Here we present a comprehensive analysis of the radish genome based on the chromosome sequences of R. sativus cv. WK10039. The radish genome was sequenced and assembled into 426.2 Mb spanning >98 % of the gene space, of which 344.0 Mb were integrated into nine chromosome pseudomolecules. Approximately 36 % of the genome was repetitive sequences and 46,514 protein-coding genes were predicted and annotated. Comparative mapping of the tPCK-like ancestral genome revealed that the radish genome has intermediate characteristics between the Brassica A/C and B genomes in the triplicated segments, suggesting an internal origin from the genus Brassica. The evolutionary characteristics shared between radish and other Brassica species provided genomic evidences that the current form of nine chromosomes in radish was rearranged from the chromosomes of hexaploid progenitor. Overall, this study provides a chromosome-scale draft genome sequence of radish as well as novel insight into evolution of the mesohexaploid genomes in the tribe Brassiceae.
Remarkable sequence conservation of the last intron in the PKD1 gene.
Rodova, Marianna; Islam, M Rafiq; Peterson, Kenneth R; Calvet, James P
2003-10-01
The last intron of the PKD1 gene (intron 45) was found to have exceptionally high sequence conservation across four mammalian species: human, mouse, rat, and dog. This conservation did not extend to the comparable intron in pufferfish. Pairwise comparisons for intron 45 showed 91% identity (human vs. dog) to 100% identity (mouse vs. rat) for an average for all four species of 94% identity. In contrast, introns 43 and 44 of the PKD1 gene had average pairwise identities of 57% and 54%, and exons 43, 44, and 45 and the coding region of exon 46 had average pairwise identities of 80%, 84%, 82%, and 80%. Intron 45 is 90 to 95 bp in length, with the major region of sequence divergence being in a central 4-bp to 9-bp variable region. RNA secondary structure analysis of intron 45 predicts a branching stem-loop structure in which the central variable region lies in one loop and the putative branch point sequence lies in another loop, suggesting that the intron adopts a specific stem-loop structure that may be important for its removal. Although intron 45 appears to conform to the class of small, G-triplet-containing introns that are spliced by a mechanism utilizing intron definition, its high sequence conservation may be a reflection of constraints imposed by a unique mechanism that coordinates splicing of this last PKD1 intron with polyadenylation.
Mejia-Velasquez, Paula J; Dilcher, David L; Jaramillo, Carlos A; Fortini, Lucas B; Manchester, Steven R
2012-11-01
Reconstruction of floristic patterns during the early diversification of angiosperms is impeded by the scarce fossil record, especially in tropical latitudes. Here we collected quantitative palynological data from a stratigraphic sequence in tropical South America to provide floristic and climatic insights into such tropical environments during the Early Cretaceous. We reconstructed the floristic composition of an Aptian-Albian tropical sequence from central Colombia using quantitative palynology (rarefied species richness and abundance) and used it to infer its predominant climatic conditions. Additionally, we compared our results with available quantitative data from three other sequences encompassing 70 floristic assemblages to determine latitudinal diversity patterns. Abundance of humidity indicators was higher than that of aridity indicators (61% vs. 10%). Additionally, we found an angiosperm latitudinal diversity gradient (LDG) for the Aptian, but not for the Albian, and an inverted LDG of the overall diversity for the Albian. Angiosperm species turnover during the Albian, however, was higher in humid tropics. There were humid climates in northwestern South America during the Aptian-Albian interval contrary to the widespread aridity expected for the tropical belt. The Albian inverted overall LDG is produced by a faster increase in per-sample angiosperm and pteridophyte diversity in temperate latitudes. However, humid tropical sequences had higher rates of floristic turnover suggesting a higher degree of morphological variation than in temperate regions.
Zhang, Peipei; Liu, Yan; Liu, Wenwen; Cao, Mengji; Massart, Sebastien; Wang, Xifeng
2017-01-01
To identify the pathogens responsible for leaf yellowing symptoms on wheat samples collected from Jinan, China, we tested for the presence of three known barley/wheat yellow dwarf viruses (BYDV-GAV, -PAV, WYDV-GPV) (most likely pathogens) using RT-PCR. A sample that tested negative for the three viruses was selected for small RNA sequencing. Twenty-five million sequences were generated, among which 5% were of viral origin. A novel polerovirus was discovered and temporarily named wheat leaf yellowing-associated virus (WLYaV). The full genome of WLYaV corresponds to 5,772 nucleotides (nt), with six AUG-initiated open reading frames, one non-AUG-initiated open reading frame, and three untranslated regions, showing typical features of the family Luteoviridae. Sequence comparison and phylogenetic analyses suggested that WLYaV had the closest relationship with sugarcane yellow leaf virus (ScYLV), but the identities of full genomic nucleotides and deduced amino acid sequence of coat protein (CP) were 64.9 and 86.2%, respectively, below the species demarcation thresholds (90%) in the family Luteoviridae. Furthermore, agroinoculation of Nicotiana benthamiana leaves with a cDNA clone of WLYaV caused yellowing symptoms on the plant. Our study adds a new polerovirus that is associated with wheat leaf yellowing disease, which would help to identify and control pathogens of wheat. PMID:28932215
Zhang, Peipei; Liu, Yan; Liu, Wenwen; Cao, Mengji; Massart, Sebastien; Wang, Xifeng
2017-01-01
To identify the pathogens responsible for leaf yellowing symptoms on wheat samples collected from Jinan, China, we tested for the presence of three known barley/wheat yellow dwarf viruses (BYDV-GAV, -PAV, WYDV-GPV) (most likely pathogens) using RT-PCR. A sample that tested negative for the three viruses was selected for small RNA sequencing. Twenty-five million sequences were generated, among which 5% were of viral origin. A novel polerovirus was discovered and temporarily named wheat leaf yellowing-associated virus (WLYaV). The full genome of WLYaV corresponds to 5,772 nucleotides (nt), with six AUG-initiated open reading frames, one non-AUG-initiated open reading frame, and three untranslated regions, showing typical features of the family Luteoviridae . Sequence comparison and phylogenetic analyses suggested that WLYaV had the closest relationship with sugarcane yellow leaf virus (ScYLV), but the identities of full genomic nucleotides and deduced amino acid sequence of coat protein (CP) were 64.9 and 86.2%, respectively, below the species demarcation thresholds (90%) in the family Luteoviridae . Furthermore, agroinoculation of Nicotiana benthamiana leaves with a cDNA clone of WLYaV caused yellowing symptoms on the plant. Our study adds a new polerovirus that is associated with wheat leaf yellowing disease, which would help to identify and control pathogens of wheat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Soo-Ik; Hammes, G.G.
1989-11-01
Homology analyses of the protein sequences of chicken liver and rat mammary gland fatty acid synthases were carried out. The amino acid sequences of the chicken and rat enzymes are 67% identical. If conservative substitutions are allowed, 78% of the amino acids are matched. A region of low homologies exists between the functional domains, in particular around amino acid residues 1059-1264 of the chicken enzyme. Homologies between the active sites of chicken and rat and of chicken and yeast enzymes have been analyzed by an alignment method. A high degree of homology exists between the active sites of the chickenmore » and rat enzymes. However, the chicken and yeast enzymes show a lower degree of homology. The DADPH-binding dinucleotide folds of the {beta}-ketoacyl reductase and the enoyl reductase sites were identified by comparison with a known consensus sequence for the DADP- and FAD-binding dinucleotide folds. The active sites of all of the enzymes are primarily in hydrophobic regions of the protein. This study suggests that the genes for the functional domains of fatty acid synthase were originally separated, and these genes were connected to each other by using different connecting nucleotide sequences in different species. An alternative explanation for the differences in rat and chicken is a common ancestry and mutations in the joining regions during evolution.« less
Unusual Intron Conservation near Tissue-Regulated Exons Found by Splicing Microarrays
Sugnet, Charles W; Srinivasan, Karpagam; Clark, Tyson A; O'Brien, Georgeann; Cline, Melissa S; Wang, Hui; Williams, Alan; Kulp, David; Blume, John E; Haussler, David; Ares, Manuel
2006-01-01
Alternative splicing contributes to both gene regulation and protein diversity. To discover broad relationships between regulation of alternative splicing and sequence conservation, we applied a systems approach, using oligonucleotide microarrays designed to capture splicing information across the mouse genome. In a set of 22 adult tissues, we observe differential expression of RNA containing at least two alternative splice junctions for about 40% of the 6,216 alternative events we could detect. Statistical comparisons identify 171 cassette exons whose inclusion or skipping is different in brain relative to other tissues and another 28 exons whose splicing is different in muscle. A subset of these exons is associated with unusual blocks of intron sequence whose conservation in vertebrates rivals that of protein-coding exons. By focusing on sets of exons with similar regulatory patterns, we have identified new sequence motifs implicated in brain and muscle splicing regulation. Of note is a motif that is strikingly similar to the branchpoint consensus but is located downstream of the 5′ splice site of exons included in muscle. Analysis of three paralogous membrane-associated guanylate kinase genes reveals that each contains a paralogous tissue-regulated exon with a similar tissue inclusion pattern. While the intron sequences flanking these exons remain highly conserved among mammalian orthologs, the paralogous flanking intron sequences have diverged considerably, suggesting unusually complex evolution of the regulation of alternative splicing in multigene families. PMID:16424921
Mejia-Velasquez, Paula J.; Dilcher, David L.; Jaramillo, Carlos A.; Fortini, Lucas B.; Manchester, Steven R.
2012-01-01
Premise of the study: Reconstruction of floristic patterns during the early diversification of angiosperms is impeded by the scarce fossil record, especially in tropical latitudes. Here we collected quantitative palynological data from a stratigraphic sequence in tropical South America to provide floristic and climatic insights into such tropical environments during the Early Cretaceous. Methods: We reconstructed the floristic composition of an Aptian-Albian tropical sequence from central Colombia using quantitative palynology (rarefied species richness and abundance) and used it to infer its predominant climatic conditions. Additionally, we compared our results with available quantitative data from three other sequences encompassing 70 floristic assemblages to determine latitudinal diversity patterns. Key results: Abundance of humidity indicators was higher than that of aridity indicators (61% vs. 10%). Additionally, we found an angiosperm latitudinal diversity gradient (LDG) for the Aptian, but not for the Albian, and an inverted LDG of the overall diversity for the Albian. Angiosperm species turnover during the Albian, however, was higher in humid tropics. Conclusions: There were humid climates in northwestern South America during the Aptian-Albian interval contrary to the widespread aridity expected for the tropical belt. The Albian inverted overall LDG is produced by a faster increase in per-sample angiosperm and pteridophyte diversity in temperate latitudes. However, humid tropical sequences had higher rates of floristic turnover suggesting a higher degree of morphological variation than in temperate regions.
Complete Chloroplast Genome of the Wollemi Pine (Wollemia nobilis): Structure and Evolution.
Yap, Jia-Yee S; Rohner, Thore; Greenfield, Abigail; Van Der Merwe, Marlien; McPherson, Hannah; Glenn, Wendy; Kornfeld, Geoff; Marendy, Elessa; Pan, Annie Y H; Wilton, Alan; Wilkins, Marc R; Rossetto, Maurizio; Delaney, Sven K
2015-01-01
The Wollemi pine (Wollemia nobilis) is a rare Southern conifer with striking morphological similarity to fossil pines. A small population of W. nobilis was discovered in 1994 in a remote canyon system in the Wollemi National Park (near Sydney, Australia). This population contains fewer than 100 individuals and is critically endangered. Previous genetic studies of the Wollemi pine have investigated its evolutionary relationship with other pines in the family Araucariaceae, and have suggested that the Wollemi pine genome contains little or no variation. However, these studies were performed prior to the widespread use of genome sequencing, and their conclusions were based on a limited fraction of the Wollemi pine genome. In this study, we address this problem by determining the entire sequence of the W. nobilis chloroplast genome. A detailed analysis of the structure of the genome is presented, and the evolution of the genome is inferred by comparison with the chloroplast sequences of other members of the Araucariaceae and the related family Podocarpaceae. Pairwise alignments of whole genome sequences, and the presence of unique pseudogenes, gene duplications and insertions in W. nobilis and Araucariaceae, indicate that the W. nobilis chloroplast genome is most similar to that of its sister taxon Agathis. However, the W. nobilis genome contains an unusually high number of repetitive sequences, and these could be used in future studies to investigate and conserve any remnant genetic diversity in the Wollemi pine.
Viral quasispecies inference from 454 pyrosequencing
2013-01-01
Background Many potentially life-threatening infectious viruses are highly mutable in nature. Characterizing the fittest variants within a quasispecies from infected patients is expected to allow unprecedented opportunities to investigate the relationship between quasispecies diversity and disease epidemiology. The advent of next-generation sequencing technologies has allowed the study of virus diversity with high-throughput sequencing, although these methods come with higher rates of errors which can artificially increase diversity. Results Here we introduce a novel computational approach that incorporates base quality scores from next-generation sequencers for reconstructing viral genome sequences that simultaneously infers the number of variants within a quasispecies that are present. Comparisons on simulated and clinical data on dengue virus suggest that the novel approach provides a more accurate inference of the underlying number of variants within the quasispecies, which is vital for clinical efforts in mapping the within-host viral diversity. Sequence alignments generated by our approach are also found to exhibit lower rates of error. Conclusions The ability to infer the viral quasispecies colony that is present within a human host provides the potential for a more accurate classification of the viral phenotype. Understanding the genomics of viruses will be relevant not just to studying how to control or even eradicate these viral infectious diseases, but also in learning about the innate protection in the human host against the viruses. PMID:24308284
Metals and dust in the neutral ISM: the Galaxy, Magellanic Clouds, and damped Lyman-α absorbers
NASA Astrophysics Data System (ADS)
De Cia, Annalisa
2018-05-01
Context. The presence of dust in the neutral interstellar medium (ISM) dramatically changes the metal abundances that we measure. Understanding the metal content in the neutral ISM, and a direct comparison between different environments, has been hampered to date because of the degeneracy to the observed ISM abundances caused by the effects of metallicity, the presence of dust, and nucleosynthesis. Aims: We study the metal and dust content in the neutral ISM consistently in different environments, and assess the universality of recently discovered sequences of relative abundances. We also intend to assess the validity of [Zn/Fe] as a tracer of dust in the ISM. This has recently been cast into doubt based on observations of stellar abundances, and needs to be addressed before we can safely use it to study the ISM. Methods: In this letter we present a simple comparison of relative abundances observed in the neutral ISM in the Galaxy, the Magellanic Clouds, and damped Lyman-α absorbers (DLAs). The main novelty in this comparison is the inclusion of the Magellanic Clouds. Results: The same sequences of relative abundances are valid for the Galaxy, Magellanic Clouds, and DLAs. These sequences are driven by the presence of dust in the ISM and seem "universal". Conclusions: The metal and dust properties in the neutral ISM appear to follow a similar behaviour in different environments. This suggests that a dominant fraction of the dust budget is built up from grain growth in the ISM depending of the physical conditions and regardless of the star formation history of the system. In addition, the DLA gas behaves like the neutral ISM, at least from a chemical point of view. Finally, despite the deviations in [Zn/Fe] observed in stellar abundances, [Zn/Fe] is a robust dust tracer in the ISM of different environments, from the Galaxy to DLAs.
Schmidt-Chanasit, Jonas; Bialonski, Alexandra; Heinemann, Patrick; Ulrich, Rainer G; Günther, Stephan; Rabenau, Holger F; Doerr, Hans Wilhelm
2010-07-01
Recently two different herpes simplex virus type 2 (HSV-2) clades (A and B) were described on DNA sequence data of the glycoprotein E (gE), G (gG) and I (gI) genes. To type the circulating HSV-2 wild-type strains in Germany by a novel approach and to monitor potential changes in the molecular epidemiology between 1997 and 2008. A total of 64 clinical HSV-2 isolates were analyzed by a novel approach using the DNA sequences of the complete open reading frames of glycoprotein B (gB) and gG. Recombination analysis of the gB and gG gene sequences was performed to reveal intragenic recombinants. Based on the phylogenetic analysis of the gB coding DNA sequence 8 of 64 (12%) isolates were classified as clade A strains and 56 of 64 (88%) isolates were classified as clade B strains. Analysis of the gG coding DNA sequence classified 4 (6%) isolates as clade A strains and 60 (94%) isolates as clade B strains. In comparison, the 8 isolates classified as clade A strains using the gB sequence data were classified as clade B strains when using the gG coding DNA sequence, suggesting intergenic recombination events. Intragenic recombination events were not detected. The first molecular survey of clinical HSV-2 isolates from Germany demonstrated the circulation of clade A and B strains and of intergenic recombinants over a period of 12 years. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Equid herpesvirus 8: Complete genome sequence and association with abortion in mares
Garvey, Marie; Suárez, Nicolás M.; Kerr, Karen; Hector, Ralph; Moloney-Quinn, Laura; Arkins, Sean; Davison, Andrew J.
2018-01-01
Equid herpesvirus 8 (EHV-8), formerly known as asinine herpesvirus 3, is an alphaherpesvirus that is closely related to equid herpesviruses 1 and 9 (EHV-1 and EHV-9). The pathogenesis of EHV-8 is relatively little studied and to date has only been associated with respiratory disease in donkeys in Australia and horses in China. A single EHV-8 genome sequence has been generated for strain Wh in China, but is apparently incomplete and contains frameshifts in two genes. In this study, the complete genome sequences of four EHV-8 strains isolated in Ireland between 2003 and 2015 were determined by Illumina sequencing. Two of these strains were isolated from cases of abortion in horses, and were misdiagnosed initially as EHV-1, and two were isolated from donkeys, one with neurological disease. The four genome sequences are very similar to each other, exhibiting greater than 98.4% nucleotide identity, and their phylogenetic clustering together demonstrated that genomic diversity is not dependent on the host. Comparative genomic analysis revealed 24 of the 76 predicted protein sequences are completely conserved among the Irish EHV-8 strains. Evolutionary comparisons indicate that EHV-8 is phylogenetically closer to EHV-9 than it is to EHV-1. In summary, the first complete genome sequences of EHV-8 isolates from two host species over a twelve year period are reported. The current study suggests that EHV-8 can cause abortion in horses. The potential threat of EHV-8 to the horse industry and the possibility that donkeys may act as reservoirs of infection warrant further investigation. PMID:29414990
Ikemoto, Tadahiro; Park, Min Kyun
2003-10-16
To elucidate the molecular phylogeny and evolution of a particular peptide, one must analyze not the limited primary amino acid sequences of the low molecular weight mature polypeptide, but rather the sequences of the corresponding precursors from various species. Of all the structural variants of gonadotropin-releasing hormone (GnRH), GnRH-II (chicken GnRH-II, or cGnRH-II) is remarkably conserved without any sequence substitutions among vertebrates, but its precursor sequences vary considerably. We have identified and characterized the full-length complementary DNA (cDNA) encoding the GnRH-II precursor and determined its genomic structure, consisting of four exons and three introns, in a reptilian species, the leopard gecko Eublepharis macularius. This is the first report about the GnRH-II precursor cDNA/gene from reptiles. The deduced leopard gecko prepro-GnRH-II polypeptide had the highest identities with the corresponding polypeptides of amphibians. The GnRH-II precursor mRNA was detected in more than half of the tissues and organs examined. This widespread expression is consistent with the previous findings in several species, though the roles of GnRH outside the hypothalamus-pituitary-gonadal axis remain largely unknown. Molecular phylogenetic analysis combined with sequence comparison showed that the leopard gecko is more similar to fishes and amphibians than to eutherian mammals with respect to the GnRH-II precursor sequence. These results strongly suggest that the divergence of the GnRH-II precursor sequences seen in eutherian mammals may have occurred along with amniote evolution.
2016-09-09
evaluating 18 mutants using either the A or B conformer is only r = ~ 0.2. Given the poor performance of approximating the observed experimental ...1 Sequence Tolerance of a Highly Stable Single Domain Antibody: Comparison of Computational and Experimental Profiles Mark A. Olson,1 Patricia...unusually high thermal stability is explored by a combined computational and experimental study. Starting with the crystallographic structure
Culturing of female bladder bacteria reveals an interconnected urogenital microbiota.
Thomas-White, Krystal; Forster, Samuel C; Kumar, Nitin; Van Kuiken, Michelle; Putonti, Catherine; Stares, Mark D; Hilt, Evann E; Price, Travis K; Wolfe, Alan J; Lawley, Trevor D
2018-04-19
Metagenomic analyses have indicated that the female bladder harbors an indigenous microbiota. However, there are few cultured reference strains with sequenced genomes available for functional and experimental analyses. Here we isolate and genome-sequence 149 bacterial strains from catheterized urine of 77 women. This culture collection spans 78 species, representing approximately two thirds of the bacterial diversity within the sampled bladders, including Proteobacteria, Actinobacteria, and Firmicutes. Detailed genomic and functional comparison of the bladder microbiota to the gastrointestinal and vaginal microbiotas demonstrates similar vaginal and bladder microbiota, with functional capacities that are distinct from those observed in the gastrointestinal microbiota. Whole-genome phylogenetic analysis of bacterial strains isolated from the vagina and bladder in the same women identifies highly similar Escherichia coli, Streptococcus anginosus, Lactobacillus iners, and Lactobacillus crispatus, suggesting an interlinked female urogenital microbiota that is not only limited to pathogens but is also characteristic of health-associated commensals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villiers, Etienne P. de, E-mail: e.villiers@cgiar.or; Gallardo, Carmina; Arias, Marisa
Viral molecular epidemiology has traditionally analyzed variation in single genes. Whole genome phylogenetic analysis of 123 concatenated genes from 11 ASFV genomes, including E75, a newly sequenced virulent isolate from Spain, identified two clusters. One contained South African isolates from ticks and warthog, suggesting derivation from a sylvatic transmission cycle. The second contained isolates from West Africa and the Iberian Peninsula. Two isolates, from Kenya and Malawi, were outliers. Of the nine genomes within the clusters, seven were within p72 genotype 1. The 11 genomes sequenced comprised only 5 of the 22 p72 genotypes. Comparison of synonymous and non-synonymous mutationsmore » at the genome level identified 20 genes subject to selection pressure for diversification. A novel gene of the E75 virus evolved by the fusion of two genes within the 360 multicopy family. Comparative genomics reveals high diversity within a limited sample of the ASFV viral gene pool.« less
McKeon, Sascha Naomi; Moreno, Marta; Sallum, Maria Anise; Povoa, Marinete Marins; Conn, Jan Evelyn
2013-01-01
To evaluate whether environmental heterogeneity contributes to the genetic heterogeneity in Anopheles triannulatus, larval habitat characteristics across the Brazilian states of Roraima and Pará and genetic sequences were examined. A comparison with Anopheles goeldii was utilised to determine whether high genetic diversity was unique to An. triannulatus. Student t test and analysis of variance found no differences in habitat characteristics between the species. Analysis of population structure of An. triannulatus and An. goeldii revealed distinct demographic histories in a largely overlapping geographic range. Cytochrome oxidase I sequence parsimony networks found geographic clustering for both species; however nuclear marker networks depicted An. triannulatus with a more complex history of fragmentation, secondary contact and recent divergence. Evidence of Pleistocene expansions suggests both species are more likely to be genetically structured by geographic and ecological barriers than demography. We hypothesise that niche partitioning is a driving force for diversity, particularly in An. triannulatus. PMID:23903977
DOE Office of Scientific and Technical Information (OSTI.GOV)
Largen, M.; Mills, S.E.; Rowe, J.
1978-01-25
Anthranilate-5-phosphoribosypyrophosphate phosphoribosyltransferase was purified from the bacterium Erwinia carotovora, a member of the Enterobacteriaceae. The enzyme was homogeneous according to the criteria of gel electrophoresis and NH/sub 2/-terminal amino acid sequence analysis. The molecular weight of the enzyme as determined on a calibrated Sephadex G-200 column was 67,000 +- 2,000. Sodium dodecyl sulfate-polyacrylamide gels gave a subunit molecular weight of 40,000 +- 1,000, suggesting that the enzyme was a dimer. A comparison of the NH/sub 2/-terminal sequence of the enzyme with the (previously determined) homologue from Serratia marcescens, a monomer with a molecular weight of 45,000, showed that the largermore » Serratia subunit came into register with amino acid 14 of the Erwinia subunit. The register for the length of the known overlap, 26 amino acids, was highly conserved.« less
Yellow Pygmy Rice Rat (Oligoryzomys flavescens) and Hantavirus Pulmonary Syndrome in Uruguay
Delfraro, Adriana; Clara, Mario; Tomé, Lorena; Achaval, Federico; Levis, Silvana; Calderón, Gladys; Enria, Delia; Lozano, Mario; Russi, José
2003-01-01
During 5,230 trapping nights, 672 small mammals were trapped in the areas where most hantavirus pulmonary syndrome (HPS) cases occur in Uruguay. Yellow pygmy rice rats (Oligoryzomys flavescens) were the only rodents that showed evidence of antibodies to hantavirus, with a seroprevalence of 2.6%. The rodents were trapped in all the explored environments, and most of the seropositive rodents were found in habitats frequented by humans. Nucleotide sequences were obtained from four HPS case-patients and four yellow pygmy rice rats of the M genome segment. Sequence comparison and phylogenetic analysis showed that rodent-borne viruses and viruses from three HPS case-patients form a well-supported clade and share a 96.4% identity with the previously characterized Central Plata hantavirus. These results suggest that yellow pygmy rice rat (O. flavescens) may be the host for Central Plata, a hantavirus associated with HPS in the southern area of Uruguay.[ PMID:12890326
Zandarashvili, Levani; White, Mark A; Esadze, Alexandre; Iwahara, Junji
2015-07-08
The inducible transcription factor Egr-1 binds specifically to 9-bp target sequences containing two CpG sites that can potentially be methylated at four cytosine bases. Although it appears that complete CpG methylation would make an unfavorable steric clash in the previous crystal structures of the complexes with unmethylated or partially methylated DNA, our affinity data suggest that DNA recognition by Egr-1 is insensitive to CpG methylation. We have determined, at a 1.4-Å resolution, the crystal structure of the Egr-1 zinc-finger complex with completely methylated target DNA. Structural comparison of the three different methylation states reveals why Egr-1 can recognize the target sequences regardless of CpG methylation. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Specific mineral associations of hydrothermal shale (South Kamchatka)
NASA Astrophysics Data System (ADS)
Rychagov, S. N.; Sergeeva, A. V.; Chernov, M. S.
2017-11-01
The sequence of hydrothermal shale from the East Pauzhet thermal field within the Pauzhet hydrothermal system (South Kamchatka) was studied in detail. It was established that the formation of shale resulted from argillization of an andesitic lava flow under the influence of an acidic sulfate vapor condensate. The horizons with radically different compositions and physical properties compared to those of the overlying homogeneous plastic shale were distinguished at the base of the sequence. These horizons are characterized by high (up to two orders of magnitude in comparison with average values in hydrothermal shale) concentrations of F, P, Na, Mg, K, Ca, Sc, Ti, V, Cr, Cu, and Zn. We suggested a geological-geochemical model, according to which a deep metal-bearing chloride-hydrocarbonate solution infiltrated into the permeable zone formed at the root of the andesitic lava flow beneath plastic shale at a certain stage of evolution of the hydrothermal system.
Tomie, Tetsuya; Ishibashi, Jun; Furukawa, Seiichi; Kobayashi, Satoe; Sawahata, Ryoko; Asaoka, Ai; Tagawa, Michito; Yamakawa, Minoru
2003-07-25
A novel antifungal peptide, scarabaecin (4080Da), was isolated from the coconut rhinoceros beetle, Oryctes rhinoceros. Scarabaecin cDNA was cloned by reverse transcriptase-polymerase chain reactions (RT-PCR) using a primer based on the N-terminal amino acid sequence. The amino acid sequence deduced from scarabaecin cDNA showed no significant similarity to those of reported proteins. Chemically synthesized scarabaecin indicated antifungal activity against phytopathogenic fungi such as Pyricularia oryzae, Rhizoctonia solani, and Botrytis cinerea, but not against phytopathogenic bacteria. It showed weak activity against Bauberia bassiana, an insect pathogenic fungus, and Staphylococcus aureus, a pathogenic bacterium. Scarabaecin showed chitin binding property and its K(d) was 1.315 microM. A comparison of putative chitin-binding domains among scarabaecin, invertebrate, and plant chitin-binding proteins suggests that scarabaecin is a new member of chitin-binding antimicrobial proteins.
16S rRNA Next Generation Sequencing Analysis Shows Bacteria in Alzheimer’s Post-Mortem Brain
Emery, David C.; Shoemark, Deborah K.; Batstone, Tom E.; Waterfall, Christy M.; Coghill, Jane A.; Cerajewska, Tanya L.; Davies, Maria; West, Nicola X.; Allen, Shelley J.
2017-01-01
The neurological deterioration associated with Alzheimer’s disease (AD), involving accumulation of amyloid-beta peptides and neurofibrillary tangles, is associated with evident neuroinflammation. This is now seen to be a significant contributor to pathology. Recently the tenet of the privileged status of the brain, regarding microbial compromise, has been questioned, particularly in terms of neurodegenerative diseases. It is now being considered that microbiological incursion into the central nervous system could be either an initiator or significant contributor to these. This is a novel study using 16S ribosomal gene-specific Next generation sequencing (NGS) of extracted brain tissue. A comparison was made of the bacterial species content of both frozen and formaldehyde fixed sections of a small cohort of Alzheimer-affected cases with those of cognitively unimpaired (normal). Our findings suggest an increase in bacterial populations in Alzheimer brain tissue compared with normal. PMID:28676754
[Evolution of genomic imprinting in mammals: what a zoo!].
Proudhon, Charlotte; Bourc'his, Déborah
2010-05-01
Genomic imprinting imposes an obligate mode of biparental reproduction in mammals. This phenomenon results from the monoparental expression of a subset of genes. This specific gene regulation mechanism affects viviparous mammals, especially eutherians, but also marsupials to a lesser extent. Oviparous mammals, or monotremes, do not seem to demonstrate monoparental allele expression. This phylogenic confinement suggests that the evolution of the placenta imposed a selective pressure for the emergence of genomic imprinting. This physiological argument is now complemented by recent genomic evidence facilitated by the sequencing of the platypus genome, a rare modern day case of a monotreme. Analysis of the platypus genome in comparison to eutherian genomes shows a chronological and functional coincidence between the appearance of genomic imprinting and transposable element accumulation. The systematic comparative analyses of genomic sequences in different species is essential for the further understanding of genomic imprinting emergence and divergent evolution along mammalian speciation.
Giraffe genome sequence reveals clues to its unique morphology and physiology
Agaba, Morris; Ishengoma, Edson; Miller, Webb C.; McGrath, Barbara C.; Hudson, Chelsea N.; Bedoya Reina, Oscar C.; Ratan, Aakrosh; Burhans, Rico; Chikhi, Rayan; Medvedev, Paul; Praul, Craig A.; Wu-Cavener, Lan; Wood, Brendan; Robertson, Heather; Penfold, Linda; Cavener, Douglas R.
2016-01-01
The origins of giraffe's imposing stature and associated cardiovascular adaptations are unknown. Okapi, which lacks these unique features, is giraffe's closest relative and provides a useful comparison, to identify genetic variation underlying giraffe's long neck and cardiovascular system. The genomes of giraffe and okapi were sequenced, and through comparative analyses genes and pathways were identified that exhibit unique genetic changes and likely contribute to giraffe's unique features. Some of these genes are in the HOX, NOTCH and FGF signalling pathways, which regulate both skeletal and cardiovascular development, suggesting that giraffe's stature and cardiovascular adaptations evolved in parallel through changes in a small number of genes. Mitochondrial metabolism and volatile fatty acids transport genes are also evolutionarily diverged in giraffe and may be related to its unusual diet that includes toxic plants. Unexpectedly, substantial evolutionary changes have occurred in giraffe and okapi in double-strand break repair and centrosome functions. PMID:27187213
Genome Evolution of Plant-Parasitic Nematodes.
Kikuchi, Taisei; Eves-van den Akker, Sebastian; Jones, John T
2017-08-04
Plant parasitism has evolved independently on at least four separate occasions in the phylum Nematoda. The application of next-generation sequencing (NGS) to plant-parasitic nematodes has allowed a wide range of genome- or transcriptome-level comparisons, and these have identified genome adaptations that enable parasitism of plants. Current genome data suggest that horizontal gene transfer, gene family expansions, evolution of new genes that mediate interactions with the host, and parasitism-specific gene regulation are important adaptations that allow nematodes to parasitize plants. Sequencing of a larger number of nematode genomes, including plant parasites that show different modes of parasitism or that have evolved in currently unsampled clades, and using free-living taxa as comparators would allow more detailed analysis and a better understanding of the organization of key genes within the genomes. This would facilitate a more complete understanding of the way in which parasitism has shaped the genomes of plant-parasitic nematodes.
Foti, M; Omichinski, J G; Stahl, S; Maloney, D; West, J; Schweitzer, B I
1999-02-05
We investigate here the effects of the incorporation of the nucleoside analogs araC (1-beta-D-arabinofuranosylcytosine) and ganciclovir (9-[(1,3-dihydroxy-2-propoxy)methyl] guanine) into the DNA binding recognition sequence for the GATA-1 erythroid transcription factor. A 10-fold decrease in binding affinity was observed for the ganciclovir-substituted DNA complex in comparison to an unmodified DNA of the same sequence composition. AraC substitution did not result in any changes in binding affinity. 1H-15N HSQC and NOESY NMR experiments revealed a number of chemical shift changes in both DNA and protein in the ganciclovir-modified DNA-protein complex when compared to the unmodified DNA-protein complex. These changes in chemical shift and binding affinity suggest a change in the binding mode of the complex when ganciclovir is incorporated into the GATA DNA binding site.
du Plessis, Mignon; Wolter, Nicole; Allam, Mushal; de Gouveia, Linda; Moosa, Fahima; Ntshoe, Genevie; Blumberg, Lucille; Cohen, Cheryl; Smith, Marshagne; Mutevedzi, Portia; Thomas, Juno; Horne, Valentino; Moodley, Prashini; Archary, Moherndran; Mahabeer, Yesholata; Mahomed, Saajida; Kuhn, Warren; Mlisana, Koleka; McCarthy, Kerrigan; von Gottberg, Anne
2017-08-01
In 2015, a cluster of respiratory diphtheria cases was reported from KwaZulu-Natal Province in South Africa. By using whole-genome analysis, we characterized 21 Corynebacterium diphtheriae isolates collected from 20 patients and contacts during the outbreak (1 patient was infected with 2 variants of C. diphtheriae). In addition, we included 1 cutaneous isolate, 2 endocarditis isolates, and 2 archived clinical isolates (ca. 1980) for comparison. Two novel lineages were identified, namely, toxigenic sequence type (ST) ST-378 (n = 17) and nontoxigenic ST-395 (n = 3). One archived isolate and the cutaneous isolate were ST-395, suggesting ongoing circulation of this lineage for >30 years. The absence of preexisting molecular sequence data limits drawing conclusions pertaining to the origin of these strains; however, these findings provide baseline genotypic data for future cases and outbreaks. Neither ST has been reported in any other country; this ST appears to be endemic only in South Africa.
Whole-genome resequencing reveals signatures of selection and timing of duck domestication.
Zhang, Zebin; Jia, Yaxiong; Almeida, Pedro; Mank, Judith E; van Tuinen, Marcel; Wang, Qiong; Jiang, Zhihua; Chen, Yu; Zhan, Kai; Hou, Shuisheng; Zhou, Zhengkui; Li, Huifang; Yang, Fangxi; He, Yong; Ning, Zhonghua; Yang, Ning; Qu, Lujiang
2018-04-01
The genetic basis of animal domestication remains poorly understood, and systems with substantial phenotypic differences between wild and domestic populations are useful for elucidating the genetic basis of adaptation to new environments as well as the genetic basis of rapid phenotypic change. Here, we sequenced the whole genome of 78 individual ducks, from two wild and seven domesticated populations, with an average sequencing depth of 6.42X per individual. Our population and demographic analyses indicate a complex history of domestication, with early selection for separate meat and egg lineages. Genomic comparison of wild to domesticated populations suggests that genes that affect brain and neuronal development have undergone strong positive selection during domestication. Our FST analysis also indicates that the duck white plumage is the result of selection at the melanogenesis-associated transcription factor locus. Our results advance the understanding of animal domestication and selection for complex phenotypic traits.
Hosseini, A; Koohi Habibi, M; Izadpanah, K; Mosahebi, G H; Rubies-Autonell, C; Ratti, C
2010-10-01
Bermuda grass with mosaic symptoms have been found in many parts of Iran. No serological correlation was observed between two isolates of this filamentous virus and any of the members of the family Potyviridae that were tested. Aphid transmission was demonstrated at low efficiency for isolates of this virus, whereas no transmission through seed was observed. A DNA fragment corresponding to the 3' end of the viral genome of these two isolates from Iran and one isolate from Italy was amplified and sequenced. A BLAST search showed that these isolates are more closely related to Spartina mottle virus (SpMV) than to any other virus in the family Potyviridae. Specific serological assays confirmed the phylogenetic analysis. Sequence and phylogenetic analysis suggested that these isolates could be considered as divergent strains of SpMV in the proposed genus Sparmovirus.
Genome sequence of Lactobacillus rhamnosus ATCC 8530.
Pittet, Vanessa; Ewen, Emily; Bushell, Barry R; Ziola, Barry
2012-02-01
Lactobacillus rhamnosus is found in the human gastrointestinal tract and is important for probiotics. We became interested in L. rhamnosus isolate ATCC 8530 in relation to beer spoilage and hops resistance. We report here the genome sequence of this isolate, along with a brief comparison to other available L. rhamnosus genome sequences.
Scalable Kernel Methods and Algorithms for General Sequence Analysis
ERIC Educational Resources Information Center
Kuksa, Pavel
2011-01-01
Analysis of large-scale sequential data has become an important task in machine learning and pattern recognition, inspired in part by numerous scientific and technological applications such as the document and text classification or the analysis of biological sequences. However, current computational methods for sequence comparison still lack…
Identification of food and beverage spoilage yeasts from DNA sequence analyses
USDA-ARS?s Scientific Manuscript database
Detection, identification, and classification of yeasts has undergone a major transformation in the last decade and a half following application of gene sequence analyses and genome comparisons. Development of a database (barcode) of easily determined DNA sequences from domains 1 and 2 (D1/D2) of th...
Sequenced sorghum mutant library- an efficient platform for discovery of causal gene mutations
USDA-ARS?s Scientific Manuscript database
Ethyl methanesulfonate (EMS) efficiently generates high-density mutations in genomes. We applied whole-genome sequencing to 256 phenotyped mutant lines of sorghum (Sorghum bicolor L. Moench) to 16x coverage. Comparisons with the reference sequence revealed >1.8 million canonical EMS-induced G/C to A...
De Novo Protein Structure Prediction
NASA Astrophysics Data System (ADS)
Hung, Ling-Hong; Ngan, Shing-Chung; Samudrala, Ram
An unparalleled amount of sequence data is being made available from large-scale genome sequencing efforts. The data provide a shortcut to the determination of the function of a gene of interest, as long as there is an existing sequenced gene with similar sequence and of known function. This has spurred structural genomic initiatives with the goal of determining as many protein folds as possible (Brenner and Levitt, 2000; Burley, 2000; Brenner, 2001; Heinemann et al., 2001). The purpose of this is twofold: First, the structure of a gene product can often lead to direct inference of its function. Second, since the function of a protein is dependent on its structure, direct comparison of the structures of gene products can be more sensitive than the comparison of sequences of genes for detecting homology. Presently, structural determination by crystallography and NMR techniques is still slow and expensive in terms of manpower and resources, despite attempts to automate the processes. Computer structure prediction algorithms, while not providing the accuracy of the traditional techniques, are extremely quick and inexpensive and can provide useful low-resolution data for structure comparisons (Bonneau and Baker, 2001). Given the immense number of structures which the structural genomic projects are attempting to solve, there would be a considerable gain even if the computer structure prediction approach were applicable to a subset of proteins.
SGP-1: Prediction and Validation of Homologous Genes Based on Sequence Alignments
Wiehe, Thomas; Gebauer-Jung, Steffi; Mitchell-Olds, Thomas; Guigó, Roderic
2001-01-01
Conventional methods of gene prediction rely on the recognition of DNA-sequence signals, the coding potential or the comparison of a genomic sequence with a cDNA, EST, or protein database. Reasons for limited accuracy in many circumstances are species-specific training and the incompleteness of reference databases. Lately, comparative genome analysis has attracted increasing attention. Several analysis tools that are based on human/mouse comparisons are already available. Here, we present a program for the prediction of protein-coding genes, termed SGP-1 (Syntenic Gene Prediction), which is based on the similarity of homologous genomic sequences. In contrast to most existing tools, the accuracy of SGP-1 depends little on species-specific properties such as codon usage or the nucleotide distribution. SGP-1 may therefore be applied to nonstandard model organisms in vertebrates as well as in plants, without the need for extensive parameter training. In addition to predicting genes in large-scale genomic sequences, the program may be useful to validate gene structure annotations from databases. To this end, SGP-1 output also contains comparisons between predicted and annotated gene structures in HTML format. The program can be accessed via a Web server at http://soft.ice.mpg.de/sgp-1. The source code, written in ANSI C, is available on request from the authors. PMID:11544202
Gilbert, Guillaume; Savard, Geneviève; Bard, Céline; Beaudoin, Gilles
2012-06-01
The aim of this study was to investigate the benefits arising from the use of a multiecho sequence for susceptibility-weighted phase imaging using a quantitative comparison with a standard single-echo acquisition. Four healthy adult volunteers were imaged on a clinical 3-T system using a protocol comprising two different three-dimensional susceptibility-weighted gradient-echo sequences: a standard single-echo sequence and a multiecho sequence. Both sequences were repeated twice in order to evaluate the local noise contribution by a subtraction of the two acquisitions. For the multiecho sequence, the phase information from each echo was independently unwrapped, and the background field contribution was removed using either homodyne filtering or the projection onto dipole fields method. The phase information from all echoes was then combined using a weighted linear regression. R2 maps were also calculated from the multiecho acquisitions. The noise standard deviation in the reconstructed phase images was evaluated for six manually segmented regions of interest (frontal white matter, posterior white matter, globus pallidus, putamen, caudate nucleus and lateral ventricle). The use of the multiecho sequence for susceptibility-weighted phase imaging led to a reduction of the noise standard deviation for all subjects and all regions of interest investigated in comparison to the reference single-echo acquisition. On average, the noise reduction ranged from 18.4% for the globus pallidus to 47.9% for the lateral ventricle. In addition, the amount of noise reduction was found to be strongly inversely correlated to the estimated R2 value (R=-0.92). In conclusion, the use of a multiecho sequence is an effective way to decrease the noise contribution in susceptibility-weighted phase images, while preserving both contrast and acquisition time. The proposed approach additionally permits the calculation of R2 maps. Copyright © 2012 Elsevier Inc. All rights reserved.