Physical-chemical property based sequence motifs and methods regarding same
Braun, Werner [Friendswood, TX; Mathura, Venkatarajan S [Sarasota, FL; Schein, Catherine H [Friendswood, TX
2008-09-09
A data analysis system, program, and/or method, e.g., a data mining/data exploration method, using physical-chemical property motifs. For example, a sequence database may be searched for identifying segments thereof having physical-chemical properties similar to the physical-chemical property motifs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gukov, Sergei; Nawata, Satoshi; Saberi, Ingmar
In this article, we provide both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explainmore » from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincar e polynomials in numerous examples. Among these structural properties is a novel "sliding" property, which can be explained by using (re fined) modular S-matrix. This leads to the identi fication of modular transformations in Chern-Simons theory and 3d N = 2 theory via the 3d/3d correspondence. In conclusion, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.« less
Gukov, Sergei; Nawata, Satoshi; Saberi, Ingmar; ...
2016-03-02
In this article, we provide both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explainmore » from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincar e polynomials in numerous examples. Among these structural properties is a novel "sliding" property, which can be explained by using (re fined) modular S-matrix. This leads to the identi fication of modular transformations in Chern-Simons theory and 3d N = 2 theory via the 3d/3d correspondence. In conclusion, we introduce the notion of associated varieties as classical limits of recursion relations of colored superpolynomials of links, and study their properties.« less
Role of physical bolus properties as sensory inputs in the trigger of swallowing.
Peyron, Marie-Agnès; Gierczynski, Isabelle; Hartmann, Christoph; Loret, Chrystel; Dardevet, Dominique; Martin, Nathalie; Woda, Alain
2011-01-01
Swallowing is triggered when a food bolus being prepared by mastication has reached a defined state. However, although this view is consensual and well supported, the physical properties of the swallowable bolus have been under-researched. We tested the hypothesis that measuring bolus physical changes during the masticatory sequence to deglutition would reveal the bolus properties potentially involved in swallowing initiation. Twenty normo-dentate young adults were instructed to chew portions of cereal and spit out the boluses at different times in the masticatory sequence. The mechanical properties of the collected boluses were measured by a texture profile analysis test currently used in food science. The median particle size of the boluses was evaluated by sieving. In a simultaneous sensory study, twenty-five other subjects expressed their perception of bolus texture dominating at any mastication time. Several physical changes appeared in the food bolus as it was formed during mastication: (1) in rheological terms, bolus hardness rapidly decreased as the masticatory sequence progressed, (2) by contrast, adhesiveness, springiness and cohesiveness regularly increased until the time of swallowing, (3) median particle size, indicating the bolus particle size distribution, decreased mostly during the first third of the masticatory sequence, (4) except for hardness, the rheological changes still appeared in the boluses collected just before swallowing, and (5) physical changes occurred, with sensory stickiness being described by the subjects as a dominant perception of the bolus at the end of mastication. Although these physical and sensory changes progressed in the course of mastication, those observed just before swallowing seem to be involved in swallowing initiation. They can be considered as strong candidates for sensory inputs from the bolus that are probably crucially involved in the triggering of swallowing, since they appeared in boluses prepared in various mastication strategies by different subjects.
2D nanomaterials assembled from sequence-defined molecules
Mu, Peng; Zhou, Guangwen; Chen, Chun-Long
2017-10-21
Two dimensional (2D) nanomaterials have attracted broad interest owing to their unique physical and chemical properties with potential applications in electronics, chemistry, biology, medicine and pharmaceutics. Due to the current limitations of traditional 2D nanomaterials (e.g., graphene and graphene oxide) in tuning surface chemistry and compositions, 2D nanomaterials assembled from sequence-defined molecules (e.g., DNAs, proteins, peptides and peptoids) have recently been developed. They represent an emerging class of 2D nanomaterials with attractive physical and chemical properties. Here, we summarize the recent progress in the synthesis and applications of this type of sequence-defined 2D nanomaterials. We also discuss the challenges andmore » opportunities in this new field.« less
2D nanomaterials assembled from sequence-defined molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Peng; Zhou, Guangwen; Chen, Chun-Long
Two dimensional (2D) nanomaterials have attracted broad interest owing to their unique physical and chemical properties with potential applications in electronics, chemistry, biology, medicine and pharmaceutics. Due to the current limitations of traditional 2D nanomaterials (e.g., graphene and graphene oxide) in tuning surface chemistry and compositions, 2D nanomaterials assembled from sequence-defined molecules (e.g., DNAs, proteins, peptides and peptoids) have recently been developed. They represent an emerging class of 2D nanomaterials with attractive physical and chemical properties. Here, we summarize the recent progress in the synthesis and applications of this type of sequence-defined 2D nanomaterials. We also discuss the challenges andmore » opportunities in this new field.« less
Osypov, Alexander A; Krutinin, Gleb G; Krutinina, Eugenia A; Kamzolova, Svetlana G
2012-04-01
Electrostatic properties of genome DNA are important to its interactions with different proteins, in particular, related to transcription. DEPPDB - DNA Electrostatic Potential (and other Physical) Properties Database - provides information on the electrostatic and other physical properties of genome DNA combined with its sequence and annotation of biological and structural properties of genomes and their elements. Genomes are organized on taxonomical basis, supporting comparative and evolutionary studies. Currently, DEPPDB contains all completely sequenced bacterial, viral, mitochondrial, and plastids genomes according to the NCBI RefSeq, and some model eukaryotic genomes. Data for promoters, regulation sites, binding proteins, etc., are incorporated from established DBs and literature. The database is complemented by analytical tools. User sequences calculations are available. Case studies discovered electrostatics complementing DNA bending in E.coli plasmid BNT2 promoter functioning, possibly affecting host-environment metabolic switch. Transcription factors binding sites gravitate to high potential regions, confirming the electrostatics universal importance in protein-DNA interactions beyond the classical promoter-RNA polymerase recognition and regulation. Other genome elements, such as terminators, also show electrostatic peculiarities. Most intriguing are gene starts, exhibiting taxonomic correlations. The necessity of the genome electrostatic properties studies is discussed.
2D nanomaterials assembled from sequence-defined molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Peng; Zhou, Guangwen; Chen, Chun-Long
Two dimensional (2D) nanomaterials have attracted broad interest owing to their unique physical and chemical properties with potential applications in electronics, chemistry, biology, medicine and pharmaceutics. Due to the current limitations of traditional 2D nanomaterials (e.g., graphene and graphene oxide) in tuning surface chemistry and compositions, 2D nanomaterials assembled from sequence-defined molecules (e.g., DNAs, proteins, peptides and peptoids) have recently been developed. They represent an emerging class of 2D nanomaterials with attractive physical and chemical properties. In this mini-review, we summarize the recent progress in the synthesis and applications of this type of sequence-defined 2D nanomaterials. The challenges and opportunitiesmore » in this new field are also discussed.« less
Role of Physical Bolus Properties as Sensory Inputs in the Trigger of Swallowing
Peyron, Marie-Agnès; Gierczynski, Isabelle; Hartmann, Christoph; Loret, Chrystel; Dardevet, Dominique; Martin, Nathalie; Woda, Alain
2011-01-01
Background Swallowing is triggered when a food bolus being prepared by mastication has reached a defined state. However, although this view is consensual and well supported, the physical properties of the swallowable bolus have been under-researched. We tested the hypothesis that measuring bolus physical changes during the masticatory sequence to deglutition would reveal the bolus properties potentially involved in swallowing initiation. Methods Twenty normo-dentate young adults were instructed to chew portions of cereal and spit out the boluses at different times in the masticatory sequence. The mechanical properties of the collected boluses were measured by a texture profile analysis test currently used in food science. The median particle size of the boluses was evaluated by sieving. In a simultaneous sensory study, twenty-five other subjects expressed their perception of bolus texture dominating at any mastication time. Findings Several physical changes appeared in the food bolus as it was formed during mastication: (1) in rheological terms, bolus hardness rapidly decreased as the masticatory sequence progressed, (2) by contrast, adhesiveness, springiness and cohesiveness regularly increased until the time of swallowing, (3) median particle size, indicating the bolus particle size distribution, decreased mostly during the first third of the masticatory sequence, (4) except for hardness, the rheological changes still appeared in the boluses collected just before swallowing, and (5) physical changes occurred, with sensory stickiness being described by the subjects as a dominant perception of the bolus at the end of mastication. Conclusions Although these physical and sensory changes progressed in the course of mastication, those observed just before swallowing seem to be involved in swallowing initiation. They can be considered as strong candidates for sensory inputs from the bolus that are probably crucially involved in the triggering of swallowing, since they appeared in boluses prepared in various mastication strategies by different subjects. PMID:21738616
Relationships between physical properties and sequence in silkworm silks
Malay, Ali D.; Sato, Ryota; Yazawa, Kenjiro; Watanabe, Hiroe; Ifuku, Nao; Masunaga, Hiroyasu; Hikima, Takaaki; Guan, Juan; Mandal, Biman B.; Damrongsakkul, Siriporn; Numata, Keiji
2016-01-01
Silk has attracted widespread attention due to its superlative material properties and promising applications. However, the determinants behind the variations in material properties among different types of silk are not well understood. We analysed the physical properties of silk samples from a variety of silkmoth cocoons, including domesticated Bombyx mori varieties and several species from Saturniidae. Tensile deformation tests, thermal analyses, and investigations on crystalline structure and orientation of the fibres were performed. The results showed that saturniid silks produce more highly-defined structural transitions compared to B. mori, as seen in the yielding and strain hardening events during tensile deformation and in the changes observed during thermal analyses. These observations were analysed in terms of the constituent fibroin sequences, which in B. mori are predicted to produce heterogeneous structures, whereas the strictly modular repeats of the saturniid sequences are hypothesized to produce structures that respond in a concerted manner. Within saturniid fibroins, thermal stability was found to correlate with the abundance of poly-alanine residues, whereas differences in fibre extensibility can be related to varying ratios of GGX motifs versus bulky hydrophobic residues in the amorphous phase. PMID:27279149
Relationships between physical properties and sequence in silkworm silks
NASA Astrophysics Data System (ADS)
Malay, Ali D.; Sato, Ryota; Yazawa, Kenjiro; Watanabe, Hiroe; Ifuku, Nao; Masunaga, Hiroyasu; Hikima, Takaaki; Guan, Juan; Mandal, Biman B.; Damrongsakkul, Siriporn; Numata, Keiji
2016-06-01
Silk has attracted widespread attention due to its superlative material properties and promising applications. However, the determinants behind the variations in material properties among different types of silk are not well understood. We analysed the physical properties of silk samples from a variety of silkmoth cocoons, including domesticated Bombyx mori varieties and several species from Saturniidae. Tensile deformation tests, thermal analyses, and investigations on crystalline structure and orientation of the fibres were performed. The results showed that saturniid silks produce more highly-defined structural transitions compared to B. mori, as seen in the yielding and strain hardening events during tensile deformation and in the changes observed during thermal analyses. These observations were analysed in terms of the constituent fibroin sequences, which in B. mori are predicted to produce heterogeneous structures, whereas the strictly modular repeats of the saturniid sequences are hypothesized to produce structures that respond in a concerted manner. Within saturniid fibroins, thermal stability was found to correlate with the abundance of poly-alanine residues, whereas differences in fibre extensibility can be related to varying ratios of GGX motifs versus bulky hydrophobic residues in the amorphous phase.
Dynamically hot galaxies. I - Structural properties
NASA Technical Reports Server (NTRS)
Bender, Ralf; Burstein, David; Faber, S. M.
1992-01-01
Results are reported from an analysis of the structural properties of dynamically hot galaxies which combines central velocity dispersion, effective surface brightness, and effective radius into a new 3-space (k), in which the axes are parameters that are physically meaningful. Hot galaxies are found to divide into groups in k-space that closely parallel conventional morphological classifications, namely, luminous ellipticals, compacts, bulges, bright dwarfs, and dwarf spheroidals. A major sequence is defined by luminous ellipticals, bulges, and most compacts, which together constitute a smooth continuum in k-space. Several properties vary smoothly with mass along this continuum, including bulge-to-disk ratio, radio properties, rotation, degree of velocity anisotropy, and 'unrelaxed'. A second major sequence is comprised of dwarf ellipticals and dwarf spheroidals. It is suggested that mass loss is a major factor in hot dwarf galaxies, but the dwarf sequence cannot be simply a mass-loss sequence, as it has the wrong direction in k-space.
Polymeric peptide pigments with sequence-encoded properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lampel, Ayala; McPhee, Scott A.; Park, Hang-Ah
Melanins are a family of heterogeneous polymeric pigments that provide ultraviolet (UV) light protection, structural support, coloration, and free radical scavenging. Formed by oxidative oligomerization of catecholic small molecules, the physical properties of melanins are influenced by covalent and noncovalent disorder. We report the use of tyrosine-containing tripeptides as tunable precursors for polymeric pigments. In these structures, phenols are presented in a (supra-)molecular context dictated by the positions of the amino acids in the peptide sequence. Oxidative polymerization can be tuned in a sequence-dependent manner, resulting in peptide sequence–encoded properties such as UV absorbance, morphology, coloration, and electrochemical properties overmore » a considerable range. Short peptides have low barriers to application and can be easily scaled, suggesting near-term applications in cosmetics and biomedicine.« less
Solov'ev, V V; Kel', A E; Kolchanov, N A
1989-01-01
The factors, determining the presence of inverted and symmetrical repeats in genes coding for globular proteins, have been analysed. An interesting property of genetical code has been revealed in the analysis of symmetrical repeats: the pairs of symmetrical codons corresponded to pairs of amino acids with mostly similar physical-chemical parameters. This property may explain the presence of symmetrical repeats and palindromes only in genes coding for beta-structural proteins-polypeptides, where amino acids with similar physical-chemical properties occupy symmetrical positions. A stochastic model of evolution of polynucleotide sequences has been used for analysis of inverted repeats. The modelling demonstrated that only limiting of sequences (uneven frequencies of used codons) is enough for arising of nonrandom inverted repeats in genes.
Towards a physical classification of early-type galaxies. Profile of a key programme.
NASA Astrophysics Data System (ADS)
Bender, R.; Capaccioli, M.; Macchetto, F.; Nieto, J.-L.
1989-03-01
Hubble was the first who succeeded in classifying galaxies within a scheme of some physical meaning. Although it soon became clear that Hubble's tuning fork does not represent an evolutionary sequence, this essential diagram has proven to be a powerful tool especially for the understanding of late-type galaxies. On the other hand, the "early-type" sequence of elliptical (E) and SO galaxies is less satisfying, because it does not seem to reflect a unique sequence of physical properties. The SO class, although conceived to bridge the gap between disk- and disk-Iess galaxies, has often been abused to host ellipticals exhibiting peculiarities incompatible with their definition as structureless objects. For the elliptical galaxies themselves, "ellipticity" has been found to be essentially meaningless with regard to their angular momentum properties, and shows Iittle, if any, correlation with other global parameters. This fact became apparent after the first stellar kinematical measurements of luminous ellipticals (Bertola and Capaccioli 1975, IIlingworth 1977); E galaxies are not necessarily f1attened by rotation and may have anisotropie velocity dispersions (Binney 1978).
Statistical physics of the symmetric group.
Williams, Mobolaji
2017-04-01
Ordered chains (such as chains of amino acids) are ubiquitous in biological cells, and these chains perform specific functions contingent on the sequence of their components. Using the existence and general properties of such sequences as a theoretical motivation, we study the statistical physics of systems whose state space is defined by the possible permutations of an ordered list, i.e., the symmetric group, and whose energy is a function of how certain permutations deviate from some chosen correct ordering. Such a nonfactorizable state space is quite different from the state spaces typically considered in statistical physics systems and consequently has novel behavior in systems with interacting and even noninteracting Hamiltonians. Various parameter choices of a mean-field model reveal the system to contain five different physical regimes defined by two transition temperatures, a triple point, and a quadruple point. Finally, we conclude by discussing how the general analysis can be extended to state spaces with more complex combinatorial properties and to other standard questions of statistical mechanics models.
Statistical physics of the symmetric group
NASA Astrophysics Data System (ADS)
Williams, Mobolaji
2017-04-01
Ordered chains (such as chains of amino acids) are ubiquitous in biological cells, and these chains perform specific functions contingent on the sequence of their components. Using the existence and general properties of such sequences as a theoretical motivation, we study the statistical physics of systems whose state space is defined by the possible permutations of an ordered list, i.e., the symmetric group, and whose energy is a function of how certain permutations deviate from some chosen correct ordering. Such a nonfactorizable state space is quite different from the state spaces typically considered in statistical physics systems and consequently has novel behavior in systems with interacting and even noninteracting Hamiltonians. Various parameter choices of a mean-field model reveal the system to contain five different physical regimes defined by two transition temperatures, a triple point, and a quadruple point. Finally, we conclude by discussing how the general analysis can be extended to state spaces with more complex combinatorial properties and to other standard questions of statistical mechanics models.
Basic concepts of MR imaging, diffusion MR imaging, and diffusion tensor imaging.
de Figueiredo, Eduardo H M S G; Borgonovi, Arthur F N G; Doring, Thomas M
2011-02-01
MR image contrast is based on intrinsic tissue properties and specific pulse sequences and parameter adjustments. A growing number of MRI imaging applications are based on diffusion properties of water. To better understand MRI diffusion-weighted imaging, a brief overview of MR physics is presented in this article followed by physics of the evolving techniques of diffusion MR imaging and diffusion tensor imaging. Copyright © 2011. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Dutta, Tanima
This dissertation focuses on the link between seismic amplitudes and reservoir properties. Prediction of reservoir properties, such as sorting, sand/shale ratio, and cement-volume from seismic amplitudes improves by integrating knowledge from multiple disciplines. The key contribution of this dissertation is to improve the prediction of reservoir properties by integrating sequence stratigraphy and rock physics. Sequence stratigraphy has been successfully used for qualitative interpretation of seismic amplitudes to predict reservoir properties. Rock physics modeling allows quantitative interpretation of seismic amplitudes. However, often there is uncertainty about selecting geologically appropriate rock physics model and its input parameters, away from the wells. In the present dissertation, we exploit the predictive power of sequence stratigraphy to extract the spatial trends of sedimentological parameters that control seismic amplitudes. These spatial trends of sedimentological parameters can serve as valuable constraints in rock physics modeling, especially away from the wells. Consequently, rock physics modeling, integrated with the trends from sequence stratigraphy, become useful for interpreting observed seismic amplitudes away from the wells in terms of underlying sedimentological parameters. We illustrate this methodology using a comprehensive dataset from channelized turbidite systems, deposited in minibasin settings in the offshore Equatorial Guinea, West Africa. First, we present a practical recipe for using closed-form expressions of effective medium models to predict seismic velocities in unconsolidated sandstones. We use an effective medium model that combines perfectly rough and smooth grains (the extended Walton model), and use that model to derive coordination number, porosity, and pressure relations for P and S wave velocities from experimental data. Our recipe provides reasonable fits to other experimental and borehole data, and specifically improves the predictions of shear wave velocities. In addition, we provide empirical relations on normal compaction depth trends of porosity, velocities, and VP/VS ratio for shale and clean sands in shallow, supra-salt sediments in the Gulf of Mexico. Next, we identify probable spatial trends of sand/shale ratio and sorting as predicted by the conventional sequence stratigraphic model in minibasin settings (spill-and-fill model). These spatial trends are evaluated using well data from offshore West Africa, and the same well data are used to calibrate rock physics models (modified soft-sand model) that provide links between P-impedance and quartz/clay ratio, and sorting. The spatial increase in sand/shale ratio and sorting corresponds to an overall increase in P-impedance, and AVO intercept and gradient. The results are used as a guide to interpret sedimentological parameters from seismic attributes, away from the well locations. We present a quantitative link between carbonate cement and seismic attributes by combining stratigraphie cycles and the rock physics model (modified differential effective medium model). The variation in carbonate cement volume in West Africa can be linked with two distinct stratigraphic cycles: the coarsening-upward cycles and the fining-upward cycles. Cemented sandstones associated with these cycles exhibit distinct signatures on P-impedance vs. porosity and AVO intercept vs. gradient crossplots. These observations are important for assessing reservoir properties in the West Africa as well as in other analogous depositional environments. Finally, we investigate the relationship between seismic velocities and time temperature index (TTI) using basin and petroleum system modeling at Rio Muni basin, West Africa. We find that both VP and VS increase exponentially with TTI. The results can be applied to predict TTI, and thereby thermal maturity, from observed velocities.
Epistasis in protein evolution
Starr, Tyler N.
2016-01-01
Abstract The structure, function, and evolution of proteins depend on physical and genetic interactions among amino acids. Recent studies have used new strategies to explore the prevalence, biochemical mechanisms, and evolutionary implications of these interactions—called epistasis—within proteins. Here we describe an emerging picture of pervasive epistasis in which the physical and biological effects of mutations change over the course of evolution in a lineage‐specific fashion. Epistasis can restrict the trajectories available to an evolving protein or open new paths to sequences and functions that would otherwise have been inaccessible. We describe two broad classes of epistatic interactions, which arise from different physical mechanisms and have different effects on evolutionary processes. Specific epistasis—in which one mutation influences the phenotypic effect of few other mutations—is caused by direct and indirect physical interactions between mutations, which nonadditively change the protein's physical properties, such as conformation, stability, or affinity for ligands. In contrast, nonspecific epistasis describes mutations that modify the effect of many others; these typically behave additively with respect to the physical properties of a protein but exhibit epistasis because of a nonlinear relationship between the physical properties and their biological effects, such as function or fitness. Both types of interaction are rampant, but specific epistasis has stronger effects on the rate and outcomes of evolution, because it imposes stricter constraints and modulates evolutionary potential more dramatically; it therefore makes evolution more contingent on low‐probability historical events and leaves stronger marks on the sequences, structures, and functions of protein families. PMID:26833806
Virulence and molecular polymorphism of Prunus necrotic ringspot virus isolates.
Hammond, R W; Crosslin, J M
1998-07-01
Prunus necrotic ringspot virus (PNRSV) occurs as numerous strains or isolates that vary widely in their pathogenic, biophysical and serological properties. Prior attempts to distinguish pathotypes based upon physical properties have not been successful; our approach was to examine the molecular properties that may distinguish these isolates. The nucleic acid sequence was determined from 1.65 kbp RT-PCR products derived from RNA 3 of seven distinct isolates of PNRSV that differ serologically and in pathology on sweet cherry. Sequence comparisons of ORF 3a (putative movement protein) and ORF 3b (coat protein) revealed single nucleotide and amino acid differences with strong correlations to serology and symptom types (pathotypes). Sequence differences between serotypes and pathotypes were also reflected in the overall phylogenetic relationships between the isolates.
NASA Astrophysics Data System (ADS)
Marziani, Paola; Dultzin, Deborah; Sulentic, Jack W.; Del Olmo, Ascensión; Negrete, C. A.; Martínez-Aldama, Mary L.; D'Onofrio, Mauro; Bon, Edi; Bon, Natasa; Stirpe, Giovanna M.
2018-03-01
The last 25 years saw a major step forward in the analysis of optical and UV spectroscopic data of large quasar samples. Multivariate statistical approaches have led to the definition of systematic trends in observational properties that are the basis of physical and dynamical modeling of quasar structure. We discuss the empirical correlates of the so-called “main sequence” associated with the quasar Eigenvector 1, its governing physical parameters and several implications on our view of the quasar structure, as well as some luminosity effects associated with the virialized component of the line emitting regions. We also briefly discuss quasars in a segment of the main sequence that includes the strongest FeII emitters. These sources show a small dispersion around a well-defined Eddington ratio value, a property which makes them potential Eddington standard candles.
Blends of cysteine-containing proteins
NASA Astrophysics Data System (ADS)
Barone, Justin
2005-03-01
Many agricultural wastes are made of proteins such as keratin, lactalbumin, gluten, and albumin. These proteins contain the amino acid cysteine. Cysteine allows for the formation of inter-and intra-molecular sulfur-sulfur bonds. Correlations are made between the properties of films made from the proteins and the amino acid sequence. Blends of cysteine-containing proteins show possible synergies in physical properties at intermediate concentrations. FT-IR spectroscopy shows increased hydrogen bonding at intermediate concentrations suggesting that this contributes to increased physical properties. DSC shows limited miscibility and the formation of new crystalline phases in the blends suggesting that this too contributes.
NASA Astrophysics Data System (ADS)
Vardanyan, E. L.; Budilov, V. V.; Ramazanov, K. N.; Ataullin, Z. R.
2017-07-01
Thin-film wear-resistant coatings are widely used to increase life and efficiency of metal cutting tools. This paper shows the results of a study on the influence of architecture (number, sequence and thickness of layers) of wear-resistant coatings on physical, mechanical and operational properties of end mills. Coatings consisting of alternating Ti-Al/Ti-Al-N layers of equal thickness demonstrated the best physical and mechanical properties. Durability of coated tools when processing materials from chromium-vanadium steel increased twice as compared to uncoated tools.
Petroli, César D.; Sansaloni, Carolina P.; Carling, Jason; Steane, Dorothy A.; Vaillancourt, René E.; Myburg, Alexander A.; da Silva, Orzenil Bonfim; Pappas, Georgios Joannis; Kilian, Andrzej; Grattapaglia, Dario
2012-01-01
Diversity Arrays Technology (DArT) provides a robust, high throughput, cost-effective method to query thousands of sequence polymorphisms in a single assay. Despite the extensive use of this genotyping platform for numerous plant species, little is known regarding the sequence attributes and genome-wide distribution of DArT markers. We investigated the genomic properties of the 7,680 DArT marker probes of a Eucalyptus array, by sequencing them, constructing a high density linkage map and carrying out detailed physical mapping analyses to the Eucalyptus grandis reference genome. A consensus linkage map with 2,274 DArT markers anchored to 210 microsatellites and a framework map, with improved support for ordering, displayed extensive collinearity with the genome sequence. Only 1.4 Mbp of the 75 Mbp of still unplaced scaffold sequence was captured by 45 linkage mapped but physically unaligned markers to the 11 main Eucalyptus pseudochromosomes, providing compelling evidence for the quality and completeness of the current Eucalyptus genome assembly. A highly significant correspondence was found between the locations of DArT markers and predicted gene models, while most of the 89 DArT probes unaligned to the genome correspond to sequences likely absent in E. grandis, consistent with the pan-genomic feature of this multi-Eucalyptus species DArT array. These comprehensive linkage-to-physical mapping analyses provide novel data regarding the genomic attributes of DArT markers in plant genomes in general and for Eucalyptus in particular. DArT markers preferentially target the gene space and display a largely homogeneous distribution across the genome, thereby providing superb coverage for mapping and genome-wide applications in breeding and diversity studies. Data reported on these ubiquitous properties of DArT markers will be particularly valuable to researchers working on less-studied crop species who already count on DArT genotyping arrays but for which no reference genome is yet available to allow such detailed characterization. PMID:22984541
Deppdb--DNA electrostatic potential properties database: electrostatic properties of genome DNA.
Osypov, Alexander A; Krutinin, Gleb G; Kamzolova, Svetlana G
2010-06-01
The electrostatic properties of genome DNA influence its interactions with different proteins, in particular, the regulation of transcription by RNA-polymerases. DEPPDB--DNA Electrostatic Potential Properties Database--was developed to hold and provide all available information on the electrostatic properties of genome DNA combined with its sequence and annotation of biological and structural properties of genome elements and whole genomes. Genomes in DEPPDB are organized on a taxonomical basis. Currently, the database contains all the completely sequenced bacterial and viral genomes according to NCBI RefSeq. General properties of the genome DNA electrostatic potential profile and principles of its formation are revealed. This potential correlates with the GC content but does not correspond to it exactly and strongly depends on both the sequence arrangement and its context (flanking regions). Analysis of the promoter regions for bacterial and viral RNA polymerases revealed a correspondence between the scale of these proteins' physical properties and electrostatic profile patterns. We also discovered a direct correlation between the potential value and the binding frequency of RNA polymerase to DNA, supporting the idea of the role of electrostatics in these interactions. This matches a pronounced tendency of the promoter regions to possess higher values of the electrostatic potential.
Development of Scoring Functions for Antibody Sequence Assessment and Optimization
Seeliger, Daniel
2013-01-01
Antibody development is still associated with substantial risks and difficulties as single mutations can radically change molecule properties like thermodynamic stability, solubility or viscosity. Since antibody generation methodologies cannot select and optimize for molecule properties which are important for biotechnological applications, careful sequence analysis and optimization is necessary to develop antibodies that fulfil the ambitious requirements of future drugs. While efforts to grab the physical principles of undesired molecule properties from the very bottom are becoming increasingly powerful, the wealth of publically available antibody sequences provides an alternative way to develop early assessment strategies for antibodies using a statistical approach which is the objective of this paper. Here, publically available sequences were used to develop heuristic potentials for the framework regions of heavy and light chains of antibodies of human and murine origin. The potentials take into account position dependent probabilities of individual amino acids but also conditional probabilities which are inevitable for sequence assessment and optimization. It is shown that the potentials derived from human sequences clearly distinguish between human sequences and sequences from mice and, hence, can be used as a measure of humaness which compares a given sequence with the phenotypic pool of human sequences instead of comparing sequence identities to germline genes. Following this line, it is demonstrated that, using the developed potentials, humanization of an antibody can be described as a simple mathematical optimization problem and that the in-silico generated framework variants closely resemble native sequences in terms of predicted immunogenicity. PMID:24204701
A motif detection and classification method for peptide sequences using genetic programming.
Tomita, Yasuyuki; Kato, Ryuji; Okochi, Mina; Honda, Hiroyuki
2008-08-01
An exploration of common rules (property motifs) in amino acid sequences has been required for the design of novel sequences and elucidation of the interactions between molecules controlled by the structural or physical environment. In the present study, we developed a new method to search property motifs that are common in peptide sequence data. Our method comprises the following two characteristics: (i) the automatic determination of the position and length of common property motifs by calculating the physicochemical similarity of amino acids, and (ii) the quick and effective exploration of motif candidates that discriminates the positives and negatives by the introduction of genetic programming (GP). Our method was evaluated by two types of model data sets. First, the intentionally buried property motifs were searched in the artificially derived peptide data containing intentionally buried property motifs. As a result, the expected property motifs were correctly extracted by our algorithm. Second, the peptide data that interact with MHC class II molecules were analyzed as one of the models of biologically active peptides with buried motifs in various lengths. Twofold MHC class II binding peptides were identified with the rule using our method, compared to the existing scoring matrix method. In conclusion, our GP based motif searching approach enabled to obtain knowledge of functional aspects of the peptides without any prior knowledge.
Zhang, Lin; Bai, Zhitong; Ban, Heng; Liu, Ling
2015-11-21
Recent experiments have discovered very different thermal conductivities between the spider silk and the silkworm silk. Decoding the molecular mechanisms underpinning the distinct thermal properties may guide the rational design of synthetic silk materials and other biomaterials for multifunctionality and tunable properties. However, such an understanding is lacking, mainly due to the complex structure and phonon physics associated with the silk materials. Here, using non-equilibrium molecular dynamics, we demonstrate that the amino acid sequence plays a key role in the thermal conduction process through β-sheets, essential building blocks of natural silks and a variety of other biomaterials. Three representative β-sheet types, i.e. poly-A, poly-(GA), and poly-G, are shown to have distinct structural features and phonon dynamics leading to different thermal conductivities. A fundamental understanding of the sequence effects may stimulate the design and engineering of polymers and biopolymers for desired thermal properties.
Constraining properties of disintegrating exoplanets
NASA Astrophysics Data System (ADS)
Veras, D.; Carter, P. J.; Leinhardt, Z. M.; Gänsicke, B. T.
2017-09-01
Evaporating and disintegrating planets provide unique insights into chemical makeup and physical constraints. The striking variability, depth (˜10 - 60%) and shape of the photometric transit curves due to the disintegrating minor planet orbiting white dwarf WD 1145+017 has galvanised the post-main- sequence exoplanetary science community. We have performed the first tidal disruption simulations of this planetary object, and have succeeded in constraining its mass, density, eccentricity and physical nature. We illustrate how our simulations can bound these properties, and be used in the future for other exoplanetary systems.
Polytypism, polymorphism, and superconductivity in TaSe 2 –xTe x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Huixia; Xie, Weiwei; Tao, Jing
2015-03-03
Polymorphism in materials often leads to significantly different physical properties - the rutile and anatase polymorphs of TiO₂ are a prime example. Polytypism is a special type of polymorphism, occurring in layered materials when the geometry of a repeating structural layer is maintained but the layer stacking sequence of the overall crystal structure can be varied; SiC is an example of a material with many polytypes. Although polymorphs can have radically different physical properties, it is much rarer for polytypism to impact physical properties in a dramatic fashion. Here we study the effects of polytypism and polymorphism on the superconductivitymore » of TaSe₂, one of the archetypal members of the large family of layered dichalcogenides. We show that it is possible to access 2 stable polytypes and 2 stable polymorphs in the TaSe 2-xTe x solid solution, and find that the 3R polytype shows a superconducting transition temperature that is between 6 and 17 times higher than that of the much more commonly found 2H polytype. Thus, the reason for this dramatic change is not apparent, but we propose that it arises either from a remarkable dependence of T c on subtle differences in the characteristics of the single layers present, or from a surprising effect of the layer stacking sequence on electronic properties that instead are expected to be dominated by the properties of a single layer in materials of this kind.« less
Evolution of high-mass star-forming regions .
NASA Astrophysics Data System (ADS)
Giannetti, A.; Leurini, S.; Wyrowski, F.; Urquhart, J.; König, C.; Csengeri, T.; Güsten, R.; Menten, K. M.
Observational identification of a coherent evolutionary sequence for high-mass star-forming regions is still missing. We use the progressive heating of the gas caused by the feedback of high-mass young stellar objects to prove the statistical validity of the most common schemes used to observationally define an evolutionary sequence for high-mass clumps, and identify which physical process dominates in the different phases. From the spectroscopic follow-ups carried out towards the TOP100 sample between 84 and 365 km s^-1 giga hertz, we selected several multiplets of CH3CN, CH3CCH, and CH3OH lines to derive the physical properties of the gas in the clumps along the evolutionary sequence. We demonstrate that the evolutionary sequence is statistically valid, and we define intervals in L/M separating the compression, collapse and accretion, and disruption phases. The first hot cores and ZAMS stars appear at L/M≈10usk {L_ȯ}msun-1
Physical properties of the martian surface from the viking 1 lander: preliminary results.
Shorthill, R W; Hutton, R E; Moore, H J; Scott, R F; Spitzer, C R
1976-08-27
The purpose of the physical properties experiment is to determine the characteristics of the martian "soil" based on the use of the Viking lander imaging system, the surface sampler, and engineering sensors. Viking 1 lander made physical contact with the surface of Mars at 11:53:07.1 hours on 20 July 1976 G.M.T. Twenty-five seconds later a high-resolution image sequence of the area around a footpad was started which contained the first information about surface conditions on Mars. The next image is a survey of the martian landscape in front of the lander, including a view of the top support of two of the landing legs. Each leg has a stroke gauge which extends from the top of the leg support an amount equal to the crushing experienced by the shock absorbers during touchdown. Subsequent images provided views of all three stroke gauges which, together with the knowledge of the impact velocity, allow determination of "soil" properties. In the images there is evidence of surface erosion from the engines. Several laboratory tests were carried out prior to the mission with a descent engine to determine what surface alterations might occur during a Mars landing. On sol 2 the shroud, which protected the surface sampler collector head from biological contamination, was ejected onto the surface. Later a cylindrical pin which dropped from the boom housing of the surface sampler during the modified unlatching sequence produced a crater (the second Mars penetrometer experiment). These two experiments provided further insight into the physical properties of the martian surface.
Physical properties of the martian surface from the Viking 1 lander: preliminary results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shorthill, R.W.; Hutton, R.E.; Moore, H.J. II
1976-08-27
The purpose of the physical properties experiment is to determine the characteristics of the martian ''soil'' based on the use of the Viking lander imaging system, the surface sampler, and engineering sensors. Viking 1 lander made physical contact with the surface of Mars at 11:53:07.1 hours on 20 July 1976 G.M.T. Twenty-five seconds later a high-resolution image sequence of the area around a footpad was started which contained the first information about surface conditions on Mars. The next image is a survey of the martian landscape in front of the lander, including a view of the top support of twomore » of the landing legs. Each leg has a stroke gauge which extends from the top of the leg support an amount equal to the crushing experienced by the shock absorbers during touchdown. Subsequent images provided views of all three stroke gauges which, together with the knowledge of the impact velocity, allow determination of ''soil'' properties. In the images there is evidence of surface erosion from the engines. Several laboratory tests were carried out prior to the mission with a descent engine to determine what surface alterations might occur during a Mars landing. On sol 2 the shroud, which protected the surface sampler collector head from biological contamination, was ejected onto the surface. Later a cylindrical pin which dropped from the boom housing of the surface sampler during the modified unlatching sequence produced a crater (the second Mars penetrometer experiment). These two experiments provided further insight into the physical properties of the martian surface.« less
The AAPM/RSNA physics tutorial for residents. Basic physics of MR imaging: an introduction.
Hendrick, R E
1994-07-01
This article provides an introduction to the basic physical principles of magnetic resonance (MR) imaging. Essential basic concepts such as nuclear magnetism, tissue magnetization, precession, excitation, and tissue relaxation properties are presented. Hydrogen spin density and tissue relaxation times T1, T2, and T2* are explained. The basic elements of a planar MR pulse sequence are described: section selection during tissue excitation, phase encoding, and frequency encoding during signal measurement.
Zhang, Shanxin; Zhou, Zhiping; Chen, Xinmeng; Hu, Yong; Yang, Lindong
2017-08-07
DNase I hypersensitive sites (DHSs) are accessible chromatin regions hypersensitive to cleavages by DNase I endonucleases. DHSs are indicative of cis-regulatory DNA elements (CREs), all of which play important roles in global gene expression regulation. It is helpful for discovering CREs by recognition of DHSs in genome. To accelerate the investigation, it is an important complement to develop cost-effective computational methods to identify DHSs. However, there is a lack of tools used for identifying DHSs in plant genome. Here we presented pDHS-SVM, a computational predictor to identify plant DHSs. To integrate the global sequence-order information and local DNA properties, reverse complement kmer and dinucleotide-based auto covariance of DNA sequences were applied to construct the feature space. In this work, fifteen physical-chemical properties of dinucleotides were used and Support Vector Machine (SVM) was employed. To further improve the performance of the predictor and extract an optimized subset of nucleotide physical-chemical properties positive for the DHSs, a heuristic nucleotide physical-chemical property selection algorithm was introduced. With the optimized subset of properties, experimental results of Arabidopsis thaliana and rice (Oryza sativa) showed that pDHS-SVM could achieve accuracies up to 87.00%, and 85.79%, respectively. The results indicated the effectiveness of proposed method for predicting DHSs. Furthermore, pDHS-SVM could provide a helpful complement for predicting CREs in plant genome. Our implementation of the novel proposed method pDHS-SVM is freely available as source code, at https://github.com/shanxinzhang/pDHS-SVM. Copyright © 2017 Elsevier Ltd. All rights reserved.
Strickland, Michelle; Tudorica, Victor; Řezáč, Milan; Thomas, Neil R; Goodacre, Sara L
2018-06-01
Spiders produce multiple silks with different physical properties that allow them to occupy a diverse range of ecological niches, including the underwater environment. Despite this functional diversity, past molecular analyses show a high degree of amino acid sequence similarity between C-terminal regions of silk genes that appear to be independent of the physical properties of the resulting silks; instead, this domain is crucial to the formation of silk fibers. Here, we present an analysis of the C-terminal domain of all known types of spider silk and include silk sequences from the spider Argyroneta aquatica, which spins the majority of its silk underwater. Our work indicates that spiders have retained a highly conserved mechanism of silk assembly, despite the extraordinary diversification of species, silk types and applications of silk over 350 million years. Sequence analysis of the silk C-terminal domain across the entire gene family shows the conservation of two uncommon amino acids that are implicated in the formation of a salt bridge, a functional bond essential to protein assembly. This conservation extends to the novel sequences isolated from A. aquatica. This finding is relevant to research regarding the artificial synthesis of spider silk, suggesting that synthesis of all silk types will be possible using a single process.
Bastien, Olivier; Ortet, Philippe; Roy, Sylvaine; Maréchal, Eric
2005-03-10
Popular methods to reconstruct molecular phylogenies are based on multiple sequence alignments, in which addition or removal of data may change the resulting tree topology. We have sought a representation of homologous proteins that would conserve the information of pair-wise sequence alignments, respect probabilistic properties of Z-scores (Monte Carlo methods applied to pair-wise comparisons) and be the basis for a novel method of consistent and stable phylogenetic reconstruction. We have built up a spatial representation of protein sequences using concepts from particle physics (configuration space) and respecting a frame of constraints deduced from pair-wise alignment score properties in information theory. The obtained configuration space of homologous proteins (CSHP) allows the representation of real and shuffled sequences, and thereupon an expression of the TULIP theorem for Z-score probabilities. Based on the CSHP, we propose a phylogeny reconstruction using Z-scores. Deduced trees, called TULIP trees, are consistent with multiple-alignment based trees. Furthermore, the TULIP tree reconstruction method provides a solution for some previously reported incongruent results, such as the apicomplexan enolase phylogeny. The CSHP is a unified model that conserves mutual information between proteins in the way physical models conserve energy. Applications include the reconstruction of evolutionary consistent and robust trees, the topology of which is based on a spatial representation that is not reordered after addition or removal of sequences. The CSHP and its assigned phylogenetic topology, provide a powerful and easily updated representation for massive pair-wise genome comparisons based on Z-score computations.
The epitopes that cause cross-reactions between peanuts and tree nuts
USDA-ARS?s Scientific Manuscript database
Many peanut allergic individuals also have allergies to tree nuts. Our previous work has shown that there are epitopes with different amino acid sequences, but similar physical and chemical properties are recognized by the same IgE molecule. Anti-Ara h 2 monoclonal antibodies were produced. They we...
Cardiovascular magnetic resonance physics for clinicians: part I.
Ridgway, John P
2010-11-30
There are many excellent specialised texts and articles that describe the physical principles of cardiovascular magnetic resonance (CMR) techniques. There are also many texts written with the clinician in mind that provide an understandable, more general introduction to the basic physical principles of magnetic resonance (MR) techniques and applications. There are however very few texts or articles that attempt to provide a basic MR physics introduction that is tailored for clinicians using CMR in their daily practice. This is the first of two reviews that are intended to cover the essential aspects of CMR physics in a way that is understandable and relevant to this group. It begins by explaining the basic physical principles of MR, including a description of the main components of an MR imaging system and the three types of magnetic field that they generate. The origin and method of production of the MR signal in biological systems are explained, focusing in particular on the two tissue magnetisation relaxation properties (T1 and T2) that give rise to signal differences from tissues, showing how they can be exploited to generate image contrast for tissue characterisation. The method most commonly used to localise and encode MR signal echoes to form a cross sectional image is described, introducing the concept of k-space and showing how the MR signal data stored within it relates to properties within the reconstructed image. Before describing the CMR acquisition methods in detail, the basic spin echo and gradient pulse sequences are introduced, identifying the key parameters that influence image contrast, including appearances in the presence of flowing blood, resolution and image acquisition time. The main derivatives of these two pulse sequences used for cardiac imaging are then described in more detail. Two of the key requirements for CMR are the need for data acquisition first to be to be synchronised with the subject's ECG and to be fast enough for the subject to be able to hold their breath. Methods of ECG synchronisation using both triggering and retrospective gating approaches, and accelerated data acquisition using turbo or fast spin echo and gradient echo pulse sequences are therefore outlined in some detail. It is shown how double inversion black blood preparation combined with turbo or fast spin echo pulse sequences acquisition is used to achieve high quality anatomical imaging. For functional cardiac imaging using cine gradient echo pulse sequences two derivatives of the gradient echo pulse sequence; spoiled gradient echo and balanced steady state free precession (bSSFP) are compared. In each case key relevant imaging parameters and vendor-specific terms are defined and explained.
Cardiovascular magnetic resonance physics for clinicians: part I
2010-01-01
There are many excellent specialised texts and articles that describe the physical principles of cardiovascular magnetic resonance (CMR) techniques. There are also many texts written with the clinician in mind that provide an understandable, more general introduction to the basic physical principles of magnetic resonance (MR) techniques and applications. There are however very few texts or articles that attempt to provide a basic MR physics introduction that is tailored for clinicians using CMR in their daily practice. This is the first of two reviews that are intended to cover the essential aspects of CMR physics in a way that is understandable and relevant to this group. It begins by explaining the basic physical principles of MR, including a description of the main components of an MR imaging system and the three types of magnetic field that they generate. The origin and method of production of the MR signal in biological systems are explained, focusing in particular on the two tissue magnetisation relaxation properties (T1 and T2) that give rise to signal differences from tissues, showing how they can be exploited to generate image contrast for tissue characterisation. The method most commonly used to localise and encode MR signal echoes to form a cross sectional image is described, introducing the concept of k-space and showing how the MR signal data stored within it relates to properties within the reconstructed image. Before describing the CMR acquisition methods in detail, the basic spin echo and gradient pulse sequences are introduced, identifying the key parameters that influence image contrast, including appearances in the presence of flowing blood, resolution and image acquisition time. The main derivatives of these two pulse sequences used for cardiac imaging are then described in more detail. Two of the key requirements for CMR are the need for data acquisition first to be to be synchronised with the subject's ECG and to be fast enough for the subject to be able to hold their breath. Methods of ECG synchronisation using both triggering and retrospective gating approaches, and accelerated data acquisition using turbo or fast spin echo and gradient echo pulse sequences are therefore outlined in some detail. It is shown how double inversion black blood preparation combined with turbo or fast spin echo pulse sequences acquisition is used to achieve high quality anatomical imaging. For functional cardiac imaging using cine gradient echo pulse sequences two derivatives of the gradient echo pulse sequence; spoiled gradient echo and balanced steady state free precession (bSSFP) are compared. In each case key relevant imaging parameters and vendor-specific terms are defined and explained. PMID:21118531
Acoustic Imaging of Snowpack Physical Properties
NASA Astrophysics Data System (ADS)
Kinar, N. J.; Pomeroy, J. W.
2011-12-01
Measurements of snowpack depth, density, structure and temperature have often been conducted by the use of snowpits and invasive measurement devices. Previous research has shown that acoustic waves passing through snow are capable of measuring these properties. An experimental observation device (SAS2, System for the Acoustic Sounding of Snow) was used to autonomously send audible sound waves into the top of the snowpack and to receive and process the waves reflected from the interior and bottom of the snowpack. A loudspeaker and microphone array separated by an offset distance was suspended in the air above the surface of the snowpack. Sound waves produced from a loudspeaker as frequency-swept sequences and maximum length sequences were used as source signals. Up to 24 microphones measured the audible signal from the snowpack. The signal-to-noise ratio was compared between sequences in the presence of environmental noise contributed by wind and reflections from vegetation. Beamforming algorithms were used to reject spurious reflections and to compensate for movement of the sensor assembly during the time of data collection. A custom-designed circuit with digital signal processing hardware implemented an inversion algorithm to relate the reflected sound wave data to snowpack physical properties and to create a two-dimensional image of snowpack stratigraphy. The low power consumption circuit was powered by batteries and through WiFi and Bluetooth interfaces enabled the display of processed data on a mobile device. Acoustic observations were logged to an SD card after each measurement. The SAS2 system was deployed at remote field locations in the Rocky Mountains of Alberta, Canada. Acoustic snow properties data was compared with data collected from gravimetric sampling, thermocouple arrays, radiometers and snowpit observations of density, stratigraphy and crystal structure. Aspects for further research and limitations of the acoustic sensing system are also discussed.
Physical Properties of Umbral Dots Observed in Sunspots: A Hinode Observation
NASA Astrophysics Data System (ADS)
Yadav, Rahul; Mathew, Shibu K.
2018-04-01
Umbral dots (UDs) are small-scale bright features observed in the umbral part of sunspots and pores. It is well established that they are manifestations of magnetoconvection phenomena inside umbrae. We study the physical properties of UDs in different sunspots and their dependence on decay rate and filling factor. We have selected high-resolution, G-band continuum filtergrams of seven sunspots from Hinode to study their physical properties. We have also used Michelson Doppler Imager (MDI) continuum images to estimate the decay rate of selected sunspots. An identification and tracking algorithm was developed to identify the UDs in time sequences. The statistical analysis of UDs exhibits an averaged maximum intensity and effective diameter of 0.26 I_{QS} and 270 km. Furthermore, the lifetime, horizontal speed, trajectory length, and displacement length (birth-death distance) of UDs are 8.19 minutes, 0.5 km s-1, 284 km, and 155 km, respectively. We also find a positive correlation between intensity-diameter, intensity-lifetime, and diameter-lifetime of UDs. However, UD properties do not show any significant relation with the decay rate or filling factor.
NASA Astrophysics Data System (ADS)
Carreon-Freyre, D.; Cerca, M.; Barrientos, B.; Gutierrez, R.; Blancas, D.
2012-12-01
Major cities of Central Mexico with lowering of land elevation problems are located in inter-volcanic and fault bounded basins within the central Trans-Mexican Volcanic Belt (TMVB). The most representative and studied case of ground deformation is Mexico City, where the Iztapalapa Municipality presents the highest population density. This area is located over the geological contact between the "Sierra de Santa Catarina" volcanic range and a lacustrine plain. Filling of lacustrine basins includes silty and clayey sediments as well as pyroclastic deposits (coarse and fine grained) and volcanic rocks layers. We used Ground Penetrating Radar (GPR) and MASW prospection to evaluate contrasts in the physical properties of fine grained soils and identify geometry of the deformational features and implemented a mechanical system for in situ monitoring in fractured sites. Deformational features in this basin reflect an interplay between the geological history (depositional conditions), load history, seismic activity, and faulting. Plastic mechanical behaviour predominates in these clayey sediments and differential deformation locally triggers brittle fracturing and/or subsidence of the surface. In this work we present the results of monitoring and characterization of ground deformation and fracturing in different sequences, our results show a dynamic interplay between the mechanisms of ground fracturing and the stress history of sedimentary sequences. Relating the mechanical behaviour of the studied sequences with variations of physical and geological properties should be taken into account to estimate land level lowering and risk of fracturing for urban development planning.
Iranzo, Olga; Chakraborty, Saumen; Hemmingsen, Lars; Pecoraro, Vincent L
2011-01-19
Herein we report how de novo designed peptides can be used to investigate whether the position of a metal site along a linear sequence that folds into a three-stranded α-helical coiled coil defines the physical properties of Cd(II) ions in either CdS(3) or CdS(3)O (O-being an exogenous water molecule) coordination environments. Peptides are presented that bind Cd(II) into two identical coordination sites that are located at different topological positions at the interior of these constructs. The peptide GRANDL16PenL19IL23PenL26I binds two Cd(II) as trigonal planar 3-coordinate CdS(3) structures whereas GRANDL12AL16CL26AL30C sequesters two Cd(II) as pseudotetrahedral 4-coordinate CdS(3)O structures. We demonstrate how for the first peptide, having a more rigid structure, the location of the identical binding sites along the linear sequence does not affect the physical properties of the two bound Cd(II). However, the sites are not completely independent as Cd(II) bound to one of the sites ((113)Cd NMR chemical shift of 681 ppm) is perturbed by the metalation state (apo or [Cd(pep)(Hpep)(2)](+) or [Cd(pep)(3)](-)) of the second center ((113)Cd NMR chemical shift of 686 ppm). GRANDL12AL16CL26AL30C shows a completely different behavior. The physical properties of the two bound Cd(II) ions indeed depend on the position of the metal center, having pK(a2) values for the equilibrium [Cd(pep)(Hpep)(2)](+) → [Cd(pep)(3)](-) + 2H(+) (corresponding to deprotonation and coordination of cysteine thiols) that range from 9.9 to 13.9. In addition, the L26AL30C site shows dynamic behavior, which is not observed for the L12AL16C site. These results indicate that for these systems one cannot simply assign a "4-coordinate structure" and assume certain physical properties for that site since important factors such as packing of the adjacent Leu, size of the intended cavity (endo vs exo) and location of the metal site play crucial roles in determining the final properties of the bound Cd(II).
Spliced DNA Sequences in the Paramecium Germline: Their Properties and Evolutionary Potential
Catania, Francesco; McGrath, Casey L.; Doak, Thomas G.; Lynch, Michael
2013-01-01
Despite playing a crucial role in germline-soma differentiation, the evolutionary significance of developmentally regulated genome rearrangements (DRGRs) has received scant attention. An example of DRGR is DNA splicing, a process that removes segments of DNA interrupting genic and/or intergenic sequences. Perhaps, best known for shaping immune-system genes in vertebrates, DNA splicing plays a central role in the life of ciliated protozoa, where thousands of germline DNA segments are eliminated after sexual reproduction to regenerate a functional somatic genome. Here, we identify and chronicle the properties of 5,286 sequences that putatively undergo DNA splicing (i.e., internal eliminated sequences [IESs]) across the genomes of three closely related species of the ciliate Paramecium (P. tetraurelia, P. biaurelia, and P. sexaurelia). The study reveals that these putative IESs share several physical characteristics. Although our results are consistent with excision events being largely conserved between species, episodes of differential IES retention/excision occur, may have a recent origin, and frequently involve coding regions. Our findings indicate interconversion between somatic—often coding—DNA sequences and noncoding IESs, and provide insights into the role of DNA splicing in creating potentially functional genetic innovation. PMID:23737328
Fluctuations in the DNA double helix
NASA Astrophysics Data System (ADS)
Peyrard, M.; López, S. C.; Angelov, D.
2007-08-01
DNA is not the static entity suggested by the famous double helix structure. It shows large fluctuational openings, in which the bases, which contain the genetic code, are temporarily open. Therefore it is an interesting system to study the effect of nonlinearity on the physical properties of a system. A simple model for DNA, at a mesoscopic scale, can be investigated by computer simulation, in the same spirit as the original work of Fermi, Pasta and Ulam. These calculations raise fundamental questions in statistical physics because they show a temporary breaking of equipartition of energy, regions with large amplitude fluctuations being able to coexist with regions where the fluctuations are very small, even when the model is studied in the canonical ensemble. This phenomenon can be related to nonlinear excitations in the model. The ability of the model to describe the actual properties of DNA is discussed by comparing theoretical and experimental results for the probability that base pairs open an a given temperature in specific DNA sequences. These studies give us indications on the proper description of the effect of the sequence in the mesoscopic model.
Noise reduction methods for nucleic acid and macromolecule sequencing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuller, Ivan K.; Di Ventra, Massimiliano; Balatsky, Alexander
Methods, systems, and devices are disclosed for processing macromolecule sequencing data with substantial noise reduction. In one aspect, a method for reducing noise in a sequential measurement of a macromolecule comprising serial subunits includes cross-correlating multiple measured signals of a physical property of subunits of interest of the macromolecule, the multiple measured signals including the time data associated with the measurement of the signal, to remove or at least reduce signal noise that is not in the same frequency and in phase with the systematic signal contribution of the measured signals.
NASA Astrophysics Data System (ADS)
Naito, K.; Park, J.
2012-12-01
The Nankai Trough off southwest Japan is one of the best subduction-zone to study megathrust earthquake mechanism. Huge earthquakes have been repeated in the cycle of 100-150 years in the area, and in these days the next emergence of the earthquake becomes one of the most serious issue in Japan. Therefore, detailed descriptions of geological structure are urgently needed there. IODP (Integrated Ocean Drilling Program) have investigated this area in the NanTroSEIZE science plan. Seismic reflection, core sampling and borehole logging surveys have been executed during the NanTroSEIZE expeditions. Core-log-seismic data integration (CLSI) is useful for understanding the Nankai seismogenic zone. We use the seismic inversion method to do the CLSI. The seismic inversion (acoustic impedance inversion, A.I. inversion) is a method to estimate rock physical properties using seismic reflection and logging data. Acoustic impedance volume is inverted for seismic data with density and P-wave velocity of several boreholes with the technique. We use high-resolution 3D multi-channel seismic (MCS) reflection data obtained during KR06-02 cruise in 2006, and measured core sample properties by IODP Expeditions 322 and 333. P-wave velocities missing for some core sample are interpolated by the relationship between acoustic impedance and P-wave velocity. We used Hampson-Russell software for the seismic inversion. 3D porosity model is derived from the 3D acoustic impedance model to figure out rock physical properties of the incoming sedimentary sequence in the Nankai Trough off Kumano Basin. The result of our inversion analysis clearly shows heterogeneity of sediments; relatively high porosity sediments on the shallow layer of Kashinosaki Knoll, and distribution of many physical anomaly bands on volcanic and turbidite sediment layers around the 3D MCS survey area. In this talk, we will show 3D MCS, acoustic impedance, and porosity data for the incoming sedimentary sequence and discuss its possible implications for the Nankai seismogenic behavior.
NASA Astrophysics Data System (ADS)
Guidi, Giovanni; Scannapieco, Cecilia; Walcher, Jakob; Gallazzi, Anna
2016-10-01
We study the effects of applying observational techniques to derive the properties of simulated galaxies, with the aim of making an unbiased comparison between observations and simulations. For our study, we used 15 galaxies simulated in a cosmological context using three different feedback and chemical enrichment models, and compared their z = 0 properties with data from the Sloan Digital Sky Survey (SDSS). We show that the physical properties obtained directly from the simulations without post-processing can be very different from those obtained mimicking observational techniques. In order to provide simulators a way to reliably compare their galaxies with SDSS data, for each physical property that we studied - colours, magnitudes, gas and stellar metallicities, mean stellar ages and star formation rates - we give scaling relations that can be easily applied to the values extracted from the simulations; these scalings have in general a high correlation, except for the gas oxygen metallicities. Our simulated galaxies are photometrically similar to galaxies in the blue sequence/green valley, but in general they appear older, passive and with lower metal content compared to most of the spirals in SDSS. As a careful assessment of the agreement/disagreement with observations is the primary test of the baryonic physics implemented in hydrodynamical codes, our study shows that considering the observational biases in the derivation of the galaxies' properties is of fundamental importance to decide on the failure/success of a galaxy formation model.
Bukin, Yu S; Dzhioev, Yu P; Tkachev, S E; Kozlova, I V; Paramonov, A I; Ruzek, D; Qu, Z; Zlobin, V I
2017-06-15
This work is dedicated to the study of the variability of the main antigenic envelope protein E among different strains of tick-borne encephalitis virus at the level of physical and chemical properties of the amino acid residues. E protein variants were extracted from then NCBI database. Four amino acid residues properties in the polypeptide sequences were investigated: the average volume of the amino acid residue in the protein tertiary structure, the number of amino acid residue hydrogen bond donors, the charge of amino acid residue lateral radical and the dipole moment of the amino acid residue. These physico-chemical properties are involved in antigen-antibody interactions. As a result, 103 different variants of the antigenic determinants of the tick-borne encephalitis virus E protein were found, significantly different by physical and chemical properties of the amino acid residues in their structure. This means that some strains among the natural variants of tick-borne encephalitis virus can potentially escape the immune response induced by the standard vaccine. Copyright © 2017 Elsevier B.V. All rights reserved.
Structural study of Bombyx mori silk fibroin during processing for regeneration
NASA Astrophysics Data System (ADS)
Ha, Sung-Won
Bombyx mori silk fibroin has excellent mechanical properties combined with flexibility, tissue compatibility, and high oxygen permeability in the wet condition. This important material should be dissolved and regenerated to be utilized as useful forms such as gel, film, fiber, powder, or non-woven. However, it has long been a problem that the regenerated fibroin materials show poor mechanical properties and brittleness. These problems were technically solved by improving a fiber processing method reported here. The regenerated fibroin fibers showed much better mechanical properties compared to the original silk fibers. This improved technique for the fiber processing of Bombyx mori silk fibroin may be used as a model system for other semi-crystalline fiber forming proteins, becoming available through biotechnology. The physical and chemical properties of the regenerated fibers were characterized by SinTechRTM tensile testing, X-ray diffraction, solid state 13C NMR spectroscopy, and SEM. Unlike synthetic polymers, the molecular weight distribution of Bombyx mori silk fibroin is mono-disperse because silk fibroin is synthesized from DNA template. Genetic studies have revealed the entire amino acid sequence of Bombyx mori silk fibroin. It is known that the crystalline silk II structure is composed of hexa-amino acid sequences, GAGAGS. However, in the amino acid sequence of Bombyx mori silk fibroin heavy chain, there are present 11 chemically irregular but evolutionarily conserved sequences with about 31 amino acid residues (irregular GT˜GT sequences). The structure and role of these irregular sequences have remained unknown. One of the most frequently appearing irregular sequences was synthesized by a peptide synthesizer. The three-dimensional structure of this irregular silk peptide was studied by the high resolution two-dimensional NMR technique. The three-dimensional structure of this peptide shows that it makes a turn or loop structure (distorted O shape), which means the proceeding backbone direction is changed 180° by this sequence. This may facilitate the beta-sheet formation of the crystal forming building blocks, GAGAGS/GY˜GY sequences, in fibroin heavy chain. It may also facilitate the solubilization of the fibroin heavy chain within the silk gland.
Designing nucleosomal force sensors
NASA Astrophysics Data System (ADS)
Tompitak, M.; de Bruin, L.; Eslami-Mossallam, B.; Schiessel, H.
2017-05-01
About three quarters of our DNA is wrapped into nucleosomes: DNA spools with a protein core. It is well known that the affinity of a given DNA stretch to be incorporated into a nucleosome depends on the geometry and elasticity of the basepair sequence involved, causing the positioning of nucleosomes. Here we show that DNA elasticity can have a much deeper effect on nucleosomes than just their positioning: it affects their "identities". Employing a recently developed computational algorithm, the mutation Monte Carlo method, we design nucleosomes with surprising physical characteristics. Unlike any other nucleosomes studied so far, these nucleosomes are short-lived when put under mechanical tension whereas other physical properties are largely unaffected. This suggests that the nucleosome, the most abundant DNA-protein complex in our cells, might more properly be considered a class of complexes with a wide array of physical properties, and raises the possibility that evolution has shaped various nucleosome species according to their genomic context.
Hydropathic self-organized criticality: a magic wand for protein physics.
Phillips, J C
2012-10-01
Self-organized criticality (SOC) is a popular concept that has been the subject of more than 3000 articles in the last 25 years. The characteristic signature of SOC is the appearance of self-similarity (power-law scaling) in observable properties. A characteristic observable protein property that describes protein-water interactions is the water-accessible (hydropathic) interfacial area of compacted globular protein networks. Here we show that hydropathic power-law (size- or length-scale-dependent) exponents derived from SOC enable theory to connect standard Web-based (BLAST) short-range amino acid (aa) sequence similarities to long-range aa sequence hydropathic roughening form factors that hierarchically describe evolutionary trends in water - membrane protein interactions. Our method utilizes hydropathic aa exponents that define a non-Euclidean metric realistically rooted in the atomic coordinates of 5526 protein segments. These hydropathic aa exponents thereby encapsulate universal (but previously only implicit) non-Euclidean long-range differential geometrical features of the Protein Data Bank. These hydropathic aa exponents easily organize small mutated aa sequence differences between human and proximate species proteins. For rhodopsin, the most studied transmembrane signaling protein associated with night vision, analysis shows that this approach separates Euclidean short- and non-Euclidean long-range aa sequence properties, and shows that they correlate with 96% success for humans, monkeys, cats, mice and rabbits. Proper application of SOC using hydropathic aa exponents promises unprecedented simplifications of exponentially complex protein sequence-structure-function problems, both conceptual and practical.
Physical layer one-time-pad data encryption through synchronized semiconductor laser networks
NASA Astrophysics Data System (ADS)
Argyris, Apostolos; Pikasis, Evangelos; Syvridis, Dimitris
2016-02-01
Semiconductor lasers (SL) have been proven to be a key device in the generation of ultrafast true random bit streams. Their potential to emit chaotic signals under conditions with desirable statistics, establish them as a low cost solution to cover various needs, from large volume key generation to real-time encrypted communications. Usually, only undemanding post-processing is needed to convert the acquired analog timeseries to digital sequences that pass all established tests of randomness. A novel architecture that can generate and exploit these true random sequences is through a fiber network in which the nodes are semiconductor lasers that are coupled and synchronized to central hub laser. In this work we show experimentally that laser nodes in such a star network topology can synchronize with each other through complex broadband signals that are the seed to true random bit sequences (TRBS) generated at several Gb/s. The potential for each node to access real-time generated and synchronized with the rest of the nodes random bit streams, through the fiber optic network, allows to implement an one-time-pad encryption protocol that mixes the synchronized true random bit sequence with real data at Gb/s rates. Forward-error correction methods are used to reduce the errors in the TRBS and the final error rate at the data decoding level. An appropriate selection in the sampling methodology and properties, as well as in the physical properties of the chaotic seed signal through which network locks in synchronization, allows an error free performance.
The sdA problem - I. Physical properties
NASA Astrophysics Data System (ADS)
Pelisoli, Ingrid; Kepler, S. O.; Koester, D.
2018-04-01
The so-called sdA stars are defined by having H-rich spectra and surface gravities similar to hot subdwarf stars, but effective temperature below the zero-age horizontal branch. Their evolutionary history is an enigma: their surface gravity is too high for main-sequence stars, but too low for single evolution white dwarfs. They are most likely byproducts of binary evolution, including blue-stragglers, extremely-low mass white dwarf stars (ELMs) and their precursors (pre-ELMs). A small number of ELMs with similar properties to sdAs is known. Other possibilities include metal-poor A/F dwarfs, second generation stars, or even stars accreted from dwarf galaxies. In this work, we analyse colours, proper motions, and spacial velocities of a sample of sdAs from the Sloan Digital Sky Survey to assess their nature and evolutionary origin. We define a probability of belonging to the main sequence and a probability of being a (pre-)ELM based on these properties. We find that 7 per cent of the sdAs are more likely to be (pre-)ELMs than main-sequence stars. However, the spacial velocity distribution suggests that over 35 per cent of them cannot be explained as single metal-poor A/F stars.
Cosmology of Universe Particles and Beyond
NASA Astrophysics Data System (ADS)
Xu, Wei
2016-06-01
For the first time in history, all properties of cosmology particles are uncovered and described concisely and systematically, known as the elementary particles in contemporary physics.Aligning with the synthesis of the virtual and physical worlds in a hierarchical taxonomy of the universe, this theory refines the topology framework of cosmology, and presents a new perspective of the Yin Yang natural laws that, through the processes of creation and reproduction, the fundamental elements generate an infinite series of circular objects and a Yin Yang duality of dynamic fields that are sequenced and transformed states of matter between the virtual and physical worlds.Once virtual objects are transformed, they embody various enclaves of energy states, known as dark energy, quarks, leptons, bosons, protons, and neutrons, characterized by their incentive oscillations of timestate variables in a duality of virtual realities: energy and time, spin and charge, mass and space, symmetry and antisymmetry.As a consequence, it derives the fully-scaled quantum properties of physical particles in accordance with numerous historical experiments, and has overcome the limitations of uncertainty principle and the Standard Model, towards concisely exploring physical nature and beyond...
Shinozuka, Hiroshi; Cogan, Noel O I; Shinozuka, Maiko; Marshall, Alexis; Kay, Pippa; Lin, Yi-Han; Spangenberg, German C; Forster, John W
2015-04-11
Fragmentation at random nucleotide locations is an essential process for preparation of DNA libraries to be used on massively parallel short-read DNA sequencing platforms. Although instruments for physical shearing, such as the Covaris S2 focused-ultrasonicator system, and products for enzymatic shearing, such as the Nextera technology and NEBNext dsDNA Fragmentase kit, are commercially available, a simple and inexpensive method is desirable for high-throughput sequencing library preparation. MspJI is a recently characterised restriction enzyme which recognises the sequence motif CNNR (where R = G or A) when the first base is modified to 5-methylcytosine or 5-hydroxymethylcytosine. A semi-random enzymatic DNA amplicon fragmentation method was developed based on the unique cleavage properties of MspJI. In this method, random incorporation of 5-methyl-2'-deoxycytidine-5'-triphosphate is achieved through DNA amplification with DNA polymerase, followed by DNA digestion with MspJI. Due to the recognition sequence of the enzyme, DNA amplicons are fragmented in a relatively sequence-independent manner. The size range of the resulting fragments was capable of control through optimisation of 5-methyl-2'-deoxycytidine-5'-triphosphate concentration in the reaction mixture. A library suitable for sequencing using the Illumina MiSeq platform was prepared and processed using the proposed method. Alignment of generated short reads to a reference sequence demonstrated a relatively high level of random fragmentation. The proposed method may be performed with standard laboratory equipment. Although the uniformity of coverage was slightly inferior to the Covaris physical shearing procedure, due to efficiencies of cost and labour, the method may be more suitable than existing approaches for implementation in large-scale sequencing activities, such as bacterial artificial chromosome (BAC)-based genome sequence assembly, pan-genomic studies and locus-targeted genotyping-by-sequencing.
NASA Astrophysics Data System (ADS)
Erlström, M.; Sivhed, U.
2012-04-01
In the Baltic region the Cambrian sandstone is considered to have great economic value concerning its aquifer and reservoir properties. Its potential as petroleum reservoir is well known, especially from the Polish, Lithuanian and Russian sectors of the Baltic Sea where oil and gas has been found in anticline traps in the sandstone sequence. Offshore exploration in the Swedish sector has so far not encountered any significant findings of oil and gas. However, the extensive exploration has generated data, which is now being used for assessing the overall properties regarding suitability for storage of CO2. The Swedish primary industry has a great interest in finding potential sites for storage of CO2. A suitable site in the Baltic Sea would be a most favourable alternative in comparison to more remote alternatives such as deep saline aquifers in the North Sea. The Lower Cambrian is in the Swedish sector of the Baltic Sea composed of three main sandstone units varying in thickness between 5 and 50 m occurring within an up to 250 m thick Cambrian sequence dominated by fine-grained terriclastic sediments. The limit of Lower Palaeozoic sequence in the Baltic area is today defined by erosional truncation because of the gently dipping Lower Palaeozoic sequence. To the north and northwest, the limit is found in the Pre-Quaternary, whereas the erosional limit is deeply buried beneath Permian and Mesozoic sediments to the south. Here the Lower Palaeozoic limit is buried to depths reaching more than 2 km. The Cambrian sequence in the distal parts of the Swedish sector occurs at depths of c. 1300 m while it constitutes the bedrock surface in a narrow zone trending from Öland to the north of of Gotland. Sandstone beds constitute 40-60% of the total Cambrian sequence. The main sandstone units have a regional distribution of several thousands of square kilometres. The up to 50 m thick Faludden sandstone member exhibits the best reservoir properties including porosities in the range of 10-16% and permeabilities of 200-400 mD. Wire line logs indicate uniform physical properties of the member. The Faludden sandstone is in addition interpreted as a closed aquifer since it wedges out updip and is overlain by alum shale and several hundred metres of Ordovician-Silurian argillaceous limestone with bentonite clays acting as a significant seal. The regional distribution in combination with the satisfactory physical properties makes it an interesting candidate for CO2 storage. Investigations of the hydraulic properties of the aquifer as well as properties of the seal, in combination with numeric modelling have to be performed as to achieve a reliable assessment of the storage capacity. Research projects regarding this are now being launched by the Geological Survey of Sweden, Uppsala University, Lund University and the industry. Existing data regarding the Lower Cambrian sandstone in the Baltic Sea will also be included in the Nordic CCS GIS Atlas and data base within the recently launched Nordiccs-project.
CNOT sequences for heterogeneous spin qubit architectures in a noisy environment
NASA Astrophysics Data System (ADS)
Ferraro, Elena; Fanciulli, Marco; de Michielis, Marco
Explicit CNOT gate sequences for two-qubits mixed architectures are presented in view of applications for large-scale quantum computation. Different kinds of coded spin qubits are combined allowing indeed the favorable physical properties of each to be employed. The building blocks for such composite systems are qubit architectures based on the electronic spin in electrostatically defined semiconductor quantum dots. They are the single quantum dot spin qubit, the double quantum dot singlet-triplet qubit and the double quantum dot hybrid qubit. The effective Hamiltonian models expressed by only exchange interactions between pair of electrons are exploited in different geometrical configurations. A numerical genetic algorithm that takes into account the realistic physical parameters involved is adopted. Gate operations are addressed by modulating the tunneling barriers and the energy offsets between different couple of quantum dots. Gate infidelities are calculated considering limitations due to unideal control of gate sequence pulses, hyperfine interaction and unwanted charge coupling. Second affiliation: Dipartimento di Scienza dei Materiali, University of Milano Bicocca, Via R. Cozzi, 55, 20126 Milano, Italy.
Aftershock occurrence rate decay for individual sequences and catalogs
NASA Astrophysics Data System (ADS)
Nyffenegger, Paul A.
One of the earliest observations of the Earth's seismicity is that the rate of aftershock occurrence decays with time according to a power law commonly known as modified Omori-law (MOL) decay. However, the physical reasons for aftershock occurrence and the empirical decay in rate remain unclear despite numerous models that yield similar rate decay behavior. Key problems in relating the observed empirical relationship to the physical conditions of the mainshock and fault are the lack of studies including small magnitude mainshocks and the lack of uniformity between studies. We use simulated aftershock sequences to investigate the factors which influence the maximum likelihood (ML) estimate of the Omori-law p value, the parameter describing aftershock occurrence rate decay, for both individual aftershock sequences and "stacked" or superposed sequences. Generally the ML estimate of p is accurate, but since the ML estimated uncertainty is unaffected by whether the sequence resembles an MOL model, a goodness-of-fit test such as the Anderson-Darling statistic is necessary. While stacking aftershock sequences permits the study of entire catalogs and sequences with small aftershock populations, stacking introduces artifacts. The p value for stacked sequences is approximately equal to the mean of the individual sequence p values. We apply single-link cluster analysis to identify all aftershock sequences from eleven regional seismicity catalogs. We observe two new mathematically predictable empirical relationships for the distribution of aftershock sequence populations. The average properties of aftershock sequences are not correlated with tectonic environment, but aftershock populations and p values do show a depth dependence. The p values show great variability with time, and large values or changes in p sometimes precedes major earthquakes. Studies of teleseismic earthquake catalogs over the last twenty years have led seismologists to question seismicity models and aftershock sequence decay for deep sequences. For seven exceptional deep sequences, we conclude that MOL decay adequately describes these sequences, and little difference exists compared to shallow sequences. However, they do include larger aftershock populations compared to most deep sequences. These results imply that p values for deep sequences are larger than those for intermediate depth sequences.
Zhang, Ming; Xu, Yan; Li, Lei; Liu, Zi; Yang, Xibei; Yu, Dong-Jun
2018-06-01
RNA 5-methylcytosine (m 5 C) is an important post-transcriptional modification that plays an indispensable role in biological processes. The accurate identification of m 5 C sites from primary RNA sequences is especially useful for deeply understanding the mechanisms and functions of m 5 C. Due to the difficulty and expensive costs of identifying m 5 C sites with wet-lab techniques, developing fast and accurate machine-learning-based prediction methods is urgently needed. In this study, we proposed a new m 5 C site predictor, called M5C-HPCR, by introducing a novel heuristic nucleotide physicochemical property reduction (HPCR) algorithm and classifier ensemble. HPCR extracts multiple reducts of physical-chemical properties for encoding discriminative features, while the classifier ensemble is applied to integrate multiple base predictors, each of which is trained based on a separate reduct of the physical-chemical properties obtained from HPCR. Rigorous jackknife tests on two benchmark datasets demonstrate that M5C-HPCR outperforms state-of-the-art m 5 C site predictors, with the highest values of MCC (0.859) and AUC (0.962). We also implemented the webserver of M5C-HPCR, which is freely available at http://cslab.just.edu.cn:8080/M5C-HPCR/. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Feng, Xiao-Li; Li, Yu-Xiao; Gu, Jian-Zhong; Zhuo, Yi-Zhong
2009-10-01
The relaxation property of both Eigen model and Crow-Kimura model with a single peak fitness landscape is studied from phase transition point of view. We first analyze the eigenvalue spectra of the replication mutation matrices. For sufficiently long sequences, the almost crossing point between the largest and second-largest eigenvalues locates the error threshold at which critical slowing down behavior appears. We calculate the critical exponent in the limit of infinite sequence lengths and compare it with the result from numerical curve fittings at sufficiently long sequences. We find that for both models the relaxation time diverges with exponent 1 at the error (mutation) threshold point. Results obtained from both methods agree quite well. From the unlimited correlation length feature, the first order phase transition is further confirmed. Finally with linear stability theory, we show that the two model systems are stable for all ranges of mutation rate. The Eigen model is asymptotically stable in terms of mutant classes, and the Crow-Kimura model is completely stable.
DNA sequence-dependent mechanics and protein-assisted bending in repressor-mediated loop formation
Boedicker, James Q.; Garcia, Hernan G.; Johnson, Stephanie; Phillips, Rob
2014-01-01
As the chief informational molecule of life, DNA is subject to extensive physical manipulations. The energy required to deform double-helical DNA depends on sequence, and this mechanical code of DNA influences gene regulation, such as through nucleosome positioning. Here we examine the sequence-dependent flexibility of DNA in bacterial transcription factor-mediated looping, a context for which the role of sequence remains poorly understood. Using a suite of synthetic constructs repressed by the Lac repressor and two well-known sequences that show large flexibility differences in vitro, we make precise statistical mechanical predictions as to how DNA sequence influences loop formation and test these predictions using in vivo transcription and in vitro single-molecule assays. Surprisingly, sequence-dependent flexibility does not affect in vivo gene regulation. By theoretically and experimentally quantifying the relative contributions of sequence and the DNA-bending protein HU to DNA mechanical properties, we reveal that bending by HU dominates DNA mechanics and masks intrinsic sequence-dependent flexibility. Such a quantitative understanding of how mechanical regulatory information is encoded in the genome will be a key step towards a predictive understanding of gene regulation at single-base pair resolution. PMID:24231252
Rapid and Easy Protocol for Quantification of Next-Generation Sequencing Libraries.
Hawkins, Steve F C; Guest, Paul C
2018-01-01
The emergence of next-generation sequencing (NGS) over the last 10 years has increased the efficiency of DNA sequencing in terms of speed, ease, and price. However, the exact quantification of a NGS library is crucial in order to obtain good data on sequencing platforms developed by the current market leader Illumina. Different approaches for DNA quantification are available currently and the most commonly used are based on analysis of the physical properties of the DNA through spectrophotometric or fluorometric methods. Although these methods are technically simple, they do not allow exact quantification as can be achieved using a real-time quantitative PCR (qPCR) approach. A qPCR protocol for DNA quantification with applications in NGS library preparation studies is presented here. This can be applied in various fields of study such as medical disorders resulting from nutritional programming disturbances.
Bershtein, Shimon; Serohijos, Adrian W.R.; Shakhnovich, Eugene I.
2016-01-01
Bridging the gap between the molecular properties of proteins and organismal/population fitness is essential for understanding evolutionary processes. This task requires the integration of the several physical scales of biological organization, each defined by a distinct set of mechanisms and constraints, into a single unifying model. The molecular scale is dominated by the constraints imposed by the physico-chemical properties of proteins and their substrates, which give rise to trade-offs and epistatic (non-additive) effects of mutations. At the systems scale, biological networks modulate protein expression and can either buffer or enhance the fitness effects of mutations. The population scale is influenced by the mutational input, selection regimes, and stochastic changes affecting the size and structure of populations, which eventually determine the evolutionary fate of mutations. Here, we summarize the recent advances in theory, computer simulations, and experiments that advance our understanding of the links between various physical scales in biology. PMID:27810574
Bershtein, Shimon; Serohijos, Adrian Wr; Shakhnovich, Eugene I
2017-02-01
Bridging the gap between the molecular properties of proteins and organismal/population fitness is essential for understanding evolutionary processes. This task requires the integration of the several physical scales of biological organization, each defined by a distinct set of mechanisms and constraints, into a single unifying model. The molecular scale is dominated by the constraints imposed by the physico-chemical properties of proteins and their substrates, which give rise to trade-offs and epistatic (non-additive) effects of mutations. At the systems scale, biological networks modulate protein expression and can either buffer or enhance the fitness effects of mutations. The population scale is influenced by the mutational input, selection regimes, and stochastic changes affecting the size and structure of populations, which eventually determine the evolutionary fate of mutations. Here, we summarize the recent advances in theory, computer simulations, and experiments that advance our understanding of the links between various physical scales in biology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Luo, Xin; Lu, Xin; Cong, Chunxiao; Yu, Ting; Xiong, Qihua; Ying Quek, Su
2015-01-01
2D layered materials have recently attracted tremendous interest due to their fascinating properties and potential applications. The interlayer interactions are much weaker than the intralayer bonds, allowing the as-synthesized materials to exhibit different stacking sequences, leading to different physical properties. Here, we show that regardless of the space group of the 2D materials, the Raman frequencies of the interlayer shear modes observed under the typical configuration blue shift for AB stacked materials, and red shift for ABC stacked materials, as the number of layers increases. Our predictions are made using an intuitive bond polarizability model which shows that stacking sequence plays a key role in determining which interlayer shear modes lead to the largest change in polarizability (Raman intensity); the modes with the largest Raman intensity determining the frequency trends. We present direct evidence for these conclusions by studying the Raman modes in few layer graphene, MoS2, MoSe2, WSe2 and Bi2Se3, using both first principles calculations and Raman spectroscopy. This study sheds light on the influence of stacking sequence on the Raman intensities of intrinsic interlayer modes in 2D layered materials in general, and leads to a practical way of identifying the stacking sequence in these materials. PMID:26469313
Luo, Xin; Lu, Xin; Cong, Chunxiao; Yu, Ting; Xiong, Qihua; Quek, Su Ying
2015-10-15
2D layered materials have recently attracted tremendous interest due to their fascinating properties and potential applications. The interlayer interactions are much weaker than the intralayer bonds, allowing the as-synthesized materials to exhibit different stacking sequences, leading to different physical properties. Here, we show that regardless of the space group of the 2D materials, the Raman frequencies of the interlayer shear modes observed under the typical z(xx)z configuration blue shift for AB stacked materials, and red shift for ABC stacked materials, as the number of layers increases. Our predictions are made using an intuitive bond polarizability model which shows that stacking sequence plays a key role in determining which interlayer shear modes lead to the largest change in polarizability (Raman intensity); the modes with the largest Raman intensity determining the frequency trends. We present direct evidence for these conclusions by studying the Raman modes in few layer graphene, MoS2, MoSe2, WSe2 and Bi2Se3, using both first principles calculations and Raman spectroscopy. This study sheds light on the influence of stacking sequence on the Raman intensities of intrinsic interlayer modes in 2D layered materials in general, and leads to a practical way of identifying the stacking sequence in these materials.
Evolution of sparsity and modularity in a model of protein allostery
NASA Astrophysics Data System (ADS)
Hemery, Mathieu; Rivoire, Olivier
2015-04-01
The sequence of a protein is not only constrained by its physical and biochemical properties under current selection, but also by features of its past evolutionary history. Understanding the extent and the form that these evolutionary constraints may take is important to interpret the information in protein sequences. To study this problem, we introduce a simple but physical model of protein evolution where selection targets allostery, the functional coupling of distal sites on protein surfaces. This model shows how the geometrical organization of couplings between amino acids within a protein structure can depend crucially on its evolutionary history. In particular, two scenarios are found to generate a spatial concentration of functional constraints: high mutation rates and fluctuating selective pressures. This second scenario offers a plausible explanation for the high tolerance of natural proteins to mutations and for the spatial organization of their least tolerant amino acids, as revealed by sequence analysis and mutagenesis experiments. It also implies a faculty to adapt to new selective pressures that is consistent with observations. The model illustrates how several independent functional modules may emerge within the same protein structure, depending on the nature of past environmental fluctuations. Our model thus relates the evolutionary history of proteins to the geometry of their functional constraints, with implications for decoding and engineering protein sequences.
Proliferative activity of elastin-like-peptides depends on charge and phase transition.
Yuan, Yuan; Koria, Piyush
2016-03-01
Elastin-like-peptides (ELPs) are stimulus-responsive protein-based polymers and are attractive biomaterials due to their biocompatibility and unique properties. This study shows that in addition to their physical properties, ELPs have biological activities that are conducive to tissue regeneration. Specifically, we found that ELPs induce fibroblast proliferation via cell surface heparan sulfate proteoglycans (HSPG). Furthermore, our data suggests that ELP based materials with differential proliferative potential can be designed by controlling the interaction of ELPs with HSPGs by incorporating either hydrophobic or positively charged residues within the ELP sequence. Fibroblast proliferation is important for granulation tissue formation which is important in chronic wounds as well as in healing of other tissues. The customizable biological activity of ELPs coupled with their unique physical properties will enable us to design novel, sustainable and cost effective therapies for different tissue regeneration applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 697-706, 2016. © 2015 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Larkin, Douglas B.
2016-01-01
This article examines the process of shifting to a "Physics First" sequence in science course offerings in three school districts in the United States. This curricular sequence reverses the more common U.S. high school sequence of biology/chemistry/physics, and has gained substantial support in the physics education community over the…
NASA Astrophysics Data System (ADS)
Vahidi, K.; Jalili, Y. Seyed; Salar Elahi, A.
2017-10-01
Electrical and physical properties of conducting polymers are generally enhanced via modifications in the chemical structure of the final product, there appears to be a void in facile physical means to improve the materials' properties without utilizing additives which remain in the final product as impurity. In this research, we presented the effect of altering the introduction method of reactants in emulsion polymerization of PPy with CTAB on the electrical, physical and stability properties of the final product. Three samples were prepared: one via a conventional non-emulsion polymerization method as a reference sample, the second in which the reactants were added simultaneously and the goal sample in which the monomer/surfactant mixture was allowed to be stirred separately then it was added dropwise to the oxidant solution. UV-vis, FTIR, 4-point Van Derr Paw probe, FESEM and contact angle measurements were used to investigate optical, electrical, physical, heat stability and solubility properties of the samples. The results indicate that since in the final sample a higher portion of the reaction occurred on the hydrophobic interior of the micelles, the final material had a lower number of structural and chemical defects which leads to higher conjugation lengths and thus higher properties such as a 9-fold difference in conductivity and improved solubility and thermal stability. The novelty of this work lies in the simplicity of the alterations that have been made, both in terms of optimization of the synthetic route which had been thoroughly investigated and also in terms of the differences that our work poses compared to that of the others; namely: the parameters have been thoroughly studied and analyzed but not the method of addition as in our experiments the sequence of addition and the method of addition of the reactants were altered to observe their effect on the physical and the electronic properties which has led to the conclusion that in case of drop-wise addition, a larger portion of the reaction occurs inside the micelles hence giving rise to inhibition of the defect-producing chemical bonds which is supported by the analysis in our investigations.
Ren, Jie; Song, Kai; Deng, Minghua; Reinert, Gesine; Cannon, Charles H; Sun, Fengzhu
2016-04-01
Next-generation sequencing (NGS) technologies generate large amounts of short read data for many different organisms. The fact that NGS reads are generally short makes it challenging to assemble the reads and reconstruct the original genome sequence. For clustering genomes using such NGS data, word-count based alignment-free sequence comparison is a promising approach, but for this approach, the underlying expected word counts are essential.A plausible model for this underlying distribution of word counts is given through modeling the DNA sequence as a Markov chain (MC). For single long sequences, efficient statistics are available to estimate the order of MCs and the transition probability matrix for the sequences. As NGS data do not provide a single long sequence, inference methods on Markovian properties of sequences based on single long sequences cannot be directly used for NGS short read data. Here we derive a normal approximation for such word counts. We also show that the traditional Chi-square statistic has an approximate gamma distribution ,: using the Lander-Waterman model for physical mapping. We propose several methods to estimate the order of the MC based on NGS reads and evaluate those using simulations. We illustrate the applications of our results by clustering genomic sequences of several vertebrate and tree species based on NGS reads using alignment-free sequence dissimilarity measures. We find that the estimated order of the MC has a considerable effect on the clustering results ,: and that the clustering results that use a N: MC of the estimated order give a plausible clustering of the species. Our implementation of the statistics developed here is available as R package 'NGS.MC' at http://www-rcf.usc.edu/∼fsun/Programs/NGS-MC/NGS-MC.html fsun@usc.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Daikoku, Tatsuya; Takahashi, Yuji; Futagami, Hiroko; Tarumoto, Nagayoshi; Yasuda, Hideki
2017-02-01
In real-world auditory environments, humans are exposed to overlapping auditory information such as those made by human voices and musical instruments even during routine physical activities such as walking and cycling. The present study investigated how concurrent physical exercise affects performance of incidental and intentional learning of overlapping auditory streams, and whether physical fitness modulates the performances of learning. Participants were grouped with 11 participants with lower and higher fitness each, based on their Vo 2 max value. They were presented simultaneous auditory sequences with a distinct statistical regularity each other (i.e. statistical learning), while they were pedaling on the bike and seating on a bike at rest. In experiment 1, they were instructed to attend to one of the two sequences and ignore to the other sequence. In experiment 2, they were instructed to attend to both of the two sequences. After exposure to the sequences, learning effects were evaluated by familiarity test. In the experiment 1, performance of statistical learning of ignored sequences during concurrent pedaling could be higher in the participants with high than low physical fitness, whereas in attended sequence, there was no significant difference in performance of statistical learning between high than low physical fitness. Furthermore, there was no significant effect of physical fitness on learning while resting. In the experiment 2, the both participants with high and low physical fitness could perform intentional statistical learning of two simultaneous sequences in the both exercise and rest sessions. The improvement in physical fitness might facilitate incidental but not intentional statistical learning of simultaneous auditory sequences during concurrent physical exercise.
Synthetic Molecular Evolution of Membrane-Active Peptides
NASA Astrophysics Data System (ADS)
Wimley, William
The physical chemistry of membrane partitioning largely determines the function of membrane active peptides. Membrane-active peptides have potential utility in many areas, including in the cellular delivery of polar compounds, cancer therapy, biosensor design, and in antibacterial, antiviral and antifungal therapies. Yet, despite decades of research on thousands of known examples, useful sequence-structure-function relationships are essentially unknown. Because peptide-membrane interactions within the highly fluid bilayer are dynamic and heterogeneous, accounts of mechanism are necessarily vague and descriptive, and have little predictive power. This creates a significant roadblock to advances in the field. We are bypassing that roadblock with synthetic molecular evolution: iterative peptide library design and orthogonal high-throughput screening. We start with template sequences that have at least some useful activity, and create small, focused libraries using structural and biophysical principles to design the sequence space around the template. Orthogonal high-throughput screening is used to identify gain-of-function peptides by simultaneously selecting for several different properties (e.g. solubility, activity and toxicity). Multiple generations of iterative library design and screening have enabled the identification of membrane-active sequences with heretofore unknown properties, including clinically relevant, broad-spectrum activity against drug-resistant bacteria and enveloped viruses as well as pH-triggered macromolecular poration.
NASA Astrophysics Data System (ADS)
Henriksen, Ellen Karoline; Angell, Carl; Vistnes, Arnt Inge; Bungum, Berit
2018-03-01
Quantum physics describes light as having both particle and wave properties; however, there is no consensus about how to interpret this duality on an ontological level. This article explores how pre-university physics students, while working with learning material focusing on historical-philosophical aspects of quantum physics, interpreted the wave-particle duality of light and which views they expressed on the nature of physics. A thematic analysis was performed on 133 written responses about the nature of light, given in the beginning of the teaching sequence, and 55 audio-recorded small-group discussions addressing the wave-particle duality, given later in the sequence. Most students initially expressed a wave and particle view of light, but some of these gave an "uncritical duality description", accepting without question the two ontologically different descriptions of light. In the small-group discussions, students expressed more nuanced views. Many tried to reconcile the two descriptions using semi-classical reasoning; others entered into philosophical discussions about the status of the current scientific description of light and expected science to come up with a better model. Some found the wave description of light particularly challenging and lacked a conception of "what is waving". Many seemed to implicitly take a realist view on the description of physical phenomena, contrary with the Copenhagen interpretation which is prevalent in textbooks. Results are discussed in light of different interpretations of quantum physics, and we conclude by arguing for a historical-philosophical perspective as an entry point for upper secondary physics students to explore the development and interpretation of quantum physical concepts.
Not all (possibly) “random” sequences are created equal
Pincus, Steve; Kalman, Rudolf E.
1997-01-01
The need to assess the randomness of a single sequence, especially a finite sequence, is ubiquitous, yet is unaddressed by axiomatic probability theory. Here, we assess randomness via approximate entropy (ApEn), a computable measure of sequential irregularity, applicable to single sequences of both (even very short) finite and infinite length. We indicate the novelty and facility of the multidimensional viewpoint taken by ApEn, in contrast to classical measures. Furthermore and notably, for finite length, finite state sequences, one can identify maximally irregular sequences, and then apply ApEn to quantify the extent to which given sequences differ from maximal irregularity, via a set of deficit (defm) functions. The utility of these defm functions which we show allows one to considerably refine the notions of probabilistic independence and normality, is featured in several studies, including (i) digits of e, π, √2, and √3, both in base 2 and in base 10, and (ii) sequences given by fractional parts of multiples of irrationals. We prove companion analytic results, which also feature in a discussion of the role and validity of the almost sure properties from axiomatic probability theory insofar as they apply to specified sequences and sets of sequences (in the physical world). We conclude by relating the present results and perspective to both previous and subsequent studies. PMID:11038612
Tracking and Motion Analysis of Crack Propagations in Crystals for Molecular Dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsap, L V; Duchaineau, M; Goldgof, D B
2001-05-14
This paper presents a quantitative analysis for a discovery in molecular dynamics. Recent simulations have shown that velocities of crack propagations in crystals under certain conditions can become supersonic, which is contrary to classical physics. In this research, they present a framework for tracking and motion analysis of crack propagations in crystals. It includes line segment extraction based on Canny edge maps, feature selection based on physical properties, and subsequent tracking of primary and secondary wavefronts. This tracking is completely automated; it runs in real time on three 834-image sequences using forty 250 MHZ processors. Results supporting physical observations aremore » presented in terms of both feature tracking and velocity analysis.« less
Tandem Repeat Proteins Inspired By Squid Ring Teeth
NASA Astrophysics Data System (ADS)
Pena-Francesch, Abdon
Proteins are large biomolecules consisting of long chains of amino acids that hierarchically assemble into complex structures, and provide a variety of building blocks for biological materials. The repetition of structural building blocks is a natural evolutionary strategy for increasing the complexity and stability of protein structures. However, the relationship between amino acid sequence, structure, and material properties of protein systems remains unclear due to the lack of control over the protein sequence and the intricacies of the assembly process. In order to investigate the repetition of protein building blocks, a recently discovered protein from squids is examined as an ideal protein system. Squid ring teeth are predatory appendages located inside the suction cups that provide a strong grasp of prey, and are solely composed of a group of proteins with tandem repetition of building blocks. The objective of this thesis is the understanding of sequence, structure and property relationship in repetitive protein materials inspired in squid ring teeth for the first time. Specifically, this work focuses on squid-inspired structural proteins with tandem repeat units in their sequence (i.e., repetition of alternating building blocks) that are physically cross-linked via beta-sheet structures. The research work presented here tests the hypothesis that, in these systems, increasing the number of building blocks in the polypeptide chain decreases the protein network defects and improves the material properties. Hence, the sequence, nanostructure, and properties (thermal, mechanical, and conducting) of tandem repeat squid-inspired protein materials are examined. Spectroscopic structural analysis, advanced materials characterization, and entropic elasticity theory are combined to elucidate the structure and material properties of these repetitive proteins. This approach is applied not only to native squid proteins but also to squid-inspired synthetic polypeptides that allow for a fine control of the sequence and network morphology. The results provided in this work establish a clear dependence between the repetitive building blocks, the network morphology, and the properties of squid-inspired repetitive protein materials. Increasing the number of tandem repeat units in SRT-inspired proteins led to more effective protein networks with superior properties. Through increasing tandem repetition and optimization of network morphology, highly efficient protein materials capable of withstanding deformations up to 400% of their original length, with MPa-GPa modulus, high energy absorption (50 MJ m-3), peak proton conductivity of 3.7 mS cm-1 (at pH 7, highest reported to date for biological materials), and peak thermal conductivity of 1.4 W m-1 K -1 (which exceeds that of most polymer materials) were developed. These findings introduce new design rules in the engineering of proteins based on tandem repetition and morphology control, and provide a novel framework for tailoring and optimizing the properties of protein-based materials.
ATLASGAL-selected massive clumps in the inner Galaxy. V. Temperature structure and evolution
NASA Astrophysics Data System (ADS)
Giannetti, A.; Leurini, S.; Wyrowski, F.; Urquhart, J.; Csengeri, T.; Menten, K. M.; König, C.; Güsten, R.
2017-07-01
Context. Observational identification of a solid evolutionary sequence for high-mass star-forming regions is still missing. Spectroscopic observations give the opportunity to test possible schemes and connect the phases identified to physical processes. Aims: We aim to use the progressive heating of the gas caused by the feedback of high-mass young stellar objects to prove the statistical validity of the most common schemes used to observationally define an evolutionary sequence for high-mass clumps, and characterise the sensitivity of different tracers to this process. Methods: From the spectroscopic follow-ups carried out towards submillimeter continuum (dust) emission-selected massive clumps (the ATLASGAL TOP100 sample) with the IRAM 30 m, Mopra, and APEX telescopes between 84 GHz and 365 GHz, we selected several multiplets of CH3CN, CH3CCH, and CH3OH emission lines to derive and compare the physical properties of the gas in the clumps along the evolutionary sequence, fitting simultaneously the large number of lines that these molecules have in the observed band. Our findings are compared with results obtained from optically thin CO isotopologues, dust, and ammonia from previous studies on the same sample. Results: The chemical properties of each species have a major role on the measured physical properties. Low temperatures are traced by ammonia, methanol, and CO (in the early phases), the warm and dense envelope can be probed with CH3CN, CH3CCH, and, in evolved sources where CO is abundant in the gas phase, via its optically thin isotopologues. CH3OH and CH3CN are also abundant in the hot cores, and we suggest that their high-excitation transitions are good tools to study the kinematics in the hot gas associated with the inner envelope surrounding the young stellar objects that these clumps are hosting. All tracers show, to different degrees according to their properties, progressive warming with evolution. The relation between gas temperature and the luminosity-to-mass (L/M) ratio is reproduced by a simple toy model of a spherical, internally heated clump. Conclusions: The evolutionary sequence defined for the clumps is statistically valid and we could identify the physical processes dominating in different intervals of L/M. For L/M ≾ 2 L⊙M⊙-1 a large quantity of the gas is still accumulated and compressed at the bottom of the potential well. Between 2 L⊙M⊙-1 ≾ L/M ≾ 40 L⊙M⊙-1 the young stellar objects gain mass and increase in luminosity; the first hot cores hosting intermediate- or high-mass ZAMS stars appear around L/M 10 L⊙M⊙-1. Finally, for L/M ≳ 40 L⊙M⊙-1 Hii regions become common, showing that dissipation of the parental clump dominates. Tables from A.1 to A.8 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A33
TOPICAL REVIEW: The physics of chromatin
NASA Astrophysics Data System (ADS)
Schiessel, Helmut
2003-05-01
Recent progress has been made in the understanding of the physical properties of chromatin - the dense complex of DNA and histone proteins that occupies the nuclei of plant and animal cells. Here I will focus on the two lowest levels of the hierarchy of DNA folding into the chromatin complex. (i) The nucleosome, the chromatin repeating unit consisting of a globular aggregate of eight histone proteins with the DNA wrapped around it: its overcharging, the DNA unwrapping transition, the 'sliding' of the octamer along the DNA. (ii) The 30 nm chromatin fibre, the necklace-like structure of nucleosomes connected via linker DNA: its geometry, its mechanical properties under stretching and its response to changing ionic conditions. I will stress that chromatin combines two seemingly contradictory features: (1) high compaction of DNA within the nuclear envelope and, at the same time, (2) accessibility to genes, promoter regions and gene regulatory sequences.
Laser surface structuring of AZ31 Mg alloy for controlled wettability.
Gökhan Demir, Ali; Furlan, Valentina; Lecis, Nora; Previtali, Barbara
2014-06-01
Structured surfaces exhibit functional properties that can enhance the performance of a bioimplant in terms of biocompatibility, adhesion, or corrosion behavior. In order to tailor the surface property, chemical and physical methods can be used in a sequence of many steps. On the other hand, laser surface processing can provide a single step solution to achieve the designated surface function with the use of simpler equipment and high repeatability. This work provides the details on the surface structuring of AZ31, a biocompatible and biodegradable Mg alloy, by a single-step laser surface structuring based on remelting. The surfaces are characterized in terms of topography, chemistry, and physical integrity, as well as the effective change in the surface wetting behavior is demonstrated. The results imply a great potential in local or complete surface structuring of medical implants for functionalization by the flexible positioning of the laser beam.
Veilleux, Daniel; Gopalakrishna Panicker, Rajesh Krishnan; Chevrier, Anik; Biniecki, Kristof; Lavertu, Marc; Buschmann, Michael D
2018-02-15
Chitosan (CS)/siRNA polyplexes have great therapeutic potential for treating multiple diseases by gene silencing. However, clinical application of this technology requires the development of concentrated, hemocompatible, pH neutral formulations for safe and efficient administration. In this study we evaluate physicochemical properties of chitosan polyplexes in various buffers at increasing ionic strengths, to identify conditions for freeze-drying and rehydration at higher doses of uncoated or hyaluronic acid (HA)-coated polyplexes while maintaining physiological compatibility. Optimized formulations are used to evaluate the impact of the siRNA/oligonucleotide sequence on polyplex physicochemical properties, and to measure their in vitro silencing efficiency, cytotoxicity, and hemocompatibility. Specific oligonucleotide sequences influence polyplex physical properties at low N:P ratios, as well as their stability during freeze-drying. Nanoparticles display greater stability for oligodeoxynucleotides ODN vs siRNA; AT-rich vs GC-rich; and overhangs vs blunt ends. Using this knowledge, various CS/siRNA polyplexes are prepared with and without HA coating, freeze-dried and rehydrated at increased concentrations using reduced rehydration volumes. These polyplexes are non-cytotoxic and preserve silencing activity even after rehydration to 20-fold their initial concentration, while HA-coated polyplexes at pH∼7 also displayed increased hemocompatibility. These concentrated formulations represent a critical step towards clinical development of chitosan-based oligonucleotide intravenous delivery systems. Copyright © 2017 Elsevier Inc. All rights reserved.
On the fallacy of quantitative segmentation for T1-weighted MRI
NASA Astrophysics Data System (ADS)
Plassard, Andrew J.; Harrigan, Robert L.; Newton, Allen T.; Rane, Swati; Pallavaram, Srivatsan; D'Haese, Pierre F.; Dawant, Benoit M.; Claassen, Daniel O.; Landman, Bennett A.
2016-03-01
T1-weighted magnetic resonance imaging (MRI) generates contrasts with primary sensitivity to local T1 properties (with lesser T2 and PD contributions). The observed signal intensity is determined by these local properties and the sequence parameters of the acquisition. In common practice, a range of acceptable parameters is used to ensure "similar" contrast across scanners used for any particular study (e.g., the ADNI standard MPRAGE). However, different studies may use different ranges of parameters and report the derived data as simply "T1-weighted". Physics and imaging authors pay strong heed to the specifics of the imaging sequences, but image processing authors have historically been more lax. Herein, we consider three T1-weighted sequences acquired the same underlying protocol (MPRAGE) and vendor (Philips), but "normal study-to-study variation" in parameters. We show that the gray matter/white matter/cerebrospinal fluid contrast is subtly but systemically different between these images and yields systemically different measurements of brain volume. The problem derives from the visually apparent boundary shifts, which would also be seen by a human rater. We present and evaluate two solutions to produce consistent segmentation results across imaging protocols. First, we propose to acquire multiple sequences on a subset of the data and use the multi-modal imaging as atlases to segment target images any of the available sequences. Second (if additional imaging is not available), we propose to synthesize atlases of the target imaging sequence and use the synthesized atlases in place of atlas imaging data. Both approaches significantly improve consistency of target labeling.
Lenehan, Claire E; Tobe, Shanan S; Smith, Renee J; Popelka-Filcoff, Rachel S
2017-01-01
Many archaeological science studies use the concept of "provenance", where the origins of cultural material can be determined through physical or chemical properties that relate back to the origins of the material. Recent studies using DNA profiling of bacteria have been used for the forensic determination of soils, towards determination of geographic origin. This manuscript presents a novel approach to the provenance of archaeological minerals and related materials through the use of 16S rRNA sequencing analysis of microbial DNA. Through the microbial DNA characterization from ochre and multivariate statistics, we have demonstrated the clear discrimination between four distinct Australian cultural ochre sites.
Winfield, Kari A.
2005-01-01
Because characterizing the unsaturated hydraulic properties of sediments over large areas or depths is costly and time consuming, development of models that predict these properties from more easily measured bulk-physical properties is desirable. At the Idaho National Engineering and Environmental Laboratory, the unsaturated zone is composed of thick basalt flow sequences interbedded with thinner sedimentary layers. Determining the unsaturated hydraulic properties of sedimentary layers is one step in understanding water flow and solute transport processes through this complex unsaturated system. Multiple linear regression was used to construct simple property-transfer models for estimating the water-retention curve and saturated hydraulic conductivity of deep sediments at the Idaho National Engineering and Environmental Laboratory. The regression models were developed from 109 core sample subsets with laboratory measurements of hydraulic and bulk-physical properties. The core samples were collected at depths of 9 to 175 meters at two facilities within the southwestern portion of the Idaho National Engineering and Environmental Laboratory-the Radioactive Waste Management Complex, and the Vadose Zone Research Park southwest of the Idaho Nuclear Technology and Engineering Center. Four regression models were developed using bulk-physical property measurements (bulk density, particle density, and particle size) as the potential explanatory variables. Three representations of the particle-size distribution were compared: (1) textural-class percentages (gravel, sand, silt, and clay), (2) geometric statistics (mean and standard deviation), and (3) graphical statistics (median and uniformity coefficient). The four response variables, estimated from linear combinations of the bulk-physical properties, included saturated hydraulic conductivity and three parameters that define the water-retention curve. For each core sample,values of each water-retention parameter were estimated from the appropriate regression equation and used to calculate an estimated water-retention curve. The degree to which the estimated curve approximated the measured curve was quantified using a goodness-of-fit indicator, the root-mean-square error. Comparison of the root-mean-square-error distributions for each alternative particle-size model showed that the estimated water-retention curves were insensitive to the way the particle-size distribution was represented. Bulk density, the median particle diameter, and the uniformity coefficient were chosen as input parameters for the final models. The property-transfer models developed in this study allow easy determination of hydraulic properties without need for their direct measurement. Additionally, the models provide the basis for development of theoretical models that rely on physical relationships between the pore-size distribution and the bulk-physical properties of the media. With this adaptation, the property-transfer models should have greater application throughout the Idaho National Engineering and Environmental Laboratory and other geographic locations.
ERIC Educational Resources Information Center
Gaubatz, Julie
2013-01-01
Studies of high-school science course sequences have been limited primarily to a small number of site-specific investigations comparing traditional science sequences (e.g., Biology-Chemistry-Physics: BCP) to various Physics First-influenced sequences (Physics-Chemistry-Biology: PCB). The present study summarizes a five-year program evaluation…
The Age-Related Properties of the HD 98800 System
NASA Technical Reports Server (NTRS)
Soderblom, David R.; Henry, Todd J.; Shetrone, Matthew D.; Jones, Burton F.; Saar, Steven H.
1996-01-01
We present optical spectroscopy of the field K star system HD 98800, which has been found to have significant infrared emission from circumstellar material. The lithium abundances of the stars in HD 98800 are well above those of Pleiades of similar color, but activity levels and rotation in these stars are at or below Pleiades level. Thus, it is not yet possible to say whether HD 98800 is or is not a pre-main-sequence system, and it is possible that its components are on or near the zero-age main sequence. However, the two visible objects that make up HD 98800 both have high levels of lithium and activity, strongly suggesting that they are physically related to one another. As shown by Torres and coworkers, having these stars physically tied implies that their relative orbit is highly eccentric and highly inclined to our line of sight, and it also means that we are viewing the HD 98800 system at an unusual time in its orbit.
Mission strategy for cometary exploration in the 1980's
NASA Technical Reports Server (NTRS)
Farquhar, R. W.
1974-01-01
A sequence of ballistic intercept missions to comets is proposed. The mission set is composed of a well-known group of periodic comets whose physical properties are dissimilar. In addition to full descriptions of the nominal mission profiles, earth-based sighting conditions and estimates of cometary ephemeris errors are presented for each target comet. The first mission of the sequence is a slow flyby (approximately 8 km/sec) of Encke's comet near its perihelion in 1980. Because of a near resonance in the orbital periods of Encke and the spacecraft, it is possible to retarget the spacecraft for a second Encke encounter in 1984. The second mission of the sequence also consists of two cometary encounters but in this case different comets are involved; Giacobini-Zinner in 1985 and Borrelly in 1987. The final mission of the sequence calls for a simultaneous launch of two spacecraft towards Halley's comet in 1985. One spacecraft is targeted fo a pre-perihelion intercept at a heliocentric distance of 1.37 AU.
Newell, Wayne L.; Stone, B.; Harrison, R.; ,
2004-01-01
Holocene alluvium of the Pedhicos River around Lefkosia (Nicosia), Cyprus, was studied. Alluvial stratigraphy was found to present serial flood deposits underlying river terraces and an extensive alluvial fan. It was found that the stratigraphy and geomorphology of the alluvium can be interpreted to distinguish not only the effects of climate change, but also land-use change, and the impact of particular engineering works. It was suggested that details of the physical properties of the flood deposit sequences and paleosols can contribute to modeling various geophysical and engineering properties and in predicting response to vertical acceleration during earthquakes.
NASA Astrophysics Data System (ADS)
Mary, Michael Todd
High school students in the United States for the past century have typically taken science courses in a sequence of biology followed by chemistry and concluding with physics. An alternative sequence, typically referred to as "physics first" inverts the traditional sequence by having students begin with physics and end with biology. Proponents of physics first cite advances in biological sciences that have dramatically changed the nature of high school biology and the potential benefit to student learning in math that would accompany taking an algebra-based physics course in the early years of high school to support changing the sequence. Using a quasi-experimental, quantitative research design, the purpose of this study was to investigate the impact of science course sequencing on student achievement in math and science at a school district that offered both course sequences. The Texas state end-of-course exams in biology, chemistry, physics, algebra I and geometry were used as the instruments measuring student achievement in math and science at the end of each academic year. Various statistical models were used to analyze these achievement data. The conclusion was, for students in this study, the sequence in which students took biology, chemistry, and physics had little or no impact on performance on the end-of-course assessments in each of these courses. Additionally there was only a minimal effect found with respect to math performance, leading to the conclusion that neither the traditional or "physics first" science course sequence presented an advantage for student achievement in math or science.
Yamashita, Yuichi; Tani, Jun
2008-01-01
It is generally thought that skilled behavior in human beings results from a functional hierarchy of the motor control system, within which reusable motor primitives are flexibly integrated into various sensori-motor sequence patterns. The underlying neural mechanisms governing the way in which continuous sensori-motor flows are segmented into primitives and the way in which series of primitives are integrated into various behavior sequences have, however, not yet been clarified. In earlier studies, this functional hierarchy has been realized through the use of explicit hierarchical structure, with local modules representing motor primitives in the lower level and a higher module representing sequences of primitives switched via additional mechanisms such as gate-selecting. When sequences contain similarities and overlap, however, a conflict arises in such earlier models between generalization and segmentation, induced by this separated modular structure. To address this issue, we propose a different type of neural network model. The current model neither makes use of separate local modules to represent primitives nor introduces explicit hierarchical structure. Rather than forcing architectural hierarchy onto the system, functional hierarchy emerges through a form of self-organization that is based on two distinct types of neurons, each with different time properties (“multiple timescales”). Through the introduction of multiple timescales, continuous sequences of behavior are segmented into reusable primitives, and the primitives, in turn, are flexibly integrated into novel sequences. In experiments, the proposed network model, coordinating the physical body of a humanoid robot through high-dimensional sensori-motor control, also successfully situated itself within a physical environment. Our results suggest that it is not only the spatial connections between neurons but also the timescales of neural activity that act as important mechanisms leading to functional hierarchy in neural systems. PMID:18989398
Yanagawa, Katsunori; Breuker, Anja; Schippers, Axel; Nishizawa, Manabu; Ijiri, Akira; Hirai, Miho; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken
2014-10-01
The impacts of lithologic structure and geothermal gradient on subseafloor microbial communities were investigated at a marginal site of the Iheya North hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments composed of hemipelagic muds and volcaniclastic deposits were recovered through a depth of 151 m below the seafloor at site C0017 during Integrated Ocean Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene clone sequencing in low-temperature hemipelagic sediments were mainly composed of members of the Chloroflexi and deep-sea archaeal group. In contrast, 16S rRNA gene sequences of marine group I Thaumarchaeota dominated the microbial phylotype communities in the coarse-grained pumiceous gravels interbedded between the hemipelagic sediments. Based on the physical properties of sediments such as temperature and permeability, the porewater chemistry, and the microbial phylotype compositions, the shift in the physical properties of the sediments is suggested to induce a potential subseafloor recharging flow of oxygenated seawater in the permeable zone, leading to the generation of variable chemical environments and microbial communities in the subseafloor habitats. In addition, the deepest section of sediments under high-temperature conditions (∼90°C) harbored the sequences of an uncultivated archaeal lineage of hot water crenarchaeotic group IV that may be associated with the high-temperature hydrothermal fluid flow. These results indicate that the subseafloor microbial community compositions and functions at the marginal site of the hydrothermal field are highly affected by the complex fluid flow structure, such as recharging seawater and underlying hydrothermal fluids, coupled with the lithologic transition of sediments. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Breuker, Anja; Schippers, Axel; Nishizawa, Manabu; Ijiri, Akira; Hirai, Miho; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken
2014-01-01
The impacts of lithologic structure and geothermal gradient on subseafloor microbial communities were investigated at a marginal site of the Iheya North hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments composed of hemipelagic muds and volcaniclastic deposits were recovered through a depth of 151 m below the seafloor at site C0017 during Integrated Ocean Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene clone sequencing in low-temperature hemipelagic sediments were mainly composed of members of the Chloroflexi and deep-sea archaeal group. In contrast, 16S rRNA gene sequences of marine group I Thaumarchaeota dominated the microbial phylotype communities in the coarse-grained pumiceous gravels interbedded between the hemipelagic sediments. Based on the physical properties of sediments such as temperature and permeability, the porewater chemistry, and the microbial phylotype compositions, the shift in the physical properties of the sediments is suggested to induce a potential subseafloor recharging flow of oxygenated seawater in the permeable zone, leading to the generation of variable chemical environments and microbial communities in the subseafloor habitats. In addition, the deepest section of sediments under high-temperature conditions (∼90°C) harbored the sequences of an uncultivated archaeal lineage of hot water crenarchaeotic group IV that may be associated with the high-temperature hydrothermal fluid flow. These results indicate that the subseafloor microbial community compositions and functions at the marginal site of the hydrothermal field are highly affected by the complex fluid flow structure, such as recharging seawater and underlying hydrothermal fluids, coupled with the lithologic transition of sediments. PMID:25063666
Superstatistical model of bacterial DNA architecture
NASA Astrophysics Data System (ADS)
Bogachev, Mikhail I.; Markelov, Oleg A.; Kayumov, Airat R.; Bunde, Armin
2017-02-01
Understanding the physical principles that govern the complex DNA structural organization as well as its mechanical and thermodynamical properties is essential for the advancement in both life sciences and genetic engineering. Recently we have discovered that the complex DNA organization is explicitly reflected in the arrangement of nucleotides depicted by the universal power law tailed internucleotide interval distribution that is valid for complete genomes of various prokaryotic and eukaryotic organisms. Here we suggest a superstatistical model that represents a long DNA molecule by a series of consecutive ~150 bp DNA segments with the alternation of the local nucleotide composition between segments exhibiting long-range correlations. We show that the superstatistical model and the corresponding DNA generation algorithm explicitly reproduce the laws governing the empirical nucleotide arrangement properties of the DNA sequences for various global GC contents and optimal living temperatures. Finally, we discuss the relevance of our model in terms of the DNA mechanical properties. As an outlook, we focus on finding the DNA sequences that encode a given protein while simultaneously reproducing the nucleotide arrangement laws observed from empirical genomes, that may be of interest in the optimization of genetic engineering of long DNA molecules.
iSS-PC: Identifying Splicing Sites via Physical-Chemical Properties Using Deep Sparse Auto-Encoder.
Xu, Zhao-Chun; Wang, Peng; Qiu, Wang-Ren; Xiao, Xuan
2017-08-15
Gene splicing is one of the most significant biological processes in eukaryotic gene expression, such as RNA splicing, which can cause a pre-mRNA to produce one or more mature messenger RNAs containing the coded information with multiple biological functions. Thus, identifying splicing sites in DNA/RNA sequences is significant for both the bio-medical research and the discovery of new drugs. However, it is expensive and time consuming based only on experimental technique, so new computational methods are needed. To identify the splice donor sites and splice acceptor sites accurately and quickly, a deep sparse auto-encoder model with two hidden layers, called iSS-PC, was constructed based on minimum error law, in which we incorporated twelve physical-chemical properties of the dinucleotides within DNA into PseDNC to formulate given sequence samples via a battery of cross-covariance and auto-covariance transformations. In this paper, five-fold cross-validation test results based on the same benchmark data-sets indicated that the new predictor remarkably outperformed the existing prediction methods in this field. Furthermore, it is expected that many other related problems can be also studied by this approach. To implement classification accurately and quickly, an easy-to-use web-server for identifying slicing sites has been established for free access at: http://www.jci-bioinfo.cn/iSS-PC.
ERIC Educational Resources Information Center
Fogarty, Ian; Geelan, David
2013-01-01
Students in 4 Canadian high school physics classes completed instructional sequences in two key physics topics related to motion--Straight Line Motion and Newton's First Law. Different sequences of laboratory investigation, teacher explanation (lecture) and the use of computer-based scientific visualizations (animations and simulations) were…
The Sequencing of Basic Chemistry Topics by Physical Science Teachers
ERIC Educational Resources Information Center
Sibanda, Doras; Hobden, Paul
2016-01-01
The purpose of this study was to find out teachers' preferred teaching sequence for basic chemistry topics in Physical Science in South Africa, to obtain their reasons underpinning their preferred sequence, and to compare these sequences with the prescribed sequences in the current curriculum. The study was located within a pragmatic paradigm and…
Elastic Waves: Mental Models and Teaching/Learning Sequences
NASA Astrophysics Data System (ADS)
Tarantino, Giovanni
In last years many research studies have pointed out relevant student diff- culties in understanding the physics of mechanical waves. Moreover, it has been reported that these diffculties deal with some fundamental concepts as the role of the medium in wave propagation, the superposition principle and the mathematical description of waves involving the use of functions of two variables. In the context of pre-service courses for teacher preparation a teaching/learning (T/L) sequence based on using simple RTL experiments and interactive simulation environments aimed to show the effect of medium properties on the propagation speed of a wave pulse, has been experimented. Here, preliminary results of investigations carried out with a 120 traineeteacher (TT) group are reported and discussed.
Northern Cascadia Subduction Zone Earthquake Records from Onshore and Offshore Core Data
NASA Astrophysics Data System (ADS)
Hausmann, R. B.; Goldfinger, C.; Black, B.; Romsos, C. G.; Galer, S.; Collins, T.
2016-12-01
We are investigating the paleoseismic record at Bull Run Lake, at the latitude of Portland, Oregon, central Cascadia margin. Bull Run is a landslide dammed lake in a cirque basin on the western flanks of Mt. Hood, 65 km east of Portland, and is the City of Portland's primary water supply. We collected full coverage high-resolution multibeam and backscatter data, high resolution CHIRP sub-bottom profiles, and seven sediment cores which contain a correlative turbidite sequence of post Mazama beds. The continuity of the turbidite record shows little or no relationship to the minor stream inlets, suggesting the disturbance beds are not likely to be storm related. CT and physical property data were used to separate major visible beds and background sedimentation, which also contain thin laminae. The XRF element Compton scattering may show grading due to mineralogical variation and a change in wave profile, commonly found at bed boundaries. We have identified 27 post -Mazama event beds and 5 ashes in the lake, and constructed an OxCal age model anchored by radiocarbon ages, the Mazama ash, and the twin Timberline ash beds. The radiocarbon ages, age model results, as well as electron microprobe (EMP) data clearly identify the Mazama ash at the base of our cores. Two closely-spaced ash beds in our cores likely correlate to the Timberline eruptive period at 1.5ka. The number, timing and sequence of the event beds, and physical property log correlation, as well as key bed characteristics, closely matches offshore turbidite sequences off northern Oregon. For example, key regional bed T11, observed as a thick two-pulse bed in all offshore cores, also anchors the Bull Run sequence. One difference is that the twin Timberline ash occupies the stratigraphic position of regional offshore paleoseismic bed T4, which is also a two pulse event at this latitude. The cores also contain many faint laminae that may contain a storm record, however, the identification of small beds is complicated by the low sedimentation rate and low resolution of the Bull Run cores. The watershed and lake may also contain evidence of crustal faulting, though the event sequence appears to be primarily that of the Cascadia subduction zone earthquake sequence. See also Goldfinger et al. for investigation of slope stability and ground motions at Bull Run and other Cascadia lakes.
Time series data analysis using DFA
NASA Astrophysics Data System (ADS)
Okumoto, A.; Akiyama, T.; Sekino, H.; Sumi, T.
2014-02-01
Detrended fluctuation analysis (DFA) was originally developed for the evaluation of DNA sequence and interval for heart rate variability (HRV), but it is now used to obtain various biological information. In this study we perform DFA on artificially generated data where we already know the relationship between signal and the physical event causing the signal. We generate artificial data using molecular dynamics. The Brownian motion of a polymer under an external force is investigated. In order to generate artificial fluctuation in the physical properties, we introduce obstacle pillars fixed to nanostructures. Using different conditions such as presence or absence of obstacles, external field, and the polymer length, we perform DFA on energies and positions of the polymer.
NASA Astrophysics Data System (ADS)
Beeman-Cadwallader, Nicole
In 2007 Pioneer High School, a public school in Whittier, California changed the sequence of its science courses from the Traditional Biology-Chemistry-Physics (B-C-P) to Biology-Physics-Chemistry (B-P-C), or "Physics Second." The California Standards Tests (CSTs) scores in Physics and Chemistry from 2004-2012 were used to determine if there were any effects of the Physics Second sequencing on student achievement in those courses. The data was also used to determine whether the Physics Second sequence had an effect on performance in Physics and Chemistry based on gender. Independent t tests and chi-square analysis of the data determined an improvement in student performance in Chemistry but not Physics. The 2x2 Factorial ANOVA analysis revealed that in Physics male students performed better on the CSTs than their female peers. In Chemistry, it was noted that male and female students performed equally well. Neither finding was a result ofthe change to the "Physics Second" sequencing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohacs, K.M.
1990-05-01
Deep basinal rocks of the Monterey Formation can be allocated to different depositional environments based on an integration of bedding, facies stacking patterns, lithology, biofacies, and inorganic and organic chemistry. These rocks show evidence of systematic changes in depositional environments that can be related to eustatic sea level change and basin evolution. Even deep-basinal environments are affected by changing sea level through changes in circulation patterns and intensities nutrient budgets and dispersal patterns, and location and intensity of the oceanic oxygen minimum. The sequence-stratigraphic framework was constructed based on the physical expression of the outcrop strata and confirmed by typingmore » the outcrop sections to an integrated well-log/seismic grid through outcrop gamma-ray-spectral profiles. Interpretation of a sequence boundary was based on increased proportions of hemipelagic facies, evidence of increased bottom-energy levels above the boundary, and local erosion and relief on the surface. The proportion of shallower water and reworked dinoflagellates increased to a local maximum above the boundary, Downlap surfaces exhibited increased proportions of pelagic facies around the surface, evidence of decreased bottom-energy levels and terrigenous sedimentation rates, and little or no significant erosion on the surface. The proportion of deeper water dinoflagellates increased to a local maximum at or near the downlap surface; there was no evidence of reworked individuals. The detailed sequence-stratigraphic framework makes it possible to the rock properties to genetic processes for construction of predictive models.« less
Comparative modeling without implicit sequence alignments.
Kolinski, Andrzej; Gront, Dominik
2007-10-01
The number of known protein sequences is about thousand times larger than the number of experimentally solved 3D structures. For more than half of the protein sequences a close or distant structural analog could be identified. The key starting point in a classical comparative modeling is to generate the best possible sequence alignment with a template or templates. With decreasing sequence similarity, the number of errors in the alignments increases and these errors are the main causes of the decreasing accuracy of the molecular models generated. Here we propose a new approach to comparative modeling, which does not require the implicit alignment - the model building phase explores geometric, evolutionary and physical properties of a template (or templates). The proposed method requires prior identification of a template, although the initial sequence alignment is ignored. The model is built using a very efficient reduced representation search engine CABS to find the best possible superposition of the query protein onto the template represented as a 3D multi-featured scaffold. The criteria used include: sequence similarity, predicted secondary structure consistency, local geometric features and hydrophobicity profile. For more difficult cases, the new method qualitatively outperforms existing schemes of comparative modeling. The algorithm unifies de novo modeling, 3D threading and sequence-based methods. The main idea is general and could be easily combined with other efficient modeling tools as Rosetta, UNRES and others.
The STRATAFORM Project: U.S. Geological Survey geotechnical studies
Minasian, Diane L.; Lee, Homa J.; Locat, Jaques; Orzech, Kevin M.; Martz, Gregory R.; Israel, Kenneth
2001-01-01
This report presents physical property logs of core samples from an offshore area near Eureka, CA. The cores were obtained as part of the STRATAFORM Program (Nittrouer and Kravitz, 1995, 1996), a study investigating how present sedimentation and sediment transport processes influence long-term stratigraphic sequences preserved in the geologic record. The core samples were collected during four separate research cruises to the northern California study area, and data shown in the logs of the cores were collected using a multi-sensor whole core logger. The physical properties collected are useful in identifying stratigraphic units, ground-truthing acoustic imagery and sub-bottom profiles, and in understanding mass movement processes. STRATA FORmation on Margins was initiated in 1994 by the Office of Naval Research, Marine Geology and Geophysics Department as a coordinated multi-investigator study of continental-margin sediment transport processes and stratigraphy (Nittrouer and Kravitz, 1996). The program is investigating the stratigraphic signature of the shelf and slope parts of the continental margins, and is designed to provide a better understanding of the sedimentary record and a better prediction of strata. Specifically, the goals of the STRATAFORM Program are to (Nittrouer and Kravitz, 1995): - determine the geological relevance of short-term physical processes that erode, transport, and deposit particles and those processes that subsequently rework the seabed over time scales - improve capabilities for identifying the processes that form the strata observed within the upper ~100 m of the seabed commonly representing 104-106 years of sedimentation. - synthesize this knowledge and bridge the gap between time scales of sedimentary processes and those of sequence stratigraphy. The STRATAFORM Program is divided into studies of the continental shelf and the continental slope; the geotechnical group within the U.S. Geological Survey provides support to both parts of the project.
Self-organized, highly luminescent CdSe nanorod-DNA complexes.
Artemyev, Mikhail; Kisiel, Dmitry; Abmiotko, Sergey; Antipina, Maria N; Khomutov, Gennady B; Kislov, Vladimir V; Rakhnyanskaya, Anna A
2004-09-01
DNA molecules are useful building blocks and nanotemplates for controllable fabrication of various bioinorganic nanostructures due to their unique physical-chemical properties and recognition capabilities and the synthetic availability of desired nucleotide sequences and length. We have synthesized novel DNA complexes with positively charged, highly luminescent CdSe nanorods that can be self-organized into filamentary, netlike, or spheroidal nanostructures. DNA-CdSe-nanorod filaments possess strongly linearly polarized photoluminescence due to the unidirectional orientation of nanorods along the filaments. Copyright 2004 American Chemical Society
Febrer, Melanie; Goicoechea, Jose Luis; Wright, Jonathan; McKenzie, Neil; Song, Xiang; Lin, Jinke; Collura, Kristi; Wissotski, Marina; Yu, Yeisoo; Ammiraju, Jetty S. S.; Wolny, Elzbieta; Idziak, Dominika; Betekhtin, Alexander; Kudrna, Dave; Hasterok, Robert; Wing, Rod A.; Bevan, Michael W.
2010-01-01
The pooid subfamily of grasses includes some of the most important crop, forage and turf species, such as wheat, barley and Lolium. Developing genomic resources, such as whole-genome physical maps, for analysing the large and complex genomes of these crops and for facilitating biological research in grasses is an important goal in plant biology. We describe a bacterial artificial chromosome (BAC)-based physical map of the wild pooid grass Brachypodium distachyon and integrate this with whole genome shotgun sequence (WGS) assemblies using BAC end sequences (BES). The resulting physical map contains 26 contigs spanning the 272 Mb genome. BES from the physical map were also used to integrate a genetic map. This provides an independent vaildation and confirmation of the published WGS assembly. Mapped BACs were used in Fluorescence In Situ Hybridisation (FISH) experiments to align the integrated physical map and sequence assemblies to chromosomes with high resolution. The physical, genetic and cytogenetic maps, integrated with whole genome shotgun sequence assemblies, enhance the accuracy and durability of this important genome sequence and will directly facilitate gene isolation. PMID:20976139
Kumar, Rajnish; Mishra, Bharat Kumar; Lahiri, Tapobrata; Kumar, Gautam; Kumar, Nilesh; Gupta, Rahul; Pal, Manoj Kumar
2017-06-01
Online retrieval of the homologous nucleotide sequences through existing alignment techniques is a common practice against the given database of sequences. The salient point of these techniques is their dependence on local alignment techniques and scoring matrices the reliability of which is limited by computational complexity and accuracy. Toward this direction, this work offers a novel way for numerical representation of genes which can further help in dividing the data space into smaller partitions helping formation of a search tree. In this context, this paper introduces a 36-dimensional Periodicity Count Value (PCV) which is representative of a particular nucleotide sequence and created through adaptation from the concept of stochastic model of Kolekar et al. (American Institute of Physics 1298:307-312, 2010. doi: 10.1063/1.3516320 ). The PCV construct uses information on physicochemical properties of nucleotides and their positional distribution pattern within a gene. It is observed that PCV representation of gene reduces computational cost in the calculation of distances between a pair of genes while being consistent with the existing methods. The validity of PCV-based method was further tested through their use in molecular phylogeny constructs in comparison with that using existing sequence alignment methods.
Assessing Diversity of DNA Structure-Related Sequence Features in Prokaryotic Genomes
Huang, Yongjie; Mrázek, Jan
2014-01-01
Prokaryotic genomes are diverse in terms of their nucleotide and oligonucleotide composition as well as presence of various sequence features that can affect physical properties of the DNA molecule. We present a survey of local sequence patterns which have a potential to promote non-canonical DNA conformations (i.e. different from standard B-DNA double helix) and interpret the results in terms of relationships with organisms' habitats, phylogenetic classifications, and other characteristics. Our present work differs from earlier similar surveys not only by investigating a wider range of sequence patterns in a large number of genomes but also by using a more realistic null model to assess significant deviations. Our results show that simple sequence repeats and Z-DNA-promoting patterns are generally suppressed in prokaryotic genomes, whereas palindromes and inverted repeats are over-represented. Representation of patterns that promote Z-DNA and intrinsic DNA curvature increases with increasing optimal growth temperature (OGT), and decreases with increasing oxygen requirement. Additionally, representations of close direct repeats, palindromes and inverted repeats exhibit clear negative trends with increasing OGT. The observed relationships with environmental characteristics, particularly OGT, suggest possible evolutionary scenarios of structural adaptation of DNA to particular environmental niches. PMID:24408877
Structural and biological mimicry of protein surface recognition by [alpha/beta]-peptide foldamers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horne, W. Seth; Johnson, Lisa M.; Ketas, Thomas J.
Unnatural oligomers that can mimic protein surfaces offer a potentially useful strategy for blocking biomedically important protein-protein interactions. Here we evaluate an approach based on combining {alpha}- and {beta}-amino acid residues in the context of a polypeptide sequence from the HIV protein gp41, which represents an excellent testbed because of the wealth of available structural and biological information. We show that {alpha}/{beta}-peptides can mimic structural and functional properties of a critical gp41 subunit. Physical studies in solution, crystallographic data, and results from cell-fusion and virus-infectivity assays collectively indicate that the gp41-mimetic {alpha}/{beta}-peptides effectively block HIV-cell fusion via a mechanism comparablemore » to that of gp41-derived {alpha}-peptides. An optimized {alpha}/{beta}-peptide is far less susceptible to proteolytic degradation than is an analogous {alpha}-peptide. Our findings show how a two-stage design approach, in which sequence-based {alpha} {yields} {beta} replacements are followed by site-specific backbone rigidification, can lead to physical and biological mimicry of a natural biorecognition process.« less
On the auto and cross correlation of PN sequences
NASA Technical Reports Server (NTRS)
Morakis, J. C.
1969-01-01
The autocorrelation and crosscorrelation properties of pseudorandom (PN) sequences are analyzed by using some important properties of PN sequences. These properties make this discussion understandable without the need of linear algebraic approach. The analysis is followed by some experimental results.
A hybrid BAC physical map of potato: a framework for sequencing a heterozygous genome
2011-01-01
Background Potato is the world's third most important food crop, yet cultivar improvement and genomic research in general remain difficult because of the heterozygous and tetraploid nature of its genome. The development of physical map resources that can facilitate genomic analyses in potato has so far been very limited. Here we present the methods of construction and the general statistics of the first two genome-wide BAC physical maps of potato, which were made from the heterozygous diploid clone RH89-039-16 (RH). Results First, a gel electrophoresis-based physical map was made by AFLP fingerprinting of 64478 BAC clones, which were aligned into 4150 contigs with an estimated total length of 1361 Mb. Screening of BAC pools, followed by the KeyMaps in silico anchoring procedure, identified 1725 AFLP markers in the physical map, and 1252 BAC contigs were anchored the ultradense potato genetic map. A second, sequence-tag-based physical map was constructed from 65919 whole genome profiling (WGP) BAC fingerprints and these were aligned into 3601 BAC contigs spanning 1396 Mb. The 39733 BAC clones that overlap between both physical maps provided anchors to 1127 contigs in the WGP physical map, and reduced the number of contigs to around 2800 in each map separately. Both physical maps were 1.64 times longer than the 850 Mb potato genome. Genome heterozygosity and incomplete merging of BAC contigs are two factors that can explain this map inflation. The contig information of both physical maps was united in a single table that describes hybrid potato physical map. Conclusions The AFLP physical map has already been used by the Potato Genome Sequencing Consortium for sequencing 10% of the heterozygous genome of clone RH on a BAC-by-BAC basis. By layering a new WGP physical map on top of the AFLP physical map, a genetically anchored genome-wide framework of 322434 sequence tags has been created. This reference framework can be used for anchoring and ordering of genomic sequences of clone RH (and other potato genotypes), and opens the possibility to finish sequencing of the RH genome in a more efficient way via high throughput next generation approaches. PMID:22142254
Bioinformatic Analysis of Strawberry GSTF12 Gene
NASA Astrophysics Data System (ADS)
Wang, Xiran; Jiang, Leiyu; Tang, Haoru
2018-01-01
GSTF12 has always been known as a key factor of proanthocyanins accumulate in plant testa. Through bioinformatics analysis of the nucleotide and encoded protein sequence of GSTF12, it is more advantageous to the study of genes related to anthocyanin biosynthesis accumulation pathway. Therefore, we chosen GSTF12 gene of 11 kinds species, downloaded their nucleotide and protein sequence from NCBI as the research object, found strawberry GSTF12 gene via bioinformation analyse, constructed phylogenetic tree. At the same time, we analysed the strawberry GSTF12 gene of physical and chemical properties and its protein structure and so on. The phylogenetic tree showed that Strawberry and petunia were closest relative. By the protein prediction, we found that the protein owed one proper signal peptide without obvious transmembrane regions.
Characterization of tannase protein sequences of bacteria and fungi: an in silico study.
Banerjee, Amrita; Jana, Arijit; Pati, Bikash R; Mondal, Keshab C; Das Mohapatra, Pradeep K
2012-04-01
The tannase protein sequences of 149 bacteria and 36 fungi were retrieved from NCBI database. Among them only 77 bacterial and 31 fungal tannase sequences were taken which have different amino acid compositions. These sequences were analysed for different physical and chemical properties, superfamily search, multiple sequence alignment, phylogenetic tree construction and motif finding to find out the functional motif and the evolutionary relationship among them. The superfamily search for these tannase exposed the occurrence of proline iminopeptidase-like, biotin biosynthesis protein BioH, O-acetyltransferase, carboxylesterase/thioesterase 1, carbon-carbon bond hydrolase, haloperoxidase, prolyl oligopeptidase, C-terminal domain and mycobacterial antigens families and alpha/beta hydrolase superfamily. Some bacterial and fungal sequence showed similarity with different families individually. The multiple sequence alignment of these tannase protein sequences showed conserved regions at different stretches with maximum homology from amino acid residues 389-469 and 482-523 which could be used for designing degenerate primers or probes specific for tannase producing bacterial and fungal species. Phylogenetic tree showed two different clusters; one has only bacteria and another have both fungi and bacteria showing some relationship between these different genera. Although in second cluster near about all fungal species were found together in a corner which indicates the sequence level similarity among fungal genera. The distributions of fourteen motifs analysis revealed Motif 1 with a signature amino acid sequence of 29 amino acids, i.e. GCSTGGREALKQAQRWPHDYDGIIANNPA, was uniformly observed in 83.3 % of studied tannase sequences representing its participation with the structure and enzymatic function.
Role of mutation on fibril formation in small peptides by REMD
NASA Astrophysics Data System (ADS)
Mahmoudinobar, Farbod; Dias, Cristiano
Amyloid fibrils are now recognized as a common form of protein structure. They have wide implications for neurological diseases and entities involved in the survival of living organisms, e.g., silkmoth eggshells. Biological functions of these entities are often related to the superior mechanical strength of fibrils that persists over a broad range of chemical and thermal conditions desirable for various biotechnological applications, e.g., to encapsulate drugs. Mechanical properties of fibrils was shown to depend strongly on the amino acid sequence of its constituent peptides whereby bending rigidities can vary by two orders of magnitude. Therefore, the rational design of new fibril-prone peptides with tailored properties depends on our understanding of the relation between amino acid sequence and its propensity to fibrillize. In this presentation I will show results from extensive Replica Exchange Molecular Dynamics (REMD) simulations of a 12-residue peptide containing the fibril-prone motif KFFE and its mutants. Simulations are performed on monomers, dimers, and tetramers. I will discuss effects of side chain packing, hydrophobicity, charges and beta-sheet propensity on fibril formation. Physics Department, University Heights, Newark, New Jersey, 07102-1982, USA.
Mizrachi, Eshchar; Maloney, Victoria J; Silberbauer, Janine; Hefer, Charles A; Berger, Dave K; Mansfield, Shawn D; Myburg, Alexander A
2015-06-01
Tension wood has distinct physical and chemical properties, including altered fibre properties, cell wall composition and ultrastructure. It serves as a good system for investigating the genetic regulation of secondary cell wall biosynthesis and wood formation. The reference genome sequence for Eucalyptus grandis allows investigation of the global transcriptional reprogramming that accompanies tension wood formation in this global wood fibre crop. We report the first comprehensive analysis of physicochemical wood property changes in tension wood of Eucalyptus measured in a hybrid (E. grandis × Eucalyptus urophylla) clone, as well as genome-wide gene expression changes in xylem tissues 3 wk post-induction using RNA sequencing. We found that Eucalyptus tension wood in field-grown trees is characterized by an increase in cellulose, a reduction in lignin, xylose and mannose, and a marked increase in galactose. Gene expression profiling in tension wood-forming tissue showed corresponding down-regulation of monolignol biosynthetic genes, and differential expression of several carbohydrate active enzymes. We conclude that alterations of cell wall traits induced by tension wood formation in Eucalyptus are a consequence of a combination of down-regulation of lignin biosynthesis and hemicellulose remodelling, rather than the often proposed up-regulation of the cellulose biosynthetic pathway. © 2014 University of Pretoria New Phytologist © 2014 New Phytologist Trust.
Torstensson, Anders; Dinasquet, Julie; Chierici, Melissa; Fransson, Agneta; Riemann, Lasse; Wulff, Angela
2015-10-01
Due to climate change, sea ice experiences changes in terms of extent and physical properties. In order to understand how sea ice microbial communities are affected by changes in physicochemical properties of the ice, we used 454-sequencing of 16S and 18S rRNA genes to examine environmental control of microbial diversity and composition in Antarctic sea ice. We observed a high diversity and richness of bacteria, which were strongly negatively correlated with temperature and positively with brine salinity. We suggest that bacterial diversity in sea ice is mainly controlled by physicochemical properties of the ice, such as temperature and salinity, and that sea ice bacterial communities are sensitive to seasonal and environmental changes. For the first time in Antarctic interior sea ice, we observed a strong eukaryotic dominance of the dinoflagellate phylotype SL163A10, comprising 63% of the total sequences. This phylotype is known to be kleptoplastic and could be a significant primary producer in sea ice. We conclude that mixotrophic flagellates may play a greater role in the sea ice microbial ecosystem than previously believed, and not only during the polar night but also during summer when potential food sources are abundant. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Theory of winds in late-type evolved and pre-main-sequence stars
NASA Technical Reports Server (NTRS)
Macgregor, K. B.
1983-01-01
Recent observational results confirm that many of the physical processes which are known to occur in the Sun also occur among late-type stars in general. One such process is the continuous loss of mass from a star in the form of a wind. There now exists an abundance of either direct or circumstantial evidence which suggests that most (if not all) stars in the cool portion of the HR diagram possess winds. An attempt is made to assess the current state of theoretical understanding of mass loss from two distinctly different classes of late-type stars: the post-main-sequence giant/supergiant stars and the pre-main-sequence T Tauri stars. Toward this end, the observationally inferred properties of the wind associated with each of the two stellar classes under consideration are summarized and compared against the predictions of existing theoretical models. Although considerable progress has been made in attempting to identify the mechanisms responsible for mass loss from cool stars, many fundamental problems remain to be solved.
Long-range correlations and charge transport properties of DNA sequences
NASA Astrophysics Data System (ADS)
Liu, Xiao-liang; Ren, Yi; Xie, Qiong-tao; Deng, Chao-sheng; Xu, Hui
2010-04-01
By using Hurst's analysis and transfer approach, the rescaled range functions and Hurst exponents of human chromosome 22 and enterobacteria phage lambda DNA sequences are investigated and the transmission coefficients, Landauer resistances and Lyapunov coefficients of finite segments based on above genomic DNA sequences are calculated. In a comparison with quasiperiodic and random artificial DNA sequences, we find that λ-DNA exhibits anticorrelation behavior characterized by a Hurst exponent 0.5
NASA Astrophysics Data System (ADS)
Sullivan, Sarah; Gnesdilow, Dana; Puntambekar, Sadhana; Kim, Jee-Seon
2017-08-01
Physical and virtual experimentation are thought to have different affordances for supporting students' learning. Research investigating the use of physical and virtual experiments to support students' learning has identified a variety of, sometimes conflicting, outcomes. Unanswered questions remain about how physical and virtual experiments may impact students' learning and for which contexts and content areas they may be most effective. Using a quasi-experimental design, we examined eighth grade students' (N = 100) learning of physics concepts related to pulleys depending on the sequence of physical and virtual labs they engaged in. Five classes of students were assigned to either the: physical first condition (PF) (n = 55), where students performed a physical pulley experiment and then performed the same experiment virtually, or virtual first condition (VF) (n = 45), with the opposite sequence. Repeated measures ANOVA's were conducted to examine how physical and virtual labs impacted students' learning of specific physics concepts. While we did not find clear-cut support that one sequence was better, we did find evidence that participating in virtual experiments may be more beneficial for learning certain physics concepts, such as work and mechanical advantage. Our findings support the idea that if time or physical materials are limited, using virtual experiments may help students understand work and mechanical advantage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohacs, K.M.
1991-02-01
Deep basinal rocks of the Monterey Formation can be allocated to different depositional environments based on an integration of bedding, stacking patterns of facies, lithology, biofacies, and inorganic and organic chemistry. These rocks show evidence of systematic changes in depositional environments that can be related to eustatic sea level changes and basin evolution. Even deep-basinal environments are affected by changing sea level through changes in circulation patterns and intensities, nutrient budgets and dispersal patterns, and location and intensity of the oceanic oxygen minimum. The sequence-stratigraphic framework was constructed based on the physical expression of the outcrop strata and confirmed bymore » typing the outcrop sections to an integrated will-log/seismic grid through outcrop gamma-ray spectral profiles. Interpretation of a sequence boundary was based on increased proportions of hemipelagic facies and evidence of increased bottom-energy levels above the boundary, and local erosion and relief on the surface. The proportion of shallower water and reworked dinoflagellates increased to a local maximum above the boundary. Downlap surfaces exhibited increased proportions of pelagic facies around the surface, a secular change in the dominant lithology across the surface, evidence of decreased bottom-energy levels and terrigenous sedimentation rates, and little or not significant erosion on the surface. The proportion of deeper water dinoflagellates increased to a local maximum at or near the downlap surface; there was no evidence of reworked individuals. The detailed sequence-stratigraphic framework makes it possible to tie rock properties to genetic processes for construction of predictive models.« less
Shaw, Jennifer L. A.; Weyrich, Laura S.; Sawade, Emma; Drikas, Mary; Cooper, Alan J.
2015-01-01
Drinking water assessments use a variety of microbial, physical, and chemical indicators to evaluate water treatment efficiency and product water quality. However, these indicators do not allow the complex biological communities, which can adversely impact the performance of drinking water distribution systems (DWDSs), to be characterized. Entire bacterial communities can be studied quickly and inexpensively using targeted metagenomic amplicon sequencing. Here, amplicon sequencing of the 16S rRNA gene region was performed alongside traditional water quality measures to assess the health, quality, and efficiency of two distinct, full-scale DWDSs: (i) a linear DWDS supplied with unfiltered water subjected to basic disinfection before distribution and (ii) a complex, branching DWDS treated by a four-stage water treatment plant (WTP) prior to disinfection and distribution. In both DWDSs bacterial communities differed significantly after disinfection, demonstrating the effectiveness of both treatment regimes. However, bacterial repopulation occurred further along in the DWDSs, and some end-user samples were more similar to the source water than to the postdisinfection water. Three sample locations appeared to be nitrified, displaying elevated nitrate levels and decreased ammonia levels, and nitrifying bacterial species, such as Nitrospira, were detected. Burkholderiales were abundant in samples containing large amounts of monochloramine, indicating resistance to disinfection. Genera known to contain pathogenic and fecal-associated species were also identified in several locations. From this study, we conclude that metagenomic amplicon sequencing is an informative method to support current compliance-based methods and can be used to reveal bacterial community interactions with the chemical and physical properties of DWDSs. PMID:26162884
Robust sensorimotor representation to physical interaction changes in humanoid motion learning.
Shimizu, Toshihiko; Saegusa, Ryo; Ikemoto, Shuhei; Ishiguro, Hiroshi; Metta, Giorgio
2015-05-01
This paper proposes a learning from demonstration system based on a motion feature, called phase transfer sequence. The system aims to synthesize the knowledge on humanoid whole body motions learned during teacher-supported interactions, and apply this knowledge during different physical interactions between a robot and its surroundings. The phase transfer sequence represents the temporal order of the changing points in multiple time sequences. It encodes the dynamical aspects of the sequences so as to absorb the gaps in timing and amplitude derived from interaction changes. The phase transfer sequence was evaluated in reinforcement learning of sitting-up and walking motions conducted by a real humanoid robot and compatible simulator. In both tasks, the robotic motions were less dependent on physical interactions when learned by the proposed feature than by conventional similarity measurements. Phase transfer sequence also enhanced the convergence speed of motion learning. Our proposed feature is original primarily because it absorbs the gaps caused by changes of the originally acquired physical interactions, thereby enhancing the learning speed in subsequent interactions.
Blind test of physics-based prediction of protein structures.
Shell, M Scott; Ozkan, S Banu; Voelz, Vincent; Wu, Guohong Albert; Dill, Ken A
2009-02-01
We report here a multiprotein blind test of a computer method to predict native protein structures based solely on an all-atom physics-based force field. We use the AMBER 96 potential function with an implicit (GB/SA) model of solvation, combined with replica-exchange molecular-dynamics simulations. Coarse conformational sampling is performed using the zipping and assembly method (ZAM), an approach that is designed to mimic the putative physical routes of protein folding. ZAM was applied to the folding of six proteins, from 76 to 112 monomers in length, in CASP7, a community-wide blind test of protein structure prediction. Because these predictions have about the same level of accuracy as typical bioinformatics methods, and do not utilize information from databases of known native structures, this work opens up the possibility of predicting the structures of membrane proteins, synthetic peptides, or other foldable polymers, for which there is little prior knowledge of native structures. This approach may also be useful for predicting physical protein folding routes, non-native conformations, and other physical properties from amino acid sequences.
Blind Test of Physics-Based Prediction of Protein Structures
Shell, M. Scott; Ozkan, S. Banu; Voelz, Vincent; Wu, Guohong Albert; Dill, Ken A.
2009-01-01
We report here a multiprotein blind test of a computer method to predict native protein structures based solely on an all-atom physics-based force field. We use the AMBER 96 potential function with an implicit (GB/SA) model of solvation, combined with replica-exchange molecular-dynamics simulations. Coarse conformational sampling is performed using the zipping and assembly method (ZAM), an approach that is designed to mimic the putative physical routes of protein folding. ZAM was applied to the folding of six proteins, from 76 to 112 monomers in length, in CASP7, a community-wide blind test of protein structure prediction. Because these predictions have about the same level of accuracy as typical bioinformatics methods, and do not utilize information from databases of known native structures, this work opens up the possibility of predicting the structures of membrane proteins, synthetic peptides, or other foldable polymers, for which there is little prior knowledge of native structures. This approach may also be useful for predicting physical protein folding routes, non-native conformations, and other physical properties from amino acid sequences. PMID:19186130
NASA Astrophysics Data System (ADS)
Lin, Yi-Hsuan; Brady, Jacob P.; Forman-Kay, Julie D.; Chan, Hue Sun
2017-11-01
Biologically functional liquid-liquid phase separation of intrinsically disordered proteins (IDPs) is driven by interactions encoded by their amino acid sequences. Little is currently known about the molecular recognition mechanisms for distributing different IDP sequences into various cellular membraneless compartments. Pertinent physics was addressed recently by applying random-phase-approximation (RPA) polymer theory to electrostatics, which is a major energetic component governing IDP phase properties. RPA accounts for charge patterns and thus has advantages over Flory-Huggins (FH) and Overbeek-Voorn mean-field theories. To make progress toward deciphering the phase behaviors of multiple IDP sequences, the RPA formulation for one IDP species plus solvent is hereby extended to treat polyampholyte solutions containing two IDP species plus solvent. The new formulation generally allows for binary coexistence of two phases, each containing a different set of volume fractions ({φ }1,{φ }2) for the two different IDP sequences. The asymmetry between the two predicted coexisting phases with regard to their {φ }1/{φ }2 ratios for the two sequences increases with increasing mismatch between their charge patterns. This finding points to a multivalent, stochastic, ‘fuzzy’ mode of molecular recognition that helps populate various IDP sequences differentially into separate phase compartments. An intuitive illustration of this trend is provided by FH models, whereby a hypothetical case of ternary coexistence is also explored. Augmentations of the present RPA theory with a relative permittivity {ɛ }{{r}}(φ ) that depends on IDP volume fraction φ ={φ }1+{φ }2 lead to higher propensities to phase separate, in line with the case with one IDP species we studied previously. Notably, the cooperative, phase-separation-enhancing effects predicted by the prescriptions for {ɛ }{{r}}(φ ) we deem physically plausible are much more prominent than that entailed by common effective medium approximations based on Maxwell Garnett and Bruggeman mixing formulas. Ramifications of our findings on further theoretical development for IDP phase separation are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Richard A.; Panyala, Ajay R.; Glass, Kevin A.
MerCat is a parallel, highly scalable and modular property software package for robust analysis of features in next-generation sequencing data. MerCat inputs include assembled contigs and raw sequence reads from any platform resulting in feature abundance counts tables. MerCat allows for direct analysis of data properties without reference sequence database dependency commonly used by search tools such as BLAST and/or DIAMOND for compositional analysis of whole community shotgun sequencing (e.g. metagenomes and metatranscriptomes).
NASA Astrophysics Data System (ADS)
Bridges, Jon P.
Improving the STEM readiness of students from historically underserved groups is a moral and economic imperative requiring greater attention and effort than has been shown to date. The current literature suggests a high school science sequence beginning with physics and centered on developing conceptual understanding, using inquiry labs and modeling to allow students to explore new ideas, and addressing and correcting student misconceptions can increase student interest in and preparation for STEM careers. The purpose of this study was to determine if the science college readiness of historically underserved students can be improved by implementing an inquiry-based high school science sequence comprised of coursework in physics, chemistry, and biology for every student. The study used a retrospective cohort observational design to address the primary research question: are there differences between historically underserved students completing a Physics First science sequence and their peers completing a traditional science sequence in 1) science college-readiness test scores, 2) rates of science college-and career-readiness, and 3) interest in STEM? Small positive effects were found for all three outcomes for historically underserved students in the Physics First sequence.
Aysin, Rinat R; Bukalov, Sergey S; Leites, Larissa A; Zabula, Alexander V
2017-07-11
A series of benzannulated N-heterocyclic compounds containing divalent 14 group atoms, C 6 H 4 (NR) 2 E II , E = C, Si, Ge, Sn, Pb, have been studied by various experimental (vibrational and UV-vis spectroscopy) and theoretical (NICS, ISE, ACID) techniques. The methods used confirm 10 π-electron delocalization (aromaticity) in these heterocycles, however, the aromaticity sequences estimated by the criteria based on different physical properties do not coincide.
ERIC Educational Resources Information Center
American Association of Physics Teachers (NJ1), 2009
2009-01-01
Physics First represents an organizational alternative to the traditional high school science sequence. It calls for a re-sequencing of high school courses so that students study physics before chemistry and biology. The purpose of this pamphlet is to provide: (1) Basic information and rationale for the Physics First curriculum; (2) Strategies for…
The Numbers Speak: Physics First Supports Math Performance
ERIC Educational Resources Information Center
Glasser, Howard M.
2012-01-01
More schools in the United States have begun teaching physics to ninth-graders, but there continues to be limited evidence that such a change benefits students. Many arguments in favor of Physics First and the inverted sequence of physics-chemistry-biology are based more on the intellectual logic of the sequence than on measured outcomes. Paul…
Land-use changes influence soil bacterial communities in a meadow grassland in Northeast China
NASA Astrophysics Data System (ADS)
Cao, Chengyou; Zhang, Ying; Qian, Wei; Liang, Caiping; Wang, Congmin; Tao, Shuang
2017-10-01
The conversion of natural grassland into agricultural fields is an intensive anthropogenic perturbation commonly occurring in semiarid regions, and this perturbation strongly affects soil microbiota. In this study, the influences of land-use conversion on the soil properties and bacterial communities in the Horqin Grasslands in Northeast China were assessed. This study aimed to investigate (1) how the abundances of soil bacteria changed across land-use types, (2) how the structure of the soil bacterial community was altered in each land-use type, and (3) how these variations were correlated with soil physical and chemical properties. Variations in the diversities and compositions of bacterial communities and the relative abundances of dominant taxa were detected in four distinct land-use systems, namely, natural meadow grassland, paddy field, upland field, and poplar plantation, through the high-throughput Illumina MiSeq sequencing technique. The results indicated that land-use changes primarily affected the soil physical and chemical properties and bacterial community structure. Soil properties, namely, organic matter, pH, total N, total P, available N and P, and microbial biomass C, N, and P, influenced the bacterial community structure. The dominant phyla and genera were almost the same among the land-use types, but their relative abundances were significantly different. The effects of land-use changes on the structure of soil bacterial communities were more quantitative than qualitative.
Spatio-temporal analysis of aftershock sequences in terms of Non Extensive Statistical Physics.
NASA Astrophysics Data System (ADS)
Chochlaki, Kalliopi; Vallianatos, Filippos
2017-04-01
Earth's seismicity is considered as an extremely complicated process where long-range interactions and fracturing exist (Vallianatos et al., 2016). For this reason, in order to analyze it, we use an innovative methodological approach, introduced by Tsallis (Tsallis, 1988; 2009), named Non Extensive Statistical Physics. This approach introduce a generalization of the Boltzmann-Gibbs statistical mechanics and it is based on the definition of Tsallis entropy Sq, which maximized leads the the so-called q-exponential function that expresses the probability distribution function that maximizes the Sq. In the present work, we utilize the concept of Non Extensive Statistical Physics in order to analyze the spatiotemporal properties of several aftershock series. Marekova (Marekova, 2014) suggested that the probability densities of the inter-event distances between successive aftershocks follow a beta distribution. Using the same data set we analyze the inter-event distance distribution of several aftershocks sequences in different geographic regions by calculating non extensive parameters that determine the behavior of the system and by fitting the q-exponential function, which expresses the degree of non-extentivity of the investigated system. Furthermore, the inter-event times distribution of the aftershocks as well as the frequency-magnitude distribution has been analyzed. The results supports the applicability of Non Extensive Statistical Physics ideas in aftershock sequences where a strong correlation exists along with memory effects. References C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52 (1988) 479-487. doi:10.1007/BF01016429 C. Tsallis, Introduction to nonextensive statistical mechanics: Approaching a complex world, 2009. doi:10.1007/978-0-387-85359-8. E. Marekova, Analysis of the spatial distribution between successive earthquakes in aftershocks series, Annals of Geophysics, 57, 5, doi:10.4401/ag-6556, 2014 F. Vallianatos, G. Papadakis, G. Michas, Generalized statistical mechanics approaches to earthquakes and tectonics. Proc. R. Soc. A, 472, 20160497, 2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riback, Joshua A.; Bowman, Micayla A.; Zmyslowski, Adam M.
A substantial fraction of the proteome is intrinsically disordered, and even well-folded proteins adopt non-native geometries during synthesis, folding, transport, and turnover. Characterization of intrinsically disordered proteins (IDPs) is challenging, in part because of a lack of accurate physical models and the difficulty of interpreting experimental results. We have developed a general method to extract the dimensions and solvent quality (self-interactions) of IDPs from a single small-angle x-ray scattering measurement. We applied this procedure to a variety of IDPs and found that even IDPs with low net charge and high hydrophobicity remain highly expanded in water, contrary to the generalmore » expectation that protein-like sequences collapse in water. Our results suggest that the unfolded state of most foldable sequences is expanded; we conjecture that this property was selected by evolution to minimize misfolding and aggregation.« less
Interstellar medium conditions in z 0.2 Lyman-break analogs
NASA Astrophysics Data System (ADS)
Contursi, A.; Baker, A. J.; Berta, S.; Magnelli, B.; Lutz, D.; Fischer, J.; Verma, A.; Nielbock, M.; Grácia Carpio, J.; Veilleux, S.; Sturm, E.; Davies, R.; Genzel, R.; Hailey-Dunsheath, S.; Herrera-Camus, R.; Janssen, A.; Poglitsch, A.; Sternberg, A.; Tacconi, L. J.
2017-10-01
We present an analysis of far-infrared (FIR) [CII] and [OI] fine structure line and continuum observations obtained with Herschel/PACS, and 12CO(1-0) observations obtained with the IRAM Plateau de Bure Interferometer, of Lyman-break analogs (LBAs) at z 0.2. The principal aim of this work is to determine the typical interstellar medium (ISM) properties of z 1-2 main sequence (MS) galaxies, with stellar masses between 109.5 and 1011M⊙, which are currently not easily detectable in all these lines even with ALMA and NOEMA. We perform PDR modeling and apply different infared diagnostics to derive the main physical parameters of the far-infrared (FIR)-emitting gas and dust and we compare the derived ISM properties to those of galaxies on and above the MS at different redshifts. We find that the ISM properties of LBAs are quite extreme (low gas temperature and high density and thermal pressure) with respect to those found in local normal spirals and more active local galaxies. LBAs have no [CII] deficit despite having the high specific star formation rates (sSFRs) typical of starbursts. Although LBAs lie above the local MS, we show that their ISM properties are more similar to those of high-redshift MS galaxies than of local galaxies above the main sequence. This data set represents an important reference for planning future ALMA [CII] observations of relatively low-mass MS galaxies at the epoch of the peak of the cosmic star formation.
Staňková, Helena; Hastie, Alex R; Chan, Saki; Vrána, Jan; Tulpová, Zuzana; Kubaláková, Marie; Visendi, Paul; Hayashi, Satomi; Luo, Mingcheng; Batley, Jacqueline; Edwards, David; Doležel, Jaroslav; Šimková, Hana
2016-07-01
The assembly of a reference genome sequence of bread wheat is challenging due to its specific features such as the genome size of 17 Gbp, polyploid nature and prevalence of repetitive sequences. BAC-by-BAC sequencing based on chromosomal physical maps, adopted by the International Wheat Genome Sequencing Consortium as the key strategy, reduces problems caused by the genome complexity and polyploidy, but the repeat content still hampers the sequence assembly. Availability of a high-resolution genomic map to guide sequence scaffolding and validate physical map and sequence assemblies would be highly beneficial to obtaining an accurate and complete genome sequence. Here, we chose the short arm of chromosome 7D (7DS) as a model to demonstrate for the first time that it is possible to couple chromosome flow sorting with genome mapping in nanochannel arrays and create a de novo genome map of a wheat chromosome. We constructed a high-resolution chromosome map composed of 371 contigs with an N50 of 1.3 Mb. Long DNA molecules achieved by our approach facilitated chromosome-scale analysis of repetitive sequences and revealed a ~800-kb array of tandem repeats intractable to current DNA sequencing technologies. Anchoring 7DS sequence assemblies obtained by clone-by-clone sequencing to the 7DS genome map provided a valuable tool to improve the BAC-contig physical map and validate sequence assembly on a chromosome-arm scale. Our results indicate that creating genome maps for the whole wheat genome in a chromosome-by-chromosome manner is feasible and that they will be an affordable tool to support the production of improved pseudomolecules. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Vallianatos, Filippos
2015-04-01
Despite the extreme complexity that characterizes earthquake generation process, simple phenomenology seems to apply in the collective properties of seismicity. The best known is the Gutenberg-Richter relation. Short and long-term clustering, power-law scaling and scale-invariance have been exhibited in the spatio-temporal evolution of seismicity providing evidence for earthquakes as a nonlinear dynamic process. Regarding the physics of "many" earthquakes and how this can be derived from first principles, one may wonder, how can the collective properties of a set formed by all earthquakes in a given region, be derived and how does the structure of seismicity depend on its elementary constituents - the earthquakes? What are these properties? The physics of many earthquakes has to be studied with a different approach than the physics of one earthquake making the use of statistical physics necessary to understand the collective properties of earthquakes. Then a natural question arises. What type of statistical physics is appropriate to commonly describe effects from the microscale and crack opening level to the level of large earthquakes? An answer to the previous question could be non-extensive statistical physics, introduced by Tsallis (1988), as the appropriate methodological tool to describe entities with (multi) fractal distributions of their elements and where long-range interactions or intermittency are important, as in fracturing phenomena and earthquakes. In the present work, we review some fundamental properties of earthquake physics and how these are derived by means of non-extensive statistical physics. The aim is to understand aspects of the underlying physics that lead to the evolution of the earthquake phenomenon introducing the new topic of non-extensive statistical seismology. This research has been funded by the European Union (European Social Fund) and Greek national resources under the framework of the "THALES Program: SEISMO FEAR HELLARC" project. References F. Vallianatos, "A non-extensive approach to risk assessment", Nat. Hazards Earth Syst. Sci., 9, 211-216, 2009 F. Vallianatos and P. Sammonds "Is plate tectonics a case of non-extensive thermodynamics?" Physica A: Statistical Mechanics and its Applications, 389 (21), 4989-4993, 2010, F. Vallianatos, G. Michas, G. Papadakis and P. Sammonds " A non extensive statistical physics view to the spatiotemporal properties of the June 1995, Aigion earthquake (M6.2) aftershock sequence (West Corinth rift, Greece)", Acta Geophysica, 60(3), 758-768, 2012 F. Vallianatos and L. Telesca, Statistical mechanics in earth physics and natural hazards (editorial), Acta Geophysica, 60, 3, 499-501, 2012 F. Vallianatos, G. Michas, G. Papadakis and A. Tzanis "Evidence of non-extensivity in the seismicity observed during the 2011-2012 unrest at the Santorini volcanic complex, Greece" Nat. Hazards Earth Syst. Sci.,13,177-185, 2013 F. Vallianatos and P. Sammonds, "Evidence of non-extensive statistical physics of the lithospheric instability approaching the 2004 Sumatran-Andaman and 2011 Honshu mega-earthquakes" Tectonophysics, 590 , 52-58, 2013 G. Papadakis, F. Vallianatos, P. Sammonds, " Evidence of Nonextensive Statistical Physics behavior of the Hellenic Subduction Zone seismicity" Tectonophysics, 608, 1037 -1048, 2013 G. Michas, F. Vallianatos, and P. Sammonds, Non-extensivity and long-range correlations in the earthquake activity at the West Corinth rift (Greece) Nonlin. Processes Geophys., 20, 713-724, 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien, Yung-Ching; Tao, Jinhui; Saeki, Kuniko
In calcified tissues such as bones and teeth, mineralization is regulated by an extracellular matrix, which includes non-collagenous proteins (NCP). This natural process has been adapted or mimicked to restore tissues following physical damage or demineralization by using polyanionic acids in place of NCPs, but the remineralized tissues fail to fully recover their mechanical properties. Here we show that pre-treatment with certain amphiphilic peptoids, a class of peptide-like polymers consisting of N-substituted glycines that have defined monomer sequences, enhances ordering and mineralization of collagen and induces functional remineralization of dentin lesions in vitro. In the vicinity of dentin tubules, themore » newly formed apatite nano-crystals are co-aligned with the c-axis parallel to the tubular periphery and recovery of tissue ultrastructure is accompanied by development of high mechanical strength. The observed effects are highly sequence-dependent with alternating polar and non-polar groups leading to positive outcomes while diblock sequences have no effect. The observations suggest aromatic groups interact with the collagen while the hydrophilic side chains bind the mineralizing constituents and highlight the potential of synthetic sequence-defined biomimetic polymers to serve as NCP mimics in tissue remineralization.« less
Exciton Rydberg series in mono- and few-layer WS2
NASA Astrophysics Data System (ADS)
Chernikov, Alexey; Berkelbach, Timothy C.; Hill, Heather M.; Rigosi, Albert; Li, Yilei; Aslan, Özgur B.; Hybertsen, Mark S.; Reichman, David R.; Heinz, Tony F.
2014-03-01
Considered a long-awaited semiconducting analogue to graphene, the family of atomically thin transition metal dichalcogenides (TMDs) attracted intense interest in the scientific community due to their remarkable physical properties resulting from the reduced dimensionality. A fundamental manifestation of the two-dimensional nature is a strong increase in the Coulomb interaction. The resulting formation of tightly bound excitons plays a crucial role for a majority of optical and transport phenomena. In our work, we investigate the excitons in atomically thin TMDs by optical micro-spectroscopy and apply a microscopic, ab-initio theoretical approach. We observe a full sequence of excited exciton states, i.e., the Rydberg series, in the monolayer WS2, identifying tightly bound excitons with energies exceeding 0.3 eV - almost an order of magnitude higher than in the corresponding, three-dimensional crystal. We also find significant deviations of the excitonic properties from the conventional hydrogenic physics - a direct evidence of a non-uniform dielectric environment. Finally, an excellent quantitative agreement is obtained between the experimental findings and the developed theoretical approach.
NASA Technical Reports Server (NTRS)
Richter, L.; Sims, M.; Economou, T.; Stoker, C.; Wright, I.; Tokano, T.
2004-01-01
Previous in-situ measurements of soil-like materials on the surface of Mars, in particular during the on-going Mars Exploration Rover missions, have shown complex relationships between composition, exposure to the surface environment, texture, and local rocks. In particular, a diversity in both compositional and physical properties could be established that is interpreted to be diagnostic of the complex geologic history of the martian surface layer. Physical and chemical properties vary laterally and vertically, providing insight into the composition of rocks from which soils derive, and environmental conditions that led to soil formation. They are central to understanding whether habitable environments existed on Mars in the distant past. An instrument the Mole for Soil Compositional Studies and Sampling (MOCSS) - is proposed to allow repeated access to subsurface regolith on Mars to depths of up to 1.5 meters for in-situ measurements of elemental composition and of physical and thermophysical properties, as well as for subsurface sample acquisition. MOCSS is based on the compact PLUTO (PLanetary Underground TOol) Mole system developed for the Beagle 2 lander and incorporates a small X-ray fluorescence spectrometer within the Mole which is a new development. Overall MOCSS mass is approximately 1.4 kilograms. Taken together, the MOCSS science data support to decipher the geologic history at the landing site as compositional and textural stratigraphy if they exist - can be detected at a number of places if the MOCSS were accommodated on a rover such as MSL. Based on uncovered stratigraphy, the regional sequence of depositional and erosional styles can be constrained which has an impact on understanding the ancient history of the Martian near-surface layer, considering estimates of Mars soil production rates of 0.5... 1.0 meters per billion years on the one hand and Mole subsurface access capability of approximately 1.5 meters. An overview of the MOCSS, XRS instrument accomodation and the impact that these instruments have on Mars science is discussed.
Niu, Yu Jie; Yang, Si Wei; Wang, Gui Zhen; Liu, Li; Du, Guo Zhen; Hua, Li Min
2017-12-01
The research selected the alpine meadow located in the northeastern margin of the Qinghai-Tibet Plateau to study the changes of vegetation community and soil properties under different grazing intensities, as well as the quantitative relation between the distribution patterns of plant species and the physical and chemical properties of soil. The results showed that the grazing caused the differentiation of the initial vegetation community with the dominant plants, Elymus nutans and Stipa grandis. In the plots with high and low grazing intensities, the dominant plants had changed to Kobresia humilis and Melissitus ruthenica, and E. nutans and Poa crymophila, respectively. With the increase of grazing intensity, the plant richness, importance value and biomass were significantly decreased. The sequence of plant species importance value in each plot against grazing intensity could be fitted by a logarithmic model. The number of required plant species was reduced while the importance value of the remaining plant species accounted for 50% of the importance value in the whole vegetation community. The available P, available K, soil compaction, soil water content, stable infiltration rate and large aggregate index were significantly changed with grazing intensity, however, the changes were different. The CCA ordination showed that the soil compaction was the key factor affecting the distribution pattern of the plant species under grazing. The variance decomposition indicated that the soil factors together explained 30.5% of the distribution of the plant species, in particular the soil physical properties alone explained 22.8% of the distribution of the plant species, which had the highest rate of contribution to the plant species distribution. The soil physical properties affected the distribution pattern of plant species on grazed alpine meadow.
Rapid Conversion of Traditional Introductory Physics Sequences to an Activity-Based Format
ERIC Educational Resources Information Center
Yoder, Garett; Cook, Jerry
2014-01-01
The Department of Physics at EKU [Eastern Kentucky University] with support from the National Science Foundations Course Curriculum and Laboratory Improvement Program has successfully converted our entire introductory physics sequence, both algebra-based and calculus-based courses, to an activity-based format where laboratory activities,…
NASA Astrophysics Data System (ADS)
Jiang, Zhou-Ting; Zhang, Lin-Xi; Sun, Ting-Ting; Wu, Tai-Quan
2009-10-01
The character of forming long-range contacts affects the three-dimensional structure of globular proteins deeply. As the different ability to form long-range contacts between 20 types of amino acids and 4 categories of globular proteins, the statistical properties are thoroughly discussed in this paper. Two parameters NC and ND are defined to confine the valid residues in detail. The relationship between hydrophobicity scales and valid residue percentage of each amino acid is given in the present work and the linear functions are shown in our statistical results. It is concluded that the hydrophobicity scale defined by chemical derivatives of the amino acids and nonpolar phase of large unilamellar vesicle membranes is the most effective technique to characterise the hydrophobic behavior of amino acid residues. Meanwhile, residue percentage Pi and sequential residue length Li of a certain protein i are calculated under different conditions. The statistical results show that the average value of Pi as well as Li of all-α proteins has a minimum among these 4 classes of globular proteins, indicating that all-α proteins are hardly capable of forming long-range contacts one by one along their linear amino acid sequences. All-β proteins have a higher tendency to construct long-range contacts along their primary sequences related to the secondary configurations, i.e. parallel and anti-parallel configurations of β sheets. The investigation of the interior properties of globular proteins give us the connection between the three-dimensional structure and its primary sequence data or secondary configurations, and help us to understand the structure of protein and its folding process well.
Role of Sequence and Structural Polymorphism on the Mechanical Properties of Amyloid Fibrils
Kim, Jae In; Na, Sungsoo; Eom, Kilho
2014-01-01
Amyloid fibrils playing a critical role in disease expression, have recently been found to exhibit the excellent mechanical properties such as elastic modulus in the order of 10 GPa, which is comparable to that of other mechanical proteins such as microtubule, actin filament, and spider silk. These remarkable mechanical properties of amyloid fibrils are correlated with their functional role in disease expression. This suggests the importance in understanding how these excellent mechanical properties are originated through self-assembly process that may depend on the amino acid sequence. However, the sequence-structure-property relationship of amyloid fibrils has not been fully understood yet. In this work, we characterize the mechanical properties of human islet amyloid polypeptide (hIAPP) fibrils with respect to their molecular structures as well as their amino acid sequence by using all-atom explicit water molecular dynamics (MD) simulation. The simulation result suggests that the remarkable bending rigidity of amyloid fibrils can be achieved through a specific self-aggregation pattern such as antiparallel stacking of β strands (peptide chain). Moreover, we have shown that a single point mutation of hIAPP chain constituting a hIAPP fibril significantly affects the thermodynamic stability of hIAPP fibril formed by parallel stacking of peptide chain, and that a single point mutation results in a significant change in the bending rigidity of hIAPP fibrils formed by antiparallel stacking of β strands. This clearly elucidates the role of amino acid sequence on not only the equilibrium conformations of amyloid fibrils but also their mechanical properties. Our study sheds light on sequence-structure-property relationships of amyloid fibrils, which suggests that the mechanical properties of amyloid fibrils are encoded in their sequence-dependent molecular architecture. PMID:24551113
NASA Astrophysics Data System (ADS)
Koster, Kay; Stouthamer, Esther; Cohen, Kim; Stafleu, Jan; Busschers, Freek; Middelkoop, Hans
2016-04-01
Peat is abundantly present within the Holocene coastal-deltaic sequence of the Netherlands, where it is alternating with clastic fluvial, estuarine and lagoonal deposits. The areas that are rich in peat are vulnerable to land subsidence, resulting from consolidation and oxidation, due to loading by overlying deposits, infrastructure and buildings, as well as excessive artificial drainage. The physical properties of the peat are very heterogeneous, with variable clastic admixture up to 80% of its mass and rapid decrease in porosity with increasing effective stress. Mapping the spatial distribution of the peat properties is essential for identifying areas most susceptible to future land subsidence, as mineral content determines volume loss by oxidation, and porosity influences the rate of consolidation. Here we present the outline of a study focusing on mapping mechanical peat properties in relation to density and amount of admixed clastic constituents of Holocene peat layers (in 3D). In this study we use a staged approach: 1) Identifying soil mechanical properties in two large datasets that are managed by Utrecht University and the Geological Survey. 2) Determining relations between these properties and palaeogeographical development of the area by evaluating these properties against known geological concepts such as distance to clastic source (river, estuary etc.). 3) Implementing the obtained relations in GeoTOP, which is a 3D geological subsurface model of the Netherlands developed by the Geological Survey. The model will be used, among others, to assess the susceptibility of different areas to peat related land subsidence and load bearing capacity of the subsurface. So far, our analysis has focused stage 1, by establishing empirical relations between mechanical peat properties in ~70 paired (piezometer) cone penetration tests and continuously cored boreholes with LOI measurements. Results show strong correlations between net cone resistance (qn), excess pore water (u1-u0), and total vertical stress (σvo), suggesting that the overburden strongly controls the vertical differential susceptibility of peat layers to consolidation.
Ruff, Kiersten M; Roberts, Stefan; Chilkoti, Ashutosh; Pappu, Rohit V
2018-06-24
Proteins and synthetic polymers can undergo phase transitions in response to changes to intensive solution parameters such as temperature, proton chemical potentials (pH), and hydrostatic pressure. For proteins and protein-based polymers, the information required for stimulus responsive phase transitions is encoded in their amino acid sequence. Here, we review some of the key physical principles that govern the phase transitions of archetypal intrinsically disordered protein polymers (IDPPs). These are disordered proteins with highly repetitive amino acid sequences. Advances in recombinant technologies have enabled the design and synthesis of protein sequences of a variety of sequence complexities and lengths. We summarize insights that have been gleaned from the design and characterization of IDPPs that undergo thermo-responsive phase transitions and build on these insights to present a general framework for IDPPs with pH and pressure responsive phase behavior. In doing so, we connect the stimulus responsive phase behavior of IDPPs with repetitive sequences to the coil-to-globule transitions that these sequences undergo at the single chain level in response to changes in stimuli. The proposed framework and ongoing studies of stimulus responsive phase behavior of designed IDPPs have direct implications in bioengineering, where designing sequences with bespoke material properties broadens the spectrum of applications, and in biology and medicine for understanding the sequence-specific driving forces for the formation of protein-based membraneless organelles as well as biological matrices that act as scaffolds for cells and mediators of cell-to-cell communication. Copyright © 2018. Published by Elsevier Ltd.
Trempe, Maxime; Sabourin, Maxime; Rohbanfard, Hassan; Proteau, Luc
2011-03-01
Motor learning is a process that extends beyond training sessions. Specifically, physical practice triggers a series of physiological changes in the CNS that are regrouped under the term "consolidation" (Stickgold and Walker 2007). These changes can result in between-session improvement or performance stabilization (Walker 2005). In a series of three experiments, we tested whether consolidation also occurs following observation. In Experiment 1, participants observed an expert model perform a sequence of arm movements. Although we found evidence of observation learning, no significant difference was revealed between participants asked to reproduce the observed sequence either 5 min or 24 h later (no between-session improvement). In Experiment 2, two groups of participants observed an expert model perform two distinct movement sequences (A and B) either 10 min or 8 h apart; participants then physically performed both sequences after a 24-h break. Participants in the 8-h group performed Sequence B less accurately compared to participants in the 5-min group, suggesting that the memory representation of the first sequence had been stabilized and that it interfered with the learning of the second sequence. Finally, in Experiment 3, the initial observation phase was replaced by a physical practice phase. In contrast with the results of Experiment 2, participants in the 8-h group performed Sequence B significantly more accurately compared to participants in the 5-min group. Together, our results suggest that the memory representation of a skill learned through observation undergoes consolidation. However, consolidation of an observed motor skill leads to distinct behavioural outcomes in comparison with physical practice.
MR Fingerprinting Using The Quick Echo Splitting NMR Imaging Technique
Jiang, Yun; Ma, Dan; Jerecic, Renate; Duerk, Jeffrey; Seiberlich, Nicole; Gulani, Vikas; Griswold, Mark A.
2016-01-01
Purpose The purpose of the study is to develop a quantitative method for the relaxation properties with a reduced radio frequency (RF) power deposition by combining Magnetic Resonance Fingerprinting (MRF) technique with Quick Echo Splitting NMR Imaging Technique (QUEST). Methods A QUEST-based MRF sequence was implemented to acquire high order echoes by increasing the gaps between RF pulses. Bloch simulations were used to calculate a dictionary containing the range of physically plausible signal evolutions using a range of T1 and T2 values based on the pulse sequence. MRF-QUEST was evaluated by comparing to the results of spin-echo methods. The SAR of QUEST-MRF was compared to the clinically available methods. Results MRF-QUEST quantifies the relaxation properties with good accuracy at the estimated head Specific Absorption Rate (SAR) of 0.03 W/kg. T1 and T2 values estimated by MRF-QUEST are in good agreement with the traditional methods. Conclusion The combination of the MRF and the QUEST provides an accurate quantification of T1 and T2 simultaneously with reduced RF power deposition. The resulting lower SAR may provide a new acquisition strategy for MRF when RF energy deposition is problematic. PMID:26924639
Microbial and physical properties as indicators of sandy soil quality under cropland and grassland
NASA Astrophysics Data System (ADS)
Frac, Magdalena; Lipiec, Jerzy; Usowicz, Boguslaw; Oszust, Karolina; Brzezinska, Malgorzata
2017-04-01
Land use is one of the key factor driving changes in soil properties influencing on soil health and quality. Microbial diversity and physical properties are sensitive indicators for assessing soil health and quality. The alterations of microbial diversity and physical properties following land use changes have not been sufficiently elucidated, especially for sandy soils. We investigated microbial diversity indicators including fungal communities composition and physical properties of sandy acid soil under cropland and more than 20-yr-old grassland (after cropland) in Trzebieszów, Podlasie Region, Poland (N 51° 59' 24", E 22° 33' 37"). The study included four depths within 0-60 cm. Microbial genetic diversity was assessed by terminal restriction fragment length polymorphism (t-RFLP) analysis, fungal community composition was evaluated by next generation sequencing (NGS) analysis and functional diversity was determined by Biolog EcoPlate method. Overall microbial activity was assessed by soil enzymes (dehydrogenases, β-glucosidase) and respiration test. At the same places soil texture, organic carbon content, pH, bulk density, water holding capacity were determined. Our results showed that grassland soil was characterized by higher activity of soil enzymes than cropland. The average well color development of soil microorganisms, the microbial functional diversity and the number of carbon source utilization were significantly affected by land use type and were differentiated among soil depths. In grassland compared to cropland soil a significant increase of carboxylic acids and decrease of amino acids utilization was observed. The quantitative and qualitative differences were found in community of ammonia oxidizing archaea in cropland and grassland soil. The results of fungal community composition help to explain the soil health of grassland and cropland based on the appearance of phytopathogenic and antagonistic fungi. In general bulk density and field water capacity were greater and saturated hydraulic conductivity was lower under grassland than cropland soil. The study was funded by HORIZON 2020, European Commission, Programme: H2020-SFS-4-2014: Soil quality and function, project No. 635750, Interactive Soil Quality Assessment in Europe and China for Agricultural Productivity and Environmental Resilience (iSQAPER, 2015-2020).
Shaw, Jennifer L A; Monis, Paul; Weyrich, Laura S; Sawade, Emma; Drikas, Mary; Cooper, Alan J
2015-09-01
Drinking water assessments use a variety of microbial, physical, and chemical indicators to evaluate water treatment efficiency and product water quality. However, these indicators do not allow the complex biological communities, which can adversely impact the performance of drinking water distribution systems (DWDSs), to be characterized. Entire bacterial communities can be studied quickly and inexpensively using targeted metagenomic amplicon sequencing. Here, amplicon sequencing of the 16S rRNA gene region was performed alongside traditional water quality measures to assess the health, quality, and efficiency of two distinct, full-scale DWDSs: (i) a linear DWDS supplied with unfiltered water subjected to basic disinfection before distribution and (ii) a complex, branching DWDS treated by a four-stage water treatment plant (WTP) prior to disinfection and distribution. In both DWDSs bacterial communities differed significantly after disinfection, demonstrating the effectiveness of both treatment regimes. However, bacterial repopulation occurred further along in the DWDSs, and some end-user samples were more similar to the source water than to the postdisinfection water. Three sample locations appeared to be nitrified, displaying elevated nitrate levels and decreased ammonia levels, and nitrifying bacterial species, such as Nitrospira, were detected. Burkholderiales were abundant in samples containing large amounts of monochloramine, indicating resistance to disinfection. Genera known to contain pathogenic and fecal-associated species were also identified in several locations. From this study, we conclude that metagenomic amplicon sequencing is an informative method to support current compliance-based methods and can be used to reveal bacterial community interactions with the chemical and physical properties of DWDSs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Gupta, Parth Sarthi Sen; Banerjee, Shyamashree; Islam, Rifat Nawaz Ul; Mondal, Sudipta; Mondal, Buddhadev; Bandyopadhyay, Amal K
2014-01-01
In the genomic and proteomic era, efficient and automated analyses of sequence properties of protein have become an important task in bioinformatics. There are general public licensed (GPL) software tools to perform a part of the job. However, computations of mean properties of large number of orthologous sequences are not possible from the above mentioned GPL sets. Further, there is no GPL software or server which can calculate window dependent sequence properties for a large number of sequences in a single run. With a view to overcome above limitations, we have developed a standalone procedure i.e. PHYSICO, which performs various stages of computation in a single run based on the type of input provided either in RAW-FASTA or BLOCK-FASTA format and makes excel output for: a) Composition, Class composition, Mean molecular weight, Isoelectic point, Aliphatic index and GRAVY, b) column based compositions, variability and difference matrix, c) 25 kinds of window dependent sequence properties. The program is fast, efficient, error free and user friendly. Calculation of mean and standard deviation of homologous sequences sets, for comparison purpose when relevant, is another attribute of the program; a property seldom seen in existing GPL softwares. PHYSICO is freely available for non-commercial/academic user in formal request to the corresponding author akbanerjee@biotech.buruniv.ac.in.
Gupta, Parth Sarthi Sen; Banerjee, Shyamashree; Islam, Rifat Nawaz Ul; Mondal, Sudipta; Mondal, Buddhadev; Bandyopadhyay, Amal K
2014-01-01
In the genomic and proteomic era, efficient and automated analyses of sequence properties of protein have become an important task in bioinformatics. There are general public licensed (GPL) software tools to perform a part of the job. However, computations of mean properties of large number of orthologous sequences are not possible from the above mentioned GPL sets. Further, there is no GPL software or server which can calculate window dependent sequence properties for a large number of sequences in a single run. With a view to overcome above limitations, we have developed a standalone procedure i.e. PHYSICO, which performs various stages of computation in a single run based on the type of input provided either in RAW-FASTA or BLOCK-FASTA format and makes excel output for: a) Composition, Class composition, Mean molecular weight, Isoelectic point, Aliphatic index and GRAVY, b) column based compositions, variability and difference matrix, c) 25 kinds of window dependent sequence properties. The program is fast, efficient, error free and user friendly. Calculation of mean and standard deviation of homologous sequences sets, for comparison purpose when relevant, is another attribute of the program; a property seldom seen in existing GPL softwares. Availability PHYSICO is freely available for non-commercial/academic user in formal request to the corresponding author akbanerjee@biotech.buruniv.ac.in PMID:24616564
Static and Dynamic Properties of DNA Confined in Nanochannels
NASA Astrophysics Data System (ADS)
Gupta, Damini
Next-generation sequencing (NGS) techniques have considerably reduced the cost of high-throughput DNA sequencing. However, it is challenging to detect large-scale genomic variations by NGS due to short read lengths. Genome mapping can easily detect large-scale structural variations because it operates on extremely large intact molecules of DNA with adequate resolution. One of the promising methods of genome mapping is based on confining large DNA molecules inside a nanochannel whose cross-sectional dimensions are approximately 50 nm. Even though this genome mapping technology has been commercialized, the current understanding of the polymer physics of DNA in nanochannel confinement is based on theories and lacks much needed experimental support. The results of this dissertation are aimed at providing a detailed experimental understanding of equilibrium properties of nanochannel-confined DNA molecules. The results are divided into three parts. In first part, we evaluate the role of channel shape on thermodynamic properties of channel confined DNA molecules using a combination of fluorescence microscopy and simulations. Specifically, we show that high aspect ratio of rectangular channels significantly alters the chain statistics as compared to an equivalent square channel with same cross-sectional area. In the second part, we present experimental evidence that weak excluded volume effects arise in DNA nanochannel confinement, which form the physical basis for the extended de Gennes regime. We also show how confinement spectroscopy and simulations can be combined to reduce molecular weight dispersity effects arising from shearing, photo-cleavage, and nonuniform staining of DNA. Finally, the third part of the thesis concerns the dynamic properties of nanochannel confined DNA. We directly measure the center-of-mass diffusivity of single DNA molecules in confinement and show that that it is necessary to modify the classical results of de Gennes to account for local chain stiffness of DNA in order to explain the experimental results. In the end, we believe that our findings from the experimental test of the phase diagram for channel-confined DNA, with careful control over molecular weight dispersity, channel geometry, and electrostatic interactions, will provide a firm foundation for the emerging genome mapping technology.
Connection anonymity analysis in coded-WDM PONs
NASA Astrophysics Data System (ADS)
Sue, Chuan-Ching
2008-04-01
A coded wavelength division multiplexing passive optical network (WDM PON) is presented for fiber to the home (FTTH) systems to protect against eavesdropping. The proposed scheme applies spectral amplitude coding (SAC) with a unipolar maximal-length sequence (M-sequence) code matrix to generate a specific signature address (coding) and to retrieve its matching address codeword (decoding) by exploiting the cyclic properties inherent in array waveguide grating (AWG) routers. In addition to ensuring the confidentiality of user data, the proposed coded-WDM scheme is also a suitable candidate for the physical layer with connection anonymity. Under the assumption that the eavesdropper applies a photo-detection strategy, it is shown that the coded WDM PON outperforms the conventional TDM PON and WDM PON schemes in terms of a higher degree of connection anonymity. Additionally, the proposed scheme allows the system operator to partition the optical network units (ONUs) into appropriate groups so as to achieve a better degree of anonymity.
Specific mineral associations of hydrothermal shale (South Kamchatka)
NASA Astrophysics Data System (ADS)
Rychagov, S. N.; Sergeeva, A. V.; Chernov, M. S.
2017-11-01
The sequence of hydrothermal shale from the East Pauzhet thermal field within the Pauzhet hydrothermal system (South Kamchatka) was studied in detail. It was established that the formation of shale resulted from argillization of an andesitic lava flow under the influence of an acidic sulfate vapor condensate. The horizons with radically different compositions and physical properties compared to those of the overlying homogeneous plastic shale were distinguished at the base of the sequence. These horizons are characterized by high (up to two orders of magnitude in comparison with average values in hydrothermal shale) concentrations of F, P, Na, Mg, K, Ca, Sc, Ti, V, Cr, Cu, and Zn. We suggested a geological-geochemical model, according to which a deep metal-bearing chloride-hydrocarbonate solution infiltrated into the permeable zone formed at the root of the andesitic lava flow beneath plastic shale at a certain stage of evolution of the hydrothermal system.
From Sequence and Forces to Structure, Function and Evolution of Intrinsically Disordered Proteins
Forman-Kay, Julie D.; Mittag, Tanja
2015-01-01
Intrinsically disordered proteins (IDPs), which lack persistent structure, are a challenge to structural biology due to the inapplicability of standard methods for characterization of folded proteins as well as their deviation from the dominant structure/function paradigm. Their widespread presence and involvement in biological function, however, has spurred the growing acceptance of the importance of IDPs and the development of new tools for studying their structure, dynamics and function. The interplay of folded and disordered domains or regions for function and the existence of a continuum of protein states with respect to conformational energetics, motional timescales and compactness is shaping a unified understanding of structure-dynamics-disorder/function relationships. On the 20th anniversary of this journal, Structure, we provide a historical perspective on the investigation of IDPs and summarize the sequence features and physical forces that underlie their unique structural, functional and evolutionary properties. PMID:24010708
From sequence and forces to structure, function, and evolution of intrinsically disordered proteins.
Forman-Kay, Julie D; Mittag, Tanja
2013-09-03
Intrinsically disordered proteins (IDPs), which lack persistent structure, are a challenge to structural biology due to the inapplicability of standard methods for characterization of folded proteins as well as their deviation from the dominant structure/function paradigm. Their widespread presence and involvement in biological function, however, has spurred the growing acceptance of the importance of IDPs and the development of new tools for studying their structure, dynamics, and function. The interplay of folded and disordered domains or regions for function and the existence of a continuum of protein states with respect to conformational energetics, motional timescales, and compactness are shaping a unified understanding of structure-dynamics-disorder/function relationships. In the 20(th) anniversary of Structure, we provide a historical perspective on the investigation of IDPs and summarize the sequence features and physical forces that underlie their unique structural, functional, and evolutionary properties. Copyright © 2013 Elsevier Ltd. All rights reserved.
Applications of Mass Spectrometry to Structural Analysis of Marine Oligosaccharides
Lang, Yinzhi; Zhao, Xia; Liu, Lili; Yu, Guangli
2014-01-01
Marine oligosaccharides have attracted increasing attention recently in developing potential drugs and biomaterials for their particular physical and chemical properties. However, the composition and sequence analysis of marine oligosaccharides are very challenging for their structural complexity and heterogeneity. Mass spectrometry (MS) has become an important technique for carbohydrate analysis by providing more detailed structural information, including molecular mass, sugar constituent, sequence, inter-residue linkage position and substitution pattern. This paper provides an overview of the structural analysis based on MS approaches in marine oligosaccharides, which are derived from some biologically important marine polysaccharides, including agaran, carrageenan, alginate, sulfated fucan, chitosan, glycosaminoglycan (GAG) and GAG-like polysaccharides. Applications of electrospray ionization mass spectrometry (ESI-MS) are mainly presented and the general applications of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) are also outlined. Some technical challenges in the structural analysis of marine oligosaccharides by MS have also been pointed out. PMID:24983643
Mesomorphic phase transitions of 3F7HPhF studied by complementary methods
NASA Astrophysics Data System (ADS)
Deptuch, Aleksandra; Jaworska-Gołąb, Teresa; Marzec, Monika; Pociecha, Damian; Fitas, Jakub; Żurowska, Magdalena; Tykarska, Marzena; Hooper, James
2018-02-01
Physical properties and the phase sequence of (S)-4‧-(1-methylheptyloxycarbonyl)biphenyl-4-yl 4-[7-(2,2,3,3,4,4,4-heptafluorobutoxy) heptyl-1-oxy]-2-fluorobenzoate exhibiting the liquid crystalline paraelectric smectic A*, ferroelectric smectic C* and antiferroelectric smectic CA* phases were studied by complementary methods in the temperature range from -125 to 120 °C. Differential scanning calorimetry measurements together with polarizing optical microscopy provided the phase sequence, including the glass transition and a cold crystallization. X-ray diffraction was used to obtain the unit-cell parameters of the crystal phase, as well as the layer thickness and correlation length in the liquid crystalline smectic phases. The tilt angle was found to reach 45°, as determined from the measurements of the layer thickness and molecular modeling. Relaxation processes in the smectic phases and the fragility parameter were studied using frequency-domain dielectric spectroscopy.
Bomboi, Francesca; Romano, Flavio; Leo, Manuela; Fernandez-Castanon, Javier; Cerbino, Roberto; Bellini, Tommaso; Bordi, Federico; Filetici, Patrizia; Sciortino, Francesco
2016-01-01
DNA is acquiring a primary role in material development, self-assembling by design into complex supramolecular aggregates, the building block of a new-materials world. Using DNA nanoconstructs to translate sophisticated theoretical intuitions into experimental realizations by closely matching idealized models of colloidal particles is a much less explored avenue. Here we experimentally show that an appropriate selection of competing interactions enciphered in multiple DNA sequences results into the successful design of a one-pot DNA hydrogel that melts both on heating and on cooling. The relaxation time, measured by light scattering, slows down dramatically in a limited window of temperatures. The phase diagram displays a peculiar re-entrant shape, the hallmark of the competition between different bonding patterns. Our study shows that it is possible to rationally design biocompatible bulk materials with unconventional phase diagrams and tuneable properties by encoding into DNA sequences both the particle shape and the physics of the collective response. PMID:27767029
Locke, John; Podemski, Lynn; Roy, Ken; Pilgrim, David; Hodgetts, Ross
1999-01-01
Chromosome 4 from Drosophila melanogaster has several unusual features that distinguish it from the other chromosomes. These include a diffuse appearance in salivary gland polytene chromosomes, an absence of recombination, and the variegated expression of P-element transgenes. As part of a larger project to understand these properties, we are assembling a physical map of this chromosome. Here we report the sequence of two cosmids representing ∼5% of the polytenized region. Both cosmid clones contain numerous repeated DNA sequences, as identified by cross hybridization with labeled genomic DNA, BLAST searches, and dot matrix analysis, which are positioned between and within the transcribed sequences. The repetitive sequences include three copies of the mobile element Hoppel, one copy of the mobile element HB, and 18 DINE repeats. DINE is a novel, short repeated sequence dispersed throughout both cosmid sequences. One cosmid includes the previously described cubitus interruptus (ci) gene and two new genes: that a gene with a predicted amino acid sequence similar to ribosomal protein S3a which is consistent with the Minute(4)101 locus thought to be in the region, and a novel member of the protein family that includes plexin and met–hepatocyte growth factor receptor. The other cosmid contains only the two short 5′-most exons from the zinc-finger-homolog-2 (zfh-2) gene. This is the first extensive sequence analysis of noncoding DNA from chromosome 4. The distribution of the various repeats suggests its organization is similar to the β-heterochromatic regions near the base of the major chromosome arms. Such a pattern may account for the diffuse banding of the polytene chromosome 4 and the variegation of many P-element transgenes on the chromosome. PMID:10022978
Are there laws of genome evolution?
Koonin, Eugene V
2011-08-01
Research in quantitative evolutionary genomics and systems biology led to the discovery of several universal regularities connecting genomic and molecular phenomic variables. These universals include the log-normal distribution of the evolutionary rates of orthologous genes; the power law-like distributions of paralogous family size and node degree in various biological networks; the negative correlation between a gene's sequence evolution rate and expression level; and differential scaling of functional classes of genes with genome size. The universals of genome evolution can be accounted for by simple mathematical models similar to those used in statistical physics, such as the birth-death-innovation model. These models do not explicitly incorporate selection; therefore, the observed universal regularities do not appear to be shaped by selection but rather are emergent properties of gene ensembles. Although a complete physical theory of evolutionary biology is inconceivable, the universals of genome evolution might qualify as "laws of evolutionary genomics" in the same sense "law" is understood in modern physics.
Four new topological indices based on the molecular path code.
Balaban, Alexandru T; Beteringhe, Adrian; Constantinescu, Titus; Filip, Petru A; Ivanciuc, Ovidiu
2007-01-01
The sequence of all paths pi of lengths i = 1 to the maximum possible length in a hydrogen-depleted molecular graph (which sequence is also called the molecular path code) contains significant information on the molecular topology, and as such it is a reasonable choice to be selected as the basis of topological indices (TIs). Four new (or five partly new) TIs with progressively improved performance (judged by correctly reflecting branching, centricity, and cyclicity of graphs, ordering of alkanes, and low degeneracy) have been explored. (i) By summing the squares of all numbers in the sequence one obtains Sigmaipi(2), and by dividing this sum by one plus the cyclomatic number, a Quadratic TI is obtained: Q = Sigmaipi(2)/(mu+1). (ii) On summing the Square roots of all numbers in the sequence one obtains Sigmaipi(1/2), and by dividing this sum by one plus the cyclomatic number, the TI denoted by S is obtained: S = Sigmaipi(1/2)/(mu+1). (iii) On dividing terms in this sum by the corresponding topological distances, one obtains the Distance-reduced index D = Sigmai{pi(1/2)/[i(mu+1)]}. Two similar formulas define the next two indices, the first one with no square roots: (iv) distance-Attenuated index: A = Sigmai{pi/[i(mu + 1)]}; and (v) the last TI with two square roots: Path-count index: P = Sigmai{pi(1/2)/[i(1/2)(mu + 1)]}. These five TIs are compared for their degeneracy, ordering of alkanes, and performance in QSPR (for all alkanes with 3-12 carbon atoms and for all possible chemical cyclic or acyclic graphs with 4-6 carbon atoms) in correlations with six physical properties and one chemical property.
Correlation between fibroin amino acid sequence and physical silk properties.
Fedic, Robert; Zurovec, Michal; Sehnal, Frantisek
2003-09-12
The fiber properties of lepidopteran silk depend on the amino acid repeats that interact during H-fibroin polymerization. The aim of our research was to relate repeat composition to insect biology and fiber strength. Representative regions of the H-fibroin genes were sequenced and analyzed in three pyralid species: wax moth (Galleria mellonella), European flour moth (Ephestia kuehniella), and Indian meal moth (Plodia interpunctella). The amino acid repeats are species-specific, evidently a diversification of an ancestral region of 43 residues, and include three types of regularly dispersed motifs: modifications of GSSAASAA sequence, stretches of tripeptides GXZ where X and Z represent bulky residues, and sequences similar to PVIVIEE. No concatenations of GX dipeptide or alanine, which are typical for Bombyx silkworms and Antheraea silk moths, respectively, were found. Despite different repeat structure, the silks of G. mellonella and E. kuehniella exhibit similar tensile strength as the Bombyx and Antheraea silks. We suggest that in these latter two species, variations in the repeat length obstruct repeat alignment, but sufficiently long stretches of iterated residues get superposed to interact. In the pyralid H-fibroins, interactions of the widely separated and diverse motifs depend on the precision of repeat matching; silk is strong in G. mellonella and E. kuehniella, with 2-3 types of long homogeneous repeats, and nearly 10 times weaker in P. interpunctella, with seven types of shorter erratic repeats. The high proportion of large amino acids in the H-fibroin of pyralids has probably evolved in connection with the spinning habit of caterpillars that live in protective silk tubes and spin continuously, enlarging the tubes on one end and partly devouring the other one. The silk serves as a depot of energetically rich and essential amino acids that may be scarce in the diet.
Observed ground-motion variabilities and implication for source properties
NASA Astrophysics Data System (ADS)
Cotton, F.; Bora, S. S.; Bindi, D.; Specht, S.; Drouet, S.; Derras, B.; Pina-Valdes, J.
2016-12-01
One of the key challenges of seismology is to be able to calibrate and analyse the physical factors that control earthquake and ground-motion variabilities. Within the framework of empirical ground-motion prediction equation (GMPE) developments, ground-motions residuals (differences between recorded ground motions and the values predicted by a GMPE) are computed. The exponential growth of seismological near-field records and modern regression algorithms allow to decompose these residuals into between-event and a within-event residual components. The between-event term quantify all the residual effects of the source (e.g. stress-drops) which are not accounted by magnitude term as the only source parameter of the model. Between-event residuals provide a new and rather robust way to analyse the physical factors that control earthquake source properties and associated variabilities. We first will show the correlation between classical stress-drops and between-event residuals. We will also explain why between-event residuals may be a more robust way (compared to classical stress-drop analysis) to analyse earthquake source-properties. We will finally calibrate between-events variabilities using recent high-quality global accelerometric datasets (NGA-West 2, RESORCE) and datasets from recent earthquakes sequences (Aquila, Iquique, Kunamoto). The obtained between-events variabilities will be used to evaluate the variability of earthquake stress-drops but also the variability of source properties which cannot be explained by a classical Brune stress-drop variations. We will finally use the between-event residual analysis to discuss regional variations of source properties, differences between aftershocks and mainshocks and potential magnitude dependencies of source characteristics.
From Globular Clusters to Tidal Dwarfs: Structure Formation in Tidal Tails
NASA Astrophysics Data System (ADS)
Knierman, K.; Hunsberger, S.; Gallagher, S.; Charlton, J.; Whitmore, B.; Hibbard, J.; Kundu, A.; Zaritsky, D.
1999-12-01
Galaxy interactions trigger star formation in tidal debris. How does this star formation depend on the local and global physical conditions? Using WFPC2/HST images, we investigate the range of structure within tidal tails of four classic ``Toomre Sequence'' mergers: NGC 4038/9 (``Antennae''), NGC 7252 (``Atoms for Peace''), NGC 3921, and NGC 3256. These tails contain a variety of stellar associations with sizes from globular clusters up to dwarf Irregulars. We explore whether there is a continuum between the two extremes. Our eight fields sample seven tidal tails at a variety of stages in the evolutionary sequence. Some of these tails are rich in HI while others are HI poor. Large tidal dwarfs are embedded in three of the tails. Using V and I WFPC2 images, we measure luminosities and colors of substructures within the tidal tails. The properties of globular cluster candidates in the tails will be contrasted with those of the hundreds of young clusters in the central regions of these mergers. We address whether globular clusters form and survive in the tidal tails and whether tidal dwarfs are composed of only young stars. By comparing the properties of structures in the tails of the four mergers with different ages, we examine systematic evolution of structure along the evolutionary sequence and as a function of HI content. We acknowledge support from NASA through STScI, and from NSF for an REU supplement for Karen Knierman.
The influence of specific binding of collagen-silk chimeras to silk biomaterials on hMSC behavior
An, Bo; DesRochers, Teresa M.; Qin, Guokui; Xia, Xiaoxia; Thiagarajan, Geetha; Brodsky, Barbara; Kaplan, David
2012-01-01
Collagen-like proteins in the bacteria Streptococcus pyogenes adopt a triple-helix structure with a thermal stability similar to that of animal collagens, can be expressed in high yield in E. coli and can be easily modified through molecular biology techniques. However, potential applications for such recombinant collagens are limited by their lack of higher order structure to achieve the physical properties needed for most biomaterials. To overcome this problem, the S. pyrogenes collagen domain was fused to a repetitive Bombyx mori silk consensus sequence, as a strategy to direct specific non-covalent binding onto solid silk materials whose superior stability, mechanical and material properties have been previously established. This approach resulted in the successful binding of these new collagen-silk chimeric proteins to silk films and porous scaffolds, and the binding affinity could be controlled by varying the number of repeats in the silk sequence. To explore the potential of collagen-silk chimera for regulating biological activity, integrin (Int) and fibronectin (Fn) binding sequences from mammalian collagens were introduced into the bacterial collagen domain. The attachment of bioactive collagen-silk chimeras to solid silk biomaterials promoted hMSC spreading and proliferation substantially in comparison to the controls. The ability to combine the biomaterial features of silk with the biological activities of collagen allowed more rapid cell interactions with silk-based biomaterials, improved regulation of stem cell growth and differentiation, as well as the formation of artificial extracellular matrices useful for tissue engineering applications. PMID:23088839
Photoinitiator-Free Synthesis of Endothelial Cell Adhesive and Enzymatically Degradable Hydrogels
Jones, Derek R.; Marchant, Roger E.; von Recum, Horst; Gupta, Anirban Sen; Kottke-Marchant, Kandice
2015-01-01
We report on a photoinitiator-free synthetic method of incorporating bioactivity into poly(ethylene glycol) (PEG) hydrogels in order to control physical properties, enzymatic biodegradability and cell-specific adhesiveness of the polymer network, while eliminating the need for UV-mediated photopolymerization. To accomplish this, hydrogel networks were polymerized using Michael addition with four-arm PEG acrylate (10 kDa), using a collagenase sensitive peptide (CSP) as a crosslinker, and introducing an endothelial cell adhesive peptide either terminally (RGD) or attached to the crosslinking peptide sequence (CSP-RGD). The efficiency of the Michael addition reactions were determined by NMR and Ellman’s assay. Successful decoupling of cell adhesivity and physical properties was demonstrated by quantifying and comparing the swelling ratios and Young’s Moduli of various hydrogel formulations. Degradation profiles were established by incubating functionalized hydrogels in collagenase solutions (0.0 – 1.0 µg/mL), demonstrating that functionalized hydrogels degraded at a rate dependent upon collagenase concentration. Moreover, it was shown that the degradation rate was independent of CSP-RGD concentration. Cell attachment and proliferation on functionalized hydrogels were compared for various RGD concentrations, providing evidence that cell attachment and proliferation were directly related to relative amounts of the CSP-RGD combination peptide. An increase in cell viability was achieved using Michael addition techniques when compared to UV-polymerization, and was assessed by a LIVE/DEAD fluorescence assay. This photoinitiator-free method shows promise in creating hydrogel-based tissue engineering scaffolds allow for decoupled cell adhesivity and physical properties and that render greater cell viability. PMID:25462848
Ge, Xiao-Gai; Huang, Zhi-Lin; Cheng, Rui-Mei; Zeng, Li-Xiong; Xiao, Wen-Fa; Tan, Ben-Wang
2012-12-01
An investigation was made on the soil physical and chemical properties in different-aged Pinus massoniana plantations in Three Gorges Reservoir Area under effects of litterfall and roots. The annual litter production in mature stand was 19.4% and 65.7% higher than that in nearly mature and middle-aged stands, respectively. The litter standing amount was in the sequence of mature stand > middle-aged stand > nearly mature stand, while the litter turnover coefficient was in the order of nearly mature stand (0.51) > mature stand (0.40) > middle-aged stand (0.36). The total root biomass, live root biomass, and dead root biomass were the highest in middle-aged stand, and the lowest in nearly mature stand. In middle-aged stand, soil total porosity was the highest, and soil bulk density was the lowest. Soil organic matter and total nitrogen contents were in the order of mature stand > middle-aged stand > nearly mature stand, soil nitrate nitrogen occupied a larger proportion of soil mineral N in nearly mature stand, while ammonium nitrogen accounted more in middle-aged and mature stands. In nearly mature stand, litter production was moderate but turnover coefficient was the highest, and soil nutrient contents were the lowest. In middle-aged stand, root biomass and soil total porosity were the highest, and soil bulk density were the lowest. In mature stand, root biomass was lower while soil nutrient contents were the highest. The increase of root biomass could improve soil physical properties.
Upper and lower bounds of ground-motion variabilities: implication for source properties
NASA Astrophysics Data System (ADS)
Cotton, Fabrice; Reddy-Kotha, Sreeram; Bora, Sanjay; Bindi, Dino
2017-04-01
One of the key challenges of seismology is to be able to analyse the physical factors that control earthquakes and ground-motion variabilities. Such analysis is particularly important to calibrate physics-based simulations and seismic hazard estimations at high frequencies. Within the framework of the development of ground-motion prediction equation (GMPE) developments, ground-motions residuals (differences between recorded ground motions and the values predicted by a GMPE) are computed. The exponential growth of seismological near-source records and modern GMPE analysis technics allow to partition these residuals into between- and a within-event components. In particular, the between-event term quantifies all those repeatable source effects (e.g. related to stress-drop or kappa-source variability) which have not been accounted by the magnitude-dependent term of the model. In this presentation, we first discuss the between-event variabilities computed both in the Fourier and Response Spectra domains, using recent high-quality global accelerometric datasets (e.g. NGA-west2, Resorce, Kiknet). These analysis lead to the assessment of upper bounds for the ground-motion variability. Then, we compare these upper bounds with lower bounds estimated by analysing seismic sequences which occurred on specific fault systems (e.g., located in Central Italy or in Japan). We show that the lower bounds of between-event variabilities are surprisingly large which indicates a large variability of earthquake dynamic properties even within the same fault system. Finally, these upper and lower bounds of ground-shaking variability are discussed in term of variability of earthquake physical properties (e.g., stress-drop and kappa_source).
How Do Organic Chemistry Students Understand and Apply Hydrogen Bonding?
NASA Astrophysics Data System (ADS)
Henderleiter, J.; Smart, R.; Anderson, J.; Elian, O.
2001-08-01
Students completing a year-long organic chemistry sequence were interviewed to assess how they understood, explained, and applied knowledge of hydrogen bonding to the physical behavior of molecules. Students were asked to define hydrogen bonding and explain situations in which hydrogen bonding could occur. They were asked to predict and explain how hydrogen bonding influences boiling point, the solubility of molecules, and NMR and IR spectra. Results suggest that although students may be able to give appropriate definitions of hydrogen bonding and may recognize when this phenomenon can occur, significant numbers cannot apply their knowledge of hydrogen bonding to physical properties of molecules or to the interpretation of spectral data. Some possess misconceptions concerning boiling points and the ability of molecules to induce hydrogen bonding. Instructional strategies must be adjusted to address these issues.
Power-law rheology controls aftershock triggering and decay
Zhang, Xiaoming; Shcherbakov, Robert
2016-01-01
The occurrence of aftershocks is a signature of physical systems exhibiting relaxation phenomena. They are observed in various natural or experimental systems and usually obey several non-trivial empirical laws. Here we consider a cellular automaton realization of a nonlinear viscoelastic slider-block model in order to infer the physical mechanisms of triggering responsible for the occurrence of aftershocks. We show that nonlinear viscoelasticity plays a critical role in the occurrence of aftershocks. The model reproduces several empirical laws describing the statistics of aftershocks. In case of earthquakes, the proposed model suggests that the power-law rheology of the fault gauge, underlying lower crust, and upper mantle controls the decay rate of aftershocks. This is verified by analysing several prominent aftershock sequences for which the rheological properties of the underlying crust and upper mantle were established. PMID:27819355
ERIC Educational Resources Information Center
Stephens, A. Lynn
2012-01-01
The purpose of this study is to investigate student interactions with simulations, and teacher support of those interactions, within naturalistic high school physics classroom settings. This study focuses on data from two lesson sequences that were conducted in several physics classrooms. The lesson sequences were conducted in a whole class…
ERIC Educational Resources Information Center
Mississippi Research and Curriculum Unit for Vocational and Technical Education, State College.
This document, which is intended for use by community and junior colleges throughout Mississippi, contains curriculum frameworks for the course sequences in the physical therapy assistant program. Presented in the introductory section are a description of the program and suggested course sequence. Section I lists baseline competencies, and section…
Rautman, C.A.; Flint, L.E.; Flint, A.L.; Istok, J.D.
1995-01-01
Quantitative material-property data are needed to describe lateral and vertical spatial variability of physical and hydrologic properties and to model ground-water flow and radionuclide transport at the potential Yucca Mountain nuclear-waste repository site in Nevada. As part of ongoing site characterization studies of Yucca Mountain directed toward this understanding of spatial variability, laboratory measurements of porosity, bull* and particle density, saturated hydraulic conductivity, and sorptivity have been obtained for a set of outcrop samples that form a systematic,two dimensional grid that covers a large exposure of the basal Tiva Canyon Tuff of the Paintbrush Group of Miocene age at Yucca Mountain. The samples form a detailed vertical grid roughly parallel to the transport direction of the parent ash flows, and they exhibit material-property varia- tions in an interval of major lithologic change overlying a potential nuclear-waste repository at Yucca Mountain. The observed changes in hydrologic properties were systematic and consistent with the changes expected for the nonwelded to welded transition at the base of a major ash-flow sequence. Porosity, saturated hydraulic conductivity, and sorptivity decreased upward from the base of the Tiva Canyon Tuff, indicating the progressive compaction of ash- rich volcanic debris and the onset of welding with increased overburden pressure from the accumulating ash-flow sheet. The rate of decrease in the values of these material properties varied with vertical position within the transition interval. In contrast, bulk-density values increased upward, a change that also is consistent with progressive compaction and the onset of welding. Particle-density values remained almost constant throughout the transition interval, probably indicating compositional (chemical) homogeneity.
None
2014-12-01
The recent development of methods applying next-generation sequencing to microbial community characterization has led to the proliferation of these studies in a wide variety of sample types. Yet, variation in the physical properties of environmental samples demands that optimal DNA extraction techniques be explored for each new environment. The microbiota associated with many species of insects offer an extraction challenge as they are frequently surrounded by an armored exoskeleton, inhibiting disruption of the tissues within. In this study, we examine the efficacy of several commonly used protocols for extracting bacterial DNA from ants. While bacterial community composition recovered using Illuminamore » 16S rRNA amplicon sequencing was not detectably biased by any method, the quantity of bacterial DNA varied drastically, reducing the number of samples that could be amplified and sequenced. These results indicate that the concentration necessary for dependable sequencing is around 10,000 copies of target DNA per microliter. Exoskeletal pulverization and tissue digestion increased the reliability of extractions, suggesting that these steps should be included in any study of insect-associated microorganisms that relies on obtaining microbial DNA from intact body segments. Although laboratory and analysis techniques should be standardized across diverse sample types as much as possible, minimal modifications such as these will increase the number of environments in which bacterial communities can be successfully studied.« less
Stewart, J M; Blakely, J A; Karpowicz, P A; Kalanxhi, E; Thatcher, B J; Martin, B M
2004-03-01
We purified myoglobin from beluga whale (Delphinapterus leucas) muscle (longissimus dorsi) with size exclusion and cation exchange chromatographies. The molecular mass was determined by mass spectrometry (17,081 Da) and the isoelectric pH (9.4) by capillary isoelectric focusing. The near-complete amino acid sequence was determined and a phylogeny indicated that beluga was in the same clad as Dall's and harbor porpoises. There were consensus motifs for a phosphorylation site on the protein surface with the most likely site at serine-117. This motif was common to all cetacean myoglobins examined. Two oxygen-binding studies at 37 degrees C indicated dissociation constants (20.5 and 23.6 microM) 5.7-6.6 times larger than horse myoglobin (3.6 microM). The autoxidation rate of beluga myoglobin at 37 degrees C, pH 7.2 was 0.218+/-0.028 h(-1), 1/3 larger than reported for myoglobin of terrestrial mammals. There was no clear sequence change to explain the difference in oxygen binding or autoxidation although substitutions (N66 and T67) in an invariant rich sequence (HGNTV) distal to the heme may play a role. Structural models based on the protein sequence and constructed on topologies of known templates (horse and sperm whale crystal structures) were not adequate to assess perturbation of the heme pocket.
Gene Composer: database software for protein construct design, codon engineering, and gene synthesis
Lorimer, Don; Raymond, Amy; Walchli, John; Mixon, Mark; Barrow, Adrienne; Wallace, Ellen; Grice, Rena; Burgin, Alex; Stewart, Lance
2009-01-01
Background To improve efficiency in high throughput protein structure determination, we have developed a database software package, Gene Composer, which facilitates the information-rich design of protein constructs and their codon engineered synthetic gene sequences. With its modular workflow design and numerous graphical user interfaces, Gene Composer enables researchers to perform all common bio-informatics steps used in modern structure guided protein engineering and synthetic gene engineering. Results An interactive Alignment Viewer allows the researcher to simultaneously visualize sequence conservation in the context of known protein secondary structure, ligand contacts, water contacts, crystal contacts, B-factors, solvent accessible area, residue property type and several other useful property views. The Construct Design Module enables the facile design of novel protein constructs with altered N- and C-termini, internal insertions or deletions, point mutations, and desired affinity tags. The modifications can be combined and permuted into multiple protein constructs, and then virtually cloned in silico into defined expression vectors. The Gene Design Module uses a protein-to-gene algorithm that automates the back-translation of a protein amino acid sequence into a codon engineered nucleic acid gene sequence according to a selected codon usage table with minimal codon usage threshold, defined G:C% content, and desired sequence features achieved through synonymous codon selection that is optimized for the intended expression system. The gene-to-oligo algorithm of the Gene Design Module plans out all of the required overlapping oligonucleotides and mutagenic primers needed to synthesize the desired gene constructs by PCR, and for physically cloning them into selected vectors by the most popular subcloning strategies. Conclusion We present a complete description of Gene Composer functionality, and an efficient PCR-based synthetic gene assembly procedure with mis-match specific endonuclease error correction in combination with PIPE cloning. In a sister manuscript we present data on how Gene Composer designed genes and protein constructs can result in improved protein production for structural studies. PMID:19383142
Lorimer, Don; Raymond, Amy; Walchli, John; Mixon, Mark; Barrow, Adrienne; Wallace, Ellen; Grice, Rena; Burgin, Alex; Stewart, Lance
2009-04-21
To improve efficiency in high throughput protein structure determination, we have developed a database software package, Gene Composer, which facilitates the information-rich design of protein constructs and their codon engineered synthetic gene sequences. With its modular workflow design and numerous graphical user interfaces, Gene Composer enables researchers to perform all common bio-informatics steps used in modern structure guided protein engineering and synthetic gene engineering. An interactive Alignment Viewer allows the researcher to simultaneously visualize sequence conservation in the context of known protein secondary structure, ligand contacts, water contacts, crystal contacts, B-factors, solvent accessible area, residue property type and several other useful property views. The Construct Design Module enables the facile design of novel protein constructs with altered N- and C-termini, internal insertions or deletions, point mutations, and desired affinity tags. The modifications can be combined and permuted into multiple protein constructs, and then virtually cloned in silico into defined expression vectors. The Gene Design Module uses a protein-to-gene algorithm that automates the back-translation of a protein amino acid sequence into a codon engineered nucleic acid gene sequence according to a selected codon usage table with minimal codon usage threshold, defined G:C% content, and desired sequence features achieved through synonymous codon selection that is optimized for the intended expression system. The gene-to-oligo algorithm of the Gene Design Module plans out all of the required overlapping oligonucleotides and mutagenic primers needed to synthesize the desired gene constructs by PCR, and for physically cloning them into selected vectors by the most popular subcloning strategies. We present a complete description of Gene Composer functionality, and an efficient PCR-based synthetic gene assembly procedure with mis-match specific endonuclease error correction in combination with PIPE cloning. In a sister manuscript we present data on how Gene Composer designed genes and protein constructs can result in improved protein production for structural studies.
Semicrystalline Ionomer-Metal Carboxylate Composite: Phase Behavior and Mechanical Properties
NASA Astrophysics Data System (ADS)
Wakabayashi, Katsuyuki
2005-03-01
We have shown previously that the thermal and mechanical behavior of ethylene-methacrylic acid (E-MAA) ionomers can be tuned by the addition of certain magnesium carboxylates, such as magnesium stearate (MgSt). The property modifications result from coassembly of the two components, both co-aggregation of the ionic groups and co-crystallization of the methylene sequences, as revealed by X-ray scattering. When MgSt is replaced by sodium stearate (NaSt), a different suite of mechanical properties is obtained. NaSt, with its high melting and clearing (288 ^oC) points, readily crystallizes out of solution in the molten polymer and forms an effective composite upon cooling from a single-phase melt. The NaSt crystals in the composite resemble the rectangular polymorph in pure NaSt, though with some differences in lattice parameters and transition temperatures due to interaction with the acid groups of the copolymer. The different physical properties of the NaSt vs. MgSt modified ionomers are traced to these microstructural differences, elucidated through a combination of X-ray scattering and microscopy.
One Interesting Family of Diophantine Triplets
ERIC Educational Resources Information Center
Deshpande, M. N.
2002-01-01
In this note properties of two sequences generated by the recurrence relation G[subscript n] +2 = 4 G[subscript n] +1 - G[subscript n], are studied. It is shown that one of the sequences leads to a family of diophantine triplets. Some interesting properties of these sequences are also established.
NASA Technical Reports Server (NTRS)
Wallace, G. R.; Weathers, G. D.; Graf, E. R.
1973-01-01
The statistics of filtered pseudorandom digital sequences called hybrid-sum sequences, formed from the modulo-two sum of several maximum-length sequences, are analyzed. The results indicate that a relation exists between the statistics of the filtered sequence and the characteristic polynomials of the component maximum length sequences. An analysis procedure is developed for identifying a large group of sequences with good statistical properties for applications requiring the generation of analog pseudorandom noise. By use of the analysis approach, the filtering process is approximated by the convolution of the sequence with a sum of unit step functions. A parameter reflecting the overall statistical properties of filtered pseudorandom sequences is derived. This parameter is called the statistical quality factor. A computer algorithm to calculate the statistical quality factor for the filtered sequences is presented, and the results for two examples of sequence combinations are included. The analysis reveals that the statistics of the signals generated with the hybrid-sum generator are potentially superior to the statistics of signals generated with maximum-length generators. Furthermore, fewer calculations are required to evaluate the statistics of a large group of hybrid-sum generators than are required to evaluate the statistics of the same size group of approximately equivalent maximum-length sequences.
Han, Yuepeng; Chagné, David; Gasic, Ksenija; Rikkerink, Erik H A; Beever, Jonathan E; Gardiner, Susan E; Korban, Schuyler S
2009-03-01
A genome-wide BAC physical map of the apple, Malus x domestica Borkh., has been recently developed. Here, we report on integrating the physical and genetic maps of the apple using a SNP-based approach in conjunction with bin mapping. Briefly, BAC clones located at ends of BAC contigs were selected, and sequenced at both ends. The BAC end sequences (BESs) were used to identify candidate SNPs. Subsequently, these candidate SNPs were genetically mapped using a bin mapping strategy for the purpose of mapping the physical onto the genetic map. Using this approach, 52 (23%) out of 228 BESs tested were successfully exploited to develop SNPs. These SNPs anchored 51 contigs, spanning approximately 37 Mb in cumulative physical length, onto 14 linkage groups. The reliability of the integration of the physical and genetic maps using this SNP-based strategy is described, and the results confirm the feasibility of this approach to construct an integrated physical and genetic maps for apple.
Inducing β-Sheets Formation in Synthetic Spider Silk Fibers by Aqueous Post-Spin Stretching
Hinman, Michael B.; Holland, Gregory P.; Yarger, Jeffery L.; Lewis, Randolph V.
2012-01-01
As a promising biomaterial with numerous potential applications, various types of synthetic spider silk fibers have been produced and studied in an effort to produce manmade fibers with mechanical and physical properties comparable to those of native spider silk. In this study, two recombinant proteins based on Nephila clavipes Major ampullate Spidroin 1 (MaSp1) consensus repeat sequence were expressed and spun into fibers. Mechanical test results showed that fiber spun from the higher molecular weight protein had better overall mechanical properties (70 KD versus 46 KD), whereas postspin stretch treatment in water helped increase fiber tensile strength significantly. Carbon-13 solid-state NMR studies of those fibers further revealed that the postspin stretch in water promoted protein molecule rearrangement and the formation of β-sheets in the polyalanine region of the silk. The rearrangement correlated with improved fiber mechanical properties and indicated that postspin stretch is key to helping the spider silk proteins in the fiber form correct secondary structures, leading to better quality fibers. PMID:21574576
Differential Impact of the Monovalent Ions Li+, Na+, K+, and Rb+ on DNA Conformational Properties
2015-01-01
The present report demonstrates that the conformational properties of DNA in solution are sensitive to the type of monovalent ion. Results are based on the ability of a polarizable force field using the classical Drude oscillator to reproduce experimental solution X-ray scattering data more accurately than two nonpolarizable DNA models, AMBER Parmbsc0 and CHARMM36. The polarizable model is then used to calculate scattering profiles of DNA in the presence of four different monovalent salts, LiCl, NaCl, KCl, and RbCl, showing the conformational properties of DNA to vary as a function of ion type, with that effect being sequence-dependent. The primary conformational mode associated with the variations is contraction of the DNA minor groove width with decreasing cation size. These results indicate that the Drude polarizable model provides a more realistic representation of ion–DNA interactions than additive models that may lead to a new level of understanding of the physical mechanisms driving salt-mediated biological processes involving nucleic acids. PMID:25580188
NASA Astrophysics Data System (ADS)
Silva, Diego; Natalello, Antonino; Sanii, Babak; Vasita, Rajesh; Saracino, Gloria; Zuckermann, Ronald N.; Doglia, Silvia Maria; Gelain, Fabrizio
2012-12-01
The importance of self-assembling peptides (SAPs) in regenerative medicine is becoming increasingly recognized. The propensity of SAPs to form nanostructured fibers is governed by multiple forces including hydrogen bonds, hydrophobic interactions and π-π aromatic interactions among side chains of the amino acids. Single residue modifications in SAP sequences can significantly affect these forces. BMHP1-derived SAPs is a class of biotinylated oligopeptides, which self-assemble in β-structured fibers to form a self-healing hydrogel. In the current study, selected modifications in previously described BMHP1-derived SAPs were designed in order to investigate the influence of modified residues on self-assembly kinetics and scaffold formation properties. The Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis demonstrated the secondary structure (β-sheet) formation in all modified SAP sequences, whereas atomic force microscopy (AFM) analysis further confirmed the presence of nanofibers. Furthermore, the fiber shape and dimension analysis by AFM showed flattened and twisted fiber morphology ranging from ~8 nm to ~70 nm. The mechanical properties of the pre-assembled and post assembled solution were investigated by rheometry. The shear-thinning behavior and rapid re-healing properties of the pre-assembled solutions make them a preferable choice for injectable scaffolds. The wide range of stiffnesses (G') -from ~1000 to ~27 000 Pa - exhibited by the post-assembled scaffolds demonstrated their potential for a variety of tissue engineering applications. The extra cellular matrix (ECM) mimicking (physically and chemically) properties of SAP scaffolds enhanced cell adhesion and proliferation. The capability of the scaffold to facilitate murine neural stem cell (mNSC) proliferation was evaluated in vitro: the increased mNSCs adhesion and proliferation demonstrated the potential of newly synthesized SAPs for regenerative medicine approaches.The importance of self-assembling peptides (SAPs) in regenerative medicine is becoming increasingly recognized. The propensity of SAPs to form nanostructured fibers is governed by multiple forces including hydrogen bonds, hydrophobic interactions and π-π aromatic interactions among side chains of the amino acids. Single residue modifications in SAP sequences can significantly affect these forces. BMHP1-derived SAPs is a class of biotinylated oligopeptides, which self-assemble in β-structured fibers to form a self-healing hydrogel. In the current study, selected modifications in previously described BMHP1-derived SAPs were designed in order to investigate the influence of modified residues on self-assembly kinetics and scaffold formation properties. The Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis demonstrated the secondary structure (β-sheet) formation in all modified SAP sequences, whereas atomic force microscopy (AFM) analysis further confirmed the presence of nanofibers. Furthermore, the fiber shape and dimension analysis by AFM showed flattened and twisted fiber morphology ranging from ~8 nm to ~70 nm. The mechanical properties of the pre-assembled and post assembled solution were investigated by rheometry. The shear-thinning behavior and rapid re-healing properties of the pre-assembled solutions make them a preferable choice for injectable scaffolds. The wide range of stiffnesses (G') -from ~1000 to ~27 000 Pa - exhibited by the post-assembled scaffolds demonstrated their potential for a variety of tissue engineering applications. The extra cellular matrix (ECM) mimicking (physically and chemically) properties of SAP scaffolds enhanced cell adhesion and proliferation. The capability of the scaffold to facilitate murine neural stem cell (mNSC) proliferation was evaluated in vitro: the increased mNSCs adhesion and proliferation demonstrated the potential of newly synthesized SAPs for regenerative medicine approaches. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32656f
Ventura, Marco; Jankovic, Ivana; Walker, D. Carey; Pridmore, R. David; Zink, Ralf
2002-01-01
We have identified and sequenced the genes encoding the aggregation-promoting factor (APF) protein from six different strains of Lactobacillus johnsonii and Lactobacillus gasseri. Both species harbor two apf genes, apf1 and apf2, which are in the same orientation and encode proteins of 257 to 326 amino acids. Multiple alignments of the deduced amino acid sequences of these apf genes demonstrate a very strong sequence conservation of all of the genes with the exception of their central regions. Northern blot analysis showed that both genes are transcribed, reaching their maximum expression during the exponential phase. Primer extension analysis revealed that apf1 and apf2 harbor a putative promoter sequence that is conserved in all of the genes. Western blot analysis of the LiCl cell extracts showed that APF proteins are located on the cell surface. Intact cells of L. johnsonii revealed the typical cell wall architecture of S-layer-carrying gram-positive eubacteria, which could be selectively removed with LiCl treatment. In addition, the amino acid composition, physical properties, and genetic organization were found to be quite similar to those of S-layer proteins. These results suggest that APF is a novel surface protein of the Lactobacillus acidophilus B-homology group which might belong to an S-layer-like family. PMID:12450842
Utro, Filippo; Di Benedetto, Valeria; Corona, Davide F V; Giancarlo, Raffaele
2016-03-15
Thanks to research spanning nearly 30 years, two major models have emerged that account for nucleosome organization in chromatin: statistical and sequence specific. The first is based on elegant, easy to compute, closed-form mathematical formulas that make no assumptions of the physical and chemical properties of the underlying DNA sequence. Moreover, they need no training on the data for their computation. The latter is based on some sequence regularities but, as opposed to the statistical model, it lacks the same type of closed-form formulas that, in this case, should be based on the DNA sequence only. We contribute to close this important methodological gap between the two models by providing three very simple formulas for the sequence specific one. They are all based on well-known formulas in Computer Science and Bioinformatics, and they give different quantifications of how complex a sequence is. In view of how remarkably well they perform, it is very surprising that measures of sequence complexity have not even been considered as candidates to close the mentioned gap. We provide experimental evidence that the intrinsic level of combinatorial organization and information-theoretic content of subsequences within a genome are strongly correlated to the level of DNA encoded nucleosome organization discovered by Kaplan et al Our results establish an important connection between the intrinsic complexity of subsequences in a genome and the intrinsic, i.e. DNA encoded, nucleosome organization of eukaryotic genomes. It is a first step towards a mathematical characterization of this latter 'encoding'. Supplementary data are available at Bioinformatics online. futro@us.ibm.com. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Bastolla, Ugo
2014-01-01
The properties of biomolecules depend both on physics and on the evolutionary process that formed them. These two points of view produce a powerful synergism. Physics sets the stage and the constraints that molecular evolution has to obey, and evolutionary theory helps in rationalizing the physical properties of biomolecules, including protein folding thermodynamics. To complete the parallelism, protein thermodynamics is founded on the statistical mechanics in the space of protein structures, and molecular evolution can be viewed as statistical mechanics in the space of protein sequences. In this review, we will integrate both points of view, applying them to detecting selection on the stability of the folded state of proteins. We will start discussing positive design, which strengthens the stability of the folded against the unfolded state of proteins. Positive design justifies why statistical potentials for protein folding can be obtained from the frequencies of structural motifs. Stability against unfolding is easier to achieve for longer proteins. On the contrary, negative design, which consists in destabilizing frequently formed misfolded conformations, is more difficult to achieve for longer proteins. The folding rate can be enhanced by strengthening short-range native interactions, but this requirement contrasts with negative design, and evolution has to trade-off between them. Finally, selection can accelerate functional movements by favoring low frequency normal modes of the dynamics of the native state that strongly correlate with the functional conformation change. PMID:24970217
Physical modeling of geometrically confined disordered protein assemblies
NASA Astrophysics Data System (ADS)
Ando, David
2015-08-01
The transport of cargo across the nuclear membrane is highly selective and accomplished by a poorly understood mechanism involving hundreds of nucleoporins lining the inside of the nuclear pore complex (NPC). Currently, there is no clear picture of the overall structure formed by this collection of proteins within the pore, primarily due to their disordered nature and uncertainty regarding the properties of individual nucleoporins. We first study the defining characteristics of the amino acid sequences of nucleoporins through bioinformatics techniques, although bioinformatics of disordered proteins is especially challenging given high mutation rates for homologous proteins and that functionality may not be strongly related to sequence. Here we have performed a novel bioinformatic analysis, based on the spatial clustering of physically relevant features such as binding motifs and charges within disordered proteins, on thousands of FG motif containing nucleoporins (FG nups). The biophysical mechanism by which the critical FG nups regulate nucleocytoplasmic transport has remained elusive, yet our analysis revealed a set of highly conserved spatial features in the sequence structure of individual FG nups, such as the separation, localization, and ordering of FG motifs and charged residues along the protein chain. These sequence features are likely conserved due to a common functionality between species regarding how FG nups functionally regulate traffic, therefore these results constrain current models and eliminate proposed biophysical mechanisms responsible for regulation of nucleocytoplasmic traffic in the NPC which would not result in such a conserved amino acid sequence structure. Additionally, this method allows us to identify potentially functionally analogous disordered proteins across distantly related species. To understand the physical implications of the sequence features on structure and dynamics of the nucleoporins, we performed coarse-grained simulations of nucleoporins to understand their individual polymer properties. Our results indicate that different regions or blocks of an individual NPC protein can have distinctly different forms of disorder and that this property appears to be a conserved functional feature, consistent with the results of our physical bioinformatic analysis. Further simulations of grafted rings of FG nups mimicking the in vivo geometry of the NPC were performed and supplemented with polymer brush modeling to understand how aggregates of FG nups regulate transport in vivo. We found that the block structure at the individual protein level in terms of polymer properties is critical to the formation of a unique higher-order polymer brush architecture that can exist in distinct morphologies depending on the effective interaction energy between the phenylalanine glycine (FG) domains of different nups. Because the interactions between FG domains may be modulated by certain forms of transport factors, our results indicate that transitions between brush morphologies that correspond to open and closed states could play an important role in regulating transport across the NPC, suggesting novel forms of gated transport across membrane pores with wide biomimetic applicability in our Diblock Copolymer Brush Gate model. Previous experimental research has concluded that FG nups from S. cerevisiae are present in a bimodal distribution, with the "Forest Model" classifying FG nups as either diblock polymer like "trees" or single block polymer like "shrubs." Our simulation and polymer brush modeling results indicated that the function of the tree FG nups in the Diblock Copolymer Brush Gate (DCBG) model is to form a higher-order polymer brush architecture which can open and close to regulate transport across the NPC. Here we perform coarse grained simulations of the shrub FG nups which confirm that they have a single block polymer structure rather than the diblock structure of tree nups. Our molecular simulations also demonstrate that these single block FG nups are likely compact collapsed coil polymers, implying that shrubs are generally localized to their grafting location within the NPC. We find that adding a layer of shrub FG nups to the DCBG model increases the range of cargo sizes which are able to translocate the pore through a cooperative effect involving shrub and tree nups. This effect can explain the puzzling connection between shrub FG nup deletion mutants in S. cerevisiae and the resulting failure of certain large cargo transport through the NPC. Facilitation of large cargo transport via single block and diblock FG nup cooperativity in the nuclear pore could provide a model mechanism for designing future biomimetic pores of greater applicability. In summary, this dissertation presents a cohesive body of research that uses a combination of techniques including bioinformatics, coarse grained molecular modeling, and polymer brush theory to understand the properties of individual FG nups and how they behave in aggregate, strongly constraining possible biophysical mechanisms which may play a role in regulating traffic through the NPC. Our results are observed across different species and are consistent with many experimental observations which have been reported. Finally, our DCBG model for NPC function provides testable predictions for future experimental investigation and provides a foundation for the design and commercialization of biomimetic pores for filtering applications in vitro and industrial use.
NASA Astrophysics Data System (ADS)
Ortega-Guerrero, Beatriz; Lozano-García, Socorro; Herrera-Hernández, Dimitris; Caballero, Margarita; Beramendi-Orosco, Laura; Bernal, Juan Pablo; Torres-Rodríguez, Esperanza; Avendaño-Villeda, Diana
2017-11-01
The recognition of past climatic fluctuations in sedimentary sequences in central Mexico is relevant for understanding the forcing mechanisms and responses of climatic system in the northern American tropic. Moreover, in this active volcanic setting the sedimentary record preserves the history of past volcanic activity. Climatic and environmental variability has been documented for the last tenths of thousands of years from the upper lacustrine sediments in Chalco basin. A series of cores drilled down to 122 m depth in this basin offer a long, continuous and high resolution record of past climatic changes of the last ca. 150 kyr in this region. Here we present the detailed lithostratigraphy and some physical properties (magnetic susceptibility and density) of the master sequence. Sedimentary components and their abundance were identified and quantified in smear slides and direct core observations. Age model is based on 13 14C and one 230Th/U dates. Based on their facies association seven lithostratigraphic units were defined, which reflect the main stages of lake Chalco evolution. These phases closely match the marine isotopic stages. The data reveal that at the end of MIS6 Chalco was a relatively deep and stratified freshwater lake. During MIS5 the depositional environment fluctuated between low lake stands to marshy and marginal playa settings with sporadic flooding events, and severe arid periods resulted in aerial exposure of lake sediments. Low lake stands persisted during MIS4 and MIS3, with minor fluctuations towards slightly deeper phases. The Last Glacial Maximum (LGM) and the deglacial period (21-13 kyr) are characterized by intense volcanism. The early and mid-Holocene high calcareous content and alkaline-subsaline lake suggest dry conditions. The fluctuations of lake levels inferred provide the basis for future paleoclimatic works.
Simulation of spatial and temporal properties of aftershocks by means of the fiber bundle model
NASA Astrophysics Data System (ADS)
Monterrubio-Velasco, Marisol; Zúñiga, F. R.; Márquez-Ramírez, Victor Hugo; Figueroa-Soto, Angel
2017-11-01
The rupture processes of any heterogeneous material constitute a complex physical problem. Earthquake aftershocks show temporal and spatial behaviors which are consequence of the heterogeneous stress distribution and multiple rupturing following the main shock. This process is difficult to model deterministically due to the number of parameters and physical conditions, which are largely unknown. In order to shed light on the minimum requirements for the generation of aftershock clusters, in this study, we perform a simulation of the main features of such a complex process by means of a fiber bundle (FB) type model. The FB model has been widely used to analyze the fracture process in heterogeneous materials. It is a simple but powerful tool that allows modeling the main characteristics of a medium such as the brittle shallow crust of the earth. In this work, we incorporate spatial properties, such as the Coulomb stress change pattern, which help simulate observed characteristics of aftershock sequences. In particular, we introduce a parameter ( P) that controls the probability of spatial distribution of initial loads. Also, we use a "conservation" parameter ( π), which accounts for the load dissipation of the system, and demonstrate its influence on the simulated spatio-temporal patterns. Based on numerical results, we find that P has to be in the range 0.06 < P < 0.30, whilst π needs to be limited by a very narrow range ( 0.60 < π < 0.66) in order to reproduce aftershocks pattern characteristics which resemble those of observed sequences. This means that the system requires a small difference in the spatial distribution of initial stress, and a very particular fraction of load transfer in order to generate realistic aftershocks.
Using the Markov chain Monte Carlo method to study the physical properties of GeV-TeV BL Lac objects
NASA Astrophysics Data System (ADS)
Qin, Longhua; Wang, Jiancheng; Yang, Chuyuan; Yuan, Zunli; Mao, Jirong; Kang, Shiju
2018-01-01
We fit the spectral energy distributions (SEDs) of 46 GeV-TeV BL Lac objects in the frame of leptonic one-zone synchrotron self-Compton (SSC) model and investigate the physical properties of these objects. We use the Markov chain Monte Carlo (MCMC) method to obtain the basic parameters, such as magnetic field (B), the break energy of the relativistic electron distribution (γ ^' }b), and the electron energy spectral index. Based on the modeling results, we support the following scenarios for GeV-TeV BL Lac objects. (1) Some sources have large Doppler factors, implying other radiation mechanism should be considered. (2) Compared with flat spectrum quasars (FSRQs), GeV-TeV BL Lac objects have weaker magnetic fields and larger Doppler factors, which cause the ineffective cooling and shift the SEDs to higher bands. Their jet powers are around 4.0 × 1045 erg s-1, compared with radiation power, 5.0 × 1042 erg s-1, indicating that only a small fraction of jet power is transformed into the emission power. (3) For some BL Lacs with large Doppler factors, their jet components could have two substructures, e.g., the fast core and the slow sheath. For most GeV-TeV BL Lacs, Kelvin-Helmholtz instabilities are suppressed by their higher magnetic fields, leading to micro-variability or intro-day variability in the optical bands. (4) Combined with a sample of FSRQs, an anti-correlation between the peak luminosity, Lpk, and the peak frequency, νpk, is obtained, favoring the blazar sequence scenario. In addition, an anti-correlation between the jet power, Pjet, and the break Lorentz factor, γb, also supports the blazar sequence.
A characterization of linearly repetitive cut and project sets
NASA Astrophysics Data System (ADS)
Haynes, Alan; Koivusalo, Henna; Walton, James
2018-02-01
For the development of a mathematical theory which can be used to rigorously investigate physical properties of quasicrystals, it is necessary to understand regularity of patterns in special classes of aperiodic point sets in Euclidean space. In one dimension, prototypical mathematical models for quasicrystals are provided by Sturmian sequences and by point sets generated by substitution rules. Regularity properties of such sets are well understood, thanks mostly to well known results by Morse and Hedlund, and physicists have used this understanding to study one dimensional random Schrödinger operators and lattice gas models. A key fact which plays an important role in these problems is the existence of a subadditive ergodic theorem, which is guaranteed when the corresponding point set is linearly repetitive. In this paper we extend the one-dimensional model to cut and project sets, which generalize Sturmian sequences in higher dimensions, and which are frequently used in mathematical and physical literature as models for higher dimensional quasicrystals. By using a combination of algebraic, geometric, and dynamical techniques, together with input from higher dimensional Diophantine approximation, we give a complete characterization of all linearly repetitive cut and project sets with cubical windows. We also prove that these are precisely the collection of such sets which satisfy subadditive ergodic theorems. The results are explicit enough to allow us to apply them to known classical models, and to construct linearly repetitive cut and project sets in all pairs of dimensions and codimensions in which they exist. Research supported by EPSRC grants EP/L001462, EP/J00149X, EP/M023540. HK also gratefully acknowledges the support of the Osk. Huttunen foundation.
The MPI Emotional Body Expressions Database for Narrative Scenarios
Volkova, Ekaterina; de la Rosa, Stephan; Bülthoff, Heinrich H.; Mohler, Betty
2014-01-01
Emotion expression in human-human interaction takes place via various types of information, including body motion. Research on the perceptual-cognitive mechanisms underlying the processing of natural emotional body language can benefit greatly from datasets of natural emotional body expressions that facilitate stimulus manipulation and analysis. The existing databases have so far focused on few emotion categories which display predominantly prototypical, exaggerated emotion expressions. Moreover, many of these databases consist of video recordings which limit the ability to manipulate and analyse the physical properties of these stimuli. We present a new database consisting of a large set (over 1400) of natural emotional body expressions typical of monologues. To achieve close-to-natural emotional body expressions, amateur actors were narrating coherent stories while their body movements were recorded with motion capture technology. The resulting 3-dimensional motion data recorded at a high frame rate (120 frames per second) provides fine-grained information about body movements and allows the manipulation of movement on a body joint basis. For each expression it gives the positions and orientations in space of 23 body joints for every frame. We report the results of physical motion properties analysis and of an emotion categorisation study. The reactions of observers from the emotion categorisation study are included in the database. Moreover, we recorded the intended emotion expression for each motion sequence from the actor to allow for investigations regarding the link between intended and perceived emotions. The motion sequences along with the accompanying information are made available in a searchable MPI Emotional Body Expression Database. We hope that this database will enable researchers to study expression and perception of naturally occurring emotional body expressions in greater depth. PMID:25461382
NASA Astrophysics Data System (ADS)
Shang, De-Yi; Zhong, Liang-Cai
2017-01-01
Our novel models for fluid's variable physical properties are improved and reported systematically in this work for enhancement of theoretical and practical value on study of convection heat and mass transfer. It consists of three models, namely (1) temperature parameter model, (2) polynomial model, and (3) weighted-sum model, respectively for treatment of temperature-dependent physical properties of gases, temperature-dependent physical properties of liquids, and concentration- and temperature-dependent physical properties of vapour-gas mixture. Two related components are proposed, and involved in each model for fluid's variable physical properties. They are basic physic property equations and theoretical similarity equations on physical property factors. The former, as the foundation of the latter, is based on the typical experimental data and physical analysis. The latter is built up by similarity analysis and mathematical derivation based on the former basic physical properties equations. These models are available for smooth simulation and treatment of fluid's variable physical properties for assurance of theoretical and practical value of study on convection of heat and mass transfer. Especially, so far, there has been lack of available study on heat and mass transfer of film condensation convection of vapour-gas mixture, and the wrong heat transfer results existed in widespread studies on the related research topics, due to ignorance of proper consideration of the concentration- and temperature-dependent physical properties of vapour-gas mixture. For resolving such difficult issues, the present novel physical property models have their special advantages.
Statistical physics of interacting neural networks
NASA Astrophysics Data System (ADS)
Kinzel, Wolfgang; Metzler, Richard; Kanter, Ido
2001-12-01
Recent results on the statistical physics of time series generation and prediction are presented. A neural network is trained on quasi-periodic and chaotic sequences and overlaps to the sequence generator as well as the prediction errors are calculated numerically. For each network there exists a sequence for which it completely fails to make predictions. Two interacting networks show a transition to perfect synchronization. A pool of interacting networks shows good coordination in the minority game-a model of competition in a closed market. Finally, as a demonstration, a perceptron predicts bit sequences produced by human beings.
3D Realistic Radiative Hydrodynamic Modeling of a Moderate-Mass Star: Effects of Rotation
NASA Astrophysics Data System (ADS)
Kitiashvili, Irina; Kosovichev, Alexander G.; Mansour, Nagi N.; Wray, Alan A.
2018-01-01
Recent progress in stellar observations opens new perspectives in understanding stellar evolution and structure. However, complex interactions in the turbulent radiating plasma together with effects of magnetic fields and rotation make inferences of stellar properties uncertain. The standard 1D mixing-length-based evolutionary models are not able to capture many physical processes of stellar interior dynamics, but they provide an initial approximation of the stellar structure that can be used to initialize 3D time-dependent radiative hydrodynamics simulations, based on first physical principles, that take into account the effects of turbulence, radiation, and others. In this presentation we will show simulation results from a 3D realistic modeling of an F-type main-sequence star with mass 1.47 Msun, in which the computational domain includes the upper layers of the radiation zone, the entire convection zone, and the photosphere. The simulation results provide new insight into the formation and properties of the convective overshoot region, the dynamics of the near-surface, highly turbulent layer, the structure and dynamics of granulation, and the excitation of acoustic and gravity oscillations. We will discuss the thermodynamic structure, oscillations, and effects of rotation on the dynamics of the star across these layers.
NASA Astrophysics Data System (ADS)
Shi, Lei; Yao, Bo; Zhao, Lei; Liu, Xiaotong; Yang, Min; Liu, Yanming
2018-01-01
The plasma sheath-surrounded hypersonic vehicle is a dynamic and time-varying medium and it is almost impossible to calculate time-varying physical parameters directly. The in-fight detection of the time-varying degree is important to understand the dynamic nature of the physical parameters and their effect on re-entry communication. In this paper, a constant envelope zero autocorrelation (CAZAC) sequence based on time-varying frequency detection and channel sounding method is proposed to detect the plasma sheath electronic density time-varying property and wireless channel characteristic. The proposed method utilizes the CAZAC sequence, which has excellent autocorrelation and spread gain characteristics, to realize dynamic time-varying detection/channel sounding under low signal-to-noise ratio in the plasma sheath environment. Theoretical simulation under a typical time-varying radio channel shows that the proposed method is capable of detecting time-variation frequency up to 200 kHz and can trace the channel amplitude and phase in the time domain well under -10 dB. Experimental results conducted in the RF modulation discharge plasma device verified the time variation detection ability in practical dynamic plasma sheath. Meanwhile, nonlinear phenomenon of dynamic plasma sheath on communication signal is observed thorough channel sounding result.
Transcriptome wide identification and characterization of starch branching enzyme in finger millet.
Tyagi, Rajhans; Tiwari, Apoorv; Garg, Vijay Kumar; Gupta, Sanjay
2017-01-01
Starch-branching enzymes (SBEs) are one of the four major enzyme classes involved in starch biosynthesis in plants and play an important role in determining the structure and physical properties of starch granules. Multiple SBEs are involved in starch biosynthesis in plants. Finger millet is calcium rich important serial crop belongs to grass family and the transcriptome data of developing spikes is available on NCBI. In this study it was try to find out the gene sequence of starch branching enzyme and annotate the sequence and submit the sequence for further use. Rice SBE sequence was taken as reference and for characterization of the sequence different in silico tools were used. Four domains were found in the finger millet Starch branching enzyme like alpha amylase catalytic domain from 925 to2172 with E value 0, N-terminal Early set domain from 634 to 915 with E value 1.62 e-42, Alpha amylase, C-terminal all-beta domain from 2224 to 2511 with E value 5.80e-24 and 1,4-alpha-glucan-branching enzyme from 421 to 2517 with E value 0. Major binding interactions with the GLC (alpha-d-glucose), CA (calcium ion), GOL (glycerol), TRS (2-amino-2-hydroxymethylpropane- 1, 3-diol), MG (magnesium ion) and FLC (citrate anion) are fond with different residues. It was found in the phylogenetic study of the finger millet SBE with the 6 species of grass family that two clusters were form A and B. In cluster A, finger millet showed closeness with Oryzasativa and Setariaitalica, Sorghum bicolour and Zea mays while cluster B was formed with Triticumaestivum and Brachypodium distachyon. The nucleotide sequence of Finger millet SBE was submitted to NCBI with the accession no KY648913 and protein structure of SBE of finger millet was also submitted in PMDB with the PMDB id - PM0080938. This research presents a comparative overview of Finger millet SBE and includes their properties, structural and functional characteristics, and recent developments on their post-translational regulation.
DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle.
Mikheikin, Andrey; Olsen, Anita; Leslie, Kevin; Russell-Pavier, Freddie; Yacoot, Andrew; Picco, Loren; Payton, Oliver; Toor, Amir; Chesney, Alden; Gimzewski, James K; Mishra, Bud; Reed, Jason
2017-11-21
Progress in whole-genome sequencing using short-read (e.g., <150 bp), next-generation sequencing technologies has reinvigorated interest in high-resolution physical mapping to fill technical gaps that are not well addressed by sequencing. Here, we report two technical advances in DNA nanotechnology and single-molecule genomics: (1) we describe a labeling technique (CRISPR-Cas9 nanoparticles) for high-speed AFM-based physical mapping of DNA and (2) the first successful demonstration of using DVD optics to image DNA molecules with high-speed AFM. As a proof of principle, we used this new "nanomapping" method to detect and map precisely BCL2-IGH translocations present in lymph node biopsies of follicular lymphoma patents. This HS-AFM "nanomapping" technique can be complementary to both sequencing and other physical mapping approaches.
Du, Q S; Ma, Y; Xie, N Z; Huang, R B
2014-01-01
In the design of peptide inhibitors the huge possible variety of the peptide sequences is of high concern. In collaboration with the fast accumulation of the peptide experimental data and database, a statistical method is suggested for peptide inhibitor design. In the two-level peptide prediction network (2L-QSAR) one level is the physicochemical properties of amino acids and the other level is the peptide sequence position. The activity contributions of amino acids are the functions of physicochemical properties and the sequence positions. In the prediction equation two weight coefficient sets {ak} and {bl} are assigned to the physicochemical properties and to the sequence positions, respectively. After the two coefficient sets are optimized based on the experimental data of known peptide inhibitors using the iterative double least square (IDLS) procedure, the coefficients are used to evaluate the bioactivities of new designed peptide inhibitors. The two-level prediction network can be applied to the peptide inhibitor design that may aim for different target proteins, or different positions of a protein. A notable advantage of the two-level statistical algorithm is that there is no need for host protein structural information. It may also provide useful insight into the amino acid properties and the roles of sequence positions.
Properties of Cordonnier, Perrin and Van der Laan Numbers
ERIC Educational Resources Information Center
Shannon, A. G.; Anderson, P. G.; Horadam, A. F.
2006-01-01
This paper aims to explore some properties of certain third-order linear sequences which have some properties analogous to the better known second-order sequences of Fibonacci and Lucas. Historical background issues are outlined. These, together with the number and combinatorial theoretical results, provide plenty of pedagogical opportunities for…
Sequence Effects in Conjugated Donor-Acceptor Trimers and Polymers.
Zhang, Shaopeng; Hutchison, Geoffrey R; Meyer, Tara Y
2016-06-01
To investigate the sequence effect on donor-acceptor conjugated oligomers and polymers, the trimeric isomers PBP and BPP, comprising dialkoxy phenylene vinylene (P), benzothiadiazole vinylene (B), and alkyl endgroups with terminal olefins, are synthesized. Sequence effects are evident in the optical/electrochemical properties and thermal properties. Absorption maxima for PBP and BPP differ by 41 nm and the electrochemical band gaps by 0.1 V. The molar emission intensity is five times greater in PBP than BPP. Both trimers are crystalline and the melting points differ by 17 °C. The PBP and BPP trimers are used as macromonomers in an acyclic diene metathesis polymerization to give PolyPBP and PolyBPP. The optical and electrochemical properties are similar to those of their trimer precursors-sequence effects are still evident. These results suggest that sequence is a tunable variable for electronic materials and that the polymerization of oligomeric sequences is a useful approach to introducing sequence into polymers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Bin; Liu, Fule; Fang, Longyun; Wang, Xiaolong; Chou, Kuo-Chen
2015-04-15
In order to develop powerful computational predictors for identifying the biological features or attributes of DNAs, one of the most challenging problems is to find a suitable approach to effectively represent the DNA sequences. To facilitate the studies of DNAs and nucleotides, we developed a Python package called representations of DNAs (repDNA) for generating the widely used features reflecting the physicochemical properties and sequence-order effects of DNAs and nucleotides. There are three feature groups composed of 15 features. The first group calculates three nucleic acid composition features describing the local sequence information by means of kmers; the second group calculates six autocorrelation features describing the level of correlation between two oligonucleotides along a DNA sequence in terms of their specific physicochemical properties; the third group calculates six pseudo nucleotide composition features, which can be used to represent a DNA sequence with a discrete model or vector yet still keep considerable sequence-order information via the physicochemical properties of its constituent oligonucleotides. In addition, these features can be easily calculated based on both the built-in and user-defined properties via using repDNA. The repDNA Python package is freely accessible to the public at http://bioinformatics.hitsz.edu.cn/repDNA/. bliu@insun.hit.edu.cn or kcchou@gordonlifescience.org Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Harff, Jan; Bohling, Geoffrey C.; Endler, R.; Davis, J.C.; Olea, R.A.
1999-01-01
The Holocene sediment sequence of a core taken within the centre of the Eastern Gotland Basin was subdivided into 12 lithostratigraphic units based on MSCL-data (sound velocity, wet bulk density, magnetic susceptibility) using a multivariate classification method. The lower 6 units embrace the sediments until the Litorina transgression, and the upper 6 units subdivide the brackish-marine Litorina- and post-Litorina sediments. The upper lithostratigraphic units reflect a change of anoxic (laminated) and oxic (non-laminated) sediments. By application of a numerical stratigraphic correlation method the zonation was extended laterally onto contiguous sediment cores within the central basin. Consequently the change of anoxic and oxic sediments can be used for a general lithostratigraphic subdivision of sediments of the Gotland Basin. A quantitative criterion based on the sediment-physical lithofacies is added to existing subdivisions of the Holocene in the Baltic Sea.
ERIC Educational Resources Information Center
Yu, Yue; Kushnir, Tamar
2016-01-01
This study explores the role of a particular social cue--the "sequence" of demonstrated actions and events--in preschooler's categorization. A demonstrator sorted objects that varied on both a surface feature (color) and a nonobvious property (sound made when shaken). Children saw a sequence of actions in which the nonobvious property…
Natural proteins: Sources, isolation, characterization and applications
Nehete, Jitendra Y.; Bhambar, Rajendra S.; Narkhede, Minal R.; Gawali, Sonali R.
2013-01-01
Worldwide, plant protein contributes substantially as a food resource because it contains essential amino acids for meeting human physiological requirements. However, many versatile plant proteins are used as medicinal agents as they are produced by using molecular tools of biotechnology. Proteins can be obtained from plants, animals and microorganism cells. The abundant economical proteins can be obtained from plant seeds. These natural proteins are obtained by isolation procedures depending on the physicochemical properties of proteins. Isolation and purification of single protein from cells containing mixtures of unrelated proteins is achievable due to the physical and chemical attributes of proteins. The following characteristics are unique to each protein: Amino acid composition, sequence, subunit structures, size, shape, net charge, isoelectric point, solubility, heat stability and hydrophobicity. Based on these properties, various methods of isolation exist, like salting out and isoionic precipitation. Purification of proteins is quiet challenging and, therefore, several approaches like sodium dodecyl sulfate gel electrophoresis and chromatography are available. Characterization of proteins can be performed by mass spectrometry/liquid chromatography-mass spectrometry (LC-MS). The amino acid sequence of a protein can be detected by using tandem mass spectrometry. In this article, a review has been made on the sources, isolation, purification and characterization of natural proteins. PMID:24347918
Computational protein design: a review
NASA Astrophysics Data System (ADS)
Coluzza, Ivan
2017-04-01
Proteins are one of the most versatile modular assembling systems in nature. Experimentally, more than 110 000 protein structures have been identified and more are deposited every day in the Protein Data Bank. Such an enormous structural variety is to a first approximation controlled by the sequence of amino acids along the peptide chain of each protein. Understanding how the structural and functional properties of the target can be encoded in this sequence is the main objective of protein design. Unfortunately, rational protein design remains one of the major challenges across the disciplines of biology, physics and chemistry. The implications of solving this problem are enormous and branch into materials science, drug design, evolution and even cryptography. For instance, in the field of drug design an effective computational method to design protein-based ligands for biological targets such as viruses, bacteria or tumour cells, could give a significant boost to the development of new therapies with reduced side effects. In materials science, self-assembly is a highly desired property and soon artificial proteins could represent a new class of designable self-assembling materials. The scope of this review is to describe the state of the art in computational protein design methods and give the reader an outline of what developments could be expected in the near future.
MR fingerprinting using the quick echo splitting NMR imaging technique.
Jiang, Yun; Ma, Dan; Jerecic, Renate; Duerk, Jeffrey; Seiberlich, Nicole; Gulani, Vikas; Griswold, Mark A
2017-03-01
The purpose of the study is to develop a quantitative method for the relaxation properties with a reduced radio frequency (RF) power deposition by combining magnetic resonance fingerprinting (MRF) technique with quick echo splitting NMR imaging technique (QUEST). A QUEST-based MRF sequence was implemented to acquire high-order echoes by increasing the gaps between RF pulses. Bloch simulations were used to calculate a dictionary containing the range of physically plausible signal evolutions using a range of T 1 and T 2 values based on the pulse sequence. MRF-QUEST was evaluated by comparing to the results of spin-echo methods. The specific absorption rate (SAR) of MRF-QUEST was compared with the clinically available methods. MRF-QUEST quantifies the relaxation properties with good accuracy at the estimated head SAR of 0.03 W/kg. T 1 and T 2 values estimated by MRF-QUEST are in good agreement with the traditional methods. The combination of the MRF and the QUEST provides an accurate quantification of T 1 and T 2 simultaneously with reduced RF power deposition. The resulting lower SAR may provide a new acquisition strategy for MRF when RF energy deposition is problematic. Magn Reson Med 77:979-988, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Zhou, Gaofeng; Jian, Jianbo; Wang, Penghao; Li, Chengdao; Tao, Ye; Li, Xuan; Renshaw, Daniel; Clements, Jonathan; Sweetingham, Mark; Yang, Huaan
2018-01-01
An ultra-high density genetic map containing 34,574 sequence-defined markers was developed in Lupinus angustifolius. Markers closely linked to nine genes of agronomic traits were identified. A physical map was improved to cover 560.5 Mb genome sequence. Lupin (Lupinus angustifolius L.) is a recently domesticated legume grain crop. In this study, we applied the restriction-site associated DNA sequencing (RADseq) method to genotype an F 9 recombinant inbred line population derived from a wild type × domesticated cultivar (W × D) cross. A high density linkage map was developed based on the W × D population. By integrating sequence-defined DNA markers reported in previous mapping studies, we established an ultra-high density consensus genetic map, which contains 34,574 markers consisting of 3508 loci covering 2399 cM on 20 linkage groups. The largest gap in the entire consensus map was 4.73 cM. The high density W × D map and the consensus map were used to develop an improved physical map, which covered 560.5 Mb of genome sequence data. The ultra-high density consensus linkage map, the improved physical map and the markers linked to genes of breeding interest reported in this study provide a common tool for genome sequence assembly, structural genomics, comparative genomics, functional genomics, QTL mapping, and molecular plant breeding in lupin.
NASA Astrophysics Data System (ADS)
Serra, Reviewed By Martin J.
2000-01-01
Genomics is one of the most rapidly expanding areas of science. This book is an outgrowth of a series of lectures given by one of the former heads (CRC) of the Human Genome Initiative. The book is designed to reach a wide audience, from biologists with little chemical or physical science background through engineers, computer scientists, and physicists with little current exposure to the chemical or biological principles of genetics. The text starts with a basic review of the chemical and biological properties of DNA. However, without either a biochemistry background or a supplemental biochemistry text, this chapter and much of the rest of the text would be difficult to digest. The second chapter is designed to put DNA into the context of the larger chromosomal unit. Specialized chromosomal structures and sequences (centromeres, telomeres) are introduced, leading to a section on chromosome organization and purification. The next 4 chapters cover the physical (hybridization, electrophoresis), chemical (polymerase chain reaction), and biological (genetic) techniques that provide the backbone of genomic analysis. These chapters cover in significant detail the fundamental principles underlying each technique and provide a firm background for the remainder of the text. Chapters 79 consider the need and methods for the development of physical maps. Chapter 7 primarily discusses chromosomal localization techniques, including in situ hybridization, FISH, and chromosome paintings. The next two chapters focus on the development of libraries and clones. In particular, Chapter 9 considers the limitations of current mapping and clone production. The current state and future of DNA sequencing is covered in the next three chapters. The first considers the current methods of DNA sequencing - especially gel-based methods of analysis, although other possible approaches (mass spectrometry) are introduced. Much of the chapter addresses the limitations of current methods, including analysis of error in sequencing and current bottlenecks in the sequencing effort. The next chapter describes the steps necessary to scale current technologies for the sequencing of entire genomes. Chapter 12 examines alternate methods for DNA sequencing. Initially, methods of single-molecule sequencing and sequencing by microscopy are introduced; the majority of the chapter is devoted to the development of DNA sequencing methods using chip microarrays and hybridization. The remaining chapters (13-15) consider the uses and analysis of DNA sequence information. The initial focus is on the identification of genes. Several examples are given of the use of DNA sequence information for diagnosis of inherited or infectious diseases. The sequence-specific manipulation of DNA is discussed in Chapter 14. The final chapter deals with the implications of large-scale sequencing, including methods for identifying genes and finding errors in DNA sequences, to the development of computer algorithms for the interpretation of DNA sequence information. The text figures are black and white line drawings that, although clearly done, seem a bit primitive for 1999. While I appreciated the simplicity of the drawings, many students accustomed to more colorful presentations will find them wanting. The four color figures in the center of the text seem an afterthought and add little to the text's clarity. Each chapter has a set of additional reading sources, mostly primary sources. Often, specialized topics are offset into boxes that provide clarification and amplification without cluttering the text. An appendix includes a list of the Web-based database resources. As an undergraduate instructor who has previously taught biochemistry, molecular biology, and a course on the human genome, I found many interesting tidbits and amplifications throughout the text. I would recommend this book as a text for an advanced undergraduate or beginning graduate course in genomics. Although the text works though several examples of genetic and genome analysis, additional problem/homework sets would need to be developed to ensure student comprehension. The text steers clear of the ethical implications of the Human Genome Initiative and remains true to its subtitle The Science and Technology .
The Physics and Mathematics of MRI
NASA Astrophysics Data System (ADS)
Ansorge, Richard; Graves, Martin
2016-10-01
Magnetic Resonance Imaging is a very important clinical imaging tool. It combines different fields of physics and engineering in a uniquely complex way. MRI is also surprisingly versatile, `pulse sequences' can be designed to yield many different types of contrast. This versatility is unique to MRI. This short book gives both an in depth account of the methods used for the operation and construction of modern MRI systems and also the principles of sequence design and many examples of applications. An important additional feature of this book is the detailed discussion of the mathematical principles used in building optimal MRI systems and for sequence design. The mathematical discussion is very suitable for undergraduates attending medical physics courses. It is also more complete than usually found in alternative books for physical scientists or more clinically orientated works.
41 CFR 109-1.5110 - Physical inventories of personal property.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Physical inventories of...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of personal property. (a) Physical inventories of those categories of personal property as specified in...
41 CFR 109-1.5110 - Physical inventories of personal property.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Physical inventories of...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of personal property. (a) Physical inventories of those categories of personal property as specified in...
41 CFR 109-1.5110 - Physical inventories of personal property.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Physical inventories of...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of personal property. (a) Physical inventories of those categories of personal property as specified in...
41 CFR 109-1.5110 - Physical inventories of personal property.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Physical inventories of...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of personal property. (a) Physical inventories of those categories of personal property as specified in...
41 CFR 109-1.5110 - Physical inventories of personal property.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Physical inventories of...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of personal property. (a) Physical inventories of those categories of personal property as specified in...
Sequenced Instructional Programs in Physical Education for the Handicapped.
ERIC Educational Resources Information Center
Carr, Dorothy B.; And Others
The curriculum guidelines for a comprehensive physical education program consist of developmentally sequenced skills and instructional activities appropriate for handicapped children from early preschool age (18 months) through high school. Suggested activities and materials are arranged in color-coded sections on motor and movement skills,…
Quantiprot - a Python package for quantitative analysis of protein sequences.
Konopka, Bogumił M; Marciniak, Marta; Dyrka, Witold
2017-07-17
The field of protein sequence analysis is dominated by tools rooted in substitution matrices and alignments. A complementary approach is provided by methods of quantitative characterization. A major advantage of the approach is that quantitative properties defines a multidimensional solution space, where sequences can be related to each other and differences can be meaningfully interpreted. Quantiprot is a software package in Python, which provides a simple and consistent interface to multiple methods for quantitative characterization of protein sequences. The package can be used to calculate dozens of characteristics directly from sequences or using physico-chemical properties of amino acids. Besides basic measures, Quantiprot performs quantitative analysis of recurrence and determinism in the sequence, calculates distribution of n-grams and computes the Zipf's law coefficient. We propose three main fields of application of the Quantiprot package. First, quantitative characteristics can be used in alignment-free similarity searches, and in clustering of large and/or divergent sequence sets. Second, a feature space defined by quantitative properties can be used in comparative studies of protein families and organisms. Third, the feature space can be used for evaluating generative models, where large number of sequences generated by the model can be compared to actually observed sequences.
NASA Astrophysics Data System (ADS)
Trippetta, F.; Carpenter, B. M.; Mollo, S.; Scuderi, M. M.; Scarlato, P.; Collettini, C.
2017-11-01
The physical characterization of carbonate-bearing normal faults is fundamental for resource development and seismic hazard. Here we report laboratory measurements of density, porosity, Vp, Vs, elastic moduli, and permeability for a range of effective confining pressures (0.1-100 MPa), conducted on samples representing different structural domains of a carbonate-bearing fault. We find a reduction in porosity from the fault breccia (11.7% total and 6.2% connected) to the main fault plane (9% total and 3.5% connected), with both domains showing higher porosity compared to the protolith (6.8% total and 1.1% connected). With increasing confining pressure, P wave velocity evolves from 4.5 to 5.9 km/s in the fault breccia, is constant at 5.9 km/s approaching the fault plane and is low (4.9 km/s) in clay-rich fault domains. We find that while the fault breccia shows pressure sensitive behavior (a reduction in permeability from 2 × 10-16 to 2 × 10-17 m2), the cemented cataclasite close to the fault plane is characterized by pressure-independent behavior (permeability 4 × 10-17 m2). Our results indicate that the deformation processes occurring within the different fault structural domains influence the physical and transport properties of the fault zone. In situ Vp profiles match well the laboratory measurements demonstrating that laboratory data are valuable for implications at larger scale. Combining the experimental values of elastic moduli and frictional properties it results that at shallow crustal levels, M ≤ 1 earthquakes are less favored, in agreement with earthquake-depth distribution during the L'Aquila 2009 seismic sequence that occurred on carbonates.
Microfabricated magnetic structures for future medicine: from sensors to cell actuators
Vitol, Elina A; Novosad, Valentyn; Rozhkova, Elena A
2013-01-01
In this review, we discuss the prospective medical application of magnetic carriers microfabricated by top-down techniques. Physical methods allow the fabrication of a variety of magnetic structures with tightly controlled magnetic properties and geometry, which makes them very attractive for a cost-efficient mass-production in the fast growing field of nanomedicine. Stand-alone fabricated particles along with integrated devices combining lithographically defined magnetic structures and synthesized magnetic tags will be considered. Applications of microfabricated multifunctional magnetic structures for future medicinal purposes range from ultrasensitive in vitro diagnostic bioassays, DNA sequencing and microfluidic cell sorting to magnetomechanical actuation, cargo delivery, contrast enhancement and heating therapy. PMID:23148542
Glossary of terms and table of conversion factors used in design of chemical propulsion systems
NASA Technical Reports Server (NTRS)
Keller, R. B., Jr. (Compiler)
1979-01-01
The glossary presented is based entirely on terms used in the monographs on Chemical Propulsion. Significant terms relating to material properties and to material fabrication are presented. The terms are arranged in alphabetical order, with multiple word terms appearing in the normal sequence of usage; for example, ablative cooling appears as such, not as cooling, ablative, and lip seal appears as such, not as seal, lip. Conversion Factors for converting U.S. customary units to the International System of Units are presented in alphabetical order of the physical quantity (e.g., density, heat flux, specific impulse) involved.
Universal sequence map (USM) of arbitrary discrete sequences
2002-01-01
Background For over a decade the idea of representing biological sequences in a continuous coordinate space has maintained its appeal but not been fully realized. The basic idea is that any sequence of symbols may define trajectories in the continuous space conserving all its statistical properties. Ideally, such a representation would allow scale independent sequence analysis – without the context of fixed memory length. A simple example would consist on being able to infer the homology between two sequences solely by comparing the coordinates of any two homologous units. Results We have successfully identified such an iterative function for bijective mappingψ of discrete sequences into objects of continuous state space that enable scale-independent sequence analysis. The technique, named Universal Sequence Mapping (USM), is applicable to sequences with an arbitrary length and arbitrary number of unique units and generates a representation where map distance estimates sequence similarity. The novel USM procedure is based on earlier work by these and other authors on the properties of Chaos Game Representation (CGR). The latter enables the representation of 4 unit type sequences (like DNA) as an order free Markov Chain transition table. The properties of USM are illustrated with test data and can be verified for other data by using the accompanying web-based tool:http://bioinformatics.musc.edu/~jonas/usm/. Conclusions USM is shown to enable a statistical mechanics approach to sequence analysis. The scale independent representation frees sequence analysis from the need to assume a memory length in the investigation of syntactic rules. PMID:11895567
Effect of stacking sequence on mechanical properties neem wood veneer plastic composites
NASA Astrophysics Data System (ADS)
Nagamadhu, M.; Kumar, G. C. Mohan; Jeyaraj, P.
2018-04-01
This study investigates the effect of wood veneer stacking sequence on mechanical properties of neem wood polymer composite (WPC) experimentally. Wood laminated samples were fabricated by conventional hand layup technique in a mold and cured under pressure at room temperature and then post cured at elevated temperature. Initially, the tensile, flexural, and impact test were conducted to understand the effect of weight fraction of fiber on mechanical properties. The mechanical properties have increased with the weight fraction of fiber. Moreover the stacking sequence of neem wood plays an important role. As it has a significant impact on the mechanical properties. The results indicated that 0°/0° WPC shows highest mechanical properties as compared to other sequences (90°/90°, 0°/90°, 45°/90°, 45°/45°). The Fourier Transform Infrared Spectroscopy (FTIR) Analysis were carried out to identify chemical compounds both in raw neem wood and neem wood epoxy composite. The microstructure raw/neat neem wood and the interfacial bonding characteristics of neem wood composite investigated using Scanning electron microscopy images.
The influence of specific binding of collagen-silk chimeras to silk biomaterials on hMSC behavior.
An, Bo; DesRochers, Teresa M; Qin, Guokui; Xia, Xiaoxia; Thiagarajan, Geetha; Brodsky, Barbara; Kaplan, David L
2013-01-01
Collagen-like proteins in the bacteria Streptococcus pyogenes adopt a triple-helix structure with a thermal stability similar to that of animal collagens, can be expressed in high yield in Escherichia coli and can be easily modified through molecular biology techniques. However, potential applications for such recombinant collagens are limited by their lack of higher order structure to achieve the physical properties needed for most biomaterials. To overcome this problem, the S. pyogenes collagen domain was fused to a repetitive Bombyx mori silk consensus sequence, as a strategy to direct specific non-covalent binding onto solid silk materials whose superior stability, mechanical and material properties have been previously established. This approach resulted in the successful binding of these new collagen-silk chimeric proteins to silk films and porous scaffolds, and the binding affinity could be controlled by varying the number of repeats in the silk sequence. To explore the potential of collagen-silk chimera for regulating biological activity, integrin (Int) and fibronectin (Fn) binding sequences from mammalian collagens were introduced into the bacterial collagen domain. The attachment of bioactive collagen-silk chimeras to solid silk biomaterials promoted hMSC spreading and proliferation substantially in comparison to the controls. The ability to combine the biomaterial features of silk with the biological activities of collagen allowed more rapid cell interactions with silk-based biomaterials, improved regulation of stem cell growth and differentiation, as well as the formation of artificial extracellular matrices useful for tissue engineering applications. Copyright © 2012 Elsevier Ltd. All rights reserved.
Global Genomic Diversity of Oryza sativa Varieties Revealed by Comparative Physical Mapping
Wang, Xiaoming; Kudrna, David A.; Pan, Yonglong; Wang, Hao; Liu, Lin; Lin, Haiyan; Zhang, Jianwei; Song, Xiang; Goicoechea, Jose Luis; Wing, Rod A.; Zhang, Qifa; Luo, Meizhong
2014-01-01
Bacterial artificial chromosome (BAC) physical maps embedding a large number of BAC end sequences (BESs) were generated for Oryza sativa ssp. indica varieties Minghui 63 (MH63) and Zhenshan 97 (ZS97) and were compared with the genome sequences of O. sativa spp. japonica cv. Nipponbare and O. sativa ssp. indica cv. 93-11. The comparisons exhibited substantial diversities in terms of large structural variations and small substitutions and indels. Genome-wide BAC-sized and contig-sized structural variations were detected, and the shared variations were analyzed. In the expansion regions of the Nipponbare reference sequence, in comparison to the MH63 and ZS97 physical maps, as well as to the previously constructed 93-11 physical map, the amounts and types of the repeat contents, and the outputs of gene ontology analysis, were significantly different from those of the whole genome. Using the physical maps of four wild Oryza species from OMAP (http://www.omap.org) as a control, we detected many conserved and divergent regions related to the evolution process of O. sativa. Between the BESs of MH63 and ZS97 and the two reference sequences, a total of 1532 polymorphic simple sequence repeats (SSRs), 71,383 SNPs, 1767 multiple nucleotide polymorphisms, 6340 insertions, and 9137 deletions were identified. This study provides independent whole-genome resources for intra- and intersubspecies comparisons and functional genomics studies in O. sativa. Both the comparative physical maps and the GBrowse, which integrated the QTL and molecular markers from GRAMENE (http://www.gramene.org) with our physical maps and analysis results, are open to the public through our Web site (http://gresource.hzau.edu.cn/resource/resource.html). PMID:24424778
Fan, Baoli; Zhang, Aiping; Yang, Yi; Ma, Quanlin; Li, Xuemin; Zhao, Changming
2016-01-01
The xerophytic desert shrub Haloxylon ammodendron (C. A. Mey.) Bunge. is distributed naturally in Asian and African deserts, and is widely used for vegetation restoration in the desert regions of Northern China. However, there are limited long-term chrono-sequence studies on the impact of changed soil properties and vegetation dynamics following establishment of this shrub on mobile sand dunes. In Minqin County, Gansu Province, we investigated soil properties and herbaceous vegetation development of 10, 20, 30, 40, 50-year-old H. ammodendron plantations on mobile sand dunes. Soil sampling at two depths (0–5 and 5–20 cm) under the shrubs determined SOC, nutrition and soil physical characteristics. The results showed that: establishment of H. ammodendron had improved soil physio-chemical properties, increased thickness of soil crusts and coverage of biological soil crusts (BSCs), and promoted development of topsoil over an extended period of 5 decades. Soil texture and soil nutrition improved along the chrono-sequence according to three distinct phases: i) an initial fast development from 0 to 10 years, ii) a stabilizing phase from 10 to 30 years followed by iii) a relatively marked restoration development in 40 and 50-year-old plantations. Meanwhile, herbaceous community coverage also markedly increased in 30-year-old plantations. However, both soil and vegetation restoration were very slow due to low annual precipitation in Minqin county compared to other Northern China sand afforestation sites. Canonical Correspondence Analysis results demonstrated that herbaceous plant development was closely associated with changes in soil texture (increased clay and silt percentage) and availability of soil nutrients. Thus our results indicated that selection of the long-lived shrub H. ammodendron is an essential and effective tool in arid desert re-vegetation. PMID:27992458
NASA Astrophysics Data System (ADS)
Lin, Dongguo; Kang, Tae Gon; Han, Jun Sae; Park, Seong Jin; Chung, Seong Taek; Kwon, Young-Sam
2018-02-01
Both experimental and numerical analysis of powder injection molding (PIM) of Ti-6Al-4V alloy were performed to prepare a defect-free high-performance Ti-6Al-4V part with low carbon/oxygen contents. The prepared feedstock was characterized with specific experiments to identify its viscosity, pressure-volume-temperature and thermal properties to simulate its injection molding process. A finite-element-based numerical scheme was employed to simulate the thermomechanical process during the injection molding. In addition, the injection molding, debinding, sintering and hot isostatic pressing processes were performed in sequence to prepare the PIMed parts. With optimized processing conditions, the PIMed Ti-6Al-4V part exhibits excellent physical and mechanical properties, showing a final density of 99.8%, tensile strength of 973 MPa and elongation of 16%.
A VLT/UVES spectroscopy study of O2 stars in the LMC
NASA Astrophysics Data System (ADS)
Doran, Emile I.; Crowther, Paul A.
2011-01-01
We have analysed VLT/UVES spectra of six O2 stars within the Large Magellanic Cloud using the non-LTE atmospheric code CMFGEN. A range of physical properties was determined by employing a temperature calibration based upon N IV - N V diagnostics. Wind properties were also obtained from the Hα line, while CNO surface abundances were supplied through various diagnostics. Our results reveal effective temperatures in excess of T_{eff} ˜50 kK in all cases. We also addressed their evolutionary status and favour a mass dependent division. For lower masses ≤100 M⊙Mar, an O2 star follows the classical sequence, evolving from dwarf on to giant, through to supergiant. At higher masses, the dwarf phase may be circumvented and instead O2 stars begin their lives as giants or supergiants, evolving to the H-rich WN stage within ˜1.5 Myr.
Genetic markers cannot determine Jewish descent
Falk, Raphael
2015-01-01
Humans differentiate, classify, and discriminate: social interaction is a basic property of human Darwinian evolution. Presumably inherent differential physical as well as behavioral properties have always been criteria for identifying friend or foe. Yet, biological determinism is a relatively modern term, and scientific racism is, oddly enough, largely a consequence or a product of the Age of Enlightenment and the establishment of the notion of human equality. In recent decades ever-increasing efforts and ingenuity were invested in identifying Biblical Israelite genotypic common denominators by analysing an assortment of phenotypes, like facial patterns, blood types, diseases, DNA-sequences, and more. It becomes overwhelmingly clear that although Jews maintained detectable vertical genetic continuity along generations of socio-religious-cultural relationship, also intensive horizontal genetic relations were maintained both between Jewish communities and with the gentile surrounding. Thus, in spite of considerable consanguinity, there is no Jewish genotype to identify. PMID:25653666
Sharma, Vikas K.; Patapoff, Thomas W.; Kabakoff, Bruce; Pai, Satyan; Hilario, Eric; Zhang, Boyan; Li, Charlene; Borisov, Oleg; Kelley, Robert F.; Chorny, Ilya; Zhou, Joe Z.; Dill, Ken A.; Swartz, Trevor E.
2014-01-01
For mAbs to be viable therapeutics, they must be formulated to have low viscosity, be chemically stable, and have normal in vivo clearance rates. We explored these properties by observing correlations of up to 60 different antibodies of the IgG1 isotype. Unexpectedly, we observe significant correlations with simple physical properties obtainable from antibody sequences and by molecular dynamics simulations of individual antibody molecules. mAbs viscosities increase strongly with hydrophobicity and charge dipole distribution and decrease with net charge. Fast clearance correlates with high hydrophobicities of certain complementarity determining regions and with high positive or high negative net charge. Chemical degradation from tryptophan oxidation correlates with the average solvent exposure time of tryptophan residues. Aspartic acid isomerization rates can be predicted from solvent exposure and flexibility as determined by molecular dynamics simulations. These studies should aid in more rapid screening and selection of mAb candidates during early discovery. PMID:25512516
Nelson, Philip H.; Kibler, Joyce E.
2014-01-01
As part of a site investigation for the disposal of radioactive waste, numerous boreholes were drilled into a sequence of Miocene pyroclastic flows and related deposits at Yucca Mountain, Nevada. This report contains displays of data from 25 boreholes drilled during 1979–1984, relatively early in the site investigation program. Geophysical logs and hydrological tests were conducted in the boreholes; core and cuttings analyses yielded data on mineralogy, fractures, and physical properties; and geologic descriptions provided lithology boundaries and the degree of welding of the rock units. Porosity and water content were computed from the geophysical logs, and porosity results were combined with mineralogy from x-ray diffraction to provide whole-rock volume fractions. These data were composited on plates and used by project personnel during the 1990s. Improvements in scanning and computer technology now make it possible to publish these displays.
Connections between Star Cluster Populations and Their Host Galaxy Nuclear Rings
NASA Astrophysics Data System (ADS)
Ma, Chao; de Grijs, Richard; Ho, Luis C.
2018-04-01
Nuclear rings are excellent laboratories for probing diverse phenomena such as the formation and evolution of young massive star clusters and nuclear starbursts, as well as the secular evolution and dynamics of their host galaxies. We have compiled a sample of 17 galaxies with nuclear rings, which are well resolved by high-resolution Hubble and Spitzer Space Telescope imaging. For each nuclear ring, we identified the ring star cluster population, along with their physical properties (ages, masses, and extinction values). We also determined the integrated ring properties, including the average age, total stellar mass, and current star formation rate (SFR). We find that Sb-type galaxies tend to have the highest ring stellar mass fraction with respect to the host galaxy, and this parameter is correlated with the ring’s SFR surface density. The ring SFRs are correlated with their stellar masses, which is reminiscent of the main sequence of star-forming galaxies. There are striking correlations between star-forming properties (i.e., SFR and SFR surface density) and nonaxisymmetric bar parameters, appearing to confirm previous inferences that strongly barred galaxies tend to have lower ring SFRs, although the ring star formation histories turn out to be significantly more complicated. Nuclear rings with higher stellar masses tend to be associated with lower cluster mass fractions, but there is no such relation for the ages of the rings. The two youngest nuclear rings in our sample, NGC 1512 and NGC 4314, which have the most extreme physical properties, represent the young extremity of the nuclear ring age distribution.
Coarse-grained sequences for protein folding and design.
Brown, Scott; Fawzi, Nicolas J; Head-Gordon, Teresa
2003-09-16
We present the results of sequence design on our off-lattice minimalist model in which no specification of native-state tertiary contacts is needed. We start with a sequence that adopts a target topology and build on it through sequence mutation to produce new sequences that comprise distinct members within a target fold class. In this work, we use the alpha/beta ubiquitin fold class and design two new sequences that, when characterized through folding simulations, reproduce the differences in folding mechanism seen experimentally for proteins L and G. The primary implication of this work is that patterning of hydrophobic and hydrophilic residues is the physical origin for the success of relative contact-order descriptions of folding, and that these physics-based potentials provide a predictive connection between free energy landscapes and amino acid sequence (the original protein folding problem). We present results of the sequence mapping from a 20- to the three-letter code for determining a sequence that folds into the WW domain topology to illustrate future extensions to protein design.
Coarse-grained sequences for protein folding and design
Brown, Scott; Fawzi, Nicolas J.; Head-Gordon, Teresa
2003-01-01
We present the results of sequence design on our off-lattice minimalist model in which no specification of native-state tertiary contacts is needed. We start with a sequence that adopts a target topology and build on it through sequence mutation to produce new sequences that comprise distinct members within a target fold class. In this work, we use the α/β ubiquitin fold class and design two new sequences that, when characterized through folding simulations, reproduce the differences in folding mechanism seen experimentally for proteins L and G. The primary implication of this work is that patterning of hydrophobic and hydrophilic residues is the physical origin for the success of relative contact-order descriptions of folding, and that these physics-based potentials provide a predictive connection between free energy landscapes and amino acid sequence (the original protein folding problem). We present results of the sequence mapping from a 20- to the three-letter code for determining a sequence that folds into the WW domain topology to illustrate future extensions to protein design. PMID:12963815
Chang, Yanping; Bu, Xiangpan; Niu, Weibo; Xiu, Yu; Wang, Huafang
2013-01-01
Relatively little information is available regarding the variability of microbial communities inhabiting deeper soil layers. We investigated the distribution of soil microbial communities down to 1.2 m in 5-year-old Robinia pseudoacacia 'Idaho' soil by 454 sequencing of the 16S RNA gene. The average number of sequences per sample was 12,802. The Shannon and Chao 1 indices revealed various relative microbial abundances and even distribution of microbial diversity for all evaluated sample depths. The predicted diversity in the topsoil exceeded that of the corresponding subsoil. The changes in the relative abundance of the major soil bacterial phyla showed decreasing, increasing, or no consistent trends with respect to sampling depth. Despite their novelty, members of the new candidate phyla OD1 and TM7 were widespread. Environmental variables affecting the bacterial community within the environment appeared to differ from those reported previously, especially the lack of detectable effect from pH. Overall, we found that the overall relative abundance fluctuated with the physical and chemical properties of the soil, root system, and sampling depth. Such information may facilitate forest soil management.
Microearthquake sequences along the Irpinia normal fault system in Southern Apennines, Italy
NASA Astrophysics Data System (ADS)
Orefice, Antonella; Festa, Gaetano; Alfredo Stabile, Tony; Vassallo, Maurizio; Zollo, Aldo
2013-04-01
Microearthquakes reflect a continuous readjustment of tectonic structures, such as faults, under the action of local and regional stress fields. Low magnitude seismicity in the vicinity of active fault zones may reveal insights into the mechanics of the fault systems during the inter-seismic period and shine a light on the role of fluids and other physical parameters in promoting or disfavoring the nucleation of larger size events in the same area. Here we analyzed several earthquake sequences concentrated in very limited regions along the 1980 Irpinia earthquake fault zone (Southern Italy), a complex system characterized by normal stress regime, monitored by the dense, multi-component, high dynamic range seismic network ISNet (Irpinia Seismic Network). On a specific single sequence, the May 2008 Laviano swarm, we performed accurate absolute and relative locations and estimated source parameters and scaling laws that were compared with standard stress-drops computed for the area. Additionally, from EGF deconvolution, we computed a slip model for the mainshock and investigated the space-time evolution of the events in the sequence to reveal possible interactions among earthquakes. Through the massive analysis of cross-correlation based on the master event scanning of the continuous recording, we also reconstructed the catalog of repeated earthquakes and recognized several co-located sequences. For these events, we analyzed the statistical properties, location and source parameters and their space-time evolution with the aim of inferring the processes that control the occurrence and the size of microearthquakes in a swarm.
Teaching Integration with Layers and Representations: A Case Study
ERIC Educational Resources Information Center
Von Korff, Joshua; Rebello, N. Sanjay
2012-01-01
We designed a sequence of seven lessons to facilitate learning of integration in a physics context. We implemented this sequence with a single college sophomore, "Amber," who was concurrently enrolled in a first-semester calculus-based introductory physics course which covered topics in mechanics. We outline the philosophy underpinning these…
High-throughput physical mapping of chromosomes using automated in situ hybridization.
George, Phillip; Sharakhova, Maria V; Sharakhov, Igor V
2012-06-28
Projects to obtain whole-genome sequences for 10,000 vertebrate species and for 5,000 insect and related arthropod species are expected to take place over the next 5 years. For example, the sequencing of the genomes for 15 malaria mosquitospecies is currently being done using an Illumina platform. This Anopheles species cluster includes both vectors and non-vectors of malaria. When the genome assemblies become available, researchers will have the unique opportunity to perform comparative analysis for inferring evolutionary changes relevant to vector ability. However, it has proven difficult to use next-generation sequencing reads to generate high-quality de novo genome assemblies. Moreover, the existing genome assemblies for Anopheles gambiae, although obtained using the Sanger method, are gapped or fragmented. Success of comparative genomic analyses will be limited if researchers deal with numerous sequencing contigs, rather than with chromosome-based genome assemblies. Fragmented, unmapped sequences create problems for genomic analyses because: (i) unidentified gaps cause incorrect or incomplete annotation of genomic sequences; (ii) unmapped sequences lead to confusion between paralogous genes and genes from different haplotypes; and (iii) the lack of chromosome assignment and orientation of the sequencing contigs does not allow for reconstructing rearrangement phylogeny and studying chromosome evolution. Developing high-resolution physical maps for species with newly sequenced genomes is a timely and cost-effective investment that will facilitate genome annotation, evolutionary analysis, and re-sequencing of individual genomes from natural populations. Here, we present innovative approaches to chromosome preparation, fluorescent in situ hybridization (FISH), and imaging that facilitate rapid development of physical maps. Using An. gambiae as an example, we demonstrate that the development of physical chromosome maps can potentially improve genome assemblies and, thus, the quality of genomic analyses. First, we use a high-pressure method to prepare polytene chromosome spreads. This method, originally developed for Drosophila, allows the user to visualize more details on chromosomes than the regular squashing technique. Second, a fully automated, front-end system for FISH is used for high-throughput physical genome mapping. The automated slide staining system runs multiple assays simultaneously and dramatically reduces hands-on time. Third, an automatic fluorescent imaging system, which includes a motorized slide stage, automatically scans and photographs labeled chromosomes after FISH. This system is especially useful for identifying and visualizing multiple chromosomal plates on the same slide. In addition, the scanning process captures a more uniform FISH result. Overall, the automated high-throughput physical mapping protocol is more efficient than a standard manual protocol.
Staton, Margaret; Zhebentyayeva, Tetyana; Olukolu, Bode; Fang, Guang Chen; Nelson, Dana; Carlson, John E; Abbott, Albert G
2015-10-05
Chinese chestnut (Castanea mollissima) has emerged as a model species for the Fagaceae family with extensive genomic resources including a physical map, a dense genetic map and quantitative trait loci (QTLs) for chestnut blight resistance. These resources enable comparative genomics analyses relative to model plants. We assessed the degree of conservation between the chestnut genome and other well annotated and assembled plant genomic sequences, focusing on the QTL regions of most interest to the chestnut breeding community. The integrated physical and genetic map of Chinese chestnut has been improved to now include 858 shared sequence-based markers. The utility of the integrated map has also been improved through the addition of 42,970 BAC (bacterial artificial chromosome) end sequences spanning over 26 million bases of the estimated 800 Mb chestnut genome. Synteny between chestnut and ten model plant species was conducted on a macro-syntenic scale using sequences from both individual probes and BAC end sequences across the chestnut physical map. Blocks of synteny with chestnut were found in all ten reference species, with the percent of the chestnut physical map that could be aligned ranging from 10 to 39 %. The integrated genetic and physical map was utilized to identify BACs that spanned the three previously identified QTL regions conferring blight resistance. The clones were pooled and sequenced, yielding 396 sequence scaffolds covering 13.9 Mbp. Comparative genomic analysis on a microsytenic scale, using the QTL-associated genomic sequence, identified synteny from chestnut to other plant genomes ranging from 5.4 to 12.9 % of the genome sequences aligning. On both the macro- and micro-synteny levels, the peach, grape and poplar genomes were found to be the most structurally conserved with chestnut. Interestingly, these results did not strictly follow the expectation that decreased phylogenetic distance would correspond to increased levels of genome preservation, but rather suggest the additional influence of life-history traits on preservation of synteny. The regions of synteny that were detected provide an important tool for defining and cataloging genes in the QTL regions for advancing chestnut blight resistance research.
NASA Astrophysics Data System (ADS)
Upton, Brianna; Evans, John; Morrow, Cherilynn; Thoms, Brian
2009-11-01
Previous studies have shown that many students have misconceptions about basic concepts in physics. Moreover, it has been concluded that one of the challenges lies in the teaching methodology. To address this, Georgia State University has begun teaching studio algebra-based physics. Although many institutions have implemented studio physics, most have done so in calculus-based sequences. The effectiveness of the studio approach in an algebra-based introductory physics course needs further investigation. A 3-semester study assessing the effectiveness of studio physics in an algebra-based physics sequence has been performed. This study compares the results of student pre- and post-tests using the Force Concept Inventory. Using the results from this assessment tool, we will discuss the effectiveness of the studio approach to teaching physics at GSU.
Generator Set Durability Testing Using 25% ATJ Fuel Blend
2016-02-01
Table Page Table 1. Chemical & Physical Properties of Evaluated 25% ATJ Blend .................................................... 3 Table 2... Chemical & Physical Properties of Evaluated 25% ATJ Blend .................................................... 4 Table 3. Chemical & Physical...Properties of Evaluated 25% ATJ Blend .................................................... 5 Table 4. Chemical & Physical Properties of Evaluated 25
Dissecting the relationship between protein structure and sequence variation
NASA Astrophysics Data System (ADS)
Shahmoradi, Amir; Wilke, Claus; Wilke Lab Team
2015-03-01
Over the past decade several independent works have shown that some structural properties of proteins are capable of predicting protein evolution. The strength and significance of these structure-sequence relations, however, appear to vary widely among different proteins, with absolute correlation strengths ranging from 0 . 1 to 0 . 8 . Here we present the results from a comprehensive search for the potential biophysical and structural determinants of protein evolution by studying more than 200 structural and evolutionary properties in a dataset of 209 monomeric enzymes. We discuss the main protein characteristics responsible for the general patterns of protein evolution, and identify sequence divergence as the main determinant of the strengths of virtually all structure-evolution relationships, explaining ~ 10 - 30 % of observed variation in sequence-structure relations. In addition to sequence divergence, we identify several protein structural properties that are moderately but significantly coupled with the strength of sequence-structure relations. In particular, proteins with more homogeneous back-bone hydrogen bond energies, large fractions of helical secondary structures and low fraction of beta sheets tend to have the strongest sequence-structure relation. BEACON-NSF center for the study of evolution in action.
Rajendran, Senthilnathan; Jothi, Arunachalam
2018-05-16
The Three-dimensional structure of a protein depends on the interaction between their amino acid residues. These interactions are in turn influenced by various biophysical properties of the amino acids. There are several examples of proteins that share the same fold but are very dissimilar at the sequence level. For proteins to share a common fold some crucial interactions should be maintained despite insignificant sequence similarity. Since the interactions are because of the biophysical properties of the amino acids, we should be able to detect descriptive patterns for folds at such a property level. In this line, the main focus of our research is to analyze such proteins and to characterize them in terms of their biophysical properties. Protein structures with sequence similarity lesser than 40% were selected for ten different subfolds from three different mainfolds (according to CATH classification) and were used for this analysis. We used the normalized values of the 49 physio-chemical, energetic and conformational properties of amino acids. We characterize the folds based on the average biophysical property values. We also observed a fold specific correlational behavior of biophysical properties despite a very low sequence similarity in our data. We further trained three different binary classification models (Naive Bayes-NB, Support Vector Machines-SVM and Bayesian Generalized Linear Model-BGLM) which could discriminate mainfold based on the biophysical properties. We also show that among the three generated models, the BGLM classifier model was able to discriminate protein sequences coming under all beta category with 81.43% accuracy and all alpha, alpha-beta proteins with 83.37% accuracy. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bandgap oscillation in quasiperiodic (BN)xCy nanotubes
NASA Astrophysics Data System (ADS)
Freitas, A.; Bezerra, C. G.; Azevedo, S.; Machado, L. D.; Pedreira, D. O.
2016-12-01
In the present contribution, we apply first-principles calculations to study the effects of quasiperiodic disorder on the physical properties of BN and C nanotubes. We take BN nanotubes (BNNTs) and C nanotubes (CNTs) as building blocks and construct quasiperiodic BNxCy nanotubes according to the Fibonacci sequence. We studied armchair and zigzag nanotubes of varying diameters. Our results demonstrate that the energy gap oscillates as a function of the n-generation index of the Fibonacci sequence. Moreover, we show that the choice of the BNNTs and CNTs may lead to a quasiperiodic BNxCy nanotube presenting an adjustable energy gap. We obtained a variety of quasiperiodic nanotubes with energy gaps ranging from 0.29 eV to 1.06 eV, which may be of interest for specific technological applications. Finally, it is also demonstrated that the specific heat of the quasiperiodic zigzag and armchair nanotubes presents an oscillatory behavior in the low temperature regime, and that this behavior depends on the curvature of the nanotube.
Potential energy landscapes identify the information-theoretic nature of the epigenome
Jenkinson, Garrett; Pujadas, Elisabet; Goutsias, John; Feinberg, Andrew P.
2017-01-01
Epigenetics studies genomic modifications carrying information independent of DNA sequence heritable through cell division. In 1940, Waddington coined the term “epigenetic landscape” as a metaphor for pluripotency and differentiation, but methylation landscapes have not yet been rigorously computed. By using principles of statistical physics and information theory, we derive epigenetic energy landscapes from whole-genome bisulfite sequencing data that allow us to quantify methylation stochasticity genome-wide using Shannon’s entropy and associate entropy with chromatin structure. Moreover, we consider the Jensen-Shannon distance between sample-specific energy landscapes as a measure of epigenetic dissimilarity and demonstrate its effectiveness for discerning epigenetic differences. By viewing methylation maintenance as a communications system, we introduce methylation channels and show that higher-order chromatin organization can be predicted from their informational properties. Our results provide a fundamental understanding of the information-theoretic nature of the epigenome that leads to a powerful approach for studying its role in disease and aging. PMID:28346445
Falk, L; Lindahl, T; Bjursell, G; Klein, G
1979-07-15
Herpesvirus papio (HVP) is an indigenous B-lymphotropic virus of baboons (Papio sp.) present in latent form in baboon lymphoblastoid cell lines. It shares cross-reacting viral capsid and early antigens with the Epstein-Barr virus (EBV), and HVP DNA and EBV DNA show partial sequence homology. EBV-specific complementary RNA was employed here as a probe to investigate the physical state of the HVP DNA component in baboon lymphoblastoid cells after fractionation of cellular DNA by density gradient centrifugation. Five virus-producing cultures contained both free and integrated HVP DNA sequences while one non-producing cell line had two or three viral genome equivalents per cell in an apparently integrated form. Further analysis of one virus-producing line showed that the free HVP DNA fraction was composed of both linear and circular viral DNA. Contour length measurements of HVP circular DNA molecules by electron microscopy revealed that they were similar in length to the EBV circular DNA present in human lymphoblastoid cells.
To What Extent Can Motor Imagery Replace Motor Execution While Learning a Fine Motor Skill?
Sobierajewicz, Jagna; Szarkiewicz, Sylwia; Przekoracka-Krawczyk, Anna; Jaśkowski, Wojciech; van der Lubbe, Rob
2016-01-01
Motor imagery is generally thought to share common mechanisms with motor execution. In the present study, we examined to what extent learning a fine motor skill by motor imagery may substitute physical practice. Learning effects were assessed by manipulating the proportion of motor execution and motor imagery trials. Additionally, learning effects were compared between participants with an explicit motor imagery instruction and a control group. A Go/NoGo discrete sequence production (DSP) task was employed, wherein a five-stimulus sequence presented on each trial indicated the required sequence of finger movements after a Go signal. In the case of a NoGo signal, participants either had to imagine carrying out the response sequence (the motor imagery group), or the response sequence had to be withheld (the control group). Two practice days were followed by a final test day on which all sequences had to be executed. Learning effects were assessed by computing response times (RTs) and the percentages of correct responses (PCs). The electroencephalogram (EEG ) was additionally measured on this test day to examine whether motor preparation and the involvement of visual short term memory (VST M) depended on the amount of physical/mental practice. Accuracy data indicated strong learning effects. However, a substantial amount of physical practice was required to reach an optimal speed. EEG results suggest the involvement of VST M for sequences that had less or no physical practice in both groups. The absence of differences between the motor imagery and the control group underlines the possibility that motor preparation may actually resemble motor imagery. PMID:28154614
To What Extent Can Motor Imagery Replace Motor Execution While Learning a Fine Motor Skill?
Sobierajewicz, Jagna; Szarkiewicz, Sylwia; Przekoracka-Krawczyk, Anna; Jaśkowski, Wojciech; van der Lubbe, Rob
2016-01-01
Motor imagery is generally thought to share common mechanisms with motor execution. In the present study, we examined to what extent learning a fine motor skill by motor imagery may substitute physical practice. Learning effects were assessed by manipulating the proportion of motor execution and motor imagery trials. Additionally, learning effects were compared between participants with an explicit motor imagery instruction and a control group. A Go/NoGo discrete sequence production (DSP) task was employed, wherein a five-stimulus sequence presented on each trial indicated the required sequence of finger movements after a Go signal. In the case of a NoGo signal, participants either had to imagine carrying out the response sequence (the motor imagery group), or the response sequence had to be withheld (the control group). Two practice days were followed by a final test day on which all sequences had to be executed. Learning effects were assessed by computing response times (RTs) and the percentages of correct responses (PCs). The electroencephalogram (EEG ) was additionally measured on this test day to examine whether motor preparation and the involvement of visual short term memory (VST M) depended on the amount of physical/mental practice. Accuracy data indicated strong learning effects. However, a substantial amount of physical practice was required to reach an optimal speed. EEG results suggest the involvement of VST M for sequences that had less or no physical practice in both groups. The absence of differences between the motor imagery and the control group underlines the possibility that motor preparation may actually resemble motor imagery.
A Team Taught Interdisciplinary Approach To Physics and Calculus Education.
ERIC Educational Resources Information Center
Johnson, David B.
The Special Intensive Program for Scientists and Engineers (SIPSE) at Diablo Valley College in California replaces the traditional engineering calculus and physics sequences with a single sequence that combines the two subjects into an integrated whole. The project report provides an overview of SIPSE, a section that traces the project from…
Understanding protein evolution: from protein physics to Darwinian selection.
Zeldovich, Konstantin B; Shakhnovich, Eugene I
2008-01-01
Efforts in whole-genome sequencing and structural proteomics start to provide a global view of the protein universe, the set of existing protein structures and sequences. However, approaches based on the selection of individual sequences have not been entirely successful at the quantitative description of the distribution of structures and sequences in the protein universe because evolutionary pressure acts on the entire organism, rather than on a particular molecule. In parallel to this line of study, studies in population genetics and phenomenological molecular evolution established a mathematical framework to describe the changes in genome sequences in populations of organisms over time. Here, we review both microscopic (physics-based) and macroscopic (organism-level) models of protein-sequence evolution and demonstrate that bridging the two scales provides the most complete description of the protein universe starting from clearly defined, testable, and physiologically relevant assumptions.
Inverse statistical physics of protein sequences: a key issues review.
Cocco, Simona; Feinauer, Christoph; Figliuzzi, Matteo; Monasson, Rémi; Weigt, Martin
2018-03-01
In the course of evolution, proteins undergo important changes in their amino acid sequences, while their three-dimensional folded structure and their biological function remain remarkably conserved. Thanks to modern sequencing techniques, sequence data accumulate at unprecedented pace. This provides large sets of so-called homologous, i.e. evolutionarily related protein sequences, to which methods of inverse statistical physics can be applied. Using sequence data as the basis for the inference of Boltzmann distributions from samples of microscopic configurations or observables, it is possible to extract information about evolutionary constraints and thus protein function and structure. Here we give an overview over some biologically important questions, and how statistical-mechanics inspired modeling approaches can help to answer them. Finally, we discuss some open questions, which we expect to be addressed over the next years.
Inverse statistical physics of protein sequences: a key issues review
NASA Astrophysics Data System (ADS)
Cocco, Simona; Feinauer, Christoph; Figliuzzi, Matteo; Monasson, Rémi; Weigt, Martin
2018-03-01
In the course of evolution, proteins undergo important changes in their amino acid sequences, while their three-dimensional folded structure and their biological function remain remarkably conserved. Thanks to modern sequencing techniques, sequence data accumulate at unprecedented pace. This provides large sets of so-called homologous, i.e. evolutionarily related protein sequences, to which methods of inverse statistical physics can be applied. Using sequence data as the basis for the inference of Boltzmann distributions from samples of microscopic configurations or observables, it is possible to extract information about evolutionary constraints and thus protein function and structure. Here we give an overview over some biologically important questions, and how statistical-mechanics inspired modeling approaches can help to answer them. Finally, we discuss some open questions, which we expect to be addressed over the next years.
NASA Astrophysics Data System (ADS)
McNeill, L. C.; Dugan, B.; Petronotis, K. E.; Expedition 362 Scientists, I.
2016-12-01
IODP Expedition 362, August-October, 2016, plans to drill two boreholes within the input section of the Indian oceanic plate entering the North Sumatran subduction zone. In 2004, a Mw 9.2 earthquake ruptured the Sunda subduction zone from North Sumatra to the Andaman Islands, a length of 1500 km. The earthquake and tsunami devastated coastal communities around the Indian Ocean. This earthquake and the 2011 Tohoku-Oki Mw 9.0 earthquake showed unexpectedly shallow megathrust slip. In the case of North Sumatra, this shallow slip was focused beneath a distinctive plateau of the accretionary prism. This intriguing seismogenic behavior and forearc structure are not explained by existing models or by observations at other margins where seismogenic slip typically occurs farther landward. Expedition 362 will use core and log data in conjunction with in situ temperature and pressure measurements to document the lithology, structures, and physical and chemical properties of the input sediments. The input materials of the North Sumatran subduction zone are a distinctive, thick (up to 4-5 km) sequence of primarily Bengal-Nicobar Fan-related sediments. This sequence geophysically shows strong evidence for induration and dewatering and has probably reached the temperatures required for sediment-strengthening diagenetic reactions, and input materials may be key to driving the distinctive slip behavior and long-term forearc structure. The plate boundary fault (décollement) originates within the lower pelagic and submarine fan sediments so sampling this interval will help determine what controls décollement development and how its properties evolve. Initial results from the Expedition and plans for post-expedition experiments and modeling will be presented. These methods will be used to predict physical, thermal, fluid, and mechanical properties and diagenetic evolution of the sediments as stresses and temperatures increase due to burial and subduction. Results will be used to test the role of sediment properties in shallow earthquake slip and in the unusual forearc structure. In addition, the results will contribute to our understanding of a) Bengal-Nicobar fan history and records of Himalayan uplift, erosion and monsoon development, and b) stress conditions in a complexly deforming region of the Indian plate.
Crowley, T E; Bond, M W; Meyerowitz, E M
1983-01-01
The polytene chromosome puff at 68C on the Drosophila melanogaster third chromosome is thought from genetic experiments to contain the structural gene for one of the secreted salivary gland glue polypeptides, sgs-3. Previous work has demonstrated that the DNA included in this puff contains sequences that are transcribed to give three different polyadenylated RNAs that are abundant in third-larval-instar salivary glands. These have been called the group II, group III, and group IV RNAs. In the experiments reported here, we used the nucleotide sequence of the DNA coding for these RNAs to predict some of the physical and chemical properties expected of their protein products, including molecular weight, amino acid composition, and amino acid sequence. Salivary gland polypeptides with molecular weights similar to those expected for the 68C RNA translation products, and with the expected degree of incorporation of different radioactive amino acids, were purified. These proteins were shown by amino acid sequencing to correspond to the protein products of the 68C RNAs. It was further shown that each of these proteins is a part of the secreted salivary gland glue: the group IV RNA codes for the previously described sgs-3, whereas the group II and III RNAs code for the newly identified glue polypeptides sgs-8 and sgs-7. Images PMID:6406838
Present Day Biology seen in the Looking Glass of Physics of Complexity
NASA Astrophysics Data System (ADS)
Schuster, P.
Darwin's theory of variation and selection in its simplest form is directly applicable to RNA evolution in vitro as well as to virus evolution, and it allows for quantitative predictions. Understanding evolution at the molecular level is ultimately related to the central paradigm of structural biology: sequence⇒ structure ⇒ function. We elaborate on the state of the art in modeling and understanding evolution of RNA driven by reproduction and mutation. The focus will be laid on the landscape concept—originally introduced by Sewall Wright—and its application to problems in biology. The relation between genotypes and phenotypes is the result of two consecutive mappings from a space of genotypes called sequence space onto a space of phenotypes or structures, and fitness is the result of a mapping from phenotype space into non-negative real numbers. Realistic landscapes as derived from folding of RNA sequences into structures are characterized by two properties: (i) they are rugged in the sense that sequences lying nearby in sequence space may have very different fitness values and (ii) they are characterized by an appreciable degree of neutrality implying that a certain fraction of genotypes and/or phenotypes cannot be distinguished in the selection process. Evolutionary dynamics on realistic landscapes will be studied as a function of the mutation rate, and the role of neutrality in the selection process will be discussed.
Protein Solvent-Accessibility Prediction by a Stacked Deep Bidirectional Recurrent Neural Network.
Zhang, Buzhong; Li, Linqing; Lü, Qiang
2018-05-25
Residue solvent accessibility is closely related to the spatial arrangement and packing of residues. Predicting the solvent accessibility of a protein is an important step to understand its structure and function. In this work, we present a deep learning method to predict residue solvent accessibility, which is based on a stacked deep bidirectional recurrent neural network applied to sequence profiles. To capture more long-range sequence information, a merging operator was proposed when bidirectional information from hidden nodes was merged for outputs. Three types of merging operators were used in our improved model, with a long short-term memory network performing as a hidden computing node. The trained database was constructed from 7361 proteins extracted from the PISCES server using a cut-off of 25% sequence identity. Sequence-derived features including position-specific scoring matrix, physical properties, physicochemical characteristics, conservation score and protein coding were used to represent a residue. Using this method, predictive values of continuous relative solvent-accessible area were obtained, and then, these values were transformed into binary states with predefined thresholds. Our experimental results showed that our deep learning method improved prediction quality relative to current methods, with mean absolute error and Pearson's correlation coefficient values of 8.8% and 74.8%, respectively, on the CB502 dataset and 8.2% and 78%, respectively, on the Manesh215 dataset.
41 CFR 109-1.5107 - Physical protection of personal property.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...
41 CFR 109-1.5107 - Physical protection of personal property.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...
41 CFR 109-1.5107 - Physical protection of personal property.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...
41 CFR 109-1.5107 - Physical protection of personal property.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...
41 CFR 109-1.5107 - Physical protection of personal property.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...
Physics behind the mechanical nucleosome positioning code
NASA Astrophysics Data System (ADS)
Zuiddam, Martijn; Everaers, Ralf; Schiessel, Helmut
2017-11-01
The positions along DNA molecules of nucleosomes, the most abundant DNA-protein complexes in cells, are influenced by the sequence-dependent DNA mechanics and geometry. This leads to the "nucleosome positioning code", a preference of nucleosomes for certain sequence motives. Here we introduce a simplified model of the nucleosome where a coarse-grained DNA molecule is frozen into an idealized superhelical shape. We calculate the exact sequence preferences of our nucleosome model and find it to reproduce qualitatively all the main features known to influence nucleosome positions. Moreover, using well-controlled approximations to this model allows us to come to a detailed understanding of the physics behind the sequence preferences of nucleosomes.
Xiao, Xuan; Wang, Pu; Chou, Kuo-Chen
2012-01-01
Nuclear receptors (NRs) form a family of ligand-activated transcription factors that regulate a wide variety of biological processes, such as homeostasis, reproduction, development, and metabolism. Human genome contains 48 genes encoding NRs. These receptors have become one of the most important targets for therapeutic drug development. According to their different action mechanisms or functions, NRs have been classified into seven subfamilies. With the avalanche of protein sequences generated in the postgenomic age, we are facing the following challenging problems. Given an uncharacterized protein sequence, how can we identify whether it is a nuclear receptor? If it is, what subfamily it belongs to? To address these problems, we developed a predictor called iNR-PhysChem in which the protein samples were expressed by a novel mode of pseudo amino acid composition (PseAAC) whose components were derived from a physical-chemical matrix via a series of auto-covariance and cross-covariance transformations. It was observed that the overall success rate achieved by iNR-PhysChem was over 98% in identifying NRs or non-NRs, and over 92% in identifying NRs among the following seven subfamilies: NR1thyroid hormone like, NR2HNF4-like, NR3estrogen like, NR4nerve growth factor IB-like, NR5fushi tarazu-F1 like, NR6germ cell nuclear factor like, and NR0knirps like. These rates were derived by the jackknife tests on a stringent benchmark dataset in which none of protein sequences included has pairwise sequence identity to any other in a same subset. As a user-friendly web-server, iNR-PhysChem is freely accessible to the public at either http://www.jci-bioinfo.cn/iNR-PhysChem or http://icpr.jci.edu.cn/bioinfo/iNR-PhysChem. Also a step-by-step guide is provided on how to use the web-server to get the desired results without the need to follow the complicated mathematics involved in developing the predictor. It is anticipated that iNR-PhysChem may become a useful high throughput tool for both basic research and drug design. PMID:22363503
Elman RNN based classification of proteins sequences on account of their mutual information.
Mishra, Pooja; Nath Pandey, Paras
2012-10-21
In the present work we have employed the method of estimating residue correlation within the protein sequences, by using the mutual information (MI) of adjacent residues, based on structural and solvent accessibility properties of amino acids. The long range correlation between nonadjacent residues is improved by constructing a mutual information vector (MIV) for a single protein sequence, like this each protein sequence is associated with its corresponding MIVs. These MIVs are given to Elman RNN to obtain the classification of protein sequences. The modeling power of MIV was shown to be significantly better, giving a new approach towards alignment free classification of protein sequences. We also conclude that sequence structural and solvent accessible property based MIVs are better predictor. Copyright © 2012 Elsevier Ltd. All rights reserved.
Physical biology of human brain development.
Budday, Silvia; Steinmann, Paul; Kuhl, Ellen
2015-01-01
Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view toward surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales-from phenomena on the cellular level toward form and function on the organ level-to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia.
MspA Nanopores from Subunit Dimers
Pavlenok, Mikhail; Derrington, Ian M.; Gundlach, Jens H.; Niederweis, Michael
2012-01-01
Mycobacterium smegmatis porin A (MspA) forms an octameric channel and represents the founding member of a new family of pore proteins. Control of subunit stoichiometry is important to tailor MspA for nanotechnological applications. In this study, two MspA monomers were connected by linkers ranging from 17 to 62 amino acids in length. The oligomeric pore proteins were purified from M. smegmatis and were shown to form functional channels in lipid bilayer experiments. These results indicated that the peptide linkers did not prohibit correct folding and localization of MspA. However, expression levels were reduced by 10-fold compared to wild-type MspA. MspA is ideal for nanopore sequencing due to its unique pore geometry and its robustness. To assess the usefulness of MspA made from dimeric subunits for DNA sequencing, we linked two M1-MspA monomers, whose constriction zones were modified to enable DNA translocation. Lipid bilayer experiments demonstrated that this construct also formed functional channels. Voltage gating of MspA pores made from M1 monomers and M1-M1 dimers was identical indicating similar structural and dynamic channel properties. Glucose uptake in M. smegmatis cells lacking porins was restored by expressing the dimeric mspA M1 gene indicating correct folding and localization of M1-M1 pores in their native membrane. Single-stranded DNA hairpins produced identical ionic current blockades in pores made from monomers and subunit dimers demonstrating that M1-M1 pores are suitable for DNA sequencing. This study provides the proof of principle that production of single-chain MspA pores in M. smegmatis is feasible and paves the way for generating MspA pores with altered stoichiometries. Subunit dimers enable better control of the chemical and physical properties of the constriction zone of MspA. This approach will be valuable both in understanding transport across the outer membrane in mycobacteria and in tailoring MspA for nanopore sequencing of DNA. PMID:22719928
El Kafsi, Hela; Binesse, Johan; Loux, Valentin; Buratti, Julien; Boudebbouze, Samira; Dervyn, Rozenn; Hammani, Amal; Maguin, Emmanuelle; van de Guchte, Maarten
2014-07-17
Lactobacillus delbrueckii subsp. lactis CNRZ327 is a dairy bacterium with anti-inflammatory properties both in vitro and in vivo. Here, we report the genome sequence of this bacterium, which appears to contain no less than 215 insertion sequence (IS) elements, an exceptionally high number regarding the small genome size of the strain. Copyright © 2014 El Kafsi et al.
Long-read sequencing and de novo assembly of a Chinese genome
USDA-ARS?s Scientific Manuscript database
Short-read sequencing has enabled the de novo assembly of several individual human genomes, but with inherent limitations in characterizing repeat elements. Here we sequence a Chinese individual HX1 by single-molecule real-time (SMRT) long-read sequencing, construct a physical map by NanoChannel arr...
Pre-Service Teachers' Approaches to a Historical Problem in Mechanics
ERIC Educational Resources Information Center
Malgieri, Massimiliano; Onorato, Pasquale; Mascheretti, Paolo; De Ambrosis, Anna
2014-01-01
In this paper we report on an activity sequence with a group of 29 pre-service physics teachers based on the reconstruction and analysis of a thought experiment that was crucial for Huygens' derivation of the formula for the centre of oscillation of a physical pendulum. The sequence starts with student teachers approaching the historical…
ERIC Educational Resources Information Center
Hakman, Melissa; Chaffin, Mark; Funderburk, Beverly; Silovsky, Jane F.
2009-01-01
Objective: Parent-child interaction therapy (PCIT) has been found to reduce future child abuse reports among physically abusive parents. Reductions in observed negative parenting behaviors mediated this benefit. The current study examined session-by-session interaction sequences in order to identify when during treatment these changes occur and…
Strategies for emission reduction of air pollutants produced from a chemical plant.
Lee, Byeong-Kyu; Cho, Sung-Woong
2003-01-01
Various air pollution control (APC) techniques were employed in order to reduce emissions of air pollutants produced from chemical plants, which have many different chemical production facilities. For an emission reduction of acid gases, this study employed a method to improve solubility of pollutants by decreasing the operating temperature of the scrubbers, increasing the surface area for effective contact of gas and liquid, and modifying processes in the acid scrubbers. To reduce emission of both amines and acid gases, pollutant gas components were first separated, then condensation and/or acid scrubbing, depending on the chemical and physical properties of pollutant components, were used. To reduce emission of solvents, condensation and activated carbon adsorption were employed. To reduce emission of a mixture gases containing acid gases and solvents, the mixed gases were passed into the first condenser, the acid scrubber, the second condenser, and the activated carbon adsorption tower in sequence. As a strategy to reduce emission of pollutants at the source, this study also employed the simple pollution prevention concept of modification of the previously operating APC control device. Finally, air emissions of pollutants produced from the chemical plants were much more reduced by applying proper APC methods, depending upon the types (physical or chemical properties) and the specific emission situations of pollutants.
Foreshock and aftershocks in simple earthquake models.
Kazemian, J; Tiampo, K F; Klein, W; Dominguez, R
2015-02-27
Many models of earthquake faults have been introduced that connect Gutenberg-Richter (GR) scaling to triggering processes. However, natural earthquake fault systems are composed of a variety of different geometries and materials and the associated heterogeneity in physical properties can cause a variety of spatial and temporal behaviors. This raises the question of how the triggering process and the structure interact to produce the observed phenomena. Here we present a simple earthquake fault model based on the Olami-Feder-Christensen and Rundle-Jackson-Brown cellular automata models with long-range interactions that incorporates a fixed percentage of stronger sites, or asperity cells, into the lattice. These asperity cells are significantly stronger than the surrounding lattice sites but eventually rupture when the applied stress reaches their higher threshold stress. The introduction of these spatial heterogeneities results in temporal clustering in the model that mimics that seen in natural fault systems along with GR scaling. In addition, we observe sequences of activity that start with a gradually accelerating number of larger events (foreshocks) prior to a main shock that is followed by a tail of decreasing activity (aftershocks). This work provides further evidence that the spatial and temporal patterns observed in natural seismicity are strongly influenced by the underlying physical properties and are not solely the result of a simple cascade mechanism.
Topological Structure of the Space of Phenotypes: The Case of RNA Neutral Networks
Aguirre, Jacobo; Buldú, Javier M.; Stich, Michael; Manrubia, Susanna C.
2011-01-01
The evolution and adaptation of molecular populations is constrained by the diversity accessible through mutational processes. RNA is a paradigmatic example of biopolymer where genotype (sequence) and phenotype (approximated by the secondary structure fold) are identified in a single molecule. The extreme redundancy of the genotype-phenotype map leads to large ensembles of RNA sequences that fold into the same secondary structure and can be connected through single-point mutations. These ensembles define neutral networks of phenotypes in sequence space. Here we analyze the topological properties of neutral networks formed by 12-nucleotides RNA sequences, obtained through the exhaustive folding of sequence space. A total of 412 sequences fragments into 645 subnetworks that correspond to 57 different secondary structures. The topological analysis reveals that each subnetwork is far from being random: it has a degree distribution with a well-defined average and a small dispersion, a high clustering coefficient, and an average shortest path between nodes close to its minimum possible value, i.e. the Hamming distance between sequences. RNA neutral networks are assortative due to the correlation in the composition of neighboring sequences, a feature that together with the symmetries inherent to the folding process explains the existence of communities. Several topological relationships can be analytically derived attending to structural restrictions and generic properties of the folding process. The average degree of these phenotypic networks grows logarithmically with their size, such that abundant phenotypes have the additional advantage of being more robust to mutations. This property prevents fragmentation of neutral networks and thus enhances the navigability of sequence space. In summary, RNA neutral networks show unique topological properties, unknown to other networks previously described. PMID:22028856
NASA Technical Reports Server (NTRS)
Sion, Edward M.; Starrfield, Sumner G.
1994-01-01
We present the first detailed model results of quasi-static evolutionary sequences of very hot low-mass white dwarfs accreting hydrogen-rich material at rates between 1 x 10(exp -7) and 1 x 10(exp -9) solar mass/yr. Most of the sequences were generated from starting models whose core thermal structures were not thermally relaxed in the thermal pulse cycle-averaged sense of an asymptotic giant branch stellar core. Hence, the evolution at constant accretion rate was not invariably characterized by series of identical shell flashes. Sequences exhibiting stable steady state nuclear burning at the accretion supply rate as well as sequences exhibiting recurrent thermonuclear shell flashes are presented and discussed. In some cases, the white dwarf accretors remain small (less than 10(exp 11) cm) and very hot even during the shell flash episode. They then experience continued but reduced hydrogen shell burning during the longer quiescent intervals while their surface temperatures increase both because of compressional heating and envelope structure readjustment in response to accretion over thousands of years. Both accretion and continued hydrogen burning power these models with luminosities of a few times 10(exp 37) ergs/s. We suggest that the physical properties of these model sequences are of considerable relevance to the observed outburst and quiescent behavior of those symbiotic variables and symbiotic novae containing low-mass white dwarfs. We also suggest that our models are relevant to the observational characteristics of the growing class of low-luminosity, supersoft/ultrasoft X-ray sources in globular clusters, and the Magellanic Clouds.
Zhu, JiangLing; Shi, Yue; Fang, LeQi; Liu, XingE; Ji, ChengJun
2015-06-01
The physical and mechanical properties of wood affect the growth and development of trees, and also act as the main criteria when determining wood usage. Our understanding on patterns and controls of wood physical and mechanical properties could provide benefits for forestry management and bases for wood application and forest tree breeding. However, current studies on wood properties mainly focus on wood density and ignore other wood physical properties. In this study, we established a comprehensive database of wood physical properties across major tree species in China. Based on this database, we explored spatial patterns and driving factors of wood properties across major tree species in China. Our results showed that (i) compared with wood density, air-dried density, tangential shrinkage coefficient and resilience provide more accuracy and higher explanation power when used as the evaluation index of wood physical properties. (ii) Among life form, climatic and edaphic variables, life form is the dominant factor shaping spatial patterns of wood physical properties, climatic factors the next, and edaphic factors have the least effects, suggesting that the effects of climatic factors on spatial variations of wood properties are indirectly induced by their effects on species distribution.
C. elegans network biology: a beginning.
Piano, Fabio; Gunsalus, Kristin C; Hill, David E; Vidal, Marc
2006-01-01
The architecture and dynamics of molecular networks can provide an understanding of complex biological processes complementary to that obtained from the in-depth study of single genes and proteins. With a completely sequenced and well-annotated genome, a fully characterized cell lineage, and powerful tools available to dissect development, Caenorhabditis elegans, among metazoans, provides an optimal system to bridge cellular and organismal biology with the global properties of macromolecular networks. This chapter considers omic technologies available for C. elegans to describe molecular networks--encompassing transcriptional and phenotypic profiling as well as physical interaction mapping--and discusses how their individual and integrated applications are paving the way for a network-level understanding of C. elegans biology. PMID:18050437
NASA Astrophysics Data System (ADS)
Cheng, Jie; Lee, Sang-Hoon
2015-12-01
Silks produced by spiders and silkworms are charming natural biological materials with highly optimized hierarchical structures and outstanding physicomechanical properties. The superior performance of silks relies on the integration of a unique protein sequence, a distinctive spinning process, and complex hierarchical structures. Silks have been prepared to form a variety of morphologies and are widely used in diverse applications, for example, in the textile industry, as drug delivery vehicles, and as tissue engineering scaffolds. This review presents an overview of the organization of natural silks, in which chemical and physical functions are optimized, as well as a range of new materials inspired by the desire to mimic natural silk structure and synthesis.
Plasmonic Nanostructures for Nano-Scale Bio-Sensing
Chung, Taerin; Lee, Seung-Yeol; Song, Eui Young; Chun, Honggu; Lee, Byoungho
2011-01-01
The optical properties of various nanostructures have been widely adopted for biological detection, from DNA sequencing to nano-scale single molecule biological function measurements. In particular, by employing localized surface plasmon resonance (LSPR), we can expect distinguished sensing performance with high sensitivity and resolution. This indicates that nano-scale detections can be realized by using the shift of resonance wavelength of LSPR in response to the refractive index change. In this paper, we overview various plasmonic nanostructures as potential sensing components. The qualitative descriptions of plasmonic nanostructures are supported by the physical phenomena such as plasmonic hybridization and Fano resonance. We present guidelines for designing specific nanostructures with regard to wavelength range and target sensing materials. PMID:22346679
2014-01-01
Background Protein sequence similarities to any types of non-globular segments (coiled coils, low complexity regions, transmembrane regions, long loops, etc. where either positional sequence conservation is the result of a very simple, physically induced pattern or rather integral sequence properties are critical) are pertinent sources for mistaken homologies. Regretfully, these considerations regularly escape attention in large-scale annotation studies since, often, there is no substitute to manual handling of these cases. Quantitative criteria are required to suppress events of function annotation transfer as a result of false homology assignments. Results The sequence homology concept is based on the similarity comparison between the structural elements, the basic building blocks for conferring the overall fold of a protein. We propose to dissect the total similarity score into fold-critical and other, remaining contributions and suggest that, for a valid homology statement, the fold-relevant score contribution should at least be significant on its own. As part of the article, we provide the DissectHMMER software program for dissecting HMMER2/3 scores into segment-specific contributions. We show that DissectHMMER reproduces HMMER2/3 scores with sufficient accuracy and that it is useful in automated decisions about homology for instructive sequence examples. To generalize the dissection concept for cases without 3D structural information, we find that a dissection based on alignment quality is an appropriate surrogate. The approach was applied to a large-scale study of SMART and PFAM domains in the space of seed sequences and in the space of UniProt/SwissProt. Conclusions Sequence similarity core dissection with regard to fold-critical and other contributions systematically suppresses false hits and, additionally, recovers previously obscured homology relationships such as the one between aquaporins and formate/nitrite transporters that, so far, was only supported by structure comparison. PMID:24890864
Pastor, N; Pardo, L; Weinstein, H
1997-01-01
The binding of the TATA box-binding protein (TBP) to a TATA sequence in DNA is essential for eukaryotic basal transcription. TBP binds in the minor groove of DNA, causing a large distortion of the DNA helix. Given the apparent stereochemical equivalence of AT and TA basepairs in the minor groove, DNA deformability must play a significant role in binding site selection, because not all AT-rich sequences are bound effectively by TBP. To gain insight into the precise role that the properties of the TATA sequence have in determining the specificity of the DNA substrates of TBP, the solution structure and dynamics of seven DNA dodecamers have been studied by using molecular dynamics simulations. The analysis of the structural properties of basepair steps in these TATA sequences suggests a reason for the preference for alternating pyrimidine-purine (YR) sequences, but indicates that these properties cannot be the sole determinant of the sequence specificity of TBP. Rather, recognition depends on the interplay between the inherent deformability of the DNA and steric complementarity at the molecular interface. Images FIGURE 2 PMID:9251783
Statistical properties of DNA sequences
NASA Technical Reports Server (NTRS)
Peng, C. K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Simons, M.; Stanley, H. E.
1995-01-01
We review evidence supporting the idea that the DNA sequence in genes containing non-coding regions is correlated, and that the correlation is remarkably long range--indeed, nucleotides thousands of base pairs distant are correlated. We do not find such a long-range correlation in the coding regions of the gene. We resolve the problem of the "non-stationarity" feature of the sequence of base pairs by applying a new algorithm called detrended fluctuation analysis (DFA). We address the claim of Voss that there is no difference in the statistical properties of coding and non-coding regions of DNA by systematically applying the DFA algorithm, as well as standard FFT analysis, to every DNA sequence (33301 coding and 29453 non-coding) in the entire GenBank database. Finally, we describe briefly some recent work showing that the non-coding sequences have certain statistical features in common with natural and artificial languages. Specifically, we adapt to DNA the Zipf approach to analyzing linguistic texts. These statistical properties of non-coding sequences support the possibility that non-coding regions of DNA may carry biological information.
Reassociation and hybridization properties of DNAs from several species of fish
Gharrett, A.J.; Simon, R.C.; McIntyre, J.D.
1977-01-01
Reassociation and hybridization properties from spectrophotometric studies of DNAs from 10 species of fish indicate:1. Great diversity in the amounts of repeated sequences in the genomes of different species - more specialized fish had less redundancy.2. Large differences in the complexities of the DNAs - more specialized fish had less information.3. Little homology between sequences of remotely related species but substantial homology between sequences of closely related species.
Visibility graphs and symbolic dynamics
NASA Astrophysics Data System (ADS)
Lacasa, Lucas; Just, Wolfram
2018-07-01
Visibility algorithms are a family of geometric and ordering criteria by which a real-valued time series of N data is mapped into a graph of N nodes. This graph has been shown to often inherit in its topology nontrivial properties of the series structure, and can thus be seen as a combinatorial representation of a dynamical system. Here we explore in some detail the relation between visibility graphs and symbolic dynamics. To do that, we consider the degree sequence of horizontal visibility graphs generated by the one-parameter logistic map, for a range of values of the parameter for which the map shows chaotic behaviour. Numerically, we observe that in the chaotic region the block entropies of these sequences systematically converge to the Lyapunov exponent of the time series. Hence, Pesin's identity suggests that these block entropies are converging to the Kolmogorov-Sinai entropy of the physical measure, which ultimately suggests that the algorithm is implicitly and adaptively constructing phase space partitions which might have the generating property. To give analytical insight, we explore the relation k(x) , x ∈ [ 0 , 1 ] that, for a given datum with value x, assigns in graph space a node with degree k. In the case of the out-degree sequence, such relation is indeed a piece-wise constant function. By making use of explicit methods and tools from symbolic dynamics we are able to analytically show that the algorithm indeed performs an effective partition of the phase space and that such partition is naturally expressed as a countable union of subintervals, where the endpoints of each subinterval are related to the fixed point structure of the iterates of the map and the subinterval enumeration is associated with particular ordering structures that we called motifs.
Grandy, A Stuart; Neff, Jason C
2008-10-15
Advances in spectroscopic and other chemical methods have greatly enhanced our ability to characterize soil organic matter chemistry. As a result, the molecular characteristics of soil C are now known for a range of ecosystems, soil types, and management intensities. Placing this knowledge into a broader ecological and management context is difficult, however, and remains one of the fundamental challenges of soil organic matter research. Here we present a conceptual model of molecular soil C dynamics to stimulate inter-disciplinary research into the ecological implications of molecular C turnover and its management- and process-level controls. Our model describes three properties of soil C dynamics: 1) soil size fractions have unique molecular patterns that reflect varying degrees of biological and physical control over decomposition; 2) there is a common decomposition sequence independent of plant inputs or other ecosystem properties; and 3) molecular decomposition sequences, although consistent, are not uniform and can be altered by processes that accelerate or slow the microbial transformation of specific molecules. The consequences of this model include several key points. First, lignin presents a constraint to decomposition of plant litter and particulate C (>53 microm) but exerts little influence on more stable mineral-associated soil fractions <53 microm. Second, carbon stabilized onto mineral fractions has a distinct composition related more to microbially processed organic matter than to plant-related compounds. Third, disturbances, such as N fertilization and tillage, which alter decomposition rates, can have "downstream effects"; that is, a disturbance that directly alters the molecular dynamics of particulate C may have a series of indirect effects on C stabilization in silt and clay fractions.
Spaces of ideal convergent sequences.
Mursaleen, M; Sharma, Sunil K
2014-01-01
In the present paper, we introduce some sequence spaces using ideal convergence and Musielak-Orlicz function ℳ = (M(k)). We also examine some topological properties of the resulting sequence spaces.
GaN: From three- to two-dimensional single-layer crystal and its multilayer van der Waals solids
NASA Astrophysics Data System (ADS)
Onen, A.; Kecik, D.; Durgun, E.; Ciraci, S.
2016-02-01
Three-dimensional (3D) GaN is a III-V compound semiconductor with potential optoelectronic applications. In this paper, starting from 3D GaN in wurtzite and zinc-blende structures, we investigated the mechanical, electronic, and optical properties of the 2D single-layer honeycomb structure of GaN (g -GaN ) and its bilayer, trilayer, and multilayer van der Waals solids using density-functional theory. Based on high-temperature ab initio molecular-dynamics calculations, we first showed that g -GaN can remain stable at high temperature. Then we performed a comparative study to reveal how the physical properties vary with dimensionality. While 3D GaN is a direct-band-gap semiconductor, g -GaN in two dimensions has a relatively wider indirect band gap. Moreover, 2D g -GaN displays a higher Poisson ratio and slightly less charge transfer from cation to anion. In two dimensions, the optical-absorption spectra of 3D crystalline phases are modified dramatically, and their absorption onset energy is blueshifted. We also showed that the physical properties predicted for freestanding g -GaN are preserved when g -GaN is grown on metallic as well as semiconducting substrates. In particular, 3D layered blue phosphorus, being nearly lattice-matched to g -GaN , is found to be an excellent substrate for growing g -GaN . Bilayer, trilayer, and van der Waals crystals can be constructed by a special stacking sequence of g -GaN , and they can display electronic and optical properties that can be controlled by the number of g -GaN layers. In particular, their fundamental band gap decreases and changes from indirect to direct with an increasing number of g -GaN layers.
Natural and Genetically Engineered Proteins for Tissue Engineering
Gomes, Sílvia; Leonor, Isabel B.; Mano, João F.; Reis, Rui L.
2011-01-01
To overcome the limitations of traditionally used autografts, allografts and, to a lesser extent, synthetic materials, there is the need to develop a new generation of scaffolds with adequate mechanical and structural support, control of cell attachment, migration, proliferation and differentiation and with bio-resorbable features. This suite of properties would allow the body to heal itself at the same rate as implant degradation. Genetic engineering offers a route to this level of control of biomaterial systems. The possibility of expressing biological components in nature and to modify or bioengineer them further, offers a path towards multifunctional biomaterial systems. This includes opportunities to generate new protein sequences, new self-assembling peptides or fusions of different bioactive domains or protein motifs. New protein sequences with tunable properties can be generated that can be used as new biomaterials. In this review we address some of the most frequently used proteins for tissue engineering and biomedical applications and describe the techniques most commonly used to functionalize protein-based biomaterials by combining them with bioactive molecules to enhance biological performance. We also highlight the use of genetic engineering, for protein heterologous expression and the synthesis of new protein-based biopolymers, focusing the advantages of these functionalized biopolymers when compared with their counterparts extracted directly from nature and modified by techniques such as physical adsorption or chemical modification. PMID:22058578
Generalization of Entropy Based Divergence Measures for Symbolic Sequence Analysis
Ré, Miguel A.; Azad, Rajeev K.
2014-01-01
Entropy based measures have been frequently used in symbolic sequence analysis. A symmetrized and smoothed form of Kullback-Leibler divergence or relative entropy, the Jensen-Shannon divergence (JSD), is of particular interest because of its sharing properties with families of other divergence measures and its interpretability in different domains including statistical physics, information theory and mathematical statistics. The uniqueness and versatility of this measure arise because of a number of attributes including generalization to any number of probability distributions and association of weights to the distributions. Furthermore, its entropic formulation allows its generalization in different statistical frameworks, such as, non-extensive Tsallis statistics and higher order Markovian statistics. We revisit these generalizations and propose a new generalization of JSD in the integrated Tsallis and Markovian statistical framework. We show that this generalization can be interpreted in terms of mutual information. We also investigate the performance of different JSD generalizations in deconstructing chimeric DNA sequences assembled from bacterial genomes including that of E. coli, S. enterica typhi, Y. pestis and H. influenzae. Our results show that the JSD generalizations bring in more pronounced improvements when the sequences being compared are from phylogenetically proximal organisms, which are often difficult to distinguish because of their compositional similarity. While small but noticeable improvements were observed with the Tsallis statistical JSD generalization, relatively large improvements were observed with the Markovian generalization. In contrast, the proposed Tsallis-Markovian generalization yielded more pronounced improvements relative to the Tsallis and Markovian generalizations, specifically when the sequences being compared arose from phylogenetically proximal organisms. PMID:24728338
Ogris, Kathrin; Petrovic, Andreas; Scheicher, Sylvia; Sprenger, Hanna; Urschler, Martin; Hassler, Eva Maria; Yen, Kathrin; Scheurer, Eva
2017-06-01
In legal medicine, reliable localization and analysis of hematomas in subcutaneous fatty tissue is required for forensic reconstruction. Due to the absence of ionizing radiation, magnetic resonance imaging (MRI) is particularly suited to examining living persons with forensically relevant injuries. However, there is limited experience regarding MRI signal properties of hemorrhage in soft tissue. The aim of this study was to evaluate MR sequences with respect to their ability to show high contrast between hematomas and subcutaneous fatty tissue as well as to reliably determine the volume of artificial hematomas. Porcine tissue models were prepared by injecting blood into the subcutaneous fatty tissue to create artificial hematomas. MR images were acquired at 3T and four blinded observers conducted manual segmentation of the hematomas. To assess segmentability, the agreement of measured volume with the known volume of injected blood was statistically analyzed. A physically motivated normalization taking into account partial volume effect was applied to the data to ensure comparable results among differently sized hematomas. The inversion recovery sequence exhibited the best segmentability rate, whereas the T1T2w turbo spin echo sequence showed the most accurate results regarding volume estimation. Both sequences led to reproducible volume estimations. This study demonstrates that MRI is a promising forensic tool to assess and visualize even very small amounts of blood in soft tissue. The presented results enable the improvement of protocols for detection and volume determination of hemorrhage in forensically relevant cases and also provide fundamental knowledge for future in-vivo examinations.
Solution Structure of Acidocin B, a Circular Bacteriocin Produced by Lactobacillus acidophilus M46
Acedo, Jeella Z.; van Belkum, Marco J.; Lohans, Christopher T.; McKay, Ryan T.; Miskolzie, Mark
2015-01-01
Acidocin B, a bacteriocin produced by Lactobacillus acidophilus M46, was originally reported to be a linear peptide composed of 59 amino acid residues. However, its high sequence similarity to gassericin A, a circular bacteriocin from Lactobacillus gasseri LA39, suggested that acidocin B might be circular as well. Acidocin B was purified from culture supernatant by a series of hydrophobic interaction chromatographic steps. Its circular nature was ascertained by matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry and tandem mass spectrometry (MS/MS) sequencing. The peptide sequence was found to consist of 58 amino acids with a molecular mass of 5,621.5 Da. The sequence of the acidocin B biosynthetic gene cluster was also determined and showed high nucleotide sequence similarity to that of gassericin A. The nuclear magnetic resonance (NMR) solution structure of acidocin B in sodium dodecyl sulfate micelles was elucidated, revealing that it is composed of four α-helices of similar length that are folded to form a compact, globular bundle with a central pore. This is a three-dimensional structure for a member of subgroup II circular bacteriocins, which are classified based on their isoelectric points of ∼7 or lower. Comparison of acidocin B with carnocyclin A, a subgroup I circular bacteriocin with four α-helices and a pI of 10, revealed differences in the overall folding. The observed variations could be attributed to inherent diversity in their physical properties, which also required the use of different solvent systems for three-dimensional structural elucidation. PMID:25681186
Generalization of entropy based divergence measures for symbolic sequence analysis.
Ré, Miguel A; Azad, Rajeev K
2014-01-01
Entropy based measures have been frequently used in symbolic sequence analysis. A symmetrized and smoothed form of Kullback-Leibler divergence or relative entropy, the Jensen-Shannon divergence (JSD), is of particular interest because of its sharing properties with families of other divergence measures and its interpretability in different domains including statistical physics, information theory and mathematical statistics. The uniqueness and versatility of this measure arise because of a number of attributes including generalization to any number of probability distributions and association of weights to the distributions. Furthermore, its entropic formulation allows its generalization in different statistical frameworks, such as, non-extensive Tsallis statistics and higher order Markovian statistics. We revisit these generalizations and propose a new generalization of JSD in the integrated Tsallis and Markovian statistical framework. We show that this generalization can be interpreted in terms of mutual information. We also investigate the performance of different JSD generalizations in deconstructing chimeric DNA sequences assembled from bacterial genomes including that of E. coli, S. enterica typhi, Y. pestis and H. influenzae. Our results show that the JSD generalizations bring in more pronounced improvements when the sequences being compared are from phylogenetically proximal organisms, which are often difficult to distinguish because of their compositional similarity. While small but noticeable improvements were observed with the Tsallis statistical JSD generalization, relatively large improvements were observed with the Markovian generalization. In contrast, the proposed Tsallis-Markovian generalization yielded more pronounced improvements relative to the Tsallis and Markovian generalizations, specifically when the sequences being compared arose from phylogenetically proximal organisms.
Flexible theta sequence compression mediated via phase precessing interneurons
Chadwick, Angus; van Rossum, Mark CW; Nolan, Matthew F
2016-01-01
Encoding of behavioral episodes as spike sequences during hippocampal theta oscillations provides a neural substrate for computations on events extended across time and space. However, the mechanisms underlying the numerous and diverse experimentally observed properties of theta sequences remain poorly understood. Here we account for theta sequences using a novel model constrained by the septo-hippocampal circuitry. We show that when spontaneously active interneurons integrate spatial signals and theta frequency pacemaker inputs, they generate phase precessing action potentials that can coordinate theta sequences in place cell populations. We reveal novel constraints on sequence generation, predict cellular properties and neural dynamics that characterize sequence compression, identify circuit organization principles for high capacity sequential representation, and show that theta sequences can be used as substrates for association of conditioned stimuli with recent and upcoming events. Our results suggest mechanisms for flexible sequence compression that are suited to associative learning across an animal’s lifespan. DOI: http://dx.doi.org/10.7554/eLife.20349.001 PMID:27929374
Physical properties of forest soils
Charles H. Perry; Michael C. Amacher
2007-01-01
Why Are Physical Properties of the Soil Important? The soil quality indicator, when combined with other data collected by the FIA program, can indicate the current rates of soil erosion, the extent and intensity of soil compaction, and some basic physical properties of the forest floor and the top 20 cm of soil. In this report, two particular physical properties of the...
A draft physical map of a D-genome cotton species (Gossypium raimondii)
2010-01-01
Background Genetically anchored physical maps of large eukaryotic genomes have proven useful both for their intrinsic merit and as an adjunct to genome sequencing. Cultivated tetraploid cottons, Gossypium hirsutum and G. barbadense, share a common ancestor formed by a merger of the A and D genomes about 1-2 million years ago. Toward the long-term goal of characterizing the spectrum of diversity among cotton genomes, the worldwide cotton community has prioritized the D genome progenitor Gossypium raimondii for complete sequencing. Results A whole genome physical map of G. raimondii, the putative D genome ancestral species of tetraploid cottons was assembled, integrating genetically-anchored overgo hybridization probes, agarose based fingerprints and 'high information content fingerprinting' (HICF). A total of 13,662 BAC-end sequences and 2,828 DNA probes were used in genetically anchoring 1585 contigs to a cotton consensus genetic map, and 370 and 438 contigs, respectively to Arabidopsis thaliana (AT) and Vitis vinifera (VV) whole genome sequences. Conclusion Several lines of evidence suggest that the G. raimondii genome is comprised of two qualitatively different components. Much of the gene rich component is aligned to the Arabidopsis and Vitis vinifera genomes and shows promise for utilizing translational genomic approaches in understanding this important genome and its resident genes. The integrated genetic-physical map is of value both in assembling and validating a planned reference sequence. PMID:20569427
Study on preparation and mechanical performance of TPU/nonwoven composites
NASA Astrophysics Data System (ADS)
Sun, X. C.; Xi, B. J.
2016-07-01
In order to study the influence of resin content and layer sequence parameters on the mechanical properties of TPU/non-woven composite materials synthesized by moulding pressing technology. The effects of the resin content and layer sequence on composites were discussed. Through experiments and theoretical analysis, it was revealed how resin content, layer sequence impact on mechanical properties of composite. The mechanics properties of TPU/non-woven composite materials are improved. The process is pressure 0.5 MPa, temperature 110 °C and time 120s min. The melting of the TPU infiltrated into the fabric and filled the space between the fibers.
Sequencing of 15,622 gene-bearing BACs clarifies the gene-dense regions of the barley genome
USDA-ARS?s Scientific Manuscript database
Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework....
ERIC Educational Resources Information Center
Carr, Dorothy B.; Avance, Lyonel D.
Presented is a sequenced instructional program in physical education which constitutes the third of a three-phase, 4-year project, funded by Title III, for handicapped children, preschool through high school levels, in the Los Angeles Unified School District. Described are the project setting and the following accomplishments: a curriculum guide…
Introduction to Semiconductor Physics in Secondary Education: Evaluation of a Teaching Sequence
ERIC Educational Resources Information Center
Garcia-Carmona, Antonio; Criado, Ana Maria
2009-01-01
The present article presents a didactic proposal oriented to teaching notions of semiconductor physics in secondary education. The methods and the results of a pilot study designed to analyse the effectiveness of a teaching sequence on the topic are also described. The subjects were 60 students, aged 14-15 years, of a secondary school in Seville,…
Effects of Mental and Physical Practice on a Finger Opposition Task among Children
ERIC Educational Resources Information Center
de Paula Asa, Sabrina Kyoko; Santos Melo, Mara Cristina; Piemonte, Maria Elisa Pimentel
2014-01-01
Purpose: We sought to compare the effects of physical practice (PP) and mental practice (MP) on the immediate and long-term learning of the finger-to-thumb opposition sequence task (FOS) in children; in addition, we investigated the transfer of this learning to an untrained sequence of movements and to the contralateral untrained hand. Method:…
Kawase, Junya; Aoki, Jun-ya; Araki, Kazuo
2018-01-01
To investigate chromosome evolution in fish species, we newly mapped 181 markers that allowed us to construct a yellowtail (Seriola quinqueradiata) radiation hybrid (RH) physical map with 1,713 DNA markers, which was far denser than a previous map, and we anchored the de novo assembled sequences onto the RH physical map. Finally, we mapped a total of 13,977 expressed sequence tags (ESTs) on a genome sequence assembly aligned with the physical map. Using the high-density physical map and anchored genome sequences, we accurately compared the yellowtail genome structure with the genome structures of five model fishes to identify characteristics of the yellowtail genome. Between yellowtail and Japanese medaka (Oryzias latipes), almost all regions of the chromosomes were conserved and some blocks comprising several markers were translocated. Using the genome information of the spotted gar (Lepisosteus oculatus) as a reference, we further documented syntenic relationships and chromosomal rearrangements that occurred during evolution in four other acanthopterygian species (Japanese medaka, zebrafish, spotted green pufferfish and three-spined stickleback). The evolutionary chromosome translocation frequency was 1.5-2-times higher in yellowtail than in medaka, pufferfish, and stickleback. PMID:29290830
Locating Sequence on FPC Maps and Selecting a Minimal Tiling Path
Engler, Friedrich W.; Hatfield, James; Nelson, William; Soderlund, Carol A.
2003-01-01
This study discusses three software tools, the first two aid in integrating sequence with an FPC physical map and the third automatically selects a minimal tiling path given genomic draft sequence and BAC end sequences. The first tool, FSD (FPC Simulated Digest), takes a sequenced clone and adds it back to the map based on a fingerprint generated by an in silico digest of the clone. This allows verification of sequenced clone positions and the integration of sequenced clones that were not originally part of the FPC map. The second tool, BSS (Blast Some Sequence), takes a query sequence and positions it on the map based on sequence associated with the clones in the map. BSS has multiple uses as follows: (1) When the query is a file of marker sequences, they can be added as electronic markers. (2) When the query is draft sequence, the results of BSS can be used to close gaps in a sequenced clone or the physical map. (3) When the query is a sequenced clone and the target is BAC end sequences, one may select the next clone for sequencing using both sequence comparison results and map location. (4) When the query is whole-genome draft sequence and the target is BAC end sequences, the results can be used to select many clones for a minimal tiling path at once. The third tool, pickMTP, automates the majority of this last usage of BSS. Results are presented using the rice FPC map, BAC end sequences, and whole-genome shotgun from Syngenta. PMID:12915486
NASA Technical Reports Server (NTRS)
Strom, Stephen E.; Edwards, Suzan; Strom, Karen M.
1991-01-01
The following topics were discussed: (1) current observation evidence for the presence of circumstellar disks associated with solar type pre-main sequence (PMS) stars; (2) the properties of such disks; and (3) the disk environment.
Solignac, Michel; Mougel, Florence; Vautrin, Dominique; Monnerot, Monique; Cornuet, Jean-Marie
2007-01-01
The honey bee is a key model for social behavior and this feature led to the selection of the species for genome sequencing. A genetic map is a necessary companion to the sequence. In addition, because there was originally no physical map for the honey bee genome project, a meiotic map was the only resource for organizing the sequence assembly on the chromosomes. We present the genetic (meiotic) map here and describe the main features that emerged from comparison with the sequence-based physical map. The genetic map of the honey bee is saturated and the chromosomes are oriented from the centromeric to the telomeric regions. The map is based on 2,008 markers and is about 40 Morgans (M) long, resulting in a marker density of one every 2.05 centiMorgans (cM). For the 186 megabases (Mb) of the genome mapped and assembled, this corresponds to a very high average recombination rate of 22.04 cM/Mb. Honey bee meiosis shows a relatively homogeneous recombination rate along and across chromosomes, as well as within and between individuals. Interference is higher than inferred from the Kosambi function of distance. In addition, numerous recombination hotspots are dispersed over the genome. The very large genetic length of the honey bee genome, its small physical size and an almost complete genome sequence with a relatively low number of genes suggest a very promising future for association mapping in the honey bee, particularly as the existence of haploid males allows easy bulk segregant analysis.
Role of Monomer Sequence, Hydrogen Bonding and Mesoscale Architecture in Marine Antifouling Coatings
NASA Astrophysics Data System (ADS)
Segalman, Rachel
Polypeptoids are non-natural, sequence specific polymers that offer the opportunity to probe the effect of monomer sequence, chirality, and chain shape on self-assembly and surface properties. Additionally, polypeptoid synthesis is more scaleable than traditional polypeptides suggesting their utility in large area applications. We have designed efficient marine anti-fouling coatings by using triblock copolymer scaffolds to which polypeptoids are tethered in order to tune both the modulus and surface energies with great precision. Surprisingly, when short sequences are tethered to a polymer backbone, polypeptoids consistently outperform analogous polypeptides in antifouling properties. We hypothesize that the hydrogen bonding inherent to the polypeptide backbone drives the observed differences in performance. We also find that the polymer scaffold housing the polypeptoids also plays a crucial role in directing surface presentation and therefore the overall coating properties.
Massive star formation by accretion. II. Rotation: how to circumvent the angular momentum barrier?
NASA Astrophysics Data System (ADS)
Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.; Klessen, R. S.
2017-06-01
Context. Rotation plays a key role in the star-formation process, from pre-stellar cores to pre-main-sequence (PMS) objects. Understanding the formation of massive stars requires taking into account the accretion of angular momentum during their PMS phase. Aims: We study the PMS evolution of objects destined to become massive stars by accretion, focusing on the links between the physical conditions of the environment and the rotational properties of young stars. In particular, we look at the physical conditions that allow the production of massive stars by accretion. Methods: We present PMS models computed with a new version of the Geneva Stellar Evolution code self-consistently including accretion and rotation according to various accretion scenarios for mass and angular momentum. We describe the internal distribution of angular momentum in PMS stars accreting at high rates and we show how the various physical conditions impact their internal structures, evolutionary tracks, and rotation velocities during the PMS and the early main sequence. Results: We find that the smooth angular momentum accretion considered in previous studies leads to an angular momentum barrier and does not allow the formation of massive stars by accretion. A braking mechanism is needed in order to circumvent this angular momentum barrier. This mechanism has to be efficient enough to remove more than two thirds of the angular momentum from the inner accretion disc. Due to the weak efficiency of angular momentum transport by shear instability and meridional circulation during the accretion phase, the internal rotation profiles of accreting stars reflect essentially the angular momentum accretion history. As a consequence, careful choice of the angular momentum accretion history allows circumvention of any limitation in mass and velocity, and production of stars of any mass and velocity compatible with structure equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Techtmann, Stephen M.; Fortney, Julian L.; Ayers, Kati A.
The waters of the Eastern Mediterranean are characterized by unique physical and chemical properties within separate water masses occupying different depths. Distinct water masses are present throughout the oceans, which drive thermohaline circulation. These water masses may contain specific microbial assemblages. The goal of this study was to examine the effect of physical and geological phenomena on the microbial community of the Eastern Mediterranean water column. Chemical measurements were combined with phospholipid fatty acid (PLFA) analysis and high-throughput 16S rRNA sequencing to characterize the microbial community in the water column at five sites. We demonstrate that the chemistry and microbialmore » community of the water column were stratified into three distinct water masses. The salinity and nutrient concentrations vary between these water masses. Nutrient concentrations increased with depth, and salinity was highest in the intermediate water mass. Our PLFA analysis indicated different lipid classes were abundant in each water mass, suggesting that distinct groups of microbes inhabit these water masses. 16S rRNA gene sequencing confirmed the presence of distinct microbial communities in each water mass. Taxa involved in autotrophic nitrogen cycling were enriched in the intermediate water mass suggesting that microbes in this water mass may be important to the nitrogen cycle of the Eastern Mediterranean. The Eastern Mediterranean also contains numerous active hydrocarbon seeps. We sampled above the North Alex Mud Volcano, in order to test the effect of these geological features on the microbial community in the adjacent water column. The community in the waters overlaying the mud volcano was distinct from other communities collected at similar depths and was enriched in known hydrocarbon degrading taxa. Furthermore, our results demonstrate that physical phenomena such stratification as well as geological phenomena such as mud volcanoes strongly affect microbial community structure in the Eastern Mediterranean water column.« less
Comparative architecture of silks, fibrous proteins and their encoding genes in insects and spiders.
Craig, Catherine L; Riekel, Christian
2002-12-01
The known silk fibroins and fibrous glues are thought to be encoded by members of the same gene family. All silk fibroins sequenced to date contain regions of long-range order (crystalline regions) and/or short-range order (non-crystalline regions). All of the sequenced fibroin silks (Flag or silk from flagelliform gland in spiders; Fhc or heavy chain fibroin silks produced by Lepidoptera larvae) are made up of hierarchically organized, repetitive arrays of amino acids. Fhc fibroin genes are characterized by a similar molecular genetic architecture of two exons and one intron, but the organization and size of these units differs. The Flag, Ser (sericin gene) and BR (Balbiani ring genes; both fibrous proteins) genes are made up of multiple exons and introns. Sequences coding for crystalline and non-crystalline protein domains are integrated in the repetitive regions of Fhc and MA exons, but not in the protein glues Ser1 and BR-1. Genetic 'hot-spots' promote recombination errors in Fhc, MA, and Flag. Codon bias, structural constraint, point mutations, and shortened coding arrays may be alternative means of stabilizing precursor mRNA transcripts. Differential regulation of gene expression and selective splicing of the mRNA transcript may allow rapid adaptation of silk functional properties to different physical environments.
Benyo, B; Biro, J C; Benyo, Z
2004-01-01
The theory of "codon-amino acid coevolution" was first proposed by Woese in 1967. It suggests that there is a stereochemical matching - that is, affinity - between amino acids and certain of the base triplet sequences that code for those amino acids. We have constructed a common periodic table of codons and amino acids, where the nucleic acid table showed perfect axial symmetry for codons and the corresponding amino acid table also displayed periodicity regarding the biochemical properties (charge and hydrophobicity) of the 20 amino acids and the position of the stop signals. The table indicates that the middle (2/sup nd/) amino acid in the codon has a prominent role in determining some of the structural features of the amino acids. The possibility that physical contact between codons and amino acids might exist was tested on restriction enzymes. Many recognition site-like sequences were found in the coding sequences of these enzymes and as many as 73 examples of codon-amino acid co-location were observed in the 7 known 3D structures (December 2003) of endonuclease-nucleic acid complexes. These results indicate that the smallest possible units of specific nucleic acid-protein interaction are indeed the stereochemically compatible codons and amino acids.
Inhalable Microorganisms in Beijing’s PM2.5 and PM10 Pollutants during a Severe Smog Event
2014-01-01
Particulate matter (PM) air pollution poses a formidable public health threat to the city of Beijing. Among the various hazards of PM pollutants, microorganisms in PM2.5 and PM10 are thought to be responsible for various allergies and for the spread of respiratory diseases. While the physical and chemical properties of PM pollutants have been extensively studied, much less is known about the inhalable microorganisms. Most existing data on airborne microbial communities using 16S or 18S rRNA gene sequencing to categorize bacteria or fungi into the family or genus levels do not provide information on their allergenic and pathogenic potentials. Here we employed metagenomic methods to analyze the microbial composition of Beijing’s PM pollutants during a severe January smog event. We show that with sufficient sequencing depth, airborne microbes including bacteria, archaea, fungi, and dsDNA viruses can be identified at the species level. Our results suggested that the majority of the inhalable microorganisms were soil-associated and nonpathogenic to human. Nevertheless, the sequences of several respiratory microbial allergens and pathogens were identified and their relative abundance appeared to have increased with increased concentrations of PM pollution. Our findings may serve as an important reference for environmental scientists, health workers, and city planners. PMID:24456276
NASA Technical Reports Server (NTRS)
Kenyon, Scott J.; Calvet, Nuria; Hartmann, Lee
1993-01-01
We describe radiative transfer calculations of infalling, dusty envelopes surrounding pre-main-sequence stars and use these models to derive physical properties for a sample of 21 heavily reddened young stars in the Taurus-Auriga molecular cloud. The density distributions needed to match the FIR peaks in the spectral energy distributions of these embedded sources suggest mass infall rates similar to those predicted for simple thermally supported clouds with temperatures about 10 K. Unless the dust opacities are badly in error, our models require substantial departures from spherical symmetry in the envelopes of all sources. These flattened envelopes may be produced by a combination of rotation and cavities excavated by bipolar flows. The rotating infall models of Terebey et al. (1984) models indicate a centrifugal radius of about 70 AU for many objects if rotation is the only important physical effect, and this radius is reasonably consistent with typical estimates for the sizes of circumstellar disks around T Tauri stars.
Introduction of optical tweezers in advanced physics laboratory
NASA Astrophysics Data System (ADS)
Wang, Gang
2017-08-01
Laboratories are an essential part of undergraduate optoelectronics and photonics education. Of particular interest are the sequence of laboratories which offer students meaningful research experience within a reasonable time-frame limited by regular laboratory hours. We will present our introduction of optical tweezers into the upper-level physics laboratory. We developed the sequence of experiments in the Advanced Lab to offer students sufficient freedom to explore, rather than simply setting up a demonstration following certain recipes. We will also present its impact on our current curriculum of optoelectronics concentration within the physics program.
40 CFR 716.50 - Reporting physical and chemical properties.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...
40 CFR 716.50 - Reporting physical and chemical properties.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...
40 CFR 716.50 - Reporting physical and chemical properties.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...
40 CFR 716.50 - Reporting physical and chemical properties.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...
40 CFR 716.50 - Reporting physical and chemical properties.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...
Repeating Seismic Events Indicate Stick-slip Behavior Before the Rausu Landslide
NASA Astrophysics Data System (ADS)
Yamada, M.; Mori, J. J.; Matsushi, Y.
2016-12-01
The characteristics of seismic signals generated by the mass movement are considered to reflect the physical properties of the movement, and the use of seismic data for landslide study attracts more attention recently. Here we analyzed the seismic data associated with 2015 Rausu landslide, and found intermittent tremors before the substantial mass movement. The Rausu landslide started moving before 6:30 on April 24 based on the eyewitnesses, and the large deformation occurred between 11:30 and 16:30 on the day. The size of the landslide is about 380 times 260 m and depth of 15-30m, and the sliding distance is 10-20 m. The coastal seafloor uplifted and emerged above the level of high-tide due to the buckling of the layers at the toe of the landslide. A seismogram near the Rausu landslide (0.85km North) recorded curious intermittent tremors one day before the substantial mass movement. Each tremor has almost identical waveforms, and the amplitude increases linearly as a function of time. The tremors continued about 20 hours, and on the next day, a large deformation was observed. This tremor sequence is considered to be an evidence of the stick-slip movement of the landslide before the large failure occurs. The identical waveforms suggest that the source location and mechanism are very similar in the sequence, which indicates the tremors are generated at a particular small area. The amplitude and interval of the tremors may reflect the physical properties of the slip surface. The constant interval of the tremor occurrence suggests that the shear stress accumulation was very stable at the precursory creeping stage. This is the first observation suggesting that the heterogeneous structure such as asperities on the slip surface play an important role to control the movement of landslide, and adding a new aspect on the conventional understanding of the mechanism to control the mass movement.
Communicating the Benefits of a Full Sequence of High School Science Courses
ERIC Educational Resources Information Center
Nicholas, Catherine Marie
2014-01-01
High school students are generally uninformed about the benefits of enrolling in a full sequence of science courses, therefore only about a third of our nation's high school graduates have completed the science sequence of Biology, Chemistry and Physics. The lack of students completing a full sequence of science courses contributes to the deficit…
Evaluating and Redesigning Teaching Learning Sequences at the Introductory Physics Level
ERIC Educational Resources Information Center
Guisasola, Jenaro; Zuza, Kristina; Ametller, Jaume; Gutierrez-Berraondo, José
2017-01-01
In this paper we put forward a proposal for the design and evaluation of teaching and learning sequences in upper secondary school and university. We will connect our proposal with relevant contributions on the design of teaching sequences, ground it on the design-based research methodology, and discuss how teaching and learning sequences designed…
International Space Station Research Plan, Assembly Sequence Rev., F
2000-08-01
muscles ü Higher risk for bone fracture upon return to Earth ü Potential for “slipped discs” ü Diminished ability to quickly respond to emergencies...Office of Biological and Physical Research International Space Station Research Plan Assembly Sequence Rev. F, Aug. 2000l . , . Report...Organization Name(s) and Address(es) NASA, Office of Biological and Physical Research Performing Organization Report Number Sponsoring/Monitoring Agency
ERIC Educational Resources Information Center
Cortland-Madison Board of Cooperative Educational Services, Cortland, NY.
Presented is a booklet containing scope and sequence charts for kindergarten and grades 1 to 6 science units. Overviews and lists of major concepts for units in the life, physical, and earth/space sciences are provided in tables for each grade level. Also presented are seven complete units, one for each grade level. Following a table of contents,…
ERIC Educational Resources Information Center
Avance, Lyonel D.; Carr, Dorothy B.
Presented is the final report of a project to develop and field test audio and visual media to accompany developmentally sequenced activities appropriate for a physical education program for handicapped children from preschool through high school. Brief sections cover the following: the purposes and accomplishments of the project; the population…
USDA-ARS?s Scientific Manuscript database
Coat protein sequences of 33 Potyvirus isolates from legume and Passiflora spp. were sequenced to determine the identity of infecting viruses. Phylogenetic analysis of the sequences revealed the presence of seven distinct virus species....
A Novel Cylindrical Representation for Characterizing Intrinsic Properties of Protein Sequences.
Yu, Jia-Feng; Dou, Xiang-Hua; Wang, Hong-Bo; Sun, Xiao; Zhao, Hui-Ying; Wang, Ji-Hua
2015-06-22
The composition and sequence order of amino acid residues are the two most important characteristics to describe a protein sequence. Graphical representations facilitate visualization of biological sequences and produce biologically useful numerical descriptors. In this paper, we propose a novel cylindrical representation by placing the 20 amino acid residue types in a circle and sequence positions along the z axis. This representation allows visualization of the composition and sequence order of amino acids at the same time. Ten numerical descriptors and one weighted numerical descriptor have been developed to quantitatively describe intrinsic properties of protein sequences on the basis of the cylindrical model. Their applications to similarity/dissimilarity analysis of nine ND5 proteins indicated that these numerical descriptors are more effective than several classical numerical matrices. Thus, the cylindrical representation obtained here provides a new useful tool for visualizing and charactering protein sequences. An online server is available at http://biophy.dzu.edu.cn:8080/CNumD/input.jsp .
Analysis on the use of Multi-Sequence MRI Series for Segmentation of Abdominal Organs
NASA Astrophysics Data System (ADS)
Selver, M. A.; Selvi, E.; Kavur, E.; Dicle, O.
2015-01-01
Segmentation of abdominal organs from MRI data sets is a challenging task due to various limitations and artefacts. During the routine clinical practice, radiologists use multiple MR sequences in order to analyze different anatomical properties. These sequences have different characteristics in terms of acquisition parameters (such as contrast mechanisms and pulse sequence designs) and image properties (such as pixel spacing, slice thicknesses and dynamic range). For a complete understanding of the data, computational techniques should combine the information coming from these various MRI sequences. These sequences are not acquired in parallel but in a sequential manner (one after another). Therefore, patient movements and respiratory motions change the position and shape of the abdominal organs. In this study, the amount of these effects is measured using three different symmetric surface distance metrics performed to three dimensional data acquired from various MRI sequences. The results are compared to intra and inter observer differences and discussions on using multiple MRI sequences for segmentation and the necessities for registration are presented.
Ravi, Koustuban; Schimpf, Damian N; Kärtner, Franz X
2016-10-31
The use of laser pulse sequences to drive the cascaded difference frequency generation of high energy, high peak-power and multi-cycle terahertz pulses in cryogenically cooled (100 K) periodically poled Lithium Niobate is proposed and studied. Detailed simulations considering the coupled nonlinear interaction of terahertz and optical waves (or pump depletion), show that unprecedented optical-to-terahertz energy conversion efficiencies > 5%, peak electric fields of hundred(s) of mega volts/meter at terahertz pulse durations of hundred(s) of picoseconds can be achieved. The proposed methods are shown to circumvent laser induced damage limitations at Joule-level pumping by 1µm lasers to enable multi-cycle terahertz sources with pulse energies > 10 milli-joules. Various pulse sequence formats are proposed and analyzed. Numerical calculations for periodically poled structures accounting for cascaded difference frequency generation, self-phase-modulation, cascaded second harmonic generation and laser induced damage are introduced. The physics governing terahertz generation using pulse sequences in this high conversion efficiency regime, limitations and practical considerations are discussed. It is shown that varying the poling period along the crystal length and further reduction of absorption can lead to even higher energy conversion efficiencies >10%. In addition to numerical calculations, an analytic formulation valid for arbitrary pulse formats and closed-form expressions for important cases are presented. Parameters optimizing conversion efficiency in the 0.1-1 THz range, the corresponding peak electric fields, crystal lengths and terahertz pulse properties are furnished.
Divergence, differential methylation and interspersion of melon satellite DNA sequences.
Shmookler Reis, R; Timmis, J N; Ingle, J
1981-01-01
Melon (Cucumis melo) satellite DNA consists of two components, Q and S, each with a buoyant density in CsCl of 1.707 g/ml, but differing by 9 degrees C in "melting" temperature. These physical properties appear to be in contradiction, since both depend on G + C content. In order to resolve this anomaly, base compositions were directly determined for isolated fractions. the low-"melting" component S contains 41.8% G + C, with 6% of C present as 5-methylcytosine, whereas Q DNA contains 54% G + C, with 41% of C methylated. Analyses of restriction site loss agreed well with the direct determinations of methylation and divergence, and indicated some clustering of methylated sites in Q DNA. Analysis of restricted main-band DNA by hydridization with RNA complementary to Q satellite DNA ("Southern transfer") showed satellite Q tandem arrays interspersed in DNA of main-band density. Sequence divergence and extent of methylation did not appear to depend on whether a repeat array was present as satellite or interspersed in main-band DNA. Hydridization in situ indicated considerable heterogeneity in the genomic proportion of the Q-DNA sequences in melon fruit nuclei, implying over- and under-representation consistent with extensive unequal recombination in satellite Q tandem arrays. The cucumber, Cucumis sativus, contains less than 8% as much Q-homologous DNA per genome as the melon, suggesting rapid evolutionary gain or loss of these tandem repeat sequences. Images Fig. 2. PLATE 1 Fig. 4. Fig. 10. PMID:6172117
Musical Scales in Tone Sequences Improve Temporal Accuracy.
Li, Min S; Di Luca, Massimiliano
2018-01-01
Predicting the time of stimulus onset is a key component in perception. Previous investigations of perceived timing have focused on the effect of stimulus properties such as rhythm and temporal irregularity, but the influence of non-temporal properties and their role in predicting stimulus timing has not been exhaustively considered. The present study aims to understand how a non-temporal pattern in a sequence of regularly timed stimuli could improve or bias the detection of temporal deviations. We presented interspersed sequences of 3, 4, 5, and 6 auditory tones where only the timing of the last stimulus could slightly deviate from isochrony. Participants reported whether the last tone was 'earlier' or 'later' relative to the expected regular timing. In two conditions, the tones composing the sequence were either organized into musical scales or they were random tones. In one experiment, all sequences ended with the same tone; in the other experiment, each sequence ended with a different tone. Results indicate higher discriminability of anisochrony with musical scales and with longer sequences, irrespective of the knowledge of the final tone. Such an outcome suggests that the predictability of non-temporal properties, as enabled by the musical scale pattern, can be a factor in determining the sensitivity of time judgments.
Physics Teacher Use of the History of Science
ERIC Educational Resources Information Center
Winrich, Charles
2013-01-01
The School of Education and the Department of Physics at Boston University offer a sequence of 10 two-credit professional development courses through the Improving the Teaching of Physics (ITOP) project. The ITOP courses combine physics content, readings from the physics education research (PER) literature, and the conceptual history of physics…
Babujia, Letícia Carlos; Silva, Adriana Pereira; Nakatani, André Shigueyoshi; Cantão, Mauricio Egidio; Vasconcelos, Ana Tereza Ribeiro; Visentainer, Jesuí Vergilio; Hungria, Mariangela
2016-08-01
The transgenic soybean [Glycine max (L.) Merrill] occupies about 80 % of the global area cropped with this legume, the majority comprising the glyphosate-resistant trait (Roundup Ready(®), GR or RR). However, concerns about possible impacts of transgenic crops on soil microbial communities are often raised. We investigated soil chemical, physical and microbiological properties, and grain yields in long-term field trials involving conventional and nearly isogenic RR transgenic genotypes. The trials were performed at two locations in Brazil, with different edaphoclimatic conditions. Large differences in physical, chemical and classic microbiological parameters (microbial biomass of C and N, basal respiration), as well as in grain production were observed between the sites. Some phyla (Proteobacteria, Actinobacteria, Acidobacteria), classes (Alphaproteobacteria, Actinomycetales, Solibacteres) and orders (Rhizobiales, Burkholderiales, Myxococcales, Pseudomonadales), as well as some functional subsystems (clustering-based subsystems, carbohydrates, amino acids and protein metabolism) were, in general, abundant in all treatments. However, bioindicators related to superior soil fertility and physical properties at Londrina were identified, among them a higher ratio of Proteobacteria:Acidobacteria. Regarding the transgene, the metagenomics showed differences in microbial taxonomic and functional abundances, but lower in magnitude than differences observed between the sites. Besides the site-specific differences, Proteobacteria, Firmicutes and Chlorophyta were higher in the transgenic treatment, as well as sequences related to protein metabolism, cell division and cycle. Although confirming effects of the transgenic trait on soil microbiome, no differences were recorded in grain yields, probably due to the buffering capacity associated with the high taxonomic and functional microbial diversity observed in all treatments.
The failure of earthquake failure models
Gomberg, J.
2001-01-01
In this study I show that simple heuristic models and numerical calculations suggest that an entire class of commonly invoked models of earthquake failure processes cannot explain triggering of seismicity by transient or "dynamic" stress changes, such as stress changes associated with passing seismic waves. The models of this class have the common feature that the physical property characterizing failure increases at an accelerating rate when a fault is loaded (stressed) at a constant rate. Examples include models that invoke rate state friction or subcritical crack growth, in which the properties characterizing failure are slip or crack length, respectively. Failure occurs when the rate at which these grow accelerates to values exceeding some critical threshold. These accelerating failure models do not predict the finite durations of dynamically triggered earthquake sequences (e.g., at aftershock or remote distances). Some of the failure models belonging to this class have been used to explain static stress triggering of aftershocks. This may imply that the physical processes underlying dynamic triggering differs or that currently applied models of static triggering require modification. If the former is the case, we might appeal to physical mechanisms relying on oscillatory deformations such as compaction of saturated fault gouge leading to pore pressure increase, or cyclic fatigue. However, if dynamic and static triggering mechanisms differ, one still needs to ask why static triggering models that neglect these dynamic mechanisms appear to explain many observations. If the static and dynamic triggering mechanisms are the same, perhaps assumptions about accelerating failure and/or that triggering advances the failure times of a population of inevitable earthquakes are incorrect.
Construction of physical maps for the sex-specific regions of papaya sex chromosomes.
Na, Jong-Kuk; Wang, Jianping; Murray, Jan E; Gschwend, Andrea R; Zhang, Wenli; Yu, Qingyi; Navajas-Pérez, Rafael; Feltus, F Alex; Chen, Cuixia; Kubat, Zdenek; Moore, Paul H; Jiang, Jiming; Paterson, Andrew H; Ming, Ray
2012-05-08
Papaya is a major fruit crop in tropical and subtropical regions worldwide. It is trioecious with three sex forms: male, female, and hermaphrodite. Sex determination is controlled by a pair of nascent sex chromosomes with two slightly different Y chromosomes, Y for male and Yh for hermaphrodite. The sex chromosome genotypes are XY (male), XYh (hermaphrodite), and XX (female). The papaya hermaphrodite-specific Yh chromosome region (HSY) is pericentromeric and heterochromatic. Physical mapping of HSY and its X counterpart is essential for sequencing these regions and uncovering the early events of sex chromosome evolution and to identify the sex determination genes for crop improvement. A reiterate chromosome walking strategy was applied to construct the two physical maps with three bacterial artificial chromosome (BAC) libraries. The HSY physical map consists of 68 overlapped BACs on the minimum tiling path, and covers all four HSY-specific Knobs. One gap remained in the region of Knob 1, the only knob structure shared between HSY and X, due to the lack of HSY-specific sequences. This gap was filled on the physical map of the HSY corresponding region in the X chromosome. The X physical map consists of 44 BACs on the minimum tiling path with one gap remaining in the middle, due to the nature of highly repetitive sequences. This gap was filled on the HSY physical map. The borders of the non-recombining HSY were defined genetically by fine mapping using 1460 F2 individuals. The genetically defined HSY spanned approximately 8.5 Mb, whereas its X counterpart extended about 5.4 Mb including a 900 Kb region containing the Knob 1 shared by the HSY and X. The 8.5 Mb HSY corresponds to 4.5 Mb of its X counterpart, showing 4 Mb (89%) DNA sequence expansion. The 89% increase of DNA sequence in HSY indicates rapid expansion of the Yh chromosome after genetic recombination was suppressed 2-3 million years ago. The genetically defined borders coincide with the common BACs on the minimum tiling paths of HSY and X. The minimum tiling paths of HSY and its X counterpart are being used for sequencing these X and Yh-specific regions.
Optical mapping and its potential for large-scale sequencing projects.
Aston, C; Mishra, B; Schwartz, D C
1999-07-01
Physical mapping has been rediscovered as an important component of large-scale sequencing projects. Restriction maps provide landmark sequences at defined intervals, and high-resolution restriction maps can be assembled from ensembles of single molecules by optical means. Such optical maps can be constructed from both large-insert clones and genomic DNA, and are used as a scaffold for accurately aligning sequence contigs generated by shotgun sequencing.
Park, Tae-Ho; Park, Beom-Seok; Kim, Jin-A; Hong, Joon Ki; Jin, Mina; Seol, Young-Joo; Mun, Jeong-Hwan
2011-01-01
As a part of the Multinational Genome Sequencing Project of Brassica rapa, linkage group R9 and R3 were sequenced using a bacterial artificial chromosome (BAC) by BAC strategy. The current physical contigs are expected to cover approximately 90% euchromatins of both chromosomes. As the project progresses, BAC selection for sequence extension becomes more limited because BAC libraries are restriction enzyme-specific. To support the project, a random sheared fosmid library was constructed. The library consists of 97536 clones with average insert size of approximately 40 kb corresponding to seven genome equivalents, assuming a Chinese cabbage genome size of 550 Mb. The library was screened with primers designed at the end of sequences of nine points of scaffold gaps where BAC clones cannot be selected to extend the physical contigs. The selected positive clones were end-sequenced to check the overlap between the fosmid clones and the adjacent BAC clones. Nine fosmid clones were selected and fully sequenced. The sequences revealed two completed gap filling and seven sequence extensions, which can be used for further selection of BAC clones confirming that the fosmid library will facilitate the sequence completion of B. rapa. Copyright © 2011. Published by Elsevier Ltd.
Synthesizing topological structures containing RNA
NASA Astrophysics Data System (ADS)
Liu, Di; Shao, Yaming; Chen, Gang; Tse-Dinh, Yuk-Ching; Piccirilli, Joseph A.; Weizmann, Yossi
2017-03-01
Though knotting and entanglement have been observed in DNA and proteins, their existence in RNA remains an enigma. Synthetic RNA topological structures are significant for understanding the physical and biological properties pertaining to RNA topology, and these properties in turn could facilitate identifying naturally occurring topologically nontrivial RNA molecules. Here we show that topological structures containing single-stranded RNA (ssRNA) free of strong base pairing interactions can be created either by configuring RNA-DNA hybrid four-way junctions or by template-directed synthesis with a single-stranded DNA (ssDNA) topological structure. By using a constructed ssRNA knot as a highly sensitive topological probe, we find that Escherichia coli DNA topoisomerase I has low RNA topoisomerase activity and that the R173A point mutation abolishes the unknotting activity for ssRNA, but not for ssDNA. Furthermore, we discover the topological inhibition of reverse transcription (RT) and obtain different RT-PCR patterns for an ssRNA knot and circle of the same sequence.
Marine magnetic survey and onshore gravity and magnetic survey, San Pablo Bay, northern California
Ponce, David A.; Denton, Kevin M.; Watt, Janet T.
2016-09-12
IntroductionFrom November 2011 to August 2015, the U.S. Geological Survey (USGS) collected more than 1,000 line-kilometers (length of lines surveyed in kilometers) of marine magnetic data on San Pablo Bay, 98 onshore gravity stations, and over 27 line-kilometers of ground magnetic data in northern California. Combined magnetic and gravity investigations were undertaken to study subsurface geologic structures as an aid in understanding the geologic framework and earthquake hazard potential in the San Francisco Bay Area. Furthermore, marine magnetic data illuminate local subsurface geologic features in the shallow crust beneath San Pablo Bay where geologic exposure is absent.Magnetic and gravity methods, which reflect contrasting physical properties of the subsurface, are ideal for studying San Pablo Bay. Exposed rock units surrounding San Pablo Bay consist mainly of Jurassic Coast Range ophiolite, Great Valley sequence, Franciscan Complex rocks, Miocene sedimentary rocks, and unconsolidated alluvium (Graymer and others, 2006). The contrasting magnetic and density properties of these rocks enable us to map their subsurface extent.
Production of human lactoferrin in animal milk.
Goldman, I L; Georgieva, S G; Gurskiy, Ya G; Krasnov, A N; Deykin, A V; Popov, A N; Ermolkevich, T G; Budzevich, A I; Chernousov, A D; Sadchikova, E R
2012-06-01
Genetic constructs containing the human lactoferrin (hLf) gene were created within a joint program of Russian and Belorussian scientists. Using these constructs, transgenic mice were bred (the maximum hLf concentration in their milk was 160 g/L), and transgenic goats were also generated (up to 10 g/L hLf in their milk). Experimental goatherds that produced hLf in their milk were also bred, and the recombinant hLf was found to be identical to the natural protein in its physical and chemical properties. These properties included electrophoretic mobility, isoelectric point, recognition by polyclonal and monoclonal antibodies, circular dichroic spectra, interaction with natural ligands (DNA, lipopolysaccharides, and heparin), the binding of iron ions, the sequence of the 7 terminal amino acids, and its biological activity. The latter was assessed by the agglutination of Micrococcus luteus protoplasts, bactericidal activity against Escherichia coli and Listeria monocytogenes , and fungicidal activity against Candida albicans . We also demonstrated a significant increase in the activity of antibiotics when used in combination with Lf.
Raman Signatures of Polytypism in Molybdenum Disulfide.
Lee, Jae-Ung; Kim, Kangwon; Han, Songhee; Ryu, Gyeong Hee; Lee, Zonghoon; Cheong, Hyeonsik
2016-02-23
Since the stacking order sensitively affects various physical properties of layered materials, accurate determination of the stacking order is important for studying the basic properties of these materials as well as for device applications. Because 2H-molybdenum disulfide (MoS2) is most common in nature, most studies so far have focused on 2H-MoS2. However, we found that the 2H, 3R, and mixed stacking sequences exist in few-layer MoS2 exfoliated from natural molybdenite crystals. The crystal structures are confirmed by HR-TEM measurements. The Raman signatures of different polytypes are investigated by using three different excitation energies that are nonresonant and resonant with A and C excitons, respectively. The low-frequency breathing and shear modes show distinct differences for each polytype, whereas the high-frequency intralayer modes show little difference. For resonant excitations at 1.96 and 2.81 eV, distinct features are observed that enable determination of the stacking order.
Feng, Lingyan; Wu, Li; Xing, Feifei; Hu, Lianzhe; Ren, Jinsong; Qu, Xiaogang
2017-12-15
Electrochemiluminescence (ECL) of metal nanoclusters and their application have been widely reported due to the good biocompatibility, fascinating electrocatalytic activity and so on. Using DNA as synthesis template opens new opportunities to modulate the physical properties of AgNCs. Triplex DNA has been reported for the site-specific, homogeneous and highly stable silver nanoclusters (AgNCs) fabrication from our recent research. Here we further explore their extraordinary ECL properties and applications in biosensor utilization. By reasonable design of DNA sequence, AgNCs were obtained in the predefined position of CG.C + sites of triplex DNA, and the ECL emission at a low potential was observed with this novel DNA template. Finally, a simple and label-free method was developed for biothiols detection based on the enhanced catalytic reaction and a robust interaction between the triplex-AgNCs and cysteine, by influencing the microenvironment provided by DNA template. Copyright © 2017 Elsevier B.V. All rights reserved.
Approaches to the structural modelling of insect wings.
Wootton, R J; Herbert, R C; Young, P G; Evans, K E
2003-01-01
Insect wings lack internal muscles, and the orderly, necessary deformations which they undergo in flight and folding are in part remotely controlled, in part encoded in their structure. This factor is crucial in understanding their complex, extremely varied morphology. Models have proved particularly useful in clarifying the facilitation and control of wing deformation. Their development has followed a logical sequence from conceptual models through physical and simple analytical to numerical models. All have value provided their limitations are realized and constant comparisons made with the properties and mechanical behaviour of real wings. Numerical modelling by the finite element method is by far the most time-consuming approach, but has real potential in analysing the adaptive significance of structural details and interpreting evolutionary trends. Published examples are used to review the strengths and weaknesses of each category of model, and a summary is given of new work using finite element modelling to investigate the vibration properties and response to impact of hawkmoth wings. PMID:14561349
All-fiber optoelectronic sensor with Bragg gratings for in-situ cure monitoring
NASA Astrophysics Data System (ADS)
Cusano, Andrea; Breglio, Giovanni; Cutolo, Antonello; Calabro, Antonio M.; Giordano, Michele; Nicolais, Luigi, II
2000-08-01
Real-time, in situ monitoring for quality control of the polymer cure process is of high interest, since thermoset polymer-matrix composite are widely used in large industrial areas: aeronautical, aerospace, automotive and civil due to their low cost/low weight features. However, their final properties are strongly dependence on the processing parameters, such as temperature and pressure sequence. The key-point for advanced composite materials is the possibility to have distributed and simultaneous monitoring of chemoreological and physical properties during the cure process. To this aim, we have developed and tested an optoelectronic fiber optic sensor based on the Fresnel principle able to monitor the variations of the refractive index due to the cure process of an epoxy based resin. Experimental results have been obtained on sensor capability to monitor the cure kinetics by assuming the refractive index as reaction co-ordinate. The integration with in-fiber Bragg grating in order to measure the local temperature has been discussed and tested.
Advances in thermographic signal reconstruction
NASA Astrophysics Data System (ADS)
Shepard, Steven M.; Frendberg Beemer, Maria
2015-05-01
Since its introduction in 2001, the Thermographic Signal Reconstruction (TSR) method has emerged as one of the most widely used methods for enhancement and analysis of thermographic sequences, with applications extending beyond industrial NDT into biomedical research, art restoration and botany. The basic TSR process, in which a noise reduced replica of each pixel time history is created, yields improvement over unprocessed image data that is sufficient for many applications. However, examination of the resulting logarithmic time derivatives of each TSR pixel replica provides significant insight into the physical mechanisms underlying the active thermography process. The deterministic and invariant properties of the derivatives have enabled the successful implementation of automated defect recognition and measurement systems. Unlike most approaches to analysis of thermography data, TSR does not depend on flawbackground contrast, so that it can also be applied to characterization and measurement of thermal properties of flaw-free samples. We present a summary of recent advances in TSR, a review of the underlying theory and examples of its implementation.
Properties of a U1 RNA enhancer-like sequence.
Ciliberto, G; Palla, F; Tebb, G; Mattaj, I W; Philipson, L
1987-01-01
The properties of a X.laevis U1B snRNA gene enhancer have been studied by microinjection in Xenopus oocytes. The enhancer-like sequence, defined as a short DNA stretch that is able to activate transcription in an orientation independent manner, is interchangeable between different U snRNA genes. The enhancer sequence alone does not, however, efficiently activate transcription from an SV40 pol II promoter but regains its activity when combined with the U-gene specific proximal sequence element. DNase I protection experiments show that the X.laevis U1B enhancer can interact specifically with a nuclear factor present in mammalian cells. Images PMID:3031597
2013-01-01
Background As for other major crops, achieving a complete wheat genome sequence is essential for the application of genomics to breeding new and improved varieties. To overcome the complexities of the large, highly repetitive and hexaploid wheat genome, the International Wheat Genome Sequencing Consortium established a chromosome-based strategy that was validated by the construction of the physical map of chromosome 3B. Here, we present improved strategies for the construction of highly integrated and ordered wheat physical maps, using chromosome 1BL as a template, and illustrate their potential for evolutionary studies and map-based cloning. Results Using a combination of novel high throughput marker assays and an assembly program, we developed a high quality physical map representing 93% of wheat chromosome 1BL, anchored and ordered with 5,489 markers including 1,161 genes. Analysis of the gene space organization and evolution revealed that gene distribution and conservation along the chromosome results from the superimposition of the ancestral grass and recent wheat evolutionary patterns, leading to a peak of synteny in the central part of the chromosome arm and an increased density of non-collinear genes towards the telomere. With a density of about 11 markers per Mb, the 1BL physical map provides 916 markers, including 193 genes, for fine mapping the 40 QTLs mapped on this chromosome. Conclusions Here, we demonstrate that high marker density physical maps can be developed in complex genomes such as wheat to accelerate map-based cloning, gain new insights into genome evolution, and provide a foundation for reference sequencing. PMID:23800011
48 CFR 1852.245-78 - Physical inventory of capital personal property.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Physical inventory of... Provisions and Clauses 1852.245-78 Physical inventory of capital personal property. As prescribed in 1845.107-70(i), insert the following clause. Physical Inventory of Capital Personal Property (JAN 2011) (a) In...
Barrère, Caroline; Rejaibi, Majed; Curat, Aurélien; Hubert-Roux, Marie; Lavanant, Hélène; Afonso, Carlos; Kebir, Nasreddine; Desilles, Nicolas; Lecamp, Laurence; Burel, Fabrice; Loutelier-Bourhis, Corinne
2014-08-15
Polyamides (PA) are among the most used classes of polymers because of their attractive properties. Depending on the nature and proportion of the co-monomers used for their synthesis, they can exhibit a very large range of melting temperatures (Tm ). This study aims at the correlation of data from mass spectrometry (MS) with differential scanning calorimetry (DSC) and X-ray diffraction analyses to relate molecular structure to physical properties such as melting temperature, enthalpy change and crystallinity rate. Six different PA copolymers with molecular weights around 3500 g mol(-1) were synthesized with varying proportions of different co-monomers (amino-acid AB/di-amine AA/di-acid BB). Their melting temperature, enthalpy change and crystallinity rate were measured by DSC and X-ray diffraction. Their structural characterization was carried out by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Because of the poor solubility of PA, a solvent-free sample preparation strategy was used with 2,5-dihydroxybenzoic acid (2,5-DHB) as the matrix and sodium iodide as the cationizing agent. The different proportions of the repeating unit types led to the formation of PA with melting temperatures ranging from 115°C to 185°C. The structural characterization of these samples by MALDI-TOF-MS revealed a collection of different ion distributions with different sequences of repeating units (AA, BB; AB/AA, BB and AB) in different proportions according to the mixture of monomers used in the synthesis. The relative intensities of these ion distributions were related to sample complexity and structure. They were correlated to DSC and X-ray results, to explain the observed physical properties. The structural information obtained by MALDI-TOF-MS provided a better understanding of the variation of the PA melting temperature and established a structure-properties relationship. This work will allow future PA designs to be monitored. Copyright © 2014 John Wiley & Sons, Ltd.
Introduction to physical properties and elasticity models: Chapter 20
Dvorkin, Jack; Helgerud, Michael B.; Waite, William F.; Kirby, Stephen H.; Nur, Amos
2003-01-01
Estimating the in situ methane hydrate volume from seismic surveys requires knowledge of the rock physics relations between wave speeds and elastic moduli in hydrate/sediment mixtures. The elastic moduli of hydrate/sediment mixtures depend on the elastic properties of the individual sedimentary particles and the manner in which they are arranged. In this chapter, we present some rock physics data currently available from literature. The unreferenced values in Table I were not measured directly, but were derived from other values in Tables I and II using standard relationships between elastic properties for homogeneous, isotropic material. These derivations allow us to extend the list of physical property estimates, but at the expense of introducing uncertainties due to combining property values measured under different physical conditions. This is most apparent in the case of structure II (sII) hydrate for which very few physical properties have been measured under identical conditions.
New Tools For Understanding Microbial Diversity Using High-throughput Sequence Data
NASA Astrophysics Data System (ADS)
Knight, R.; Hamady, M.; Liu, Z.; Lozupone, C.
2007-12-01
High-throughput sequencing techniques such as 454 are straining the limits of tools traditionally used to build trees, choose OTUs, and perform other essential sequencing tasks. We have developed a workflow for phylogenetic analysis of large-scale sequence data sets that combines existing tools, such as the Arb phylogeny package and the NAST multiple sequence alignment tool, with new methods for choosing and clustering OTUs and for performing phylogenetic community analysis with UniFrac. This talk discusses the cyberinfrastructure we are developing to support the human microbiome project, and the application of these workflows to analyze very large data sets that contrast the gut microbiota with a range of physical environments. These tools will ultimately help to define core and peripheral microbiomes in a range of environments, and will allow us to understand the physical and biotic factors that contribute most to differences in microbial diversity.
Physical approaches to biomaterial design
Mitragotri, Samir; Lahann, Joerg
2009-01-01
The development of biomaterials for drug delivery, tissue engineering and medical diagnostics has traditionally been based on new chemistries. However, there is growing recognition that the physical as well as the chemical properties of materials can regulate biological responses. Here, we review this transition with regard to selected physical properties including size, shape, mechanical properties, surface texture and compartmentalization. In each case, we present examples demonstrating the significance of these properties in biology. We also discuss synthesis methods and biological applications for designer biomaterials, which offer unique physical properties. PMID:19096389
Active Learning in a Large General Physics Classroom.
NASA Astrophysics Data System (ADS)
Trousil, Rebecca
2008-04-01
In 2004, we launched a new calculus-based, introductory physics sequence at Washington University. Designed as an alternative to our traditional lecture-based sequence, the primary objectives for this new course were to actively engage students in the learning process, to significantly strengthen students' conceptual reasoning skills, to help students develop higher level quantitative problem solving skills necessary for analyzing ``real world'' problems, and to integrate modern physics into the curriculum. This talk will describe our approach, using The Six Ideas That Shaped Physics text by Thomas Moore, to creating an active learning environment in large classes as well as share our perspective on key elements for success and challenges that we face in the large class environment.
Vienneau-Hathaway, Jannelle M; Brassfield, Elizabeth R; Lane, Amanda Kelly; Collin, Matthew A; Correa-Garhwal, Sandra M; Clarke, Thomas H; Schwager, Evelyn E; Garb, Jessica E; Hayashi, Cheryl Y; Ayoub, Nadia A
2017-03-14
Orb-web weaving spiders and their relatives use multiple types of task-specific silks. The majority of spider silk studies have focused on the ultra-tough dragline silk synthesized in major ampullate glands, but other silk types have impressive material properties. For instance, minor ampullate silks of orb-web weaving spiders are as tough as draglines, due to their higher extensibility despite lower strength. Differences in material properties between silk types result from differences in their component proteins, particularly members of the spidroin (spider fibroin) gene family. However, the extent to which variation in material properties within a single silk type can be explained by variation in spidroin sequences is unknown. Here, we compare the minor ampullate spidroins (MiSp) of orb-weavers and cobweb weavers. Orb-web weavers use minor ampullate silk to form the auxiliary spiral of the orb-web while cobweb weavers use it to wrap prey, suggesting that selection pressures on minor ampullate spidroins (MiSp) may differ between the two groups. We report complete or nearly complete MiSp sequences from five cobweb weaving spider species and measure material properties of minor ampullate silks in a subset of these species. We also compare MiSp sequences and silk properties of our cobweb weavers to published data for orb-web weavers. We demonstrate that all our cobweb weavers possess multiple MiSp loci and that one locus is more highly expressed in at least two species. We also find that the proportion of β-spiral-forming amino acid motifs in MiSp positively correlates with minor ampullate silk extensibility across orb-web and cobweb weavers. MiSp sequences vary dramatically within and among spider species, and have likely been subject to multiple rounds of gene duplication and concerted evolution, which have contributed to the diverse material properties of minor ampullate silks. Our sequences also provide templates for recombinant silk proteins with tailored properties.
Algorithm, applications and evaluation for protein comparison by Ramanujan Fourier transform.
Zhao, Jian; Wang, Jiasong; Hua, Wei; Ouyang, Pingkai
2015-12-01
The amino acid sequence of a protein determines its chemical properties, chain conformation and biological functions. Protein sequence comparison is of great importance to identify similarities of protein structures and infer their functions. Many properties of a protein correspond to the low-frequency signals within the sequence. Low frequency modes in protein sequences are linked to the secondary structures, membrane protein types, and sub-cellular localizations of the proteins. In this paper, we present Ramanujan Fourier transform (RFT) with a fast algorithm to analyze the low-frequency signals of protein sequences. The RFT method is applied to similarity analysis of protein sequences with the Resonant Recognition Model (RRM). The results show that the proposed fast RFT method on protein comparison is more efficient than commonly used discrete Fourier transform (DFT). RFT can detect common frequencies as significant feature for specific protein families, and the RFT spectrum heat-map of protein sequences demonstrates the information conservation in the sequence comparison. The proposed method offers a new tool for pattern recognition, feature extraction and structural analysis on protein sequences. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sensitivity analysis of non-cohesive sediment transport formulae
NASA Astrophysics Data System (ADS)
Pinto, Lígia; Fortunato, André B.; Freire, Paula
2006-10-01
Sand transport models are often based on semi-empirical equilibrium transport formulae that relate sediment fluxes to physical properties such as velocity, depth and characteristic sediment grain sizes. In engineering applications, errors in these physical properties affect the accuracy of the sediment fluxes. The present analysis quantifies error propagation from the input physical properties to the sediment fluxes, determines which ones control the final errors, and provides insight into the relative strengths, weaknesses and limitations of four total load formulae (Ackers and White, Engelund and Hansen, van Rijn, and Karim and Kennedy) and one bed load formulation (van Rijn). The various sources of uncertainty are first investigated individually, in order to pinpoint the key physical properties that control the errors. Since the strong non-linearity of most sand transport formulae precludes analytical approaches, a Monte Carlo method is validated and used in the analysis. Results show that the accuracy in total sediment transport evaluations is mainly determined by errors in the current velocity and in the sediment median grain size. For the bed load transport using the van Rijn formula, errors in the current velocity alone control the final accuracy. In a final set of tests, all physical properties are allowed to vary simultaneously in order to analyze the combined effect of errors. The combined effect of errors in all the physical properties is then compared to an estimate of the errors due to the intrinsic limitations of the formulae. Results show that errors in the physical properties can be dominant for typical uncertainties associated with these properties, particularly for small depths. A comparison between the various formulae reveals that the van Rijn formula is more sensitive to basic physical properties. Hence, it should only be used when physical properties are known with precision.
ERIC Educational Resources Information Center
Fiasca, Michael Aldo
Compared, for selected outcomes, were integrated chemistry-physics courses with chemistry and physics courses taught separately. Three classes studying integrated Physical Science Study Committee (PSSC)-Chemical Bond Approach (CBA), and three classes studying integrated Physical Science Study Committee-Chemical Education Materials Study (CHEMS)…
Cattaneo, Luigi; Fasanelli, Monica; Andreatta, Olaf; Bonifati, Domenico Marco; Barchiesi, Guido; Caruana, Fausto
2012-03-01
Empirical evidence indicates that cognitive consequences of cerebellar lesions tend to be mild and less important than the symptoms due to lesions to cerebral areas. By contrast, imaging studies consistently report strong cerebellar activity during tasks of action observation and action understanding. This has been interpreted as part of the automatic motor simulation process that takes place in the context of action observation. The function of the cerebellum as a sequencer during executed movements makes it a good candidate, within the framework of embodied cognition, for a pivotal role in understanding the timing of action sequences. Here, we investigated a cohort of eight patients with chronic, first-ever, isolated, ischemic lesions of the cerebellum. The experimental task consisted in identifying a plausible sequence of pictures from a randomly ordered group of still frames extracted from (a) a complex action performed by a human actor ("biological action" test) or (b) a complex physical event occurring to an inanimate object ("folk physics" test). A group of 16 healthy participants was used as control. The main result showed that cerebellar patients performed significantly worse than controls in both sequencing tasks, but performed much worse in the "biological action" test than in the "folk physics" test. The dissociation described here suggests that observed sequences of simple motor acts seem to be represented differentially from other sequences in the cerebellum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takekoshi, Tatsuya; Minamidani, Tetsuhiro; Sorai, Kazuo
The first 1.1 mm continuum survey toward the Small Magellanic Cloud (SMC) was performed using the AzTEC instrument installed on the ASTE 10 m telescope. This survey covered 4.5 deg{sup 2} of the SMC with 1 σ noise levels of 5–12 mJy beam{sup −1}, and 44 extended objects were identified. The 1.1 mm extended emission has good spatial correlation with Herschel 160 μ m, indicating that the origin of the 1.1 mm extended emission is thermal emission from a cold dust component. We estimated physical properties using the 1.1 mm and filtered Herschel data (100, 160, 250, 350, and 500more » μ m). The 1.1 mm objects show dust temperatures of 17–45 K and gas masses of 4 × 10{sup 3}–3 × 10{sup 5} M {sub ⊙}, assuming single-temperature thermal emission from the cold dust with an emissivity index, β , of 1.2 and a gas-to-dust ratio of 1000. These physical properties are very similar to those of giant molecular clouds (GMCs) in our galaxy and the Large Magellanic Cloud. The 1.1 mm objects also displayed good spatial correlation with the Spitzer 24 μ m and CO emission, suggesting that the 1.1 mm objects trace the dense gas regions as sites of massive star formation. The dust temperature of the 1.1 mm objects also demonstrated good correlation with the 24 μ m flux connected to massive star formation. This supports the hypothesis that the heating source of the cold dust is mainly local star-formation activity in the 1.1 mm objects. The classification of the 1.1 mm objects based on the existence of star-formation activity reveals the differences in the dust temperature, gas mass, and radius, which reflects the evolution sequence of GMCs.« less
NASA Astrophysics Data System (ADS)
Takekoshi, Tatsuya; Minamidani, Tetsuhiro; Komugi, Shinya; Kohno, Kotaro; Tosaki, Tomoka; Sorai, Kazuo; Muller, Erik; Mizuno, Norikazu; Kawamura, Akiko; Onishi, Toshikazu; Fukui, Yasuo; Ezawa, Hajime; Oshima, Tai; Scott, Kimberly S.; Austermann, Jason E.; Matsuo, Hiroshi; Aretxaga, Itziar; Hughes, David H.; Kawabe, Ryohei; Wilson, Grant W.; Yun, Min S.
2017-01-01
The first 1.1 mm continuum survey toward the Small Magellanic Cloud (SMC) was performed using the AzTEC instrument installed on the ASTE 10 m telescope. This survey covered 4.5 deg2 of the SMC with 1σ noise levels of 5-12 mJy beam-1, and 44 extended objects were identified. The 1.1 mm extended emission has good spatial correlation with Herschel 160 μm, indicating that the origin of the 1.1 mm extended emission is thermal emission from a cold dust component. We estimated physical properties using the 1.1 mm and filtered Herschel data (100, 160, 250, 350, and 500 μm). The 1.1 mm objects show dust temperatures of 17-45 K and gas masses of 4 × 103-3 × 105 M⊙, assuming single-temperature thermal emission from the cold dust with an emissivity index, β, of 1.2 and a gas-to-dust ratio of 1000. These physical properties are very similar to those of giant molecular clouds (GMCs) in our galaxy and the Large Magellanic Cloud. The 1.1 mm objects also displayed good spatial correlation with the Spitzer 24 μm and CO emission, suggesting that the 1.1 mm objects trace the dense gas regions as sites of massive star formation. The dust temperature of the 1.1 mm objects also demonstrated good correlation with the 24 μm flux connected to massive star formation. This supports the hypothesis that the heating source of the cold dust is mainly local star-formation activity in the 1.1 mm objects. The classification of the 1.1 mm objects based on the existence of star-formation activity reveals the differences in the dust temperature, gas mass, and radius, which reflects the evolution sequence of GMCs. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Modelling of the Thermo-Physical and Physical Properties for Solidification of Al-Alloys
NASA Astrophysics Data System (ADS)
Saunders, N.; Li, X.; Miodownik, A. P.; Schillé, J.-P.
The thermo-physical and physical properties of the liquid and solid phases are critical components in casting simulations. Such properties include the fraction solid transformed, enthalpy release, thermal conductivity, volume and density, all as a function of temperature. Due to the difficulty in experimentally determining such properties at solidification temperatures, little information exists for multi-component alloys. As part of the development of a new computer program for modelling of materials properties (JMatPro) extensive work has been carried out on the development of sound, physically based models for these properties. Wide ranging results will presented for Al-based alloys, which will include more detailed information concerning the density change of the liquid that intrinsically occurs during solidification due to its change in composition.
Influence of processing sequence on the tribological properties of VGCF-X/PA6/SEBS composites
NASA Astrophysics Data System (ADS)
Osada, Yu; Nishitani, Yosuke; Kitano, Takeshi
2016-03-01
In order to develop the new tribomaterials for mechanical sliding parts with sufficient balance of mechanical and tribological properties, we investigated the influence of processing sequence on the tribological properties of the ternary nanocomposites: the polymer blends of polyamide 6 (PA6) and styrene-ethylene/butylene-styrene copolymer (SEBS) filled with vapor grown carbon fiber (VGCF-X), which is one of carbon nanofiber (CNF) and has 15nm diameter and 3μm length. Five different processing sequences: (1) VGCF-X, PA6 and SEBS were mixed simultaneously (Process A), (2) Re-mixing (Second compounding) of the materials prepared by Process A (Process AR),(3) SEBS was blended with PA6 (PA6/SEBS blends) and then these blends were mixed with VGCF-X (Process B), (4) VGCF-X was mixed with PA6 (VGCF-X/PA6 composites) and then these composites were blended with SEBS (Process C), and (5) VGCF-X were mixed with SEBS (VGCF-X/SEBS composites) and then these composites were blended with PA6 (Process D) were attempted for preparing of the ternary nanocomposites (VGCF-X/PA6/SEBS composites). These ternary polymer nanocomposites were extruded by a twin screw extruder and injection-molded. Their tribological properties were evaluated by using a ring-on-plate type sliding wear tester under dry condition. The tribological properties such as the frictional coefficient and the specific wear rate were influenced by the processing sequence. These results may be attributed to the change of internal structure formation, which is a dispersibility of SEBS particle and VGCF-X in ternary nanocomposites (VGCF-X/PA6/SEBS) by different processing sequences. In particular, the processing sequences of AR, B and D, which are those of re-mixing of VGCF-X, have a good dispersibility of VGCF-X for the improvement of tribological properties.
Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins
NASA Technical Reports Server (NTRS)
Gaucher, Eric A.; Thomson, J. Michael; Burgan, Michelle F.; Benner, Steven A.
2003-01-01
Features of the physical environment surrounding an ancestral organism can be inferred by reconstructing sequences of ancient proteins made by those organisms, resurrecting these proteins in the laboratory, and measuring their properties. Here, we resurrect candidate sequences for elongation factors of the Tu family (EF-Tu) found at ancient nodes in the bacterial evolutionary tree, and measure their activities as a function of temperature. The ancient EF-Tu proteins have temperature optima of 55-65 degrees C. This value seems to be robust with respect to uncertainties in the ancestral reconstruction. This suggests that the ancient bacteria that hosted these particular genes were thermophiles, and neither hyperthermophiles nor mesophiles. This conclusion can be compared and contrasted with inferences drawn from an analysis of the lengths of branches in trees joining proteins from contemporary bacteria, the distribution of thermophily in derived bacterial lineages, the inferred G + C content of ancient ribosomal RNA, and the geological record combined with assumptions concerning molecular clocks. The study illustrates the use of experimental palaeobiochemistry and assumptions about deep phylogenetic relationships between bacteria to explore the character of ancient life.
Properties of the Magnitude Terms of Orthogonal Scaling Functions.
Tay, Peter C; Havlicek, Joseph P; Acton, Scott T; Hossack, John A
2010-09-01
The spectrum of the convolution of two continuous functions can be determined as the continuous Fourier transform of the cross-correlation function. The same can be said about the spectrum of the convolution of two infinite discrete sequences, which can be determined as the discrete time Fourier transform of the cross-correlation function of the two sequences. In current digital signal processing, the spectrum of the contiuous Fourier transform and the discrete time Fourier transform are approximately determined by numerical integration or by densely taking the discrete Fourier transform. It has been shown that all three transforms share many analogous properties. In this paper we will show another useful property of determining the spectrum terms of the convolution of two finite length sequences by determining the discrete Fourier transform of the modified cross-correlation function. In addition, two properties of the magnitude terms of orthogonal wavelet scaling functions are developed. These properties are used as constraints for an exhaustive search to determine an robust lower bound on conjoint localization of orthogonal scaling functions.
RaptorX-Property: a web server for protein structure property prediction.
Wang, Sheng; Li, Wei; Liu, Shiwang; Xu, Jinbo
2016-07-08
RaptorX Property (http://raptorx2.uchicago.edu/StructurePropertyPred/predict/) is a web server predicting structure property of a protein sequence without using any templates. It outperforms other servers, especially for proteins without close homologs in PDB or with very sparse sequence profile (i.e. carries little evolutionary information). This server employs a powerful in-house deep learning model DeepCNF (Deep Convolutional Neural Fields) to predict secondary structure (SS), solvent accessibility (ACC) and disorder regions (DISO). DeepCNF not only models complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent property labels. Our experimental results show that, tested on CASP10, CASP11 and the other benchmarks, this server can obtain ∼84% Q3 accuracy for 3-state SS, ∼72% Q8 accuracy for 8-state SS, ∼66% Q3 accuracy for 3-state solvent accessibility, and ∼0.89 area under the ROC curve (AUC) for disorder prediction. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Scheduling observational and physical practice: influence on the coding of simple motor sequences.
Ellenbuerger, Thomas; Boutin, Arnaud; Blandin, Yannick; Shea, Charles H; Panzer, Stefan
2012-01-01
The main purpose of the present experiment was to determine the coordinate system used in the development of movement codes when observational and physical practice are scheduled across practice sessions. The task was to reproduce a 1,300-ms spatial-temporal pattern of elbow flexions and extensions. An intermanual transfer paradigm with a retention test and two effector (contralateral limb) transfer tests was used. The mirror effector transfer test required the same pattern of homologous muscle activation and sequence of limb joint angles as that performed or observed during practice, and the non-mirror effector transfer test required the same spatial pattern movements as that performed or observed. The test results following the first acquisition session replicated the findings of Gruetzmacher, Panzer, Blandin, and Shea (2011) . The results following the second acquisition session indicated a strong advantage for participants who received physical practice in both practice sessions or received observational practice followed by physical practice. This advantage was found on both the retention and the mirror transfer tests compared to the non-mirror transfer test. These results demonstrate that codes based in motor coordinates can be developed relatively quickly and effectively for a simple spatial-temporal movement sequence when participants are provided with physical practice or observation followed by physical practice, but physical practice followed by observational practice or observational practice alone limits the development of codes based in motor coordinates.
A Mathematics Entrance Exam for General (Non-Majors) Physics
ERIC Educational Resources Information Center
Chediak, Alex
2010-01-01
In a previous issue of "The Physics Teacher", John Hubisz explained how a mathematics background check has been used at three different colleges to determine the appropriate physics sequence for incoming students. Based on their performance, students are placed into either calculus-based physics (CBP), algebra-trig physics (ATP), or a year of…
Conformational organizations of G-quadruplexes composed of d(G(4)T(n))(3)G(4).
Wong, Wan Chi; Zhuang, Jinyi; Ng, Selina Ling Ling; New, Lilian Li Lin; Hiew, Shuhui; Guo, Juanjuan; Yang, Zhaoqi; Li, Tianhu
2010-08-01
Structural polymorphism is one of the important issues with regard to G-quadruplexes because the structural diversity may significantly affect their biological functions in vivo and their physical property in nano-material. A series of oligonucleotides with four repeat guanines sequence [d(G(4)T(n))(3)G(4) (n=1-6)] were designed. In this study, the effects of loop length on the formation of structures of G-quadruplex were investigated through the result of CD (circular dichroism) and 20% non-denatured polyacrylamide gel electrophoresis. Our studies demonstrate that the length of loop in 100mM KCl solution could predict the conformation of G-quadruplex. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Różycka, Anna; Deptuch, Aleksandra; Jaworska-Gołąb, Teresa; Węgłowska, Dorota; Marzec, Monika
2018-02-01
Physical properties of a new ferroelectric liquid crystal have been studied by complementary methods: differential scanning calorimetry, polarizing optical microscopy, dielectric and X-ray diffraction. It was found that next to enantiotropic ferroelectric smectic C* phase, the monotropic smectic phase appears at cooling. X-ray diffraction measurements allowed to identify this phase as hexatic tilted smectic. Temperature dependence of spontaneous polarization, tilt angle of molecules and switching time were found in both liquid crystalline phases at cooling. Based on the dielectric results, the dielectric processes were identified as Goldstone mode in the smectic C* phase, whereas as the bond-orientation-like phason and the bulk domain mode in the monotropic hexatic tilted smectic phase.
Statistical strategy for anisotropic adventitia modelling in IVUS.
Gil, Debora; Hernández, Aura; Rodriguez, Oriol; Mauri, Josepa; Radeva, Petia
2006-06-01
Vessel plaque assessment by analysis of intravascular ultrasound sequences is a useful tool for cardiac disease diagnosis and intervention. Manual detection of luminal (inner) and media-adventitia (external) vessel borders is the main activity of physicians in the process of lumen narrowing (plaque) quantification. Difficult definition of vessel border descriptors, as well as, shades, artifacts, and blurred signal response due to ultrasound physical properties trouble automated adventitia segmentation. In order to efficiently approach such a complex problem, we propose blending advanced anisotropic filtering operators and statistical classification techniques into a vessel border modelling strategy. Our systematic statistical analysis shows that the reported adventitia detection achieves an accuracy in the range of interobserver variability regardless of plaque nature, vessel geometry, and incomplete vessel borders.
Identifying single bases in a DNA oligomer with electron tunnelling.
Huang, Shuo; He, Jin; Chang, Shuai; Zhang, Peiming; Liang, Feng; Li, Shengqin; Tuchband, Michael; Fuhrmann, Alexander; Ros, Robert; Lindsay, Stuart
2010-12-01
It has been proposed that single molecules of DNA could be sequenced by measuring the physical properties of the bases as they pass through a nanopore. Theoretical calculations suggest that electron tunnelling can identify bases in single-stranded DNA without enzymatic processing, and it was recently experimentally shown that tunnelling can sense individual nucleotides and nucleosides. Here, we report that tunnelling electrodes functionalized with recognition reagents can identify a single base flanked by other bases in short DNA oligomers. The residence time of a single base in a recognition junction is on the order of a second, but pulling the DNA through the junction with a force of tens of piconewtons would yield reading speeds of tens of bases per second.
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor); Hansen, Marion G. (Inventor)
1997-01-01
In the process of the present invention, a non-polar, aprotic solvent is removed from an oligomer/polymer solution by freeze-drying in order to produce IPNs and semi-IPNs. By thermally quenching the solution to a solid in a short length of time, the size of the minor constituent-rich regions is greatly reduced as they are excluded along with the major constituent from the regions of crystallizing solvent. The use of this process sequence of controlling phase morphology provides IPNs and semi-IPNs with improved fracture toughness, microcracking resistance, and other physical-mechanical properties as compared to IPNs and semi-IPNs formed when the solvent is evaporated rather than sublimed.
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor); Hansen, Marion G. (Inventor)
1998-01-01
In the process of the present invention, a non-polar, aprotic solvent is removed from an oligomer/polymer solution by freeze-drying in order to produce IPNs and semi-IPNs. By thermally quenching the solution to a solid in a short length of time, the size of the minor constituent-rich regions is greatly reduced as they are excluded along with the major constituent from the regions of crystallizing solvent. The use of this process sequence of controlling phase morphology provides IPNs and semi-IPNs with improved fracture toughness, microcracking resistance, and other physical-mechanical properties as compared to IPNs and semi-IPNs formed when the solvent is evaporated rather than sublimed.
Molybdenum disulfide and water interaction parameters
NASA Astrophysics Data System (ADS)
Heiranian, Mohammad; Wu, Yanbin; Aluru, Narayana R.
2017-09-01
Understanding the interaction between water and molybdenum disulfide (MoS2) is of crucial importance to investigate the physics of various applications involving MoS2 and water interfaces. An accurate force field is required to describe water and MoS2 interactions. In this work, water-MoS2 force field parameters are derived using the high-accuracy random phase approximation (RPA) method and validated by comparing to experiments. The parameters obtained from the RPA method result in water-MoS2 interface properties (solid-liquid work of adhesion) in good comparison to the experimental measurements. An accurate description of MoS2-water interaction will facilitate the study of MoS2 in applications such as DNA sequencing, sea water desalination, and power generation.
Molecular Structure and Sequence in Complex Coacervates
NASA Astrophysics Data System (ADS)
Sing, Charles; Lytle, Tyler; Madinya, Jason; Radhakrishna, Mithun
Oppositely-charged polyelectrolytes in aqueous solution can undergo associative phase separation, in a process known as complex coacervation. This results in a polyelectrolyte-dense phase (coacervate) and polyelectrolyte-dilute phase (supernatant). There remain challenges in understanding this process, despite a long history in polymer physics. We use Monte Carlo simulation to demonstrate that molecular features (charge spacing, size) play a crucial role in governing the equilibrium in coacervates. We show how these molecular features give rise to strong monomer sequence effects, due to a combination of counterion condensation and correlation effects. We distinguish between structural and sequence-based correlations, which can be designed to tune the phase diagram of coacervation. Sequence effects further inform the physical understanding of coacervation, and provide the basis for new coacervation models that take monomer-level features into account.
NASA Astrophysics Data System (ADS)
Babaie, Hassan; Davarpanah, Armita
2016-04-01
We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive, spatial, temporal, statistical, and thermodynamical. The dynamical properties, categorized under the Dynamical_Rate_Property and Dynamical_State_Property classes, subsume different classes of properties (e.g., Fluid_Flow_Rate, Temperature, Chemical_Potential, Displacement, Electrical_Charge) based on the physical domain (e.g., fluid, heat, chemical, solid, electrical). The properties are related to the objects under the Physical_Entity class through diverse object type (e.g., physicalPropertyOf) and data type (e.g., Fluid_Pressure unit 'MPa') properties. The changes of the dynamical properties of the physical entities, described by the empirical laws (equations) modeled by experimental structural geologists, are modeled through the Physical_Property_Dependency class that subsumes the more specialized constitutive, kinetic, and thermodynamic expressions of the relationships among the dynamic properties. Annotation based on the PDO will make it possible to integrate and reuse experimental plastic deformation data, knowledge, and simulation models, and conduct semantic-based search of the source data originating from different rock testing laboratories.
A Fine Physical Map of the Rice Chromosome 4
Zhao, Qiang; Zhang, Yu; Cheng, Zhukuan; Chen, Mingsheng; Wang, Shengyue; Feng, Qi; Huang, Yucheng; Li, Ying; Tang, Yesheng; Zhou, Bo; Chen, Zhehua; Yu, Shuliang; Zhu, Jingjie; Hu, Xin; Mu, Jie; Ying, Kai; Hao, Pei; Zhang, Lei; Lu, Yiqi; Zhang, Lei S.; Liu, Yilei; Yu, Zhen; Fan, Danlin; Weng, Qijun; Chen, Ling; Lu, Tingting; Liu, Xiaohui; Jia, Peixin; Sun, Tongguo; Wu, Yongrui; Zhang, Yujun; Lu, Ying; Li, Can; Wang, Rong; Lei, Haiyan; Li, Tao; Hu, Hao; Wu, Mei; Zhang, Runquan; Guan, Jianping; Zhu, Jia; Fu, Gang; Gu, Minghong; Hong, Guofan; Xue, Yongbiao; Wing, Rod; Jiang, Jiming; Han, Bin
2002-01-01
As part of an international effort to completely sequence the rice genome, we have produced a fine bacterial artificial chromosome (BAC)-based physical map of the Oryza sativa japonica Nipponbare chromosome 4 through an integration of 114 sequenced BAC clones from a taxonomically related subspecies O. sativa indica Guangluai 4 and 182 RFLP and 407 expressed sequence tag (EST) markers with the fingerprinted data of the Nipponbare genome. The map consists of 11 contigs with a total length of 34.5 Mb covering 94% of the estimated chromosome size (36.8 Mb). BAC clones corresponding to telomeres, as well as to the centromere position, were determined by BAC-pachytene chromosome fluorescence in situ hybridization (FISH). This gave rise to an estimated length ratio of 5.13 for the long arm and 2.9 for the short arm (on the basis of the physical map), which indicates that the short arm is a highly condensed one. The FISH analysis and physical mapping also showed that the short arm and the pericentromeric region of the long arm are rich in heterochromatin, which occupied 45% of the chromosome, indicating that this chromosome is likely very difficult to sequence. To our knowledge, this map provides the first example of a rapid and reliable physical mapping on the basis of the integration of the data from two taxonomically related subspecies. [The following individuals and institutions kindly provided reagents, samples, or unpublished information as indicated in the paper: S. McCouch, T. Sasaki, and Monsanto.] PMID:11997348
Identification of sequence motifs significantly associated with antisense activity.
McQuisten, Kyle A; Peek, Andrew S
2007-06-07
Predicting the suppression activity of antisense oligonucleotide sequences is the main goal of the rational design of nucleic acids. To create an effective predictive model, it is important to know what properties of an oligonucleotide sequence associate significantly with antisense activity. Also, for the model to be efficient we must know what properties do not associate significantly and can be omitted from the model. This paper will discuss the results of a randomization procedure to find motifs that associate significantly with either high or low antisense suppression activity, analysis of their properties, as well as the results of support vector machine modelling using these significant motifs as features. We discovered 155 motifs that associate significantly with high antisense suppression activity and 202 motifs that associate significantly with low suppression activity. The motifs range in length from 2 to 5 bases, contain several motifs that have been previously discovered as associating highly with antisense activity, and have thermodynamic properties consistent with previous work associating thermodynamic properties of sequences with their antisense activity. Statistical analysis revealed no correlation between a motif's position within an antisense sequence and that sequences antisense activity. Also, many significant motifs existed as subwords of other significant motifs. Support vector regression experiments indicated that the feature set of significant motifs increased correlation compared to all possible motifs as well as several subsets of the significant motifs. The thermodynamic properties of the significantly associated motifs support existing data correlating the thermodynamic properties of the antisense oligonucleotide with antisense efficiency, reinforcing our hypothesis that antisense suppression is strongly associated with probe/target thermodynamics, as there are no enzymatic mediators to speed the process along like the RNA Induced Silencing Complex (RISC) in RNAi. The independence of motif position and antisense activity also allows us to bypass consideration of this feature in the modelling process, promoting model efficiency and reducing the chance of overfitting when predicting antisense activity. The increase in SVR correlation with significant features compared to nearest-neighbour features indicates that thermodynamics alone is likely not the only factor in determining antisense efficiency.
Leadership in Freshman Physics
ERIC Educational Resources Information Center
Rebello, Carina M.; Hanuscin, Deborah; Sinha, Somnath
2011-01-01
Physics First--a movement to invert the traditional science course sequence to teach physics at the ninth-grade level--is gaining interest. However, there is limited literature exploring how to support teachers in successfully implementing Physics First. To address this, a professional development (PD) program supporting a cadre of teacher-leaders…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chengyuan; De Grijs, Richard; Deng, Licai, E-mail: joshuali@pku.edu.cn, E-mail: grijs@pku.edu.cn
2014-04-01
Using a combination of high-resolution Hubble Space Telescope/Wide-Field and Planetary Camera-2 observations, we explore the physical properties of the stellar populations in two intermediate-age star clusters, NGC 1831 and NGC 1868, in the Large Magellanic Cloud based on their color-magnitude diagrams. We show that both clusters exhibit extended main-sequence turn offs. To explain the observations, we consider variations in helium abundance, binarity, age dispersions, and the fast rotation of the clusters' member stars. The observed narrow main sequence excludes significant variations in helium abundance in both clusters. We first establish the clusters' main-sequence binary fractions using the bulk of themore » clusters' main-sequence stellar populations ≳ 1 mag below their turn-offs. The extent of the turn-off regions in color-magnitude space, corrected for the effects of binarity, implies that age spreads of order 300 Myr may be inferred for both clusters if the stellar distributions in color-magnitude space were entirely due to the presence of multiple populations characterized by an age range. Invoking rapid rotation of the population of cluster members characterized by a single age also allows us to match the observed data in detail. However, when taking into account the extent of the red clump in color-magnitude space, we encounter an apparent conflict for NGC 1831 between the age dispersion derived from that based on the extent of the main-sequence turn off and that implied by the compact red clump. We therefore conclude that, for this cluster, variations in stellar rotation rate are preferred over an age dispersion. For NGC 1868, both models perform equally well.« less
NASA Astrophysics Data System (ADS)
Graw, M. F.; Solomon, E. A.; Chrisler, W.; Krause, S.; Treude, T.; Ruppel, C. D.; Pohlman, J.; Colwell, F. S.
2015-12-01
Methane advecting through continental margin sediments may enter the water column and potentially contribute to ocean acidification and increase atmospheric methane concentrations. Anaerobic oxidation of methane (AOM), mediated by syntrophic consortia of anaerobic methanotrophic archaea and sulfate-reducing bacteria (ANME-SRB), consumes nearly all dissolved methane in methane-bearing sediments before it reaches the sediment-water interface. Despite the significant role ANME-SRB play in carbon cycling, our knowledge of these organisms and their surrounding microbial communities is limited. Our objective is to develop a metabolic model of ANME-SRB within methane-bearing sediments and to couple this to a geochemical reaction-transport model for these margins. As a first step towards this goal, we undertook fluorescent microscopic imaging, 16S rRNA gene deep-sequencing, and shotgun metagenomic sequencing of sediments from the US Pacific (Washington) and northern Atlantic margins where ANME-SRB are present. A successful Illumina MiSeq sequencing run yielded 106,257 bacterial and 857,834 archaeal 16S rRNA gene sequences from 12 communities from the Washington Margin using both universal prokaryotic and archaeal-specific primer sets. Fluorescent microscopy confirmed the presence of cells of the ANME-2c lineage in the sequenced communities. Microbial community characterization was coupled with measurements of sediment physical and geochemical properties and, for samples from the US Atlantic margin, 14C-based measurements of AOM rates and 35S-based measurements of sulfate reduction rates. These findings have the potential to increase understanding of ANME-SRB, their surrounding microbial communities, and their role in carbon cycling within continental margins. In addition, they pave the way for future efforts at developing a metabolic model of ANME-SRB and coupling it to geochemical models of the US Washington and Atlantic margins.
Unraveling the Molecular Requirements for Macroscopic Silk Supercontraction.
Giesa, Tristan; Schuetz, Roman; Fratzl, Peter; Buehler, Markus J; Masic, Admir
2017-10-24
Spider dragline silk is a protein material that has evolved over millions of years to achieve finely tuned mechanical properties. A less known feature of some dragline silk fibers is that they shrink along the main axis by up to 50% when exposed to high humidity, a phenomenon called supercontraction. This contrasts the typical behavior of many other materials that swell when exposed to humidity. Molecular level details and mechanisms of the supercontraction effect are heavily debated. Here we report a molecular dynamics analysis of supercontraction in Nephila clavipes silk combined with in situ mechanical testing and Raman spectroscopy linking the reorganization of the nanostructure to the polar and charged amino acids in the sequence. We further show in our in silico approach that point mutations of these groups not only suppress the supercontraction effect, but even reverse it, while maintaining the exceptional mechanical properties of the silk material. This work has imminent impact on the design of biomimetic equivalents and recombinant silks for which supercontraction may or may not be a desirable feature. The approach applied is appropriate to explore the effect of point mutations on the overall physical properties of protein based materials.
Dryland soil chemical properties and crop yields affected by long-term tillage and cropping sequence
USDA-ARS?s Scientific Manuscript database
Information on the effect of long-term management on soil nutrients and chemical properties is scanty. We examined the 30-yr effect of tillage frequency and cropping sequence combination on dryland soil Olsen-P, K, Ca, Mg, Na, SO4-S, and Zn concentrations, pH, electrical conductivity (EC), and catio...
NASA Astrophysics Data System (ADS)
Peresan, Antonella; Gentili, Stefania
2017-04-01
Identification and statistical characterization of seismic clusters may provide useful insights about the features of seismic energy release and their relation to physical properties of the crust within a given region. Moreover, a number of studies based on spatio-temporal analysis of main-shocks occurrence require preliminary declustering of the earthquake catalogs. Since various methods, relying on different physical/statistical assumptions, may lead to diverse classifications of earthquakes into main events and related events, we aim to investigate the classification differences among different declustering techniques. Accordingly, a formal selection and comparative analysis of earthquake clusters is carried out for the most relevant earthquakes in North-Eastern Italy, as reported in the local OGS-CRS bulletins, compiled at the National Institute of Oceanography and Experimental Geophysics since 1977. The comparison is then extended to selected earthquake sequences associated with a different seismotectonic setting, namely to events that occurred in the region struck by the recent Central Italy destructive earthquakes, making use of INGV data. Various techniques, ranging from classical space-time windows methods to ad hoc manual identification of aftershocks, are applied for detection of earthquake clusters. In particular, a statistical method based on nearest-neighbor distances of events in space-time-energy domain, is considered. Results from clusters identification by the nearest-neighbor method turn out quite robust with respect to the time span of the input catalogue, as well as to minimum magnitude cutoff. The identified clusters for the largest events reported in North-Eastern Italy since 1977 are well consistent with those reported in earlier studies, which were aimed at detailed manual aftershocks identification. The study shows that the data-driven approach, based on the nearest-neighbor distances, can be satisfactorily applied to decompose the seismic catalog into background seismicity and individual sequences of earthquake clusters, also in areas characterized by moderate seismic activity, where the standard declustering techniques may turn out rather gross approximations. With these results acquired, the main statistical features of seismic clusters are explored, including complex interdependence of related events, with the aim to characterize the space-time patterns of earthquakes occurrence in North-Eastern Italy and capture their basic differences with Central Italy sequences.
Verifying Digital Components of Physical Systems: Experimental Evaluation of Test Quality
NASA Astrophysics Data System (ADS)
Laputenko, A. V.; López, J. E.; Yevtushenko, N. V.
2018-03-01
This paper continues the study of high quality test derivation for verifying digital components which are used in various physical systems; those are sensors, data transfer components, etc. We have used logic circuits b01-b010 of the package of ITC'99 benchmarks (Second Release) for experimental evaluation which as stated before, describe digital components of physical systems designed for various applications. Test sequences are derived for detecting the most known faults of the reference logic circuit using three different approaches to test derivation. Three widely used fault types such as stuck-at-faults, bridges, and faults which slightly modify the behavior of one gate are considered as possible faults of the reference behavior. The most interesting test sequences are short test sequences that can provide appropriate guarantees after testing, and thus, we experimentally study various approaches to the derivation of the so-called complete test suites which detect all fault types. In the first series of experiments, we compare two approaches for deriving complete test suites. In the first approach, a shortest test sequence is derived for testing each fault. In the second approach, a test sequence is pseudo-randomly generated by the use of an appropriate software for logic synthesis and verification (ABC system in our study) and thus, can be longer. However, after deleting sequences detecting the same set of faults, a test suite returned by the second approach is shorter. The latter underlines the fact that in many cases it is useless to spend `time and efforts' for deriving a shortest distinguishing sequence; it is better to use the test minimization afterwards. The performed experiments also show that the use of only randomly generated test sequences is not very efficient since such sequences do not detect all the faults of any type. After reaching the fault coverage around 70%, saturation is observed, and the fault coverage cannot be increased anymore. For deriving high quality short test suites, the approach that is the combination of randomly generated sequences together with sequences which are aimed to detect faults not detected by random tests, allows to reach the good fault coverage using shortest test sequences.
Zannis-Hadjopoulos, M; Kaufmann, G; Wang, S S; Lechner, R L; Karawya, E; Hesse, J; Martin, R G
1985-07-01
Twelve clones of monkey DNA obtained by a procedure that enriches 10(3)- to 10(4)-fold for nascent sequences activated early in S phase (G. Kaufmann, M. Zannis-Hadjopoulos, and R. G. Martin, Mol. Cell. Biol. 5:721-727, 1985) have been examined. Only 2 of the 12 ors sequences (origin-enriched sequences) are unique (ors1 and ors8). Three contain the highly reiterated Alu family (ors3, ors9, and ors11). One contains the highly reiterated alpha-satellite family (ors12), but none contain the Kpn family. Those remaining contain middle repetitive sequences. Two examples of the same middle repetitive sequence were found (ors2 and ors6). Three of the middle repetitive sequences (the ors2-ors6 pair, ors5, and ors10) are moderately dispersed; one (ors4) is highly dispersed. The last, ors7, has been mapped to the bona fide replication origin of the D loop of mitochondrial DNA. Of the nine ors sequences tested, half possess snapback (intrachain reannealing) properties.
Tutorials in Introductory Physics: The Pain and the Gain
ERIC Educational Resources Information Center
Cruz, Emerson; O'Shea, Brian; Schaffenberger, Werner; Wolf, Steven; Kortemeyer, Gerd
2010-01-01
In an introductory physics sequence with a large enrollment of premedical students, traditional recitation sessions were replaced by "Tutorials in Introductory Physics," developed by the Physics Education Group at the University of Washington. Initially, summative test scores (as well as FCI scores) dramatically increased, but so did…
41 CFR 109-27.5007 - Physical inventories.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Physical inventories. 109-27.5007 Section 109-27.5007 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.50-Inventory Management Policies, Procedures, and Guidelines § 109-27.5007 Physical...
41 CFR 109-27.5007 - Physical inventories.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Physical inventories. 109-27.5007 Section 109-27.5007 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.50-Inventory Management Policies, Procedures, and Guidelines § 109-27.5007 Physical...
41 CFR 109-27.5007 - Physical inventories.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Physical inventories. 109-27.5007 Section 109-27.5007 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.50-Inventory Management Policies, Procedures, and Guidelines § 109-27.5007 Physical...
41 CFR 109-27.5007 - Physical inventories.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Physical inventories. 109-27.5007 Section 109-27.5007 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.50-Inventory Management Policies, Procedures, and Guidelines § 109-27.5007 Physical...
41 CFR 109-27.5007 - Physical inventories.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Physical inventories. 109-27.5007 Section 109-27.5007 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.50-Inventory Management Policies, Procedures, and Guidelines § 109-27.5007 Physical...
Characterization and nultivariate analysis of physical properties of processing peaches
USDA-ARS?s Scientific Manuscript database
Characterization of physical properties of fruits represents the first vital step to ensure optimal performance of fruit processing operations and is also a prerequisite in the development of new processing equipment. In this study, physical properties of engineering significance to processing of th...
Physical Properties of Gas Hydrates: A Review
Gabitto, Jorge F.; Tsouris, Costas
2010-01-01
Memore » thane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 10 16 m 3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.« less
Raman, Sangeetha; Malms, Lukas; Utzig, Thomas; Shrestha, Buddha Ratna; Stock, Philipp; Krishnan, Shankar; Valtiner, Markus
2017-04-01
Barnacles exhibit superior underwater adhesion simply through sequencing of the 21 proteinogenic amino acids, without post processing or using special amino acids. Here, we measure and discuss the molecular interaction of two distinct and recurring short peptide sequences (Bp1 and Bp2) inspired from the surface binding 19kDa protein from the barnacle attachment interface. Using self-assembled monolayer (SAMs) of known physical and chemical properties on molecularly smooth gold substrates in 5mM NaCl at pH 7.3, (1) the adsorption mechanisms of the barnacle inspired peptides are explored using quartz crystal microbalance, and (2) adhesion mediating properties are measured using the surface force apparatus. The hydrophobic Bp1 peptide with a cysteine residue adsorbs irreversibly onto Au surfaces due to thiol bond formation, while on hydrophobic CH 3 SAM surface, the interactions are hydrophobic in nature. Interestingly, Bp2 that contains both hydrophobic and protonated amine units exhibits asymmetric bridging with an exceptionally high adhesion energy up to 100mJ/m 2 between mica and both gold and CH 3 SAM. Surprisingly on hydrophilic surfaces such as COOH- or OH-SAMs both peptides fail to show any interactions, implying the necessity of surface charge to promote bridging. Our results provide insights into the molecular aspects of manipulating and utilizing barnacle-mediated peptides to promote or inhibit underwater adhesion. Copyright © 2016 Elsevier B.V. All rights reserved.
Nanostructure Control of Biologically Inspired Polymers
NASA Astrophysics Data System (ADS)
Rosales, Adrianne Marie
Biological polymers, such as polypeptides, are responsible for many of life's most sophisticated functions due to precisely evolved hierarchical structures. These protein structures are the result of monodisperse sequences of amino acids that fold into well-defined chain shapes and tertiary structures. Recently, there has been much interest in the design of such sequence-specific polymers for materials applications in fields ranging from biotechnology to separations membranes. Non-natural polymers offer the stability and robustness necessary for materials applications; however, our ability to control monomer sequence in non-natural polymers has traditionally operated on a much simpler level. In addition, the relationship between monomer sequence and self-assembly is not well understood for biological molecules, much less synthetic polymers. Thus, there is a need to explore self-assembly phase space with sequence using a model system. Polypeptoids are non-natural, sequence-specific polymers that offer the opportunity to probe the effect of sequence on self-assembly. A variety of monomer interactions have an impact on polymer properties, such as chirality, hydrophobicity, and electrostatic interactions. Thus, a necessary starting point for this project was to investigate monomer sequence effects on the bulk properties of polypeptoid homopolymers. It was found that several polypeptoids have experimentally accessible melting transitions that are dependent on the choice of side chains, and it was shown that this transition is tuned by the incorporation of "defects" or a comonomer. The polypeptoid chain shape is also controlled with the choice of monomer and monomer sequence. By using at least 50% monomers with bulky, chiral side chains, the polypeptoid backbone is sterically twisted into a helix, and as found for the first time in this work, the persistence length is increased. However, this persistence length, which is a measure of the stiffness of the polymer, is small compared to other folded helices, indicating the conformational flexibility of polypeptoid chains. With a firmer understanding of how monomer sequence and composition influence polypeptoid bulk properties, we designed block copolymer systems for self-assembly. Because the governing parameters of block copolymer self-assembly are well understood, this architecture provides a convenient starting point for probing the effect of changing polymer sequence. We found that polystyrene-polypeptoid block copolymers readily self-assemble into hexagonally-packed and lamellar morphologies with long range order, and furthermore, sequence control of the polypeptoid block enables us to tune the strength of segregation (and therefore the order-disorder transition) of the block copolymer. Polypeptoid chain shape also affects self-assembly. In classical synthetic block copolymers, it has typically been difficult to change chain shape without also changing polymer chemistry and therefore other factors affecting self-assembly. The advantage of the polypeptoid system is that it is modular, as the side chain chemistry (and therefore polymer properties) can easily be changed without changing the backbone chemistry. Thus, we have decoupled conformational effects from chemical composition by comparing the self-assembly of block copolymers containing either a helical peptoid block or its racemic, non-helical analog. The increase in the persistence length of the peptoid block due to helicity translates to an increase in the morphological domain spacing. In this work, we further the understanding of the effect of monomer sequence on bulk polypeptoid properties and self-assembly. Our findings pave the way for the rational design of structured synthetic polymers with tunable, sequence-specific properties.
Genome Sequence of Lactobacillus plantarum Strain UCMA 3037.
Naz, Saima; Tareb, Raouf; Bernardeau, Marion; Vaisse, Melissa; Lucchetti-Miganeh, Celine; Rechenmann, Mathias; Vernoux, Jean-Paul
2013-05-23
Nucleic acid of the strain Lactobacillus plantarum UCMA 3037, isolated from raw milk camembert cheese in our laboratory, was sequenced. We present its draft genome sequence with the aim of studying its functional properties and relationship to the cheese ecosystem.
Monitoring abnormal bio-optical and physical properties in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Arnone, Robert; Jones, Brooke
2017-05-01
The dynamic bio-optical and physical ocean properties within the Gulf of Mexico (GoM) have been identified by the Ocean Weather Laboratory. Ocean properties from VIIRS satellite (Chlorophyll and Bio-Optics and SST) and ocean-circulation models (currents, SST and salinity) were used to identify regions of dynamic changing properties. The degree of environmental change is defined by the dynamic anomaly of bio-optical and physical environmental properties (DAP). A Mississippi River plume event (Aug 2015) that extended to Key West was used to demonstrate the anomaly products. Locations where normal and abnormal ocean properties occur determine ecological and physical hotspots in the GoM, which can be used for adaptive sampling of ocean processes. Methods are described to characterize the weekly abnormal environmental properties using differences with a previous baseline 8 week mean with a 2 week lag. The intensity of anomaly is quantified using levels of standard deviation of the baseline and can be used to recognize ocean events and provide decision support for adaptive sampling. The similarities of the locations of different environmental property anomalies suggest interaction between the bio-optical and physical properties. A coral bleaching event at the Flower Garden Banks Marine Protected Area is represented by the salinity anomaly. Results identify ocean regions for sampling to reduce data gaps and improve monitoring of bio-optical and physical properties.
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.
2001-01-01
Durability and long-term performance are among the primary concerns for the use of advanced polymer matrix composites (PMCs) in modern aerospace structural applications. For a PMC subJected to long-term exposure at elevated temperatures. the viscoelastic nature of the polymer matrix will contribute to macroscopic changes in composite stiffness, strength and fatigue life. Over time. changes in the polymer due to physical aging will have profound effects on tile viscoelastic compliance of the material, hence affecting its long-term durability. Thus, the ability to predict material performance using intrinsic properties, such as crosslink density and molecular weight, would greatly enhance the efficiency of design and development of PMCs. The objective of this paper is to discuss and present the results of an experimental study that considers the effects of crosslink density, molecular weight and temperature on the viscoelastic behavior including physical aging of an advanced polymer. Five distinct variations in crosslink density were used to evaluate the differences in mechanical performance of an advanced polyimide. The physical aging behavior was isolated by conducting sequenced, short-term isothermal creep compliance tests in tension. These tests were performed over a range of sub-glass transition temperatures. The material constants, material master curves and physical aging-related parameters were evaluated as a function of temperature crosslink density and molecular weight using time-temperature and time-aging time superposition techniques.
Failure to produce response variability with reinforcement
Schwartz, Barry
1982-01-01
Two experiments attempted to train pigeons to produce variable response sequences. In the first, naive pigeons were exposed to a procedure requiring four pecks on each of two keys in any order, with a reinforcer delivered only if a given sequence was different from the preceding one. In the second experiment, the same pigeons were exposed to this procedure after having been trained successfully to alternate between two specific response sequences. In neither case did any pigeon produce more than a few different sequences or obtain more than 50% of the possible reinforcers. Stereotyped sequences developed even though stereotypy was not reinforced. It is suggested that reinforcers have both hedonic and informative properties and that the hedonic properties are responsible for sterotyped repetition of reinforced responses, even when stereotypy is negatively related to reinforcer delivery. PMID:16812263
De novo characterization of Lentinula edodes C(91-3) transcriptome by deep Solexa sequencing.
Zhong, Mintao; Liu, Ben; Wang, Xiaoli; Liu, Lei; Lun, Yongzhi; Li, Xingyun; Ning, Anhong; Cao, Jing; Huang, Min
2013-02-01
Lentinula edodes, has been utilized as food, as well as, in popular medicine, moreover, its extract isolated from its mycelium and fruiting body have shown several therapeutic properties. Yet little is understood about its genes involved in these properties, and the absence of L.edodes genomes has been a barrier to the development of functional genomics research. However, high throughput sequencing technologies are now being widely applied to non-model species. To facilitate research on L.edodes, we leveraged Solexa sequencing technology in de novo assembly of L.edodes C(91-3) transcriptome. In a single run, we produced more than 57 million sequencing reads. These reads were assembled into 28,923 unigene sequences (mean size=689bp) including 18,120 unigenes with coding sequence (CDS). Based on similarity search with known proteins, assembled unigene sequences were annotated with gene descriptions, gene ontology (GO) and clusters of orthologous group (COG) terms. Our data provides the first comprehensive sequence resource available for functional genomics studies in L.edodes, and demonstrates the utility of Illumina/Solexa sequencing for de novo transcriptome characterization and gene discovery in a non-model mushroom. Copyright © 2012 Elsevier Inc. All rights reserved.
Designing and Evaluating Research-Based Instructional Sequences for Introducing Magnetic Fields
ERIC Educational Resources Information Center
Guisasola, Jenaro; Almudi, Jose Manuel; Ceberio, Mikel; Zubimendi, Jose Luis
2009-01-01
This study examines the didactic suitability of introducing a teaching sequence when teaching the concept of magnetic fields within introductory physics courses at the university level. This instructional sequence was designed taking into account students' common conceptions, an analysis of the course content, and the history of the development of…
NASA Astrophysics Data System (ADS)
Sakovich, G. V.; Vorozhtsov, S. A.; Vorozhtsov, A. B.; Potekaev, A. I.; Kulkov, S. N.
2016-07-01
The influence of introduction of particles of detonation-synthesized nanodiamonds into composites and aluminum-base light alloys on their physical and mechanical properties is analyzed. The data on microstructure and physical and mechanical properties of composites and cast aluminum alloys reinforced with diamond nanoparticles are presented. The introduction of nanoparticles is shown to result in a significant improvement of the material properties.
ERIC Educational Resources Information Center
Hernández, María Isabel; Couso, Digna; Pintó, Roser
2015-01-01
The study we have carried out aims to characterize 15-to 16-year-old students' learning progressions throughout the implementation of a teaching-learning sequence on the acoustic properties of materials. Our purpose is to better understand students' modeling processes about this topic and to identify how the instructional design and actual…
An FPGA Implementation to Detect Selective Cationic Antibacterial Peptides
Polanco González, Carlos; Nuño Maganda, Marco Aurelio; Arias-Estrada, Miguel; del Rio, Gabriel
2011-01-01
Exhaustive prediction of physicochemical properties of peptide sequences is used in different areas of biological research. One example is the identification of selective cationic antibacterial peptides (SCAPs), which may be used in the treatment of different diseases. Due to the discrete nature of peptide sequences, the physicochemical properties calculation is considered a high-performance computing problem. A competitive solution for this class of problems is to embed algorithms into dedicated hardware. In the present work we present the adaptation, design and implementation of an algorithm for SCAPs prediction into a Field Programmable Gate Array (FPGA) platform. Four physicochemical properties codes useful in the identification of peptide sequences with potential selective antibacterial activity were implemented into an FPGA board. The speed-up gained in a single-copy implementation was up to 108 times compared with a single Intel processor cycle for cycle. The inherent scalability of our design allows for replication of this code into multiple FPGA cards and consequently improvements in speed are possible. Our results show the first embedded SCAPs prediction solution described and constitutes the grounds to efficiently perform the exhaustive analysis of the sequence-physicochemical properties relationship of peptides. PMID:21738652
NASA Astrophysics Data System (ADS)
Sehlke, A.; Kobs Nawotniak, S. E.; Hughes, S. S.; Sears, D. W.; Downs, M. T.; Whittington, A. G.; Lim, D. S. S.; Heldmann, J. L.
2017-10-01
We present the relationship of lava flow morphology and the physical properties of the rocks based on terrestrial field work, and how this can be applied to infer physical properties of lunar lava flows.
Impact of long-term tillage and manure application on soil physical properties
USDA-ARS?s Scientific Manuscript database
Soil physical properties play an integral role in maintaining soil quality for sustainable agricultural practices. Agronomic practices such as tillage systems and organic amendments have been shown to influence soil physical properties. Thus, a study was conducted to evaluate effects of long-term ma...
Selected physical and mechanical properties of moso bamboo (Phyllostachys pubescens)
H.Q. Yu; Z.H. Jiang; C.Y. Hse; T.F. Shupe
2008-01-01
Selected physical and mechanical properties of moso bamboo (Phyllostachys pubescens). Selected physical and mechanical properties of 4?6 year old moso bamboo (Phyllostachys pubescens) grown in Zhejiang, China were investigated at different vertical and horizontal positions. Two way analysis of variance and Tukey?s mean comparison...
Method and apparatus for automated assembly
Jones, Rondall E.; Wilson, Randall H.; Calton, Terri L.
1999-01-01
A process and apparatus generates a sequence of steps for assembly or disassembly of a mechanical system. Each step in the sequence is geometrically feasible, i.e., the part motions required are physically possible. Each step in the sequence is also constraint feasible, i.e., the step satisfies user-definable constraints. Constraints allow process and other such limitations, not usually represented in models of the completed mechanical system, to affect the sequence.
Development and evaluation of clicker methodology for introductory physics courses
NASA Astrophysics Data System (ADS)
Lee, Albert H.
Many educators understand that lectures are cost effective but not learning efficient, so continue to search for ways to increase active student participation in this traditionally passive learning environment. In-class polling systems, or "clickers", are inexpensive and reliable tools allowing students to actively participate in lectures by answering multiple-choice questions. Students assess their learning in real time by observing instant polling summaries displayed in front of them. This in turn motivates additional discussions which increase the opportunity for active learning. We wanted to develop a comprehensive clicker methodology that creates an active lecture environment for a broad spectrum of students taking introductory physics courses. We wanted our methodology to incorporate many findings of contemporary learning science. It is recognized that learning requires active construction; students need to be actively involved in their own learning process. Learning also depends on preexisting knowledge; students construct new knowledge and understandings based on what they already know and believe. Learning is context dependent; students who have learned to apply a concept in one context may not be able to recognize and apply the same concept in a different context, even when both contexts are considered to be isomorphic by experts. On this basis, we developed question sequences, each involving the same concept but having different contexts. Answer choices are designed to address students preexisting knowledge. These sequences are used with the clickers to promote active discussions and multiple assessments. We have created, validated, and evaluated sequences sufficient in number to populate all of introductory physics courses. Our research has found that using clickers with our question sequences significantly improved student conceptual understanding. Our research has also found how to best measure student conceptual gain using research-based instruments. Finally, we discovered that students need to have full access to the question sequences after lectures to reap the maximum benefit. Chapter 1 provides an introduction to our research. Chapter 2 provides a literature review relevant for our research. Chapter 3 discusses the creation of the clicker question sequences. Chapter 4 provides a picture of the validation process involving both physics experts and the introductory physics students. Chapter 5 describes how the sequences have been used with clickers in lectures. Chapter 6 provides the evaluation of the effectiveness of the clicker methodology. Chapter 7 contains a brief summary of research results and conclusions.
Hass-Jacobus, Barbara L; Futrell-Griggs, Montona; Abernathy, Brian; Westerman, Rick; Goicoechea, Jose-Luis; Stein, Joshua; Klein, Patricia; Hurwitz, Bonnie; Zhou, Bin; Rakhshan, Fariborz; Sanyal, Abhijit; Gill, Navdeep; Lin, Jer-Young; Walling, Jason G; Luo, Mei Zhong; Ammiraju, Jetty Siva S; Kudrna, Dave; Kim, Hye Ran; Ware, Doreen; Wing, Rod A; Miguel, Phillip San; Jackson, Scott A
2006-01-01
Background With the completion of the genome sequence for rice (Oryza sativa L.), the focus of rice genomics research has shifted to the comparison of the rice genome with genomes of other species for gene cloning, breeding, and evolutionary studies. The genus Oryza includes 23 species that shared a common ancestor 8–10 million years ago making this an ideal model for investigations into the processes underlying domestication, as many of the Oryza species are still undergoing domestication. This study integrates high-throughput, hybridization-based markers with BAC end sequence and fingerprint data to construct physical maps of rice chromosome 1 orthologues in two wild Oryza species. Similar studies were undertaken in Sorghum bicolor, a species which diverged from cultivated rice 40–50 million years ago. Results Overgo markers, in conjunction with fingerprint and BAC end sequence data, were used to build sequence-ready BAC contigs for two wild Oryza species. The markers drove contig merges to construct physical maps syntenic to rice chromosome 1 in the wild species and provided evidence for at least one rearrangement on chromosome 1 of the O. sativa versus Oryza officinalis comparative map. When rice overgos were aligned to available S. bicolor sequence, 29% of the overgos aligned with three or fewer mismatches; of these, 41% gave positive hybridization signals. Overgo hybridization patterns supported colinearity of loci in regions of sorghum chromosome 3 and rice chromosome 1 and suggested that a possible genomic inversion occurred in this syntenic region in one of the two genomes after the divergence of S. bicolor and O. sativa. Conclusion The results of this study emphasize the importance of identifying conserved sequences in the reference sequence when designing overgo probes in order for those probes to hybridize successfully in distantly related species. As interspecific markers, overgos can be used successfully to construct physical maps in species which diverged less than 8 million years ago, and can be used in a more limited fashion to examine colinearity among species which diverged as much as 40 million years ago. Additionally, overgos are able to provide evidence of genomic rearrangements in comparative physical mapping studies. PMID:16895597
Somyoonsap, Peechapack; Kitpreechavanich, Vichein
2013-01-01
A sequence-specific nicking endonuclease from Streptomyces designated as DC13 was purified to near homogeneity. Starting with 30 grams of wet cells, the enzyme was purified by ammonium sulfate fractionation, DEAE cellulose, and phenyl-Sepharose chromatography. The purified protein had a specific activity 1000 units/mg and migrated on SDS-PAGE gel with an estimated molecular weight of 71 kDa. Determination of subunit composition by gel filtration chromatography indicated that the native enzyme is a monomer. When incubated with different DNA substrates including pBluescript II KS, pUC118, pET-15b, and pET-26b, the enzyme converted these supercoiled plasmids to a mixture of open circular and linear DNA products, with the open circular DNA as the major cleavage product. Analysis of the kinetic of DNA cleavage showed that the enzyme appeared to cleave super-coiled plasmid in two distinct steps: a rapid cleavage of super-coiled plasmid to an open circular DNA followed a much slower step to linear DNA. The DNA cleavage reaction of the enzyme required Mg2+ as a cofactor. Based on the monomeric nature of the enzyme, the kinetics of DNA cleavage exhibited by the enzyme, and cofactor requirement, it is suggested here that the purified enzyme is a sequence-specific nicking endonuclease that is similar to type IIS restriction endonuclease. PMID:25937959
Functional census of mutation sequence spaces: The example of p53 cancer rescue mutants
Danziger, Samuel A.; Swamidass, S. Joshua; Zeng, Jue; Dearth, Lawrence R.; Lu, Qiang; Chen, Jonathan H.; Cheng, Jainlin; Hoang, Vinh P.; Saigo, Hiroto; Luo, Ray; Baldi, Pierre; Brachmann, Rainer K.; Lathrop, Richard H.
2009-01-01
Many biomedical problems relate to mutant functional properties across a sequence space of interest, e.g., flu, cancer, and HIV. Detailed knowledge of mutant properties and function improves medical treatment and prevention. A functional census of p53 cancer rescue mutants would aid the search for cancer treatments from p53 rescue. We devised a general methodology for conducting a functional census of a mutation sequence space, and conducted a double-blind predictive test on the functional rescue property of 71 novel putative p53 cancer rescue mutants iteratively predicted in sets of 3. Double-blind predictive accuracy (15-point moving window) rose from 47% to 86% over the trial (r = 0.74). Code and data are available upon request1. PMID:17048398
Evaluating and redesigning teaching learning sequences at the introductory physics level
NASA Astrophysics Data System (ADS)
Guisasola, Jenaro; Zuza, Kristina; Ametller, Jaume; Gutierrez-Berraondo, José
2017-12-01
In this paper we put forward a proposal for the design and evaluation of teaching and learning sequences in upper secondary school and university. We will connect our proposal with relevant contributions on the design of teaching sequences, ground it on the design-based research methodology, and discuss how teaching and learning sequences designed according to our proposal relate to learning progressions. An iterative methodology for evaluating and redesigning the teaching and learning sequence (TLS) is presented. The proposed assessment strategy focuses on three aspects: (a) evaluation of the activities of the TLS, (b) evaluation of learning achieved by students in relation to the intended objectives, and (c) a document for gathering the difficulties found when implementing the TLS to serve as a guide to teachers. Discussion of this guide with external teachers provides feedback used for the TLS redesign. The context of our implementation and evaluation is an innovative calculus-based physics course for first-year engineering and science degree students at the University of the Basque Country.
Measuring the diversity of the human microbiota with targeted next-generation sequencing.
Finotello, Francesca; Mastrorilli, Eleonora; Di Camillo, Barbara
2016-12-26
The human microbiota is a complex ecological community of commensal, symbiotic and pathogenic microorganisms harboured by the human body. Next-generation sequencing (NGS) technologies, in particular targeted amplicon sequencing of the 16S ribosomal RNA gene (16S-seq), are enabling the identification and quantification of human-resident microorganisms at unprecedented resolution, providing novel insights into the role of the microbiota in health and disease. Once microbial abundances are quantified through NGS data analysis, diversity indices provide valuable mathematical tools to describe the ecological complexity of a single sample or to detect species differences between samples. However, diversity is not a determined physical quantity for which a consensus definition and unit of measure have been established, and several diversity indices are currently available. Furthermore, they were originally developed for macroecology and their robustness to the possible bias introduced by sequencing has not been characterized so far. To assist the reader with the selection and interpretation of diversity measures, we review a panel of broadly used indices, describing their mathematical formulations, purposes and properties, and characterize their behaviour and criticalities in dependence of the data features using simulated data as ground truth. In addition, we make available an R package, DiversitySeq, which implements in a unified framework the full panel of diversity indices and a simulator of 16S-seq data, and thus represents a valuable resource for the analysis of diversity from NGS count data and for the benchmarking of computational methods for 16S-seq. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Predictors of Grades for Black Americans in a Non-Calculus, Preprofessional Physics Sequence.
ERIC Educational Resources Information Center
Vincent, Harold A.; And Others
Variables to predict grades in a noncalculus, preprofessional college physics course at Xavier University of Louisiana, a historically-black institution, were identified using linear regression. The two-semester, noncalculus physics course emphasizes the application of physics in the health professions. The study population consisted of 123…
ERIC Educational Resources Information Center
Sullivan, Sarah; Gnesdilow, Dana; Puntambekar, Sadhana; Kim, Jee-Seon
2017-01-01
Physical and virtual experimentation are thought to have different affordances for supporting students' learning. Research investigating the use of physical and virtual experiments to support students' learning has identified a variety of, sometimes conflicting, outcomes. Unanswered questions remain about how physical and virtual experiments may…
A Study of Physics First Curricula in Pennsylvania
ERIC Educational Resources Information Center
Dreon, Oliver, Jr.
2005-01-01
Physics First has gained momentum across the country. Providing a radically different paradigm to teaching science at the high school level, the Physics First movement inverts the traditional science sequence by teaching physics to ninth grade students. One of the benefits of this change, supporters claim, is that it provides a foundation to teach…
Revisiting Robustness and Evolvability: Evolution in Weighted Genotype Spaces
Partha, Raghavendran; Raman, Karthik
2014-01-01
Robustness and evolvability are highly intertwined properties of biological systems. The relationship between these properties determines how biological systems are able to withstand mutations and show variation in response to them. Computational studies have explored the relationship between these two properties using neutral networks of RNA sequences (genotype) and their secondary structures (phenotype) as a model system. However, these studies have assumed every mutation to a sequence to be equally likely; the differences in the likelihood of the occurrence of various mutations, and the consequence of probabilistic nature of the mutations in such a system have previously been ignored. Associating probabilities to mutations essentially results in the weighting of genotype space. We here perform a comparative analysis of weighted and unweighted neutral networks of RNA sequences, and subsequently explore the relationship between robustness and evolvability. We show that assuming an equal likelihood for all mutations (as in an unweighted network), underestimates robustness and overestimates evolvability of a system. In spite of discarding this assumption, we observe that a negative correlation between sequence (genotype) robustness and sequence evolvability persists, and also that structure (phenotype) robustness promotes structure evolvability, as observed in earlier studies using unweighted networks. We also study the effects of base composition bias on robustness and evolvability. Particularly, we explore the association between robustness and evolvability in a sequence space that is AU-rich – sequences with an AU content of 80% or higher, compared to a normal (unbiased) sequence space. We find that evolvability of both sequences and structures in an AU-rich space is lesser compared to the normal space, and robustness higher. We also observe that AU-rich populations evolving on neutral networks of phenotypes, can access less phenotypic variation compared to normal populations evolving on neutral networks. PMID:25390641
Physics First: Impact of course sequencing on the attitudes of female students toward science
NASA Astrophysics Data System (ADS)
O'Connor, Linda Miller
This study was causal-comparative research to determine if there is any relationship between course sequencing and female students' attitudes toward science and their intent to participate in advanced level science courses or pursue science related careers. Physics First promotes the reversal of the traditional sequencing of high school science courses (biology, chemistry and physics) to physics, chemistry and biology or a two or three year integrated European science approach. Physics as a first year high school course of study necessitates changing the course approach to a more conceptual approach and less mathematical and theoretical. Eleventh grade students from two suburban Chicago high schools comprised the sample. The two schools were judged to be extremely similar in their demographic make-up as reported in the 2002 Illinois School Report Card. The notable difference between the schools being the science course sequence recommended for average and above average students. The sample responded to a scanable questionnaire consisting of demographic data and the Test of Science Related Attitudes (TOSRA). TOSRA is a seventy item Likert Scale instrument that addresses attitudes in seven domains; social implications of science, normality of scientists, attitude toward inquiry, adoption of scientific attitudes, enjoyment of science lessons, leisure interest in science, and career interest in science. Values from 1-50 are obtained for each domain with no overall attitude value assigned. The research found that girls in general had significantly more positive attitudes toward science in all seven of the measured domains and the females from the traditional approach were more positive than the females from the Physics First approach. Girls from the traditional approach also reported intent to take high-level (AP) science courses in their senior year at a significantly higher rate than did the girls in Physics First. Neither science approach showed any significance in the reported intention to pursue a science-related career.
NASA Astrophysics Data System (ADS)
Hou, Zhengyu; Chen, Zhong; Wang, Jingqiang; Zheng, Xufeng; Yan, Wen; Tian, Yuhang; Luo, Yun
2018-04-01
Geoacoustic parameters are essential inputs to sediment wave propagation theories and are vital to underwater acoustic environment and explorations of the sea bottom. In this study, 21 seafloor sediment samples were collected off the coast of southeastern Hainan in the South China Sea. The sound speed was measured using a portable WSD-3 digital sonic instrument and the coaxial differential distance measurement method. Based on the measured sound speed and physical properties, the acoustic impedance and the pore-water-independent index of impedance (IOI) were calculated in this study. Similar to the sound speed, the IOI values are closely related to the sediment physical properties and change gradually from the northwest to the southeast. The relations between IOI and physical properties were studied and compared to the relations between the sound speed and physical properties. IOI is better correlated to physical properties than sound speed. This study also uses an error norm method to analyze the sensitivity of IOI to the physical parameters in the double-parameter equations and finds that the most influential physical parameters are as follows: wet bulk density > porosity > clay content > mean particle size.
Habitable zones around main sequence stars
NASA Technical Reports Server (NTRS)
Kasting, James F.; Whitmire, Daniel P.; Reynolds, Ray T.
1993-01-01
A mechanism for stabilizing climate on the earth and other earthlike planets is described, and the physical processes that define the inner and outer boundaries of the habitable zone (HZ) around the sun and main sequence stars are discussed. Physical constraints on the HZ obtained from Venus and Mars are taken into account. A 1D climate model is used to estimate the width of the HZ and the continuously habitable zone around the sun, and the analysis is extended to other main sequence stars. Whether other stars have planets and where such planets might be located with respect to the HZ is addressed. The implications of the findings for NASA's SETI project are considered.
Foltz, T M; Welsh, B M
1999-01-01
This paper uses the fact that the discrete Fourier transform diagonalizes a circulant matrix to provide an alternate derivation of the symmetric convolution-multiplication property for discrete trigonometric transforms. Derived in this manner, the symmetric convolution-multiplication property extends easily to multiple dimensions using the notion of block circulant matrices and generalizes to multidimensional asymmetric sequences. The symmetric convolution of multidimensional asymmetric sequences can then be accomplished by taking the product of the trigonometric transforms of the sequences and then applying an inverse trigonometric transform to the result. An example is given of how this theory can be used for applying a two-dimensional (2-D) finite impulse response (FIR) filter with nonlinear phase which models atmospheric turbulence.
NASA Astrophysics Data System (ADS)
Sofiah, A. G. N.; Kananathan, J.; Samykano, M.; Ulakanathan, S.; Lah, N. A. C.; Harun, W. S. W.; Sudhakar, K.; Kadirgama, K.; Ngui, W. K.; Siregar, J. P.
2017-10-01
This paper investigates the influence of the electrolytic bath temperature on the morphology and physical properties of nickel (Ni) nanowires electrochemically deposited into the anodic alumina oxide porous membrane (AAO). The synthesis was performed using nickel sulfate hexahydrate (NiSO4.6H2O) and boric acid (H3BO3) as an electrolytic bath for the electrochemical deposition of Ni nanowires. During the experiment, the electrolyte bath temperature varied from 40°C, 80°C, and 120°C. After the electrochemical deposition process, AAO templates cleaned with distilled water preceding to dissolution in sodium hydroxide (NaOH) solution to obtain free-standing Ni nanowires. Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive Spectroscopy (EDX) and X-ray Diffraction (XRD) analysis were employed to characterize the morphology and physical properties of the synthesized Ni nanowires. Finding reveals the electrodeposition bath temperature significantly influences the morphology and physical properties of the synthesized Ni nanowires. Rougher surface texture, larger crystal size, and longer Ni nanowires obtained as the deposition bath temperature increased. From the physical properties properties analysis, it can be concluded that deposition bath temperature influence the physical properties of Ni nanowires.
Chemical characterization of the early evolutionary phases of high-mass star-forming regions
NASA Astrophysics Data System (ADS)
Gerner, Thomas
2014-10-01
The formation of high-mass stars is a very complex process and up to date no comprehensive theory about it exists. This thesis studies the early stages of high-mass star-forming regions and employs astrochemistry as a tool to probe their different physical conditions. We split the evolutionary sequence into four observationally motivated stages that are based on a classification proposed in the literature. The sequence is characterized by an increase of the temperatures and densities that strongly influences the chemistry in the different stages. We observed a sample of 59 high-mass star-forming regions that cover the whole sequence and statistically characterized the chemical compositions of the different stages. We determined average column densities of 18 different molecular species and found generally increasing abundances with stage. We fitted them for each stage with a 1D model, such that the result of the best fit to the previous stage was used as new input for the following. This is a unique approach and allowed us to infer physical properties like the temperature and density structure and yielded a typical chemical lifetime for the high-mass star-formation process of 1e5 years. The 18 analyzed molecular species also included four deuterated molecules whose chemistry is particularly sensitive to thermal history and thus is a promising tool to infer chemical ages. We found decreasing trends of the D/H ratios with evolutionary stage for 3 of the 4 molecular species and that the D/H ratio depends more on the fraction of warm and cold gas than on the total amount of gas. That indicates different chemical pathways for the different molecules and confirms the potential use of deuterated species as chemical age indicators. In addition, we mapped a low-mass star forming region in order to study the cosmic ray ionization rate, which is an important parameter in chemical models. While in chemical models it is commonly fixed, we found that it ! strongly varies with environment.
Iterated function systems for DNA replication
NASA Astrophysics Data System (ADS)
Gaspard, Pierre
2017-10-01
The kinetic equations of DNA replication are shown to be exactly solved in terms of iterated function systems, running along the template sequence and giving the statistical properties of the copy sequences, as well as the kinetic and thermodynamic properties of the replication process. With this method, different effects due to sequence heterogeneity can be studied, in particular, a transition between linear and sublinear growths in time of the copies, and a transition between continuous and fractal distributions of the local velocities of the DNA polymerase along the template. The method is applied to the human mitochondrial DNA polymerase γ without and with exonuclease proofreading.
Evolutionary optimization of biopolymers and sequence structure maps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reidys, C.M.; Kopp, S.; Schuster, P.
1996-06-01
Searching for biopolymers having a predefined function is a core problem of biotechnology, biochemistry and pharmacy. On the level of RNA sequences and their corresponding secondary structures we show that this problem can be analyzed mathematically. The strategy will be to study the properties of the RNA sequence to secondary structure mapping that is essential for the understanding of the search process. We show that to each secondary structure s there exists a neutral network consisting of all sequences folding into s. This network can be modeled as a random graph and has the following generic properties: it is densemore » and has a giant component within the graph of compatible sequences. The neutral network percolates sequence space and any two neutral nets come close in terms of Hamming distance. We investigate the distribution of the orders of neutral nets and show that above a certain threshold the topology of neutral nets allows to find practically all frequent secondary structures.« less
Mental Rolodexing: Senior Chemistry Majors' Understanding of Chemical and Physical Properties
ERIC Educational Resources Information Center
DeFever, Ryan S.; Bruce, Heather; Bhattacharyya, Gautam
2015-01-01
Using a constructivist framework, eight senior chemistry majors were interviewed twice to determine: (i) structural inferences they are able to make from chemical and physical properties; and (ii) their ability to apply their inferences and understandings of these chemical and physical properties to solve tasks on the reactivity of organic…
Predicting protein contact map using evolutionary and physical constraints by integer programming.
Wang, Zhiyong; Xu, Jinbo
2013-07-01
Protein contact map describes the pairwise spatial and functional relationship of residues in a protein and contains key information for protein 3D structure prediction. Although studied extensively, it remains challenging to predict contact map using only sequence information. Most existing methods predict the contact map matrix element-by-element, ignoring correlation among contacts and physical feasibility of the whole-contact map. A couple of recent methods predict contact map by using mutual information, taking into consideration contact correlation and enforcing a sparsity restraint, but these methods demand for a very large number of sequence homologs for the protein under consideration and the resultant contact map may be still physically infeasible. This article presents a novel method PhyCMAP for contact map prediction, integrating both evolutionary and physical restraints by machine learning and integer linear programming. The evolutionary restraints are much more informative than mutual information, and the physical restraints specify more concrete relationship among contacts than the sparsity restraint. As such, our method greatly reduces the solution space of the contact map matrix and, thus, significantly improves prediction accuracy. Experimental results confirm that PhyCMAP outperforms currently popular methods no matter how many sequence homologs are available for the protein under consideration. http://raptorx.uchicago.edu.
Protein matrices for wound dressings =
NASA Astrophysics Data System (ADS)
Vasconcelos, Andreia Joana Costa
Fibrous proteins such as silk fibroin (SF), keratin (K) and elastin (EL) are able to mimic the extracellular matrix (ECM) that allows their recognition under physiological conditions. The impressive mechanical properties, the environmental stability, in combination with their biocompatibility and control of morphology, provide an important basis to use these proteins in biomedical applications like protein-based wound dressings. Along time the concept of wound dressings has changed from the traditional dressings such as honey or natural fibres, used just to protect the wound from external factors, to the interactive dressings of the present. Wounds can be classified in acute that heal in the expected time frame, and chronic, which fail to heal because the orderly sequence of events is disrupted at one or more stages of the healing process. Moreover, chronic wound exudates contain high levels of tissue destructive proteolytic enzymes such as human neutrophil elastase (HNE) that need to be controlled for a proper healing. The aim of this work is to exploit the self-assemble properties of silk fibroin, keratin and elastin for the development of new protein materials to be used as wound dressings: i) evaluation of the blending effect on the physical and chemical properties of the materials; ii) development of materials with different morphologies; iii) assessment of the cytocompatibility of the protein matrices; iv) ultimately, study the ability of the developed protein matrices as wound dressings through the use of human chronic wound exudate; v) use of innovative short peptide sequences that allow to target the control of high levels of HNE found on chronic wounds. Chapter III reports the preparation of silk fibroin/keratin (SF/K) blend films by solvent casting evaporation. Two solvent systems, aqueous and acidic, were used for the preparation of films from fibroin and keratin extracted from the respective silk and wool fibres. The effect of solvent system used was studied by evaluating the physical-chemical properties of the resulting films. It was shown that SF and K are able to establish intermolecular interactions when mixed and, that the mechanical properties and the biological degradation can be tuned by the blend composition. In Chapter IV, SF/K films were further used to serve as a platform for the release of HNE inhibitors peptides. Bowman-Birk inhibitor (BBI) based peptide was incorporated onto the SF/K films that were consequently incubated with porcine pancreatic elastase (PPE) as a model for HNE, to monitor the decrease in activity. The results indicated that swelling properties, degradation and release rates are dependent on the amount of keratin present in the blend. Furthermore, no cytotoxicity was observed in the presence of mouse fibroblasts, which makes these SF/K films suitable candidates for interactive wound dressings with a specific goal - controlling high levels of HNE. The next step of the work, Chapter V, reports for the first time blends of silk fibroin with elastin (SF/EL) for the production of scaffolds. These were prepared by lyophilization technique and crosslinked with a natural and low toxic agent, genipin. The crosslink allows the control of the scaffolds morphology, such as pore size and porosity, which in turns, modulates the ex vivo degradation rates, by a human chronic wound exudate, and the release rates of model compounds. In addition, no cytotoxicity was observed for SF/EL samples, with and without genipin, by human skin fibroblasts. Thus, the high porosity observed for SF/EL scaffolds, allowing the growth and cellular attachment, together with their biocompatibility provide fitting characteristics for wound dressings. Chapter VI, describes the design of two elastase inhibitors peptides based on the reactive site-loop of the BBI protein in order to control the high levels HNE. To a known peptide sequence, modifications were made at both N- and C-terminal. Inhibition kinetics analysis indicated that these peptides are competitive inhibitors for HNE and PPE and, that the inhibitory potency can be regulated by the introduced modifications. Additionally, these peptides showed no toxicity with human skin fibroblasts and, were also effective in reducing the HNE activity found in a human chronic wound exudate, which allow them to be applied to those wounds. The motivation for this thesis was to combine the excellent properties of silk fibroin with other proteins. Blending allows modulating the physical-chemical properties of the resulting materials such as mechanical strength, swelling, morphology, degradation and release rates. Silk fibroin is widely characterized in the literature for the production of biomaterials, but this work is the first that successfully evaluates the blends silk fibroin/keratin (SF/K) and silk fibroin/elastin (SF/EL) for their application as wound dressings.
Characterization of the mechanical and physical properties of TD-NiCr (Ni-20Cr-2ThO2) alloy sheet
NASA Technical Reports Server (NTRS)
Fritz, L. J.; Koster, W. P.; Taylor, R. E.
1973-01-01
Sheets of TD-NiCr processed using techniques developed to produce uniform material were tested to supply mechanical and physical property data. Two heats each of 0.025 and 0.051 cm thick sheet were tested. Mechanical properties evaluated included tensile, modulus of elasticity, Poisson's Ratio, compression, creep-rupture, creep strength, bearing strength, shear strength, sharp notch and fatigue strength. Test temperatures covered the range from ambient to 1589K. Physical properties were also studied as a function of temperature. The physical properties measured were thermal conductivity, linear thermal expansion, specific heat, total hemispherical emittance, thermal diffusivity, and electrical conductivity.
Certain topological properties and duals of the domain of a triangle matrix in a sequence space
NASA Astrophysics Data System (ADS)
Altay, Bilâl; Basar, Feyzi
2007-12-01
The matrix domain of the particular limitation methods Cesàro, Riesz, difference, summation and Euler were studied by several authors. In the present paper, certain topological properties and [beta]- and [gamma]-duals of the domain of a triangle matrix in a sequence space have been examined as an application of the characterization of the related matrix classes.
A quantitative study of a physics-first pilot program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasero, Spencer Lee; /Northern Illinois U.
Hundreds of high schools around the United States have inverted the traditional core sequence of high school science courses, putting physics first, followed by chemistry, and then biology. A quarter-century of theory, opinion, and anecdote are available, but the literature lacks empirical evidence of the effects of the program. The current study was designed to investigate the effects of the program on science achievement gain, growth in attitude toward science, and growth in understanding of the nature of scientific knowledge. One hundred eighty-five honor students participated in this quasi-experiment, self-selecting into either the traditional or inverted sequence. Students took themore » Explore test as freshmen, and the Plan test as sophomores. Gain scores were calculated for the composite scores and for the science and mathematics subscale scores. A two-factor analysis of variance (ANOVA) on course sequence and cohort showed significantly greater composite score gains by students taking the inverted sequence. Participants were administered surveys measuring attitude toward science and understanding of the nature of scientific knowledge twice per year. A multilevel growth model, compared across program groups, did not show any significant effect of the inverted sequence on either attitude or understanding of the nature of scientific knowledge. The sole significant parameter showed a decline in student attitude independent of course sequence toward science over the first two years of high school. The results of this study support the theory that moving physics to the front of the science sequence can improve achievement. The importance of the composite gain score on tests vertically aligned with the high-stakes ACT is discussed, and several ideas for extensions of the current study are offered.« less
Resolving Structural Variability in Network Models and the Brain
Klimm, Florian; Bassett, Danielle S.; Carlson, Jean M.; Mucha, Peter J.
2014-01-01
Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known in general about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar graph metrics, but presented here in a more complete statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus specifically on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling—in addition to several summary statistics, including the mean clustering coefficient, the shortest path-length, and the network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be physically embedded in anatomical brain regions tend to produce distributions that are most similar to the corresponding measurements for the brain. We also find that network models hardcoded to display one network property (e.g., assortativity) do not in general simultaneously display a second (e.g., hierarchy). This relative independence of network properties suggests that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful starting point for the statistical inference of brain network structure from neuroimaging data. PMID:24675546
Zhu, Jian; Wang, Ping; Lin, Yan; Lei, Ming-jing; Chen, Yang
2016-02-15
In order to understand the difference of in situ immobilization effect and mechanism of Cd contamination in soil using diatomite produced from different areas, the test was conducted using diatomite produced from Yunnan Tengchong, Jilin Linjiang, Zhejiang Shengzhou and Henan Xinyang of China as modifiers to immobilize cadmium contamination in simulated soil. The results indicated that the diatomite from all the four producing areas could effectively immobilize available Cd in soil, decreasing the available Cd content in soil by 27.7%, 28.5%, 30.1% and 57.2%, respectively when the adding concentration was 30 g x kg(-1). Their ability for immobilizing available Cd in soil followed the sequence of Henan Xinyang > Zhejiang Shengzhou > Jilin Linjiang > Yunnan Tengchong. It was also found that the physical and chemical properties of diatomite played a main role in soil cadmium immobilization, lower bulk density, larger specific surface area, more micro pores and wider distribution range of aperture were more favorable for available Cd immobilization. The results also showed that, the diatomite could control Cd contamination by changing soil physical and chemical properties, among these properties, pH and organic matter content were the key factors, increasing soil pH value and organic matter content was favorable for available cadmium immobilization, while the soil water content had little effect on available cadmium immobilization. The control of soil cadmium contamination by using diatomite to change cation exchange capacity was limited by time in some degree. The diatomite produced from Henan Xinyang, Zhejiang Shengzhou and Yunnan Tengchong increased the soil pH value and organic matter content, and was favorable for available Cd immobilization, while the diatomite from Jilin Linjiang showed converse effect.
Laser-Assisted Cold-Sprayed Corrosion- and Wear-Resistant Coatings: A Review
NASA Astrophysics Data System (ADS)
Olakanmi, E. O.; Doyoyo, M.
2014-06-01
Laser-assisted cold spray (LACS) process will be increasingly employed for depositing coatings because of its unique advantages: solid-state deposition of dense, homogeneous, and pore-free coatings onto a range of substrates; and high build rate at reduced operating costs without the use of expensive heating and process inert gases. Depositing coatings with excellent performance indicators via LACS demands an accurate knowledge and control of processing and materials' variables. By varying the LACS process parameters and their interactions, the functional properties of coatings can be manipulated. Moreover, thermal effect due to laser irradiation and microstructural evolution complicate the interpretation of LACS mechanical deformation mechanism which is essential for elucidating its physical phenomena. In order to provide a basis for follow-on-research that leads to the development of high-productivity LACS processing of coatings, this review focuses on the latest developments in depositing corrosion- and wear-resistant coatings with the emphasis on the composition, structure, and mechanical and functional properties. Historical developments and fundamentals of LACS are addressed in an attempt to describe the physics behind the process. Typical technological applications of LACS coatings are also identified. The investigations of all process sequences, from laser irradiation of the powder-laden gas stream and the substrate, to the impingement of thermally softened particles on the deposition site, and subsequent further processes, are described. Existing gaps in the literature relating to LACS-dependent microstructural evolution, mechanical deformation mechanisms, correlation between functional properties and process parameters, processing challenges, and industrial applications have been identified in order to provide insights for further investigations and innovation in LACS deposition of wear- and corrosion-resistant coatings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cang, Zixuan; Mu, Lin; Wu, Kedi
Here, protein function and dynamics are closely related to its sequence and structure. However, prediction of protein function and dynamics from its sequence and structure is still a fundamental challenge in molecular biology. Protein classification, which is typically done through measuring the similarity between proteins based on protein sequence or physical information, serves as a crucial step toward the understanding of protein function and dynamics.
Improving performance of DS-CDMA systems using chaotic complex Bernoulli spreading codes
NASA Astrophysics Data System (ADS)
Farzan Sabahi, Mohammad; Dehghanfard, Ali
2014-12-01
The most important goal of spreading spectrum communication system is to protect communication signals against interference and exploitation of information by unintended listeners. In fact, low probability of detection and low probability of intercept are two important parameters to increase the performance of the system. In Direct Sequence Code Division Multiple Access (DS-CDMA) systems, these properties are achieved by multiplying the data information in spreading sequences. Chaotic sequences, with their particular properties, have numerous applications in constructing spreading codes. Using one-dimensional Bernoulli chaotic sequence as spreading code is proposed in literature previously. The main feature of this sequence is its negative auto-correlation at lag of 1, which with proper design, leads to increase in efficiency of the communication system based on these codes. On the other hand, employing the complex chaotic sequences as spreading sequence also has been discussed in several papers. In this paper, use of two-dimensional Bernoulli chaotic sequences is proposed as spreading codes. The performance of a multi-user synchronous and asynchronous DS-CDMA system will be evaluated by applying these sequences under Additive White Gaussian Noise (AWGN) and fading channel. Simulation results indicate improvement of the performance in comparison with conventional spreading codes like Gold codes as well as similar complex chaotic spreading sequences. Similar to one-dimensional Bernoulli chaotic sequences, the proposed sequences also have negative auto-correlation. Besides, construction of complex sequences with lower average cross-correlation is possible with the proposed method.
Correlations between physical properties of jawbone and dental implant initial stability.
Seong, Wook-Jin; Kim, Uk-Kyu; Swift, James Q; Hodges, James S; Ko, Ching-Chang
2009-05-01
There is confusion in the literature about how physical properties of bone vary between maxillary and mandibular regions and which physical properties affect initial implant stability. The purpose of this study was to determine correlations between physical properties of bone and initial implant stability, and to determine how physical properties and initial stability vary among regions of jawbone. Four pairs of edentulous maxillae and mandibles were retrieved from fresh human cadavers. Six implants per pair were placed in different anatomical regions (maxillary anterior, right and left maxillary posterior, mandibular anterior, right and left mandibular posterior). Immediately after surgery, initial implant stability was measured with a resonance frequency device and a tapping device. Implant surgeries and initial stability measurements were performed within 72 hours of death. Elastic modulus (EM) and hardness were measured using nano-indentation. Composite apparent density (cAD) was measured using Archimedes' principle. Bone-implant contact percentage and cortical bone thickness were recorded histomorphometrically. Mixed linear models and univariate-correlation analyses were used (alpha=.05). Generally, mandibular bone had higher initial implant stability and physical properties than maxillary bone. Initial implant stability was higher in the anterior region than in the posterior. EM was higher in the posterior region than in the anterior; the reverse was true for cAD. Of the properties evaluated, cAD had the highest correlation with initial implant stability (r=0.82). Both physical properties of bone and initial implant stability differed between regions of jawbone.
Watt, Jennifer C.; Grove, George A.; Wollam, Mariegold E.; Uyar, Fatma; Mataro, Maria; Cohen, Neal J.; Howard, Darlene V.; Howard, James H.; Erickson, Kirk I.
2016-01-01
Accumulating evidence suggests that physical activity improves explicit memory and executive cognitive functioning at the extreme ends of the lifespan (i.e., in older adults and children). However, it is unknown whether these associations hold for younger adults who are considered to be in their cognitive prime, or for implicit cognitive functions that do not depend on motor sequencing. Here we report the results of a study in which we examine the relationship between objectively measured physical activity and (1) explicit relational memory, (2) executive control, and (3) implicit probabilistic sequence learning in a sample of healthy, college-aged adults. The main finding was that physical activity was positively associated with explicit relational memory and executive control (replicating previous research), but negatively associated with implicit learning, particularly in females. These results raise the intriguing possibility that physical activity upregulates some cognitive processes, but downregulates others. Possible implications of this pattern of results for physical health and health habits are discussed. PMID:27584059
NASA Astrophysics Data System (ADS)
Proykova, Ana
2009-04-01
Essential contributions have been made in the field of finite-size systems of ingredients interacting with potentials of various ranges. Theoretical simulations have revealed peculiar size effects on stability, ground state structure, phases, and phase transformation of systems confined in space and time. Models developed in the field of pure physics (atomic and molecular clusters) have been extended and successfully transferred to finite-size systems that seem very different—small-scale financial markets, autoimmune reactions, and social group reactions to advertisements. The models show that small-scale markets diverge unexpectedly fast as a result of small fluctuations; autoimmune reactions are sequences of two discontinuous phase transitions; and social groups possess critical behavior (social percolation) under the influence of an external field (advertisement). Some predicted size-dependent properties have been experimentally observed. These findings lead to the hypothesis that restrictions on an object's size determine the object's total internal (configuration) and external (environmental) interactions. Since phases are emergent phenomena produced by self-organization of a large number of particles, the occurrence of a phase in a system containing a small number of ingredients is remarkable.
Photometric study of HD 155555C in the β Pictoris Association
NASA Astrophysics Data System (ADS)
Messina, Sergio; Millward, Mervyn; Bradstreet, David H.
2015-05-01
We are carrying out a series of photometric monitoring to measure the rotation periods of members in the young β Pictoris Association, as part of the RACE-OC project (Rotation and ACtivity Evolution in Open Clusters). In this paper, we present the results for HD 155555C which is believed to be physically associated to the spectroscopic binary V824 Ara (HD 155555) and thus constituting a triple system. We collected B, V, and R-band photometric data timeseries and discovered from periodogram analysis the rotation period P = 4.43 d. Combined with stellar radius and projected rotational velocity, we find this star almost equator-on with an inclination i ≃ 90 ° . The rotational properties of HD 155555C fit well into the period distribution of other β Pic members, giving further support to the suggested membership to the association and to its physical association to V824 Ara. A comparison with pre-main-sequence isochrones from various models allows us to estimate an age of 20 ± 15 Myr for this triple system.
SSMART: Sequence-structure motif identification for RNA-binding proteins.
Munteanu, Alina; Mukherjee, Neelanjan; Ohler, Uwe
2018-06-11
RNA-binding proteins (RBPs) regulate every aspect of RNA metabolism and function. There are hundreds of RBPs encoded in the eukaryotic genomes, and each recognize its RNA targets through a specific mixture of RNA sequence and structure properties. For most RBPs, however, only a primary sequence motif has been determined, while the structure of the binding sites is uncharacterized. We developed SSMART, an RNA motif finder that simultaneously models the primary sequence and the structural properties of the RNA targets sites. The sequence-structure motifs are represented as consensus strings over a degenerate alphabet, extending the IUPAC codes for nucleotides to account for secondary structure preferences. Evaluation on synthetic data showed that SSMART is able to recover both sequence and structure motifs implanted into 3'UTR-like sequences, for various degrees of structured/unstructured binding sites. In addition, we successfully used SSMART on high-throughput in vivo and in vitro data, showing that we not only recover the known sequence motif, but also gain insight into the structural preferences of the RBP. Availability: SSMART is freely available at https://ohlerlab.mdc-berlin.de/software/SSMART_137/. Supplementary data are available at Bioinformatics online.
Shen, Xing-Xing; Salichos, Leonidas; Rokas, Antonis
2016-09-02
Molecular phylogenetic inference is inherently dependent on choices in both methodology and data. Many insightful studies have shown how choices in methodology, such as the model of sequence evolution or optimality criterion used, can strongly influence inference. In contrast, much less is known about the impact of choices in the properties of the data, typically genes, on phylogenetic inference. We investigated the relationships between 52 gene properties (24 sequence-based, 19 function-based, and 9 tree-based) with each other and with three measures of phylogenetic signal in two assembled data sets of 2,832 yeast and 2,002 mammalian genes. We found that most gene properties, such as evolutionary rate (measured through the percent average of pairwise identity across taxa) and total tree length, were highly correlated with each other. Similarly, several gene properties, such as gene alignment length, Guanine-Cytosine content, and the proportion of tree distance on internal branches divided by relative composition variability (treeness/RCV), were strongly correlated with phylogenetic signal. Analysis of partial correlations between gene properties and phylogenetic signal in which gene evolutionary rate and alignment length were simultaneously controlled, showed similar patterns of correlations, albeit weaker in strength. Examination of the relative importance of each gene property on phylogenetic signal identified gene alignment length, alongside with number of parsimony-informative sites and variable sites, as the most important predictors. Interestingly, the subsets of gene properties that optimally predicted phylogenetic signal differed considerably across our three phylogenetic measures and two data sets; however, gene alignment length and RCV were consistently included as predictors of all three phylogenetic measures in both yeasts and mammals. These results suggest that a handful of sequence-based gene properties are reliable predictors of phylogenetic signal and could be useful in guiding the choice of phylogenetic markers. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
An expanded set of brown dwarf and very low mass star models
NASA Technical Reports Server (NTRS)
Burrows, A.; Hubbard, W. B.; Saumon, D.; Lunine, J. I.
1993-01-01
We present in this paper updated and improved theoretical models of brown dwarfs and late M dwarfs. The evolution and characteristics of objects between 0.01 and 0.2 solar mass are exhaustively investigated and special emphasis is placed on their properties at early ages. The dependence on the helium fraction, deuterium fraction, and metallicity of the masses, effective temperature and luminosities at the edge of the hydrogen main sequence are calculated. We derive luminosity functions for representative mass functions and compare our predictions to recent cluster data. We show that there are distinctive features in the theoretical luminosity functions that can serve as diagnostics of brown dwarf physics. A zero-metallicity model is presented as a bound to or approximation of a putative extreme halo population.
EBT reactor systems analysis and cost code: description and users guide (Version 1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santoro, R.T.; Uckan, N.A.; Barnes, J.M.
1984-06-01
An ELMO Bumpy Torus (EBT) reactor systems analysis and cost code that incorporates the most recent advances in EBT physics has been written. The code determines a set of reactors that fall within an allowed operating window determined from the coupling of ring and core plasma properties and the self-consistent treatment of the coupled ring-core stability and power balance requirements. The essential elements of the systems analysis and cost code are described, along with the calculational sequences leading to the specification of the reactor options and their associated costs. The input parameters, the constraints imposed upon them, and the operatingmore » range over which the code provides valid results are discussed. A sample problem and the interpretation of the results are also presented.« less
Real-time fast physical random number generator with a photonic integrated circuit.
Ugajin, Kazusa; Terashima, Yuta; Iwakawa, Kento; Uchida, Atsushi; Harayama, Takahisa; Yoshimura, Kazuyuki; Inubushi, Masanobu
2017-03-20
Random number generators are essential for applications in information security and numerical simulations. Most optical-chaos-based random number generators produce random bit sequences by offline post-processing with large optical components. We demonstrate a real-time hardware implementation of a fast physical random number generator with a photonic integrated circuit and a field programmable gate array (FPGA) electronic board. We generate 1-Tbit random bit sequences and evaluate their statistical randomness using NIST Special Publication 800-22 and TestU01. All of the BigCrush tests in TestU01 are passed using 410-Gbit random bit sequences. A maximum real-time generation rate of 21.1 Gb/s is achieved for random bit sequences in binary format stored in a computer, which can be directly used for applications involving secret keys in cryptography and random seeds in large-scale numerical simulations.
Bartels, Daniela; Kespohl, Sebastian; Albaum, Stefan; Drüke, Tanja; Goesmann, Alexander; Herold, Julia; Kaiser, Olaf; Pühler, Alfred; Pfeiffer, Friedhelm; Raddatz, Günter; Stoye, Jens; Meyer, Folker; Schuster, Stephan C
2005-04-01
We provide the graphical tool BACCardI for the construction of virtual clone maps from standard assembler output files or BLAST based sequence comparisons. This new tool has been applied to numerous genome projects to solve various problems including (a) validation of whole genome shotgun assemblies, (b) support for contig ordering in the finishing phase of a genome project, and (c) intergenome comparison between related strains when only one of the strains has been sequenced and a large insert library is available for the other. The BACCardI software can seamlessly interact with various sequence assembly packages. Genomic assemblies generated from sequence information need to be validated by independent methods such as physical maps. The time-consuming task of building physical maps can be circumvented by virtual clone maps derived from read pair information of large insert libraries.
NASA Astrophysics Data System (ADS)
Keshet, Aviv; Ketterle, Wolfgang
2013-01-01
Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths.
Keshet, Aviv; Ketterle, Wolfgang
2013-01-01
Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths.
Perception and the Temporal Properties of Speech.
1993-01-11
conditions. In the embedded condition, phoneme sequences equivalent to these words formed the second syllable of a two-syllable word. In the unembedded ... unembedded in the sequence "warm lips". These priming sequences were based on the sequences used in Experiment 2. Each combinable priming sequence in...unrelated, to the embedded or unembedded prime word. The probes used in this experiment were identical to the ones used in Experiment 2. Subjects were tested
[Bacteriophage λ: electrostatic properties of the genome and its elements].
Krutinina, G G; Krutinin, E A; Kamzolova, S G; Osypov, A A
2015-01-01
Bacteriophage λ is a classical model object in molecular biology, but little is still known on the physical properties of its DNA and regulatory elements. A study was made of the electrostatic properties of phage λ DNA and regulatory elements. A global electrostatic potential distribution along the phage genome was found to be nonuniform with main regulatory elements being located in a limited region with a high potential. The RNA polymerase binding frequency on the linearized phage chromosome directly correlates with its local potential. Strong promoters of the phage and its host Escherichia coli have distinct electrostatic upstream elements, which differ in nucleotide sequence. Attachment and recombination sites of phage λ and its host have a higher potential, which possibly facilitates their recognition by integrase. Phage λ and host Rho-independent terminators have a symmetrical M-shaped potential profile, which only slightly depends on the annotated terminator palindrome length, and occur in a region with a substantially higher potential, which may cause polymerase retention, facilitating the formation of a terminator hairpin in RNA. It was concluded that virtually all elements of phage λ genome have potential distribution specifics, which are related to their structural properties and may play a role in their biological function. The global potential distribution along the phage genome reflects the architecture of the regulation of its transcription and integration in the host genome.
Novel methodologies for spectral classification of exon and intron sequences
NASA Astrophysics Data System (ADS)
Kwan, Hon Keung; Kwan, Benjamin Y. M.; Kwan, Jennifer Y. Y.
2012-12-01
Digital processing of a nucleotide sequence requires it to be mapped to a numerical sequence in which the choice of nucleotide to numeric mapping affects how well its biological properties can be preserved and reflected from nucleotide domain to numerical domain. Digital spectral analysis of nucleotide sequences unfolds a period-3 power spectral value which is more prominent in an exon sequence as compared to that of an intron sequence. The success of a period-3 based exon and intron classification depends on the choice of a threshold value. The main purposes of this article are to introduce novel codes for 1-sequence numerical representations for spectral analysis and compare them to existing codes to determine appropriate representation, and to introduce novel thresholding methods for more accurate period-3 based exon and intron classification of an unknown sequence. The main findings of this study are summarized as follows: Among sixteen 1-sequence numerical representations, the K-Quaternary Code I offers an attractive performance. A windowed 1-sequence numerical representation (with window length of 9, 15, and 24 bases) offers a possible speed gain over non-windowed 4-sequence Voss representation which increases as sequence length increases. A winner threshold value (chosen from the best among two defined threshold values and one other threshold value) offers a top precision for classifying an unknown sequence of specified fixed lengths. An interpolated winner threshold value applicable to an unknown and arbitrary length sequence can be estimated from the winner threshold values of fixed length sequences with a comparable performance. In general, precision increases as sequence length increases. The study contributes an effective spectral analysis of nucleotide sequences to better reveal embedded properties, and has potential applications in improved genome annotation.
Modeling Explosion Induced Aftershocks
NASA Astrophysics Data System (ADS)
Kroll, K.; Ford, S. R.; Pitarka, A.; Walter, W. R.; Richards-Dinger, K. B.
2017-12-01
Many traditional earthquake-explosion discrimination tools are based on properties of the seismic waveform or their spectral components. Common discrimination methods include estimates of body wave amplitude ratios, surface wave magnitude scaling, moment tensor characteristics, and depth. Such methods are limited by station coverage and noise. Ford and Walter (2010) proposed an alternate discrimination method based on using properties of aftershock sequences as a means of earthquakeexplosion differentiation. Previous studies have shown that explosion sources produce fewer aftershocks that are generally smaller in magnitude compared to aftershocks of similarly sized earthquake sources (Jarpe et al., 1994, Ford and Walter, 2010). It has also been suggested that the explosion-induced aftershocks have smaller Gutenberg- Richter b-values (Ryall and Savage, 1969) and that their rates decay faster than a typical Omori-like sequence (Gross, 1996). To discern whether these observations are generally true of explosions or are related to specific site conditions (e.g. explosion proximity to active faults, tectonic setting, crustal stress magnitudes) would require a thorough global analysis. Such a study, however, is hindered both by lack of evenly distributed explosion-sources and the availability of global seismicity data. Here, we employ two methods to test the efficacy of explosions at triggering aftershocks under a variety of physical conditions. First, we use the earthquake rate equations from Dieterich (1994) to compute the rate of aftershocks related to an explosion source assuming a simple spring-slider model. We compare seismicity rates computed with these analytical solutions to those produced by the 3D, multi-cycle earthquake simulator, RSQSim. We explore the relationship between geological conditions and the characteristics of the resulting explosion-induced aftershock sequence. We also test hypothesis that aftershock generation is dependent upon the frequency content of the passing dynamic seismic waves as suggested by Parsons and Velasco (2009). Lastly, we compare all results of explosion-induced aftershocks with aftershocks generated by similarly sized earthquake sources. Prepared by LLNL under Contract DE-AC52-07NA27344.
Nadir Ayrilmis; Zeki Candan; Robert White
2007-01-01
This study evaluated physical, mechanical and fire properties of oriented strand boards (OSB) covered with fire retardant treated veneers. The beech (Fagus orientalis Lipsky) veneers were treated with either monoammonium phosphate, diammonium phosphate, lime water or a borax/boric acid (1 : 1 by weight) mixture. Physical and mechanical properties of the specimens were...
Physical properties of organic soils. Chapter 5.
Elon S. Verry; Don H. Boelter; Juhani Paivanen; Dale S. Nichols; Tom Malterer; Avi Gafni
2011-01-01
Compared with research on mineral soils, the study of the physical properties of organic soils in the United States is relatively new. A comprehensive series of studies on peat physical properties were conducted by Don Boelter (1959-1975), first at the Marcell Experimental Forest (MEF) and later throughout the northern Lakes States to investigate how to express bulk...
Gender-based performance differences in an introductory physics course
NASA Astrophysics Data System (ADS)
McKinnon, Mark Lee
Cognitive research has indicated that the difference between males and females is negligible. Paradoxically, in traditionally-taught college level introductory physics courses, males have outperformed females. UC Davis' Physics 7A (the first class of a three-quarter Introduction to Physics sequence for Life-Science students), however, counters this trend since females perform similarly to males. The gender-based performance difference within the other two quarters (Physics 7B & 7C) of the radically restructured, active-learning physics sequence still echo the traditionally-taught courses. In one experiment, I modified the laboratory activity instructions of the Physics 7C course to encourage further group interaction. These modifications did not affect the gender-based performance difference. In a later experiment, I compared students' performance on different forms of assessment for certain physics concepts during the Physics 7C course. Over 500 students took weekly quizzes at different times. The students were given different quiz questions on the same topics. Several quiz questions seemed to favor males while others were more gender equitable. I highlighted comparisons between a few pairs of questions that assessed students' understanding of the same physical concept. Males tended to perform better in responding to questions that seemed to require spatial visualization. Questions that required greater understanding of the physical concept or scientific model were more gender neutral.
Robson, Nicole D.; Telesnitsky, Alice
2000-01-01
Retrovirus plus-strand synthesis is primed by a cleavage remnant of the polypurine tract (PPT) region of viral RNA. In this study, we tested replication properties for Moloney murine leukemia viruses with targeted mutations in the PPT and in conserved sequences upstream, as well as for pools of mutants with randomized sequences in these regions. The importance of maintaining some purine residues within the PPT was indicated both by examining the evolution of random PPT pools and from the replication properties of targeted mutants. Although many different PPT sequences could support efficient replication and one mutant that contained two differences in the core PPT was found to replicate as well as the wild type, some sequences in the core PPT clearly conferred advantages over others. Contributions of sequences upstream of the core PPT were examined with deletion mutants. A conserved T-stretch within the upstream sequence was examined in detail and found to be unimportant to helper functions. Evolution of virus pools containing randomized T-stretch sequences demonstrated marked preference for the wild-type sequence in six of its eight positions. These findings demonstrate that maintenance of the T-rich element is more important to viral replication than is maintenance of the core PPT. PMID:11044073
Confronting Myths about Teacher Leadership
ERIC Educational Resources Information Center
Sinha, Somnath; Hanuscin, Deborah; Rebello, Carina; Muslu, Nilay; Cheng, Ya-Wen
2012-01-01
"Leadership in Freshman Physics" is an NSF-funded professional development program designed to support 9th grade teacher leaders in the successful implementation of a "Physics First" or curriculum sequence that places physics prior to biology and chemistry. Leadership is viewed as an essential component in the initial success…
NASA Astrophysics Data System (ADS)
Zaki, M. K.; Komariah; Pujiasmanto, B.; Noda, K.
2018-03-01
Water deficit is a problem on rainfed maize production but can be solved by proper land management. The objective of the study to determine the soil physical properties and maize yield affected by land management to adapt to drought. The experimental design was a randomized complete block using 5 treatments with 4 repetitions, including: (i) Control (KO), (ii) Rice Straw Mulched (MC), (iii) Compost Fertilizer (CF), (iv) In-Organic Fertilizer (AF), (v) Legume Cover crop (CC). Soil physical and maize growth properties namely soil moisture, soil texture, soil bulk density, plant height, biomass, and yield were investigated. The results showed that composting land increased soil water availability and provided nutrient to crops and thus increase soil physical properties, maize growth and yield. Although inorganic fertilizer also increased plant growth and yield, but it did not improve soil physical properties.
Effect of decompression drying treatment on physical properties of solid foods.
Morikawa, Takuya; Takada, Norihisa; Miura, Makoto
2017-04-01
This study used a decompression drying instrument to investigate the effects of a drying treatment on the physical properties of solid foods. Commercial tofu was used as a model food and was treated at different temperature and pressure conditions in a drying chamber. Overall, high temperatures resulted in better drying. Additionally, pressure in the chamber influenced the drying conditions of samples. Differences in physical properties, such as food texture, shrinkage, and color were observed among some samples, even with similar moisture content. This was caused by differences in moisture distribution in the food, which seems to have manifested as a thin, dried film on the surfaces of samples. It caused inefficient drying and changes in physical properties. Control of the drying conditions (i.e. pressure and heat supply) has relations with not only physical properties, but also the drying efficiency of solid foods.
A New Challenge for Compression Algorithms: Genetic Sequences.
ERIC Educational Resources Information Center
Grumbach, Stephane; Tahi, Fariza
1994-01-01
Analyzes the properties of genetic sequences that cause the failure of classical algorithms used for data compression. A lossless algorithm, which compresses the information contained in DNA and RNA sequences by detecting regularities such as palindromes, is presented. This algorithm combines substitutional and statistical methods and appears to…
From Arithmetic Sequences to Linear Equations
ERIC Educational Resources Information Center
Matsuura, Ryota; Harless, Patrick
2012-01-01
The first part of the article focuses on deriving the essential properties of arithmetic sequences by appealing to students' sense making and reasoning. The second part describes how to guide students to translate their knowledge of arithmetic sequences into an understanding of linear equations. Ryota Matsuura originally wrote these lessons for…
The physical size of transcription factors is key to transcriptional regulation in chromatin domains
NASA Astrophysics Data System (ADS)
Maeshima, Kazuhiro; Kaizu, Kazunari; Tamura, Sachiko; Nozaki, Tadasu; Kokubo, Tetsuro; Takahashi, Koichi
2015-02-01
Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (˜50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a ‘buoy’ to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination.
Ibsen, Stuart; Benchimol, Michael; Esener, Sadik
2012-01-01
Rapid development in the field of ultrasound triggered drug delivery has made it essential to study the real-time interaction between the membranes of live cells and the membranes of echogenic delivery vehicles under exposure to focused ultrasound. The objective of this work was to design an analysis system that combined fluorescent imagining, high speed videography, and definable pulse sequences of focused ultrasound to allow for real time observations of both cell and vehicle membranes. Documenting the behavior of the membranes themselves has not previously been possible due to limitations with existing optical systems used to understand the basic physics of microbubble/ultrasound interaction and the basic interaction between microbubbles and cells. The performance of this new system to monitor membrane behavior was demonstrated by documenting the modes of vehicle fragmentation at different ultrasound intensity levels. At 1.5 MPa the membranes were shown to completely fragment while at intensities below 1 MPa there is a popping and slow unfolding. The interaction between these vehicles and cell membranes was also documented by the removal of fluorescent particles from the surfaces of live cells out to 20 μm from the microbubble location. The fluid flow created by microstreaming around ensonated microbubbles was documented at video recording speeds from 60 to 18,000 frames per second. This information about membrane behavior allows the chemical and physical properties of the drug delivery vehicle to be designed along with the ultrasound pulse sequence to cause the most efficient drug delivery. PMID:22749476
Ibsen, Stuart; Benchimol, Michael; Esener, Sadik
2013-01-01
Rapid development in the field of ultrasound triggered drug delivery has made it essential to study the real-time interaction between the membranes of live cells and the membranes of echogenic delivery vehicles under exposure to focused ultrasound. The objective of this work was to design an analysis system that combined fluorescent imagining, high speed videography, and definable pulse sequences of focused ultrasound to allow for real time observations of both cell and vehicle membranes. Documenting the behavior of the membranes themselves has not previously been possible due to limitations with existing optical systems used to understand the basic physics of microbubble/ultrasound interaction and the basic interaction between microbubbles and cells. The performance of this new system to monitor membrane behavior was demonstrated by documenting the modes of vehicle fragmentation at different ultrasound intensity levels. At 1.5MPa the membranes were shown to completely fragment while at intensities below 1MPa the membranes pop open and slowly unfold. The interaction between these vehicles and cell membranes was also documented by the removal of fluorescent particles from the surfaces of live cells out to 20μm from the microbubble location. The fluid flow created by microstreaming around ensonated microbubbles was documented at video recording speeds from 60 to 18,000 frames per second. This information about membrane behavior allows the chemical and physical properties of the drug delivery vehicle to be designed along with the ultrasound pulse sequence to cause the most efficient drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsichlis, P.N.; Donehower, L.; Hager, G.
1982-11-01
NTRE is an avian retrovirus recombinant of the endogeneous nononcogenic Rous-associated virus-0 (RAV-0) and the oncogenic, exogeneous, transformation-defective (td) Prague strain of Rous sarcoma virus B (td-PrRSV-B). Oligonucleotide mapping had shown that the recombinant virus is indistinguishable from its RAV-0 parent except for the 3'-end sequences, which were derived from td-PrRSV-B. However, the virus exhibits properties which are typical of an exogenous virus: it grows to high titers in tissue culture, and it is oncogenic in vivo. To accurately define the genetic region responsible for these properties, the authors determined the nucleotide sequences of the recombinant and its RAV-0 parentmore » by using molecular clones of their DNA. These were compared with sequences already available for PrRSV-C, a virus closely related to the exogenous parent td-PrRSV-B. The results suggested that the crossover event which generated NTRE 7 took place in a region -501 to -401 nucleotides from the 3' end of the td-PrRSV parental genome and that sequences to the right of the recombination region were responsible for its growth properties and oncogenic potential. Since the exogenous-virus-specific sequences are expected to be missing from transformation-defective mutants of the Schmidt-Ruppin strain of RSV, which, like other exogeneous viruses, grow to high tiers in tissue culture and are oncogenic in vivo, the authors concluded that the growth properties and oncogenic potential of the exogeneous viruses are determined by sequences in the U3 region of the long terminal repeat. However, the authors propose that the exogeneous-virus-specific region may play a role in determining the oncogenic spectrum of a given oncogenic virus.« less
Fungal Biodiversity and Their Role in Soil Health
Frąc, Magdalena; Hannula, Silja E.; Bełka, Marta; Jędryczka, Małgorzata
2018-01-01
Soil health, and the closely related terms of soil quality and fertility, is considered as one of the most important characteristics of soil ecosystems. The integrated approach to soil health assumes that soil is a living system and soil health results from the interaction between different processes and properties, with a strong effect on the activity of soil microbiota. All soils can be described using physical, chemical, and biological properties, but adaptation to environmental changes, driven by the processes of natural selection, are unique to the latter one. This mini review focuses on fungal biodiversity and its role in the health of managed soils as well as on the current methods used in soil mycobiome identification and utilization next generation sequencing (NGS) approaches. The authors separately focus on agriculture and horticulture as well as grassland and forest ecosystems. Moreover, this mini review describes the effect of land-use on the biodiversity and succession of fungi. In conclusion, the authors recommend a shift from cataloging fungal species in different soil ecosystems toward a more global analysis based on functions and interactions between organisms. PMID:29755421
Fungal Biodiversity and Their Role in Soil Health.
Frąc, Magdalena; Hannula, Silja E; Bełka, Marta; Jędryczka, Małgorzata
2018-01-01
Soil health, and the closely related terms of soil quality and fertility, is considered as one of the most important characteristics of soil ecosystems. The integrated approach to soil health assumes that soil is a living system and soil health results from the interaction between different processes and properties, with a strong effect on the activity of soil microbiota. All soils can be described using physical, chemical, and biological properties, but adaptation to environmental changes, driven by the processes of natural selection, are unique to the latter one. This mini review focuses on fungal biodiversity and its role in the health of managed soils as well as on the current methods used in soil mycobiome identification and utilization next generation sequencing (NGS) approaches. The authors separately focus on agriculture and horticulture as well as grassland and forest ecosystems. Moreover, this mini review describes the effect of land-use on the biodiversity and succession of fungi. In conclusion, the authors recommend a shift from cataloging fungal species in different soil ecosystems toward a more global analysis based on functions and interactions between organisms.
PFAAT version 2.0: a tool for editing, annotating, and analyzing multiple sequence alignments.
Caffrey, Daniel R; Dana, Paul H; Mathur, Vidhya; Ocano, Marco; Hong, Eun-Jong; Wang, Yaoyu E; Somaroo, Shyamal; Caffrey, Brian E; Potluri, Shobha; Huang, Enoch S
2007-10-11
By virtue of their shared ancestry, homologous sequences are similar in their structure and function. Consequently, multiple sequence alignments are routinely used to identify trends that relate to function. This type of analysis is particularly productive when it is combined with structural and phylogenetic analysis. Here we describe the release of PFAAT version 2.0, a tool for editing, analyzing, and annotating multiple sequence alignments. Support for multiple annotations is a key component of this release as it provides a framework for most of the new functionalities. The sequence annotations are accessible from the alignment and tree, where they are typically used to label sequences or hyperlink them to related databases. Sequence annotations can be created manually or extracted automatically from UniProt entries. Once a multiple sequence alignment is populated with sequence annotations, sequences can be easily selected and sorted through a sophisticated search dialog. The selected sequences can be further analyzed using statistical methods that explicitly model relationships between the sequence annotations and residue properties. Residue annotations are accessible from the alignment viewer and are typically used to designate binding sites or properties for a particular residue. Residue annotations are also searchable, and allow one to quickly select alignment columns for further sequence analysis, e.g. computing percent identities. Other features include: novel algorithms to compute sequence conservation, mapping conservation scores to a 3D structure in Jmol, displaying secondary structure elements, and sorting sequences by residue composition. PFAAT provides a framework whereby end-users can specify knowledge for a protein family in the form of annotation. The annotations can be combined with sophisticated analysis to test hypothesis that relate to sequence, structure and function.
A topological approach for protein classification
Cang, Zixuan; Mu, Lin; Wu, Kedi; ...
2015-11-04
Here, protein function and dynamics are closely related to its sequence and structure. However, prediction of protein function and dynamics from its sequence and structure is still a fundamental challenge in molecular biology. Protein classification, which is typically done through measuring the similarity between proteins based on protein sequence or physical information, serves as a crucial step toward the understanding of protein function and dynamics.
ERIC Educational Resources Information Center
Küçüközer, Asuman
2006-01-01
This study aims to better understand the construction of the meaning of physics concepts in mechanics during a teaching sequence at the upper secondary school level. In the teaching sessions, students were introduced to the concepts of interaction and force. During this teaching sequence the models called "interactions" and "laws of…
The Organization of Repetitive DNA in the Genomes of Amazonian Lizard Species in the Family Teiidae.
Carvalho, Natalia D M; Pinheiro, Vanessa S S; Carmo, Edson J; Goll, Leonardo G; Schneider, Carlos H; Gross, Maria C
2015-01-01
Repetitive DNA is the largest fraction of the eukaryote genome and comprises tandem and dispersed sequences. It presents variations in relation to its composition, number of copies, distribution, dynamics, and genome organization, and participates in the evolutionary diversification of different vertebrate species. Repetitive sequences are usually located in the heterochromatin of centromeric and telomeric regions of chromosomes, contributing to chromosomal structures. Therefore, the aim of this study was to physically map repetitive DNA sequences (5S rDNA, telomeric sequences, tropomyosin gene 1, and retroelements Rex1 and SINE) of mitotic chromosomes of Amazonian species of teiids (Ameiva ameiva, Cnemidophorus sp. 1, Kentropyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin) to understand their genome organization and karyotype evolution. The mapping of repetitive sequences revealed a distinct pattern in Cnemidophorus sp. 1, whereas the other species showed all sequences interspersed in the heterochromatic region. Physical mapping of the tropomyosin 1 gene was performed for the first time in lizards and showed that in addition to being functional, this gene has a structural function similar to the mapped repetitive elements as it is located preferentially in centromeric regions and termini of chromosomes. © 2016 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Chen, Fei; Zhou, Dequan; Bai, Xiaoyong; zeng, Cheng; Xiao, Jianyong; Qian, Qinghuan; Luo, Guangjie
2018-01-01
In order to reveal the differences of soil physical and chemical properties and their response mechanism to the evolution of KRD. The characteristics of soil physical and chemical properties of different grades of KRD were studied by field sampling method to research different types of KRD in the typical karst valley of southern China. Instead of using space of time, to explore the response and the mechanisms of the soil physical and chemical properties at the different evolution process. The results showed that: (1) There were significant differences in organic matter, pH, total nitrogen, total phosphorus, total potassium, sediment concentration, clay content and AWHC in different levels of KRD environment. However, these indicators are not with increasing desertification degree has been degraded, but improved after a first degradation trends; (2) The correlation analysis showed that soil organic matter, acid, alkali, total nitrogen, total phosphorus, total potassium and clay contents were significantly correlated with other physical and chemical factors. They are the key factors of soil physical and chemical properties, play a key role in improving soil physical and chemical properties and promoting nutrient cycling; (3) The principal component analysis showed that the cumulative contribution rate of organic matter, pH, total nitrogen, total phosphorus, total potassium and sediment concentration was 80.26%, which was the key index to evaluate rocky desertification degree based on soil physical and chemical properties. The results have important theoretical and practical significance for the protection and restoration of rocky desertification ecosystem in southwest China.
2013-01-01
Background The wheat genome sequence is an essential tool for advanced genomic research and improvements. The generation of a high-quality wheat genome sequence is challenging due to its complex 17 Gb polyploid genome. To overcome these difficulties, sequencing through the construction of BAC-based physical maps of individual chromosomes is employed by the wheat genomics community. Here, we present the construction of the first comprehensive physical map of chromosome 1BS, and illustrate its unique gene space organization and evolution. Results Fingerprinted BAC clones were assembled into 57 long scaffolds, anchored and ordered with 2,438 markers, covering 83% of chromosome 1BS. The BAC-based chromosome 1BS physical map and gene order of the orthologous regions of model grass species were consistent, providing strong support for the reliability of the chromosome 1BS assembly. The gene space for chromosome 1BS spans the entire length of the chromosome arm, with 76% of the genes organized in small gene islands, accompanied by a two-fold increase in gene density from the centromere to the telomere. Conclusions This study provides new evidence on common and chromosome-specific features in the organization and evolution of the wheat genome, including a non-uniform distribution of gene density along the centromere-telomere axis, abundance of non-syntenic genes, the degree of colinearity with other grass genomes and a non-uniform size expansion along the centromere-telomere axis compared with other model cereal genomes. The high-quality physical map constructed in this study provides a solid basis for the assembly of a reference sequence of chromosome 1BS and for breeding applications. PMID:24359668
Predicting protein crystallization propensity from protein sequence
2011-01-01
The high-throughput structure determination pipelines developed by structural genomics programs offer a unique opportunity for data mining. One important question is how protein properties derived from a primary sequence correlate with the protein’s propensity to yield X-ray quality crystals (crystallizability) and 3D X-ray structures. A set of protein properties were computed for over 1,300 proteins that expressed well but were insoluble, and for ~720 unique proteins that resulted in X-ray structures. The correlation of the protein’s iso-electric point and grand average hydropathy (GRAVY) with crystallizability was analyzed for full length and domain constructs of protein targets. In a second step, several additional properties that can be calculated from the protein sequence were added and evaluated. Using statistical analyses we have identified a set of the attributes correlating with a protein’s propensity to crystallize and implemented a Support Vector Machine (SVM) classifier based on these. We have created applications to analyze and provide optimal boundary information for query sequences and to visualize the data. These tools are available via the web site http://bioinformatics.anl.gov/cgi-bin/tools/pdpredictor. PMID:20177794
Boosting antibody developability through rational sequence optimization.
Seeliger, Daniel; Schulz, Patrick; Litzenburger, Tobias; Spitz, Julia; Hoerer, Stefan; Blech, Michaela; Enenkel, Barbara; Studts, Joey M; Garidel, Patrick; Karow, Anne R
2015-01-01
The application of monoclonal antibodies as commercial therapeutics poses substantial demands on stability and properties of an antibody. Therapeutic molecules that exhibit favorable properties increase the success rate in development. However, it is not yet fully understood how the protein sequences of an antibody translates into favorable in vitro molecule properties. In this work, computational design strategies based on heuristic sequence analysis were used to systematically modify an antibody that exhibited a tendency to precipitation in vitro. The resulting series of closely related antibodies showed improved stability as assessed by biophysical methods and long-term stability experiments. As a notable observation, expression levels also improved in comparison with the wild-type candidate. The methods employed to optimize the protein sequences, as well as the biophysical data used to determine the effect on stability under conditions commonly used in the formulation of therapeutic proteins, are described. Together, the experimental and computational data led to consistent conclusions regarding the effect of the introduced mutations. Our approach exemplifies how computational methods can be used to guide antibody optimization for increased stability.
Physics First: Impact on SAT Math Scores
ERIC Educational Resources Information Center
Bouma, Craig E.
2013-01-01
Improving science, technology, engineering, and mathematics (STEM) education has become a national priority and the call to modernize secondary science has been heard. A Physics First (PF) program with the curriculum sequence of physics, chemistry, and biology (PCB) driven by inquiry- and project-based learning offers a viable alternative to the…
MultiSeq: unifying sequence and structure data for evolutionary analysis
Roberts, Elijah; Eargle, John; Wright, Dan; Luthey-Schulten, Zaida
2006-01-01
Background Since the publication of the first draft of the human genome in 2000, bioinformatic data have been accumulating at an overwhelming pace. Currently, more than 3 million sequences and 35 thousand structures of proteins and nucleic acids are available in public databases. Finding correlations in and between these data to answer critical research questions is extremely challenging. This problem needs to be approached from several directions: information science to organize and search the data; information visualization to assist in recognizing correlations; mathematics to formulate statistical inferences; and biology to analyze chemical and physical properties in terms of sequence and structure changes. Results Here we present MultiSeq, a unified bioinformatics analysis environment that allows one to organize, display, align and analyze both sequence and structure data for proteins and nucleic acids. While special emphasis is placed on analyzing the data within the framework of evolutionary biology, the environment is also flexible enough to accommodate other usage patterns. The evolutionary approach is supported by the use of predefined metadata, adherence to standard ontological mappings, and the ability for the user to adjust these classifications using an electronic notebook. MultiSeq contains a new algorithm to generate complete evolutionary profiles that represent the topology of the molecular phylogenetic tree of a homologous group of distantly related proteins. The method, based on the multidimensional QR factorization of multiple sequence and structure alignments, removes redundancy from the alignments and orders the protein sequences by increasing linear dependence, resulting in the identification of a minimal basis set of sequences that spans the evolutionary space of the homologous group of proteins. Conclusion MultiSeq is a major extension of the Multiple Alignment tool that is provided as part of VMD, a structural visualization program for analyzing molecular dynamics simulations. Both are freely distributed by the NIH Resource for Macromolecular Modeling and Bioinformatics and MultiSeq is included with VMD starting with version 1.8.5. The MultiSeq website has details on how to download and use the software: PMID:16914055
Stress Drop and Directivity Patterns Observed in Small-Magnitude (
NASA Astrophysics Data System (ADS)
Ruhl, C. J.; Hatch, R. L.; Abercrombie, R. E.; Smith, K.
2017-12-01
Recent improvements in seismic instrumentation and network coverage in the Reno, NV area have provided high-quality records of abundant microseismicity, including several swarms and clusters. Here, we discuss stress drop and directivity patterns of small-magnitude seismicity in the 2008 Mw4.9 Mogul earthquake swarm in Reno, NV and in the nearby region of an ML3.2 sequence near Virginia City, NV. In both sequences, double-difference relocated earthquakes cluster on multiple distinct structures consistent with focal mechanism and moment tensor fault plane solutions. Both sequences also show migration potentially related to fluid flow. We estimate corner frequency and stress drop using EGF-derived spectral ratios, convolving earthquake pairs (target*EGF) such that we preserve phase and recover source-time functions (STF) on a station-by-station basis. We then stack individual STFs per station for all EGF-target pairs per target earthquake, increasing the signal-to-noise of our results. By applying an azimuthal- and incidence-angle-dependent stretching factor to STFs in the time domain, we are able to invert for rupture directivity and velocity assuming both unilateral and bilateral rupture. Earthquakes in both sequences, some as low as ML2.1, show strong unilateral directivity consistent with independent fault plane solutions. We investigate and compare the relationship between rupture and migration directions on subfaults within each sequence. Average stress drops for both sequences are 4 MPa, but there is large variation in individual estimates for both sequences. Although this variation is not explained simply by any one parameter (e.g., depth), spatiotemporal variation in the Mogul swarm is distinct: coherent clusters of high and low stress drop earthquakes along the mainshock fault plane are seen, and high-stress-drop foreshocks correlate with an area of reduced aftershock productivity. These observations are best explained by a difference in rheology along the fault plane. The unprecedented detail achieved for these small magnitude earthquakes confirms that stress drop, when measured precisely, is a valuable observation of physically-meaningful fault zone properties and earthquake behavior.
Comparative genomic analysis by microbial COGs self-attraction rate.
Santoni, Daniele; Romano-Spica, Vincenzo
2009-06-21
Whole genome analysis provides new perspectives to determine phylogenetic relationships among microorganisms. The availability of whole nucleotide sequences allows different levels of comparison among genomes by several approaches. In this work, self-attraction rates were considered for each cluster of orthologous groups of proteins (COGs) class in order to analyse gene aggregation levels in physical maps. Phylogenetic relationships among microorganisms were obtained by comparing self-attraction coefficients. Eighteen-dimensional vectors were computed for a set of 168 completely sequenced microbial genomes (19 archea, 149 bacteria). The components of the vector represent the aggregation rate of the genes belonging to each of 18 COGs classes. Genes involved in nonessential functions or related to environmental conditions showed the highest aggregation rates. On the contrary genes involved in basic cellular tasks showed a more uniform distribution along the genome, except for translation genes. Self-attraction clustering approach allowed classification of Proteobacteria, Bacilli and other species belonging to Firmicutes. Rearrangement and Lateral Gene Transfer events may influence divergences from classical taxonomy. Each set of COG classes' aggregation values represents an intrinsic property of the microbial genome. This novel approach provides a new point of view for whole genome analysis and bacterial characterization.
The implication of DNA bending energy for nucleosome positioning and sliding.
Liu, Guoqing; Xing, Yongqiang; Zhao, Hongyu; Cai, Lu; Wang, Jianying
2018-06-11
Nucleosome not only directly affects cellular processes, such as DNA replication, recombination, and transcription, but also severs as a fundamentally important target of epigenetic modifications. Our previous study indicated that the bending property of DNA is important in nucleosome formation, particularly in predicting the dyad positions of nucleosomes on a DNA segment. Here, we investigated the role of bending energy in nucleosome positioning and sliding in depth to decipher sequence-directed mechanism. The results show that bending energy is a good physical index to predict the free energy in the process of nucleosome reconstitution in vitro. Our data also imply that there are at least 20% of the nucleosomes in budding yeast do not adopt canonical positioning, in which underlying sequences wrapped around histones are structurally symmetric. We also revealed distinct patterns of bending energy profile for distinctly organized chromatin structures, such as well-positioned nucleosomes, fuzzy nucleosomes, and linker regions and discussed nucleosome sliding in terms of bending energy. We proposed that the stability of a nucleosome is positively correlated with the strength of the bending anisotropy of DNA segment, and both accessibility and directionality of nucleosome sliding is likely to be modulated by diverse patterns of DNA bending energy profile.
Generalization of symmetric α-stable Lévy distributions for q >1
NASA Astrophysics Data System (ADS)
Umarov, Sabir; Tsallis, Constantino; Gell-Mann, Murray; Steinberg, Stanly
2010-03-01
The α-stable distributions introduced by Lévy play an important role in probabilistic theoretical studies and their various applications, e.g., in statistical physics, life sciences, and economics. In the present paper we study sequences of long-range dependent random variables whose distributions have asymptotic power-law decay, and which are called (q,α)-stable distributions. These sequences are generalizations of independent and identically distributed α-stable distributions and have not been previously studied. Long-range dependent (q,α)-stable distributions might arise in the description of anomalous processes in nonextensive statistical mechanics, cell biology, finance. The parameter q controls dependence. If q =1 then they are classical independent and identically distributed with α-stable Lévy distributions. In the present paper we establish basic properties of (q,α)-stable distributions and generalize the result of Umarov et al. [Milan J. Math. 76, 307 (2008)], where the particular case α =2,qɛ[1,3) was considered, to the whole range of stability and nonextensivity parameters α ɛ(0,2] and q ɛ[1,3), respectively. We also discuss possible further extensions of the results that we obtain and formulate some conjectures.
Manara, Richard M A; Guy, Andrew T; Wallace, E Jayne; Khalid, Syma
2015-02-10
Next generation DNA sequencing methods that utilize protein nanopores have the potential to revolutionize this area of biotechnology. While the technique is underpinned by simple physics, the wild-type protein pores do not have all of the desired properties for efficient and accurate DNA sequencing. Much of the research efforts have focused on protein nanopores, such as α-hemolysin from Staphylococcus aureus. However, the speed of DNA translocation has historically been an issue, hampered in part by incomplete knowledge of the energetics of translocation. Here we have utilized atomistic molecular dynamics simulations of nucleotide fragments in order to calculate the potential of mean force (PMF) through α-hemolysin. Our results reveal specific regions within the pore that play a key role in the interaction with DNA. In particular, charged residues such as D127 and K131 provide stabilizing interactions with the anionic DNA and therefore are likely to reduce the speed of translocation. These regions provide rational targets for pore optimization. Furthermore, we show that the energetic contributions to the protein-DNA interactions are a complex combination of electrostatics and short-range interactions, often mediated by water molecules.
Rooney, O M; Troke, J; Nicholson, J K; Griffin, J L
2003-11-01
High-resolution magic angle spinning (HRMAS) (1)H NMR spectroscopy is ideal for monitoring the metabolic environment within tissues, particularly when spectra are weighted by physical properties such as T(1) and T(2) relaxation times and apparent diffusion coefficients (ADCs). In this study, spectral-editing using T(1) and T(2) relaxation times and ADCs at variable diffusion times was used in conjunction with HRMAS (1)H NMR spectroscopy at 14.1 T in liver tissue. To enhance the sensitivity of ADC measurements to low molecular weight metabolites a T(2) spin echo was included in a standard stimulated gradient spin-echo sequence. Fatty liver induced in rats by chronic orotic acid feeding was investigated using this modified sequence. An increase in the combined ADC for the co-resonant peaks glucose, betaine, and TMAO during fatty liver disease was detected (ADCs = 0.60 +/- 0.11 and 0.35 +/- 0.1 * 10(-9) m(2)s(-1) (n = 3) for rats fed with and without orotic acid), indicative of a reduction in glucose and betaine and an increase in TMAO. Copyright 2003 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Lenz, Conny; Reinholdsson, Maja; Zillén, Lovisa; Conley, Daniel J.; Snowball, Ian
2010-05-01
The Baltic Sea has undergone large environmental changes since the retreat of the Weischselian Ice-sheet. In the Late Glacial Period and the early Holocene these changes were most likely caused by natural environmental changes (i.e. changes in the morphology and depths of the Baltic basin and the sills). In more recent time anthropogenic impacts have become more important as a possible and likely cause for changes. During the whole Holocene period climate variability played an important role. However, the relative importance between humans and nature is largely unknown. Here we present the results of a combined geophysical and geochemical study on selected sediment sequences from the Baltic Sea within the two BONUS (Baltic Organisations Network For Funding Science) funded projects HYPER (HYPoxia mitigation for Baltic Sea Ecosystem Restoration) and Baltic GAS (GAS storage and effects of climate change and eutrophication). The over-all aim of these projects is to understand large-scale Baltic Sea ecosystem responses to environmental, climate and anthropogenic forcing. During two Baltic Sea research cruises in 2009 long sediment cores from 8 different locations were recovered. We present preliminary results from one site (LL19) located in the north central Baltic Proper at 169 m water depth. The Littorina Sea sediment record (i.e. the last c. 8000 years) is characterised by alternating periods of homogenised sediments (indicative of oxic conditions) and laminated sediments (indicative of hypoxic/anoxic conditions). Mineral magnetic properties illustrate clear changes between laminated and non-laminated sections of the core. The concentration of ferrimagnetic minerals, as revealed by initial magnetic susceptibility (χ) and saturation isothermal remanent magnetization (SIRM) is variable. The laminated sections in particular show high concentrations and to reveal the origin of the ferrimagnetic signal additional magnetic properties were measured, specifically the acquisition of rotational remanent magnetization (RRM), frequency dependency of susceptibility (χfd) and magnetic loops. These data show that magnetic assemblage of the laminated sections is dominated by a single-domain magnetic grain size. The elemental composition was measured with a high resolution Itrax XRF-scanner throughout the core. In addition, biogenic silica (BSi) and total organic carbon (TOC) were determined. Distinct changes of elemental contents between the laminated and homogenous sections in the Littorina Sea sediments were identified. A combination of the physical and geochemical properties of the sediment sequences and the construction of geochronologies will provide information about past environmental variability to identify casual relationships to climate and human impact in the Baltic Sea.
Techtmann, Stephen M; Fortney, Julian L; Ayers, Kati A; Joyner, Dominique C; Linley, Thomas D; Pfiffner, Susan M; Hazen, Terry C
2015-01-01
The waters of the Eastern Mediterranean are characterized by unique physical and chemical properties within separate water masses occupying different depths. Distinct water masses are present throughout the oceans, which drive thermohaline circulation. These water masses may contain specific microbial assemblages. The goal of this study was to examine the effect of physical and geological phenomena on the microbial community of the Eastern Mediterranean water column. Chemical measurements were combined with phospholipid fatty acid (PLFA) analysis and high-throughput 16S rRNA sequencing to characterize the microbial community in the water column at five sites. We demonstrate that the chemistry and microbial community of the water column were stratified into three distinct water masses. The salinity and nutrient concentrations vary between these water masses. Nutrient concentrations increased with depth, and salinity was highest in the intermediate water mass. Our PLFA analysis indicated different lipid classes were abundant in each water mass, suggesting that distinct groups of microbes inhabit these water masses. 16S rRNA gene sequencing confirmed the presence of distinct microbial communities in each water mass. Taxa involved in autotrophic nitrogen cycling were enriched in the intermediate water mass suggesting that microbes in this water mass may be important to the nitrogen cycle of the Eastern Mediterranean. The Eastern Mediterranean also contains numerous active hydrocarbon seeps. We sampled above the North Alex Mud Volcano, in order to test the effect of these geological features on the microbial community in the adjacent water column. The community in the waters overlaying the mud volcano was distinct from other communities collected at similar depths and was enriched in known hydrocarbon degrading taxa. Our results demonstrate that physical phenomena such stratification as well as geological phenomena such as mud volcanoes strongly affect microbial community structure in the Eastern Mediterranean water column.
Techtmann, Stephen M.; Fortney, Julian L.; Ayers, Kati A.; Joyner, Dominique C.; Linley, Thomas D.; Pfiffner, Susan M.; Hazen, Terry C.
2015-01-01
The waters of the Eastern Mediterranean are characterized by unique physical and chemical properties within separate water masses occupying different depths. Distinct water masses are present throughout the oceans, which drive thermohaline circulation. These water masses may contain specific microbial assemblages. The goal of this study was to examine the effect of physical and geological phenomena on the microbial community of the Eastern Mediterranean water column. Chemical measurements were combined with phospholipid fatty acid (PLFA) analysis and high-throughput 16S rRNA sequencing to characterize the microbial community in the water column at five sites. We demonstrate that the chemistry and microbial community of the water column were stratified into three distinct water masses. The salinity and nutrient concentrations vary between these water masses. Nutrient concentrations increased with depth, and salinity was highest in the intermediate water mass. Our PLFA analysis indicated different lipid classes were abundant in each water mass, suggesting that distinct groups of microbes inhabit these water masses. 16S rRNA gene sequencing confirmed the presence of distinct microbial communities in each water mass. Taxa involved in autotrophic nitrogen cycling were enriched in the intermediate water mass suggesting that microbes in this water mass may be important to the nitrogen cycle of the Eastern Mediterranean. The Eastern Mediterranean also contains numerous active hydrocarbon seeps. We sampled above the North Alex Mud Volcano, in order to test the effect of these geological features on the microbial community in the adjacent water column. The community in the waters overlaying the mud volcano was distinct from other communities collected at similar depths and was enriched in known hydrocarbon degrading taxa. Our results demonstrate that physical phenomena such stratification as well as geological phenomena such as mud volcanoes strongly affect microbial community structure in the Eastern Mediterranean water column. PMID:25807542
Techtmann, Stephen M.; Fortney, Julian L.; Ayers, Kati A.; ...
2015-03-25
The waters of the Eastern Mediterranean are characterized by unique physical and chemical properties within separate water masses occupying different depths. Distinct water masses are present throughout the oceans, which drive thermohaline circulation. These water masses may contain specific microbial assemblages. The goal of this study was to examine the effect of physical and geological phenomena on the microbial community of the Eastern Mediterranean water column. Chemical measurements were combined with phospholipid fatty acid (PLFA) analysis and high-throughput 16S rRNA sequencing to characterize the microbial community in the water column at five sites. We demonstrate that the chemistry and microbialmore » community of the water column were stratified into three distinct water masses. The salinity and nutrient concentrations vary between these water masses. Nutrient concentrations increased with depth, and salinity was highest in the intermediate water mass. Our PLFA analysis indicated different lipid classes were abundant in each water mass, suggesting that distinct groups of microbes inhabit these water masses. 16S rRNA gene sequencing confirmed the presence of distinct microbial communities in each water mass. Taxa involved in autotrophic nitrogen cycling were enriched in the intermediate water mass suggesting that microbes in this water mass may be important to the nitrogen cycle of the Eastern Mediterranean. The Eastern Mediterranean also contains numerous active hydrocarbon seeps. We sampled above the North Alex Mud Volcano, in order to test the effect of these geological features on the microbial community in the adjacent water column. The community in the waters overlaying the mud volcano was distinct from other communities collected at similar depths and was enriched in known hydrocarbon degrading taxa. Furthermore, our results demonstrate that physical phenomena such stratification as well as geological phenomena such as mud volcanoes strongly affect microbial community structure in the Eastern Mediterranean water column.« less
NASA Astrophysics Data System (ADS)
Shanak, Siba; Helms, Volkhard
2014-12-01
Adenine and cytosine methylation are two important epigenetic modifications of DNA sequences at the levels of the genome and transcriptome. To characterize the differential roles of methylating adenine or cytosine with respect to their hydration properties, we performed conventional MD simulations and free energy perturbation calculations for two particular DNA sequences, namely the brain-derived neurotrophic factor (BDNF) promoter and the R.DpnI-bound DNA that are known to undergo methylation of C5-methyl cytosine and N6-methyl adenine, respectively. We found that a single methylated cytosine has a clearly favorable hydration free energy over cytosine since the attached methyl group has a slightly polar character. In contrast, capping the strongly polar N6 of adenine with a methyl group gives a slightly unfavorable contribution to its free energy of solvation. Performing the same demethylation in the context of a DNA double-strand gave quite similar results for the more solvent-accessible cytosine but much more unfavorable results for the rather buried adenine. Interestingly, the same demethylation reactions are far more unfavorable when performed in the context of the opposite (BDNF or R.DpnI target) sequence. This suggests a natural preference for methylation in a specific sequence context. In addition, free energy calculations for demethylating adenine or cytosine in the context of B-DNA vs. Z-DNA suggest that the conformational B-Z transition of DNA transition is rather a property of cytosine methylated sequences but is not preferable for the adenine-methylated sequences investigated here.
Shanak, Siba; Helms, Volkhard
2014-12-14
Adenine and cytosine methylation are two important epigenetic modifications of DNA sequences at the levels of the genome and transcriptome. To characterize the differential roles of methylating adenine or cytosine with respect to their hydration properties, we performed conventional MD simulations and free energy perturbation calculations for two particular DNA sequences, namely the brain-derived neurotrophic factor (BDNF) promoter and the R.DpnI-bound DNA that are known to undergo methylation of C5-methyl cytosine and N6-methyl adenine, respectively. We found that a single methylated cytosine has a clearly favorable hydration free energy over cytosine since the attached methyl group has a slightly polar character. In contrast, capping the strongly polar N6 of adenine with a methyl group gives a slightly unfavorable contribution to its free energy of solvation. Performing the same demethylation in the context of a DNA double-strand gave quite similar results for the more solvent-accessible cytosine but much more unfavorable results for the rather buried adenine. Interestingly, the same demethylation reactions are far more unfavorable when performed in the context of the opposite (BDNF or R.DpnI target) sequence. This suggests a natural preference for methylation in a specific sequence context. In addition, free energy calculations for demethylating adenine or cytosine in the context of B-DNA vs. Z-DNA suggest that the conformational B-Z transition of DNA transition is rather a property of cytosine methylated sequences but is not preferable for the adenine-methylated sequences investigated here.
ERIC Educational Resources Information Center
Pan, Chien-Yu; Tsai, Chia-Liang; Chu, Chia-Hua; Hsieh, Kai-Wen
2011-01-01
The main purpose of this study was to compare the objectively measured physical activity (PA) and the motivation process between adolescents with (n = 25) and without (n = 75) autism spectrum disorders (ASD) in inclusive physical education (PE); and assess the associations of the PA levels to a sequence of motivational processes. Independent…
Becker, Y; Asher, Y; Tabor, E; Davidson, I; Malkinson, M
1994-01-01
A DNA segment of the MDV-1 BamHI-D fragment was sequenced, and the open reading frames (ORFs) present in the 4556 nucleotide fragment were analyzed by computer programs. Computer analysis identified 19 putative ORFs in the sequence ranging from a coding capacity of 37 amino acids (aa) (ORF-1a) to 684aa (ORF-1). The special properties of four ORFs (1a, 1, 2, and 3) were investigated. Two adjacent ORFs, ORF-1a and ORF-1, were found by computer analysis to have the properties of two introns encoding a glycoprotein: ORF-1a encodes an aa sequence with the properties of a signal peptide, and ORF-1 encodes a polypeptide with a membrane anchor domain and putative N-glycosylation sites in the aa sequence. ORF-1a and ORF-1 were found to be transcribed in MDV-1-infected cells. Two RNA transcripts were detected: a precursor RNA and its spliced form. Both are transcribed from a promoter located 5' to ORF-1a, and splice donor and acceptor sites are used to splice the mRNA after cleavage of a 71-nucleotide sequence. This finding suggest that ORF-1a and ORF-1 are two introns of a new MDV-1 glycoprotein gene. The DNA sequence containing ORF-1 was transiently expressed in COS-1 cells, and the viral protein produced in these cells was found to react with anti-MDV serotype-1 Antigen B-specific monoclonal antibodies. These studies indicate that the protein encoded by ORF-1 has antigenic properties resembling Antigen B of MDV-1. A gene homologous to ORF-1 was detected in the genome of both MDV-2(SB1) and MDV-3(HVT), which serve as commercial vaccine strains. Two additional ORFs were noted in the 4556 nucleotide sequence: ORF-2, which encodes a 333 aa polypeptide initiating in the UL and terminating in the TRL prior to the putative origin of replication, and ORF-3, which encodes a 155 aa polypeptide that is partly homologous to the phosphoprotein pp38 encoded by the BamHI-H sequence. The 65 N-terminal aa of the two gene products are identical, both being derived from the nucleotide sequences in the TRL and IRL, respectively. Additional homologous aa sequences are the hydrophobic aa domain in the middle of both proteins. The functions of ORF-2, ORF-3, and additional ORFs are under study.
Ott, Alina; Trautschold, Brian; Sandhu, Devinder
2011-01-01
Soybean is a major crop that is an important source of oil and proteins. A number of genetic linkage maps have been developed in soybean. Specifically, hundreds of simple sequence repeat (SSR) markers have been developed and mapped. Recent sequencing of the soybean genome resulted in the generation of vast amounts of genetic information. The objectives of this investigation were to use SSR markers in developing a connection between genetic and physical maps and to determine the physical distribution of recombination on soybean chromosomes. A total of 2,188 SSRs were used for sequence-based physical localization on soybean chromosomes. Linkage information was used from different maps to create an integrated genetic map. Comparison of the integrated genetic linkage maps and sequence based physical maps revealed that the distal 25% of each chromosome was the most marker-dense, containing an average of 47.4% of the SSR markers and 50.2% of the genes. The proximal 25% of each chromosome contained only 7.4% of the markers and 6.7% of the genes. At the whole genome level, the marker density and gene density showed a high correlation (R(2)) of 0.64 and 0.83, respectively with the physical distance from the centromere. Recombination followed a similar pattern with comparisons indicating that recombination is high in telomeric regions, though the correlation between crossover frequency and distance from the centromeres is low (R(2) = 0.21). Most of the centromeric regions were low in recombination. The crossover frequency for the entire soybean genome was 7.2%, with extremes much higher and lower than average. The number of recombination hotspots varied from 1 to 12 per chromosome. A high correlation of 0.83 between the distribution of SSR markers and genes suggested close association of SSRs with genes. The knowledge of distribution of recombination on chromosomes may be applied in characterizing and targeting genes.
2012-01-01
Background The ovine Major Histocompatibility Complex (MHC) harbors genes involved in overall resistance/susceptibility of the host to infectious diseases. Compared to human and mouse, the ovine MHC is interrupted by a large piece of autosome insertion via a hypothetical chromosome inversion that constitutes ~25% of ovine chromosome 20. The evolutionary consequence of such an inversion and an insertion (inversion/insertion) in relation to MHC function remains unknown. We previously constructed a BAC clone physical map for the ovine MHC exclusive of the insertion region. Here we report the construction of a high-density physical map covering the autosome insertion in order to address the question of what the inversion/insertion had to do with ruminants during the MHC evolution. Results A total of 119 pairs of comparative bovine oligo primers were utilized to screen an ovine BAC library for positive clones and the orders and overlapping relationships of the identified clones were determined by DNA fingerprinting, BAC-end sequencing, and sequence-specific PCR. A total of 368 positive BAC clones were identified and 108 of the effective clones were ordered into an overlapping BAC contig to cover the consensus region between ovine MHC class IIa and IIb. Therefore, a continuous physical map covering the entire ovine autosome inversion/insertion region was successfully constructed. The map confirmed the bovine sequence assembly for the same homologous region. The DNA sequences of 185 BAC-ends have been deposited into NCBI database with the access numbers HR309252 through HR309068, corresponding to dbGSS ID 30164010 through 30163826. Conclusions We have constructed a high-density BAC clone physical map for the ovine autosome inversion/insertion between the MHC class IIa and IIb. The entire ovine MHC region is now fully covered by a continuous BAC clone contig. The physical map we generated will facilitate MHC functional studies in the ovine, as well as the comparative MHC evolution in ruminants. PMID:22897909
Library construction for next-generation sequencing: Overviews and challenges
Head, Steven R.; Komori, H. Kiyomi; LaMere, Sarah A.; Whisenant, Thomas; Van Nieuwerburgh, Filip; Salomon, Daniel R.; Ordoukhanian, Phillip
2014-01-01
High-throughput sequencing, also known as next-generation sequencing (NGS), has revolutionized genomic research. In recent years, NGS technology has steadily improved, with costs dropping and the number and range of sequencing applications increasing exponentially. Here, we examine the critical role of sequencing library quality and consider important challenges when preparing NGS libraries from DNA and RNA sources. Factors such as the quantity and physical characteristics of the RNA or DNA source material as well as the desired application (i.e., genome sequencing, targeted sequencing, RNA-seq, ChIP-seq, RIP-seq, and methylation) are addressed in the context of preparing high quality sequencing libraries. In addition, the current methods for preparing NGS libraries from single cells are also discussed. PMID:24502796
Scoring-and-unfolding trimmed tree assembler: concepts, constructs and comparisons.
Narzisi, Giuseppe; Mishra, Bud
2011-01-15
Mired by its connection to a well-known -complete combinatorial optimization problem-namely, the Shortest Common Superstring Problem (SCSP)-historically, the whole-genome sequence assembly (WGSA) problem has been assumed to be amenable only to greedy and heuristic methods. By placing efficiency as their first priority, these methods opted to rely only on local searches, and are thus inherently approximate, ambiguous or error prone, especially, for genomes with complex structures. Furthermore, since choice of the best heuristics depended critically on the properties of (e.g. errors in) the input data and the available long range information, these approaches hindered designing an error free WGSA pipeline. We dispense with the idea of limiting the solutions to just the approximated ones, and instead favor an approach that could potentially lead to an exhaustive (exponential-time) search of all possible layouts. Its computational complexity thus must be tamed through a constrained search (Branch-and-Bound) and quick identification and pruning of implausible overlays. For his purpose, such a method necessarily relies on a set of score functions (oracles) that can combine different structural properties (e.g. transitivity, coverage, physical maps, etc.). We give a detailed description of this novel assembly framework, referred to as Scoring-and-Unfolding Trimmed Tree Assembler (SUTTA), and present experimental results on several bacterial genomes using next-generation sequencing technology data. We also report experimental evidence that the assembly quality strongly depends on the choice of the minimum overlap parameter k. SUTTA's binaries are freely available to non-profit institutions for research and educational purposes at http://www.bioinformatics.nyu.edu.
Monitoring of the Physical and Chemical Properties of a Gasoline Engine Oil during Its Usage
Rahimi, Behnam; Semnani, Abolfazl; Nezamzadeh-Ejhieh, Alireza; Shakoori Langeroodi, Hamid; Hakim Davood, Massoud
2012-01-01
Physicochemical properties of a mineral-based gasoline engine oil have been monitored at 0, 500, 1000, 2000, 3500, 6000, 8500, and 11500 kilometer of operation. Tracing has been performed by inductively coupled plasma and some other techniques. At each series of measurements, the concentrations of twenty four elements as well as physical properties such as: viscosity at 40 and 100°C; viscosity index; flash point; pour point; specific gravity; color; total acid and base numbers; water content have been determined. The results are indicative of the decreasing trend in concentration of additive elements and increasing in concentration for wear elements. Different trends have been observed for various physical properties. The possible reasons for variations in physical and chemical properties have been discussed. PMID:22567569
Sequence Factorial of "g"-Gonal Numbers
ERIC Educational Resources Information Center
Asiru, Muniru A.
2013-01-01
The gamma function, which has the property to interpolate the factorial whenever the argument is an integer, is a special case (the case "g"?=?2) of the general term of the sequence factorial of "g"-gonal numbers. In relation to this special case, a formula for calculating the general term of the sequence factorial of any…
Andreu, Glòria; Vidal, Teresa
2014-01-01
Enzymatic delignification with laccase from Trametes villosa used in combination with chemical mediators (acetosyringone, acetovanillone and 1-hydroxybenzotriazole) to improve the totally chlorine-free (TCF) bleaching of kenaf pulp was studied. The best final pulp properties were obtained by using an LHBTQPo sequence developed by incorporating a laccase-mediator stage into an industrial bleaching sequence involving chelation and peroxide stages. The new sequence resulted in increased kenaf pulp delignification (90.4%) and brightness (77.2%ISO) relative to a conventional TCF chemical sequence (74.5% delignification and 74.5% brightness). Also, the sequence provided bleached kenaf fibers with high cellulose content (pulp viscosity of 890 g·mL(-1) vs 660 g·mL(-1)). Scanning electron micrographs revealed that xylanase altered fiber surfaces and facilitated reagent access as a result. However, the LHBTX (xylanase) stage removed 21% of hexenuronic acids in kenaf pulp. These recalcitrant compounds spent additional bleaching reagents and affected pulp properties after peroxide stage. Copyright © 2013 Elsevier Ltd. All rights reserved.