Sample records for sequence diversity modulates

  1. Form and Function: An Organic Chemistry Module. Teacher's Guide.

    ERIC Educational Resources Information Center

    Jarvis, Bruce; Mazzocchi, Paul; Hearle, Robert

    This teacher's guide is designed to provide science teachers with the necessary guidance and suggestions for teaching organic chemistry. In this book, the diverse field of organic chemistry modules is introduced. The material in this book can be integrated with the other modules in a sequence that helps students to see that chemistry is a unified…

  2. Microbial colonization of basaltic glasses in hydrothermal organic-rich sediments at Guaymas Basin

    PubMed Central

    Callac, Nolwenn; Rommevaux-Jestin, Céline; Rouxel, Olivier; Lesongeur, Françoise; Liorzou, Céline; Bollinger, Claire; Ferrant, Antony; Godfroy, Anne

    2013-01-01

    Oceanic basalts host diverse microbial communities with various metabolisms involved in C, N, S, and Fe biogeochemical cycles which may contribute to mineral and glass alteration processes at, and below the seafloor. In order to study the microbial colonization on basaltic glasses and their potential biotic/abiotic weathering products, two colonization modules called AISICS (“Autonomous in situ Instrumented Colonization System”) were deployed in hydrothermal deep-sea sediments at the Guaymas Basin for 8 days and 22 days. Each AISICS module contained 18 colonizers (including sterile controls) filled with basaltic glasses of contrasting composition. Chemical analyses of ambient fluids sampled through the colonizers showed a greater contribution of hydrothermal fluids (maximum temperature 57.6°C) for the module deployed during the longer time period. For each colonizer, the phylogenetic diversity and metabolic function of bacterial and archaeal communities were explored using a molecular approach by cloning and sequencing. Results showed large microbial diversity in all colonizers. The bacterial distribution was primarily linked to the deployment duration, as well as the depth for the short deployment time module. Some 16s rRNA sequences formed a new cluster of Epsilonproteobacteria. Within the Archaea the retrieved diversity could not be linked to either duration, depth or substrata. However, mcrA gene sequences belonging to the ANME-1 mcrA-guaymas cluster were found sometimes associated with their putative sulfate-reducers syntrophs depending on the colonizers. Although no specific glass alteration texture was identified, nano-crystals of barite and pyrite were observed in close association with organic matter, suggesting a possible biological mediation. This study gives new insights into the colonization steps of volcanic rock substrates and the capability of microbial communities to exploit new environmental conditions. PMID:23986754

  3. Diversity and Periodicity: An Inorganic Chemistry Module. Teacher's Guide.

    ERIC Educational Resources Information Center

    Huheey, James; Sandoval, Amado

    This teacher's guide is designed to provide science teachers with the necessary guidance and suggestions for teaching inorganic chemistry. The material in this book can be integrated with the other modules in a sequence that helps students to see that chemistry is a unified science. Contents include: (1) "Periodicity: A Chemical Calendar"; (2)…

  4. High-resolution mapping, characterization, and optimization of autonomously replicating sequences in yeast

    PubMed Central

    Liachko, Ivan; Youngblood, Rachel A.; Keich, Uri; Dunham, Maitreya J.

    2013-01-01

    DNA replication origins are necessary for the duplication of genomes. In addition, plasmid-based expression systems require DNA replication origins to maintain plasmids efficiently. The yeast autonomously replicating sequence (ARS) assay has been a valuable tool in dissecting replication origin structure and function. However, the dearth of information on origins in diverse yeasts limits the availability of efficient replication origin modules to only a handful of species and restricts our understanding of origin function and evolution. To enable rapid study of origins, we have developed a sequencing-based suite of methods for comprehensively mapping and characterizing ARSs within a yeast genome. Our approach finely maps genomic inserts capable of supporting plasmid replication and uses massively parallel deep mutational scanning to define molecular determinants of ARS function with single-nucleotide resolution. In addition to providing unprecedented detail into origin structure, our data have allowed us to design short, synthetic DNA sequences that retain maximal ARS function. These methods can be readily applied to understand and modulate ARS function in diverse systems. PMID:23241746

  5. Analysis of global gene expression in Brachypodium distachyon reveals extensive network plasticity in response to abiotic stress.

    PubMed

    Priest, Henry D; Fox, Samuel E; Rowley, Erik R; Murray, Jessica R; Michael, Todd P; Mockler, Todd C

    2014-01-01

    Brachypodium distachyon is a close relative of many important cereal crops. Abiotic stress tolerance has a significant impact on productivity of agriculturally important food and feedstock crops. Analysis of the transcriptome of Brachypodium after chilling, high-salinity, drought, and heat stresses revealed diverse differential expression of many transcripts. Weighted Gene Co-Expression Network Analysis revealed 22 distinct gene modules with specific profiles of expression under each stress. Promoter analysis implicated short DNA sequences directly upstream of module members in the regulation of 21 of 22 modules. Functional analysis of module members revealed enrichment in functional terms for 10 of 22 network modules. Analysis of condition-specific correlations between differentially expressed gene pairs revealed extensive plasticity in the expression relationships of gene pairs. Photosynthesis, cell cycle, and cell wall expression modules were down-regulated by all abiotic stresses. Modules which were up-regulated by each abiotic stress fell into diverse and unique gene ontology GO categories. This study provides genomics resources and improves our understanding of abiotic stress responses of Brachypodium.

  6. On the Origin of Reverse Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer Repertoires.

    PubMed

    Silas, Sukrit; Makarova, Kira S; Shmakov, Sergey; Páez-Espino, David; Mohr, Georg; Liu, Yi; Davison, Michelle; Roux, Simon; Krishnamurthy, Siddharth R; Fu, Becky Xu Hua; Hansen, Loren L; Wang, David; Sullivan, Matthew B; Millard, Andrew; Clokie, Martha R; Bhaya, Devaki; Lambowitz, Alan M; Kyrpides, Nikos C; Koonin, Eugene V; Fire, Andrew Z

    2017-07-11

    Cas1 integrase is the key enzyme of the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas adaptation module that mediates acquisition of spacers derived from foreign DNA by CRISPR arrays. In diverse bacteria, the cas1 gene is fused (or adjacent) to a gene encoding a reverse transcriptase (RT) related to group II intron RTs. An RT-Cas1 fusion protein has been recently shown to enable acquisition of CRISPR spacers from RNA. Phylogenetic analysis of the CRISPR-associated RTs demonstrates monophyly of the RT-Cas1 fusion, and coevolution of the RT and Cas1 domains. Nearly all such RTs are present within type III CRISPR-Cas loci, but their phylogeny does not parallel the CRISPR-Cas type classification, indicating that RT-Cas1 is an autonomous functional module that is disseminated by horizontal gene transfer and can function with diverse type III systems. To compare the sequence pools sampled by RT-Cas1-associated and RT-lacking CRISPR-Cas systems, we obtained samples of a commercially grown cyanobacterium- Arthrospira platensis Sequencing of the CRISPR arrays uncovered a highly diverse population of spacers. Spacer diversity was particularly striking for the RT-Cas1-containing type III-B system, where no saturation was evident even with millions of sequences analyzed. In contrast, analysis of the RT-lacking type III-D system yielded a highly diverse pool but reached a point where fewer novel spacers were recovered as sequencing depth was increased. Matches could be identified for a small fraction of the non-RT-Cas1-associated spacers, and for only a single RT-Cas1-associated spacer. Thus, the principal source(s) of the spacers, particularly the hypervariable spacer repertoire of the RT-associated arrays, remains unknown. IMPORTANCE While the majority of CRISPR-Cas immune systems adapt to foreign genetic elements by capturing segments of invasive DNA, some systems carry reverse transcriptases (RTs) that enable adaptation to RNA molecules. From analysis of available bacterial sequence data, we find evidence that RT-based RNA adaptation machinery has been able to join with CRISPR-Cas immune systems in many, diverse bacterial species. To investigate whether the abilities to adapt to DNA and RNA molecules are utilized for defense against distinct classes of invaders in nature, we sequenced CRISPR arrays from samples of commercial-scale open-air cultures of Arthrospira platensis , a cyanobacterium that contains both RT-lacking and RT-containing CRISPR-Cas systems. We uncovered a diverse pool of naturally occurring immune memories, with the RT-lacking locus acquiring a number of segments matching known viral or bacterial genes, while the RT-containing locus has acquired spacers from a distinct sequence pool for which the source remains enigmatic. Copyright © 2017 Silas et al.

  7. The dependence of the tunneling characteristic on the electronic energy bands and the carrier’s states of Graphene superlattice

    NASA Astrophysics Data System (ADS)

    Yang, C. H.; Shen, G. Z.; Ao, Z. M.; Xu, Y. W.

    2016-09-01

    Using the transfer matrix method, the carrier tunneling properties in graphene superlattice generated by the Thue-Morse sequence and Kolakoski sequence are investigated. The positions and strength of the transmission can be modulated by the barrier structures, the incident energy and angle, the height and width of the potential. These carriers tunneling characteristic can be understood from the energy band structures in the corresponding superlattice systems and the carrier’s states in well/barriers. The transmission peaks above the critical incident angle rely on the carrier’s resonance in the well regions. The structural diversity can modulate the electronic and transport properties, thus expanding its applications.

  8. CRISPR-Cas Adaptive Immune Systems of the Sulfolobales: Unravelling Their Complexity and Diversity

    PubMed Central

    Garrett, Roger A.; Shah, Shiraz A.; Erdmann, Susanne; Liu, Guannan; Mousaei, Marzieh; León-Sobrino, Carlos; Peng, Wenfang; Gudbergsdottir, Soley; Deng, Ling; Vestergaard, Gisle; Peng, Xu; She, Qunxin

    2015-01-01

    The Sulfolobales have provided good model organisms for studying CRISPR-Cas systems of the crenarchaeal kingdom of the archaea. These organisms are infected by a wide range of exceptional archaea-specific viruses and conjugative plasmids, and their CRISPR-Cas systems generally exhibit extensive structural and functional diversity. They carry large and multiple CRISPR loci and often multiple copies of diverse Type I and Type III interference modules as well as more homogeneous adaptation modules. These acidothermophilic organisms have recently provided seminal insights into both the adaptation process, the diverse modes of interference, and their modes of regulation. The functions of the adaptation and interference modules tend to be loosely coupled and the stringency of the crRNA-DNA sequence matching during DNA interference is relatively low, in contrast to some more streamlined CRISPR-Cas systems of bacteria. Despite this, there is evidence for a complex and differential regulation of expression of the diverse functional modules in response to viral infection. Recent work also supports critical roles for non-core Cas proteins, especially during Type III-directed interference, and this is consistent with these proteins tending to coevolve with core Cas proteins. Various novel aspects of CRISPR-Cas systems of the Sulfolobales are considered including an alternative spacer acquisition mechanism, reversible spacer acquisition, the formation and significance of antisense CRISPR RNAs, and a novel mechanism for avoidance of CRISPR-Cas defense. Finally, questions regarding the basis for the complexity, diversity, and apparent redundancy, of the intracellular CRISPR-Cas systems are discussed. PMID:25764276

  9. A Robust and Versatile Method of Combinatorial Chemical Synthesis of Gene Libraries via Hierarchical Assembly of Partially Randomized Modules

    PubMed Central

    Popova, Blagovesta; Schubert, Steffen; Bulla, Ingo; Buchwald, Daniela; Kramer, Wilfried

    2015-01-01

    A major challenge in gene library generation is to guarantee a large functional size and diversity that significantly increases the chances of selecting different functional protein variants. The use of trinucleotides mixtures for controlled randomization results in superior library diversity and offers the ability to specify the type and distribution of the amino acids at each position. Here we describe the generation of a high diversity gene library using tHisF of the hyperthermophile Thermotoga maritima as a scaffold. Combining various rational criteria with contingency, we targeted 26 selected codons of the thisF gene sequence for randomization at a controlled level. We have developed a novel method of creating full-length gene libraries by combinatorial assembly of smaller sub-libraries. Full-length libraries of high diversity can easily be assembled on demand from smaller and much less diverse sub-libraries, which circumvent the notoriously troublesome long-term archivation and repeated proliferation of high diversity ensembles of phages or plasmids. We developed a generally applicable software tool for sequence analysis of mutated gene sequences that provides efficient assistance for analysis of library diversity. Finally, practical utility of the library was demonstrated in principle by assessment of the conformational stability of library members and isolating protein variants with HisF activity from it. Our approach integrates a number of features of nucleic acids synthetic chemistry, biochemistry and molecular genetics to a coherent, flexible and robust method of combinatorial gene synthesis. PMID:26355961

  10. A Robust and Versatile Method of Combinatorial Chemical Synthesis of Gene Libraries via Hierarchical Assembly of Partially Randomized Modules.

    PubMed

    Popova, Blagovesta; Schubert, Steffen; Bulla, Ingo; Buchwald, Daniela; Kramer, Wilfried

    2015-01-01

    A major challenge in gene library generation is to guarantee a large functional size and diversity that significantly increases the chances of selecting different functional protein variants. The use of trinucleotides mixtures for controlled randomization results in superior library diversity and offers the ability to specify the type and distribution of the amino acids at each position. Here we describe the generation of a high diversity gene library using tHisF of the hyperthermophile Thermotoga maritima as a scaffold. Combining various rational criteria with contingency, we targeted 26 selected codons of the thisF gene sequence for randomization at a controlled level. We have developed a novel method of creating full-length gene libraries by combinatorial assembly of smaller sub-libraries. Full-length libraries of high diversity can easily be assembled on demand from smaller and much less diverse sub-libraries, which circumvent the notoriously troublesome long-term archivation and repeated proliferation of high diversity ensembles of phages or plasmids. We developed a generally applicable software tool for sequence analysis of mutated gene sequences that provides efficient assistance for analysis of library diversity. Finally, practical utility of the library was demonstrated in principle by assessment of the conformational stability of library members and isolating protein variants with HisF activity from it. Our approach integrates a number of features of nucleic acids synthetic chemistry, biochemistry and molecular genetics to a coherent, flexible and robust method of combinatorial gene synthesis.

  11. Microbiome dynamic modulation through functional diets based on pre- and probiotics (mannan-oligosaccharides and Saccharomyces cerevisiae) in juvenile rainbow trout (Oncorhynchus mykiss).

    PubMed

    Gonçalves, A T; Gallardo-Escárate, C

    2017-05-01

    This study used high-throughput sequencing to evaluate the intestinal microbiome dynamics in rainbow trout (Oncorhynchus mykiss) fed commercial diets supplemented with either pre- or probiotics (0·6% mannan-oligosaccharides and 0·5% Saccharomyces cerevisiae respectively) or the mixture of both. A total of 57 fish whole intestinal mucosa and contents bacterial communities were characterized by high-throughput sequencing and analysis of the V3-V4 region of the 16S rRNA gene, as well as the relationship between plasma biochemical health indicators and microbiome diversity. This was performed at 7, 14 and 30 days after start feeding functional diets, and microbiome diversity increased when fish fed functional diets after 7 days and it was positively correlated with plasma cholesterol levels. Dominant phyla were, in descending order, Proteobacteria, Firmicutes, Actinobacteria, Acidobacteria, Bacteroidetes and Fusobacteria. However, functional diets reduced the abundance of Gammaproteobacteria to favour abundances of organisms from Firmicutes and Fusobacteria, two phyla with members that confer beneficial effects. A dynamic shift of the microbiome composition was observed with changes after 7 days of feeding and the modulation by functional diets tend to cluster the corresponding groups apart from CTRL group. The core microbiome showed an overall stability with functional diets, except genus such as Escherichia-Shigella that suffered severe reductions on their abundances when feeding any of the functional diets. Functional diets based on pre- or probiotics dynamically modulate intestinal microbiota of juvenile trout engaging taxonomical abundance shifts that might impact fish physiological performance. This study shows for the first time the microbiome modulation dynamics by functional diets based on mannan-oligosaccharides and S. cerevisiae and their synergy using culture independent high-throughput sequencing technology, revealing the complexity behind the dietary modulation with functional feeds in aquatic organisms. © 2017 The Society for Applied Microbiology.

  12. Peptoid architectures: elaboration, actuation, and application.

    PubMed

    Yoo, Barney; Kirshenbaum, Kent

    2008-12-01

    Peptoids are peptidomimetic oligomers composed of N-substituted glycine units. Their convenient synthesis enables strict control over the sequence of highly diverse monomers and is capable of generating extensive compound libraries. Recent studies are beginning to explore the relationship between peptoid sequence, structure and function. We describe new approaches to direct the conformation of the peptoid backbone, leading to secondary structures such as helices, loops, and turns. These advances are enabling the discovery of bioactive peptoids and will establish modules for the design and assembly of protein mimetics.

  13. Biosynthetic Multitasking Facilitates Thalassospiramide Structural Diversity in Marine Bacteria

    PubMed Central

    Ross, Avena C.; Xu, Ying; Lu, Liang; Kersten, Roland D.; Shao, Zongze; Al-Suwailem, Abdulaziz M.; Dorrestein, Pieter C.; Qian, Pei-Yuan; Moore, Bradley S.

    2013-01-01

    Thalassospiramides A and B are immunosuppressant cyclic lipopeptides first reported from the marine α-proteobacterium Thalassospira sp. CNJ-328. We describe here the discovery and characterization of an extended family of 14 new analogues from four Tistrella and Thalassospira isolates. These potent calpain 1 protease inhibitors belong to six structure classes in which the length and composition of the acylpeptide side chain varies extensively. Genomic sequence analysis of the thalassospiramide-producing microbes revealed related, genus-specific biosynthetic loci encoding hybrid nonribosomal peptide synthetase/polyketide synthases consistent with thalassospiramide assembly. The bioinformatics analysis of the gene clusters suggests that structural diversity, which ranges from the 803.4 Da thalassospiramide C to the 1291.7 Da thalassospiramide F, results from a complex sequence of reactions involving amino acid substrate channeling and enzymatic multi-module skipping and iteration. Preliminary biochemical analysis of the N-terminal NRPS module from the Thalassospira TtcA megasynthase supports a biosynthetic model in which in cis amino acid activation competes with in trans activation to increase the range of amino acid substrates incorporated at the N-terminus. PMID:23270364

  14. Range-azimuth decouple beamforming for frequency diverse array with Costas-sequence modulated frequency offsets

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Wang, Wen-Qin; Shao, Huaizong

    2016-12-01

    Different from the phased-array using the same carrier frequency for each transmit element, the frequency diverse array (FDA) uses a small frequency offset across the array elements to produce range-angle-dependent transmit beampattern. FDA radar provides new application capabilities and potentials due to its range-dependent transmit array beampattern, but the FDA using linearly increasing frequency offsets will produce a range and angle coupled transmit beampattern. In order to decouple the range-azimuth beampattern for FDA radar, this paper proposes a uniform linear array (ULA) FDA using Costas-sequence modulated frequency offsets to produce random-like energy distribution in the transmit beampattern and thumbtack transmit-receive beampattern. In doing so, the range and angle of targets can be unambiguously estimated through matched filtering and subspace decomposition algorithms in the receiver signal processor. Moreover, random-like energy distributed beampattern can also be utilized for low probability of intercept (LPI) radar applications. Numerical results show that the proposed scheme outperforms the standard FDA in focusing the transmit energy, especially in the range dimension.

  15. Identification and characterization of tandem repeats in exon III of dopamine receptor D4 (DRD4) genes from different mammalian species.

    PubMed

    Larsen, Svend Arild; Mogensen, Line; Dietz, Rune; Baagøe, Hans Jørgen; Andersen, Mogens; Werge, Thomas; Rasmussen, Henrik Berg

    2005-12-01

    In this study we have identified and characterized dopamine receptor D4 (DRD4) exon III tandem repeats in 33 public available nucleotide sequences from different mammalian species. We found that the tandem repeat in canids could be described in a novel and simple way, namely, as a structure composed of 15- and 12- bp modules. Tandem repeats composed of 18-bp modules were found in sequences from the horse, zebra, onager, and donkey, Asiatic bear, polar bear, common raccoon, dolphin, harbor porpoise, and domestic cat. Several of these sequences have been analyzed previously without a tandem repeat being found. In the domestic cow and gray seal we identified tandem repeats composed of 36-bp modules, each consisting of two closely related 18-bp basic units. A tandem repeat consisting of 9-bp modules was identified in sequences from mink and ferret. In the European otter we detected an 18-bp tandem repeat, while a tandem repeat consisting of 27-bp modules was identified in a sequence from European badger. Both these tandem repeats were composed of 9-bp basic units, which were closely related with the 9-bp repeat modules identified in the mink and ferret. Tandem repeats could not be identified in sequences from rodents. All tandem repeats possessed a high GC content with a strong bias for C. On phylogenetic analysis of the tandem repeats evolutionary related species were clustered into the same groups. The degree of conservation of the tandem repeats varied significantly between species. The deduced amino acid sequences of most of the tandem repeats exhibited a high propensity for disorder. This was also the case with an amino acid sequence of the human DRD4 exon III tandem repeat, which was included in the study for comparative purposes. We identified proline-containing motifs for SH3 and WW domain binding proteins, potential phosphorylation sites, PDZ domain binding motifs, and FHA domain binding motifs in the amino acid sequences of the tandem repeats. The numbers of potential functional sites varied pronouncedly between species. Our observations provide a platform for future studies of the architecture and evolution of the DRD4 exon III tandem repeat, and they suggest that differences in the structure of this tandem repeat contribute to specialization and generation of diversity in receptor function.

  16. Family-wide Structural Characterization and Genomic Comparisons Decode the Diversity-oriented Biosynthesis of Thalassospiramides by Marine Proteobacteria*

    PubMed Central

    Zhang, Weipeng; Lu, Liang; Lai, Qiliang; Zhu, Beika; Li, Zhongrui; Xu, Ying; Shao, Zongze; Herrup, Karl; Moore, Bradley S.; Ross, Avena C.; Qian, Pei-Yuan

    2016-01-01

    The thalassospiramide lipopeptides have great potential for therapeutic applications; however, their structural and functional diversity and biosynthesis are poorly understood. Here, by cultivating 130 Rhodospirillaceae strains sampled from oceans worldwide, we discovered 21 new thalassospiramide analogues and demonstrated their neuroprotective effects. To investigate the diversity of biosynthetic gene cluster (BGC) architectures, we sequenced the draft genomes of 28 Rhodospirillaceae strains. Our family-wide genomic analysis revealed three types of dysfunctional BGCs and four functional BGCs whose architectures correspond to four production patterns. This correlation allowed us to reassess the “diversity-oriented biosynthesis” proposed for the microbial production of thalassospiramides, which involves iteration of several key modules. Preliminary evolutionary investigation suggested that the functional BGCs could have arisen through module/domain loss, whereas the dysfunctional BGCs arose through horizontal gene transfer. Further comparative genomics indicated that thalassospiramide production is likely to be attendant on particular genes/pathways for amino acid metabolism, signaling transduction, and compound efflux. Our findings provide a systematic understanding of thalassospiramide production and new insights into the underlying mechanism. PMID:27875306

  17. Glycomacropeptide Sustains Microbiota Diversity and Promotes Specific Taxa in an Artificial Colon Model of Elderly Gut Microbiota.

    PubMed

    Ntemiri, Alexandra; Chonchúir, Fodhla Ní; O'Callaghan, Tom F; Stanton, Catherine; Ross, R Paul; O'Toole, Paul W

    2017-03-01

    The potential of milk-derived glycomacropeptide (GMP) and lactose for modulating the human gut microbiota of older people, in whom loss of diversity correlates with inferior health, was investigated. We used an in vitro batch fermentation (artificial colon model) to simulate colonic fermentation processes of two GMP products, i.e., a commercially available GMP concentrate and a semipurified GMP concentrate, and lactose. Faecal samples were collected from healthy and frail older people. Samples were analyzed by Illumina Miseq sequencing of rRNA gene amplicons. The commercial GMP preparation had a positive effect on the growth of Coprococcus and Clostridium cluster XIVb and sustained a higher faecal microbiota diversity compared to control substrates or lactose. Lactose fermentation promoted the growth of Proteobacteria including Escherichia/Shigella. This work provides an in-depth insight on the potential of GMP and lactose for modulating the gut microbiota and contributes more evidence confirming the prebiotic activity of GMP.

  18. Mining on scorpion venom biodiversity.

    PubMed

    Rodríguez de la Vega, Ricardo C; Schwartz, Elisabeth F; Possani, Lourival D

    2010-12-15

    Scorpion venoms are complex mixtures of dozens or even hundreds of distinct proteins, many of which are inter-genome active elements. Fifty years after the first scorpion toxin sequences were determined, chromatography-assisted purification followed by automated protein sequencing or gene cloning, on a case-by-case basis, accumulated nearly 250 amino acid sequences of scorpion venom components. A vast majority of the available sequences correspond to proteins adopting a common three-dimensional fold, whose ion channel modulating functions have been firmly established or could be confidently inferred. However, the actual molecular diversity contained in scorpion venoms -as revealed by bioassay-driven purification, some unexpected activities of "canonical" neurotoxins and even serendipitous discoveries- is much larger than those "canonical" toxin types. In the last few years mining into the molecular diversity contained in scorpion has been assisted by high-throughput Mass Spectrometry techniques and large-scale DNA sequencing, collectively accounting for the more than twofold increase in the number of known sequences of scorpion venom components (now reaching 500 unique sequences). This review, from a comparative perspective, deals with recent data obtained by proteomic and transcriptomic studies on scorpion venoms and venom glands. Altogether, these studies reveal a large contribution of non canonical venom components, which would account for more than half of the total protein diversity of any scorpion venom. On top of aiding at the better understanding of scorpion venom biology, whether in the context of venom function or within the venom gland itself, these "novel" venom components certainly are an interesting source of bioactive proteins, whose characterization is worth pursuing. Copyright © 2009 Elsevier Ltd. All rights reserved.

  19. Conserved domains and SINE diversity during animal evolution.

    PubMed

    Luchetti, Andrea; Mantovani, Barbara

    2013-10-01

    Eukaryotic genomes harbour a number of mobile genetic elements (MGEs); moving from one genomic location to another, they are known to impact on the host genome. Short interspersed elements (SINEs) are well-represented, non-autonomous retroelements and they are likely the most diversified MGEs. In some instances, sequence domains conserved across unrelated SINEs have been identified; remarkably, one of these, called Nin, has been conserved since the Radiata-Bilateria splitting. Here we report on two new domains: Inv, derived from Nin, identified in insects and in deuterostomes, and Pln, restricted to polyneopteran insects. The identification of Inv and Pln sequences allowed us to retrieve new SINEs, two in insects and one in a hemichordate. The diverse structural combination of the different domains in different SINE families, during metazoan evolution, offers a clearer view of SINE diversity and their frequent de novo emergence through module exchange, possibly underlying the high evolutionary success of SINEs. © 2013 Elsevier Inc. All rights reserved.

  20. Bioinformatic Analysis Reveals Conservation of Intrinsic Disorder in the Linker Sequences of Prokaryotic Dual-family Immunophilin Chaperones.

    PubMed

    Barik, Sailen

    2018-01-01

    The two classical immunophilin families, found essentially in all living cells, are: cyclophilin (CYN) and FK506-binding protein (FKBP). We previously reported a novel class of immunophilins that are natural chimera of these two, which we named dual-family immunophilin (DFI). The DFIs were found in either of two conformations: CYN-linker-FKBP (CFBP) or FKBP-3TPR-CYN (FCBP). While the 3TPR domain can serve as a flexible linker between the FKBP and CYN modules in the FCBP-type DFI, the linker sequences in the CFBP-type DFIs are relatively short, diverse in sequence, and contain no discernible motif or signature. Here, I present several lines of computational evidence that, regardless of their primary structure, these CFBP linkers are intrinsically disordered. This report provides the first molecular foundation for the model that the CFBP linker acts as an unstructured, flexible loop, allowing the two flanking chaperone modules function independently while linked in cis , likely to assist in the folding of multisubunit client complexes.

  1. phylo-node: A molecular phylogenetic toolkit using Node.js.

    PubMed

    O'Halloran, Damien M

    2017-01-01

    Node.js is an open-source and cross-platform environment that provides a JavaScript codebase for back-end server-side applications. JavaScript has been used to develop very fast and user-friendly front-end tools for bioinformatic and phylogenetic analyses. However, no such toolkits are available using Node.js to conduct comprehensive molecular phylogenetic analysis. To address this problem, I have developed, phylo-node, which was developed using Node.js and provides a stable and scalable toolkit that allows the user to perform diverse molecular and phylogenetic tasks. phylo-node can execute the analysis and process the resulting outputs from a suite of software options that provides tools for read processing and genome alignment, sequence retrieval, multiple sequence alignment, primer design, evolutionary modeling, and phylogeny reconstruction. Furthermore, phylo-node enables the user to deploy server dependent applications, and also provides simple integration and interoperation with other Node modules and languages using Node inheritance patterns, and a customized piping module to support the production of diverse pipelines. phylo-node is open-source and freely available to all users without sign-up or login requirements. All source code and user guidelines are openly available at the GitHub repository: https://github.com/dohalloran/phylo-node.

  2. Differentiated transcriptional signatures in the maize landraces of Chiapas, Mexico.

    PubMed

    Kost, Matthew A; Perales, Hugo R; Wijeratne, Saranga; Wijeratne, Asela J; Stockinger, Eric; Mercer, Kristin L

    2017-09-08

    Landrace farmers are the keepers of crops locally adapted to the environments where they are cultivated. Patterns of diversity across the genome can provide signals of past evolution in the face of abiotic and biotic change. Understanding this rich genetic resource is imperative especially since diversity can provide agricultural security as climate continues to shift. Here we employ RNA sequencing (RNA-seq) to understand the role that conditions that vary across a landscape may have played in shaping genetic diversity in the maize landraces of Chiapas, Mexico. We collected landraces from three distinct elevational zones and planted them in a midland common garden. Early season leaf tissue was collected for RNA-seq and we performed weighted gene co-expression network analysis (WGCNA). We then used association analysis between landrace co-expression module expression values and environmental parameters of landrace origin to elucidate genes and gene networks potentially shaped by environmental factors along our study gradient. Elevation of landrace origin affected the transcriptome profiles. Two co-expression modules were highly correlated with temperature parameters of landrace origin and queries into their 'hub' genes suggested that temperature may have led to differentiation among landraces in hormone biosynthesis/signaling and abiotic and biotic stress responses. We identified several 'hub' transcription factors and kinases as candidates for the regulation of these responses. These findings indicate that natural selection may influence the transcriptomes of crop landraces along an elevational gradient in a major diversity center, and provide a foundation for exploring the genetic basis of local adaptation. While we cannot rule out the role of neutral evolutionary forces in the patterns we have identified, combining whole transcriptome sequencing technologies, established bioinformatics techniques, and common garden experimentation can powerfully elucidate structure of adaptive diversity across a varied landscape. Ultimately, gaining such understanding can facilitate the conservation and strategic utilization of crop genetic diversity in a time of climate change.

  3. Evolution of EF-hand calcium-modulated proteins. III. Exon sequences confirm most dendrograms based on protein sequences: calmodulin dendrograms show significant lack of parallelism

    NASA Technical Reports Server (NTRS)

    Nakayama, S.; Kretsinger, R. H.

    1993-01-01

    In the first report in this series we presented dendrograms based on 152 individual proteins of the EF-hand family. In the second we used sequences from 228 proteins, containing 835 domains, and showed that eight of the 29 subfamilies are congruent and that the EF-hand domains of the remaining 21 subfamilies have diverse evolutionary histories. In this study we have computed dendrograms within and among the EF-hand subfamilies using the encoding DNA sequences. In most instances the dendrograms based on protein and on DNA sequences are very similar. Significant differences between protein and DNA trees for calmodulin remain unexplained. In our fourth report we evaluate the sequences and the distribution of introns within the EF-hand family and conclude that exon shuffling did not play a significant role in its evolution.

  4. Characterizing partial AZFc deletions of the Y chromosome with amplicon-specific sequence markers

    PubMed Central

    Navarro-Costa, Paulo; Pereira, Luísa; Alves, Cíntia; Gusmão, Leonor; Proença, Carmen; Marques-Vidal, Pedro; Rocha, Tiago; Correia, Sónia C; Jorge, Sónia; Neves, António; Soares, Ana P; Nunes, Joaquim; Calhaz-Jorge, Carlos; Amorim, António; Plancha, Carlos E; Gonçalves, João

    2007-01-01

    Background The AZFc region of the human Y chromosome is a highly recombinogenic locus containing multi-copy male fertility genes located in repeated DNA blocks (amplicons). These AZFc gene families exhibit slight sequence variations between copies which are considered to have functional relevance. Yet, partial AZFc deletions yield phenotypes ranging from normospermia to azoospermia, thwarting definite conclusions on their real impact on fertility. Results The amplicon content of partial AZFc deletion products was characterized with novel amplicon-specific sequence markers. Data indicate that partial AZFc deletions are a male infertility risk [odds ratio: 5.6 (95% CI: 1.6–30.1)] and although high diversity of partial deletion products and sequence conversion profiles were recorded, the AZFc marker profiles detected in fertile men were also observed in infertile men. Additionally, the assessment of rearrangement recurrence by Y-lineage analysis indicated that while partial AZFc deletions occurred in highly diverse samples, haplotype diversity was minimal in fertile men sharing identical marker profiles. Conclusion Although partial AZFc deletion products are highly heterogeneous in terms of amplicon content, this plasticity is not sufficient to account for the observed phenotypical variance. The lack of causative association between the deletion of specific gene copies and infertility suggests that AZFc gene content might be part of a multifactorial network, with Y-lineage evolution emerging as a possible phenotype modulator. PMID:17903263

  5. Modulating Effects of Dicaffeoylquinic Acids from Ilex kudingcha on Intestinal Microecology in Vitro.

    PubMed

    Xie, Minhao; Chen, Guijie; Wan, Peng; Dai, Zhuqing; Hu, Bing; Chen, Ligen; Ou, Shiyi; Zeng, Xiaoxiong; Sun, Yi

    2017-11-29

    Dietary polyphenols have been considered as novel prebiotics, and polyphenols could exert their functions through modulating intestinal microbiota. The diverse bioactivities of kudingcha could derive from its phenolic compounds, but the effects of dicaffeoylquinic acids (diCQAs) from Ilex kudingcha on intestinal microbiota have not been investigated. In the present study, high-throughput sequencing and anaerobic fermentation in vitro were utilized to investigate the microecology-modulating function of I. kudingcha diCQAs. As a result, diCQAs raised the diversity and exhibited a more considerable impact than a carbon source on the microbial profile. DiCQAs increased the relative abundances of Alistipes, Bacteroides, Bifidobacterium, Butyricimonas, Clostridium sensu stricto, Escherichia/Shigella, Parasutterella, Romboutsia, Oscillibacter, Veillonella, Phascolarctobacterium, Lachnospiracea incertae sedis, Gemmiger, Streptococcus, and Haemophilus and decreased the relative abundances of Ruminococcus, Anaerostipes, Dialister, Megasphaera, Megamonas, and Prevotella. DiCQAs also affected the generation of short-chain fatty acids through microbiota. The contents of acetic and lactic acids were raised, while the production of propionic and butyric acids was reduced. Conclusively, diCQAs from I. kudingcha had significant modulating effects on intestinal microbiota in vitro, which might be the fundamental of diCQAs exerting their bioactivities.

  6. PrPC Governs Susceptibility to Prion Strains in Bank Vole, While Other Host Factors Modulate Strain Features

    PubMed Central

    Espinosa, J. C.; Nonno, R.; Di Bari, M.; Aguilar-Calvo, P.; Pirisinu, L.; Fernández-Borges, N.; Vanni, I.; Vaccari, G.; Marín-Moreno, A.; Frassanito, P.; Lorenzo, P.; Agrimi, U.

    2016-01-01

    ABSTRACT Bank vole is a rodent species that shows differential susceptibility to the experimental transmission of different prion strains. In this work, the transmission features of a panel of diverse prions with distinct origins were assayed both in bank vole expressing methionine at codon 109 (Bv109M) and in transgenic mice expressing physiological levels of bank vole PrPC (the BvPrP-Tg407 mouse line). This work is the first systematic comparison of the transmission features of a collection of prion isolates, representing a panel of diverse prion strains, in a transgenic-mouse model and in its natural counterpart. The results showed very similar transmission properties in both the natural species and the transgenic-mouse model, demonstrating the key role of the PrP amino acid sequence in prion transmission susceptibility. However, differences in the PrPSc types propagated by Bv109M and BvPrP-Tg407 suggest that host factors other than PrPC modulate prion strain features. IMPORTANCE The differential susceptibility of bank voles to prion strains can be modeled in transgenic mice, suggesting that this selective susceptibility is controlled by the vole PrP sequence alone rather than by other species-specific factors. Differences in the phenotypes observed after prion transmissions in bank voles and in the transgenic mice suggest that host factors other than the PrPC sequence may affect the selection of the substrain replicating in the animal model. PMID:27654300

  7. The genomes and comparative genomics of Lactobacillus delbrueckii phages.

    PubMed

    Riipinen, Katja-Anneli; Forsman, Päivi; Alatossava, Tapani

    2011-07-01

    Lactobacillus delbrueckii phages are a great source of genetic diversity. Here, the genome sequences of Lb. delbrueckii phages LL-Ku, c5 and JCL1032 were analyzed in detail, and the genetic diversity of Lb. delbrueckii phages belonging to different taxonomic groups was explored. The lytic isometric group b phages LL-Ku (31,080 bp) and c5 (31,841 bp) showed a minimum nucleotide sequence identity of 90% over about three-fourths of their genomes. The genomic locations of their lysis modules were unique, and the genomes featured several putative overlapping transcription units of genes. LL-Ku and c5 virions displayed peptidoglycan hydrolytic activity associated with a ~36-kDa protein similar in size to the endolysin. Unexpectedly, the 49,433-bp genome of the prolate phage JCL1032 (temperate, group c) revealed a conserved gene order within its structural genes. Lb. delbrueckii phages representing groups a (a phage LL-H), b and c possessed only limited protein sequence homology. Genomic comparison of LL-Ku and c5 suggested that diversification of Lb. delbrueckii phages is mainly due to insertions, deletions and recombination. For the first time, the complete genome sequences of group b and c Lb. delbrueckii phages are reported.

  8. CRISPR adaptive immune systems of Archaea

    PubMed Central

    Vestergaard, Gisle; Garrett, Roger A; Shah, Shiraz A

    2014-01-01

    CRISPR adaptive immune systems were analyzed for all available completed genomes of archaea, which included representatives of each of the main archaeal phyla. Initially, all proteins encoded within, and proximal to, CRISPR-cas loci were clustered and analyzed using a profile–profile approach. Then cas genes were assigned to gene cassettes and to functional modules for adaptation and interference. CRISPR systems were then classified primarily on the basis of their concatenated Cas protein sequences and gene synteny of the interference modules. With few exceptions, they could be assigned to the universal Type I or Type III systems. For Type I, subtypes I-A, I-B, and I-D dominate but the data support the division of subtype I-B into two subtypes, designated I-B and I-G. About 70% of the Type III systems fall into the universal subtypes III-A and III-B but the remainder, some of which are phyla-specific, diverge significantly in Cas protein sequences, and/or gene synteny, and they are classified separately. Furthermore, a few CRISPR systems that could not be assigned to Type I or Type III are categorized as variant systems. Criteria are presented for assigning newly sequenced archaeal CRISPR systems to the different subtypes. Several accessory proteins were identified that show a specific gene linkage, especially to Type III interference modules, and these may be cofunctional with the CRISPR systems. Evidence is presented for extensive exchange having occurred between adaptation and interference modules of different archaeal CRISPR systems, indicating the wide compatibility of the functionally diverse interference complexes with the relatively conserved adaptation modules. PMID:24531374

  9. A polyvalent hybrid protein elicits antibodies against the diverse allelic types of block 2 in Plasmodium falciparum merozoite surface protein 1.

    PubMed

    Tetteh, Kevin K A; Conway, David J

    2011-10-13

    Merozoite surface protein 1 (MSP1) of Plasmodium falciparum has been implicated as an important target of acquired immunity, and candidate components for a vaccine include polymorphic epitopes in the N-terminal polymorphic block 2 region. We designed a polyvalent hybrid recombinant protein incorporating sequences of the three major allelic types of block 2 together with a composite repeat sequence of one of the types and N-terminal flanking T cell epitopes, and compared this with a series of recombinant proteins containing modular sub-components and similarly expressed in Escherichia coli. Immunogenicity of the full polyvalent hybrid protein was tested in both mice and rabbits, and comparative immunogenicity studies of the sub-component modules were performed in mice. The full hybrid protein induced high titre antibodies against each of the major block 2 allelic types expressed as separate recombinant proteins and against a wide range of allelic types naturally expressed by a panel of diverse P. falciparum isolates, while the sub-component modules had partial antigenic coverage as expected. This encourages further development and evaluation of the full MSP1 block 2 polyvalent hybrid protein as a candidate blood-stage component of a malaria vaccine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. An improved immune algorithm for optimizing the pulse width modulation control sequence of inverters

    NASA Astrophysics Data System (ADS)

    Sheng, L.; Qian, S. Q.; Ye, Y. Q.; Wu, Y. H.

    2017-09-01

    In this article, an improved immune algorithm (IIA), based on the fundamental principles of the biological immune system, is proposed for optimizing the pulse width modulation (PWM) control sequence of a single-phase full-bridge inverter. The IIA takes advantage of the receptor editing and adaptive mutation mechanisms of the immune system to develop two operations that enhance the population diversity and convergence of the proposed algorithm. To verify the effectiveness and examine the performance of the IIA, 17 cases are considered, including fixed and disturbed resistances. Simulation results show that the IIA is able to obtain an effective PWM control sequence. Furthermore, when compared with existing immune algorithms (IAs), genetic algorithms (GAs), a non-traditional GA, simplified simulated annealing, and a generalized Hopfield neural network method, the IIA can achieve small total harmonic distortion (THD) and large magnitude. Meanwhile, a non-parametric test indicates that the IIA is significantly better than most comparison algorithms. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/0305215X.2016.1250894.

  11. Genetic diversity and temporal variation of the marine Synechococcus community in the subtropical coastal waters of Hong Kong.

    PubMed

    Jing, Hongmei; Zhang, Rui; Pointing, Stephen B; Liu, Hongbin; Qian, Peiyuan

    2009-03-01

    The phylogenetic diversity of the marine Synechococcus community in the subtropical coastal waters of Hong Kong, China, was examined through intergenic transcribed spacer clone libraries. All the sequences obtained fell within both marine cluster A (MC-A) and B (MC-B), with MC-A phylotypes dominating throughout the year. Distinct phylogenetic lineages specific to Hong Kong waters were detected from both MC-A and MC-B. The highest Synechococcus community diversity occurred in December, but the highest Synechococcus abundance occurred in August. On the other hand, both the abundance and diversity of Synechococcus showed a minimum in February. The remarkable seasonal variations of Synechococcus diversity observed were likely the result of the changes of hydrographic condition modulated by monsoons. Principal component analysis revealed that the in situ abiotic water characteristics, especially salinity and water turbidity, explained much of the variability of the marine Synechococcus population diversity in Hong Kong coastal waters. In addition, the temporal changes of Synechococcus abundance were largely driven by water temperature.

  12. A conserved genetic module that encodes the major virion components in both the coliphage T4 and the marine cyanophage S-PM2

    PubMed Central

    Hambly, Emma; Tétart, Francoise; Desplats, Carine; Wilson, William H.; Krisch, Henry M.; Mann, Nicholas H.

    2001-01-01

    Sequence analysis of a 10-kb region of the genome of the marine cyanomyovirus S-PM2 reveals a homology to coliphage T4 that extends as a contiguous block from gene (g)18 to g23. The order of the S-PM2 genes in this region is similar to that of T4, but there are insertions and deletions of small ORFs of unknown function. In T4, g18 codes for the tail sheath, g19, the tail tube, g20, the head portal protein, g21, the prohead core protein, g22, a scaffolding protein, and g23, the major capsid protein. Thus, the entire module that determines the structural components of the phage head and contractile tail is conserved between T4 and this cyanophage. The significant differences in the morphology of these phages must reflect the considerable divergence of the amino acid sequence of their homologous virion proteins, which uniformly exceeds 50%. We suggest that their enormous diversity in the sea could be a result of genetic shuffling between disparate phages mediated by such commonly shared modules. These conserved sequences could facilitate genetic exchange by providing partially homologous substrates for recombination between otherwise divergent phage genomes. Such a mechanism would thus expand the pool of phage genes accessible by recombination to all those phages that share common modules. PMID:11553768

  13. Functional Biomimetic Architectures

    NASA Astrophysics Data System (ADS)

    Levine, Paul M.

    N-substituted glycine oligomers, or 'peptoids,' are a class of sequence--specific foldamers composed of tertiary amide linkages, engendering proteolytic stability and enhanced cellular permeability. Peptoids are notable for their facile synthesis, sequence diversity, and ability to fold into distinct secondary structures. In an effort to establish new functional peptoid architectures, we utilize the copper-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC) reaction to generate peptidomimetic assemblies bearing bioactive ligands that specifically target and modulate Androgen Receptor (AR) activity, a major therapeutic target for prostate cancer. Additionally, we explore chemical ligation protocols to generate semi-synthetic hybrid biomacromolecules capable of exhibiting novel structures and functions not accessible to fully biosynthesized proteins.

  14. SNiPlay: a web-based tool for detection, management and analysis of SNPs. Application to grapevine diversity projects.

    PubMed

    Dereeper, Alexis; Nicolas, Stéphane; Le Cunff, Loïc; Bacilieri, Roberto; Doligez, Agnès; Peros, Jean-Pierre; Ruiz, Manuel; This, Patrice

    2011-05-05

    High-throughput re-sequencing, new genotyping technologies and the availability of reference genomes allow the extensive characterization of Single Nucleotide Polymorphisms (SNPs) and insertion/deletion events (indels) in many plant species. The rapidly increasing amount of re-sequencing and genotyping data generated by large-scale genetic diversity projects requires the development of integrated bioinformatics tools able to efficiently manage, analyze, and combine these genetic data with genome structure and external data. In this context, we developed SNiPlay, a flexible, user-friendly and integrative web-based tool dedicated to polymorphism discovery and analysis. It integrates:1) a pipeline, freely accessible through the internet, combining existing softwares with new tools to detect SNPs and to compute different types of statistical indices and graphical layouts for SNP data. From standard sequence alignments, genotyping data or Sanger sequencing traces given as input, SNiPlay detects SNPs and indels events and outputs submission files for the design of Illumina's SNP chips. Subsequently, it sends sequences and genotyping data into a series of modules in charge of various processes: physical mapping to a reference genome, annotation (genomic position, intron/exon location, synonymous/non-synonymous substitutions), SNP frequency determination in user-defined groups, haplotype reconstruction and network, linkage disequilibrium evaluation, and diversity analysis (Pi, Watterson's Theta, Tajima's D).Furthermore, the pipeline allows the use of external data (such as phenotype, geographic origin, taxa, stratification) to define groups and compare statistical indices.2) a database storing polymorphisms, genotyping data and grapevine sequences released by public and private projects. It allows the user to retrieve SNPs using various filters (such as genomic position, missing data, polymorphism type, allele frequency), to compare SNP patterns between populations, and to export genotyping data or sequences in various formats. Our experiments on grapevine genetic projects showed that SNiPlay allows geneticists to rapidly obtain advanced results in several key research areas of plant genetic diversity. Both the management and treatment of large amounts of SNP data are rendered considerably easier for end-users through automation and integration. Current developments are taking into account new advances in high-throughput technologies.SNiPlay is available at: http://sniplay.cirad.fr/.

  15. Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling

    PubMed Central

    Pardo-Diaz, Carolina; Hanly, Joseph J.; Martin, Simon H.; Mallet, James; Dasmahapatra, Kanchon K.; Salazar, Camilo; Joron, Mathieu; Nadeau, Nicola; McMillan, W. Owen; Jiggins, Chris D.

    2016-01-01

    An important goal in evolutionary biology is to understand the genetic changes underlying novel morphological structures. We investigated the origins of a complex wing pattern found among Amazonian Heliconius butterflies. Genome sequence data from 142 individuals across 17 species identified narrow regions associated with two distinct red colour pattern elements, dennis and ray. We hypothesise that these modules in non-coding sequence represent distinct cis-regulatory loci that control expression of the transcription factor optix, which in turn controls red pattern variation across Heliconius. Phylogenetic analysis of the two elements demonstrated that they have distinct evolutionary histories and that novel adaptive morphological variation was created by shuffling these cis-regulatory modules through recombination between divergent lineages. In addition, recombination of modules into different combinations within species further contributes to diversity. Analysis of the timing of diversification in these two regions supports the hypothesis of introgression moving regulatory modules between species, rather than shared ancestral variation. The dennis phenotype introgressed into Heliconius melpomene at about the same time that ray originated in this group, while ray introgressed back into H. elevatus much more recently. We show that shuffling of existing enhancer elements both within and between species provides a mechanism for rapid diversification and generation of novel morphological combinations during adaptive radiation. PMID:26771987

  16. Evolutionary Novelty in a Butterfly Wing Pattern through Enhancer Shuffling.

    PubMed

    Wallbank, Richard W R; Baxter, Simon W; Pardo-Diaz, Carolina; Hanly, Joseph J; Martin, Simon H; Mallet, James; Dasmahapatra, Kanchon K; Salazar, Camilo; Joron, Mathieu; Nadeau, Nicola; McMillan, W Owen; Jiggins, Chris D

    2016-01-01

    An important goal in evolutionary biology is to understand the genetic changes underlying novel morphological structures. We investigated the origins of a complex wing pattern found among Amazonian Heliconius butterflies. Genome sequence data from 142 individuals across 17 species identified narrow regions associated with two distinct red colour pattern elements, dennis and ray. We hypothesise that these modules in non-coding sequence represent distinct cis-regulatory loci that control expression of the transcription factor optix, which in turn controls red pattern variation across Heliconius. Phylogenetic analysis of the two elements demonstrated that they have distinct evolutionary histories and that novel adaptive morphological variation was created by shuffling these cis-regulatory modules through recombination between divergent lineages. In addition, recombination of modules into different combinations within species further contributes to diversity. Analysis of the timing of diversification in these two regions supports the hypothesis of introgression moving regulatory modules between species, rather than shared ancestral variation. The dennis phenotype introgressed into Heliconius melpomene at about the same time that ray originated in this group, while ray introgressed back into H. elevatus much more recently. We show that shuffling of existing enhancer elements both within and between species provides a mechanism for rapid diversification and generation of novel morphological combinations during adaptive radiation.

  17. PrPC Governs Susceptibility to Prion Strains in Bank Vole, While Other Host Factors Modulate Strain Features.

    PubMed

    Espinosa, J C; Nonno, R; Di Bari, M; Aguilar-Calvo, P; Pirisinu, L; Fernández-Borges, N; Vanni, I; Vaccari, G; Marín-Moreno, A; Frassanito, P; Lorenzo, P; Agrimi, U; Torres, J M

    2016-12-01

    Bank vole is a rodent species that shows differential susceptibility to the experimental transmission of different prion strains. In this work, the transmission features of a panel of diverse prions with distinct origins were assayed both in bank vole expressing methionine at codon 109 (Bv109M) and in transgenic mice expressing physiological levels of bank vole PrP C (the BvPrP-Tg407 mouse line). This work is the first systematic comparison of the transmission features of a collection of prion isolates, representing a panel of diverse prion strains, in a transgenic-mouse model and in its natural counterpart. The results showed very similar transmission properties in both the natural species and the transgenic-mouse model, demonstrating the key role of the PrP amino acid sequence in prion transmission susceptibility. However, differences in the PrP Sc types propagated by Bv109M and BvPrP-Tg407 suggest that host factors other than PrP C modulate prion strain features. The differential susceptibility of bank voles to prion strains can be modeled in transgenic mice, suggesting that this selective susceptibility is controlled by the vole PrP sequence alone rather than by other species-specific factors. Differences in the phenotypes observed after prion transmissions in bank voles and in the transgenic mice suggest that host factors other than the PrP C sequence may affect the selection of the substrain replicating in the animal model. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Efficient engineering of chromosomal ribosome binding site libraries in mismatch repair proficient Escherichia coli.

    PubMed

    Oesterle, Sabine; Gerngross, Daniel; Schmitt, Steven; Roberts, Tania Michelle; Panke, Sven

    2017-09-26

    Multiplexed gene expression optimization via modulation of gene translation efficiency through ribosome binding site (RBS) engineering is a valuable approach for optimizing artificial properties in bacteria, ranging from genetic circuits to production pathways. Established algorithms design smart RBS-libraries based on a single partially-degenerate sequence that efficiently samples the entire space of translation initiation rates. However, the sequence space that is accessible when integrating the library by CRISPR/Cas9-based genome editing is severely restricted by DNA mismatch repair (MMR) systems. MMR efficiency depends on the type and length of the mismatch and thus effectively removes potential library members from the pool. Rather than working in MMR-deficient strains, which accumulate off-target mutations, or depending on temporary MMR inactivation, which requires additional steps, we eliminate this limitation by developing a pre-selection rule of genome-library-optimized-sequences (GLOS) that enables introducing large functional diversity into MMR-proficient strains with sequences that are no longer subject to MMR-processing. We implement several GLOS-libraries in Escherichia coli and show that GLOS-libraries indeed retain diversity during genome editing and that such libraries can be used in complex genome editing operations such as concomitant deletions. We argue that this approach allows for stable and efficient fine tuning of chromosomal functions with minimal effort.

  19. Computational Design of DNA-Binding Proteins.

    PubMed

    Thyme, Summer; Song, Yifan

    2016-01-01

    Predicting the outcome of engineered and naturally occurring sequence perturbations to protein-DNA interfaces requires accurate computational modeling technologies. It has been well established that computational design to accommodate small numbers of DNA target site substitutions is possible. This chapter details the basic method of design used in the Rosetta macromolecular modeling program that has been successfully used to modulate the specificity of DNA-binding proteins. More recently, combining computational design and directed evolution has become a common approach for increasing the success rate of protein engineering projects. The power of such high-throughput screening depends on computational methods producing multiple potential solutions. Therefore, this chapter describes several protocols for increasing the diversity of designed output. Lastly, we describe an approach for building comparative models of protein-DNA complexes in order to utilize information from homologous sequences. These models can be used to explore how nature modulates specificity of protein-DNA interfaces and potentially can even be used as starting templates for further engineering.

  20. Phyllosphere bacterial community of floating macrophytes in paddy soil environments as revealed by illumina high-throughput sequencing.

    PubMed

    Xie, Wan-Ying; Su, Jian-Qiang; Zhu, Yong-Guan

    2015-01-01

    The phyllosphere of floating macrophytes in paddy soil ecosystems, a unique habitat, may support large microbial communities but remains largely unknown. We took Wolffia australiana as a representative floating plant and investigated its phyllosphere bacterial community and the underlying driving forces of community modulation in paddy soil ecosystems using Illumina HiSeq 2000 platform-based 16S rRNA gene sequence analysis. The results showed that the phyllosphere of W. australiana harbored considerably rich communities of bacteria, with Proteobacteria and Bacteroidetes as the predominant phyla. The core microbiome in the phyllosphere contained genera such as Acidovorax, Asticcacaulis, Methylibium, and Methylophilus. Complexity of the phyllosphere bacterial communities in terms of class number and α-diversity was reduced compared to those in corresponding water and soil. Furthermore, the bacterial communities exhibited structures significantly different from those in water and soil. These findings and the following redundancy analysis (RDA) suggest that species sorting played an important role in the recruitment of bacterial species in the phyllosphere. The compositional structures of the phyllosphere bacterial communities were modulated predominantly by water physicochemical properties, while the initial soil bacterial communities had limited impact. Taken together, the findings from this study reveal the diversity and uniqueness of the phyllosphere bacterial communities associated with the floating macrophytes in paddy soil environments. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Phyllosphere Bacterial Community of Floating Macrophytes in Paddy Soil Environments as Revealed by Illumina High-Throughput Sequencing

    PubMed Central

    Xie, Wan-Ying

    2014-01-01

    The phyllosphere of floating macrophytes in paddy soil ecosystems, a unique habitat, may support large microbial communities but remains largely unknown. We took Wolffia australiana as a representative floating plant and investigated its phyllosphere bacterial community and the underlying driving forces of community modulation in paddy soil ecosystems using Illumina HiSeq 2000 platform-based 16S rRNA gene sequence analysis. The results showed that the phyllosphere of W. australiana harbored considerably rich communities of bacteria, with Proteobacteria and Bacteroidetes as the predominant phyla. The core microbiome in the phyllosphere contained genera such as Acidovorax, Asticcacaulis, Methylibium, and Methylophilus. Complexity of the phyllosphere bacterial communities in terms of class number and α-diversity was reduced compared to those in corresponding water and soil. Furthermore, the bacterial communities exhibited structures significantly different from those in water and soil. These findings and the following redundancy analysis (RDA) suggest that species sorting played an important role in the recruitment of bacterial species in the phyllosphere. The compositional structures of the phyllosphere bacterial communities were modulated predominantly by water physicochemical properties, while the initial soil bacterial communities had limited impact. Taken together, the findings from this study reveal the diversity and uniqueness of the phyllosphere bacterial communities associated with the floating macrophytes in paddy soil environments. PMID:25362067

  2. Geographic Structuring of the Plasmodium falciparum Sarco(endo)plasmic Reticulum Ca2+ ATPase (PfSERCA) Gene Diversity

    PubMed Central

    Pinto, João; Gribaldo, Simonetta; Legrand, Eric; Niang, Makhtar; Kim, Nimol; Pharath, Lim; Volnay, Béatrice; Ekala, Marie Therese; Bouchier, Christiane; Fandeur, Thierry; Berzosa, Pedro; Benito, Agustin; Ferreira, Isabel Dinis; Ferreira, Cynthia; Vieira, Pedro Paulo; Alecrim, Maria das Graças; Mercereau-Puijalon, Odile; Cravo, Pedro

    2010-01-01

    Artemisinin, a thapsigargin-like sesquiterpene has been shown to inhibit the Plasmodium falciparum sarco/endoplasmic reticulum calcium-ATPase PfSERCA. To collect baseline pfserca sequence information before field deployment of Artemisinin-based Combination therapies that may select mutant parasites, we conducted a sequence analysis of 100 isolates from multiple sites in Africa, Asia and South America. Coding sequence diversity was large, with 29 mutated codons, including 32 SNPs (average of one SNP/115 bp), of which 19 were novel mutations. Most SNP detected in this study were clustered within a region in the cytosolic head of the protein. The PfSERCA functional domains were very well conserved, with non synonymous mutations located outside the functional domains, except for the S769N mutation associated in French Guiana with elevated IC50 for artemether. The S769N mutation is located close to the hinge of the headpiece, which in other species modulates calcium affinity and in consequence efficacy of inhibitors, possibly linking calcium homeostasis to drug resistance. Genetic diversity was highest in Senegal, Brazil and French Guiana, and few mutations were identified in Asia. Population genetic analysis was conducted for a partial fragment of the gene encompassing nucleotide coordinates 87-2862 (unambiguous sequence available for 96 isolates). This supported a geographic clustering, with a separation between Old and New World samples and one dominant ancestral haplotype. Genetic drift alone cannot explain the observed polymorphism, suggesting that other evolutionary mechanisms are operating. One possible contributor could be the frequency of haemoglobinopathies that are associated with calcium dysregulation in the erythrocyte. PMID:20195531

  3. The immunotranscriptome of the Caribbean reef-building coral Pseudodiploria strigosa.

    PubMed

    Ocampo, Iván D; Zárate-Potes, Alejandra; Pizarro, Valeria; Rojas, Cristian A; Vera, Nelson E; Cadavid, Luis F

    2015-09-01

    The viability of coral reefs worldwide has been seriously compromised in the last few decades due in part to the emergence of coral diseases of infectious nature. Despite important efforts to understand the etiology and the contribution of environmental factors associated to coral diseases, the mechanisms of immune response in corals are just beginning to be studied systematically. In this study, we analyzed the set of conserved immune response genes of the Caribbean reef-building coral Pseudodiploria strigosa by Illumina-based transcriptome sequencing and annotation of healthy colonies challenged with whole live Gram-positive and Gram-negative bacteria. Searching the annotated transcriptome with immune-related terms yielded a total of 2782 transcripts predicted to encode conserved immune-related proteins that were classified into three modules: (a) the immune recognition module, containing a wide diversity of putative pattern recognition receptors including leucine-rich repeat-containing proteins, immunoglobulin superfamily receptors, representatives of various lectin families, and scavenger receptors; (b) the intracellular signaling module, containing components from the Toll-like receptor, transforming growth factor, MAPK, and apoptosis signaling pathways; and (3) the effector module, including the C3 and factor B complement components, a variety of proteases and protease inhibitors, and the melanization-inducing phenoloxidase. P. strigosa displays a highly variable and diverse immune recognition repertoire that has likely contributed to its resilience to coral diseases.

  4. Visual ModuleOrganizer: a graphical interface for the detection and comparative analysis of repeat DNA modules

    PubMed Central

    2014-01-01

    Background DNA repeats, such as transposable elements, minisatellites and palindromic sequences, are abundant in sequences and have been shown to have significant and functional roles in the evolution of the host genomes. In a previous study, we introduced the concept of a repeat DNA module, a flexible motif present in at least two occurences in the sequences. This concept was embedded into ModuleOrganizer, a tool allowing the detection of repeat modules in a set of sequences. However, its implementation remains difficult for larger sequences. Results Here we present Visual ModuleOrganizer, a Java graphical interface that enables a new and optimized version of the ModuleOrganizer tool. To implement this version, it was recoded in C++ with compressed suffix tree data structures. This leads to less memory usage (at least 120-fold decrease in average) and decreases by at least four the computation time during the module detection process in large sequences. Visual ModuleOrganizer interface allows users to easily choose ModuleOrganizer parameters and to graphically display the results. Moreover, Visual ModuleOrganizer dynamically handles graphical results through four main parameters: gene annotations, overlapping modules with known annotations, location of the module in a minimal number of sequences, and the minimal length of the modules. As a case study, the analysis of FoldBack4 sequences clearly demonstrated that our tools can be extended to comparative and evolutionary analyses of any repeat sequence elements in a set of genomic sequences. With the increasing number of sequences available in public databases, it is now possible to perform comparative analyses of repeated DNA modules in a graphic and friendly manner within a reasonable time period. Availability Visual ModuleOrganizer interface and the new version of the ModuleOrganizer tool are freely available at: http://lcb.cnrs-mrs.fr/spip.php?rubrique313. PMID:24678954

  5. Abundance and Genetic Diversity of nifH Gene Sequences in Anthropogenically Affected Brazilian Mangrove Sediments

    PubMed Central

    Dias, Armando Cavalcante Franco; Pereira e Silva, Michele de Cassia; Cotta, Simone Raposo; Dini-Andreote, Francisco; Soares, Fábio Lino; Salles, Joana Falcão; Azevedo, João Lúcio; van Elsas, Jan Dirk

    2012-01-01

    Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies. PMID:22941088

  6. Abundance and genetic diversity of nifH gene sequences in anthropogenically affected Brazilian mangrove sediments.

    PubMed

    Dias, Armando Cavalcante Franco; Pereira e Silva, Michele de Cassia; Cotta, Simone Raposo; Dini-Andreote, Francisco; Soares, Fábio Lino; Salles, Joana Falcão; Azevedo, João Lúcio; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2012-11-01

    Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies.

  7. The endobacterium of an arbuscular mycorrhizal fungus modulates the expression of its toxin-antitoxin systems during the life cycle of its host.

    PubMed

    Salvioli di Fossalunga, Alessandra; Lipuma, Justine; Venice, Francesco; Dupont, Laurence; Bonfante, Paola

    2017-10-01

    Arbuscular mycorrhizal fungi (AMF) are widespread root symbionts that perform important ecological services, such as improving plant nutrient and water acquisition. Some AMF from the Gigasporaceae family host a population of endobacteria, Candidatus Glomeribacter gigasporarum (Cagg). The analysis of the Cagg genome identified six putative toxin-antitoxin modules (TAs), consisting of pairs of stable toxins and unstable antitoxins that affect diverse physiological functions. Sequence analysis suggested that these TA modules were acquired by horizontal transfer. Gene expression patterns of two TAs (yoeB/yefM and chpB/chpS) changed during the fungal life cycle, with the expression during the pre-symbiotic phase higher than during the symbiosis with the plant host. The heterologous expression in Escherichia coli demonstrated the functionality only for the YoeB-YefM pair. On the basis of these observations, we speculate that TA modules might help Cagg adapt to its intracellular habitat, coordinating its proliferation with the physiological state of the AMF host.

  8. Microbial island biogeography: isolation shapes the life history characteristics but not diversity of root-symbiotic fungal communities.

    PubMed

    Davison, John; Moora, Mari; Öpik, Maarja; Ainsaar, Leho; Ducousso, Marc; Hiiesalu, Inga; Jairus, Teele; Johnson, Nancy; Jourand, Philippe; Kalamees, Rein; Koorem, Kadri; Meyer, Jean-Yves; Püssa, Kersti; Reier, Ülle; Pärtel, Meelis; Semchenko, Marina; Traveset, Anna; Vasar, Martti; Zobel, Martin

    2018-06-08

    Island biogeography theory is one of the most influential paradigms in ecology. That island characteristics, including remoteness, can profoundly modulate biological diversity has been borne out by studies of animals and plants. By contrast, the processes influencing microbial diversity in island systems remain largely undetermined. We sequenced arbuscular mycorrhizal (AM) fungal DNA from plant roots collected on 13 islands worldwide and compared AM fungal diversity on islands with existing data from mainland sites. AM fungal communities on islands (even those >6000 km from the closest mainland) comprised few endemic taxa and were as diverse as mainland communities. Thus, in contrast to patterns recorded among macro-organisms, efficient dispersal appears to outweigh the effects of taxogenesis and extinction in regulating AM fungal diversity on islands. Nonetheless, AM fungal communities on more distant islands comprised a higher proportion of previously cultured and large-spored taxa, indicating that dispersal may be human-mediated or require tolerance of significant environmental stress, such as exposure to sunlight or high salinity. The processes driving large-scale patterns of microbial diversity are a key consideration for attempts to conserve and restore functioning ecosystems in this era of rapid global change.

  9. Combined hairpin-antisense compositions and methods for modulating expression

    DOEpatents

    Shanklin, John; Nguyen, Tam

    2014-08-05

    A nucleotide construct comprising a nucleotide sequence that forms a stem and a loop, wherein the loop comprises a nucleotide sequence that modulates expression of a target, wherein the stem comprises a nucleotide sequence that modulates expression of a target, and wherein the target modulated by the nucleotide sequence in the loop and the target modulated by the nucleotide sequence in the stem may be the same or different. Vectors, methods of regulating target expression, methods of providing a cell, and methods of treating conditions comprising the nucleotide sequence are also disclosed.

  10. Combined hairpin-antisense compositions and methods for modulating expression

    DOEpatents

    Shanklin, John; Nguyen, Tam Huu

    2015-11-24

    A nucleotide construct comprising a nucleotide sequence that forms a stem and a loop, wherein the loop comprises a nucleotide sequence that modulates expression of a target, wherein the stem comprises a nucleotide sequence that modulates expression of a target, and wherein the target modulated by the nucleotide sequence in the loop and the target modulated by the nucleotide sequence in the stem may be the same or different. Vectors, methods of regulating target expression, methods of providing a cell, and methods of treating conditions comprising the nucleotide sequence are also disclosed.

  11. Investigating effects of communications modulation technique on targeting performance

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Eusebio, Gerald; Huling, Edward

    2006-05-01

    One of the key challenges facing the global war on terrorism (GWOT) and urban operations is the increased need for rapid and diverse information from distributed sources. For users to get adequate information on target types and movements, they would need reliable data. In order to facilitate reliable computational intelligence, we seek to explore the communication modulation tradeoffs affecting information distribution and accumulation. In this analysis, we explore the modulation techniques of Orthogonal Frequency Division Multiplexing (OFDM), Direct Sequence Spread Spectrum (DSSS), and statistical time-division multiple access (TDMA) as a function of the bit error rate and jitter that affect targeting performance. In the analysis, we simulate a Link 16 with a simple bandpass frequency shift keying (PSK) technique using different Signal-to-Noise ratios. The communications transfer delay and accuracy tradeoffs are assessed as to the effects incurred in targeting performance.

  12. Mechanisms of viral mutation.

    PubMed

    Sanjuán, Rafael; Domingo-Calap, Pilar

    2016-12-01

    The remarkable capacity of some viruses to adapt to new hosts and environments is highly dependent on their ability to generate de novo diversity in a short period of time. Rates of spontaneous mutation vary amply among viruses. RNA viruses mutate faster than DNA viruses, single-stranded viruses mutate faster than double-strand virus, and genome size appears to correlate negatively with mutation rate. Viral mutation rates are modulated at different levels, including polymerase fidelity, sequence context, template secondary structure, cellular microenvironment, replication mechanisms, proofreading, and access to post-replicative repair. Additionally, massive numbers of mutations can be introduced by some virus-encoded diversity-generating elements, as well as by host-encoded cytidine/adenine deaminases. Our current knowledge of viral mutation rates indicates that viral genetic diversity is determined by multiple virus- and host-dependent processes, and that viral mutation rates can evolve in response to specific selective pressures.

  13. Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans

    PubMed Central

    Cenik, Can; Cenik, Elif Sarinay; Byeon, Gun W.; Grubert, Fabian; Candille, Sophie I.; Spacek, Damek; Alsallakh, Bilal; Tilgner, Hagen; Araya, Carlos L.; Tang, Hua; Ricci, Emiliano; Snyder, Michael P.

    2015-01-01

    Elucidating the consequences of genetic differences between humans is essential for understanding phenotypic diversity and personalized medicine. Although variation in RNA levels, transcription factor binding, and chromatin have been explored, little is known about global variation in translation and its genetic determinants. We used ribosome profiling, RNA sequencing, and mass spectrometry to perform an integrated analysis in lymphoblastoid cell lines from a diverse group of individuals. We find significant differences in RNA, translation, and protein levels suggesting diverse mechanisms of personalized gene expression control. Combined analysis of RNA expression and ribosome occupancy improves the identification of individual protein level differences. Finally, we identify genetic differences that specifically modulate ribosome occupancy—many of these differences lie close to start codons and upstream ORFs. Our results reveal a new level of gene expression variation among humans and indicate that genetic variants can cause changes in protein levels through effects on translation. PMID:26297486

  14. Allosteric Modulation of protein oligomerization: an emerging approach to drug design

    NASA Astrophysics Data System (ADS)

    Gabizon, Ronen; Friedler, Assaf

    2014-03-01

    Many disease-related proteins are in equilibrium between different oligomeric forms. The regulation of this equilibrium plays a central role in maintaining the activity of these proteins in vitro and in vivo. Modulation of the oligomerization equilibrium of proteins by molecules that bind preferentially to a specific oligomeric state is emerging as a potential therapeutic strategy that can be applied to many biological systems such as cancer and viral infections. The target proteins for such compounds are diverse in structure and sequence, and may require different approaches for shifting their oligomerization equilibrium. The discovery of such oligomerization-modulating compounds is thus achieved based on existing structural knowledge about the specific target proteins, as well as on their interactions with partner proteins or with ligands. In silico design and combinatorial tools such as peptide arrays and phage display are also used for discovering compounds that modulate protein oligomerization. The current review highlights some of the recent developments in the design of compounds aimed at modulating the oligomerization equilibrium of proteins, including the "shiftides" approach developed in our lab.

  15. Diversity of Microbial Carbohydrate-Active enZYmes (CAZYmes) Associated with Freshwater and Soil Samples from Caatinga Biome.

    PubMed

    Andrade, Ana Camila; Fróes, Adriana; Lopes, Fabyano Álvares Cardoso; Thompson, Fabiano L; Krüger, Ricardo Henrique; Dinsdale, Elizabeth; Bruce, Thiago

    2017-07-01

    Semi-arid and arid areas occupy about 33% of terrestrial ecosystems. However, little information is available about microbial diversity in the semi-arid Caatinga, which represents a unique biome that extends to about 11% of the Brazilian territory and is home to extraordinary diversity and high endemism level of species. In this study, we characterized the diversity of microbial genes associated with biomass conversion (carbohydrate-active enzymes, or so-called CAZYmes) in soil and freshwater of the Caatinga. Our results showed distinct CAZYme profiles in the soil and freshwater samples. Glycoside hydrolases and glycosyltransferases were the most abundant CAZYme families, with glycoside hydrolases more dominant in soil (∼44%) and glycosyltransferases more abundant in freshwater (∼50%). The abundances of individual glycoside hydrolase, glycosyltransferase, and carbohydrate-binding module subfamilies varied widely between soil and water samples. A predominance of glycoside hydrolases was observed in soil, and a higher contribution of enzymes involved in carbohydrate biosynthesis was observed in freshwater. The main taxa associated with the CAZYme sequences were Planctomycetia (relative abundance in soil, 29%) and Alphaproteobacteria (relative abundance in freshwater, 27%). Approximately 5-7% of CAZYme sequences showed low similarity with sequences deposited in non-redundant databases, suggesting putative homologues. Our findings represent a first attempt to describe specific microbial CAZYme profiles for environmental samples. Characterizing these enzyme groups associated with the conversion of carbohydrates in nature will improve our understanding of the significant roles of enzymes in the carbon cycle. We identified a CAZYme signature that can be used to discriminate between soil and freshwater samples, and this signature may be related to the microbial species adapted to the habitat. The data show the potential ecological roles of the CAZYme repertoire and associated biotechnological applications.

  16. DNA sequence determinants controlling affinity, stability and shape of DNA complexes bound by the nucleoid protein Fis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hancock, Stephen P.; Stella, Stefano; Cascio, Duilio

    The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequencesmore » in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. Lastly, the affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.« less

  17. DNA sequence determinants controlling affinity, stability and shape of DNA complexes bound by the nucleoid protein Fis

    DOE PAGES

    Hancock, Stephen P.; Stella, Stefano; Cascio, Duilio; ...

    2016-03-09

    The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequencesmore » in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. Lastly, the affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.« less

  18. Network modules and hubs in plant-root fungal biomes

    PubMed Central

    Toju, Hirokazu; Yamamoto, Satoshi; Tanabe, Akifumi S.; Hayakawa, Takashi; Ishii, Hiroshi S.

    2016-01-01

    Terrestrial plants host phylogenetically and functionally diverse groups of below-ground microbes, whose community structure controls plant growth/survival in both natural and agricultural ecosystems. Therefore, understanding the processes by which whole root-associated microbiomes are organized is one of the major challenges in ecology and plant science. We here report that diverse root-associated fungi can form highly compartmentalized networks of coexistence within host roots and that the structure of the fungal symbiont communities can be partitioned into semi-discrete types even within a single host plant population. Illumina sequencing of root-associated fungi in a monodominant south beech forest revealed that the network representing symbiont–symbiont co-occurrence patterns was compartmentalized into clear modules, which consisted of diverse functional groups of mycorrhizal and endophytic fungi. Consequently, terminal roots of the plant were colonized by either of the two largest fungal species sets (represented by Oidiodendron or Cenococcum). Thus, species-rich root microbiomes can have alternative community structures, as recently shown in the relationships between human gut microbiome type (i.e. ‘enterotype’) and host individual health. This study also shows an analytical framework for pinpointing network hubs in symbiont–symbiont networks, leading to the working hypothesis that a small number of microbial species organize the overall root–microbiome dynamics. PMID:26962029

  19. The diversity and host interactions of Propionibacterium acnes bacteriophages on human skin

    PubMed Central

    Liu, Jared; Yan, Riceley; Zhong, Qiao; Ngo, Sam; Bangayan, Nathanael J; Nguyen, Lin; Lui, Timothy; Liu, Minghsun; Erfe, Marie C; Craft, Noah; Tomida, Shuta; Li, Huiying

    2015-01-01

    The viral population, including bacteriophages, is an important component of the human microbiota, yet is poorly understood. We aim to determine whether bacteriophages modulate the composition of the bacterial populations, thus potentially playing a role in health or disease. We investigated the diversity and host interactions of the bacteriophages of Propionibacterium acnes, a major human skin commensal implicated in acne pathogenesis. By sequencing 48 P. acnes phages isolated from acne patients and healthy individuals and by analyzing the P. acnes phage populations in healthy skin metagenomes, we revealed that P. acnes phage populations in the skin microbial community are often dominated by one strain. We also found phage strains shared among both related and unrelated individuals, suggesting that a pool of common phages exists in the human population and that transmission of phages may occur between individuals. To better understand the bacterium–phage interactions in the skin microbiota, we determined the outcomes of 74 genetically defined Propionibacterium strains challenged by 15 sequenced phages. Depending on the Propionibacterium lineage, phage infection can result in lysis, pseudolysogeny, or resistance. In type II P. acnes strains, we found that encoding matching clustered regularly interspaced short palindromic repeat spacers is insufficient to confer phage resistance. Overall, our findings suggest that the prey–predator relationship between bacteria and phages may have a role in modulating the composition of the microbiota. Our study also suggests that the microbiome structure of an individual may be an important factor in the design of phage-based therapy. PMID:25848871

  20. The diversity and host interactions of Propionibacterium acnes bacteriophages on human skin.

    PubMed

    Liu, Jared; Yan, Riceley; Zhong, Qiao; Ngo, Sam; Bangayan, Nathanael J; Nguyen, Lin; Lui, Timothy; Liu, Minghsun; Erfe, Marie C; Craft, Noah; Tomida, Shuta; Li, Huiying

    2015-09-01

    The viral population, including bacteriophages, is an important component of the human microbiota, yet is poorly understood. We aim to determine whether bacteriophages modulate the composition of the bacterial populations, thus potentially playing a role in health or disease. We investigated the diversity and host interactions of the bacteriophages of Propionibacterium acnes, a major human skin commensal implicated in acne pathogenesis. By sequencing 48 P. acnes phages isolated from acne patients and healthy individuals and by analyzing the P. acnes phage populations in healthy skin metagenomes, we revealed that P. acnes phage populations in the skin microbial community are often dominated by one strain. We also found phage strains shared among both related and unrelated individuals, suggesting that a pool of common phages exists in the human population and that transmission of phages may occur between individuals. To better understand the bacterium-phage interactions in the skin microbiota, we determined the outcomes of 74 genetically defined Propionibacterium strains challenged by 15 sequenced phages. Depending on the Propionibacterium lineage, phage infection can result in lysis, pseudolysogeny, or resistance. In type II P. acnes strains, we found that encoding matching clustered regularly interspaced short palindromic repeat spacers is insufficient to confer phage resistance. Overall, our findings suggest that the prey-predator relationship between bacteria and phages may have a role in modulating the composition of the microbiota. Our study also suggests that the microbiome structure of an individual may be an important factor in the design of phage-based therapy.

  1. 47 CFR 2.201 - Emission, modulation, and transmission characteristics.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... carrier is amplitude-modulated (including cases where sub-carriers are angle-modulated): —Double-sideband... is amplitude and angle-modulated either simultaneously or in a pre-established sequence D (5) Emission of pulses: 1 —Sequence of unmodulated pulses P —A sequence of pulses: —Modulated in amplitude K...

  2. 47 CFR 2.201 - Emission, modulation, and transmission characteristics.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... carrier is amplitude-modulated (including cases where sub-carriers are angle-modulated): —Double-sideband... is amplitude and angle-modulated either simultaneously or in a pre-established sequence D (5) Emission of pulses: 1 —Sequence of unmodulated pulses P —A sequence of pulses: —Modulated in amplitude K...

  3. 47 CFR 2.201 - Emission, modulation, and transmission characteristics.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... carrier is amplitude-modulated (including cases where sub-carriers are angle-modulated): —Double-sideband... is amplitude and angle-modulated either simultaneously or in a pre-established sequence D (5) Emission of pulses: 1 —Sequence of unmodulated pulses P —A sequence of pulses: —Modulated in amplitude K...

  4. ChimerDB 3.0: an enhanced database for fusion genes from cancer transcriptome and literature data mining.

    PubMed

    Lee, Myunggyo; Lee, Kyubum; Yu, Namhee; Jang, Insu; Choi, Ikjung; Kim, Pora; Jang, Ye Eun; Kim, Byounggun; Kim, Sunkyu; Lee, Byungwook; Kang, Jaewoo; Lee, Sanghyuk

    2017-01-04

    Fusion gene is an important class of therapeutic targets and prognostic markers in cancer. ChimerDB is a comprehensive database of fusion genes encompassing analysis of deep sequencing data and manual curations. In this update, the database coverage was enhanced considerably by adding two new modules of The Cancer Genome Atlas (TCGA) RNA-Seq analysis and PubMed abstract mining. ChimerDB 3.0 is composed of three modules of ChimerKB, ChimerPub and ChimerSeq. ChimerKB represents a knowledgebase including 1066 fusion genes with manual curation that were compiled from public resources of fusion genes with experimental evidences. ChimerPub includes 2767 fusion genes obtained from text mining of PubMed abstracts. ChimerSeq module is designed to archive the fusion candidates from deep sequencing data. Importantly, we have analyzed RNA-Seq data of the TCGA project covering 4569 patients in 23 cancer types using two reliable programs of FusionScan and TopHat-Fusion. The new user interface supports diverse search options and graphic representation of fusion gene structure. ChimerDB 3.0 is available at http://ercsb.ewha.ac.kr/fusiongene/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Complete Cellulase System in the Marine Bacterium Saccharophagus degradans Strain 2-40T

    PubMed Central

    Taylor, Larry E.; Henrissat, Bernard; Coutinho, Pedro M.; Ekborg, Nathan A.; Hutcheson, Steven W.; Weiner, Ronald M.

    2006-01-01

    Saccharophagus degradans strain 2-40 is a representative of an emerging group of marine complex polysaccharide (CP)-degrading bacteria. It is unique in its metabolic versatility, being able to degrade at least 10 distinct CPs from diverse algal, plant and invertebrate sources. The S. degradans genome has been sequenced to completion, and more than 180 open reading frames have been identified that encode carbohydrases. Over half of these are likely to act on plant cell wall polymers. In fact, there appears to be a full array of enzymes that degrade and metabolize plant cell walls. Genomic and proteomic analyses reveal 13 cellulose depolymerases complemented by seven accessory enzymes, including two cellodextrinases, three cellobiases, a cellodextrin phosphorylase, and a cellobiose phosphorylase. Most of these enzymes exhibit modular architecture, and some contain novel combinations of catalytic and/or substrate binding modules. This is exemplified by endoglucanase Cel5A, which has three internal family 6 carbohydrate binding modules (CBM6) and two catalytic modules from family five of glycosyl hydrolases (GH5) and by Cel6A, a nonreducing-end cellobiohydrolase from family GH6 with tandem CBM2s. This is the first report of a complete and functional cellulase system in a marine bacterium with a sequenced genome. PMID:16707677

  6. Biosynthetic multitasking facilitates thalassospiramide structural diversity in marine bacteria.

    PubMed

    Ross, Avena C; Xu, Ying; Lu, Liang; Kersten, Roland D; Shao, Zongze; Al-Suwailem, Abdulaziz M; Dorrestein, Pieter C; Qian, Pei-Yuan; Moore, Bradley S

    2013-01-23

    Thalassospiramides A and B are immunosuppressant cyclic lipopeptides first reported from the marine α-proteobacterium Thalassospira sp. CNJ-328. We describe here the discovery and characterization of an extended family of 14 new analogues from four Tistrella and Thalassospira isolates. These potent calpain 1 protease inhibitors belong to six structure classes in which the length and composition of the acylpeptide side chain varies extensively. Genomic sequence analysis of the thalassospiramide-producing microbes revealed related, genus-specific biosynthetic loci encoding hybrid nonribosomal peptide synthetase/polyketide synthases consistent with thalassospiramide assembly. The bioinformatics analysis of the gene clusters suggests that structural diversity, which ranges from the 803.4 Da thalassospiramide C to the 1291.7 Da thalassospiramide F, results from a complex sequence of reactions involving amino acid substrate channeling and enzymatic multimodule skipping and iteration. Preliminary biochemical analysis of the N-terminal nonribosomal peptide synthetase module from the Thalassospira TtcA megasynthase supports a biosynthetic model in which in cis amino acid activation competes with in trans activation to increase the range of amino acid substrates incorporated at the N terminus.

  7. Conservation of Endo16 expression in sea urchins despite evolutionary divergence in both cis and trans-acting components of transcriptional regulation

    NASA Technical Reports Server (NTRS)

    Romano, Laura A.; Wray, Gregory A.

    2003-01-01

    Evolutionary changes in transcriptional regulation undoubtedly play an important role in creating morphological diversity. However, there is little information about the evolutionary dynamics of cis-regulatory sequences. This study examines the functional consequence of evolutionary changes in the Endo16 promoter of sea urchins. The Endo16 gene encodes a large extracellular protein that is expressed in the endoderm and may play a role in cell adhesion. Its promoter has been characterized in exceptional detail in the purple sea urchin, Strongylocentrotus purpuratus. We have characterized the structure and function of the Endo16 promoter from a second sea urchin species, Lytechinus variegatus. The Endo16 promoter sequences have evolved in a strongly mosaic manner since these species diverged approximately 35 million years ago: the most proximal region (module A) is conserved, but the remaining modules (B-G) are unalignable. Despite extensive divergence in promoter sequences, the pattern of Endo16 transcription is largely conserved during embryonic and larval development. Transient expression assays demonstrate that 2.2 kb of upstream sequence in either species is sufficient to drive GFP reporter expression that correctly mimics this pattern of Endo16 transcription. Reciprocal cross-species transient expression assays imply that changes have also evolved in the set of transcription factors that interact with the Endo16 promoter. Taken together, these results suggest that stabilizing selection on the transcriptional output may have operated to maintain a similar pattern of Endo16 expression in S. purpuratus and L. variegatus, despite dramatic divergence in promoter sequence and mechanisms of transcriptional regulation.

  8. Simulation system of arrhythmia using ActiveX control.

    PubMed

    Takeuchi, Akihiro; Hirose, Minoru; Hamada, Atsushi; Ikeda, Noriaki

    2005-07-01

    A simulation system for arrhythmias has been developed using Windows-based software technology, ActiveX control. The cardiac module consists of six cells, the sinus, atrium, AV node, ventricle, and ectopic foci. The physiological properties of the cells, the automaticity and conduction delay, were modelled, respectively, by the phase response curve and the excitability recovery curve. Cell functions were implemented in the ActiveX control and incorporated into the cardiac module. The system draws the ECG sequence as a ladder diagram in real time. The system interactively shows diverse arrhythmias for various user settings of the cell function and bidirectional conduction between the cells. Users are able to experiment virtually by setting up a so-called electrophysiological stimulation. This system is useful for learning and for teaching the interaction between the cells and arrhythmias.

  9. Temporal variations in early developmental decisions: an engine of forebrain evolution.

    PubMed

    Bielen, H; Pal, S; Tole, S; Houart, C

    2017-02-01

    Tight control of developmental timing is pivotal to many major processes in developmental biology, such as patterning, fate specification, cell cycle dynamics, cell migration and connectivity. Temporal change in these ontogenetic sequences is known as heterochrony, a major force in the evolution of body plans and organogenesis. In the last 5 years, studies in fish and rodents indicate that heterochrony in signaling during early development generates diversity in forebrain size and complexity. Here, we summarize these findings and propose that, additionally to spatio-temporal tuning of neurogenesis, temporal and quantitative modulation of signaling events drive pivotal changes in shape, size and complexity of the forebrain across evolution, participating to the generation of diversity in animal behavior and emergence of cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Sequence Divergence and Conservation in Genomes of Helicobacter cetorum Strains from a Dolphin and a Whale

    PubMed Central

    Kersulyte, Dangeruta; Rossi, Mirko; Berg, Douglas E.

    2013-01-01

    Background and Objectives Strains of Helicobacter cetorum have been cultured from several marine mammals and have been found to be closely related in 16 S rDNA sequence to the human gastric pathogen H. pylori, but their genomes were not characterized further. Methods The genomes of H. cetorum strains from a dolphin and a whale were sequenced completely using 454 technology and PCR and capillary sequencing. Results These genomes are 1.8 and 1.95 mb in size, some 7–26% larger than H. pylori genomes, and differ markedly from one another in gene content, and sequences and arrangements of shared genes. However, each strain is more related overall to H. pylori and its descendant H. acinonychis than to other known species. These H. cetorum strains lack cag pathogenicity islands, but contain novel alleles of the virulence-associated vacuolating cytotoxin (vacA) gene. Of particular note are (i) an extra triplet of vacA genes with ≤50% protein-level identity to each other in the 5′ two-thirds of the gene needed for host factor interaction; (ii) divergent sets of outer membrane protein genes; (iii) several metabolic genes distinct from those of H. pylori; (iv) genes for an iron-cofactored urease related to those of Helicobacter species from terrestrial carnivores, in addition to genes for a nickel co-factored urease; and (v) members of the slr multigene family, some of which modulate host responses to infection and improve Helicobacter growth with mammalian cells. Conclusions Our genome sequence data provide a glimpse into the novelty and great genetic diversity of marine helicobacters. These data should aid further analyses of microbial genome diversity and evolution and infection and disease mechanisms in vast and often fragile ocean ecosystems. PMID:24358262

  11. CRISPR-Cas and Contact-Dependent Secretion Systems Present on Excisable Pathogenicity Islands with Conserved Recombination Modules.

    PubMed

    Carpenter, Megan R; Kalburge, Sai S; Borowski, Joseph D; Peters, Molly C; Colwell, Rita R; Boyd, E Fidelma

    2017-05-15

    Pathogenicity islands (PAIs) are mobile integrated genetic elements that contain a diverse range of virulence factors. PAIs integrate into the host chromosome at a tRNA locus that contains their specific bacterial attachment site, attB , via integrase-mediated site-specific recombination generating attL and attR sites. We identified conserved recombination modules (integrases and att sites) previously described in choleragenic Vibrio cholerae PAIs but with novel cargo genes. Clustered regularly interspaced short palindromic repeat (CRISPR)-associated proteins (Cas proteins) and a type VI secretion system (T6SS) gene cluster were identified at the Vibrio pathogenicity island 1 (VPI-1) insertion site in 19 V. cholerae strains and contained the same recombination module. Two divergent type I-F CRISPR-Cas systems were identified, which differed in Cas protein homology and content. The CRISPR repeat sequence was identical among all V. cholerae strains, but the CRISPR spacer sequences and the number of spacers varied. In silico analysis suggests that the CRISPR-Cas systems were active against phages and plasmids. A type III secretion system (T3SS) was present in 12 V. cholerae strains on a 68-kb island inserted at the same tRNA-serine insertion site as VPI-2 and contained the same recombination module. Bioinformatics analysis showed that two divergent T3SSs exist among the strains examined. Both the CRISPR and T3SS islands excised site specifically from the bacterial chromosome as complete units, and the cognate integrases were essential for this excision. These data demonstrated that identical recombination modules that catalyze integration and excision from the chromosome can acquire diverse cargo genes, signifying a novel method of acquisition for both CRISPR-Cas systems and T3SSs. IMPORTANCE This work demonstrated the presence of CRISPR-Cas systems and T3SSs on PAIs. Our work showed that similar recombination modules can associate with different cargo genes and catalyze their incorporation into bacterial chromosomes, which could convert a strain into a pathogen with very different disease pathologies. Each island had the ability to excise from the chromosome as distinct, complete units for possible transfer. Evolutionary analysis of these regions indicates that they were acquired by horizontal transfer and that PAIs are the units of transfer. Similar to the case for phage evolution, PAIs have a modular structure where different functional regions are acquired by identical recombination modules. Copyright © 2017 American Society for Microbiology.

  12. Research Report for the Organizing for Diversity Project.

    ERIC Educational Resources Information Center

    Betsinger, Alicia M.; Garcia, Shernaz B.; Guerra, Patricia L.

    This report describes the Organizing for Diversity Project, which generated professional development modules to prepare teachers to work more effectively with diverse students. Prototype modules were developed in collaboration with teacher volunteers, then field tested. The final 11 modules, which included 33 hours of training, were designed for…

  13. Burkholderia pseudomallei sequencing identifies genomic clades with distinct recombination, accessory, and epigenetic profiles

    PubMed Central

    Nandi, Tannistha; Holden, Matthew T.G.; Didelot, Xavier; Mehershahi, Kurosh; Boddey, Justin A.; Beacham, Ifor; Peak, Ian; Harting, John; Baybayan, Primo; Guo, Yan; Wang, Susana; How, Lee Chee; Sim, Bernice; Essex-Lopresti, Angela; Sarkar-Tyson, Mitali; Nelson, Michelle; Smither, Sophie; Ong, Catherine; Aw, Lay Tin; Hoon, Chua Hui; Michell, Stephen; Studholme, David J.; Titball, Richard; Chen, Swaine L.; Parkhill, Julian

    2015-01-01

    Burkholderia pseudomallei (Bp) is the causative agent of the infectious disease melioidosis. To investigate population diversity, recombination, and horizontal gene transfer in closely related Bp isolates, we performed whole-genome sequencing (WGS) on 106 clinical, animal, and environmental strains from a restricted Asian locale. Whole-genome phylogenies resolved multiple genomic clades of Bp, largely congruent with multilocus sequence typing (MLST). We discovered widespread recombination in the Bp core genome, involving hundreds of regions associated with multiple haplotypes. Highly recombinant regions exhibited functional enrichments that may contribute to virulence. We observed clade-specific patterns of recombination and accessory gene exchange, and provide evidence that this is likely due to ongoing recombination between clade members. Reciprocally, interclade exchanges were rarely observed, suggesting mechanisms restricting gene flow between clades. Interrogation of accessory elements revealed that each clade harbored a distinct complement of restriction-modification (RM) systems, predicted to cause clade-specific patterns of DNA methylation. Using methylome sequencing, we confirmed that representative strains from separate clades indeed exhibit distinct methylation profiles. Finally, using an E. coli system, we demonstrate that Bp RM systems can inhibit uptake of non-self DNA. Our data suggest that RM systems borne on mobile elements, besides preventing foreign DNA invasion, may also contribute to limiting exchanges of genetic material between individuals of the same species. Genomic clades may thus represent functional units of genetic isolation in Bp, modulating intraspecies genetic diversity. PMID:25236617

  14. Archaeal β diversity patterns under the seafloor along geochemical gradients

    NASA Astrophysics Data System (ADS)

    Koyano, Hitoshi; Tsubouchi, Taishi; Kishino, Hirohisa; Akutsu, Tatsuya

    2014-09-01

    Recently, deep drilling into the seafloor has revealed that there are vast sedimentary ecosystems of diverse microorganisms, particularly archaea, in subsurface areas. We investigated the β diversity patterns of archaeal communities in sediment layers under the seafloor and their determinants. This study was accomplished by analyzing large environmental samples of 16S ribosomal RNA gene sequences and various geochemical data collected from a sediment core of 365.3 m, obtained by drilling into the seafloor off the east coast of the Shimokita Peninsula. To extract the maximum amount of information from these environmental samples, we first developed a method for measuring β diversity using sequence data by applying probability theory on a set of strings developed by two of the authors in a previous publication. We introduced an index of β diversity between sequence populations from which the sequence data were sampled. We then constructed an estimator of the β diversity index based on the sequence data and demonstrated that it converges to the β diversity index between sequence populations with probability of 1 as the number of sampled sequences increases. Next, we applied this new method to quantify β diversities between archaeal sequence populations under the seafloor and constructed a quantitative model of the estimated β diversity patterns. Nearly 90% of the variation in the archaeal β diversity was explained by a model that included as variables the differences in the abundances of chlorine, iodine, and carbon between the sediment layers.

  15. Strategies for Achieving High Sequencing Accuracy for Low Diversity Samples and Avoiding Sample Bleeding Using Illumina Platform

    PubMed Central

    Mitra, Abhishek; Skrzypczak, Magdalena; Ginalski, Krzysztof; Rowicka, Maga

    2015-01-01

    Sequencing microRNA, reduced representation sequencing, Hi-C technology and any method requiring the use of in-house barcodes result in sequencing libraries with low initial sequence diversity. Sequencing such data on the Illumina platform typically produces low quality data due to the limitations of the Illumina cluster calling algorithm. Moreover, even in the case of diverse samples, these limitations are causing substantial inaccuracies in multiplexed sample assignment (sample bleeding). Such inaccuracies are unacceptable in clinical applications, and in some other fields (e.g. detection of rare variants). Here, we discuss how both problems with quality of low-diversity samples and sample bleeding are caused by incorrect detection of clusters on the flowcell during initial sequencing cycles. We propose simple software modifications (Long Template Protocol) that overcome this problem. We present experimental results showing that our Long Template Protocol remarkably increases data quality for low diversity samples, as compared with the standard analysis protocol; it also substantially reduces sample bleeding for all samples. For comprehensiveness, we also discuss and compare experimental results from alternative approaches to sequencing low diversity samples. First, we discuss how the low diversity problem, if caused by barcodes, can be avoided altogether at the barcode design stage. Second and third, we present modified guidelines, which are more stringent than the manufacturer’s, for mixing low diversity samples with diverse samples and lowering cluster density, which in our experience consistently produces high quality data from low diversity samples. Fourth and fifth, we present rescue strategies that can be applied when sequencing results in low quality data and when there is no more biological material available. In such cases, we propose that the flowcell be re-hybridized and sequenced again using our Long Template Protocol. Alternatively, we discuss how analysis can be repeated from saved sequencing images using the Long Template Protocol to increase accuracy. PMID:25860802

  16. New Insights into the Classification and Integration Specificity of Streptococcus Integrative Conjugative Elements through Extensive Genome Exploration

    PubMed Central

    Ambroset, Chloé; Coluzzi, Charles; Guédon, Gérard; Devignes, Marie-Dominique; Loux, Valentin; Lacroix, Thomas; Payot, Sophie; Leblond-Bourget, Nathalie

    2016-01-01

    Recent genome analyses suggest that integrative and conjugative elements (ICEs) are widespread in bacterial genomes and therefore play an essential role in horizontal transfer. However, only a few of these elements are precisely characterized and correctly delineated within sequenced bacterial genomes. Even though previous analysis showed the presence of ICEs in some species of Streptococci, the global prevalence and diversity of ICEs was not analyzed in this genus. In this study, we searched for ICEs in the completely sequenced genomes of 124 strains belonging to 27 streptococcal species. These exhaustive analyses revealed 105 putative ICEs and 26 slightly decayed elements whose limits were assessed and whose insertion site was identified. These ICEs were grouped in seven distinct unrelated or distantly related families, according to their conjugation modules. Integration of these streptococcal ICEs is catalyzed either by a site-specific tyrosine integrase, a low-specificity tyrosine integrase, a site-specific single serine integrase, a triplet of site-specific serine integrases or a DDE transposase. Analysis of their integration site led to the detection of 18 target-genes for streptococcal ICE insertion including eight that had not been identified previously (ftsK, guaA, lysS, mutT, rpmG, rpsI, traG, and ebfC). It also suggests that all specificities have evolved to minimize the impact of the insertion on the host. This overall analysis of streptococcal ICEs emphasizes their prevalence and diversity and demonstrates that exchanges or acquisitions of conjugation and recombination modules are frequent. PMID:26779141

  17. New Insights into the Classification and Integration Specificity of Streptococcus Integrative Conjugative Elements through Extensive Genome Exploration.

    PubMed

    Ambroset, Chloé; Coluzzi, Charles; Guédon, Gérard; Devignes, Marie-Dominique; Loux, Valentin; Lacroix, Thomas; Payot, Sophie; Leblond-Bourget, Nathalie

    2015-01-01

    Recent genome analyses suggest that integrative and conjugative elements (ICEs) are widespread in bacterial genomes and therefore play an essential role in horizontal transfer. However, only a few of these elements are precisely characterized and correctly delineated within sequenced bacterial genomes. Even though previous analysis showed the presence of ICEs in some species of Streptococci, the global prevalence and diversity of ICEs was not analyzed in this genus. In this study, we searched for ICEs in the completely sequenced genomes of 124 strains belonging to 27 streptococcal species. These exhaustive analyses revealed 105 putative ICEs and 26 slightly decayed elements whose limits were assessed and whose insertion site was identified. These ICEs were grouped in seven distinct unrelated or distantly related families, according to their conjugation modules. Integration of these streptococcal ICEs is catalyzed either by a site-specific tyrosine integrase, a low-specificity tyrosine integrase, a site-specific single serine integrase, a triplet of site-specific serine integrases or a DDE transposase. Analysis of their integration site led to the detection of 18 target-genes for streptococcal ICE insertion including eight that had not been identified previously (ftsK, guaA, lysS, mutT, rpmG, rpsI, traG, and ebfC). It also suggests that all specificities have evolved to minimize the impact of the insertion on the host. This overall analysis of streptococcal ICEs emphasizes their prevalence and diversity and demonstrates that exchanges or acquisitions of conjugation and recombination modules are frequent.

  18. Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans.

    PubMed

    Cenik, Can; Cenik, Elif Sarinay; Byeon, Gun W; Grubert, Fabian; Candille, Sophie I; Spacek, Damek; Alsallakh, Bilal; Tilgner, Hagen; Araya, Carlos L; Tang, Hua; Ricci, Emiliano; Snyder, Michael P

    2015-11-01

    Elucidating the consequences of genetic differences between humans is essential for understanding phenotypic diversity and personalized medicine. Although variation in RNA levels, transcription factor binding, and chromatin have been explored, little is known about global variation in translation and its genetic determinants. We used ribosome profiling, RNA sequencing, and mass spectrometry to perform an integrated analysis in lymphoblastoid cell lines from a diverse group of individuals. We find significant differences in RNA, translation, and protein levels suggesting diverse mechanisms of personalized gene expression control. Combined analysis of RNA expression and ribosome occupancy improves the identification of individual protein level differences. Finally, we identify genetic differences that specifically modulate ribosome occupancy--many of these differences lie close to start codons and upstream ORFs. Our results reveal a new level of gene expression variation among humans and indicate that genetic variants can cause changes in protein levels through effects on translation. © 2015 Cenik et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Effects of Dietary Yogurt on the Healthy Human Gastrointestinal (GI) Microbiome

    PubMed Central

    Lisko, Daniel J.; Johnston, G. Patricia; Johnston, Carl G.

    2017-01-01

    The gastrointestinal (GI) tract performs key functions that regulate the relationship between the host and the microbiota. Research has shown numerous benefits of probiotic intake in the modulation of immune responses and human metabolic processes. However, unfavorable attention has been paid to temporal changes of the microbial composition and diversity of the GI tract. This study aimed to investigate the effects of yogurt consumption on the GI microbiome bacteria community composition, structure and diversity during and after a short-term period (42 days). We used a multi-approach combining classical fingerprinting techniques (T-RFLPs), Sanger analyses and Illumina MiSeq 16S rRNA gene amplicon sequencing to elucidate bacterial communities and Lactobacilli and Bifidobacteria populations within healthy adults that consume high doses of yogurt daily. Results indicated that overall GI microbial community and diversity was method-dependent, yet we found individual specific changes in bacterial composition and structure in healthy subjects that consumed high doses of yogurt throughout the study. PMID:28212267

  20. Sequence variation between 462 human individuals fine-tunes functional sites of RNA processing

    NASA Astrophysics Data System (ADS)

    Ferreira, Pedro G.; Oti, Martin; Barann, Matthias; Wieland, Thomas; Ezquina, Suzana; Friedländer, Marc R.; Rivas, Manuel A.; Esteve-Codina, Anna; Estivill, Xavier; Guigó, Roderic; Dermitzakis, Emmanouil; Antonarakis, Stylianos; Meitinger, Thomas; Strom, Tim M.; Palotie, Aarno; François Deleuze, Jean; Sudbrak, Ralf; Lerach, Hans; Gut, Ivo; Syvänen, Ann-Christine; Gyllensten, Ulf; Schreiber, Stefan; Rosenstiel, Philip; Brunner, Han; Veltman, Joris; Hoen, Peter A. C. T.; Jan van Ommen, Gert; Carracedo, Angel; Brazma, Alvis; Flicek, Paul; Cambon-Thomsen, Anne; Mangion, Jonathan; Bentley, David; Hamosh, Ada; Rosenstiel, Philip; Strom, Tim M.; Lappalainen, Tuuli; Guigó, Roderic; Sammeth, Michael

    2016-09-01

    Recent advances in the cost-efficiency of sequencing technologies enabled the combined DNA- and RNA-sequencing of human individuals at the population-scale, making genome-wide investigations of the inter-individual genetic impact on gene expression viable. Employing mRNA-sequencing data from the Geuvadis Project and genome sequencing data from the 1000 Genomes Project we show that the computational analysis of DNA sequences around splice sites and poly-A signals is able to explain several observations in the phenotype data. In contrast to widespread assessments of statistically significant associations between DNA polymorphisms and quantitative traits, we developed a computational tool to pinpoint the molecular mechanisms by which genetic markers drive variation in RNA-processing, cataloguing and classifying alleles that change the affinity of core RNA elements to their recognizing factors. The in silico models we employ further suggest RNA editing can moonlight as a splicing-modulator, albeit less frequently than genomic sequence diversity. Beyond existing annotations, we demonstrate that the ultra-high resolution of RNA-Seq combined from 462 individuals also provides evidence for thousands of bona fide novel elements of RNA processing—alternative splice sites, introns, and cleavage sites—which are often rare and lowly expressed but in other characteristics similar to their annotated counterparts.

  1. A universal TagModule collection for parallel genetic analysis of microorganisms

    PubMed Central

    Oh, Julia; Fung, Eula; Price, Morgan N.; Dehal, Paramvir S.; Davis, Ronald W.; Giaever, Guri; Nislow, Corey; Arkin, Adam P.; Deutschbauer, Adam

    2010-01-01

    Systems-level analyses of non-model microorganisms are limited by the existence of numerous uncharacterized genes and a corresponding over-reliance on automated computational annotations. One solution to this challenge is to disrupt gene function using DNA tag technology, which has been highly successful in parallelizing reverse genetics in Saccharomyces cerevisiae and has led to discoveries in gene function, genetic interactions and drug mechanism of action. To extend the yeast DNA tag methodology to a wide variety of microorganisms and applications, we have created a universal, sequence-verified TagModule collection. A hallmark of the 4280 TagModules is that they are cloned into a Gateway entry vector, thus facilitating rapid transfer to any compatible genetic system. Here, we describe the application of the TagModules to rapidly generate tagged mutants by transposon mutagenesis in the metal-reducing bacterium Shewanella oneidensis MR-1 and the pathogenic yeast Candida albicans. Our results demonstrate the optimal hybridization properties of the TagModule collection, the flexibility in applying the strategy to diverse microorganisms and the biological insights that can be gained from fitness profiling tagged mutant collections. The publicly available TagModule collection is a platform-independent resource for the functional genomics of a wide range of microbial systems in the post-genome era. PMID:20494978

  2. Abundant and Diverse Clustered Regularly Interspaced Short Palindromic Repeat Spacers in Clostridium difficile Strains and Prophages Target Multiple Phage Types within This Pathogen

    PubMed Central

    Hargreaves, Katherine R.; Flores, Cesar O.; Lawley, Trevor D.

    2014-01-01

    ABSTRACT Clostridium difficile is an important human-pathogenic bacterium causing antibiotic-associated nosocomial infections worldwide. Mobile genetic elements and bacteriophages have helped shape C. difficile genome evolution. In many bacteria, phage infection may be controlled by a form of bacterial immunity called the clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) system. This uses acquired short nucleotide sequences (spacers) to target homologous sequences (protospacers) in phage genomes. C. difficile carries multiple CRISPR arrays, and in this paper we examine the relationships between the host- and phage-carried elements of the system. We detected multiple matches between spacers and regions in 31 C. difficile phage and prophage genomes. A subset of the spacers was located in prophage-carried CRISPR arrays. The CRISPR spacer profiles generated suggest that related phages would have similar host ranges. Furthermore, we show that C. difficile strains of the same ribotype could either have similar or divergent CRISPR contents. Both synonymous and nonsynonymous mutations in the protospacer sequences were identified, as well as differences in the protospacer adjacent motif (PAM), which could explain how phages escape this system. This paper illustrates how the distribution and diversity of CRISPR spacers in C. difficile, and its prophages, could modulate phage predation for this pathogen and impact upon its evolution and pathogenicity. PMID:25161187

  3. Exploring bacterial epigenomics in the next-generation sequencing era: a new approach for an emerging frontier.

    PubMed

    Chen, Poyin; Jeannotte, Richard; Weimer, Bart C

    2014-05-01

    Epigenetics has an important role for the success of foodborne pathogen persistence in diverse host niches. Substantial challenges exist in determining DNA methylation to situation-specific phenotypic traits. DNA modification, mediated by restriction-modification systems, functions as an immune response against antagonistic external DNA, and bacteriophage-acquired methyltransferases (MTase) and orphan MTases - those lacking the cognate restriction endonuclease - facilitate evolution of new phenotypes via gene expression modulation via DNA and RNA modifications, including methylation and phosphorothioation. Recent establishment of large-scale genome sequencing projects will result in a significant increase in genome availability that will lead to new demands for data analysis including new predictive bioinformatics approaches that can be verified with traditional scientific rigor. Sequencing technologies that detect modification coupled with mass spectrometry to discover new adducts is a powerful tactic to study bacterial epigenetics, which is poised to make novel and far-reaching discoveries that link biological significance and the bacterial epigenome. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Asymmetry of perceived key movement in chorale sequences: converging evidence from a probe-tone analysis.

    PubMed

    Cuddy, L L; Thompson, W F

    1992-01-01

    In a probe-tone experiment, two groups of listeners--one trained, the other untrained, in traditional music theory--rated the goodness of fit of each of the 12 notes of the chromatic scale to four-voice harmonic sequences. Sequences were 12 simplified excerpts from Bach chorales, 4 nonmodulating, and 8 modulating. Modulations occurred either one or two steps in either the clockwise or the counterclockwise direction on the cycle of fifths. A consistent pattern of probe-tone ratings was obtained for each sequence, with no significant differences between listener groups. Two methods of analysis (Fourier analysis and regression analysis) revealed a directional asymmetry in the perceived key movement conveyed by modulating sequences. For a given modulation distance, modulations in the counterclockwise direction effected a clearer shift in tonal organization toward the final key than did clockwise modulations. The nature of the directional asymmetry was consistent with results reported for identification and rating of key change in the sequences (Thompson & Cuddy, 1989a). Further, according to the multiple-regression analysis, probe-tone ratings did not merely reflect the distribution of tones in the sequence. Rather, ratings were sensitive to the temporal structure of the tonal organization in the sequence.

  5. Metabolic Reconstruction for Metagenomic Data and Its Application to the Human Microbiome

    PubMed Central

    Abubucker, Sahar; Segata, Nicola; Goll, Johannes; Schubert, Alyxandria M.; Izard, Jacques; Cantarel, Brandi L.; Rodriguez-Mueller, Beltran; Zucker, Jeremy; Thiagarajan, Mathangi; Henrissat, Bernard; White, Owen; Kelley, Scott T.; Methé, Barbara; Schloss, Patrick D.; Gevers, Dirk; Mitreva, Makedonka; Huttenhower, Curtis

    2012-01-01

    Microbial communities carry out the majority of the biochemical activity on the planet, and they play integral roles in processes including metabolism and immune homeostasis in the human microbiome. Shotgun sequencing of such communities' metagenomes provides information complementary to organismal abundances from taxonomic markers, but the resulting data typically comprise short reads from hundreds of different organisms and are at best challenging to assemble comparably to single-organism genomes. Here, we describe an alternative approach to infer the functional and metabolic potential of a microbial community metagenome. We determined the gene families and pathways present or absent within a community, as well as their relative abundances, directly from short sequence reads. We validated this methodology using a collection of synthetic metagenomes, recovering the presence and abundance both of large pathways and of small functional modules with high accuracy. We subsequently applied this method, HUMAnN, to the microbial communities of 649 metagenomes drawn from seven primary body sites on 102 individuals as part of the Human Microbiome Project (HMP). This provided a means to compare functional diversity and organismal ecology in the human microbiome, and we determined a core of 24 ubiquitously present modules. Core pathways were often implemented by different enzyme families within different body sites, and 168 functional modules and 196 metabolic pathways varied in metagenomic abundance specifically to one or more niches within the microbiome. These included glycosaminoglycan degradation in the gut, as well as phosphate and amino acid transport linked to host phenotype (vaginal pH) in the posterior fornix. An implementation of our methodology is available at http://huttenhower.sph.harvard.edu/humann. This provides a means to accurately and efficiently characterize microbial metabolic pathways and functional modules directly from high-throughput sequencing reads, enabling the determination of community roles in the HMP cohort and in future metagenomic studies. PMID:22719234

  6. Endophyte Microbiome Diversity in Micropropagated Atriplex canescens and Atriplex torreyi var griffithsii

    PubMed Central

    Lucero, Mary E.; Unc, Adrian; Cooke, Peter; Dowd, Scot; Sun, Shulei

    2011-01-01

    Microbial diversity associated with micropropagated Atriplex species was assessed using microscopy, isolate culturing, and sequencing. Light, electron, and confocal microscopy revealed microbial cells in aseptically regenerated leaves and roots. Clone libraries and tag-encoded FLX amplicon pyrosequencing (TEFAP) analysis amplified sequences from callus homologous to diverse fungal and bacterial taxa. Culturing isolated some seed borne endophyte taxa which could be readily propagated apart from the host. Microbial cells were observed within biofilm-like residues associated with plant cell surfaces and intercellular spaces. Various universal primers amplified both plant and microbial sequences, with different primers revealing different patterns of fungal diversity. Bacterial and fungal TEFAP followed by alignment with sequences from curated databases revealed 7 bacterial and 17 ascomycete taxa in A. canescens, and 5 bacterial taxa in A. torreyi. Additional diversity was observed among isolates and clone libraries. Micropropagated Atriplex retains a complex, intimately associated microbiome which includes diverse strains well poised to interact in manners that influence host physiology. Microbiome analysis was facilitated by high throughput sequencing methods, but primer biases continue to limit recovery of diverse sequences from even moderately complex communities. PMID:21437280

  7. The signaling helix: a common functional theme in diverse signaling proteins

    PubMed Central

    Anantharaman, Vivek; Balaji, S; Aravind, L

    2006-01-01

    Background The mechanism by which the signals are transmitted between receptor and effector domains in multi-domain signaling proteins is poorly understood. Results Using sensitive sequence analysis methods we identify a conserved helical segment of around 40 residues in a wide range of signaling proteins, including numerous sensor histidine kinases such as Sln1p, and receptor guanylyl cyclases such as the atrial natriuretic peptide receptor and nitric oxide receptors. We term this helical segment the signaling (S)-helix and present evidence that it forms a novel parallel coiled-coil element, distinct from previously known helical segments in signaling proteins, such as the Dimerization-Histidine phosphotransfer module of histidine kinases, the intra-cellular domains of the chemotaxis receptors, inter-GAF domain helical linkers and the α-helical HAMP module. Analysis of domain architectures allowed us to reconstruct the domain-neighborhood graph for the S-helix, which showed that the S-helix almost always occurs between two signaling domains. Several striking patterns in the domain neighborhood of the S-helix also became evident from the graph. It most often separates diverse N-terminal sensory domains from various C-terminal catalytic signaling domains such as histidine kinases, cNMP cyclase, PP2C phosphatases, NtrC-like AAA+ ATPases and diguanylate cyclases. It might also occur between two sensory domains such as PAS domains and occasionally between a DNA-binding HTH domain and a sensory domain. The sequence conservation pattern of the S-helix revealed the presence of a unique constellation of polar residues in the dimer-interface positions within the central heptad of the coiled-coil formed by the S-helix. Conclusion Combining these observations with previously reported mutagenesis studies on different S-helix-containing proteins we suggest that it functions as a switch that prevents constitutive activation of linked downstream signaling domains. However, upon occurrence of specific conformational changes due to binding of ligand or other sensory inputs in a linked upstream domain it transmits the signal to the downstream domain. Thus, the S-helix represents one of the most prevalent functional themes involved in the flow of signals between modules in diverse prokaryote-type multi-domain signaling proteins. Reviewers This article was reviewed by Frank Eisenhaber, Arcady Mushegian and Sandor Pongor. PMID:16953892

  8. A multi-run chemistry module for the production of [18F]FDG

    NASA Astrophysics Data System (ADS)

    Sipe, B.; Murphy, M.; Best, B.; Zigler, S.; Lim, J.; Dorman, E.; Mangner, T.; Weichelt, M.

    2001-07-01

    We have developed a new chemistry module for the production of up to four batches of [18F]FDG. Prior to starting a batch sequence, the module automatically performs a series of self-diagnostic tests, including a reagent detection sequence. The module then executes a user-defined production sequence followed by an automated process to rinse tubing, valves, and the reaction vessel prior to the next production sequence. Process feedback from the module is provided to a graphical user interface by mass flow controllers, radiation detectors, a pressure switch, a pressure transducer, and an IR temperature sensor. This paper will describe the module, the operating system, and the results of multi-site trials, including production data and quality control results.

  9. Comparison of a High-Resolution Melting Assay to Next-Generation Sequencing for Analysis of HIV Diversity

    PubMed Central

    Cousins, Matthew M.; Ou, San-San; Wawer, Maria J.; Munshaw, Supriya; Swan, David; Magaret, Craig A.; Mullis, Caroline E.; Serwadda, David; Porcella, Stephen F.; Gray, Ronald H.; Quinn, Thomas C.; Donnell, Deborah; Eshleman, Susan H.

    2012-01-01

    Next-generation sequencing (NGS) has recently been used for analysis of HIV diversity, but this method is labor-intensive, costly, and requires complex protocols for data analysis. We compared diversity measures obtained using NGS data to those obtained using a diversity assay based on high-resolution melting (HRM) of DNA duplexes. The HRM diversity assay provides a single numeric score that reflects the level of diversity in the region analyzed. HIV gag and env from individuals in Rakai, Uganda, were analyzed in a previous study using NGS (n = 220 samples from 110 individuals). Three sequence-based diversity measures were calculated from the NGS sequence data (percent diversity, percent complexity, and Shannon entropy). The amplicon pools used for NGS were analyzed with the HRM diversity assay. HRM scores were significantly associated with sequence-based measures of HIV diversity for both gag and env (P < 0.001 for all measures). The level of diversity measured by the HRM diversity assay and NGS increased over time in both regions analyzed (P < 0.001 for all measures except for percent complexity in gag), and similar amounts of diversification were observed with both methods (P < 0.001 for all measures except for percent complexity in gag). Diversity measures obtained using the HRM diversity assay were significantly associated with those from NGS, and similar increases in diversity over time were detected by both methods. The HRM diversity assay is faster and less expensive than NGS, facilitating rapid analysis of large studies of HIV diversity and evolution. PMID:22785188

  10. Using Next-Generation Sequencing to Explore Genetics and Race in the High School Classroom

    PubMed Central

    Yang, Xinmiao; Hartman, Mark R.; Harrington, Kristin T.; Etson, Candice M.; Fierman, Matthew B.; Slonim, Donna K.; Walt, David R.

    2017-01-01

    With the development of new sequencing and bioinformatics technologies, concepts relating to personal genomics play an increasingly important role in our society. To promote interest and understanding of sequencing and bioinformatics in the high school classroom, we developed and implemented a laboratory-based teaching module called “The Genetics of Race.” This module uses the topic of race to engage students with sequencing and genetics. In the experimental portion of this module, students isolate their own mitochondrial DNA using standard biotechnology techniques and collect next-generation sequencing data to determine which of their classmates are most and least genetically similar to themselves. We evaluated the efficacy of this module by administering a pretest/posttest evaluation to measure student knowledge related to sequencing and bioinformatics, and we also conducted a survey at the conclusion of the module to assess student attitudes. Upon completion of our Genetics of Race module, students demonstrated significant learning gains, with lower-performing students obtaining the highest gains, and developed more positive attitudes toward scientific research. PMID:28408407

  11. SSR_pipeline--computer software for the identification of microsatellite sequences from paired-end Illumina high-throughput DNA sequence data

    USGS Publications Warehouse

    Miller, Mark P.; Knaus, Brian J.; Mullins, Thomas D.; Haig, Susan M.

    2013-01-01

    SSR_pipeline is a flexible set of programs designed to efficiently identify simple sequence repeats (SSRs; for example, microsatellites) from paired-end high-throughput Illumina DNA sequencing data. The program suite contains three analysis modules along with a fourth control module that can be used to automate analyses of large volumes of data. The modules are used to (1) identify the subset of paired-end sequences that pass quality standards, (2) align paired-end reads into a single composite DNA sequence, and (3) identify sequences that possess microsatellites conforming to user specified parameters. Each of the three separate analysis modules also can be used independently to provide greater flexibility or to work with FASTQ or FASTA files generated from other sequencing platforms (Roche 454, Ion Torrent, etc). All modules are implemented in the Python programming language and can therefore be used from nearly any computer operating system (Linux, Macintosh, Windows). The program suite relies on a compiled Python extension module to perform paired-end alignments. Instructions for compiling the extension from source code are provided in the documentation. Users who do not have Python installed on their computers or who do not have the ability to compile software also may choose to download packaged executable files. These files include all Python scripts, a copy of the compiled extension module, and a minimal installation of Python in a single binary executable. See program documentation for more information.

  12. Site-Specific Mobilization of Vinyl Chloride Respiration Islands by a Mechanism Common in Dehalococcoides

    PubMed Central

    2011-01-01

    Background Vinyl chloride is a widespread groundwater pollutant and Group 1 carcinogen. A previous comparative genomic analysis revealed that the vinyl chloride reductase operon, vcrABC, of Dehalococcoides sp. strain VS is embedded in a horizontally-acquired genomic island that integrated at the single-copy tmRNA gene, ssrA. Results We targeted conserved positions in available genomic islands to amplify and sequence four additional vcrABC -containing genomic islands from previously-unsequenced vinyl chloride respiring Dehalococcoides enrichments. We identified a total of 31 ssrA-specific genomic islands from Dehalococcoides genomic data, accounting for 47 reductive dehalogenase homologous genes and many other non-core genes. Sixteen of these genomic islands contain a syntenic module of integration-associated genes located adjacent to the predicted site of integration, and among these islands, eight contain vcrABC as genetic 'cargo'. These eight vcrABC -containing genomic islands are syntenic across their ~12 kbp length, but have two phylogenetically discordant segments that unambiguously differentiate the integration module from the vcrABC cargo. Using available Dehalococcoides phylogenomic data we estimate that these ssrA-specific genomic islands are at least as old as the Dehalococcoides group itself, which in turn is much older than human civilization. Conclusions The vcrABC -containing genomic islands are a recently-acquired subset of a diverse collection of ssrA-specific mobile elements that are a major contributor to strain-level diversity in Dehalococcoides, and may have been throughout its evolution. The high similarity between vcrABC sequences is quantitatively consistent with recent horizontal acquisition driven by ~100 years of industrial pollution with chlorinated ethenes. PMID:21635780

  13. Polymorphic design of DNA origami structures through mechanical control of modular components.

    PubMed

    Lee, Chanseok; Lee, Jae Young; Kim, Do-Nyun

    2017-12-12

    Scaffolded DNA origami enables the bottom-up fabrication of diverse DNA nanostructures by designing hundreds of staple strands, comprised of complementary sequences to the specific binding locations of a scaffold strand. Despite its exceptionally high design flexibility, poor reusability of staples has been one of the major hurdles to fabricate assorted DNA constructs in an effective way. Here we provide a rational module-based design approach to create distinct bent shapes with controllable geometries and flexibilities from a single, reference set of staples. By revising the staple connectivity within the desired module, we can control the location, stiffness, and included angle of hinges precisely, enabling the construction of dozens of single- or multiple-hinge structures with the replacement of staple strands up to 12.8% only. Our design approach, combined with computational shape prediction and analysis, can provide a versatile and cost-effective procedure in the design of DNA origami shapes with stiffness-tunable units.

  14. Structure and function of neonatal social communication in a genetic mouse model of autism.

    PubMed

    Takahashi, T; Okabe, S; Broin, P Ó; Nishi, A; Ye, K; Beckert, M V; Izumi, T; Machida, A; Kang, G; Abe, S; Pena, J L; Golden, A; Kikusui, T; Hiroi, N

    2016-09-01

    A critical step toward understanding autism spectrum disorder (ASD) is to identify both genetic and environmental risk factors. A number of rare copy number variants (CNVs) have emerged as robust genetic risk factors for ASD, but not all CNV carriers exhibit ASD and the severity of ASD symptoms varies among CNV carriers. Although evidence exists that various environmental factors modulate symptomatic severity, the precise mechanisms by which these factors determine the ultimate severity of ASD are still poorly understood. Here, using a mouse heterozygous for Tbx1 (a gene encoded in 22q11.2 CNV), we demonstrate that a genetically triggered neonatal phenotype in vocalization generates a negative environmental loop in pup-mother social communication. Wild-type pups used individually diverse sequences of simple and complicated call types, but heterozygous pups used individually invariable call sequences with less complicated call types. When played back, representative wild-type call sequences elicited maternal approach, but heterozygous call sequences were ineffective. When the representative wild-type call sequences were randomized, they were ineffective in eliciting vigorous maternal approach behavior. These data demonstrate that an ASD risk gene alters the neonatal call sequence of its carriers and this pup phenotype in turn diminishes maternal care through atypical social communication. Thus, an ASD risk gene induces, through atypical neonatal call sequences, less than optimal maternal care as a negative neonatal environmental factor.

  15. Structure and function of neonatal social communication in a genetic mouse model of autism

    PubMed Central

    Takahashi, Tomohisa; Okabe, Shota; Ó Broin, Pilib; Nishi, Akira; Ye, Kenny; Beckert, Michael V.; Izumi, Takeshi; Machida, Akihiro; Kang, Gina; Abe, Seiji; Pena, Jose L.; Golden, Aaron; Kikusui, Takefumi; Hiroi, Noboru

    2015-01-01

    A critical step toward understanding autism spectrum disorder (ASD) is to identify both genetic and environmental risk factors. A number of rare copy number variants (CNVs) have emerged as robust genetic risk factors for ASD, but not all CNV carriers exhibit ASD and the severity of ASD symptoms varies among CNV carriers. Although evidence exists that various environmental factors modulate symptomatic severity, the precise mechanisms by which these factors determine the ultimate severity of ASD are still poorly understood. Here, using a mouse heterozygous for Tbx1 (a gene encoded in 22q11.2 CNV), we demonstrate that a genetically-triggered neonatal phenotype in vocalization generates a negative environmental loop in pup-mother social communication. Wild-type pups used individually diverse sequences of simple and complicated call types, but heterozygous pups used individually invariable call sequences with less complicated call types. When played back, representative wild-type call sequences elicited maternal approach, but heterozygous call sequences were ineffective. When the representative wild-type call sequences were randomized, they were ineffective in eliciting vigorous maternal approach behavior. These data demonstrate that an ASD risk gene alters the neonatal call sequence of its carriers and this pup phenotype in turn diminishes maternal care through atypical social communication. Thus, an ASD risk gene induces, through atypical neonatal call sequences, less than optimal maternal care as a negative neonatal environmental factor. PMID:26666205

  16. Metasecretome-selective phage display approach for mining the functional potential of a rumen microbial community.

    PubMed

    Ciric, Milica; Moon, Christina D; Leahy, Sinead C; Creevey, Christopher J; Altermann, Eric; Attwood, Graeme T; Rakonjac, Jasna; Gagic, Dragana

    2014-05-12

    In silico, secretome proteins can be predicted from completely sequenced genomes using various available algorithms that identify membrane-targeting sequences. For metasecretome (collection of surface, secreted and transmembrane proteins from environmental microbial communities) this approach is impractical, considering that the metasecretome open reading frames (ORFs) comprise only 10% to 30% of total metagenome, and are poorly represented in the dataset due to overall low coverage of metagenomic gene pool, even in large-scale projects. By combining secretome-selective phage display and next-generation sequencing, we focused the sequence analysis of complex rumen microbial community on the metasecretome component of the metagenome. This approach achieved high enrichment (29 fold) of secreted fibrolytic enzymes from the plant-adherent microbial community of the bovine rumen. In particular, we identified hundreds of heretofore rare modules belonging to cellulosomes, cell-surface complexes specialised for recognition and degradation of the plant fibre. As a method, metasecretome phage display combined with next-generation sequencing has a power to sample the diversity of low-abundance surface and secreted proteins that would otherwise require exceptionally large metagenomic sequencing projects. As a resource, metasecretome display library backed by the dataset obtained by next-generation sequencing is ready for i) affinity selection by standard phage display methodology and ii) easy purification of displayed proteins as part of the virion for individual functional analysis.

  17. Natural diversity of glycoside hydrolase family 48 exoglucanases: insights from structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunecky, Roman; Alahuhta, Markus; Sammond, Deanne W.

    Glycoside hydrolase (GH) family 48 is an understudied and increasingly important exoglucanase family found in the majority of bacterial cellulase systems. Moreover, many thermophilic enzyme systems contain GH48 enzymes. Deletion of GH48 enzymes in these microorganisms results in drastic reduction in biomass deconstruction. Surprisingly, given their importance for these microorganisms, GH48s have intrinsically low cellulolytic activity but even in low ratios synergize greatly with GH9 endoglucanases. In this study, we explore the structural and enzymatic diversity of these enzymes across a wide range of temperature optima. We have crystallized one new GH48 module from Bacillus pumilus in a complex withmore » cellobiose and cellohexaose (BpumGH48). We compare this structure to other known GH48 enzymes in an attempt to understand GH48 structure/function relationships and draw general rules correlating amino acid sequences and secondary structures to thermostability in this GH family.« less

  18. HnRNP-like proteins as post-transcriptional regulators.

    PubMed

    Yeap, Wan-Chin; Namasivayam, Parameswari; Ho, Chai-Ling

    2014-10-01

    Plant cells contain a diverse repertoire of RNA-binding proteins (RBPs) that coordinate a network of post-transcriptional regulation. RBPs govern diverse developmental processes by modulating the gene expression of specific transcripts. Recent gene annotation and RNA sequencing clearly showed that heterogeneous nuclear ribonucleoprotein (hnRNP)-like proteins which form a family of RBPs, are also expressed in higher plants and serve specific plant functions. In addition to their involvement in post-transcriptional regulation from mRNA capping to translation, they are also involved in telomere regulation, gene silencing and regulation in chloroplast. Here, we review the involvement of plant hnRNP-like proteins in post-transcription regulation of RNA processes and their functional roles in control of plant developmental processes especially plant-specific functions including flowering, chloroplastic-specific mRNA regulation, long-distance phloem transportation and plant responses to environmental stresses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Natural diversity of glycoside hydrolase family 48 exoglucanases: insights from structure

    DOE PAGES

    Brunecky, Roman; Alahuhta, Markus; Sammond, Deanne W.; ...

    2017-11-30

    Glycoside hydrolase (GH) family 48 is an understudied and increasingly important exoglucanase family found in the majority of bacterial cellulase systems. Moreover, many thermophilic enzyme systems contain GH48 enzymes. Deletion of GH48 enzymes in these microorganisms results in drastic reduction in biomass deconstruction. Surprisingly, given their importance for these microorganisms, GH48s have intrinsically low cellulolytic activity but even in low ratios synergize greatly with GH9 endoglucanases. In this study, we explore the structural and enzymatic diversity of these enzymes across a wide range of temperature optima. We have crystallized one new GH48 module from Bacillus pumilus in a complex withmore » cellobiose and cellohexaose (BpumGH48). We compare this structure to other known GH48 enzymes in an attempt to understand GH48 structure/function relationships and draw general rules correlating amino acid sequences and secondary structures to thermostability in this GH family.« less

  20. A Conserved Structural Module Regulates Transcriptional Responses to Diverse Stress Signals in Bacteria

    PubMed Central

    Campbell, Elizabeth A.; Greenwell, Roger; Anthony, Jennifer R.; Wang, Sheng; Lim, Lionel; Das, Kalyan; Sofia, Heidi J.; Donohue, Timothy J.; Darst, Seth A.

    2008-01-01

    SUMMARY A transcriptional response to singlet oxygen in Rhodobacter sphaeroides is controlled by the group IV σ factor σE and its cognate anti-σ ChrR. Crystal structures of the σE/ChrR complex reveal a modular, two-domain architecture for ChrR. The ChrR N-terminal anti-σ domain (ASD) binds a Zn2+ ion, contacts σE, and is sufficient to inhibit σE-dependent transcription. The ChrR C-terminal domain adopts a cupin fold, can coordinate an additional Zn2+, and is required for the transcriptional response to singlet oxygen. Structure-based sequence analyses predict that the ASD defines a common structural fold among predicted group IV antiσs. These ASDs are fused to diverse C-terminal domains that are likely involved in responding to specific environmental signals that control the activity of their cognate σ factor. PMID:17803943

  1. Ab initio genotype–phenotype association reveals intrinsic modularity in genetic networks

    PubMed Central

    Slonim, Noam; Elemento, Olivier; Tavazoie, Saeed

    2006-01-01

    Microbial species express an astonishing diversity of phenotypic traits, behaviors, and metabolic capacities. However, our molecular understanding of these phenotypes is based almost entirely on studies in a handful of model organisms that together represent only a small fraction of this phenotypic diversity. Furthermore, many microbial species are not amenable to traditional laboratory analysis because of their exotic lifestyles and/or lack of suitable molecular genetic techniques. As an adjunct to experimental analysis, we have developed a computational information-theoretic framework that produces high-confidence gene–phenotype predictions using cross-species distributions of genes and phenotypes across 202 fully sequenced archaea and eubacteria. In addition to identifying the genetic basis of complex traits, our approach reveals the organization of these genes into generic preferentially co-inherited modules, many of which correspond directly to known enzymatic pathways, molecular complexes, signaling pathways, and molecular machines. PMID:16732191

  2. Performance Based Traffic Safety Education Course. Two-Phase Program.

    ERIC Educational Resources Information Center

    Washington State Board of Education, Olympia.

    This course for high school highway traffic safety education is intended to help students learn to make good driving decisions. It consists of twenty-one modules--ten sequenced, two not in specific sequence but intended to be completed in the earlier part of the course, and nine non-sequenced modules. Each module begins with an outline providing…

  3. Extensive Modulation of the Fecal Metagenome in Children With Crohn's Disease During Exclusive Enteral Nutrition

    PubMed Central

    Quince, Christopher; Ijaz, Umer Zeeshan; Loman, Nick; Eren, A Murat; Saulnier, Delphine; Russell, Julie; Haig, Sarah J; Calus, Szymon T; Quick, Joshua; Barclay, Andrew; Bertz, Martin; Blaut, Michael; Hansen, Richard; McGrogan, Paraic; Russell, Richard K; Edwards, Christine A; Gerasimidis, Konstantinos

    2015-01-01

    OBJECTIVES: Exploring associations between the gut microbiota and colonic inflammation and assessing sequential changes during exclusive enteral nutrition (EEN) may offer clues into the microbial origins of Crohn's disease (CD). METHODS: Fecal samples (n=117) were collected from 23 CD and 21 healthy children. From CD children fecal samples were collected before, during EEN, and when patients returned to their habitual diets. Microbiota composition and functional capacity were characterized using sequencing of the 16S rRNA gene and shotgun metagenomics. RESULTS: Microbial diversity was lower in CD than controls before EEN (P=0.006); differences were observed in 36 genera, 141 operational taxonomic units (OTUs), and 44 oligotypes. During EEN, the microbial diversity of CD children further decreased, and the community structure became even more dissimilar than that of controls. Every 10 days on EEN, 0.6 genus diversity equivalents were lost; 34 genera decreased and one increased during EEN. Fecal calprotectin correlated with 35 OTUs, 14 of which accounted for 78% of its variation. OTUs that correlated positively or negatively with calprotectin decreased during EEN. The microbiota of CD patients had a broader functional capacity than healthy controls, but diversity decreased with EEN. Genes involved in membrane transport, sulfur reduction, and nutrient biosynthesis differed between patients and controls. The abundance of genes involved in biotin (P=0.005) and thiamine biosynthesis decreased (P=0.017), whereas those involved in spermidine/putrescine biosynthesis (P=0.031), or the shikimate pathway (P=0.058), increased during EEN. CONCLUSIONS: Disease improvement following treatment with EEN is associated with extensive modulation of the gut microbiome. PMID:26526081

  4. Maximizing the Use of a Web-Based Soils Module: Targeting Diverse Populations

    ERIC Educational Resources Information Center

    Lippert, Robert

    2006-01-01

    This article deals with an on-line soils module project. The two goals for this part of the project were to determine if an on-line soils module could be successfully used for asynchronous instruction of two diverse populations and to determine which demographic factors are related to test performance. The module was presented to an eighth-grade…

  5. IgA Function in Relation to the Intestinal Microbiota.

    PubMed

    Macpherson, Andrew J; Yilmaz, Bahtiyar; Limenitakis, Julien P; Ganal-Vonarburg, Stephanie C

    2018-04-26

    IgA is the dominant immunoglobulin isotype produced in mammals, largely secreted across the intestinal mucosal surface. Although induction of IgA has been a hallmark feature of microbiota colonization following colonization in germ-free animals, until recently appreciation of the function of IgA in host-microbial mutualism has depended mainly on indirect evidence of alterations in microbiota composition or penetration of microbes in the absence of somatic mutations in IgA (or compensatory IgM). Highly parallel sequencing techniques that enable high-resolution analysis of either microbial consortia or IgA sequence diversity are now giving us new perspectives on selective targeting of microbial taxa and the trajectory of IgA diversification according to induction mechanisms, between different individuals and over time. The prospects are to link the range of diversified IgA clonotypes to specific antigenic functions in modulating the microbiota composition, position and metabolism to ensure host mutualism.

  6. Snapshot of the Eukaryotic Gene Expression in Muskoxen Rumen—A Metatranscriptomic Approach

    PubMed Central

    O'Toole, Nicholas; Barboza, Perry S.; Ungerfeld, Emilio; Leigh, Mary Beth; Selinger, L. Brent; Butler, Greg; Tsang, Adrian; McAllister, Tim A.; Forster, Robert J.

    2011-01-01

    Background Herbivores rely on digestive tract lignocellulolytic microorganisms, including bacteria, fungi and protozoa, to derive energy and carbon from plant cell wall polysaccharides. Culture independent metagenomic studies have been used to reveal the genetic content of the bacterial species within gut microbiomes. However, the nature of the genes encoded by eukaryotic protozoa and fungi within these environments has not been explored using metagenomic or metatranscriptomic approaches. Methodology/Principal Findings In this study, a metatranscriptomic approach was used to investigate the functional diversity of the eukaryotic microorganisms within the rumen of muskoxen (Ovibos moschatus), with a focus on plant cell wall degrading enzymes. Polyadenylated RNA (mRNA) was sequenced on the Illumina Genome Analyzer II system and 2.8 gigabases of sequences were obtained and 59129 contigs assembled. Plant cell wall degrading enzyme modules including glycoside hydrolases, carbohydrate esterases and polysaccharide lyases were identified from over 2500 contigs. These included a number of glycoside hydrolase family 6 (GH6), GH48 and swollenin modules, which have rarely been described in previous gut metagenomic studies. Conclusions/Significance The muskoxen rumen metatranscriptome demonstrates a much higher percentage of cellulase enzyme discovery and an 8.7x higher rate of total carbohydrate active enzyme discovery per gigabase of sequence than previous rumen metagenomes. This study provides a snapshot of eukaryotic gene expression in the muskoxen rumen, and identifies a number of candidate genes coding for potentially valuable lignocellulolytic enzymes. PMID:21655220

  7. A Glucagon-Like Peptide-1 Receptor Agonist Lowers Weight by Modulating the Structure of Gut Microbiota.

    PubMed

    Zhao, Li; Chen, Yi; Xia, Fangzhen; Abudukerimu, Buatikamu; Zhang, Wen; Guo, Yuyu; Wang, Ningjian; Lu, Yingli

    2018-01-01

    In addition to improving glucose metabolism, liraglutide, a glucagon-like peptide-1 receptor agonist, has weight-loss effects. The underlying mechanisms are not completely understood. This study was performed to explore whether liraglutide could lower weight by modulating the composition of the gut microbiota in simple obese and diabetic obese rats. In our study, Wistar and Goto-Kakizaki (GK) rats were randomly treated with liraglutide or normal saline for 12 weeks. The biochemical parameters and metabolic hormones were measured. Hepatic glucose production and lipid metabolism were also assessed with isotope tracers. Changes in gut microbiota were analyzed by 16S rRNA gene sequencing. Both glucose and lipid metabolism were significantly improved by liraglutide. Liraglutide lowered body weight independent of glycemia status. The abundance and diversity of gut microbiota were considerably decreased by liraglutide. Liraglutide also decreased obesity-related microbial phenotypes and increased lean-related phenotypes. In conclusion, liraglutide can prevent weight gain by modulating the gut microbiota composition in both simple obese and diabetic obese subjects.

  8. Intercropped Silviculture Systems, a Key to Achieving Soil Fungal Community Management in Eucalyptus Plantations

    PubMed Central

    Rachid, Caio T. C. C.; Balieiro, Fabiano C.; Fonseca, Eduardo S.; Peixoto, Raquel Silva; Chaer, Guilherme M.; Tiedje, James M.; Rosado, Alexandre S.

    2015-01-01

    Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species) could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments: monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that. PMID:25706388

  9. Intercropped silviculture systems, a key to achieving soil fungal community management in eucalyptus plantations.

    PubMed

    Rachid, Caio T C C; Balieiro, Fabiano C; Fonseca, Eduardo S; Peixoto, Raquel Silva; Chaer, Guilherme M; Tiedje, James M; Rosado, Alexandre S

    2015-01-01

    Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species) could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments: monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that.

  10. Intercropped silviculture systems, a key to achieving soil fungal community management in eucalyptus plantations

    DOE PAGES

    Caio T.C.C. Rachid; Balieiro, Fabiano C.; Fonseca, Eduardo S.; ...

    2015-02-23

    Fungi are ubiquitous and important contributors to soil nutrient cycling, playing a vital role in C, N and P turnover, with many fungi having direct beneficial relationships with plants. However, the factors that modulate the soil fungal community are poorly understood. We studied the degree to which the composition of tree species affected the soil fungal community structure and diversity by pyrosequencing the 28S rRNA gene in soil DNA. We were also interested in whether intercropping (mixed plantation of two plant species) could be used to select fungal species. More than 50,000 high quality sequences were analyzed from three treatments:more » monoculture of Eucalyptus; monoculture of Acacia mangium; and a mixed plantation with both species sampled 2 and 3 years after planting. We found that the plant type had a major effect on the soil fungal community structure, with 75% of the sequences from the Eucalyptus soil belonging to Basidiomycota and 19% to Ascomycota, and the Acacia soil having a sequence distribution of 28% and 62%, respectively. The intercropping of Acacia mangium in a Eucalyptus plantation significantly increased the number of fungal genera and the diversity indices and introduced or increased the frequency of several genera that were not found in the monoculture cultivation samples. Our results suggest that management of soil fungi is possible by manipulating the composition of the plant community, and intercropped systems can be a means to achieve that.« less

  11. PET-Tool: a software suite for comprehensive processing and managing of Paired-End diTag (PET) sequence data.

    PubMed

    Chiu, Kuo Ping; Wong, Chee-Hong; Chen, Qiongyu; Ariyaratne, Pramila; Ooi, Hong Sain; Wei, Chia-Lin; Sung, Wing-Kin Ken; Ruan, Yijun

    2006-08-25

    We recently developed the Paired End diTag (PET) strategy for efficient characterization of mammalian transcriptomes and genomes. The paired end nature of short PET sequences derived from long DNA fragments raised a new set of bioinformatics challenges, including how to extract PETs from raw sequence reads, and correctly yet efficiently map PETs to reference genome sequences. To accommodate and streamline data analysis of the large volume PET sequences generated from each PET experiment, an automated PET data process pipeline is desirable. We designed an integrated computation program package, PET-Tool, to automatically process PET sequences and map them to the genome sequences. The Tool was implemented as a web-based application composed of four modules: the Extractor module for PET extraction; the Examiner module for analytic evaluation of PET sequence quality; the Mapper module for locating PET sequences in the genome sequences; and the Project Manager module for data organization. The performance of PET-Tool was evaluated through the analyses of 2.7 million PET sequences. It was demonstrated that PET-Tool is accurate and efficient in extracting PET sequences and removing artifacts from large volume dataset. Using optimized mapping criteria, over 70% of quality PET sequences were mapped specifically to the genome sequences. With a 2.4 GHz LINUX machine, it takes approximately six hours to process one million PETs from extraction to mapping. The speed, accuracy, and comprehensiveness have proved that PET-Tool is an important and useful component in PET experiments, and can be extended to accommodate other related analyses of paired-end sequences. The Tool also provides user-friendly functions for data quality check and system for multi-layer data management.

  12. Simultaneous Production of Anabaenopeptins and Namalides by the Cyanobacterium Nostoc sp. CENA543.

    PubMed

    Shishido, Tânia K; Jokela, Jouni; Fewer, David P; Wahlsten, Matti; Fiore, Marli F; Sivonen, Kaarina

    2017-11-17

    Anabaenopeptins are a diverse group of cyclic peptides, which contain an unusual ureido linkage. Namalides are shorter structural homologues of anabaenopeptins, which also contain an ureido linkage. The biosynthetic origins of namalides are unknown despite a strong resemblance to anabaenopeptins. Here, we show the cyanobacterium Nostoc sp. CENA543 strain producing new (nostamide B-E (2, 4, 5, and 6)) and known variants of anabaenopeptins (schizopeptin 791 (1) and anabaenopeptin 807 (3)). Surprisingly, Nostoc sp. CENA543 also produced namalide B (8) and the new namalides D (7), E (9), and F (10) in similar amounts to anabaenopeptins. Analysis of the complete Nostoc sp. CENA543 genome sequence indicates that both anabaenopeptins and namalides are produced by the same biosynthetic pathway through module skipping during biosynthesis. This unique process involves the skipping of two modules present in different nonribosomal peptide synthetases during the namalide biosynthesis. This skipping is an efficient mechanism since both anabaenopeptins and namalides are synthesized in similar amounts by Nostoc sp. CENA543. Consequently, gene skipping may be used to increase and possibly broaden the chemical diversity of related peptides produced by a single biosynthetic gene cluster. Genome mining demonstrated that the anabaenopeptin gene clusters are widespread in cyanobacteria and can also be found in tectomicrobia bacteria.

  13. Transcriptomic comparison between Brassica oleracea and rice (Oryza sativa) reveals diverse modulations on cell death in response to Sclerotinia sclerotiorum.

    PubMed

    Mei, Jiaqin; Ding, Yijuan; Li, Yuehua; Tong, Chaobo; Du, Hai; Yu, Yang; Wan, Huafan; Xiong, Qing; Yu, Jingyin; Liu, Shengyi; Li, Jiana; Qian, Wei

    2016-09-20

    Sclerotinia stem rot caused by Sclerotinia sclerotiorum is a devastating disease of Brassica crops, but not in rice. The leaves of a rice line, a partial resistant (R) and a susceptible (S) Brassica oleracea pool that bulked from a resistance-segregating F2 population were employed for transcriptome sequencing before and after inoculation by S. sclerotiorum for 6 and 12 h. Distinct transcriptome profiles were revealed between B. oleracea and rice in response to S. sclerotiorum. Enrichment analyses of GO and KEGG indicated an enhancement of antioxidant activity in the R B. oleracea and rice, and histochemical staining exhibited obvious lighter reactive oxygen species (ROS) accumulation and cell death in rice and the R B. oleracea as compared to that in the S B. oleracea. Significant enhancement of Ca(2+) signalling, a positive regulator of ROS and cell death, were detected in S B. oleracea after inoculation, while it was significantly repressed in the R B. oleracea group. Obvious difference was detected between two B. oleracea groups for WRKY transcription factors, particularly for those regulating cell death. These findings suggest diverse modulations on cell death in host in response to S. sclerotiorum. Our study provides useful insight into the resistant mechanism to S. sclerotiorum.

  14. Necessary Sequencing Depth and Clustering Method to Obtain Relatively Stable Diversity Patterns in Studying Fish Gut Microbiota.

    PubMed

    Xiao, Fanshu; Yu, Yuhe; Li, Jinjin; Juneau, Philippe; Yan, Qingyun

    2018-05-25

    The 16S rRNA gene is one of the most commonly used molecular markers for estimating bacterial diversity during the past decades. However, there is no consistency about the sequencing depth (from thousand to millions of sequences per sample), and the clustering methods used to generate OTUs may also be different among studies. These inconsistent premises make effective comparisons among studies difficult or unreliable. This study aims to examine the necessary sequencing depth and clustering method that would be needed to ensure a stable diversity patterns for studying fish gut microbiota. A total number of 42 samples dataset of Siniperca chuatsi (carnivorous fish) gut microbiota were used to test how the sequencing depth and clustering may affect the alpha and beta diversity patterns of fish intestinal microbiota. Interestingly, we found that the sequencing depth (resampling 1000-11,000 per sample) and the clustering methods (UPARSE and UCLUST) did not bias the estimates of the diversity patterns during the fish development from larva to adult. Although we should acknowledge that a suitable sequencing depth may differ case by case, our finding indicates that a shallow sequencing such as 1000 sequences per sample may be also enough to reflect the general diversity patterns of fish gut microbiota. However, we have shown in the present study that strict pre-processing of the original sequences is required to ensure reliable results. This study provides evidences to help making a strong scientific choice of the sequencing depth and clustering method for future studies on fish gut microbiota patterns, but at the same time reducing as much as possible the costs related to the analysis.

  15. Origins of Genes: "Big Bang" or Continuous Creation?

    NASA Astrophysics Data System (ADS)

    Kesse, Paul K.; Gibbs, Adrian

    1992-10-01

    Many protein families are common to all cellular organisms, indicating that many genes have ancient origins. Genetic variation is mostly attributed to processes such as mutation, duplication, and rearrangement of ancient modules. Thus it is widely assumed that much of present-day genetic diversity can be traced by common ancestry to a molecular "big bang." A rarely considered alternative is that proteins may arise continuously de novo. One mechanism of generating different coding sequences is by "overprinting," in which an existing nucleotide sequence is translated de novo in a different reading frame or from noncoding open reading frames. The clearest evidence for overprinting is provided when the original gene function is retained, as in overlapping genes. Analysis of their phylogenies indicates which are the original genes and which are their informationally novel partners. We report here the phylogenetic relationships of overlapping coding sequences from steroid-related receptor genes and from tymovirus, luteovirus, and lentivirus genomes. For each pair of overlapping coding sequences, one is confined to a single lineage, whereas the other is more widespread. This suggests that the phylogenetically restricted coding sequence arose only in the progenitor of that lineage by translating an out-of-frame sequence to yield the new polypeptide. The production of novel exons by alternative splicing in thyroid receptor and lentivirus genes suggests that introns can be a valuable evolutionary source for overprinting. New genes and their products may drive major evolutionary changes.

  16. ClusterCAD: a computational platform for type I modular polyketide synthase design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eng, Clara H.; Backman, Tyler W H; Bailey, Constance B.

    Here, we present ClusterCAD, a web-based toolkit designed to leverage the collinear structure and deterministic logic of type I modular polyketide synthases (PKSs) for synthetic biology applications. The unique organization of these megasynthases, combined with the diversity of their catalytic domain building blocks, has fueled an interest in harnessing the biosynthetic potential of PKSs for the microbial production of both novel natural product analogs and industrially relevant small molecules. However, a limited theoretical understanding of the determinants of PKS fold and function poses a substantial barrier to the design of active variants, and identifying strategies to reliably construct functional PKSmore » chimeras remains an active area of research. In this work, we formalize a paradigm for the design of PKS chimeras and introduce ClusterCAD as a computational platform to streamline and simplify the process of designing experiments to test strategies for engineering PKS variants. ClusterCAD provides chemical structures with stereochemistry for the intermediates generated by each PKS module, as well as sequence- and structure-based search tools that allow users to identify modules based either on amino acid sequence or on the chemical structure of the cognate polyketide intermediate. ClusterCAD can be accessed at https://clustercad.jbei.org and at http://clustercad.igb.uci.edu.« less

  17. Electronic coupling through natural amino acids.

    PubMed

    Berstis, Laura; Beckham, Gregg T; Crowley, Michael F

    2015-12-14

    Myriad scientific domains concern themselves with biological electron transfer (ET) events that span across vast scales of rate and efficiency through a remarkably fine-tuned integration of amino acid (AA) sequences, electronic structure, dynamics, and environment interactions. Within this intricate scheme, many questions persist as to how proteins modulate electron-tunneling properties. To help elucidate these principles, we develop a model set of peptides representing the common α-helix and β-strand motifs including all natural AAs within implicit protein-environment solvation. Using an effective Hamiltonian strategy with density functional theory, we characterize the electronic coupling through these peptides, furthermore considering side-chain dynamics. For both motifs, predictions consistently show that backbone-mediated electronic coupling is distinctly sensitive to AA type (aliphatic, polar, aromatic, negatively charged and positively charged), and to side-chain orientation. The unique properties of these residues may be employed to design activated, deactivated, or switch-like superexchange pathways. Electronic structure calculations and Green's function analyses indicate that localized shifts in the electron density along the peptide play a role in modulating these pathways, and further substantiate the experimentally observed behavior of proline residues as superbridges. The distinct sensitivities of tunneling pathways to sequence and conformation revealed in this electronic coupling database help improve our fundamental understanding of the broad diversity of ET reactivity and provide guiding principles for peptide design.

  18. Reconstruction of structural evolution in the trnL intron P6b loop of symbiotic Nostoc (Cyanobacteria).

    PubMed

    Olsson, Sanna; Kaasalainen, Ulla; Rikkinen, Jouko

    2012-02-01

    In this study we reconstruct the structural evolution of the hyper-variable P6b region of the group I trnLeu intron in a monophyletic group of lichen-symbiotic Nostoc strains and establish it as a useful marker in the phylogenetic analysis of these organisms. The studied cyanobacteria occur as photosynthetic and/or nitrogen-fixing symbionts in lichen species of the diverse Nephroma guild. Phylogenetic analyses and secondary structure reconstructions are used to improve the understanding of the replication mechanisms in the P6b stem-loop and to explain the observed distribution patterns of indels. The variants of the P6b region in the Nostoc clade studied consist of different combinations of five sequence modules. The distribution of indels together with the ancestral character reconstruction performed enables the interpretation of the evolution of each sequence module. Our results indicate that the indel events are usually associated with single nucleotide changes in the P6b region and have occurred several times independently. In spite of their homoplasy, they provide phylogenetic information for closely related taxa. Thus we recognize that features of the P6b region can be used as molecular markers for species identification and phylogenetic studies involving symbiotic Nostoc cyanobacteria.

  19. ClusterCAD: a computational platform for type I modular polyketide synthase design

    DOE PAGES

    Eng, Clara H.; Backman, Tyler W H; Bailey, Constance B.; ...

    2017-10-11

    Here, we present ClusterCAD, a web-based toolkit designed to leverage the collinear structure and deterministic logic of type I modular polyketide synthases (PKSs) for synthetic biology applications. The unique organization of these megasynthases, combined with the diversity of their catalytic domain building blocks, has fueled an interest in harnessing the biosynthetic potential of PKSs for the microbial production of both novel natural product analogs and industrially relevant small molecules. However, a limited theoretical understanding of the determinants of PKS fold and function poses a substantial barrier to the design of active variants, and identifying strategies to reliably construct functional PKSmore » chimeras remains an active area of research. In this work, we formalize a paradigm for the design of PKS chimeras and introduce ClusterCAD as a computational platform to streamline and simplify the process of designing experiments to test strategies for engineering PKS variants. ClusterCAD provides chemical structures with stereochemistry for the intermediates generated by each PKS module, as well as sequence- and structure-based search tools that allow users to identify modules based either on amino acid sequence or on the chemical structure of the cognate polyketide intermediate. ClusterCAD can be accessed at https://clustercad.jbei.org and at http://clustercad.igb.uci.edu.« less

  20. Microbial community analysis of the hypersaline water of the Dead Sea using high-throughput amplicon sequencing.

    PubMed

    Jacob, Jacob H; Hussein, Emad I; Shakhatreh, Muhamad Ali K; Cornelison, Christopher T

    2017-10-01

    Amplicon sequencing using next-generation technology (bTEFAP ® ) has been utilized in describing the diversity of Dead Sea microbiota. The investigated area is a well-known salt lake in the western part of Jordan found in the lowest geographical location in the world (more than 420 m below sea level) and characterized by extreme salinity (approximately, 34%) in addition to other extreme conditions (low pH, unique ionic composition different from sea water). DNA was extracted from Dead Sea water. A total of 314,310 small subunit RNA (SSU rRNA) sequences were parsed, and 288,452 sequences were then clustered. For alpha diversity analysis, sample was rarefied to 3,000 sequences. The Shannon-Wiener index curve plot reached a plateau at approximately 3,000 sequences indicating that sequencing depth was sufficient to capture the full scope of microbial diversity. Archaea was found to be dominating the sequences (52%), whereas Bacteria constitute 45% of the sequences. Altogether, prokaryotic sequences (which constitute 97% of all sequences) were found to predominate. The findings expand on previous studies by using high-throughput amplicon sequencing to describe the microbial community in an environment which in recent years has been shown to hide some interesting diversity. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  1. Effectiveness of Diversity Infusion Modules on Students' Attitudes, Behavior, and Knowledge

    ERIC Educational Resources Information Center

    Saleh, Mahasin F.; Anngela-Cole, Linda; Boateng, Alice

    2011-01-01

    The purpose of this study was to evaluate the effectiveness of diversity infusion modules provided to university students in a predominantly white homogeneous community. A mixed-method approach using a pre-post retrospective design was used to measure attitudes, behaviors, and knowledge about diversity issues, and included a comparison group…

  2. Low diversity in the mitogenome of sperm whales revealed by next-generation sequencing

    Treesearch

    Alana Alexander; Debbie Steel; Beth Slikas; Kendra Hoekzema; Colm Carraher; Matthew Parks; Richard Cronn; C. Scott Baker

    2012-01-01

    Large population sizes and global distributions generally associate with high mitochondrial DNA control region (CR) diversity. The sperm whale (Physeter macrocephalus) is an exception, showing low CR diversity relative to other cetaceans; however, diversity levels throughout the remainder of the sperm whale mitogenome are unknown. We sequenced 20...

  3. Comparison of the Diversity of Basidiomycetes from Dead Wood of the Manchurian fir (Abies holophylla) as Evaluated by Fruiting Body Collection, Mycelial Isolation, and 454 Sequencing.

    PubMed

    Jang, Yeongseon; Jang, Seokyoon; Min, Mihee; Hong, Joo-Hyun; Lee, Hanbyul; Lee, Hwanhwi; Lim, Young Woon; Kim, Jae-Jin

    2015-10-01

    In this study, three different methods (fruiting body collection, mycelial isolation, and 454 sequencing) were implemented to determine the diversity of wood-inhabiting basidiomycetes from dead Manchurian fir (Abies holophylla). The three methods recovered similar species richness (26 species from fruiting bodies, 32 species from mycelia, and 32 species from 454 sequencing), but Fisher's alpha, Shannon-Wiener, Simpson's diversity indices of fungal communities indicated fruiting body collection and mycelial isolation displayed higher diversity compared with 454 sequencing. In total, 75 wood-inhabiting basidiomycetes were detected. The most frequently observed species were Heterobasidion orientale (fruiting body collection), Bjerkandera adusta (mycelial isolation), and Trichaptum fusco-violaceum (454 sequencing). Only two species, Hymenochaete yasudae and Hypochnicium karstenii, were detected by all three methods. This result indicated that Manchurian fir harbors a diverse basidiomycetous fungal community and for complete estimation of fungal diversity, multiple methods should be used. Further studies are required to understand their ecology in the context of forest ecosystems.

  4. Exploring fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Yong; Wang, Guang-Hua; Xu, Xin-Ya; Nong, Xu-Hua; Wang, Jie; Amin, Muhammad; Qi, Shu-Hua

    2016-10-01

    The present study investigated the fungal diversity in four different deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing of the nuclear ribosomal internal transcribed spacer-1 (ITS1). A total of 40,297 fungal ITS1 sequences clustered into 420 operational taxonomic units (OTUs) with 97% sequence similarity and 170 taxa were recovered from these sediments. Most ITS1 sequences (78%) belonged to the phylum Ascomycota, followed by Basidiomycota (17.3%), Zygomycota (1.5%) and Chytridiomycota (0.8%), and a small proportion (2.4%) belonged to unassigned fungal phyla. Compared with previous studies on fungal diversity of sediments from deep-sea environments by culture-dependent approach and clone library analysis, the present result suggested that Illumina sequencing had been dramatically accelerating the discovery of fungal community of deep-sea sediments. Furthermore, our results revealed that Sordariomycetes was the most diverse and abundant fungal class in this study, challenging the traditional view that the diversity of Sordariomycetes phylotypes was low in the deep-sea environments. In addition, more than 12 taxa accounted for 21.5% sequences were found to be rarely reported as deep-sea fungi, suggesting the deep-sea sediments from Okinawa Trough harbored a plethora of different fungal communities compared with other deep-sea environments. To our knowledge, this study is the first exploration of the fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing.

  5. High Diversity of Myocyanophage in Various Aquatic Environments Revealed by High-Throughput Sequencing of Major Capsid Protein Gene With a New Set of Primers.

    PubMed

    Hou, Weiguo; Wang, Shang; Briggs, Brandon R; Li, Gaoyuan; Xie, Wei; Dong, Hailiang

    2018-01-01

    Myocyanophages, a group of viruses infecting cyanobacteria, are abundant and play important roles in elemental cycling. Here we investigated the particle-associated viral communities retained on 0.2 μm filters and in sediment samples (representing ancient cyanophage communities) from four ocean and three lake locations, using high-throughput sequencing and a newly designed primer pair targeting a gene fragment (∼145-bp in length) encoding the cyanophage gp23 major capsid protein (MCP). Diverse viral communities were detected in all samples. The fragments of 142-, 145-, and 148-bp in length were most abundant in the amplicons, and most sequences (>92%) belonged to cyanophages. Additionally, different sequencing depths resulted in different diversity estimates of the viral community. Operational taxonomic units obtained from deep sequencing of the MCP gene covered the majority of those obtained from shallow sequencing, suggesting that deep sequencing exhibited a more complete picture of cyanophage community than shallow sequencing. Our results also revealed a wide geographic distribution of marine myocyanophages, i.e., higher dissimilarities of the myocyanophage communities corresponded with the larger distances between the sampling sites. Collectively, this study suggests that the newly designed primer pair can be effectively used to study the community and diversity of myocyanophage from different environments, and the high-throughput sequencing represents a good method to understand viral diversity.

  6. High Diversity of Myocyanophage in Various Aquatic Environments Revealed by High-Throughput Sequencing of Major Capsid Protein Gene With a New Set of Primers

    PubMed Central

    Hou, Weiguo; Wang, Shang; Briggs, Brandon R.; Li, Gaoyuan; Xie, Wei; Dong, Hailiang

    2018-01-01

    Myocyanophages, a group of viruses infecting cyanobacteria, are abundant and play important roles in elemental cycling. Here we investigated the particle-associated viral communities retained on 0.2 μm filters and in sediment samples (representing ancient cyanophage communities) from four ocean and three lake locations, using high-throughput sequencing and a newly designed primer pair targeting a gene fragment (∼145-bp in length) encoding the cyanophage gp23 major capsid protein (MCP). Diverse viral communities were detected in all samples. The fragments of 142-, 145-, and 148-bp in length were most abundant in the amplicons, and most sequences (>92%) belonged to cyanophages. Additionally, different sequencing depths resulted in different diversity estimates of the viral community. Operational taxonomic units obtained from deep sequencing of the MCP gene covered the majority of those obtained from shallow sequencing, suggesting that deep sequencing exhibited a more complete picture of cyanophage community than shallow sequencing. Our results also revealed a wide geographic distribution of marine myocyanophages, i.e., higher dissimilarities of the myocyanophage communities corresponded with the larger distances between the sampling sites. Collectively, this study suggests that the newly designed primer pair can be effectively used to study the community and diversity of myocyanophage from different environments, and the high-throughput sequencing represents a good method to understand viral diversity.

  7. Broad-host-range vector system for synthetic biology and biotechnology in cyanobacteria

    PubMed Central

    Taton, Arnaud; Unglaub, Federico; Wright, Nicole E.; Zeng, Wei Yue; Paz-Yepes, Javier; Brahamsha, Bianca; Palenik, Brian; Peterson, Todd C.; Haerizadeh, Farzad; Golden, Susan S.; Golden, James W.

    2014-01-01

    Inspired by the developments of synthetic biology and the need for improved genetic tools to exploit cyanobacteria for the production of renewable bioproducts, we developed a versatile platform for the construction of broad-host-range vector systems. This platform includes the following features: (i) an efficient assembly strategy in which modules released from 3 to 4 donor plasmids or produced by polymerase chain reaction are assembled by isothermal assembly guided by short GC-rich overlap sequences. (ii) A growing library of molecular devices categorized in three major groups: (a) replication and chromosomal integration; (b) antibiotic resistance; (c) functional modules. These modules can be assembled in different combinations to construct a variety of autonomously replicating plasmids and suicide plasmids for gene knockout and knockin. (iii) A web service, the CYANO-VECTOR assembly portal, which was built to organize the various modules, facilitate the in silico construction of plasmids, and encourage the use of this system. This work also resulted in the construction of an improved broad-host-range replicon derived from RSF1010, which replicates in several phylogenetically distinct strains including a new experimental model strain Synechocystis sp. WHSyn, and the characterization of nine antibiotic cassettes, four reporter genes, four promoters, and a ribozyme-based insulator in several diverse cyanobacterial strains. PMID:25074377

  8. It's all relative: ranking the diversity of aquatic bacterial communities.

    PubMed

    Shaw, Allison K; Halpern, Aaron L; Beeson, Karen; Tran, Bao; Venter, J Craig; Martiny, Jennifer B H

    2008-09-01

    The study of microbial diversity patterns is hampered by the enormous diversity of microbial communities and the lack of resources to sample them exhaustively. For many questions about richness and evenness, however, one only needs to know the relative order of diversity among samples rather than total diversity. We used 16S libraries from the Global Ocean Survey to investigate the ability of 10 diversity statistics (including rarefaction, non-parametric, parametric, curve extrapolation and diversity indices) to assess the relative diversity of six aquatic bacterial communities. Overall, we found that the statistics yielded remarkably similar rankings of the samples for a given sequence similarity cut-off. This correspondence, despite the different underlying assumptions of the statistics, suggests that diversity statistics are a useful tool for ranking samples of microbial diversity. In addition, sequence similarity cut-off influenced the diversity ranking of the samples, demonstrating that diversity statistics can also be used to detect differences in phylogenetic structure among microbial communities. Finally, a subsampling analysis suggests that further sequencing from these particular clone libraries would not have substantially changed the richness rankings of the samples.

  9. SSR_pipeline: a bioinformatic infrastructure for identifying microsatellites from paired-end Illumina high-throughput DNA sequencing data

    USGS Publications Warehouse

    Miller, Mark P.; Knaus, Brian J.; Mullins, Thomas D.; Haig, Susan M.

    2013-01-01

    SSR_pipeline is a flexible set of programs designed to efficiently identify simple sequence repeats (e.g., microsatellites) from paired-end high-throughput Illumina DNA sequencing data. The program suite contains 3 analysis modules along with a fourth control module that can automate analyses of large volumes of data. The modules are used to 1) identify the subset of paired-end sequences that pass Illumina quality standards, 2) align paired-end reads into a single composite DNA sequence, and 3) identify sequences that possess microsatellites (both simple and compound) conforming to user-specified parameters. The microsatellite search algorithm is extremely efficient, and we have used it to identify repeats with motifs from 2 to 25bp in length. Each of the 3 analysis modules can also be used independently to provide greater flexibility or to work with FASTQ or FASTA files generated from other sequencing platforms (Roche 454, Ion Torrent, etc.). We demonstrate use of the program with data from the brine fly Ephydra packardi (Diptera: Ephydridae) and provide empirical timing benchmarks to illustrate program performance on a common desktop computer environment. We further show that the Illumina platform is capable of identifying large numbers of microsatellites, even when using unenriched sample libraries and a very small percentage of the sequencing capacity from a single DNA sequencing run. All modules from SSR_pipeline are implemented in the Python programming language and can therefore be used from nearly any computer operating system (Linux, Macintosh, and Windows).

  10. SSR_pipeline: a bioinformatic infrastructure for identifying microsatellites from paired-end Illumina high-throughput DNA sequencing data.

    PubMed

    Miller, Mark P; Knaus, Brian J; Mullins, Thomas D; Haig, Susan M

    2013-01-01

    SSR_pipeline is a flexible set of programs designed to efficiently identify simple sequence repeats (e.g., microsatellites) from paired-end high-throughput Illumina DNA sequencing data. The program suite contains 3 analysis modules along with a fourth control module that can automate analyses of large volumes of data. The modules are used to 1) identify the subset of paired-end sequences that pass Illumina quality standards, 2) align paired-end reads into a single composite DNA sequence, and 3) identify sequences that possess microsatellites (both simple and compound) conforming to user-specified parameters. The microsatellite search algorithm is extremely efficient, and we have used it to identify repeats with motifs from 2 to 25 bp in length. Each of the 3 analysis modules can also be used independently to provide greater flexibility or to work with FASTQ or FASTA files generated from other sequencing platforms (Roche 454, Ion Torrent, etc.). We demonstrate use of the program with data from the brine fly Ephydra packardi (Diptera: Ephydridae) and provide empirical timing benchmarks to illustrate program performance on a common desktop computer environment. We further show that the Illumina platform is capable of identifying large numbers of microsatellites, even when using unenriched sample libraries and a very small percentage of the sequencing capacity from a single DNA sequencing run. All modules from SSR_pipeline are implemented in the Python programming language and can therefore be used from nearly any computer operating system (Linux, Macintosh, and Windows).

  11. Microbial community composition but not diversity changes along succession in arctic sand dunes.

    PubMed

    Poosakkannu, Anbu; Nissinen, Riitta; Männistö, Minna; Kytöviita, Minna-Maarit

    2017-02-01

    The generality of increasing diversity of fungi and bacteria across arctic sand dune succession was tested. Microbial communities were examined by high-throughput sequencing of 16S rRNA genes (bacteria) and internal transcribed spacer (ITS) regions (fungi). We studied four microbial compartments (inside leaf, inside root, rhizosphere and bulk soil) and characterized microbes associated with a single plant species (Deschampsia flexuosa) across two sand dune successional stages (early and late). Bacterial richness increased across succession in bulk soil and leaf endosphere. In contrast, soil fungal richness remained constant while root endosphere fungal richness increased across succession. There was, however, no significant difference in Shannon diversity indices between early and late successional stage in any compartment. There was a significant difference in the composition of microbial communities between early and late successional stage in all compartments, although the major microbial OTUs were shared between early and late successional stage. Co-occurrence network analysis revealed successional stage-specific microbial groups. There were more co-occurring modules in early successional stage than in late stage. Altogether, these results emphasize that succession strongly affects distribution of microbial species, but not microbial diversity in arctic sand dune ecosystem and that fungi and bacteria may not follow the same successional trajectories. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Genomic Diversity of Lactobacillus salivarius▿ †

    PubMed Central

    Raftis, Emma J.; Salvetti, Elisa; Torriani, Sandra; Felis, Giovanna E.; O'Toole, Paul W.

    2011-01-01

    Strains of Lactobacillus salivarius are increasingly employed as probiotic agents for humans or animals. Despite the diversity of environmental sources from which they have been isolated, the genomic diversity of L. salivarius has been poorly characterized, and the implications of this diversity for strain selection have not been examined. To tackle this, we applied comparative genomic hybridization (CGH) and multilocus sequence typing (MLST) to 33 strains derived from humans, animals, or food. The CGH, based on total genome content, including small plasmids, identified 18 major regions of genomic variation, or hot spots for variation. Three major divisions were thus identified, with only a subset of the human isolates constituting an ecologically discernible group. Omission of the small plasmids from the CGH or analysis by MLST provided broadly concordant fine divisions and separated human-derived and animal-derived strains more clearly. The two gene clusters for exopolysaccharide (EPS) biosynthesis corresponded to regions of significant genomic diversity. The CGH-based groupings of these regions did not correlate with levels of production of bound or released EPS. Furthermore, EPS production was significantly modulated by available carbohydrate. In addition to proving difficult to predict from the gene content, EPS production levels correlated inversely with production of biofilms, a trait considered desirable in probiotic commensals. L. salivarius displays a high level of genomic diversity, and while selection of L. salivarius strains for probiotic use can be informed by CGH or MLST, it also requires pragmatic experimental validation of desired phenotypic traits. PMID:21131523

  13. The genetic diversity of merozoite surface antigen 1 (MSA-1) among Babesia bovis detected from cattle populations in Thailand, Brazil and Ghana.

    PubMed

    Nagano, Daisuke; Sivakumar, Thillaiampalam; De De Macedo, Alane Caine Costa; Inpankaew, Tawin; Alhassan, Andy; Igarashi, Ikuo; Yokoyama, Naoaki

    2013-11-01

    In the present study, we screened blood DNA samples obtained from cattle bred in Brazil (n=164) and Ghana (n=80) for Babesia bovis using a diagnostic PCR assay and found prevalences of 14.6% and 46.3%, respectively. Subsequently, the genetic diversity of B. bovis in Thailand, Brazil and Ghana was analyzed, based on the DNA sequence of merozoite surface antigen-1 (MSA-1). In Thailand, MSA-1 sequences were relatively conserved and found in a single clade of the phylogram, while Brazilian MSA-1 sequences showed high genetic diversity and were dispersed across three different clades. In contrast, the sequences from Ghanaian samples were detected in two different clades, one of which contained only a single Ghanaian sequence. The identities among the MSA-1 sequences from Thailand, Brazil and Ghana were 99.0-100%, 57.5-99.4% and 60.3-100%, respectively, while the similarities among the deduced MSA-1 amino acid sequences within the respective countries were 98.4-100%, 59.4-99.7% and 58.7-100%, respectively. These observations suggested that the genetic diversity of B. bovis based on MSA-1 sequences was higher in Brazil and Ghana than in Thailand. The current data highlight the importance of conducting extensive studies on the genetic diversity of B. bovis before designing immune control strategies in each surveyed country.

  14. Comprehensive phylogenetic analysis of bacterial reverse transcriptases.

    PubMed

    Toro, Nicolás; Nisa-Martínez, Rafael

    2014-01-01

    Much less is known about reverse transcriptases (RTs) in prokaryotes than in eukaryotes, with most prokaryotic enzymes still uncharacterized. Two surveys involving BLAST searches for RT genes in prokaryotic genomes revealed the presence of large numbers of diverse, uncharacterized RTs and RT-like sequences. Here, using consistent annotation across all sequenced bacterial species from GenBank and other sources via RAST, available from the PATRIC (Pathogenic Resource Integration Center) platform, we have compiled the data for currently annotated reverse transcriptases from completely sequenced bacterial genomes. RT sequences are broadly distributed across bacterial phyla, but green sulfur bacteria and cyanobacteria have the highest levels of RT sequence diversity (≤85% identity) per genome. By contrast, phylum Actinobacteria, for which a large number of genomes have been sequenced, was found to have a low RT sequence diversity. Phylogenetic analyses revealed that bacterial RTs could be classified into 17 main groups: group II introns, retrons/retron-like RTs, diversity-generating retroelements (DGRs), Abi-like RTs, CRISPR-Cas-associated RTs, group II-like RTs (G2L), and 11 other groups of RTs of unknown function. Proteobacteria had the highest potential functional diversity, as they possessed most of the RT groups. Group II introns and DGRs were the most widely distributed RTs in bacterial phyla. Our results provide insights into bacterial RT phylogeny and the basis for an update of annotation systems based on sequence/domain homology.

  15. Comprehensive Phylogenetic Analysis of Bacterial Reverse Transcriptases

    PubMed Central

    Toro, Nicolás; Nisa-Martínez, Rafael

    2014-01-01

    Much less is known about reverse transcriptases (RTs) in prokaryotes than in eukaryotes, with most prokaryotic enzymes still uncharacterized. Two surveys involving BLAST searches for RT genes in prokaryotic genomes revealed the presence of large numbers of diverse, uncharacterized RTs and RT-like sequences. Here, using consistent annotation across all sequenced bacterial species from GenBank and other sources via RAST, available from the PATRIC (Pathogenic Resource Integration Center) platform, we have compiled the data for currently annotated reverse transcriptases from completely sequenced bacterial genomes. RT sequences are broadly distributed across bacterial phyla, but green sulfur bacteria and cyanobacteria have the highest levels of RT sequence diversity (≤85% identity) per genome. By contrast, phylum Actinobacteria, for which a large number of genomes have been sequenced, was found to have a low RT sequence diversity. Phylogenetic analyses revealed that bacterial RTs could be classified into 17 main groups: group II introns, retrons/retron-like RTs, diversity-generating retroelements (DGRs), Abi-like RTs, CRISPR-Cas-associated RTs, group II-like RTs (G2L), and 11 other groups of RTs of unknown function. Proteobacteria had the highest potential functional diversity, as they possessed most of the RT groups. Group II introns and DGRs were the most widely distributed RTs in bacterial phyla. Our results provide insights into bacterial RT phylogeny and the basis for an update of annotation systems based on sequence/domain homology. PMID:25423096

  16. Estimating Bacterial Diversity for Ecological Studies: Methods, Metrics, and Assumptions

    PubMed Central

    Birtel, Julia; Walser, Jean-Claude; Pichon, Samuel; Bürgmann, Helmut; Matthews, Blake

    2015-01-01

    Methods to estimate microbial diversity have developed rapidly in an effort to understand the distribution and diversity of microorganisms in natural environments. For bacterial communities, the 16S rRNA gene is the phylogenetic marker gene of choice, but most studies select only a specific region of the 16S rRNA to estimate bacterial diversity. Whereas biases derived from from DNA extraction, primer choice and PCR amplification are well documented, we here address how the choice of variable region can influence a wide range of standard ecological metrics, such as species richness, phylogenetic diversity, β-diversity and rank-abundance distributions. We have used Illumina paired-end sequencing to estimate the bacterial diversity of 20 natural lakes across Switzerland derived from three trimmed variable 16S rRNA regions (V3, V4, V5). Species richness, phylogenetic diversity, community composition, β-diversity, and rank-abundance distributions differed significantly between 16S rRNA regions. Overall, patterns of diversity quantified by the V3 and V5 regions were more similar to one another than those assessed by the V4 region. Similar results were obtained when analyzing the datasets with different sequence similarity thresholds used during sequences clustering and when the same analysis was used on a reference dataset of sequences from the Greengenes database. In addition we also measured species richness from the same lake samples using ARISA Fingerprinting, but did not find a strong relationship between species richness estimated by Illumina and ARISA. We conclude that the selection of 16S rRNA region significantly influences the estimation of bacterial diversity and species distributions and that caution is warranted when comparing data from different variable regions as well as when using different sequencing techniques. PMID:25915756

  17. Overlap and diversity in antimicrobial peptide databases: compiling a non-redundant set of sequences.

    PubMed

    Aguilera-Mendoza, Longendri; Marrero-Ponce, Yovani; Tellez-Ibarra, Roberto; Llorente-Quesada, Monica T; Salgado, Jesús; Barigye, Stephen J; Liu, Jun

    2015-08-01

    The large variety of antimicrobial peptide (AMP) databases developed to date are characterized by a substantial overlap of data and similarity of sequences. Our goals are to analyze the levels of redundancy for all available AMP databases and use this information to build a new non-redundant sequence database. For this purpose, a new software tool is introduced. A comparative study of 25 AMP databases reveals the overlap and diversity among them and the internal diversity within each database. The overlap analysis shows that only one database (Peptaibol) contains exclusive data, not present in any other, whereas all sequences in the LAMP_Patent database are included in CAMP_Patent. However, the majority of databases have their own set of unique sequences, as well as some overlap with other databases. The complete set of non-duplicate sequences comprises 16 990 cases, which is almost half of the total number of reported peptides. On the other hand, the diversity analysis identifies the most and least diverse databases and proves that all databases exhibit some level of redundancy. Finally, we present a new parallel-free software, named Dover Analyzer, developed to compute the overlap and diversity between any number of databases and compile a set of non-redundant sequences. These results are useful for selecting or building a suitable representative set of AMPs, according to specific needs. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Differential sequence diversity at merozoite surface protein-1 locus of Plasmodium knowlesi from humans and macaques in Thailand.

    PubMed

    Putaporntip, Chaturong; Thongaree, Siriporn; Jongwutiwes, Somchai

    2013-08-01

    To determine the genetic diversity and potential transmission routes of Plasmodium knowlesi, we analyzed the complete nucleotide sequence of the gene encoding the merozoite surface protein-1 of this simian malaria (Pkmsp-1), an asexual blood-stage vaccine candidate, from naturally infected humans and macaques in Thailand. Analysis of Pkmsp-1 sequences from humans (n=12) and monkeys (n=12) reveals five conserved and four variable domains. Most nucleotide substitutions in conserved domains were dimorphic whereas three of four variable domains contained complex repeats with extensive sequence and size variation. Besides purifying selection in conserved domains, evidence of intragenic recombination scattering across Pkmsp-1 was detected. The number of haplotypes, haplotype diversity, nucleotide diversity and recombination sites of human-derived sequences exceeded that of monkey-derived sequences. Phylogenetic networks based on concatenated conserved sequences of Pkmsp-1 displayed a character pattern that could have arisen from sampling process or the presence of two independent routes of P. knowlesi transmission, i.e. from macaques to human and from human to humans in Thailand. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Characterizing novel endogenous retroviruses from genetic variation inferred from short sequence reads

    PubMed Central

    Mourier, Tobias; Mollerup, Sarah; Vinner, Lasse; Hansen, Thomas Arn; Kjartansdóttir, Kristín Rós; Guldberg Frøslev, Tobias; Snogdal Boutrup, Torsten; Nielsen, Lars Peter; Willerslev, Eske; Hansen, Anders J.

    2015-01-01

    From Illumina sequencing of DNA from brain and liver tissue from the lion, Panthera leo, and tumor samples from the pike-perch, Sander lucioperca, we obtained two assembled sequence contigs with similarity to known retroviruses. Phylogenetic analyses suggest that the pike-perch retrovirus belongs to the epsilonretroviruses, and the lion retrovirus to the gammaretroviruses. To determine if these novel retroviral sequences originate from an endogenous retrovirus or from a recently integrated exogenous retrovirus, we assessed the genetic diversity of the parental sequences from which the short Illumina reads are derived. First, we showed by simulations that we can robustly infer the level of genetic diversity from short sequence reads. Second, we find that the measures of nucleotide diversity inferred from our retroviral sequences significantly exceed the level observed from Human Immunodeficiency Virus infections, prompting us to conclude that the novel retroviruses are both of endogenous origin. Through further simulations, we rule out the possibility that the observed elevated levels of nucleotide diversity are the result of co-infection with two closely related exogenous retroviruses. PMID:26493184

  20. Analysis of genetic diversity using SNP markers in oat

    USDA-ARS?s Scientific Manuscript database

    A large-scale single nucleotide polymorphism (SNP) discovery was carried out in cultivated oat using Roche 454 sequencing methods. DNA sequences were generated from cDNAs originating from a panel of 20 diverse oat cultivars, and from Diversity Array Technology (DArT) genomic complexity reductions fr...

  1. The structures of non-CG-repeat Z-DNAs co-crystallized with the Z-DNA-binding domain, hZ alpha(ADAR1).

    PubMed

    Ha, Sung Chul; Choi, Jongkeun; Hwang, Hye-Yeon; Rich, Alexander; Kim, Yang-Gyun; Kim, Kyeong Kyu

    2009-02-01

    The Z-DNA conformation preferentially occurs at alternating purine-pyrimidine repeats, and is specifically recognized by Z alpha domains identified in several Z-DNA-binding proteins. The binding of Z alpha to foreign or chromosomal DNA in various sequence contexts is known to influence various biological functions, including the DNA-mediated innate immune response and transcriptional modulation of gene expression. For these reasons, understanding its binding mode and the conformational diversity of Z alpha bound Z-DNAs is of considerable importance. However, structural studies of Z alpha bound Z-DNA have been mostly limited to standard CG-repeat DNAs. Here, we have solved the crystal structures of three representative non-CG repeat DNAs, d(CACGTG)(2), d(CGTACG)(2) and d(CGGCCG)(2) complexed to hZ alpha(ADAR1) and compared those structures with that of hZ alpha(ADAR1)/d(CGCGCG)(2) and the Z alpha-free Z-DNAs. hZ alpha(ADAR1) bound to each of the three Z-DNAs showed a well conserved binding mode with very limited structural deviation irrespective of the DNA sequence, although varying numbers of residues were in contact with Z-DNA. Z-DNAs display less structural alterations in the Z alpha-bound state than in their free form, thereby suggesting that conformational diversities of Z-DNAs are restrained by the binding pocket of Z alpha. These data suggest that Z-DNAs are recognized by Z alpha through common conformational features regardless of the sequence and structural alterations.

  2. The human microbiota associated with overall health.

    PubMed

    Xu, Xiaofei; Wang, Zhujun; Zhang, Xuewu

    2015-03-01

    Human body harbors diverse microbes, the main components include bacteria, eukaryotes and viruses. Emerging evidences show that the human microbiota is intrinsically linked with overall health. The development of next-generation sequencing provides an unprecedented opportunity to investigate the complex microbial communities that are associated with the human body. Many factors like host genetics and environmental factors have a major impact on the composition and dynamic changes of human microbiota. The purpose of this paper is to present an overview of the relationship between human health and human microbiota (skin, nasal, throat, oral, vaginal and gut microbiota), then to focus on the factors modulating the composition of the microbiota and the future challenges to manipulate the microbiota for personalized health.

  3. The Comparative Toxicogenomics Database (CTD): A Resource for Comparative Toxicological Studies

    PubMed Central

    CJ, Mattingly; MC, Rosenstein; GT, Colby; JN, Forrest; JL, Boyer

    2006-01-01

    The etiology of most chronic diseases involves interactions between environmental factors and genes that modulate important biological processes (Olden and Wilson, 2000). We are developing the publicly available Comparative Toxicogenomics Database (CTD) to promote understanding about the effects of environmental chemicals on human health. CTD identifies interactions between chemicals and genes and facilitates cross-species comparative studies of these genes. The use of diverse animal models and cross-species comparative sequence studies has been critical for understanding basic physiological mechanisms and gene and protein functions. Similarly, these approaches will be valuable for exploring the molecular mechanisms of action of environmental chemicals and the genetic basis of differential susceptibility. PMID:16902965

  4. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons

    PubMed Central

    Haas, Brian J.; Gevers, Dirk; Earl, Ashlee M.; Feldgarden, Mike; Ward, Doyle V.; Giannoukos, Georgia; Ciulla, Dawn; Tabbaa, Diana; Highlander, Sarah K.; Sodergren, Erica; Methé, Barbara; DeSantis, Todd Z.; Petrosino, Joseph F.; Knight, Rob; Birren, Bruce W.

    2011-01-01

    Bacterial diversity among environmental samples is commonly assessed with PCR-amplified 16S rRNA gene (16S) sequences. Perceived diversity, however, can be influenced by sample preparation, primer selection, and formation of chimeric 16S amplification products. Chimeras are hybrid products between multiple parent sequences that can be falsely interpreted as novel organisms, thus inflating apparent diversity. We developed a new chimera detection tool called Chimera Slayer (CS). CS detects chimeras with greater sensitivity than previous methods, performs well on short sequences such as those produced by the 454 Life Sciences (Roche) Genome Sequencer, and can scale to large data sets. By benchmarking CS performance against sequences derived from a controlled DNA mixture of known organisms and a simulated chimera set, we provide insights into the factors that affect chimera formation such as sequence abundance, the extent of similarity between 16S genes, and PCR conditions. Chimeras were found to reproducibly form among independent amplifications and contributed to false perceptions of sample diversity and the false identification of novel taxa, with less-abundant species exhibiting chimera rates exceeding 70%. Shotgun metagenomic sequences of our mock community appear to be devoid of 16S chimeras, supporting a role for shotgun metagenomics in validating novel organisms discovered in targeted sequence surveys. PMID:21212162

  5. Pathogenic adaptation of intracellular bacteria by rewiring a cis-regulatory input function.

    PubMed

    Osborne, Suzanne E; Walthers, Don; Tomljenovic, Ana M; Mulder, David T; Silphaduang, Uma; Duong, Nancy; Lowden, Michael J; Wickham, Mark E; Waller, Ross F; Kenney, Linda J; Coombes, Brian K

    2009-03-10

    The acquisition of DNA by horizontal gene transfer enables bacteria to adapt to previously unexploited ecological niches. Although horizontal gene transfer and mutation of protein-coding sequences are well-recognized forms of pathogen evolution, the evolutionary significance of cis-regulatory mutations in creating phenotypic diversity through altered transcriptional outputs is not known. We show the significance of regulatory mutation for pathogen evolution by mapping and then rewiring a cis-regulatory module controlling a gene required for murine typhoid. Acquisition of a binding site for the Salmonella pathogenicity island-2 regulator, SsrB, enabled the srfN gene, ancestral to the Salmonella genus, to play a role in pathoadaptation of S. typhimurium to a host animal. We identified the evolved cis-regulatory module and quantified the fitness gain that this regulatory output accrues for the bacterium using competitive infections of host animals. Our findings highlight a mechanism of pathogen evolution involving regulatory mutation that is selected because of the fitness advantage the new regulatory output provides the incipient clones.

  6. Pathogenic adaptation of intracellular bacteria by rewiring a cis-regulatory input function

    PubMed Central

    Osborne, Suzanne E.; Walthers, Don; Tomljenovic, Ana M.; Mulder, David T.; Silphaduang, Uma; Duong, Nancy; Lowden, Michael J.; Wickham, Mark E.; Waller, Ross F.; Kenney, Linda J.; Coombes, Brian K.

    2009-01-01

    The acquisition of DNA by horizontal gene transfer enables bacteria to adapt to previously unexploited ecological niches. Although horizontal gene transfer and mutation of protein-coding sequences are well-recognized forms of pathogen evolution, the evolutionary significance of cis-regulatory mutations in creating phenotypic diversity through altered transcriptional outputs is not known. We show the significance of regulatory mutation for pathogen evolution by mapping and then rewiring a cis-regulatory module controlling a gene required for murine typhoid. Acquisition of a binding site for the Salmonella pathogenicity island-2 regulator, SsrB, enabled the srfN gene, ancestral to the Salmonella genus, to play a role in pathoadaptation of S. typhimurium to a host animal. We identified the evolved cis-regulatory module and quantified the fitness gain that this regulatory output accrues for the bacterium using competitive infections of host animals. Our findings highlight a mechanism of pathogen evolution involving regulatory mutation that is selected because of the fitness advantage the new regulatory output provides the incipient clones. PMID:19234126

  7. An RRM–ZnF RNA recognition module targets RBM10 to exonic sequences to promote exon exclusion

    PubMed Central

    Collins, Katherine M.; Kainov, Yaroslav A.; Christodolou, Evangelos; Ray, Debashish; Morris, Quaid; Hughes, Timothy; Taylor, Ian A.

    2017-01-01

    Abstract RBM10 is an RNA-binding protein that plays an essential role in development and is frequently mutated in the context of human disease. RBM10 recognizes a diverse set of RNA motifs in introns and exons and regulates alternative splicing. However, the molecular mechanisms underlying this seemingly relaxed sequence specificity are not understood and functional studies have focused on 3΄ intronic sites only. Here, we dissect the RNA code recognized by RBM10 and relate it to the splicing regulatory function of this protein. We show that a two-domain RRM1–ZnF unit recognizes a GGA-centered motif enriched in RBM10 exonic sites with high affinity and specificity and test that the interaction with these exonic sequences promotes exon skipping. Importantly, a second RRM domain (RRM2) of RBM10 recognizes a C-rich sequence, which explains its known interaction with the intronic 3΄ site of NUMB exon 9 contributing to regulation of the Notch pathway in cancer. Together, these findings explain RBM10's broad RNA specificity and suggest that RBM10 functions as a splicing regulator using two RNA-binding units with different specificities to promote exon skipping. PMID:28379442

  8. An RRM-ZnF RNA recognition module targets RBM10 to exonic sequences to promote exon exclusion.

    PubMed

    Collins, Katherine M; Kainov, Yaroslav A; Christodolou, Evangelos; Ray, Debashish; Morris, Quaid; Hughes, Timothy; Taylor, Ian A; Makeyev, Eugene V; Ramos, Andres

    2017-06-20

    RBM10 is an RNA-binding protein that plays an essential role in development and is frequently mutated in the context of human disease. RBM10 recognizes a diverse set of RNA motifs in introns and exons and regulates alternative splicing. However, the molecular mechanisms underlying this seemingly relaxed sequence specificity are not understood and functional studies have focused on 3΄ intronic sites only. Here, we dissect the RNA code recognized by RBM10 and relate it to the splicing regulatory function of this protein. We show that a two-domain RRM1-ZnF unit recognizes a GGA-centered motif enriched in RBM10 exonic sites with high affinity and specificity and test that the interaction with these exonic sequences promotes exon skipping. Importantly, a second RRM domain (RRM2) of RBM10 recognizes a C-rich sequence, which explains its known interaction with the intronic 3΄ site of NUMB exon 9 contributing to regulation of the Notch pathway in cancer. Together, these findings explain RBM10's broad RNA specificity and suggest that RBM10 functions as a splicing regulator using two RNA-binding units with different specificities to promote exon skipping. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Cracking the ANP32 whips: Important functions, unequal requirement, and hints at disease implications

    PubMed Central

    Reilly, Patrick T; Yu, Yun; Hamiche, Ali; Wang, Lishun

    2014-01-01

    The acidic (leucine-rich) nuclear phosphoprotein 32 kDa (ANP32) family is composed of small, evolutionarily conserved proteins characterized by an N-terminal leucine-rich repeat domain and a C-terminal low-complexity acidic region. The mammalian family members (ANP32A, ANP32B, and ANP32E) are ascribed physiologically diverse functions including chromatin modification and remodelling, apoptotic caspase modulation, protein phosphatase inhibition, as well as regulation of intracellular transport. In addition to reviewing the widespread literature on the topic, we present a concept of the ANP32s as having a whip-like structure. We also present hypotheses that ANP32C and other intronless sequences should not currently be considered bona fide family members, that their disparate necessity in development may be due to compensatory mechanisms, that their contrasting roles in cancer are likely context-dependent, along with an underlying hypothesis that ANP32s represent an important node of physiological regulation by virtue of their diverse biochemical activities. PMID:25156960

  10. Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors.

    PubMed

    Konermann, Silvana; Lotfy, Peter; Brideau, Nicholas J; Oki, Jennifer; Shokhirev, Maxim N; Hsu, Patrick D

    2018-04-19

    Class 2 CRISPR-Cas systems endow microbes with diverse mechanisms for adaptive immunity. Here, we analyzed prokaryotic genome and metagenome sequences to identify an uncharacterized family of RNA-guided, RNA-targeting CRISPR systems that we classify as type VI-D. Biochemical characterization and protein engineering of seven distinct orthologs generated a ribonuclease effector derived from Ruminococcus flavefaciens XPD3002 (CasRx) with robust activity in human cells. CasRx-mediated knockdown exhibits high efficiency and specificity relative to RNA interference across diverse endogenous transcripts. As one of the most compact single-effector Cas enzymes, CasRx can also be flexibly packaged into adeno-associated virus. We target virally encoded, catalytically inactive CasRx to cis elements of pre-mRNA to manipulate alternative splicing, alleviating dysregulated tau isoform ratios in a neuronal model of frontotemporal dementia. Our results present CasRx as a programmable RNA-binding module for efficient targeting of cellular RNA, enabling a general platform for transcriptome engineering and future therapeutic development. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Genotyping-by-sequencing (GBS) revealed molecular genetic diversity of Iranian wheat landraces and cultivars

    USDA-ARS?s Scientific Manuscript database

    Genetic diversity is an essential resource for breeders to improve new cultivars with desirable characteristics. Recently genotyping-by-sequencing (GBS), a next generation sequencing (NGS) based technology that can simplify complex genomes, has been used as a high-throughput and cost-effective molec...

  12. Transcriptome sequencing of diverse peanut (arachis) wild species and the cultivated species reveals a wealth of untapped genetic variability

    USDA-ARS?s Scientific Manuscript database

    Next generation sequencing technologies and improved bioinformatics methods have provided opportunities to study sequence variability in complex polyploid transcriptomes. In this study, we used a diverse panel of twenty-two Arachis accessions representing seven Arachis hypogaea market classes, A-, B...

  13. Harnessing Drug Resistance: Using ABC Transporter Proteins To Target Cancer Cells

    PubMed Central

    Leitner, Heather M.; Kachadourian, Remy; Day, Brian J.

    2007-01-01

    The ATP-binding cassette (ABC) class of proteins is one of the most functionally diverse transporter families found in biological systems. Although the abundance of ABC proteins varies between species, they are highly conserved in sequence and often demonstrate similar functions across prokaryotic and eukaryotic organisms. Beginning with a brief summary of the events leading to our present day knowledge of ABC transporters, the purpose of this review is to discuss the potential for utilizing ABC transporters as a means for cellular glutathione (GSH) modulation. GSH is one of the most abundant thiol antioxidants in cells. It is involved in cellular division, protein and DNA synthesis, maintenance of cellular redox status and xenobiotic metabolism. Cellular GSH levels are often altered in many disease states including cancer. Over the past two decades there has been considerable emphasis on methods to sensitize cancer cells to chemotherapeutics and ionization radiation therapy by GSH depletion. We contend that ABC transporters, particularly multi-drug resistant proteins (MRPs), may be used as therapeutic targets for applications aimed at modulation of GSH levels. This review will emphasize MRP-mediated modulation of intracellular GSH levels as a potential alternative and adjunctive approach for cancer therapy. PMID:17585883

  14. Metagenomic Insights of Microbial Feedbacks to Elevated CO2 (Invited)

    NASA Astrophysics Data System (ADS)

    Zhou, J.; Tu, Q.; Wu, L.; He, Z.; Deng, Y.; Van Nostrand, J. D.

    2013-12-01

    Understanding the responses of biological communities to elevated CO2 (eCO2) is a central issue in ecology and global change biology, but its impacts on the diversity, composition, structure, function, interactions and dynamics of soil microbial communities remain elusive. In this study, we first examined microbial responses to eCO2 among six FACE sites/ecosystems using a comprehensive functional gene microarray (GeoChip), and then focused on details of metagenome sequencing analysis in one particular site. GeoChip is a comprehensive functional gene array for examining the relationships between microbial community structure and ecosystem functioning and is a very powerful technology for biogeochemical, ecological and environmental studies. The current version of GeoChip (GeoChip 5.0) contains approximately 162,000 probes from 378,000 genes involved in C, N, S and P cycling, organic contaminant degradation, metal resistance, antibiotic resistance, stress responses, metal homeostasis, virulence, pigment production, bacterial phage-mediated lysis, soil beneficial microorganisms, and specific probes for viruses, protists, and fungi. Our experimental results revealed that both ecosystem and CO2 significantly (p < 0.05) affected the functional composition, structure and metabolic potential of soil microbial communities with the ecosystem having much greater influence (~47%) than CO2 (~1.3%) or CO2 and ecosystem (~4.1%). On one hand, microbial responses to eCO2 shared some common patterns among different ecosystems, such as increased abundances for key functional genes involved in nitrogen fixation, carbon fixation and degradation, and denitrification. On the other hand, more ecosystem-specific microbial responses were identified in each individual ecosystem. Such changes in the soil microbial community structure were closely correlated with geographic distance, soil NO3-N, NH4-N and C/N ratio. Further metagenome sequencing analysis of soil microbial communities in one particular site showed eCO2 altered the overall structure of soil microbial communities with ambient CO2 samples retaining a higher functional gene diversity than eCO2 samples. Also the taxonomic diversity of functional genes decreased at eCO2. Random matrix theory (RMT)-based network analysis showed that the identified networks under ambient and elevated CO2 were substantially different in terms of overall network topology, network composition, node overlap, module preservation, module-based higher order organization (meta-modules), topological roles of individual nodes, and network hubs, indicating that elevated CO2 dramatically altered the network interactions among different phylogenetic and functional groups/populations. In addition, the changes in network structure were significantly correlated with soil carbon and nitrogen content, indicating the potential importance of network interactions in ecosystem functioning. Taken together, this study indicates that eCO2 may decrease the overall functional and taxonomic diversity of soil microbial communities, but such effects appeared to be ecosystem-specific, which makes it more challenging for predicting global or regional terrestrial ecosystems responses to eCO2.

  15. Subgrouping Automata: automatic sequence subgrouping using phylogenetic tree-based optimum subgrouping algorithm.

    PubMed

    Seo, Joo-Hyun; Park, Jihyang; Kim, Eun-Mi; Kim, Juhan; Joo, Keehyoung; Lee, Jooyoung; Kim, Byung-Gee

    2014-02-01

    Sequence subgrouping for a given sequence set can enable various informative tasks such as the functional discrimination of sequence subsets and the functional inference of unknown sequences. Because an identity threshold for sequence subgrouping may vary according to the given sequence set, it is highly desirable to construct a robust subgrouping algorithm which automatically identifies an optimal identity threshold and generates subgroups for a given sequence set. To meet this end, an automatic sequence subgrouping method, named 'Subgrouping Automata' was constructed. Firstly, tree analysis module analyzes the structure of tree and calculates the all possible subgroups in each node. Sequence similarity analysis module calculates average sequence similarity for all subgroups in each node. Representative sequence generation module finds a representative sequence using profile analysis and self-scoring for each subgroup. For all nodes, average sequence similarities are calculated and 'Subgrouping Automata' searches a node showing statistically maximum sequence similarity increase using Student's t-value. A node showing the maximum t-value, which gives the most significant differences in average sequence similarity between two adjacent nodes, is determined as an optimum subgrouping node in the phylogenetic tree. Further analysis showed that the optimum subgrouping node from SA prevents under-subgrouping and over-subgrouping. Copyright © 2013. Published by Elsevier Ltd.

  16. Twenty-one genome sequences from Pseudomonas species and 19 genome sequences from diverse bacteria isolated from the rhizosphere and endosphere of Populus deltoides.

    PubMed

    Brown, Steven D; Utturkar, Sagar M; Klingeman, Dawn M; Johnson, Courtney M; Martin, Stanton L; Land, Miriam L; Lu, Tse-Yuan S; Schadt, Christopher W; Doktycz, Mitchel J; Pelletier, Dale A

    2012-11-01

    To aid in the investigation of the Populus deltoides microbiome, we generated draft genome sequences for 21 Pseudomonas strains and 19 other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium, and Variovorax were generated.

  17. Global sequence diversity of the lactate dehydrogenase gene in Plasmodium falciparum.

    PubMed

    Simpalipan, Phumin; Pattaradilokrat, Sittiporn; Harnyuttanakorn, Pongchai

    2018-01-09

    Antigen-detecting rapid diagnostic tests (RDTs) have been recommended by the World Health Organization for use in remote areas to improve malaria case management. Lactate dehydrogenase (LDH) of Plasmodium falciparum is one of the main parasite antigens employed by various commercial RDTs. It has been hypothesized that the poor detection of LDH-based RDTs is attributed in part to the sequence diversity of the gene. To test this, the present study aimed to investigate the genetic diversity of the P. falciparum ldh gene in Thailand and to construct the map of LDH sequence diversity in P. falciparum populations worldwide. The ldh gene was sequenced for 50 P. falciparum isolates in Thailand and compared with hundreds of sequences from P. falciparum populations worldwide. Several indices of molecular variation were calculated, including the proportion of polymorphic sites, the average nucleotide diversity index (π), and the haplotype diversity index (H). Tests of positive selection and neutrality tests were performed to determine signatures of natural selection on the gene. Mean genetic distance within and between species of Plasmodium ldh was analysed to infer evolutionary relationships. Nucleotide sequences of P. falciparum ldh could be classified into 9 alleles, encoding 5 isoforms of LDH. L1a was the most common allelic type and was distributed in P. falciparum populations worldwide. Plasmodium falciparum ldh sequences were highly conserved, with haplotype and nucleotide diversity values of 0.203 and 0.0004, respectively. The extremely low genetic diversity was maintained by purifying selection, likely due to functional constraints. Phylogenetic analysis inferred the close genetic relationship of P. falciparum to malaria parasites of great apes, rather than to other human malaria parasites. This study revealed the global genetic variation of the ldh gene in P. falciparum, providing knowledge for improving detection of LDH-based RDTs and supporting the candidacy of LDH as a therapeutic drug target.

  18. Environmental fluctuations and host skin bacteria shift survival advantage between frogs and their fungal pathogen.

    PubMed

    Longo, Ana V; Zamudio, Kelly R

    2017-02-01

    Fluctuating environments can modulate host-pathogen interactions by providing a temporary advantage to one of the interacting organisms. However, we know very little about how environmental conditions facilitate beneficial interactions between hosts and their microbial communities, resulting in individual persistence with a particular pathogen. Here, we experimentally infected Eleutherodactylus coqui frogs with the fungal pathogen Batrachochytrium dendrobatidis (Bd) under environmental conditions known to confer the survival advantage to the host during the warm-wet season, or alternatively to the pathogen during the cool-dry season. We used 16S rRNA amplicon sequencing to quantify changes in bacterial richness and phylogenetic diversity, and identified operational taxonomic units (OTUs) that became overrepresented or suppressed as a consequence of Bd infection. During the warm-wet season, frogs limited Bd infections, recruited putatively beneficial bacteria and returned to pre-infection levels of richness and phylogenetic diversity. In contrast, during the cool-dry season, Bd infections kept increasing through time, and bacterial diversity remained constant. Our findings confirm that infection outcome not only depends on abiotic factors, but also on biotic interactions between hosts and their associated bacterial communities.

  19. HIV-1 sequence variation between isolates from mother-infant transmission pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wike, C.M.; Daniels, M.R.; Furtado, M.

    1991-12-31

    To examine the sequence diversity of human immunodeficiency virus type 1 (HIV-1) between known transmission sets, sequences from the V3 and V4-V5 region of the env gene from 4 mother-infant pairs were analyzed. The mean interpatient sequence variation between isolates from linked mother-infant pairs was comparable to the sequence diversity found between isolates from other close contacts. The mean intrapatient variation was significantly less in the infants` isolates then the isolates from both their mothers and other characterized intrapatient sequence sets. In addition, a distinct and characteristic difference in the glycosylation pattern preceding the V3 loop was found between eachmore » linked transmission pair. These findings indicate that selection of specific genotypic variants, which may play a role in some direct transmission sets, and the duration of infection are important factors in the degree of diversity seen between the sequence sets.« less

  20. Origins of genes: "big bang" or continuous creation?

    PubMed Central

    Keese, P K; Gibbs, A

    1992-01-01

    Many protein families are common to all cellular organisms, indicating that many genes have ancient origins. Genetic variation is mostly attributed to processes such as mutation, duplication, and rearrangement of ancient modules. Thus it is widely assumed that much of present-day genetic diversity can be traced by common ancestry to a molecular "big bang." A rarely considered alternative is that proteins may arise continuously de novo. One mechanism of generating different coding sequences is by "overprinting," in which an existing nucleotide sequence is translated de novo in a different reading frame or from noncoding open reading frames. The clearest evidence for overprinting is provided when the original gene function is retained, as in overlapping genes. Analysis of their phylogenies indicates which are the original genes and which are their informationally novel partners. We report here the phylogenetic relationships of overlapping coding sequences from steroid-related receptor genes and from tymovirus, luteovirus, and lentivirus genomes. For each pair of overlapping coding sequences, one is confined to a single lineage, whereas the other is more widespread. This suggests that the phylogenetically restricted coding sequence arose only in the progenitor of that lineage by translating an out-of-frame sequence to yield the new polypeptide. The production of novel exons by alternative splicing in thyroid receptor and lentivirus genes suggests that introns can be a valuable evolutionary source for overprinting. New genes and their products may drive major evolutionary changes. PMID:1329098

  1. Whole-genome sequencing and analyses identify high genetic heterogeneity, diversity and endemicity of rotavirus genotype P[6] strains circulating in Africa.

    PubMed

    Nyaga, Martin M; Tan, Yi; Seheri, Mapaseka L; Halpin, Rebecca A; Akopov, Asmik; Stucker, Karla M; Fedorova, Nadia B; Shrivastava, Susmita; Duncan Steele, A; Mwenda, Jason M; Pickett, Brett E; Das, Suman R; Jeffrey Mphahlele, M

    2018-05-18

    Rotavirus A (RVA) exhibits a wide genotype diversity globally. Little is known about the genetic composition of genotype P[6] from Africa. This study investigated possible evolutionary mechanisms leading to genetic diversity of genotype P[6] VP4 sequences. Phylogenetic analyses on 167 P[6] VP4 full-length sequences were conducted, which included six porcine-origin sequences. Of the 167 sequences, 57 were newly acquired through whole genome sequencing as part of this study. The other 110 sequences were all publicly-available global P[6] VP4 full-length sequences downloaded from GenBank. The strength of association between the phenotypic features and the phylogeny was also determined. A number of reassortment and mixed infections of RVA genotype P[6] strains were observed in this study. Phylogenetic analyses demostrated the extensive genetic diversity that exists among human P[6] strains, porcine-like strains, their concomitant clades/subclades and estimated that P[6] VP4 gene has a higher substitution rate with the mean of 1.05E-3 substitutions/site/year. Further, the phylogenetic analyses indicated that genotype P[6] strains were endemic in Africa, characterised by an extensive genetic diversity and long-time local evolution of the viruses. This was also supported by phylogeographic clustering and G-genotype clustering of the P[6] strains when Bayesian Tip-association Significance testing (BaTS) was applied, clearly supporting that the viruses evolved locally in Africa instead of spatial mixing among different regions. Overall, the results demonstrated that multiple mechanisms such as reassortment events, various mutations and possibly interspecies transmission account for the enormous diversity of genotype P[6] strains in Africa. These findings highlight the need for continued global surveillance of rotavirus diversity. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Topological frustration in βα-repeat proteins: sequence diversity modulates the conserved folding mechanisms of α/β/α sandwich proteins

    PubMed Central

    Hills, Ronald D.; Kathuria, Sagar V.; Wallace, Louise A.; Day, Iain J.; Brooks, Charles L.; Matthews, C. Robert

    2010-01-01

    The thermodynamic hypothesis of Anfinsen postulates that structures and stabilities of globular proteins are determined by their amino acid sequences. Chain topology, however, is known to influence the folding reaction, in that motifs with a preponderance of local interactions typically fold more rapidly than those with a larger fraction of non-local interactions. Together, the topology and sequence can modulate the energy landscape and influence the rate at which the protein folds to the native conformation. To explore the relationship of sequence and topology in the folding of βα–repeat proteins, which are dominated by local interactions, a combined experimental and simulation analysis was performed on two members of the flavodoxin-like, α/β/α sandwich fold. Spo0F and the N-terminal receiver domain of NtrC (NT-NtrC) have similar topologies but low sequence identity, enabling a test of the effects of sequence on folding. Experimental results demonstrated that both response-regulator proteins fold via parallel channels through highly structured sub-millisecond intermediates before accessing their cis prolyl peptide bond-containing native conformations. Global analysis of the experimental results preferentially places these intermediates off the productive folding pathway. Sequence-sensitive Gō-model simulations conclude that frustration in the folding in Spo0F, corresponding to the appearance of the off-pathway intermediate, reflects competition for intra-subdomain van der Waals contacts between its N- and C-terminal subdomains. The extent of transient, premature structure appears to correlate with the number of isoleucine, leucine and valine (ILV) side-chains that form a large sequence-local cluster involving the central β-sheet and helices α2, α3 and α4. The failure to detect the off-pathway species in the simulations of NT-NtrC may reflect the reduced number of ILV side-chains in its corresponding hydrophobic cluster. The location of the hydrophobic clusters in the structure may also be related to the differing functional properties of these response regulators. Comparison with the results of previous experimental and simulation analyses on the homologous CheY argues that prematurely-folded unproductive intermediates are a common property of the βα-repeat motif. PMID:20226790

  3. Nonpareil 3: Fast Estimation of Metagenomic Coverage and Sequence Diversity.

    PubMed

    Rodriguez-R, Luis M; Gunturu, Santosh; Tiedje, James M; Cole, James R; Konstantinidis, Konstantinos T

    2018-01-01

    Estimations of microbial community diversity based on metagenomic data sets are affected, often to an unknown degree, by biases derived from insufficient coverage and reference database-dependent estimations of diversity. For instance, the completeness of reference databases cannot be generally estimated since it depends on the extant diversity sampled to date, which, with the exception of a few habitats such as the human gut, remains severely undersampled. Further, estimation of the degree of coverage of a microbial community by a metagenomic data set is prohibitively time-consuming for large data sets, and coverage values may not be directly comparable between data sets obtained with different sequencing technologies. Here, we extend Nonpareil, a database-independent tool for the estimation of coverage in metagenomic data sets, to a high-performance computing implementation that scales up to hundreds of cores and includes, in addition, a k -mer-based estimation as sensitive as the original alignment-based version but about three hundred times as fast. Further, we propose a metric of sequence diversity ( N d ) derived directly from Nonpareil curves that correlates well with alpha diversity assessed by traditional metrics. We use this metric in different experiments demonstrating the correlation with the Shannon index estimated on 16S rRNA gene profiles and show that N d additionally reveals seasonal patterns in marine samples that are not captured by the Shannon index and more precise rankings of the magnitude of diversity of microbial communities in different habitats. Therefore, the new version of Nonpareil, called Nonpareil 3, advances the toolbox for metagenomic analyses of microbiomes. IMPORTANCE Estimation of the coverage provided by a metagenomic data set, i.e., what fraction of the microbial community was sampled by DNA sequencing, represents an essential first step of every culture-independent genomic study that aims to robustly assess the sequence diversity present in a sample. However, estimation of coverage remains elusive because of several technical limitations associated with high computational requirements and limiting statistical approaches to quantify diversity. Here we described Nonpareil 3, a new bioinformatics algorithm that circumvents several of these limitations and thus can facilitate culture-independent studies in clinical or environmental settings, independent of the sequencing platform employed. In addition, we present a new metric of sequence diversity based on rarefied coverage and demonstrate its use in communities from diverse ecosystems.

  4. A single session of prefrontal cortex transcranial direct current stimulation does not modulate implicit task sequence learning and consolidation.

    PubMed

    Savic, Branislav; Müri, René; Meier, Beat

    Transcranial direct current stimulation (tDCS) is assumed to affect cortical excitability and dependent on the specific stimulation conditions either to increase or decrease learning. The purpose of this study was to modulate implicit task sequence learning with tDCS. As cortico-striatal loops are critically involved in implicit task sequence learning, tDCS was applied above the dorsolateral prefrontal cortex (DLPFC). In Experiment 1, anodal, cathodal, or sham tDCS was applied before the start of the sequence learning task. In Experiment 2, stimulation was applied during the sequence learning task. Consolidation of learning was assessed after 24 h. The results of both experiments showed that implicit task sequence learning occurred consistently but it was not modulated by different tDCS conditions. Similarly, consolidation measured after a 24 h-interval including sleep was also not affected by stimulation. These results indicate that a single session of DLPFC tDCS is not sufficient to modulate implicit task sequence learning. This study adds to the accumulating evidence that tDCS may not be as effective as originally thought. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Hyperexpansion of RNA Bacteriophage Diversity

    PubMed Central

    Krishnamurthy, Siddharth R.; Janowski, Andrew B.; Zhao, Guoyan; Barouch, Dan; Wang, David

    2016-01-01

    Bacteriophage modulation of microbial populations impacts critical processes in ocean, soil, and animal ecosystems. However, the role of bacteriophages with RNA genomes (RNA bacteriophages) in these processes is poorly understood, in part because of the limited number of known RNA bacteriophage species. Here, we identify partial genome sequences of 122 RNA bacteriophage phylotypes that are highly divergent from each other and from previously described RNA bacteriophages. These novel RNA bacteriophage sequences were present in samples collected from a range of ecological niches worldwide, including invertebrates and extreme microbial sediment, demonstrating that they are more widely distributed than previously recognized. Genomic analyses of these novel bacteriophages yielded multiple novel genome organizations. Furthermore, one RNA bacteriophage was detected in the transcriptome of a pure culture of Streptomyces avermitilis, suggesting for the first time that the known tropism of RNA bacteriophages may include gram-positive bacteria. Finally, reverse transcription PCR (RT-PCR)-based screening for two specific RNA bacteriophages in stool samples from a longitudinal cohort of macaques suggested that they are generally acutely present rather than persistent. PMID:27010970

  6. Small molecules enhance CRISPR genome editing in pluripotent stem cells.

    PubMed

    Yu, Chen; Liu, Yanxia; Ma, Tianhua; Liu, Kai; Xu, Shaohua; Zhang, Yu; Liu, Honglei; La Russa, Marie; Xie, Min; Ding, Sheng; Qi, Lei S

    2015-02-05

    The bacterial CRISPR-Cas9 system has emerged as an effective tool for sequence-specific gene knockout through non-homologous end joining (NHEJ), but it remains inefficient for precise editing of genome sequences. Here we develop a reporter-based screening approach for high-throughput identification of chemical compounds that can modulate precise genome editing through homology-directed repair (HDR). Using our screening method, we have identified small molecules that can enhance CRISPR-mediated HDR efficiency, 3-fold for large fragment insertions and 9-fold for point mutations. Interestingly, we have also observed that a small molecule that inhibits HDR can enhance frame shift insertion and deletion (indel) mutations mediated by NHEJ. The identified small molecules function robustly in diverse cell types with minimal toxicity. The use of small molecules provides a simple and effective strategy to enhance precise genome engineering applications and facilitates the study of DNA repair mechanisms in mammalian cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. SACCHARIS: an automated pipeline to streamline discovery of carbohydrate active enzyme activities within polyspecific families and de novo sequence datasets.

    PubMed

    Jones, Darryl R; Thomas, Dallas; Alger, Nicholas; Ghavidel, Ata; Inglis, G Douglas; Abbott, D Wade

    2018-01-01

    Deposition of new genetic sequences in online databases is expanding at an unprecedented rate. As a result, sequence identification continues to outpace functional characterization of carbohydrate active enzymes (CAZymes). In this paradigm, the discovery of enzymes with novel functions is often hindered by high volumes of uncharacterized sequences particularly when the enzyme sequence belongs to a family that exhibits diverse functional specificities (i.e., polyspecificity). Therefore, to direct sequence-based discovery and characterization of new enzyme activities we have developed an automated in silico pipeline entitled: Sequence Analysis and Clustering of CarboHydrate Active enzymes for Rapid Informed prediction of Specificity (SACCHARIS). This pipeline streamlines the selection of uncharacterized sequences for discovery of new CAZyme or CBM specificity from families currently maintained on the CAZy website or within user-defined datasets. SACCHARIS was used to generate a phylogenetic tree of a GH43, a CAZyme family with defined subfamily designations. This analysis confirmed that large datasets can be organized into sequence clusters of manageable sizes that possess related functions. Seeding this tree with a GH43 sequence from Bacteroides dorei DSM 17855 (BdGH43b, revealed it partitioned as a single sequence within the tree. This pattern was consistent with it possessing a unique enzyme activity for GH43 as BdGH43b is the first described α-glucanase described for this family. The capacity of SACCHARIS to extract and cluster characterized carbohydrate binding module sequences was demonstrated using family 6 CBMs (i.e., CBM6s). This CBM family displays a polyspecific ligand binding profile and contains many structurally determined members. Using SACCHARIS to identify a cluster of divergent sequences, a CBM6 sequence from a unique clade was demonstrated to bind yeast mannan, which represents the first description of an α-mannan binding CBM. Additionally, we have performed a CAZome analysis of an in-house sequenced bacterial genome and a comparative analysis of B. thetaiotaomicron VPI-5482 and B. thetaiotaomicron 7330, to demonstrate that SACCHARIS can generate "CAZome fingerprints", which differentiate between the saccharolytic potential of two related strains in silico. Establishing sequence-function and sequence-structure relationships in polyspecific CAZyme families are promising approaches for streamlining enzyme discovery. SACCHARIS facilitates this process by embedding CAZyme and CBM family trees generated from biochemically to structurally characterized sequences, with protein sequences that have unknown functions. In addition, these trees can be integrated with user-defined datasets (e.g., genomics, metagenomics, and transcriptomics) to inform experimental characterization of new CAZymes or CBMs not currently curated, and for researchers to compare differential sequence patterns between entire CAZomes. In this light, SACCHARIS provides an in silico tool that can be tailored for enzyme bioprospecting in datasets of increasing complexity and for diverse applications in glycobiotechnology.

  8. Microbial Diversity in Deep-sea Methane Seep Sediments Presented by SSU rRNA Gene Tag Sequencing

    PubMed Central

    Nunoura, Takuro; Takaki, Yoshihiro; Kazama, Hiromi; Hirai, Miho; Ashi, Juichiro; Imachi, Hiroyuki; Takai, Ken

    2012-01-01

    Microbial community structures in methane seep sediments in the Nankai Trough were analyzed by tag-sequencing analysis for the small subunit (SSU) rRNA gene using a newly developed primer set. The dominant members of Archaea were Deep-sea Hydrothermal Vent Euryarchaeotic Group 6 (DHVEG 6), Marine Group I (MGI) and Deep Sea Archaeal Group (DSAG), and those in Bacteria were Alpha-, Gamma-, Delta- and Epsilonproteobacteria, Chloroflexi, Bacteroidetes, Planctomycetes and Acidobacteria. Diversity and richness were examined by 8,709 and 7,690 tag-sequences from sediments at 5 and 25 cm below the seafloor (cmbsf), respectively. The estimated diversity and richness in the methane seep sediment are as high as those in soil and deep-sea hydrothermal environments, although the tag-sequences obtained in this study were not sufficient to show whole microbial diversity in this analysis. We also compared the diversity and richness of each taxon/division between the sediments from the two depths, and found that the diversity and richness of some taxa/divisions varied significantly along with the depth. PMID:22510646

  9. Genetic Diversity of Bacterial Communities and Gene Transfer Agents in Northern South China Sea

    PubMed Central

    Sun, Fu-Lin; Wang, You-Shao; Wu, Mei-Lin; Jiang, Zhao-Yu; Sun, Cui-Ci; Cheng, Hao

    2014-01-01

    Pyrosequencing of the 16S ribosomal RNA gene (rDNA) amplicons was performed to investigate the unique distribution of bacterial communities in northern South China Sea (nSCS) and evaluate community structure and spatial differences of bacterial diversity. Cyanobacteria, Proteobacteria, Actinobacteria, and Bacteroidetes constitute the majority of bacteria. The taxonomic description of bacterial communities revealed that more Chroococcales, SAR11 clade, Acidimicrobiales, Rhodobacterales, and Flavobacteriales are present in the nSCS waters than other bacterial groups. Rhodobacterales were less abundant in tropical water (nSCS) than in temperate and cold waters. Furthermore, the diversity of Rhodobacterales based on the gene transfer agent (GTA) major capsid gene (g5) was investigated. Four g5 gene clone libraries were constructed from samples representing different regions and yielded diverse sequences. Fourteen g5 clusters could be identified among 197 nSCS clones. These clusters were also related to known g5 sequences derived from genome-sequenced Rhodobacterales. The composition of g5 sequences in surface water varied with the g5 sequences in the sampling sites; this result indicated that the Rhodobacterales population could be highly diverse in nSCS. Phylogenetic tree analysis result indicated distinguishable diversity patterns among tropical (nSCS), temperate, and cold waters, thereby supporting the niche adaptation of specific Rhodobacterales members in unique environments. PMID:25364820

  10. Phylogenetic diversity and biogeography of the Mamiellophyceae lineage of eukaryotic phytoplankton across the oceans.

    PubMed

    Monier, Adam; Worden, Alexandra Z; Richards, Thomas A

    2016-08-01

    High-throughput diversity amplicon sequencing of marine microbial samples has revealed that members of the Mamiellophyceae lineage are successful phytoplankton in many oceanic habitats. Indeed, these eukaryotic green algae can dominate the picoplanktonic biomass, however, given the broad expanses of the oceans, their geographical distributions and the phylogenetic diversity of some groups remain poorly characterized. As these algae play a foundational role in marine food webs, it is crucial to assess their global distribution in order to better predict potential changes in abundance and community structure. To this end, we analyzed the V9-18S small subunit rDNA sequences deposited from the Tara Oceans expedition to evaluate the diversity and biogeography of these phytoplankton. Our results show that the phylogenetic composition of Mamiellophyceae communities is in part determined by geographical provenance, and do not appear to be influenced - in the samples recovered - by water depth, at least at the resolution possible with the V9-18S. Phylogenetic classification of Mamiellophyceae sequences revealed that the Dolichomastigales order encompasses more sequence diversity than other orders in this lineage. These results indicate that a large fraction of the Mamiellophyceae diversity has been hitherto overlooked, likely because of a combination of size fraction, sequencing and geographical limitations. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. New Insight Into the Diversity of SemiSWEET Sugar Transporters and the Homologs in Prokaryotes

    PubMed Central

    Jia, Baolei; Hao, Lujiang; Xuan, Yuan Hu; Jeon, Che Ok

    2018-01-01

    Sugars will eventually be exported transporters (SWEETs) and SemiSWEETs represent a family of sugar transporters in eukaryotes and prokaryotes, respectively. SWEETs contain seven transmembrane helices (TMHs), while SemiSWEETs contain three. The functions of SemiSWEETs are less studied. In this perspective article, we analyzed the diversity and conservation of SemiSWEETs and further proposed the possible functions. 1,922 SemiSWEET homologs were retrieved from the UniProt database, which is not proportional to the sequenced prokaryotic genomes. However, these proteins are very diverse in sequences and can be classified into 19 clusters when >50% sequence identity is required. Moreover, a gene context analysis indicated that several SemiSWEETs are located in the operons that are related to diverse carbohydrate metabolism. Several proteins with seven TMHs can be found in bacteria, and sequence alignment suggested that these proteins in bacteria may be formed by the duplication and fusion. Multiple sequence alignments showed that the amino acids for sugar translocation are still conserved and coevolved, although the sequences show diversity. Among them, the functions of a few amino acids are still not clear. These findings highlight the challenges that exist in SemiSWEETs and provide future researchers the foundation to explore these uncharted areas. PMID:29872447

  12. New Insight Into the Diversity of SemiSWEET Sugar Transporters and the Homologs in Prokaryotes.

    PubMed

    Jia, Baolei; Hao, Lujiang; Xuan, Yuan Hu; Jeon, Che Ok

    2018-01-01

    Sugars will eventually be exported transporters (SWEETs) and SemiSWEETs represent a family of sugar transporters in eukaryotes and prokaryotes, respectively. SWEETs contain seven transmembrane helices (TMHs), while SemiSWEETs contain three. The functions of SemiSWEETs are less studied. In this perspective article, we analyzed the diversity and conservation of SemiSWEETs and further proposed the possible functions. 1,922 SemiSWEET homologs were retrieved from the UniProt database, which is not proportional to the sequenced prokaryotic genomes. However, these proteins are very diverse in sequences and can be classified into 19 clusters when >50% sequence identity is required. Moreover, a gene context analysis indicated that several SemiSWEETs are located in the operons that are related to diverse carbohydrate metabolism. Several proteins with seven TMHs can be found in bacteria, and sequence alignment suggested that these proteins in bacteria may be formed by the duplication and fusion. Multiple sequence alignments showed that the amino acids for sugar translocation are still conserved and coevolved, although the sequences show diversity. Among them, the functions of a few amino acids are still not clear. These findings highlight the challenges that exist in SemiSWEETs and provide future researchers the foundation to explore these uncharted areas.

  13. Comparing Sanger sequencing and high-throughput metabarcoding for inferring photobiont diversity in lichens.

    PubMed

    Paul, Fiona; Otte, Jürgen; Schmitt, Imke; Dal Grande, Francesco

    2018-06-05

    The implementation of HTS (high-throughput sequencing) approaches is rapidly changing our understanding of the lichen symbiosis, by uncovering high bacterial and fungal diversity, which is often host-specific. Recently, HTS methods revealed the presence of multiple photobionts inside a single thallus in several lichen species. This differs from Sanger technology, which typically yields a single, unambiguous algal sequence per individual. Here we compared HTS and Sanger methods for estimating the diversity of green algal symbionts within lichen thalli using 240 lichen individuals belonging to two species of lichen-forming fungi. According to HTS data, Sanger technology consistently yielded the most abundant photobiont sequence in the sample. However, if the second most abundant photobiont exceeded 30% of the total HTS reads in a sample, Sanger sequencing generally failed. Our results suggest that most lichen individuals in the two analyzed species, Lasallia hispanica and L. pustulata, indeed contain a single, predominant green algal photobiont. We conclude that Sanger sequencing is a valid approach to detect the dominant photobionts in lichen individuals and populations. We discuss which research areas in lichen ecology and evolution will continue to benefit from Sanger sequencing, and which areas will profit from HTS approaches to assessing symbiont diversity.

  14. Identifying gene coexpression networks underlying the dynamic regulation of wood-forming tissues in Populus under diverse environmental conditions.

    PubMed

    Zinkgraf, Matthew; Liu, Lijun; Groover, Andrew; Filkov, Vladimir

    2017-06-01

    Trees modify wood formation through integration of environmental and developmental signals in complex but poorly defined transcriptional networks, allowing trees to produce woody tissues appropriate to diverse environmental conditions. In order to identify relationships among genes expressed during wood formation, we integrated data from new and publically available datasets in Populus. These datasets were generated from woody tissue and include transcriptome profiling, transcription factor binding, DNA accessibility and genome-wide association mapping experiments. Coexpression modules were calculated, each of which contains genes showing similar expression patterns across experimental conditions, genotypes and treatments. Conserved gene coexpression modules (four modules totaling 8398 genes) were identified that were highly preserved across diverse environmental conditions and genetic backgrounds. Functional annotations as well as correlations with specific experimental treatments associated individual conserved modules with distinct biological processes underlying wood formation, such as cell-wall biosynthesis, meristem development and epigenetic pathways. Module genes were also enriched for DNase I hypersensitivity footprints and binding from four transcription factors associated with wood formation. The conserved modules are excellent candidates for modeling core developmental pathways common to wood formation in diverse environments and genotypes, and serve as testbeds for hypothesis generation and testing for future studies. No claim to original US government works. New Phytologist © 2017 New Phytologist Trust.

  15. Electronic coupling through natural amino acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berstis, Laura; Beckham, Gregg T., E-mail: michael.crowley@nrel.gov, E-mail: gregg.beckham@nrel.gov; Crowley, Michael F., E-mail: michael.crowley@nrel.gov, E-mail: gregg.beckham@nrel.gov

    2015-12-14

    Myriad scientific domains concern themselves with biological electron transfer (ET) events that span across vast scales of rate and efficiency through a remarkably fine-tuned integration of amino acid (AA) sequences, electronic structure, dynamics, and environment interactions. Within this intricate scheme, many questions persist as to how proteins modulate electron-tunneling properties. To help elucidate these principles, we develop a model set of peptides representing the common α-helix and β-strand motifs including all natural AAs within implicit protein-environment solvation. Using an effective Hamiltonian strategy with density functional theory, we characterize the electronic coupling through these peptides, furthermore considering side-chain dynamics. For bothmore » motifs, predictions consistently show that backbone-mediated electronic coupling is distinctly sensitive to AA type (aliphatic, polar, aromatic, negatively charged and positively charged), and to side-chain orientation. The unique properties of these residues may be employed to design activated, deactivated, or switch-like superexchange pathways. Electronic structure calculations and Green’s function analyses indicate that localized shifts in the electron density along the peptide play a role in modulating these pathways, and further substantiate the experimentally observed behavior of proline residues as superbridges. The distinct sensitivities of tunneling pathways to sequence and conformation revealed in this electronic coupling database help improve our fundamental understanding of the broad diversity of ET reactivity and provide guiding principles for peptide design.« less

  16. Potential-Induced Degradation-Delamination Mode in Crystalline Silicon Modules: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hacke, Peter L; Kempe, Michael D; Wohlgemuth, John

    A test sequence producing potential-induced degradation-delamination (PID-d) in crystalline silicon modules has been tested and found comparable under visual inspection to cell/encapsulant delamination seen in some fielded modules. Four commercial modules were put through this sequence, 85 degrees C, 85%, 1000 h damp heat, followed by an intensive PID stress sequence of 72 degrees C, 95% RH, and -1000 V, with the module face grounded using a metal foil. The 60 cell c-Si modules exhibiting the highest current transfer (4.4 center dot 10-4 A) exhibited PID-d at the first inspection after 156 h of PID stress. Effects promoting PID-d aremore » reduced adhesion caused by damp heat, sodium migration further reducing adhesion to the cells, and gaseous products of electrochemical reactions driven by the applied system voltage. A new work item proposal for an IEC test standard to evaluate for PID-d is anticipated.« less

  17. RM-SORN: a reward-modulated self-organizing recurrent neural network.

    PubMed

    Aswolinskiy, Witali; Pipa, Gordon

    2015-01-01

    Neural plasticity plays an important role in learning and memory. Reward-modulation of plasticity offers an explanation for the ability of the brain to adapt its neural activity to achieve a rewarded goal. Here, we define a neural network model that learns through the interaction of Intrinsic Plasticity (IP) and reward-modulated Spike-Timing-Dependent Plasticity (STDP). IP enables the network to explore possible output sequences and STDP, modulated by reward, reinforces the creation of the rewarded output sequences. The model is tested on tasks for prediction, recall, non-linear computation, pattern recognition, and sequence generation. It achieves performance comparable to networks trained with supervised learning, while using simple, biologically motivated plasticity rules, and rewarding strategies. The results confirm the importance of investigating the interaction of several plasticity rules in the context of reward-modulated learning and whether reward-modulated self-organization can explain the amazing capabilities of the brain.

  18. Galectin-3 in angiogenesis and metastasis

    PubMed Central

    Funasaka, Tatsuyoshi; Raz, Avraham; Nangia-Makker, Pratima

    2014-01-01

    Galectin-3 is a member of the family of β-galactoside-binding lectins characterized by evolutionarily conserved sequences defined by structural similarities in their carbohydrate-recognition domains. Galectin-3 is a unique, chimeric protein consisting of three distinct structural motifs: (i) a short NH2 terminal domain containing a serine phosphorylation site; (ii) a repetitive proline-rich collagen-α-like sequence cleavable by matrix metalloproteases; and (iii) a globular COOH-terminal domain containing a carbohydrate-binding motif and an NWGR anti-death motif. It is ubiquitously expressed and has diverse biological functions depending on its subcellular localization. Galectin-3 is mainly found in the cytoplasm, also seen in the nucleus and can be secreted by non-classical, secretory pathways. In general, secreted galectin-3 mediates cell migration, cell adhesion and cell–cell interactions through the binding with high affinity to galactose-containing glycoproteins on the cell surface. Cytoplasmic galectin-3 exhibits anti-apoptotic activity and regulates several signal transduction pathways, whereas nuclear galectin-3 has been associated with pre-mRNA splicing and gene expression. Its unique chimeric structure enables it to interact with a plethora of ligands and modulate diverse functions such as cell growth, adhesion, migration, invasion, angiogenesis, immune function, apoptosis and endocytosis emphasizing its significance in the process of tumor progression. In this review, we have focused on the role of galectin-3 in tumor metastasis with special emphasis on angiogenesis. PMID:25138305

  19. Integrating and mining the chromatin landscape of cell-type specificity using self-organizing maps.

    PubMed

    Mortazavi, Ali; Pepke, Shirley; Jansen, Camden; Marinov, Georgi K; Ernst, Jason; Kellis, Manolis; Hardison, Ross C; Myers, Richard M; Wold, Barbara J

    2013-12-01

    We tested whether self-organizing maps (SOMs) could be used to effectively integrate, visualize, and mine diverse genomics data types, including complex chromatin signatures. A fine-grained SOM was trained on 72 ChIP-seq histone modifications and DNase-seq data sets from six biologically diverse cell lines studied by The ENCODE Project Consortium. We mined the resulting SOM to identify chromatin signatures related to sequence-specific transcription factor occupancy, sequence motif enrichment, and biological functions. To highlight clusters enriched for specific functions such as transcriptional promoters or enhancers, we overlaid onto the map additional data sets not used during training, such as ChIP-seq, RNA-seq, CAGE, and information on cis-acting regulatory modules from the literature. We used the SOM to parse known transcriptional enhancers according to the cell-type-specific chromatin signature, and we further corroborated this pattern on the map by EP300 (also known as p300) occupancy. New candidate cell-type-specific enhancers were identified for multiple ENCODE cell types in this way, along with new candidates for ubiquitous enhancer activity. An interactive web interface was developed to allow users to visualize and custom-mine the ENCODE SOM. We conclude that large SOMs trained on chromatin data from multiple cell types provide a powerful way to identify complex relationships in genomic data at user-selected levels of granularity.

  20. Integrating and mining the chromatin landscape of cell-type specificity using self-organizing maps

    PubMed Central

    Mortazavi, Ali; Pepke, Shirley; Jansen, Camden; Marinov, Georgi K.; Ernst, Jason; Kellis, Manolis; Hardison, Ross C.; Myers, Richard M.; Wold, Barbara J.

    2013-01-01

    We tested whether self-organizing maps (SOMs) could be used to effectively integrate, visualize, and mine diverse genomics data types, including complex chromatin signatures. A fine-grained SOM was trained on 72 ChIP-seq histone modifications and DNase-seq data sets from six biologically diverse cell lines studied by The ENCODE Project Consortium. We mined the resulting SOM to identify chromatin signatures related to sequence-specific transcription factor occupancy, sequence motif enrichment, and biological functions. To highlight clusters enriched for specific functions such as transcriptional promoters or enhancers, we overlaid onto the map additional data sets not used during training, such as ChIP-seq, RNA-seq, CAGE, and information on cis-acting regulatory modules from the literature. We used the SOM to parse known transcriptional enhancers according to the cell-type-specific chromatin signature, and we further corroborated this pattern on the map by EP300 (also known as p300) occupancy. New candidate cell-type-specific enhancers were identified for multiple ENCODE cell types in this way, along with new candidates for ubiquitous enhancer activity. An interactive web interface was developed to allow users to visualize and custom-mine the ENCODE SOM. We conclude that large SOMs trained on chromatin data from multiple cell types provide a powerful way to identify complex relationships in genomic data at user-selected levels of granularity. PMID:24170599

  1. Twenty-One Genome Sequences from Pseudomonas Species and 19 Genome Sequences from Diverse Bacteria Isolated from the Rhizosphere and Endosphere of Populus deltoides

    PubMed Central

    Utturkar, Sagar M.; Klingeman, Dawn M.; Johnson, Courtney M.; Martin, Stanton L.; Land, Miriam L.; Lu, Tse-Yuan S.; Schadt, Christopher W.; Doktycz, Mitchel J.

    2012-01-01

    To aid in the investigation of the Populus deltoides microbiome, we generated draft genome sequences for 21 Pseudomonas strains and 19 other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium, and Variovorax were generated. PMID:23045501

  2. Twenty-One Genome Sequences from Pseudomonas Species and 19 Genome Sequences from Diverse Bacteria Isolated from the Rhizosphere and Endosphere of Populus deltoides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Steven D; Utturkar, Sagar M; Klingeman, Dawn Marie

    To aid in the investigation of the Populus deltoides microbiome we generated draft genome sequences for twenty one Pseudomonas and twenty one other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Burkholderia, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium and Variovorax were generated.

  3. Genetic diversity of Clostridium perfringens type A isolates from animals, food poisoning outbreaks and sludge

    PubMed Central

    Johansson, Anders; Aspan, Anna; Bagge, Elisabeth; Båverud, Viveca; Engström, Björn E; Johansson, Karl-Erik

    2006-01-01

    Background Clostridium perfringens, a serious pathogen, causes enteric diseases in domestic animals and food poisoning in humans. The epidemiological relationship between C. perfringens isolates from the same source has previously been investigated chiefly by pulsed-field gel electrophoresis (PFGE). In this study the genetic diversity of C. perfringens isolated from various animals, from food poisoning outbreaks and from sludge was investigated. Results We used PFGE to examine the genetic diversity of 95 C. perfringens type A isolates from eight different sources. The isolates were also examined for the presence of the beta2 toxin gene (cpb2) and the enterotoxin gene (cpe). The cpb2 gene from the 28 cpb2-positive isolates was also partially sequenced (519 bp, corresponding to positions 188 to 706 in the consensus cpb2 sequence). The results of PFGE revealed a wide genetic diversity among the C. perfringens type A isolates. The genetic relatedness of the isolates ranged from 58 to 100% and 56 distinct PFGE types were identified. Almost all clusters with similar patterns comprised isolates with a known epidemiological correlation. Most of the isolates from pig, horse and sheep carried the cpb2 gene. All isolates originating from food poisoning outbreaks carried the cpe gene and three of these also carried cpb2. Two evolutionary different populations were identified by sequence analysis of the partially sequenced cpb2 genes from our study and cpb2 sequences previously deposited in GenBank. Conclusion As revealed by PFGE, there was a wide genetic diversity among C. perfringens isolates from different sources. Epidemiologically related isolates showed a high genetic similarity, as expected, while isolates with no obvious epidemiological relationship expressed a lesser degree of genetic similarity. The wide diversity revealed by PFGE was not reflected in the 16S rRNA sequences, which had a considerable degree of sequence similarity. Sequence comparison of the partially sequenced cpb2 gene revealed two genetically different populations. This is to our knowledge the first study in which the genetic diversity of C. perfringens isolates both from different animals species, from food poisoning outbreaks and from sludge has been investigated. PMID:16737528

  4. Low DNA Sequence Diversity of the Intergenic Spacer 1 Region in the Human Skin Commensal Fungi Malassezia sympodialis and M. dermatis Isolated from Patients with Malassezia-Associated Skin Diseases and Healthy Subjects.

    PubMed

    Cho, Otomi; Sugita, Takashi

    2016-12-01

    As DNA sequences of the intergenic spacer (IGS) region in the rRNA gene show remarkable intraspecies diversity compared with the small subunit, large subunit, and internal transcribed spacer region, the IGS region has been used as an epidemiological tool in studies on Malassezia globosa and M. restricta, which are responsible for the exacerbation of atopic dermatitis (AD) and seborrheic dermatitis (SD). However, the IGS regions of M. sympodialis and M. dermatis obtained from the skin of patients with AD and SD, as well as healthy subjects, lacked sequence diversity. Of the 105 M. sympodialis strains and the 40 M. dermatis strains, the sequences of 103 (98.1 %) and 39 (97.5 %), respectively, were identical. Thus, given the lack of intraspecies diversity in the IGS regions of M. sympodialis and M. dermatis, studies of the diversity of these species should be performed using appropriate genes and not the IGS.

  5. Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR.

    PubMed

    Bulgari, Daniela; Casati, Paola; Brusetti, Lorenzo; Quaglino, Fabio; Brasca, Milena; Daffonchio, Daniele; Bianco, Piero Attilio

    2009-08-01

    Diversity of bacterial endophytes associated with grapevine leaf tissues was analyzed by cultivation and cultivation-independent methods. In order to identify bacterial endophytes directly from metagenome, a protocol for bacteria enrichment and DNA extraction was optimized. Sequence analysis of 16S rRNA gene libraries underscored five diverse Operational Taxonomic Units (OTUs), showing best sequence matches with gamma-Proteobacteria, family Enterobacteriaceae, with a dominance of the genus Pantoea. Bacteria isolation through cultivation revealed the presence of six OTUs, showing best sequence matches with Actinobacteria, genus Curtobacterium, and with Firmicutes genera Bacillus and Enterococcus. Length Heterogeneity-PCR (LH-PCR) electrophoretic peaks from single bacterial clones were used to setup a database representing the bacterial endophytes identified in association with grapevine tissues. Analysis of healthy and phytoplasma-infected grapevine plants showed that LH-PCR could be a useful complementary tool for examining the diversity of bacterial endophytes especially for diversity survey on a large number of samples.

  6. Advances in Sequencing Technologies for Understanding Hereditary Ataxias A Review

    PubMed Central

    Didonna, Alessandro; Opal, Puneet

    2017-01-01

    IMPORTANCE The hereditary progressive ataxias comprise genetic disorders that affect the cerebellum and its connections. Even though these diseases historically have been among the first familial disorders of the nervous system to have been recognized, progress in the field has been challenging because of the large number of ataxic genetic syndromes, many of which overlap in their clinical features. OBSERVATIONS We have taken a historical approach to demonstrate how our knowledge of the genetic basis of ataxic disorders has come about by novel techniques in gene sequencing and bioinformatics. Furthermore, we show that the genes implicated in ataxia, although seemingly unrelated, appear to encode for proteins that interact with each other in connected functional modules. CONCLUSIONS AND RELEVANCE It has taken approximately 150 years for neurologists to comprehensively unravel the genetic diversity of ataxias. There has been an explosion in our understanding of their molecular basis with the arrival of next-generation sequencing and computer-driven bioinformatics; this in turn has made hereditary ataxias an especially well-developed model group of diseases for gaining insights at a systems level into genes and cellular pathways that result in neurodegeneration. PMID:27749953

  7. ssrA (tmRNA) Plays a Role in Salmonella enterica Serovar Typhimurium Pathogenesis

    PubMed Central

    Julio, Steven M.; Heithoff, Douglas M.; Mahan, Michael J.

    2000-01-01

    Escherichia coli ssrA encodes a small stable RNA molecule, tmRNA, that has many diverse functions, including tagging abnormal proteins for degradation, supporting phage growth, and modulating the activity of DNA binding proteins. Here we show that ssrA plays a role in Salmonella enterica serovar Typhimurium pathogenesis and in the expression of several genes known to be induced during infection. Moreover, the phage-like attachment site, attL, encoded within ssrA, serves as the site of integration of a region of Salmonella-specific sequence; adjacent to the 5′ end of ssrA is another region of Salmonella-specific sequence with extensive homology to predicted proteins encoded within the unlinked Salmonella pathogenicity island SPI4. S. enterica serovar Typhimurium ssrA mutants fail to support the growth of phage P22 and are delayed in their ability to form viable phage particles following induction of a phage P22 lysogen. These data indicate that ssrA plays a role in the pathogenesis of Salmonella, serves as an attachment site for Salmonella-specific sequences, and is required for the growth of phage P22. PMID:10692360

  8. Fused Traditional and Geometric Morphometrics Demonstrate Pinniped Whisker Diversity

    PubMed Central

    Ginter, Carly C.; DeWitt, Thomas J.; Fish, Frank E.; Marshall, Christopher D.

    2012-01-01

    Vibrissae (whiskers) are important components of the mammalian tactile sensory system, and primarily function as detectors of vibrotactile information from the environment. Pinnipeds possess the largest vibrissae among mammals and their vibrissal hair shafts demonstrate a diversity of shapes. The vibrissae of most phocid seals exhibit a beaded morphology with repeating sequences of crests and troughs along their length. However, there are few detailed analyses of pinniped vibrissal morphology, and these are limited to a few species. Therefore, we comparatively characterized differences in vibrissal hair shaft morphologies among phocid species with a beaded profile, phocid species with a smooth profile, and otariids with a smooth profile using traditional and geometric morphometric methods. Traditional morphometric measurements (peak-to-peak distance, crest width, trough width and total length) were collected using digital photographs. Elliptic Fourier analysis (geometric morphometrics) was used to quantify the outlines of whole vibrissae. The traditional and geometric morphometric datasets were subsequently combined by mathematically scaling each to true rank, followed by a single eigendecomposition. Quadratic discriminant function analysis demonstrated that 79.3, 97.8 and 100% of individuals could be correctly classified to their species based on vibrissal shape variables in the traditional, geometric and combined morphometric analyses, respectively. Phocids with beaded vibrissae, phocids with smooth vibrissae, and otariids each occupied distinct morphospace in the geometric morphometric and combined data analyses. Otariids split into two groups in the geometric morphometric analysis and gray seals appeared intermediate between beaded- and smooth-whiskered species in the traditional and combined analyses. Vibrissal hair shafts modulate the transduction of environmental stimuli to the mechanoreceptors in the follicle-sinus complex (F-SC), which results in vibrotactile reception, but it is currently unclear how the diversity of shapes affects environmental signal modulation. PMID:22509310

  9. Sequence-Based Discovery Demonstrates That Fixed Light Chain Human Transgenic Rats Produce a Diverse Repertoire of Antigen-Specific Antibodies.

    PubMed

    Harris, Katherine E; Aldred, Shelley Force; Davison, Laura M; Ogana, Heather Anne N; Boudreau, Andrew; Brüggemann, Marianne; Osborn, Michael; Ma, Biao; Buelow, Benjamin; Clarke, Starlynn C; Dang, Kevin H; Iyer, Suhasini; Jorgensen, Brett; Pham, Duy T; Pratap, Payal P; Rangaswamy, Udaya S; Schellenberger, Ute; van Schooten, Wim C; Ugamraj, Harshad S; Vafa, Omid; Buelow, Roland; Trinklein, Nathan D

    2018-01-01

    We created a novel transgenic rat that expresses human antibodies comprising a diverse repertoire of heavy chains with a single common rearranged kappa light chain (IgKV3-15-JK1). This fixed light chain animal, called OmniFlic, presents a unique system for human therapeutic antibody discovery and a model to study heavy chain repertoire diversity in the context of a constant light chain. The purpose of this study was to analyze heavy chain variable gene usage, clonotype diversity, and to describe the sequence characteristics of antigen-specific monoclonal antibodies (mAbs) isolated from immunized OmniFlic animals. Using next-generation sequencing antibody repertoire analysis, we measured heavy chain variable gene usage and the diversity of clonotypes present in the lymph node germinal centers of 75 OmniFlic rats immunized with 9 different protein antigens. Furthermore, we expressed 2,560 unique heavy chain sequences sampled from a diverse set of clonotypes as fixed light chain antibody proteins and measured their binding to antigen by ELISA. Finally, we measured patterns and overall levels of somatic hypermutation in the full B-cell repertoire and in the 2,560 mAbs tested for binding. The results demonstrate that OmniFlic animals produce an abundance of antigen-specific antibodies with heavy chain clonotype diversity that is similar to what has been described with unrestricted light chain use in mammals. In addition, we show that sequence-based discovery is a highly effective and efficient way to identify a large number of diverse monoclonal antibodies to a protein target of interest.

  10. Switch wear leveling

    DOEpatents

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2015-09-01

    An apparatus for switch wear leveling includes a switching module that controls switching for two or more pairs of switches in a switching power converter. The switching module controls switches based on a duty cycle control technique and closes and opens each switch in a switching sequence. The pairs of switches connect to a positive and negative terminal of a DC voltage source. For a first switching sequence a first switch of a pair of switches has a higher switching power loss than a second switch of the pair of switches. The apparatus includes a switch rotation module that changes the switching sequence of the two or more pairs of switches from the first switching sequence to a second switching sequence. The second switch of a pair of switches has a higher switching power loss than the first switch of the pair of switches during the second switching sequence.

  11. Sequence Diversity Diagram for comparative analysis of multiple sequence alignments.

    PubMed

    Sakai, Ryo; Aerts, Jan

    2014-01-01

    The sequence logo is a graphical representation of a set of aligned sequences, commonly used to depict conservation of amino acid or nucleotide sequences. Although it effectively communicates the amount of information present at every position, this visual representation falls short when the domain task is to compare between two or more sets of aligned sequences. We present a new visual presentation called a Sequence Diversity Diagram and validate our design choices with a case study. Our software was developed using the open-source program called Processing. It loads multiple sequence alignment FASTA files and a configuration file, which can be modified as needed to change the visualization. The redesigned figure improves on the visual comparison of two or more sets, and it additionally encodes information on sequential position conservation. In our case study of the adenylate kinase lid domain, the Sequence Diversity Diagram reveals unexpected patterns and new insights, for example the identification of subgroups within the protein subfamily. Our future work will integrate this visual encoding into interactive visualization tools to support higher level data exploration tasks.

  12. Bacterial Diversity and Community Structure of Supragingival Plaques in Adults with Dental Health or Caries Revealed by 16S Pyrosequencing

    PubMed Central

    Xiao, Cuicui; Ran, Shujun; Huang, Zhengwei; Liang, Jingping

    2016-01-01

    Dental caries has a polymicrobial etiology within the complex oral microbial ecosystem. However, the overall diversity and structure of supragingival plaque microbiota in adult dental health and caries are not well understood. Here, 160 supragingival plaque samples from patients with dental health and different severities of dental caries were collected for bacterial genomic DNA extraction, pyrosequencing by amplification of the 16S rDNA V1–V3 hypervariable regions, and bioinformatic analysis. High-quality sequences (2,261,700) clustered into 10,365 operational taxonomic units (OTUs; 97% identity), representing 453 independent species belonging to 122 genera, 66 families, 34 orders, 21 classes, and 12 phyla. All groups shared 7522 OTUs, indicating the presence of a core plaque microbiome. α diversity analysis showed that the microbial diversity in healthy plaques exceeded that of dental caries, with the diversity decreasing gradually with the severity of caries. The dominant phyla of plaque microbiota included Bacteroidetes, Actinobacteria, Proteobacteria, Firmicutes, Fusobacteria, and TM7. The dominant genera included Capnocytophaga, Prevotella, Actinomyces, Corynebacterium, Neisseria, Streptococcus, Rothia, and Leptotrichia. β diversity analysis showed that the plaque microbial community structure was similar in all groups. Using LEfSe analysis, 25 differentially abundant taxa were identified as potential biomarkers. Key genera (27) that potentially contributed to the differential distributions of plaque microbiota between groups were identified by PLS-DA analysis. Finally, co-occurrence network analysis and function predictions were performed. Treatment strategies directed toward modulating microbial interactions and their functional output should be further developed. PMID:27499752

  13. Diversity of immunoglobulin lambda light chain gene usage over developmental stages in the horse.

    PubMed

    Tallmadge, Rebecca L; Tseng, Chia T; Felippe, M Julia B

    2014-10-01

    To further studies of neonatal immune responses to pathogens and vaccination, we investigated the dynamics of B lymphocyte development and immunoglobulin (Ig) gene diversity. Previously we demonstrated that equine fetal Ig VDJ sequences exhibit combinatorial and junctional diversity levels comparable to those of adult Ig VDJ sequences. Herein, RACE clones from fetal, neonatal, foal, and adult lymphoid tissue were assessed for Ig lambda light chain combinatorial, junctional, and sequence diversity. Remarkably, more lambda variable genes (IGLV) were used during fetal life than later stages and IGLV gene usage differed significantly with time, in contrast to the Ig heavy chain. Junctional diversity measured by CDR3L length was constant over time. Comparison of Ig lambda transcripts to germline revealed significant increases in nucleotide diversity over time, even during fetal life. These results suggest that the Ig lambda light chain provides an additional dimension of diversity to the equine Ig repertoire. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Improved serial analysis of V1 ribosomal sequence tags (SARST-V1) provides a rapid, comprehensive, sequence-based characterization of bacterial diversity and community composition.

    PubMed

    Yu, Zhongtang; Yu, Marie; Morrison, Mark

    2006-04-01

    Serial analysis of ribosomal sequence tags (SARST) is a recently developed technology that can generate large 16S rRNA gene (rrs) sequence data sets from microbiomes, but there are numerous enzymatic and purification steps required to construct the ribosomal sequence tag (RST) clone libraries. We report here an improved SARST method, which still targets the V1 hypervariable region of rrs genes, but reduces the number of enzymes, oligonucleotides, reagents, and technical steps needed to produce the RST clone libraries. The new method, hereafter referred to as SARST-V1, was used to examine the eubacterial diversity present in community DNA recovered from the microbiome resident in the ovine rumen. The 190 sequenced clones contained 1055 RSTs and no less than 236 unique phylotypes (based on > or = 95% sequence identity) that were assigned to eight different eubacterial phyla. Rarefaction and monomolecular curve analyses predicted that the complete RST clone library contains 99% of the 353 unique phylotypes predicted to exist in this microbiome. When compared with ribosomal intergenic spacer analysis (RISA) of the same community DNA sample, as well as a compilation of nine previously published conventional rrs clone libraries prepared from the same type of samples, the RST clone library provided a more comprehensive characterization of the eubacterial diversity present in rumen microbiomes. As such, SARST-V1 should be a useful tool applicable to comprehensive examination of diversity and composition in microbiomes and offers an affordable, sequence-based method for diversity analysis.

  15. The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome.

    PubMed

    Hannigan, Geoffrey D; Meisel, Jacquelyn S; Tyldsley, Amanda S; Zheng, Qi; Hodkinson, Brendan P; SanMiguel, Adam J; Minot, Samuel; Bushman, Frederic D; Grice, Elizabeth A

    2015-10-20

    Viruses make up a major component of the human microbiota but are poorly understood in the skin, our primary barrier to the external environment. Viral communities have the potential to modulate states of cutaneous health and disease. Bacteriophages are known to influence the structure and function of microbial communities through predation and genetic exchange. Human viruses are associated with skin cancers and a multitude of cutaneous manifestations. Despite these important roles, little is known regarding the human skin virome and its interactions with the host microbiome. Here we evaluated the human cutaneous double-stranded DNA virome by metagenomic sequencing of DNA from purified virus-like particles (VLPs). In parallel, we employed metagenomic sequencing of the total skin microbiome to assess covariation and infer interactions with the virome. Samples were collected from 16 subjects at eight body sites over 1 month. In addition to the microenviroment, which is known to partition the bacterial and fungal microbiota, natural skin occlusion was strongly associated with skin virome community composition. Viral contigs were enriched for genes indicative of a temperate phage replication style and also maintained genes encoding potential antibiotic resistance and virulence factors. CRISPR spacers identified in the bacterial DNA sequences provided a record of phage predation and suggest a mechanism to explain spatial partitioning of skin phage communities. Finally, we modeled the structure of bacterial and phage communities together to reveal a complex microbial environment with a Corynebacterium hub. These results reveal the previously underappreciated diversity, encoded functions, and viral-microbial dynamic unique to the human skin virome. To date, most cutaneous microbiome studies have focused on bacterial and fungal communities. Skin viral communities and their relationships with their hosts remain poorly understood despite their potential to modulate states of cutaneous health and disease. Previous studies employing whole-metagenome sequencing without purification for virus-like particles (VLPs) have provided some insight into the viral component of the skin microbiome but have not completely characterized these communities or analyzed interactions with the host microbiome. Here we present an optimized virus purification technique and corresponding analysis tools for gaining novel insights into the skin virome, including viral "dark matter," and its potential interactions with the host microbiome. The work presented here establishes a baseline of the healthy human skin virome and is a necessary foundation for future studies examining viral perturbations in skin health and disease. Copyright © 2015 Hannigan et al.

  16. A Module Experimental Process System Development Unit (MEPSDU)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Restructuring research objectives from a technical readiness demonstration program to an investigation of high risk, high payoff activities associated with producing photovoltaic modules using non-CZ sheet material is reported. Deletion of the module frame in favor of a frameless design, and modification in cell series parallel electrical interconnect configuration are reviewed. A baseline process sequence was identified for the fabrication of modules using the selected dendritic web sheet material, and economic evaluations of the sequence were completed.

  17. Phylogenetic analysis of a spontaneous cocoa bean fermentation metagenome reveals new insights into its bacterial and fungal community diversity.

    PubMed

    Illeghems, Koen; De Vuyst, Luc; Papalexandratou, Zoi; Weckx, Stefan

    2012-01-01

    This is the first report on the phylogenetic analysis of the community diversity of a single spontaneous cocoa bean box fermentation sample through a metagenomic approach involving 454 pyrosequencing. Several sequence-based and composition-based taxonomic profiling tools were used and evaluated to avoid software-dependent results and their outcome was validated by comparison with previously obtained culture-dependent and culture-independent data. Overall, this approach revealed a wider bacterial (mainly γ-Proteobacteria) and fungal diversity than previously found. Further, the use of a combination of different classification methods, in a software-independent way, helped to understand the actual composition of the microbial ecosystem under study. In addition, bacteriophage-related sequences were found. The bacterial diversity depended partially on the methods used, as composition-based methods predicted a wider diversity than sequence-based methods, and as classification methods based solely on phylogenetic marker genes predicted a more restricted diversity compared with methods that took all reads into account. The metagenomic sequencing analysis identified Hanseniaspora uvarum, Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus as the prevailing species. Also, the presence of occasional members of the cocoa bean fermentation process was revealed (such as Erwinia tasmaniensis, Lactobacillus brevis, Lactobacillus casei, Lactobacillus rhamnosus, Lactococcus lactis, Leuconostoc mesenteroides, and Oenococcus oeni). Furthermore, the sequence reads associated with viral communities were of a restricted diversity, dominated by Myoviridae and Siphoviridae, and reflecting Lactobacillus as the dominant host. To conclude, an accurate overview of all members of a cocoa bean fermentation process sample was revealed, indicating the superiority of metagenomic sequencing over previously used techniques.

  18. Localized one-dimensional single voxel magnetic resonance spectroscopy without J coupling modulations.

    PubMed

    Lin, Yanqin; Lin, Liangjie; Wei, Zhiliang; Zhong, Jianhui; Chen, Zhong

    2016-12-01

    To acquire single voxel localized one-dimensional 1 H magnetic resonance spectroscopy (MRS) without J coupling modulations, free from amplitude and phase distortions. A pulse sequence, named PRESSIR, is developed for volume localized MRS without J modulations at arbitrary echo time (TE). The J coupling evolution is suppressed by the J-refocused module that uses a 90° pulse at the midpoint of a double spin echo. The localization performance of the PRESSIR sequence was tested with a two-compartment phantom. The proposed sequence shows similar voxel localization accuracy as PRESS. Both PRESSIR and PRESS sequences were performed on MRS brain phantom and pig brain tissue. PRESS spectra suffer from amplitude and phase distortions due to J modulations, especially under moderate and long TEs, while PRESSIR spectra are almost free from distortions. The PRESSIR sequence proposed herein enables the acquisition of single voxel in-phase MRS within a single scan. It allows an enhanced signal intensity of J coupling metabolites and reducing undesired broad resonances with short T2s while suppressing J modulations. Moreover, it provides an approach for direct measurement of nonoverlapping J coupling peaks and of transverse relaxation times T2s. Magn Reson Med 76:1661-1667, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  19. Introducing GIS across Levels: Designing for Diversity

    ERIC Educational Resources Information Center

    Barros, Joana

    2017-01-01

    The paper proposes a strategy for designing introductory GIS modules at Birkbeck, University of London. Seven design aspects or elements (content, practical exercises, assessment, pace, mode, level of support, and level of difficulty) for tailoring modules at appropriate levels and for diversity are introduced and their application in Birkbeck's…

  20. Modeling Host Genetic Regulation of Influenza Pathogenesis in the Collaborative Cross

    PubMed Central

    Ferris, Martin T.; Aylor, David L.; Bottomly, Daniel; Whitmore, Alan C.; Aicher, Lauri D.; Bell, Timothy A.; Bradel-Tretheway, Birgit; Bryan, Janine T.; Buus, Ryan J.; Gralinski, Lisa E.; Haagmans, Bart L.; McMillan, Leonard; Miller, Darla R.; Rosenzweig, Elizabeth; Valdar, William; Wang, Jeremy; Churchill, Gary A.; Threadgill, David W.; McWeeney, Shannon K.; Katze, Michael G.; Pardo-Manuel de Villena, Fernando; Baric, Ralph S.; Heise, Mark T.

    2013-01-01

    Genetic variation contributes to host responses and outcomes following infection by influenza A virus or other viral infections. Yet narrow windows of disease symptoms and confounding environmental factors have made it difficult to identify polymorphic genes that contribute to differential disease outcomes in human populations. Therefore, to control for these confounding environmental variables in a system that models the levels of genetic diversity found in outbred populations such as humans, we used incipient lines of the highly genetically diverse Collaborative Cross (CC) recombinant inbred (RI) panel (the pre-CC population) to study how genetic variation impacts influenza associated disease across a genetically diverse population. A wide range of variation in influenza disease related phenotypes including virus replication, virus-induced inflammation, and weight loss was observed. Many of the disease associated phenotypes were correlated, with viral replication and virus-induced inflammation being predictors of virus-induced weight loss. Despite these correlations, pre-CC mice with unique and novel disease phenotype combinations were observed. We also identified sets of transcripts (modules) that were correlated with aspects of disease. In order to identify how host genetic polymorphisms contribute to the observed variation in disease, we conducted quantitative trait loci (QTL) mapping. We identified several QTL contributing to specific aspects of the host response including virus-induced weight loss, titer, pulmonary edema, neutrophil recruitment to the airways, and transcriptional expression. Existing whole-genome sequence data was applied to identify high priority candidate genes within QTL regions. A key host response QTL was located at the site of the known anti-influenza Mx1 gene. We sequenced the coding regions of Mx1 in the eight CC founder strains, and identified a novel Mx1 allele that showed reduced ability to inhibit viral replication, while maintaining protection from weight loss. PMID:23468633

  1. Diffusion modulation of DNA by toehold exchange

    NASA Astrophysics Data System (ADS)

    Rodjanapanyakul, Thanapop; Takabatake, Fumi; Abe, Keita; Kawamata, Ibuki; Nomura, Shinichiro M.; Murata, Satoshi

    2018-05-01

    We propose a method to control the diffusion speed of DNA molecules with a target sequence in a polymer solution. The interaction between solute DNA and diffusion-suppressing DNA that has been anchored to a polymer matrix is modulated by the concentration of the third DNA molecule called the competitor by a mechanism called toehold exchange. Experimental results show that the sequence-specific modulation of the diffusion coefficient is successfully achieved. The diffusion coefficient can be modulated up to sixfold by changing the concentration of the competitor. The specificity of the modulation is also verified under the coexistence of a set of DNA with noninteracting base sequences. With this mechanism, we are able to control the diffusion coefficient of individual DNA species by the concentration of another DNA species. This methodology introduces a programmability to a DNA-based reaction-diffusion system.

  2. Low Diversity in the Mitogenome of Sperm Whales Revealed by Next-Generation Sequencing

    PubMed Central

    Alexander, Alana; Steel, Debbie; Slikas, Beth; Hoekzema, Kendra; Carraher, Colm; Parks, Matthew; Cronn, Richard; Baker, C. Scott

    2013-01-01

    Large population sizes and global distributions generally associate with high mitochondrial DNA control region (CR) diversity. The sperm whale (Physeter macrocephalus) is an exception, showing low CR diversity relative to other cetaceans; however, diversity levels throughout the remainder of the sperm whale mitogenome are unknown. We sequenced 20 mitogenomes from 17 sperm whales representative of worldwide diversity using Next Generation Sequencing (NGS) technologies (Illumina GAIIx, Roche 454 GS Junior). Resequencing of three individuals with both NGS platforms and partial Sanger sequencing showed low discrepancy rates (454-Illumina: 0.0071%; Sanger-Illumina: 0.0034%; and Sanger-454: 0.0023%) confirming suitability of both NGS platforms for investigating low mitogenomic diversity. Using the 17 sperm whale mitogenomes in a phylogenetic reconstruction with 41 other species, including 11 new dolphin mitogenomes, we tested two hypotheses for the low CR diversity. First, the hypothesis that CR-specific constraints have reduced diversity solely in the CR was rejected as diversity was low throughout the mitogenome, not just in the CR (overall diversity π = 0.096%; protein-coding 3rd codon = 0.22%; CR = 0.35%), and CR phylogenetic signal was congruent with protein-coding regions. Second, the hypothesis that slow substitution rates reduced diversity throughout the sperm whale mitogenome was rejected as sperm whales had significantly higher rates of CR evolution and no evidence of slow coding region evolution relative to other cetaceans. The estimated time to most recent common ancestor for sperm whale mitogenomes was 72,800 to 137,400 years ago (95% highest probability density interval), consistent with previous hypotheses of a bottleneck or selective sweep as likely causes of low mitogenome diversity. PMID:23254394

  3. Low diversity in the mitogenome of sperm whales revealed by next-generation sequencing.

    PubMed

    Alexander, Alana; Steel, Debbie; Slikas, Beth; Hoekzema, Kendra; Carraher, Colm; Parks, Matthew; Cronn, Richard; Baker, C Scott

    2013-01-01

    Large population sizes and global distributions generally associate with high mitochondrial DNA control region (CR) diversity. The sperm whale (Physeter macrocephalus) is an exception, showing low CR diversity relative to other cetaceans; however, diversity levels throughout the remainder of the sperm whale mitogenome are unknown. We sequenced 20 mitogenomes from 17 sperm whales representative of worldwide diversity using Next Generation Sequencing (NGS) technologies (Illumina GAIIx, Roche 454 GS Junior). Resequencing of three individuals with both NGS platforms and partial Sanger sequencing showed low discrepancy rates (454-Illumina: 0.0071%; Sanger-Illumina: 0.0034%; and Sanger-454: 0.0023%) confirming suitability of both NGS platforms for investigating low mitogenomic diversity. Using the 17 sperm whale mitogenomes in a phylogenetic reconstruction with 41 other species, including 11 new dolphin mitogenomes, we tested two hypotheses for the low CR diversity. First, the hypothesis that CR-specific constraints have reduced diversity solely in the CR was rejected as diversity was low throughout the mitogenome, not just in the CR (overall diversity π = 0.096%; protein-coding 3rd codon = 0.22%; CR = 0.35%), and CR phylogenetic signal was congruent with protein-coding regions. Second, the hypothesis that slow substitution rates reduced diversity throughout the sperm whale mitogenome was rejected as sperm whales had significantly higher rates of CR evolution and no evidence of slow coding region evolution relative to other cetaceans. The estimated time to most recent common ancestor for sperm whale mitogenomes was 72,800 to 137,400 years ago (95% highest probability density interval), consistent with previous hypotheses of a bottleneck or selective sweep as likely causes of low mitogenome diversity.

  4. High-throughput sequencing reveals unprecedented diversities of Aspergillus species in outdoor air.

    PubMed

    Lee, S; An, C; Xu, S; Lee, S; Yamamoto, N

    2016-09-01

    This study used the Illumina MiSeq to analyse compositions and diversities of Aspergillus species in outdoor air. The seasonal air samplings were performed at two locations in Seoul, South Korea. The results showed the relative abundances of all Aspergillus species combined ranging from 0·20 to 18% and from 0·19 to 21% based on the number of the internal transcribed spacer 1 (ITS1) and β-tubulin (BenA) gene sequences respectively. Aspergillus fumigatus was the most dominant species with the mean relative abundances of 1·2 and 5·5% based on the number of the ITS1 and BenA sequences respectively. A total of 29 Aspergillus species were detected and identified down to the species rank, among which nine species were known opportunistic pathogens. Remarkably, eight of the nine pathogenic species were detected by either one of the two markers, suggesting the need of using multiple markers and/or primer pairs when the assessments are made based on the high-throughput sequencing. Due to diversity of species within the genus Aspergillus, the high-throughput sequencing was useful to characterize their compositions and diversities in outdoor air, which are thought to be difficult to be accurately characterized by conventional culture and/or Sanger sequencing-based techniques. Aspergillus is a diverse genus of fungi with more than 300 species reported in literature. Aspergillus is important since some species are known allergens and opportunistic human pathogens. Traditionally, growth-dependent methods have been used to detect Aspergillus species in air. However, these methods are limited in the number of isolates that can be analysed for their identities, resulting in inaccurate characterizations of Aspergillus diversities. This study used the high-throughput sequencing to explore Aspergillus diversities in outdoor, which are thought to be difficult to be accurately characterized by traditional growth-dependent techniques. © 2016 The Society for Applied Microbiology.

  5. Assessing Species Diversity Using Metavirome Data: Methods and Challenges.

    PubMed

    Herath, Damayanthi; Jayasundara, Duleepa; Ackland, David; Saeed, Isaam; Tang, Sen-Lin; Halgamuge, Saman

    2017-01-01

    Assessing biodiversity is an important step in the study of microbial ecology associated with a given environment. Multiple indices have been used to quantify species diversity, which is a key biodiversity measure. Measuring species diversity of viruses in different environments remains a challenge relative to measuring the diversity of other microbial communities. Metagenomics has played an important role in elucidating viral diversity by conducting metavirome studies; however, metavirome data are of high complexity requiring robust data preprocessing and analysis methods. In this review, existing bioinformatics methods for measuring species diversity using metavirome data are categorised broadly as either sequence similarity-dependent methods or sequence similarity-independent methods. The former includes a comparison of DNA fragments or assemblies generated in the experiment against reference databases for quantifying species diversity, whereas estimates from the latter are independent of the knowledge of existing sequence data. Current methods and tools are discussed in detail, including their applications and limitations. Drawbacks of the state-of-the-art method are demonstrated through results from a simulation. In addition, alternative approaches are proposed to overcome the challenges in estimating species diversity measures using metavirome data.

  6. Investigation of the bottleneck leading to the domestication of maize

    PubMed Central

    Eyre-Walker, Adam; Gaut, Rebecca L.; Hilton, Holly; Feldman, Dawn L.; Gaut, Brandon S.

    1998-01-01

    Maize (Zea mays ssp. mays) is genetically diverse, yet it is also morphologically distinct from its wild relatives. These two observations are somewhat contradictory: the first observation is consistent with a large historical population size for maize, but the latter observation is consistent with strong, diversity-limiting selection during maize domestication. In this study, we sampled sequence diversity, coupled with simulations of the coalescent process, to study the dynamics of a population bottleneck during the domestication of maize. To do this, we determined the DNA sequence of a 1,400-bp region of the Adh1 locus from 19 individuals representing maize, its presumed progenitor (Z. mays ssp. parviglumis), and a more distant relative (Zea luxurians). The sequence data were used to guide coalescent simulations of population bottlenecks associated with domestication. Our study confirms high genetic diversity in maize—maize contains 75% of the variation found in its progenitor and is more diverse than its wild relative, Z. luxurians—but it also suggests that sequence diversity in maize can be explained by a bottleneck of short duration and very small size. For example, the breadth of genetic diversity in maize is consistent with a founding population of only 20 individuals when the domestication event is 10 generations in length. PMID:9539756

  7. Marine Fungi: Their Ecology and Molecular Diversity

    NASA Astrophysics Data System (ADS)

    Richards, Thomas A.; Jones, Meredith D. M.; Leonard, Guy; Bass, David

    2012-01-01

    Fungi appear to be rare in marine environments. There are relatively few marine isolates in culture, and fungal small subunit ribosomal DNA (SSU rDNA) sequences are rarely recovered in marine clone library experiments (i.e., culture-independent sequence surveys of eukaryotic microbial diversity from environmental DNA samples). To explore the diversity of marine fungi, we took a broad selection of SSU rDNA data sets and calculated a summary phylogeny. Bringing these data together identified a diverse collection of marine fungi, including sequences branching close to chytrids (flagellated fungi), filamentous hypha-forming fungi, and multicellular fungi. However, the majority of the sequences branched with ascomycete and basidiomycete yeasts. We discuss evidence for 36 novel marine lineages, the majority and most divergent of which branch with the chytrids. We then investigate what these data mean for the evolutionary history of the Fungi and specifically marine-terrestrial transitions. Finally, we discuss the roles of fungi in marine ecosystems.

  8. A communal catalogue reveals Earth's multiscale microbial diversity.

    PubMed

    Thompson, Luke R; Sanders, Jon G; McDonald, Daniel; Amir, Amnon; Ladau, Joshua; Locey, Kenneth J; Prill, Robert J; Tripathi, Anupriya; Gibbons, Sean M; Ackermann, Gail; Navas-Molina, Jose A; Janssen, Stefan; Kopylova, Evguenia; Vázquez-Baeza, Yoshiki; González, Antonio; Morton, James T; Mirarab, Siavash; Zech Xu, Zhenjiang; Jiang, Lingjing; Haroon, Mohamed F; Kanbar, Jad; Zhu, Qiyun; Jin Song, Se; Kosciolek, Tomasz; Bokulich, Nicholas A; Lefler, Joshua; Brislawn, Colin J; Humphrey, Gregory; Owens, Sarah M; Hampton-Marcell, Jarrad; Berg-Lyons, Donna; McKenzie, Valerie; Fierer, Noah; Fuhrman, Jed A; Clauset, Aaron; Stevens, Rick L; Shade, Ashley; Pollard, Katherine S; Goodwin, Kelly D; Jansson, Janet K; Gilbert, Jack A; Knight, Rob

    2017-11-23

    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.

  9. Input dependent cell assembly dynamics in a model of the striatal medium spiny neuron network.

    PubMed

    Ponzi, Adam; Wickens, Jeff

    2012-01-01

    The striatal medium spiny neuron (MSN) network is sparsely connected with fairly weak GABAergic collaterals receiving an excitatory glutamatergic cortical projection. Peri-stimulus time histograms (PSTH) of MSN population response investigated in various experimental studies display strong firing rate modulations distributed throughout behavioral task epochs. In previous work we have shown by numerical simulation that sparse random networks of inhibitory spiking neurons with characteristics appropriate for UP state MSNs form cell assemblies which fire together coherently in sequences on long behaviorally relevant timescales when the network receives a fixed pattern of constant input excitation. Here we first extend that model to the case where cortical excitation is composed of many independent noisy Poisson processes and demonstrate that cell assembly dynamics is still observed when the input is sufficiently weak. However if cortical excitation strength is increased more regularly firing and completely quiescent cells are found, which depend on the cortical stimulation. Subsequently we further extend previous work to consider what happens when the excitatory input varies as it would when the animal is engaged in behavior. We investigate how sudden switches in excitation interact with network generated patterned activity. We show that sequences of cell assembly activations can be locked to the excitatory input sequence and outline the range of parameters where this behavior is shown. Model cell population PSTH display both stimulus and temporal specificity, with large population firing rate modulations locked to elapsed time from task events. Thus the random network can generate a large diversity of temporally evolving stimulus dependent responses even though the input is fixed between switches. We suggest the MSN network is well suited to the generation of such slow coherent task dependent response which could be utilized by the animal in behavior.

  10. Input Dependent Cell Assembly Dynamics in a Model of the Striatal Medium Spiny Neuron Network

    PubMed Central

    Ponzi, Adam; Wickens, Jeff

    2012-01-01

    The striatal medium spiny neuron (MSN) network is sparsely connected with fairly weak GABAergic collaterals receiving an excitatory glutamatergic cortical projection. Peri-stimulus time histograms (PSTH) of MSN population response investigated in various experimental studies display strong firing rate modulations distributed throughout behavioral task epochs. In previous work we have shown by numerical simulation that sparse random networks of inhibitory spiking neurons with characteristics appropriate for UP state MSNs form cell assemblies which fire together coherently in sequences on long behaviorally relevant timescales when the network receives a fixed pattern of constant input excitation. Here we first extend that model to the case where cortical excitation is composed of many independent noisy Poisson processes and demonstrate that cell assembly dynamics is still observed when the input is sufficiently weak. However if cortical excitation strength is increased more regularly firing and completely quiescent cells are found, which depend on the cortical stimulation. Subsequently we further extend previous work to consider what happens when the excitatory input varies as it would when the animal is engaged in behavior. We investigate how sudden switches in excitation interact with network generated patterned activity. We show that sequences of cell assembly activations can be locked to the excitatory input sequence and outline the range of parameters where this behavior is shown. Model cell population PSTH display both stimulus and temporal specificity, with large population firing rate modulations locked to elapsed time from task events. Thus the random network can generate a large diversity of temporally evolving stimulus dependent responses even though the input is fixed between switches. We suggest the MSN network is well suited to the generation of such slow coherent task dependent response which could be utilized by the animal in behavior. PMID:22438838

  11. Xylan utilization in human gut commensal bacteria is orchestrated by unique modular organization of polysaccharide-degrading enzymes.

    PubMed

    Zhang, Meiling; Chekan, Jonathan R; Dodd, Dylan; Hong, Pei-Ying; Radlinski, Lauren; Revindran, Vanessa; Nair, Satish K; Mackie, Roderick I; Cann, Isaac

    2014-09-02

    Enzymes that degrade dietary and host-derived glycans represent the most abundant functional activities encoded by genes unique to the human gut microbiome. However, the biochemical activities of a vast majority of the glycan-degrading enzymes are poorly understood. Here, we use transcriptome sequencing to understand the diversity of genes expressed by the human gut bacteria Bacteroides intestinalis and Bacteroides ovatus grown in monoculture with the abundant dietary polysaccharide xylan. The most highly induced carbohydrate active genes encode a unique glycoside hydrolase (GH) family 10 endoxylanase (BiXyn10A or BACINT_04215 and BACOVA_04390) that is highly conserved in the Bacteroidetes xylan utilization system. The BiXyn10A modular architecture consists of a GH10 catalytic module disrupted by a 250 amino acid sequence of unknown function. Biochemical analysis of BiXyn10A demonstrated that such insertion sequences encode a new family of carbohydrate-binding modules (CBMs) that binds to xylose-configured oligosaccharide/polysaccharide ligands, the substrate of the BiXyn10A enzymatic activity. The crystal structures of CBM1 from BiXyn10A (1.8 Å), a cocomplex of BiXyn10A CBM1 with xylohexaose (1.14 Å), and the CBM from its homolog in the Prevotella bryantii B14 Xyn10C (1.68 Å) reveal an unanticipated mode for ligand binding. A minimal enzyme mix, composed of the gene products of four of the most highly up-regulated genes during growth on wheat arabinoxylan, depolymerizes the polysaccharide into its component sugars. The combined biochemical and biophysical studies presented here provide a framework for understanding fiber metabolism by an important group within the commensal bacterial population known to influence human health.

  12. Diversity in a Polymicrobial Community Revealed by Analysis of Viromes, Endolysins and CRISPR Spacers.

    PubMed

    Davison, Michelle; Treangen, Todd J; Koren, Sergey; Pop, Mihai; Bhaya, Devaki

    2016-01-01

    The polymicrobial biofilm communities in Mushroom and Octopus Spring in Yellowstone National Park (YNP) are well characterized, yet little is known about the phage populations. Dominant species, Synechococcus sp. JA-2-3B'a(2-13), Synechococcus sp. JA-3-3Ab, Chloroflexus sp. Y-400-fl, and Roseiflexus sp. RS-1, contain multiple CRISPR-Cas arrays, suggesting complex interactions with phage predators. To analyze phage populations from Octopus Spring biofilms, we sequenced a viral enriched fraction. To assemble and analyze phage metagenomic data, we developed a custom module, VIRITAS, implemented within the MetAMOS framework. This module bins contigs into groups based on tetranucleotide frequencies and CRISPR spacer-protospacer matching and ORF calling. Using this pipeline we were able to assemble phage sequences into contigs and bin them into three clusters that corroborated with their potential host range. The virome contained 52,348 predicted ORFs; some were clearly phage-like; 9319 ORFs had a recognizable Pfam domain while the rest were hypothetical. Of the recognized domains with CRISPR spacer matches, was the phage endolysin used by lytic phage to disrupt cells. Analysis of the endolysins present in the thermophilic cyanophage contigs revealed a subset of characterized endolysins as well as a Glyco_hydro_108 (PF05838) domain not previously associated with sequenced cyanophages. A search for CRISPR spacer matches to all identified phage endolysins demonstrated that a majority of endolysin domains were targets. This strategy provides a general way to link host and phage as endolysins are known to be widely distributed in bacteriophage. Endolysins can also provide information about host cell wall composition and have the additional potential to be used as targets for novel therapeutics.

  13. Diversity and population structure of sewage derived microorganisms in wastewater treatment plant influent

    PubMed Central

    McLellan, S.L.; Huse, S.M.; Mueller-Spitz, S.R.; Andreishcheva, E.N.; Sogin, M.L.

    2009-01-01

    The release of untreated sewage introduces non-indigenous microbial populations of uncertain composition into surface waters. We used massively parallel 454 sequencing of hypervariable regions in rRNA genes to profile microbial communities from eight untreated sewage influent samples of two wastewater treatment plants (WWTP) in metropolitan Milwaukee. The sewage profiles included a discernable human fecal signature made up of several taxonomic groups including multiple Bifidobacteriaceae, Coriobacteriaceae, Bacteroidaceae, Lachnospiraceae, and Ruminococcaceae genera. The fecal signature made up a small fraction of the taxa present in sewage but the relative abundance of these sequence tags mirrored the population structures of human fecal samples. These genera were much more prevalent in the sewage influent than standard indicators species. High-abundance sequences from taxonomic groups within the Beta- and Gammaproteobacteria dominated the sewage samples but occurred at very low levels in fecal and surface water samples, suggesting that these organisms proliferate within the sewer system. Samples from Jones Island (JI – servicing residential plus a combined sewer system) and South Shore (SS – servicing a residential area) WWTPs had very consistent community profiles, with greater similarity between WWTPs on a given collection day than the same plant collected on different days. Rainfall increased influent flows at SS and JI WWTPs, and this corresponded to greater diversity in the community at both plants. Overall, the sewer system appears to be a defined environment with both infiltration of rainwater and stormwater inputs modulating community composition. Microbial sewage communities represent a combination of inputs from human fecal microbes and enrichment of specific microbes from the environment to form a unique population structure. PMID:19840106

  14. Diversity of virus-host systems in hypersaline Lake Retba, Senegal.

    PubMed

    Sime-Ngando, Télesphore; Lucas, Soizick; Robin, Agnès; Tucker, Kimberly Pause; Colombet, Jonathan; Bettarel, Yvan; Desmond, Elie; Gribaldo, Simonetta; Forterre, Patrick; Breitbart, Mya; Prangishvili, David

    2011-08-01

    Remarkable morphological diversity of virus-like particles was observed by transmission electron microscopy in a hypersaline water sample from Lake Retba, Senegal. The majority of particles morphologically resembled hyperthermophilic archaeal DNA viruses isolated from extreme geothermal environments. Some hypersaline viral morphotypes have not been previously observed in nature, and less than 1% of observed particles had a head-and-tail morphology, which is typical for bacterial DNA viruses. Culture-independent analysis of the microbial diversity in the sample suggested the dominance of extremely halophilic archaea. Few of the 16S sequences corresponded to known archeal genera (Haloquadratum, Halorubrum and Natronomonas), whereas the majority represented novel archaeal clades. Three sequences corresponded to a new basal lineage of the haloarchaea. Bacteria belonged to four major phyla, consistent with the known diversity in saline environments. Metagenomic sequencing of DNA from the purified virus-like particles revealed very few similarities to the NCBI non-redundant database at either the nucleotide or amino acid level. Some of the identifiable virus sequences were most similar to previously described haloarchaeal viruses, but no sequence similarities were found to archaeal viruses from extreme geothermal environments. A large proportion of the sequences had similarity to previously sequenced viral metagenomes from solar salterns. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Novel Method for High-Throughput Full-Length IGHV-D-J Sequencing of the Immune Repertoire from Bulk B-Cells with Single-Cell Resolution.

    PubMed

    Vergani, Stefano; Korsunsky, Ilya; Mazzarello, Andrea Nicola; Ferrer, Gerardo; Chiorazzi, Nicholas; Bagnara, Davide

    2017-01-01

    Efficient and accurate high-throughput DNA sequencing of the adaptive immune receptor repertoire (AIRR) is necessary to study immune diversity in healthy subjects and disease-related conditions. The high complexity and diversity of the AIRR coupled with the limited amount of starting material, which can compromise identification of the full biological diversity makes such sequencing particularly challenging. AIRR sequencing protocols often fail to fully capture the sampled AIRR diversity, especially for samples containing restricted numbers of B lymphocytes. Here, we describe a library preparation method for immunoglobulin sequencing that results in an exhaustive full-length repertoire where virtually every sampled B-cell is sequenced. This maximizes the likelihood of identifying and quantifying the entire IGHV-D-J repertoire of a sample, including the detection of rearrangements present in only one cell in the starting population. The methodology establishes the importance of circumventing genetic material dilution in the preamplification phases and incorporates the use of certain described concepts: (1) balancing the starting material amount and depth of sequencing, (2) avoiding IGHV gene-specific amplification, and (3) using Unique Molecular Identifier. Together, this methodology is highly efficient, in particular for detecting rare rearrangements in the sampled population and when only a limited amount of starting material is available.

  16. Diverse molecular signatures for ribosomally ‘active’ Perkinsea in marine sediments

    PubMed Central

    2014-01-01

    Background Perkinsea are a parasitic lineage within the eukaryotic superphylum Alveolata. Recent studies making use of environmental small sub-unit ribosomal RNA gene (SSU rDNA) sequencing methodologies have detected a significant diversity and abundance of Perkinsea-like phylotypes in freshwater environments. In contrast only a few Perkinsea environmental sequences have been retrieved from marine samples and only two groups of Perkinsea have been cultured and morphologically described and these are parasites of marine molluscs or marine protists. These two marine groups form separate and distantly related phylogenetic clusters, composed of closely related lineages on SSU rDNA trees. Here, we test the hypothesis that Perkinsea are a hitherto under-sampled group in marine environments. Using 454 diversity ‘tag’ sequencing we investigate the diversity and distribution of these protists in marine sediments and water column samples taken from the Deep Chlorophyll Maximum (DCM) and sub-surface using both DNA and RNA as the source template and sampling four European offshore locations. Results We detected the presence of 265 sequences branching with known Perkinsea, the majority of them recovered from marine sediments. Moreover, 27% of these sequences were sampled from RNA derived cDNA libraries. Phylogenetic analyses classify a large proportion of these sequences into 38 cluster groups (including 30 novel marine cluster groups), which share less than 97% sequence similarity suggesting this diversity encompasses a range of biologically and ecologically distinct organisms. Conclusions These results demonstrate that the Perkinsea lineage is considerably more diverse than previously detected in marine environments. This wide diversity of Perkinsea-like protists is largely retrieved in marine sediment with a significant proportion detected in RNA derived libraries suggesting this diversity represents ribosomally ‘active’ and intact cells. Given the phylogenetic range of hosts infected by known Perkinsea parasites, these data suggest that Perkinsea either play a significant but hitherto unrecognized role as parasites in marine sediments and/or members of this group are present in the marine sediment possibly as part of the ‘seed bank’ microbial community. PMID:24779375

  17. Deep sequencing of the Trypanosoma cruzi GP63 surface proteases reveals diversity and diversifying selection among chronic and congenital Chagas disease patients.

    PubMed

    Llewellyn, Martin S; Messenger, Louisa A; Luquetti, Alejandro O; Garcia, Lineth; Torrico, Faustino; Tavares, Suelene B N; Cheaib, Bachar; Derome, Nicolas; Delepine, Marc; Baulard, Céline; Deleuze, Jean-Francois; Sauer, Sascha; Miles, Michael A

    2015-04-01

    Chagas disease results from infection with the diploid protozoan parasite Trypanosoma cruzi. T. cruzi is highly genetically diverse, and multiclonal infections in individual hosts are common, but little studied. In this study, we explore T. cruzi infection multiclonality in the context of age, sex and clinical profile among a cohort of chronic patients, as well as paired congenital cases from Cochabamba, Bolivia and Goias, Brazil using amplicon deep sequencing technology. A 450bp fragment of the trypomastigote TcGP63I surface protease gene was amplified and sequenced across 70 chronic and 22 congenital cases on the Illumina MiSeq platform. In addition, a second, mitochondrial target--ND5--was sequenced across the same cohort of cases. Several million reads were generated, and sequencing read depths were normalized within patient cohorts (Goias chronic, n = 43, Goias congenital n = 2, Bolivia chronic, n = 27; Bolivia congenital, n = 20), Among chronic cases, analyses of variance indicated no clear correlation between intra-host sequence diversity and age, sex or symptoms, while principal coordinate analyses showed no clustering by symptoms between patients. Between congenital pairs, we found evidence for the transmission of multiple sequence types from mother to infant, as well as widespread instances of novel genotypes in infants. Finally, non-synonymous to synonymous (dn:ds) nucleotide substitution ratios among sequences of TcGP63Ia and TcGP63Ib subfamilies within each cohort provided powerful evidence of strong diversifying selection at this locus. Our results shed light on the diversity of parasite DTUs within each patient, as well as the extent to which parasite strains pass between mother and foetus in congenital cases. Although we were unable to find any evidence that parasite diversity accumulates with age in our study cohorts, putative diversifying selection within members of the TcGP63I gene family suggests a link between genetic diversity within this gene family and survival in the mammalian host.

  18. Diversity and phylogenetic relationships among Bartonella strains from Thai bats.

    PubMed

    McKee, Clifton D; Kosoy, Michael Y; Bai, Ying; Osikowicz, Lynn M; Franka, Richard; Gilbert, Amy T; Boonmar, Sumalee; Rupprecht, Charles E; Peruski, Leonard F

    2017-01-01

    Bartonellae are phylogenetically diverse, intracellular bacteria commonly found in mammals. Previous studies have demonstrated that bats have a high prevalence and diversity of Bartonella infections globally. Isolates (n = 42) were obtained from five bat species in four provinces of Thailand and analyzed using sequences of the citrate synthase gene (gltA). Sequences clustered into seven distinct genogroups; four of these genogroups displayed similarity with Bartonella spp. sequences from other bats in Southeast Asia, Africa, and Eastern Europe. Thirty of the isolates representing these seven genogroups were further characterized by sequencing four additional loci (ftsZ, nuoG, rpoB, and ITS) to clarify their evolutionary relationships with other Bartonella species and to assess patterns of diversity among strains. Among the seven genogroups, there were differences in the number of sequence variants, ranging from 1-5, and the amount of nucleotide divergence, ranging from 0.035-3.9%. Overall, these seven genogroups meet the criteria for distinction as novel Bartonella species, with sequence divergence among genogroups ranging from 6.4-15.8%. Evidence of intra- and intercontinental phylogenetic relationships and instances of homologous recombination among Bartonella genogroups in related bat species were found in Thai bats.

  19. Expansion of the Preimmune Antibody Repertoire by Junctional Diversity in Bos taurus

    PubMed Central

    Liljavirta, Jenni; Niku, Mikael; Pessa-Morikawa, Tiina; Ekman, Anna; Iivanainen, Antti

    2014-01-01

    Cattle have a limited range of immunoglobulin genes which are further diversified by antigen independent somatic hypermutation in fetuses. Junctional diversity generated during somatic recombination contributes to antibody diversity but its relative significance has not been comprehensively studied. We have investigated the importance of terminal deoxynucleotidyl transferase (TdT) -mediated junctional diversity to the bovine immunoglobulin repertoire. We also searched for new bovine heavy chain diversity (IGHD) genes as the information of the germline sequences is essential to define the junctional boundaries between gene segments. New heavy chain variable genes (IGHV) were explored to address the gene usage in the fetal recombinations. Our bioinformatics search revealed five new IGHD genes, which included the longest IGHD reported so far, 154 bp. By genomic sequencing we found 26 new IGHV sequences that represent potentially new IGHV genes or allelic variants. Sequence analysis of immunoglobulin heavy chain cDNA libraries of fetal bone marrow, ileum and spleen showed 0 to 36 nontemplated N-nucleotide additions between variable, diversity and joining genes. A maximum of 8 N nucleotides were also identified in the light chains. The junctional base profile was biased towards A and T nucleotide additions (64% in heavy chain VD, 52% in heavy chain DJ and 61% in light chain VJ junctions) in contrast to the high G/C content which is usually observed in mice. Sequence analysis also revealed extensive exonuclease activity, providing additional diversity. B-lymphocyte specific TdT expression was detected in bovine fetal bone marrow by reverse transcription-qPCR and immunofluorescence. These results suggest that TdT-mediated junctional diversity and exonuclease activity contribute significantly to the size of the cattle preimmune antibody repertoire already in the fetal period. PMID:24926997

  20. Apollo 13 post-flight Service Module tests to determine reason for explosion

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Sequence photo from 16mm motion picture film of test at Langley Research Center which seeks to determine mechanism by which Apollo 13 panel was separated from Service Module. The test used a 1/2 scale model with a honeycomb sandwich panel and was conducted in a vacuum (41982); Second photograph in sequence of three of panel separation test at Langley Research Center (41983); Full-scale propogation test at the NASA Manned Spacecraft Center of fire inside the Apollo Service Module oxygen tank. The photograph from a motion picture sequence taken from outside the vessel shows failure of tank conduit with abrupt loss of oxygen pressure (41984); Third photograph in sequence of three showing panel separation test at Langley Research Center (41985).

  1. A preliminary 'test case' manufacturing sequence for 50 cents/watt solar photovoltaic modules in 1986

    NASA Technical Reports Server (NTRS)

    Bickler, D. B.

    1979-01-01

    The paper describes a 'test case' manufacturing process sequence for solar photovoltaic modules which will cost 50 cents/watt in 1986. The process, which starts with the purification of silicon grown into 75-mm-wide thin ribbons, is discussed, and the plant layout is depicted; each department is sized to produce 250 MW of modules/per year. The cost of this process sequence is compared to present technology at various companies showing considerable spread for each process; data are tabulated in a composite state-of-the-art cell processing cost summary for these processes.

  2. Novel insertion sequence- and transposon-mediated genetic rearrangements in genomic island SGI1 of Salmonella enterica serovar Kentucky.

    PubMed

    Doublet, Benoît; Praud, Karine; Bertrand, Sophie; Collard, Jean-Marc; Weill, François-Xavier; Cloeckaert, Axel

    2008-10-01

    Salmonella genomic island 1 (SGI1) is an integrative mobilizable element that harbors a multidrug resistance (MDR) gene cluster. Since its identification in epidemic Salmonella enterica serovar Typhimurium DT104 strains, variant SGI1 MDR gene clusters conferring different MDR phenotypes have been identified in several S. enterica serovars and classified as SGI1-A to -O. A study was undertaken to characterize SGI1 from serovar Kentucky strains isolated from travelers returning from Africa. Several strains tested were found to contain the partially characterized variant SGI1-K, recently described in a serovar Kentucky strain isolated in Australia. This variant contained only one cassette array, aac(3)-Id-aadA7, and an adjacent mercury resistance module. Here, the uncharacterized part of SGI1-K was sequenced. Downstream of the mer module similar to that found in Tn21, a mosaic genetic structure was found, comprising (i) part of Tn1721 containing the tetracycline resistance genes tetR and tet(A); (ii) part of Tn5393 containing the streptomycin resistance genes strAB, IS1133, and a truncated tnpR gene; and (iii) a Tn3-like region containing the tnpR gene and the beta-lactamase bla(TEM-1) gene flanked by two IS26 elements in opposite orientations. The rightmost IS26 element was shown to be inserted into the S044 open reading frame of the SGI1 backbone. This variant MDR region was named SGI1-K1 according to the previously described variant SGI1-K. Other SGI1-K MDR regions due to different IS26 locations, inversion, and partial deletions were characterized and named SGI1-K2 to -K5. Two new SGI1 variants named SGI1-P1 and -P2 contained only the Tn3-like region comprising the beta-lactamase bla(TEM-1) gene flanked by the two IS26 elements inserted into the SGI1 backbone. Three other new variants harbored only one IS26 element inserted in place of the MDR region of SGI1 and were named SGI1-Q1 to -Q3. Thus, in serovar Kentucky, the SGI1 MDR region undergoes recombinational and insertional events of transposon and insertion sequences, resulting in a higher diversity of MDR gene clusters than previously reported and consequently a higher diversity of MDR phenotypes.

  3. Reduced representation approaches to interrogate genome diversity in large repetitive plant genomes.

    PubMed

    Hirsch, Cory D; Evans, Joseph; Buell, C Robin; Hirsch, Candice N

    2014-07-01

    Technology and software improvements in the last decade now provide methodologies to access the genome sequence of not only a single accession, but also multiple accessions of plant species. This provides a means to interrogate species diversity at the genome level. Ample diversity among accessions in a collection of species can be found, including single-nucleotide polymorphisms, insertions and deletions, copy number variation and presence/absence variation. For species with small, non-repetitive rich genomes, re-sequencing of query accessions is robust, highly informative, and economically feasible. However, for species with moderate to large sized repetitive-rich genomes, technical and economic barriers prevent en masse genome re-sequencing of accessions. Multiple approaches to access a focused subset of loci in species with larger genomes have been developed, including reduced representation sequencing, exome capture and transcriptome sequencing. Collectively, these approaches have enabled interrogation of diversity on a genome scale for large plant genomes, including crop species important to worldwide food security. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Diversity of Functionally Permissive Sequences in the Receptor-Binding Site of Influenza Hemagglutinin.

    PubMed

    Wu, Nicholas C; Xie, Jia; Zheng, Tianqing; Nycholat, Corwin M; Grande, Geramie; Paulson, James C; Lerner, Richard A; Wilson, Ian A

    2017-06-14

    Influenza A virus hemagglutinin (HA) initiates viral entry by engaging host receptor sialylated glycans via its receptor-binding site (RBS). The amino acid sequence of the RBS naturally varies across avian and human influenza virus subtypes and is also evolvable. However, functional sequence diversity in the RBS has not been fully explored. Here, we performed a large-scale mutational analysis of the RBS of A/WSN/33 (H1N1) and A/Hong Kong/1/1968 (H3N2) HAs. Many replication-competent mutants not yet observed in nature were identified, including some that could escape from an RBS-targeted broadly neutralizing antibody. This functional sequence diversity is made possible by pervasive epistasis in the RBS 220-loop and can be buffered by avidity in viral receptor binding. Overall, our study reveals that the HA RBS can accommodate a much greater range of sequence diversity than previously thought, which has significant implications for the complex evolutionary interrelationships between receptor specificity and immune escape. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Diversity and phylogeography of begomovirus-associated beta satellites of okra in India

    PubMed Central

    2011-01-01

    Background Okra (Abelmoschus esculentus; family Malvaceae) is grown in temperate as well as subtropical regions of the world, both for human consumption as a vegetable and for industrial uses. Okra yields are affected by the diseases caused by phyopathogenic viruses. India is the largest producer of okra and in this region a major biotic constraint to production are viruses of the genus Begomovirus. Begomoviruses affecting okra across the Old World are associated with specific, symptom modulating satellites (beta satellites). We describe a comprehensive analysis of the diversity of beta satellites associated with okra in India. Results The full-length sequences of 36 beta satellites, isolated from okra exhibiting typical begomovirus symptoms (leaf curl and yellow vein), were determined. The sequences segregated in to four groups. Two groups correspond to the beta satellites Okra leaf curl beta satellite (OLCuB) and Bhendi yellow vein beta satellite (BYVB) that have previously been identified in okra from the sub-continent. One sequence was distinct from all other, previously isolated beta satellites and represents a new species for which we propose the name Bhendi yellow vein India beta satellite (BYVIB). This new beta satellite was nevertheless closely related to BYVB and OLCuB. Most surprising was the identification of Croton yellow vein mosaic beta satellite (CroYVMB) in okra; a beta satellite not previously identified in a malvaceous plant species. The okra beta satellites were shown to have distinct geographic host ranges with BYVB occurring across India whereas OLCuB was only identified in northwestern India. Okra infections with CroYVMB were only identified across the northern and eastern central regions of India. A more detailed analysis of the sequences showed that OLCuB, BYVB and BYVIB share highest identity with respect βC1 gene. βC1 is the only gene encoded by beta satellites, the product of which is the major pathogenicity determinant of begomovirus-beta satellite complexes and is involved in overcoming host defenses based on RNAi. Conclusion The diversity of beta satellites in okra across the sub-continent is higher than previously realized and is higher than for any other malvaceous plant species so far analyzed. The beta satellites identified in okra show geographic segregation, which has implications for the development and introduction of resistant okra varieties. However, the finding that the βC1 gene of the major okra beta satellites (OLCuB, BYVB and BYVIB) share high sequence identity and provides a possible avenue to achieve a broad spectrum resistance. PMID:22188644

  6. The Hidden Diversity of Flagellated Protists in Soil.

    PubMed

    Venter, Paul Christiaan; Nitsche, Frank; Arndt, Hartmut

    2018-07-01

    Protists are among the most diverse and abundant eukaryotes in soil. However, gaps between described and sequenced protist morphospecies still present a pending problem when surveying environmental samples for known species using molecular methods. The number of sequences in the molecular PR 2 database (∼130,000) is limited compared to the species richness expected (>1 million protist species) - limiting the recovery rate. This is important, since high throughput sequencing (HTS) methods are used to find associative patterns between functional traits, taxa and environmental parameters. We performed HTS to survey soil flagellates in 150 grasslands of central Europe, and tested the recovery rate of ten previously isolated and cultivated cercomonad species, among locally found diversity. We recovered sequences for reference soil flagellate species, but also a great number of their phylogenetically evaluated genetic variants, among rare and dominant taxa with presumably own biogeography. This was recorded among dominant (cercozoans, Sandona), rare (apusozoans) and a large hidden diversity of predominantly aquatic protists in soil (choanoflagellates, bicosoecids) often forming novel clades associated with uncultured environmental sequences. Evaluating the reads, instead of the OTUs that individual reads are usually clustered into, we discovered that much of this hidden diversity may be lost due to clustering. Copyright © 2018 Elsevier GmbH. All rights reserved.

  7. Proline Restricts Loop I Conformation of the High Affinity WW Domain from Human Nedd4-1 to a Ligand Binding-Competent Type I β-Turn.

    PubMed

    Schulte, Marianne; Panwalkar, Vineet; Freischem, Stefan; Willbold, Dieter; Dingley, Andrew J

    2018-04-19

    Sequence alignment of the four WW domains from human Nedd4-1 (neuronal precursor cell expressed developmentally down-regulated gene 4-1) reveals that the highest sequence diversity exists in loop I. Three residues in this type I β-turn interact with the PPxY motif of the human epithelial Na + channel (hENaC) subunits, indicating that peptide affinity is defined by the loop I sequence. The third WW domain (WW3*) has the highest ligand affinity and unlike the other three hNedd4-1 WW domains or other WW domains studied contains the highly statistically preferred proline at the ( i + 1) position found in β-turns. In this report, molecular dynamics simulations and experimental data were combined to characterize loop I stability and dynamics. Exchange of the proline to the equivalent residue in WW4 (Thr) results in the presence of a predominantly open seven residue Ω loop rather than the type I β-turn conformation for the wild-type apo-WW3*. In the presence of the ligand, the structure of the mutated loop I is locked into a type I β-turn. Thus, proline in loop I ensures a stable peptide binding-competent β-turn conformation, indicating that amino acid sequence modulates local flexibility to tune binding preferences and stability of dynamic interaction motifs.

  8. Rapid evolution of the env gene leader sequence in cats naturally infected with feline immunodeficiency virus

    PubMed Central

    Hughes, Joseph; Biek, Roman; Litster, Annette; Willett, Brian J.; Hosie, Margaret J.

    2015-01-01

    Analysing the evolution of feline immunodeficiency virus (FIV) at the intra-host level is important in order to address whether the diversity and composition of viral quasispecies affect disease progression. We examined the intra-host diversity and the evolutionary rates of the entire env and structural fragments of the env sequences obtained from sequential blood samples in 43 naturally infected domestic cats that displayed different clinical outcomes. We observed in the majority of cats that FIV env showed very low levels of intra-host diversity. We estimated that env evolved at a rate of 1.16×10−3 substitutions per site per year and demonstrated that recombinant sequences evolved faster than non-recombinant sequences. It was evident that the V3–V5 fragment of FIV env displayed higher evolutionary rates in healthy cats than in those with terminal illness. Our study provided the first evidence that the leader sequence of env, rather than the V3–V5 sequence, had the highest intra-host diversity and the highest evolutionary rate of all env fragments, consistent with this region being under a strong selective pressure for genetic variation. Overall, FIV env displayed relatively low intra-host diversity and evolved slowly in naturally infected cats. The maximum evolutionary rate was observed in the leader sequence of env. Although genetic stability is not necessarily a prerequisite for clinical stability, the higher genetic stability of FIV compared with human immunodeficiency virus might explain why many naturally infected cats do not progress rapidly to AIDS. PMID:25535323

  9. Analysis of Facultative Lithotroph Distribution and Diversity on Volcanic Deposits by Use of the Large Subunit of Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase†

    PubMed Central

    Nanba, K.; King, G. M.; Dunfield, K.

    2004-01-01

    A 492- to 495-bp fragment of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) (rbcL) was amplified by PCR from facultatively lithotrophic aerobic CO-oxidizing bacteria, colorless and purple sulfide-oxidizing microbial mats, and genomic DNA extracts from tephra and ash deposits from Kilauea volcano, for which atmospheric CO and hydrogen have been previously documented as important substrates. PCR products from the mats and volcanic sites were used to construct rbcL clone libraries. Phylogenetic analyses showed that the rbcL sequences from all isolates clustered with form IC rbcL sequences derived from facultative lithotrophs. In contrast, the microbial mat clone sequences clustered with sequences from obligate lithotrophs representative of form IA rbcL. Clone sequences from volcanic sites fell within the form IC clade, suggesting that these sites were dominated by facultative lithotrophs, an observation consistent with biogeochemical patterns at the sites. Based on phylogenetic and statistical analyses, clone libraries differed significantly among volcanic sites, indicating that they support distinct lithotrophic assemblages. Although some of the clone sequences were similar to known rbcL sequences, most were novel. Based on nucleotide diversity and average pairwise difference, a forested site and an 1894 lava flow were found to support the most diverse and least diverse lithotrophic populations, respectively. These indices of diversity were not correlated with rates of atmospheric CO and hydrogen uptake but were correlated with estimates of respiration and microbial biomass. PMID:15066819

  10. Analysis of facultative lithotroph distribution and diversity on volcanic deposits by use of the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase.

    PubMed

    Nanba, K; King, G M; Dunfield, K

    2004-04-01

    A 492- to 495-bp fragment of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) (rbcL) was amplified by PCR from facultatively lithotrophic aerobic CO-oxidizing bacteria, colorless and purple sulfide-oxidizing microbial mats, and genomic DNA extracts from tephra and ash deposits from Kilauea volcano, for which atmospheric CO and hydrogen have been previously documented as important substrates. PCR products from the mats and volcanic sites were used to construct rbcL clone libraries. Phylogenetic analyses showed that the rbcL sequences from all isolates clustered with form IC rbcL sequences derived from facultative lithotrophs. In contrast, the microbial mat clone sequences clustered with sequences from obligate lithotrophs representative of form IA rbcL. Clone sequences from volcanic sites fell within the form IC clade, suggesting that these sites were dominated by facultative lithotrophs, an observation consistent with biogeochemical patterns at the sites. Based on phylogenetic and statistical analyses, clone libraries differed significantly among volcanic sites, indicating that they support distinct lithotrophic assemblages. Although some of the clone sequences were similar to known rbcL sequences, most were novel. Based on nucleotide diversity and average pairwise difference, a forested site and an 1894 lava flow were found to support the most diverse and least diverse lithotrophic populations, respectively. These indices of diversity were not correlated with rates of atmospheric CO and hydrogen uptake but were correlated with estimates of respiration and microbial biomass.

  11. Attentional awakening: gradual modulation of temporal attention in rapid serial visual presentation.

    PubMed

    Ariga, Atsunori; Yokosawa, Kazuhiko

    2008-03-01

    Orienting attention to a point in time facilitates processing of an item within rapidly changing surroundings. We used a one-target RSVP task to look for differences in accuracy in reporting a target related to when the target temporally appeared in the sequence. The results show that observers correctly report a target early in the sequence less frequently than later in the sequence. Previous RSVP studies predicted equivalently accurate performances for one target wherever it appeared in the sequence. We named this new phenomenon attentional awakening, which reflects a gradual modulation of temporal attention in a rapid sequence.

  12. Learning and recognition of tactile temporal sequences by mice and humans

    PubMed Central

    Bale, Michael R; Bitzidou, Malamati; Pitas, Anna; Brebner, Leonie S; Khazim, Lina; Anagnou, Stavros T; Stevenson, Caitlin D; Maravall, Miguel

    2017-01-01

    The world around us is replete with stimuli that unfold over time. When we hear an auditory stream like music or speech or scan a texture with our fingertip, physical features in the stimulus are concatenated in a particular order. This temporal patterning is critical to interpreting the stimulus. To explore the capacity of mice and humans to learn tactile sequences, we developed a task in which subjects had to recognise a continuous modulated noise sequence delivered to whiskers or fingertips, defined by its temporal patterning over hundreds of milliseconds. GO and NO-GO sequences differed only in that the order of their constituent noise modulation segments was temporally scrambled. Both mice and humans efficiently learned tactile sequences. Mouse sequence recognition depended on detecting transitions in noise amplitude; animals could base their decision on the earliest information available. Humans appeared to use additional cues, including the duration of noise modulation segments. DOI: http://dx.doi.org/10.7554/eLife.27333.001 PMID:28812976

  13. Abundant and diverse clustered regularly interspaced short palindromic repeat spacers in Clostridium difficile strains and prophages target multiple phage types within this pathogen.

    PubMed

    Hargreaves, Katherine R; Flores, Cesar O; Lawley, Trevor D; Clokie, Martha R J

    2014-08-26

    Clostridium difficile is an important human-pathogenic bacterium causing antibiotic-associated nosocomial infections worldwide. Mobile genetic elements and bacteriophages have helped shape C. difficile genome evolution. In many bacteria, phage infection may be controlled by a form of bacterial immunity called the clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) system. This uses acquired short nucleotide sequences (spacers) to target homologous sequences (protospacers) in phage genomes. C. difficile carries multiple CRISPR arrays, and in this paper we examine the relationships between the host- and phage-carried elements of the system. We detected multiple matches between spacers and regions in 31 C. difficile phage and prophage genomes. A subset of the spacers was located in prophage-carried CRISPR arrays. The CRISPR spacer profiles generated suggest that related phages would have similar host ranges. Furthermore, we show that C. difficile strains of the same ribotype could either have similar or divergent CRISPR contents. Both synonymous and nonsynonymous mutations in the protospacer sequences were identified, as well as differences in the protospacer adjacent motif (PAM), which could explain how phages escape this system. This paper illustrates how the distribution and diversity of CRISPR spacers in C. difficile, and its prophages, could modulate phage predation for this pathogen and impact upon its evolution and pathogenicity. Clostridium difficile is a significant bacterial human pathogen which undergoes continual genome evolution, resulting in the emergence of new virulent strains. Phages are major facilitators of genome evolution in other bacterial species, and we use sequence analysis-based approaches in order to examine whether the CRISPR/Cas system could control these interactions across divergent C. difficile strains. The presence of spacer sequences in prophages that are homologous to phage genomes raises an extra level of complexity in this predator-prey microbial system. Our results demonstrate that the impact of phage infection in this system is widespread and that the CRISPR/Cas system is likely to be an important aspect of the evolutionary dynamics in C. difficile. Copyright © 2014 Hargreaves et al.

  14. Solving Assembly Sequence Planning using Angle Modulated Simulated Kalman Filter

    NASA Astrophysics Data System (ADS)

    Mustapa, Ainizar; Yusof, Zulkifli Md.; Adam, Asrul; Muhammad, Badaruddin; Ibrahim, Zuwairie

    2018-03-01

    This paper presents an implementation of Simulated Kalman Filter (SKF) algorithm for optimizing an Assembly Sequence Planning (ASP) problem. The SKF search strategy contains three simple steps; predict-measure-estimate. The main objective of the ASP is to determine the sequence of component installation to shorten assembly time or save assembly costs. Initially, permutation sequence is generated to represent each agent. Each agent is then subjected to a precedence matrix constraint to produce feasible assembly sequence. Next, the Angle Modulated SKF (AMSKF) is proposed for solving ASP problem. The main idea of the angle modulated approach in solving combinatorial optimization problem is to use a function, g(x), to create a continuous signal. The performance of the proposed AMSKF is compared against previous works in solving ASP by applying BGSA, BPSO, and MSPSO. Using a case study of ASP, the results show that AMSKF outperformed all the algorithms in obtaining the best solution.

  15. eRNA: a graphic user interface-based tool optimized for large data analysis from high-throughput RNA sequencing

    PubMed Central

    2014-01-01

    Background RNA sequencing (RNA-seq) is emerging as a critical approach in biological research. However, its high-throughput advantage is significantly limited by the capacity of bioinformatics tools. The research community urgently needs user-friendly tools to efficiently analyze the complicated data generated by high throughput sequencers. Results We developed a standalone tool with graphic user interface (GUI)-based analytic modules, known as eRNA. The capacity of performing parallel processing and sample management facilitates large data analyses by maximizing hardware usage and freeing users from tediously handling sequencing data. The module miRNA identification” includes GUIs for raw data reading, adapter removal, sequence alignment, and read counting. The module “mRNA identification” includes GUIs for reference sequences, genome mapping, transcript assembling, and differential expression. The module “Target screening” provides expression profiling analyses and graphic visualization. The module “Self-testing” offers the directory setups, sample management, and a check for third-party package dependency. Integration of other GUIs including Bowtie, miRDeep2, and miRspring extend the program’s functionality. Conclusions eRNA focuses on the common tools required for the mapping and quantification analysis of miRNA-seq and mRNA-seq data. The software package provides an additional choice for scientists who require a user-friendly computing environment and high-throughput capacity for large data analysis. eRNA is available for free download at https://sourceforge.net/projects/erna/?source=directory. PMID:24593312

  16. eRNA: a graphic user interface-based tool optimized for large data analysis from high-throughput RNA sequencing.

    PubMed

    Yuan, Tiezheng; Huang, Xiaoyi; Dittmar, Rachel L; Du, Meijun; Kohli, Manish; Boardman, Lisa; Thibodeau, Stephen N; Wang, Liang

    2014-03-05

    RNA sequencing (RNA-seq) is emerging as a critical approach in biological research. However, its high-throughput advantage is significantly limited by the capacity of bioinformatics tools. The research community urgently needs user-friendly tools to efficiently analyze the complicated data generated by high throughput sequencers. We developed a standalone tool with graphic user interface (GUI)-based analytic modules, known as eRNA. The capacity of performing parallel processing and sample management facilitates large data analyses by maximizing hardware usage and freeing users from tediously handling sequencing data. The module miRNA identification" includes GUIs for raw data reading, adapter removal, sequence alignment, and read counting. The module "mRNA identification" includes GUIs for reference sequences, genome mapping, transcript assembling, and differential expression. The module "Target screening" provides expression profiling analyses and graphic visualization. The module "Self-testing" offers the directory setups, sample management, and a check for third-party package dependency. Integration of other GUIs including Bowtie, miRDeep2, and miRspring extend the program's functionality. eRNA focuses on the common tools required for the mapping and quantification analysis of miRNA-seq and mRNA-seq data. The software package provides an additional choice for scientists who require a user-friendly computing environment and high-throughput capacity for large data analysis. eRNA is available for free download at https://sourceforge.net/projects/erna/?source=directory.

  17. Abstract feature codes: The building blocks of the implicit learning system.

    PubMed

    Eberhardt, Katharina; Esser, Sarah; Haider, Hilde

    2017-07-01

    According to the Theory of Event Coding (TEC; Hommel, Müsseler, Aschersleben, & Prinz, 2001), action and perception are represented in a shared format in the cognitive system by means of feature codes. In implicit sequence learning research, it is still common to make a conceptual difference between independent motor and perceptual sequences. This supposedly independent learning takes place in encapsulated modules (Keele, Ivry, Mayr, Hazeltine, & Heuer 2003) that process information along single dimensions. These dimensions have remained underspecified so far. It is especially not clear whether stimulus and response characteristics are processed in separate modules. Here, we suggest that feature dimensions as they are described in the TEC should be viewed as the basic content of modules of implicit learning. This means that the modules process all stimulus and response information related to certain feature dimensions of the perceptual environment. In 3 experiments, we investigated by means of a serial reaction time task the nature of the basic units of implicit learning. As a test case, we used stimulus location sequence learning. The results show that a stimulus location sequence and a response location sequence cannot be learned without interference (Experiment 2) unless one of the sequences can be coded via an alternative, nonspatial dimension (Experiment 3). These results support the notion that spatial location is one module of the implicit learning system and, consequently, that there are no separate processing units for stimulus versus response locations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Enteral High Fat-Polyunsaturated Fatty Acid Blend Alters the Pathogen Composition of the Intestinal Microbiome in Premature Infants with an Enterostomy

    PubMed Central

    Younge, Noelle; Yang, Qing; Seed, Patrick C.

    2016-01-01

    Objective To determine the effect of enteral fish oil and safflower oil supplementation on the intestinal microbiome in premature infants with an enterostomy. Study design Premature infants with an enterostomy were randomized to receive early enteral supplementation with a high fat-polyunsaturated fatty acid (HF-PUFA) blend of fish oil and safflower oil versus standard nutritional therapy. We used 16S rRNA gene sequencing for longitudinal profiling of the microbiome from the time of study entry until bowel reanastomosis. We used weighted gene co-expression network analysis to identify microbial community modules that differed between study groups over time. We performed imputed metagenomic analysis to determine metabolic pathways associated with the microbial genes. Results Sixteen infants were randomized to receive enteral HF-PUFA supplementation and 16 infants received standard care. The intestinal microbiota of infants in the treatment group differed from those in the control group, with greater bacterial diversity and lower abundance of Streptococcus, Clostridium, and many pathogenic genera within the Enterobacteriaceae family. We identified four microbial community modules with significant differences between groups over time. Imputed metagenomic analysis of the microbial genes revealed metabolic pathways that differed between groups, including metabolism of amino acids, carbohydrates, fatty acids, and secondary bile acid synthesis. Conclusion Enteral HF-PUFA supplementation was associated with decreased abundance of pathogenic bacteria, greater bacterial diversity, and shifts in the potential metabolic functions of intestinal microbiota. Trial registration ClinicalTrials.gov: NCT01306838 PMID:27856001

  19. Enteral High Fat-Polyunsaturated Fatty Acid Blend Alters the Pathogen Composition of the Intestinal Microbiome in Premature Infants with an Enterostomy.

    PubMed

    Younge, Noelle; Yang, Qing; Seed, Patrick C

    2017-02-01

    To determine the effect of enteral fish oil and safflower oil supplementation on the intestinal microbiome in infants with an enterostomy born premature. Infants with an enterostomy born premature were randomized to receive early enteral supplementation with a high-fat polyunsaturated fatty acid (HF-PUFA) blend of fish oil and safflower oil vs standard nutritional therapy. We used 16S rRNA gene sequencing for longitudinal profiling of the microbiome from the time of study entry until bowel reanastomosis. We used weighted gene coexpression network analysis to identify microbial community modules that differed between study groups over time. We performed imputed metagenomic analysis to determine metabolic pathways associated with the microbial genes. Sixteen infants were randomized to receive enteral HF-PUFA supplementation, and 16 infants received standard care. The intestinal microbiota of infants in the treatment group differed from those in the control group, with greater bacterial diversity and lower abundance of Streptococcus, Clostridium, and many pathogenic genera within the Enterobacteriaceae family. We identified 4 microbial community modules with significant differences between groups over time. Imputed metagenomic analysis of the microbial genes revealed metabolic pathways that differed between groups, including metabolism of amino acids, carbohydrates, fatty acids, and secondary bile acid synthesis. Enteral HF-PUFA supplementation was associated with decreased abundance of pathogenic bacteria, greater bacterial diversity, and shifts in the potential metabolic functions of intestinal microbiota. ClinicalTrials.gov:NCT01306838. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Single shot FASTBUS sequencer

    NASA Astrophysics Data System (ADS)

    Ikeda, H.

    1989-10-01

    A description is given of a single-shot sequencer, a FASTBUS master module that can execute only a predetermined FASTBUS WRITE operation. The execution cycle is directly activated by an external signal. The module is a single-width auxiliary card mounted on a rear slot adjacent to the crate ancillary card. The application of the module to the TOPAZ data acquisition system of TRISTAN is discussed, and the circuit itself is described.

  1. Opening Up Architectures of Software-Intensive Systems: A First Prototype Implementation

    DTIC Science & Technology

    2007-11-01

    9 4.1.2 Sequence Diagram Viewer NetBeans Module .................................. 11 4.1.3 Limitations of Static Analysis...Viewer NetBeans module [18]. Note that there exist other tools which can statically reverse engineer sequence diagrams such as Borland Together [19...and the NetBeans UML Modeling module [20]. The reason those are not presented in this document is because their functionalities are very similar

  2. Genetic Diversity among Clostridium botulinum Strains Harboring bont/A2 and bont/A3 Genes

    PubMed Central

    Raphael, Brian H.; Joseph, Lavin A.; Meno, Sarah R.; Fernández, Rafael A.; Maslanka, Susan E.

    2012-01-01

    Clostridium botulinum type A strains are known to be genetically diverse and widespread throughout the world. Genetic diversity studies have focused mainly on strains harboring one type A botulinum toxin gene, bont/A1, although all reported bont/A gene variants have been associated with botulism cases. Our study provides insight into the genetic diversity of C. botulinum type A strains, which contain bont/A2 (n = 42) and bont/A3 (n = 4) genes, isolated from diverse samples and geographic origins. Genetic diversity was assessed by using bont nucleotide sequencing, content analysis of the bont gene clusters, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE). Sequences of bont genes obtained in this study showed 99.9 to 100% identity with other bont/A2 or bont/A3 gene sequences available in public databases. The neurotoxin gene clusters of the subtype A2 and A3 strains analyzed in this study were similar in gene content. C. botulinum strains harboring bont/A2 and bont/A3 genes were divided into six and two MLST profiles, respectively. Four groups of strains shared a similarity of at least 95% by PFGE; the largest group included 21 out of 46 strains. The strains analyzed in this study showed relatively limited genetic diversity using either MLST or PFGE. PMID:23042179

  3. Theileria parva antigens recognized by CD8+ T cells show varying degrees of diversity in buffalo-derived infected cell lines.

    PubMed

    Sitt, Tatjana; Pelle, Roger; Chepkwony, Maurine; Morrison, W Ivan; Toye, Philip

    2018-05-06

    The extent of sequence diversity among the genes encoding 10 antigens (Tp1-10) known to be recognized by CD8+ T lymphocytes from cattle immune to Theileria parva was analysed. The sequences were derived from parasites in 23 buffalo-derived cell lines, three cattle-derived isolates and one cloned cell line obtained from a buffalo-derived stabilate. The results revealed substantial variation among the antigens through sequence diversity. The greatest nucleotide and amino acid diversity were observed in Tp1, Tp2 and Tp9. Tp5 and Tp7 showed the least amount of allelic diversity, and Tp5, Tp6 and Tp7 had the lowest levels of protein diversity. Tp6 was the most conserved protein; only a single non-synonymous substitution was found in all obtained sequences. The ratio of non-synonymous: synonymous substitutions varied from 0.84 (Tp1) to 0.04 (Tp6). Apart from Tp2 and Tp9, we observed no variation in the other defined CD8+ T cell epitopes (Tp4, 5, 7 and 8), indicating that epitope variation is not a universal feature of T. parva antigens. In addition to providing markers that can be used to examine the diversity in T. parva populations, the results highlight the potential for using conserved antigens to develop vaccines that provide broad protection against T. parva.

  4. Bamboo shoot fiber prevents obesity in mice by modulating the gut microbiota

    PubMed Central

    Li, Xiufen; Guo, Juan; Ji, Kailong; Zhang, Ping

    2016-01-01

    Dietary fiber has been shown to prevent high-fat diet induced obesity through modulating the gut microbiota; however, quality difference in fiber type is largely unknown. We performed a 6 week study on C57BL/6J mice fed a macronutrient matched high-fat diet with different fiber types including cellulose (HFC), bamboo shoot fiber (HFBS) and several other commonly consumed fibers. Our results showed that the HFBS group exhibited the lowest weight gain among all diet groups and had improved lipid profiles and glycemic control compared with the HFC group. As revealed by 16S rRNA gene sequencing, loss of diversity in the gut microbiota induced by the HFC diet was largely prevented by the HFBS diet. Moreover, compared with the HFC diet, the HFBS diet resulted in markedly increased relative abundance of Bacteroidetes and strong inhibition of Verrucomicrobia, two divisions strongly correlated with body weight. In conclusion, the present study provides evidence of a quality difference among different types of dietary fibers and shows that bamboo shoot fiber is the most effective in suppressing high-fat diet induced obesity. Our findings indicate that bamboo shoot fiber is a potential prebiotic fiber which modulates the gut microbiota and improves host metabolism. PMID:27599699

  5. Information Commons for Rice (IC4R)

    PubMed Central

    2016-01-01

    Rice is the most important staple food for a large part of the world's human population and also a key model organism for plant research. Here, we present Information Commons for Rice (IC4R; http://ic4r.org), a rice knowledgebase featuring adoption of an extensible and sustainable architecture that integrates multiple omics data through community-contributed modules. Each module is developed and maintained by different committed groups, deals with data collection, processing and visualization, and delivers data on-demand via web services. In the current version, IC4R incorporates a variety of rice data through multiple committed modules, including genome-wide expression profiles derived entirely from RNA-Seq data, resequencing-based genomic variations obtained from re-sequencing data of thousands of rice varieties, plant homologous genes covering multiple diverse plant species, post-translational modifications, rice-related literatures and gene annotations contributed by the rice research community. Unlike extant related databases, IC4R is designed for scalability and sustainability and thus also features collaborative integration of rice data and low costs for database update and maintenance. Future directions of IC4R include incorporation of other omics data and association of multiple omics data with agronomically important traits, dedicating to build IC4R into a valuable knowledgebase for both basic and translational researches in rice. PMID:26519466

  6. Genetic variations in merozoite surface antigen genes of Babesia bovis detected in Vietnamese cattle and water buffaloes.

    PubMed

    Yokoyama, Naoaki; Sivakumar, Thillaiampalam; Tuvshintulga, Bumduuren; Hayashida, Kyoko; Igarashi, Ikuo; Inoue, Noboru; Long, Phung Thang; Lan, Dinh Thi Bich

    2015-03-01

    The genes that encode merozoite surface antigens (MSAs) in Babesia bovis are genetically diverse. In this study, we analyzed the genetic diversity of B. bovis MSA-1, MSA-2b, and MSA-2c genes in Vietnamese cattle and water buffaloes. Blood DNA samples from 258 cattle and 49 water buffaloes reared in the Thua Thien Hue province of Vietnam were screened with a B. bovis-specific diagnostic PCR assay. The B. bovis-positive DNA samples (23 cattle and 16 water buffaloes) were then subjected to PCR assays to amplify the MSA-1, MSA-2b, and MSA-2c genes. Sequencing analyses showed that the Vietnamese MSA-1 and MSA-2b sequences are genetically diverse, whereas MSA-2c is relatively conserved. The nucleotide identity values for these MSA gene sequences were similar in the cattle and water buffaloes. Consistent with the sequencing data, the Vietnamese MSA-1 and MSA-2b sequences were dispersed across several clades in the corresponding phylogenetic trees, whereas the MSA-2c sequences occurred in a single clade. Cattle- and water-buffalo-derived sequences also often clustered together on the phylogenetic trees. The Vietnamese MSA-1, MSA-2b, and MSA-2c sequences were then screened for recombination with automated methods. Of the seven recombination events detected, five and two were associated with the MSA-2b and MSA-2c recombinant sequences, respectively, whereas no MSA-1 recombinants were detected among the sequences analyzed. Recombination between the sequences derived from cattle and water buffaloes was very common, and the resultant recombinant sequences were found in both host animals. These data indicate that the genetic diversity of the MSA sequences does not differ between cattle and water buffaloes in Vietnam. They also suggest that recombination between the B. bovis MSA sequences in both cattle and water buffaloes might contribute to the genetic variation in these genes in Vietnam. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. An Avian Basal Ganglia-Forebrain Circuit Contributes Differentially to Syllable Versus Sequence Variability of Adult Bengalese Finch Song

    PubMed Central

    Hampton, Cara M.; Sakata, Jon T.; Brainard, Michael S.

    2009-01-01

    Behavioral variability is important for motor skill learning but continues to be present and actively regulated even in well-learned behaviors. In adult songbirds, two types of song variability can persist and are modulated by social context: variability in syllable structure and variability in syllable sequencing. The degree to which the control of both types of adult variability is shared or distinct remains unknown. The output of a basal ganglia-forebrain circuit, LMAN (the lateral magnocellular nucleus of the anterior nidopallium), has been implicated in song variability. For example, in adult zebra finches, neurons in LMAN actively control the variability of syllable structure. It is unclear, however, whether LMAN contributes to variability in adult syllable sequencing because sequence variability in adult zebra finch song is minimal. In contrast, Bengalese finches retain variability in both syllable structure and syllable sequencing into adulthood. We analyzed the effects of LMAN lesions on the variability of syllable structure and sequencing and on the social modulation of these forms of variability in adult Bengalese finches. We found that lesions of LMAN significantly reduced the variability of syllable structure but not of syllable sequencing. We also found that LMAN lesions eliminated the social modulation of the variability of syllable structure but did not detect significant effects on the modulation of sequence variability. These results show that LMAN contributes differentially to syllable versus sequence variability of adult song and suggest that these forms of variability are regulated by distinct neural pathways. PMID:19357331

  8. Foliar fungi of Betula pendula: impact of tree species mixtures and assessment methods

    PubMed Central

    Nguyen, Diem; Boberg, Johanna; Cleary, Michelle; Bruelheide, Helge; Hönig, Lydia; Koricheva, Julia; Stenlid, Jan

    2017-01-01

    Foliar fungi of silver birch (Betula pendula) in an experimental Finnish forest were investigated across a gradient of tree species richness using molecular high-throughput sequencing and visual macroscopic assessment. We hypothesized that the molecular approach detects more fungal taxa than visual assessment, and that there is a relationship among the most common fungal taxa detected by both techniques. Furthermore, we hypothesized that the fungal community composition, diversity, and distribution patterns are affected by changes in tree diversity. Sequencing revealed greater diversity of fungi on birch leaves than the visual assessment method. One species showed a linear relationship between the methods. Species-specific variation in fungal community composition could be partially explained by tree diversity, though overall fungal diversity was not affected by tree diversity. Analysis of specific fungal taxa indicated tree diversity effects at the local neighbourhood scale, where the proportion of birch among neighbouring trees varied, but not at the plot scale. In conclusion, both methods may be used to determine tree diversity effects on the foliar fungal community. However, high-throughput sequencing provided higher resolution of the fungal community, while the visual macroscopic assessment detected functionally active fungal species. PMID:28150710

  9. Impact of a 3-Months Vegetarian Diet on the Gut Microbiota and Immune Repertoire

    PubMed Central

    Zhang, Chenchen; Björkman, Andrea; Cai, Kaiye; Liu, Guilin; Wang, Chunlin; Li, Yin; Xia, Huihua; Sun, Lijun; Kristiansen, Karsten; Wang, Jun; Han, Jian; Hammarström, Lennart; Pan-Hammarström, Qiang

    2018-01-01

    The dietary pattern can influence the immune system directly, but may also modulate it indirectly by regulating the gut microbiota. Here, we investigated the effect of a 3-months lacto-ovo-vegetarian diet on the diversity of gut microbiota and the immune system in healthy omnivorous volunteers, using high-throughput sequencing technologies. The short-term vegetarian diet did not have any major effect on the diversity of the immune system and the overall composition of the metagenome. The prevalence of bacterial genera/species with known beneficial effects on the intestine, including butyrate-producers and probiotic species and the balance of autoimmune-related variable genes/families were, however, altered in the short-term vegetarians. A number of bacterial species that are associated with the expression level of IgA, a key immunoglobulin class that protects the gastrointestinal mucosal system, were also identified. Furthermore, a lower diversity of T-cell repertoire and expression level of IgE, as well as a reduced abundance of inflammation-related genes in the gut microbiota were potentially associated with a control group with long-term vegetarians. Thus, the composition and duration of the diet may have an impact on the balance of pro-/anti-inflammatory factors in the gut microbiota and immune system. PMID:29755475

  10. Impact of a 3-Months Vegetarian Diet on the Gut Microbiota and Immune Repertoire.

    PubMed

    Zhang, Chenchen; Björkman, Andrea; Cai, Kaiye; Liu, Guilin; Wang, Chunlin; Li, Yin; Xia, Huihua; Sun, Lijun; Kristiansen, Karsten; Wang, Jun; Han, Jian; Hammarström, Lennart; Pan-Hammarström, Qiang

    2018-01-01

    The dietary pattern can influence the immune system directly, but may also modulate it indirectly by regulating the gut microbiota. Here, we investigated the effect of a 3-months lacto-ovo-vegetarian diet on the diversity of gut microbiota and the immune system in healthy omnivorous volunteers, using high-throughput sequencing technologies. The short-term vegetarian diet did not have any major effect on the diversity of the immune system and the overall composition of the metagenome. The prevalence of bacterial genera/species with known beneficial effects on the intestine, including butyrate-producers and probiotic species and the balance of autoimmune-related variable genes/families were, however, altered in the short-term vegetarians. A number of bacterial species that are associated with the expression level of IgA, a key immunoglobulin class that protects the gastrointestinal mucosal system, were also identified. Furthermore, a lower diversity of T-cell repertoire and expression level of IgE, as well as a reduced abundance of inflammation-related genes in the gut microbiota were potentially associated with a control group with long-term vegetarians. Thus, the composition and duration of the diet may have an impact on the balance of pro-/anti-inflammatory factors in the gut microbiota and immune system.

  11. High-Efficiency Power Module

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N (Inventor); Wintucky, Edwin G (Inventor)

    2013-01-01

    One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.

  12. High-Efficiency Power Module

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)

    2015-01-01

    One or more embodiments of the present invention pertain to an all solid-state microwave power module. The module includes a plurality of solid-state amplifiers configured to amplify a signal using a low power stage, a medium power stage, and a high power stage. The module also includes a power conditioner configured to activate a voltage sequencer (e.g., bias controller) when power is received from a power source. The voltage sequencer is configured to sequentially apply voltage to a gate of each amplifier and sequentially apply voltage to a drain of each amplifier.

  13. HIV-1 envelope sequence-based diversity measures for identifying recent infections

    PubMed Central

    Kafando, Alexis; Fournier, Eric; Serhir, Bouchra; Martineau, Christine; Doualla-Bell, Florence; Sangaré, Mohamed Ndongo; Sylla, Mohamed; Chamberland, Annie; El-Far, Mohamed; Charest, Hugues

    2017-01-01

    Identifying recent HIV-1 infections is crucial for monitoring HIV-1 incidence and optimizing public health prevention efforts. To identify recent HIV-1 infections, we evaluated and compared the performance of 4 sequence-based diversity measures including percent diversity, percent complexity, Shannon entropy and number of haplotypes targeting 13 genetic segments within the env gene of HIV-1. A total of 597 diagnostic samples obtained in 2013 and 2015 from recently and chronically HIV-1 infected individuals were selected. From the selected samples, 249 (134 from recent versus 115 from chronic infections) env coding regions, including V1-C5 of gp120 and the gp41 ectodomain of HIV-1, were successfully amplified and sequenced by next generation sequencing (NGS) using the Illumina MiSeq platform. The ability of the four sequence-based diversity measures to correctly identify recent HIV infections was evaluated using the frequency distribution curves, median and interquartile range and area under the curve (AUC) of the receiver operating characteristic (ROC). Comparing the median and interquartile range and evaluating the frequency distribution curves associated with the 4 sequence-based diversity measures, we observed that the percent diversity, number of haplotypes and Shannon entropy demonstrated significant potential to discriminate recent from chronic infections (p<0.0001). Using the AUC of ROC analysis, only the Shannon entropy measure within three HIV-1 env segments could accurately identify recent infections at a satisfactory level. The env segments were gp120 C2_1 (AUC = 0.806), gp120 C2_3 (AUC = 0.805) and gp120 V3 (AUC = 0.812). Our results clearly indicate that the Shannon entropy measure represents a useful tool for predicting HIV-1 infection recency. PMID:29284009

  14. HIV-1 envelope sequence-based diversity measures for identifying recent infections.

    PubMed

    Kafando, Alexis; Fournier, Eric; Serhir, Bouchra; Martineau, Christine; Doualla-Bell, Florence; Sangaré, Mohamed Ndongo; Sylla, Mohamed; Chamberland, Annie; El-Far, Mohamed; Charest, Hugues; Tremblay, Cécile L

    2017-01-01

    Identifying recent HIV-1 infections is crucial for monitoring HIV-1 incidence and optimizing public health prevention efforts. To identify recent HIV-1 infections, we evaluated and compared the performance of 4 sequence-based diversity measures including percent diversity, percent complexity, Shannon entropy and number of haplotypes targeting 13 genetic segments within the env gene of HIV-1. A total of 597 diagnostic samples obtained in 2013 and 2015 from recently and chronically HIV-1 infected individuals were selected. From the selected samples, 249 (134 from recent versus 115 from chronic infections) env coding regions, including V1-C5 of gp120 and the gp41 ectodomain of HIV-1, were successfully amplified and sequenced by next generation sequencing (NGS) using the Illumina MiSeq platform. The ability of the four sequence-based diversity measures to correctly identify recent HIV infections was evaluated using the frequency distribution curves, median and interquartile range and area under the curve (AUC) of the receiver operating characteristic (ROC). Comparing the median and interquartile range and evaluating the frequency distribution curves associated with the 4 sequence-based diversity measures, we observed that the percent diversity, number of haplotypes and Shannon entropy demonstrated significant potential to discriminate recent from chronic infections (p<0.0001). Using the AUC of ROC analysis, only the Shannon entropy measure within three HIV-1 env segments could accurately identify recent infections at a satisfactory level. The env segments were gp120 C2_1 (AUC = 0.806), gp120 C2_3 (AUC = 0.805) and gp120 V3 (AUC = 0.812). Our results clearly indicate that the Shannon entropy measure represents a useful tool for predicting HIV-1 infection recency.

  15. Stability of operational taxonomic units: an important but neglected property for analyzing microbial diversity.

    PubMed

    He, Yan; Caporaso, J Gregory; Jiang, Xiao-Tao; Sheng, Hua-Fang; Huse, Susan M; Rideout, Jai Ram; Edgar, Robert C; Kopylova, Evguenia; Walters, William A; Knight, Rob; Zhou, Hong-Wei

    2015-01-01

    The operational taxonomic unit (OTU) is widely used in microbial ecology. Reproducibility in microbial ecology research depends on the reliability of OTU-based 16S ribosomal subunit RNA (rRNA) analyses. Here, we report that many hierarchical and greedy clustering methods produce unstable OTUs, with membership that depends on the number of sequences clustered. If OTUs are regenerated with additional sequences or samples, sequences originally assigned to a given OTU can be split into different OTUs. Alternatively, sequences assigned to different OTUs can be merged into a single OTU. This OTU instability affects alpha-diversity analyses such as rarefaction curves, beta-diversity analyses such as distance-based ordination (for example, Principal Coordinate Analysis (PCoA)), and the identification of differentially represented OTUs. Our results show that the proportion of unstable OTUs varies for different clustering methods. We found that the closed-reference method is the only one that produces completely stable OTUs, with the caveat that sequences that do not match a pre-existing reference sequence collection are discarded. As a compromise to the factors listed above, we propose using an open-reference method to enhance OTU stability. This type of method clusters sequences against a database and includes unmatched sequences by clustering them via a relatively stable de novo clustering method. OTU stability is an important consideration when analyzing microbial diversity and is a feature that should be taken into account during the development of novel OTU clustering methods.

  16. Population diversity of Diaphorina citri (Hemiptera: Liviidae) in China based on whole mitochondrial genome sequences.

    PubMed

    Wu, Fengnian; Jiang, Hongyan; Beattie, G Andrew C; Holford, Paul; Chen, Jianchi; Wallis, Christopher M; Zheng, Zheng; Deng, Xiaoling; Cen, Yijing

    2018-04-24

    Diaphorina citri (Asian citrus psyllid; ACP) transmits 'Candidatus Liberibacter asiaticus' associated with citrus Huanglongbing (HLB). ACP has been reported in 11 provinces/regions in China, yet its population diversity remains unclear. In this study, we evaluated ACP population diversity in China using representative whole mitochondrial genome (mitogenome) sequences. Additional mitogenome sequences outside China were also acquired and evaluated. The sizes of the 27 ACP mitogenome sequences ranged from 14 986 to 15 030 bp. Along with three previously published mitogenome sequences, the 30 sequences formed three major mitochondrial groups (MGs): MG1, present in southwestern China and occurring at elevations above 1000 m; MG2, present in southeastern China and Southeast Asia (Cambodia, Indonesia, Malaysia, and Vietnam) and occurring at elevations below 180 m; and MG3, present in the USA and Pakistan. Single nucleotide polymorphisms in five genes (cox2, atp8, nad3, nad1 and rrnL) contributed mostly in the ACP diversity. Among these genes, rrnL had the most variation. Mitogenome sequences analyses revealed two major phylogenetic groups of ACP present in China as well as a possible unique group present currently in Pakistan and the USA. The information could have significant implications for current ACP control and HLB management. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  17. Microbial and functional diversity of a subterrestrial high pH groundwater associated to serpentinization.

    PubMed

    Tiago, Igor; Veríssimo, António

    2013-06-01

    Microbial and functional diversity were assessed, from a serpentinization-driven subterrestrial alkaline aquifer - Cabeço de Vide Aquifer (CVA) in Portugal. DGGE analyses revealed the presence of a stable microbial community. By 16S rRNA gene libraries and pyrosequencing analyses, a diverse bacterial composition was determined, contrasting with low archaeal diversity. Within Bacteria the majority of the populations were related to organisms or sequences affiliated to class Clostridia, but members of classes Acidobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Deinococci, Gammaproteobacteria and of the phyla Bacteroidetes, Chloroflexi and Nitrospira were also detected. Domain Archaea encompassed mainly sequences affiliated to Euryarchaeota. Only form I RuBisCO - cbbL was detected. Autotrophic carbon fixation via the rTCA, 3-HP and 3-HP/4H-B cycles could not be confirmed. The detected APS reductase alpha subunit - aprA sequences were phylogenetically related to sequences of sulfate-reducing bacteria belonging to Clostridia, and also to sequences of chemolithoautothrophic sulfur-oxidizing bacteria belonging to Betaproteobacteria. Sequences of methyl coenzyme M reductase - mcrA were phylogenetically affiliated to sequences belonging to Anaerobic Methanotroph group 1 (ANME-1). The populations found and the functional key markers detected in CVA suggest that metabolisms related to H2 , methane and/or sulfur may be the major driving forces in this environment. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  18. Phylogenetic and ecological analyses of soil and sporocarp DNA sequences reveal high diversity and strong habitat partitioning in the boreal ectomycorrhizal genus Russula (Russulales; Basidiomycota)

    Treesearch

    József Geml; Gary A. Laursen; Ian C. Herriott; Jack M. McFarland; Michael G. Booth; Niall Lennon; H. Chad Nusbaum; D. Lee Taylor

    2010-01-01

    Although critical for the functioning of ecosystems, fungi are poorly known in high-latitude regions. Here, we provide the first genetic diversity assessment of one of the most diverse and abundant ectomycorrhizal genera in Alaska: Russula. We analyzed internal transcribed spacer rDNA sequences from sporocarps and soil samples using phylogenetic...

  19. Broad Surveys of DNA Viral Diversity Obtained through Viral Metagenomics of Mosquitoes

    PubMed Central

    Ng, Terry Fei Fan; Willner, Dana L.; Lim, Yan Wei; Schmieder, Robert; Chau, Betty; Nilsson, Christina; Anthony, Simon; Ruan, Yijun; Rohwer, Forest; Breitbart, Mya

    2011-01-01

    Viruses are the most abundant and diverse genetic entities on Earth; however, broad surveys of viral diversity are hindered by the lack of a universal assay for viruses and the inability to sample a sufficient number of individual hosts. This study utilized vector-enabled metagenomics (VEM) to provide a snapshot of the diversity of DNA viruses present in three mosquito samples from San Diego, California. The majority of the sequences were novel, suggesting that the viral community in mosquitoes, as well as the animal and plant hosts they feed on, is highly diverse and largely uncharacterized. Each mosquito sample contained a distinct viral community. The mosquito viromes contained sequences related to a broad range of animal, plant, insect and bacterial viruses. Animal viruses identified included anelloviruses, circoviruses, herpesviruses, poxviruses, and papillomaviruses, which mosquitoes may have obtained from vertebrate hosts during blood feeding. Notably, sequences related to human papillomaviruses were identified in one of the mosquito samples. Sequences similar to plant viruses were identified in all mosquito viromes, which were potentially acquired through feeding on plant nectar. Numerous bacteriophages and insect viruses were also detected, including a novel densovirus likely infecting Culex erythrothorax. Through sampling insect vectors, VEM enables broad survey of viral diversity and has significantly increased our knowledge of the DNA viruses present in mosquitoes. PMID:21674005

  20. Development and testing of advanced fire-resistant photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Sugimura, R. S.; Otth, D. H.; Ross, R. G., Jr.

    1985-01-01

    The evaluation of back-surface materials flammability in order to identify fire resistant module designs is examined. The fire test apparatus, burning-brand test sequence, and spread-of-flame test sequence are described. Video recordings and time-temperature profiles of module back surfaces are utilized to study the flammability failure mechanism and identify high-temperature materials. A table of flammability test results for various module designs is provided. The data reveals that 2-mil kapton, fiberglass cloth coated or impregnated with a material to plug pores, and metal foil back-surface materials achieve class A and B fire-resistance levels, and are applicable for photovoltaic module designs.

  1. Assessment of composite motif discovery methods.

    PubMed

    Klepper, Kjetil; Sandve, Geir K; Abul, Osman; Johansen, Jostein; Drablos, Finn

    2008-02-26

    Computational discovery of regulatory elements is an important area of bioinformatics research and more than a hundred motif discovery methods have been published. Traditionally, most of these methods have addressed the problem of single motif discovery - discovering binding motifs for individual transcription factors. In higher organisms, however, transcription factors usually act in combination with nearby bound factors to induce specific regulatory behaviours. Hence, recent focus has shifted from single motifs to the discovery of sets of motifs bound by multiple cooperating transcription factors, so called composite motifs or cis-regulatory modules. Given the large number and diversity of methods available, independent assessment of methods becomes important. Although there have been several benchmark studies of single motif discovery, no similar studies have previously been conducted concerning composite motif discovery. We have developed a benchmarking framework for composite motif discovery and used it to evaluate the performance of eight published module discovery tools. Benchmark datasets were constructed based on real genomic sequences containing experimentally verified regulatory modules, and the module discovery programs were asked to predict both the locations of these modules and to specify the single motifs involved. To aid the programs in their search, we provided position weight matrices corresponding to the binding motifs of the transcription factors involved. In addition, selections of decoy matrices were mixed with the genuine matrices on one dataset to test the response of programs to varying levels of noise. Although some of the methods tested tended to score somewhat better than others overall, there were still large variations between individual datasets and no single method performed consistently better than the rest in all situations. The variation in performance on individual datasets also shows that the new benchmark datasets represents a suitable variety of challenges to most methods for module discovery.

  2. Conditional genomic rearrangement by designed meiotic recombination using VDE (PI-SceI) in yeast.

    PubMed

    Fukuda, Tomoyuki; Ohya, Yoshikazu; Ohta, Kunihiro

    2007-10-01

    Meiotic recombination plays critical roles in the acquisition of genetic diversity and has been utilized for conventional breeding of livestock and crops. The frequency of meiotic recombination is normally low, and is extremely low in regions called "recombination cold domains". Here, we describe a new and highly efficient method to modulate yeast meiotic gene rearrangements using VDE (PI-SceI), an intein-encoded endonuclease that causes an efficient unidirectional meiotic gene conversion at its recognition sequence (VRS). We designed universal targeting vectors, by use of which the strain that inserts the VRS at a desired site is acquired. Meiotic induction of the strains provided unidirectional gene conversions and frequent genetic rearrangements of flanking genes with little impact on cell viability. This system thus opens the way for the designed modulation of meiotic gene rearrangements, regardless of recombinational activity of chromosomal domains. Finally, the VDE-VRS system enabled us to conduct meiosis-specific conditional knockout of genes where VDE-initiated gene conversion disrupts the target gene during meiosis, serving as a novel approach to examine the functions of genes during germination of resultant spores.

  3. Divergent evolutionary rates in vertebrate and mammalian specific conserved non-coding elements (CNEs) in echolocating mammals.

    PubMed

    Davies, Kalina T J; Tsagkogeorga, Georgia; Rossiter, Stephen J

    2014-12-19

    The majority of DNA contained within vertebrate genomes is non-coding, with a certain proportion of this thought to play regulatory roles during development. Conserved Non-coding Elements (CNEs) are an abundant group of putative regulatory sequences that are highly conserved across divergent groups and thus assumed to be under strong selective constraint. Many CNEs may contain regulatory factor binding sites, and their frequent spatial association with key developmental genes - such as those regulating sensory system development - suggests crucial roles in regulating gene expression and cellular patterning. Yet surprisingly little is known about the molecular evolution of CNEs across diverse mammalian taxa or their role in specific phenotypic adaptations. We examined 3,110 vertebrate-specific and ~82,000 mammalian-specific CNEs across 19 and 9 mammalian orders respectively, and tested for changes in the rate of evolution of CNEs located in the proximity of genes underlying the development or functioning of auditory systems. As we focused on CNEs putatively associated with genes underlying the development/functioning of auditory systems, we incorporated echolocating taxa in our dataset because of their highly specialised and derived auditory systems. Phylogenetic reconstructions of concatenated CNEs broadly recovered accepted mammal relationships despite high levels of sequence conservation. We found that CNE substitution rates were highest in rodents and lowest in primates, consistent with previous findings. Comparisons of CNE substitution rates from several genomic regions containing genes linked to auditory system development and hearing revealed differences between echolocating and non-echolocating taxa. Wider taxonomic sampling of four CNEs associated with the homeobox genes Hmx2 and Hmx3 - which are required for inner ear development - revealed family-wise variation across diverse bat species. Specifically within one family of echolocating bats that utilise frequency-modulated echolocation calls varying widely in frequency and intensity high levels of sequence divergence were found. Levels of selective constraint acting on CNEs differed both across genomic locations and taxa, with observed variation in substitution rates of CNEs among bat species. More work is needed to determine whether this variation can be linked to echolocation, and wider taxonomic sampling is necessary to fully document levels of conservation in CNEs across diverse taxa.

  4. Time-Sampled Population Sequencing Reveals the Interplay of Selection and Genetic Drift in Experimental Evolution of Potato Virus Y

    PubMed Central

    2017-01-01

    ABSTRACT RNA viruses are one of the fastest-evolving biological entities. Within their hosts, they exist as genetically diverse populations (i.e., viral mutant swarms), which are sculpted by different evolutionary mechanisms, such as mutation, natural selection, and genetic drift, and also the interactions between genetic variants within the mutant swarms. To elucidate the mechanisms that modulate the population diversity of an important plant-pathogenic virus, we performed evolution experiments with Potato virus Y (PVY) in potato genotypes that differ in their defense response against the virus. Using deep sequencing of small RNAs, we followed the temporal dynamics of standing and newly generated variations in the evolving viral lineages. A time-sampled approach allowed us to (i) reconstruct theoretical haplotypes in the starting population by using clustering of single nucleotide polymorphisms' trajectories and (ii) use quantitative population genetics approaches to estimate the contribution of selection and genetic drift, and their interplay, to the evolution of the virus. We detected imprints of strong selective sweeps and narrow genetic bottlenecks, followed by the shift in frequency of selected haplotypes. Comparison of patterns of viral evolution in differently susceptible host genotypes indicated possible diversifying evolution of PVY in the less-susceptible host (efficient in the accumulation of salicylic acid). IMPORTANCE High diversity of within-host populations of RNA viruses is an important aspect of their biology, since they represent a reservoir of genetic variants, which can enable quick adaptation of viruses to a changing environment. This study focuses on an important plant virus, Potato virus Y, and describes, at high resolution, temporal changes in the structure of viral populations within different potato genotypes. A novel and easy-to-implement computational approach was established to cluster single nucleotide polymorphisms into viral haplotypes from very short sequencing reads. During the experiment, a shift in the frequency of selected viral haplotypes was observed after a narrow genetic bottleneck, indicating an important role of the genetic drift in the evolution of the virus. On the other hand, a possible case of diversifying selection of the virus was observed in less susceptible host genotypes. PMID:28592544

  5. Introduction to the special focus issue on the impact of diet on gut microbiota composition and function and future opportunities for nutritional modulation of the gut microbiome to improve human health.

    PubMed

    Donovan, Sharon M

    2017-03-04

    Over the past decade, application of culture-independent, next generation DNA sequencing has dramatically enhanced our understanding of the composition of the gut microbiome and its association with human states of health and disease. Host genetics, age, and environmental factors such as where and who you live with, use of pre-, pro- and antibiotics, exercise and diet influence the short- and long-term composition of the microbiome. Dietary intake is a key determinant of microbiome composition and diversity and studies to date have linked long-term dietary patterns as well as short-term dietary interventions to the composition and diversity of the gut microbiome. The goal of this special focus issue was to review the role of diet in regulating the composition and function of the gut microbiota across the lifespan, from pregnancy to old age. Overall dietary patterns, as well as perturbations such as undernutrition and obesity, as well as the effects of dietary fiber/prebiotics and fat composition are explored.

  6. Characterization of an endogenous retrovirus class in elephants and their relatives

    PubMed Central

    Greenwood, Alex D; Englbrecht, Claudia C; MacPhee, Ross DE

    2004-01-01

    Background Endogenous retrovirus-like elements (ERV-Ls, primed with tRNA leucine) are a diverse group of reiterated sequences related to foamy viruses and widely distributed among mammals. As shown in previous investigations, in many primates and rodents this class of elements has remained transpositionally active, as reflected by increased copy number and high sequence diversity within and among taxa. Results Here we examine whether proviral-like sequences may be suitable molecular probes for investigating the phylogeny of groups known to have high element diversity. As a test we characterized ERV-Ls occurring in a sample of extant members of superorder Uranotheria (Asian and African elephants, manatees, and hyraxes). The ERV-L complement in this group is even more diverse than previously suspected, and there is sequence evidence for active expansion, particularly in elephantids. Many of the elements characterized have protein coding potential suggestive of activity. Conclusions In general, the evidence supports the hypothesis that the complement had a single origin within basal Uranotheria. PMID:15476555

  7. The Plasmodium berghei RC strain is highly diverged and harbors putatively novel drug resistance variants

    PubMed Central

    Kulawonganunchai, Supasak; Wilantho, Alisa; Koonyosying, Pongpisid; Uthaipibull, Chairat

    2017-01-01

    Background The current first line drugs for treating uncomplicated malaria are artemisinin (ART) combination therapies. However, Plasmodium falciparum parasites resistant to ART and partner drugs are spreading, which threatens malaria control efforts. Rodent malaria species are useful models for understanding antimalarial resistance, in particular genetic variants responsible for cross resistance to different compounds. Methods The Plasmodium berghei RC strain (PbRC) is described as resistant to different antimalarials, including chloroquine (CQ) and ART. In an attempt to identify the genetic basis for the antimalarial resistance trait in PbRC, its genome was sequenced and compared with five other previously sequenced P. berghei strains. Results We found that PbRC is eight-fold less sensitive to the ART derivative artesunate than the reference strain PbANKA. The genome of PbRC is markedly different from other strains, and 6,974 single nucleotide variants private to PbRC were identified. Among these PbRC private variants, non-synonymous changes were identified in genes known to modulate antimalarial sensitivity in rodent malaria species, including notably the ubiquitin carboxyl-terminal hydrolase 1 gene. However, no variants were found in some genes with strong evidence of association with ART resistance in P. falciparum such as K13 propeller protein. Discussion The variants identified in PbRC provide insight into P. berghei genome diversity and genetic factors that could modulate CQ and ART resistance in Plasmodium spp. PMID:29018598

  8. Genetic diversity of the merozoite surface protein-3 gene in Plasmodium falciparum populations in Thailand.

    PubMed

    Pattaradilokrat, Sittiporn; Sawaswong, Vorthon; Simpalipan, Phumin; Kaewthamasorn, Morakot; Siripoon, Napaporn; Harnyuttanakorn, Pongchai

    2016-10-21

    An effective malaria vaccine is an urgently needed tool to fight against human malaria, the most deadly parasitic disease of humans. One promising candidate is the merozoite surface protein-3 (MSP-3) of Plasmodium falciparum. This antigenic protein, encoded by the merozoite surface protein (msp-3) gene, is polymorphic and classified according to size into the two allelic types of K1 and 3D7. A recent study revealed that both the K1 and 3D7 alleles co-circulated within P. falciparum populations in Thailand, but the extent of the sequence diversity and variation within each allelic type remains largely unknown. The msp-3 gene was sequenced from 59 P. falciparum samples collected from five endemic areas (Mae Hong Son, Kanchanaburi, Ranong, Trat and Ubon Ratchathani) in Thailand and analysed for nucleotide sequence diversity, haplotype diversity and deduced amino acid sequence diversity. The gene was also subject to population genetic analysis (F st ) and neutrality tests (Tajima's D, Fu and Li D* and Fu and Li' F* tests) to determine any signature of selection. The sequence analyses revealed eight unique DNA haplotypes and seven amino acid sequence variants, with a haplotype and nucleotide diversity of 0.828 and 0.049, respectively. Neutrality tests indicated that the polymorphism detected in the alanine heptad repeat region of MSP-3 was maintained by positive diversifying selection, suggesting its role as a potential target of protective immune responses and supporting its role as a vaccine candidate. Comparison of MSP-3 variants among parasite populations in Thailand, India and Nigeria also inferred a close genetic relationship between P. falciparum populations in Asia. This study revealed the extent of the msp-3 gene diversity in P. falciparum in Thailand, providing the fundamental basis for the better design of future blood stage malaria vaccines against P. falciparum.

  9. Intermediary metabolism in protists: a sequence-based view of facultative anaerobic metabolism in evolutionarily diverse eukaryotes.

    PubMed

    Ginger, Michael L; Fritz-Laylin, Lillian K; Fulton, Chandler; Cande, W Zacheus; Dawson, Scott C

    2010-12-01

    Protists account for the bulk of eukaryotic diversity. Through studies of gene and especially genome sequences the molecular basis for this diversity can be determined. Evident from genome sequencing are examples of versatile metabolism that go far beyond the canonical pathways described for eukaryotes in textbooks. In the last 2-3 years, genome sequencing and transcript profiling has unveiled several examples of heterotrophic and phototrophic protists that are unexpectedly well-equipped for ATP production using a facultative anaerobic metabolism, including some protists that can (Chlamydomonas reinhardtii) or are predicted (Naegleria gruberi, Acanthamoeba castellanii, Amoebidium parasiticum) to produce H(2) in their metabolism. It is possible that some enzymes of anaerobic metabolism were acquired and distributed among eukaryotes by lateral transfer, but it is also likely that the common ancestor of eukaryotes already had far more metabolic versatility than was widely thought a few years ago. The discussion of core energy metabolism in unicellular eukaryotes is the subject of this review. Since genomic sequencing has so far only touched the surface of protist diversity, it is anticipated that sequences of additional protists may reveal an even wider range of metabolic capabilities, while simultaneously enriching our understanding of the early evolution of eukaryotes. Copyright © 2010 Elsevier GmbH. All rights reserved.

  10. Strain-Level Diversity of Secondary Metabolism in Streptomyces albus

    PubMed Central

    Seipke, Ryan F.

    2015-01-01

    Streptomyces spp. are robust producers of medicinally-, industrially- and agriculturally-important small molecules. Increased resistance to antibacterial agents and the lack of new antibiotics in the pipeline have led to a renaissance in natural product discovery. This endeavor has benefited from inexpensive high quality DNA sequencing technology, which has generated more than 140 genome sequences for taxonomic type strains and environmental Streptomyces spp. isolates. Many of the sequenced streptomycetes belong to the same species. For instance, Streptomyces albus has been isolated from diverse environmental niches and seven strains have been sequenced, consequently this species has been sequenced more than any other streptomycete, allowing valuable analyses of strain-level diversity in secondary metabolism. Bioinformatics analyses identified a total of 48 unique biosynthetic gene clusters harboured by Streptomyces albus strains. Eighteen of these gene clusters specify the core secondary metabolome of the species. Fourteen of the gene clusters are contained by one or more strain and are considered auxiliary, while 16 of the gene clusters encode the production of putative strain-specific secondary metabolites. Analysis of Streptomyces albus strains suggests that each strain of a Streptomyces species likely harbours at least one strain-specific biosynthetic gene cluster. Importantly, this implies that deep sequencing of a species will not exhaust gene cluster diversity and will continue to yield novelty. PMID:25635820

  11. Intermediary Metabolism in Protists: a Sequence-based View of Facultative Anaerobic Metabolism in Evolutionarily Diverse Eukaryotes

    PubMed Central

    Ginger, Michael L.; Fritz-Laylin, Lillian K.; Fulton, Chandler; Cande, W. Zacheus; Dawson, Scott C.

    2011-01-01

    Protists account for the bulk of eukaryotic diversity. Through studies of gene and especially genome sequences the molecular basis for this diversity can be determined. Evident from genome sequencing are examples of versatile metabolism that go far beyond the canonical pathways described for eukaryotes in textbooks. In the last 2–3 years, genome sequencing and transcript profiling has unveiled several examples of heterotrophic and phototrophic protists that are unexpectedly well-equipped for ATP production using a facultative anaerobic metabolism, including some protists that can (Chlamydomonas reinhardtii) or are predicted (Naegleria gruberi, Acanthamoeba castellanii, Amoebidium parasiticum) to produce H2 in their metabolism. It is possible that some enzymes of anaerobic metabolism were acquired and distributed among eukaryotes by lateral transfer, but it is also likely that the common ancestor of eukaryotes already had far more metabolic versatility than was widely thought a few years ago. The discussion of core energy metabolism in unicellular eukaryotes is the subject of this review. Since genomic sequencing has so far only touched the surface of protist diversity, it is anticipated that sequences of additional protists may reveal an even wider range of metabolic capabilities, while simultaneously enriching our understanding of the early evolution of eukaryotes. PMID:21036663

  12. Ancient diversity and geographical sub-structuring in African buffalo Theileria parva populations revealed through metagenetic analysis of antigen-encoding loci.

    PubMed

    Hemmink, Johanneke D; Sitt, Tatjana; Pelle, Roger; de Klerk-Lorist, Lin-Mari; Shiels, Brian; Toye, Philip G; Morrison, W Ivan; Weir, William

    2018-03-01

    An infection and treatment protocol involving infection with a mixture of three parasite isolates and simultaneous treatment with oxytetracycline is currently used to vaccinate cattle against Theileria parva. While vaccination results in high levels of protection in some regions, little or no protection is observed in areas where animals are challenged predominantly by parasites of buffalo origin. A previous study involving sequencing of two antigen-encoding genes from a series of parasite isolates indicated that this is associated with greater antigenic diversity in buffalo-derived T. parva. The current study set out to extend these analyses by applying high-throughput sequencing to ex vivo samples from naturally infected buffalo to determine the extent of diversity in a set of antigen-encoding genes. Samples from two populations of buffalo, one in Kenya and the other in South Africa, were examined to investigate the effect of geographical distance on the nature of sequence diversity. The results revealed a number of significant findings. First, there was a variable degree of nucleotide sequence diversity in all gene segments examined, with the percentage of polymorphic nucleotides ranging from 10% to 69%. Second, large numbers of allelic variants of each gene were found in individual animals, indicating multiple infection events. Third, despite the observed diversity in nucleotide sequences, several of the gene products had highly conserved amino acid sequences, and thus represent potential candidates for vaccine development. Fourth, although compelling evidence for population differentiation between the Kenyan and South African T. parva parasites was identified, analysis of molecular variance for each gene revealed that the majority of the underlying nucleotide sequence polymorphism was common to both areas, indicating that much of this aspect of genetic variation in the parasite population arose prior to geographic separation. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. A Module Experimental Process System Development Unit (MEPSDU)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A cost effective process sequence and machinery for the production of flat plate photovoltaic modules are described. Cells were fabricated using the process sequence which was optimized, as was a lamination procedure. Insulator tapes and edge seal material were identified and tested. Encapsulation materials were evaluated.

  14. Diversity of Babesia bovis merozoite surface antigen genes in the Philippines.

    PubMed

    Tattiyapong, Muncharee; Sivakumar, Thillaiampalam; Ybanez, Adrian Patalinghug; Ybanez, Rochelle Haidee Daclan; Perez, Zandro Obligado; Guswanto, Azirwan; Igarashi, Ikuo; Yokoyama, Naoaki

    2014-02-01

    Babesia bovis is the causative agent of fatal babesiosis in cattle. In the present study, we investigated the genetic diversity of B. bovis among Philippine cattle, based on the genes that encode merozoite surface antigens (MSAs). Forty-one B. bovis-positive blood DNA samples from cattle were used to amplify the msa-1, msa-2b, and msa-2c genes. In phylogenetic analyses, the msa-1, msa-2b, and msa-2c gene sequences generated from Philippine B. bovis-positive DNA samples were found in six, three, and four different clades, respectively. All of the msa-1 and most of the msa-2b sequences were found in clades that were formed only by Philippine msa sequences in the respective phylograms. While all the msa-1 sequences from the Philippines showed similarity to those formed by Australian msa-1 sequences, the msa-2b sequences showed similarity to either Australian or Mexican msa-2b sequences. In contrast, msa-2c sequences from the Philippines were distributed across all the clades of the phylogram, although one clade was formed exclusively by Philippine msa-2c sequences. Similarities among the deduced amino acid sequences of MSA-1, MSA-2b, and MSA-2c from the Philippines were 62.2-100, 73.1-100, and 67.3-100%, respectively. The present findings demonstrate that B. bovis populations are genetically diverse in the Philippines. This information will provide a good foundation for the future design and implementation of improved immunological preventive methodologies against bovine babesiosis in the Philippines. The study has also generated a set of data that will be useful for futher understanding of the global genetic diversity of this important parasite. © 2013.

  15. [Community composition and diversity of endophytic fungi from roots of Sinopodophyllum hexandrum in forest of Upper-north mountain of Qinghai province].

    PubMed

    Ning, Yi; Li, Yan-Ling; Zhou, Guo-Ying; Yang, Lu-Cun; Xu, Wen-Hua

    2016-04-01

    High throughput sequencing technology is also called Next Generation Sequencing (NGS), which can sequence hundreds and thousands sequences in different samples at the same time. In the present study, the culture-independent high throughput sequencing technology was applied to sequence the fungi metagenomic DNA of the fungal internal transcribed spacer 1(ITS 1) in the root of Sinopodophyllum hexandrum. Sequencing data suggested that after the quality control, 22 565 reads were remained. Cluster similarity analysis was done based on 97% sequence similarity, which obtained 517 OTUs for the three samples (LD1, LD2 and LD3). All the fungi which identified from all the reads of OTUs based on 0.8 classification thresholds using the software of RDP classifier were classified as 13 classes, 35 orders, 44 family, 55 genera. Among these genera, the genus of Tetracladium was the dominant genera in all samples(35.49%, 68.55% and 12.96%).The Shannon's diversity indices and the Simpson indices of the endophytic fungi in the samples ranged from 1.75-2.92, 0.11-0.32, respectively.This is the first time for applying high through put sequencing technol-ogyto analyze the community composition and diversity of endophytic fungi in the medicinal plant, and the results showed that there were hyper diver sity and high community composition complexity of endophytic fungi in the root of S. hexandrum. It is also proved that the high through put sequencing technology has great advantage for analyzing ecommunity composition and diversity of endophtye in the plant. Copyright© by the Chinese Pharmaceutical Association.

  16. Sequences of 95 human MHC haplotypes reveal extreme coding variation in genes other than highly polymorphic HLA class I and II

    PubMed Central

    Norman, Paul J.; Norberg, Steven J.; Guethlein, Lisbeth A.; Nemat-Gorgani, Neda; Royce, Thomas; Wroblewski, Emily E.; Dunn, Tamsen; Mann, Tobias; Alicata, Claudia; Hollenbach, Jill A.; Chang, Weihua; Shults Won, Melissa; Gunderson, Kevin L.; Abi-Rached, Laurent; Ronaghi, Mostafa; Parham, Peter

    2017-01-01

    The most polymorphic part of the human genome, the MHC, encodes over 160 proteins of diverse function. Half of them, including the HLA class I and II genes, are directly involved in immune responses. Consequently, the MHC region strongly associates with numerous diseases and clinical therapies. Notoriously, the MHC region has been intractable to high-throughput analysis at complete sequence resolution, and current reference haplotypes are inadequate for large-scale studies. To address these challenges, we developed a method that specifically captures and sequences the 4.8-Mbp MHC region from genomic DNA. For 95 MHC homozygous cell lines we assembled, de novo, a set of high-fidelity contigs and a sequence scaffold, representing a mean 98% of the target region. Included are six alternative MHC reference sequences of the human genome that we completed and refined. Characterization of the sequence and structural diversity of the MHC region shows the approach accurately determines the sequences of the highly polymorphic HLA class I and HLA class II genes and the complex structural diversity of complement factor C4A/C4B. It has also uncovered extensive and unexpected diversity in other MHC genes; an example is MUC22, which encodes a lung mucin and exhibits more coding sequence alleles than any HLA class I or II gene studied here. More than 60% of the coding sequence alleles analyzed were previously uncharacterized. We have created a substantial database of robust reference MHC haplotype sequences that will enable future population scale studies of this complicated and clinically important region of the human genome. PMID:28360230

  17. Bacterial diversity in permanently cold and alkaline ikaite columns from Greenland.

    PubMed

    Schmidt, Mariane; Priemé, Anders; Stougaard, Peter

    2006-12-01

    Bacterial diversity in alkaline (pH 10.4) and permanently cold (4 degrees C) ikaite tufa columns from the Ikka Fjord, SW Greenland, was investigated using growth characterization of cultured bacterial isolates with Terminal-restriction fragment length polymorphism (T-RFLP) and sequence analysis of bacterial 16S rRNA gene fragments. More than 200 bacterial isolates were characterized with respect to pH and temperature tolerance, and it was shown that the majority were cold-active alkaliphiles. T-RFLP analysis revealed distinct bacterial communities in different fractions of three ikaite columns, and, along with sequence analysis, it showed the presence of rich and diverse bacterial communities. Rarefaction analysis showed that the 109 sequenced clones in the 16S rRNA gene library represented between 25 and 65% of the predicted species richness in the three ikaite columns investigated. Phylogenetic analysis of the 16S rRNA gene sequences revealed many sequences with similarity to alkaliphilic or psychrophilic bacteria, and showed that 33% of the cloned sequences and 33% of the cultured bacteria showed less than 97% sequence identity to known sequences in databases, and may therefore represent yet unknown species.

  18. The production of Multiple Small Peptaibol Families by Single 14-Module Peptide Synthetases in Trichoderma/Hypocrea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degenkolb, Thomas; Aghchehb, Razieh Karimi; Dieckmann, Ralf

    2012-03-01

    The most common peptaibibiotic structures are 11-residue peptaibols found widely distributed in the genus Trichoderma/Hypocrea. Frequently associated are 14-residue peptaibols sharing partial sequence identity. Genome sequencing projects of 3 Trichoderma strains of the major clades reveal the presence of up to 3 types of nonribosomal peptide synthetases with 7, 14, or 18-20 amino acid adding modules. We here provide evidence that the 14-module NRPS type found in T. virens, T. reesei (teleomorph Hypocrea jecorina) and T. atroviride produces both 11- and 14- residue peptaibols based on the disruption of the respective NRPS gene of T. reesei, and bioinformatic analysis ofmore » their amino acid activating domains and modules. The structures of these peptides may be predicted from the gene structures and have been confirmed by analysis of families of 11- and 14-residue peptaibols from the strain 618, termed hypojecorins A (23 sequences determined, 4 new) and B (3 new sequences), and the recently established trichovirins A from T. virens. The distribution of 11- and 14-residue products is strain-specific and depends on growth conditions as well. Possible mechanisms of module skipping are discussed.« less

  19. Severe chronic osteomyelitis caused by Morganella morganii with high population diversity.

    PubMed

    Zhu, Jialiang; Li, Haifeng; Feng, Li; Yang, Min; Yang, Ronggong; Yang, Lin; Li, Li; Li, Ruoyan; Liu, Minshan; Hou, Shuxun; Ke, Yuehua; Li, Wenfeng; Bai, Fan

    2016-09-01

    A case of chronic osteomyelitis probably caused by Morganella morganii, occurring over a period of 30 years, is reported. The organism was identified through a combination of sample culture, direct sequencing, and 16S RNA gene amplicon sequencing. Further whole-genome sequencing and population structure analysis of the isolates from the patient showed the bacterial population to be highly diverse. This case provides a valuable example of a long-term infection caused by an opportunistic pathogen, M. morganii, with high diversity, which might evolve during replication within the host. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Insights into the innate immunity of the Mediterranean mussel Mytilus galloprovincialis

    PubMed Central

    2011-01-01

    Background Sessile bivalves of the genus Mytilus are suspension feeders relatively tolerant to a wide range of environmental changes, used as sentinels in ecotoxicological investigations and marketed worldwide as seafood. Mortality events caused by infective agents and parasites apparently occur less in mussels than in other bivalves but the molecular basis of such evidence is unknown. The arrangement of Mytibase, interactive catalogue of 7,112 transcripts of M. galloprovincialis, offered us the opportunity to look for gene sequences relevant to the host defences, in particular the innate immunity related genes. Results We have explored and described the Mytibase sequence clusters and singletons having a putative role in recognition, intracellular signalling, and neutralization of potential pathogens in M. galloprovincialis. Automatically assisted searches of protein signatures and manually cured sequence analysis confirmed the molecular diversity of recognition/effector molecules such as the antimicrobial peptides and many carbohydrate binding proteins. Molecular motifs identifying complement C1q, C-type lectins and fibrinogen-like transcripts emerged as the most abundant in the Mytibase collection whereas, conversely, sequence motifs denoting the regulatory cytokine MIF and cytokine-related transcripts represent singular and unexpected findings. Using a cross-search strategy, 1,820 putatively immune-related sequences were selected to design oligonucleotide probes and define a species-specific Immunochip (DNA microarray). The Immunochip performance was tested with hemolymph RNAs from mussels injected with Vibrio splendidus at 3 and 48 hours post-treatment. A total of 143 and 262 differentially expressed genes exemplify the early and late hemocyte response of the Vibrio-challenged mussels, respectively, with AMP trends confirmed by qPCR and clear modulation of interrelated signalling pathways. Conclusions The Mytibase collection is rich in gene transcripts modulated in response to antigenic stimuli and represents an interesting window for looking at the mussel immunome (transcriptomes mediating the mussel response to non-self or abnormal antigens). On this basis, we have defined a new microarray platform, a mussel Immunochip, as a flexible tool for the experimental validation of immune-candidate sequences, and tested its performance on Vibrio-activated mussel hemocytes. The microarray platform and related expression data can be regarded as a step forward in the study of the adaptive response of the Mytilus species to an evolving microbial world. PMID:21269501

  1. Toward Understanding Phage:Host Interactions in the Rumen; Complete Genome Sequences of Lytic Phages Infecting Rumen Bacteria

    PubMed Central

    Gilbert, Rosalind A.; Kelly, William J.; Altermann, Eric; Leahy, Sinead C.; Minchin, Catherine; Ouwerkerk, Diane; Klieve, Athol V.

    2017-01-01

    The rumen is known to harbor dense populations of bacteriophages (phages) predicted to be capable of infecting a diverse range of rumen bacteria. While bacterial genome sequencing projects are revealing the presence of phages which can integrate their DNA into the genome of their host to form stable, lysogenic associations, little is known of the genetics of phages which utilize lytic replication. These phages infect and replicate within the host, culminating in host lysis, and the release of progeny phage particles. While lytic phages for rumen bacteria have been previously isolated, their genomes have remained largely uncharacterized. Here we report the first complete genome sequences of lytic phage isolates specifically infecting three genera of rumen bacteria: Bacteroides, Ruminococcus, and Streptococcus. All phages were classified within the viral order Caudovirales and include two phage morphotypes, representative of the Siphoviridae and Podoviridae families. The phage genomes displayed modular organization and conserved viral genes were identified which enabled further classification and determination of closest phage relatives. Co-examination of bacterial host genomes led to the identification of several genes responsible for modulating phage:host interactions, including CRISPR/Cas elements and restriction-modification phage defense systems. These findings provide new genetic information and insights into how lytic phages may interact with bacteria of the rumen microbiome. PMID:29259581

  2. Investigation of modulation parameters in multiplexing gas chromatography.

    PubMed

    Trapp, Oliver

    2010-10-22

    Combination of information technology and separation sciences opens a new avenue to achieve high sample throughputs and therefore is of great interest to bypass bottlenecks in catalyst screening of parallelized reactors or using multitier well plates in reaction optimization. Multiplexing gas chromatography utilizes pseudo-random injection sequences derived from Hadamard matrices to perform rapid sample injections which gives a convoluted chromatogram containing the information of a single sample or of several samples with similar analyte composition. The conventional chromatogram is obtained by application of the Hadamard transform using the known injection sequence or in case of several samples an averaged transformed chromatogram is obtained which can be used in a Gauss-Jordan deconvolution procedure to obtain all single chromatograms of the individual samples. The performance of such a system depends on the modulation precision and on the parameters, e.g. the sequence length and modulation interval. Here we demonstrate the effects of the sequence length and modulation interval on the deconvoluted chromatogram, peak shapes and peak integration for sequences between 9-bit (511 elements) and 13-bit (8191 elements) and modulation intervals Δt between 5 s and 500 ms using a mixture of five components. It could be demonstrated that even for high-speed modulation at time intervals of 500 ms the chromatographic information is very well preserved and that the separation efficiency can be improved by very narrow sample injections. Furthermore this study shows that the relative peak areas in multiplexed chromatograms do not deviate from conventionally recorded chromatograms. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution

    PubMed Central

    Boeuf, Dominique; Audic, Stéphane; Brillet-Guéguen, Loraine; Caron, Christophe; Jeanthon, Christian

    2015-01-01

    Microbial rhodopsins are a diverse group of photoactive transmembrane proteins found in all three domains of life and in viruses. Today, microbial rhodopsin research is a flourishing research field in which new understandings of rhodopsin diversity, function and evolution are contributing to broader microbiological and molecular knowledge. Here, we describe MicRhoDE, a comprehensive, high-quality and freely accessible database that facilitates analysis of the diversity and evolution of microbial rhodopsins. Rhodopsin sequences isolated from a vast array of marine and terrestrial environments were manually collected and curated. To each rhodopsin sequence are associated related metadata, including predicted spectral tuning of the protein, putative activity and function, taxonomy for sequences that can be linked to a 16S rRNA gene, sampling date and location, and supporting literature. The database currently covers 7857 aligned sequences from more than 450 environmental samples or organisms. Based on a robust phylogenetic analysis, we introduce an operational classification system with multiple phylogenetic levels ranging from superclusters to species-level operational taxonomic units. An integrated pipeline for online sequence alignment and phylogenetic tree construction is also provided. With a user-friendly interface and integrated online bioinformatics tools, this unique resource should be highly valuable for upcoming studies of the biogeography, diversity, distribution and evolution of microbial rhodopsins. Database URL: http://micrhode.sb-roscoff.fr. PMID:26286928

  4. Unveiling fungal zooflagellates as members of freshwater picoeukaryotes: evidence from a molecular diversity study in a deep meromictic lake.

    PubMed

    Lefèvre, Emilie; Bardot, Corinne; Noël, Christophe; Carrias, Jean-François; Viscogliosi, Eric; Amblard, Christian; Sime-Ngando, Télesphore

    2007-01-01

    This study presents an original 18S rRNA PCR survey of the freshwater picoeukaryote community, and was designed to detect unidentified heterotrophic picoflagellates (size range 0.6-5 microm) which are prevalent throughout the year within the heterotrophic flagellate assemblage in Lake Pavin. Four clone libraries were constructed from samples collected in two contrasting zones in the lake. Computerized statistic tools have suggested that sequence retrieval was representative of the in situ picoplankton diversity. The two sampling zones exhibited similar diversity patterns but shared only about 5% of the operational taxonomic units (OTUs). Phylogenetic analysis clustered our sequences into three taxonomic groups: Alveolates (30% of OTUs), Fungi (23%) and Cercozoa (19%). Fungi thus substantially contributed to the detected diversity, as was additionally supported by direct microscopic observations of fungal zoospores and sporangia. A large fraction of the sequences belonged to parasites, including Alveolate sequences affiliated to the genus Perkinsus known as zooparasites, and chytrids that include host-specific parasitic fungi of various freshwater phytoplankton species, primarily diatoms. Phylogenetic analysis revealed five novel clades that probably include typical freshwater environmental sequences. Overall, from the unsuspected fungal diversity unveiled, we think that fungal zooflagellates have been misidentified as phagotrophic nanoflagellates in previous studies. This is in agreement with a recent experimental demonstration that zoospore-producing fungi and parasitic activity may play an important role in aquatic food webs.

  5. MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution.

    PubMed

    Boeuf, Dominique; Audic, Stéphane; Brillet-Guéguen, Loraine; Caron, Christophe; Jeanthon, Christian

    2015-01-01

    Microbial rhodopsins are a diverse group of photoactive transmembrane proteins found in all three domains of life and in viruses. Today, microbial rhodopsin research is a flourishing research field in which new understandings of rhodopsin diversity, function and evolution are contributing to broader microbiological and molecular knowledge. Here, we describe MicRhoDE, a comprehensive, high-quality and freely accessible database that facilitates analysis of the diversity and evolution of microbial rhodopsins. Rhodopsin sequences isolated from a vast array of marine and terrestrial environments were manually collected and curated. To each rhodopsin sequence are associated related metadata, including predicted spectral tuning of the protein, putative activity and function, taxonomy for sequences that can be linked to a 16S rRNA gene, sampling date and location, and supporting literature. The database currently covers 7857 aligned sequences from more than 450 environmental samples or organisms. Based on a robust phylogenetic analysis, we introduce an operational classification system with multiple phylogenetic levels ranging from superclusters to species-level operational taxonomic units. An integrated pipeline for online sequence alignment and phylogenetic tree construction is also provided. With a user-friendly interface and integrated online bioinformatics tools, this unique resource should be highly valuable for upcoming studies of the biogeography, diversity, distribution and evolution of microbial rhodopsins. Database URL: http://micrhode.sb-roscoff.fr. © The Author(s) 2015. Published by Oxford University Press.

  6. Palynological composition of a Lower Cretaceous South American tropical sequence: climatic implications and diversity comparisons with other latitudes.

    PubMed

    Mejia-Velasquez, Paula J; Dilcher, David L; Jaramillo, Carlos A; Fortini, Lucas B; Manchester, Steven R

    2012-11-01

    Reconstruction of floristic patterns during the early diversification of angiosperms is impeded by the scarce fossil record, especially in tropical latitudes. Here we collected quantitative palynological data from a stratigraphic sequence in tropical South America to provide floristic and climatic insights into such tropical environments during the Early Cretaceous. We reconstructed the floristic composition of an Aptian-Albian tropical sequence from central Colombia using quantitative palynology (rarefied species richness and abundance) and used it to infer its predominant climatic conditions. Additionally, we compared our results with available quantitative data from three other sequences encompassing 70 floristic assemblages to determine latitudinal diversity patterns. Abundance of humidity indicators was higher than that of aridity indicators (61% vs. 10%). Additionally, we found an angiosperm latitudinal diversity gradient (LDG) for the Aptian, but not for the Albian, and an inverted LDG of the overall diversity for the Albian. Angiosperm species turnover during the Albian, however, was higher in humid tropics. There were humid climates in northwestern South America during the Aptian-Albian interval contrary to the widespread aridity expected for the tropical belt. The Albian inverted overall LDG is produced by a faster increase in per-sample angiosperm and pteridophyte diversity in temperate latitudes. However, humid tropical sequences had higher rates of floristic turnover suggesting a higher degree of morphological variation than in temperate regions.

  7. Palynological composition of a Lower Cretaceous South American tropical sequence: Climatic implications and diversity comparisons with other latitudes.

    USGS Publications Warehouse

    Mejia-Velasquez, Paula J.; Dilcher, David L.; Jaramillo, Carlos A.; Fortini, Lucas B.; Manchester, Steven R.

    2012-01-01

    Premise of the study: Reconstruction of floristic patterns during the early diversification of angiosperms is impeded by the scarce fossil record, especially in tropical latitudes. Here we collected quantitative palynological data from a stratigraphic sequence in tropical South America to provide floristic and climatic insights into such tropical environments during the Early Cretaceous. Methods: We reconstructed the floristic composition of an Aptian-Albian tropical sequence from central Colombia using quantitative palynology (rarefied species richness and abundance) and used it to infer its predominant climatic conditions. Additionally, we compared our results with available quantitative data from three other sequences encompassing 70 floristic assemblages to determine latitudinal diversity patterns. Key results: Abundance of humidity indicators was higher than that of aridity indicators (61% vs. 10%). Additionally, we found an angiosperm latitudinal diversity gradient (LDG) for the Aptian, but not for the Albian, and an inverted LDG of the overall diversity for the Albian. Angiosperm species turnover during the Albian, however, was higher in humid tropics. Conclusions: There were humid climates in northwestern South America during the Aptian-Albian interval contrary to the widespread aridity expected for the tropical belt. The Albian inverted overall LDG is produced by a faster increase in per-sample angiosperm and pteridophyte diversity in temperate latitudes. However, humid tropical sequences had higher rates of floristic turnover suggesting a higher degree of morphological variation than in temperate regions.

  8. Insights into Hox protein function from a large scale combinatorial analysis of protein domains.

    PubMed

    Merabet, Samir; Litim-Mecheri, Isma; Karlsson, Daniel; Dixit, Richa; Saadaoui, Mehdi; Monier, Bruno; Brun, Christine; Thor, Stefan; Vijayraghavan, K; Perrin, Laurent; Pradel, Jacques; Graba, Yacine

    2011-10-01

    Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences.

  9. Insights into Hox Protein Function from a Large Scale Combinatorial Analysis of Protein Domains

    PubMed Central

    Karlsson, Daniel; Dixit, Richa; Saadaoui, Mehdi; Monier, Bruno; Brun, Christine; Thor, Stefan; Vijayraghavan, K.; Perrin, Laurent; Pradel, Jacques; Graba, Yacine

    2011-01-01

    Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences. PMID:22046139

  10. Transmitted/Founder HIV-1 Subtype C Viruses Show Distinctive Signature Patterns in Vif, Vpr, and Vpu That Are Under Subsequent Immune Pressure During Early Infection.

    PubMed

    Rossenkhan, Raabya; MacLeod, Iain J; Brumme, Zabrina L; Magaret, Craig A; Sebunya, Theresa K; Musonda, Rosemary; Gashe, Berhanu A; Edlefsen, Paul T; Novitsky, Vlad; Essex, M

    Viral variants that predominate during early infection may exhibit constrained diversity compared with those found during chronic infection and could contain amino acid signature patterns that may enhance transmission, establish productive infection, and influence early events that modulate the infection course. We compared amino acid distributions in 17 patients recently infected with HIV-1C with patients with chronic infection. We found significantly lower entropy in inferred transmitted/founder (t/f) compared with chronic viruses and identified signature patterns in Vif and Vpr from inferred t/f viruses. We investigated sequence evolution longitudinally up to 500 days postseroconversion and compared the impact of selected substitutions on predicted human leukocyte antigen (HLA) binding affinities of published and predicted cytotoxic T-lymphocyte epitopes. Polymorphisms in Vif and Vpr during early infection occurred more frequently at epitope-HLA anchor residues and significantly decreased predicted epitope-HLA binding. Transmission-associated sequence signatures may have implications for novel strategies to prevent HIV-1 transmission.

  11. Transmitted/Founder HIV-1 Subtype C Viruses Show Distinctive Signature Patterns in Vif, Vpr, and Vpu That Are Under Subsequent Immune Pressure During Early Infection

    PubMed Central

    Rossenkhan, Raabya; MacLeod, Iain J.; Brumme, Zabrina L.; Magaret, Craig A.; Sebunya, Theresa K.; Musonda, Rosemary; Gashe, Berhanu A.; Edlefsen, Paul T.; Novitsky, Vlad

    2016-01-01

    Abstract Viral variants that predominate during early infection may exhibit constrained diversity compared with those found during chronic infection and could contain amino acid signature patterns that may enhance transmission, establish productive infection, and influence early events that modulate the infection course. We compared amino acid distributions in 17 patients recently infected with HIV-1C with patients with chronic infection. We found significantly lower entropy in inferred transmitted/founder (t/f) compared with chronic viruses and identified signature patterns in Vif and Vpr from inferred t/f viruses. We investigated sequence evolution longitudinally up to 500 days postseroconversion and compared the impact of selected substitutions on predicted human leukocyte antigen (HLA) binding affinities of published and predicted cytotoxic T-lymphocyte epitopes. Polymorphisms in Vif and Vpr during early infection occurred more frequently at epitope-HLA anchor residues and significantly decreased predicted epitope-HLA binding. Transmission-associated sequence signatures may have implications for novel strategies to prevent HIV-1 transmission. PMID:27349335

  12. Sequence and structural characterization of great salt lake bacteriophage CW02, a member of the T7-like supergroup.

    PubMed

    Shen, Peter S; Domek, Matthew J; Sanz-García, Eduardo; Makaju, Aman; Taylor, Ryan M; Hoggan, Ryan; Culumber, Michele D; Oberg, Craig J; Breakwell, Donald P; Prince, John T; Belnap, David M

    2012-08-01

    Halophage CW02 infects a Salinivibrio costicola-like bacterium, SA50, isolated from the Great Salt Lake. Following isolation, cultivation, and purification, CW02 was characterized by DNA sequencing, mass spectrometry, and electron microscopy. A conserved module of structural genes places CW02 in the T7 supergroup, members of which are found in diverse aquatic environments, including marine and freshwater ecosystems. CW02 has morphological similarities to viruses of the Podoviridae family. The structure of CW02, solved by cryogenic electron microscopy and three-dimensional reconstruction, enabled the fitting of a portion of the bacteriophage HK97 capsid protein into CW02 capsid density, thereby providing additional evidence that capsid proteins of tailed double-stranded DNA phages have a conserved fold. The CW02 capsid consists of bacteriophage lambda gpD-like densities that likely contribute to particle stability. Turret-like densities were found on icosahedral vertices and may represent a unique adaptation similar to what has been seen in other extremophilic viruses that infect archaea, such as Sulfolobus turreted icosahedral virus and halophage SH1.

  13. Phylogenetic Diversity of NTT Nucleotide Transport Proteins in Free-Living and Parasitic Bacteria and Eukaryotes

    PubMed Central

    Major, Peter; Embley, T. Martin

    2017-01-01

    Plasma membrane-located nucleotide transport proteins (NTTs) underpin the lifestyle of important obligate intracellular bacterial and eukaryotic pathogens by importing energy and nucleotides from infected host cells that the pathogens can no longer make for themselves. As such their presence is often seen as a hallmark of an intracellular lifestyle associated with reductive genome evolution and loss of primary biosynthetic pathways. Here, we investigate the phylogenetic distribution of NTT sequences across the domains of cellular life. Our analysis reveals an unexpectedly broad distribution of NTT genes in both host-associated and free-living prokaryotes and eukaryotes. We also identify cases of within-bacteria and bacteria-to-eukaryote horizontal NTT transfer, including into the base of the oomycetes, a major clade of parasitic eukaryotes. In addition to identifying sequences that retain the canonical NTT structure, we detected NTT gene fusions with HEAT-repeat and cyclic nucleotide binding domains in Cyanobacteria, pathogenic Chlamydiae and Oomycetes. Our results suggest that NTTs are versatile functional modules with a much wider distribution and a broader range of potential roles than has previously been appreciated. PMID:28164241

  14. Complete genome sequence of Terriglobus saanensis type strain SP1PR4T, an Acidobacteria from tundra soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawat, Suman R.; Mannisto, Minna; Starovoytov, Valentin

    2012-01-01

    Terriglobus saanensis SP1PR4T is a novel species of the genus Terriglobus. T. saanensis is of ecological interest because it is a representative of the phylum Acidobacteria, which are dominant members of bacterial soil microbiota in Arctic ecosystems. T. saanensis is a cold-adapted acidophile and a versatile heterotroph utilizing a suite of simple sugars and complex polysaccharides. The genome contained an abundance of genes assigned to metabolism and transport of carbohydrates including gene modules encoding for carbohydrate-active enzyme (CAZyme) family involved in breakdown, utilization and biosynthesis of diverse structural and storage polysaccharides. T. saanensis SP1PR4T represents the first member of genusmore » Terriglobus with a completed genome sequence, consisting of a single replicon of 5,095,226 base pairs (bp), 54 RNA genes and 4,279 protein-coding genes. We infer that the physiology and metabolic potential of T. saanensis is adapted to allow for resilience to the nutrient-deficient conditions and fluctuating temperatures of Arctic tundra soils.« less

  15. spads 1.0: a toolbox to perform spatial analyses on DNA sequence data sets.

    PubMed

    Dellicour, Simon; Mardulyn, Patrick

    2014-05-01

    SPADS 1.0 (for 'Spatial and Population Analysis of DNA Sequences') is a population genetic toolbox for characterizing genetic variability within and among populations from DNA sequences. In view of the drastic increase in genetic information available through sequencing methods, spads was specifically designed to deal with multilocus data sets of DNA sequences. It computes several summary statistics from populations or groups of populations, performs input file conversions for other population genetic programs and implements locus-by-locus and multilocus versions of two clustering algorithms to study the genetic structure of populations. The toolbox also includes two MATLAB and r functions, GDISPAL and GDIVPAL, to display differentiation and diversity patterns across landscapes. These functions aim to generate interpolating surfaces based on multilocus distance and diversity indices. In the case of multiple loci, such surfaces can represent a useful alternative to multiple pie charts maps traditionally used in phylogeography to represent the spatial distribution of genetic diversity. These coloured surfaces can also be used to compare different data sets or different diversity and/or distance measures estimated on the same data set. © 2013 John Wiley & Sons Ltd.

  16. Genetic diversity analysis of Leuconostoc mesenteroides from Korean vegetables and food products by multilocus sequence typing.

    PubMed

    Sharma, Anshul; Kaur, Jasmine; Lee, Sulhee; Park, Young-Seo

    2018-06-01

    In the present study, 35 Leuconostoc mesenteroides strains isolated from vegetables and food products from South Korea were studied by multilocus sequence typing (MLST) of seven housekeeping genes (atpA, groEL, gyrB, pheS, pyrG, rpoA, and uvrC). The fragment sizes of the seven amplified housekeeping genes ranged in length from 366 to 1414 bp. Sequence analysis indicated 27 different sequence types (STs) with 25 of them being represented by a single strain indicating high genetic diversity, whereas the remaining 2 were characterized by five strains each. In total, 220 polymorphic nucleotide sites were detected among seven housekeeping genes. The phylogenetic analysis based on the STs of the seven loci indicated that the 35 strains belonged to two major groups, A (28 strains) and B (7 strains). Split decomposition analysis showed that intraspecies recombination played a role in generating diversity among strains. The minimum spanning tree showed that the evolution of the STs was not correlated with food source. This study signifies that the multilocus sequence typing is a valuable tool to access the genetic diversity among L. mesenteroides strains from South Korea and can be used further to monitor the evolutionary changes.

  17. Genetic diversity assessment of anoxygenic photosynthetic bacteria by distance-based grouping analysis of pufM sequences.

    PubMed

    Zeng, Y H; Chen, X H; Jiao, N Z

    2007-12-01

    To assess how completely the diversity of anoxygenic phototrophic bacteria (APB) was sampled in natural environments. All nucleotide sequences of the APB marker gene pufM from cultures and environmental clones were retrieved from the GenBank database. A set of cutoff values (sequence distances 0.06, 0.15 and 0.48 for species, genus, and (sub)phylum levels, respectively) was established using a distance-based grouping program. Analysis of the environmental clones revealed that current efforts on APB isolation and sampling in natural environments are largely inadequate. Analysis of the average distance between each identified genus and an uncultured environmental pufM sequence indicated that the majority of cultured APB genera lack environmental representatives. The distance-based grouping method is fast and efficient for bulk functional gene sequences analysis. The results clearly show that we are at a relatively early stage in sampling the global richness of APB species. Periodical assessment will undoubtedly facilitate in-depth analysis of potential biogeographical distribution pattern of APB. This is the first attempt to assess the present understanding of APB diversity in natural environments. The method used is also useful for assessing the diversity of other functional genes.

  18. Deep Sequencing of the Trypanosoma cruzi GP63 Surface Proteases Reveals Diversity and Diversifying Selection among Chronic and Congenital Chagas Disease Patients

    PubMed Central

    Llewellyn, Martin S.; Messenger, Louisa A.; Luquetti, Alejandro O.; Garcia, Lineth; Torrico, Faustino; Tavares, Suelene B. N.; Cheaib, Bachar; Derome, Nicolas; Delepine, Marc; Baulard, Céline; Deleuze, Jean-Francois; Sauer, Sascha; Miles, Michael A.

    2015-01-01

    Background Chagas disease results from infection with the diploid protozoan parasite Trypanosoma cruzi. T. cruzi is highly genetically diverse, and multiclonal infections in individual hosts are common, but little studied. In this study, we explore T. cruzi infection multiclonality in the context of age, sex and clinical profile among a cohort of chronic patients, as well as paired congenital cases from Cochabamba, Bolivia and Goias, Brazil using amplicon deep sequencing technology. Methodology/ Principal Findings A 450bp fragment of the trypomastigote TcGP63I surface protease gene was amplified and sequenced across 70 chronic and 22 congenital cases on the Illumina MiSeq platform. In addition, a second, mitochondrial target—ND5—was sequenced across the same cohort of cases. Several million reads were generated, and sequencing read depths were normalized within patient cohorts (Goias chronic, n = 43, Goias congenital n = 2, Bolivia chronic, n = 27; Bolivia congenital, n = 20), Among chronic cases, analyses of variance indicated no clear correlation between intra-host sequence diversity and age, sex or symptoms, while principal coordinate analyses showed no clustering by symptoms between patients. Between congenital pairs, we found evidence for the transmission of multiple sequence types from mother to infant, as well as widespread instances of novel genotypes in infants. Finally, non-synonymous to synonymous (dn:ds) nucleotide substitution ratios among sequences of TcGP63Ia and TcGP63Ib subfamilies within each cohort provided powerful evidence of strong diversifying selection at this locus. Conclusions/Significance Our results shed light on the diversity of parasite DTUs within each patient, as well as the extent to which parasite strains pass between mother and foetus in congenital cases. Although we were unable to find any evidence that parasite diversity accumulates with age in our study cohorts, putative diversifying selection within members of the TcGP63I gene family suggests a link between genetic diversity within this gene family and survival in the mammalian host. PMID:25849488

  19. Population-genomic variation within RNA viruses of the Western honey bee, Apis mellifera, inferred from deep sequencing

    PubMed Central

    2013-01-01

    Background Deep sequencing of viruses isolated from infected hosts is an efficient way to measure population-genetic variation and can reveal patterns of dispersal and natural selection. In this study, we mined existing Illumina sequence reads to investigate single-nucleotide polymorphisms (SNPs) within two RNA viruses of the Western honey bee (Apis mellifera), deformed wing virus (DWV) and Israel acute paralysis virus (IAPV). All viral RNA was extracted from North American samples of honey bees or, in one case, the ectoparasitic mite Varroa destructor. Results Coverage depth was generally lower for IAPV than DWV, and marked gaps in coverage occurred in several narrow regions (< 50 bp) of IAPV. These coverage gaps occurred across sequencing runs and were virtually unchanged when reads were re-mapped with greater permissiveness (up to 8% divergence), suggesting a recurrent sequencing artifact rather than strain divergence. Consensus sequences of DWV for each sample showed little phylogenetic divergence, low nucleotide diversity, and strongly negative values of Fu and Li’s D statistic, suggesting a recent population bottleneck and/or purifying selection. The Kakugo strain of DWV fell outside of all other DWV sequences at 100% bootstrap support. IAPV consensus sequences supported the existence of multiple clades as had been previously reported, and Fu and Li’s D was closer to neutral expectation overall, although a sliding-window analysis identified a significantly positive D within the protease region, suggesting selection maintains diversity in that region. Within-sample mean diversity was comparable between the two viruses on average, although for both viruses there was substantial variation among samples in mean diversity at third codon positions and in the number of high-diversity sites. FST values were bimodal for DWV, likely reflecting neutral divergence in two low-diversity populations, whereas IAPV had several sites that were strong outliers with very low FST. Conclusions This initial survey of genetic variation within honey bee RNA viruses suggests future directions for studies examining the underlying causes of population-genetic structure in these economically important pathogens. PMID:23497218

  20. Population-genomic variation within RNA viruses of the Western honey bee, Apis mellifera, inferred from deep sequencing.

    PubMed

    Cornman, Robert Scott; Boncristiani, Humberto; Dainat, Benjamin; Chen, Yanping; vanEngelsdorp, Dennis; Weaver, Daniel; Evans, Jay D

    2013-03-07

    Deep sequencing of viruses isolated from infected hosts is an efficient way to measure population-genetic variation and can reveal patterns of dispersal and natural selection. In this study, we mined existing Illumina sequence reads to investigate single-nucleotide polymorphisms (SNPs) within two RNA viruses of the Western honey bee (Apis mellifera), deformed wing virus (DWV) and Israel acute paralysis virus (IAPV). All viral RNA was extracted from North American samples of honey bees or, in one case, the ectoparasitic mite Varroa destructor. Coverage depth was generally lower for IAPV than DWV, and marked gaps in coverage occurred in several narrow regions (< 50 bp) of IAPV. These coverage gaps occurred across sequencing runs and were virtually unchanged when reads were re-mapped with greater permissiveness (up to 8% divergence), suggesting a recurrent sequencing artifact rather than strain divergence. Consensus sequences of DWV for each sample showed little phylogenetic divergence, low nucleotide diversity, and strongly negative values of Fu and Li's D statistic, suggesting a recent population bottleneck and/or purifying selection. The Kakugo strain of DWV fell outside of all other DWV sequences at 100% bootstrap support. IAPV consensus sequences supported the existence of multiple clades as had been previously reported, and Fu and Li's D was closer to neutral expectation overall, although a sliding-window analysis identified a significantly positive D within the protease region, suggesting selection maintains diversity in that region. Within-sample mean diversity was comparable between the two viruses on average, although for both viruses there was substantial variation among samples in mean diversity at third codon positions and in the number of high-diversity sites. FST values were bimodal for DWV, likely reflecting neutral divergence in two low-diversity populations, whereas IAPV had several sites that were strong outliers with very low FST. This initial survey of genetic variation within honey bee RNA viruses suggests future directions for studies examining the underlying causes of population-genetic structure in these economically important pathogens.

  1. The Intestinal Eukaryotic and Bacterial Biome of Spotted Hyenas: The Impact of Social Status and Age on Diversity and Composition.

    PubMed

    Heitlinger, Emanuel; Ferreira, Susana C M; Thierer, Dagmar; Hofer, Heribert; East, Marion L

    2017-01-01

    In mammals, two factors likely to affect the diversity and composition of intestinal bacteria (bacterial microbiome) and eukaryotes (eukaryome) are social status and age. In species in which social status determines access to resources, socially dominant animals maintain better immune processes and health status than subordinates. As high species diversity is an index of ecosystem health, the intestinal biome of healthier, socially dominant animals should be more diverse than those of subordinates. Gradual colonization of the juvenile intestine after birth predicts lower intestinal biome diversity in juveniles than adults. We tested these predictions on the effect of: (1) age (juvenile/adult) and (2) social status (low/high) on bacterial microbiome and eukaryome diversity and composition in the spotted hyena ( Crocuta crocuta ), a highly social, female-dominated carnivore in which social status determines access to resources. We comprehensively screened feces from 35 individually known adult females and 7 juveniles in the Serengeti ecosystem for bacteria and eukaryotes, using a set of 48 different amplicons (4 for bacterial 16S, 44 for eukaryote 18S) in a multi-amplicon sequencing approach. We compared sequence abundances to classical coprological egg or oocyst counts. For all parasite taxa detected in more than six samples, the number of sequence reads significantly predicted the number of eggs or oocysts counted, underscoring the value of an amplicon sequencing approach for quantitative measurements of parasite load. In line with our predictions, our results revealed a significantly less diverse microbiome in juveniles than adults and a significantly higher diversity of eukaryotes in high-ranking than low-ranking animals. We propose that free-ranging wildlife can provide an intriguing model system to assess the adaptive value of intestinal biome diversity for both bacteria and eukaryotes.

  2. The Intestinal Eukaryotic and Bacterial Biome of Spotted Hyenas: The Impact of Social Status and Age on Diversity and Composition

    PubMed Central

    Heitlinger, Emanuel; Ferreira, Susana C. M.; Thierer, Dagmar; Hofer, Heribert; East, Marion L.

    2017-01-01

    In mammals, two factors likely to affect the diversity and composition of intestinal bacteria (bacterial microbiome) and eukaryotes (eukaryome) are social status and age. In species in which social status determines access to resources, socially dominant animals maintain better immune processes and health status than subordinates. As high species diversity is an index of ecosystem health, the intestinal biome of healthier, socially dominant animals should be more diverse than those of subordinates. Gradual colonization of the juvenile intestine after birth predicts lower intestinal biome diversity in juveniles than adults. We tested these predictions on the effect of: (1) age (juvenile/adult) and (2) social status (low/high) on bacterial microbiome and eukaryome diversity and composition in the spotted hyena (Crocuta crocuta), a highly social, female-dominated carnivore in which social status determines access to resources. We comprehensively screened feces from 35 individually known adult females and 7 juveniles in the Serengeti ecosystem for bacteria and eukaryotes, using a set of 48 different amplicons (4 for bacterial 16S, 44 for eukaryote 18S) in a multi-amplicon sequencing approach. We compared sequence abundances to classical coprological egg or oocyst counts. For all parasite taxa detected in more than six samples, the number of sequence reads significantly predicted the number of eggs or oocysts counted, underscoring the value of an amplicon sequencing approach for quantitative measurements of parasite load. In line with our predictions, our results revealed a significantly less diverse microbiome in juveniles than adults and a significantly higher diversity of eukaryotes in high-ranking than low-ranking animals. We propose that free-ranging wildlife can provide an intriguing model system to assess the adaptive value of intestinal biome diversity for both bacteria and eukaryotes. PMID:28670573

  3. Measuring the diversity of the human microbiota with targeted next-generation sequencing.

    PubMed

    Finotello, Francesca; Mastrorilli, Eleonora; Di Camillo, Barbara

    2016-12-26

    The human microbiota is a complex ecological community of commensal, symbiotic and pathogenic microorganisms harboured by the human body. Next-generation sequencing (NGS) technologies, in particular targeted amplicon sequencing of the 16S ribosomal RNA gene (16S-seq), are enabling the identification and quantification of human-resident microorganisms at unprecedented resolution, providing novel insights into the role of the microbiota in health and disease. Once microbial abundances are quantified through NGS data analysis, diversity indices provide valuable mathematical tools to describe the ecological complexity of a single sample or to detect species differences between samples. However, diversity is not a determined physical quantity for which a consensus definition and unit of measure have been established, and several diversity indices are currently available. Furthermore, they were originally developed for macroecology and their robustness to the possible bias introduced by sequencing has not been characterized so far. To assist the reader with the selection and interpretation of diversity measures, we review a panel of broadly used indices, describing their mathematical formulations, purposes and properties, and characterize their behaviour and criticalities in dependence of the data features using simulated data as ground truth. In addition, we make available an R package, DiversitySeq, which implements in a unified framework the full panel of diversity indices and a simulator of 16S-seq data, and thus represents a valuable resource for the analysis of diversity from NGS count data and for the benchmarking of computational methods for 16S-seq. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. A powerful graphical pulse sequence programming tool for magnetic resonance imaging.

    PubMed

    Jie, Shen; Ying, Liu; Jianqi, Li; Gengying, Li

    2005-12-01

    A powerful graphical pulse sequence programming tool has been designed for creating magnetic resonance imaging (MRI) applications. It allows rapid development of pulse sequences in graphical mode (allowing for the visualization of sequences), and consists of three modules which include a graphical sequence editor, a parameter management module and a sequence compiler. Its key features are ease to use, flexibility and hardware independence. When graphic elements are combined with a certain text expressions, the graphical pulse sequence programming is as flexible as text-based programming tool. In addition, a hardware-independent design is implemented by using the strategy of two step compilations. To demonstrate the flexibility and the capability of this graphical sequence programming tool, a multi-slice fast spin echo experiment is performed on our home-made 0.3 T permanent magnet MRI system.

  5. Multi-locus and long amplicon sequencing approach to study microbial diversity at species level using the MinION™ portable nanopore sequencer

    PubMed Central

    Sanz, Yolanda

    2017-01-01

    Abstract The miniaturized and portable DNA sequencer MinION™ has demonstrated great potential in different analyses such as genome-wide sequencing, pathogen outbreak detection and surveillance, human genome variability, and microbial diversity. In this study, we tested the ability of the MinION™ platform to perform long amplicon sequencing in order to design new approaches to study microbial diversity using a multi-locus approach. After compiling a robust database by parsing and extracting the rrn bacterial region from more than 67000 complete or draft bacterial genomes, we demonstrated that the data obtained during sequencing of the long amplicon in the MinION™ device using R9 and R9.4 chemistries were sufficient to study 2 mock microbial communities in a multiplex manner and to almost completely reconstruct the microbial diversity contained in the HM782D and D6305 mock communities. Although nanopore-based sequencing produces reads with lower per-base accuracy compared with other platforms, we presented a novel approach consisting of multi-locus and long amplicon sequencing using the MinION™ MkIb DNA sequencer and R9 and R9.4 chemistries that help to overcome the main disadvantage of this portable sequencing platform. Furthermore, the nanopore sequencing library, constructed with the last releases of pore chemistry (R9.4) and sequencing kit (SQK-LSK108), permitted the retrieval of the higher level of 1D read accuracy sufficient to characterize the microbial species present in each mock community analysed. Improvements in nanopore chemistry, such as minimizing base-calling errors and new library protocols able to produce rapid 1D libraries, will provide more reliable information in the near future. Such data will be useful for more comprehensive and faster specific detection of microbial species and strains in complex ecosystems. PMID:28605506

  6. Cyanobacterial Diversity in Microbial Mats from the Hypersaline Lagoon System of Araruama, Brazil: An In-depth Polyphasic Study.

    PubMed

    Ramos, Vitor M C; Castelo-Branco, Raquel; Leão, Pedro N; Martins, Joana; Carvalhal-Gomes, Sinda; Sobrinho da Silva, Frederico; Mendonça Filho, João G; Vasconcelos, Vitor M

    2017-01-01

    Microbial mats are complex, micro-scale ecosystems that can be found in a wide range of environments. In the top layer of photosynthetic mats from hypersaline environments, a large diversity of cyanobacteria typically predominates. With the aim of strengthening the knowledge on the cyanobacterial diversity present in the coastal lagoon system of Araruama (state of Rio de Janeiro, Brazil), we have characterized three mat samples by means of a polyphasic approach. We have used morphological and molecular data obtained by culture-dependent and -independent methods. Moreover, we have compared different classification methodologies and discussed the outcomes, challenges, and pitfalls of these methods. Overall, we show that Araruama's lagoons harbor a high cyanobacterial diversity. Thirty-six unique morphospecies could be differentiated, which increases by more than 15% the number of morphospecies and genera already reported for the entire Araruama system. Morphology-based data were compared with the 16S rRNA gene phylogeny derived from isolate sequences and environmental sequences obtained by PCR-DGGE and pyrosequencing. Most of the 48 phylotypes could be associated with the observed morphospecies at the order level. More than one third of the sequences demonstrated to be closely affiliated (best BLAST hit results of ≥99%) with cyanobacteria from ecologically similar habitats. Some sequences had no close relatives in the public databases, including one from an isolate, being placed as "loner" sequences within different orders. This hints at hidden cyanobacterial diversity in the mats of the Araruama system, while reinforcing the relevance of using complementary approaches to study cyanobacterial diversity.

  7. Cyanobacterial Diversity in Microbial Mats from the Hypersaline Lagoon System of Araruama, Brazil: An In-depth Polyphasic Study

    PubMed Central

    Ramos, Vitor M. C.; Castelo-Branco, Raquel; Leão, Pedro N.; Martins, Joana; Carvalhal-Gomes, Sinda; Sobrinho da Silva, Frederico; Mendonça Filho, João G.; Vasconcelos, Vitor M.

    2017-01-01

    Microbial mats are complex, micro-scale ecosystems that can be found in a wide range of environments. In the top layer of photosynthetic mats from hypersaline environments, a large diversity of cyanobacteria typically predominates. With the aim of strengthening the knowledge on the cyanobacterial diversity present in the coastal lagoon system of Araruama (state of Rio de Janeiro, Brazil), we have characterized three mat samples by means of a polyphasic approach. We have used morphological and molecular data obtained by culture-dependent and -independent methods. Moreover, we have compared different classification methodologies and discussed the outcomes, challenges, and pitfalls of these methods. Overall, we show that Araruama's lagoons harbor a high cyanobacterial diversity. Thirty-six unique morphospecies could be differentiated, which increases by more than 15% the number of morphospecies and genera already reported for the entire Araruama system. Morphology-based data were compared with the 16S rRNA gene phylogeny derived from isolate sequences and environmental sequences obtained by PCR-DGGE and pyrosequencing. Most of the 48 phylotypes could be associated with the observed morphospecies at the order level. More than one third of the sequences demonstrated to be closely affiliated (best BLAST hit results of ≥99%) with cyanobacteria from ecologically similar habitats. Some sequences had no close relatives in the public databases, including one from an isolate, being placed as “loner” sequences within different orders. This hints at hidden cyanobacterial diversity in the mats of the Araruama system, while reinforcing the relevance of using complementary approaches to study cyanobacterial diversity. PMID:28713360

  8. Epstein-Barr Virus Latent Membrane Protein 1 Genetic Variability in Peripheral Blood B Cells and Oropharyngeal Fluids

    PubMed Central

    Renzette, Nicholas; Somasundaran, Mohan; Brewster, Frank; Coderre, James; Weiss, Eric R.; McManus, Margaret; Greenough, Thomas; Tabak, Barbara; Garber, Manuel; Kowalik, Timothy F.

    2014-01-01

    ABSTRACT We report the diversity of latent membrane protein 1 (LMP1) gene founder sequences and the level of Epstein-Barr virus (EBV) genome variability over time and across anatomic compartments by using virus genomes amplified directly from oropharyngeal wash specimens and peripheral blood B cells during acute infection and convalescence. The intrahost nucleotide variability of the founder virus was 0.02% across the region sequences, and diversity increased significantly over time in the oropharyngeal compartment (P = 0.004). The LMP1 region showing the greatest level of variability in both compartments, and over time, was concentrated within the functional carboxyl-terminal activating regions 2 and 3 (CTAR2 and CTAR3). Interestingly, a deletion in a proline-rich repeat region (amino acids 274 to 289) of EBV commonly reported in EBV sequenced from cancer specimens was not observed in acute infectious mononucleosis (AIM) patients. Taken together, these data highlight the diversity in circulating EBV genomes and its potential importance in disease pathogenesis and vaccine design. IMPORTANCE This study is among the first to leverage an improved high-throughput deep-sequencing methodology to investigate directly from patient samples the degree of diversity in Epstein-Barr virus (EBV) populations and the extent to which viral genome diversity develops over time in the infected host. Significant variability of circulating EBV latent membrane protein 1 (LMP1) gene sequences was observed between cellular and oral wash samples, and this variability increased over time in oral wash samples. The significance of EBV genetic diversity in transmission and disease pathogenesis are discussed. PMID:24429365

  9. Epstein-Barr virus latent membrane protein 1 genetic variability in peripheral blood B cells and oropharyngeal fluids.

    PubMed

    Renzette, Nicholas; Somasundaran, Mohan; Brewster, Frank; Coderre, James; Weiss, Eric R; McManus, Margaret; Greenough, Thomas; Tabak, Barbara; Garber, Manuel; Kowalik, Timothy F; Luzuriaga, Katherine

    2014-04-01

    We report the diversity of latent membrane protein 1 (LMP1) gene founder sequences and the level of Epstein-Barr virus (EBV) genome variability over time and across anatomic compartments by using virus genomes amplified directly from oropharyngeal wash specimens and peripheral blood B cells during acute infection and convalescence. The intrahost nucleotide variability of the founder virus was 0.02% across the region sequences, and diversity increased significantly over time in the oropharyngeal compartment (P = 0.004). The LMP1 region showing the greatest level of variability in both compartments, and over time, was concentrated within the functional carboxyl-terminal activating regions 2 and 3 (CTAR2 and CTAR3). Interestingly, a deletion in a proline-rich repeat region (amino acids 274 to 289) of EBV commonly reported in EBV sequenced from cancer specimens was not observed in acute infectious mononucleosis (AIM) patients. Taken together, these data highlight the diversity in circulating EBV genomes and its potential importance in disease pathogenesis and vaccine design. This study is among the first to leverage an improved high-throughput deep-sequencing methodology to investigate directly from patient samples the degree of diversity in Epstein-Barr virus (EBV) populations and the extent to which viral genome diversity develops over time in the infected host. Significant variability of circulating EBV latent membrane protein 1 (LMP1) gene sequences was observed between cellular and oral wash samples, and this variability increased over time in oral wash samples. The significance of EBV genetic diversity in transmission and disease pathogenesis are discussed.

  10. Complete sequence and diversity of a maize-associated Polerovirus in East Africa

    USDA-ARS?s Scientific Manuscript database

    Since 2011-2012, Maize lethal necrosis (MLN) has emerged in East Africa, causing massive yield loss and propelling research to identify viruses and virus populations present in maize. As expected, next generation sequencing (NGS) has revealed diverse and abundant viruses from the family Potyviridae,...

  11. The complete genome sequences of 65 Campylobacter jejuni and C. coli strains

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni (Cj) and C. coli (Cc) are genetically highly diverse based on various molecular methods including MLST, microarray-based comparisons and the whole genome sequences of a few strains. Cj and Cc diversity is also exhibited by variable capsular polysaccharides (CPS) that are the maj...

  12. Maize HapMap2 identifies extant variation from a genome in flux

    USDA-ARS?s Scientific Manuscript database

    The maize genome is the largest, most diverse and complex plant genome sequenced to date. Using high-throughput sequencing to access genetic variation and a population genetics model to score the polymorphisms, we characterize and unite the diversity of the world’s key breeding germplasm, wild rela...

  13. Additional annotation of the pig transcriptome using integrated Iso-seq and Illumina RNA-seq analysis

    USDA-ARS?s Scientific Manuscript database

    Alternative splicing is a well-known phenomenon that dramatically increases eukaryotic transcriptome diversity. The extent of mRNA isoform diversity among porcine tissues was assessed using Pacific Biosciences single-molecule long-read isoform sequencing (Iso-Seq) and Illumina short read sequencing ...

  14. High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology

    PubMed Central

    Lijavetzky, Diego; Cabezas, José Antonio; Ibáñez, Ana; Rodríguez, Virginia; Martínez-Zapater, José M

    2007-01-01

    Background Single-nucleotide polymorphisms (SNPs) are the most abundant type of DNA sequence polymorphisms. Their higher availability and stability when compared to simple sequence repeats (SSRs) provide enhanced possibilities for genetic and breeding applications such as cultivar identification, construction of genetic maps, the assessment of genetic diversity, the detection of genotype/phenotype associations, or marker-assisted breeding. In addition, the efficiency of these activities can be improved thanks to the ease with which SNP genotyping can be automated. Expressed sequence tags (EST) sequencing projects in grapevine are allowing for the in silico detection of multiple putative sequence polymorphisms within and among a reduced number of cultivars. In parallel, the sequence of the grapevine cultivar Pinot Noir is also providing thousands of polymorphisms present in this highly heterozygous genome. Still the general application of those SNPs requires further validation since their use could be restricted to those specific genotypes. Results In order to develop a large SNP set of wide application in grapevine we followed a systematic re-sequencing approach in a group of 11 grape genotypes corresponding to ancient unrelated cultivars as well as wild plants. Using this approach, we have sequenced 230 gene fragments, what represents the analysis of over 1 Mb of grape DNA sequence. This analysis has allowed the discovery of 1573 SNPs with an average of one SNP every 64 bp (one SNP every 47 bp in non-coding regions and every 69 bp in coding regions). Nucleotide diversity in grape (π = 0.0051) was found to be similar to values observed in highly polymorphic plant species such as maize. The average number of haplotypes per gene sequence was estimated as six, with three haplotypes representing over 83% of the analyzed sequences. Short-range linkage disequilibrium (LD) studies within the analyzed sequences indicate the existence of a rapid decay of LD within the selected grapevine genotypes. To validate the use of the detected polymorphisms in genetic mapping, cultivar identification and genetic diversity studies we have used the SNPlex™ genotyping technology in a sample of grapevine genotypes and segregating progenies. Conclusion These results provide accurate values for nucleotide diversity in coding sequences and a first estimate of short-range LD in grapevine. Using SNPlex™ genotyping we have shown the application of a set of discovered SNPs as molecular markers for cultivar identification, linkage mapping and genetic diversity studies. Thus, the combination a highly efficient re-sequencing approach and the SNPlex™ high throughput genotyping technology provide a powerful tool for grapevine genetic analysis. PMID:18021442

  15. Genetic diversity and demographic instability in Riftia pachyptila tubeworms from eastern Pacific hydrothermal vents

    PubMed Central

    2011-01-01

    Background Deep-sea hydrothermal vent animals occupy patchy and ephemeral habitats supported by chemosynthetic primary production. Volcanic and tectonic activities controlling the turnover of these habitats contribute to demographic instability that erodes genetic variation within and among colonies of these animals. We examined DNA sequences from one mitochondrial and three nuclear gene loci to assess genetic diversity in the siboglinid tubeworm, Riftia pachyptila, a widely distributed constituent of vents along the East Pacific Rise and Galápagos Rift. Results Genetic differentiation (FST) among populations increased with geographical distances, as expected under a linear stepping-stone model of dispersal. Low levels of DNA sequence diversity occurred at all four loci, allowing us to exclude the hypothesis that an idiosyncratic selective sweep eliminated mitochondrial diversity alone. Total gene diversity declined with tectonic spreading rates. The southernmost populations, which are subjected to superfast spreading rates and high probabilities of extinction, are relatively homogenous genetically. Conclusions Compared to other vent species, DNA sequence diversity is extremely low in R. pachyptila. Though its dispersal abilities appear to be effective, the low diversity, particularly in southern hemisphere populations, is consistent with frequent local extinction and (re)colonization events. PMID:21489281

  16. Genetic diversity and demographic instability in Riftia pachyptila tubeworms from eastern Pacific hydrothermal vents

    USGS Publications Warehouse

    Coykendall, D.K.; Johnson, S.B.; Karl, S.A.; Lutz, R.A.; Vrijenhoek, R.C.

    2011-01-01

    Background: Deep-sea hydrothermal vent animals occupy patchy and ephemeral habitats supported by chemosynthetic primary production. Volcanic and tectonic activities controlling the turnover of these habitats contribute to demographic instability that erodes genetic variation within and among colonies of these animals. We examined DNA sequences from one mitochondrial and three nuclear gene loci to assess genetic diversity in the siboglinid tubeworm, Riftia pachyptila, a widely distributed constituent of vents along the East Pacific Rise and Galpagos Rift. Results: Genetic differentiation (FST) among populations increased with geographical distances, as expected under a linear stepping-stone model of dispersal. Low levels of DNA sequence diversity occurred at all four loci, allowing us to exclude the hypothesis that an idiosyncratic selective sweep eliminated mitochondrial diversity alone. Total gene diversity declined with tectonic spreading rates. The southernmost populations, which are subjected to superfast spreading rates and high probabilities of extinction, are relatively homogenous genetically. Conclusions: Compared to other vent species, DNA sequence diversity is extremely low in R. pachyptila. Though its dispersal abilities appear to be effective, the low diversity, particularly in southern hemisphere populations, is consistent with frequent local extinction and (re)colonization events. ?? 2011 Coykendall et al; licensee BioMed Central Ltd.

  17. MHC class I diversity in chimpanzees and bonobos.

    PubMed

    Maibach, Vincent; Hans, Jörg B; Hvilsom, Christina; Marques-Bonet, Tomas; Vigilant, Linda

    2017-10-01

    Major histocompatibility complex (MHC) class I genes are critically involved in the defense against intracellular pathogens. MHC diversity comparisons among samples of closely related taxa may reveal traces of past or ongoing selective processes. The bonobo and chimpanzee are the closest living evolutionary relatives of humans and last shared a common ancestor some 1 mya. However, little is known concerning MHC class I diversity in bonobos or in central chimpanzees, the most numerous and genetically diverse chimpanzee subspecies. Here, we used a long-read sequencing technology (PacBio) to sequence the classical MHC class I genes A, B, C, and A-like in 20 and 30 wild-born bonobos and chimpanzees, respectively, with a main focus on central chimpanzees to assess and compare diversity in those two species. We describe in total 21 and 42 novel coding region sequences for the two species, respectively. In addition, we found evidence for a reduced MHC class I diversity in bonobos as compared to central chimpanzees as well as to western chimpanzees and humans. The reduced bonobo MHC class I diversity may be the result of a selective process in their evolutionary past since their split from chimpanzees.

  18. High-accuracy identification of incident HIV-1 infections using a sequence clustering based diversity measure.

    PubMed

    Xia, Xia-Yu; Ge, Meng; Hsi, Jenny H; He, Xiang; Ruan, Yu-Hua; Wang, Zhi-Xin; Shao, Yi-Ming; Pan, Xian-Ming

    2014-01-01

    Accurate estimates of HIV-1 incidence are essential for monitoring epidemic trends and evaluating intervention efforts. However, the long asymptomatic stage of HIV-1 infection makes it difficult to effectively distinguish incident infections from chronic ones. Current incidence assays based on serology or viral sequence diversity are both still lacking in accuracy. In the present work, a sequence clustering based diversity (SCBD) assay was devised by utilizing the fact that viral sequences derived from each transmitted/founder (T/F) strain tend to cluster together at early stage, and that only the intra-cluster diversity is correlated with the time since HIV-1 infection. The dot-matrix pairwise alignment was used to eliminate the disproportional impact of insertion/deletions (indels) and recombination events, and so was the proportion of clusterable sequences (Pc) as an index to identify late chronic infections with declined viral genetic diversity. Tested on a dataset containing 398 incident and 163 chronic infection cases collected from the Los Alamos HIV database (last modified 2/8/2012), our SCBD method achieved 99.5% sensitivity and 98.8% specificity, with an overall accuracy of 99.3%. Further analysis and evaluation also suggested its performance was not affected by host factors such as the viral subtypes and transmission routes. The SCBD method demonstrated the potential of sequencing based techniques to become useful for identifying incident infections. Its use may be most advantageous for settings with low to moderate incidence relative to available resources. The online service is available at http://www.bioinfo.tsinghua.edu.cn:8080/SCBD/index.jsp.

  19. PepLine: a software pipeline for high-throughput direct mapping of tandem mass spectrometry data on genomic sequences.

    PubMed

    Ferro, Myriam; Tardif, Marianne; Reguer, Erwan; Cahuzac, Romain; Bruley, Christophe; Vermat, Thierry; Nugues, Estelle; Vigouroux, Marielle; Vandenbrouck, Yves; Garin, Jérôme; Viari, Alain

    2008-05-01

    PepLine is a fully automated software which maps MS/MS fragmentation spectra of trypsic peptides to genomic DNA sequences. The approach is based on Peptide Sequence Tags (PSTs) obtained from partial interpretation of QTOF MS/MS spectra (first module). PSTs are then mapped on the six-frame translations of genomic sequences (second module) giving hits. Hits are then clustered to detect potential coding regions (third module). Our work aimed at optimizing the algorithms of each component to allow the whole pipeline to proceed in a fully automated manner using raw nucleic acid sequences (i.e., genomes that have not been "reduced" to a database of ORFs or putative exons sequences). The whole pipeline was tested on controlled MS/MS spectra sets from standard proteins and from Arabidopsis thaliana envelope chloroplast samples. Our results demonstrate that PepLine competed with protein database searching softwares and was fast enough to potentially tackle large data sets and/or high size genomes. We also illustrate the potential of this approach for the detection of the intron/exon structure of genes.

  20. [Current applications of high-throughput DNA sequencing technology in antibody drug research].

    PubMed

    Yu, Xin; Liu, Qi-Gang; Wang, Ming-Rong

    2012-03-01

    Since the publication of a high-throughput DNA sequencing technology based on PCR reaction was carried out in oil emulsions in 2005, high-throughput DNA sequencing platforms have been evolved to a robust technology in sequencing genomes and diverse DNA libraries. Antibody libraries with vast numbers of members currently serve as a foundation of discovering novel antibody drugs, and high-throughput DNA sequencing technology makes it possible to rapidly identify functional antibody variants with desired properties. Herein we present a review of current applications of high-throughput DNA sequencing technology in the analysis of antibody library diversity, sequencing of CDR3 regions, identification of potent antibodies based on sequence frequency, discovery of functional genes, and combination with various display technologies, so as to provide an alternative approach of discovery and development of antibody drugs.

  1. Construction of a scFv Library with Synthetic, Non-combinatorial CDR Diversity.

    PubMed

    Bai, Xuelian; Shim, Hyunbo

    2017-01-01

    Many large synthetic antibody libraries have been designed, constructed, and successfully generated high-quality antibodies suitable for various demanding applications. While synthetic antibody libraries have many advantages such as optimized framework sequences and a broader sequence landscape than natural antibodies, their sequence diversities typically are generated by random combinatorial synthetic processes which cause the incorporation of many undesired CDR sequences. Here, we describe the construction of a synthetic scFv library using oligonucleotide mixtures that contain predefined, non-combinatorially synthesized CDR sequences. Each CDR is first inserted to a master scFv framework sequence and the resulting single-CDR libraries are subjected to a round of proofread panning. The proofread CDR sequences are assembled to produce the final scFv library with six diversified CDRs.

  2. Sequence diversity within the reovirus S2 gene: reovirus genes reassort in nature, and their termini are predicted to form a panhandle motif.

    PubMed Central

    Chapell, J D; Goral, M I; Rodgers, S E; dePamphilis, C W; Dermody, T S

    1994-01-01

    To better understand genetic diversity within mammalian reoviruses, we determined S2 nucleotide and deduced sigma 2 amino acid sequences of nine reovirus strains and compared these sequences with those of prototype strains of the three reovirus serotypes. The S2 gene and sigma 2 protein are highly conserved among the four type 1, one type 2, and seven type 3 strains studied. Phylogenetic analyses based on S2 nucleotide sequences of the 12 reovirus strains indicate that diversity within the S2 gene is independent of viral serotype. Additionally, we found marked topological differences between phylogenetic trees generated from S1 and S2 gene nucleotide sequences of the seven type 3 strains. These results demonstrate that reovirus S1 and S2 genes have distinct evolutionary histories, thus providing phylogenetic evidence for lateral transfer of reovirus genes in nature. When variability among the 12 sigma 2-encoding S2 nucleotide sequences was analyzed at synonymous positions, we found that approximately 60 nucleotides at the 5' terminus and 30 nucleotides at the 3' terminus were markedly conserved in comparison with other sigma 2-encoding regions of S2. Predictions of RNA secondary structures indicate that the more conserved S2 sequences participate in the formation of an extended region of duplex RNA interrupted by a pair of stem-loops. Among the 12 deduced sigma 2 amino acid sequences examined, substitutions were observed at only 11% of amino acid positions. This finding suggests that constraints on the structure or function of sigma 2, perhaps in part because of its location in the virion core, have limited sequence diversity within this protein. PMID:8289378

  3. Salmonella enterica Prophage Sequence Profiles Reflect Genome Diversity and Can Be Used for High Discrimination Subtyping.

    PubMed

    Mottawea, Walid; Duceppe, Marc-Olivier; Dupras, Andrée A; Usongo, Valentine; Jeukens, Julie; Freschi, Luca; Emond-Rheault, Jean-Guillaume; Hamel, Jeremie; Kukavica-Ibrulj, Irena; Boyle, Brian; Gill, Alexander; Burnett, Elton; Franz, Eelco; Arya, Gitanjali; Weadge, Joel T; Gruenheid, Samantha; Wiedmann, Martin; Huang, Hongsheng; Daigle, France; Moineau, Sylvain; Bekal, Sadjia; Levesque, Roger C; Goodridge, Lawrence D; Ogunremi, Dele

    2018-01-01

    Non-typhoidal Salmonella is a leading cause of foodborne illness worldwide. Prompt and accurate identification of the sources of Salmonella responsible for disease outbreaks is crucial to minimize infections and eliminate ongoing sources of contamination. Current subtyping tools including single nucleotide polymorphism (SNP) typing may be inadequate, in some instances, to provide the required discrimination among epidemiologically unrelated Salmonella strains. Prophage genes represent the majority of the accessory genes in bacteria genomes and have potential to be used as high discrimination markers in Salmonella . In this study, the prophage sequence diversity in different Salmonella serovars and genetically related strains was investigated. Using whole genome sequences of 1,760 isolates of S. enterica representing 151 Salmonella serovars and 66 closely related bacteria, prophage sequences were identified from assembled contigs using PHASTER. We detected 154 different prophages in S. enterica genomes. Prophage sequences were highly variable among S. enterica serovars with a median ± interquartile range (IQR) of 5 ± 3 prophage regions per genome. While some prophage sequences were highly conserved among the strains of specific serovars, few regions were lineage specific. Therefore, strains belonging to each serovar could be clustered separately based on their prophage content. Analysis of S . Enteritidis isolates from seven outbreaks generated distinct prophage profiles for each outbreak. Taken altogether, the diversity of the prophage sequences correlates with genome diversity. Prophage repertoires provide an additional marker for differentiating S. enterica subtypes during foodborne outbreaks.

  4. Diversity and function in microbial mats from the Lucky Strike hydrothermal vent field.

    PubMed

    Crépeau, Valentin; Cambon Bonavita, Marie-Anne; Lesongeur, Françoise; Randrianalivelo, Henintsoa; Sarradin, Pierre-Marie; Sarrazin, Jozée; Godfroy, Anne

    2011-06-01

    Diversity and function in microbial mats from the Lucky Strike hydrothermal vent field (Mid-Atlantic Ridge) were investigated using molecular approaches. DNA and RNA were extracted from mat samples overlaying hydrothermal deposits and Bathymodiolus azoricus mussel assemblages. We constructed and analyzed libraries of 16S rRNA gene sequences and sequences of functional genes involved in autotrophic carbon fixation [forms I and II RuBisCO (cbbL/M), ATP-citrate lyase B (aclB)]; methane oxidation [particulate methane monooxygenase (pmoA)] and sulfur oxidation [adenosine-5'-phosphosulfate reductase (aprA) and soxB]. To gain new insights into the relationships between mats and mussels, we also used new domain-specific 16S rRNA gene primers targeting Bathymodiolus sp. symbionts. All identified archaeal sequences were affiliated with a single group: the marine group 1 Thaumarchaeota. In contrast, analyses of bacterial sequences revealed much higher diversity, although two phyla Proteobacteria and Bacteroidetes were largely dominant. The 16S rRNA gene sequence library revealed that species affiliated to Beggiatoa Gammaproteobacteria were the dominant active population. Analyses of DNA and RNA functional gene libraries revealed a diverse and active chemolithoautotrophic population. Most of these sequences were affiliated with Gammaproteobacteria, including hydrothermal fauna symbionts, Thiotrichales and Methylococcales. PCR and reverse transcription-PCR using 16S rRNA gene primers targeted to Bathymodiolus sp. symbionts revealed sequences affiliated with both methanotrophic and thiotrophic endosymbionts. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. PCR Primers to Study the Diversity of Expressed Fungal Genes Encoding Lignocellulolytic Enzymes in Soils Using High-Throughput Sequencing

    PubMed Central

    Barbi, Florian; Bragalini, Claudia; Vallon, Laurent; Prudent, Elsa; Dubost, Audrey; Fraissinet-Tachet, Laurence; Marmeisse, Roland; Luis, Patricia

    2014-01-01

    Plant biomass degradation in soil is one of the key steps of carbon cycling in terrestrial ecosystems. Fungal saprotrophic communities play an essential role in this process by producing hydrolytic enzymes active on the main components of plant organic matter. Open questions in this field regard the diversity of the species involved, the major biochemical pathways implicated and how these are affected by external factors such as litter quality or climate changes. This can be tackled by environmental genomic approaches involving the systematic sequencing of key enzyme-coding gene families using soil-extracted RNA as material. Such an approach necessitates the design and evaluation of gene family-specific PCR primers producing sequence fragments compatible with high-throughput sequencing approaches. In the present study, we developed and evaluated PCR primers for the specific amplification of fungal CAZy Glycoside Hydrolase gene families GH5 (subfamily 5) and GH11 encoding endo-β-1,4-glucanases and endo-β-1,4-xylanases respectively as well as Basidiomycota class II peroxidases, corresponding to the CAZy Auxiliary Activity family 2 (AA2), active on lignin. These primers were experimentally validated using DNA extracted from a wide range of Ascomycota and Basidiomycota species including 27 with sequenced genomes. Along with the published primers for Glycoside Hydrolase GH7 encoding enzymes active on cellulose, the newly design primers were shown to be compatible with the Illumina MiSeq sequencing technology. Sequences obtained from RNA extracted from beech or spruce forest soils showed a high diversity and were uniformly distributed in gene trees featuring the global diversity of these gene families. This high-throughput sequencing approach using several degenerate primers constitutes a robust method, which allows the simultaneous characterization of the diversity of different fungal transcripts involved in plant organic matter degradation and may lead to the discovery of complex patterns in gene expression of soil fungal communities. PMID:25545363

  6. Investigation of Microbial Diversity in Geothermal Hot Springs in Unkeshwar, India, Based on 16S rRNA Amplicon Metagenome Sequencing

    PubMed Central

    Mehetre, Gajanan T.; Paranjpe, Aditi; Dastager, Syed G.

    2016-01-01

    Microbial diversity in geothermal waters of the Unkeshwar hot springs in Maharashtra, India, was studied using 16S rRNA amplicon metagenomic sequencing. Taxonomic analysis revealed the presence of Bacteroidetes, Proteobacteria, Cyanobacteria, Actinobacteria, Archeae, and OD1 phyla. Metabolic function prediction analysis indicated a battery of biological information systems indicating rich and novel microbial diversity, with potential biotechnological applications in this niche. PMID:26950332

  7. Compound haplotypes at Xp11.23 and human population growth in Eurasia.

    PubMed

    Alonso, S; Armour, J A L

    2004-09-01

    To investigate patterns of diversity and the evolutionary history of Eurasians, we have sequenced a 2.8 kb region at Xp11.23 in a sample of African and Eurasian chromosomes. This region is in a long intron of CLCN5 and is immediately flanked by a highly variable minisatellite, DXS255, and a human-specific Ta0 LINE. Compared to Africans, Eurasians showed a marked reduction in sequence diversity. The main Euro-Asiatic haplotype seems to be the ancestral haplotype for the whole sample. Coalescent simulations, including recombination and exponential growth, indicate a median length of strong linkage disequilibrium, up to approximately 9 kb for this area. The Ka/Ks ratio between the coding sequence of human CLCN5 and its mouse orthologue is much less than 1. This implies that the region sequenced is unlikely to be under the strong influence of positive selective processes on CLCN5, mutations in which have been associated with disorders such as Dent's disease. In contrast, a scenario based on a population bottleneck and exponential growth seems a more likely explanation for the reduced diversity observed in Eurasians. Coalescent analysis and linked minisatellite diversity (which reaches a gene diversity value greater than 98% in Eurasians) suggest an estimated age of origin of the Euro-Asiatic diversity compatible with a recent out-of-Africa model for colonization of Eurasia by modern Homo sapiens.

  8. Genomic Diversity and Evolution of the Lyssaviruses

    PubMed Central

    Delmas, Olivier; Holmes, Edward C.; Talbi, Chiraz; Larrous, Florence; Dacheux, Laurent; Bouchier, Christiane; Bourhy, Hervé

    2008-01-01

    Lyssaviruses are RNA viruses with single-strand, negative-sense genomes responsible for rabies-like diseases in mammals. To date, genomic and evolutionary studies have most often utilized partial genome sequences, particularly of the nucleoprotein and glycoprotein genes, with little consideration of genome-scale evolution. Herein, we report the first genomic and evolutionary analysis using complete genome sequences of all recognised lyssavirus genotypes, including 14 new complete genomes of field isolates from 6 genotypes and one genotype that is completely sequenced for the first time. In doing so we significantly increase the extent of genome sequence data available for these important viruses. Our analysis of these genome sequence data reveals that all lyssaviruses have the same genomic organization. A phylogenetic analysis reveals strong geographical structuring, with the greatest genetic diversity in Africa, and an independent origin for the two known genotypes that infect European bats. We also suggest that multiple genotypes may exist within the diversity of viruses currently classified as ‘Lagos Bat’. In sum, we show that rigorous phylogenetic techniques based on full length genome sequence provide the best discriminatory power for genotype classification within the lyssaviruses. PMID:18446239

  9. Genetic diversity of Babesia bovis in virulent and attenuated strains.

    PubMed

    Mazuz, M L; Molad, T; Fish, L; Leibovitz, B; Wolkomirsky, R; Fleiderovitz, L; Shkap, V

    2012-03-01

    The aim of this study was to compare the genetic diversity of the single copy Bv80 gene sequences of Babesia bovis in populations of attenuated and virulent parasites. PCR/ RT-PCR followed by cloning and sequence analyses of 4 attenuated and 4 virulent strains were performed. Multiple fragments in the range of 420 to 744 bp were amplified by PCR or RT-PCR. Cloning of the PCR fragments and sequence analyses revealed the presence of mixed subpopulations in either virulent or attenuated parasites with a total of 19 variants with 12 different sequences that differed in number and type of tandem repeats. High levels of intra- and inter-strain diversity of the Bv80 gene, with the presence of mixed populations of parasites were found in both the virulent field isolates and the attenuated vaccine strains. In addition, during the attenuation process, sequence analyses showed changes in the pattern of the parasite subpopulations. Despite high polymorphism found by sequence analyses, the patterns observed and the number of repeats, order, or motifs found could not discriminate between virulent field isolates and attenuated vaccine strains of the parasite.

  10. Diversity of phytases in the rumen.

    PubMed

    Nakashima, Brenda A; McAllister, Tim A; Sharma, Ranjana; Selinger, L Brent

    2007-01-01

    Examples of a new class of phytase related to protein tyrosine phosphatases (PTP) were recently isolated from several anaerobic bacteria from the rumen of cattle. In this study, the diversity of PTP-like phytase gene sequences in the rumen was surveyed by using the polymerase chain reaction (PCR). Two sets of degenerate primers were used to amplify sequences from rumen fluid total community DNA and genomic DNA from nine bacterial isolates. Four novel PTP-like phytase sequences were retrieved from rumen fluid, whereas all nine of the anaerobic bacterial isolates investigated in this work contained PTP-like phytase sequences. One isolate, Selenomonas lacticifex, contained two distinct PTP-like phytase sequences, suggesting that multiple phytate hydrolyzing enzymes are present in this bacterium. The degenerate primer and PCR conditions described here, as well as novel sequences obtained in this study, will provide a valuable resource for future studies on this new class of phytase. The observed diversity of microbial phytases in the rumen may account for the ability of ruminants to derive a significant proportion of their phosphorus requirements from phytate.

  11. Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats

    NASA Astrophysics Data System (ADS)

    Comeau, André M.; Vincent, Warwick F.; Bernier, Louis; Lovejoy, Connie

    2016-07-01

    In aquatic environments, fungal communities remain little studied despite their taxonomic and functional diversity. To extend the ecological coverage of this group, we conducted an in-depth analysis of fungal sequences within our collection of 3.6 million V4 18S rRNA pyrosequences originating from 319 individual marine (including sea-ice) and freshwater samples from libraries generated within diverse projects studying Arctic and temperate biomes in the past decade. Among the ~1.7 million post-filtered reads of highest taxonomic and phylogenetic quality, 23,263 fungal sequences were identified. The overall mean proportion was 1.35%, but with large variability; for example, from 0.01 to 59% of total sequences for Arctic seawater samples. Almost all sample types were dominated by Chytridiomycota-like sequences, followed by moderate-to-minor contributions of Ascomycota, Cryptomycota and Basidiomycota. Species and/or strain richness was high, with many novel sequences and high niche separation. The affinity of the most common reads to phytoplankton parasites suggests that aquatic fungi deserve renewed attention for their role in algal succession and carbon cycling.

  12. Natural products as an inspiration in the diversity-oriented synthesis of bioactive compound libraries

    PubMed Central

    Cordier, Christopher; Morton, Daniel; Murrison, Sarah; O'Leary-Steele, Catherine

    2008-01-01

    The purpose of diversity-oriented synthesis is to drive the discovery of small molecules with previously unknown biological functions. Natural products necessarily populate biologically relevant chemical space, since they bind both their biosynthetic enzymes and their target macromolecules. Natural product families are, therefore, libraries of pre-validated, functionally diverse structures in which individual compounds selectively modulate unrelated macromolecular targets. This review describes examples of diversity-oriented syntheses which have, to some extent, been inspired by the structures of natural products. Particular emphasis is placed on innovations that allow the synthesis of compound libraries that, like natural products, are skeletally diverse. Mimicking the broad structural features of natural products may allow the discovery of compounds that modulate the functions of macromolecules for which ligands are not known. The ability of innovations in diversity-oriented synthesis to deliver such compounds is critically assessed. PMID:18663392

  13. The C Terminus of Formin FMNL3 Accelerates Actin Polymerization and Contains a WH2 Domain-like Sequence That Binds Both Monomers and Filament Barbed Ends*

    PubMed Central

    Heimsath, Ernest G.; Higgs, Henry N.

    2012-01-01

    Formin proteins are actin assembly factors that accelerate filament nucleation then remain on the elongating barbed end and modulate filament elongation. The formin homology 2 (FH2) domain is central to these activities, but recent work has suggested that additional sequences enhance FH2 domain function. Here we show that the C-terminal 76 amino acids of the formin FMNL3 have a dramatic effect on the ability of the FH2 domain to accelerate actin assembly. This C-terminal region contains a WASp homology 2 (WH2)-like sequence that binds actin monomers in a manner that is competitive with other WH2 domains and with profilin. In addition, the C terminus binds filament barbed ends. As a monomer, the FMNL3 C terminus inhibits actin polymerization and slows barbed end elongation with moderate affinity. As a dimer, the C terminus accelerates actin polymerization from monomers and displays high affinity inhibition of barbed end elongation. These properties are not common to all formin C termini, as those of mDia1 and INF2 do not behave similarly. Interestingly, mutation of two aliphatic residues, which blocks high affinity actin binding by the WH2-like sequence, has no effect on the ability of the C terminus to enhance FH2-mediated polymerization. However, mutation of three successive basic residues at the C terminus of the WH2-like sequence compromises polymerization enhancement. These results illustrate that the C termini of formins are highly diverse in their interactions with actin. PMID:22094460

  14. Computational Prediction of the Immunomodulatory Potential of RNA Sequences.

    PubMed

    Nagpal, Gandharva; Chaudhary, Kumardeep; Dhanda, Sandeep Kumar; Raghava, Gajendra Pal Singh

    2017-01-01

    Advances in the knowledge of various roles played by non-coding RNAs have stimulated the application of RNA molecules as therapeutics. Among these molecules, miRNA, siRNA, and CRISPR-Cas9 associated gRNA have been identified as the most potent RNA molecule classes with diverse therapeutic applications. One of the major limitations of RNA-based therapeutics is immunotoxicity of RNA molecules as it may induce the innate immune system. In contrast, RNA molecules that are potent immunostimulators are strong candidates for use in vaccine adjuvants. Thus, it is important to understand the immunotoxic or immunostimulatory potential of these RNA molecules. The experimental techniques for determining immunostimulatory potential of siRNAs are time- and resource-consuming. To overcome this limitation, recently our group has developed a web-based server "imRNA" for predicting the immunomodulatory potential of RNA sequences. This server integrates a number of modules that allow users to perform various tasks including (1) generation of RNA analogs with reduced immunotoxicity, (2) identification of highly immunostimulatory regions in RNA sequence, and (3) virtual screening. This server may also assist users in the identification of minimum mutations required in a given RNA sequence to minimize its immunomodulatory potential that is required for designing RNA-based therapeutics. Besides, the server can be used for designing RNA-based vaccine adjuvants as it may assist users in the identification of mutations required for increasing immunomodulatory potential of a given RNA sequence. In summary, this chapter describes major applications of the "imRNA" server in designing RNA-based therapeutics and vaccine adjuvants (http://www.imtech.res.in/raghava/imrna/).

  15. Conserved Features in the Structure, Mechanism, and Biogenesis of the Inverse Autotransporter Protein Family

    PubMed Central

    Heinz, Eva; Stubenrauch, Christopher J.; Grinter, Rhys; Croft, Nathan P.; Purcell, Anthony W.; Strugnell, Richard A.; Dougan, Gordon; Lithgow, Trevor

    2016-01-01

    The bacterial cell surface proteins intimin and invasin are virulence factors that share a common domain structure and bind selectively to host cell receptors in the course of bacterial pathogenesis. The β-barrel domains of intimin and invasin show significant sequence and structural similarities. Conversely, a variety of proteins with sometimes limited sequence similarity have also been annotated as “intimin-like” and “invasin” in genome datasets, while other recent work on apparently unrelated virulence-associated proteins ultimately revealed similarities to intimin and invasin. Here we characterize the sequence and structural relationships across this complex protein family. Surprisingly, intimins and invasins represent a very small minority of the sequence diversity in what has been previously the “intimin/invasin protein family”. Analysis of the assembly pathway for expression of the classic intimin, EaeA, and a characteristic example of the most prevalent members of the group, FdeC, revealed a dependence on the translocation and assembly module as a common feature for both these proteins. While the majority of the sequences in the grouping are most similar to FdeC, a further and widespread group is two-partner secretion systems that use the β-barrel domain as the delivery device for secretion of a variety of virulence factors. This comprehensive analysis supports the adoption of the “inverse autotransporter protein family” as the most accurate nomenclature for the family and, in turn, has important consequences for our overall understanding of the Type V secretion systems of bacterial pathogens. PMID:27190006

  16. LenVarDB: database of length-variant protein domains.

    PubMed

    Mutt, Eshita; Mathew, Oommen K; Sowdhamini, Ramanathan

    2014-01-01

    Protein domains are functionally and structurally independent modules, which add to the functional variety of proteins. This array of functional diversity has been enabled by evolutionary changes, such as amino acid substitutions or insertions or deletions, occurring in these protein domains. Length variations (indels) can introduce changes at structural, functional and interaction levels. LenVarDB (freely available at http://caps.ncbs.res.in/lenvardb/) traces these length variations, starting from structure-based sequence alignments in our Protein Alignments organized as Structural Superfamilies (PASS2) database, across 731 structural classification of proteins (SCOP)-based protein domain superfamilies connected to 2 730 625 sequence homologues. Alignment of sequence homologues corresponding to a structural domain is available, starting from a structure-based sequence alignment of the superfamily. Orientation of the length-variant (indel) regions in protein domains can be visualized by mapping them on the structure and on the alignment. Knowledge about location of length variations within protein domains and their visual representation will be useful in predicting changes within structurally or functionally relevant sites, which may ultimately regulate protein function. Non-technical summary: Evolutionary changes bring about natural changes to proteins that may be found in many organisms. Such changes could be reflected as amino acid substitutions or insertions-deletions (indels) in protein sequences. LenVarDB is a database that provides an early overview of observed length variations that were set among 731 protein families and after examining >2 million sequences. Indels are followed up to observe if they are close to the active site such that they can affect the activity of proteins. Inclusion of such information can aid the design of bioengineering experiments.

  17. Universal Influenza B Virus Genomic Amplification Facilitates Sequencing, Diagnostics, and Reverse Genetics

    PubMed Central

    Zhou, Bin; Lin, Xudong; Wang, Wei; Halpin, Rebecca A.; Bera, Jayati; Stockwell, Timothy B.; Barr, Ian G.

    2014-01-01

    Although human influenza B virus (IBV) is a significant human pathogen, its great genetic diversity has limited our ability to universally amplify the entire genome for subsequent sequencing or vaccine production. The generation of sequence data via next-generation approaches and the rapid cloning of viral genes are critical for basic research, diagnostics, antiviral drugs, and vaccines to combat IBV. To overcome the difficulty of amplifying the diverse and ever-changing IBV genome, we developed and optimized techniques that amplify the complete segmented negative-sense RNA genome from any IBV strain in a single tube/well (IBV genomic amplification [IBV-GA]). Amplicons for >1,000 diverse IBV genomes from different sample types (e.g., clinical specimens) were generated and sequenced using this robust technology. These approaches are sensitive, robust, and sequence independent (i.e., universally amplify past, present, and future IBVs), which facilitates next-generation sequencing and advanced genomic diagnostics. Importantly, special terminal sequences engineered into the optimized IBV-GA2 products also enable ligation-free cloning to rapidly generate reverse-genetics plasmids, which can be used for the rescue of recombinant viruses and/or the creation of vaccine seed stock. PMID:24501036

  18. Rank-order-selective neurons form a temporal basis set for the generation of motor sequences.

    PubMed

    Salinas, Emilio

    2009-04-08

    Many behaviors are composed of a series of elementary motor actions that must occur in a specific order, but the neuronal mechanisms by which such motor sequences are generated are poorly understood. In particular, if a sequence consists of a few motor actions, a primate can learn to replicate it from memory after practicing it for just a few trials. How do the motor and premotor areas of the brain assemble motor sequences so fast? The network model presented here reveals part of the solution to this problem. The model is based on experiments showing that, during the performance of motor sequences, some cortical neurons are always activated at specific times, regardless of which motor action is being executed. In the model, a population of such rank-order-selective (ROS) cells drives a layer of downstream motor neurons so that these generate specific movements at different times in different sequences. A key ingredient of the model is that the amplitude of the ROS responses must be modulated by sequence identity. Because of this modulation, which is consistent with experimental reports, the network is able not only to produce multiple sequences accurately but also to learn a new sequence with minimal changes in connectivity. The ROS neurons modulated by sequence identity thus serve as a basis set for constructing arbitrary sequences of motor responses downstream. The underlying mechanism is analogous to the mechanism described in parietal areas for generating coordinate transformations in the spatial domain.

  19. RANK-ORDER-SELECTIVE NEURONS FORM A TEMPORAL BASIS SET FOR THE GENERATION OF MOTOR SEQUENCES

    PubMed Central

    Salinas, Emilio

    2009-01-01

    Many behaviors are composed of a series of elementary motor actions that must occur in a specific order, but the neuronal mechanisms by which such motor sequences are generated are poorly understood. In particular, if a sequence consists of a few motor actions, a primate can learn to replicate it from memory after practicing it for just a few trials. How do the motor and premotor areas of the brain assemble motor sequences so fast? The network model presented here reveals part of the solution to this problem. The model is based on experiments showing that, during the performance of motor sequences, some cortical neurons are always activated at specific times, regardless of which motor action is being executed. In the model, a population of such rank-order-selective (ROS) cells drives a layer of downstream motor neurons so that these generate specific movements at different times in different sequences. A key ingredient of the model is that the amplitude of the ROS responses must be modulated by sequence identity. Because of this modulation, which is consistent with experimental reports, the network is able not only to produce multiple sequences accurately but also to learn a new sequence with minimal changes in connectivity. The ROS neurons modulated by sequence identity thus serve as a basis set for constructing arbitrary sequences of motor responses downstream. The underlying mechanism is analogous to the mechanism described in parietal areas for generating coordinate transformations in the spatial domain. PMID:19357265

  20. Identification of Human Lineage-Specific Transcriptional Coregulators Enabled by a Glossary of Binding Modules and Tunable Genomic Backgrounds.

    PubMed

    Mariani, Luca; Weinand, Kathryn; Vedenko, Anastasia; Barrera, Luis A; Bulyk, Martha L

    2017-09-27

    Transcription factors (TFs) control cellular processes by binding specific DNA motifs to modulate gene expression. Motif enrichment analysis of regulatory regions can identify direct and indirect TF binding sites. Here, we created a glossary of 108 non-redundant TF-8mer "modules" of shared specificity for 671 metazoan TFs from publicly available and new universal protein binding microarray data. Analysis of 239 ENCODE TF chromatin immunoprecipitation sequencing datasets and associated RNA sequencing profiles suggest the 8mer modules are more precise than position weight matrices in identifying indirect binding motifs and their associated tethering TFs. We also developed GENRE (genomically equivalent negative regions), a tunable tool for construction of matched genomic background sequences for analysis of regulatory regions. GENRE outperformed four state-of-the-art approaches to background sequence construction. We used our TF-8mer glossary and GENRE in the analysis of the indirect binding motifs for the co-occurrence of tethering factors, suggesting novel TF-TF interactions. We anticipate that these tools will aid in elucidating tissue-specific gene-regulatory programs. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. de Bruijn cycles for neural decoding.

    PubMed

    Aguirre, Geoffrey Karl; Mattar, Marcelo Gomes; Magis-Weinberg, Lucía

    2011-06-01

    Stimulus counterbalance is critical for studies of neural habituation, bias, anticipation, and (more generally) the effect of stimulus history and context. We introduce de Bruijn cycles, a class of combinatorial objects, as the ideal source of pseudo-random stimulus sequences with arbitrary levels of counterbalance. Neuro-vascular imaging studies (such as BOLD fMRI) have an additional requirement imposed by the filtering and noise properties of the method: only some temporal frequencies of neural modulation are detectable. Extant methods of generating counterbalanced stimulus sequences yield neural modulations that are weakly (or not at all) detected by BOLD fMRI. We solve this limitation using a novel "path-guided" approach for the generation of de Bruijn cycles. The algorithm encodes a hypothesized neural modulation of specific temporal frequency within the seemingly random order of events. By positioning the modulation between the signal and noise bands of the neuro-vascular imaging method, the resulting sequence markedly improves detection power. These sequences may be used to study stimulus context and history effects in a manner not previously possible. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Genetic diversity based on 28S rDNA sequences among populations of Culex quinquefasciatus collected at different locations in Tamil Nadu, India.

    PubMed

    Sakthivelkumar, S; Ramaraj, P; Veeramani, V; Janarthanan, S

    2015-09-01

    The basis of the present study was to distinguish the existence of any genetic variability among populations of Culex quinquefasciatus which would be a valuable tool in the management of mosquito control programmes. In the present study, population of Cx. quinquefasciatus collected at different locations in Tamil Nadu were analyzed for their genetic variation based on 28S rDNA D2 region nucleotide sequences. A high degree of genetic polymorphism was detected in the sequences of D2 region of 28S rDNA on the predicted secondary structures in spite of high nucleotide sequence similarity. The findings based on secondary structure using rDNA sequences suggested the existence of a complex genotypic diversity of Cx. quinquefasciatus population collected at different locations of Tamil Nadu, India. This complexity in genetic diversity in a single mosquito population collected at different locations is considered an important issue towards their influence and nature of vector potential of these mosquitoes.

  3. Exploring the environmental diversity of kinetoplastid flagellates in the high-throughput DNA sequencing era

    PubMed Central

    d’Avila-Levy, Claudia Masini; Boucinha, Carolina; Kostygov, Alexei; Santos, Helena Lúcia Carneiro; Morelli, Karina Alessandra; Grybchuk-Ieremenko, Anastasiia; Duval, Linda; Votýpka, Jan; Yurchenko, Vyacheslav; Grellier, Philippe; Lukeš, Julius

    2015-01-01

    The class Kinetoplastea encompasses both free-living and parasitic species from a wide range of hosts. Several representatives of this group are responsible for severe human diseases and for economic losses in agriculture and livestock. While this group encompasses over 30 genera, most of the available information has been derived from the vertebrate pathogenic genera Leishmaniaand Trypanosoma. Recent studies of the previously neglected groups of Kinetoplastea indicated that the actual diversity is much higher than previously thought. This article discusses the known segment of kinetoplastid diversity and how gene-directed Sanger sequencing and next-generation sequencing methods can help to deepen our knowledge of these interesting protists. PMID:26602872

  4. Assessing the genetic diversity of Cu resistance in mine tailings through high-throughput recovery of full-length copA genes

    PubMed Central

    Li, Xiaofang; Zhu, Yong-Guan; Shaban, Babak; Bruxner, Timothy J. C.; Bond, Philip L.; Huang, Longbin

    2015-01-01

    Characterizing the genetic diversity of microbial copper (Cu) resistance at the community level remains challenging, mainly due to the polymorphism of the core functional gene copA. In this study, a local BLASTN method using a copA database built in this study was developed to recover full-length putative copA sequences from an assembled tailings metagenome; these sequences were then screened for potentially functioning CopA using conserved metal-binding motifs, inferred by evolutionary trace analysis of CopA sequences from known Cu resistant microorganisms. In total, 99 putative copA sequences were recovered from the tailings metagenome, out of which 70 were found with high potential to be functioning in Cu resistance. Phylogenetic analysis of selected copA sequences detected in the tailings metagenome showed that topology of the copA phylogeny is largely congruent with that of the 16S-based phylogeny of the tailings microbial community obtained in our previous study, indicating that the development of copA diversity in the tailings might be mainly through vertical descent with few lateral gene transfer events. The method established here can be used to explore copA (and potentially other metal resistance genes) diversity in any metagenome and has the potential to exhaust the full-length gene sequences for downstream analyses. PMID:26286020

  5. Fungal communities from the calcareous deep-sea sediments in the Southwest India Ridge revealed by Illumina sequencing technology.

    PubMed

    Zhang, Likui; Kang, Manyu; Huang, Yangchao; Yang, Lixiang

    2016-05-01

    The diversity and ecological significance of bacteria and archaea in deep-sea environments have been thoroughly investigated, but eukaryotic microorganisms in these areas, such as fungi, are poorly understood. To elucidate fungal diversity in calcareous deep-sea sediments in the Southwest India Ridge (SWIR), the internal transcribed spacer (ITS) regions of rRNA genes from two sediment metagenomic DNA samples were amplified and sequenced using the Illumina sequencing platform. The results revealed that 58-63 % and 36-42 % of the ITS sequences (97 % similarity) belonged to Basidiomycota and Ascomycota, respectively. These findings suggest that Basidiomycota and Ascomycota are the predominant fungal phyla in the two samples. We also found that Agaricomycetes, Leotiomycetes, and Pezizomycetes were the major fungal classes in the two samples. At the species level, Thelephoraceae sp. and Phialocephala fortinii were major fungal species in the two samples. Despite the low relative abundance, unidentified fungal sequences were also observed in the two samples. Furthermore, we found that there were slight differences in fungal diversity between the two sediment samples, although both were collected from the SWIR. Thus, our results demonstrate that calcareous deep-sea sediments in the SWIR harbor diverse fungi, which augment the fungal groups in deep-sea sediments. This is the first report of fungal communities in calcareous deep-sea sediments in the SWIR revealed by Illumina sequencing.

  6. Fungal genome sequencing: basic biology to biotechnology.

    PubMed

    Sharma, Krishna Kant

    2016-08-01

    The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research.

  7. Effects of 16S rDNA sampling on estimates of the number of endosymbiont lineages in sucking lice

    PubMed Central

    Burleigh, J. Gordon; Light, Jessica E.; Reed, David L.

    2016-01-01

    Phylogenetic trees can reveal the origins of endosymbiotic lineages of bacteria and detect patterns of co-evolution with their hosts. Although taxon sampling can greatly affect phylogenetic and co-evolutionary inference, most hypotheses of endosymbiont relationships are based on few available bacterial sequences. Here we examined how different sampling strategies of Gammaproteobacteria sequences affect estimates of the number of endosymbiont lineages in parasitic sucking lice (Insecta: Phthirapatera: Anoplura). We estimated the number of louse endosymbiont lineages using both newly obtained and previously sequenced 16S rDNA bacterial sequences and more than 42,000 16S rDNA sequences from other Gammaproteobacteria. We also performed parametric and nonparametric bootstrapping experiments to examine the effects of phylogenetic error and uncertainty on these estimates. Sampling of 16S rDNA sequences affects the estimates of endosymbiont diversity in sucking lice until we reach a threshold of genetic diversity, the size of which depends on the sampling strategy. Sampling by maximizing the diversity of 16S rDNA sequences is more efficient than randomly sampling available 16S rDNA sequences. Although simulation results validate estimates of multiple endosymbiont lineages in sucking lice, the bootstrap results suggest that the precise number of endosymbiont origins is still uncertain. PMID:27547523

  8. Molecular diversity and distribution pattern of ciliates in sediments from deep-sea hydrothermal vents in the Okinawa Trough and adjacent sea areas

    NASA Astrophysics Data System (ADS)

    Zhao, Feng; Xu, Kuidong

    2016-10-01

    In comparison with the macrobenthos and prokaryotes, patterns of diversity and distribution of microbial eukaryotes in deep-sea hydrothermal vents are poorly known. The widely used high-throughput sequencing of 18S rDNA has revealed a high diversity of microeukaryotes yielded from both living organisms and buried DNA in marine sediments. More recently, cDNA surveys have been utilized to uncover the diversity of active organisms. However, both methods have never been used to evaluate the diversity of ciliates in hydrothermal vents. By using high-throughput DNA and cDNA sequencing of 18S rDNA, we evaluated the molecular diversity of ciliates, a representative group of microbial eukaryotes, from the sediments of deep-sea hydrothermal vents in the Okinawa Trough and compared it with that of an adjacent deep-sea area about 15 km away and that of an offshore area of the Yellow Sea about 500 km away. The results of DNA sequencing showed that Spirotrichea and Oligohymenophorea were the most diverse and abundant groups in all the three habitats. The proportion of sequences of Oligohymenophorea was the highest in the hydrothermal vents whereas Spirotrichea was the most diverse group at all three habitats. Plagiopyleans were found only in the hydrothermal vents but with low diversity and abundance. By contrast, the cDNA sequencing showed that Plagiopylea was the most diverse and most abundant group in the hydrothermal vents, followed by Spirotrichea in terms of diversity and Oligohymenophorea in terms of relative abundance. A novel group of ciliates, distinctly separate from the 12 known classes, was detected in the hydrothermal vents, indicating undescribed, possibly highly divergent ciliates may inhabit this environment. Statistical analyses showed that: (i) the three habitats differed significantly from one another in terms of diversity of both the rare and the total ciliate taxa, and; (ii) the adjacent deep sea was more similar to the offshore area than to the hydrothermal vents. In terms of the diversity of abundant taxa, however, there was no significant difference between the hydrothermal vents and the adjacent deep sea, both of which differed significantly from the offshore area. As abundant ciliate taxa can be found in several sampling sites, they are likely adapted to large environmental variations, while rare taxa are found in specific habitat and thus are potentially more sensitive to varying environmental conditions.

  9. Early Epstein-Barr Virus Genomic Diversity and Convergence toward the B95.8 Genome in Primary Infection.

    PubMed

    Weiss, Eric R; Lamers, Susanna L; Henderson, Jennifer L; Melnikov, Alexandre; Somasundaran, Mohan; Garber, Manuel; Selin, Liisa; Nusbaum, Chad; Luzuriaga, Katherine

    2018-01-15

    Over 90% of the world's population is persistently infected with Epstein-Barr virus. While EBV does not cause disease in most individuals, it is the common cause of acute infectious mononucleosis (AIM) and has been associated with several cancers and autoimmune diseases, highlighting a need for a preventive vaccine. At present, very few primary, circulating EBV genomes have been sequenced directly from infected individuals. While low levels of diversity and low viral evolution rates have been predicted for double-stranded DNA (dsDNA) viruses, recent studies have demonstrated appreciable diversity in common dsDNA pathogens (e.g., cytomegalovirus). Here, we report 40 full-length EBV genome sequences obtained from matched oral wash and B cell fractions from a cohort of 10 AIM patients. Both intra- and interpatient diversity were observed across the length of the entire viral genome. Diversity was most pronounced in viral genes required for establishing latent infection and persistence, with appreciable levels of diversity also detected in structural genes, including envelope glycoproteins. Interestingly, intrapatient diversity declined significantly over time ( P < 0.01), and this was particularly evident on comparison of viral genomes sequenced from B cell fractions in early primary infection and convalescence ( P < 0.001). B cell-associated viral genomes were observed to converge, becoming nearly identical to the B95.8 reference genome over time (Spearman rank-order correlation test; r = -0.5589, P = 0.0264). The reduction in diversity was most marked in the EBV latency genes. In summary, our data suggest independent convergence of diverse viral genome sequences toward a reference-like strain within a relatively short period following primary EBV infection. IMPORTANCE Identification of viral proteins with low variability and high immunogenicity is important for the development of a protective vaccine. Knowledge of genome diversity within circulating viral populations is a key step in this process, as is the expansion of intrahost genomic variation during infection. We report full-length EBV genomes sequenced from the blood and oral wash of 10 individuals early in primary infection and during convalescence. Our data demonstrate considerable diversity within the pool of circulating EBV strains, as well as within individual patients. Overall viral diversity decreased from early to persistent infection, particularly in latently infected B cells, which serve as the viral reservoir. Reduction in B cell-associated viral genome diversity coincided with a convergence toward a reference-like EBV genotype. Greater convergence positively correlated with time after infection, suggesting that the reference-like genome is the result of selection. Copyright © 2018 American Society for Microbiology.

  10. Patterns of microbial diversity along a salinity gradient in the Guerrero Negro solar saltern, Baja CA Sur, Mexico

    PubMed Central

    Dillon, Jesse G.; Carlin, Mark; Gutierrez, Abraham; Nguyen, Vivian; McLain, Nathan

    2013-01-01

    The goal of this study was to use environmental sequencing of 16S rRNA and bop genes to compare the diversity of planktonic bacteria and archaea across ponds with increasing salinity in the Exportadora de Sal (ESSA) evaporative saltern in Guerrero Negro, Baja CA S., Mexico. We hypothesized that diverse communities of heterotrophic bacteria and archaea would be found in the ESSA ponds, but that bacterial diversity would decrease relative to archaea at the highest salinities. Archaeal 16S rRNA diversity was higher in Ponds 11 and 12 (370 and 380 g l−1 total salts, respectively) compared to Pond 9 (180 g l−1 total salts). Both Pond 11 and 12 communities had high representation (47 and 45% of clones, respectively) by Haloquadratum walsbyi-like (99% similarity) lineages. The archaeal community in Pond 9 was dominated (79%) by a single uncultured phylotype with 99% similarity to sequences recovered from the Sfax saltern in Tunisia. This pattern was mirrored in bop gene diversity with greater numbers of highly supported phylotypes including many Haloquadratum-like sequences from the two highest salinity ponds. In Pond 9, most bop sequences, were not closely related to sequences in databases. Bacterial 16S rRNA diversity was higher than archaeal in both Pond 9 and Pond 12 samples, but not Pond 11, where a non-Salinibacter lineage within the Bacteroidetes >98% similar to environmental clones recovered from Lake Tuz in Turkey and a saltern in Chula Vista, CA was most abundant (69% of community). This OTU was also the most abundant in Pond 12, but only represented 14% of clones in the more diverse pond. The most abundant OTU in Pond 9 (33% of community) was 99% similar to an uncultured gammaproteobacterial clone from the Salton Sea. Results suggest that the communities of saltern bacteria and archaea vary even in ponds with similar salinity and further investigation into the ecology of diverse, uncultured halophile communities is warranted. PMID:24391633

  11. Genome Sequence of Micromonospora lupini Lupac 08, Isolated from Root Nodules of Lupinus angustifolius

    PubMed Central

    Alonso-Vega, Pablo; Normand, Philippe; Bacigalupe, Rodrigo; Pujic, Petar; Lajus, Aurelie; Vallenet, David; Carro, Lorena; Coll, Pedro

    2012-01-01

    Micromonospora strains have been isolated from diverse niches, including soil, water, and marine sediments and root nodules of diverse symbiotic plants. In this work, we report the genome sequence of Micromonospora lupini Lupac 08 isolated from root nodules of the wild legume Lupinus angustifolious. PMID:22815450

  12. Genome re-sequencing reveals the history of apple and supports a two-stage model for fruit enlargement

    USDA-ARS?s Scientific Manuscript database

    Human selection has reshaped crop genomes. Here we report an apple genome variation map generated through genome sequencing of 117 diverse accessions. A comprehensive model of apple speciation and domestication along the Silk Road was proposed based on evidence from diverse genomic analyses. Cultiva...

  13. Natural Variation in Brachypodium disctachyon: Deep Sequencing of Highly Diverse Natural Accessions (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, Sean

    2013-03-01

    Sean Gordon of the USDA on Natural variation in Brachypodium disctachyon: Deep Sequencing of Highly Diverse Natural Accessions at the 8th Annual Genomics of Energy Environment Meeting on March 27, 2013 in Walnut Creek, CA.

  14. Diversity of Frankia populations in root nodules of geographically isolated Arizona alder trees in central Arizona (United States)

    Treesearch

    Allana K. Welsh; Jeffrey O. Dawson; Gerald J. Gottfried; Dittmar Hahn

    2009-01-01

    The diversity of uncultured Frankia populations in root nodules of Alnus oblongifolia trees geographically isolated on mountaintops of central Arizona was analyzed by comparative sequence analyses of nifH gene fragments. Sequences were retrieved from Frankia populations in nodules of four trees from each of...

  15. PHYLOGENETIC ANALYSIS OF 16S RRNA GENE SEQUENCES REVEALS THE PREVALENCE OF MYCOBACTERIA SP., ALPHA-PROTEOBACTERIA, AND UNCULTURED BACTERIA IN DRINKING WATER MICROBIAL COMMUNITIES

    EPA Science Inventory

    Previous studies have shown that culture-based methods tend to underestimate the densities and diversity of bacterial populations inhabiting water distribution systems (WDS). In this study, the phylogenetic diversity of drinking water bacteria was assessed using sequence analysis...

  16. [Study on Microbial Diversity of Peri-implantitis Subgingival by High-throughput Sequencing].

    PubMed

    Li, Zhi-jie; Wang, Shao-guo; Li, Yue-hong; Tu, Dong-xiang; Liu, Shi-yun; Nie, Hong-bing; Li, Zhi-qiang; Zhang, Ju-mei

    2015-07-01

    To study microbial diversity of peri-implantitis subgingival with high-throughput sequencing, and investigate microbiological etiology of peri-implantitis. Subgingival plaques were sampled from the patients with peri-implantitis (D group) and non-peri-implantitis subjects (N group). The microbiological diversity of the subgingival plaques was detected by sequencing V4 region of 16S rRNA with Illumina Miseq platform. The diversity of the community structure was analyzed using Mothur software. A total of 156 507 gene sequences were detected in nine samples and 4 402 operational taxonomic units (OTUs) were found. Selenomonas, Pseudomonas, and Fusobacterium were dominant bacteria in D group, while Fusobacterium, Veillonella and Streptococcus were dominant bacteria in N group. Differences between peri-implantitis and non-peri-implantitis bacterial communities were observed at all phylogenetic levels by LEfSe, which was also found in PcoA test. The occurrence of peri-implantitis is not only related to periodontitis pathogenic microbe, but also related with the changes of oral microbial community structure. Treponema, Herbaspirillum, Butyricimonas and Phaeobacte may be closely related to the occurrence and development of peri-implantitis.

  17. Coastal bacterioplankton community diversity along a latitudinal gradient in Latin America by means of V6 tag pyrosequencing.

    PubMed

    Thompson, Fabiano L; Bruce, Thiago; Gonzalez, Alessandra; Cardoso, Alexander; Clementino, Maysa; Costagliola, Marcela; Hozbor, Constanza; Otero, Ernesto; Piccini, Claudia; Peressutti, Silvia; Schmieder, Robert; Edwards, Robert; Smith, Mathew; Takiyama, Luis Roberto; Vieira, Ricardo; Paranhos, Rodolfo; Artigas, Luis Felipe

    2011-02-01

    The bacterioplankton diversity of coastal waters along a latitudinal gradient between Puerto Rico and Argentina was analyzed using a total of 134,197 high-quality sequences from the V6 hypervariable region of the small-subunit ribosomal RNA gene (16S rRNA) (mean length of 60 nt). Most of the OTUs were identified into Proteobacteria, Bacteriodetes, Cyanobacteria, and Actinobacteria, corresponding to approx. 80% of the total number of sequences. The number of OTUs corresponding to species varied between 937 and 1946 in the seven locations. Proteobacteria appeared at high frequency in the seven locations. An enrichment of Cyanobacteria was observed in Puerto Rico, whereas an enrichment of Bacteroidetes was detected in the Argentinian shelf and Uruguayan coastal lagoons. The highest number of sequences of Actinobacteria and Acidobacteria were obtained in the Amazon estuary mouth. The rarefaction curves and Good coverage estimator for species diversity suggested a significant coverage, with values ranging between 92 and 97% for Good coverage. Conserved taxa corresponded to aprox. 52% of all sequences. This study suggests that human-contaminated environments may influence bacterioplankton diversity.

  18. Diversity of the Cronobacter Genus as Revealed by Multilocus Sequence Typing

    PubMed Central

    Joseph, S.; Sonbol, H.; Hariri, S.; Desai, P.; McClelland, M.

    2012-01-01

    Cronobacter (previously known as Enterobacter sakazakii) is a diverse bacterial genus consisting of seven species: C. sakazakii, C. malonaticus, C. turicensis, C. universalis, C. muytjensii, C. dublinensis, and C. condimenti. In this study, we have used a multilocus sequence typing (MLST) approach employing the alleles of 7 genes (atpD, fusA, glnS, gltB, gyrB, infB, and ppsA; total length, 3,036 bp) to investigate the phylogenetic relationship of 325 Cronobacter species isolates. Strains were chosen on the basis of their species, geographic and temporal distribution, source, and clinical outcome. The earliest strain was isolated from milk powder in 1950, and the earliest clinical strain was isolated in 1953. The existence of seven species was supported by MLST. Intraspecific variation ranged from low diversity in C. sakazakii to extensive diversity within some species, such as C. muytjensii and C. dublinensis, including evidence of gene conversion between species. The predominant species from clinical sources was found to be C. sakazakii. C. sakazakii sequence type 4 (ST4) was the predominant sequence type of cerebral spinal fluid isolates from cases of meningitis. PMID:22785185

  19. Generic accelerated sequence alignment in SeqAn using vectorization and multi-threading.

    PubMed

    Rahn, René; Budach, Stefan; Costanza, Pascal; Ehrhardt, Marcel; Hancox, Jonny; Reinert, Knut

    2018-05-03

    Pairwise sequence alignment is undoubtedly a central tool in many bioinformatics analyses. In this paper, we present a generically accelerated module for pairwise sequence alignments applicable for a broad range of applications. In our module, we unified the standard dynamic programming kernel used for pairwise sequence alignments and extended it with a generalized inter-sequence vectorization layout, such that many alignments can be computed simultaneously by exploiting SIMD (Single Instruction Multiple Data) instructions of modern processors. We then extended the module by adding two layers of thread-level parallelization, where we a) distribute many independent alignments on multiple threads and b) inherently parallelize a single alignment computation using a work stealing approach producing a dynamic wavefront progressing along the minor diagonal. We evaluated our alignment vectorization and parallelization on different processors, including the newest Intel® Xeon® (Skylake) and Intel® Xeon Phi™ (KNL) processors, and use cases. The instruction set AVX512-BW (Byte and Word), available on Skylake processors, can genuinely improve the performance of vectorized alignments. We could run single alignments 1600 times faster on the Xeon Phi™ and 1400 times faster on the Xeon® than executing them with our previous sequential alignment module. The module is programmed in C++ using the SeqAn (Reinert et al., 2017) library and distributed with version 2.4. under the BSD license. We support SSE4, AVX2, AVX512 instructions and included UME::SIMD, a SIMD-instruction wrapper library, to extend our module for further instruction sets. We thoroughly test all alignment components with all major C++ compilers on various platforms. rene.rahn@fu-berlin.de.

  20. HIV populations are large and accumulate high genetic diversity in a nonlinear fashion.

    PubMed

    Maldarelli, Frank; Kearney, Mary; Palmer, Sarah; Stephens, Robert; Mican, JoAnn; Polis, Michael A; Davey, Richard T; Kovacs, Joseph; Shao, Wei; Rock-Kress, Diane; Metcalf, Julia A; Rehm, Catherine; Greer, Sarah E; Lucey, Daniel L; Danley, Kristen; Alter, Harvey; Mellors, John W; Coffin, John M

    2013-09-01

    HIV infection is characterized by rapid and error-prone viral replication resulting in genetically diverse virus populations. The rate of accumulation of diversity and the mechanisms involved are under intense study to provide useful information to understand immune evasion and the development of drug resistance. To characterize the development of viral diversity after infection, we carried out an in-depth analysis of single genome sequences of HIV pro-pol to assess diversity and divergence and to estimate replicating population sizes in a group of treatment-naive HIV-infected individuals sampled at single (n = 22) or multiple, longitudinal (n = 11) time points. Analysis of single genome sequences revealed nonlinear accumulation of sequence diversity during the course of infection. Diversity accumulated in recently infected individuals at rates 30-fold higher than in patients with chronic infection. Accumulation of synonymous changes accounted for most of the diversity during chronic infection. Accumulation of diversity resulted in population shifts, but the rates of change were low relative to estimated replication cycle times, consistent with relatively large population sizes. Analysis of changes in allele frequencies revealed effective population sizes that are substantially higher than previous estimates of approximately 1,000 infectious particles/infected individual. Taken together, these observations indicate that HIV populations are large, diverse, and slow to change in chronic infection and that the emergence of new mutations, including drug resistance mutations, is governed by both selection forces and drift.

  1. Improved heteronuclear dipolar decoupling sequences for liquid-crystal NMR

    NASA Astrophysics Data System (ADS)

    Thakur, Rajendra Singh; Kurur, Narayanan D.; Madhu, P. K.

    2007-04-01

    Recently we introduced a radiofrequency pulse scheme for heteronuclear dipolar decoupling in solid-state nuclear magnetic resonance under magic-angle spinning [R.S. Thakur, N.D. Kurur, P.K. Madhu, Swept-frequency two-pulse phase modulation for heteronuclear dipolar decoupling in solid-state NMR, Chem. Phys. Lett. 426 (2006) 459-463]. Variants of this sequence, swept-frequency TPPM, employing frequency modulation of different types have been further tested to improve the efficiency of heteronuclear dipolar decoupling. Among these, certain sequences that were found to perform well at lower spinning speeds are demonstrated here on a liquid-crystal sample of MBBA for application in static samples. The new sequences are compared with the standard TPPM and SPINAL schemes and are shown to perform better than them. These modulated schemes perform well at low decoupler radiofrequency power levels and are easy to implement on standard spectrometers.

  2. Investigation of proposed process sequence for the array automated assembly task, phases 1 and 2

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Garcia, A.; Eskenas, K.

    1980-01-01

    Progress was made on the process sequence for module fabrication. A shift from bonding with a conformal coating to laminating with ethylene vinyl acetate and a glass superstrate is recommended for further module fabrication. The processes that were retained for the selected process sequence, spin-on diffusion, print and fire aluminum p+ back, clean, print and fire silver front contact and apply tin pad to aluminum back, were evaluated for their cost contribution.

  3. A new family of β-helix proteins with similarities to the polysaccharide lyases

    DOE PAGES

    Close, Devin W.; D'Angelo, Sara; Bradbury, Andrew R. M.

    2014-09-27

    Microorganisms that degrade biomass produce diverse assortments of carbohydrate-active enzymes and binding modules. Despite tremendous advances in the genomic sequencing of these organisms, many genes do not have an ascribed function owing to low sequence identity to genes that have been annotated. Consequently, biochemical and structural characterization of genes with unknown function is required to complement the rapidly growing pool of genomic sequencing data. A protein with previously unknown function (Cthe_2159) was recently isolated in a genome-wide screen using phage display to identify cellulose-binding protein domains from the biomass-degrading bacterium Clostridium thermocellum. Here, the crystal structure of Cthe_2159 is presentedmore » and it is shown that it is a unique right-handed parallel β-helix protein. Despite very low sequence identity to known β-helix or carbohydrate-active proteins, Cthe_2159 displays structural features that are very similar to those of polysaccharide lyase (PL) families 1, 3, 6 and 9. Cthe_2159 is conserved across bacteria and some archaea and is a member of the domain of unknown function family DUF4353. This suggests that Cthe_2159 is the first representative of a previously unknown family of cellulose and/or acid-sugar binding β-helix proteins that share structural similarities with PLs. More importantly, these results demonstrate how functional annotation by biochemical and structural analysis remains a critical tool in the characterization of new gene products.« less

  4. A new family of β-helix proteins with similarities to the polysaccharide lyases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Close, Devin W.; D'Angelo, Sara; Bradbury, Andrew R. M.

    Microorganisms that degrade biomass produce diverse assortments of carbohydrate-active enzymes and binding modules. Despite tremendous advances in the genomic sequencing of these organisms, many genes do not have an ascribed function owing to low sequence identity to genes that have been annotated. Consequently, biochemical and structural characterization of genes with unknown function is required to complement the rapidly growing pool of genomic sequencing data. A protein with previously unknown function (Cthe_2159) was recently isolated in a genome-wide screen using phage display to identify cellulose-binding protein domains from the biomass-degrading bacterium Clostridium thermocellum. Here, the crystal structure of Cthe_2159 is presentedmore » and it is shown that it is a unique right-handed parallel β-helix protein. Despite very low sequence identity to known β-helix or carbohydrate-active proteins, Cthe_2159 displays structural features that are very similar to those of polysaccharide lyase (PL) families 1, 3, 6 and 9. Cthe_2159 is conserved across bacteria and some archaea and is a member of the domain of unknown function family DUF4353. This suggests that Cthe_2159 is the first representative of a previously unknown family of cellulose and/or acid-sugar binding β-helix proteins that share structural similarities with PLs. More importantly, these results demonstrate how functional annotation by biochemical and structural analysis remains a critical tool in the characterization of new gene products.« less

  5. Regulating the dorsal neural tube expression of Ptf1a through a distal 3' enhancer.

    PubMed

    Mona, Bishakha; Avila, John M; Meredith, David M; Kollipara, Rahul K; Johnson, Jane E

    2016-10-01

    Generating the correct balance of inhibitory and excitatory neurons in a neural network is essential for normal functioning of a nervous system. The neural network in the dorsal spinal cord functions in somatosensation where it modulates and relays sensory information from the periphery. PTF1A is a key transcriptional regulator present in a specific subset of neural progenitor cells in the dorsal spinal cord, cerebellum and retina that functions to specify an inhibitory neuronal fate while suppressing excitatory neuronal fates. Thus, the regulation of Ptf1a expression is critical for determining mechanisms controlling neuronal diversity in these regions of the nervous system. Here we identify a sequence conserved, tissue-specific enhancer located 10.8kb 3' of the Ptf1a coding region that is sufficient to direct expression to dorsal neural tube progenitors that give rise to neurons in the dorsal spinal cord in chick and mouse. DNA binding motifs for Paired homeodomain (Pd-HD) and zinc finger (ZF) transcription factors are required for enhancer activity. Mutations in these sequences implicate the Pd-HD motif for activator function and the ZF motif for repressor function. Although no repressor transcription factor was identified, both PAX6 and SOX3 can increase enhancer activity in reporter assays. Thus, Ptf1a is regulated by active and repressive inputs integrated through multiple sequence elements within a highly conserved sequence downstream of the Ptf1a gene. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. De Novo Sequencing and Analysis of Lemongrass Transcriptome Provide First Insights into the Essential Oil Biosynthesis of Aromatic Grasses.

    PubMed

    Meena, Seema; Kumar, Sarma R; Venkata Rao, D K; Dwivedi, Varun; Shilpashree, H B; Rastogi, Shubhra; Shasany, Ajit K; Nagegowda, Dinesh A

    2016-01-01

    Aromatic grasses of the genus Cymbopogon (Poaceae family) represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavor, fragrance, cosmetic, and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step toward understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass) by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases, pyrophosphatases, alcohol dehydrogenases, aldo-keto reductases, carotenoid cleavage dioxygenases, alcohol acetyltransferases, and aldehyde dehydrogenases, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type) with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes, and acetates. Molecular modeling and docking further supported the role of identified protein sequences in aroma formation in Cymbopogon. Also, simple sequence repeats were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition.

  7. De Novo Sequencing and Analysis of Lemongrass Transcriptome Provide First Insights into the Essential Oil Biosynthesis of Aromatic Grasses

    PubMed Central

    Meena, Seema; Kumar, Sarma R.; Venkata Rao, D. K.; Dwivedi, Varun; Shilpashree, H. B.; Rastogi, Shubhra; Shasany, Ajit K.; Nagegowda, Dinesh A.

    2016-01-01

    Aromatic grasses of the genus Cymbopogon (Poaceae family) represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavor, fragrance, cosmetic, and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step toward understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass) by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases, pyrophosphatases, alcohol dehydrogenases, aldo-keto reductases, carotenoid cleavage dioxygenases, alcohol acetyltransferases, and aldehyde dehydrogenases, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type) with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes, and acetates. Molecular modeling and docking further supported the role of identified protein sequences in aroma formation in Cymbopogon. Also, simple sequence repeats were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition. PMID:27516768

  8. Discovery and Annotation of Plant Endogenous Target Mimicry Sequences from Public Transcriptome Libraries: A Case Study of Prunus persica.

    PubMed

    Karakülah, Gökhan

    2017-06-28

    Novel transcript discovery through RNA sequencing has substantially improved our understanding of the transcriptome dynamics of biological systems. Endogenous target mimicry (eTM) transcripts, a novel class of regulatory molecules, bind to their target microRNAs (miRNAs) by base pairing and block their biological activity. The objective of this study was to provide a computational analysis framework for the prediction of putative eTM sequences in plants, and as an example, to discover previously un-annotated eTMs in Prunus persica (peach) transcriptome. Therefore, two public peach transcriptome libraries downloaded from Sequence Read Archive (SRA) and a previously published set of long non-coding RNAs (lncRNAs) were investigated with multi-step analysis pipeline, and 44 putative eTMs were found. Additionally, an eTM-miRNA-mRNA regulatory network module associated with peach fruit organ development was built via integration of the miRNA target information and predicted eTM-miRNA interactions. My findings suggest that one of the most widely expressed miRNA families among diverse plant species, miR156, might be potentially sponged by seven putative eTMs. Besides, the study indicates eTMs potentially play roles in the regulation of development processes in peach fruit via targeting specific miRNAs. In conclusion, by following the step-by step instructions provided in this study, novel eTMs can be identified and annotated effectively in public plant transcriptome libraries.

  9. Whole-Genome Sequencing and Variant Analysis of Human Papillomavirus 16 Infections.

    PubMed

    van der Weele, Pascal; Meijer, Chris J L M; King, Audrey J

    2017-10-01

    Human papillomavirus (HPV) is a strongly conserved DNA virus, high-risk types of which can cause cervical cancer in persistent infections. The most common type found in HPV-attributable cancer is HPV16, which can be subdivided into four lineages (A to D) with different carcinogenic properties. Studies have shown HPV16 sequence diversity in different geographical areas, but only limited information is available regarding HPV16 diversity within a population, especially at the whole-genome level. We analyzed HPV16 major variant diversity and conservation in persistent infections and performed a single nucleotide polymorphism (SNP) comparison between persistent and clearing infections. Materials were obtained in the Netherlands from a cohort study with longitudinal follow-up for up to 3 years. Our analysis shows a remarkably large variant diversity in the population. Whole-genome sequences were obtained for 57 persistent and 59 clearing HPV16 infections, resulting in 109 unique variants. Interestingly, persistent infections were completely conserved through time. One reinfection event was identified where the initial and follow-up samples clustered differently. Non-A1/A2 variants seemed to clear preferentially ( P = 0.02). Our analysis shows that population-wide HPV16 sequence diversity is very large. In persistent infections, the HPV16 sequence was fully conserved. Sequencing can identify HPV16 reinfections, although occurrence is rare. SNP comparison identified no strongly acting effect of the viral genome affecting HPV16 infection clearance or persistence in up to 3 years of follow-up. These findings suggest the progression of an early HPV16 infection could be host related. IMPORTANCE Human papillomavirus 16 (HPV16) is the predominant type found in cervical cancer. Progression of initial infection to cervical cancer has been linked to sequence properties; however, knowledge of variants circulating in European populations, especially with longitudinal follow-up, is limited. By sequencing a number of infections with known follow-up for up to 3 years, we gained initial insights into the genetic diversity of HPV16 and the effects of the viral genome on the persistence of infections. A SNP comparison between sequences obtained from clearing and persistent infections did not identify strongly acting DNA variations responsible for these infection outcomes. In addition, we identified an HPV16 reinfection event where sequencing of initial and follow-up samples showed different HPV16 variants. Based on conventional genotyping, this infection would incorrectly be considered a persistent HPV16 infection. In the context of vaccine efficacy and monitoring studies, such infections could potentially cause reduced reported efficacy or efficiency. Copyright © 2017 van der Weele et al.

  10. Diversity and Activity of Alternative Nitrogenases in Sequenced Genomes and Coastal Environments

    PubMed Central

    McRose, Darcy L.; Zhang, Xinning; Kraepiel, Anne M. L.; Morel, François M. M.

    2017-01-01

    The nitrogenase enzyme, which catalyzes the reduction of N2 gas to NH4+, occurs as three separate isozyme that use Mo, Fe-only, or V. The majority of global nitrogen fixation is attributed to the more efficient ‘canonical’ Mo-nitrogenase, whereas Fe-only and V-(‘alternative’) nitrogenases are often considered ‘backup’ enzymes, used when Mo is limiting. Yet, the environmental distribution and diversity of alternative nitrogenases remains largely unknown. We searched for alternative nitrogenase genes in sequenced genomes and used PacBio sequencing to explore the diversity of canonical (nifD) and alternative (anfD and vnfD) nitrogenase amplicons in two coastal environments: the Florida Everglades and Sippewissett Marsh (MA). Genome-based searches identified an additional 25 species and 10 genera not previously known to encode alternative nitrogenases. Alternative nitrogenase amplicons were found in both Sippewissett Marsh and the Florida Everglades and their activity was further confirmed using newly developed isotopic techniques. Conserved amino acid sequences corresponding to cofactor ligands were also analyzed in anfD and vnfD amplicons, offering insight into environmental variants of these motifs. This study increases the number of available anfD and vnfD sequences ∼20-fold and allows for the first comparisons of environmental Mo-, Fe-only, and V-nitrogenase diversity. Our results suggest that alternative nitrogenases are maintained across a range of organisms and environments and that they can make important contributions to nitrogenase diversity and nitrogen fixation. PMID:28293220

  11. Diversity and Activity of Alternative Nitrogenases in Sequenced Genomes and Coastal Environments.

    PubMed

    McRose, Darcy L; Zhang, Xinning; Kraepiel, Anne M L; Morel, François M M

    2017-01-01

    The nitrogenase enzyme, which catalyzes the reduction of N 2 gas to NH 4 + , occurs as three separate isozyme that use Mo, Fe-only, or V. The majority of global nitrogen fixation is attributed to the more efficient 'canonical' Mo-nitrogenase, whereas Fe-only and V-('alternative') nitrogenases are often considered 'backup' enzymes, used when Mo is limiting. Yet, the environmental distribution and diversity of alternative nitrogenases remains largely unknown. We searched for alternative nitrogenase genes in sequenced genomes and used PacBio sequencing to explore the diversity of canonical ( nifD ) and alternative ( anfD and vnfD ) nitrogenase amplicons in two coastal environments: the Florida Everglades and Sippewissett Marsh (MA). Genome-based searches identified an additional 25 species and 10 genera not previously known to encode alternative nitrogenases. Alternative nitrogenase amplicons were found in both Sippewissett Marsh and the Florida Everglades and their activity was further confirmed using newly developed isotopic techniques. Conserved amino acid sequences corresponding to cofactor ligands were also analyzed in anfD and vnfD amplicons, offering insight into environmental variants of these motifs. This study increases the number of available anfD and vnfD sequences ∼20-fold and allows for the first comparisons of environmental Mo-, Fe-only, and V-nitrogenase diversity. Our results suggest that alternative nitrogenases are maintained across a range of organisms and environments and that they can make important contributions to nitrogenase diversity and nitrogen fixation.

  12. Diversity, expression and mRNA targeting abilities of Argonaute-targeting miRNAs among selected vascular plants.

    PubMed

    Jagtap, Soham; Shivaprasad, Padubidri V

    2014-12-02

    Micro (mi)RNAs are important regulators of plant development. Across plant lineages, Dicer-like 1 (DCL1) proteins process long ds-like structures to produce micro (mi) RNA duplexes in a stepwise manner. These miRNAs are incorporated into Argonaute (AGO) proteins and influence expression of RNAs that have sequence complementarity with miRNAs. Expression levels of AGOs are greatly regulated by plants in order to minimize unwarranted perturbations using miRNAs to target mRNAs coding for AGOs. AGOs may also have high promoter specificity-sometimes expression of AGO can be limited to just a few cells in a plant. Viral pathogens utilize various means to counter antiviral roles of AGOs including hijacking the host encoded miRNAs to target AGOs. Two host encoded miRNAs namely miR168 and miR403 that target AGOs have been described in the model plant Arabidopsis and such a mechanism is thought to be well conserved across plants because AGO sequences are well conserved. We show that the interaction between AGO mRNAs and miRNAs is species-specific due to the diversity in sequences of two miRNAs that target AGOs, sequence diversity among corresponding target regions in AGO mRNAs and variable expression levels of these miRNAs among vascular plants. We used miRNA sequences from 68 plant species representing 31 plant families for this analysis. Sequences of miR168 and miR403 are not conserved among plant lineages, but surprisingly they differ drastically in their sequence diversity and expression levels even among closely related plants. Variation in miR168 expression among plants correlates well with secondary structures/length of loop sequences of their precursors. Our data indicates a complex AGO targeting interaction among plant lineages due to miRNA sequence diversity and sequences of miRNA targeting regions among AGO mRNAs, thus leading to the assumption that the perturbations by viruses that use host miRNAs to target antiviral AGOs can only be species-specific. We also show that rapid evolution and likely loss of expression of miR168 isoforms in tobacco is related to the insertion of MITE-like transposons between miRNA and miRNA* sequences, a possible mechanism showing how miRNAs are lost in few plant lineages even though other close relatives have abundantly expressing miRNAs.

  13. Investigation of Microbial Diversity in Geothermal Hot Springs in Unkeshwar, India, Based on 16S rRNA Amplicon Metagenome Sequencing.

    PubMed

    Mehetre, Gajanan T; Paranjpe, Aditi; Dastager, Syed G; Dharne, Mahesh S

    2016-02-25

    Microbial diversity in geothermal waters of the Unkeshwar hot springs in Maharashtra, India, was studied using 16S rRNA amplicon metagenomic sequencing. Taxonomic analysis revealed the presence of Bacteroidetes, Proteobacteria, Cyanobacteria, Actinobacteria, Archeae, and OD1 phyla. Metabolic function prediction analysis indicated a battery of biological information systems indicating rich and novel microbial diversity, with potential biotechnological applications in this niche. Copyright © 2016 Mehetre et al.

  14. Double-stranded telomeric DNA binding proteins: Diversity matters.

    PubMed

    Červenák, Filip; Juríková, Katarína; Sepšiová, Regina; Neboháčová, Martina; Nosek, Jozef; Tomáška, L'ubomír

    2017-01-01

    Telomeric sequences constitute only a small fraction of the whole genome yet they are crucial for ensuring genomic stability. This function is in large part mediated by protein complexes recruited to telomeric sequences by specific telomere-binding proteins (TBPs). Although the principal tasks of nuclear telomeres are the same in all eukaryotes, TBPs in various taxa exhibit a surprising diversity indicating their distinct evolutionary origin. This diversity is especially pronounced in ascomycetous yeasts where they must have co-evolved with rapidly diversifying sequences of telomeric repeats. In this article we (i) provide a historical overview of the discoveries leading to the current list of TBPs binding to double-stranded (ds) regions of telomeres, (ii) describe examples of dsTBPs highlighting their diversity in even closely related species, and (iii) speculate about possible evolutionary trajectories leading to a long list of various dsTBPs fulfilling the same general role(s) in their own unique ways.

  15. [Genetic diversity of psbA of cyanophage from paddy floodwater in northeast China].

    PubMed

    Jing, Ruiyong; Cao, Kun; Liu, Junjie; Liu, Judong; Jin, Jian; Liu, Xiaobing; Wang, Guanghua

    2017-01-04

    To provide scientific data for studying the ecology of cyanophage, we studied the genetic diversity of psbA of cyanophage from paddy floodwater in northeast China and its phylogenetic positions. Membrane separation and concentration of cyanophage, PCR-cloning-sequencing were applied to study the diversity of psbA of cyanophage from paddy floodwater in northeast China. In total 17 psbA sequences of cyanophage were obtained. Novel cyanophages were found by phylogenetic analysis. Compared to those of Japanese paddy floodwater, marine and lakes, psbA gene assemblage of paddy floodwater in northeast China was significantly different. This is the first report to study genetic diversity of cyanophage from paddy floodwater in northeast China with a molecular marker of psbA by PCR-cloning-sequencing. The novel psbA assembly of cyanophage was found in paddy floodwater in northeast China.

  16. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae.

    PubMed

    Grose, Julianne H; Casjens, Sherwood R

    2014-11-01

    Bacteriophages are the predominant biological entity on the planet. The recent explosion of sequence information has made estimates of their diversity possible. We describe the genomic comparison of 337 fully sequenced tailed phages isolated on 18 genera and 31 species of bacteria in the Enterobacteriaceae. These phages were largely unambiguously grouped into 56 diverse clusters (32 lytic and 24 temperate) that have syntenic similarity over >50% of the genomes within each cluster, but substantially less sequence similarity between clusters. Most clusters naturally break into sets of more closely related subclusters, 78% of which are correlated with their host genera. The largest groups of related phages are superclusters united by genome synteny to lambda (81 phages) and T7 (51 phages). This study forms a robust framework for understanding diversity and evolutionary relationships of existing tailed phages, for relating newly discovered phages and for determining host/phage relationships.

  17. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae

    PubMed Central

    Grose, Julianne H.; Casjens, Sherwood R.

    2014-01-01

    Bacteriophages are the predominant biological entity on the planet. The recent explosion of sequence information has made estimates of their diversity possible. We describe the genomic comparison of 337 fully sequenced tailed phages isolated on 18 genera and 31 species of bacteria in the Enterobacteriaceae. These phages were largely unambiguously grouped into 56 diverse clusters (32 lytic and 24 temperate) that have syntenic similarity over >50% of the genomes within each cluster, but substantially less sequence similarity between clusters. Most clusters naturally break into sets of more closely related subclusters, 78% of which are correlated with their host genera. The largest groups of related phages are superclusters united by genome synteny to lambda (81 phages) and T7 (51 phages). This study forms a robust framework for understanding diversity and evolutionary relationships of existing tailed phages, for relating newly discovered phages and for determining host/phage relationships. PMID:25240328

  18. Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform

    PubMed Central

    Van Nostrand, Joy D.; Ning, Daliang; Sun, Bo; Xue, Kai; Liu, Feifei; Deng, Ye; Liang, Yuting; Zhou, Jizhong

    2017-01-01

    Illumina’s MiSeq has become the dominant platform for gene amplicon sequencing in microbial ecology studies; however, various technical concerns, such as reproducibility, still exist. To assess reproducibility, 16S rRNA gene amplicons from 18 soil samples of a reciprocal transplantation experiment were sequenced on an Illumina MiSeq. The V4 region of 16S rRNA gene from each sample was sequenced in triplicate with each replicate having a unique barcode. The average OTU overlap, without considering sequence abundance, at a rarefaction level of 10,323 sequences was 33.4±2.1% and 20.2±1.7% between two and among three technical replicates, respectively. When OTU sequence abundance was considered, the average sequence abundance weighted OTU overlap was 85.6±1.6% and 81.2±2.1% for two and three replicates, respectively. Removing singletons significantly increased the overlap for both (~1–3%, p<0.001). Increasing the sequencing depth to 160,000 reads by deep sequencing increased OTU overlap both when sequence abundance was considered (95%) and when not (44%). However, if singletons were not removed the overlap between two technical replicates (not considering sequence abundance) plateaus at 39% with 30,000 sequences. Diversity measures were not affected by the low overlap as α-diversities were similar among technical replicates while β-diversities (Bray-Curtis) were much smaller among technical replicates than among treatment replicates (e.g., 0.269 vs. 0.374). Higher diversity coverage, but lower OTU overlap, was observed when replicates were sequenced in separate runs. Detrended correspondence analysis indicated that while there was considerable variation among technical replicates, the reproducibility was sufficient for detecting treatment effects for the samples examined. These results suggest that although there is variation among technical replicates, amplicon sequencing on MiSeq is useful for analyzing microbial community structure if used appropriately and with caution. For example, including technical replicates, removing spurious sequences and unrepresentative OTUs, using a clustering method with a high stringency for OTU generation, estimating treatment effects at higher taxonomic levels, and adapting the unique molecular identifier (UMI) and other newly developed methods to lower PCR and sequencing error and to identify true low abundance rare species all can increase reproducibility. PMID:28453559

  19. Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Chongqing; Wu, Liyou; Qin, Yujia

    Illumina's MiSeq has become the dominant platform for gene amplicon sequencing in microbial ecology studies; however, various technical concerns, such as reproducibility, still exist. To assess reproducibility, 16S rRNA gene amplicons from 18 soil samples of a reciprocal transplantation experiment were sequenced on an Illumina MiSeq. The V4 region of 16S rRNA gene from each sample was sequenced in triplicate with each replicate having a unique barcode. The average OTU overlap, without considering sequence abundance, at a rarefaction level of 10,323 sequences was 33.4±2.1% and 20.2±1.7% between two and among three technical replicates, respectively. When OTU sequence abundance was considered,more » the average sequence abundance weighted OTU overlap was 85.6±1.6% and 81.2±2.1% for two and three replicates, respectively. Removing singletons significantly increased the overlap for both (~1-3%, p<0.001). Increasing the sequencing depth to 160,000 reads by deep sequencing increased OTU overlap both when sequence abundance was considered (95%) and when not (44%). However, if singletons were not removed the overlap between two technical replicates (not considering sequence abundance) plateaus at 39% with 30,000 sequences. Diversity measures were not affected by the low overlap as α-diversities were similar among technical replicates while β-diversities (Bray-Curtis) were much smaller among technical replicates than among treatment replicates (e.g., 0.269 vs. 0.374). Higher diversity coverage, but lower OTU overlap, was observed when replicates were sequenced in separate runs. Detrended correspondence analysis indicated that while there was considerable variation among technical replicates, the reproducibility was sufficient for detecting treatment effects for the samples examined. These results suggest that although there is variation among technical replicates, amplicon sequencing on MiSeq is useful for analyzing microbial community structure if used appropriately and with caution. For example, including technical replicates, removing spurious sequences and unrepresentative OTUs, using a clustering method with a high stringency for OTU generation, estimating treatment effects at higher taxonomic levels, and adapting the unique molecular identifier (UMI) and other newly developed methods to lower PCR and sequencing error and to identify true low abundance rare species all can increase reproducibility.« less

  20. Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform

    DOE PAGES

    Wen, Chongqing; Wu, Liyou; Qin, Yujia; ...

    2017-04-28

    Illumina's MiSeq has become the dominant platform for gene amplicon sequencing in microbial ecology studies; however, various technical concerns, such as reproducibility, still exist. To assess reproducibility, 16S rRNA gene amplicons from 18 soil samples of a reciprocal transplantation experiment were sequenced on an Illumina MiSeq. The V4 region of 16S rRNA gene from each sample was sequenced in triplicate with each replicate having a unique barcode. The average OTU overlap, without considering sequence abundance, at a rarefaction level of 10,323 sequences was 33.4±2.1% and 20.2±1.7% between two and among three technical replicates, respectively. When OTU sequence abundance was considered,more » the average sequence abundance weighted OTU overlap was 85.6±1.6% and 81.2±2.1% for two and three replicates, respectively. Removing singletons significantly increased the overlap for both (~1-3%, p<0.001). Increasing the sequencing depth to 160,000 reads by deep sequencing increased OTU overlap both when sequence abundance was considered (95%) and when not (44%). However, if singletons were not removed the overlap between two technical replicates (not considering sequence abundance) plateaus at 39% with 30,000 sequences. Diversity measures were not affected by the low overlap as α-diversities were similar among technical replicates while β-diversities (Bray-Curtis) were much smaller among technical replicates than among treatment replicates (e.g., 0.269 vs. 0.374). Higher diversity coverage, but lower OTU overlap, was observed when replicates were sequenced in separate runs. Detrended correspondence analysis indicated that while there was considerable variation among technical replicates, the reproducibility was sufficient for detecting treatment effects for the samples examined. These results suggest that although there is variation among technical replicates, amplicon sequencing on MiSeq is useful for analyzing microbial community structure if used appropriately and with caution. For example, including technical replicates, removing spurious sequences and unrepresentative OTUs, using a clustering method with a high stringency for OTU generation, estimating treatment effects at higher taxonomic levels, and adapting the unique molecular identifier (UMI) and other newly developed methods to lower PCR and sequencing error and to identify true low abundance rare species all can increase reproducibility.« less

  1. Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform.

    PubMed

    Wen, Chongqing; Wu, Liyou; Qin, Yujia; Van Nostrand, Joy D; Ning, Daliang; Sun, Bo; Xue, Kai; Liu, Feifei; Deng, Ye; Liang, Yuting; Zhou, Jizhong

    2017-01-01

    Illumina's MiSeq has become the dominant platform for gene amplicon sequencing in microbial ecology studies; however, various technical concerns, such as reproducibility, still exist. To assess reproducibility, 16S rRNA gene amplicons from 18 soil samples of a reciprocal transplantation experiment were sequenced on an Illumina MiSeq. The V4 region of 16S rRNA gene from each sample was sequenced in triplicate with each replicate having a unique barcode. The average OTU overlap, without considering sequence abundance, at a rarefaction level of 10,323 sequences was 33.4±2.1% and 20.2±1.7% between two and among three technical replicates, respectively. When OTU sequence abundance was considered, the average sequence abundance weighted OTU overlap was 85.6±1.6% and 81.2±2.1% for two and three replicates, respectively. Removing singletons significantly increased the overlap for both (~1-3%, p<0.001). Increasing the sequencing depth to 160,000 reads by deep sequencing increased OTU overlap both when sequence abundance was considered (95%) and when not (44%). However, if singletons were not removed the overlap between two technical replicates (not considering sequence abundance) plateaus at 39% with 30,000 sequences. Diversity measures were not affected by the low overlap as α-diversities were similar among technical replicates while β-diversities (Bray-Curtis) were much smaller among technical replicates than among treatment replicates (e.g., 0.269 vs. 0.374). Higher diversity coverage, but lower OTU overlap, was observed when replicates were sequenced in separate runs. Detrended correspondence analysis indicated that while there was considerable variation among technical replicates, the reproducibility was sufficient for detecting treatment effects for the samples examined. These results suggest that although there is variation among technical replicates, amplicon sequencing on MiSeq is useful for analyzing microbial community structure if used appropriately and with caution. For example, including technical replicates, removing spurious sequences and unrepresentative OTUs, using a clustering method with a high stringency for OTU generation, estimating treatment effects at higher taxonomic levels, and adapting the unique molecular identifier (UMI) and other newly developed methods to lower PCR and sequencing error and to identify true low abundance rare species all can increase reproducibility.

  2. Effect of multimedia information sequencing on educational outcome in orthodontic training.

    PubMed

    Aly, Medhat; Willems, Guy; Van Den Noortgate, Wim; Elen, Jan

    2012-08-01

    The aim of this research was to compare the effectiveness of hierarchical sequencing (HS) versus elaboration sequencing (ES) models in improving educational outcome of clinical knowledge when using instructional multimedia programs in postgraduate orthodontic training. Twenty-four postgraduate and 24 undergraduate dental students participated in this study. The postgraduates were following an orthodontic speciality training programme. The undergraduates were fourth- and fifth-year dental students. Twelve instructional multimedia modules were developed, six logically sequenced (LS) discussing six different orthodontic topics. Another six modules on identical topics were sequenced according to one macro-sequencing (MS) model. The implemented MS model was either HS or ES. The only difference between LS and MS modules was the adopted sequencing model. All participants were assigned into consistent pairs of students and were randomly divided into a test and a control group. In each pair, one student studied the LS module (control group) while the other studied the MS version (test group). Pre- and post-evaluation tests of each pair of participants were performed to measure knowledge, understanding and application of each participant with regard to the discussed topic. A multilevel analysis was conducted to assess the estimated effect of the different sequencing models. The level of significance was set at 0.05. At baseline, no significant differences (P > 0.05) were found in pre-test scores between groups. The HS model showed a significant effect on the scores achieved (P = 0.05). The test group showed a significantly higher estimated probability of correct answers to the questions (P = 0.003) when applying the HS model. The HS model may improve educational outcome when using instructional multimedia programs in postgraduate orthodontic training.

  3. Genetic diversity of mtDNA D-loop sequences in four native Chinese chicken breeds.

    PubMed

    Guo, H W; Li, C; Wang, X N; Li, Z J; Sun, G R; Li, G X; Liu, X J; Kang, X T; Han, R L

    2017-10-01

    1. To explore the genetic diversity of Chinese indigenous chicken breeds, a 585 bp fragment of the mitochondrial DNA (mtDNA) region was sequenced in 102 birds from the Xichuan black-bone chicken, Yunyang black-bone chicken and Lushi chicken. In addition, 30 mtDNA D-loop sequences of Silkie fowls were downloaded from NCBI. The mtDNA D-loop sequence polymorphism and maternal origin of 4 chicken breeds were analysed in this study. 2. The results showed that a total of 33 mutation sites and 28 haplotypes were detected in the 4 chicken breeds. The haplotype diversity and nucleotide diversity of these 4 native breeds were 0.916 ± 0.014 and 0.012 ± 0.002, respectively. Three clusters were formed in 4 Chinese native chickens and 12 reference breeds. Both the Xichuan black-bone chicken and Yunyang black-bone chicken were grouped into one cluster. Four haplogroups (A, B, C and E) emerged in the median-joining network in these breeds. 3. It was concluded that these 4 Chinese chicken breeds had high genetic diversity. The phylogenetic tree and median network profiles showed that Chinese native chickens and its neighbouring countries had at least two maternal origins, one from Yunnan, China and another from Southeast Asia or its surrounding area.

  4. Probiotics as an Immune Modulator.

    PubMed

    Kang, Hye-Ji; Im, Sin-Hyeog

    2015-01-01

    Probiotics are nonpathogenic live microorganism that can provide a diverse health benefits on the host when consumed in adequate amounts. Probiotics are consumed in diverse ways including dairy product, food supplements and functional foods with specific health claims. Recently, many reports suggest that certain probiotic strains or multi strain mixture have potent immunomodulatory activity in diverse disorders including allergic asthma, atopic dermatitis and rheumatoid arthritis. However, underlying mechanism of action is still unclear and efficacy of probiotic administration is quite different depending on the type of strains and the amounts of doses. We and others have suggested that live probiotics or their metabolites could interact with diverse immune cells (antigen presenting cells and T cells) and confer them to have immunoregulatory functions. Through this interaction, probiotics could contribute to maintaining immune homeostasis by balancing pro-inflammatory and anti-inflammatory immune responses. However, the effect of probiotics in prevention or modulation of ongoing disease is quite diverse even within a same species. Therefore, identification of functional probiotics with specific immune regulatory property is a certainly important issue. Herein, we briefly review selection methods for immunomodulatory probiotic strains and the mechanism of action of probiotics in immune modulation.

  5. Systems-level effects of ectopic galectin-7 reconstitution in cervical cancer and its microenvironment.

    PubMed

    Higareda-Almaraz, Juan Carlos; Ruiz-Moreno, Juan S; Klimentova, Jana; Barbieri, Daniela; Salvador-Gallego, Raquel; Ly, Regina; Valtierra-Gutierrez, Ilse A; Dinsart, Christiane; Rabinovich, Gabriel A; Stulik, Jiri; Rösl, Frank; Rincon-Orozco, Bladimiro

    2016-08-24

    Galectin-7 (Gal-7) is negatively regulated in cervical cancer, and appears to be a link between the apoptotic response triggered by cancer and the anti-tumoral activity of the immune system. Our understanding of how cervical cancer cells and their molecular networks adapt in response to the expression of Gal-7 remains limited. Meta-analysis of Gal-7 expression was conducted in three cervical cancer cohort studies and TCGA. In silico prediction and bisulfite sequencing were performed to inquire epigenetic alterations. To study the effect of Gal-7 on cervical cancer, we ectopically re-expressed it in the HeLa and SiHa cervical cancer cell lines, and analyzed their transcriptome and SILAC-based proteome. We also examined the tumor and microenvironment host cell transcriptomes after xenotransplantation into immunocompromised mice. Differences between samples were assessed with the Kruskall-Wallis, Dunn's Multiple Comparison and T tests. Kaplan-Meier and log-rank tests were used to determine overall survival. Gal-7 was constantly downregulated in our meta-analysis (p < 0.0001). Tumors with combined high Gal-7 and low galectin-1 expression (p = 0.0001) presented significantly better prognoses (p = 0.005). In silico and bisulfite sequencing assays showed de novo methylation in the Gal-7 promoter and first intron. Cells re-expressing Gal-7 showed a high apoptosis ratio (p < 0.05) and their xenografts displayed strong growth retardation (p < 0.001). Multiple gene modules and transcriptional regulators were modulated in response to Gal-7 reconstitution, both in cervical cancer cells and their microenvironments (FDR < 0.05 %). Most of these genes and modules were associated with tissue morphogenesis, metabolism, transport, chemokine activity, and immune response. These functional modules could exert the same effects in vitro and in vivo, even despite different compositions between HeLa and SiHa samples. Gal-7 re-expression affects the regulation of molecular networks in cervical cancer that are involved in diverse cancer hallmarks, such as metabolism, growth control, invasion and evasion of apoptosis. The effect of Gal-7 extends to the microenvironment, where networks involved in its configuration and in immune surveillance are particularly affected.

  6. Nucleotide Sequence Diversity and Linkage Disequilibrium of Four Nuclear Loci in Foxtail Millet (Setaria italica).

    PubMed

    He, Shui-Lian; Yang, Yang; Morrell, Peter L; Yi, Ting-Shuang

    2015-01-01

    Foxtail millet (Setaria italica (L.) Beauv) is one of the earliest domesticated grains, which has been cultivated in northern China by 8,700 years before present (YBP) and across Eurasia by 4,000 YBP. Owing to a small genome and diploid nature, foxtail millet is a tractable model crop for studying functional genomics of millets and bioenergy grasses. In this study, we examined nucleotide sequence diversity, geographic structure, and levels of linkage disequilibrium at four nuclear loci (ADH1, G3PDH, IGS1 and TPI1) in representative samples of 311 landrace accessions across its cultivated range. Higher levels of nucleotide sequence and haplotype diversity were observed in samples from China relative to other sampled regions. Genetic assignment analysis classified the accessions into seven clusters based on nucleotide sequence polymorphisms. Intralocus LD decayed rapidly to half the initial value within ~1.2 kb or less.

  7. Integrating metagenomic and amplicon databases to resolve the phylogenetic and ecological diversity of the Chlamydiae

    PubMed Central

    Lagkouvardos, Ilias; Weinmaier, Thomas; Lauro, Federico M; Cavicchioli, Ricardo; Rattei, Thomas; Horn, Matthias

    2014-01-01

    In the era of metagenomics and amplicon sequencing, comprehensive analyses of available sequence data remain a challenge. Here we describe an approach exploiting metagenomic and amplicon data sets from public databases to elucidate phylogenetic diversity of defined microbial taxa. We investigated the phylum Chlamydiae whose known members are obligate intracellular bacteria that represent important pathogens of humans and animals, as well as symbionts of protists. Despite their medical relevance, our knowledge about chlamydial diversity is still scarce. Most of the nine known families are represented by only a few isolates, while previous clone library-based surveys suggested the existence of yet uncharacterized members of this phylum. Here we identified more than 22 000 high quality, non-redundant chlamydial 16S rRNA gene sequences in diverse databases, as well as 1900 putative chlamydial protein-encoding genes. Even when applying the most conservative approach, clustering of chlamydial 16S rRNA gene sequences into operational taxonomic units revealed an unexpectedly high species, genus and family-level diversity within the Chlamydiae, including 181 putative families. These in silico findings were verified experimentally in one Antarctic sample, which contained a high diversity of novel Chlamydiae. In our analysis, the Rhabdochlamydiaceae, whose known members infect arthropods, represents the most diverse and species-rich chlamydial family, followed by the protist-associated Parachlamydiaceae, and a putative new family (PCF8) with unknown host specificity. Available information on the origin of metagenomic samples indicated that marine environments contain the majority of the newly discovered chlamydial lineages, highlighting this environment as an important chlamydial reservoir. PMID:23949660

  8. Fungal diversity in deep-sea sediments of a hydrothermal vent system in the Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Gong, Lin-feng; Pang, Ka-Lai; Luo, Zhu-Hua

    2018-01-01

    Deep-sea hydrothermal sediment is known to support remarkably diverse microbial consortia. In deep sea environments, fungal communities remain less studied despite their known taxonomic and functional diversity. High-throughput sequencing methods have augmented our capacity to assess eukaryotic diversity and their functions in microbial ecology. Here we provide the first description of the fungal community diversity found in deep sea sediments collected at the Southwest Indian Ridge (SWIR) using culture-dependent and high-throughput sequencing approaches. A total of 138 fungal isolates were cultured from seven different sediment samples using various nutrient media, and these isolates were identified to 14 fungal taxa, including 11 Ascomycota taxa (7 genera) and 3 Basidiomycota taxa (2 genera) based on internal transcribed spacers (ITS1, ITS2 and 5.8S) of rDNA. Using illumina HiSeq sequencing, a total of 757,467 fungal ITS2 tags were recovered from the samples and clustered into 723 operational taxonomic units (OTUs) belonging to 79 taxa (Ascomycota and Basidiomycota contributed to 99% of all samples) based on 97% sequence similarity. Results from both approaches suggest that there is a high fungal diversity in the deep-sea sediments collected in the SWIR and fungal communities were shown to be slightly different by location, although all were collected from adjacent sites at the SWIR. This study provides baseline data of the fungal diversity and biogeography, and a glimpse to the microbial ecology associated with the deep-sea sediments of the hydrothermal vent system of the Southwest Indian Ridge.

  9. Low level of sequence diversity at merozoite surface protein-1 locus of Plasmodium ovale curtisi and P. ovale wallikeri from Thai isolates.

    PubMed

    Putaporntip, Chaturong; Hughes, Austin L; Jongwutiwes, Somchai

    2013-01-01

    The merozoite surface protein-1 (MSP-1) is a candidate target for the development of blood stage vaccines against malaria. Polymorphism in MSP-1 can be useful as a genetic marker for strain differentiation in malarial parasites. Although sequence diversity in the MSP-1 locus has been extensively analyzed in field isolates of Plasmodium falciparum and P. vivax, the extent of variation in its homologues in P. ovale curtisi and P. ovale wallikeri, remains unknown. Analysis of the mitochondrial cytochrome b sequences of 10 P. ovale isolates from symptomatic malaria patients from diverse endemic areas of Thailand revealed co-existence of P. ovale curtisi (n = 5) and P. ovale wallikeri (n = 5). Direct sequencing of the PCR-amplified products encompassing the entire coding region of MSP-1 of P. ovale curtisi (PocMSP-1) and P. ovale wallikeri (PowMSP-1) has identified 3 imperfect repeated segments in the former and one in the latter. Most amino acid differences between these proteins were located in the interspecies variable domains of malarial MSP-1. Synonymous nucleotide diversity (πS) exceeded nonsynonymous nucleotide diversity (πN) for both PocMSP-1 and PowMSP-1, albeit at a non-significant level. However, when MSP-1 of both these species was considered together, πS was significantly greater than πN (p<0.0001), suggesting that purifying selection has shaped diversity at this locus prior to speciation. Phylogenetic analysis based on conserved domains has placed PocMSP-1 and PowMSP-1 in a distinct bifurcating branch that probably diverged from each other around 4.5 million years ago. The MSP-1 sequences support that P. ovale curtisi and P. ovale wallikeri are distinct species. Both species are sympatric in Thailand. The low level of sequence diversity in PocMSP-1 and PowMSP-1 among Thai isolates could stem from persistent low prevalence of these species, limiting the chance of outcrossing at this locus.

  10. Low Level of Sequence Diversity at Merozoite Surface Protein-1 Locus of Plasmodium ovale curtisi and P. ovale wallikeri from Thai Isolates

    PubMed Central

    Putaporntip, Chaturong; Hughes, Austin L.; Jongwutiwes, Somchai

    2013-01-01

    Background The merozoite surface protein-1 (MSP-1) is a candidate target for the development of blood stage vaccines against malaria. Polymorphism in MSP-1 can be useful as a genetic marker for strain differentiation in malarial parasites. Although sequence diversity in the MSP-1 locus has been extensively analyzed in field isolates of Plasmodium falciparum and P. vivax, the extent of variation in its homologues in P. ovale curtisi and P. ovale wallikeri, remains unknown. Methodology/Principal Findings Analysis of the mitochondrial cytochrome b sequences of 10 P. ovale isolates from symptomatic malaria patients from diverse endemic areas of Thailand revealed co-existence of P. ovale curtisi (n = 5) and P. ovale wallikeri (n = 5). Direct sequencing of the PCR-amplified products encompassing the entire coding region of MSP-1 of P. ovale curtisi (PocMSP-1) and P. ovale wallikeri (PowMSP-1) has identified 3 imperfect repeated segments in the former and one in the latter. Most amino acid differences between these proteins were located in the interspecies variable domains of malarial MSP-1. Synonymous nucleotide diversity (πS) exceeded nonsynonymous nucleotide diversity (πN) for both PocMSP-1 and PowMSP-1, albeit at a non-significant level. However, when MSP-1 of both these species was considered together, πS was significantly greater than πN (p<0.0001), suggesting that purifying selection has shaped diversity at this locus prior to speciation. Phylogenetic analysis based on conserved domains has placed PocMSP-1 and PowMSP-1 in a distinct bifurcating branch that probably diverged from each other around 4.5 million years ago. Conclusion/Significance The MSP-1 sequences support that P. ovale curtisi and P. ovale wallikeri are distinct species. Both species are sympatric in Thailand. The low level of sequence diversity in PocMSP-1 and PowMSP-1 among Thai isolates could stem from persistent low prevalence of these species, limiting the chance of outcrossing at this locus. PMID:23536840

  11. Systematization of the protein sequence diversity in enzymes related to secondary metabolic pathways in plants, in the context of big data biology inspired by the KNApSAcK motorcycle database.

    PubMed

    Ikeda, Shun; Abe, Takashi; Nakamura, Yukiko; Kibinge, Nelson; Hirai Morita, Aki; Nakatani, Atsushi; Ono, Naoaki; Ikemura, Toshimichi; Nakamura, Kensuke; Altaf-Ul-Amin, Md; Kanaya, Shigehiko

    2013-05-01

    Biology is increasingly becoming a data-intensive science with the recent progress of the omics fields, e.g. genomics, transcriptomics, proteomics and metabolomics. The species-metabolite relationship database, KNApSAcK Core, has been widely utilized and cited in metabolomics research, and chronological analysis of that research work has helped to reveal recent trends in metabolomics research. To meet the needs of these trends, the KNApSAcK database has been extended by incorporating a secondary metabolic pathway database called Motorcycle DB. We examined the enzyme sequence diversity related to secondary metabolism by means of batch-learning self-organizing maps (BL-SOMs). Initially, we constructed a map by using a big data matrix consisting of the frequencies of all possible dipeptides in the protein sequence segments of plants and bacteria. The enzyme sequence diversity of the secondary metabolic pathways was examined by identifying clusters of segments associated with certain enzyme groups in the resulting map. The extent of diversity of 15 secondary metabolic enzyme groups is discussed. Data-intensive approaches such as BL-SOM applied to big data matrices are needed for systematizing protein sequences. Handling big data has become an inevitable part of biology.

  12. Evolution and Diversity in Human Herpes Simplex Virus Genomes

    PubMed Central

    Gatherer, Derek; Ochoa, Alejandro; Greenbaum, Benjamin; Dolan, Aidan; Bowden, Rory J.; Enquist, Lynn W.; Legendre, Matthieu; Davison, Andrew J.

    2014-01-01

    Herpes simplex virus 1 (HSV-1) causes a chronic, lifelong infection in >60% of adults. Multiple recent vaccine trials have failed, with viral diversity likely contributing to these failures. To understand HSV-1 diversity better, we comprehensively compared 20 newly sequenced viral genomes from China, Japan, Kenya, and South Korea with six previously sequenced genomes from the United States, Europe, and Japan. In this diverse collection of passaged strains, we found that one-fifth of the newly sequenced members share a gene deletion and one-third exhibit homopolymeric frameshift mutations (HFMs). Individual strains exhibit genotypic and potential phenotypic variation via HFMs, deletions, short sequence repeats, and single-nucleotide polymorphisms, although the protein sequence identity between strains exceeds 90% on average. In the first genome-scale analysis of positive selection in HSV-1, we found signs of selection in specific proteins and residues, including the fusion protein glycoprotein H. We also confirmed previous results suggesting that recombination has occurred with high frequency throughout the HSV-1 genome. Despite this, the HSV-1 strains analyzed clustered by geographic origin during whole-genome distance analysis. These data shed light on likely routes of HSV-1 adaptation to changing environments and will aid in the selection of vaccine antigens that are invariant worldwide. PMID:24227835

  13. Neotropical Bats from Costa Rica harbour Diverse Coronaviruses.

    PubMed

    Moreira-Soto, A; Taylor-Castillo, L; Vargas-Vargas, N; Rodríguez-Herrera, B; Jiménez, C; Corrales-Aguilar, E

    2015-11-01

    Bats are hosts of diverse coronaviruses (CoVs) known to potentially cross the host-species barrier. For analysing coronavirus diversity in a bat species-rich country, a total of 421 anal swabs/faecal samples from Costa Rican bats were screened for CoV RNA-dependent RNA polymerase (RdRp) gene sequences by a pancoronavirus PCR. Six families, 24 genera and 41 species of bats were analysed. The detection rate for CoV was 1%. Individuals (n = 4) from four different species of frugivorous (Artibeus jamaicensis, Carollia perspicillata and Carollia castanea) and nectivorous (Glossophaga soricina) bats were positive for coronavirus-derived nucleic acids. Analysis of 440 nt. RdRp sequences allocated all Costa Rican bat CoVs to the α-CoV group. Several CoVs sequences clustered near previously described CoVs from the same species of bat, but were phylogenetically distant from the human CoV sequences identified to date, suggesting no recent spillover events. The Glossophaga soricina CoV sequence is sufficiently dissimilar (26% homology to the closest known bat CoVs) to represent a unique coronavirus not clustering near other CoVs found in the same bat species so far, implying an even higher CoV diversity than previously suspected. © 2015 Blackwell Verlag GmbH.

  14. Evaluating brief motivational and self-regulatory hand hygiene interventions: a cross-over longitudinal design.

    PubMed

    Lhakhang, Pempa; Lippke, Sonia; Knoll, Nina; Schwarzer, Ralf

    2015-02-04

    Frequent handwashing can prevent infections, but non-compliance to hand hygiene is pervasive. Few theory- and evidence-based interventions to improve regular handwashing are available. Therefore, two intervention modules, a motivational and a self-regulatory one, were designed and evaluated. In a longitudinal study, 205 young adults, aged 18 to 26 years, were randomized into two intervention groups. The Mot-SelfR group received first a motivational intervention (Mot; risk perception and outcome expectancies) followed by a self-regulatory intervention (SelfR; perceived self-efficacy and planning) 17 days later. The SelfR-Mot group received the same two intervention modules in the opposite order. Follow-up data were assessed 17 and 34 days after the baseline. Both intervention sequences led to an increase in handwashing frequency, intention, self-efficacy, and planning. Also, overall gains were found for the self-regulatory module (increased planning and self-efficacy levels) and the motivational module (intention). Within groups, the self-regulatory module appeared to be more effective than the motivational module, independent of sequence. Self-regulatory interventions can help individuals to exhibit more handwashing. Sequencing may be important as a motivation module (Mot) first helps to set the goal and a self-regulatory module (SelfR) then helps to translate this goal into actual behavior, but further research is needed to evaluate mechanisms.

  15. Chaotic evolution of the long-period Milankovitch cycle during the early Mesozoic: independent evidences from the Newark lacustrine sequence (North America) and the pelagic bedded chert sequence (Japan)

    NASA Astrophysics Data System (ADS)

    Ikeda, M.; Olsen, P. E.; Tada, R.

    2012-12-01

    The correlation of Earth's orbital parameters with climatic variations has been used to generate astronomically calibrated geologic time scales of high accuracy. However, because of the chaotic behavior of the solar planets, the orbital models have a large uncertainty beyond several tens of million years in the past. This chaotic behavior also causes the long-period astronomical cycles (> 0.5 Myr periodicity) to modulate their frequency and amplitude. In other words, their modulation patterns could be potential constraints for the orbital models. Here we report the first geologic constraints on the timing of frequency transition and amplitude modulation of the ~ 2 Myr long eccentricity cycles during the early Mesozoic. We examined the lake level records of the early Mesozoic Newark lacustrine sequence in North America and the biogenic silica burial rate of the pelagic bedded chert sequence in the Inuyama area, Japan, which are proven to be reflect the astronomical cycle (Olsen, 1986; Olsen and Kent, 1996; Ikeda et al., 2010). The time scales of the two sequences were orbitally calibrated with the end-Triassic mass extinction interval as the age anchor, covering ~ 30 Myr and ~ 65 Myr, respectively (Olsen et al., 2011; Ikeda et al., 2010, in prep). We find that the frequency modulation of ~ 2 Myr cycle between 2.4 Myr to 1.6 Myr cycle have occurred at least the Middle to Late Triassic. In addition, the ~ 2 Myr cycle modulate its amplitude with ~ 10 Myr periodicity with in-phase relation between the two. Similar modulation patterns of ~ 2 Myr cycles from the two independent geologic records indicate convincing evidences for the chaotic behavior of the Solar planets. Because these modulation patterns are different from the results of the orbital models by Laskar et al. (2004, 2011), our records will provide the new and challenging constraints for the orbital models in terms of chaotic behavior of Solar planets.

  16. Insights into Deep-Sea Sediment Fungal Communities from the East Indian Ocean Using Targeted Environmental Sequencing Combined with Traditional Cultivation

    PubMed Central

    Zhang, Xiao-yong; Tang, Gui-ling; Xu, Xin-ya; Nong, Xu-hua; Qi, Shu-Hua

    2014-01-01

    The fungal diversity in deep-sea environments has recently gained an increasing amount attention. Our knowledge and understanding of the true fungal diversity and the role it plays in deep-sea environments, however, is still limited. We investigated the fungal community structure in five sediments from a depth of ∼4000 m in the East India Ocean using a combination of targeted environmental sequencing and traditional cultivation. This approach resulted in the recovery of a total of 45 fungal operational taxonomic units (OTUs) and 20 culturable fungal phylotypes. This finding indicates that there is a great amount of fungal diversity in the deep-sea sediments collected in the East Indian Ocean. Three fungal OTUs and one culturable phylotype demonstrated high divergence (89%–97%) from the existing sequences in the GenBank. Moreover, 44.4% fungal OTUs and 30% culturable fungal phylotypes are new reports for deep-sea sediments. These results suggest that the deep-sea sediments from the East India Ocean can serve as habitats for new fungal communities compared with other deep-sea environments. In addition, different fungal community could be detected when using targeted environmental sequencing compared with traditional cultivation in this study, which suggests that a combination of targeted environmental sequencing and traditional cultivation will generate a more diverse fungal community in deep-sea environments than using either targeted environmental sequencing or traditional cultivation alone. This study is the first to report new insights into the fungal communities in deep-sea sediments from the East Indian Ocean, which increases our knowledge and understanding of the fungal diversity in deep-sea environments. PMID:25272044

  17. Genetic variation in potential Giardia vaccine candidates cyst wall protein 2 and α1-giardin.

    PubMed

    Radunovic, Matej; Klotz, Christian; Saghaug, Christina Skår; Brattbakk, Hans-Richard; Aebischer, Toni; Langeland, Nina; Hanevik, Kurt

    2017-08-01

    Giardia is a prevalent intestinal parasitic infection. The trophozoite structural protein a1-giardin (a1-g) and the cyst protein cyst wall protein 2 (CWP2) have shown promise as Giardia vaccine antigen candidates in murine models. The present study assesses the genetic diversity of a1-g and CWP2 between and within assemblages A and B in human clinical isolates. a1-g and CWP2 sequences were acquired from 15 Norwegian isolates by PCR amplification and 20 sequences from German cultured isolates by whole genome sequencing. Sequences were aligned to reference genomes from assemblage A2 and B to identify genetic variance. Genetic diversity was found between assemblage A and B reference sequences for both a1-g (90.8% nucleotide identity) and CWP2 (82.5% nucleotide identity). However, for a1-g, this translated into only 3 amino acid (aa) substitutions, while for CWP2 there were 41 aa substitutions, and also one aa deletion. Genetic diversity within assemblage B was larger; nucleotide identity 92.0% for a1-g and 94.3% for CWP2, than within assemblage A (nucleotide identity 99.0% for a1-g and 99.7% for CWP2). For CWP2, the diversity on both nucleotide and protein level was higher in the C-terminal end. Predicted antigenic epitopes were not affected for a1-g, but partially for CWP2. Despite genetic diversity in a1-g, we found aa sequence, characteristics, and antigenicity to be well preserved. CWP2 showed more aa variance and potential antigenic differences. Several CWP2 antigens might be necessary in a future Giardia vaccine to provide cross protection against both Giardia assemblages infecting humans.

  18. Variation in Symbiodinium ITS2 sequence assemblages among coral colonies.

    PubMed

    Stat, Michael; Bird, Christopher E; Pochon, Xavier; Chasqui, Luis; Chauka, Leonard J; Concepcion, Gregory T; Logan, Dan; Takabayashi, Misaki; Toonen, Robert J; Gates, Ruth D

    2011-01-05

    Endosymbiotic dinoflagellates in the genus Symbiodinium are fundamentally important to the biology of scleractinian corals, as well as to a variety of other marine organisms. The genus Symbiodinium is genetically and functionally diverse and the taxonomic nature of the union between Symbiodinium and corals is implicated as a key trait determining the environmental tolerance of the symbiosis. Surprisingly, the question of how Symbiodinium diversity partitions within a species across spatial scales of meters to kilometers has received little attention, but is important to understanding the intrinsic biological scope of a given coral population and adaptations to the local environment. Here we address this gap by describing the Symbiodinium ITS2 sequence assemblages recovered from colonies of the reef building coral Montipora capitata sampled across Kāne'ohe Bay, Hawai'i. A total of 52 corals were sampled in a nested design of Coral Colony(Site(Region)) reflecting spatial scales of meters to kilometers. A diversity of Symbiodinium ITS2 sequences was recovered with the majority of variance partitioning at the level of the Coral Colony. To confirm this result, the Symbiodinium ITS2 sequence diversity in six M. capitata colonies were analyzed in much greater depth with 35 to 55 clones per colony. The ITS2 sequences and quantitative composition recovered from these colonies varied significantly, indicating that each coral hosted a different assemblage of Symbiodinium. The diversity of Symbiodinium ITS2 sequence assemblages retrieved from individual colonies of M. capitata here highlights the problems inherent in interpreting multi-copy and intra-genomically variable molecular markers, and serves as a context for discussing the utility and biological relevance of assigning species names based on Symbiodinium ITS2 genotyping.

  19. Variation in Symbiodinium ITS2 Sequence Assemblages among Coral Colonies

    PubMed Central

    Stat, Michael; Bird, Christopher E.; Pochon, Xavier; Chasqui, Luis; Chauka, Leonard J.; Concepcion, Gregory T.; Logan, Dan; Takabayashi, Misaki; Toonen, Robert J.; Gates, Ruth D.

    2011-01-01

    Endosymbiotic dinoflagellates in the genus Symbiodinium are fundamentally important to the biology of scleractinian corals, as well as to a variety of other marine organisms. The genus Symbiodinium is genetically and functionally diverse and the taxonomic nature of the union between Symbiodinium and corals is implicated as a key trait determining the environmental tolerance of the symbiosis. Surprisingly, the question of how Symbiodinium diversity partitions within a species across spatial scales of meters to kilometers has received little attention, but is important to understanding the intrinsic biological scope of a given coral population and adaptations to the local environment. Here we address this gap by describing the Symbiodinium ITS2 sequence assemblages recovered from colonies of the reef building coral Montipora capitata sampled across Kāne'ohe Bay, Hawai'i. A total of 52 corals were sampled in a nested design of Coral Colony(Site(Region)) reflecting spatial scales of meters to kilometers. A diversity of Symbiodinium ITS2 sequences was recovered with the majority of variance partitioning at the level of the Coral Colony. To confirm this result, the Symbiodinium ITS2 sequence diversity in six M. capitata colonies were analyzed in much greater depth with 35 to 55 clones per colony. The ITS2 sequences and quantitative composition recovered from these colonies varied significantly, indicating that each coral hosted a different assemblage of Symbiodinium. The diversity of Symbiodinium ITS2 sequence assemblages retrieved from individual colonies of M. capitata here highlights the problems inherent in interpreting multi-copy and intra-genomically variable molecular markers, and serves as a context for discussing the utility and biological relevance of assigning species names based on Symbiodinium ITS2 genotyping. PMID:21246044

  20. High-Content Positional Biosensor Screening Assay for Compounds to Prevent or Disrupt Androgen Receptor and Transcriptional Intermediary Factor 2 Protein–Protein Interactions

    PubMed Central

    Hua, Yun; Shun, Tong Ying; Strock, Christopher J.

    2014-01-01

    Abstract The androgen receptor–transcriptional intermediary factor 2 (AR-TIF2) positional protein–protein interaction (PPI) biosensor assay described herein combines physiologically relevant cell-based assays with the specificity of binding assays by incorporating structural information of AR and TIF2 functional domains along with intracellular targeting sequences and fluorescent reporters. Expression of the AR-red fluorescent protein (RFP) “prey” and TIF2-green fluorescent protein (GFP) “bait” components of the biosensor was directed by recombinant adenovirus constructs that expressed the ligand binding and activation function 2 surface domains of AR fused to RFP with nuclear localization and nuclear export sequences, and three α-helical LXXLL motifs from TIF2 fused to GFP and an HIV Rev nucleolar targeting sequence. In unstimulated cells, AR-RFP was localized predominantly to the cytoplasm and TIF2-GFP was localized to nucleoli. Dihydrotestosterone (DHT) treatment induced AR-RFP translocation into the nucleus where the PPIs between AR and TIF2 resulted in the colocalization of both biosensors within the nucleolus. We adapted the translocation enhanced image analysis module to quantify the colocalization of the AR-RFP and TIF2-GFP biosensors in images acquired on the ImageXpress platform. DHT induced a concentration-dependent AR-TIF2 colocalization and produced a characteristic condensed punctate AR-RFP PPI nucleolar distribution pattern. The heat-shock protein 90 inhibitor 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) and antiandrogens flutamide and bicalutamide inhibited DHT-induced AR-TIF2 PPI formation with 50% inhibition concentrations (IC50s) of 88.5±12.5 nM, 7.6±2.4 μM, and 1.6±0.4 μM, respectively. Images of the AR-RFP distribution phenotype allowed us to distinguish between 17-AAG and flutamide, which prevented AR translocation, and bicalutamide, which blocked AR-TIF2 PPIs. We screened the Library of Pharmacologically Active Compounds (LOPAC) set for compounds that inhibited AR-TIF2 PPI formation or disrupted preexisting complexes. Eleven modulators of steroid family nuclear receptors (NRs) and 6 non-NR ligands inhibited AR-TIF2 PPI formation, and 10 disrupted preexisting complexes. The hits appear to be either AR antagonists or nonspecific inhibitors of NR activation and trafficking. Given that the LOPAC set represents such a small and restricted biological and chemical diversity, it is anticipated that screening a much larger and more diverse compound library will be required to find AR-TIF2 PPI inhibitors/disruptors. The AR-TIF2 protein–protein interaction biosensor (PPIB) approach offers significant promise for identifying molecules with potential to modulate AR transcriptional activity in a cell-specific manner that is distinct from the existing antiandrogen drugs that target AR binding or production. Small molecules that disrupt AR signaling at the level of AR-TIF2 PPIs may also overcome the development of resistance and progression to castration-resistant prostate cancer. PMID:25181412

  1. Can soil microbial diversity influence plant metabolites and life history traits of a rhizophagous insect? A demonstration in oilseed rape.

    PubMed

    Lachaise, Tom; Ourry, Morgane; Lebreton, Lionel; Guillerm-Erckelboudt, Anne-Yvonne; Linglin, Juliette; Paty, Chrystelle; Chaminade, Valérie; Marnet, Nathalie; Aubert, Julie; Poinsot, Denis; Cortesero, Anne-Marie; Mougel, Christophe

    2017-12-01

    Interactions between plants and phytophagous insects play an important part in shaping the biochemical composition of plants. Reciprocally plant metabolites can influence major life history traits in these insects and largely contribute to their fitness. Plant rhizospheric microorganisms are an important biotic factor modulating plant metabolites and adaptation to stress. While plant-insects or plant-microorganisms interactions and their consequences on the plant metabolite signature are well-documented, the impact of soil microbial communities on plant defenses against phytophagous insects remains poorly known. In this study, we used oilseed rape (Brassica napus) and the cabbage root fly (Delia radicum) as biological models to tackle this question. Even though D. radicum is a belowground herbivore as a larva, its adult life history traits depend on aboveground signals. We therefore tested whether soil microbial diversity influenced emergence rate and fitness but also fly oviposition behavior, and tried to link possible effects to modifications in leaf and root metabolites. Through a removal-recolonization experiment, 3 soil microbial modalities ("high," "medium," "low") were established and assessed through amplicon sequencing of 16S and 18S ribosomal RNA genes. The "medium" modality in the rhizosphere significantly improved insect development traits. Plant-microorganism interactions were marginally associated to modulations of root metabolites profiles, which could partly explain these results. We highlighted the potential role of plant-microbial interaction in plant defenses against Delia radicum. Rhizospheric microbial communities must be taken into account when analyzing plant defenses against herbivores, being either below or aboveground. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  2. A Module Experimental Process System Development Unit (MEPSDU)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The purpose of this program is to demonstrate the technical readiness of a cost effective process sequence that has the potential for the production of flat plate photovoltaic modules which met the price goal in 1986 of $.70 or less per watt peak. Program efforts included: preliminary design review, preliminary cell fabrication using the proposed process sequence, verification of sandblasting back cleanup, study of resist parameters, evaluation of pull strength of the proposed metallization, measurement of contact resistance of Electroless Ni contacts, optimization of process parameter, design of the MEPSDU module, identification and testing of insulator tapes, development of a lamination process sequence, identification, discussions, demonstrations and visits with candidate equipment vendors, evaluation of proposals for tabbing and stringing machine.

  3. Frequency-Diversity Reception for Phase Modulation

    NASA Technical Reports Server (NTRS)

    Brockman, M. H.

    1984-01-01

    Signal-to-noise ratio improved. System receives phase modulation transmitted simultaneously on different carrier frequencies. Used for carriers received through different antennas or through same antenna.

  4. The Efficacy of IRIS "STAR Legacy" Modules under Different Instructional Conditions

    ERIC Educational Resources Information Center

    Sayeski, Kristin L.; Hamilton-Jones, Bethany; Oh, Susan

    2015-01-01

    The vast majority of special education teacher preparation programs in the United States incorporate the IRIS Center's "STAR Legacy" modules into their coursework. Given the diversity of module content and ways in which the modules are employed, the purpose of this study was to explore the potential mediating effects of instructional…

  5. Prevalence, distribution, and sequence diversity of hmwA among commensal and otitis media non-typeable Haemophilus influenzae.

    PubMed

    Davis, Gregg S; Patel, May; Hammond, James; Zhang, Lixin; Dawid, Suzanne; Marrs, Carl F; Gilsdorf, Janet R

    2014-12-01

    Nontypeable Haemophilus influenzae (NTHi) are Gram-negative coccobacilli that colonize the human pharynx, their only known natural reservoir. Adherence to the host epithelium facilitates NTHi colonization and marks one of the first steps in NTHi pathogenesis. Epithelial cell attachment is mediated, in part, by a pair of high molecular weight (HMW) adhesins that are highly immunogenic, antigenically diverse, and display a wide range of amino acid diversity both within and between isolates. In this study, the prevalence of hmwA, which encodes the HMW adhesin, was determined for a collection of 170 NTHi isolates recovered from the middle ears of children with otitis media (OM isolates) or throats or nasopharynges of healthy children (commensal isolates) from Finland, Israel, and the U.S. Overall, hmwA was detected in 61% of NTHi isolates and was significantly more prevalent (P=0.004) among OM isolates than among commensal isolates; the prevalence ratio comparing hmwA prevalence among ear isolates with that of commensal isolates was 1.47 (95% CI (1.12, 1.92)). Ninety-five percent (98/103) of the hmwA-positive NTHi isolates possessed two hmw loci. To advance our understanding of hmwA binding sequence diversity, we determined the DNA sequence of the hmwA binding region of 33 isolates from this collection. The average amino acid identity across all hmwA sequences was 62%. Phylogenetic analyses of the hmwA binding revealed four distinct sequence clusters, and the majority of hmwA sequences (83%) belonged to one of two dominant sequence clusters. hmwA sequences did not cluster by chromosomal location, geographic region, or disease status. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Modulation of V1 Spike Response by Temporal Interval of Spatiotemporal Stimulus Sequence

    PubMed Central

    Kim, Taekjun; Kim, HyungGoo R.; Kim, Kayeon; Lee, Choongkil

    2012-01-01

    The spike activity of single neurons of the primary visual cortex (V1) becomes more selective and reliable in response to wide-field natural scenes compared to smaller stimuli confined to the classical receptive field (RF). However, it is largely unknown what aspects of natural scenes increase the selectivity of V1 neurons. One hypothesis is that modulation by surround interaction is highly sensitive to small changes in spatiotemporal aspects of RF surround. Such a fine-tuned modulation would enable single neurons to hold information about spatiotemporal sequences of oriented stimuli, which extends the role of V1 neurons as a simple spatiotemporal filter confined to the RF. In the current study, we examined the hypothesis in the V1 of awake behaving monkeys, by testing whether the spike response of single V1 neurons is modulated by temporal interval of spatiotemporal stimulus sequence encompassing inside and outside the RF. We used two identical Gabor stimuli that were sequentially presented with a variable stimulus onset asynchrony (SOA): the preceding one (S1) outside the RF and the following one (S2) in the RF. This stimulus configuration enabled us to examine the spatiotemporal selectivity of response modulation from a focal surround region. Although S1 alone did not evoke spike responses, visual response to S2 was modulated for SOA in the range of tens of milliseconds. These results suggest that V1 neurons participate in processing spatiotemporal sequences of oriented stimuli extending outside the RF. PMID:23091631

  7. Evaluating the use of diversity indices to distinguish between microbial communities with different traits.

    PubMed

    Feranchuk, Sergey; Belkova, Natalia; Potapova, Ulyana; Kuzmin, Dmitry; Belikov, Sergei

    2018-05-23

    Several measures of biodiversity are commonly used to describe microbial communities, analyzed using 16S gene sequencing. A wide range of available experiments on 16S gene sequencing allows us to present a framework for a comparison of various diversity indices. The criterion for the comparison is the statistical significance of the difference in index values for microbial communities with different traits, within the same experiment. The results of the evaluation indicate that Shannon diversity is the most effective measure among the commonly used diversity indices. The results also indicate that, within the present framework, the Gini coefficient as a diversity index is comparable to Shannon diversity, despite the fact that the Gini coefficient, as a diversity estimator, is far less popular in microbiology than several other measures. Copyright © 2018 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. Coupling of Peripheral Tolerance to Endogenous Interleukin 10 Promotes Effective Modulation of Myelin-Activated T Cells and Ameliorates Experimental Allergic Encephalomyelitis

    PubMed Central

    Legge, Kevin L.; Min, Booki; Bell, J. Jeremiah; Caprio, Jacque C.; Li, Lequn; Gregg, Randal K.; Zaghouani, Habib

    2000-01-01

    Several immune-based approaches are being considered for modulation of inflammatory T cells and amelioration of autoimmune diseases. The most recent strategies include simulation of peripheral self-tolerance by injection of adjuvant free antigen, local delivery of cytokines by genetically altered T cells, and interference with the function of costimulatory molecules. Although promising results have been obtained from these studies that define mechanisms of T cell modulation, efficacy, practicality, and toxicity, concerns remain unsolved, thereby justifying further investigations to define alternatives for effective downregulation of aggressive T cells. In prior studies, we demonstrated that an immunoglobulin (Ig) chimera carrying the encephalitogenic proteolipid protein (PLP)1 peptide corresponding to amino acid sequence 139–151 of PLP, Ig-PLP1, is presented to T cells ∼100-fold better than free PLP1. Here, we demonstrate that aggregation endows Ig-PLP1 with an additional feature, namely, induction of interleukin (IL)-10 production by macrophages and dendritic cells, both of which are antigen-presenting cells (APCs). These functions synergize in vivo and drive effective modulation of autoimmunity. Indeed, it is shown that animals with ongoing active experimental allergic encephalomyelitis dramatically reduce the severity of their paralysis when treated with adjuvant free aggregated Ig-PLP1. Moreover, IL-10 displays bystander antagonism on unrelated autoreactive T cells, allowing for reversal of disease involving multiple epitopes. Therefore, aggregated Ig-PLP1 likely brings together a peripheral T cell tolerance mechanism emanating from peptide presentation by APCs expressing suboptimal costimulatory molecules and IL-10 bystander suppression to drive a dual-modal T cell modulation system effective for reversal of autoimmunity involving several epitopes and diverse T cell specificities. PMID:10859329

  9. Trinucleotide cassettes increase diversity of T7 phage-displayed peptide library.

    PubMed

    Krumpe, Lauren R H; Schumacher, Kathryn M; McMahon, James B; Makowski, Lee; Mori, Toshiyuki

    2007-10-05

    Amino acid sequence diversity is introduced into a phage-displayed peptide library by randomizing library oligonucleotide DNA. We recently evaluated the diversity of peptide libraries displayed on T7 lytic phage and M13 filamentous phage and showed that T7 phage can display a more diverse amino acid sequence repertoire due to differing processes of viral morphogenesis. In this study, we evaluated and compared the diversity of a 12-mer T7 phage-displayed peptide library randomized using codon-corrected trinucleotide cassettes with a T7 and an M13 12-mer phage-displayed peptide library constructed using the degenerate codon randomization method. We herein demonstrate that the combination of trinucleotide cassette amino acid codon randomization and T7 phage display construction methods resulted in a significant enhancement to the functional diversity of a 12-mer peptide library. This novel library exhibited superior amino acid uniformity and order-of-magnitude increases in amino acid sequence diversity as compared to degenerate codon randomized peptide libraries. Comparative analyses of the biophysical characteristics of the 12-mer peptide libraries revealed the trinucleotide cassette-randomized library to be a unique resource. The combination of T7 phage display and trinucleotide cassette randomization resulted in a novel resource for the potential isolation of binding peptides for new and previously studied molecular targets.

  10. How Much Do rRNA Gene Surveys Underestimate Extant Bacterial Diversity?

    PubMed

    Rodriguez-R, Luis M; Castro, Juan C; Kyrpides, Nikos C; Cole, James R; Tiedje, James M; Konstantinidis, Konstantinos T

    2018-03-15

    The most common practice in studying and cataloguing prokaryotic diversity involves the grouping of sequences into operational taxonomic units (OTUs) at the 97% 16S rRNA gene sequence identity level, often using partial gene sequences, such as PCR-generated amplicons. Due to the high sequence conservation of rRNA genes, organisms belonging to closely related yet distinct species may be grouped under the same OTU. However, it remains unclear how much diversity has been underestimated by this practice. To address this question, we compared the OTUs of genomes defined at the 97% or 98.5% 16S rRNA gene identity level against OTUs of the same genomes defined at the 95% whole-genome average nucleotide identity (ANI), which is a much more accurate proxy for species. Our results show that OTUs resulting from a 98.5% 16S rRNA gene identity cutoff are more accurate than 97% compared to 95% ANI (90.5% versus 89.9% accuracy) but indistinguishable from any other threshold in the 98.29 to 98.78% range. Even with the more stringent thresholds, however, the 16S rRNA gene-based approach commonly underestimates the number of OTUs by ∼12%, on average, compared to the ANI-based approach (∼14% underestimation when using the 97% identity threshold). More importantly, the degree of underestimation can become 50% or more for certain taxa, such as the genera Pseudomonas , Burkholderia , Escherichia , Campylobacter , and Citrobacter These results provide a quantitative view of the degree of underestimation of extant prokaryotic diversity by 16S rRNA gene-defined OTUs and suggest that genomic resolution is often necessary. IMPORTANCE Species diversity is one of the most fundamental pieces of information for community ecology and conservational biology. Therefore, employing accurate proxies for what a species or the unit of diversity is are cornerstones for a large set of microbial ecology and diversity studies. The most common proxies currently used rely on the clustering of 16S rRNA gene sequences at some threshold of nucleotide identity, typically 97% or 98.5%. Here, we explore how well this strategy reflects the more accurate whole-genome-based proxies and determine the frequency with which the high conservation of 16S rRNA sequences masks substantial species-level diversity. Copyright © 2018 American Society for Microbiology.

  11. Sequence Variation of the tRNALeu Intron as a Marker for Genetic Diversity and Specificity of Symbiotic Cyanobacteria in Some Lichens

    PubMed Central

    Paulsrud, Per; Lindblad, Peter

    1998-01-01

    We examined the genetic diversity of Nostoc symbionts in some lichens by using the tRNALeu (UAA) intron as a genetic marker. The nucleotide sequence was analyzed in the context of the secondary structure of the transcribed intron. Cyanobacterial tRNALeu (UAA) introns were specifically amplified from freshly collected lichen samples without previous DNA extraction. The lichen species used in the present study were Nephroma arcticum, Peltigera aphthosa, P. membranacea, and P. canina. Introns with different sizes around 300 bp were consistently obtained. Multiple clones from single PCRs were screened by using their single-stranded conformational polymorphism pattern, and the nucleotide sequence was determined. No evidence for sample heterogenity was found. This implies that the symbiont in situ is not a diverse community of cyanobionts but, rather, one Nostoc strain. Furthermore, each lichen thallus contained only one intron type, indicating that each thallus is colonized only once or that there is a high degree of specificity. The same cyanobacterial intron sequence was also found in samples of one lichen species from different localities. In a phylogenetic analysis, the cyanobacterial lichen sequences grouped together with the sequences from two free-living Nostoc strains. The size differences in the intron were due to insertions and deletions in highly variable regions. The sequence data were used in discussions concerning specificity and biology of the lichen symbiosis. It is concluded that the tRNALeu (UAA) intron can be of great value when examining cyanobacterial diversity. PMID:9435083

  12. Forest-to-pasture conversion increases the diversity of the phylum Verrucomicrobia in Amazon rainforest soils.

    PubMed

    Ranjan, Kshitij; Paula, Fabiana S; Mueller, Rebecca C; Jesus, Ederson da C; Cenciani, Karina; Bohannan, Brendan J M; Nüsslein, Klaus; Rodrigues, Jorge L M

    2015-01-01

    The Amazon rainforest is well known for its rich plant and animal diversity, but its bacterial diversity is virtually unexplored. Due to ongoing and widespread deforestation followed by conversion to agriculture, there is an urgent need to quantify the soil biological diversity within this tropical ecosystem. Given the abundance of the phylum Verrucomicrobia in soils, we targeted this group to examine its response to forest-to-pasture conversion. Both taxonomic and phylogenetic diversities were higher for pasture in comparison to primary and secondary forests. The community composition of Verrucomicrobia in pasture soils was significantly different from those of forests, with a 11.6% increase in the number of sequences belonging to subphylum 3 and a proportional decrease in sequences belonging to the class Spartobacteria. Based on 99% operational taxonomic unit identity, 40% of the sequences have not been detected in previous studies, underscoring the limited knowledge regarding the diversity of microorganisms in tropical ecosystems. The abundance of Verrucomicrobia, measured with quantitative PCR, was strongly correlated with soil C content (r = 0.80, P = 0.0016), indicating their importance in metabolizing plant-derived carbon compounds in soils.

  13. Forest-to-pasture conversion increases the diversity of the phylum Verrucomicrobia in Amazon rainforest soils

    PubMed Central

    Ranjan, Kshitij; Paula, Fabiana S.; Mueller, Rebecca C.; Jesus, Ederson da C.; Cenciani, Karina; Bohannan, Brendan J. M.; Nüsslein, Klaus; Rodrigues, Jorge L. M.

    2015-01-01

    The Amazon rainforest is well known for its rich plant and animal diversity, but its bacterial diversity is virtually unexplored. Due to ongoing and widespread deforestation followed by conversion to agriculture, there is an urgent need to quantify the soil biological diversity within this tropical ecosystem. Given the abundance of the phylum Verrucomicrobia in soils, we targeted this group to examine its response to forest-to-pasture conversion. Both taxonomic and phylogenetic diversities were higher for pasture in comparison to primary and secondary forests. The community composition of Verrucomicrobia in pasture soils was significantly different from those of forests, with a 11.6% increase in the number of sequences belonging to subphylum 3 and a proportional decrease in sequences belonging to the class Spartobacteria. Based on 99% operational taxonomic unit identity, 40% of the sequences have not been detected in previous studies, underscoring the limited knowledge regarding the diversity of microorganisms in tropical ecosystems. The abundance of Verrucomicrobia, measured with quantitative PCR, was strongly correlated with soil C content (r = 0.80, P = 0.0016), indicating their importance in metabolizing plant-derived carbon compounds in soils. PMID:26284056

  14. Relationship between soil nutrients and mycorrhizal associations of two Bipinnula species (Orchidaceae) from central Chile.

    PubMed

    Mujica, María Isabel; Saez, Nicolás; Cisternas, Mauricio; Manzano, Marlene; Armesto, Juan J; Pérez, Fernanda

    2016-07-01

    Mycorrhizal associations are influenced by abiotic and biotic factors, including climate, soil conditions and the identity of host plants. However, the effect of environmental conditions on orchid mycorrhizal associations remains poorly understood. The present study examined how differences in soil nutrient availability are related to the diversity and composition of mycorrhizal fungi associated with two terrestrial orchid species from central Chile. For 12 populations of Bipinnula fimbriata and B. plumosa, OTU (operational taxonomic unit) richness, phylogenetic diversity and community composition of mycorrhizal fungi in root samples were estimated using internal transcribed spacer (ITS) sequences. Then, these mycorrhizal diversity variables were related to soil nutrients and host species using generalized linear models and non-metric multidimensional scaling. Variation in OTU composition of mycorrhizal fungi among sites was explained mainly by orchid host species. Fungi in Tulasnellaceae and Ceratobasidiaceae were isolated from both orchid species, but the former were more frequent in B. fimbriata and the latter in B. plumosa. Soil nutrients and orchid host species had significant effects on OTU richness and phylogenetic diversity. Mycorrhizal diversity decreased in habitats with higher N in both species and increased with P availability only in B. fimbriata The results suggest that soil nutrient availability modulates orchid mycorrhizal associations and provide support for the hypothesis that specialization is favoured by higher soil nutrient availability. Inter-specific differences in mycorrhizal composition can arise due to a geographical pattern of distribution of orchid mycorrhizal fungi, host preferences for fungal partners or differential performance of mycorrhizal fungi under different nutrient availabilities. Further experiments are needed to evaluate these hypotheses. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Disruption of the microbiota across multiple body sites in critically ill children.

    PubMed

    Rogers, Matthew B; Firek, Brian; Shi, Min; Yeh, Andrew; Brower-Sinning, Rachel; Aveson, Victoria; Kohl, Brittany L; Fabio, Anthony; Carcillo, Joseph A; Morowitz, Michael J

    2016-12-29

    Despite intense interest in the links between the microbiome and human health, little has been written about dysbiosis among ICU patients. We characterized microbial diversity in samples from 37 children in a pediatric ICU (PICU). Standard measures of alpha and beta diversity were calculated, and results were compared with data from adult and pediatric reference datasets. Bacterial 16S rRNA gene sequences were analyzed from 71 total tongue swabs, 50 skin swabs, and 77 stool samples or rectal swabs. The mean age of the PICU patients was 2.9 years (range 1-9 years), and many were chronically ill children that had previously been hospitalized in the PICU. Relative to healthy adults and children, alpha diversity was decreased in PICU GI and tongue but not skin samples. Measures of beta diversity indicated differences in community membership at each body site between PICU, adult, and pediatric groups. Taxonomic alterations in the PICU included enrichment of gut pathogens such as Enterococcus and Staphylococcus at multiple body sites and depletion of commensals such as Faecalibacterium and Ruminococcus from GI samples. Alpha and beta diversity were unstable over time in patients followed longitudinally. We observed the frequent presence of "dominant" pathogens in PICU samples at relative abundance >50%. PICU samples were characterized by loss of site specificity, with individual taxa commonly present simultaneously at three sample sites on a single individual. Some pathogens identified by culture of tracheal aspirates were commonly observed in skin samples from the same patient. We conclude that the microbiota in critically ill children differs sharply from the microbiota of healthy children and adults. Acknowledgement of dysbiosis associated with critical illness could provide opportunities to modulate the microbiota with precision and thereby improve patient outcomes.

  16. Relationship between soil nutrients and mycorrhizal associations of two Bipinnula species (Orchidaceae) from central Chile

    PubMed Central

    Mujica, María Isabel; Saez, Nicolás; Cisternas, Mauricio; Manzano, Marlene; Armesto, Juan J.; Pérez, Fernanda

    2016-01-01

    Background and Aims Mycorrhizal associations are influenced by abiotic and biotic factors, including climate, soil conditions and the identity of host plants. However, the effect of environmental conditions on orchid mycorrhizal associations remains poorly understood. The present study examined how differences in soil nutrient availability are related to the diversity and composition of mycorrhizal fungi associated with two terrestrial orchid species from central Chile. Methods For 12 populations of Bipinnula fimbriata and B. plumosa, OTU (operational taxonomic unit) richness, phylogenetic diversity and community composition of mycorrhizal fungi in root samples were estimated using internal transcribed spacer (ITS) sequences. Then, these mycorrhizal diversity variables were related to soil nutrients and host species using generalized linear models and non-metric multidimensional scaling. Key Results Variation in OTU composition of mycorrhizal fungi among sites was explained mainly by orchid host species. Fungi in Tulasnellaceae and Ceratobasidiaceae were isolated from both orchid species, but the former were more frequent in B. fimbriata and the latter in B. plumosa. Soil nutrients and orchid host species had significant effects on OTU richness and phylogenetic diversity. Mycorrhizal diversity decreased in habitats with higher N in both species and increased with P availability only in B. fimbriata. Conclusions The results suggest that soil nutrient availability modulates orchid mycorrhizal associations and provide support for the hypothesis that specialization is favoured by higher soil nutrient availability. Inter-specific differences in mycorrhizal composition can arise due to a geographical pattern of distribution of orchid mycorrhizal fungi, host preferences for fungal partners or differential performance of mycorrhizal fungi under different nutrient availabilities. Further experiments are needed to evaluate these hypotheses. PMID:27311572

  17. Cyclotides Isolated from an Ipecac Root Extract Antagonize the Corticotropin Releasing Factor Type 1 Receptor

    PubMed Central

    Fahradpour, Mohsen; Keov, Peter; Tognola, Carlotta; Perez-Santamarina, Estela; McCormick, Peter J.; Ghassempour, Alireza; Gruber, Christian W.

    2017-01-01

    Cyclotides are plant derived, cystine-knot stabilized peptides characterized by their natural abundance, sequence variability and structural plasticity. They are abundantly expressed in Rubiaceae, Psychotrieae in particular. Previously the cyclotide kalata B7 was identified to modulate the human oxytocin and vasopressin G protein-coupled receptors (GPCRs), providing molecular validation of the plants’ uterotonic properties and further establishing cyclotides as valuable source for GPCR ligand design. In this study we screened a cyclotide extract derived from the root powder of the South American medicinal plant ipecac (Carapichea ipecacuanha) for its GPCR modulating activity of the corticotropin-releasing factor type 1 receptor (CRF1R). We identified and characterized seven novel cyclotides. One cyclotide, caripe 8, isolated from the most active fraction, was further analyzed and found to antagonize the CRF1R. A nanomolar concentration of this cyclotide (260 nM) reduced CRF potency by ∼4.5-fold. In contrast, caripe 8 did not inhibit forskolin-, or vasopressin-stimulated cAMP responses at the vasopressin V2 receptor, suggesting a CRF1R-specific mode-of-action. These results in conjunction with our previous findings establish cyclotides as modulators of both classes A and B GPCRs. Given the diversity of cyclotides, our data point to other cyclotide-GPCR interactions as potentially important sources of drug-like molecules. PMID:29033832

  18. The Background, Philosophy and Purposes of Team Teaching. Module I.

    ERIC Educational Resources Information Center

    York, L. Jean

    This is the first of seven modules designed to help teachers gain the knowledge and skills needed for successful team teaching. The user may choose one, several or all of the modules, in any sequence, with module 1 recommended as a prerequisite to all the others, and module 5 as a prerequisite to module 6. The pattern of each module is: 1) study…

  19. Characterization of bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, as determined by 16S rDNA analysis.

    PubMed

    Escalante, Adelfo; Rodríguez, María Elena; Martínez, Alfredo; López-Munguía, Agustín; Bolívar, Francisco; Gosset, Guillermo

    2004-06-15

    The bacterial diversity in pulque, a traditional Mexican alcoholic fermented beverage, was studied in 16S rDNA clone libraries from three pulque samples. Sequenced clones identified as Lactobacillus acidophilus, Lactobacillus strain ASF360, L. kefir, L. acetotolerans, L. hilgardii, L. plantarum, Leuconostoc pseudomesenteroides, Microbacterium arborescens, Flavobacterium johnsoniae, Acetobacter pomorium, Gluconobacter oxydans, and Hafnia alvei, were detected for the first time in pulque. Identity of 16S rDNA sequenced clones showed that bacterial diversity present among pulque samples is dominated by Lactobacillus species (80.97%). Seventy-eight clones exhibited less than 95% of relatedness to NCBI database sequences, which may indicate the presence of new species in pulque samples.

  20. Sequence diversity and evolution of antimicrobial peptides in invertebrates.

    PubMed

    Tassanakajon, Anchalee; Somboonwiwat, Kunlaya; Amparyup, Piti

    2015-02-01

    Antimicrobial peptides (AMPs) are evolutionarily ancient molecules that act as the key components in the invertebrate innate immunity against invading pathogens. Several AMPs have been identified and characterized in invertebrates, and found to display considerable diversity in their amino acid sequence, structure and biological activity. AMP genes appear to have rapidly evolved, which might have arisen from the co-evolutionary arms race between host and pathogens, and enabled organisms to survive in different microbial environments. Here, the sequence diversity of invertebrate AMPs (defensins, cecropins, crustins and anti-lipopolysaccharide factors) are presented to provide a better understanding of the evolution pattern of these peptides that play a major role in host defense mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Integrated systems analysis reveals a molecular network underlying autism spectrum disorders

    PubMed Central

    Li, Jingjing; Shi, Minyi; Ma, Zhihai; Zhao, Shuchun; Euskirchen, Ghia; Ziskin, Jennifer; Urban, Alexander; Hallmayer, Joachim; Snyder, Michael

    2014-01-01

    Autism is a complex disease whose etiology remains elusive. We integrated previously and newly generated data and developed a systems framework involving the interactome, gene expression and genome sequencing to identify a protein interaction module with members strongly enriched for autism candidate genes. Sequencing of 25 patients confirmed the involvement of this module in autism, which was subsequently validated using an independent cohort of over 500 patients. Expression of this module was dichotomized with a ubiquitously expressed subcomponent and another subcomponent preferentially expressed in the corpus callosum, which was significantly affected by our identified mutations in the network center. RNA-sequencing of the corpus callosum from patients with autism exhibited extensive gene mis-expression in this module, and our immunochemical analysis showed that the human corpus callosum is predominantly populated by oligodendrocyte cells. Analysis of functional genomic data further revealed a significant involvement of this module in the development of oligodendrocyte cells in mouse brain. Our analysis delineates a natural network involved in autism, helps uncover novel candidate genes for this disease and improves our understanding of its molecular pathology. PMID:25549968

  2. A Module Experimental Process System Development Unit (MEPSDU)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Design work for a photovoltaic module, fabricated using single crystal silicon dendritic web sheet material, resulted in the identification of surface treatment to the module glass superstrate which improved module efficiencies. A final solar module environmental test, a simulated hailstone impact test, was conducted on full size module superstrates to verify that the module's tempered glass superstrate can withstand specified hailstone impacts near the corners and edges of the module. Process sequence design work on the metallization process selective, liquid dopant investigation, dry processing, and antireflective/photoresist application technique tasks, and optimum thickness for Ti/Pd are discussed. A noncontact cleaning method for raw web cleaning was identified and antireflective and photoresist coatings for the dendritic webs were selected. The design of a cell string conveyor, an interconnect feed system, rolling ultrasonic spot bonding heat, and the identification of the optimal commercially available programmable control system are also discussed. An economic analysis to assess cost goals of the process sequence is also given.

  3. K-shuff: A Novel Algorithm for Characterizing Structural and Compositional Diversity in Gene Libraries.

    PubMed

    Jangid, Kamlesh; Kao, Ming-Hung; Lahamge, Aishwarya; Williams, Mark A; Rathbun, Stephen L; Whitman, William B

    2016-01-01

    K-shuff is a new algorithm for comparing the similarity of gene sequence libraries, providing measures of the structural and compositional diversity as well as the significance of the differences between these measures. Inspired by Ripley's K-function for spatial point pattern analysis, the Intra K-function or IKF measures the structural diversity, including both the richness and overall similarity of the sequences, within a library. The Cross K-function or CKF measures the compositional diversity between gene libraries, reflecting both the number of OTUs shared as well as the overall similarity in OTUs. A Monte Carlo testing procedure then enables statistical evaluation of both the structural and compositional diversity between gene libraries. For 16S rRNA gene libraries from complex bacterial communities such as those found in seawater, salt marsh sediments, and soils, K-shuff yields reproducible estimates of structural and compositional diversity with libraries greater than 50 sequences. Similarly, for pyrosequencing libraries generated from a glacial retreat chronosequence and Illumina® libraries generated from US homes, K-shuff required >300 and 100 sequences per sample, respectively. Power analyses demonstrated that K-shuff is sensitive to small differences in Sanger or Illumina® libraries. This extra sensitivity of K-shuff enabled examination of compositional differences at much deeper taxonomic levels, such as within abundant OTUs. This is especially useful when comparing communities that are compositionally very similar but functionally different. K-shuff will therefore prove beneficial for conventional microbiome analysis as well as specific hypothesis testing.

  4. The highly dynamic CRISPR1 system of Streptococcus agalactiae controls the diversity of its mobilome.

    PubMed

    Lopez-Sanchez, Maria-José; Sauvage, Elisabeth; Da Cunha, Violette; Clermont, Dominique; Ratsima Hariniaina, Elisoa; Gonzalez-Zorn, Bruno; Poyart, Claire; Rosinski-Chupin, Isabelle; Glaser, Philippe

    2012-09-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) confer immunity against mobile genetic elements (MGEs) in prokaryotes. Streptococcus agalactiae, a leading cause of neonatal infections contains in its genome two CRISPR/Cas systems. We show that type 1-C CRISPR2 is present in few strains but type 2-A CRISPR1 is ubiquitous. Comparative sequence analysis of the CRISPR1 spacer content of 351 S. agalactiae strains revealed that it is extremely diverse due to the acquisition of new spacers, spacer duplications and spacer deletions that witness the dynamics of this system. The spacer content profile mirrors the S. agalactiae population structure. Transfer of a conjugative transposon targeted by CRISPR1 selected for spacer rearrangements, suggesting that deletions and duplications pre-exist in the population. The comparison of protospacers located within MGE or the core genome and protospacer-associated motif-shuffling demonstrated that the GG motif is sufficient to discriminate self and non-self and for spacer selection and integration. Strikingly more than 40% of the 949 different CRISPR1 spacers identified target MGEs found in S. agalactiae genomes. We thus propose that the S. agalactiae type II-A CRISPR1/Cas system modulates the cohabitation of the species with its mobilome, as such contributing to the diversity of MGEs in the population. © 2012 Blackwell Publishing Ltd.

  5. Genomics and epigenomics in rheumatic diseases: what do they provide in terms of diagnosis and disease management?

    PubMed

    Castro-Santos, Patricia; Díaz-Peña, Roberto

    2017-09-01

    Most rheumatic diseases are complex or multifactorial entities with pathogeneses that interact with both multiple genetic factors and a high number of diverse environmental factors. Knowledge of the human genome sequence and its diversity among populations has provided a crucial step forward in our understanding of genetic diseases, identifying many genetic loci or genes associated with diverse phenotypes. In general, susceptibility to autoimmunity is associated with multiple risk factors, but the mechanism of the environmental component influence is poorly understood. Studies in twins have demonstrated that genetics do not explain the totality of the pathogenesis of rheumatic diseases. One method of modulating gene expression through environmental effects is via epigenetic modifications. These techniques open a new field for identifying useful new biomarkers and therapeutic targets. In this context, the development of "-omics" techniques is an opportunity to progress in our knowledge of complex diseases, impacting the discovery of new potential biomarkers suitable for their introduction into clinical practice. In this review, we focus on the recent advances in the fields of genomics and epigenomics in rheumatic diseases and their potential to be useful for the diagnosis, follow-up, and treatment of these diseases. The ultimate aim of genomic studies in any human disease is to understand its pathogenesis, thereby enabling the prediction of the evolution of the disease to establish new treatments and address the development of personalized therapies.

  6. Imperfect duplicate insertions type of mutations in plasmepsin V modulates binding properties of PEXEL motifs of export proteins in Indian Plasmodium vivax.

    PubMed

    Rawat, Manmeet; Vijay, Sonam; Gupta, Yash; Tiwari, Pramod Kumar; Sharma, Arun

    2013-01-01

    Plasmepsin V (PM-V) have functionally conserved orthologues across the Plasmodium genus who's binding and antigenic processing at the PEXEL motifs for export about 200-300 essential proteins is important for the virulence and viability of the causative Plasmodium species. This study was undertaken to determine P. vivax plasmepsin V Ind (PvPM-V-Ind) PEXEL motif export pathway for pathogenicity-related proteins/antigens export thereby altering plasmodium exportome during erythrocytic stages. We identify and characterize Plasmodium vivax plasmepsin-V-Ind (mutant) gene by cloning, sequence analysis, in silico bioinformatic protocols and structural modeling predictions based on docking studies on binding capacity with PEXEL motifs processing in terms of binding and accessibility of export proteins. Cloning and sequence analysis for genetic diversity demonstrates PvPM-V-Ind (mutant) gene is highly conserved among all isolates from different geographical regions of India. Imperfect duplicate insertion types of mutations (SVSE from 246-249 AA and SLSE from 266-269 AA) were identified among all Indian isolates in comparison to P.vivax Sal-1 (PvPM-V-Sal 1) isolate. In silico bioinformatics interaction studies of PEXEL peptide and active enzyme reveal that PvPM-V-Ind (mutant) is only active in endoplasmic reticulum lumen and membrane embedding is essential for activation of plasmepsin V. Structural modeling predictions based on docking studies with PEXEL motif show significant variation in substrate protein binding of these imperfect mutations with data mined PEXEL sequences. The predicted variation in the docking score and interacting amino acids of PvPM-V-Ind (mutant) proteins with PEXEL and lopinavir suggests a modulation in the activity of PvPM-V in terms of binding and accessibility at these sites. Our functional modeled validation of PvPM-V-Ind (mutant) imperfect duplicate insertions with data mined PEXEL sequences leading to altered binding and substrate accessibility of the enzyme makes it a plausible target to investigate export mechanisms for in silico virtual screening and novel pharmacophore designing.

  7. Imperfect Duplicate Insertions Type of Mutations in Plasmepsin V Modulates Binding Properties of PEXEL Motifs of Export Proteins in Indian Plasmodium vivax

    PubMed Central

    Rawat, Manmeet; Vijay, Sonam; Gupta, Yash; Tiwari, Pramod Kumar; Sharma, Arun

    2013-01-01

    Introduction Plasmepsin V (PM-V) have functionally conserved orthologues across the Plasmodium genus who's binding and antigenic processing at the PEXEL motifs for export about 200–300 essential proteins is important for the virulence and viability of the causative Plasmodium species. This study was undertaken to determine P. vivax plasmepsin V Ind (PvPM-V-Ind) PEXEL motif export pathway for pathogenicity-related proteins/antigens export thereby altering plasmodium exportome during erythrocytic stages. Method We identify and characterize Plasmodium vivax plasmepsin-V-Ind (mutant) gene by cloning, sequence analysis, in silico bioinformatic protocols and structural modeling predictions based on docking studies on binding capacity with PEXEL motifs processing in terms of binding and accessibility of export proteins. Results Cloning and sequence analysis for genetic diversity demonstrates PvPM-V-Ind (mutant) gene is highly conserved among all isolates from different geographical regions of India. Imperfect duplicate insertion types of mutations (SVSE from 246–249 AA and SLSE from 266–269 AA) were identified among all Indian isolates in comparison to P.vivax Sal-1 (PvPM-V-Sal 1) isolate. In silico bioinformatics interaction studies of PEXEL peptide and active enzyme reveal that PvPM-V-Ind (mutant) is only active in endoplasmic reticulum lumen and membrane embedding is essential for activation of plasmepsin V. Structural modeling predictions based on docking studies with PEXEL motif show significant variation in substrate protein binding of these imperfect mutations with data mined PEXEL sequences. The predicted variation in the docking score and interacting amino acids of PvPM-V-Ind (mutant) proteins with PEXEL and lopinavir suggests a modulation in the activity of PvPM-V in terms of binding and accessibility at these sites. Conclusion/Significance Our functional modeled validation of PvPM-V-Ind (mutant) imperfect duplicate insertions with data mined PEXEL sequences leading to altered binding and substrate accessibility of the enzyme makes it a plausible target to investigate export mechanisms for in silico virtual screening and novel pharmacophore designing. PMID:23555891

  8. Genetic diversity and antigenicity variation of Babesia bovis merozoite surface antigen-1 (MSA-1) in Thailand.

    PubMed

    Tattiyapong, Muncharee; Sivakumar, Thillaiampalam; Takemae, Hitoshi; Simking, Pacharathon; Jittapalapong, Sathaporn; Igarashi, Ikuo; Yokoyama, Naoaki

    2016-07-01

    Babesia bovis, an intraerythrocytic protozoan parasite, causes severe clinical disease in cattle worldwide. The genetic diversity of parasite antigens often results in different immune profiles in infected animals, hindering efforts to develop immune control methodologies against the B. bovis infection. In this study, we analyzed the genetic diversity of the merozoite surface antigen-1 (msa-1) gene using 162 B. bovis-positive blood DNA samples sourced from cattle populations reared in different geographical regions of Thailand. The identity scores shared among 93 msa-1 gene sequences isolated by PCR amplification were 43.5-100%, and the similarity values among the translated amino acid sequences were 42.8-100%. Of 23 total clades detected in our phylogenetic analysis, Thai msa-1 gene sequences occurred in 18 clades; seven among them were composed of sequences exclusively from Thailand. To investigate differential antigenicity of isolated MSA-1 proteins, we expressed and purified eight recombinant MSA-1 (rMSA-1) proteins, including an rMSA-1 from B. bovis Texas (T2Bo) strain and seven rMSA-1 proteins based on the Thai msa-1 sequences. When these antigens were analyzed in a western blot assay, anti-T2Bo cattle serum strongly reacted with the rMSA-1 from T2Bo, as well as with three other rMSA-1 proteins that shared 54.9-68.4% sequence similarity with T2Bo MSA-1. In contrast, no or weak reactivity was observed for the remaining rMSA-1 proteins, which shared low sequence similarity (35.0-39.7%) with T2Bo MSA-1. While demonstrating the high genetic diversity of the B. bovis msa-1 gene in Thailand, the present findings suggest that the genetic diversity results in antigenicity variations among the MSA-1 antigens of B. bovis in Thailand. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Evolution of African swine fever virus genes related to evasion of host immune response.

    PubMed

    Frączyk, Magdalena; Woźniakowski, Grzegorz; Kowalczyk, Andrzej; Bocian, Łukasz; Kozak, Edyta; Niemczuk, Krzysztof; Pejsak, Zygmunt

    2016-09-25

    African swine fever (ASF) is a notifiable and one of the most complex and devastating infectious disease of pigs, wild boars and other representatives of Suidae family. African swine fever virus (ASFV) developed various molecular mechanisms to evade host immune response including alteration of interferon production by multigene family protein (MGF505-2R), inhibition of NF-κB and nuclear activating factor in T-cells by the A238L protein, or modulation of host defense by CD2v lectin-like protein encoded by EP402R and EP153R genes. The current situation concerning ASF in Poland seems to be stable in comparison to other eastern European countries but up-to-date in total 106 ASF cases in wild boar and 5 outbreaks in pigs were identified. The presented study aimed to reveal and summarize the genetic variability of genes related to inhibition or modulation of infected host response among 67 field ASF isolates collected from wild boar and pigs. The nucleotide sequences derived from the analysed A238L and EP153R regions showed 100% identity. However, minor but remarkable genetic diversity was found within EP402R and MGF505-2R genes suggesting slow molecular evolution of circulating ASFV isolates and the important role of this gene in modulation of interferon I production and hemadsorption phenomenon. The obtained nucleotide sequences of Polish ASFV isolates were closely related to Georgia 2007/1 and Odintsovo 02/14 isolates suggesting their common Caucasian origin. In the case of EP402R and partially in MGF505-2R gene the identified genetic variability was related to spatio-temporal occurrence of particular cases and outbreaks what may facilitate evolution tracing of ASFV isolates. This is the first report indicating identification of genetic variability within the genes related to evasion of host immune system which may be used to trace the direction of ASFV isolates molecular evolution. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Ribozyme-based aminoglycoside switches of gene expression engineered by genetic selection in S. cerevisiae.

    PubMed

    Klauser, Benedikt; Atanasov, Janina; Siewert, Lena K; Hartig, Jörg S

    2015-05-15

    Systems for conditional gene expression are powerful tools in basic research as well as in biotechnology. For future applications, it is of great importance to engineer orthogonal genetic switches that function reliably in diverse contexts. RNA-based switches have the advantage that effector molecules interact immediately with regulatory modules inserted into the target RNAs, getting rid of the need of transcription factors usually mediating genetic control. Artificial riboswitches are characterized by their simplicity and small size accompanied by a high degree of modularity. We have recently reported a series of hammerhead ribozyme-based artificial riboswitches that allow for post-transcriptional regulation of gene expression via switching mRNA, tRNA, or rRNA functions. A more widespread application was so far hampered by moderate switching performances and a limited set of effector molecules available. Here, we report the re-engineering of hammerhead ribozymes in order to respond efficiently to aminoglycoside antibiotics. We first established an in vivo selection protocol in Saccharomyces cerevisiae that enabled us to search large sequence spaces for optimized switches. We then envisioned and characterized a novel strategy of attaching the aptamer to the ribozyme catalytic core, increasing the design options for rendering the ribozyme ligand-dependent. These innovations enabled the development of neomycin-dependent RNA modules that switch gene expression up to 25-fold. The presented aminoglycoside-responsive riboswitches belong to the best-performing RNA-based genetic regulators reported so far. The developed in vivo selection protocol should allow for sampling of large sequence spaces for engineering of further optimized riboswitches.

  11. Conformational diversity in contryphans from Conus venom: cis-trans isomerisation and aromatic/proline interactions in the 23-membered ring of a 7-residue peptide disulfide loop.

    PubMed

    Sonti, Rajesh; Gowd, Konkallu Hanumae; Rao, K N Shashanka; Ragothama, Srinivasarao; Rodriguez, Alex; Perez, Juan Jesus; Balaram, Padmanabhan

    2013-11-04

    Conformational diversity or "shapeshifting" in cyclic peptide natural products can, in principle, confer a single molecular entity with the property of binding to multiple receptors. Conformational equilibria have been probed in the contryphans, which are peptides derived from Conus venom possessing a 23-membered cyclic disulfide moiety. The natural sequences derived from Conus inscriptus, GCV(D)LYPWC* (In936) and Conus loroisii, GCP(D)WDPWC* (Lo959) differ in the number of proline residues within the macrocyclic ring. Structural characterisation of distinct conformational states arising from cis-trans equilibria about Xxx-Pro bonds is reported. Isomerisation about the C2-P3 bond is observed in the case of Lo959 and about the Y5-P6 bond in In936. Evidence is presented for as many as four distinct species in the case of the synthetic analogue V3P In936. The Tyr-Pro-Trp segment in In936 is characterised by distinct sidechain orientations as a consequence of aromatic/proline interactions as evidenced by specific sidechain-sidechain nuclear Overhauser effects and ring current shifted proton chemical shifts. Molecular dynamics simulations suggest that Tyr5 and Trp7 sidechain conformations are correlated and depend on the geometry of the Xxx-Pro bond. Thermodynamic parameters are derived for the cis↔trans equilibrium for In936. Studies on synthetic analogues provide insights into the role of sequence effects in modulating isomerisation about Xxx-Pro bonds. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Combining Rosetta with molecular dynamics (MD): A benchmark of the MD-based ensemble protein design.

    PubMed

    Ludwiczak, Jan; Jarmula, Adam; Dunin-Horkawicz, Stanislaw

    2018-07-01

    Computational protein design is a set of procedures for computing amino acid sequences that will fold into a specified structure. Rosetta Design, a commonly used software for protein design, allows for the effective identification of sequences compatible with a given backbone structure, while molecular dynamics (MD) simulations can thoroughly sample near-native conformations. We benchmarked a procedure in which Rosetta design is started on MD-derived structural ensembles and showed that such a combined approach generates 20-30% more diverse sequences than currently available methods with only a slight increase in computation time. Importantly, the increase in diversity is achieved without a loss in the quality of the designed sequences assessed by their resemblance to natural sequences. We demonstrate that the MD-based procedure is also applicable to de novo design tasks started from backbone structures without any sequence information. In addition, we implemented a protocol that can be used to assess the stability of designed models and to select the best candidates for experimental validation. In sum our results demonstrate that the MD ensemble-based flexible backbone design can be a viable method for protein design, especially for tasks that require a large pool of diverse sequences. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. A Pan-HIV Strategy for Complete Genome Sequencing

    PubMed Central

    Yamaguchi, Julie; Alessandri-Gradt, Elodie; Tell, Robert W.; Brennan, Catherine A.

    2015-01-01

    Molecular surveillance is essential to monitor HIV diversity and track emerging strains. We have developed a universal library preparation method (HIV-SMART [i.e., switching mechanism at 5′ end of RNA transcript]) for next-generation sequencing that harnesses the specificity of HIV-directed priming to enable full genome characterization of all HIV-1 groups (M, N, O, and P) and HIV-2. Broad application of the HIV-SMART approach was demonstrated using a panel of diverse cell-cultured virus isolates. HIV-1 non-subtype B-infected clinical specimens from Cameroon were then used to optimize the protocol to sequence directly from plasma. When multiplexing 8 or more libraries per MiSeq run, full genome coverage at a median ∼2,000× depth was routinely obtained for either sample type. The method reproducibly generated the same consensus sequence, consistently identified viral sequence heterogeneity present in specimens, and at viral loads of ≤4.5 log copies/ml yielded sufficient coverage to permit strain classification. HIV-SMART provides an unparalleled opportunity to identify diverse HIV strains in patient specimens and to determine phylogenetic classification based on the entire viral genome. Easily adapted to sequence any RNA virus, this technology illustrates the utility of next-generation sequencing (NGS) for viral characterization and surveillance. PMID:26699702

  14. Evolution of Enzyme Superfamilies: Comprehensive Exploration of Sequence-Function Relationships.

    PubMed

    Baier, F; Copp, J N; Tokuriki, N

    2016-11-22

    The sequence and functional diversity of enzyme superfamilies have expanded through billions of years of evolution from a common ancestor. Understanding how protein sequence and functional "space" have expanded, at both the evolutionary and molecular level, is central to biochemistry, molecular biology, and evolutionary biology. Integrative approaches that examine protein sequence, structure, and function have begun to provide comprehensive views of the functional diversity and evolutionary relationships within enzyme superfamilies. In this review, we outline the recent advances in our understanding of enzyme evolution and superfamily functional diversity. We describe the tools that have been used to comprehensively analyze sequence relationships and to characterize sequence and function relationships. We also highlight recent large-scale experimental approaches that systematically determine the activity profiles across enzyme superfamilies. We identify several intriguing insights from this recent body of work. First, promiscuous activities are prevalent among extant enzymes. Second, many divergent proteins retain "function connectivity" via enzyme promiscuity, which can be used to probe the evolutionary potential and history of enzyme superfamilies. Finally, we discuss open questions regarding the intricacies of enzyme divergence, as well as potential research directions that will deepen our understanding of enzyme superfamily evolution.

  15. Sensitive Next-Generation Sequencing Method Reveals Deep Genetic Diversity of HIV-1 in the Democratic Republic of the Congo.

    PubMed

    Rodgers, Mary A; Wilkinson, Eduan; Vallari, Ana; McArthur, Carole; Sthreshley, Larry; Brennan, Catherine A; Cloherty, Gavin; de Oliveira, Tulio

    2017-03-15

    As the epidemiological epicenter of the human immunodeficiency virus (HIV) pandemic, the Democratic Republic of the Congo (DRC) is a reservoir of circulating HIV strains exhibiting high levels of diversity and recombination. In this study, we characterized HIV specimens collected in two rural areas of the DRC between 2001 and 2003 to identify rare strains of HIV. The env gp41 region was sequenced and characterized for 172 HIV-positive specimens. The env sequences were predominantly subtype A (43.02%), but 7 other subtypes (33.14%), 20 circulating recombinant forms (CRFs; 11.63%), and 20 unclassified (11.63%) sequences were also found. Of the rare and unclassified subtypes, 18 specimens were selected for next-generation sequencing (NGS) by a modified HIV-switching mechanism at the 5' end of the RNA template (SMART) method to obtain full-genome sequences. NGS produced 14 new complete genomes, which included pure subtype C ( n = 2), D ( n = 1), F1 ( n = 1), H ( n = 3), and J ( n = 1) genomes. The two subtype C genomes and one of the subtype H genomes branched basal to their respective subtype branches but had no evidence of recombination. The remaining 6 genomes were complex recombinants of 2 or more subtypes, including subtypes A1, F, G, H, J, and K and unclassified fragments, including one subtype CRF25 isolate, which branched basal to all CRF25 references. Notably, all recombinant subtype H fragments branched basal to the H clade. Spatial-geographical analysis indicated that the diverse sequences identified here did not expand globally. The full-genome and subgenomic sequences identified in our study population significantly increase the documented diversity of the strains involved in the continually evolving HIV-1 pandemic. IMPORTANCE Very little is known about the ancestral HIV-1 strains that founded the global pandemic, and very few complete genome sequences are available from patients in the Congo Basin, where HIV-1 expanded early in the global pandemic. By sequencing a subgenomic fragment of the HIV-1 envelope from study participants in the DRC, we identified rare variants for complete genome sequencing. The basal branching of some of the complete genome sequences that we recovered suggests that these strains are more closely related to ancestral HIV-1 strains than to previously reported strains and is evidence that the local diversification of HIV in the DRC continues to outpace the diversity of global strains decades after the emergence of the pandemic. Copyright © 2017 Rodgers et al.

  16. Coordinate cytokine regulatory sequences

    DOEpatents

    Frazer, Kelly A.; Rubin, Edward M.; Loots, Gabriela G.

    2005-05-10

    The present invention provides CNS sequences that regulate the cytokine gene expression, expression cassettes and vectors comprising or lacking the CNS sequences, host cells and non-human transgenic animals comprising the CNS sequences or lacking the CNS sequences. The present invention also provides methods for identifying compounds that modulate the functions of CNS sequences as well as methods for diagnosing defects in the CNS sequences of patients.

  17. Elaborate cellulosome architecture of Acetivibrio cellulolyticus revealed by selective screening of cohesin-dockerin interactions.

    PubMed

    Hamberg, Yuval; Ruimy-Israeli, Vered; Dassa, Bareket; Barak, Yoav; Lamed, Raphael; Cameron, Kate; Fontes, Carlos M G A; Bayer, Edward A; Fried, Daniel B

    2014-01-01

    Cellulosic waste represents a significant and underutilized carbon source for the biofuel industry. Owing to the recalcitrance of crystalline cellulose to enzymatic degradation, it is necessary to design economical methods of liberating the fermentable sugars required for bioethanol production. One route towards unlocking the potential of cellulosic waste lies in a highly complex class of molecular machines, the cellulosomes. Secreted mainly by anaerobic bacteria, cellulosomes are structurally diverse, cell surface-bound protein assemblies that can contain dozens of catalytic components. The key feature of the cellulosome is its modularity, facilitated by the ultra-high affinity cohesin-dockerin interaction. Due to the enormous number of cohesin and dockerin modules found in a typical cellulolytic organism, a major bottleneck in understanding the biology of cellulosomics is the purification of each cohesin- and dockerin-containing component, prior to analyses of their interaction. As opposed to previous approaches, the present study utilized proteins contained in unpurified whole-cell extracts. This strategy was made possible due to an experimental design that allowed for the relevant proteins to be "purified" via targeted affinity interactions as a function of the binding assay. The approach thus represents a new strategy, appropriate for future medium- to high-throughput screening of whole genomes, to determine the interactions between cohesins and dockerins. We have selected the cellulosome of Acetivibrio cellulolyticus for this work due to its exceptionally complex cellulosome systems and intriguing diversity of its cellulosomal modular components. Containing 41 cohesins and 143 dockerins, A. cellulolyticus has one of the largest number of potential cohesin-dockerin interactions of any organism, and contains unusual and novel cellulosomal features. We have surveyed a representative library of cohesin and dockerin modules spanning the cellulosome's total cohesin and dockerin sequence diversity, emphasizing the testing of unusual and previously-unknown protein modules. The screen revealed several novel cell-bound cellulosome architectures, thus expanding on those previously known, as well as soluble cellulose systems that are not bound to the bacterial cell surface. This study sets the stage for screening the entire complement of cellulosomal components from A. cellulolyticus and other organisms with large cellulosome systems. The knowledge gained by such efforts brings us closer to understanding the exceptional catalytic abilities of cellulosomes and will allow the use of novel cellulosomal components in artificial assemblies and in enzyme cocktails for sustainable energy-related research programs.

  18. Pilot-Assisted Channel Estimation for Orthogonal Multi-Carrier DS-CDMA with Frequency-Domain Equalization

    NASA Astrophysics Data System (ADS)

    Shima, Tomoyuki; Tomeba, Hiromichi; Adachi, Fumiyuki

    Orthogonal multi-carrier direct sequence code division multiple access (orthogonal MC DS-CDMA) is a combination of time-domain spreading and orthogonal frequency division multiplexing (OFDM). In orthogonal MC DS-CDMA, the frequency diversity gain can be obtained by applying frequency-domain equalization (FDE) based on minimum mean square error (MMSE) criterion to a block of OFDM symbols and can improve the bit error rate (BER) performance in a severe frequency-selective fading channel. FDE requires an accurate estimate of the channel gain. The channel gain can be estimated by removing the pilot modulation in the frequency domain. In this paper, we propose a pilot-assisted channel estimation suitable for orthogonal MC DS-CDMA with FDE and evaluate, by computer simulation, the BER performance in a frequency-selective Rayleigh fading channel.

  19. Diversity in the origins of proteostasis networks- a driver for protein function in evolution

    PubMed Central

    Powers, Evan T.; Balch, William E.

    2013-01-01

    Although a protein’s primary sequence largely determines its function, proteins can adopt different folding states in response to changes in the environment, some of which may be deleterious to the organism. All organisms, including Bacteria, Archaea and Eukarya, have evolved a protein homeostasis network, or proteostasis network, that consists of chaperones and folding factors, degradation components, signalling pathways and specialized compartmentalized modules that manage protein folding in response to environmental stimuli and variation. Surveying the origins of proteostasis networks reveals that they have co-evolved with the proteome to regulate the physiological state of the cell, reflecting the unique stresses that different cells or organisms experience, and that they have a key role in driving evolution by closely managing the link between the phenotype and the genotype. PMID:23463216

  20. New extension software modules to enhance searching and display of transcriptome data in Tripal databases

    PubMed Central

    Chen, Ming; Henry, Nathan; Almsaeed, Abdullah; Zhou, Xiao; Wegrzyn, Jill; Ficklin, Stephen

    2017-01-01

    Abstract Tripal is an open source software package for developing biological databases with a focus on genetic and genomic data. It consists of a set of core modules that deliver essential functions for loading and displaying data records and associated attributes including organisms, sequence features and genetic markers. Beyond the core modules, community members are encouraged to contribute extension modules to build on the Tripal core and to customize Tripal for individual community needs. To expand the utility of the Tripal software system, particularly for RNASeq data, we developed two new extension modules. Tripal Elasticsearch enables fast, scalable searching of the entire content of a Tripal site as well as the construction of customized advanced searches of specific data types. We demonstrate the use of this module for searching assembled transcripts by functional annotation. A second module, Tripal Analysis Expression, houses and displays records from gene expression assays such as RNA sequencing. This includes biological source materials (biomaterials), gene expression values and protocols used to generate the data. In the case of an RNASeq experiment, this would reflect the individual organisms and tissues used to produce sequencing libraries, the normalized gene expression values derived from the RNASeq data analysis and a description of the software or code used to generate the expression values. The module will load data from common flat file formats including standard NCBI Biosample XML. Data loading, display options and other configurations can be controlled by authorized users in the Drupal administrative backend. Both modules are open source, include usage documentation, and can be found in the Tripal organization’s GitHub repository. Database URL: Tripal Elasticsearch module: https://github.com/tripal/tripal_elasticsearch Tripal Analysis Expression module: https://github.com/tripal/tripal_analysis_expression PMID:29220446

  1. Engineered proteins with PUF scaffold to manipulate RNA metabolism

    PubMed Central

    Wang, Yang; Wang, Zefeng; Tanaka Hall, Traci M.

    2013-01-01

    Pumilio/fem-3 mRNA binding factor (FBF) proteins are characterized by a sequence-specific RNA-binding domain. This unique single-stranded RNA recognition module, whose sequence specificity can be reprogrammed, has been fused with functional modules to engineer protein factors with various functions. Here we summarize the advancement in developing RNA regulatory tools and opportunities for the future. PMID:23731364

  2. Effects of GABA[subscript A] Modulators on the Repeated Acquisition of Response Sequences in Squirrel Monkeys

    ERIC Educational Resources Information Center

    Campbell, Una C.; Winsauer, Peter J.; Stevenson, Michael W.; Moerschbaecher, Joseph M.

    2004-01-01

    The present study investigated the effects of positive and negative GABA[subscript A] modulators under three different baselines of repeated acquisition in squirrel monkeys in which the monkeys acquired a three-response sequence on three keys under a second-order fixed-ratio (FR) schedule of food reinforcement. In two of these baselines, the…

  3. NF-κB-Chromatin Interactions Drive Diverse Phenotypes by Modulating Transcriptional Noise

    PubMed Central

    Wong, Victor C.; Bass, Victor L.; Bullock, M. Elise; Chavali, Arvind K.; Lee, Robin E.C.; Mothes, Walther; Gaudet, Suzanne; Miller-Jensen, Kathryn

    2018-01-01

    SUMMARY Noisy gene expression generates diverse phenotypes, but little is known about mechanisms that modulate noise. Combining experiments and modeling, we studied how tumor necrosis factor (TNF) initiates noisy expression of latent HIV via the transcription factor nuclear factor κB (NF-κB) and how the HIV genomic integration site modulates noise to generate divergent (low-versus-high) phenotypes of viral activation. We show that TNF-induced transcriptional noise varies more than mean transcript number and that amplification of this noise explains low-versus-high viral activation. For a given integration site, live-cell imaging shows that NF-κB activation correlates with viral activation, but across integration sites, NF-κB activation cannot account for differences in transcriptional noise and phenotypes. Instead, differences in transcriptional noise are associated with differences in chromatin state and RNA polymerase II regulation. We conclude that, whereas NF-κB regulates transcript abundance in each cell, the chromatin environment modulates noise in the population to support diverse HIV activation in response to TNF. PMID:29346759

  4. Diversity and strain specificity of plant cell wall degrading enzymes revealed by the draft genome of Ruminococcus flavefaciens FD-1.

    PubMed

    Berg Miller, Margret E; Antonopoulos, Dionysios A; Rincon, Marco T; Band, Mark; Bari, Albert; Akraiko, Tatsiana; Hernandez, Alvaro; Thimmapuram, Jyothi; Henrissat, Bernard; Coutinho, Pedro M; Borovok, Ilya; Jindou, Sadanari; Lamed, Raphael; Flint, Harry J; Bayer, Edward A; White, Bryan A

    2009-08-14

    Ruminococcus flavefaciens is a predominant cellulolytic rumen bacterium, which forms a multi-enzyme cellulosome complex that could play an integral role in the ability of this bacterium to degrade plant cell wall polysaccharides. Identifying the major enzyme types involved in plant cell wall degradation is essential for gaining a better understanding of the cellulolytic capabilities of this organism as well as highlighting potential enzymes for application in improvement of livestock nutrition and for conversion of cellulosic biomass to liquid fuels. The R. flavefaciens FD-1 genome was sequenced to 29x-coverage, based on pulsed-field gel electrophoresis estimates (4.4 Mb), and assembled into 119 contigs providing 4,576,399 bp of unique sequence. As much as 87.1% of the genome encodes ORFs, tRNA, rRNAs, or repeats. The GC content was calculated at 45%. A total of 4,339 ORFs was detected with an average gene length of 918 bp. The cellulosome model for R. flavefaciens was further refined by sequence analysis, with at least 225 dockerin-containing ORFs, including previously characterized cohesin-containing scaffoldin molecules. These dockerin-containing ORFs encode a variety of catalytic modules including glycoside hydrolases (GHs), polysaccharide lyases, and carbohydrate esterases. Additionally, 56 ORFs encode proteins that contain carbohydrate-binding modules (CBMs). Functional microarray analysis of the genome revealed that 56 of the cellulosome-associated ORFs were up-regulated, 14 were down-regulated, 135 were unaffected, when R. flavefaciens FD-1 was grown on cellulose versus cellobiose. Three multi-modular xylanases (ORF01222, ORF03896, and ORF01315) exhibited the highest levels of up-regulation. The genomic evidence indicates that R. flavefaciens FD-1 has the largest known number of fiber-degrading enzymes likely to be arranged in a cellulosome architecture. Functional analysis of the genome has revealed that the growth substrate drives expression of enzymes predicted to be involved in carbohydrate metabolism as well as expression and assembly of key cellulosomal enzyme components.

  5. Learning Outcomes of Factual Knowledge: A Comparison of Module and No Module Conditions

    ERIC Educational Resources Information Center

    IRIS Center, 2017

    2017-01-01

    During the 2004-2005 academic year, a study of the learning outcomes associated with the use of an IRIS Module was conducted at a large urban campus with a diverse student body. The module's content pertained to instructional accommodations for students with visual disabilities. In an introductory class aimed primarily at general and special…

  6. Regulatory Mechanisms That Prevent Re-initiation of DNA Replication Can Be Locally Modulated at Origins by Nearby Sequence Elements

    PubMed Central

    Richardson, Christopher D.; Li, Joachim J.

    2014-01-01

    Eukaryotic cells must inhibit re-initiation of DNA replication at each of the thousands of origins in their genome because re-initiation can generate genomic alterations with extraordinary frequency. To minimize the probability of re-initiation from so many origins, cells use a battery of regulatory mechanisms that reduce the activity of replication initiation proteins. Given the global nature of these mechanisms, it has been presumed that all origins are inhibited identically. However, origins re-initiate with diverse efficiencies when these mechanisms are disabled, and this diversity cannot be explained by differences in the efficiency or timing of origin initiation during normal S phase replication. This observation raises the possibility of an additional layer of replication control that can differentially regulate re-initiation at distinct origins. We have identified novel genetic elements that are necessary for preferential re-initiation of two origins and sufficient to confer preferential re-initiation on heterologous origins when the control of re-initiation is partially deregulated. The elements do not enhance the S phase timing or efficiency of adjacent origins and thus are specifically acting as re-initiation promoters (RIPs). We have mapped the two RIPs to ∼60 bp AT rich sequences that act in a distance- and sequence-dependent manner. During the induction of re-replication, Mcm2-7 reassociates both with origins that preferentially re-initiate and origins that do not, suggesting that the RIP elements can overcome a block to re-initiation imposed after Mcm2-7 associates with origins. Our findings identify a local level of control in the block to re-initiation. This local control creates a complex genomic landscape of re-replication potential that is revealed when global mechanisms preventing re-replication are compromised. Hence, if re-replication does contribute to genomic alterations, as has been speculated for cancer cells, some regions of the genome may be more susceptible to these alterations than others. PMID:24945837

  7. Impact of Fishmeal Replacement in Diets for Gilthead Sea Bream (Sparus aurata) on the Gastrointestinal Microbiota Determined by Pyrosequencing the 16S rRNA Gene

    PubMed Central

    Estruch, G.; Collado, M. C.; Peñaranda, D. S.; Tomás Vidal, A.; Jover Cerdá, M.; Pérez Martínez, G.; Martinez-Llorens, S.

    2015-01-01

    Recent studies have demonstrated the impact of diet on microbiota composition, but the essential need for the optimization of production rates and costs forces farms and aquaculture production to carry out continuous dietary tests. In order to understand the effect of total fishmeal replacement by vegetable-based feed in the sea bream (Sparus aurata), the microbial composition of the stomach, foregut, midgut and hindgut was analysed using high-throughput 16S rDNA sequencing, also considering parameters of growth, survival and nutrient utilisation indices.A total of 91,539 16S rRNA filtered-sequences were analysed, with an average number of 3661.56 taxonomically assigned, high-quality sequences per sample. The dominant phyla throughout the whole gastrointestinal tract were Actinobacteria, Protebacteria and Firmicutes. A lower diversity in the stomach in comparison to the other intestinal sections was observed. The microbial composition of the Recirculating Aquaculture System was totally different to that of the sea bream gastrointestinal tract. Total fishmeal replacement had an important impact on microbial profiles but not on diversity. Streptococcus (p-value: 0.043) and Photobacterium (p-value: 0.025) were highly represented in fish fed with fishmeal and vegetable-meal diets, respectively. In the stomach samples with the vegetable diet, reads of chloroplasts and mitochondria from vegetable dietary ingredients were rather abundant. Principal Coordinate Analysis showed a clear differentiation between diets in the microbiota present in the gut, supporting the presence of specific bacterial consortia associated with the diet.Although differences in growth and nutritive parameters were not observed, a negative effect of the vegetable diet on the survival rate was determined. Further studies are required to shed more light on the relationship between the immune system and sea bream gastrointestinal tract microbiota and should consider the modulation of the microbiota to improve the survival rate and nutritive efficacy when using plant-based diets. PMID:26317431

  8. Four RNA families with functional transient structures

    PubMed Central

    Zhu, Jing Yun A; Meyer, Irmtraud M

    2015-01-01

    Protein-coding and non-coding RNA transcripts perform a wide variety of cellular functions in diverse organisms. Several of their functional roles are expressed and modulated via RNA structure. A given transcript, however, can have more than a single functional RNA structure throughout its life, a fact which has been previously overlooked. Transient RNA structures, for example, are only present during specific time intervals and cellular conditions. We here introduce four RNA families with transient RNA structures that play distinct and diverse functional roles. Moreover, we show that these transient RNA structures are structurally well-defined and evolutionarily conserved. Since Rfam annotates one structure for each family, there is either no annotation for these transient structures or no such family. Thus, our alignments either significantly update and extend the existing Rfam families or introduce a new RNA family to Rfam. For each of the four RNA families, we compile a multiple-sequence alignment based on experimentally verified transient and dominant (dominant in terms of either the thermodynamic stability and/or attention received so far) RNA secondary structures using a combination of automated search via covariance model and manual curation. The first alignment is the Trp operon leader which regulates the operon transcription in response to tryptophan abundance through alternative structures. The second alignment is the HDV ribozyme which we extend to the 5′ flanking sequence. This flanking sequence is involved in the regulation of the transcript's self-cleavage activity. The third alignment is the 5′ UTR of the maturation protein from Levivirus which contains a transient structure that temporarily postpones the formation of the final inhibitory structure to allow translation of maturation protein. The fourth and last alignment is the SAM riboswitch which regulates the downstream gene expression by assuming alternative structures upon binding of SAM. All transient and dominant structures are mapped to our new alignments introduced here. PMID:25751035

  9. Four RNA families with functional transient structures.

    PubMed

    Zhu, Jing Yun A; Meyer, Irmtraud M

    2015-01-01

    Protein-coding and non-coding RNA transcripts perform a wide variety of cellular functions in diverse organisms. Several of their functional roles are expressed and modulated via RNA structure. A given transcript, however, can have more than a single functional RNA structure throughout its life, a fact which has been previously overlooked. Transient RNA structures, for example, are only present during specific time intervals and cellular conditions. We here introduce four RNA families with transient RNA structures that play distinct and diverse functional roles. Moreover, we show that these transient RNA structures are structurally well-defined and evolutionarily conserved. Since Rfam annotates one structure for each family, there is either no annotation for these transient structures or no such family. Thus, our alignments either significantly update and extend the existing Rfam families or introduce a new RNA family to Rfam. For each of the four RNA families, we compile a multiple-sequence alignment based on experimentally verified transient and dominant (dominant in terms of either the thermodynamic stability and/or attention received so far) RNA secondary structures using a combination of automated search via covariance model and manual curation. The first alignment is the Trp operon leader which regulates the operon transcription in response to tryptophan abundance through alternative structures. The second alignment is the HDV ribozyme which we extend to the 5' flanking sequence. This flanking sequence is involved in the regulation of the transcript's self-cleavage activity. The third alignment is the 5' UTR of the maturation protein from Levivirus which contains a transient structure that temporarily postpones the formation of the final inhibitory structure to allow translation of maturation protein. The fourth and last alignment is the SAM riboswitch which regulates the downstream gene expression by assuming alternative structures upon binding of SAM. All transient and dominant structures are mapped to our new alignments introduced here.

  10. Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species

    DOE PAGES

    Kjerbolling, Inge; Vesth, Tammi C.; Frisvad, Jens C.; ...

    2018-01-09

    The fungal genus of Aspergillus is highly interesting, containing everything from industrial cell factories over model organisms to human pathogens. In particular, this group has a prolific production of bioactive secondary metabolites (SMs). In this work, four diverse Aspergillus species (A. campestris, A. novofumigatus, A. ochraceoroseus and A. steynii) has been whole genome PacBio sequenced to provide genetic references in three Aspergillus sections. Additionally, A. taichungensis and A. candidus were sequenced for SM elucidation. Thirteen Aspergillus genomes were analysed with comparative genomics to determine phylogeny and genetic diversity, showing that each new genome contains 15–27% genes not found in othermore » sequenced Aspergilli. In particular, the new species A. novofumigatus was compared to the pathogenic species A. fumigatus. This suggests that A. novofumigatus can produce most of the same allergens, virulence and pathogenicity factors as A. fumigatus suggesting that A. novofumigatus could be as pathogenic as A. fumigatus. Furthermore, SMs were linked to gene clusters based on biological and chemical knowledge and analysis, genome sequences and predictive algorithms.« less

  11. Clonal evolution in breast cancer revealed by single nucleus genome sequencing.

    PubMed

    Wang, Yong; Waters, Jill; Leung, Marco L; Unruh, Anna; Roh, Whijae; Shi, Xiuqing; Chen, Ken; Scheet, Paul; Vattathil, Selina; Liang, Han; Multani, Asha; Zhang, Hong; Zhao, Rui; Michor, Franziska; Meric-Bernstam, Funda; Navin, Nicholas E

    2014-08-14

    Sequencing studies of breast tumour cohorts have identified many prevalent mutations, but provide limited insight into the genomic diversity within tumours. Here we developed a whole-genome and exome single cell sequencing approach called nuc-seq that uses G2/M nuclei to achieve 91% mean coverage breadth. We applied this method to sequence single normal and tumour nuclei from an oestrogen-receptor-positive (ER(+)) breast cancer and a triple-negative ductal carcinoma. In parallel, we performed single nuclei copy number profiling. Our data show that aneuploid rearrangements occurred early in tumour evolution and remained highly stable as the tumour masses clonally expanded. In contrast, point mutations evolved gradually, generating extensive clonal diversity. Using targeted single-molecule sequencing, many of the diverse mutations were shown to occur at low frequencies (<10%) in the tumour mass. Using mathematical modelling we found that the triple-negative tumour cells had an increased mutation rate (13.3×), whereas the ER(+) tumour cells did not. These findings have important implications for the diagnosis, therapeutic treatment and evolution of chemoresistance in breast cancer.

  12. Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kjerbolling, Inge; Vesth, Tammi C.; Frisvad, Jens C.

    The fungal genus of Aspergillus is highly interesting, containing everything from industrial cell factories over model organisms to human pathogens. In particular, this group has a prolific production of bioactive secondary metabolites (SMs). In this work, four diverse Aspergillus species (A. campestris, A. novofumigatus, A. ochraceoroseus and A. steynii) has been whole genome PacBio sequenced to provide genetic references in three Aspergillus sections. Additionally, A. taichungensis and A. candidus were sequenced for SM elucidation. Thirteen Aspergillus genomes were analysed with comparative genomics to determine phylogeny and genetic diversity, showing that each new genome contains 15–27% genes not found in othermore » sequenced Aspergilli. In particular, the new species A. novofumigatus was compared to the pathogenic species A. fumigatus. This suggests that A. novofumigatus can produce most of the same allergens, virulence and pathogenicity factors as A. fumigatus suggesting that A. novofumigatus could be as pathogenic as A. fumigatus. Furthermore, SMs were linked to gene clusters based on biological and chemical knowledge and analysis, genome sequences and predictive algorithms.« less

  13. De novo assembly of mitochondrial genomes provides insights into genetic diversity and molecular evolution in wild boars and domestic pigs.

    PubMed

    Ni, Pan; Bhuiyan, Ali Akbar; Chen, Jian-Hai; Li, Jingjin; Zhang, Cheng; Zhao, Shuhong; Du, Xiaoyong; Li, Hua; Yu, Hui; Liu, Xiangdong; Li, Kui

    2018-06-01

    Up to date, the scarcity of publicly available complete mitochondrial sequences for European wild pigs hampers deeper understanding about the genetic changes following domestication. Here, we have assembled 26 de novo mtDNA sequences of European wild boars from next generation sequencing (NGS) data and downloaded 174 complete mtDNA sequences to assess the genetic relationship, nucleotide diversity, and selection. The Bayesian consensus tree reveals the clear divergence between the European and Asian clade and a very small portion (10 out of 200 samples) of maternal introgression. The overall nucleotides diversities of the mtDNA sequences have been reduced following domestication. Interestingly, the selection efficiencies in both European and Asian domestic pigs are reduced, probably caused by changes in both selection constraints and maternal population size following domestication. This study suggests that de novo assembled mitogenomes can be a great boon to uncover the genetic turnover following domestication. Further investigation is warranted to include more samples from the ever-increasing amounts of NGS data to help us to better understand the process of domestication.

  14. [Phylogenetic and diversity analysis of Acidithiobacillus spp. based on 16S rRNA and RubisCO genes homologues].

    PubMed

    Liu, Minrui; Lin, Pengwu; Qi, Xing'e; Ni, Yongqing

    2016-04-14

    The purpose of the study was to reveal geographic region-related Acidithiobacillus spp. distribution and allopatric speciation. Phylogenetic and diversity analysis was done to expand our knowledge on microbial phylogeography, diversity-maintaining mechanisms and molecular biogeography. We amplified 16S rRNA gene and RubisCO genes to construct corresponding phylogenetic trees based on the sequence homology and analyzed genetic diversity of Acidithiobacillus spp.. Thirty-five strains were isolated from three different regions in China (Yunnan, Hubei, Xinjiang). The whole isolates were classified into five groups. Four strains were identified as A. ferrivorans, six as A. ferridurans, YNTR4-15 Leptspirillum ferrooxidans and HBDY3-31 as Leptospirillum ferrodiazotrophum. The remaining strains were identified as A. ferrooxidans. Analysis of cbbL and cbbM genes sequences of representative 26 strains indicated that cbbL gene of 19 were two copies (cbbL1 and cbbL2) and 7 possessed only cbbL1. cbbM gene was single copy. In nucleotide-based trees, cbbL1 gene sequences of strains were separated into three sequence types, and the cbbL2 was similar to cbbL1 with three types. Codon bias of RubisCO genes was not obvious in Acidithiobacillus spp.. Strains isolated from three different regions in China indicated a great genetic diversity in Acidithiobacillus spp. and their 16S rRNA/RubisCO genes sequence was of significant difference. Phylogenetic tree based on 16S rRNA genes and RubisCO genes was different in Acidithiobacillus spp..

  15. Diversity of Bacteria at Healthy Human Conjunctiva

    PubMed Central

    Dong, Qunfeng; Brulc, Jennifer M.; Iovieno, Alfonso; Bates, Brandon; Garoutte, Aaron; Miller, Darlene; Revanna, Kashi V.; Gao, Xiang; Antonopoulos, Dionysios A.; Slepak, Vladlen Z.

    2011-01-01

    Purpose. Ocular surface (OS) microbiota contributes to infectious and autoimmune diseases of the eye. Comprehensive analysis of microbial diversity at the OS has been impossible because of the limitations of conventional cultivation techniques. This pilot study aimed to explore true diversity of human OS microbiota using DNA sequencing-based detection and identification of bacteria. Methods. Composition of the bacterial community was characterized using deep sequencing of the 16S rRNA gene amplicon libraries generated from total conjunctival swab DNA. The DNA sequences were classified and the diversity parameters measured using bioinformatics software ESPRIT and MOTHUR and tools available through the Ribosomal Database Project-II (RDP-II). Results. Deep sequencing of conjunctival rDNA from four subjects yielded a total of 115,003 quality DNA reads, corresponding to 221 species-level phylotypes per subject. The combined bacterial community classified into 5 phyla and 59 distinct genera. However, 31% of all DNA reads belonged to unclassified or novel bacteria. The intersubject variability of individual OS microbiomes was very significant. Regardless, 12 genera—Pseudomonas, Propionibacterium, Bradyrhizobium, Corynebacterium, Acinetobacter, Brevundimonas, Staphylococci, Aquabacterium, Sphingomonas, Streptococcus, Streptophyta, and Methylobacterium—were ubiquitous among the analyzed cohort and represented the putative “core” of conjunctival microbiota. The other 47 genera accounted for <4% of the classified portion of this microbiome. Unexpectedly, healthy conjunctiva contained many genera that are commonly identified as ocular surface pathogens. Conclusions. The first DNA sequencing-based survey of bacterial population at the conjunctiva have revealed an unexpectedly diverse microbial community. All analyzed samples contained ubiquitous (core) genera that included commensal, environmental, and opportunistic pathogenic bacteria. PMID:21571682

  16. Unraveling Haplotype Diversity of the Apical Membrane Antigen-1 Gene in Plasmodium falciparum Populations in Thailand

    PubMed Central

    Lumkul, Lalita; Sawaswong, Vorthon; Simpalipan, Phumin; Kaewthamasorn, Morakot; Harnyuttanakorn, Pongchai; Pattaradilokrat, Sittiporn

    2018-01-01

    Development of an effective vaccine is critically needed for the prevention of malaria. One of the key antigens for malaria vaccines is the apical membrane antigen 1 (AMA-1) of the human malaria parasite Plasmodium falciparum, the surface protein for erythrocyte invasion of the parasite. The gene encoding AMA-1 has been sequenced from populations of P. falciparum worldwide, but the haplotype diversity of the gene in P. falciparum populations in the Greater Mekong Subregion (GMS), including Thailand, remains to be characterized. In the present study, the AMA-1 gene was PCR amplified and sequenced from the genomic DNA of 65 P. falciparum isolates from 5 endemic areas in Thailand. The nearly full-length 1,848 nucleotide sequence of AMA-1 was subjected to molecular analyses, including nucleotide sequence diversity, haplotype diversity and deduced amino acid sequence diversity and neutrality tests. Phylogenetic analysis and pairwise population differentiation (Fst indices) were performed to infer the population structure. The analyses identified 60 single nucleotide polymorphic loci, predominately located in domain I of AMA-1. A total of 31 unique AMA-1 haplotypes were identified, which included 11 novel ones. The phylogenetic tree of the AMA-1 haplotypes revealed multiple clades of AMA-1, each of which contained parasites of multiple geographical origins, consistent with the Fst indices indicating genetic homogeneity or gene flow among geographically distinct populations of P. falciparum in Thailand’s borders with Myanmar, Laos and Cambodia. In summary, the study revealed novel haplotypes and population structure needed for the further advancement of AMA-1-based malaria vaccines in the GMS. PMID:29742870

  17. High Diversity of the Saliva Microbiome in Batwa Pygmies

    PubMed Central

    Schroeder, Roland; Creasey, Jean L.; Li, Mingkun; Stoneking, Mark

    2011-01-01

    We describe the saliva microbiome diversity in Batwa Pygmies, a former hunter-gatherer group from Uganda, using next-generation sequencing of partial 16S rRNA sequences. Microbial community diversity in the Batwa is significantly higher than in agricultural groups from Sierra Leone and the Democratic Republic of Congo. We found 40 microbial genera in the Batwa, which have previously not been described in the human oral cavity. The distinctive composition of the salvia microbiome of the Batwa may have been influenced by their recent different lifestyle and diet. PMID:21858083

  18. Diverse Lifestyles and Strategies of Plant Pathogenesis Encoded in the Genomes of Eighteen Dothideomycetes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohm, Robin A.; Feau, Nicolas; Henrissat, Bernard

    2013-03-05

    The class of Dothideomycetes is one of the largest and most diverse groups of fungi. Many are plant pathogens and pose a serious threat to agricultural crops that are grown for biofuel, food or feed. Most Dothideomycetes have only a single host plant, and related species can have very diverse hosts. Eighteen genomes of Dothideomycetes have currently been sequenced by the Joint Genome Institute and other sequencing centers. Here we describe the results of comparative analyses of the fungi in this group.

  19. High-throughput sequencing of TCR repertoires in multiple sclerosis reveals intrathecal enrichment of EBV-reactive CD8+ T cells.

    PubMed

    Lossius, Andreas; Johansen, Jorunn N; Vartdal, Frode; Robins, Harlan; Jūratė Šaltytė, Benth; Holmøy, Trygve; Olweus, Johanna

    2014-11-01

    Epstein-Barr virus (EBV) has long been suggested as a pathogen in multiple sclerosis (MS). Here, we used high-throughput sequencing to determine the diversity, compartmentalization, persistence, and EBV-reactivity of the T-cell receptor (TCR) repertoires in MS. TCR-β genes were sequenced in paired samples of cerebrospinal fluid (CSF) and blood from patients with MS and controls with other inflammatory neurological diseases. The TCR repertoires were highly diverse in both compartments and patient groups. Expanded T-cell clones, represented by TCR-β sequences >0.1%, were of different identity in CSF and blood of MS patients, and persisted for more than a year. Reference TCR-β libraries generated from peripheral blood T cells reactive against autologous EBV-transformed B cells were highly enriched for public EBV-specific sequences and were used to quantify EBV-reactive TCR-β sequences in CSF. TCR-β sequences of EBV-reactive CD8+ T cells, including several public EBV-specific sequences, were intrathecally enriched in MS patients only, whereas those of EBV-reactive CD4+ T cells were also enriched in CSF of controls. These data provide evidence for a clonally diverse, yet compartmentalized and persistent, intrathecal T-cell response in MS. The presented strategy links TCR sequence to intrathecal T-cell specificity, demonstrating enrichment of EBV-reactive CD8+ T cells in MS. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Aircraft Noise Prediction Program theoretical manual: Propeller aerodynamics and noise

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E. (Editor); Weir, D. S. (Editor)

    1986-01-01

    The prediction sequence used in the aircraft noise prediction program (ANOPP) is described. The elements of the sequence are called program modules. The first group of modules analyzes the propeller geometry, the aerodynamics, including both potential and boundary-layer flow, the propeller performance, and the surface loading distribution. This group of modules is based entirely on aerodynamic strip theory. The next group of modules deals with the first group. Predictions of periodic thickness and loading noise are determined with time-domain methods. Broadband noise is predicted by a semiempirical method. Near-field predictions of fuselage surface pressrues include the effects of boundary layer refraction and scattering. Far-field predictions include atmospheric and ground effects.

  1. Metagenomic Evaluation of Bacterial and Archaeal Diversity in the Geothermal Hot Springs of Manikaran, India

    PubMed Central

    Pathak, Ashish; Green, Stefan J.; Joshi, Amit; Chauhan, Ashvini

    2015-01-01

    Bacterial and archaeal diversity in geothermal spring water were investigated using 16S rRNA gene amplicon metagenomic sequencing. This revealed the dominance of Firmicutes, Aquificae, and the Deinococcus-Thermus group in this thermophilic environment. A number of sequences remained taxonomically unresolved, indicating the presence of potentially novel microbes in this unique habitat. PMID:25700403

  2. Increasing ecological inference from high throughput sequencing of fungi in the environment through a tagging approach

    Treesearch

    D. Lee Taylor; Michael G. Booth; Jack W. McFarland; Ian C. Herriott; Niall J. Lennon; Chad Nusbaum; Thomas G. Marr

    2008-01-01

    High throughput sequencing methods are widely used in analyses of microbial diversity but are generally applied to small numbers of samples, which precludes charaterization of patterns of microbial diversity across space and time. We have designed a primer-tagging approach that allows pooling and subsequent sorting of numerous samples, which is directed to...

  3. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes

    USDA-ARS?s Scientific Manuscript database

    Technical Abstract: 20-75 CHARACTER LINES A strategy for a genome-wide assessment of nucleotide diversity in a polyploid species must minimize the inclusion of homoeologous sequences into diversity estimates and reliably allocate individual haplotypes into respective genomes. In this study, nucle...

  4. Molecular diversity and distribution of marine fungi across 130 European environmental samples.

    PubMed

    Richards, Thomas A; Leonard, Guy; Mahé, Frédéric; Del Campo, Javier; Romac, Sarah; Jones, Meredith D M; Maguire, Finlay; Dunthorn, Micah; De Vargas, Colomban; Massana, Ramon; Chambouvet, Aurélie

    2015-11-22

    Environmental DNA and culture-based analyses have suggested that fungi are present in low diversity and in low abundance in many marine environments, especially in the upper water column. Here, we use a dual approach involving high-throughput diversity tag sequencing from both DNA and RNA templates and fluorescent cell counts to evaluate the diversity and relative abundance of fungi across marine samples taken from six European near-shore sites. We removed very rare fungal operational taxonomic units (OTUs) selecting only OTUs recovered from multiple samples for a detailed analysis. This approach identified a set of 71 fungal 'OTU clusters' that account for 66% of all the sequences assigned to the Fungi. Phylogenetic analyses demonstrated that this diversity includes a significant number of chytrid-like lineages that had not been previously described, indicating that the marine environment encompasses a number of zoosporic fungi that are new to taxonomic inventories. Using the sequence datasets, we identified cases where fungal OTUs were sampled across multiple geographical sites and between different sampling depths. This was especially clear in one relatively abundant and diverse phylogroup tentatively named Novel Chytrid-Like-Clade 1 (NCLC1). For comparison, a subset of the water column samples was also investigated using fluorescent microscopy to examine the abundance of eukaryotes with chitin cell walls. Comparisons of relative abundance of RNA-derived fungal tag sequences and chitin cell-wall counts demonstrate that fungi constitute a low fraction of the eukaryotic community in these water column samples. Taken together, these results demonstrate the phylogenetic position and environmental distribution of 71 lineages, improving our understanding of the diversity and abundance of fungi in marine environments. © 2015 The Authors.

  5. Molecular diversity and distribution of marine fungi across 130 European environmental samples

    PubMed Central

    Richards, Thomas A.; Leonard, Guy; Mahé, Frédéric; del Campo, Javier; Romac, Sarah; Jones, Meredith D. M.; Maguire, Finlay; Dunthorn, Micah; De Vargas, Colomban; Massana, Ramon; Chambouvet, Aurélie

    2015-01-01

    Environmental DNA and culture-based analyses have suggested that fungi are present in low diversity and in low abundance in many marine environments, especially in the upper water column. Here, we use a dual approach involving high-throughput diversity tag sequencing from both DNA and RNA templates and fluorescent cell counts to evaluate the diversity and relative abundance of fungi across marine samples taken from six European near-shore sites. We removed very rare fungal operational taxonomic units (OTUs) selecting only OTUs recovered from multiple samples for a detailed analysis. This approach identified a set of 71 fungal ‘OTU clusters' that account for 66% of all the sequences assigned to the Fungi. Phylogenetic analyses demonstrated that this diversity includes a significant number of chytrid-like lineages that had not been previously described, indicating that the marine environment encompasses a number of zoosporic fungi that are new to taxonomic inventories. Using the sequence datasets, we identified cases where fungal OTUs were sampled across multiple geographical sites and between different sampling depths. This was especially clear in one relatively abundant and diverse phylogroup tentatively named Novel Chytrid-Like-Clade 1 (NCLC1). For comparison, a subset of the water column samples was also investigated using fluorescent microscopy to examine the abundance of eukaryotes with chitin cell walls. Comparisons of relative abundance of RNA-derived fungal tag sequences and chitin cell-wall counts demonstrate that fungi constitute a low fraction of the eukaryotic community in these water column samples. Taken together, these results demonstrate the phylogenetic position and environmental distribution of 71 lineages, improving our understanding of the diversity and abundance of fungi in marine environments. PMID:26582030

  6. Antibiotics reduce genetic diversity of core species in the honeybee gut microbiome.

    PubMed

    Raymann, Kasie; Bobay, Louis-Marie; Moran, Nancy A

    2018-04-01

    The gut microbiome plays a key role in animal health, and perturbing it can have detrimental effects. One major source of perturbation to microbiomes, in humans and human-associated animals, is exposure to antibiotics. Most studies of how antibiotics affect the microbiome have used amplicon sequencing of highly conserved 16S rRNA sequences, as in a recent study showing that antibiotic treatment severely alters the species-level composition of the honeybee gut microbiome. But because the standard 16S rRNA-based methods cannot resolve closely related strains, strain-level changes could not be evaluated. To address this gap, we used amplicon sequencing of protein-coding genes to assess effects of antibiotics on fine-scale genetic diversity of the honeybee gut microbiota. We followed the population dynamics of alleles within two dominant core species of the bee gut community, Gilliamella apicola and Snodgrassella alvi, following antibiotic perturbation. Whereas we observed a large reduction in genetic diversity in G. apicola, S. alvi diversity was mostly unaffected. The reduction in G. apicola diversity accompanied an increase in the frequency of several alleles, suggesting resistance to antibiotic treatment. We find that antibiotic perturbation can cause major shifts in diversity and that the extent of these shifts can vary substantially across species. Thus, antibiotics impact not only species composition, but also allelic diversity within species, potentially affecting hosts if variants with particular functions are reduced or eliminated. Overall, we show that amplicon sequencing of protein-coding genes, without clustering into operational taxonomic units, provides an accurate picture of the fine-scale dynamics of microbial communities over time. © 2017 John Wiley & Sons Ltd.

  7. Enhancing the performance of coherent OTDR systems with polarization diversity complementary codes.

    PubMed

    Dorize, Christian; Awwad, Elie

    2018-05-14

    Monitoring the optical phase change in a fiber enables a wide range of applications where fast phase variations are induced by acoustic signals or by vibrations in general. However, the quality of the estimated fiber response strongly depends on the method used to modulate the light sent to the fiber and capture the variations of the optical field. In this paper, we show that distributed optical fiber sensing systems can advantageously exploit techniques from the telecommunication domain, as those used in coherent optical transmission, to enhance their performance in detecting mechanical events, while jointly offering a simpler setup than widespread pulse-cloning or spectral-sweep based schemes with acousto-optic modulators. We periodically capture an overall fiber Jones matrix estimate thanks to a novel probing technique using two mutually orthogonal complementary (Golay) pairs of binary sequences applied simultaneously in phase and quadrature on two orthogonal polarization states. A perfect channel response estimation of the sensor array is achieved, subject to conditions detailed in the paper, thus enhancing the sensitivity and bandwidth of coherent ϕ-OTDR systems. High sensitivity, linear response, and bandwidth coverage up to 18 kHz are demonstrated with a sensor array composed of 10 fiber Bragg gratings (FBGs).

  8. Enhancing the performance of coherent OTDR systems with polarization diversity complementary codes

    NASA Astrophysics Data System (ADS)

    Dorize, Christian; Awwad, Elie

    2018-05-01

    Monitoring the optical phase change in a fiber enables a wide range of applications where fast phase variations are induced by acoustic signals or vibrations in general. However, the quality of the estimated fiber response strongly depends on the method used to modulate the light sent to the fiber and capture the variations of the optical field. In this paper, we show that distributed optical fiber sensing systems can advantageously exploit techniques from the telecommunication domain, as those used in coherent optical transmission, to enhance their performance in detecting mechanical events, while jointly offering a simpler setup than widespread pulse-cloning or spectral-sweep based schemes with acousto-optic modulators. We periodically capture an overall fiber Jones matrix estimate thanks to a novel probing technique using two mutually orthogonal complementary (Golay) pairs of binary sequences applied simultaneously in phase and quadrature on two orthogonal polarization states. A perfect channel response estimation of the sensor array is achieved, subject to conditions detailed in the paper, thus enhancing the sensitivity and bandwidth of coherent phase-OTDR systems. High sensitivity, linear response, and bandwidth coverage up to 18 kHz are demonstrated with a sensor array composed of 10 fiber Bragg gratings (FBGs).

  9. Differential activation of natriuretic peptide receptors modulates cardiomyocyte proliferation during development

    PubMed Central

    Becker, Jason R.; Chatterjee, Sneha; Robinson, Tamara Y.; Bennett, Jeffrey S.; Panáková, Daniela; Galindo, Cristi L.; Zhong, Lin; Shin, Jordan T.; Coy, Shannon M.; Kelly, Amy E.; Roden, Dan M.; Lim, Chee Chew; MacRae, Calum A.

    2014-01-01

    Organ development is a highly regulated process involving the coordinated proliferation and differentiation of diverse cellular populations. The pathways regulating cell proliferation and their effects on organ growth are complex and for many organs incompletely understood. In all vertebrate species, the cardiac natriuretic peptides (ANP and BNP) are produced by cardiomyocytes in the developing heart. However, their role during cardiogenesis is not defined. Using the embryonic zebrafish and neonatal mammalian cardiomyocytes we explored the natriuretic peptide signaling network during myocardial development. We observed that the cardiac natriuretic peptides ANP and BNP and the guanylate cyclase-linked natriuretic peptide receptors Npr1 and Npr2 are functionally redundant during early cardiovascular development. In addition, we demonstrate that low levels of the natriuretic peptides preferentially activate Npr3, a receptor with Gi activator sequences, and increase cardiomyocyte proliferation through inhibition of adenylate cyclase. Conversely, high concentrations of natriuretic peptides reduce cardiomyocyte proliferation through activation of the particulate guanylate cyclase-linked natriuretic peptide receptors Npr1 and Npr2, and activation of protein kinase G. These data link the cardiac natriuretic peptides in a complex hierarchy modulating cardiomyocyte numbers during development through opposing effects on cardiomyocyte proliferation mediated through distinct cyclic nucleotide signaling pathways. PMID:24353062

  10. Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts

    PubMed Central

    Katzenback, Barbara A.

    2015-01-01

    Antimicrobial peptides (AMPs) have been identified throughout the metazoa suggesting their evolutionarily conserved nature and their presence in teleosts is no exception. AMPs are short (18–46 amino acids), usually cationic, amphipathic peptides. While AMPs are diverse in amino acid sequence, with no two AMPs being identical, they collectively appear to have conserved functions in the innate immunity of animals towards the pathogens they encounter in their environment. Fish AMPs are upregulated in response to pathogens and appear to have direct broad-spectrum antimicrobial activity towards both human and fish pathogens. However, an emerging role for AMPs as immunomodulatory molecules has become apparent—the ability of AMPs to activate the innate immune system sheds light onto the multifaceted capacity of these small peptides to combat pathogens through direct and indirect means. Herein, this review focuses on the role of teleost AMPs as modulators of the innate immune system and their regulation in response to pathogens or other exogenous molecules. The capacity to regulate AMP expression by exogenous factors may prove useful in modulating AMP expression in fish to prevent disease, particularly in aquaculture settings where crowded conditions and environmental stress pre-dispose these fish to infection. PMID:26426065

  11. Massively parallel rRNA gene sequencing exacerbates the potential for biased community diversity comparisons due to variable library sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gihring, Thomas; Green, Stefan; Schadt, Christopher Warren

    2011-01-01

    Technologies for massively parallel sequencing are revolutionizing microbial ecology and are vastly increasing the scale of ribosomal RNA (rRNA) gene studies. Although pyrosequencing has increased the breadth and depth of possible rRNA gene sampling, one drawback is that the number of reads obtained per sample is difficult to control. Pyrosequencing libraries typically vary widely in the number of sequences per sample, even within individual studies, and there is a need to revisit the behaviour of richness estimators and diversity indices with variable gene sequence library sizes. Multiple reports and review papers have demonstrated the bias in non-parametric richness estimators (e.g.more » Chao1 and ACE) and diversity indices when using clone libraries. However, we found that biased community comparisons are accumulating in the literature. Here we demonstrate the effects of sample size on Chao1, ACE, CatchAll, Shannon, Chao-Shen and Simpson's estimations specifically using pyrosequencing libraries. The need to equalize the number of reads being compared across libraries is reiterated, and investigators are directed towards available tools for making unbiased diversity comparisons.« less

  12. Analysis of intra-host genetic diversity of Prunus necrotic ringspot virus (PNRSV) using amplicon next generation sequencing.

    PubMed

    Kinoti, Wycliff M; Constable, Fiona E; Nancarrow, Narelle; Plummer, Kim M; Rodoni, Brendan

    2017-01-01

    PCR amplicon next generation sequencing (NGS) analysis offers a broadly applicable and targeted approach to detect populations of both high- or low-frequency virus variants in one or more plant samples. In this study, amplicon NGS was used to explore the diversity of the tripartite genome virus, Prunus necrotic ringspot virus (PNRSV) from 53 PNRSV-infected trees using amplicons from conserved gene regions of each of PNRSV RNA1, RNA2 and RNA3. Sequencing of the amplicons from 53 PNRSV-infected trees revealed differing levels of polymorphism across the three different components of the PNRSV genome with a total number of 5040, 2083 and 5486 sequence variants observed for RNA1, RNA2 and RNA3 respectively. The RNA2 had the lowest diversity of sequences compared to RNA1 and RNA3, reflecting the lack of flexibility tolerated by the replicase gene that is encoded by this RNA component. Distinct PNRSV phylo-groups, consisting of closely related clusters of sequence variants, were observed in each of PNRSV RNA1, RNA2 and RNA3. Most plant samples had a single phylo-group for each RNA component. Haplotype network analysis showed that smaller clusters of PNRSV sequence variants were genetically connected to the largest sequence variant cluster within a phylo-group of each RNA component. Some plant samples had sequence variants occurring in multiple PNRSV phylo-groups in at least one of each RNA and these phylo-groups formed distinct clades that represent PNRSV genetic strains. Variants within the same phylo-group of each Prunus plant sample had ≥97% similarity and phylo-groups within a Prunus plant sample and between samples had less ≤97% similarity. Based on the analysis of diversity, a definition of a PNRSV genetic strain was proposed. The proposed definition was applied to determine the number of PNRSV genetic strains in each of the plant samples and the complexity in defining genetic strains in multipartite genome viruses was explored.

  13. Targeting EphA2-Sam and Its Interactome: Design and Evaluation of Helical Peptides Enriched in Charged Residues.

    PubMed

    Mercurio, Flavia A; Marasco, Daniela; Di Natale, Concetta; Pirone, Luciano; Costantini, Susan; Pedone, Emilia M; Leone, Marilisa

    2016-11-17

    The EphA2 receptor controls diverse physiological and pathological conditions and its levels are often upregulated in cancer. Targeting receptor overexpression, through modulation of endocytosis and consequent degradation, appears to be an appealing strategy for attacking tumor malignancy. In this scenario, the Sam domain of EphA2 plays a pivotal role because it is the site where protein regulators of endocytosis and stability are recruited by means of heterotypic Sam-Sam interactions. Because EphA2-Sam heterotypic complexes are largely based on electrostatic contacts, we have investigated the possibility of attacking these interactions with helical peptides enriched in charged residues. Several peptide sequences with high predicted helical propensities were designed, and detailed conformational analyses were conducted by diverse techniques including NMR, CD, and molecular dynamics (MD) simulations. Interaction studies were also performed by NMR, surface plasmon resonance (SPR), and microscale thermophoresis (MST) and led to the identification of two peptides capable of binding to the first Sam domain of Odin. These molecules represent early candidates for the generation of efficient Sam domain binders and antagonists of Sam-Sam interactions involving EphA2. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Natural sequence variants of yeast environmental sensors confer cell-to-cell expression variability

    PubMed Central

    Fehrmann, Steffen; Bottin-Duplus, Hélène; Leonidou, Andri; Mollereau, Esther; Barthelaix, Audrey; Wei, Wu; Steinmetz, Lars M; Yvert, Gaël

    2013-01-01

    Living systems may have evolved probabilistic bet hedging strategies that generate cell-to-cell phenotypic diversity in anticipation of environmental catastrophes, as opposed to adaptation via a deterministic response to environmental changes. Evolution of bet hedging assumes that genotypes segregating in natural populations modulate the level of intraclonal diversity, which so far has largely remained hypothetical. Using a fluorescent Pmet17-GFP reporter, we mapped four genetic loci conferring to a wild yeast strain an elevated cell-to-cell variability in the expression of MET17, a gene regulated by the methionine pathway. A frameshift mutation in the Erc1p transmembrane transporter, probably resulting from a release of laboratory strains from negative selection, reduced Pmet17-GFP expression variability. At a second locus, cis-regulatory polymorphisms increased mean expression of the Mup1p methionine permease, causing increased expression variability in trans. These results demonstrate that an expression quantitative trait locus (eQTL) can simultaneously have a deterministic effect in cis and a probabilistic effect in trans. Our observations indicate that the evolution of transmembrane transporter genes can tune intraclonal variation and may therefore be implicated in both reactive and anticipatory strategies of adaptation. PMID:24104478

  15. MARs and MARBPs: key modulators of gene regulation and disease manifestation.

    PubMed

    Chattopadhyay, Samit; Pavithra, Lakshminarasimhan

    2007-01-01

    The DNA in eukaryotic genome is compartmentalized into various domains by a series of loops tethered onto the base of nuclear matrix. Scaffold/Matrix attachment regions (S/MAR) punctuate these attachment sites and govern the nuclear architecture by establishing chromatin boundaries. In this context, specific proteins that interact with and bind to MAR sequences called MAR binding proteins (MARBPs), are of paramount importance, as these sequences spool the proteins that regulate transcription, replication, repair and recombination. Recent evidences also suggest a role for these cis-acting elements in viral integration, replication and transcription, thereby affecting host immune system. Owing to the complex nature of these nucleotide sequences, less is known about the MARBPs that bind to and bring about diverse effects on chromatin architecture and gene function. Several MARBPs have been identified and characterized so far and the list is growing. The fact that most the MARBPs exist in a co-repressor/co-activator complex and bring about gene regulation makes them quintessential for cellular processes. This participation in gene regulation means that any perturbation in the regulation and levels of MARBPs could lead to disease conditions, particularly those caused by abnormal cell proliferation, like cancer. In the present chapter, we discuss the role of MARs and MARBPs in eukaryotic gene regulation, recombination, transcription and viral integration by altering the local chromatin structure and their dysregulation in disease manifestation

  16. Distribution and Diversity of Microbial Eukaryotes in Bathypelagic Waters of the South China Sea.

    PubMed

    Xu, Dapeng; Jiao, Nianzhi; Ren, Rui; Warren, Alan

    2017-05-01

    Little is known about the biodiversity of microbial eukaryotes in the South China Sea, especially in waters at bathyal depths. Here, we employed SSU rDNA gene sequencing to reveal the diversity and community structure across depth and distance gradients in the South China Sea. Vertically, the highest alpha diversity was found at 75-m depth. The communities of microbial eukaryotes were clustered into shallow-, middle-, and deep-water groups according to the depth from which they were collected, indicating a depth-related diversity and distribution pattern. Rhizaria sequences dominated the microeukaryote community and occurred in all samples except those from less than 50-m deep, being most abundant near the sea floor where they contributed ca. 64-97% and 40-74% of the total sequences and OTUs recovered, respectively. A large portion of rhizarian OTUs has neither a nearest named neighbor nor a nearest neighbor in the GenBank database which indicated the presence of new phylotypes in the South China Sea. Given their overwhelming abundance and richness, further phylogenetic analysis of rhizarians were performed and three new genetic clusters were revealed containing sequences retrieved from the deep waters of the South China Sea. Our results shed light on the diversity and community structure of microbial eukaryotes in this not yet fully explored area. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  17. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level.

    PubMed

    Rodriguez-R, Luis M; Gunturu, Santosh; Harvey, William T; Rosselló-Mora, Ramon; Tiedje, James M; Cole, James R; Konstantinidis, Konstantinos T

    2018-06-14

    The small subunit ribosomal RNA gene (16S rRNA) has been successfully used to catalogue and study the diversity of prokaryotic species and communities but it offers limited resolution at the species and finer levels, and cannot represent the whole-genome diversity and fluidity. To overcome these limitations, we introduced the Microbial Genomes Atlas (MiGA), a webserver that allows the classification of an unknown query genomic sequence, complete or partial, against all taxonomically classified taxa with available genome sequences, as well as comparisons to other related genomes including uncultivated ones, based on the genome-aggregate Average Nucleotide and Amino Acid Identity (ANI/AAI) concepts. MiGA integrates best practices in sequence quality trimming and assembly and allows input to be raw reads or assemblies from isolate genomes, single-cell sequences, and metagenome-assembled genomes (MAGs). Further, MiGA can take as input hundreds of closely related genomes of the same or closely related species (a so-called 'Clade Project') to assess their gene content diversity and evolutionary relationships, and calculate important clade properties such as the pangenome and core gene sets. Therefore, MiGA is expected to facilitate a range of genome-based taxonomic and diversity studies, and quality assessment across environmental and clinical settings. MiGA is available at http://microbial-genomes.org/.

  18. Molecular analysis of carbon monoxide-oxidizing bacteria associated with recent Hawaiian volcanic deposits.

    PubMed

    Dunfield, Kari E; King, Gary M

    2004-07-01

    Genomic DNA extracts from four sites at Kilauea Volcano were used as templates for PCR amplification of the large subunit (coxL) of aerobic carbon monoxide dehydrogenase. The sites included a 42-year-old tephra deposit, a 108-year-old lava flow, a 212-year-old partially vegetated ash-and-tephra deposit, and an approximately 300-year-old forest. PCR primers amplified coxL sequences from the OMP clade of CO oxidizers, which includes isolates such as Oligotropha carboxidovorans, Mycobacterium tuberculosis, and Pseudomonas thermocarboxydovorans. PCR products were used to create clone libraries that provide the first insights into the diversity and phylogenetic affiliations of CO oxidizers in situ. On the basis of phylogenetic and statistical analyses, clone libraries for each site were distinct. Although some clone sequences were similar to coxL sequences from known organisms, many sequences appeared to represent phylogenetic lineages not previously known to harbor CO oxidizers. On the basis of average nucleotide diversity and average pairwise difference, a forested site supported the most diverse CO-oxidizing populations, while an 1894 lava flow supported the least diverse populations. Neither parameter correlated with previous estimates of atmospheric CO uptake rates, but both parameters correlated positively with estimates of microbial biomass and respiration. Collectively, the results indicate that the CO oxidizer functional group associated with recent volcanic deposits of the remote Hawaiian Islands contains substantial and previously unsuspected diversity.

  19. Molecular Analysis of Carbon Monoxide-Oxidizing Bacteria Associated with Recent Hawaiian Volcanic Deposits†

    PubMed Central

    Dunfield, Kari E.; King, Gary M.

    2004-01-01

    Genomic DNA extracts from four sites at Kilauea Volcano were used as templates for PCR amplification of the large subunit (coxL) of aerobic carbon monoxide dehydrogenase. The sites included a 42-year-old tephra deposit, a 108-year-old lava flow, a 212-year-old partially vegetated ash-and-tephra deposit, and an approximately 300-year-old forest. PCR primers amplified coxL sequences from the OMP clade of CO oxidizers, which includes isolates such as Oligotropha carboxidovorans, Mycobacterium tuberculosis, and Pseudomonas thermocarboxydovorans. PCR products were used to create clone libraries that provide the first insights into the diversity and phylogenetic affiliations of CO oxidizers in situ. On the basis of phylogenetic and statistical analyses, clone libraries for each site were distinct. Although some clone sequences were similar to coxL sequences from known organisms, many sequences appeared to represent phylogenetic lineages not previously known to harbor CO oxidizers. On the basis of average nucleotide diversity and average pairwise difference, a forested site supported the most diverse CO-oxidizing populations, while an 1894 lava flow supported the least diverse populations. Neither parameter correlated with previous estimates of atmospheric CO uptake rates, but both parameters correlated positively with estimates of microbial biomass and respiration. Collectively, the results indicate that the CO oxidizer functional group associated with recent volcanic deposits of the remote Hawaiian Islands contains substantial and previously unsuspected diversity. PMID:15240307

  20. Propeller noise prediction

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.

    1983-01-01

    Analytic propeller noise prediction involves a sequence of computations culminating in the application of acoustic equations. The prediction sequence currently used by NASA in its ANOPP (aircraft noise prediction) program is described. The elements of the sequence are called program modules. The first group of modules analyzes the propeller geometry, the aerodynamics, including both potential and boundary layer flow, the propeller performance, and the surface loading distribution. This group of modules is based entirely on aerodynamic strip theory. The next group of modules deals with the actual noise prediction, based on data from the first group. Deterministic predictions of periodic thickness and loading noise are made using Farassat's time-domain methods. Broadband noise is predicted by the semi-empirical Schlinker-Amiet method. Near-field predictions of fuselage surface pressures include the effects of boundary layer refraction and (for a cylinder) scattering. Far-field predictions include atmospheric and ground effects. Experimental data from subsonic and transonic propellers are compared and NASA's future direction is propeller noise technology development are indicated.

  1. Limited Genetic Diversity Preceded Extinction of the Tasmanian Tiger

    PubMed Central

    Menzies, Brandon R.; Renfree, Marilyn B.; Heider, Thomas; Mayer, Frieder; Hildebrandt, Thomas B.; Pask, Andrew J.

    2012-01-01

    The Tasmanian tiger or thylacine was the largest carnivorous marsupial when Europeans first reached Australia. Sadly, the last known thylacine died in captivity in 1936. A recent analysis of the genome of the closely related and extant Tasmanian devil demonstrated limited genetic diversity between individuals. While a similar lack of diversity has been reported for the thylacine, this analysis was based on just two individuals. Here we report the sequencing of an additional 12 museum-archived specimens collected between 102 and 159 years ago. We examined a portion of the mitochondrial DNA hyper-variable control region and determined that all sequences were on average 99.5% identical at the nucleotide level. As a measure of accuracy we also sequenced mitochondrial DNA from a mother and two offspring. As expected, these samples were found to be 100% identical, validating our methods. We also used 454 sequencing to reconstruct 2.1 kilobases of the mitochondrial genome, which shared 99.91% identity with the two complete thylacine mitochondrial genomes published previously. Our thylacine genomic data also contained three highly divergent putative nuclear mitochondrial sequences, which grouped phylogenetically with the published thylacine mitochondrial homologs but contained 100-fold more polymorphisms than the conserved fragments. Together, our data suggest that the thylacine population in Tasmania had limited genetic diversity prior to its extinction, possibly as a result of their geographic isolation from mainland Australia approximately 10,000 years ago. PMID:22530022

  2. Viral quasispecies inference from 454 pyrosequencing

    PubMed Central

    2013-01-01

    Background Many potentially life-threatening infectious viruses are highly mutable in nature. Characterizing the fittest variants within a quasispecies from infected patients is expected to allow unprecedented opportunities to investigate the relationship between quasispecies diversity and disease epidemiology. The advent of next-generation sequencing technologies has allowed the study of virus diversity with high-throughput sequencing, although these methods come with higher rates of errors which can artificially increase diversity. Results Here we introduce a novel computational approach that incorporates base quality scores from next-generation sequencers for reconstructing viral genome sequences that simultaneously infers the number of variants within a quasispecies that are present. Comparisons on simulated and clinical data on dengue virus suggest that the novel approach provides a more accurate inference of the underlying number of variants within the quasispecies, which is vital for clinical efforts in mapping the within-host viral diversity. Sequence alignments generated by our approach are also found to exhibit lower rates of error. Conclusions The ability to infer the viral quasispecies colony that is present within a human host provides the potential for a more accurate classification of the viral phenotype. Understanding the genomics of viruses will be relevant not just to studying how to control or even eradicate these viral infectious diseases, but also in learning about the innate protection in the human host against the viruses. PMID:24308284

  3. A Public Database of Memory and Naive B-Cell Receptor Sequences.

    PubMed

    DeWitt, William S; Lindau, Paul; Snyder, Thomas M; Sherwood, Anna M; Vignali, Marissa; Carlson, Christopher S; Greenberg, Philip D; Duerkopp, Natalie; Emerson, Ryan O; Robins, Harlan S

    2016-01-01

    The vast diversity of B-cell receptors (BCR) and secreted antibodies enables the recognition of, and response to, a wide range of epitopes, but this diversity has also limited our understanding of humoral immunity. We present a public database of more than 37 million unique BCR sequences from three healthy adult donors that is many fold deeper than any existing resource, together with a set of online tools designed to facilitate the visualization and analysis of the annotated data. We estimate the clonal diversity of the naive and memory B-cell repertoires of healthy individuals, and provide a set of examples that illustrate the utility of the database, including several views of the basic properties of immunoglobulin heavy chain sequences, such as rearrangement length, subunit usage, and somatic hypermutation positions and dynamics.

  4. Soil pH determines fungal diversity along an elevation gradient in Southwestern China.

    PubMed

    Liu, Dan; Liu, Guohua; Chen, Li; Wang, Juntao; Zhang, Limei

    2018-01-03

    Fungi play important roles in ecosystem processes, and the elevational pattern of fungal diversity is still unclear. Here, we examined the diversity of fungi along a 1,000 m elevation gradient on Mount Nadu, Southwestern China. We used MiSeq sequencing to obtain fungal sequences that were clustered into operational taxonomic units (OTUs) and to measure the fungal composition and diversity. Though the species richness and phylogenetic diversity of the fungal community did not exhibit significant trends with increasing altitude, they were significantly lower at mid-altitudinal sites than at the base. The Bray-Curtis distance clustering also showed that the fungal communities varied significantly with altitude. A distance-based linear model multivariate analysis (DistLM) identified that soil pH dominated the explanatory power of the species richness (23.72%), phylogenetic diversity (24.25%) and beta diversity (28.10%) of the fungal community. Moreover, the species richness and phylogenetic diversity of the fungal community increased linearly with increasing soil pH (P<0.05). Our study provides evidence that pH is an important predictor of soil fungal diversity along elevation gradients in Southwestern China.

  5. Population Genomics of Paramecium Species.

    PubMed

    Johri, Parul; Krenek, Sascha; Marinov, Georgi K; Doak, Thomas G; Berendonk, Thomas U; Lynch, Michael

    2017-05-01

    Population-genomic analyses are essential to understanding factors shaping genomic variation and lineage-specific sequence constraints. The dearth of such analyses for unicellular eukaryotes prompted us to assess genomic variation in Paramecium, one of the most well-studied ciliate genera. The Paramecium aurelia complex consists of ∼15 morphologically indistinguishable species that diverged subsequent to two rounds of whole-genome duplications (WGDs, as long as 320 MYA) and possess extremely streamlined genomes. We examine patterns of both nuclear and mitochondrial polymorphism, by sequencing whole genomes of 10-13 worldwide isolates of each of three species belonging to the P. aurelia complex: P. tetraurelia, P. biaurelia, P. sexaurelia, as well as two outgroup species that do not share the WGDs: P. caudatum and P. multimicronucleatum. An apparent absence of global geographic population structure suggests continuous or recent dispersal of Paramecium over long distances. Intergenic regions are highly constrained relative to coding sequences, especially in P. caudatum and P. multimicronucleatum that have shorter intergenic distances. Sequence diversity and divergence are reduced up to ∼100-150 bp both upstream and downstream of genes, suggesting strong constraints imposed by the presence of densely packed regulatory modules. In addition, comparison of sequence variation at non-synonymous and synonymous sites suggests similar recent selective pressures on paralogs within and orthologs across the deeply diverging species. This study presents the first genome-wide population-genomic analysis in ciliates and provides a valuable resource for future studies in evolutionary and functional genetics in Paramecium. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Probing the electrostatics and pharmacologic modulation of sequence-specific binding by the DNA-binding domain of the ETS-family transcription factor PU.1: a binding affinity and kinetics investigation

    PubMed Central

    Munde, Manoj; Poon, Gregory M. K.; Wilson, W. David

    2013-01-01

    Members of the ETS family of transcription factors regulate a functionally diverse array of genes. All ETS proteins share a structurally-conserved but sequence-divergent DNA-binding domain, known as the ETS domain. Although the structure and thermodynamics of the ETS-DNA complexes are well known, little is known about the kinetics of sequence recognition, a facet that offers potential insight into its molecular mechanism. We have characterized DNA binding by the ETS domain of PU.1 by biosensor-surface plasmon resonance (SPR). SPR analysis revealed a striking kinetic profile for DNA binding by the PU.1 ETS domain. At low salt concentrations, it binds high-affinity cognate DNA with a very slow association rate constant (≤105 M−1 s−1), compensated by a correspondingly small dissociation rate constant. The kinetics are strongly salt-dependent but mutually balance to produce a relatively weak dependence in the equilibrium constant. This profile contrasts sharply with reported data for other ETS domains (e.g., Ets-1, TEL) for which high-affinity binding is driven by rapid association (>107 M−1 s−1). We interpret this difference in terms of the hydration properties of ETS-DNA binding and propose that at least two mechanisms of sequence recognition are employed by this family of DNA-binding domain. Additionally, we use SPR to demonstrate the potential for pharmacological inhibition of sequence-specific ETS-DNA binding, using the minor groove-binding distamycin as a model compound. Our work establishes SPR as a valuable technique for extending our understanding of the molecular mechanisms of ETS-DNA interactions as well as developing potential small-molecule agents for biotechnological and therapeutic purposes. PMID:23416556

  7. Genes encoding calmodulin-binding proteins in the Arabidopsis genome

    NASA Technical Reports Server (NTRS)

    Reddy, Vaka S.; Ali, Gul S.; Reddy, Anireddy S N.

    2002-01-01

    Analysis of the recently completed Arabidopsis genome sequence indicates that approximately 31% of the predicted genes could not be assigned to functional categories, as they do not show any sequence similarity with proteins of known function from other organisms. Calmodulin (CaM), a ubiquitous and multifunctional Ca(2+) sensor, interacts with a wide variety of cellular proteins and modulates their activity/function in regulating diverse cellular processes. However, the primary amino acid sequence of the CaM-binding domain in different CaM-binding proteins (CBPs) is not conserved. One way to identify most of the CBPs in the Arabidopsis genome is by protein-protein interaction-based screening of expression libraries with CaM. Here, using a mixture of radiolabeled CaM isoforms from Arabidopsis, we screened several expression libraries prepared from flower meristem, seedlings, or tissues treated with hormones, an elicitor, or a pathogen. Sequence analysis of 77 positive clones that interact with CaM in a Ca(2+)-dependent manner revealed 20 CBPs, including 14 previously unknown CBPs. In addition, by searching the Arabidopsis genome sequence with the newly identified and known plant or animal CBPs, we identified a total of 27 CBPs. Among these, 16 CBPs are represented by families with 2-20 members in each family. Gene expression analysis revealed that CBPs and CBP paralogs are expressed differentially. Our data suggest that Arabidopsis has a large number of CBPs including several plant-specific ones. Although CaM is highly conserved between plants and animals, only a few CBPs are common to both plants and animals. Analysis of Arabidopsis CBPs revealed the presence of a variety of interesting domains. Our analyses identified several hypothetical proteins in the Arabidopsis genome as CaM targets, suggesting their involvement in Ca(2+)-mediated signaling networks.

  8. Pyvolve: A Flexible Python Module for Simulating Sequences along Phylogenies.

    PubMed

    Spielman, Stephanie J; Wilke, Claus O

    2015-01-01

    We introduce Pyvolve, a flexible Python module for simulating genetic data along a phylogeny using continuous-time Markov models of sequence evolution. Easily incorporated into Python bioinformatics pipelines, Pyvolve can simulate sequences according to most standard models of nucleotide, amino-acid, and codon sequence evolution. All model parameters are fully customizable. Users can additionally specify custom evolutionary models, with custom rate matrices and/or states to evolve. This flexibility makes Pyvolve a convenient framework not only for simulating sequences under a wide variety of conditions, but also for developing and testing new evolutionary models. Pyvolve is an open-source project under a FreeBSD license, and it is available for download, along with a detailed user-manual and example scripts, from http://github.com/sjspielman/pyvolve.

  9. Conflict Background Triggered Congruency Sequence Effects in Graphic Judgment Task

    PubMed Central

    Zhao, Liang; Wang, Yonghui

    2013-01-01

    Congruency sequence effects refer to the reduction of congruency effects when following an incongruent trial than following a congruent trial. The conflict monitoring account, one of the most influential contributions to this effect, assumes that the sequential modulations are evoked by response conflict. The present study aimed at exploring the congruency sequence effects in the absence of response conflict. We found congruency sequence effects occurred in graphic judgment task, in which the conflict stimuli acted as irrelevant information. The findings reveal that processing task-irrelevant conflict stimulus features could also induce sequential modulations of interference. The results do not support the interpretation of conflict monitoring and favor a feature integration account that the congruency sequence effects are attributed to the repetitions of stimulus and response features. PMID:23372766

  10. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity

    PubMed Central

    Pope, Welkin H; Bowman, Charles A; Russell, Daniel A; Jacobs-Sera, Deborah; Asai, David J; Cresawn, Steven G; Jacobs, William R; Hendrix, Roger W; Lawrence, Jeffrey G; Hatfull, Graham F; Abbazia, Patrick; Ababio, Amma; Adam, Naazneen

    2015-01-01

    The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of Mycobacterium smegmatis. Their genetic diversity is considerable, and there are 28 distinct genomic types (clusters) with related nucleotide sequences. However, amino acid sequence comparisons show pervasive genomic mosaicism, and quantification of inter-cluster and intra-cluster relatedness reveals a continuum of genetic diversity, albeit with uneven representation of different phages. Furthermore, rarefaction analysis shows that the mycobacteriophage population is not closed, and there is a constant influx of genes from other sources. Phage isolation and analysis was performed by a large consortium of academic institutions, illustrating the substantial benefits of a disseminated, structured program involving large numbers of freshman undergraduates in scientific discovery. DOI: http://dx.doi.org/10.7554/eLife.06416.001 PMID:25919952

  11. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity.

    PubMed

    Pope, Welkin H; Bowman, Charles A; Russell, Daniel A; Jacobs-Sera, Deborah; Asai, David J; Cresawn, Steven G; Jacobs, William R; Hendrix, Roger W; Lawrence, Jeffrey G; Hatfull, Graham F

    2015-04-28

    The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of Mycobacterium smegmatis. Their genetic diversity is considerable, and there are 28 distinct genomic types (clusters) with related nucleotide sequences. However, amino acid sequence comparisons show pervasive genomic mosaicism, and quantification of inter-cluster and intra-cluster relatedness reveals a continuum of genetic diversity, albeit with uneven representation of different phages. Furthermore, rarefaction analysis shows that the mycobacteriophage population is not closed, and there is a constant influx of genes from other sources. Phage isolation and analysis was performed by a large consortium of academic institutions, illustrating the substantial benefits of a disseminated, structured program involving large numbers of freshman undergraduates in scientific discovery.

  12. Spatial and vertical distribution of bacterial community in the northern South China Sea.

    PubMed

    Sun, Fu-Lin; Wang, You-Shao; Wu, Mei-Lin; Sun, Cui-Ci; Cheng, Hao

    2015-10-01

    Microbial communities are highly diverse in coastal oceans and response rapidly with changing environments. Learning about this will help us understand the ecology of microbial populations in marine ecosystems. This study aimed to assess the spatial and vertical distributions of the bacterial community in the northern South China Sea. Multi-dimensional scaling analyses revealed structural differences of the bacterial community among sampling sites and vertical depth. Result also indicated that bacterial community in most sites had higher diversity in 0-75 m depths than those in 100-200 m depths. Bacterial community of samples was positively correlation with salinity and depth, whereas was negatively correlation with temperature. Proteobacteria and Cyanobacteria were the dominant groups, which accounted for the majority of sequences. The α-Proteobacteria was highly diverse, and sequences belonged to Rhodobacterales bacteria were dominant in all characterized sequences. The current data indicate that the Rhodobacterales bacteria, especially Roseobacter clade are the diverse group in the tropical waters.

  13. Chemical-biogeographic survey of secondary metabolism in soil.

    PubMed

    Charlop-Powers, Zachary; Owen, Jeremy G; Reddy, Boojala Vijay B; Ternei, Melinda A; Brady, Sean F

    2014-03-11

    In this study, we compare biosynthetic gene richness and diversity of 96 soil microbiomes from diverse environments found throughout the southwestern and northeastern regions of the United States. The 454-pyroseqencing of nonribosomal peptide adenylation (AD) and polyketide ketosynthase (KS) domain fragments amplified from these microbiomes provide a means to evaluate the variation of secondary metabolite biosynthetic diversity in different soil environments. Through soil composition and AD- and KS-amplicon richness analysis, we identify soil types with elevated biosynthetic potential. In general, arid soils show the richest observed biosynthetic diversity, whereas brackish sediments and pine forest soils show the least. By mapping individual environmental amplicon sequences to sequences derived from functionally characterized biosynthetic gene clusters, we identified conserved soil type-specific secondary metabolome enrichment patterns despite significant sample-to-sample sequence variation. These data are used to create chemical biogeographic distribution maps for biomedically valuable families of natural products in the environment that should prove useful for directing the discovery of bioactive natural products in the future.

  14. Population genomics of intrapatient HIV-1 evolution

    PubMed Central

    Zanini, Fabio; Brodin, Johanna; Thebo, Lina; Lanz, Christa; Bratt, Göran; Albert, Jan; Neher, Richard A

    2015-01-01

    Many microbial populations rapidly adapt to changing environments with multiple variants competing for survival. To quantify such complex evolutionary dynamics in vivo, time resolved and genome wide data including rare variants are essential. We performed whole-genome deep sequencing of HIV-1 populations in 9 untreated patients, with 6-12 longitudinal samples per patient spanning 5-8 years of infection. The data can be accessed and explored via an interactive web application. We show that patterns of minor diversity are reproducible between patients and mirror global HIV-1 diversity, suggesting a universal landscape of fitness costs that control diversity. Reversions towards the ancestral HIV-1 sequence are observed throughout infection and account for almost one third of all sequence changes. Reversion rates depend strongly on conservation. Frequent recombination limits linkage disequilibrium to about 100bp in most of the genome, but strong hitch-hiking due to short range linkage limits diversity. DOI: http://dx.doi.org/10.7554/eLife.11282.001 PMID:26652000

  15. Identification and characterization of plastid-type proteins from sequence-attributed features using machine learning

    PubMed Central

    2013-01-01

    Background Plastids are an important component of plant cells, being the site of manufacture and storage of chemical compounds used by the cell, and contain pigments such as those used in photosynthesis, starch synthesis/storage, cell color etc. They are essential organelles of the plant cell, also present in algae. Recent advances in genomic technology and sequencing efforts is generating a huge amount of DNA sequence data every day. The predicted proteome of these genomes needs annotation at a faster pace. In view of this, one such annotation need is to develop an automated system that can distinguish between plastid and non-plastid proteins accurately, and further classify plastid-types based on their functionality. We compared the amino acid compositions of plastid proteins with those of non-plastid ones and found significant differences, which were used as a basis to develop various feature-based prediction models using similarity-search and machine learning. Results In this study, we developed separate Support Vector Machine (SVM) trained classifiers for characterizing the plastids in two steps: first distinguishing the plastid vs. non-plastid proteins, and then classifying the identified plastids into their various types based on their function (chloroplast, chromoplast, etioplast, and amyloplast). Five diverse protein features: amino acid composition, dipeptide composition, the pseudo amino acid composition, Nterminal-Center-Cterminal composition and the protein physicochemical properties are used to develop SVM models. Overall, the dipeptide composition-based module shows the best performance with an accuracy of 86.80% and Matthews Correlation Coefficient (MCC) of 0.74 in phase-I and 78.60% with a MCC of 0.44 in phase-II. On independent test data, this model also performs better with an overall accuracy of 76.58% and 74.97% in phase-I and phase-II, respectively. The similarity-based PSI-BLAST module shows very low performance with about 50% prediction accuracy for distinguishing plastid vs. non-plastids and only 20% in classifying various plastid-types, indicating the need and importance of machine learning algorithms. Conclusion The current work is a first attempt to develop a methodology for classifying various plastid-type proteins. The prediction modules have also been made available as a web tool, PLpred available at http://bioinfo.okstate.edu/PLpred/ for real time identification/characterization. We believe this tool will be very useful in the functional annotation of various genomes. PMID:24266945

  16. Semiconductor Sequencing Reveals the Diversity of Bacterial Communities in an Amazon Reservoir Considered as a Methane Source

    NASA Astrophysics Data System (ADS)

    Graças, D. A.; Ramos, R. T.; Sá, P. G.; Baraúna, R. A.; Schneider, M. C.; Silva, A.

    2013-05-01

    The Amazon region has enormous hydro potential which is used for power generation. In fact, there are several hydroelectric power stations (HPS) already installed and many under construction or designed. It's in the Amazon which the HPS of Tucuruí, fifth largest in the world, is located. The construction of this hydroelectric dam flooded an area of 2,400 km2 of forest that decomposing, releasing greenhouse gases such as methane (CH4). Methane is the most abundant organic gas in the atmosphere and the second most important greenhouse gas. In this study, we use semicondutor sequencing to assess the bacterial diversity along a water column of 70 meters deep in the Tucuruí reservoir. One liter of water was collected every 10 meters along the water column for total DNA extraction. A fragment of approximately 150 base pairs of the 16S rRNA gene was amplified by polymerase chain reaction using universal primers. These fragments were then paralleled sequenced in Ion Torrent® platform using barcodes on the 316 chip. After the quality filters, about 237 thousands reads were obtained, representing more than 300 Mbp. For bacterial diversity analysis, we used only reads longer than 100 base pairs. The taxonomic diversity was obtained from the Ribosomal Database Project Classifier and alpha diversity analysis (diversity indices and rarefaction) was performed using the RDP pyrosequencing pipeline. Although it is recommended for data pyrosequencing, that pipeline is able to process data obtained from semiconductor sequencing once all of them are fasta files. Over 75% of the sequences were not classified in any phylum, which leads us to believe that there is a huge diversity in the bacterial environment whose function is still unclear. Among the sequences that could be classified, there is a predominance of proteobacteria in all layers, but in higher concentrations at the lower layers. Cyanobacteria accounted for about 3% in the layers of 0m and 10m, leading us to conclude that oxygen production is considerable in this layer. The oxygen produced by Cyanobacteria coupled to atmospheric oxygen provides the ideal environment for the methanotrophic bacteria oxidize methane. Indeed, methanotrophic bacteria represented approximately 10% in the upper layers. Another bacterial phylum well represented in the upper layers was Bacteroidetes, which accounted for about 3% in the layers of 0-30m. Rarefaction analyses, using a cutoff of 3%, tell us the existence of 3212, 6657, 10171, 4209, 10533, 74, 24345 and 64683 OTUs for the layers of 0, 10, 20, 30, 40, 50, 60 and 70 meters, respectively. Bacterial diversity seems to increase with depth, probably due to the large amount of organic matter deposited in the pellet. The 50 meter depth layer showed the lowest diversity due to low quality sequencing of this barcode, which hampered the analysis. The abundance of methanotrophic bacteria shows that the microbial profile of the reservoir is able to consume much of the methane produced by methanogenic archaea in the sediment and that there is a huge diversity whose function is still unknown. The use of semiconductor sequencing proved to be a robust tool to analysis of the microbial community, as an alternative to pyrosequencing.

  17. Approaches to Assessing Preservice Teachers' Learning in Authentic and Rigorous Ways: The Case of an Inclusive Education Module

    ERIC Educational Resources Information Center

    Walton, Elizabeth; Rusznyak, Lee

    2016-01-01

    Initial teacher education programmes offer inclusive education modules that seek to prepare teachers for teaching diverse learners. While there is growing research on the content and pedagogy of inclusive education modules, relatively less attention has been given to the assessment of these modules. This paper focuses on the challenges of…

  18. K-shuff: A Novel Algorithm for Characterizing Structural and Compositional Diversity in Gene Libraries

    PubMed Central

    Jangid, Kamlesh; Kao, Ming-Hung; Lahamge, Aishwarya; Williams, Mark A.; Rathbun, Stephen L.; Whitman, William B.

    2016-01-01

    K-shuff is a new algorithm for comparing the similarity of gene sequence libraries, providing measures of the structural and compositional diversity as well as the significance of the differences between these measures. Inspired by Ripley’s K-function for spatial point pattern analysis, the Intra K-function or IKF measures the structural diversity, including both the richness and overall similarity of the sequences, within a library. The Cross K-function or CKF measures the compositional diversity between gene libraries, reflecting both the number of OTUs shared as well as the overall similarity in OTUs. A Monte Carlo testing procedure then enables statistical evaluation of both the structural and compositional diversity between gene libraries. For 16S rRNA gene libraries from complex bacterial communities such as those found in seawater, salt marsh sediments, and soils, K-shuff yields reproducible estimates of structural and compositional diversity with libraries greater than 50 sequences. Similarly, for pyrosequencing libraries generated from a glacial retreat chronosequence and Illumina® libraries generated from US homes, K-shuff required >300 and 100 sequences per sample, respectively. Power analyses demonstrated that K-shuff is sensitive to small differences in Sanger or Illumina® libraries. This extra sensitivity of K-shuff enabled examination of compositional differences at much deeper taxonomic levels, such as within abundant OTUs. This is especially useful when comparing communities that are compositionally very similar but functionally different. K-shuff will therefore prove beneficial for conventional microbiome analysis as well as specific hypothesis testing. PMID:27911946

  19. Estimating time of HIV-1 infection from next-generation sequence diversity

    PubMed Central

    2017-01-01

    Estimating the time since infection (TI) in newly diagnosed HIV-1 patients is challenging, but important to understand the epidemiology of the infection. Here we explore the utility of virus diversity estimated by next-generation sequencing (NGS) as novel biomarker by using a recent genome-wide longitudinal dataset obtained from 11 untreated HIV-1-infected patients with known dates of infection. The results were validated on a second dataset from 31 patients. Virus diversity increased linearly with time, particularly at 3rd codon positions, with little inter-patient variation. The precision of the TI estimate improved with increasing sequencing depth, showing that diversity in NGS data yields superior estimates to the number of ambiguous sites in Sanger sequences, which is one of the alternative biomarkers. The full advantage of deep NGS was utilized with continuous diversity measures such as average pairwise distance or site entropy, rather than the fraction of polymorphic sites. The precision depended on the genomic region and codon position and was highest when 3rd codon positions in the entire pol gene were used. For these data, TI estimates had a mean absolute error of around 1 year. The error increased only slightly from around 0.6 years at a TI of 6 months to around 1.1 years at 6 years. Our results show that virus diversity determined by NGS can be used to estimate time since HIV-1 infection many years after the infection, in contrast to most alternative biomarkers. We provide the regression coefficients as well as web tool for TI estimation. PMID:28968389

  20. Evolution of the Structure and Chromosomal Distribution of Histidine Biosynthetic Genes

    NASA Astrophysics Data System (ADS)

    Fani, Renato; Mori, Elena; Tamburini, Elena; Lazcano, Antonio

    1998-10-01

    A database of more than 100 histidine biosynthetic genes from different organisms belonging to the three primary domains has been analyzed, including those found in the now completely sequenced genomes of Haemophilus influenzae, Mycoplasma genitalium, Synechocystis sp., Methanococcus jannaschii, and Saccharomyces cerevisiae. The ubiquity of his genes suggests that it is a highly conserved pathway that was probably already present in the last common ancestor of all extant life. The chromosomal distribution of the his genes shows that the enterobacterial histidine operon structure is not the only possible organization, and that there is a diversity of gene arrays for the his pathway. Analysis of the available sequences shows that gene fusions (like those involved in the origin of the Escherichia coli and Salmonella typhimurium hisIE and hisB gene structures) are not universal. In contrast, the elongation event that led to the extant hisA gene from two homologous ancestral modules, as well as the subsequent paralogous duplication that originated hisF, appear to be irreversible and are conserved in all known organisms. The available evidence supports the hypothesis that histidine biosynthesis was assembled by a gene recruitment process.

Top