Compositions and methods for the expression of selenoproteins in eukaryotic cells
Gladyshev, Vadim [Lincoln, NE; Novoselov, Sergey [Puschino, RU
2012-09-25
Recombinant nucleic acid constructs for the efficient expression of eukaryotic selenoproteins and related methods for production of recombinant selenoproteins are provided. The nucleic acid constructs comprise novel selenocysteine insertion sequence (SECIS) elements. Certain novel SECIS elements of the invention contain non-canonical quartet sequences. Other novel SECIS elements provided by the invention are chimeric SECIS elements comprising a canonical SECIS element that contains a non-canonical quartet sequence and chimeric SECIS elements comprising a non-canonical SECIS element that contains a canonical quartet sequence. The novel SECIS elements of the invention facilitate the insertion of selenocysteine residues into recombinant polypeptides.
Mix, Heiko; Lobanov, Alexey V.; Gladyshev, Vadim N.
2007-01-01
Expression of selenocysteine (Sec)-containing proteins requires the presence of a cis-acting mRNA structure, called selenocysteine insertion sequence (SECIS) element. In bacteria, this structure is located in the coding region immediately downstream of the Sec-encoding UGA codon, whereas in eukaryotes a completely different SECIS element has evolved in the 3′-untranslated region. Here, we report that SECIS elements in the coding regions of selenoprotein mRNAs support Sec insertion in higher eukaryotes. Comprehensive computational analysis of all available viral genomes revealed a SECIS element within the ORF of a naturally occurring selenoprotein homolog of glutathione peroxidase 4 in fowlpox virus. The fowlpox SECIS element supported Sec insertion when expressed in mammalian cells as part of the coding region of viral or mammalian selenoproteins. In addition, readthrough at UGA was observed when the viral SECIS element was located upstream of the Sec codon. We also demonstrate successful de novo design of a functional SECIS element in the coding region of a mammalian selenoprotein. Our data provide evidence that the location of the SECIS element in the untranslated region is not a functional necessity but rather is an evolutionary adaptation to enable a more efficient synthesis of selenoproteins. PMID:17169995
Characterization of the UGA-recoding and SECIS-binding activities of SECIS-binding protein 2.
Bubenik, Jodi L; Miniard, Angela C; Driscoll, Donna M
2014-01-01
Selenium, a micronutrient, is primarily incorporated into human physiology as selenocysteine (Sec). The 25 Sec-containing proteins in humans are known as selenoproteins. Their synthesis depends on the translational recoding of the UGA stop codon to allow Sec insertion. This requires a stem-loop structure in the 3' untranslated region of eukaryotic mRNAs known as the Selenocysteine Insertion Sequence (SECIS). The SECIS is recognized by SECIS-binding protein 2 (SBP2) and this RNA:protein interaction is essential for UGA recoding to occur. Genetic mutations cause SBP2 deficiency in humans, resulting in a broad set of symptoms due to differential effects on individual selenoproteins. Progress on understanding the different phenotypes requires developing robust tools to investigate SBP2 structure and function. In this study we demonstrate that SBP2 protein produced by in vitro translation discriminates among SECIS elements in a competitive UGA recoding assay and has a much higher specific activity than bacterially expressed protein. We also show that a purified recombinant protein encompassing amino acids 517-777 of SBP2 binds to SECIS elements with high affinity and selectivity. The affinity of the SBP2:SECIS interaction correlated with the ability of a SECIS to compete for UGA recoding activity in vitro. The identification of a 250 amino acid sequence that mediates specific, selective SECIS-binding will facilitate future structural studies of the SBP2:SECIS complex. Finally, we identify an evolutionarily conserved core cysteine signature in SBP2 sequences from the vertebrate lineage. Mutation of multiple, but not single, cysteines impaired SECIS-binding but did not affect protein localization in cells.
Lobanov, Alexey V.; Delgado, Cesar; Rahlfs, Stefan; Novoselov, Sergey V.; Kryukov, Gregory V.; Gromer, Stephan; Hatfield, Dolph L.; Becker, Katja; Gladyshev, Vadim N.
2006-01-01
The use of selenocysteine (Sec) as the 21st amino acid in the genetic code has been described in all three major domains of life. However, within eukaryotes, selenoproteins are only known in animals and algae. In this study, we characterized selenoproteomes and Sec insertion systems in protozoan Apicomplexa parasites. We found that among these organisms, Plasmodium and Toxoplasma utilized Sec, whereas Cryptosporidium did not. However, Plasmodium had no homologs of known selenoproteins. By searching computationally for evolutionarily conserved selenocysteine insertion sequence (SECIS) elements, which are RNA structures involved in Sec insertion, we identified four unique Plasmodium falciparum selenoprotein genes. These selenoproteins were incorrectly annotated in PlasmoDB, were conserved in other Plasmodia and had no detectable homologs in other species. We provide evidence that two Plasmodium SECIS elements supported Sec insertion into parasite and endogenous selenoproteins when they were expressed in mammalian cells, demonstrating that the Plasmodium SECIS elements are functional and indicating conservation of Sec insertion between Apicomplexa and animals. Dependence of the plasmodial parasites on selenium suggests possible strategies for antimalarial drug development. PMID:16428245
Argemi, Xavier; Nanoukon, Chimène; Affolabi, Dissou; Keller, Daniel; Hansmann, Yves; Riegel, Philippe; Baba-Moussa, Lamine; Prévost, Gilles
2018-02-25
Staphylococcus epidermidis is a leading cause of nosocomial infections, majorly resistant to beta-lactam antibiotics, and may transfer several mobile genetic elements among the members of its own species, as well as to Staphylococcus aureus ; however, a genetic exchange from S. aureus to S. epidermidis remains controversial. We recently identified two pathogenic clinical strains of S. epidermidis that produce a staphylococcal enterotoxin C3-like (SEC) similar to that by S. aureus pathogenicity islands. This study aimed to determine the genetic environment of the SEC-coding sequence and to identify the mobile genetic elements. Whole-genome sequencing and annotation of the S. epidermidis strains were performed using Illumina technology and a bioinformatics pipeline for assembly, which provided evidence that the SEC-coding sequences were located in a composite pathogenicity island that was previously described in the S. epidermidis strain FRI909, called SePI-1/SeCI-1, with 83.8-89.7% nucleotide similarity. Various other plasmids were identified, particularly p_3_95 and p_4_95, which carry antibiotic resistance genes ( hsrA and dfrG , respectively), and share homologies with SAP085A and pUSA04-2-SUR11, two plasmids described in S. aureus . Eventually, one complete prophage was identified, ΦSE90, sharing 30 out of 52 coding sequences with the Acinetobacter phage vB_AbaM_IME200. Thus, the SePI-1/SeCI-1 pathogenicity island was identified in two pathogenic strains of S. epidermidis that produced a SEC enterotoxin causing septic shock. These findings suggest the existence of in vivo genetic exchange from S. aureus to S. epidermidis .
Nanoukon, Chimène; Affolabi, Dissou; Keller, Daniel; Hansmann, Yves; Riegel, Philippe; Baba-Moussa, Lamine; Prévost, Gilles
2018-01-01
Staphylococcus epidermidis is a leading cause of nosocomial infections, majorly resistant to beta-lactam antibiotics, and may transfer several mobile genetic elements among the members of its own species, as well as to Staphylococcus aureus; however, a genetic exchange from S. aureus to S. epidermidis remains controversial. We recently identified two pathogenic clinical strains of S. epidermidis that produce a staphylococcal enterotoxin C3-like (SEC) similar to that by S. aureus pathogenicity islands. This study aimed to determine the genetic environment of the SEC-coding sequence and to identify the mobile genetic elements. Whole-genome sequencing and annotation of the S. epidermidis strains were performed using Illumina technology and a bioinformatics pipeline for assembly, which provided evidence that the SEC-coding sequences were located in a composite pathogenicity island that was previously described in the S. epidermidis strain FRI909, called SePI-1/SeCI-1, with 83.8–89.7% nucleotide similarity. Various other plasmids were identified, particularly p_3_95 and p_4_95, which carry antibiotic resistance genes (hsrA and dfrG, respectively), and share homologies with SAP085A and pUSA04-2-SUR11, two plasmids described in S. aureus. Eventually, one complete prophage was identified, ΦSE90, sharing 30 out of 52 coding sequences with the Acinetobacter phage vB_AbaM_IME200. Thus, the SePI-1/SeCI-1 pathogenicity island was identified in two pathogenic strains of S. epidermidis that produced a SEC enterotoxin causing septic shock. These findings suggest the existence of in vivo genetic exchange from S. aureus to S. epidermidis. PMID:29495323
Fajardo, Diego; Schlautman, Brandon; Steffan, Shawn; Polashock, James; Vorsa, Nicholi; Zalapa, Juan
2014-02-25
This is the first de novo assembly and annotation of a complete mitochondrial genome in the Ericales order from the American cranberry (Vaccinium macrocarpon Ait.). Moreover, only four complete Asterid mitochondrial genomes have been made publicly available. The cranberry mitochondrial genome was assembled and reconstructed from whole genome 454 Roche GS-FLX and Illumina shotgun sequences. Compared with other Asterids, the reconstruction of the genome revealed an average size mitochondrion (459,678 nt) with relatively little repetitive sequences and DNA of plastid origin. The complete mitochondrial genome of cranberry was annotated obtaining a total of 34 genes classified based on their putative function, plus three ribosomal RNAs, and 17 transfer RNAs. Maternal organellar cranberry inheritance was inferred by analyzing gene variation in the cranberry mitochondria and plastid genomes. The annotation of cranberry mitochondrial genome revealed the presence of two copies of tRNA-Sec and a selenocysteine insertion sequence (SECIS) element which were lost in plants during evolution. This is the first report of a land plant possessing selenocysteine insertion machinery at the sequence level. Published by Elsevier B.V.
Shchedrina, Valentina A.; Novoselov, Sergey V.; Malinouski, Mikalai Yu.; Gladyshev, Vadim N.
2007-01-01
Selenocysteine (Sec, U) insertion into proteins is directed by translational recoding of specific UGA codons located upstream of a stem-loop structure known as Sec insertion sequence (SECIS) element. Selenoproteins with known functions are oxidoreductases containing a single redox-active Sec in their active sites. In this work, we identified a family of selenoproteins, designated SelL, containing two Sec separated by two other residues to form a UxxU motif. SelL proteins show an unusual occurrence, being present in diverse aquatic organisms, including fish, invertebrates, and marine bacteria. Both eukaryotic and bacterial SelL genes use single SECIS elements for insertion of two Sec. In eukaryotes, the SECIS is located in the 3′ UTR, whereas the bacterial SelL SECIS is within a coding region and positioned at a distance that supports the insertion of either of the two Sec or both of these residues. SelL proteins possess a thioredoxin-like fold wherein the UxxU motif corresponds to the catalytic CxxC motif in thioredoxins, suggesting a redox function of SelL proteins. Distantly related SelL-like proteins were also identified in a variety of organisms that had either one or both Sec replaced with Cys. Danio rerio SelL, transiently expressed in mammalian cells, incorporated two Sec and localized to the cytosol. In these cells, it occurred in an oxidized form and was not reducible by DTT. In a bacterial expression system, we directly demonstrated the formation of a diselenide bond between the two Sec, establishing it as the first diselenide bond found in a natural protein. PMID:17715293
Lee, I-M; Bottner-Parker, K D; Zhao, Y; Bertaccini, A; Davis, R E
2012-09-01
The pigeon pea witches'-broom phytoplasma group (16SrIX) comprises diverse strains that cause numerous diseases in leguminous trees and herbaceous crops, vegetables, a fruit, a nut tree and a forest tree. At least 14 strains have been reported worldwide. Comparative phylogenetic analyses of the highly conserved 16S rRNA gene and the moderately conserved rplV (rpl22)-rpsC (rps3) and secY genes indicated that the 16SrIX group consists of at least six distinct genetic lineages. Some of these lineages cannot be readily differentiated based on analysis of 16S rRNA gene sequences alone. The relative genetic distances among these closely related lineages were better assessed by including more variable genes [e.g. ribosomal protein (rp) and secY genes]. The present study demonstrated that virtual RFLP analyses using rp and secY gene sequences allowed unambiguous identification of such lineages. A coding system is proposed to designate each distinct rp and secY subgroup in the 16SrIX group.
Toyoda, N; Kleinhaus, N; Larsen, P R
1996-06-01
We analyzed the exon-intron structure of the human type 1 deiodinase gene (dio1) and compared it with that of a patient with suspected congenital type 1 deiodinase (D1) deficiency. The hdio1 gene is identical in exon-intron arrangement to the mouse gene, with coding sequences and a selenocysteine insertion sequence (SECIS) element contained in four exons. There were no mutations in the sequences of exons 1-4 of the patient's genomic DNA. Functional studies by transient expression techniques showed no difference in basal promoter activity or T3 responsiveness between the patient's and the normal dio1 gene. A structural abnormality in the dio1 gene is not a likely explanation for this patient's D1-deficient phenotype.
Hamond, C; Pestana, C P; Medeiros, M A; Lilenbaum, W
2016-01-01
The aim of this study was to identify Leptospira in urine samples of cattle by direct sequencing of the secY gene. The validity of this approach was assessed using ten Leptospira strains obtained from cattle in Brazil and 77 DNA samples previously extracted from cattle urine, that were positive by PCR for the genus-specific lipL32 gene of Leptospira. Direct sequencing identified 24 (31·1%) interpretable secY sequences and these were identical to those obtained from direct DNA sequencing of the urine samples from which they were recovered. Phylogenetic analyses identified four species: L. interrogans, L. borgpetersenii, L. noguchii, and L. santarosai with the most prevalent genotypes being associated with L. borgpetersenii. While direct sequencing cannot, as yet, replace culturing of leptospires, it is a valid additional tool for epidemiological studies. An unexpected finding from this study was the genetic diversity of Leptospira infecting Brazilian cattle.
Selenium. Role of the Essential Metalloid in Health
Kurokawa, Suguru; Berry, Marla J.
2015-01-01
Selenium is an essential micronutrient in mammals, but is also recognized as toxic in excess. It is a non-metal with properties that are intermediate between the chalcogen elements sulfur and tellurium. Selenium exerts its biological functions through selenoproteins. Selenoproteins contain selenium in the form of the 21st amino acid, selenocysteine (Sec), which is an analog of cysteine with the sulfur-containing side chain replaced by a Se-containing side chain. Sec is encoded by the codon UGA, which is one of three termination codons for mRNA translation in non-selenoprotein genes. Recognition of the UGA codon as a Sec insertion site instead of stop requires a Sec insertion sequence (SECIS) element in selenoprotein mRNAs and a unique selenocysteyl-tRNA, both of which are recognized by specialized protein factors. Unlike the 20 standard amino acids, Sec is biosynthesized from serine on its tRNA. Twenty-five selenoproteins are encoded in the human genome. Most of the selenoprotein genes were discovered by bioinformatics approaches, searching for SECIS elements downstream of in-frame UGA codons. Sec has been described as having stronger nucleophilic and electrophilic properties than cysteine, and Sec is present in the catalytic site of all selenoenzymes. Most selenoproteins, whose functions are known, are involved in redox systems and signaling pathways. However, several selenoproteins are not well characterized in terms of their function. The selenium field has grown dramatically in the last few decades, and research on selenium biology is providing extensive new information regarding its importance for human health. PMID:24470102
Loureiro, A P; Hamond, C; Pinto, P; Bremont, S; Bourhy, P; Lilenbaum, W
2016-04-01
Bovine leptospirosis causes substantial reproductive failure in cattle, mainly due to infections with serovar (sv) Hardjo infection. Notwithstanding, other serovars from the serogroup (sg) Sejroe could also have important roles in bovine leptospirosis. The objective was to investigate genetic diversity of serogroup Sejroe isolates obtained from asymptomatic cattle in the state of Rio de Janeiro, Brazil. Urine and vaginal fluid (VF) were collected from clinically healthy cattle immediately after slaughter. Five isolates were recovered and characterized (serogrouping) as belonging to sg Sejroe. Sequencing of rrs and secY genes further identified them as Leptospira santarosai. Analysis of secY sequences indicated a high level of sequence homology to sv Guaricura strains. Based on culture and sequence data, we inferred that other members of sg Sejroe may be important in bovine leptospiral infection, particularly genotypes of L. santarosai serovar Guaricura. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kim, In-Cheol; Hur, Seung-Ho; Park, Nam-Hee; Jun, Dong-Hwan; Cho, Yun-Kyeong; Nam, Chang-Wook; Kim, Hyungseop; Han, Seong-Wook; Choi, Sae-Young; Kim, Yoon-Nyun; Kim, Kwon-Bae
2011-04-14
Coronary angiography (CAG) is an invasive diagnostic procedure, which could lead to procedure related complications. One of the well known post-procedural complications is cerebral embolic infarction with or without symptoms. Silent embolic cerebral infarction (SECI) has clinical significance because it can progress to a decline in cognitive function and increase the risk of dementia in the long term. The aim of this study was to detect the incidence and predictors of SECI after diagnostic CAG using diffusion-weighted magnetic resonance imaging (DW-MRI). A total of 197 patients with coronary artery disease who underwent DW-MRI for evaluation of intracranial vasculopathy before coronary artery bypass graft surgery were retrospectively enrolled in the present study. DW-MRI was performed within 48 h after diagnostic CAG. SECI was diagnosed as presence of focal bright high signal intensity in DW-MRI. Patients were divided into groups according to presence/absence of SECI (+ SECI vs. - SECI, respectively). The clinical and angiographic characteristics were analyzed and independent predictors were evaluated. Of the 197 patients, SECI occurred in 20 patients (10.2%) after diagnostic CAG. Age, female gender, frequency of underlying atrial fibrillation, extent of coronary disease, and fluoroscopic time during diagnostic CAG were not different between the + SECI and - SECI groups. Left ventricular ejection fraction was significantly lower in the + SECI group than in the - SECI group (45.9 ± 8.5% vs. 51.4 ± 13.1%, p=0.014) and performance rate of internal mammary artery (IMA) angiography was significantly higher in the + SECI group compared with the - SECI group (85% vs. 37.2%, p<0.001). By multivariate analysis, performing IMA angiography was the only predictor of SECI (OR=14.642; 95% CI=3.201 to 66.980, p=0.001). The incidence of SECI after diagnostic CAG was not infrequent. Diagnostic CAG with IMA angiography may increase the risk of SECI. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Blue, Alan S.; Fontijn, Arthur
2001-09-01
Semiempirical configuration interaction (SECI) theory to predict activation barriers, E, as given by k(T)=ATn exp(-E(RT), has been applied to homologous series of lanthanide (LN) and transition metal (TM) atom oxidation reactions. This was achieved by considering as homologous series reactions of elements differing only by the number of electrons in one subshell. Comparison between SECI and experimental results leads to an average deviation for the LN+N2O reactions of 0.66 kJ mol-1, and up to 5.5 kJ mol-1 for other series. Thirty-one activation barriers are reported.
Calléja, F; Tandeau de Marsac, N; Coursin, T; van Ormondt, H; de Waard, A
1985-09-25
A new sequence-specific endonuclease from the cyanobacterium Synechocystis species PCC 6701 has been purified and characterized. This enzyme, SecI, is unique in recognizing the nucleotide sequence: 5' -CCNNGG-3' 3' -GGNNCC-5' and cleaves it at the position indicated by the symbol. Two other restriction endonucleases, SecII and SecIII, found in this organism are isoschizomers of MspI and MstII, respectively.
Tong, Xinzhao; Yuan, Linxi; Luo, Lei; Yin, Xuebin
2014-01-01
A novel selenium- (Se-) hyperaccumulating plant, Cardamine hupingshanesis, accumulating Se as a form of SeCys2, was discovered in Enshi, Hubei, China, which could not be explained by present selenocysteine methyltransferase (SMT) theory. However, it is interesting to investigate if rhizosphere bacteria play some roles during SeCys2 accumulation. Here, one Se-tolerant rhizosphere strain, Microbacterium oxydans, was isolated from C. hupingshanesis. Phylogenetic analysis and 16S rRNA gene sequences determined the strain as a kind of Gram positive bacillus and belonged to the family Brevibacterium frigoritolerans. Furthermore, Se tolerance test indicated the strain could grow in extreme high Se level of 15.0 mg Se L(-1). When exposed to 1.5 mg Se L(-1), SeCys2 was the predominant Se species in the bacteria, consistent with the Se species in C. hupingshanesis. This coincidence might reveal that this strain played some positive effect in SeCys2 accumulation of C. hupingshanesis. Moreover, when exposed to 1.5 mg Se L(-1) or 15.0 mg Se L(-1), As absorption diminished in the logarithmic phase. In contrast, As absorption increased when exposed to 7.5 mg Se L(-1), indicating As metabolism processes could be affected by Se on this strain. The present study provided a sight on the role of rhizosphere bacteria during Se accumulation for Se-hyperaccumulating plant.
Bauer, Benedikt W; Shemesh, Tom; Chen, Yu; Rapoport, Tom A
2014-06-05
In bacteria, most secretory proteins are translocated across the plasma membrane by the interplay of the SecA ATPase and the SecY channel. How SecA moves a broad range of polypeptide substrates is only poorly understood. Here we show that SecA moves polypeptides through the SecY channel by a "push and slide" mechanism. In its ATP-bound state, SecA interacts through a two-helix finger with a subset of amino acids in a substrate, pushing them into the channel. A polypeptide can also passively slide back and forth when SecA is in the predominant ADP-bound state or when SecA encounters a poorly interacting amino acid in its ATP-bound state. SecA performs multiple rounds of ATP hydrolysis before dissociating from SecY. The proposed push and slide mechanism is supported by a mathematical model and explains how SecA allows translocation of a wide range of polypeptides. This mechanism may also apply to hexameric polypeptide-translocating ATPases. Copyright © 2014 Elsevier Inc. All rights reserved.
Calléja, F; Tandeau de Marsac, N; Coursin, T; van Ormondt, H; de Waard, A
1985-01-01
A new sequence-specific endonuclease from the cyanobacterium Synechocystis species PCC 6701 has been purified and characterized. This enzyme, SecI, is unique in recognizing the nucleotide sequence: 5' -CCNNGG-3' 3' -GGNNCC-5' and cleaves it at the position indicated by the symbol. Two other restriction endonucleases, SecII and SecIII, found in this organism are isoschizomers of MspI and MstII, respectively. Images PMID:2997722
Yuan, Linxi; Luo, Lei; Yin, Xuebin
2014-01-01
A novel selenium- (Se-) hyperaccumulating plant, Cardamine hupingshanesis, accumulating Se as a form of SeCys2, was discovered in Enshi, Hubei, China, which could not be explained by present selenocysteine methyltransferase (SMT) theory. However, it is interesting to investigate if rhizosphere bacteria play some roles during SeCys2 accumulation. Here, one Se-tolerant rhizosphere strain, Microbacterium oxydans, was isolated from C. hupingshanesis. Phylogenetic analysis and 16S rRNA gene sequences determined the strain as a kind of Gram positive bacillus and belonged to the family Brevibacterium frigoritolerans. Furthermore, Se tolerance test indicated the strain could grow in extreme high Se level of 15.0 mg Se L−1. When exposed to 1.5 mg Se L−1, SeCys2 was the predominant Se species in the bacteria, consistent with the Se species in C. hupingshanesis. This coincidence might reveal that this strain played some positive effect in SeCys2 accumulation of C. hupingshanesis. Moreover, when exposed to 1.5 mg Se L−1 or 15.0 mg Se L−1, As absorption diminished in the logarithmic phase. In contrast, As absorption increased when exposed to 7.5 mg Se L−1, indicating As metabolism processes could be affected by Se on this strain. The present study provided a sight on the role of rhizosphere bacteria during Se accumulation for Se-hyperaccumulating plant. PMID:25478582
USDA-ARS?s Scientific Manuscript database
The American cranberry (Vaccinium macrocarpon Ait.) mitochondrial genome was assembled and reconstructed from whole genome 454 Roche GS-FLX and Illumina shotgun sequences. Compared with other Asterids, the reconstruction of the genome revealed an average size mitochondrion (459,678 nt) with comparat...
Millimeter-wave Interferometric Sensing
2011-09-01
THE SECY OF DEFNS ATTN ODDRE (R&AT) THE PENTAGON WASHINGTON DC 20301-3080 1 CD OFC OF THE SECY OF DEFNS ATTN OUSD(A&T) 3080 DEFENSE...PENTAGON WASHINGTON DC 20301-7100 1 UNDER SECY OF DEFNS FOR RSRCH & ENGRG ATTN RSRCH & ADVNCD TECHLGY DEPART OF DEFNS
Deveci, Onur Sinan; Celik, Aziz Inan; Ikikardes, Firat; Ozmen, Caglar; Caglıyan, Caglar Emre; Deniz, Ali; Bicakci, Kenan; Bicakci, Sebnem; Evlice, Ahmet; Demir, Turgay; Kanadasi, Mehmet; Demir, Mesut; Demirtas, Mustafa
2016-05-01
Silent embolic cerebral infarction (SECI) is a major complication of coronary angiography (CAG) and percutaneous coronary intervention (PCI). Patients with stable coronary artery disease (CAD) who underwent CAG with or without PCI were recruited. Cerebral diffusion-weighted magnetic resonance imaging was performed for SECI within 24 hours. Clinical and angiographic characteristics were compared between patients with and without SECI. Silent embolic cerebral infarction occurred in 12 (12%) of the 101 patients. Age, total cholesterol, SYNTAX score (SS), and coronary artery bypass history were greater in the SECI(+) group (65 ± 10 vs 58 ± 11 years,P= .037; 223 ± 85 vs 173 ± 80 mg/dL,P= .048; 30.1 ± 2 vs 15 ± 3,P< .001; 4 [33.3%] vs 3 [3.3%],P= .005). The SECI was more common in the PCI group (8/24 vs 4/77,P= .01). On subanalysis, the SS was significantly higher in the SECI(+) patients in both the CAG and the PCI groups (29.3 ± 1.9 vs 15 ± 3,P< .01; 30.5 ± 1.9 vs 15.1 ± 3.2,P< .001, respectively). The risk of SECI after CAG and PCI increases with the complexity of CAD (represented by the SS). The SS is a predictor of the risk of SECI, a complication that should be considered more often after CAG. © The Author(s) 2015.
Ancestral and derived protein import pathways in the mitochondrion of Reclinomonas americana.
Tong, Janette; Dolezal, Pavel; Selkrig, Joel; Crawford, Simon; Simpson, Alastair G B; Noinaj, Nicholas; Buchanan, Susan K; Gabriel, Kipros; Lithgow, Trevor
2011-05-01
The evolution of mitochondria from ancestral bacteria required that new protein transport machinery be established. Recent controversy over the evolution of these new molecular machines hinges on the degree to which ancestral bacterial transporters contributed during the establishment of the new protein import pathway. Reclinomonas americana is a unicellular eukaryote with the most gene-rich mitochondrial genome known, and the large collection of membrane proteins encoded on the mitochondrial genome of R. americana includes a bacterial-type SecY protein transporter. Analysis of expressed sequence tags shows R. americana also has components of a mitochondrial protein translocase or "translocase in the inner mitochondrial membrane complex." Along with several other membrane proteins encoded on the mitochondrial genome Cox11, an assembly factor for cytochrome c oxidase retains sequence features suggesting that it is assembled by the SecY complex in R. americana. Despite this, protein import studies show that the RaCox11 protein is suited for import into mitochondria and functional complementation if the gene is transferred into the nucleus of yeast. Reclinomonas americana provides direct evidence that bacterial protein transport pathways were retained, alongside the evolving mitochondrial protein import machinery, shedding new light on the process of mitochondrial evolution.
Tetteh, Antonia Y; Sun, Katherine H; Hung, Chiu-Yueh; Kittur, Farooqahmed S; Ibeanu, Gordon C; Williams, Daniel; Xie, Jiahua
2014-01-01
Bacteria can reduce toxic selenite into less toxic, elemental selenium (Se(0)), but the mechanism on how bacterial cells reduce selenite at molecular level is still not clear. We used Escherichia coli strain K12, a common bacterial strain, as a model to study its growth response to sodium selenite (Na2SeO3) treatment and then used quantitative real-time PCR (qRT-PCR) to quantify transcript levels of three E. coli selenopolypeptide genes and a set of machinery genes for selenocysteine (SeCys) biosynthesis and incorporation into polypeptides, whose involvements in the selenite reduction are largely unknown. We determined that 5 mM Na2SeO3 treatment inhibited growth by ∼ 50% while 0.001 to 0.01 mM treatments stimulated cell growth by ∼ 30%. Under 50% inhibitory or 30% stimulatory Na2SeO3 concentration, selenopolypeptide genes (fdnG, fdoG, and fdhF) whose products require SeCys but not SeCys biosynthesis machinery genes were found to be induced ≥2-fold. In addition, one sulfur (S) metabolic gene iscS and two previously reported selenite-responsive genes sodA and gutS were also induced ≥2-fold under 50% inhibitory concentration. Our findings provide insight about the detoxification of selenite in E. coli via induction of these genes involved in the selenite reduction process.
Cailhol, Lionel; Allen, Michael; Moncany, Anne-Hélène; Cicotti, Andrei; Virgillito, Salvatore; Barbe, Rémy P; Lazignac, Coralie; Damsa, Cristian
2007-01-01
In spite of much effort to create guidelines on the management of violent behavior (VB) in emergency departments, little is known about the impact of such guidelines on a real-life emergency environment. The aim of this study is to investigate the impact of a staff educational crisis intervention (SECI) on the reduction of VB in patients admitted to emergency departments following drug suicidal attempt. The impact of a SECI on VB of patient consulting the ER following a drug suicide attempt was assessed by comparing the occurrence of VB before (5 months) and after (5 months) the introduction of a SECI. A significant reduction in VB (from 17.32% to 7.14%) was found with the comparison of two 5-month periods: before (254 patients) and after (224 patients) the introduction of a SECI program (chi(2)=11.238; P=.0008). These preliminary data suggest the need for further prospective randomized studies aiming to prevent VB in emergency departments by developing specific SECI programs.
Regulation of the protein-conducting channel by a bound ribosome
Gumbart, James; Trabuco, Leonardo G.; Schreiner, Eduard; Villa, Elizabeth; Schulten, Klaus
2009-01-01
Summary During protein synthesis, it is often necessary for the ribosome to form a complex with a membrane-bound channel, the SecY/Sec61 complex, in order to translocate nascent proteins across a cellular membrane. Structural data on the ribosome-channel complex are currently limited to low-resolution cryo-electron microscopy maps, including one showing a bacterial ribosome bound to a monomeric SecY complex. Using that map along with available atomic-level models of the ribosome and SecY, we have determined, through molecular dynamics flexible fitting (MDFF), an atomic-resolution model of the ribosome-channel complex. We characterized computationally the sites of ribosome-SecY interaction within the complex and determined the effect of ribosome binding on the SecY channel. We also constructed a model of a ribosome in complex with a SecY dimer by adding a second copy of SecY to the MDFF-derived model. The study involved 2.7-million-atom simulations over altogether nearly 50 ns. PMID:19913480
Kim, Bum Joon; Lee, Seung-Whan; Park, Seong-Wook; Kang, Dong-Wha; Kim, Jong S; Kwon, Sun U
2012-03-01
Considering that insufficient platelet inhibition is related to thrombotic complications after coronary angiography, we hypothesized that the extent of platelet inhibition by antiplatelet agents is related to the occurrence of silent embolic cerebral infarction (SECI) after coronary angiography. Among the patients scheduled for coronary artery bypass surgery, we retrospectively analyzed the location of SECI on diffusion-weighted imaging of 272 patients, which was performed after coronary angiography, as a presurgical evaluation in Phase 1 study. In Phase 2 study, we have prospectively recruited 102 patients to compare the extent of platelet inhibition measured by the VerifyNow system among patients with and without SECI. SECI is observed in 45 patients (16.5%) in Phase 1 and 17 (16.7%) in Phase 2. The lesions were slightly more frequent in the right hemisphere. In the Phase 2 study, aspirin reaction units and P(2)Y(12) reaction units were higher in the patients with SECI than those without (aspirin reaction units: 490±72 versus 446±53, P=0.03; P(2)Y(12) reaction units: 352±65 versus 300±77, P=0.009). The incidence of SECI increased with the number of resistant antiplatelets; resistance to both antiplatelet agent (50%), resistance to 1 antiplatelet agent (22%), and no resistance (4%; P=0.023). From the result of logistic regression, higher aspirin reaction units, white blood cell count, low hemoglobin, and nonresponsiveness to antiplatelet agents were independent risk factors. Insufficient platelet inhibition after administration of antiplatelet agents is related with SECI appearing after coronary angiography.
Ribosome binding induces repositioning of the signal recognition particle receptor on the translocon
Kuhn, Patrick; Draycheva, Albena; Vogt, Andreas; Petriman, Narcis-Adrian; Sturm, Lukas; Drepper, Friedel; Warscheid, Bettina; Wintermeyer, Wolfgang
2015-01-01
Cotranslational protein targeting delivers proteins to the bacterial cytoplasmic membrane or to the eukaryotic endoplasmic reticulum membrane. The signal recognition particle (SRP) binds to signal sequences emerging from the ribosomal tunnel and targets the ribosome-nascent-chain complex (RNC) to the SRP receptor, termed FtsY in bacteria. FtsY interacts with the fifth cytosolic loop of SecY in the SecYEG translocon, but the functional role of the interaction is unclear. By using photo-cross-linking and fluorescence resonance energy transfer measurements, we show that FtsY–SecY complex formation is guanosine triphosphate independent but requires a phospholipid environment. Binding of an SRP–RNC complex exposing a hydrophobic transmembrane segment induces a rearrangement of the SecY–FtsY complex, which allows the subsequent contact between SecY and ribosomal protein uL23. These results suggest that direct RNC transfer to the translocon is guided by the interaction between SRP and translocon-bound FtsY in a quaternary targeting complex. PMID:26459600
Ligon, Lauren S.; Rigel, Nathan W.; Romanchuk, Artur; Jones, Corbin D.
2013-01-01
All bacteria use the conserved Sec pathway to transport proteins across the cytoplasmic membrane, with the SecA ATPase playing a central role in the process. Mycobacteria are part of a small group of bacteria that have two SecA proteins: the canonical SecA (SecA1) and a second, specialized SecA (SecA2). The SecA2-dependent pathway exports a small subset of proteins and is required for Mycobacterium tuberculosis virulence. The mechanism by which SecA2 drives export of proteins across the cytoplasmic membrane remains poorly understood. Here we performed suppressor analysis on a dominant negative secA2 mutant (secA2 K129R) of the model mycobacterium Mycobacterium smegmatis to better understand the pathway used by SecA2 to export proteins. Two extragenic suppressor mutations were identified as mapping to the promoter region of secY, which encodes the central component of the canonical Sec export channel. These suppressor mutations increased secY expression, and this effect was sufficient to alleviate the secA2 K129R phenotype. We also discovered that the level of SecY protein was greatly diminished in the secA2 K129R mutant, but at least partially restored in the suppressors. Furthermore, the level of SecY in a suppressor strongly correlated with the degree of suppression. Our findings reveal a detrimental effect of SecA2 K129R on SecY, arguing for an integrated system in which SecA2 works with SecY and the canonical Sec translocase to export proteins. PMID:23913320
Colorimetric sensing of selenocystine using gold nanoparticles.
Liu, Liyang; Wang, Xia; Yang, Juan; Bai, Yan
2017-10-15
We present a highly selective and sensitive colorimetric method for the detection of selenocystine (SeCys) coexisting with other amino acids, especially cysteine (Cys) using the gold nanoparticles (AuNPs). Firstly, Cys was oxidized to cystine (Cys-Cys) by dissolved oxygen under Cu 2+ catalysis in the pre-reaction, which eliminated the interference of Cys in the SeCys sensing process. Then SeCys induced the rapid aggregation of AuNPs through Au-Se bond and complex formation of Cu 2+ -SeCys in the colorimetric reaction, in which the color change of AuNPs from red to blue or purple with the naked eye detection or with a UV-vis spectrophotometric determination. The concentration of SeCys was quantified by the value at 670 nm from the second-derivative SPR absorbance spectrum. The linear range was from 2 μM to 14 μM with correlation coefficient of 0.999 and a detection limit (LOD) was 0.14 μM. Moreover, the colorimetric response of AuNPs exhibited remarkable specificity to SeCys coexisting with 18 amino acids in a simulation sample, in which the total concentration of Cys and Cys-Cys was less than 15 μM and the each concentration of other 16 common amino acids was 10 μM. Copyright © 2017 Elsevier Inc. All rights reserved.
First isolation of Leptospira noguchii serogroups Panama and Autumnalis from cattle.
Martins, G; Loureiro, A P; Hamond, C; Pinna, M H; Bremont, S; Bourhy, P; Lilenbaum, W
2015-05-01
Prevention and control of leptospirosis are based on the knowledge of locally circulating strains. Thus, efforts to obtain local isolates are paramount to the epidemiological understanding of leptospirosis. We report and discuss here the first isolation of members of serogroups Autumnalis and Panama from cattle, both belonging to Leptospira noguchii species. Urine samples (n = 167) were collected directly by puncture of the bladder from randomly selected cows from a slaughterhouse in Rio de Janeiro, Brazil, for bacteriological culture. Isolates were characterized by serogrouping and sequencing (rrs and secY genes). Overall, 10/167 positive urine samples (6%) were obtained. Sequencing of amplicons targeting for both rrs and secY genes identified two of them (2013_U73 and 2013_U232) as L. noguchii. Serogrouping of those strains indicated that 2013_U73 belonged to the Panama serogroup (titre 1600), and 2013_U232 to the Autumnalis serogroup (titre 12800). Both Panama and Autumnalis are known agents of incidental leptospirosis in cattle. This group of leptospires could be particularly important in tropical countries. This is the first report of members of serogroups Autumnalis and Panama belonging to L. noguchii species from cattle. Although related to previously reported strains, these isolates have been shown to be genetically diverse from them.
Kim, Bum Joon; Kwon, Joo Y; Jung, Jin-Man; Lee, Deok Hee; Kang, Dong-Wha; Kim, Jong S; Kwon, Sun U
2014-10-01
Endovascular procedures are one of the important treatment options for steno-occlusive arteries in ischemic stroke patients. However, embolic complications after such procedures are always a concern. The authors investigated the association between serial change of residual platelet reactivity and silent embolic cerebral infarction (SECI) after endovascular treatment. Ischemic stroke patients undergoing stenting of intra- or extracranial arteries were recruited prospectively. Residual platelet reactivity, represented by aspirin reaction units (ARUs) and P2Y12 reaction units (PRUs), was measured serially (6 hours before, immediately after, and 24 hours after the procedure). A loading dosage of aspirin (500 mg) and/or clopidogrel (300 mg) was given 24 hours before the procedure to patients naïve to antiplatelet agents, whereas the usual dosage (aspirin 100 mg and clopidogrel 75 mg) was continued for patients who had previously been taking these agents for more than a week. Diffusion-weighted MRI was performed before and 24 hours after the procedure to detect new SECIs. Clinical characteristics, baseline ARU and PRU values, and the change in ARU and PRU values after stenting were compared between patients with and without SECIs. Among 69 consecutive patients who underwent neurovascular stent insertion, 41 patients (59.4%) had poststenting SECIs. The lesion was located only at the vascular territory of the stented vessel in 21 patients (51.2%), outside the stented vessel territory in 8 patients (19.5%), and both inside and outside in 12 patients (29.3%). The occurrence of SECIs was not associated with the baseline ARU or PRU value, but was associated with PRU increase after stenting (36 ± 73 vs -12 ± 59, p = 0.007), deployment of a longer stent (31.1 ± 16.5 mm vs 21.8 ± 9.9 mm, p = 0.01), and stent insertion in extracranial arteries (78.1% vs 45.2%, p = 0.008). Stent length (OR 1.066, p = 0.01) and PRU change (OR 1.009, p = 0.04) were independently associated with the occurrence of SECI. Residual platelet reactivity after dual antiplatelet treatment measured before stenting did not predict poststenting SECI. However, the longer stent and the serial increase of PRU values after stenting were related to SECI. Continuous increase of platelet activation after endovascular procedure may be important in poststent cerebral infarction.
Arent, Z; Frizzell, C; Gilmore, C; Allen, A; Ellis, W A
2016-07-15
Strains of Leptospira interrogans belonging to two very closely related serovars - Bratislava and Muenchen - have been associated with disease in domestic animals, in particular pigs, but also in horses and dogs. Similar strains have also been recovered from various wildlife species. Their epidemiology is poorly understood. Two hundred and forty seven such isolates, from UK domestic animal and wildlife species, were examined by restriction endonuclease analysis in an attempt to elucidate their epidemiology. A representative sub-sample of 65 of these isolates was further examined by multiple-locus variable-number tandem repeat analysis and 22 by secY sequencing. Ten restriction pattern types were identified. The majority of isolates fell into one of three restriction endonuclease analysis pattern types designated B2a, B2b and M2a. B2a was ubiquitous and was isolated from 10 species and represented the majority of the horse and all dog isolates. B2b was very different, being isolated only from pigs, indicating that this type was maintained by pigs. The pattern M2a was reported for the majority of isolates from pigs but also was common in small rodents isolates. Five restriction pattern types were found only in wildlife suggesting that they are unlikely to pose a disease threat to domestic animals. Multiple-locus variable-number tandem repeat analysis identified six clusters. The REA types B2a and B2b were all found in one MLVA cluster while the majority of the M2a strains examined occurred in another cluster. The secY sequencing detected only one sequence type, clustered with other serovars of Leptospira interrogans. Copyright © 2016 Elsevier B.V. All rights reserved.
Secisbp2 Is Essential for Embryonic Development and Enhances Selenoprotein Expression
Seeher, Sandra; Atassi, Tarik; Mahdi, Yassin; Carlson, Bradley A.; Braun, Doreen; Wirth, Eva K.; Klein, Marc O.; Reix, Nathalie; Miniard, Angela C.; Schomburg, Lutz; Hatfield, Dolph L.; Driscoll, Donna M.
2014-01-01
Abstract Aims: The selenocysteine insertion sequence (SECIS)-binding protein 2 (Secisbp2) binds to SECIS elements located in the 3′-untranslated region of eukaryotic selenoprotein mRNAs. Selenoproteins contain the rare amino acid selenocysteine (Sec). Mutations in SECISBP2 in humans lead to reduced selenoprotein expression thereby affecting thyroid hormone-dependent growth and differentiation processes. The most severe cases also display myopathy, hearing impairment, male infertility, increased photosensitivity, mental retardation, and ataxia. Mouse models are needed to understand selenoprotein-dependent processes underlying the patients' pleiotropic phenotypes. Results: Unlike tRNA[Ser]Sec-deficient embryos, homozygous Secisbp2-deleted embryos implant, but fail before gastrulation. Heterozygous inactivation of Secisbp2 reduced the amount of selenoprotein expressed, but did not affect the thyroid hormone axis or growth. Conditional deletion of Secisbp2 in hepatocytes significantly decreased selenoprotein expression. Unexpectedly, the loss of Secisbp2 reduced the abundance of many, but not all, selenoprotein mRNAs. Transcript-specific and gender-selective effects on selenoprotein mRNA abundance were greater in Secisbp2-deficient hepatocytes than in tRNA[Ser]Sec-deficient cells. Despite the massive reduction of Dio1 and Sepp1 mRNAs, significantly more corresponding protein was detected in primary hepatocytes lacking Secisbp2 than in cells lacking tRNA[Ser]Sec. Regarding selenoprotein expression, compensatory nuclear factor, erythroid-derived, like 2 (Nrf2)-dependent gene expression, or embryonic development, phenotypes were always milder in Secisbp2-deficient than in tRNA[Ser]Sec-deficient mice. Innovation: We report the first Secisbp2 mutant mouse models. The conditional mutants provide a model for analyzing Secisbp2 function in organs not accessible in patients. Conclusion: In hepatocyte-specific conditional mouse models, Secisbp2 gene inactivation is less detrimental than tRNA[Ser]Sec inactivation. A role of Secisbp2 in stabilizing selenoprotein mRNAs in vivo was uncovered. Antioxid. Redox Signal. 21, 835–849. PMID:24274065
The Development and Validation of the Ethical Climate Index for Middle and High Schools.
ERIC Educational Resources Information Center
Schulte, Laura E.; Thompson, Franklin; Talbott, Jeanie; Luther, Ann; Garcia, Michelle; Blanchard, Shirley; Conway, Laraine; Mueller, Melanie
2002-01-01
Describes the School Ethical Climate Index (SECI), an instrument to measure the ethical climate of a school. The SECI could be used in school districts to assess areas for school improvement and thereby help reduce school disorder and violence. (Contains 4 tables and 39 references.) (Author/WFA)
Stability of non-Watson-Crick G-A/A-G base pair in synthetic DNA and RNA oligonucleotides.
Ito, Yuko; Sone, Yumiko; Mizutani, Takaharu
2004-03-01
A non-Watson-Crick G-A/A-G base pair is found in SECIS (selenocysteine-insertion sequence) element in the 3'-untranslated region of Se-protein mRNAs and in the functional site of the hammerhead ribozyme. We studied the stability of G-A/A-G base pair (bold) in 17mer GT(U)GACGGAAACCGGAAC synthetic DNA and RNA oligonucleotides by thermal melting experiments and gel electrophoresis. The measured Tm value of DNA oligonucleotide having G-A/A-G pair showed an intermediate value (58 degrees C) between that of Watson-Crick G-C/C-G base pair (75 degrees C) and that of G-G/A-A of non-base-pair (40 degrees C). Similar thermal melting patterns were obtained with RNA oligonucleotides. This result indicates that the secondary structure of oligonucleotide having G-A/A-G base pair is looser than that of the G-C type Watson-Crick base pair. In the comparison between RNA and DNA having G-A/A-G base pair, the Tm value of the RNA oligonucleotide was 11 degrees C lower than that of DNA, indicating that DNA has a more rigid structure than RNA. The stained pattern of oligonucleotide on polyacrylamide gel clarified that the mobility of the DNA oligonucleotide G-A/A-G base pair changed according to the urea concentration from the rigid state (near the mobility of G-C/C-G oligonucleotide) in the absence of urea to the random state (near the mobility of G-G/A-A oligonucleotide) in 7 M urea. However, the RNA oligonucleotide with G-A/A-G pair moved at an intermediate mobility between that of oligonucleotide with G-C/C-G and of the oligonucleotide with G-G/A-A, and the mobility pattern did not depend on urea concentration. Thus, DNA and RNA oligonucleotides with the G-A/A-G base pair showed a pattern indicating an intermediate structure between the rigid Watson-Crick base pair and the random structure of non-base pair. RNA with G-A/A-G base pair has the intermediate structure not influenced by urea concentration. Finally, this study indicated that the intermediate rigidity imparted by Non-Watson-Crick base pair in SECIS element plays an important role in the selenocysteine expression by UGA codon.
ERIC Educational Resources Information Center
Hosseini, Seyede Mehrnoush
2011-01-01
The research aims to define SECI model of knowledge creation (socialization, externalization, combination, and internalization) as a framework of Virtual class management which can lead to better online teaching-learning mechanisms as well as knowledge creation. It has used qualitative research methodology including researcher's close observation…
NASA Astrophysics Data System (ADS)
Langhoff, P. W.; Winstead, C. L.
Early studies of the electronically excited states of molecules by John A. Pople and coworkers employing ab initio single-excitation configuration interaction (SECI) calculations helped to simulate related applications of these methods to the partial-channel photoionization cross sections of polyatomic molecules. The Gaussian representations of molecular orbitals adopted by Pople and coworkers can describe SECI continuum states when sufficiently large basis sets are employed. Minimal-basis virtual Fock orbitals stabilized in the continuous portions of such SECI spectra are generally associated with strong photoionization resonances. The spectral attributes of these resonance orbitals are illustrated here by revisiting previously reported experimental and theoretical studies of molecular formaldehyde (H2CO) in combination with recently calculated continuum orbital amplitudes.
Maseko, Tebo; Callahan, Damien L; Dunshea, Frank R; Doronila, Augustine; Kolev, Spas D; Ng, Ken
2013-12-15
The selenium concentration in Agaricus bisporus cultivated in growth compost irrigated with sodium selenite solution increased by 28- and 43-fold compared to the control mushroom irrigated solely with water. Selenium contents of mushroom proteins increased from 13.8 to 60.1 and 14.1 to 137 μgSe/g in caps and stalks from control and selenised mushrooms, respectively. Selenocystine (SeCys; detected as [SeCys]2 dimer), selenomethionine (SeMet), and methyl-selenocysteine (MeSeCys) were separated, identified and quantified by liquid chromatography-electrospray ionisation-mass spectrometry from water solubilised and acetone precipitated proteins, and significant increases were observed for the selenised mushrooms. The maximum selenoamino acids concentration in caps and stalks of control/selenised mushrooms was 4.16/9.65 μg/g dried weight (DW) for SeCys, 0.08/0.58 μg/g DW for SeMet, and 0.031/0.10 μg/g DW for MeSeCys, respectively. The most notable result was the much higher levels of SeCys accumulated by A. bisporus compared to SeMet and MeSeCys, for both control and selenised A. bisporus. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Reduced Utilization of Selenium by Naked Mole Rats Due to a Specific Defect in GPx1 Expression*
Kasaikina, Marina V.; Lobanov, Alexei V.; Malinouski, Mikalai Y.; Lee, Byung Cheon; Seravalli, Javier; Fomenko, Dmitri E.; Turanov, Anton A.; Finney, Lydia; Vogt, Stefan; Park, Thomas J.; Miller, Richard A.; Hatfield, Dolph L.; Gladyshev, Vadim N.
2011-01-01
Naked mole rat (MR) Heterocephalus glaber is a rodent model of delayed aging because of its unusually long life span (>28 years). It is also not known to develop cancer. In the current work, tissue imaging by x-ray fluorescence microscopy and direct analyses of trace elements revealed low levels of selenium in the MR liver and kidney, whereas MR and mouse brains had similar selenium levels. This effect was not explained by uniform selenium deficiency because methionine sulfoxide reductase activities were similar in mice and MR. However, glutathione peroxidase activity was an order of magnitude lower in MR liver and kidney than in mouse tissues. In addition, metabolic labeling of MR cells with 75Se revealed a loss of the abundant glutathione peroxidase 1 (GPx1) band, whereas other selenoproteins were preserved. To characterize the MR selenoproteome, we sequenced its liver transcriptome. Gene reconstruction revealed standard selenoprotein sequences except for GPx1, which had an early stop codon, and SelP, which had low selenocysteine content. When expressed in HEK 293 cells, MR GPx1 was present in low levels, and its expression could be rescued neither by removing the early stop codon nor by replacing its SECIS element. In addition, GPx1 mRNA was present in lower levels in MR liver than in mouse liver. To determine if GPx1 deficiency could account for the reduced selenium content, we analyzed GPx1 knock-out mice and found reduced selenium levels in their livers and kidneys. Thus, MR is characterized by the reduced utilization of selenium due to a specific defect in GPx1 expression. PMID:21372135
Poerschke, Robyn L.; Moos, Philip J.
2010-01-01
Thioredoxin reductase (TR1) is a selenoprotein that is involved in cellular redox status control and deoxyribonucleotide biosynthesis. Many cancers, including lung, overexpress TR1, making it a potential cancer therapy target. Previous work has shown that TR1 knockdown enhances the sensitivity of cancer cells to anticancer treatments, as well as certain selenocompounds. However, it is unknown if TR1 knockdown produces similar effect on the sensitivity of human lung cancer cells. To further elucidate the role of TR1 in the mechanism of selenocompounds in lung cancer, a lentiviral microRNA delivery system to knockdown TR1 expression in A549 human lung adenocarcinoma cells was utilized. Cell viability was assessed after 48 hr treatment with the selenocysteine prodrug selenazolidines 2-butylselenazolidine-4(R)-carboxylic acid (BSCA) and 2-cyclohexylselenazolidine-4-(R)-carboxylic acid (ChSCA), selenocystine (SECY), methylseleninic acid (MSA), 1,4-phenylenebis(methylene)selenocyanate (p-XSC), and selenomethionine (SEM). TR1 knockdown increased the cytotoxicity of BSCA, ChSCA, and SECY but did not sensitize cells to MSA, SEM, or p-XSC. GSH and TR1 depletion together decreased cell viability, while no change was observed with GSH depletion alone. Reactive oxygen species generation was induced only in TR1 knockdown cells treated with the selenazolidines or SECY. These three compounds also decreased total intracellular glutathione levels and oxidized thioredoxin, but in a TR1 independent manner. TR1 knockdown increased selenazolidine and SECY-induced mitochondrial membrane depolarization, as well as DNA strand breaks and AIF translocation from the mitochondria. These results indicate the ability of TR1 to modulate the cytotoxic effects of BSCA, ChSCA and SECY in human lung cancer cells through mitochondrial dysfunction. PMID:20920480
NASA Astrophysics Data System (ADS)
Mahatmavidya, P. A.; Soesanto, R. P.; Kurniawati, A.; Andrawina, L.
2018-03-01
Human resource is an important factor for a company to gain competitiveness, therefore competencies of each individual in a company is a basic characteristic that is taken into account. The increasing employee’s competency will affect directly to the company's performance. The purpose of this research is to improve the quality of human resources of maintenance staff in manufacturing company by designing competency measurement instrument that aims to assess the competency of employees. The focus of this research is the mechanical expertise of maintenance staff. SECI method is used in this research for managing knowledge that is held by senior employees regarding employee competence of mechanical expertise. The SECI method converts the knowledge of a person's tacit knowledge into an explicit knowledge so that the knowledge can be used by others. The knowledge that is gathered from SECI method is converted into a list of competence and break down into the detailed competency. Based on the results of this research, it is known that 11 general competencies, 17 distinctive competencies, 20 indicators, and 20 item list for assessing the competencies are developed. From the result of competency breakdown, the five-level instrument of measurement is designed which can assist in assessing employee’s competency for mechanical expertise.
Budachetri, Khemraj; Crispell, Gary; Karim, Shahid
2017-09-01
Selenium, a vital trace element, is incorporated into selenoproteins to produce selenocysteine. Our previous studies have revealed an adaptive co-evolutionary process that has enabled the spotted fever-causing tick-borne pathogen Rickettsia parkeri to survive by manipulating an antioxidant defense system associated with selenium, which includes a full set of selenoproteins and other antioxidants in ticks. Here, we conducted a systemic investigation of SECIS binding protein 2 (SBP2) and putative selenoprotein P (SELENOP) by transcript silencing in adult female Gulf-coast ticks (Amblyomma maculatum). Knockdown of the SBP2 and SELENOP genes depleted the respective transcript levels of these tick selenogenes, and caused differential regulation of other antioxidants. Importantly, the selenium level in the immature and mature tick stages increased significantly after a blood meal, but the selenium level decreased in ticks after the SBP2 and SELENOP knockdowns. Moreover, the SBP2 knockdown significantly impaired both transovarial transmission of R. parkeri to tick eggs and egg hatching. Overall, our data offer new insight into the relationship between the SBP2 selenoprotein synthesis gene and the putative tick SELENOP gene. It also augments our understanding of selenoprotein synthesis, selenium maintenance and utilization, and bacterial colonization of a tick vector. Copyright © 2017 Elsevier Ltd. All rights reserved.
Reaction mechanism of molybdoenzyme formate dehydrogenase.
Leopoldini, Monica; Chiodo, Sandro G; Toscano, Marirosa; Russo, Nino
2008-01-01
Formate dehydrogenase is a molybdoenzyme of the anaerobic formate hydrogen lyase complex of the Escherichia coli microorganism that catalyzes the oxidation of formate to carbon dioxide. The two proposed mechanisms of reaction, which differ in the occurrence of a direct coordination or not of a SeCys residue to the molybdenum metal during catalysis were analyzed at the density functional level in both vacuum and protein environments. Some DF functionals, in addition to the very popular B3LYP one, were employed to compute barrier heights. Results revealed the role played by the SeCys residue in performing the abstraction of the proton from the formate substrate. The computation of the energetic profiles for both mechanisms indicated that the reaction barriers are higher when the selenium is directly coordinated to the metal, whereas less energy is required when SeCys is not a ligand at the molybdenum site.
Research Directions in Database Security, II
1990-11-01
WILLIAMS Burke Ct 286 WOLCOTT 9th Rd 795 WOOD 25th St 520 YANCEY Motley St 398 ZUZACK Arden Rd LDV> : The style of the prototype is such that the...WOLCOTT Fin Clk YANCEY Dept Mgr ZUZACK Proc Anal LDV> ;RR3: S (sortrel (project (njoin (project employee-base ’(Department Employee-Name Employee-Num...Proc Anal PROC MAHONEY Secy PROC YANCEY Dept Mgr PROC ZUZACK Proc Anal SEC BRIMER DMSO SEC FALBO Secy SEC HILL Dept Mgr SEC MITCHELL Ast DBSO SEC THOMAS
Kontinen, V P; Yamanaka, M; Nishiyama, K; Tokuda, H
1996-06-01
SecE, an essential membrane component of the Escherichia coli protein translocase, consists of 127 amino acid residues. Only a part of the second putative cytoplasmic region comprising some 13 residues is essential for the SecE function as long as the proper topological arrangement is retained. The Trp84 and Pro85 residues of this region are conserved in all eubacterial SecE homologues. The conservation of positively charged residues corresponding to Arg80 and Lys81 is also substantial. We deleted or replaced these residues to assess their roles in the SecE function. Deletion of the Arg80-Lys81 dipeptide did not abolish the SecE function whereas that of Trp84 or Pro85 caused a loss of the function. Strikingly, however, replacement of Pro85 with either Gly, Ser, or Ala, and that of Trp84 with Lys did not abolish the SecE function. These results indicate that the strong conservation of these residues does not reflect their obligatory requirement for the SecE function. A chimeric SecE possessing the cytoplasmic region of the E. coli SecE and the following region of the Bacillus subtilis SecE was able to form the translocation machinery together with SecA, SecY, and SecG. Although a Leu to Arg mutation at position 108 has been thought to cause a loss of signal recognition fidelity and thereby suppress a signal sequence defect, the same mutation at position 111 caused a complete loss of the function. The levels of SecY and SecG in the secEcsE501 mutant, which expresses SecE at a decreased level and is sensitive to low temperature, increased upon the expression of functional SecE derivatives, irrespective of the site of mutation, suggesting that the levels of SecY and SecG are co-operatively determined by the level of functional, but not non-functional, SecE. Based on these results, the SecE function in the translocase is discussed.
Soto, Esteban; Wang, Rui; Wiles, Judy; Baumgartner, Wes; Green, Christopher; Plumb, John; Hawke, John
2015-06-01
We examined Lancefield serogroup B Streptococcus isolates recovered from diseased, cultured hybrid Striped Bass (Striped Bass Morone saxatilis × White Bass M. chrysops) and wild and cultured Gulf Killifish Fundulus grandis from coastal waters of the U.S. Gulf of Mexico (Gulf coast) and compared those isolates to strains from tilapias Oreochromis spp. reared in Mississippi, Thailand, Ecuador, and Honduras and to the original Gulf coast strain identified by Plumb et al. ( 1974 ). The isolates were subjected to phylogenetic, biochemical, and antibiotic susceptibility analyses. Genetic analysis was performed using partial sequence comparison of (1) the 16S ribosomal RNA (rRNA) gene; (2) the sipA gene, which encodes a surface immunogenic protein; (3) the cspA gene, which encodes a cell surface-associated protein; and (4) the secY gene, which encodes components of a general protein secretion pathway. Phylogenies inferred from sipA, secY, and cspA gene sequence comparisons were more discriminating than that inferred from the 16S rRNA gene sequence comparison. The U.S. Gulf coast strains showed a high degree of similarity to strains from South America and Central America and belonged to a unique group that can be distinguished from other group B streptococci. In agreement with the molecular findings, biochemical and antimicrobial resistance analyses demonstrated that the isolates recovered from the U.S. Gulf coast and Latin America were more similar to each other than to isolates from Thailand. Three laboratory challenge methods for inducing streptococcosis in Gulf Killifish were evaluated-intraperitoneal (IP) injection, immersion (IMM), and immersion plus abrasion (IMMA)-using serial dilutions of S. agalactiae isolate LADL 97-151, a representative U.S. Gulf coast strain. The dose that was lethal to 50% of test fish by 14 d postchallenge was approximately 2 CFU/fish via IP injection. In contrast, the fish that were challenged via IMM or IMMA presented cumulative mortality less than 40% by 14 d postchallenge.
Khanam, Anjum; Platel, Kalpana
2016-03-01
Selenium (Se) is an essential nutrient with diverse physiological functions. The selenium content of commonly consumed cereals, pulses and green leafy vegetables (GLV) was determined. Bioaccessibility of Se, and its organic forms selenomethionine (SeMet), and selenocysteine (SeCys2) was also examined, and the effect of heat processing on the same was studied. The bioaccessibility of Se in cereals ranged from 10% to 24%, that of pulses was between 12% and 29%, and of GLV, 10-31%. The concentration of SeMet in the dialysates of the cereals, pulses and GLV ranged from 5.15 to 28.7, 2.7 to 36.2, and 0.03 to 5ngg(-1), respectively. The concentration of SeCys2 in the dialysates of the foods examined was negligible. Heat processing significantly decreased the bioaccessibility of Se, SeMet and SeCys2. This is the first report on the bioaccessibility of Se and its major organic forms from commonly consumed staples, and the effect of heat processing on the same. Copyright © 2015 Elsevier Ltd. All rights reserved.
Demonstration of a Specific Escherichia coli SecY–Signal Peptide Interaction†
Wang, Ligong; Miller, Alexander; Rusch, Sharyn L.; Kendall, Debra A.
2011-01-01
Protein translocation in Escherichia coli is initiated by the interaction of a preprotein with the membrane translocase composed of a motor protein, SecA ATPase, and a membrane-embedded channel, the SecYEG complex. The extent to which the signal peptide region of the preprotein plays a role in SecYEG interactions is unclear, in part because studies in this area typically employ the entire preprotein. Using a synthetic signal peptide harboring a photoaffinity label in its hydrophobic core, we examined this interaction with SecYEG in a detergent micellar environment. The signal peptide was found to specifically bind SecY in a saturable manner and at levels comparable to those that stimulate SecA ATPase activity. Chemical and proteolytic cleavage of cross-linked SecY and analysis of the signal peptide adducts indicate that the binding was primarily to regions of the protein containing transmembrane domains seven and two. The signal peptide–SecY interaction was affected by the presence of SecA and nucleotides in a manner consistent with the transfer of signal peptide to SecY upon nucleotide hydrolysis at SecA. PMID:15476412
Serovar Diversity of Pathogenic Leptospira Circulating in the French West Indies
Bourhy, Pascale; Herrmann Storck, Cécile; Theodose, Rafaelle; Olive, Claude; Nicolas, Muriel; Hochedez, Patrick; Lamaury, Isabelle; Zinini, Farida; Brémont, Sylvie; Landier, Annie; Cassadou, Sylvie; Rosine, Jacques; Picardeau, Mathieu
2013-01-01
Background Leptospirosis is one of the most important neglected tropical bacterial diseases in Latin America and the Caribbean. However, very little is known about the circulating etiological agents of leptospirosis in this region. In this study, we describe the serological and molecular features of leptospires isolated from 104 leptospirosis patients in Guadeloupe (n = 85) and Martinique (n = 19) and six rats captured in Guadeloupe, between 2004 and 2012. Methods and Findings Strains were studied by serogrouping, PFGE, MLVA, and sequencing 16SrRNA and secY. DNA extracts from blood samples collected from 36 patients in Martinique were also used for molecular typing of leptospires via PCR. Phylogenetic analyses revealed thirteen different genotypes clustered into five main clades that corresponded to the species: L. interrogans, L. kirschneri, L. borgpetersenii, L. noguchi, and L. santarosai. We also identified L. kmetyi in at least two patients with acute leptospirosis. This is the first time, to our knowledge, that this species has been identified in humans. The most prevalent genotypes were associated with L. interrogans serovars Icterohaemorrhagiae and Copenhageni, L. kirschneri serovar Bogvere, and L. borgpetersenii serovar Arborea. We were unable to identify nine strains at the serovar level and comparison of genotyping results to the MLST database revealed new secY alleles. Conclusions The overall serovar distribution in the French West Indies was unique compared to the neighboring islands. Typing of leptospiral isolates also suggested the existence of previously undescribed serovars. PMID:23516654
Compositions and methods for making selenocysteine containing polypeptides
Soll, Dieter; Aldag, Caroline; Hohn, Michael
2016-10-11
Non-naturally occurring tRNA.sup.Sec and methods of using them for recombinant expression of proteins engineered to include one or more selenocysteine residues are disclosed. The non-naturally occurring tRNA.sup.Sec can be used for recombinant manufacture of selenocysteine containing polypeptides encoded by mRNA without the requirement of an SECIS element. In some embodiments, selenocysteine containing polypeptides are manufactured by co-expressing a non-naturally occurring tRNA.sup.Sec a recombinant expression system, such as E. coli, with SerRS, EF-Tu, SelA, or PSTK and SepSecS, and an mRNA with at least one codon that recognizes the anticodon of the non-naturally occurring tRNA.sup.Sec.
Broström, Anders; Arestedt, Kristofer Franzén; Nilsen, Per; Strömberg, Anna; Ulander, Martin; Svanborg, Eva
2010-12-01
Continuous positive airway pressure (CPAP) is the treatment of choice for obstructive sleep apnoea syndrome (OSAS), but side-effects are common. No validated self-rating scale measuring side-effects to CPAP treatment exists today. The aim was to develop the side-effects to CPAP treatment inventory (SECI), and investigate the validity and reliability of the instrument among patients with OSAS. SECI was developed on the basis of: (1) in-depth interviews with 23 patients; (2) examination of the scientific literature and (3) consensus agreement of a multi-professional expert panel. This yielded 15 different types of side-effects related to CPAP treatment. Each side-effect has three sub-questions (scales): perceived frequency (a) and magnitude (b) of the side-effect, as well as its perceived impact on CPAP use (c). A cross-sectional descriptive design was used. A total of 329 patients with OSAS with an average use of CPAP treatment for 39 months (2 weeks to 182 months) were recruited. Data were collected with SECI, and obtained from medical records (clinical variables and data related to CPAP treatment). Construct validity was confirmed with factor analysis (principal component analysis with orthogonal rotation). A logical two-factor solution, the device subscale and symptom subscale, emerged across all three scales. The symptom subscale describing physical and psychological side-effects and the device subscale described mask and device-related side-effects. Internal consistency reliability of the three scales was good (Cronbach's α = 0.74-0.86) and acceptable for the subscales (Cronbach's α = 0.62-0.86). The satisfactory measurement properties of this new instrument are promising and indicate that SECI can be used to measure side-effects to CPAP treatment. © 2010 European Sleep Research Society.
NASA Astrophysics Data System (ADS)
Cao, Yupin; Yan, Lizhen; Huang, Hongli; Deng, Biyang
2016-08-01
A new method for determination of selenium species in radix puerariae was described. The method consists of sample enrichment with 5-sulfosalicylic acid (SSA)-functionalized silica-coated magnetic nanoparticles (SMNPs), high performance liquid chromatography (HPLC) separation, and online detection using inductively coupled plasma mass spectrometry (ICP-MS). The selenium species were extracted using ultrasonic extraction system with a mixture of protease K and lipase. The SSA-SMNPs were used to enrich trace amounts of selenite [Se(IV)], selenate [Se(VI)], selenomethionine (SeMet), and selenocystine (SeCys2) from lower selenium containing samples. Under the optimal conditions, the limits of detection (3σ) for SeCys2, Se(IV), SeMet and Se(VI) were observed as 0.0023, 0.0015, 0.0043, and 0.0016 ng mL- 1, respectively. The RSD values (n = 6) of method for intraday were observed between 0.5% and 0.9%. The RSD values of method for interday were less than 1.3%. The linear concentration ranges for SeCys2, Se(IV), SeMet and Se(VI) were 0.008-1000, 0.005-200, 0.015-500 and 0.006-200 ng mL- 1, respectively. The detection limits of this method were improved by 10 times due to the enrichment with the SSA-SMNP extraction. The contents of SeCys2, Se(IV), SeMet, and Se(VI) in radix puerariae were determined as 0.0140, 0.171, 0.0178, and 0.0344 μg g- 1, respectively. The recoveries were in the range of 95.6%-99.4% and the RSDs (n = 6) of recoveries were less than 1.5%.
Yan, Lizhen; Deng, Biyang; Shen, Caiying; Long, Chanjuan; Deng, Qiufen; Tao, Chunyao
2015-05-22
A new method for selenium speciation in fermented bean curd wastewater and juice was described. This method involved sample extraction with 5-sulfosalicylic acid (SSA)-functionalized silica-coated magnetic nanoparticles (SMNPs), capillary electrophoresis (CE) separation, and online detection with a modified electrothermal atomic absorption spectrometry (ETAAS) system. The modified interface for ETAAS allowed for the introduction of CE effluent directly through the end of the graphite tube. Elimination of the upper injection hole of the graphite tube reduced the loss of the anlayte and enhanced the detection sensitivity. The SSA-SMNPs were synthesized and used to extract trace amounts of selenite [Se(IV)], selenite [Se(VI)], selenomethionine (SeMet), and selenocystine (SeCys2) from dilute samples. The concentration enrichment factors for Se(VI), Se(IV), SeMet, and SeCys2 were 21, 29, 18, and 12, respectively, using the SSA-SMNPs extraction. The limits of detection for Se(VI), Se(IV), SeMet, and SeCys2 were 0.18, 0.17, 0.54, 0.49ngmL(-1), respectively. The RSD values (n=6) of method for intraday were observed between 0.7% and 2.9%. The RSD values of method for interday were less than 3.5%. The linear range of Se(VI) and Se(IV) were in the range of 0.5-200ngmL(-1), and the linear ranges of SeMet and SeCys2 were 2-500 and 2-1000ngmL(-1), respectively. The detection limits of this method were improved by 10 times due to the enrichment by the SSA-SMNP extraction. The contents of Se(VI) and Se(IV) in fermented bean curd wastewater were measured as 3.83 and 2.62ngmL(-1), respectively. The contents of Se(VI), Se(IV), SeMet, and SeCys2 in fermented bean curd juice were determined as 6.39, 4.08, 2.77, and 4.00ngmL(-1), respectively. The recoveries were in the range of 99.14-104.5% and the RSDs (n=6) of recoveries between 0.82% and 3.5%. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Blue, Alan S.; Belyung, David P.; Fontijn, Arthur
1997-09-01
Semiempirical configuration interaction (SECI) theory is used to predict activation barriers E, as defined by k(T)=ATn exp(-E/RT). Previously SECI has been applied to homologous series of oxidation reactions of s1, s2, and s2p1 metal atoms. Here it is extended to oxidation reactions of diatomic molecules containing one s2p1 atom. E values are calculated for the reactions of BH, BF, BCl, AlF, AlCl, AlBr, GaF, GaI, InCl, InBr, InI, TlF, TlCl, TlBr, and TlI with O2, CO2, SO2, or N2O. These values correlate with the sums of the ionization potentials and Σ-Π promotion energies of the former minus the electron affinities of the latter. In the earlier work n was chosen somewhat arbitrarily, which affected the absolute values of E. Here it is shown that examination of available experimental and theoretical results allows determination of the best values of n. Using this approach yields n=1.9 for the present series. For the seven reactions which have been studied experimentally, the average deviation of the SECI activation barrier prediction from experiment is 4.0 kJ mol-1. Energy barriers are calculated for another 52 reactions.
Selenium and the control of thyroid hormone metabolism.
Köhrle, Josef
2005-08-01
Thyroid hormone synthesis, metabolism and action require adequate availability of the essential trace elements iodine and selenium, which affect homeostasis of thyroid hormone-dependent metabolic pathways. The three selenocysteine-containing iodothyronine deiodinases constitute a novel gene family. Selenium is retained and deiodinase expression is maintained at almost normal levels in the thyroid gland, the brain and several other endocrine tissues during selenium deficiency, thus guaranteeing adequate local and systemic levels of the active thyroid hormone T(3). Due to their low tissue concentrations and their mRNA SECIS elements deiodinases rank high in the cellular and tissue-specific hierarchy of selenium distribution among various selenoproteins. While systemic selenium status and expression of abundant selenoproteins (glutathione peroxidase or selenoprotein P) is already impaired in patients with cancer, disturbed gastrointestinal resorption, unbalanced nutrition or patients requiring intensive care treatment, selenium-dependent deiodinase function might still be adequate. However, disease-associated alterations in proinflammatory cytokines, growth factors, hormones and pharmaceuticals modulate deiodinase isoenzyme expression independent from altered selenium status and might thus pretend causal relationships between systemic selenium status and altered thyroid hormone metabolism. Limited or inadequate supply of both trace elements, iodine and selenium, leads to complex rearrangements of thyroid hormone metabolism enabling adaptation to unfavorable conditions.
Job analysis and student assessment tool: perfusion education clinical preceptor.
Riley, Jeffrey B
2007-09-01
The perfusion education system centers on the cardiac surgery operating room and the perfusionist teacher who serves as a preceptor for the perfusion student. One method to improve the quality of perfusion education is to create a valid method for perfusion students to give feedback to clinical teachers. The preceptor job analysis consisted of a literature review and interviews with preceptors to list their critical tasks, critical incidents, and cognitive and behavioral competencies. Behaviorally anchored rating traits associated with the preceptors' tasks were identified. Students voted to validate the instrument items. The perfusion instructor rating instrument with a 0-4, "very weak" to "very strong" Likert rating scale was used. The five preceptor traits for student evaluation of clinical instruction (SECI) are as follows: The clinical instructor (1) encourages self-learning, (2) encourages clinical reasoning, (3) meets student's learning needs, (4) gives continuous feedback, and (5) represents a good role model. Scores from 430 student-preceptor relationships for 28 students rotating at 24 affiliate institutions with 134 clinical instructors were evaluated. The mean overall good preceptor average (GPA) was 3.45 +/- 0.76 and was skewed to the left, ranging from 0.0 to 4.0 (median = 3.8). Only 21 of the SECI relationships earned a GPA < 2.0. Analyzing the role of the clinical instructor and performing SECI are methods to provide valid information to improve the quality of a perfusion education program.
Influence of Dietary Selenium Species on Selenoamino Acid Levels in Rainbow Trout.
Godin, Simon; Fontagné-Dicharry, Stéphanie; Bueno, Maïté; Tacon, Philippe; Prabhu, Philip Antony Jesu; Kaushik, Sachi; Médale, Françoise; Bouyssiere, Brice
2015-07-22
Two forms of selenium (Se) supplementation of fish feeds were compared in two different basal diets. A 12-week feeding trial was performed with rainbow trout fry using either a plant-based or a fish meal-based diet. Se yeast and selenite were used for Se supplementation. Total Se and Se speciation were determined in both diets and whole body of trout fry using inductively coupled plasma mass spectrometry (ICP MS) and high-performance liquid chromatography (HPLC). The two selenoamino acids, selenomethionine (SeMet) and selenocysteine (SeCys), were determined in whole body of fry after enzymatic digestion using protease type XIV with a prior derivatization step in the case of SeCys. The plant-based basal diet was found to have a much lower total Se than the fish meal-based basal diet with concentrations of 496 and 1222 μg(Se) kg(-1), respectively. Dietary Se yeast had a higher ability to raise whole body Se compared to selenite. SeMet concentration in the fry was increased only in the case of Se yeast supplementation, whereas SeCys levels were similar at the end of the feeding trial for both Se supplemented forms. The results show that the fate of dietary Se in fry is highly dependent on the form brought through supplementation and that a plant-based diet clearly benefits from Se supplementation.
Ionic liquids improved reversed-phase HPLC on-line coupled with ICP-MS for selenium speciation.
Chen, Beibei; He, Man; Mao, Xiangju; Cui, Ran; Pang, Daiwen; Hu, Bin
2011-01-15
Room-temperature ionic liquids (RTILs) improved reversed-phase high performance liquid chromatography (RP-HPLC) on-line combined with inductively coupled plasma mass spectrometry (ICP-MS) was developed for selenium speciation. The different parameters affecting the retention behaviors of six target selenium species especially the effect of RTILs as mobile phase additives have been studied, it was found that the mobile phase consisting of 0.4% (v/v) 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 0.4% (v/v) 1-butyl-2,3-dimethylimidazolium tetrafluroborate ([BMMIM]BF(4)) and 99.2% (v/v) water has effectively improved the peak profile and six target selenium species including Na(2)SeO(3) (Se(IV)), Na(2)SeO(4) (Se(VI)), L-selenocystine (SeCys(2)), D,L-selenomethionine (SeMet), Se-methylseleno-l-cysteine (MeSeCys), seleno-D,L-ethionine (SeEt) were separated in 8 min. In order to validate the accuracy of the method, a Certified Reference Material of SELM-1 yeast sample was analyzed and the results obtained were in good agreement with the certified values. The developed method was also successfully applied to the speciation of selenium in Se-enriched yeasts and clover. For fresh Se-enriched yeast cells, it was found that the spiked SeCys(2) in living yeast cells could be transformed into SeMet. Compared with other ion-pair RP-HPLC-ICP-MS approaches for selenium speciation, the proposed method possessed the advantages including ability to regulate the retention time of the target selenium species by selecting the suitable RTILs and their concentration, simplicity, rapidness and low injection volume, thus providing wide potential applications for elemental speciation in biological systems. Copyright © 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-01-01
Four presidential nominees were questioned by members of the committee and by 11 witnesses, who also made statements pertinent to the nomination: Daniel N. Miller, Jr., to be Ass't. Secy. of Interior for Energy and Minerals; Richard Mulberry, to be Inspector General, Dept. of Interior; Shelby T. Brewer to be Ass't. Secy. for Nuclear Energy; and J. Erich Evered, to be Administrator of the Energy Information Administration, Department of Energy. The statements and responses are followed by additional material submitted for the record and informational statements and responses of the nominees. The nominees were questioned about past activities and theirmore » policy goals as well as their plans for conducting their respective offices. (DCK)« less
Speciation of inorganic selenium and selenoamino acids by an HPLC-UV-HG-AFS system.
Ipolyi, I; Corns, W; Stockwell, P; Fodor, P
2001-01-01
For the on-line speciation of selenocystine (SeCys), selenomethionine (SeMet), selenoethionine (SeEt), selenite (Se(IV)) and selenate (Se(VI)), a high-performance liquid chromatography-UV irradiation-hydride generation-atomic fluorescence spectro- metric method is described. Separation was carried out on a conventional reversed-phase C18 column modified with didodecyl- dimethylammonium bromide with gradient elution applying two concentrations of ammonium acetate as the mobile phase. UV irradiation and hydride generation parameters were optimized. The obtained detection limits for SeCys, SeMet, SeEt, Se(IV) and Se(VI) were 0.31, 0.43, 0.7, 0.44 and 0.32 ng ml(-1), respectively, using a 100-microl loop. The method was tested with spiked mineral water and two volunteers' urine samples.
Speciation of inorganic selenium and selenoamino acids by an HPLC-UV-HG-AFS system
Ipolyi, I.; Corns, W.; Stockwell, P.; Fodor, P.
2001-01-01
For the on-line speciation of selenocystine (SeCys), selenomethionine (SeMet), selenoethionine (SeEt), selenite (Se(IV)) and selenate (Se(VI)), a high-performance liquid chromatography-UV irradiation-hydride generation-atomic fluorescence spectro- metric method is described. Separation was carried out on a conventional reversed-phase C18 column modified with didodecyl- dimethylammonium bromide with gradient elution applying two concentrations of ammonium acetate as the mobile phase. UV irradiation and hydride generation parameters were optimized. The obtained detection limits for SeCys, SeMet, SeEt, Se(IV) and Se(VI) were 0.31, 0.43, 0.7, 0.44 and 0.32 ng ml−1, respectively, using a 100-wl loop. The method was tested with spiked mineral water and two volunteers' urine samples. PMID:18924707
Ben Said, Mourad; Ben Asker, Alaa; Belkahia, Hanène; Ghribi, Raoua; Selmi, Rachid; Messadi, Lilia
2018-05-12
Anaplasma marginale, which is responsible for bovine anaplasmosis in tropical and subtropical regions, is a tick-borne obligatory intraerythrocytic bacterium of cattle and wild ruminants. In Tunisia, information about the genetic diversity and the phylogeny of A. marginale strains are limited to the msp4 gene analysis. The purpose of this study is to investigate A. marginale isolates infecting 16 cattle located in different bioclimatic areas of northern Tunisia with single gene analysis and multilocus sequence typing methods on the basis of seven partial genes (dnaA, ftsZ, groEL, lipA, secY, recA and sucB). The single gene analysis confirmed the presence of different and novel heterogenic A. marginale strains infecting cattle from the north of Tunisia. The concatenated sequence analysis showed a phylogeographical resolution at the global level and that most of the Tunisian sequence types (STs) formed a separate cluster from a South African isolate and from all New World isolates and strains. By combining the characteristics of each single locus with those of the multi-loci scheme, these results provide a more detailed understanding on the diversity and the evolution of Tunisian A. marginale strains. Copyright © 2018 Elsevier GmbH. All rights reserved.
Danet, Jean Luc; Balakishiyeva, Gulnara; Cimerman, Agnès; Sauvion, Nicolas; Marie-Jeanne, Véronique; Labonne, Gérard; Lavina, Amparo; Batlle, Assumpcio; Krizanac, Ivana; Skoric, Dijana; Ermacora, Paolo; Serçe, Cigdem Ulubas; Caglayan, Kadriye; Jarausch, Wolfgang; Foissac, Xavier
2011-02-01
The genetic diversity of three temperate fruit tree phytoplasmas 'Candidatus Phytoplasma prunorum', 'Ca. P. mali' and 'Ca. P. pyri' has been established by multilocus sequence analysis. Among the four genetic loci used, the genes imp and aceF distinguished 30 and 24 genotypes, respectively, and showed the highest variability. Percentage of substitution for imp ranged from 50 to 68 % according to species. Percentage of substitution varied between 9 and 12 % for aceF, whereas it was between 5 and 6 % for pnp and secY. In the case of 'Ca P. prunorum' the three most prevalent aceF genotypes were detected in both plants and insect vectors, confirming that the prevalent isolates are propagated by insects. The four isolates known to be hypo-virulent had the same aceF sequence, indicating a possible monophyletic origin. Haplotype network reconstructed by eBURST revealed that among the 34 haplotypes of 'Ca. P. prunorum', the four hypo-virulent isolates also grouped together in the same clade. Genotyping of some Spanish and Azerbaijanese 'Ca. P. pyri' isolates showed that they shared some alleles with 'Ca. P. prunorum', supporting for the first time to our knowledge, the existence of inter-species recombination between these two species.
Relativistic effects on magnetic circular dichroism studied by GUHF/SECI method
NASA Astrophysics Data System (ADS)
Honda, Y.; Hada, M.; Ehara, M.; Nakatsuji, H.; Downing, J.; Michl, J.
2002-04-01
Quasi-relativistic formulation of the Magnetic circular dichroism (MCD) Faraday terms are presented using the generalized unrestricted Hartree-Fock (GUHF)/single excitation configuration interaction (SECI) method combined with the finite perturbation method and applied to the MCD of the three n-σ ∗ states ( 3Q1, 3Q0, 1Q1) of CH 3I. The Faraday B term for the 1Q1 state was 0.1976( Debye) 2( Bohr magneton )/(10 3 cm-1) in the non-relativistic theory, but was dramatically improved by the relativistic effect and became 0.0184 in agreement with the experimental values, 0.014 and 0.0257. This change was mainly due to the one-electron spin-orbit (SO1) term rather than the spin-free relativistic (SFR) and the two-electron spin-orbit (SO2) terms.
Job Analysis and Student Assessment Tool: Perfusion Education Clinical Preceptor
Riley, Jeffrey B.
2007-01-01
Abstract: The perfusion education system centers on the cardiac surgery operating room and the perfusionist teacher who serves as a preceptor for the perfusion student. One method to improve the quality of perfusion education is to create a valid method for perfusion students to give feedback to clinical teachers. The preceptor job analysis consisted of a literature review and interviews with preceptors to list their critical tasks, critical incidents, and cognitive and behavioral competencies. Behaviorally anchored rating traits associated with the preceptors’ tasks were identified. Students voted to validate the instrument items. The perfusion instructor rating instrument with a 0–4, “very weak” to “very strong” Likert rating scale was used. The five preceptor traits for student evaluation of clinical instruction (SECI) are as follows: The clinical instructor (1) encourages self-learning, (2) encourages clinical reasoning, (3) meets student’s learning needs, (4) gives continuous feedback, and (5) represents a good role model. Scores from 430 student–preceptor relationships for 28 students rotating at 24 affiliate institutions with 134 clinical instructors were evaluated. The mean overall good preceptor average (GPA) was 3.45 ± 0.76 and was skewed to the left, ranging from 0.0 to 4.0 (median = 3.8). Only 21 of the SECI relationships earned a GPA <2.0. Analyzing the role of the clinical instructor and performing SECI are methods to provide valid information to improve the quality of a perfusion education program. PMID:17972453
Jiang, Yongying; Trnka, Michael J.; Medzihradszky, Katalin F.; Ouellet, Hugues; Wang, Yongqiang; Ortiz de Montellano, Paul R.
2009-01-01
To characterize heme oxygenase with a selenocysteine (SeCys) as the proximal iron ligand, we have expressed truncated human heme oxygenase-1 (hHO-1) His25Cys, in which Cys-25 is the only cysteine, in the Escherichia coli cysteine auxotroph strain BL21(DE3)cys. Selenocysteine incorporation into the protein was demonstrated by both intact protein mass measurement and mass spectrometric identification of the selenocysteine-containing tryptic peptide. One selenocysteine was incorporated into approximately 95% of the expressed protein. Formation of an adduct with Ellman's reagent (DTNB) indicated that the selenocysteine in the expressed protein was in the reduced state. The heme-His25SeCys hHO-1 complex could be prepared by either (a) supplementing the overexpression medium with heme, or (b) reconstituting the purified apoprotein with heme. Under reducing conditions in the presence of imidazole, a covalent bond is formed by addition of the selenocysteine residue to one of the heme vinyl groups. No covalent bond is formed when the heme is replaced by mesoheme, in which the vinyls are replaced by ethyl groups. These results, together with our earlier demonstration that external selenolate ligands can transfer an electron to the iron (Jiang, Y., Ortiz de Montellano, P.R., Inorg. Chem., 47, 3480-3482 (2008)), indicate that a selenyl radical is formed in the hHO1 His25SeCys mutant that adds to a heme vinyl group. PMID:19135260
Jiang, Yongying; Trnka, Michael J; Medzihradszky, Katalin F; Ouellet, Hugues; Wang, Yongqiang; Ortiz de Montellano, Paul R
2009-03-01
To characterize heme oxygenase with a selenocysteine (SeCys) as the proximal iron ligand, we have expressed truncated human heme oxygenase-1 (hHO-1) His25Cys, in which Cys-25 is the only cysteine, in the Escherichia coli cysteine auxotroph strain BL21(DE3)cys. Selenocysteine incorporation into the protein was demonstrated by both intact protein mass measurement and mass spectrometric identification of the selenocysteine-containing tryptic peptide. One selenocysteine was incorporated into approximately 95% of the expressed protein. Formation of an adduct with Ellman's reagent (DTNB) indicated that the selenocysteine in the expressed protein was in the reduced state. The heme-His25SeCys hHO-1 complex could be prepared by either (a) supplementing the overexpression medium with heme, or (b) reconstituting the purified apoprotein with heme. Under reducing conditions in the presence of imidazole, a covalent bond is formed by addition of the selenocysteine residue to one of the heme vinyl groups. No covalent bond is formed when the heme is replaced by mesoheme, in which the vinyls are replaced by ethyl groups. These results, together with our earlier demonstration that external selenolate ligands can transfer an electron to the iron [Y. Jiang, P.R. Ortiz de Montellano, Inorg. Chem. 47 (2008) 3480-3482 ], indicate that a selenyl radical is formed in the hHO-1 His25SeCys mutant that adds to a heme vinyl group.
Rajapandi, T.; Oliver, D.
1994-01-01
Complementation analysis of the ssaD1 mutation, isolated as a suppressor of the secA51(Ts) mutation that renders growth of Escherichia coli cold sensitive, was used to show that ssaD corresponds to nusB, a gene known to be important in transcription antitermination. DNA sequence analysis of the ssaD1 allele showed that it creates an amber mutation in the 15th codon of nusB. Analysis of the effect of different levels of NusB protein on secA transcription and translation suggested that NusB plays little or no role in the control of secA expression. Accordingly, mechanisms by which nusB inactivation can lead to suppression of secA51(Ts) and secY24(Ts) mutations without affecting secA expression need to be considered. PMID:8021230
Tsui, Ho-Ching Tiffany; Keen, Susan K; Sham, Lok-To; Wayne, Kyle J; Winkler, Malcolm E
2011-01-01
The Sec translocase pathway is the major route for protein transport across and into the cytoplasmic membrane of bacteria. Previous studies reported that the SecA translocase ATP-binding subunit and the cell surface HtrA protease/chaperone formed a single microdomain, termed "ExPortal," in some species of ellipsoidal (ovococcus) Gram-positive bacteria, including Streptococcus pyogenes. To investigate the generality of microdomain formation, we determined the distribution of SecA and SecY by immunofluorescent microscopy in Streptococcus pneumoniae (pneumococcus), which is an ovococcus species evolutionarily distant from S. pyogenes. In the majority (≥ 75%) of exponentially growing cells, S. pneumoniae SecA (SecA (Spn)) and SecY (Spn) located dynamically in cells at different stages of division. In early divisional cells, both Sec subunits concentrated at equators, which are future sites of constriction. Further along in division, SecA(Spn) and SecY(Spn) remained localized at mid-cell septa. In late divisional cells, both Sec subunits were hemispherically distributed in the regions between septa and the future equators of dividing cells. In contrast, the HtrA (Spn) homologue localized to the equators and septa of most (> 90%) dividing cells, whereas the SrtA(Spn) sortase located over the surface of cells in no discernable pattern. This dynamic pattern of Sec distribution was not perturbed by the absence of flotillin family proteins, but was largely absent in most cells in early stationary phase and in cls mutants lacking cardiolipin synthase. These results do not support the existence of an ExPortal microdomain in S. pneumoniae. Instead, the localization of the pneumococcal Sec translocase depends on the stage of cell division and anionic phospholipid content. Two patterns of Sec translocase distribution, an ExPortal microdomain in certain ovococcus-shaped species like Streptococcus pyogenes and a spiral pattern in rod-shaped species like Bacillus subtilis, have been reported for Gram-positive bacteria. This study provides evidence for a third pattern of Sec localization in the ovococcus human pathogen Streptococcus pneumoniae. The SecA motor and SecY channel subunits of the Sec translocase localize dynamically to different places in the mid-cell region during the division cycle of exponentially growing, but not stationary-phase, S. pneumoniae. Unexpectedly, the S. pneumoniae HtrA (HtrA(Spn)) protease/chaperone principally localizes to cell equators and division septa. The coincident localization of SecA(Spn), SecY (Spn), and HtrA (Spn) to regions of peptidoglycan (PG) biosynthesis in unstressed, growing cells suggests that the pneumococcal Sec translocase directs assembly of the PG biosynthesis apparatus to regions where it is needed during division and that HtrA(Spn) may play a general role in quality control of proteins exported by the Sec translocase.
Taylor, Ethan Will; Ruzicka, Jan A; Premadasa, Lakmini; Zhao, Lijun
2016-01-01
Regulation of protein expression by non-coding RNAs typically involves effects on mRNA degradation and/or ribosomal translation. The possibility of virus-host mRNA-mRNA antisense tethering interactions (ATI) as a gain-of-function strategy, via the capture of functional RNA motifs, has not been hitherto considered. We present evidence that ATIs may be exploited by certain RNA viruses in order to tether the mRNAs of host selenoproteins, potentially exploiting the proximity of a captured host selenocysteine insertion sequence (SECIS) element to enable the expression of virally-encoded selenoprotein modules, via translation of in-frame UGA stop codons as selenocysteine. Computational analysis predicts thermodynamically stable ATIs between several widely expressed mammalian selenoprotein mRNAs (e.g., isoforms of thioredoxin reductase) and specific Ebola virus mRNAs, and HIV-1 mRNA, which we demonstrate via DNA gel shift assays. The probable functional significance of these ATIs is further supported by the observation that, in both viruses, they are located in close proximity to highly conserved in-frame UGA stop codons at the 3' end of open reading frames that encode essential viral proteins (the HIV-1 nef protein and the Ebola nucleoprotein). Significantly, in HIV/AIDS patients, an inverse correlation between serum selenium and mortality has been repeatedly documented, and clinical benefits of selenium in the context of multi-micronutrient supplementation have been demonstrated in several well-controlled clinical trials. Hence, in the light of our findings, the possibility of a similar role for selenium in Ebola pathogenesis and treatment merits serious investigation.
Kristan, Urška; Planinšek, Petra; Benedik, Ljudmila; Falnoga, Ingrid; Stibilj, Vekoslava
2015-01-01
Marine organisms such as mussels and fish take up polonium (Po) and selenium (Se), and distribute them into different cellular components and compartments. Due to its high radiotoxicity and possible biomagnification across the marine food chain Po-210 is potentially hazardous, while selenium is an essential trace element for humans and animals. The aim of this study was to investigate and compare the presence and extractability of the elements in the mussels Mytilus galloprovincialis collected in the Gulf of Trieste. The levels of Po-210 in the samples ranged from 220 to 400 Bq kg(-1) and of Se from 2.6 to 8.2 mg kg(-1), both on a dry matter basis. Using various extraction types and conditions in water, buffer or enzymatic media, the best extractability was obtained with enzymatic extraction (Protease XIV, 1h shaking at 40 °C) and the worst by water extraction (24 h shaking at 37 °C). 90% of Po-210 and 70% of Se was extractable in the first case versus less than 10% of Po-210 and less than 40% of Se in the second. Such evident differences in extractability between the investigated elements point to different metabolic pathways of the two elements. In enzymatic extracts Se speciation revealed three Se compounds (SeCys2, SeMet, one undefined), while Po-210 levels were too low to allow any conclusions about speciation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-03
...-0162] Consideration of Rulemaking To Address Prompt Remediation of Residual Radioactivity During... address prompt remediation of residual radioactivity during the operational phase of licensed material... radiological remediation during operations. In the Staff Requirements Memorandum (SRM), SRM-SECY-07-0177...
Taylor, Ethan Will; Ruzicka, Jan A.; Premadasa, Lakmini; Zhao, Lijun
2016-01-01
Regulation of protein expression by non-coding RNAs typically involves effects on mRNA degradation and/or ribosomal translation. The possibility of virus-host mRNA-mRNA antisense tethering interactions (ATI) as a gain-of-function strategy, via the capture of functional RNA motifs, has not been hitherto considered. We present evidence that ATIs may be exploited by certain RNA viruses in order to tether the mRNAs of host selenoproteins, potentially exploiting the proximity of a captured host selenocysteine insertion sequence (SECIS) element to enable the expression of virally-encoded selenoprotein modules, via translation of in-frame UGA stop codons as selenocysteine. Computational analysis predicts thermodynamically stable ATIs between several widely expressed mammalian selenoprotein mRNAs (e.g., isoforms of thioredoxin reductase) and specific Ebola virus mRNAs, and HIV-1 mRNA, which we demonstrate via DNA gel shift assays. The probable functional significance of these ATIs is further supported by the observation that, in both viruses, they are located in close proximity to highly conserved in-frame UGA stop codons at the 3′ end of open reading frames that encode essential viral proteins (the HIV-1 nef protein and the Ebola nucleoprotein). Significantly, in HIV/AIDS patients, an inverse correlation between serum selenium and mortality has been repeatedly documented, and clinical benefits of selenium in the context of multi-micronutrient supplementation have been demonstrated in several well-controlled clinical trials. Hence, in the light of our findings, the possibility of a similar role for selenium in Ebola pathogenesis and treatment merits serious investigation. PMID:26369818
77 FR 69900 - Advisory Committee on Reactor Safeguards; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-21
... NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards; Notice of Meeting In... Advisory Committee on Reactor Safeguards (ACRS) will hold a meeting on December 6-8, 2012, 11545 Rockville... Recommendations (SECY-12-0064), (3) Venting Systems for Boiling Water Reactors (BWRs) with Mark I and Mark II...
77 FR 25760 - Low-Level Radioactive Waste Management and Volume Reduction
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-01
... NUCLEAR REGULATORY COMMISSION [NRC-2011-0183] Low-Level Radioactive Waste Management and Volume.... Nuclear Regulatory Commission (NRC or the Commission) is revising its 1981 Policy Statement on Low-Level..., the NRC staff issued SECY-10-0043, ``Blending of Low-Level Radioactive Waste'' (ADAMS Accession No...
A Note on Systems Intelligence in Knowledge Management
ERIC Educational Resources Information Center
Sasaki, Yasuo
2017-01-01
Purpose: This paper aims to show that systems intelligence (SI) can be a useful perspective in knowledge management, particularly in the context of the socialization, externalization, combination and internalization (SECI) model. SI is a recently developed systemic concept, a certain kind of human intelligence based on a systems thinking…
Towards a Semantic E-Learning Theory by Using a Modelling Approach
ERIC Educational Resources Information Center
Yli-Luoma, Pertti V. J.; Naeve, Ambjorn
2006-01-01
In the present study, a semantic perspective on e-learning theory is advanced and a modelling approach is used. This modelling approach towards the new learning theory is based on the four SECI phases of knowledge conversion: Socialisation, Externalisation, Combination and Internalisation, introduced by Nonaka in 1994, and involving two levels of…
75 FR 36124 - Construction Reactor Oversight Process Request for Public Comment
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-24
..., and the assessment of licensee safety culture. In SECY-10-0038, ``Update Status on the Development of... commenter supports or does not support an aspect of this plan. The use of examples is encouraged. (1) The... ROP, the NRC currently assigns safety culture component aspects to findings when appropriate...
ERIC Educational Resources Information Center
Naito, Eisuke
This paper discusses knowledge management (KM) in relation to a shared cataloging system in Japanese university libraries. The first section describes the Japanese scene related to knowledge management and the working environment, including the SECI (Socialization, Externalization, Combination, Internalization) model, the context of knowledge, and…
Quaglino, Fabio; Zhao, Yan; Casati, Paola; Bulgari, Daniela; Bianco, Piero Attilio; Wei, Wei; Davis, Robert Edward
2013-08-01
Phytoplasmas classified in group 16SrXII infect a wide range of plants and are transmitted by polyphagous planthoppers of the family Cixiidae. Based on 16S rRNA gene sequence identity and biological properties, group 16SrXII encompasses several species, including 'Candidatus Phytoplasma australiense', 'Candidatus Phytoplasma japonicum' and 'Candidatus Phytoplasma fragariae'. Other group 16SrXII phytoplasma strains are associated with stolbur disease in wild and cultivated herbaceous and woody plants and with bois noir disease in grapevines (Vitis vinifera L.). Such latter strains have been informally proposed to represent a separate species, 'Candidatus Phytoplasma solani', but a formal description of this taxon has not previously been published. In the present work, stolbur disease strain STOL11 (STOL) was distinguished from reference strains of previously described species of the 'Candidatus Phytoplasma' genus based on 16S rRNA gene sequence similarity and a unique signature sequence in the 16S rRNA gene. Other stolbur- and bois noir-associated ('Ca. Phytoplasma solani') strains shared >99 % 16S rRNA gene sequence similarity with strain STOL11 and contained the signature sequence. 'Ca. Phytoplasma solani' is the only phytoplasma known to be transmitted by Hyalesthes obsoletus. Insect vectorship and molecular characteristics are consistent with the concept that diverse 'Ca. Phytoplasma solani' strains share common properties and represent an ecologically distinct gene pool. Phylogenetic analyses of 16S rRNA, tuf, secY and rplV-rpsC gene sequences supported this view and yielded congruent trees in which 'Ca. Phytoplasma solani' strains formed, within the group 16SrXII clade, a monophyletic subclade that was most closely related to, but distinct from, that of 'Ca. Phytoplasma australiense'-related strains. Based on distinct molecular and biological properties, stolbur- and bois noir-associated strains are proposed to represent a novel species level taxon, 'Ca. Phytoplasma solani'; STOL11 is designated the reference strain.
Mason, Meghan R; Encina, Carolina; Sreevatsan, Srinand; Muñoz-Zanzi, Claudia
2016-08-01
Leptospirosis is a neglected zoonosis affecting animals and humans caused by infection with Leptospira. The bacteria can survive outside of hosts for long periods of time in soil and water. While identification of Leptospira species from human cases and animal reservoirs are increasingly reported, little is known about the diversity of pathogenic Leptospira species in the environment and how surveillance of the environment might be used for monitoring and controlling disease. Water samples (n = 104) were collected from the peri-domestic environment of 422 households from farms, rural villages, and urban slums participating in a broader study on the eco-epidemiology of leptospirosis in the Los Rios Region, Chile, between October 2010 and April 2012. The secY region of samples, previously detected as pathogenic Leptospira by PCR, was amplified and sequenced. Sequences were aligned using ClustalW in MEGA, and a minimum spanning tree was created in PHYLOViZ using the goeBURST algorithm to assess sequence similarity. Sequences from four clinical isolates, 17 rodents, and 20 reference strains were also included in the analysis. Overall, water samples contained L. interrogans, L. kirschneri, and L. weilii, with descending frequency. All species were found in each community type. The distribution of the species differed by the season in which the water samples were obtained. There was no evidence that community-level prevalence of Leptospira in dogs, rodents, or livestock influenced pathogen diversity in the water samples. This study reports the presence of pathogenic Leptospira in the peri-domestic environment of households in three community types and the differences in Leptospira diversity at the community level. Systematic environmental surveillance of Leptospira can be used for detecting changes in pathogen diversity and to identify and monitor contaminated areas where an increased risk of human infection exists.
Miyazaki, Akio; Shigaki, Toshiro; Koinuma, Hiroaki; Iwabuchi, Nozomu; Rauka, Gou Bue; Kembu, Alfred; Saul, Josephine; Watanabe, Kiyoto; Nijo, Takamichi; Maejima, Kensaku; Yamaji, Yasuyuki; Namba, Shigetou
2018-01-01
Bogia coconut syndrome (BCS) is one of the lethal yellowing (LY)-type diseases associated with phytoplasma presence that are seriously threatening coconut cultivation worldwide. It has recently emerged, and is rapidly spreading in northern parts of the island of New Guinea. BCS-associated phytoplasmas collected in different regions were compared in terms of 16S rRNA gene sequences, revealing high identity among them represented by strain BCS-Bo R . Comparative analysis of the 16S rRNA gene sequences revealed that BCS-Bo R shared less than a 97.5 % similarity with other species of 'Candidatus Phytoplasma', with a maximum value of 96.08 % (with strain LY; GenBank accession no. U18747). This result indicates the necessity and propriety of a novel taxon for BCS phytoplasmas according to the recommendations of the IRPCM. Phylogenetic analysis was also conducted on 16S rRNA gene sequences, resulting in a monophyletic cluster composed of BCS-Bo R and other LY-associated phytoplasmas. Other phytoplasmas on the island of New Guinea associated with banana wilt and arecanut yellow leaf diseases showed high similarities to BCS-Bo R and were closely related to BCS phytoplasmas. Based on the uniqueness of their 16S rRNA gene sequences, a novel taxon 'Ca.Phytoplasma noviguineense' is proposed for these phytoplasmas found on the island of New Guinea, with strain BCS-Bo R (GenBank accession no. LC228755) as the reference strain. The novel taxon is described in detail, including information on the symptoms of associated diseases and additional genetic features of the secY gene and rp operon.
Monitoring tree secies diversity over large spatial and temporal scales
James F. Rosson; Clifford C. Amundsen
2004-01-01
The prospect of decline in biological diversity has become a central concern in the life sciences, both around the world and across the United States. Anthropogenic disturbance has been identified as a major factor affecting species diversity trends. An increase in the harvesting of naturally diverse timber stands in the South has become an important issue. The...
Biological Survey, Buffalo River and Outer Harbor of Buffalo, New York. Volume II. Data Report.
1982-06-01
SamplintDate: 4-23-81 and 4-24-81 MG - male, gravid FG - female, gravid S - spent Secies Iength(cm) Sex Condition Station 14 Net lost due to log jam moving down...virginiana Duchesne. Strawberry Melilotus officinklis (L.) Dear. Sweet yellow clover annuus (L.) Pers. Fleabane Rosa sp. Rose Rhamnus sp. Buckthorn
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-03
... comment on potential alternatives for risk informing the path forward to resolve Generic Safety Issue (GSI... Notation Vote Paper (SECY-10-0113) which presented to the Commission the regulatory path forward options... the staff, in part, to explore alternative paths forward for resolving GSI-191. Discussion While GSI...
Martínez, Lidia Mayorga; Orozco, Aurea; Villalobos, Patricia; Valverde-R, Carlos
2008-05-01
Thyroid hormone bioactivity is finely regulated at the cellular level by the peripheral iodothyronine deiodinases (D). The study of thyroid function in fish has been restricted mainly to teleosts, whereas the study and characterization of Ds have been overlooked in chondrichthyes. Here we report the cloning and operational characterization of both the native and the recombinant hepatic type 3 iodothyronine deiodinase in the tropical shark Chiloscyllium punctatum. Native and recombinant sD3 show identical catalytic activities: a strong preference for T3-inner-ring deiodination, a requirement for a high concentration of DTT, a sequential reaction mechanism, and resistance to PTU inhibition. The cloned cDNA contains 1298 nucleotides [excluding the poly(A) tail] and encodes a predicted protein of 259 amino acids. The triplet TGA coding for selenocysteine (Sec) is at position 123. The consensus selenocysteine insertion sequence (SECIS) was identified 228 bp upstream of the poly(A) tail and corresponds to form 2. The deduced amino acid sequence was 77% and 72% identical to other D3 cDNAs in fishes and other vertebrates, respectively. As in the case of other piscivore teleost species, shark expresses hepatic D3 through adulthood. This characteristic may be associated with the alimentary strategy in which the protection from an exogenous overload of thyroid hormones could be of physiological importance for thyroidal homeostasis.
Exploration of Social Capital and Knowledge Sharing: An Empirical Study on Student Virtual Teams
ERIC Educational Resources Information Center
Liu, Ying Chieh; Li, FengChia
2012-01-01
Although research on virtual teams is becoming more popular, there is a gap in the understanding of how social capital affects knowledge sharing and creating, and their impacts on virtual team performance. To fill in this gap, this study establishes a framework by incorporating social capital with the SECI model and further examines it with an…
COMBIC, Combined Obscuration Model for Battlefield Induced Contaminants: Volume 2 - Appendices
2000-08-01
Smokes. ARCSL-TR- 81019 , U.S. Army Chemical Re- search and Development Center. Rubel, G. O., 1981: An Improved Thermodynamic Model for Phosphorus...63116 Mil Asst for Env Sci Ofc of the Undersec of Defns for Rsrch & Engrg R&AT E LS Pentagon Rm 3D129 Washington DC 20301-3080 Ofc of the Secy of Defns
Farewell TID-14844; hello SECY-92-127
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lahti, G.P.; Johnson, W.J.
This year, 1992, marks the 50th anniversary of the first sustained nuclear reaction in the pile at the University of Chicago's Stagg Field. But it also marks the 30th anniversary of the publication of TID-14844, which has served as the design-basis source term for radiological assessments supporting the licensing of nuclear power plants in the United States since its inception. The conservative TID-14844 model assumes that 100% of the noble gases and 50% of the iodines are instantaneously released to the containment and are available for leakage to the environment. TID-14844 is formally embodied in the US Nuclear Regulatory Commission'smore » (NRC's) regulations in parts 10CFR100 (siting) and 10CFR50 (review of control room habitability, postaccident shielding and sampling systems). It is also embodied in a host of NRC Regulatory Guides and NUREG reports that address off-site consequences of releases of radioactivity, equipment qualification, and other postaccident radiological concerns. On April 20, 1992, the NRC staff presented to the NRC commissioners the draft Revised Accident Source Terms for Light-Water Nuclear Power Plants.' This effort is documented in SECY-92-127 and provides the first official position of the NRC in this matter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, Frank
We proposed a program-supporting research project in the area of fuel-cycle R&D, specifically on the topic of advanced fuels. Our goal was to investigate whether SECIS (surface engineering by concentrated interstitial solute – carbon, nitrogen) can improve the properties of austenitic stainless steels and related structural alloys such that they can be used for nuclear fuel cladding in LWRs (light-water reactors) and significantly excel currently used alloys with regard to performance, safety, service life, and accident tolerance. We intended to demonstrate that SECIS can be adapted for post-processing of clad tubing to significantly enhance mechanical properties (hardness, wear resistance, andmore » fatigue life), corrosion resistance, resistance to stress–corrosion cracking (hydrogen-induced embrittlement), and – potentially – radiation resistance (against electron-, neutron-, or ion-radiation damage). To test this hypothesis, we measured various relevant properties of the surface-engineered alloys and compared them with corresponding properties of the non–treated, as-received alloys. In particular, we studied the impact of heat exposure corresponding to BWR (boiling-water reactor) working and accident (loss-of-coolant) conditions and the effect of ion irradiation.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-23
... will provide you with appropriate aids such as readers or print magnifiers. The Department will make copies of the notice available, upon request, in large print and as an electronic file on computer disk.... v. Sec'y of Labor, 713 F.3d 1080 (11th Cir. 2013) (holding that the Department of Labor lacks...
USDA-ARS?s Scientific Manuscript database
North American grapevine yellows (NAGY) disease has sometimes been ascribed to infection of Vitis vinifera L. by X-disease phytoplasma, but the accuracy of this attribution has remained open to question. In the present study of NAGY etiology, the disease was discovered in Maryland, Pennsylvania, Oh...
Assessment of animal hosts of pathogenic Leptospira in northern Tanzania.
Allan, Kathryn J; Halliday, Jo E B; Moseley, Mark; Carter, Ryan W; Ahmed, Ahmed; Goris, Marga G A; Hartskeerl, Rudy A; Keyyu, Julius; Kibona, Tito; Maro, Venance P; Maze, Michael J; Mmbaga, Blandina T; Tarimo, Rigobert; Crump, John A; Cleaveland, Sarah
2018-06-01
Leptospirosis is a zoonotic bacterial disease that affects more than one million people worldwide each year. Human infection is acquired through direct or indirect contact with the urine of an infected animal. A wide range of animals including rodents and livestock may shed Leptospira bacteria and act as a source of infection for people. In the Kilimanjaro Region of northern Tanzania, leptospirosis is an important cause of acute febrile illness, yet relatively little is known about animal hosts of Leptospira infection in this area. The roles of rodents and ruminant livestock in the epidemiology of leptospirosis were evaluated through two linked studies. A cross-sectional study of peri-domestic rodents performed in two districts with a high reported incidence of human leptospirosis found no evidence of Leptospira infection among rodent species trapped in and around randomly selected households. In contrast, pathogenic Leptospira infection was detected in 7.08% cattle (n = 452 [5.1-9.8%]), 1.20% goats (n = 167 [0.3-4.3%]) and 1.12% sheep (n = 89 [0.1-60.0%]) sampled in local slaughterhouses. Four Leptospira genotypes were detected in livestock. Two distinct clades of L. borgpetersenii were identified in cattle as well as a clade of novel secY sequences that showed only 95% identity to known Leptospira sequences. Identical L. kirschneri sequences were obtained from qPCR-positive kidney samples from cattle, sheep and goats. These results indicate that ruminant livestock are important hosts of Leptospira in northern Tanzania. Infected livestock may act as a source of Leptospira infection for people. Additional work is needed to understand the role of livestock in the maintenance and transmission of Leptospira infection in this region and to examine linkages between human and livestock infections.
Graentzdoerffer, Andrea; Rauh, David; Pich, Andreas; Andreesen, Jan R
2003-01-01
Two gene clusters encoding similar formate dehydrogenases (FDH) were identified in Eubacterium acidaminophilum. Each cluster is composed of one gene coding for a catalytic subunit ( fdhA-I, fdhA-II) and one for an electron-transferring subunit ( fdhB-I, fdhB-II). Both fdhA genes contain a TGA codon for selenocysteine incorporation and the encoded proteins harbor five putative iron-sulfur clusters in their N-terminal region. Both FdhB subunits resemble the N-terminal region of FdhA on the amino acid level and contain five putative iron-sulfur clusters. Four genes thought to encode the subunits of an iron-only hydrogenase are located upstream of the FDH gene cluster I. By sequence comparison, HymA and HymB are predicted to contain one and four iron-sulfur clusters, respectively, the latter protein also binding sites for FMN and NAD(P). Thus, HymA and HymB seem to represent electron-transferring subunits, and HymC the putative catalytic subunit containing motifs for four iron-sulfur clusters and one H-cluster specific for Fe-only hydrogenases. HymD has six predicted transmembrane helices and might be an integral membrane protein. Viologen-dependent FDH activity was purified from serine-grown cells of E. acidaminophilum and the purified protein complex contained four subunits, FdhA and FdhB, encoded by FDH gene cluster II, and HymA and HymB, identified after determination of their N-terminal sequences. Thus, this complex might represent the most simple type of a formate hydrogen lyase. The purified formate dehydrogenase fraction contained iron, tungsten, a pterin cofactor, and zinc, but no molybdenum. FDH-II had a two-fold higher K(m) for formate (0.37 mM) than FDH-I and also catalyzed CO(2) reduction to formate. Reverse transcription (RT)-PCR pointed to increased expression of FDH-II in serine-grown cells, supporting the isolation of this FDH isoform. The fdhA-I gene was expressed as inactive protein in Escherichia coli. The in-frame UGA codon for selenocysteine incorporation was read in the heterologous system only as stop codon, although its potential SECIS element exhibited a quite high similarity to that of E. coli FDH.
Breast cancer: surgery at the South egypt cancer institute.
Salem, Ahmed A S; Salem, Mohamed Abou Elmagd; Abbass, Hamza
2010-09-30
Breast cancer is the most frequent malignant tumor in women worldwide. In Egypt, it is the most common cancer among women, representing 18.9% of total cancer cases (35.1% in women and 2.2% in men) among the Egypt National Cancer Institute's (NCI) series of 10,556 patients during the year 2001, with an age-adjusted rate of 49.6 per 100,000 people. In this study, the data of all breast cancer patients presented to the surgical department of the South Egypt cancer Institute (SECI) hospital during the period from Janurary 2001 to December 2008 were reviewed .We report the progress of the availability of breast cancer management and evaluation of the quality of care delivered to breast cancer patients. The total number of patients with a breast lump presented to the SECI during the study period was 1,463 patients (32 males and 1431 females); 616 patients from the total number were admitted at the surgical department .There was a decline in advanced cases. Since 2001, facilities for all lines of comprehensive management have been made accessible for all patients. We found that better management could lead to earlier presentation, and better overall outcome in breast cancer patients.The incidence is steadily increasing with a tendency for breast cancer to occur in younger age groups and with advanced stages.
Sequence information signal processor
Peterson, John C.; Chow, Edward T.; Waterman, Michael S.; Hunkapillar, Timothy J.
1999-01-01
An electronic circuit is used to compare two sequences, such as genetic sequences, to determine which alignment of the sequences produces the greatest similarity. The circuit includes a linear array of series-connected processors, each of which stores a single element from one of the sequences and compares that element with each successive element in the other sequence. For each comparison, the processor generates a scoring parameter that indicates which segment ending at those two elements produces the greatest degree of similarity between the sequences. The processor uses the scoring parameter to generate a similar scoring parameter for a comparison between the stored element and the next successive element from the other sequence. The processor also delivers the scoring parameter to the next processor in the array for use in generating a similar scoring parameter for another pair of elements. The electronic circuit determines which processor and alignment of the sequences produce the scoring parameter with the highest value.
Mason, Meghan R.; Encina, Carolina; Sreevatsan, Srinand; Muñoz-Zanzi, Claudia
2016-01-01
Background Leptospirosis is a neglected zoonosis affecting animals and humans caused by infection with Leptospira. The bacteria can survive outside of hosts for long periods of time in soil and water. While identification of Leptospira species from human cases and animal reservoirs are increasingly reported, little is known about the diversity of pathogenic Leptospira species in the environment and how surveillance of the environment might be used for monitoring and controlling disease. Methods and Findings Water samples (n = 104) were collected from the peri-domestic environment of 422 households from farms, rural villages, and urban slums participating in a broader study on the eco-epidemiology of leptospirosis in the Los Rios Region, Chile, between October 2010 and April 2012. The secY region of samples, previously detected as pathogenic Leptospira by PCR, was amplified and sequenced. Sequences were aligned using ClustalW in MEGA, and a minimum spanning tree was created in PHYLOViZ using the goeBURST algorithm to assess sequence similarity. Sequences from four clinical isolates, 17 rodents, and 20 reference strains were also included in the analysis. Overall, water samples contained L. interrogans, L. kirschneri, and L. weilii, with descending frequency. All species were found in each community type. The distribution of the species differed by the season in which the water samples were obtained. There was no evidence that community-level prevalence of Leptospira in dogs, rodents, or livestock influenced pathogen diversity in the water samples. Conclusions This study reports the presence of pathogenic Leptospira in the peri-domestic environment of households in three community types and the differences in Leptospira diversity at the community level. Systematic environmental surveillance of Leptospira can be used for detecting changes in pathogen diversity and to identify and monitor contaminated areas where an increased risk of human infection exists. PMID:27529550
Complete mitochondrial genome of the agarophyte red alga Gelidium vagum (Gelidiales).
Yang, Eun Chan; Kim, Kyeong Mi; Boo, Ga Hun; Lee, Jung-Hyun; Boo, Sung Min; Yoon, Hwan Su
2014-08-01
We describe the first complete mitochondrial genome of Gelidium vagum (Gelidiales) (24,901 bp, 30.4% GC content), an agar-producing red alga. The circular mitochondrial genome contains 43 genes, including 23 protein-coding, 18 tRNA and 2 rRNA genes. All the protein-coding genes have a typical ATG start codon. No introns were found. Two genes, secY and rps12, were overlapped by 41 bp.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-03
...The U.S. Nuclear Regulatory Commission (NRC) is conducting an assessment, and is seeking stakeholder views, on issues relating to foreign ownership, control, or domination (FOCD) of commercial nuclear power plants. The results and conclusions of this assessment, including any recommendations on any proposed modifications to guidance or practice on FOCD that may be warranted, will be provided in a voting paper for Commission review and approval.
Breast Cancer: Surgery at the South Egypt Cancer Institute
Salem, Ahmed A.S.; Salem, Mohamed Abou Elmagd; Abbass, Hamza
2010-01-01
Breast cancer is the most frequent malignant tumor in women worldwide. In Egypt, it is the most common cancer among women, representing 18.9% of total cancer cases (35.1% in women and 2.2% in men) among the Egypt National Cancer Institute’s (NCI) series of 10,556 patients during the year 2001, with an age-adjusted rate of 49.6 per 100,000 people. In this study, the data of all breast cancer patients presented to the surgical department of the South Egypt cancer Institute (SECI) hospital during the period from Janurary 2001 to December 2008 were reviewed .We report the progress of the availability of breast cancer management and evaluation of the quality of care delivered to breast cancer patients. The total number of patients with a breast lump presented to the SECI during the study period was 1,463 patients (32 males and 1431 females); 616 patients from the total number were admitted at the surgical department .There was a decline in advanced cases. Since 2001, facilities for all lines of comprehensive management have been made accessible for all patients. We found that better management could lead to earlier presentation, and better overall outcome in breast cancer patients.The incidence is steadily increasing with a tendency for breast cancer to occur in younger age groups and with advanced stages. PMID:24281200
A Novel Selenocystine-Accumulating Plant in Selenium-Mine Drainage Area in Enshi, China
Yuan, Linxi; Zhu, Yuanyuan; Lin, Zhi-Qing; Banuelos, Gary; Li, Wei; Yin, Xuebin
2013-01-01
Plant samples of Cardamine hupingshanesis (Brassicaceae), Ligulariafischeri (Ledeb.) turcz (Steraceae) and their underlying top sediments were collected from selenium (Se) mine drainage areas in Enshi, China. Concentrations of total Se were measured using Hydride Generation-Atomic Fluorescence Spectrometry (HG-AFS) and Se speciation were determined using liquid chromatography/UV irradiation-hydride generation-atomic fluorescence spectrometry (LC-UV-HG-AFS). The results showed that C. hupingshanesis could accumulate Se to 239±201 mg/kg DW in roots, 316±184 mg/kg DW in stems, and 380±323 mg/kg DW in leaves, which identifies it as Se secondary accumulator. Particularly, it could accumulate Se up to 1965±271 mg/kg DW in leaves, 1787±167 mg/kg DW in stem and 4414±3446 mg/kg DW in roots, living near Se mine tailing. Moreover, over 70% of the total Se accumulated in C. hupingshanesis were in the form of selenocystine (SeCys2), increasing with increased total Se concentration in plant, in contrast to selenomethionine (SeMet) in non-accumulators (eg. Arabidopsis) and secondary accumulators (eg. Brassica juncea), and selenomethylcysteine (SeMeCys) in hyperaccumulators (eg. Stanleya pinnata). There is no convincing explanation on SeCys2 accumulation in C. hupingshanesis based on current Se metabolism theory in higher plants, and further study will be needed. PMID:23750270
Dillon, Laura; Collins, Meaghan; Conway, Maura; Cunningham, Kate
2013-01-01
Three experiments examined the implicit learning of sequences under conditions in which the elements comprising a sequence were equated in terms of reinforcement probability. In Experiment 1 cotton-top tamarins (Saguinus oedipus) experienced a five-element sequence displayed serially on a touch screen in which reinforcement probability was equated across elements at .16 per element. Tamarins demonstrated learning of this sequence with higher latencies during a random test as compared to baseline sequence training. In Experiments 2 and 3, manipulations of the procedure used in the first experiment were undertaken to rule out a confound owing to the fact that the elements in Experiment 1 bore different temporal relations to the intertrial interval (ITI), an inhibitory period. The results of Experiments 2 and 3 indicated that the implicit learning observed in Experiment 1 was not due to temporal proximity between some elements and the inhibitory ITI. The results taken together support two conclusion: First that tamarins engaged in sequence learning whether or not there was contingent reinforcement for learning the sequence, and second that this learning was not due to subtle differences in associative strength between the elements of the sequence. PMID:23344718
The contribution of alu elements to mutagenic DNA double-strand break repair.
Morales, Maria E; White, Travis B; Streva, Vincent A; DeFreece, Cecily B; Hedges, Dale J; Deininger, Prescott L
2015-03-01
Alu elements make up the largest family of human mobile elements, numbering 1.1 million copies and comprising 11% of the human genome. As a consequence of evolution and genetic drift, Alu elements of various sequence divergence exist throughout the human genome. Alu/Alu recombination has been shown to cause approximately 0.5% of new human genetic diseases and contribute to extensive genomic structural variation. To begin understanding the molecular mechanisms leading to these rearrangements in mammalian cells, we constructed Alu/Alu recombination reporter cell lines containing Alu elements ranging in sequence divergence from 0%-30% that allow detection of both Alu/Alu recombination and large non-homologous end joining (NHEJ) deletions that range from 1.0 to 1.9 kb in size. Introduction of as little as 0.7% sequence divergence between Alu elements resulted in a significant reduction in recombination, which indicates even small degrees of sequence divergence reduce the efficiency of homology-directed DNA double-strand break (DSB) repair. Further reduction in recombination was observed in a sequence divergence-dependent manner for diverged Alu/Alu recombination constructs with up to 10% sequence divergence. With greater levels of sequence divergence (15%-30%), we observed a significant increase in DSB repair due to a shift from Alu/Alu recombination to variable-length NHEJ which removes sequence between the two Alu elements. This increase in NHEJ deletions depends on the presence of Alu sequence homeology (similar but not identical sequences). Analysis of recombination products revealed that Alu/Alu recombination junctions occur more frequently in the first 100 bp of the Alu element within our reporter assay, just as they do in genomic Alu/Alu recombination events. This is the first extensive study characterizing the influence of Alu element sequence divergence on DNA repair, which will inform predictions regarding the effect of Alu element sequence divergence on both the rate and nature of DNA repair events.
2012-01-01
Background Staphylococcus aureus Repeat (STAR) elements are a type of interspersed intergenic direct repeat. In this study the conservation and variation in these elements was explored by bioinformatic analyses of published staphylococcal genome sequences and through sequencing of specific STAR element loci from a large set of S. aureus isolates. Results Using bioinformatic analyses, we found that the STAR elements were located in different genomic loci within each staphylococcal species. There was no correlation between the number of STAR elements in each genome and the evolutionary relatedness of staphylococcal species, however higher levels of repeats were observed in both S. aureus and S. lugdunensis compared to other staphylococcal species. Unexpectedly, sequencing of the internal spacer sequences of individual repeat elements from multiple isolates showed conservation at the sequence level within deep evolutionary lineages of S. aureus. Whilst individual STAR element loci were demonstrated to expand and contract, the sequences associated with each locus were stable and distinct from one another. Conclusions The high degree of lineage and locus-specific conservation of these intergenic repeat regions suggests that STAR elements are maintained due to selective or molecular forces with some of these elements having an important role in cell physiology. The high prevalence in two of the more virulent staphylococcal species is indicative of a potential role for STAR elements in pathogenesis. PMID:23020678
FARME DB: a functional antibiotic resistance element database
Wallace, James C.; Port, Jesse A.; Smith, Marissa N.; Faustman, Elaine M.
2017-01-01
Antibiotic resistance (AR) is a major global public health threat but few resources exist that catalog AR genes outside of a clinical context. Current AR sequence databases are assembled almost exclusively from genomic sequences derived from clinical bacterial isolates and thus do not include many microbial sequences derived from environmental samples that confer resistance in functional metagenomic studies. These environmental metagenomic sequences often show little or no similarity to AR sequences from clinical isolates using standard classification criteria. In addition, existing AR databases provide no information about flanking sequences containing regulatory or mobile genetic elements. To help address this issue, we created an annotated database of DNA and protein sequences derived exclusively from environmental metagenomic sequences showing AR in laboratory experiments. Our Functional Antibiotic Resistant Metagenomic Element (FARME) database is a compilation of publically available DNA sequences and predicted protein sequences conferring AR as well as regulatory elements, mobile genetic elements and predicted proteins flanking antibiotic resistant genes. FARME is the first database to focus on functional metagenomic AR gene elements and provides a resource to better understand AR in the 99% of bacteria which cannot be cultured and the relationship between environmental AR sequences and antibiotic resistant genes derived from cultured isolates. Database URL: http://staff.washington.edu/jwallace/farme PMID:28077567
Šindelářová, Kristýna; Száková, Jiřina; Tremlová, Jana; Mestek, Oto; Praus, Lukáš; Kaňa, Antonín; Najmanová, Jana; Tlustoš, Pavel
2015-01-01
A model small-scale field experiment was set up to investigate selenium (Se) uptake by four different varieties of broccoli plants, as well as the effect of Se foliar application on the uptake of essential elements for plants calcium (Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), phosphorus (P), sulfur (S), and zinc (Zn). Foliar application of sodium selenate (Na2SeO4) was carried out at two rates (25 and 50 g Se/ha), and an untreated control variant was included. Analyses of individual parts of broccoli were performed, whereby it was found that Se in the plant accumulates mainly in the flower heads and slightly less in the leaves, stems, and roots, regardless of the Se rate and broccoli variety. In most cases, there was a statistically significant increase of Se content in all parts of the plant, while there was no confirmed systematic influence of the addition of Se on the changing intake of other monitored elements. Selenization of broccoli leads to an effective increase in the Se content at a rate of 25 g/ha, whereas the higher rate did not result in a substantial increase of Se content compared to the lower rate in all varieties. Therefore, the rate of 25 g/ha can be recommended as effective to produce broccoli with an increased Se content suitable for consumption. Moreover, Se application resulted in an adequate increase of the main organic compounds of Se, such as selenocystine (SeCys2), selenomethionine (SeMet), and Se-methylselenocysteine (Se-MeSeCys).
Cangi, Nídia; Gordon, Jonathan L; Bournez, Laure; Pinarello, Valérie; Aprelon, Rosalie; Huber, Karine; Lefrançois, Thierry; Neves, Luís; Meyer, Damien F; Vachiéry, Nathalie
2016-01-01
The disease, Heartwater, caused by the Anaplasmataceae E. ruminantium , represents a major problem for tropical livestock and wild ruminants. Up to now, no effective vaccine has been available due to a limited cross protection of vaccinal strains on field strains and a high genetic diversity of Ehrlichia ruminantium within geographical locations. To address this issue, we inferred the genetic diversity and population structure of 194 E. ruminantium isolates circulating worldwide using Multilocus Sequence Typing based on lipA, lipB, secY, sodB , and sucA genes . Phylogenetic trees and networks were generated using BEAST and SplitsTree, respectively, and recombination between the different genetic groups was tested using the PHI test for recombination. Our study reveals the repeated occurrence of recombination between E. ruminantium strains, suggesting that it may occur frequently in the genome and has likely played an important role in the maintenance of genetic diversity and the evolution of E. ruminantium . Despite the unclear phylogeny and phylogeography, E. ruminantium isolates are clustered into two main groups: Group 1 (West Africa) and a Group 2 (worldwide) which is represented by West, East, and Southern Africa, Indian Ocean, and Caribbean strains. Some sequence types are common between West Africa and Caribbean and between Southern Africa and Indian Ocean strains. These common sequence types highlight two main introduction events due to the movement of cattle: from West Africa to Caribbean and from Southern Africa to the Indian Ocean islands. Due to the long branch lengths between Group 1 and Group 2, and the propensity for recombination between these groups, it seems that the West African clusters of Subgroup 2 arrived there more recently than the original divergence of the two groups, possibly with the original waves of domesticated ruminants that spread across the African continent several thousand years ago.
Sadofsky, M; Connelly, S; Manley, J L; Alwine, J C
1985-01-01
Our previous studies of the 3'-end processing of simian virus 40 late mRNAs indicated the existence of an essential element (or elements) downstream of the AAUAAA signal. We report here the use of transient expression analysis to study a functional element which we located within the sequence AGGUUUUUU, beginning 59 nucleotides downstream of the recognized signal AAUAAA. Deletion of this element resulted in (i) at least a 75% drop in 3'-end processing at the normal site and (ii) appearance of readthrough transcripts with alternate 3' ends. Some flexibility in the downstream position of this element relative to the AAUAAA was noted by deletion analysis. Using computer sequence comparison, we located homologous regions within downstream sequences of other genes, suggesting a generalized sequence element. In addition, specific complementarity is noted between the downstream element and U4 RNA. The possibility that this complementarity could participate in 3'-end site selection is discussed. Images PMID:3016512
Requena, Jose M; Folgueira, Cristina; López, Manuel C; Thomas, M Carmen
2008-06-02
Protozoan parasites of the genus Leishmania are causative agents of a diverse spectrum of human diseases collectively known as leishmaniasis. These eukaryotic pathogens that diverged early from the main eukaryotic lineage possess a number of unusual genomic, molecular and biochemical features. The completion of the genome projects for three Leishmania species has generated invaluable information enabling a direct analysis of genome structure and organization. By using DNA macroarrays, made with Leishmania infantum genomic clones and hybridized with total DNA from the parasite, we identified a clone containing a repeated sequence. An analysis of the recently completed genome sequence of L. infantum, using this repeated sequence as bait, led to the identification of a new class of repeated elements that are interspersed along the different L. infantum chromosomes. These elements turned out to be homologues of SIDER2 sequences, which were recently identified in the Leishmania major genome; thus, we adopted this nomenclature for the Leishmania elements described herein. Since SIDER2 elements are very heterogeneous in sequence, their precise identification is rather laborious. We have characterized 54 LiSIDER2 elements in chromosome 32 and 27 ones in chromosome 20. The mean size for these elements is 550 bp and their sequence is G+C rich (mean value of 66.5%). On the basis of sequence similarity, these elements can be grouped in subfamilies that show a remarkable relationship of proximity, i.e. SIDER2s of a given subfamily locate close in a chromosomal region without intercalating elements. For comparative purposes, we have identified the SIDER2 elements existing in L. major and Leishmania braziliensis chromosomes 32. While SIDER2 elements are highly conserved both in number and location between L. infantum and L. major, no such conservation exists when comparing with SIDER2s in L. braziliensis chromosome 32. SIDER2 elements constitute a relevant piece in the Leishmania genome organization. Sequence characteristics, genomic distribution and evolutionarily conservation of SIDER2s are suggestive of relevant functions for these elements in Leishmania. Apart from a proved involvement in post-transcriptional mechanisms of gene regulation, SIDER2 elements could be involved in DNA amplification processes and, perhaps, in chromosome segregation as centromeric sequences.
Palindromic repetitive DNA elements with coding potential in Methanocaldococcus jannaschii.
Suyama, Mikita; Lathe, Warren C; Bork, Peer
2005-10-10
We have identified 141 novel palindromic repetitive elements in the genome of euryarchaeon Methanocaldococcus jannaschii. The total length of these elements is 14.3kb, which corresponds to 0.9% of the total genomic sequence and 6.3% of all extragenic regions. The elements can be divided into three groups (MJRE1-3) based on the sequence similarity. The low sequence identity within each of the groups suggests rather old origin of these elements in M. jannaschii. Three MJRE2 elements were located within the protein coding regions without disrupting the coding potential of the host genes, indicating that insertion of repeats might be a widespread mechanism to enhance sequence diversity in coding regions.
Translation regulation of mammalian selenoproteins.
Vindry, Caroline; Ohlmann, Théophile; Chavatte, Laurent
2018-05-09
Interest in selenium research has considerably grown over the last decades owing to the association of selenium deficiencies with an increased risk of several human diseases, including cancers, cardiovascular disorders and infectious diseases. The discovery of a genetically encoded 21 st amino acid, selenocysteine, is a fascinating breakthrough in molecular biology as it is the first addition to the genetic code deciphered in the 1960s. Selenocysteine is a structural and functional analog of cysteine, where selenium replaces sulfur, and its presence is critical for the catalytic activity of selenoproteins. The insertion of selenocysteine is a non-canonical translational event, based on the recoding of a UGA codon in selenoprotein mRNAs, normally used as a stop codon in other cellular mRNAs. Two RNA molecules and associated partners are crucial components of the selenocysteine insertion machinery, the Sec-tRNA [Ser]Sec devoted to UGA codon recognition and the SECIS elements located in the 3'UTR of selenoprotein mRNAs. The translational UGA recoding event is a limiting stage of selenoprotein expression and its efficiency is regulated by several factors. The control of selenoproteome expression is crucial for redox homeostasis and antioxidant defense of mammalian organisms. In this review, we summarize current knowledge on the co-translational insertion of selenocysteine into selenoproteins, and its layers of regulation. Copyright © 2018. Published by Elsevier B.V.
Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines.
Touat-Hamici, Zahia; Bulteau, Anne-Laure; Bianga, Juliusz; Jean-Jacques, Hélène; Szpunar, Joanna; Lobinski, Ryszard; Chavatte, Laurent
2018-04-13
Selenoproteins (25 genes in human) co-translationally incorporate selenocysteine using a UGA codon, normally used as a stop signal. The human selenoproteome is primarily regulated by selenium bioavailability with a tissue-specific hierarchy. We investigated the hierarchy of selenoprotein expression in response to selenium concentration variation in four cell lines originating from kidney (HEK293, immortalized), prostate (LNCaP, cancer), skin (HaCaT, immortalized) and liver (HepG2, cancer), using complementary analytical methods. We performed (i) enzymatic activity, (ii) RT-qPCR, (iii) immuno-detection, (iv) selenium-specific mass spectrometric detection after non-radioactive 76 Se labeling of selenoproteins, and (v) luciferase-based reporter constructs in various cell extracts. We characterized cell-line specific alterations of the selenoproteome in response to selenium variation that, in most of the cases, resulted from a translational control of gene expression. We established that UGA-selenocysteine recoding efficiency, which depends on the nature of the SECIS element, dictates the response to selenium variation. We characterized that selenoprotein hierarchy is cell-line specific with conserved features. This analysis should be done prior to any experiments in a novel cell line. We reported a strategy based on complementary methods to evaluate selenoproteome regulation in human cells in culture. Copyright © 2018 Elsevier B.V. All rights reserved.
Motor programming when sequencing multiple elements of the same duration.
Magnuson, Curt E; Robin, Donald A; Wright, David L
2008-11-01
Motor programming at the self-select paradigm was adopted in 2 experiments to examine the processing demands of independent processes. One process (INT) is responsible for organizing the internal features of the individual elements in a movement (e.g., response duration). The 2nd process (SEQ) is responsible for placing the elements into the proper serial order before execution. Participants in Experiment 1 performed tasks involving 1 key press or sequences of 4 key presses of the same duration. Implementing INT and SEQ was more time consuming for key-pressing sequences than for single key-press tasks. Experiment 2 examined whether the INT costs resulting from the increase in sequence length observed in Experiment 1 resulted from independent planning of each sequence element or via a separate "multiplier" process that handled repetitions of elements of the same duration. Findings from Experiment 2, in which participants performed single key presses or double or triple key sequences of the same duration, suggested that INT is involved with the independent organization of each element contained in the sequence. Researchers offer an elaboration of the 2-process account of motor programming to incorporate the present findings and the findings from other recent sequence-learning research.
Kanhayuwa, Lakkhana; Coutts, Robert H. A.
2016-01-01
Novel families of short interspersed nuclear element (SINE) sequences in the human pathogenic fungus Aspergillus fumigatus, clinical isolate Af293, were identified and categorised into tRNA-related and 5S rRNA-related SINEs. Eight predicted tRNA-related SINE families originating from different tRNAs, and nominated as AfuSINE2 sequences, contained target site duplications of short direct repeat sequences (4–14 bp) flanking the elements, an extended tRNA-unrelated region and typical features of RNA polymerase III promoter sequences. The elements ranged in size from 140–493 bp and were present in low copy number in the genome and five out of eight were actively transcribed. One putative tRNAArg-derived sequence, AfuSINE2-1a possessed a unique feature of repeated trinucleotide ACT residues at its 3’-terminus. This element was similar in sequence to the I-4_AO element found in A. oryzae and an I-1_AF long nuclear interspersed element-like sequence identified in A. fumigatus Af293. Families of 5S rRNA-related SINE sequences, nominated as AfuSINE3, were also identified and their 5'-5S rRNA-related regions show 50–65% and 60–75% similarity to respectively A. fumigatus 5S rRNAs and SINE3-1_AO found in A. oryzae. A. fumigatus Af293 contains five copies of AfuSINE3 sequences ranging in size from 259–343 bp and two out of five AfuSINE3 sequences were actively transcribed. Investigations on AfuSINE distribution in the fungal genome revealed that the elements are enriched in pericentromeric and subtelomeric regions and inserted within gene-rich regions. We also demonstrated that some, but not all, AfuSINE sequences are targeted by host RNA silencing mechanisms. Finally, we demonstrated that infection of the fungus with mycoviruses had no apparent effects on SINE activity. PMID:27736869
Kanhayuwa, Lakkhana; Coutts, Robert H A
2016-01-01
Novel families of short interspersed nuclear element (SINE) sequences in the human pathogenic fungus Aspergillus fumigatus, clinical isolate Af293, were identified and categorised into tRNA-related and 5S rRNA-related SINEs. Eight predicted tRNA-related SINE families originating from different tRNAs, and nominated as AfuSINE2 sequences, contained target site duplications of short direct repeat sequences (4-14 bp) flanking the elements, an extended tRNA-unrelated region and typical features of RNA polymerase III promoter sequences. The elements ranged in size from 140-493 bp and were present in low copy number in the genome and five out of eight were actively transcribed. One putative tRNAArg-derived sequence, AfuSINE2-1a possessed a unique feature of repeated trinucleotide ACT residues at its 3'-terminus. This element was similar in sequence to the I-4_AO element found in A. oryzae and an I-1_AF long nuclear interspersed element-like sequence identified in A. fumigatus Af293. Families of 5S rRNA-related SINE sequences, nominated as AfuSINE3, were also identified and their 5'-5S rRNA-related regions show 50-65% and 60-75% similarity to respectively A. fumigatus 5S rRNAs and SINE3-1_AO found in A. oryzae. A. fumigatus Af293 contains five copies of AfuSINE3 sequences ranging in size from 259-343 bp and two out of five AfuSINE3 sequences were actively transcribed. Investigations on AfuSINE distribution in the fungal genome revealed that the elements are enriched in pericentromeric and subtelomeric regions and inserted within gene-rich regions. We also demonstrated that some, but not all, AfuSINE sequences are targeted by host RNA silencing mechanisms. Finally, we demonstrated that infection of the fungus with mycoviruses had no apparent effects on SINE activity.
Aryan, A; Brader, G; Mörtel, J; Pastar, M; Riedle-Bauer, M
2014-10-01
Bois noir (BN) associated with ' Candidatus Phytoplasma solani' (Stolbur) is regularly found in Austrian vine growing regions. Investigations between 2003 and 2008 indicated sporadic presence of the confirmed disease vector Hyalesthes obsoletus and frequent infections of bindweed and grapevine. Infections of nettles were rare. In contrast present investigations revealed a mass occurrence of H. obsoletus almost exclusively on stinging nettle. The high population densities of H. obsoletus on Urtica dioica were accompanied by frequent occurrence of ' Ca. P. solani' in nettles and planthoppers. Sequence analysis of the molecular markers secY, stamp, tuf and vmp1 of stolbur revealed a single genotype named CPsM4_At1 in stinging nettles and more than 64 and 90 % abundance in grapevine and H. obsoletus , respectively. Interestingly, this genotype showed tuf b type restriction pattern previously attributed to bindweed associated ' Ca. P. solani' strains, but a different sequence assigned as tuf b2 compared to reference tuf b strains. All other marker genes of CPsM4_At1 clustered with tuf a and nettle derived genotypes verifying distinct nettle phytoplasma genotypes. Transmission experiments with H. obsoletus and Anaceratagallia ribauti resulted in successful transmission of five different strains including the major genotype to Catharanthus roseus and in transmission of the major genotype to U. dioica . Altogether, five nettle and nine bindweed associated genotypes were described. Bindweed types were verified in 34 % of grapevine samples, in few positive Reptalus panzeri , rarely in bindweeds and occasionally in Catharanthus roseus infected by H. obsoletus or A. ribauti . ' Candidatus Phytoplasma convolvuli' (bindweed yellows) was ascertained in nettle and bindweed samples.
Presence of leptospires on genital tract of mares with reproductive problems.
Hamond, Camila; Pestana, Cristiane P; Rocha-de-Souza, Cláudio Marcos; Cunha, Luis Eduardo R; Brandão, Felipe Z; Medeiros, Marco Alberto; Lilenbaum, Walter
2015-09-30
Leptospirosis is a zoonotic disease of global importance, and has a worldwide distribution. Equine leptospirosis is commonly manifested by recurrent uveitis, reproductive disorders, as abortions, embryonic absorption, stillbirth and the birth of weak foals. The aim of this study was to verify the presence of Leptospira sp or its DNA in genital tract of mares with reproductive problems. A total of 38 mares with reproductive problems were studied. All the mares were sampled for blood (for serology), urine (for culturing and qPCR), vaginal fluid-VF and endometrial biopsy-EB (for culturing, qPCR and indirect immunofluorescence). PCRs products were sequenced for secY gene. Seventeen (44.7%) serum samples were reactive, predominantly against serogroups Australis (76.4%) and Pomona (23.6%). No positive culture was obtained, but DNA was detected by qPCR on urine samples (26.3%), VF (44.7%) and EB (18.4%) collected 2 months or longer following diagnosis of early fetal death and endometritis. Leptospira cell aggregations were visible by indirect immunofluorescence on 57.1% (4/7) EBs and 17.6% (3/17) VFs. A total of 18 amplicons showed interpretable sequences. Out of those 18 amplicons, 15 presented 100% of identity with the species L. interrogans (sv Bratislava and Pomona), while three were L. borgpertersenii. This study suggests the presence of leptospires in the uterus of mares with reproductive problems. Moreover, serology was shown not to be indicated for the diagnosis of presumptive Leptospira infection in early gestation. The most common agent of the genital infection in those mares was L. interrogans, most probably sg Australis. Copyright © 2015 Elsevier B.V. All rights reserved.
Palzkill, T G; Oliver, S G; Newlon, C S
1986-01-01
Four fragments of Saccharomyces cerevisiae chromosome III DNA which carry ARS elements have been sequenced. Each fragment contains multiple copies of sequences that have at least 10 out of 11 bases of homology to a previously reported 11 bp core consensus sequence. A survey of these new ARS sequences and previously reported sequences revealed the presence of an additional 11 bp conserved element located on the 3' side of the T-rich strand of the core consensus. Subcloning analysis as well as deletion and transposon insertion mutagenesis of ARS fragments support a role for 3' conserved sequence in promoting ARS activity. PMID:3529036
Scanning sequences after Gibbs sampling to find multiple occurrences of functional elements
Tharakaraman, Kannan; Mariño-Ramírez, Leonardo; Sheetlin, Sergey L; Landsman, David; Spouge, John L
2006-01-01
Background Many DNA regulatory elements occur as multiple instances within a target promoter. Gibbs sampling programs for finding DNA regulatory elements de novo can be prohibitively slow in locating all instances of such an element in a sequence set. Results We describe an improvement to the A-GLAM computer program, which predicts regulatory elements within DNA sequences with Gibbs sampling. The improvement adds an optional "scanning step" after Gibbs sampling. Gibbs sampling produces a position specific scoring matrix (PSSM). The new scanning step resembles an iterative PSI-BLAST search based on the PSSM. First, it assigns an "individual score" to each subsequence of appropriate length within the input sequences using the initial PSSM. Second, it computes an E-value from each individual score, to assess the agreement between the corresponding subsequence and the PSSM. Third, it permits subsequences with E-values falling below a threshold to contribute to the underlying PSSM, which is then updated using the Bayesian calculus. A-GLAM iterates its scanning step to convergence, at which point no new subsequences contribute to the PSSM. After convergence, A-GLAM reports predicted regulatory elements within each sequence in order of increasing E-values, so users have a statistical evaluation of the predicted elements in a convenient presentation. Thus, although the Gibbs sampling step in A-GLAM finds at most one regulatory element per input sequence, the scanning step can now rapidly locate further instances of the element in each sequence. Conclusion Datasets from experiments determining the binding sites of transcription factors were used to evaluate the improvement to A-GLAM. Typically, the datasets included several sequences containing multiple instances of a regulatory motif. The improvements to A-GLAM permitted it to predict the multiple instances. PMID:16961919
Lammers, P J; McLaughlin, S; Papin, S; Trujillo-Provencio, C; Ryncarz, A J
1990-01-01
An 11-kbp DNA element of unknown function interrupts the nifD gene in vegetative cells of Anabaena sp. strain PCC 7120. In developing heterocysts the nifD element excises from the chromosome via site-specific recombination between short repeat sequences that flank the element. The nucleotide sequence of the nifH-proximal half of the element was determined to elucidate the genetic potential of the element. Four open reading frames with the same relative orientation as the nifD element-encoded xisA gene were identified in the sequenced region. Each of the open reading frames was preceded by a reasonable ribosome-binding site and had biased codon utilization preferences consistent with low levels of expression. Open reading frame 3 was highly homologous with three cytochrome P-450 omega-hydroxylase proteins and showed regional homology to functionally significant domains common to the cytochrome P-450 superfamily. The sequence encoding open reading frame 2 was the most highly conserved portion of the sequenced region based on heterologous hybridization experiments with three genera of heterocystous cyanobacteria. Images PMID:2123860
Optically intraconnected computer employing dynamically reconfigurable holographic optical element
NASA Technical Reports Server (NTRS)
Bergman, Larry A. (Inventor)
1992-01-01
An optically intraconnected computer and a reconfigurable holographic optical element employed therein. The basic computer comprises a memory for holding a sequence of instructions to be executed; logic for accessing the instructions in sequence; logic for determining for each the instruction the function to be performed and the effective address thereof; a plurality of individual elements on a common support substrate optimized to perform certain logical sequences employed in executing the instructions; and, element selection logic connected to the logic determining the function to be performed for each the instruction for determining the class of each function and for causing the instruction to be executed by those the elements which perform those associated the logical sequences affecting the instruction execution in an optimum manner. In the optically intraconnected version, the element selection logic is adapted for transmitting and switching signals to the elements optically.
Zaba: a novel miniature transposable element present in genomes of legume plants.
Macas, J; Neumann, P; Pozárková, D
2003-08-01
A novel family of miniature transposable elements, named Zaba, was identified in pea (Pisum sativum) and subsequently also in other legume species using computer analysis of their DNA sequences. Zaba elements are 141-190 bp long, generate 10-bp target site duplications, and their terminal inverted repeats make up most of the sequence. Zaba elements thus resemble class 3 foldback transposons. The elements are only moderately repetitive in pea (tens to hundreds copies per haploid genome), but they are present in up to thousands of copies in the genomes of several Medicago and Vicia species. More detailed analysis of the elements from pea, including isolation of new sequences from a genomic library, revealed that a fraction of these elements are truncated, and that their last transposition probably did not occur recently. A search for Zaba sequences in EST databases showed that at least some elements are transcribed, most probably due to their association with genic regions.
Two new miniature inverted-repeat transposable elements in the genome of the clam Donax trunculus.
Šatović, Eva; Plohl, Miroslav
2017-10-01
Repetitive sequences are important components of eukaryotic genomes that drive their evolution. Among them are different types of mobile elements that share the ability to spread throughout the genome and form interspersed repeats. To broaden the generally scarce knowledge on bivalves at the genome level, in the clam Donax trunculus we described two new non-autonomous DNA transposons, miniature inverted-repeat transposable elements (MITEs), named DTC M1 and DTC M2. Like other MITEs, they are characterized by their small size, their A + T richness, and the presence of terminal inverted repeats (TIRs). DTC M1 and DTC M2 are 261 and 286 bp long, respectively, and in addition to TIRs, both of them contain a long imperfect palindrome sequence in their central parts. These elements are present in complete and truncated versions within the genome of the clam D. trunculus. The two new MITEs share only structural similarity, but lack any nucleotide sequence similarity to each other. In a search for related elements in databases, blast search revealed within the Crassostrea gigas genome a larger element sharing sequence similarity only to DTC M1 in its TIR sequences. The lack of sequence similarity with any previously published mobile elements indicates that DTC M1 and DTC M2 elements may be unique to D. trunculus.
NASA Astrophysics Data System (ADS)
Permata Shabrina, Ayu; Pramuditya Soesanto, Rayinda; Kurniawati, Amelia; Teguh Kurniawan, Mochamad; Andrawina, Luciana
2018-03-01
Knowledge is a combination of experience, value, and information that is based on the intuition that allows an organization to evaluate and combine new information. In an organization, knowledge is not only attached to document but also in routine value creating activities, therefore knowledge is an important asset for the organization. X Corp is a company that focused on manufacturing aerospace components. In carrying out the production process, the company is supported by various machines, one of the machines is Toshiba BMC 80.5. The machine is used occasionally and therefore maintenance activity is needed, especially corrective maintenance. Corrective maintenance is done to make a breakdown machine back to work. Corrective maintenance is done by maintenance operator whose retirement year is close. The long term experience of the maintenance operator needs to be captured by the organization and shared across maintenance division. E-learning is one type of media that can support and assist knowledge sharing. This research purpose is to create the e-learning content for best practice of corrective maintenance activity for Toshiba BMC 80.5 by extracting the knowledge and experience from the operator based on knowledge conversion using SECI method. The knowledge source in this research is a maintenance supervisor and a senior maintenance engineer. From the evaluation of the e-learning content, it is known that the average test score of the respondents who use the e-learning increases from 77.5 to 87.5.
Castresana, C; Garcia-Luque, I; Alonso, E; Malik, V S; Cashmore, A R
1988-01-01
We have analyzed promoter regulatory elements from a photoregulated CAB gene (Cab-E) isolated from Nicotiana plumbaginifolia. These studies have been performed by introducing chimeric gene constructs into tobacco cells via Agrobacterium tumefaciens-mediated transformation. Expression studies on the regenerated transgenic plants have allowed us to characterize three positive and one negative cis-acting elements that influence photoregulated expression of the Cab-E gene. Within the upstream sequences we have identified two positive regulatory elements (PRE1 and PRE2) which confer maximum levels of photoregulated expression. These sequences contain multiple repeated elements related to the sequence-ACCGGCCCACTT-. We have also identified within the upstream region a negative regulatory element (NRE) extremely rich in AT sequences, which reduces the level of gene expression in the light. We have defined a light regulatory element (LRE) within the promoter region extending from -396 to -186 bp which confers photoregulated expression when fused to a constitutive nopaline synthase ('nos') promoter. Within this region there is a 132-bp element, extending from -368 to -234 bp, which on deletion from the Cab-E promoter reduces gene expression from high levels to undetectable levels. Finally, we have demonstrated for a full length Cab-E promoter conferring high levels of photoregulated expression, that sequences proximal to the Cab-E TATA box are not replaceable by corresponding sequences from a 'nos' promoter. This contrasts with the apparent equivalence of these Cab-E and 'nos' TATA box-proximal sequences in truncated promoters conferring low levels of photoregulated expression. Images PMID:2901343
Characterization of the Fb-Nof Transposable Element of Drosophila Melanogaster
Harden, N.; Ashburner, M.
1990-01-01
FB-NOF is a composite transposable element of Drosophila melanogaster. It is composed of foldback sequences, of variable length, which flank a 4-kb NOF sequence with 308-bp inverted repeat termini. The NOF sequence could potentially code for a 120-kD polypeptide. The FB-NOF element is responsible for unstable mutations of the white gene (w(c) and w(DZL)) and is associated with the large TEs of G. Ising. Although most strains of D. melanogaster have 20-30 sites of FB insertion, FB-NOF elements are usually rare, many strains lack this composite element or have only one copy of it. A few strains, including w(DZL) and Basc have many (8-21) copies of FB-NOF, and these show a tendency to insert at ``hot-spots.'' These strains also have an increased number of FB elements. The DNA sequence of the NOF region associated with TE146(Z) has been determined. PMID:2174013
The twilight zone of cis element alignments.
Sebastian, Alvaro; Contreras-Moreira, Bruno
2013-02-01
Sequence alignment of proteins and nucleic acids is a routine task in bioinformatics. Although the comparison of complete peptides, genes or genomes can be undertaken with a great variety of tools, the alignment of short DNA sequences and motifs entails pitfalls that have not been fully addressed yet. Here we confront the structural superposition of transcription factors with the sequence alignment of their recognized cis elements. Our goals are (i) to test TFcompare (http://floresta.eead.csic.es/tfcompare), a structural alignment method for protein-DNA complexes; (ii) to benchmark the pairwise alignment of regulatory elements; (iii) to define the confidence limits and the twilight zone of such alignments and (iv) to evaluate the relevance of these thresholds with elements obtained experimentally. We find that the structure of cis elements and protein-DNA interfaces is significantly more conserved than their sequence and measures how this correlates with alignment errors when only sequence information is considered. Our results confirm that DNA motifs in the form of matrices produce better alignments than individual sequences. Finally, we report that empirical and theoretically derived twilight thresholds are useful for estimating the natural plasticity of regulatory sequences, and hence for filtering out unreliable alignments.
The twilight zone of cis element alignments
Sebastian, Alvaro; Contreras-Moreira, Bruno
2013-01-01
Sequence alignment of proteins and nucleic acids is a routine task in bioinformatics. Although the comparison of complete peptides, genes or genomes can be undertaken with a great variety of tools, the alignment of short DNA sequences and motifs entails pitfalls that have not been fully addressed yet. Here we confront the structural superposition of transcription factors with the sequence alignment of their recognized cis elements. Our goals are (i) to test TFcompare (http://floresta.eead.csic.es/tfcompare), a structural alignment method for protein–DNA complexes; (ii) to benchmark the pairwise alignment of regulatory elements; (iii) to define the confidence limits and the twilight zone of such alignments and (iv) to evaluate the relevance of these thresholds with elements obtained experimentally. We find that the structure of cis elements and protein–DNA interfaces is significantly more conserved than their sequence and measures how this correlates with alignment errors when only sequence information is considered. Our results confirm that DNA motifs in the form of matrices produce better alignments than individual sequences. Finally, we report that empirical and theoretically derived twilight thresholds are useful for estimating the natural plasticity of regulatory sequences, and hence for filtering out unreliable alignments. PMID:23268451
Liang, Chanjuan; van Dijk, Jeroen P; Scholtens, Ingrid M J; Staats, Martijn; Prins, Theo W; Voorhuijzen, Marleen M; da Silva, Andrea M; Arisi, Ana Carolina Maisonnave; den Dunnen, Johan T; Kok, Esther J
2014-04-01
The growing number of biotech crops with novel genetic elements increasingly complicates the detection of genetically modified organisms (GMOs) in food and feed samples using conventional screening methods. Unauthorized GMOs (UGMOs) in food and feed are currently identified through combining GMO element screening with sequencing the DNA flanking these elements. In this study, a specific and sensitive qPCR assay was developed for vip3A element detection based on the vip3Aa20 coding sequences of the recently marketed MIR162 maize and COT102 cotton. Furthermore, SiteFinding-PCR in combination with Sanger, Illumina or Pacific BioSciences (PacBio) sequencing was performed targeting the flanking DNA of the vip3Aa20 element in MIR162. De novo assembly and Basic Local Alignment Search Tool searches were used to mimic UGMO identification. PacBio data resulted in relatively long contigs in the upstream (1,326 nucleotides (nt); 95 % identity) and downstream (1,135 nt; 92 % identity) regions, whereas Illumina data resulted in two smaller contigs of 858 and 1,038 nt with higher sequence identity (>99 % identity). Both approaches outperformed Sanger sequencing, underlining the potential for next-generation sequencing in UGMO identification.
Novel green tissue-specific synthetic promoters and cis-regulatory elements in rice.
Wang, Rui; Zhu, Menglin; Ye, Rongjian; Liu, Zuoxiong; Zhou, Fei; Chen, Hao; Lin, Yongjun
2015-12-11
As an important part of synthetic biology, synthetic promoter has gradually become a hotspot in current biology. The purposes of the present study were to synthesize green tissue-specific promoters and to discover green tissue-specific cis-elements. We first assembled several regulatory sequences related to tissue-specific expression in different combinations, aiming to obtain novel green tissue-specific synthetic promoters. GUS assays of the transgenic plants indicated 5 synthetic promoters showed green tissue-specific expression patterns and different expression efficiencies in various tissues. Subsequently, we scanned and counted the cis-elements in different tissue-specific promoters based on the plant cis-elements database PLACE and the rice cDNA microarray database CREP for green tissue-specific cis-element discovery, resulting in 10 potential cis-elements. The flanking sequence of one potential core element (GEAT) was predicted by bioinformatics. Then, the combination of GEAT and its flanking sequence was functionally identified with synthetic promoter. GUS assays of the transgenic plants proved its green tissue-specificity. Furthermore, the function of GEAT flanking sequence was analyzed in detail with site-directed mutagenesis. Our study provides an example for the synthesis of rice tissue-specific promoters and develops a feasible method for screening and functional identification of tissue-specific cis-elements with their flanking sequences at the genome-wide level in rice.
Guimond, A; Moss, T
1999-02-01
We have used a differential cloning approach to isolate ribosomal/non-ribosomal frontier sequences from Xenopus laevis. A ribosomal intergenic spacer sequence (IGS) was cloned and shown not to be physically linked with the ribosomal locus. This ribosomal orphon contained the IGS sequences found immediately downstream of the 28S gene and included an array of enhancer repetitions and a non-functional spacer promoter. The orphon sequence was flanked by a member of the novel 'Frt' low copy repetitive element family. Three individual Frt repeats were sequenced and all members of this family were shown to lie clustered at two chromosomal sites, one of which contained the ribosomal orphon. One of the Frt elements contained an insertion of 297 bp that showed extensive homology to sequences within at least three other Xenopus genes. Each homology region was flanked by members of the T2 family of short interspersed repetitive elements, (SINEs), and by its target insertion sequence, suggesting multiple translocation events. The data are discussed in terms of the evolution of the ribosomal gene locus.
CORE-SINEs: eukaryotic short interspersed retroposing elements with common sequence motifs.
Gilbert, N; Labuda, D
1999-03-16
A 65-bp "core" sequence is dispersed in hundreds of thousands copies in the human genome. This sequence was found to constitute the central segment of a group of short interspersed elements (SINEs), referred to as mammalian-wide interspersed repeats, that proliferated before the radiation of placental mammals. Here, we propose that the core identifies an ancient tRNA-like SINE element, which survived in different lineages such as mammals, reptiles, birds, and fish, as well as mollusks, presumably for >550 million years. This element gave rise to a number of sequence families (CORE-SINEs), including mammalian-wide interspersed repeats, whose distinct 3' ends are shared with different families of long interspersed elements (LINEs). The evolutionary success of the generic CORE-SINE element can be related to the recruitment of the internal promoter from highly transcribed host RNA as well as to its capacity to adapt to changing retropositional opportunities by sequence exchange with actively amplifying LINEs. It reinforces the notion that the very existence of SINEs depends on the cohabitation with both LINEs and the host genome.
CORE-SINEs: Eukaryotic short interspersed retroposing elements with common sequence motifs
Gilbert, Nicolas; Labuda, Damian
1999-01-01
A 65-bp “core” sequence is dispersed in hundreds of thousands copies in the human genome. This sequence was found to constitute the central segment of a group of short interspersed elements (SINEs), referred to as mammalian-wide interspersed repeats, that proliferated before the radiation of placental mammals. Here, we propose that the core identifies an ancient tRNA-like SINE element, which survived in different lineages such as mammals, reptiles, birds, and fish, as well as mollusks, presumably for >550 million years. This element gave rise to a number of sequence families (CORE-SINEs), including mammalian-wide interspersed repeats, whose distinct 3′ ends are shared with different families of long interspersed elements (LINEs). The evolutionary success of the generic CORE-SINE element can be related to the recruitment of the internal promoter from highly transcribed host RNA as well as to its capacity to adapt to changing retropositional opportunities by sequence exchange with actively amplifying LINEs. It reinforces the notion that the very existence of SINEs depends on the cohabitation with both LINEs and the host genome. PMID:10077603
ElemeNT: a computational tool for detecting core promoter elements.
Sloutskin, Anna; Danino, Yehuda M; Orenstein, Yaron; Zehavi, Yonathan; Doniger, Tirza; Shamir, Ron; Juven-Gershon, Tamar
2015-01-01
Core promoter elements play a pivotal role in the transcriptional output, yet they are often detected manually within sequences of interest. Here, we present 2 contributions to the detection and curation of core promoter elements within given sequences. First, the Elements Navigation Tool (ElemeNT) is a user-friendly web-based, interactive tool for prediction and display of putative core promoter elements and their biologically-relevant combinations. Second, the CORE database summarizes ElemeNT-predicted core promoter elements near CAGE and RNA-seq-defined Drosophila melanogaster transcription start sites (TSSs). ElemeNT's predictions are based on biologically-functional core promoter elements, and can be used to infer core promoter compositions. ElemeNT does not assume prior knowledge of the actual TSS position, and can therefore assist in annotation of any given sequence. These resources, freely accessible at http://lifefaculty.biu.ac.il/gershon-tamar/index.php/resources, facilitate the identification of core promoter elements as active contributors to gene expression.
Bobrova, E V; Liakhovetskiĭ, V A; Borshchevskaia, E R
2011-01-01
The dependence of errors during reproduction of a sequence of hand movements without visual feedback on the previous right- and left-hand performance ("prehistory") and on positions in space of sequence elements (random or ordered by the explicit rule) was analyzed. It was shown that the preceding information about the ordered positions of the sequence elements was used during right-hand movements, whereas left-hand movements were performed with involvement of the information about the random sequence. The data testify to a central mechanism of the analysis of spatial structure of sequence elements. This mechanism activates movement coding specific for the left hemisphere (vector coding) in case of an ordered sequence structure and positional coding specific for the right hemisphere in case of a random sequence structure.
Prediction and phylogenetic analysis of mammalian short interspersed elements (SINEs).
Rogozin, I B; Mayorov, V I; Lavrentieva, M V; Milanesi, L; Adkison, L R
2000-09-01
The presence of repetitive elements can create serious problems for sequence analysis, especially in the case of homology searches in nucleotide sequence databases. Repetitive elements should be treated carefully by using special programs and databases. In this paper, various aspects of SINE (short interspersed repetitive element) identification, analysis and evolution are discussed.
Basu, Abhijit; Jain, Niyati; Tolbert, Blanton S.; Komar, Anton A.
2017-01-01
Abstract RNA–protein interactions with physiological outcomes usually rely on conserved sequences within the RNA element. By contrast, activity of the diverse gamma-interferon-activated inhibitor of translation (GAIT)-elements relies on the conserved RNA folding motifs rather than the conserved sequence motifs. These elements drive the translational silencing of a group of chemokine (CC/CXC) and chemokine receptor (CCR) mRNAs, thereby helping to resolve physiological inflammation. Despite sequence dissimilarity, these RNA elements adopt common secondary structures (as revealed by 2D-1H NMR spectroscopy), providing a basis for their interaction with the RNA-binding GAIT complex. However, many of these elements (e.g. those derived from CCL22, CXCL13, CCR4 and ceruloplasmin (Cp) mRNAs) have substantially different affinities for GAIT complex binding. Toeprinting analysis shows that different positions within the overall conserved GAIT element structure contribute to differential affinities of the GAIT protein complex towards the elements. Thus, heterogeneity of GAIT elements may provide hierarchical fine-tuning of the resolution of inflammation. PMID:29069516
Characterization of the repetitive DNA elements in the genome of fish lymphocystis disease viruses.
Schnitzler, P; Darai, G
1989-09-01
The complete DNA nucleotide sequence of the repetitive DNA elements in the genome of fish lymphocystis disease virus (FLDV) isolated from two different species (flounder and dab) was determined. The size of these repetitive DNA elements was found to be 1413 bp which corresponds to the DNA sequences of the 5' terminus of the EcoRI DNA fragment B (0.034 to 0.052 m.u.) and to the EcoRI DNA fragment M (0.718 to 0.736 m.u.) of the FLDV genome causing lymphocystis disease in flounder and plaice. The degree of DNA nucleotide homology between both regions was found to be 99%. The repetitive DNA element in the genome of FLDV isolated from other fish species (dab) was identified and is located within the EcoRI DNA fragment B and J of the viral genome. The DNA nucleotide sequence of one duplicate of this repetition (EcoRI DNA fragment J) was determined (1410 bp) and compared to the DNA nucleotide sequences of the repetitive DNA elements of the genome of FLDV isolated from flounder. It was found that the repetitive DNA elements of the genome of FLDV derived from two different fish species are highly conserved and possess a degree of DNA sequence homology of 94%. The DNA sequences of each strand of the individual repetitive element possess one open reading frame.
Liang, Jing; Wang, Qiuquan; Huang, Benli
2005-01-01
An online UV photolysis and UV/TiO2 photocatalysis reduction device (UV-UV/TiO2 PCRD) and an electrochemical vapor generation (ECVG) cell have been used for the first time as an interface between high-performance liquid chromatography (HPLC) and atomic fluorescence spectrometry (AFS) for selenium speciation. The newly designed ECVG cell of approximately 115 microL dead volume consists of a carbon fiber cathode and a platinum loop anode; the atomic hydrogen generated on the cathode was used to reduce selenium to vapor species for AFS determination. The noise was greatly reduced compared with that obtained by use of the UV-UV/TiO2 PCRD-KBH4-acid interface. The detection limits obtained for seleno-DL: -cystine (SeCys), selenite (Se(IV)), seleno-DL: -methionine (SeMet), and selenate (Se(VI)) were 2.1, 2.9, 4.3, and 3.5 ng mL(-1), respectively. The proposed method was successfully applied to the speciation of selenium in water-soluble extracts of garlic shoots cultured with different selenium species. The results obtained suggested that UV-UV/TiO2 PCRD-ECVG should be an effective interface between HPLC and AFS for the speciation of elements amenable to vapor generation, and is superior to methods involving KBH4.
White, Eleanor; Kamieniarz-Gdula, Kinga; Dye, Michael J.; Proudfoot, Nick J.
2013-01-01
RNA Polymerase II (Pol II) termination is dependent on RNA processing signals as well as specific terminator elements located downstream of the poly(A) site. One of the two major terminator classes described so far is the Co-Transcriptional Cleavage (CoTC) element. We show that homopolymer A/T tracts within the human β-globin CoTC-mediated terminator element play a critical role in Pol II termination. These short A/T tracts, dispersed within seemingly random sequences, are strong terminator elements, and bioinformatics analysis confirms the presence of such sequences in 70% of the putative terminator regions (PTRs) genome-wide. PMID:23258704
Sequenced drive for rotary valves
Mittell, Larry C.
1981-01-01
A sequenced drive for rotary valves which provides the benefits of applying rotary and linear motions to the movable sealing element of the valve. The sequenced drive provides a close approximation of linear motion while engaging or disengaging the movable element with the seat minimizing wear and damage due to scrubbing action. The rotary motion of the drive swings the movable element out of the flowpath thus eliminating obstruction to flow through the valve.
Genetic exchange between endogenous and exogenous LINE-1 repetitive elements in mouse cells.
Belmaaza, A; Wallenburg, J C; Brouillette, S; Gusew, N; Chartrand, P
1990-01-01
The repetitive LINE (L1) elements of the mouse, which are present at about 10(5) copies per genome and share over 80% of sequence homology, were examined for their ability to undergo genetic exchange with exogenous L1 sequences. The exogenous L1 sequences, carried by a shuttle vector, consisted of an internal fragment from L1Md-A2, a previously described member of the L1 family of the mouse. Using an assay that does not require the reconstitution of a selectable marker we found that this vector, in either circular or linear form, acquired DNA sequences from endogenous L1 elements at a frequency of 10(-3) to 10(-4) per rescued vector. Physical analysis of the acquired L1 sequences revealed that distinct endogenous L1 elements acted as donors and that different subfamilies participated. These results demonstrate that L1 elements are readily capable of genetic exchange. Apart from gene conversion events, the acquisition of L1 sequences outside the region of homology suggested that a second mechanism was also involved in the genetic exchange. A model which accounts for this mechanism is presented and its potential implication on the rearrangement of L1 elements is discussed. Images PMID:1978749
Algama, Manjula; Tasker, Edward; Williams, Caitlin; Parslow, Adam C; Bryson-Richardson, Robert J; Keith, Jonathan M
2017-03-27
Computational identification of non-coding RNAs (ncRNAs) is a challenging problem. We describe a genome-wide analysis using Bayesian segmentation to identify intronic elements highly conserved between three evolutionarily distant vertebrate species: human, mouse and zebrafish. We investigate the extent to which these elements include ncRNAs (or conserved domains of ncRNAs) and regulatory sequences. We identified 655 deeply conserved intronic sequences in a genome-wide analysis. We also performed a pathway-focussed analysis on genes involved in muscle development, detecting 27 intronic elements, of which 22 were not detected in the genome-wide analysis. At least 87% of the genome-wide and 70% of the pathway-focussed elements have existing annotations indicative of conserved RNA secondary structure. The expression of 26 of the pathway-focused elements was examined using RT-PCR, providing confirmation that they include expressed ncRNAs. Consistent with previous studies, these elements are significantly over-represented in the introns of transcription factors. This study demonstrates a novel, highly effective, Bayesian approach to identifying conserved non-coding sequences. Our results complement previous findings that these sequences are enriched in transcription factors. However, in contrast to previous studies which suggest the majority of conserved sequences are regulatory factor binding sites, the majority of conserved sequences identified using our approach contain evidence of conserved RNA secondary structures, and our laboratory results suggest most are expressed. Functional roles at DNA and RNA levels are not mutually exclusive, and many of our elements possess evidence of both. Moreover, ncRNAs play roles in transcriptional and post-transcriptional regulation, and this may contribute to the over-representation of these elements in introns of transcription factors. We attribute the higher sensitivity of the pathway-focussed analysis compared to the genome-wide analysis to improved alignment quality, suggesting that enhanced genomic alignments may reveal many more conserved intronic sequences.
Burke, W D; Calalang, C C; Eickbush, T H
1987-01-01
Two classes of DNA elements interrupt a fraction of the rRNA repeats of Bombyx mori. We have analyzed by genomic blotting and sequence analysis one class of these elements which we have named R2. These elements occupy approximately 9% of the rDNA units of B. mori and appear to be homologous to the type II rDNA insertions detected in Drosophila melanogaster. Approximately 25 copies of R2 exist within the B. mori genome, of which at least 20 are located at a precise location within otherwise typical rDNA units. Nucleotide sequence analysis has revealed that the 4.2-kilobase-pair R2 element has a single large open reading frame, occupying over 82% of the total length of the element. The central region of this 1,151-amino-acid open reading frame shows homology to the reverse transcriptase enzymes found in retroviruses and certain transposable elements. Amino acid homology of this region is highest to the mobile line 1 elements of mammals, followed by the mitochondrial type II introns of fungi, and the pol gene of retroviruses. Less homology exists with transposable elements of D. melanogaster and Saccharomyces cerevisiae. Two additional regions of sequence homology between L1 and R2 elements were also found outside the reverse transcriptase region. We suggest that the R2 elements are retrotransposons that are site specific in their insertion into the genome. Such mobility would enable these elements to occupy a small fraction of the rDNA units of B. mori despite their continual elimination from the rDNA locus by sequence turnover. Images PMID:2439905
Structure, replication efficiency and fragility of yeast ARS elements.
Dhar, Manoj K; Sehgal, Shelly; Kaul, Sanjana
2012-05-01
DNA replication in eukaryotes initiates at specific sites known as origins of replication, or replicators. These replication origins occur throughout the genome, though the propensity of their occurrence depends on the type of organism. In eukaryotes, zones of initiation of replication spanning from about 100 to 50,000 base pairs have been reported. The characteristics of eukaryotic replication origins are best understood in the budding yeast Saccharomyces cerevisiae, where some autonomously replicating sequences, or ARS elements, confer origin activity. ARS elements are short DNA sequences of a few hundred base pairs, identified by their efficiency at initiating a replication event when cloned in a plasmid. ARS elements, although structurally diverse, maintain a basic structure composed of three domains, A, B and C. Domain A is comprised of a consensus sequence designated ACS (ARS consensus sequence), while the B domain has the DNA unwinding element and the C domain is important for DNA-protein interactions. Although there are ∼400 ARS elements in the yeast genome, not all of them are active origins of replication. Different groups within the genus Saccharomyces have ARS elements as components of replication origin. The present paper provides a comprehensive review of various aspects of ARSs, starting from their structural conservation to sequence thermodynamics. All significant and conserved functional sequence motifs within different types of ARS elements have been extensively described. Issues like silencing at ARSs, their inherent fragility and factors governing their replication efficiency have also been addressed. Progress in understanding crucial components associated with the replication machinery and timing at these ARS elements is discussed in the section entitled "The replicon revisited". Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Horta-Valerdi, Guillermo; Sanchez-Alonso, Maria Patricia; Perez-Marquez, Victor M; Negrete-Abascal, Erasmo; Vaca-Pacheco, Sergio; Hernandez-Gonzalez, Ismael; Gomez-Lunar, Zulema; Olmedo-Álvarez, Gabriela; Vázquez-Cruz, Candelario
2017-04-13
The draft genome sequence of Avibacterium paragallinarum strain CL serovar C is reported here. The genome comprises 154 contigs corresponding to 2.4 Mb with 41% G+C content and many insertion sequence (IS) elements, a characteristic not previously reported in A. paragallinarum . Copyright © 2017 Horta-Valerdi et al.
A retrotransposable element from the mosquito Anopheles gambiae .
Besansky, N J
1990-01-01
A family of middle repetitive elements from the African malaria vector Anopheles gambiae is described. Approximately 100 copies of the element, designated T1Ag, are dispersed in the genome. Full-length elements are 4.6 kilobase pairs in length, but truncation of the 5' end is common. Nucleotide sequences of one full-length, two 5'-truncated, and two 5' ends of T1Ag elements were determined and aligned to define a consensus sequence. Sequence analysis revealed two long, overlapping open reading frames followed by a polyadenylation signal, AATAAA, and a tail consisting of tandem repetitions of the motif TGAAA. No direct or inverted long terminal repeats (LTRs) were detected. The first open reading frame, 442 amino acids in length, includes a domain resembling that of nucleic acid-binding proteins. The second open reading frame, 975 amino acids long, resembles the reverse transcriptases of a category of retrotransposable elements without LTRs, variously termed class II retrotransposons, class III elements or non-LTR retrotransposons. Similarity at the sequence and structural levels places T1Ag in this category. Images PMID:1689457
Kapila, R; Das, S; Srivastava, P S; Lakshmikumaran, M
1996-08-01
DNA sequences representing a tandemly repeated DNA family of the Sinapis arvensis genome were cloned and characterized. The 700-bp tandem repeat family is represented by two clones, pSA35 and pSA52, which are 697 and 709 bp in length, respectively. Dot matrix analysis of the sequences indicates the presence of repeated elements within each monomeric unit. Sequence analysis of the repetitive region of clones pSA35 and pSA52 shows that there are several copies of a 7-bp repeat element organized in tandem. The consensus sequence of this repeat element is 5'-TTTAGGG-3'. These elements are highly mutated and the difference in length between the two clones is due to different copy numbers of these elements. The repetitive region of clone pSA35 has 26 copies of the element TTTAGGG, whereas clone pSA52 has 28 copies. The repetitive region in both clones is flanked on either side by inverted repeats that may be footprints of a transposition event. Sequence comparison indicates that the element TTTAGGG is identical to telomeric repeats present in Arabidopsis, maize, tomato, and other plants. However, Bal31 digestion kinetics indicates non-telomeric localization of the 700-bp tandem repeats. The clones represent a novel repeat family as (i) they contain telomere-like motifs as subrepeats within each unit; and (ii) they do not hybridize to related crucifers and are species-specific in nature.
Two cis elements collaborate to spatially repress transcription from a sea urchin promoter
NASA Technical Reports Server (NTRS)
Frudakis, T. N.; Wilt, F.
1995-01-01
The expression pattern of many territory-specific genes in metazoan embryos is maintained by an active process of negative spatial regulation. However, the mechanism of this strategy of gene regulation is not well understood in any system. Here we show that reporter constructs containing regulatory sequence for the SM30-alpha gene of Stronglyocentrotus purpuratus are expressed in a pattern congruent with that of the endogenous SM30 gene(s), largely as a result of active transcriptional repression in cell lineages in which the gene is not normally expressed. Chloramphenicol acetyl transferase assays of deletion constructs from the 2600-bp upstream region showed that repressive elements were present in the region from -1628 to -300. In situ hybridization analysis showed that the spatial fidelity of expression was severely compromised when the region from -1628 to -300 was deleted. Two highly repetitive sequence motifs, (G/A/C)CCCCT and (T/C)(T/A/C)CTTTT(T/A/C), are present in the -1628 to -300 region. Representatives of these elements were analyzed by gel mobility shift experiments and were found to interact specifically with protein in crude nuclear extracts. When oligonucleotides containing either sequence element were co-injected with a correctly regulated reporter as potential competitors, the reporter was expressed in inappropriate cells. When composite oligonucleotides, containing both sequence elements, were fused to a misregulated reporter, the expression of the reporter in inappropriate cells was suppressed. Comparison of composite oligonucleotides with oligonucleotides containing single constituent elements show that both sequence elements are required for effective spatial regulation. Thus, both individual elements are required, but only a composite element containing both elements is sufficient to function as a tissue-specific repressive element.
Tanaka, Mizuki; Sakai, Yoshifumi; Yamada, Osamu; Shintani, Takahiro; Gomi, Katsuya
2011-01-01
To investigate 3′-end-processing signals in Aspergillus oryzae, we created a nucleotide sequence data set of the 3′-untranslated region (3′ UTR) plus 100 nucleotides (nt) sequence downstream of the poly(A) site using A. oryzae expressed sequence tags and genomic sequencing data. This data set comprised 1065 sequences derived from 1042 unique genes. The average 3′ UTR length in A. oryzae was 241 nt, which is greater than that in yeast but similar to that in plants. The 3′ UTR and 100 nt sequence downstream of the poly(A) site is notably U-rich, while the region located 15–30 nt upstream of the poly(A) site is markedly A-rich. The most frequently found hexanucleotide in this A-rich region is AAUGAA, although this sequence accounts for only 6% of all transcripts. These data suggested that A. oryzae has no highly conserved sequence element equivalent to AAUAAA, a mammalian polyadenylation signal. We identified that putative 3′-end-processing signals in A. oryzae, while less well conserved than those in mammals, comprised four sequence elements: the furthest upstream U-rich element, A-rich sequence, cleavage site, and downstream U-rich element flanking the cleavage site. Although these putative 3′-end-processing signals are similar to those in yeast and plants, some notable differences exist between them. PMID:21586533
Briens, Mickaël; Mercier, Yves; Rouffineau, Friedrich; Vacchina, Veronique; Geraert, Pierre-André
2013-08-01
Two experiments were conducted on broiler chickens to compare the effect of a new organic Se source, 2-hydroxy-4-methylselenobutanoic acid (HMSeBA; SO), with two practical Se additives, sodium selenite (SS) and Se yeast (SY). The relative bioavailability of the different Se sources was compared on muscle (pectoralis major) total Se, selenomethionine (SeMet) and selenocysteine (SeCys) concentrations and apparent digestibility of total Se (ADSe). In the first experiment, from day (d) 0 to d21, Se sources were tested at different supplied levels and compared with an unsupplemented diet (NC). No significant effects were observed on growth performance during the experimental period. However, the different Se sources and levels improved muscle Se concentration compared with the NC, with a significant source effect in the following order: SS < SY < SO (P<0·05). Seleno-amino acids speciation results for NC, SY and SO at 0·3 mg Se/kg feed indicated that muscle Se was only present as SeMet or SeCys, showing a full conversion of Se by the bird. The second experiment (d0-d24) compared SS, SY or SO at 0·3 mg Se/kg feed. The ADSe measurements carried out between d20 and d23 were 24, 46 and 49% for SS, SY and SO, respectively, with significant differences between the organic and mineral Se sources (P<0·05). These results confirmed the higher bioavailability of organic Se sources compared with the mineral source and demonstrated a significantly better efficiency of HMSeBA compared with SY for muscle Se enrichment.
2013-01-01
Background Galileo is a transposable element responsible for the generation of three chromosomal inversions in natural populations of Drosophila buzzatii. Although the most characteristic feature of Galileo is the long internally-repetitive terminal inverted repeats (TIRs), which resemble the Drosophila Foldback element, its transposase-coding sequence has led to its classification as a member of the P-element superfamily (Class II, subclass 1, TIR order). Furthermore, Galileo has a wide distribution in the genus Drosophila, since it has been found in 6 of the 12 Drosophila sequenced genomes. Among these species, D. mojavensis, the one closest to D. buzzatii, presented the highest diversity in sequence and structure of Galileo elements. Results In the present work, we carried out a thorough search and annotation of all the Galileo copies present in the D. mojavensis sequenced genome. In our set of 170 Galileo copies we have detected 5 Galileo subfamilies (C, D, E, F, and X) with different structures ranging from nearly complete, to only 2 TIR or solo TIR copies. Finally, we have explored the structural and length variation of the Galileo copies that point out the relatively frequent rearrangements within and between Galileo elements. Different mechanisms responsible for these rearrangements are discussed. Conclusions Although Galileo is a transposable element with an ancient history in the D. mojavensis genome, our data indicate a recent transpositional activity. Furthermore, the dynamism in sequence and structure, mainly affecting the TIRs, suggests an active exchange of sequences among the copies. This exchange could lead to new subfamilies of the transposon, which could be crucial for the long-term survival of the element in the genome. PMID:23374229
Spuesens, Emiel B M; Oduber, Minoushka; Hoogenboezem, Theo; Sluijter, Marcel; Hartwig, Nico G; van Rossum, Annemarie M C; Vink, Cornelis
2009-07-01
The gene encoding major adhesin protein P1 of Mycoplasma pneumoniae, MPN141, contains two DNA sequence stretches, designated RepMP2/3 and RepMP4, which display variation among strains. This variation allows strains to be differentiated into two major P1 genotypes (1 and 2) and several variants. Interestingly, multiple versions of the RepMP2/3 and RepMP4 elements exist at other sites within the bacterial genome. Because these versions are closely related in sequence, but not identical, it has been hypothesized that they have the capacity to recombine with their counterparts within MPN141, and thereby serve as a source of sequence variation of the P1 protein. In order to determine the variation within the RepMP2/3 and RepMP4 elements, both within the bacterial genome and among strains, we analysed the DNA sequences of all RepMP2/3 and RepMP4 elements within the genomes of 23 M. pneumoniae strains. Our data demonstrate that: (i) recombination is likely to have occurred between two RepMP2/3 elements in four of the strains, and (ii) all previously described P1 genotypes can be explained by inter-RepMP recombination events. Moreover, the difference between the two major P1 genotypes was reflected in all RepMP elements, such that subtype 1 and 2 strains can be differentiated on the basis of sequence variation in each RepMP element. This implies that subtype 1 and subtype 2 strains represent evolutionarily diverged strain lineages. Finally, a classification scheme is proposed in which the P1 genotype of M. pneumoniae isolates can be described in a sequence-based, universal fashion.
Marzo, Mar; Bello, Xabier; Puig, Marta; Maside, Xulio; Ruiz, Alfredo
2013-02-04
Galileo is a transposable element responsible for the generation of three chromosomal inversions in natural populations of Drosophila buzzatii. Although the most characteristic feature of Galileo is the long internally-repetitive terminal inverted repeats (TIRs), which resemble the Drosophila Foldback element, its transposase-coding sequence has led to its classification as a member of the P-element superfamily (Class II, subclass 1, TIR order). Furthermore, Galileo has a wide distribution in the genus Drosophila, since it has been found in 6 of the 12 Drosophila sequenced genomes. Among these species, D. mojavensis, the one closest to D. buzzatii, presented the highest diversity in sequence and structure of Galileo elements. In the present work, we carried out a thorough search and annotation of all the Galileo copies present in the D. mojavensis sequenced genome. In our set of 170 Galileo copies we have detected 5 Galileo subfamilies (C, D, E, F, and X) with different structures ranging from nearly complete, to only 2 TIR or solo TIR copies. Finally, we have explored the structural and length variation of the Galileo copies that point out the relatively frequent rearrangements within and between Galileo elements. Different mechanisms responsible for these rearrangements are discussed. Although Galileo is a transposable element with an ancient history in the D. mojavensis genome, our data indicate a recent transpositional activity. Furthermore, the dynamism in sequence and structure, mainly affecting the TIRs, suggests an active exchange of sequences among the copies. This exchange could lead to new subfamilies of the transposon, which could be crucial for the long-term survival of the element in the genome.
Influence of gag and RRE Sequences on HIV-1 RNA Packaging Signal Structure and Function.
Kharytonchyk, Siarhei; Brown, Joshua D; Stilger, Krista; Yasin, Saif; Iyer, Aishwarya S; Collins, John; Summers, Michael F; Telesnitsky, Alice
2018-07-06
The packaging signal (Ψ) and Rev-responsive element (RRE) enable unspliced HIV-1 RNAs' export from the nucleus and packaging into virions. For some retroviruses, engrafting Ψ onto a heterologous RNA is sufficient to direct encapsidation. In contrast, HIV-1 RNA packaging requires 5' leader Ψ elements plus poorly defined additional features. We previously defined minimal 5' leader sequences competitive with intact Ψ for HIV-1 packaging, and here examined the potential roles of additional downstream elements. The findings confirmed that together, HIV-1 5' leader Ψ sequences plus a nuclear export element are sufficient to specify packaging. However, RNAs trafficked using a heterologous export element did not compete well with RNAs using HIV-1's RRE. Furthermore, some RNA additions to well-packaged minimal vectors rendered them packaging-defective. These defects were rescued by extending gag sequences in their native context. To understand these packaging defects' causes, in vitro dimerization properties of RNAs containing minimal packaging elements were compared to RNAs with sequence extensions that were or were not compatible with packaging. In vitro dimerization was found to correlate with packaging phenotypes, suggesting that HIV-1 evolved to prevent 5' leader residues' base pairing with downstream residues and misfolding of the packaging signal. Our findings explain why gag sequences have been implicated in packaging and show that RRE's packaging contributions appear more specific than nuclear export alone. Paired with recent work showing that sequences upstream of Ψ can dictate RNA folds, the current work explains how genetic context of minimal packaging elements contributes to HIV-1 RNA fate determination. Copyright © 2018 Elsevier Ltd. All rights reserved.
In and out of the rRNA genes: characterization of Pokey elements in the sequenced Daphnia genome
2013-01-01
Background Only a few transposable elements are known to exhibit site-specific insertion patterns, including the well-studied R-element retrotransposons that insert into specific sites within the multigene rDNA. The only known rDNA-specific DNA transposon, Pokey (superfamily: piggyBac) is found in the freshwater microcrustacean, Daphnia pulex. Here, we present a genome-wide analysis of Pokey based on the recently completed whole genome sequencing project for D. pulex. Results Phylogenetic analysis of Pokey elements recovered from the genome sequence revealed the presence of four lineages corresponding to two divergent autonomous families and two related lineages of non-autonomous miniature inverted repeat transposable elements (MITEs). The MITEs are also found at the same 28S rRNA gene insertion site as the Pokey elements, and appear to have arisen as deletion derivatives of autonomous elements. Several copies of the full-length Pokey elements may be capable of producing an active transposase. Surprisingly, both families of Pokey possess a series of 200 bp repeats upstream of the transposase that is derived from the rDNA intergenic spacer (IGS). The IGS sequences within the Pokey elements appear to be evolving in concert with the rDNA units. Finally, analysis of the insertion sites of Pokey elements outside of rDNA showed a target preference for sites similar to the specific sequence that is targeted within rDNA. Conclusions Based on the target site preference of Pokey elements and the concerted evolution of a segment of the element with the rDNA unit, we propose an evolutionary path by which the ancestors of Pokey elements have invaded the rDNA niche. We discuss how specificity for the rDNA unit may have evolved and how this specificity has played a role in the long-term survival of these elements in the subgenus Daphnia. PMID:24059783
Delimiting regulatory sequences of the Drosophila melanogaster Ddc gene.
Hirsh, J; Morgan, B A; Scholnick, S B
1986-01-01
We delimited sequences necessary for in vivo expression of the Drosophila melanogaster dopa decarboxylase gene Ddc. The expression of in vitro-altered genes was assayed following germ line integration via P-element vectors. Sequences between -209 and -24 were necessary for normally regulated expression, although genes lacking these sequences could be expressed at 10 to 50% of wild-type levels at specific developmental times. These genes showed components of normal developmental expression, which suggests that they retain some regulatory elements. All Ddc genes lacking the normal immediate 5'-flanking sequences were grossly deficient in larval central nervous system expression. Thus, this upstream region must contain at least one element necessary for this expression. A mutated Ddc gene without a normal TATA boxlike sequence used the normal RNA start points, indicating that this sequences is not required for start point specificity. Images PMID:3099170
Mandl, C W; Holzmann, H; Kunz, C; Heinz, F X
1993-05-01
The complete nucleotide sequence of the positive-stranded RNA genome of the tick-borne flavivirus Powassan (10,839 nucleotides) was elucidated and the amino acid sequence of all viral proteins was derived. Based on this sequence as well as serological data, Powassan virus represents the most divergent member of the tick-borne serocomplex within the genus flaviviruses, family Flaviviridae. The primary nucleotide sequence and potential RNA secondary structures of the Powassan virus genome as well as the protein sequences and the reactivities of the virion with a panel of monoclonal antibodies were compared to other tick-borne and mosquito-borne flaviviruses. These analyses corroborated significant differences between tick-borne and mosquito-borne flaviviruses, but also emphasized structural elements that are conserved among both vector groups. The comparisons among tick-borne flaviviruses revealed conserved sequence elements that might represent important determinants of the tick-borne flavivirus phenotype.
Identification and characterization of cell-specific enhancer elements for the mouse ETF/Tead2 gene.
Tanoue, Y; Yasunami, M; Suzuki, K; Ohkubo, H
2001-12-21
We have identified and characterized by transient transfection assays the cell-specific 117-bp enhancer sequence in the first intron of the mouse ETF (Embryonic TEA domain-containing factor)/Tead2 gene required for transcriptional activation in ETF/Tead2 gene-expressing cells, such as P19 cells. The 117-bp enhancer contains one GC-rich sequence (5'-GGGGCGGGG-3'), termed the GC box, and two tandemly repeated GA-rich sequences (5'-GGGGGAGGGG-3'), termed the proximal and distal GA elements. Further analyses, including transfection studies and electrophoretic mobility shift assays using a series of deletion and mutation constructs, indicated that Sp1, a putative activator, may be required to predominate over its competition with another unknown putative repressor, termed the GA element-binding factor, for binding to both the GC box, which overlapped with the proximal GA element, and the distal GA element in the 117-bp sequence in order to achieve a full enhancer activity. We also discuss a possible mechanism underlying the cell-specific enhancer activity of the 117-bp sequence.
Palazzo, Antonio; Lovero, Domenica; D'Addabbo, Pietro; Caizzi, Ruggiero; Marsano, René Massimiliano
2016-01-01
Bari elements are members of the Tc1-mariner superfamily of DNA transposons, originally discovered in Drosophila melanogaster, and subsequently identified in silico in 11 sequenced Drosophila genomes and as experimentally isolated in four non-sequenced Drosophila species. Bari-like elements have been also studied for their mobility both in vivo and in vitro. We analyzed 23 Drosophila genomes and carried out a detailed characterization of the Bari elements identified, including those from the heterochromatic Bari1 cluster in D. melanogaster. We have annotated 401 copies of Bari elements classified either as putatively autonomous or inactive according to the structure of the terminal sequences and the presence of a complete transposase-coding region. Analyses of the integration sites revealed that Bari transposase prefers AT-rich sequences in which the TA target is cleaved and duplicated. Furthermore evaluation of transposon's co-occurrence near the integration sites of Bari elements showed a non-random distribution of other transposable elements. We also unveil the existence of a putatively autonomous Bari1 variant characterized by two identical long Terminal Inverted Repeats, in D. rhopaloa. In addition, we detected MITEs related to Bari transposons in 9 species. Phylogenetic analyses based on transposase gene and the terminal sequences confirmed that Bari-like elements are distributed into three subfamilies. A few inconsistencies in Bari phylogenetic tree with respect to the Drosophila species tree could be explained by the occurrence of horizontal transfer events as also suggested by the results of dS analyses. This study further clarifies the Bari transposon's evolutionary dynamics and increases our understanding on the Tc1-mariner elements' biology.
Surveying DNA Elements within Functional Genes of Heterocyst-Forming Cyanobacteria
Hilton, Jason A.; Meeks, John C.; Zehr, Jonathan P.
2016-01-01
Some cyanobacteria are capable of differentiating a variety of cell types in response to environmental factors. For instance, in low nitrogen conditions, some cyanobacteria form heterocysts, which are specialized for N2 fixation. Many heterocyst-forming cyanobacteria have DNA elements interrupting key N2 fixation genes, elements that are excised during heterocyst differentiation. While the mechanism for the excision of the element has been well-studied, many questions remain regarding the introduction of the elements into the cyanobacterial lineage and whether they have been retained ever since or have been lost and reintroduced. To examine the evolutionary relationships and possible function of DNA sequences that interrupt genes of heterocyst-forming cyanobacteria, we identified and compared 101 interruption element sequences within genes from 38 heterocyst-forming cyanobacterial genomes. The interruption element lengths ranged from about 1 kb (the minimum able to encode the recombinase responsible for element excision), up to nearly 1 Mb. The recombinase gene sequences served as genetic markers that were common across the interruption elements and were used to track element evolution. Elements were found that interrupted 22 different orthologs, only five of which had been previously observed to be interrupted by an element. Most of the newly identified interrupted orthologs encode proteins that have been shown to have heterocyst-specific activity. However, the presence of interruption elements within genes with no known role in N2 fixation, as well as in three non-heterocyst-forming cyanobacteria, indicates that the processes that trigger the excision of elements may not be limited to heterocyst development or that the elements move randomly within genomes. This comprehensive analysis provides the framework to study the history and behavior of these unique sequences, and offers new insight regarding the frequency and persistence of interruption elements in heterocyst-forming cyanobacteria. PMID:27206019
Surveying DNA Elements within Functional Genes of Heterocyst-Forming Cyanobacteria.
Hilton, Jason A; Meeks, John C; Zehr, Jonathan P
2016-01-01
Some cyanobacteria are capable of differentiating a variety of cell types in response to environmental factors. For instance, in low nitrogen conditions, some cyanobacteria form heterocysts, which are specialized for N2 fixation. Many heterocyst-forming cyanobacteria have DNA elements interrupting key N2 fixation genes, elements that are excised during heterocyst differentiation. While the mechanism for the excision of the element has been well-studied, many questions remain regarding the introduction of the elements into the cyanobacterial lineage and whether they have been retained ever since or have been lost and reintroduced. To examine the evolutionary relationships and possible function of DNA sequences that interrupt genes of heterocyst-forming cyanobacteria, we identified and compared 101 interruption element sequences within genes from 38 heterocyst-forming cyanobacterial genomes. The interruption element lengths ranged from about 1 kb (the minimum able to encode the recombinase responsible for element excision), up to nearly 1 Mb. The recombinase gene sequences served as genetic markers that were common across the interruption elements and were used to track element evolution. Elements were found that interrupted 22 different orthologs, only five of which had been previously observed to be interrupted by an element. Most of the newly identified interrupted orthologs encode proteins that have been shown to have heterocyst-specific activity. However, the presence of interruption elements within genes with no known role in N2 fixation, as well as in three non-heterocyst-forming cyanobacteria, indicates that the processes that trigger the excision of elements may not be limited to heterocyst development or that the elements move randomly within genomes. This comprehensive analysis provides the framework to study the history and behavior of these unique sequences, and offers new insight regarding the frequency and persistence of interruption elements in heterocyst-forming cyanobacteria.
Genomic Organization of the Drosophila Telomere RetrotransposableElements
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, J.A.; DeBaryshe, P.G.; Traverse, K.L.
2006-10-16
The emerging sequence of the heterochromatic portion of the Drosophila melanogaster genome, with the most recent update of euchromatic sequence, gives the first genome-wide view of the chromosomal distribution of the telomeric retrotransposons, HeT-A, TART, and Tahre. As expected, these elements are entirely excluded from euchromatin, although sequence fragments of HeT-A and TART 3 untranslated regions are found in nontelomeric heterochromatin on the Y chromosome. The proximal ends of HeT-A/TART arrays appear to be a transition zone because only here do other transposable elements mix in the array. The sharp distinction between the distribution of telomeric elements and that ofmore » other transposable elements suggests that chromatin structure is important in telomere element localization. Measurements reported here show (1) D. melanogaster telomeres are very long, in the size range reported for inbred mouse strains (averaging 46 kb per chromosome end in Drosophila stock 2057). As in organisms with telomerase, their length varies depending on genotype. There is also slight under-replication in polytene nuclei. (2) Surprisingly, the relationship between the number of HeT-A and TART elements is not stochastic but is strongly correlated across stocks, supporting the idea that the two elements are interdependent. Although currently assembled portions of the HeT-A/TART arrays are from the most-proximal part of long arrays, {approx}61% of the total HeT-A sequence in these regions consists of intact, potentially active elements with little evidence of sequence decay, making it likely that the content of the telomere arrays turns over more extensively than has been thought.« less
Sheikh, Faruk G; Mukhopadhyay, Sudit S; Gupta, Prabhakar
2002-02-01
The PstI family of elements are short, highly repetitive DNA sequences interspersed throughout the genome of the Bovidae. We have cloned and sequenced some members of the PstI family from cattle, goat, and buffalo. These elements are approximately 500 bp, have a copy number of 2 x 10(5) - 4 x 10(5), and comprise about 4% of the haploid genome. Studies of nucleotide sequence homology indicate that the buffalo and goat PstI repeats (type II) are similar types of short interspersed nucleotide element (SINE) sequences, but the cattle PstI repeat (type I) is considerably more divergent. Additionally, the goat PstI sequence showed significant sequence homology with bovine serine tRNA, and is therefore likely derived from serine tRNA. Interestingly, Southern hybridization suggests that both types of SINEs (I and II) are present in all the species of Bovidae. Dendrogram analysis indicates that cattle PstI SINE is similar to bovine Alu-like SINEs. Goat and buffalo SINEs formed a separate cluster, suggesting that these two types of SINEs evolved separately in the genome of the Bovidae.
BIPAD: A web server for modeling bipartite sequence elements
Bi, Chengpeng; Rogan, Peter K
2006-01-01
Background Many dimeric protein complexes bind cooperatively to families of bipartite nucleic acid sequence elements, which consist of pairs of conserved half-site sequences separated by intervening distances that vary among individual sites. Results We introduce the Bipad Server [1], a web interface to predict sequence elements embedded within unaligned sequences. Either a bipartite model, consisting of a pair of one-block position weight matrices (PWM's) with a gap distribution, or a single PWM matrix for contiguous single block motifs may be produced. The Bipad program performs multiple local alignment by entropy minimization and cyclic refinement using a stochastic greedy search strategy. The best models are refined by maximizing incremental information contents among a set of potential models with varying half site and gap lengths. Conclusion The web service generates information positional weight matrices, identifies binding site motifs, graphically represents the set of discovered elements as a sequence logo, and depicts the gap distribution as a histogram. Server performance was evaluated by generating a collection of bipartite models for distinct DNA binding proteins. PMID:16503993
Richards, Stephen; Liu, Yue; Bettencourt, Brian R.; Hradecky, Pavel; Letovsky, Stan; Nielsen, Rasmus; Thornton, Kevin; Hubisz, Melissa J.; Chen, Rui; Meisel, Richard P.; Couronne, Olivier; Hua, Sujun; Smith, Mark A.; Zhang, Peili; Liu, Jing; Bussemaker, Harmen J.; van Batenburg, Marinus F.; Howells, Sally L.; Scherer, Steven E.; Sodergren, Erica; Matthews, Beverly B.; Crosby, Madeline A.; Schroeder, Andrew J.; Ortiz-Barrientos, Daniel; Rives, Catharine M.; Metzker, Michael L.; Muzny, Donna M.; Scott, Graham; Steffen, David; Wheeler, David A.; Worley, Kim C.; Havlak, Paul; Durbin, K. James; Egan, Amy; Gill, Rachel; Hume, Jennifer; Morgan, Margaret B.; Miner, George; Hamilton, Cerissa; Huang, Yanmei; Waldron, Lenée; Verduzco, Daniel; Clerc-Blankenburg, Kerstin P.; Dubchak, Inna; Noor, Mohamed A.F.; Anderson, Wyatt; White, Kevin P.; Clark, Andrew G.; Schaeffer, Stephen W.; Gelbart, William; Weinstock, George M.; Gibbs, Richard A.
2005-01-01
We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each arm gene order has been extensively reshuffled, leading to a minimum of 921 syntenic blocks shared between the species. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 25–55 million years (Myr) since the pseudoobscura/melanogaster divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome-wide average, consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than random and nearby sequences between the species—but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila. PMID:15632085
NASA Astrophysics Data System (ADS)
Yamashita, Koichi; Morokuma, Keiji; Le Quéré, Frederic; Leforestier, Claude
1992-04-01
New ab initio potential energy surfaces (PESs) of the ground and B ( 1B 2) states of ozone have been calculated with the CASSCF-SECI/DZP method to describe the three-dimensional photodissociation process. The dissociation energy of the ground state and the vertical barrier height of the B PES are obtained to be 0.88 and 1.34 eV, respectively, in better agreement with the experimental values than the previous calculation. The photodissociation autocorrelation function, calculated on the new B PES, based on exact three-dimensional quantum dynamics, reproduces well the main recurrence feature extracted from the experimental spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiraiwa, Akikazu; Yamanaka, Katsuo; Kwok, W.W.
Although HLA genes have been shown to be associated with certain diseases, the basis for this association is unknown. Recent studies, however, have documented patterns of nucleotide sequence variation among some HLA genes associated with a particular disease. For rheumatoid arthritis, HLA genes in most patients have a shared nucleotide sequence encoding a key structural element of an HLA class II polypeptide; this sequence element is critical for the interaction of the HLA molecule with antigenic peptides and with responding T cells, suggestive of a direct role for this sequence element in disease susceptibility. The authors describe the serological andmore » cellular immunologic characteristics encoded by this rheumatoid arthritis-associated sequence element. Site-directed mutagenesis of the DRB1 gene was used to define amino acids critical for antibody and T-cell recognition of this structural element, focusing on residues that distinguish the rheumatoid arthritis-associated alleles Dw4 and Dw14 from a closely related allele, Dw10, not associated with disease. Both the gain and loss of rheumatoid arthritis-associated epitopes were highly dependent on three residues within a discrete domain of the HLA-DR molecule. Recognition was most strongly influenced by the following amino acids (in order): 70 > 71 > 67. Some alloreactive T-cell clones were also influenced by amino acid variation in portions of the DR molecule lying outside the shared sequence element.« less
Suzuki, Masaharu; Ketterling, Matthew G; McCarty, Donald R
2005-09-01
We have developed a simple quantitative computational approach for objective analysis of cis-regulatory sequences in promoters of coregulated genes. The program, designated MotifFinder, identifies oligo sequences that are overrepresented in promoters of coregulated genes. We used this approach to analyze promoter sequences of Viviparous1 (VP1)/abscisic acid (ABA)-regulated genes and cold-regulated genes, respectively, of Arabidopsis (Arabidopsis thaliana). We detected significantly enriched sequences in up-regulated genes but not in down-regulated genes. This result suggests that gene activation but not repression is mediated by specific and common sequence elements in promoters. The enriched motifs include several known cis-regulatory sequences as well as previously unidentified motifs. With respect to known cis-elements, we dissected the flanking nucleotides of the core sequences of Sph element, ABA response elements (ABREs), and the C repeat/dehydration-responsive element. This analysis identified the motif variants that may correlate with qualitative and quantitative differences in gene expression. While both VP1 and cold responses are mediated in part by ABA signaling via ABREs, these responses correlate with unique ABRE variants distinguished by nucleotides flanking the ACGT core. ABRE and Sph motifs are tightly associated uniquely in the coregulated set of genes showing a strict dependence on VP1 and ABA signaling. Finally, analysis of distribution of the enriched sequences revealed a striking concentration of enriched motifs in a proximal 200-base region of VP1/ABA and cold-regulated promoters. Overall, each class of coregulated genes possesses a discrete set of the enriched motifs with unique distributions in their promoters that may account for the specificity of gene regulation.
Raventós, D; Jensen, A B; Rask, M B; Casacuberta, J M; Mundy, J; San Segundo, B
1995-01-01
Transient gene expression assays in barley aleurone protoplasts were used to identify a cis-regulatory element involved in the elicitor-responsive expression of the maize PRms gene. Analysis of transcriptional fusions between PRms 5' upstream sequences and a chloramphenicol acetyltransferase reporter gene, as well as chimeric promoters containing PRms promoter fragments or repeated oligonucleotides fused to a minimal promoter, delineated a 20 bp sequence which functioned as an elicitor-response element (ERE). This sequence contains a motif (-246 AATTGACC) similar to sequences found in promoters of other pathogen-responsive genes. The analysis also indicated that an enhancing sequence(s) between -397 and -296 is required for full PRms activation by elicitors. The protein kinase inhibitor staurosporine was found to completely block the transcriptional activation induced by elicitors. These data indicate that protein phosphorylation is involved in the signal transduction pathway leading to PRms expression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Moon-Jung; Lee, Byung Cheon; Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 136-701
Thioredoxin (Trx) is a major thiol-disulfide reductase that plays a role in many biological processes, including DNA replication and redox signaling. Although selenocysteine (Sec)-containing Trxs have been identified in certain bacteria, their enzymatic properties have not been characterized. In this study, we expressed a selenoprotein Trx from Treponema denticola, an oral spirochete, in Escherichia coli and characterized this selenoenzyme and its natural cysteine (Cys) homologue using E. coli Trx1 as a positive control. {sup 75}Se metabolic labeling and mutation analyses showed that the SECIS (Sec insertion sequence) of T. denticola selenoprotein Trx is functional in the E. coli Sec insertion system with specificmore » selenium incorporation into the Sec residue. The selenoprotein Trx exhibited approximately 10-fold higher catalytic activity than the Sec-to-Cys version and natural Cys homologue and E. coli Trx1, suggesting that Sec confers higher catalytic activity on this thiol-disulfide reductase. Kinetic analysis also showed that the selenoprotein Trx had a 30-fold higher K{sub m} than Cys-containing homologues, suggesting that this selenoenzyme is adapted to work efficiently with high concentrations of substrate. Collectively, the results of this study support the hypothesis that selenium utilization in oxidoreductase systems is primarily due to the catalytic advantage provided by the rare amino acid, Sec. - Highlights: • The first characterization of a selenoprotein Trx is presented. • The selenoenzyme Trx exhibits 10-fold higher catalytic activity than Cys homologues. • Se utilization in Trx is primarily due to the catalytic advantage provided by Sec residue.« less
Transposable elements in cancer.
Burns, Kathleen H
2017-07-01
Transposable elements give rise to interspersed repeats, sequences that comprise most of our genomes. These mobile DNAs have been historically underappreciated - both because they have been presumed to be unimportant, and because their high copy number and variability pose unique technical challenges. Neither impediment now seems steadfast. Interest in the human mobilome has never been greater, and methods enabling its study are maturing at a fast pace. This Review describes the activity of transposable elements in human cancers, particularly long interspersed element-1 (LINE-1). LINE-1 sequences are self-propagating, protein-coding retrotransposons, and their activity results in somatically acquired insertions in cancer genomes. Altered expression of transposable elements and animation of genomic LINE-1 sequences appear to be hallmarks of cancer, and can be responsible for driving mutations in tumorigenesis.
Pike, William A; Riensche, Roderick M; Best, Daniel M; Roberts, Ian E; Whyatt, Marie V; Hart, Michelle L; Carr, Norman J; Thomas, James J
2012-09-18
Systems and computer-implemented processes for storage and management of information artifacts collected by information analysts using a computing device. The processes and systems can capture a sequence of interactive operation elements that are performed by the information analyst, who is collecting an information artifact from at least one of the plurality of software applications. The information artifact can then be stored together with the interactive operation elements as a snippet on a memory device, which is operably connected to the processor. The snippet comprises a view from an analysis application, data contained in the view, and the sequence of interactive operation elements stored as a provenance representation comprising operation element class, timestamp, and data object attributes for each interactive operation element in the sequence.
Identification of a Recently Active Mammalian SINE Derived from Ribosomal RNA
Longo, Mark S.; Brown, Judy D.; Zhang, Chu; O’Neill, Michael J.; O’Neill, Rachel J.
2015-01-01
Complex eukaryotic genomes are riddled with repeated sequences whose derivation does not coincide with phylogenetic history and thus is often unknown. Among such sequences, the capacity for transcriptional activity coupled with the adaptive use of reverse transcription can lead to a diverse group of genomic elements across taxa, otherwise known as selfish elements or mobile elements. Short interspersed nuclear elements (SINEs) are nonautonomous mobile elements found in eukaryotic genomes, typically derived from cellular RNAs such as tRNAs, 7SL or 5S rRNA. Here, we identify and characterize a previously unknown SINE derived from the 3′-end of the large ribosomal subunit (LSU or 28S rDNA) and transcribed via RNA polymerase III. This new element, SINE28, is represented in low-copy numbers in the human reference genome assembly, wherein we have identified 27 discrete loci. Phylogenetic analysis indicates these elements have been transpositionally active within primate lineages as recently as 6 MYA while modern humans still carry transcriptionally active copies. Moreover, we have identified SINE28s in all currently available assembled mammalian genome sequences. Phylogenetic comparisons indicate that these elements are frequently rederived from the highly conserved LSU rRNA sequences in a lineage-specific manner. We propose that this element has not been previously recognized as a SINE given its high identity to the canonical LSU, and that SINE28 likely represents one of possibly many unidentified, active transposable elements within mammalian genomes. PMID:25637222
Means, A L; Farnham, P J
1990-02-01
We have identified a sequence element that specifies the position of transcription initiation for the dihydrofolate reductase gene. Unlike the functionally analogous TATA box that directs RNA polymerase II to initiate transcription 30 nucleotides downstream, the positioning element of the dihydrofolate reductase promoter is located directly at the site of transcription initiation. By using DNase I footprint analysis, we have shown that a protein binds to this initiator element. Transcription initiated at the dihydrofolate reductase initiator element when 28 nucleotides were inserted between it and all other upstream sequences, or when it was placed on either side of the DNA helix, suggesting that there is no strict spatial requirement between the initiator and an upstream element. Although neither a single Sp1-binding site nor a single initiator element was sufficient for transcriptional activity, the combination of one Sp1-binding site and the dihydrofolate reductase initiator element cloned into a plasmid vector resulted in transcription starting at the initiator element. We have also shown that the simian virus 40 late major initiation site has striking sequence homology to the dihydrofolate reductase initiation site and that the same, or a similar, protein binds to both sites. Examination of the sequences at other RNA polymerase II initiation sites suggests that we have identified an element that is important in the transcription of other housekeeping genes. We have thus named the protein that binds to the initiator element HIP1 (Housekeeping Initiator Protein 1).
The application of the high throughput sequencing technology in the transposable elements.
Liu, Zhen; Xu, Jian-hong
2015-09-01
High throughput sequencing technology has dramatically improved the efficiency of DNA sequencing, and decreased the costs to a great extent. Meanwhile, this technology usually has advantages of better specificity, higher sensitivity and accuracy. Therefore, it has been applied to the research on genetic variations, transcriptomics and epigenomics. Recently, this technology has been widely employed in the studies of transposable elements and has achieved fruitful results. In this review, we summarize the application of high throughput sequencing technology in the fields of transposable elements, including the estimation of transposon content, preference of target sites and distribution, insertion polymorphism and population frequency, identification of rare copies, transposon horizontal transfers as well as transposon tagging. We also briefly introduce the major common sequencing strategies and algorithms, their advantages and disadvantages, and the corresponding solutions. Finally, we envision the developing trends of high throughput sequencing technology, especially the third generation sequencing technology, and its application in transposon studies in the future, hopefully providing a comprehensive understanding and reference for related scientific researchers.
Discovery of rare, diagnostic AluYb8/9 elements in diverse human populations.
Feusier, Julie; Witherspoon, David J; Scott Watkins, W; Goubert, Clément; Sasani, Thomas A; Jorde, Lynn B
2017-01-01
Polymorphic human Alu elements are excellent tools for assessing population structure, and new retrotransposition events can contribute to disease. Next-generation sequencing has greatly increased the potential to discover Alu elements in human populations, and various sequencing and bioinformatics methods have been designed to tackle the problem of detecting these highly repetitive elements. However, current techniques for Alu discovery may miss rare, polymorphic Alu elements. Combining multiple discovery approaches may provide a better profile of the polymorphic Alu mobilome. Alu Yb8/9 elements have been a focus of our recent studies as they are young subfamilies (~2.3 million years old) that contribute ~30% of recent polymorphic Alu retrotransposition events. Here, we update our ME-Scan methods for detecting Alu elements and apply these methods to discover new insertions in a large set of individuals with diverse ancestral backgrounds. We identified 5,288 putative Alu insertion events, including several hundred novel Alu Yb8/9 elements from 213 individuals from 18 diverse human populations. Hundreds of these loci were specific to continental populations, and 23 non-reference population-specific loci were validated by PCR. We provide high-quality sequence information for 68 rare Alu Yb8/9 elements, of which 11 have hallmarks of an active source element. Our subfamily distribution of rare Alu Yb8/9 elements is consistent with previous datasets, and may be representative of rare loci. We also find that while ME-Scan and low-coverage, whole-genome sequencing (WGS) detect different Alu elements in 41 1000 Genomes individuals, the two methods yield similar population structure results. Current in-silico methods for Alu discovery may miss rare, polymorphic Alu elements. Therefore, using multiple techniques can provide a more accurate profile of Alu elements in individuals and populations. We improved our false-negative rate as an indicator of sample quality for future ME-Scan experiments. In conclusion, we demonstrate that ME-Scan is a good supplement for next-generation sequencing methods and is well-suited for population-level analyses.
D’Addabbo, Pietro; Caizzi, Ruggiero
2016-01-01
Bari elements are members of the Tc1-mariner superfamily of DNA transposons, originally discovered in Drosophila melanogaster, and subsequently identified in silico in 11 sequenced Drosophila genomes and as experimentally isolated in four non-sequenced Drosophila species. Bari-like elements have been also studied for their mobility both in vivo and in vitro. We analyzed 23 Drosophila genomes and carried out a detailed characterization of the Bari elements identified, including those from the heterochromatic Bari1 cluster in D. melanogaster. We have annotated 401 copies of Bari elements classified either as putatively autonomous or inactive according to the structure of the terminal sequences and the presence of a complete transposase-coding region. Analyses of the integration sites revealed that Bari transposase prefers AT-rich sequences in which the TA target is cleaved and duplicated. Furthermore evaluation of transposon’s co-occurrence near the integration sites of Bari elements showed a non-random distribution of other transposable elements. We also unveil the existence of a putatively autonomous Bari1 variant characterized by two identical long Terminal Inverted Repeats, in D. rhopaloa. In addition, we detected MITEs related to Bari transposons in 9 species. Phylogenetic analyses based on transposase gene and the terminal sequences confirmed that Bari-like elements are distributed into three subfamilies. A few inconsistencies in Bari phylogenetic tree with respect to the Drosophila species tree could be explained by the occurrence of horizontal transfer events as also suggested by the results of dS analyses. This study further clarifies the Bari transposon’s evolutionary dynamics and increases our understanding on the Tc1-mariner elements’ biology. PMID:27213270
Meyer, C; Pouteau, S; Rouzé, P; Caboche, M
1994-01-01
By Northern blot analysis of nitrate reductase-deficient mutants of Nicotiana plumbaginifolia, we identified a mutant (mutant D65), obtained after gamma-ray irradiation of protoplasts, which contained an insertion sequence in the nitrate reductase (NR) mRNA. This insertion sequence was localized by polymerase chain reaction (PCR) in the first exon of NR and was also shown to be present in the NR gene. The mutant gene contained a 565 bp insertion sequence that exhibits the sequence characteristics of a transposable element, which was thus named dTnp1. The dTnp1 element has 14 bp terminal inverted repeats and is flanked by an 8-bp target site duplication generated upon transposition. These inverted repeats have significant sequence homology with those of other transposable elements. Judging by its size and the absence of a long open reading frame, dTnp1 appears to represent a defective, although mobile, transposable element. The octamer motif TTTAGGCC was found several times in direct orientation near the 5' and 3' ends of dTnp1 together with a perfect palindrome located after the 5' inverted repeat. Southern blot analysis using an internal probe of dTnp1 suggested that this element occurs as a single copy in the genome of N. plumbaginifolia. It is also present in N. tabacum, but absent in tomato or petunia. The dTnp1 element is therefore of potential use for gene tagging in Nicotiana species.
Eickbush, D. G.; Eickbush, T. H.
1995-01-01
R1 and R2 are non-long-terminal repeat retrotransposable elements that insert into specific sequences of insect 28S ribosomal RNA genes. These elements have been extensively described in Drosophila melanogaster. To determine whether these elements have been horizontally or vertically transmitted, we characterized R1 and R2 elements from the seven other members of the melanogaster species subgroup by genomic blotting and nucleotide sequencing. Each species was found to have homogeneous families of R1 and R2 elements with the exception of erecta and orena, which have no R2 elements. The DNA sequences of multiple R1 and R2 copies from each species indicated nucleotide divergence within each species averaged only 0.48% for R1 and 0.35% for R2, well below the level of divergence among the species. Most copies of R1 and R2 (40 of 47) sequenced from the seven species were potentially functional, as indicated by the absence of premature termination codons or translational frameshifts that would destroy the open reading frame of the element. The sequence relationships of both the R1 and R2 elements from the various members of the melanogaster subgroup closely followed that of the species phylogeny, suggesting that R1 and R2 have been stably maintained by vertical transmission since the origin of this species subgroup 17-20 million years ago. The remarkable stability of R1 and R2, compared to what has been suggested for transposable elements that insert at multiple locations in these same species, may be due to their unique specificity for sites in the rRNA gene locus. Under low copy number conditions, when it is essential for any mobile element to transpose, the insertion specificities of R1 and R2 ensure uniform developmentally regulated target sites that can be occupied with little or no detrimental effect on the host. PMID:7713424
Hyder, S M; Stancel, G M; Nawaz, Z; McDonnell, D P; Loose-Mitchell, D S
1992-09-05
We have used transient transfection assays with reporter plasmids expressing chloramphenicol acetyltransferase, linked to regions of mouse c-fos, to identify a specific estrogen response element (ERE) in this protooncogene. This element is located in the untranslated 3'-flanking region of the c-fos gene, 5 kilobases (kb) downstream from the c-fos promoter and 1.5 kb downstream of the poly(A) signal. This element confers estrogen responsiveness to chloramphenicol acetyltransferase reporters linked to both the herpes simplex virus thymidine kinase promoter and the homologous c-fos promoter. Deletion analysis localized the response element to a 200-base pair fragment which contains the element GGTCACCACAGCC that resembles the consensus ERE sequence GGTCACAGTGACC originally identified in Xenopus vitellogenin A2 gene. A synthetic 36-base pair oligodeoxynucleotide containing this c-fos sequence conferred estrogen inducibility to the thymidine kinase promoter. The corresponding sequence also induced reporter activity when present in the c-fos gene fragment 3 kb from the thymidine kinase promoter. Gel-shift experiments demonstrated that synthetic oligonucleotides containing either the consensus ERE or the c-fos element bind human estrogen receptor obtained from a yeast expression system. However, the mobility of the shifted band is faster for the fos-ERE-complex than the consensus ERE complex suggesting that the three-dimensional structure of the protein-DNA complexes is different or that other factors are differentially involved in the two reactions. When the 5'-GGTCA sequence present in the c-fos ERE is mutated to 5'-TTTCA, transcriptional activation and receptor binding activities are both lost. Mutation of the CAGCC-3' element corresponding to the second half-site of the c-fos sequence also led to the loss of receptor binding activity, suggesting that both half-sites of this element are involved in this function. The estrogen induction mediated by either the c-fos or the consensus ERE was blunted by the antiestrogen tamoxifen. Based on these studies, we believe the 3'-fos ERE sequence we have identified may be a major cis-acting element involved in the physiological regulation of the gene by estrogens in vivo.
Fink, J S; Verhave, M; Kasper, S; Tsukada, T; Mandel, G; Goodman, R H
1988-01-01
cAMP-regulated transcription of the human vasoactive intestinal peptide gene is dependent upon a 17-base-pair DNA element located 70 base pairs upstream from the transcriptional initiation site. This element is similar to sequences in other genes known to be regulated by cAMP and to sequences in several viral enhancers. We have demonstrated that the vasoactive intestinal peptide regulatory element is an enhancer that depends upon the integrity of two CGTCA sequence motifs for biological activity. Mutations in either of the CGTCA motifs diminish the ability of the element to respond to cAMP. Enhancers containing the CGTCA motif from the somatostatin and adenovirus genes compete for binding of nuclear proteins from C6 glioma and PC12 cells to the vasoactive intestinal peptide enhancer, suggesting that CGTCA-containing enhancers interact with similar transacting factors. Images PMID:2842787
Sleep-dependent learning and motor-skill complexity
Kuriyama, Kenichi; Stickgold, Robert; Walker, Matthew P.
2004-01-01
Learning of a procedural motor-skill task is known to progress through a series of unique memory stages. Performance initially improves during training, and continues to improve, without further rehearsal, across subsequent periods of sleep. Here, we investigate how this delayed sleep-dependent learning is affected when the task characteristics are varied across several degrees of difficulty, and whether this improvement differentially enhances individual transitions of the motor-sequence pattern being learned. We report that subjects show similar overnight improvements in speed whether learning a five-element unimanual sequence (17.7% improvement), a nine-element unimanual sequence (20.2%), or a five-element bimanual sequence (17.5%), but show markedly increased overnight improvement (28.9%) with a nine-element bimanual sequence. In addition, individual transitions within the motor-sequence pattern that appeared most difficult at the end of training showed a significant 17.8% increase in speed overnight, whereas those transitions that were performed most rapidly at the end of training showed only a non-significant 1.4% improvement. Together, these findings suggest that the sleep-dependent learning process selectively provides maximum benefit to motor-skill procedures that proved to be most difficult prior to sleep. PMID:15576888
Gene conversion as a secondary mechanism of short interspersed element (SINE) evolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kass, D.H.; Batzer, M.A.; Deininger, P.L.
The Alu repetitive family of short interspersed elements (SINEs) in primates can be subdivided into distinct subfamilies by specific diagnostic nucleotide changes. The older subfamilies are generally very abundant, while the younger subfamilies have fewer copies. Some of the youngest Alu elements are absent in the orthologous loci of nonhuman primates, indicative of recent retroposition events, the primary mode of SINE evolutions. PCR analysis of one young Alu subfamily (Sb2) member found in the low-density lipoprotein receptor gene apparently revealed the presence of this element in the green monkey, orangutan, gorilla, and chimpanzee genomes, as well as the human genome.more » However, sequence analysis of these genomes revealed a highly mutated, older, primate-specific Alu element was present at this position in the nonhuman primates. Comparison of the flanking DNA sequences upstream of this Alu insertion corresponded to evolution expected for standard primate phylogeny, but comparison of the Alu repeat sequences revealed that the human element departed from this phylogeny. The change in the human sequence apparently occurred by a gene conversion event only within the Alu element itself, converting it from one of the oldest to one of the youngest Alu subfamilies. Although gene conversions of Alu elements are clearly very rare, this finding shows that such events can occur and contribute to specific cases of SINE subfamily evolution.« less
Zhu, Shi-Yong; Li, Xue-Nan; Sun, Xiao-Chen; Lin, Jia; Li, Wei; Zhang, Cong; Li, Jin-Long
2017-02-22
Knowledge about mammalian selenoproteins is increasing. However, the selenoproteome of birds remains considerably less understood, especially concerning its biochemical characterization, structure-function relationships and the interactions of binding molecules. In this work, the SECIS elements, subcellular localization, protein domains and interactions of binding molecules of the selenoproteome in Gallus gallus were analyzed using bioinformatics tools. We carried out comprehensive analyses of the structure-function relationships and interactions of the binding molecules of selenoproteins, to provide biochemical characterization of the selenoproteome in Gallus gallus. Our data provided a wealth of information on the biochemical functions of bird selenoproteins. Members of the selenoproteome were found to be involved in various biological processes in chickens, such as in antioxidants, maintenance of the redox balance, Se transport, and interactions with metals. Six membrane-bound selenoproteins (SelI, SelK, SelS, SelT, DIO1 and DIO3) played important roles in maintaining the membrane integrity. Chicken selenoproteins were classified according to their ligand binding sites as zinc-containing matrix metalloselenoproteins (Sep15, MsrB1, SelW and SelM), POP-containing selenoproteins (GPx1-4), FAD-interacting selenoproteins (TrxR1-3), secretory transport selenoproteins (GPx3 and SelPa) and other selenoproteins. The results of our study provided new evidence for the unknown biological functions of the selenoproteome in birds. Future research is required to confirm the novel biochemical functions of bird selenoproteins.
Laimins, L; Holmgren-König, M; Khoury, G
1986-01-01
The enhancer elements from either simian virus 40 or murine sarcoma virus activate the expression of a transfected rat insulin 1 (rI1) gene when placed within 2.0 kilobases or less of the rI1 gene cap site. Inclusion of 4.0 kilobases of upstream rI1 sequence, however, results in a substantial reduction in the enhancer-dependent insulin gene expression. These observations suggested that a negative transcriptional regulatory element was present between 2.0 and 4.0 kilobases of the rI1 sequence. To test this notion, we employed a heterologous enhancer-dependent transcription assay in which the simian virus 40 72-base-pair repeat is linked to a human beta-globin gene. Addition of the upstream rI1 element to this system decreased the level of enhancer-dependent beta-globin transcription by a factor of 5 to 15. This rI1 "silencer" element functions in a manner relatively independent of position and orientation and requires a cis-dependent relationship to the transcription unit on which it acts. Thus, the silencer sequence seems to have a number of the characteristics of enhancer elements, and we suggest that it may function by the converse of the enhancer mechanism. The rI1 silencer sequence was identified as a member of a long interspersed rat repetitive family. Thus, a potential role for certain repetitive sequences interspersed throughout the eukaryotic genome may be to regulate gene expression by retaining transcriptional activity within defined domains. Images PMID:3010279
Cis-acting elements in the promoter region of the human aldolase C gene.
Buono, P; de Conciliis, L; Olivetta, E; Izzo, P; Salvatore, F
1993-08-16
We investigated the cis-acting sequences involved in the expression of the human aldolase C gene by transient transfections into human neuroblastoma cells (SKNBE). We demonstrate that 420 bp of the 5'-flanking DNA direct at high efficiency the transcription of the CAT reporter gene. A deletion between -420 bp and -164 bp causes a 60% decrease of CAT activity. Gel shift and DNase I footprinting analyses revealed four protected elements: A, B, C and D. Competition analyses indicate that Sp1 or factors sharing a similar sequence specificity bind to elements A and B, but not to elements C and D. Sequence analysis shows a half palindromic ERE motif (GGTCA), in elements B and D. Region D binds a transactivating factor which appears also essential to stabilize the initiation complex.
Mobile element biology – new possibilities with high-throughput sequencing
Xing, Jinchuan; Witherspoon, David J.; Jorde, Lynn B.
2014-01-01
Mobile elements compose more than half of the human genome, but until recently their large-scale detection was time-consuming and challenging. With the development of new high-throughput sequencing technologies, the complete spectrum of mobile element variation in humans can now be identified and analyzed. Thousands of new mobile element insertions have been discovered, yielding new insights into mobile element biology, evolution, and genomic variation. We review several high-throughput methods, with an emphasis on techniques that specifically target mobile element insertions in humans, and we highlight recent applications of these methods in evolutionary studies and in the analysis of somatic alterations in human cancers. PMID:23312846
Evolutionary conservation of regulatory elements in vertebrate HOX gene clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santini, Simona; Boore, Jeffrey L.; Meyer, Axel
2003-12-31
Due to their high degree of conservation, comparisons of DNA sequences among evolutionarily distantly-related genomes permit to identify functional regions in noncoding DNA. Hox genes are optimal candidate sequences for comparative genome analyses, because they are extremely conserved in vertebrates and occur in clusters. We aligned (Pipmaker) the nucleotide sequences of HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human and mouse (over 500 million years of evolutionary distance). We identified several highly conserved intergenic sequences, likely to be important in gene regulation. Only a few of these putative regulatory elements have been previously described as being involvedmore » in the regulation of Hox genes, while several others are new elements that might have regulatory functions. The majority of these newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac). The conserved intergenic regions located between the most rostrally expressed genes in the developing embryo are longer and better retained through evolution. We document that presumed regulatory sequences are retained differentially in either A or A clusters resulting from a genome duplication in the fish lineage. This observation supports both the hypothesis that the conserved elements are involved in gene regulation and the Duplication-Deletion-Complementation model.« less
Dubrana, K; Le Mouël, A; Amar, L
1997-01-01
Ciliated protozoa undergo thousands of site-specific DNA deletion events during the programmed development of micronuclear genomes to macronuclear genomes. Two deletion elements, W1 and W2, were identified in the Paramecium primaurelia wild-type 156 strain. Here, we report the characterization of both elements in wild-type strain 168 and show that they display variant deletion patterns when compared with those of strain 156. The W1 ( 168 ) element is defective for deletion. The W2 ( 168 ) element is excised utilizing two alternative boundaries on one side, both are different from the boundary utilized to excise the W2156 element. By crossing the 156 and 168 strains, we demonstrate that the definition of all deletion endpoints are each controlled by cis -acting determinant(s) rather than by strain-specific trans-acting factor(s). Sequence comparison of all deleted DNA segments indicates that the 5'-TA-3'terminal sequence is strictly required at their ends. Furthermore the identity of the first eight base pairs of these ends to a previously established consensus sequence correlates with the frequency of the corresponding deletion events. Our data implies the existence of an adaptive convergent evolution of these Paramecium deleted DNA segment end sequences. PMID:9171098
Whisson, Stephen C; Avrova, Anna O; Lavrova, Olga; Pritchard, Leighton
2005-04-01
The first known families of tRNA-related short interspersed elements (SINEs) in the oomycetes were identified by exploiting the genomic DNA sequence resources for the potato late blight pathogen, Phytophthora infestans. Fifteen families of tRNA-related SINEs, as well as predicted tRNAs, and other possible RNA polymerase III-transcribed sequences were identified. The size of individual elements ranges from 101 to 392 bp, representing sequences present from low (1) to highly abundant (over 2000) copy number in the P. infestans genome, based on quantitative PCR analysis. Putative short direct repeat sequences (6-14 bp) flanking the elements were also identified for eight of the SINEs. Predicted SINEs were named in a series prefixed infSINE (for infestans-SINE). Two SINEs were apparently present as multimers of tRNA-related units; four copies of a related unit for infSINEr, and two unrelated units for infSINEz. Two SINEs, infSINEh and infSINEi, were typically located within 400 bp of each other. These were also the only two elements identified as being actively transcribed in the mycelial stage of P. infestans by RT-PCR. It is possible that infSINEh and infSINEi represent active retrotransposons in P. infestans. Based on the quantitative PCR estimates of copy number for all of the elements identified, tRNA-related SINEs were estimated to comprise 0.3% of the 250 Mb P. infestans genome. InfSINE-related sequences were found to occur in species throughout the genus Phytophthora. However, seven elements were shown to be exclusive to P. infestans.
A variant Tc4 transposable element in the nematode C. elegans could encode a novel protein.
Li, W; Shaw, J E
1993-01-01
A variant C. elegans Tc4 transposable element, Tc4-rh1030, has been sequenced and is 3483 bp long. The Tc4 element that had been analyzed previously is 1605 bp long, consists of two 774-bp nearly perfect inverted terminal repeats connected by a 57-bp loop, and lacks significant open reading frames. In Tc4-rh1030, by comparison, a 2343-bp novel sequence is present in place of a 477-bp segment in one of the inverted repeats. The novel sequence of Tc4-rh1030 is present about five times per haploid genome and is invariably associated with Tc4 elements; we have used the designation Tc4v to denote this variant subfamily of Tc4 elements. Sequence analysis of three cDNA clones suggests that a Tc4v element contains at least five exons that could encode a novel basic protein of 537 amino acid residues. On northern blots, a 1.6-kb Tc4v-specific transcript was detected in the mutator strain TR679 but not in the wild-type strain N2; Tc4 elements are known to transpose in TR679 but appear to be quiescent in N2. We have analyzed transcripts produced by an unc-33 gene that has the Tc4-rh1030 insertional mutation in its transcribed region; all or almost all of the Tc4v sequence is frequently spliced out of the mutant unc-33 transcripts, sometimes by means of non-consensus splice acceptor sites. Images PMID:8382791
High-speed optical phase-shifting apparatus
Zortman, William A.
2016-11-08
An optical phase shifter includes an optical waveguide, a plurality of partial phase shifting elements arranged sequentially, and control circuitry electrically coupled to the partial phase shifting elements. The control circuitry is adapted to provide an activating signal to each of the N partial phase shifting elements such that the signal is delayed by a clock cycle between adjacent partial phase shifting elements in the sequence. The transit time for a guided optical pulse train between the input edges of consecutive partial phase shifting elements in the sequence is arranged to be equal to a clock cycle, thereby enabling pipelined processing of the optical pulses.
Mason, Christopher E.; Shu, Feng-Jue; Wang, Cheng; Session, Ryan M.; Kallen, Roland G.; Sidell, Neil; Yu, Tianwei; Liu, Mei Hui; Cheung, Edwin; Kallen, Caleb B.
2010-01-01
Location analysis for estrogen receptor-α (ERα)-bound cis-regulatory elements was determined in MCF7 cells using chromatin immunoprecipitation (ChIP)-on-chip. Here, we present the estrogen response element (ERE) sequences that were identified at ERα-bound loci and quantify the incidence of ERE sequences under two stringencies of detection: <10% and 10–20% nucleotide deviation from the canonical ERE sequence. We demonstrate that ∼50% of all ERα-bound loci do not have a discernable ERE and show that most ERα-bound EREs are not perfect consensus EREs. Approximately one-third of all ERα-bound ERE sequences reside within repetitive DNA sequences, most commonly of the AluS family. In addition, the 3-bp spacer between the inverted ERE half-sites, rather than being random nucleotides, is C(A/T)G-enriched at bona fide receptor targets. Diverse ERα-bound loci were validated using electrophoretic mobility shift assay and ChIP-polymerase chain reaction (PCR). The functional significance of receptor-bound loci was demonstrated using luciferase reporter assays which proved that repetitive element ERE sequences contribute to enhancer function. ChIP-PCR demonstrated estrogen-dependent recruitment of the coactivator SRC3 to these loci in vivo. Our data demonstrate that ERα binds to widely variant EREs with less sequence specificity than had previously been suspected and that binding at repetitive and nonrepetitive genomic targets is favored by specific trinucleotide spacers. PMID:20047966
Mason, Christopher E; Shu, Feng-Jue; Wang, Cheng; Session, Ryan M; Kallen, Roland G; Sidell, Neil; Yu, Tianwei; Liu, Mei Hui; Cheung, Edwin; Kallen, Caleb B
2010-04-01
Location analysis for estrogen receptor-alpha (ERalpha)-bound cis-regulatory elements was determined in MCF7 cells using chromatin immunoprecipitation (ChIP)-on-chip. Here, we present the estrogen response element (ERE) sequences that were identified at ERalpha-bound loci and quantify the incidence of ERE sequences under two stringencies of detection: <10% and 10-20% nucleotide deviation from the canonical ERE sequence. We demonstrate that approximately 50% of all ERalpha-bound loci do not have a discernable ERE and show that most ERalpha-bound EREs are not perfect consensus EREs. Approximately one-third of all ERalpha-bound ERE sequences reside within repetitive DNA sequences, most commonly of the AluS family. In addition, the 3-bp spacer between the inverted ERE half-sites, rather than being random nucleotides, is C(A/T)G-enriched at bona fide receptor targets. Diverse ERalpha-bound loci were validated using electrophoretic mobility shift assay and ChIP-polymerase chain reaction (PCR). The functional significance of receptor-bound loci was demonstrated using luciferase reporter assays which proved that repetitive element ERE sequences contribute to enhancer function. ChIP-PCR demonstrated estrogen-dependent recruitment of the coactivator SRC3 to these loci in vivo. Our data demonstrate that ERalpha binds to widely variant EREs with less sequence specificity than had previously been suspected and that binding at repetitive and nonrepetitive genomic targets is favored by specific trinucleotide spacers.
NASA Astrophysics Data System (ADS)
Schweig, Armin; Diehl, Frank; Kesper, Karl; Meyer, Hermann
1989-07-01
The electronic absorption spectra of benzo[b]thiete ( 1) and of transient o-thiobenzoquinonemethide ( 2) have been obtained. Semiempirical valence-electron calculations using the CNDO/S SECI, CNDO/S PERTCI and LNDO/S PERTCI methods and correlation diagrams using suitable reference compounds ad aniline, thiophenol, thioanisole, all-trans-octatetraene and o-xylylene are applied to the interpretation of the spectra. The results clearly reveal 1 as a typically donor-substituted benzene derivative and 2 as a polyene-like system closely related to o-xylylene.
Ceccarelli, A; Zhukovskaya, N; Kawata, T; Bozzaro, S; Williams, J
2000-12-01
The ecmB gene of Dictyostelium is expressed at culmination both in the prestalk cells that enter the stalk tube and in ancillary stalk cell structures such as the basal disc. Stalk tube-specific expression is regulated by sequence elements within the cap-site proximal part of the promoter, the stalk tube (ST) promoter region. Dd-STATa, a member of the STAT transcription factor family, binds to elements present in the ST promoter-region and represses transcription prior to entry into the stalk tube. We have characterised an activatory DNA sequence element, that lies distal to the repressor elements and that is both necessary and sufficient for expression within the stalk tube. We have mapped this activator to a 28 nucleotide region (the 28-mer) within which we have identified a GA-containing sequence element that is required for efficient gene transcription. The Dd-STATa protein binds to the 28-mer in an in vitro binding assay, and binding is dependent upon the GA-containing sequence. However, the ecmB gene is expressed in a Dd-STATa null mutant, therefore Dd-STATa cannot be responsible for activating the 28-mer in vivo. Instead, we identified a distinct 28-mer binding activity in nuclear extracts from the Dd-STATa null mutant, the activity of this GA binding activity being largely masked in wild type extracts by the high affinity binding of the Dd-STATa protein. We suggest, that in addition to the long range repression exerted by binding to the two known repressor sites, Dd-STATa inhibits transcription by direct competition with this putative activator for binding to the GA sequence.
eShadow: A tool for comparing closely related sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovcharenko, Ivan; Boffelli, Dario; Loots, Gabriela G.
2004-01-15
Primate sequence comparisons are difficult to interpret due to the high degree of sequence similarity shared between such closely related species. Recently, a novel method, phylogenetic shadowing, has been pioneered for predicting functional elements in the human genome through the analysis of multiple primate sequence alignments. We have expanded this theoretical approach to create a computational tool, eShadow, for the identification of elements under selective pressure in multiple sequence alignments of closely related genomes, such as in comparisons of human to primate or mouse to rat DNA. This tool integrates two different statistical methods and allows for the dynamic visualizationmore » of the resulting conservation profile. eShadow also includes a versatile optimization module capable of training the underlying Hidden Markov Model to differentially predict functional sequences. This module grants the tool high flexibility in the analysis of multiple sequence alignments and in comparing sequences with different divergence rates. Here, we describe the eShadow comparative tool and its potential uses for analyzing both multiple nucleotide and protein alignments to predict putative functional elements. The eShadow tool is publicly available at http://eshadow.dcode.org/« less
[Learning and Repetive Reproduction of Memorized Sequences by the Right and the Left Hand].
Bobrova, E V; Lyakhovetskii, V A; Bogacheva, I N
2015-01-01
An important stage of learning a new skill is repetitive reproduction of one and the same sequence of movements, which plays a significant role in forming of the movement stereotypes. Two groups of right-handers repeatedly memorized (6-10 repetitions) the sequences of their hand transitions by experimenter in 6 positions, firstly by the right hand (RH), and then--by the left hand (LH) or vice versa. Random sequences previously unknown to the volunteers were reproduced in the 11 series. Modified sequences were tested in the 2nd and 3rd series, where the same elements' positions were presented in different order. The processes of repetitive sequence reproduction were similar for RH and LH. However, the learning of the modified sequences differed: Information about elements' position disregarding the reproduction order was used only when LH initiated task performing. This information was not used when LH followed RH and when RH performed the task. Consequently, the type of information coding activated by LH helped learn the positions of sequence elements, while the type of information coding activated by RH prevented learning. It is supposedly connected with the predominant role of right hemisphere in the processes of positional coding and motor learning.
Hobo, T; Asada, M; Kowyama, Y; Hattori, T
1999-09-01
ACGT-containing ABA response elements (ABREs) have been functionally identified in the promoters of various genes. In addition, single copies of ABRE have been found to require a cis-acting, coupling element to achieve ABA induction. A coupling element 3 (CE3) sequence, originally identified as such in the barley HVA1 promoter, is found approximately 30 bp downstream of motif A (ACGT-containing ABRE) in the promoter of the Osem gene. The relationship between these two elements was further defined by linker-scan analyses of a 55 bp fragment of the Osem promoter, which is sufficient for ABA-responsiveness and VP1 activation. The analyses revealed that both motif A and CE3 sequence were required not only for ABA-responsiveness but also for VP1 activation. Since the sequences of motif A and CE3 were found to be similar, motif-exchange experiments were carried out. The experiments demonstrated that motif A and CE3 were interchangeable by each other with respect to both ABA and VP1 regulation. In addition, both sequences were shown to be recognized by a VP1-interacting, ABA-responsive bZIP factor TRAB1. These results indicate that ACGT-containing ABREs and CE3 are functionally equivalent cis-acting elements. Furthermore, TRAB1 was shown to bind two other non-ACGT ABREs. Based on these results, all these ABREs including CE3 are proposed to be categorized into a single class of cis-acting elements.
2009-01-01
Background Tardigrades represent an animal phylum with extraordinary resistance to environmental stress. Results To gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (Milnesium tardigradum, Hypsibius dujardini, Echiniscus testudo, Tulinus stephaniae, Richtersius coronifer) and functional elements in tardigrade mRNAs are analysed. We find that 39.3% of the total sequences clustered in 58 clusters of more than 20 proteins. Among these are ten tardigrade specific as well as a number of stress-specific protein clusters. Tardigrade-specific functional adaptations include strong protein, DNA- and redox protection, maintenance and protein recycling. Specific regulatory elements regulate tardigrade mRNA stability such as lox P DICE elements whereas 14 other RNA elements of higher eukaryotes are not found. Further features of tardigrade specific adaption are rapidly identified by sequence and/or pattern search on the web-tool tardigrade analyzer http://waterbear.bioapps.biozentrum.uni-wuerzburg.de. The work-bench offers nucleotide pattern analysis for promotor and regulatory element detection (tardigrade specific; nrdb) as well as rapid COG search for function assignments including species-specific repositories of all analysed data. Conclusion Different protein clusters and regulatory elements implicated in tardigrade stress adaptations are analysed including unpublished tardigrade sequences. PMID:19821996
Förster, Frank; Liang, Chunguang; Shkumatov, Alexander; Beisser, Daniela; Engelmann, Julia C; Schnölzer, Martina; Frohme, Marcus; Müller, Tobias; Schill, Ralph O; Dandekar, Thomas
2009-10-12
Tardigrades represent an animal phylum with extraordinary resistance to environmental stress. To gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (Milnesium tardigradum, Hypsibius dujardini, Echiniscus testudo, Tulinus stephaniae, Richtersius coronifer) and functional elements in tardigrade mRNAs are analysed. We find that 39.3% of the total sequences clustered in 58 clusters of more than 20 proteins. Among these are ten tardigrade specific as well as a number of stress-specific protein clusters. Tardigrade-specific functional adaptations include strong protein, DNA- and redox protection, maintenance and protein recycling. Specific regulatory elements regulate tardigrade mRNA stability such as lox P DICE elements whereas 14 other RNA elements of higher eukaryotes are not found. Further features of tardigrade specific adaption are rapidly identified by sequence and/or pattern search on the web-tool tardigrade analyzer http://waterbear.bioapps.biozentrum.uni-wuerzburg.de. The work-bench offers nucleotide pattern analysis for promotor and regulatory element detection (tardigrade specific; nrdb) as well as rapid COG search for function assignments including species-specific repositories of all analysed data. Different protein clusters and regulatory elements implicated in tardigrade stress adaptations are analysed including unpublished tardigrade sequences.
Xiong, Y; Eickbush, T H
1988-01-01
Two types of insertion elements, R1 and R2 (previously called type I and type II), are known to interrupt the 28S ribosomal genes of several insect species. In the silkmoth, Bombyx mori, each element occupies approximately 10% of the estimated 240 ribosomal DNA units, while at most only a few copies are located outside the ribosomal DNA units. We present here the complete nucleotide sequence of an R1 insertion from B. mori (R1Bm). This 5.1-kilobase element contains two overlapping open reading frames (ORFs) which together occupy 88% of its length. ORF1 is 461 amino acids in length and exhibits characteristics of retroviral gag genes. ORF2 is 1,051 amino acids in length and contains homology to reverse transcriptase-like enzymes. The analysis of 3' and 5' ends of independent isolates from the ribosomal locus supports the suggestion that R1 is still functioning as a transposable element. The precise location of the element within the genome implies that its transposition must occur with remarkable insertion sequence specificity. Comparison of the deduced amino acid sequences from six retrotransposons, R1 and R2 of B. mori, I factor and F element of Drosophila melanogaster, L1 of Mus domesticus, and Ingi of Trypanosoma brucei, reveals a relatively high level of sequence homology in the reverse transcriptase region. Like R1, these elements lack long terminal repeats. We have therefore named this class of related elements the non-long-terminal-repeat (non-LTR) retrotransposons. Images PMID:2447482
Approximation algorithm for the problem of partitioning a sequence into clusters
NASA Astrophysics Data System (ADS)
Kel'manov, A. V.; Mikhailova, L. V.; Khamidullin, S. A.; Khandeev, V. I.
2017-08-01
We consider the problem of partitioning a finite sequence of Euclidean points into a given number of clusters (subsequences) using the criterion of the minimal sum (over all clusters) of intercluster sums of squared distances from the elements of the clusters to their centers. It is assumed that the center of one of the desired clusters is at the origin, while the center of each of the other clusters is unknown and determined as the mean value over all elements in this cluster. Additionally, the partition obeys two structural constraints on the indices of sequence elements contained in the clusters with unknown centers: (1) the concatenation of the indices of elements in these clusters is an increasing sequence, and (2) the difference between an index and the preceding one is bounded above and below by prescribed constants. It is shown that this problem is strongly NP-hard. A 2-approximation algorithm is constructed that is polynomial-time for a fixed number of clusters.
Characterization of an endogenous retrovirus class in elephants and their relatives
Greenwood, Alex D; Englbrecht, Claudia C; MacPhee, Ross DE
2004-01-01
Background Endogenous retrovirus-like elements (ERV-Ls, primed with tRNA leucine) are a diverse group of reiterated sequences related to foamy viruses and widely distributed among mammals. As shown in previous investigations, in many primates and rodents this class of elements has remained transpositionally active, as reflected by increased copy number and high sequence diversity within and among taxa. Results Here we examine whether proviral-like sequences may be suitable molecular probes for investigating the phylogeny of groups known to have high element diversity. As a test we characterized ERV-Ls occurring in a sample of extant members of superorder Uranotheria (Asian and African elephants, manatees, and hyraxes). The ERV-L complement in this group is even more diverse than previously suspected, and there is sequence evidence for active expansion, particularly in elephantids. Many of the elements characterized have protein coding potential suggestive of activity. Conclusions In general, the evidence supports the hypothesis that the complement had a single origin within basal Uranotheria. PMID:15476555
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chris Amemiya
2003-04-01
The goals of this project were to isolate, characterize, and sequence the Dlx3/Dlx7 bigene cluster from twelve different species of mammals. The Dlx3 and Dlx7 genes are known to encode homeobox transcription factors involved in patterning of structures in the vertebrate jaw as well as vertebrate limbs. Genomic sequences from the respective taxa will subsequently be compared in order to identify conserved non-coding sequences that are potential cis-regulatory elements. Based on the comparisons they will fashion transgenic mouse experiments to functionally test the strength of the potential cis-regulatory elements. A goal of the project is to attempt to identify thosemore » elements that may function in coordinately regulating both Dlx3 and Dlx7 functions.« less
Wong, S W; Schaffer, P A
1991-05-01
Like other DNA-containing viruses, the three origins of herpes simplex virus type 1 (HSV-1) DNA replication are flanked by sequences containing transcriptional regulatory elements. In a transient plasmid replication assay, deletion of sequences comprising the transcriptional regulatory elements of ICP4 and ICP22/47, which flank oriS, resulted in a greater than 80-fold decrease in origin function compared with a plasmid, pOS-822, which retains these sequences. In an effort to identify specific cis-acting elements responsible for this effect, we conducted systematic deletion analysis of the flanking region with plasmid pOS-822 and tested the resulting mutant plasmids for origin function. Stimulation by cis-acting elements was shown to be both distance and orientation dependent, as changes in either parameter resulted in a decrease in oriS function. Additional evidence for the stimulatory effect of flanking sequences on origin function was demonstrated by replacement of these sequences with the cytomegalovirus immediate-early promoter, resulting in nearly wild-type levels of oriS function. In competition experiments, cotransfection of cells with the test plasmid, pOS-822, and increasing molar concentrations of a competitor plasmid which contained the ICP4 and ICP22/47 transcriptional regulatory regions but lacked core origin sequences resulted in a significant reduction in the replication efficiency of pOS-822, demonstrating that factors which bind specifically to the oriS-flanking sequences are likely involved as auxiliary proteins in oriS function. Together, these studies demonstrate that trans-acting factors and the sites to which they bind play a critical role in the efficiency of HSV-1 DNA replication from oriS in transient-replication assays.
Combinatorial events of insertion sequences and ICE in Gram-negative bacteria.
Toleman, Mark A; Walsh, Timothy R
2011-09-01
The emergence of antibiotic and antimicrobial resistance in Gram-negative bacteria is incremental and linked to genetic elements that function in a so-called 'one-ended transposition' manner, including ISEcp1, ISCR elements and Tn3-like transposons. The power of these elements lies in their inability to consistently recognize one of their own terminal sequences, while recognizing more genetically distant surrogate sequences. This has the effect of mobilizing the DNA sequence found adjacent to their initial location. In general, resistance in Gram-negatives is closely linked to a few one-off events. These include the capture of the class 1 integron by a Tn5090-like transposon; the formation of the 3' conserved segment (3'-CS); and the fusion of the ISCR1 element to the 3'-CS. The structures formed by these rare events have been massively amplified and disseminated in Gram-negative bacteria, but hitherto, are rarely found in Gram-positives. Such events dominate current resistance gene acquisition and are instrumental in the construction of large resistance gene islands on chromosomes and plasmids. Similar combinatorial events appear to have occurred between conjugative plasmids and phages constructing hybrid elements called integrative and conjugative elements or conjugative transposons. These elements are beginning to be closely linked to some of the more powerful resistance mechanisms such as the extended spectrum β-lactamases, metallo- and AmpC type β-lactamases. Antibiotic resistance in Gram-negative bacteria is dominated by unusual combinatorial mistakes of Insertion sequences and gene fusions which have been selected and amplified by antibiotic pressure enabling the formation of extended resistance islands. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Kinnevey, Peter M.; Shore, Anna C.; Brennan, Grainne I.; Sullivan, Derek J.; Ehricht, Ralf; Monecke, Stefan; Slickers, Peter
2013-01-01
Methicillin-resistant Staphylococcus aureus (MRSA) has been a major cause of nosocomial infection in Irish hospitals for 4 decades, and replacement of predominant MRSA clones has occurred several times. An MRSA isolate recovered in 2006 as part of a larger study of sporadic MRSA exhibited a rare spa (t878) and multilocus sequence (ST779) type and was nontypeable by PCR- and DNA microarray-based staphylococcal cassette chromosome mec (SCCmec) element typing. Whole-genome sequencing revealed the presence of a novel 51-kb composite island (CI) element with three distinct domains, each flanked by direct repeat and inverted repeat sequences, including (i) a pseudo SCCmec element (16.3 kb) carrying mecA with a novel mec class region, a fusidic acid resistance gene (fusC), and two copper resistance genes (copB and copC) but lacking ccr genes; (ii) an SCC element (17.5 kb) carrying a novel ccrAB4 allele; and (iii) an SCC element (17.4 kb) carrying a novel ccrC allele and a clustered regularly interspaced short palindromic repeat (CRISPR) region. The novel CI was subsequently identified by PCR in an additional 13 t878/ST779 MRSA isolates, six from bloodstream infections, recovered between 2006 and 2011 in 11 hospitals. Analysis of open reading frames (ORFs) carried by the CI showed amino acid sequence similarity of 44 to 100% to ORFs from S. aureus and coagulase-negative staphylococci (CoNS). These findings provide further evidence of genetic transfer between S. aureus and CoNS and show how this contributes to the emergence of novel SCCmec elements and MRSA strains. Ongoing surveillance of this MRSA strain is warranted and will require updating of currently used SCCmec typing methods. PMID:23147725
He, Qunyan; Cai, Zexi; Hu, Tianhua; Liu, Huijun; Bao, Chonglai; Mao, Weihai; Jin, Weiwei
2015-04-18
Radish (Raphanus sativus L., 2n = 2x = 18) is a major root vegetable crop especially in eastern Asia. Radish root contains various nutritions which play an important role in strengthening immunity. Repetitive elements are primary components of the genomic sequence and the most important factors in genome size variations in higher eukaryotes. To date, studies about repetitive elements of radish are still limited. To better understand genome structure of radish, we undertook a study to evaluate the proportion of repetitive elements and their distribution in radish. We conducted genome-wide characterization of repetitive elements in radish with low coverage genome sequencing followed by similarity-based cluster analysis. Results showed that about 31% of the genome was composed of repetitive sequences. Satellite repeats were the most dominating elements of the genome. The distribution pattern of three satellite repeat sequences (CL1, CL25, and CL43) on radish chromosomes was characterized using fluorescence in situ hybridization (FISH). CL1 was predominantly located at the centromeric region of all chromosomes, CL25 located at the subtelomeric region, and CL43 was a telomeric satellite. FISH signals of two satellite repeats, CL1 and CL25, together with 5S rDNA and 45S rDNA, provide useful cytogenetic markers to identify each individual somatic metaphase chromosome. The centromere-specific histone H3 (CENH3) has been used as a marker to identify centromere DNA sequences. One putative CENH3 (RsCENH3) was characterized and cloned from radish. Its deduced amino acid sequence shares high similarities to those of the CENH3s in Brassica species. An antibody against B. rapa CENH3, specifically stained radish centromeres. Immunostaining and chromatin immunoprecipitation (ChIP) tests with anti-BrCENH3 antibody demonstrated that both the centromere-specific retrotransposon (CR-Radish) and satellite repeat (CL1) are directly associated with RsCENH3 in radish. Proportions of repetitive elements in radish were estimated and satellite repeats were the most dominating elements. Fine karyotyping analysis was established which allow us to easily identify each individual somatic metaphase chromosome. Immunofluorescence- and ChIP-based assays demonstrated the functional significance of satellite and centromere-specific retrotransposon at centromeres. Our study provides a valuable basis for future genomic studies in radish.
Evolutionary trajectory of Pack-MULEs is determined by their epigenetic status
USDA-ARS?s Scientific Manuscript database
Acquisition and rearrangement of host genes by transposable elements is one mechanism to increase gene diversity. The rice genome is replete in such sequences and while ~3,000 Pack- Mutator-like transposable elements containing gene sequences (Pack-MULEs) have been identified, their function remains...
Analyses of deep mammalian sequence alignments and constraint predictions for 1% of the human genome
Margulies, Elliott H.; Cooper, Gregory M.; Asimenos, George; Thomas, Daryl J.; Dewey, Colin N.; Siepel, Adam; Birney, Ewan; Keefe, Damian; Schwartz, Ariel S.; Hou, Minmei; Taylor, James; Nikolaev, Sergey; Montoya-Burgos, Juan I.; Löytynoja, Ari; Whelan, Simon; Pardi, Fabio; Massingham, Tim; Brown, James B.; Bickel, Peter; Holmes, Ian; Mullikin, James C.; Ureta-Vidal, Abel; Paten, Benedict; Stone, Eric A.; Rosenbloom, Kate R.; Kent, W. James; Bouffard, Gerard G.; Guan, Xiaobin; Hansen, Nancy F.; Idol, Jacquelyn R.; Maduro, Valerie V.B.; Maskeri, Baishali; McDowell, Jennifer C.; Park, Morgan; Thomas, Pamela J.; Young, Alice C.; Blakesley, Robert W.; Muzny, Donna M.; Sodergren, Erica; Wheeler, David A.; Worley, Kim C.; Jiang, Huaiyang; Weinstock, George M.; Gibbs, Richard A.; Graves, Tina; Fulton, Robert; Mardis, Elaine R.; Wilson, Richard K.; Clamp, Michele; Cuff, James; Gnerre, Sante; Jaffe, David B.; Chang, Jean L.; Lindblad-Toh, Kerstin; Lander, Eric S.; Hinrichs, Angie; Trumbower, Heather; Clawson, Hiram; Zweig, Ann; Kuhn, Robert M.; Barber, Galt; Harte, Rachel; Karolchik, Donna; Field, Matthew A.; Moore, Richard A.; Matthewson, Carrie A.; Schein, Jacqueline E.; Marra, Marco A.; Antonarakis, Stylianos E.; Batzoglou, Serafim; Goldman, Nick; Hardison, Ross; Haussler, David; Miller, Webb; Pachter, Lior; Green, Eric D.; Sidow, Arend
2007-01-01
A key component of the ongoing ENCODE project involves rigorous comparative sequence analyses for the initially targeted 1% of the human genome. Here, we present orthologous sequence generation, alignment, and evolutionary constraint analyses of 23 mammalian species for all ENCODE targets. Alignments were generated using four different methods; comparisons of these methods reveal large-scale consistency but substantial differences in terms of small genomic rearrangements, sensitivity (sequence coverage), and specificity (alignment accuracy). We describe the quantitative and qualitative trade-offs concomitant with alignment method choice and the levels of technical error that need to be accounted for in applications that require multisequence alignments. Using the generated alignments, we identified constrained regions using three different methods. While the different constraint-detecting methods are in general agreement, there are important discrepancies relating to both the underlying alignments and the specific algorithms. However, by integrating the results across the alignments and constraint-detecting methods, we produced constraint annotations that were found to be robust based on multiple independent measures. Analyses of these annotations illustrate that most classes of experimentally annotated functional elements are enriched for constrained sequences; however, large portions of each class (with the exception of protein-coding sequences) do not overlap constrained regions. The latter elements might not be under primary sequence constraint, might not be constrained across all mammals, or might have expendable molecular functions. Conversely, 40% of the constrained sequences do not overlap any of the functional elements that have been experimentally identified. Together, these findings demonstrate and quantify how many genomic functional elements await basic molecular characterization. PMID:17567995
Disruption of Boundary Encoding During Sensorimotor Sequence Learning: An MEG Study.
Michail, Georgios; Nikulin, Vadim V; Curio, Gabriel; Maess, Burkhard; Herrojo Ruiz, María
2018-01-01
Music performance relies on the ability to learn and execute actions and their associated sounds. The process of learning these auditory-motor contingencies depends on the proper encoding of the serial order of the actions and sounds. Among the different serial positions of a behavioral sequence, the first and last (boundary) elements are particularly relevant. Animal and patient studies have demonstrated a specific neural representation for boundary elements in prefrontal cortical regions and in the basal ganglia, highlighting the relevance of their proper encoding. The neural mechanisms underlying the encoding of sequence boundaries in the general human population remain, however, largely unknown. In this study, we examined how alterations of auditory feedback, introduced at different ordinal positions (boundary or within-sequence element), affect the neural and behavioral responses during sensorimotor sequence learning. Analysing the neuromagnetic signals from 20 participants while they performed short piano sequences under the occasional effect of altered feedback (AF), we found that at around 150-200 ms post-keystroke, the neural activities in the dorsolateral prefrontal cortex (DLPFC) and supplementary motor area (SMA) were dissociated for boundary and within-sequence elements. Furthermore, the behavioral data demonstrated that feedback alterations on boundaries led to greater performance costs, such as more errors in the subsequent keystrokes. These findings jointly support the idea that the proper encoding of boundaries is critical in acquiring sensorimotor sequences. They also provide evidence for the involvement of a distinct neural circuitry in humans including prefrontal and higher-order motor areas during the encoding of the different classes of serial order.
Locke, John; Podemski, Lynn; Roy, Ken; Pilgrim, David; Hodgetts, Ross
1999-01-01
Chromosome 4 from Drosophila melanogaster has several unusual features that distinguish it from the other chromosomes. These include a diffuse appearance in salivary gland polytene chromosomes, an absence of recombination, and the variegated expression of P-element transgenes. As part of a larger project to understand these properties, we are assembling a physical map of this chromosome. Here we report the sequence of two cosmids representing ∼5% of the polytenized region. Both cosmid clones contain numerous repeated DNA sequences, as identified by cross hybridization with labeled genomic DNA, BLAST searches, and dot matrix analysis, which are positioned between and within the transcribed sequences. The repetitive sequences include three copies of the mobile element Hoppel, one copy of the mobile element HB, and 18 DINE repeats. DINE is a novel, short repeated sequence dispersed throughout both cosmid sequences. One cosmid includes the previously described cubitus interruptus (ci) gene and two new genes: that a gene with a predicted amino acid sequence similar to ribosomal protein S3a which is consistent with the Minute(4)101 locus thought to be in the region, and a novel member of the protein family that includes plexin and met–hepatocyte growth factor receptor. The other cosmid contains only the two short 5′-most exons from the zinc-finger-homolog-2 (zfh-2) gene. This is the first extensive sequence analysis of noncoding DNA from chromosome 4. The distribution of the various repeats suggests its organization is similar to the β-heterochromatic regions near the base of the major chromosome arms. Such a pattern may account for the diffuse banding of the polytene chromosome 4 and the variegation of many P-element transgenes on the chromosome. PMID:10022978
Link, Gerhard
1984-01-01
A nuclease-treated plastid extract from mustard (Sinapis alba L.) allows efficient transcription of cloned plastid DNA templates. In this in vitro system, the major runoff transcript of the truncated gene for the 32 000 mol. wt. photosystem II protein was accurately initiated from a site close to or identical with the in vivo start site. By using plasmids with deletions in the 5'-flanking region of this gene as templates, a DNA region required for efficient and selective initiation was detected ˜28-35 nucleotides upstream of the transcription start site. This region contains the sequence element TTGACA, which matches the consensus sequence for prokaryotic `−35' promoter elements. In the absence of this region, a region ˜13-27 nucleotides upstream of the start site still enables a basic level of specific transcription. This second region contains the sequence element TATATAA, which matches the consensus sequence for the `TATA' box of genes transcribed by RNA polymerase II (or B). The region between the `TATA'-like element and the transcription start site is not sufficient but may be required for specific transcription of the plastid gene. This latter region contains the sequence element TATACT, which resembles the prokaryotic `−10' (Pribnow) box. Based on the structural and transcriptional features of the 5' upstream region, a `promoter switch' mechanism is proposed, which may account for the developmentally regulated expression of this plastid gene. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Figure 5. PMID:16453540
Senescence responsive transcriptional element
Campisi, Judith; Testori, Alessandro
1999-01-01
Recombinant polynucleotides have expression control sequences that have a senescence responsive element and a minimal promoter, and which are operatively linked to a heterologous nucleotide sequence. The molecules are useful for achieving high levels of expression of genes in senescent cells. Methods of inhibiting expression of genes in senescent cells also are provided.
Alzate, A; Fernández-Fernández, A; Pérez-Conde, M C; Gutiérrez, A M; Cámara, C
2008-09-24
The aim of the present study was to characterize, quantify, and compare the different selenium species that are produced when lactic fermentation with two different types of microorganisms, bacteria (Lactobacillus) and yeast (Saccharomyces), take place to produce yogurt and kefir, respectively, and to study the transformation process of these species as a function of time. These two dairy products were chosen for the study because they are highly consumed in different cultures. Moreover, the microorganisms present in the fermentation processes are different. While the bacteria Lactobacillus is the one responsible for yogurt fermentation, a partnership between bacteria and the yeast Saccharomyces causes kefir fermentation. A comparative study has been carried out by fermenting Se(IV) enriched milk in the presence of both types of microorganisms, where the concentration range studied was from 0.5 to 20 microg g (-1). Enzymatic extraction enabled selenium speciation profiles, obtained by anionic exchange and ion-pairing reversed phase high performance liquid chromatography (IP-RP-HPLC) with inductively coupled plasma mass spectrometry (ICP-MS) detection. Scanning electron microscopy (SEM) applied to the enriched samples showed segregated Se (0), at added concentrations higher than 5 microg g (-1). The main Se species formed depended on the type of microorganism involved in the fermentation process, SeCys 2 and MeSeCys being the main species generated in yogurt and SeMet in kefir. The results obtained are different for both kinds of samples. Lactic fermentation for yogurt produced an increment in selenocystine (SeCys 2) and Se-methylselenocysteine (MeSeCys), while fermentation to produce kefir also incremented the selenomethionine (SeMet) concentration. The Se species are stable for at least 10 and 15 days for kefir and yogurt, respectively. After this period, selenocystine concentration decreased, and the concentration of Se-methylselenocysteine was found to significantly increase.
Molecular and bioinformatic analysis of the FB-NOF transposable element.
Badal, Martí; Portela, Anna; Xamena, Noel; Cabré, Oriol
2006-04-12
The Drosophila melanogaster transposable element FB-NOF is known to play a role in genome plasticity through the generation of all sort of genomic rearrangements. Moreover, several insertional mutants due to FB mobilizations have been reported. Its structure and sequence, however, have been poorly studied mainly as a consequence of the long, complex and repetitive sequence of FB inverted repeats. This repetitive region is composed of several 154 bp blocks, each with five almost identical repeats. In this paper, we report the sequencing process of 2 kb long FB inverted repeats of a complete FB-NOF element, with high precision and reliability. This achievement has been possible using a new map of the FB repetitive region, which identifies unambiguously each repeat with new features that can be used as landmarks. With this new vision of the element, a list of FB-NOF in the D. melanogaster genomic clones has been done, improving previous works that used only bioinformatic algorithms. The availability of many FB and FB-NOF sequences allowed an analysis of the FB insertion sequences that showed no sequence specificity, but a preference for A/T rich sequences. The position of NOF into FB is also studied, revealing that it is always located after a second repeat in a random block. With the results of this analysis, we propose a model of transposition in which NOF jumps from FB to FB, using an unidentified transposase enzyme that should specifically recognize the second repeat end of the FB blocks.
Statistical learning of movement.
Ongchoco, Joan Danielle Khonghun; Uddenberg, Stefan; Chun, Marvin M
2016-12-01
The environment is dynamic, but objects move in predictable and characteristic ways, whether they are a dancer in motion, or a bee buzzing around in flight. Sequences of movement are comprised of simpler motion trajectory elements chained together. But how do we know where one trajectory element ends and another begins, much like we parse words from continuous streams of speech? As a novel test of statistical learning, we explored the ability to parse continuous movement sequences into simpler element trajectories. Across four experiments, we showed that people can robustly parse such sequences from a continuous stream of trajectories under increasingly stringent tests of segmentation ability and statistical learning. Observers viewed a single dot as it moved along simple sequences of paths, and were later able to discriminate these sequences from novel and partial ones shown at test. Observers demonstrated this ability when there were potentially helpful trajectory-segmentation cues such as a common origin for all movements (Experiment 1); when the dot's motions were entirely continuous and unconstrained (Experiment 2); when sequences were tested against partial sequences as a more stringent test of statistical learning (Experiment 3); and finally, even when the element trajectories were in fact pairs of trajectories, so that abrupt directional changes in the dot's motion could no longer signal inter-trajectory boundaries (Experiment 4). These results suggest that observers can automatically extract regularities in movement - an ability that may underpin our capacity to learn more complex biological motions, as in sport or dance.
Repetitive Elements May Comprise Over Two-Thirds of the Human Genome
de Koning, A. P. Jason; Gu, Wanjun; Castoe, Todd A.; Batzer, Mark A.; Pollock, David D.
2011-01-01
Transposable elements (TEs) are conventionally identified in eukaryotic genomes by alignment to consensus element sequences. Using this approach, about half of the human genome has been previously identified as TEs and low-complexity repeats. We recently developed a highly sensitive alternative de novo strategy, P-clouds, that instead searches for clusters of high-abundance oligonucleotides that are related in sequence space (oligo “clouds”). We show here that P-clouds predicts >840 Mbp of additional repetitive sequences in the human genome, thus suggesting that 66%–69% of the human genome is repetitive or repeat-derived. To investigate this remarkable difference, we conducted detailed analyses of the ability of both P-clouds and a commonly used conventional approach, RepeatMasker (RM), to detect different sized fragments of the highly abundant human Alu and MIR SINEs. RM can have surprisingly low sensitivity for even moderately long fragments, in contrast to P-clouds, which has good sensitivity down to small fragment sizes (∼25 bp). Although short fragments have a high intrinsic probability of being false positives, we performed a probabilistic annotation that reflects this fact. We further developed “element-specific” P-clouds (ESPs) to identify novel Alu and MIR SINE elements, and using it we identified ∼100 Mb of previously unannotated human elements. ESP estimates of new MIR sequences are in good agreement with RM-based predictions of the amount that RM missed. These results highlight the need for combined, probabilistic genome annotation approaches and suggest that the human genome consists of substantially more repetitive sequence than previously believed. PMID:22144907
copia-like retrotransposons are ubiquitous among plants.
Voytas, D F; Cummings, M P; Koniczny, A; Ausubel, F M; Rodermel, S R
1992-01-01
Transposable genetic elements are assumed to be a feature of all eukaryotic genomes. Their identification, however, has largely been haphazard, limited principally to organisms subjected to molecular or genetic scrutiny. We assessed the phylogenetic distribution of copia-like retrotransposons, a class of transposable element that proliferates by reverse transcription, using a polymerase chain reaction assay designed to detect copia-like element reverse transcriptase sequences. copia-like retrotransposons were identified in 64 plant species as well as the photosynthetic protist Volvox carteri. The plant species included representatives from 9 of 10 plant divisions, including bryophytes, lycopods, ferns, gymnosperms, and angiosperms. DNA sequence analysis of 29 cloned PCR products and of a maize retrotransposon cDNA confirmed the identity of these sequences as copia-like reverse transcriptase sequences, thereby demonstrating that this class of retrotransposons is a ubiquitous component of plant genomes. Images PMID:1379734
A Mobile Element in mutS Drives Hypermutation in a Marine Vibrio
Chu, Nathaniel D.; Clarke, Sean A.; Timberlake, Sonia; Polz, Martin F.; Grossman, Alan D.
2017-01-01
ABSTRACT Bacteria face a trade-off between genetic fidelity, which reduces deleterious mistakes in the genome, and genetic innovation, which allows organisms to adapt. Evidence suggests that many bacteria balance this trade-off by modulating their mutation rates, but few mechanisms have been described for such modulation. Following experimental evolution and whole-genome resequencing of the marine bacterium Vibrio splendidus 12B01, we discovered one such mechanism, which allows this bacterium to switch to an elevated mutation rate. This switch is driven by the excision of a mobile element residing in mutS, which encodes a DNA mismatch repair protein. When integrated within the bacterial genome, the mobile element provides independent promoter and translation start sequences for mutS—different from the bacterium’s original mutS promoter region—which allow the bacterium to make a functional mutS gene product. Excision of this mobile element rejoins the mutS gene with host promoter and translation start sequences but leaves a 2-bp deletion in the mutS sequence, resulting in a frameshift and a hypermutator phenotype. We further identified hundreds of clinical and environmental bacteria across Betaproteobacteria and Gammaproteobacteria that possess putative mobile elements within the same amino acid motif in mutS. In a subset of these bacteria, we detected excision of the element but not a frameshift mutation; the mobile elements leave an intact mutS coding sequence after excision. Our findings reveal a novel mechanism by which one bacterium alters its mutation rate and hint at a possible evolutionary role for mobile elements within mutS in other bacteria. PMID:28174306
Williams, Kelly P.
2003-01-01
A partial screen for genetic elements integrated into completely sequenced bacterial genomes shows more significant bias in specificity for the tmRNA gene (ssrA) than for any type of tRNA gene. Horizontal gene transfer, a major avenue of bacterial evolution, was assessed by focusing on elements using this single attachment locus. Diverse elements use ssrA; among enterobacteria alone, at least four different integrase subfamilies have independently evolved specificity for ssrA, and almost every strain analyzed presents a unique set of integrated elements. Even elements using essentially the same integrase can be very diverse, as is a group with an ssrA-specific integrase of the P4 subfamily. This same integrase appears to promote damage routinely at attachment sites, which may be adaptive. Elements in arrays can recombine; one such event mediated by invertible DNA segments within neighboring elements likely explains the monophasic nature of Salmonella enterica serovar Typhi. One of a limited set of conserved sequences occurs at the attachment site of each enterobacterial element, apparently serving as a transcriptional terminator for ssrA. Elements were usually found integrated into tRNA-like sequence at the 3′ end of ssrA, at subsites corresponding to those used in tRNA genes; an exception was found at the non-tRNA-like 3′ end produced by ssrA gene permutation in cyanobacteria, suggesting that, during the evolution of new site specificity by integrases, tropism toward a conserved 3′ end of an RNA gene may be as strong as toward a tRNA-like sequence. The proximity of ssrA and smpB, which act in concert, was also surveyed. PMID:12533482
Deletion of ultraconserved elements yields viable mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahituv, Nadav; Zhu, Yiwen; Visel, Axel
2007-07-15
Ultraconserved elements have been suggested to retainextended perfect sequence identity between the human, mouse, and ratgenomes due to essential functional properties. To investigate thenecessities of these elements in vivo, we removed four non-codingultraconserved elements (ranging in length from 222 to 731 base pairs)from the mouse genome. To maximize the likelihood of observing aphenotype, we chose to delete elements that function as enhancers in amouse transgenic assay and that are near genes that exhibit markedphenotypes both when completely inactivated in the mouse as well as whentheir expression is altered due to other genomic modifications.Remarkably, all four resulting lines of mice lackingmore » these ultraconservedelements were viable and fertile, and failed to reveal any criticalabnormalities when assayed for a variety of phenotypes including growth,longevity, pathology and metabolism. In addition more targeted screens,informed by the abnormalities observed in mice where genes in proximityto the investigated elements had been altered, also failed to revealnotable abnormalities. These results, while not inclusive of all thepossible phenotypic impact of the deleted sequences, indicate thatextreme sequence constraint does not necessarily reflect crucialfunctions required for viability.« less
Gallus, Susanne; Lammers, Fritjof
2016-01-01
The autonomous transposable element LINE-1 is a highly abundant element that makes up between 15% and 20% of therian mammal genomes. Since their origin before the divergence of marsupials and placental mammals, LINE-1 elements have contributed actively to the genome landscape. A previous in silico screen of the Tasmanian devil genome revealed a lack of functional coding LINE-1 sequences. In this study we present the results of an in vitro analysis from a partial LINE-1 reverse transcriptase coding sequence in five marsupial species. Our experimental screen supports the in silico findings of the genome-wide degradation of LINE-1 sequences in the Tasmanian devil, and identifies a high frequency of degraded LINE-1 sequences in other Australian marsupials. The comparison between the experimentally obtained LINE-1 sequences and reference genome assemblies suggests that conclusions from in silico analyses of retrotransposition activity can be influenced by incomplete genome assemblies from short reads. PMID:27389686
Ferreira, Ana Sofia; Costa, Pedro; Rocha, Teresa; Amaro, Ana; Vieira, Maria Luísa; Ahmed, Ahmed; Thompson, Gertrude; Hartskeerl, Rudy A.; Inácio, João
2014-01-01
Leptospirosis is a growing public and veterinary health concern caused by pathogenic species of Leptospira. Rapid and reliable laboratory tests for the direct detection of leptospiral infections in animals are in high demand not only to improve diagnosis but also for understanding the epidemiology of the disease. In this work we describe a novel and simple TaqMan-based multi-gene targeted real-time PCR approach able to detect and differentiate Leptospira interrogans, L. kirschneri, L. borgpeteresenii and L. noguchii, which constitute the veterinary most relevant pathogenic species of Leptospira. The method uses sets of species-specific probes, and respective flanking primers, designed from ompL1 and secY gene sequences. To monitor the presence of inhibitors, a duplex amplification assay targeting both the mammal β-actin and the leptospiral lipL32 genes was implemented. The analytical sensitivity of all primer and probe sets was estimated to be <10 genome equivalents (GE) in the reaction mixture. Application of the amplification reactions on genomic DNA from a variety of pathogenic and non-pathogenic Leptospira strains and other non-related bacteria revealed a 100% analytical specificity. Additionally, pathogenic leptospires were successfully detected in five out of 29 tissue samples from animals (Mus spp., Rattus spp., Dolichotis patagonum and Sus domesticus). Two samples were infected with L. borgpetersenii, two with L. interrogans and one with L. kirschneri. The possibility to detect and identify these pathogenic agents to the species level in domestic and wildlife animals reinforces the diagnostic information and will enhance our understanding of the epidemiology of leptopirosis. PMID:25398140
Insights into Structural and Mechanistic Features of Viral IRES Elements
Martinez-Salas, Encarnacion; Francisco-Velilla, Rosario; Fernandez-Chamorro, Javier; Embarek, Azman M.
2018-01-01
Internal ribosome entry site (IRES) elements are cis-acting RNA regions that promote internal initiation of protein synthesis using cap-independent mechanisms. However, distinct types of IRES elements present in the genome of various RNA viruses perform the same function despite lacking conservation of sequence and secondary RNA structure. Likewise, IRES elements differ in host factor requirement to recruit the ribosomal subunits. In spite of this diversity, evolutionarily conserved motifs in each family of RNA viruses preserve sequences impacting on RNA structure and RNA–protein interactions important for IRES activity. Indeed, IRES elements adopting remarkable different structural organizations contain RNA structural motifs that play an essential role in recruiting ribosomes, initiation factors and/or RNA-binding proteins using different mechanisms. Therefore, given that a universal IRES motif remains elusive, it is critical to understand how diverse structural motifs deliver functions relevant for IRES activity. This will be useful for understanding the molecular mechanisms beyond cap-independent translation, as well as the evolutionary history of these regulatory elements. Moreover, it could improve the accuracy to predict IRES-like motifs hidden in genome sequences. This review summarizes recent advances on the diversity and biological relevance of RNA structural motifs for viral IRES elements. PMID:29354113
DNA capture elements for rapid detection and identification of biological agents
NASA Astrophysics Data System (ADS)
Kiel, Johnathan L.; Parker, Jill E.; Holwitt, Eric A.; Vivekananda, Jeeva
2004-08-01
DNA capture elements (DCEs; aptamers) are artificial DNA sequences, from a random pool of sequences, selected for their specific binding to potential biological warfare agents. These sequences were selected by an affinity method using filters to which the target agent was attached and the DNA isolated and amplified by polymerase chain reaction (PCR) in an iterative, increasingly stringent, process. Reporter molecules were attached to the finished sequences. To date, we have made DCEs to Bacillus anthracis spores, Shiga toxin, Venezuelan Equine Encephalitis (VEE) virus, and Francisella tularensis. These DCEs have demonstrated specificity and sensitivity equal to or better than antibody.
Nony, P; Tessier, J; Chadeuf, G; Ward, P; Giraud, A; Dugast, M; Linden, R M; Moullier, P; Salvetti, A
2001-10-01
This study identifies a region of the adeno-associated virus type 2 (AAV-2) rep gene (nucleotides 190 to 540 of wild-type AAV-2) as a cis-acting Rep-dependent element able to promote the replication of transiently transfected plasmids. This viral element is also shown to be involved in the amplification of integrated sequences in the presence of adenovirus and Rep proteins.
GrTEdb: the first web-based database of transposable elements in cotton (Gossypium raimondii).
Xu, Zhenzhen; Liu, Jing; Ni, Wanchao; Peng, Zhen; Guo, Yue; Ye, Wuwei; Huang, Fang; Zhang, Xianggui; Xu, Peng; Guo, Qi; Shen, Xinlian; Du, Jianchang
2017-01-01
Although several diploid and tetroploid Gossypium species genomes have been sequenced, the well annotated web-based transposable elements (TEs) database is lacking. To better understand the roles of TEs in structural, functional and evolutionary dynamics of the cotton genome, a comprehensive, specific, and user-friendly web-based database, Gossypium raimondii transposable elements database (GrTEdb), was constructed. A total of 14 332 TEs were structurally annotated and clearly categorized in G. raimondii genome, and these elements have been classified into seven distinct superfamilies based on the order of protein-coding domains, structures and/or sequence similarity, including 2929 Copia-like elements, 10 368 Gypsy-like elements, 299 L1 , 12 Mutators , 435 PIF-Harbingers , 275 CACTAs and 14 Helitrons . Meanwhile, the web-based sequence browsing, searching, downloading and blast tool were implemented to help users easily and effectively to annotate the TEs or TE fragments in genomic sequences from G. raimondii and other closely related Gossypium species. GrTEdb provides resources and information related with TEs in G. raimondii , and will facilitate gene and genome analyses within or across Gossypium species, evaluating the impact of TEs on their host genomes, and investigating the potential interaction between TEs and protein-coding genes in Gossypium species. http://www.grtedb.org/. © The Author(s) 2017. Published by Oxford University Press.
Tanaka, Kanji; Watanabe, Katsumi
2016-02-01
The present study examined whether sequence learning led to more accurate and shorter performance time if people who are learning a sequence start over from the beginning when they make an error (i.e., practice the whole sequence) or only from the point of error (i.e., practice a part of the sequence). We used a visuomotor sequence learning paradigm with a trial-and-error procedure. In Experiment 1, we found fewer errors, and shorter performance time for those who restarted their performance from the beginning of the sequence as compared to those who restarted from the point at which an error occurred, indicating better learning of spatial and motor representations of the sequence. This might be because the learned elements were repeated when the next performance started over from the beginning. In subsequent experiments, we increased the occasions for the repetitions of learned elements by modulating the number of fresh start points in the sequence after errors. The results showed that fewer fresh start points were likely to lead to fewer errors and shorter performance time, indicating that the repetitions of learned elements enabled participants to develop stronger spatial and motor representations of the sequence. Thus, a single or two fresh start points in the sequence (i.e., starting over only from the beginning or from the beginning or midpoint of the sequence after errors) is likely to lead to more accurate and faster performance. Copyright © 2016 Elsevier B.V. All rights reserved.
Elements of Mathematics, Book O: Intuitive Background. Chapter 1, Operational Systems.
ERIC Educational Resources Information Center
Exner, Robert; And Others
The sixteen chapters of this book provide the core material for the Elements of Mathematics Program, a secondary sequence developed for highly motivated students with strong verbal abilities. The sequence is based on a functional-relational approach to mathematics teaching, and emphasizes teaching by analysis of real-life situations. This text is…
Elements of Mathematics, Book O: Intuitive Background. Chapter 5, Mappings.
ERIC Educational Resources Information Center
Exner, Robert; And Others
The sixteen chapters of this book provide the core material for the Elements of Mathematics Program, a secondary sequence developed for highly motivated students with strong verbal abilities. The sequence is based on a functional-relational approach to mathematics teaching, and emphasizes teaching by analysis of real-life situations. This text is…
Elements of Mathematics, Book O: Intuitive Background. Chapter 2, The Integers.
ERIC Educational Resources Information Center
Exner, Robert; And Others
The sixteen chapters of this book provide the core materials for the Elements of Mathematics Program, a secondary sequence developed for highly motivated students with strong verbal abilities. The sequence is based on a functional-relational approach to mathematics teaching, and emphasizes teaching by analysis of real-life situations. This text is…
Verwey, Willem B; Lammens, Robin; van Honk, Jack
2002-01-01
Participants practiced two discrete six-key sequences for a total of 420 trials. The 1 x 6 sequence had a unique order of key presses while the 2 x 3 sequence involved repetition of a three-key segment. Both sequences showed a long interkey interval halfway the sequence indicating hierarchical sequence control in that not only the 2 x 3 but also the 1 x 6 sequence was executed as two successive motor chunks. Besides, the second part of both sequences was executed faster than the first part. This supports the earlier notion of a motor processor executing the elements of familiar motor chunks and a cognitive processor triggering either these motor chunks or individual sequence elements. Low-frequency, off-line transcranial magnetic stimulation (TMS) of the supplementary motor area (SMA) counteracted normal improvement with practice of key presses at all sequence positions. Together, these results are in line with the notion that with moderate practice, the SMA executes short sequence fragments that are concatenated by other brain structures.
Colonization of heterochromatic genes by transposable elements in Drosophila.
Dimitri, Patrizio; Junakovic, Nikolaj; Arcà, Bruno
2003-04-01
As a further step toward understanding transposable element-host genome interactions, we investigated the molecular anatomy of introns from five heterochromatic and 22 euchromatic protein-coding genes of Drosophila melanogaster. A total of 79 kb of intronic sequences from heterochromatic genes and 355 kb of intronic sequences from euchromatic genes have been used in Blast searches against Drosophila transposable elements (TEs). The results show that TE-homologous sequences belonging to 19 different families represent about 50% of intronic DNA from heterochromatic genes. In contrast, only 0.1% of the euchromatic intron DNA exhibits homology to known TEs. Intraspecific and interspecific size polymorphisms of introns were found, which are likely to be associated with changes in TE-related sequences. Together, the enrichment in TEs and the apparent dynamic state of heterochromatic introns suggest that TEs contribute significantly to the evolution of genes located in heterochromatin.
Episodic sequence memory is supported by a theta-gamma phase code.
Heusser, Andrew C; Poeppel, David; Ezzyat, Youssef; Davachi, Lila
2016-10-01
The meaning we derive from our experiences is not a simple static extraction of the elements but is largely based on the order in which those elements occur. Models propose that sequence encoding is supported by interactions between high- and low-frequency oscillations, such that elements within an experience are represented by neural cell assemblies firing at higher frequencies (gamma) and sequential order is encoded by the specific timing of firing with respect to a lower frequency oscillation (theta). During episodic sequence memory formation in humans, we provide evidence that items in different sequence positions exhibit greater gamma power along distinct phases of a theta oscillation. Furthermore, this segregation is related to successful temporal order memory. Our results provide compelling evidence that memory for order, a core component of an episodic memory, capitalizes on the ubiquitous physiological mechanism of theta-gamma phase-amplitude coupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, D.L.; Simonen, F.A.; Strosnider, J. Jr.
The VISA (Vessel Integrity Simulation Analysis) code was developed as part of the NRC staff evaluation of pressurized thermal shock. VISA uses Monte Carlo simulation to evaluate the failure probability of a pressurized water reactor (PWR) pressure vessel subjected to a pressure and thermal transient specified by the user. Linear elastic fracture mechanics are used to model crack initiation and propagation. parameters for initial crack size, copper content, initial RT/sub NDT/, fluence, crack-initiation fracture toughness, and arrest fracture toughness are treated as random variables. This report documents the version of VISA used in the NRC staff report (Policy Issue frommore » J.W. Dircks to NRC Commissioners, Enclosure A: NRC Staff Evaluation of Pressurized Thermal Shock, November 1982, SECY-82-465) and includes a user's guide for the code.« less
Insertion sequences enrichment in extreme Red sea brine pool vent.
Elbehery, Ali H A; Aziz, Ramy K; Siam, Rania
2017-03-01
Mobile genetic elements are major agents of genome diversification and evolution. Limited studies addressed their characteristics, including abundance, and role in extreme habitats. One of the rare natural habitats exposed to multiple-extreme conditions, including high temperature, salinity and concentration of heavy metals, are the Red Sea brine pools. We assessed the abundance and distribution of different mobile genetic elements in four Red Sea brine pools including the world's largest known multiple-extreme deep-sea environment, the Red Sea Atlantis II Deep. We report a gradient in the abundance of mobile genetic elements, dramatically increasing in the harshest environment of the pool. Additionally, we identified a strong association between the abundance of insertion sequences and extreme conditions, being highest in the harshest and deepest layer of the Red Sea Atlantis II Deep. Our comparative analyses of mobile genetic elements in secluded, extreme and relatively non-extreme environments, suggest that insertion sequences predominantly contribute to polyextremophiles genome plasticity.
A proposal to rename the hyperthermophile Pyrococcus woesei as Pyrococcus furiosus subsp. woesei.
Kanoksilapatham, Wirojne; González, Juan M; Maeder, Dennis L; DiRuggiero, Jocelyne; Robb, Frank T
2004-10-01
Pyrococcus species are hyperthermophilic members of the order Thermococcales, with optimal growth temperatures approaching 100 degrees C. All species grow heterotrophically and produce H2 or, in the presence of elemental sulfur (S(o)), H2S. Pyrococcus woesei and P. furiosus were isolated from marine sediments at the same Vulcano Island beach site and share many morphological and physiological characteristics. We report here that the rDNA operons of these strains have identical sequences, including their intergenic spacer regions and part of the 23S rRNA. Both species grow rapidly and produce H2 in the presence of 0.1% maltose and 10-100 microM sodium tungstate in S(o)-free medium. However, P. woesei shows more extensive autolysis than P. furiosus in the stationary phase. Pyrococcus furiosus and P. woesei share three closely related families of insertion sequences (ISs). A Southern blot performed with IS probes showed extensive colinearity between the genomes of P. woesei and P. furiosus. Cloning and sequencing of ISs that were in different contexts in P. woesei and P. furiosus revealed that the napA gene in P. woesei is disrupted by a type III IS element, whereas in P. furiosus, this gene is intact. A type I IS element, closely linked to the napA gene, was observed in the same context in both P. furiosus and P. woesei genomes. Our results suggest that the IS elements are implicated in genomic rearrangements and reshuffling in these closely related strains. We propose to rename P. woesei a subspecies of P. furiosus based on their identical rDNA operon sequences, many common IS elements that are shared genomic markers, and the observation that all P. woesei nucleotide sequences deposited in GenBank to date are > 99% identical to P. furiosus sequences.
Interactions between the R2R3-MYB Transcription Factor, AtMYB61, and Target DNA Binding Sites
Prouse, Michael B.; Campbell, Malcolm M.
2013-01-01
Despite the prominent roles played by R2R3-MYB transcription factors in the regulation of plant gene expression, little is known about the details of how these proteins interact with their DNA targets. For example, while Arabidopsis thaliana R2R3-MYB protein AtMYB61 is known to alter transcript abundance of a specific set of target genes, little is known about the specific DNA sequences to which AtMYB61 binds. To address this gap in knowledge, DNA sequences bound by AtMYB61 were identified using cyclic amplification and selection of targets (CASTing). The DNA targets identified using this approach corresponded to AC elements, sequences enriched in adenosine and cytosine nucleotides. The preferred target sequence that bound with the greatest affinity to AtMYB61 recombinant protein was ACCTAC, the AC-I element. Mutational analyses based on the AC-I element showed that ACC nucleotides in the AC-I element served as the core recognition motif, critical for AtMYB61 binding. Molecular modelling predicted interactions between AtMYB61 amino acid residues and corresponding nucleotides in the DNA targets. The affinity between AtMYB61 and specific target DNA sequences did not correlate with AtMYB61-driven transcriptional activation with each of the target sequences. CASTing-selected motifs were found in the regulatory regions of genes previously shown to be regulated by AtMYB61. Taken together, these findings are consistent with the hypothesis that AtMYB61 regulates transcription from specific cis-acting AC elements in vivo. The results shed light on the specifics of DNA binding by an important family of plant-specific transcriptional regulators. PMID:23741471
Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize.
Busk, P K; Jensen, A B; Pagès, M
1997-06-01
The rab17 gene from maize is transcribed in late embryonic development and is responsive to abscisic acid and water stress in embryo and vegetative tissues. In vivo footprinting and transient transformation of rab17 were performed in embryos and vegetative tissues to characterize the cis-elements involved in regulation of the gene. By in vivo footprinting, protein binding was observed to nine elements in the promoter, which correspond to five putative ABREs (abscisic acid responsive elements) and four other sequences. The footprints indicated that distinct proteins interact with these elements in the two developmental stages. In transient transformation, six of the elements were important for high level expression of the rab17 promoter in embryos, whereas only three elements were important in leaves. The cis-acting sequences can be divided in embryo-specific, ABA-specific and leaf-specific elements on the basis of protein binding and the ability to confer expression of rab17. We found one positive, new element, called GRA, with the sequence CACTGGCCGCCC. This element was important for transcription in leaves but not in embryos. Two other non-ABRE elements that stimulated transcription from the rab17 promoter resemble previously described abscisic acid and drought-inducible elements. There were differences in protein binding and function of the five ABREs in the rab17 promoter. The possible reasons for these differences are discussed. The in vivo data obtained suggest that an embryo-specific pathway regulates transcription of the rab genes during development, whereas another pathway is responsible for induction in response to ABA and drought in vegetative tissues.
2011-01-01
Background Insertion sequence (IS) elements are important mediators of genome plasticity and are widespread among bacterial and archaeal genomes. The 1.88 Mbp genome of the obligate intracellular amoeba symbiont Amoebophilus asiaticus contains an unusually large number of transposase genes (n = 354; 23% of all genes). Results The transposase genes in the A. asiaticus genome can be assigned to 16 different IS elements termed ISCaa1 to ISCaa16, which are represented by 2 to 24 full-length copies, respectively. Despite this high IS element load, the A. asiaticus genome displays a GC skew pattern typical for most bacterial genomes, indicating that no major rearrangements have occurred recently. Additionally, the high sequence divergence of some IS elements, the high number of truncated IS element copies (n = 143), as well as the absence of direct repeats in most IS elements suggest that the IS elements of A. asiaticus are transpositionally inactive. Although we could show transcription of 13 IS elements, we did not find experimental evidence for transpositional activity, corroborating our results from sequence analyses. However, we detected contiguous transcripts between IS elements and their downstream genes at nine loci in the A. asiaticus genome, indicating that some IS elements influence the transcription of downstream genes, some of which might be important for host cell interaction. Conclusions Taken together, the IS elements in the A. asiaticus genome are currently in the process of degradation and largely represent reflections of the evolutionary past of A. asiaticus in which its genome was shaped by their activity. PMID:21943072
Spuesens, Emiel B M; van de Kreeke, Nick; Estevão, Silvia; Hoogenboezem, Theo; Sluijter, Marcel; Hartwig, Nico G; van Rossum, Annemarie M C; Vink, Cornelis
2011-02-01
Mycoplasma pneumoniae is a human pathogen that causes a range of respiratory tract infections. The first step in infection is adherence of the bacteria to the respiratory epithelium. This step is mediated by a specialized organelle, which contains several proteins (cytadhesins) that have an important function in adherence. Two of these cytadhesins, P40 and P90, represent the proteolytic products from a single 130 kDa protein precursor, which is encoded by the MPN142 gene. Interestingly, MPN142 contains a repetitive DNA element, termed RepMP5, of which homologues are found at seven other loci within the M. pneumoniae genome. It has been hypothesized that these RepMP5 elements, which are similar but not identical in sequence, recombine with their counterpart within MPN142 and thereby provide a source of sequence variation for this gene. As this variation may give rise to amino acid changes within P40 and P90, the recombination between RepMP5 elements may constitute the basis of antigenic variation and, possibly, immune evasion by M. pneumoniae. To investigate the sequence variation of MPN142 in relation to inter-RepMP5 recombination, we determined the sequences of all RepMP5 elements in a collection of 25 strains. The results indicate that: (i) inter-RepMP5 recombination events have occurred in seven of the strains, and (ii) putative RepMP5 recombination events involving MPN142 have induced amino acid changes in a surface-exposed part of the P40 protein in two of the strains. We conclude that recombination between RepMP5 elements is a common phenomenon that may lead to sequence variation of MPN142-encoded proteins.
Itzhaki, H; Maxson, J M; Woodson, W R
1994-09-13
The increased production of ethylene during carnation petal senescence regulates the transcription of the GST1 gene encoding a subunit of glutathione-S-transferase. We have investigated the molecular basis for this ethylene-responsive transcription by examining the cis elements and trans-acting factors involved in the expression of the GST1 gene. Transient expression assays following delivery of GST1 5' flanking DNA fused to a beta-glucuronidase receptor gene were used to functionally define sequences responsible for ethylene-responsive expression. Deletion analysis of the 5' flanking sequences of GST1 identified a single positive regulatory element of 197 bp between -667 and -470 necessary for ethylene-responsive expression. The sequences within this ethylene-responsive region were further localized to 126 bp between -596 and -470. The ethylene-responsive element (ERE) within this region conferred ethylene-regulated expression upon a minimal cauliflower mosaic virus-35S TATA-box promoter in an orientation-independent manner. Gel electrophoresis mobility-shift assays and DNase I footprinting were used to identify proteins that bind to sequences within the ERE. Nuclear proteins from carnation petals were shown to specifically interact with the 126-bp ERE and the presence and binding of these proteins were independent of ethylene or petal senescence. DNase I footprinting defined DNA sequences between -510 and -488 within the ERE specifically protected by bound protein. An 8-bp sequence (ATTTCAAA) within the protected region shares significant homology with promoter sequences required for ethylene responsiveness from the tomato fruit-ripening E4 gene.
Smith, Robin P; Riesenfeld, Samantha J; Holloway, Alisha K; Li, Qiang; Murphy, Karl K; Feliciano, Natalie M; Orecchia, Lorenzo; Oksenberg, Nir; Pollard, Katherine S; Ahituv, Nadav
2013-07-18
Large-scale annotation efforts have improved our ability to coarsely predict regulatory elements throughout vertebrate genomes. However, it is unclear how complex spatiotemporal patterns of gene expression driven by these elements emerge from the activity of short, transcription factor binding sequences. We describe a comprehensive promoter extension assay in which the regulatory potential of all 6 base-pair (bp) sequences was tested in the context of a minimal promoter. To enable this large-scale screen, we developed algorithms that use a reverse-complement aware decomposition of the de Bruijn graph to design a library of DNA oligomers incorporating every 6-bp sequence exactly once. Our library multiplexes all 4,096 unique 6-mers into 184 double-stranded 15-bp oligomers, which is sufficiently compact for in vivo testing. We injected each multiplexed construct into zebrafish embryos and scored GFP expression in 15 tissues at two developmental time points. Twenty-seven constructs produced consistent expression patterns, with the majority doing so in only one tissue. Functional sequences are enriched near biologically relevant genes, match motifs for developmental transcription factors, and are required for enhancer activity. By concatenating tissue-specific functional sequences, we generated completely synthetic enhancers for the notochord, epidermis, spinal cord, forebrain and otic lateral line, and show that short regulatory sequences do not always function modularly. This work introduces a unique in vivo catalog of short, functional regulatory sequences and demonstrates several important principles of regulatory element organization. Furthermore, we provide resources for designing compact, reverse-complement aware k-mer libraries.
A mobile element in mutS drives hypermutation in a marine Vibrio
Chu, Nathaniel D.; Clarke, Sean A.; Timberlake, Sonia; ...
2017-02-07
Bacteria face a trade-off between genetic fidelity, which reduces deleterious mistakes in the genome, and genetic innovation, which allows organisms to adapt. Evidence suggests that many bacteria balance this trade-off by modulating their mutation rates, but few mechanisms have been described for such modulation. Following experimental evolution and whole-genome resequencing of the marine bacterium Vibrio splendidus 12B01, we discovered one such mechanism, which allows this bacterium to switch to an elevated mutation rate. This switch is driven by the excision of a mobile element residing in mutS, which encodes a DNA mismatch repair protein. When integrated within the bacterial genome,more » the mobile element provides independent promoter and translation start sequences for mutS—different from the bacterium’s original mutS promoter region—which allow the bacterium to make a functional mutS gene product. Excision of this mobile element rejoins the mutS gene with host promoter and translation start sequences but leaves a 2-bp deletion in the mutS sequence, resulting in a frameshift and a hypermutator phenotype. We further identified hundreds of clinical and environmental bacteria across Betaproteobacteria and Gammaproteobacteria that possess putative mobile elements within the same amino acid motif in mutS. In a subset of these bacteria, we detected excision of the element but not a frameshift mutation; the mobile elements leave an intact mutS coding sequence after excision. Finally, our findings reveal a novel mechanism by which one bacterium alters its mutation rate and hint at a possible evolutionary role for mobile elements within mutS in other bacteria.« less
A mobile element in mutS drives hypermutation in a marine Vibrio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Nathaniel D.; Clarke, Sean A.; Timberlake, Sonia
Bacteria face a trade-off between genetic fidelity, which reduces deleterious mistakes in the genome, and genetic innovation, which allows organisms to adapt. Evidence suggests that many bacteria balance this trade-off by modulating their mutation rates, but few mechanisms have been described for such modulation. Following experimental evolution and whole-genome resequencing of the marine bacterium Vibrio splendidus 12B01, we discovered one such mechanism, which allows this bacterium to switch to an elevated mutation rate. This switch is driven by the excision of a mobile element residing in mutS, which encodes a DNA mismatch repair protein. When integrated within the bacterial genome,more » the mobile element provides independent promoter and translation start sequences for mutS—different from the bacterium’s original mutS promoter region—which allow the bacterium to make a functional mutS gene product. Excision of this mobile element rejoins the mutS gene with host promoter and translation start sequences but leaves a 2-bp deletion in the mutS sequence, resulting in a frameshift and a hypermutator phenotype. We further identified hundreds of clinical and environmental bacteria across Betaproteobacteria and Gammaproteobacteria that possess putative mobile elements within the same amino acid motif in mutS. In a subset of these bacteria, we detected excision of the element but not a frameshift mutation; the mobile elements leave an intact mutS coding sequence after excision. Finally, our findings reveal a novel mechanism by which one bacterium alters its mutation rate and hint at a possible evolutionary role for mobile elements within mutS in other bacteria.« less
LINE-1 Elements in Structural Variation and Disease
Beck, Christine R.; Garcia-Perez, José Luis; Badge, Richard M.; Moran, John V.
2014-01-01
The completion of the human genome reference sequence ushered in a new era for the study and discovery of human transposable elements. It now is undeniable that transposable elements, historically dismissed as junk DNA, have had an instrumental role in sculpting the structure and function of our genomes. In particular, long interspersed element-1 (LINE-1 or L1) and short interspersed elements (SINEs) continue to affect our genome, and their movement can lead to sporadic cases of disease. Here, we briefly review the types of transposable elements present in the human genome and their mechanisms of mobility. We next highlight how advances in DNA sequencing and genomic technologies have enabled the discovery of novel retrotransposons in individual genomes. Finally, we discuss how L1-mediated retrotransposition events impact human genomes. PMID:21801021
Cell type-specific termination of transcription by transposable element sequences.
Conley, Andrew B; Jordan, I King
2012-09-30
Transposable elements (TEs) encode sequences necessary for their own transposition, including signals required for the termination of transcription. TE sequences within the introns of human genes show an antisense orientation bias, which has been proposed to reflect selection against TE sequences in the sense orientation owing to their ability to terminate the transcription of host gene transcripts. While there is evidence in support of this model for some elements, the extent to which TE sequences actually terminate transcription of human gene across the genome remains an open question. Using high-throughput sequencing data, we have characterized over 9,000 distinct TE-derived sequences that provide transcription termination sites for 5,747 human genes across eight different cell types. Rarefaction curve analysis suggests that there may be twice as many TE-derived termination sites (TE-TTS) genome-wide among all human cell types. The local chromatin environment for these TE-TTS is similar to that seen for 3' UTR canonical TTS and distinct from the chromatin environment of other intragenic TE sequences. However, those TE-TTS located within the introns of human genes were found to be far more cell type-specific than the canonical TTS. TE-TTS were much more likely to be found in the sense orientation than other intragenic TE sequences of the same TE family and TE-TTS in the sense orientation terminate transcription more efficiently than those found in the antisense orientation. Alu sequences were found to provide a large number of relatively weak TTS, whereas LTR elements provided a smaller number of much stronger TTS. TE sequences provide numerous termination sites to human genes, and TE-derived TTS are particularly cell type-specific. Thus, TE sequences provide a powerful mechanism for the diversification of transcriptional profiles between cell types and among evolutionary lineages, since most TE-TTS are evolutionarily young. The extent of transcription termination by TEs seen here, along with the preference for sense-oriented TE insertions to provide TTS, is consistent with the observed antisense orientation bias of human TEs.
Graw, J; Liebstein, A; Pietrowski, D; Schmitt-John, T; Werner, T
1993-12-22
The murine genes, gamma B-cry and gamma C-cry, encoding the gamma B- and gamma C-crystallins, were isolated from a genomic DNA library. The complete nucleotide (nt) sequences of both genes were determined from 661 and 711 bp, respectively, upstream from the first exon to the corresponding polyadenylation sites, comprising more than 2650 and 2890 bp, respectively. The new sequences were compared to the partial cDNA sequences available for the murine gamma B-cry and gamma C-cry, as well as to the corresponding genomic sequences from rat and man, at both the nt and predicted amino acid (aa) sequence levels. In the gamma B-cry promoter region, a canonical CCAAT-box, a TATA-box, putative NF-I and C/EBP sites were detected. An R-repeat is inserted 366 bp upstream from the transcription start point. In contrast, the gamma C-cry promoter does not contain a CCAAT-box, but some other putative binding sites for transcription factors (AP-2, UBP-1, LBP-1) were located by computer analysis. The promoter regions of all six gamma-cry from mouse, rat and human, except human psi gamma F-cry, were analyzed for common sequence elements. A complex sequence element of about 70-80 bp was found in the proximal promoter, which contains a gamma-cry-specific and almost invariant sequence (crygpel) of 14 nt, and ends with the also invariant TATA-box. Within the complex sequence element, a minimum of three further features specific for the gamma A-, gamma B- and gamma D/E/F-cry genes can be defined, at least two of which were recently shown to be functional. In addition to these four sequence elements, a subtype-specific structure of inverted repeats with different-sized spacers can be deduced from the multiple sequence alignment. A phylogenetic analysis based on the promoter region, as well as the complete exon 3 of all gamma-cry from mouse, rat and man, suggests separation of only five gamma-cry subtypes (gamma A-, gamma B-, gamma C-, gamma D- and gamma E/F-cry) prior to species separation.
Badal, Martí; Xamena, Noel; Cabré, Oriol
2013-09-10
Most foldback elements are defective due to the lack of coding sequences but some are associated with coding sequences and may represent the entire element. This is the case of the NOF sequences found in the FB of Drosophila melanogaster, formerly considered as an autonomous TE and currently proposed as part of the so-called FB-NOF element, the transposon that would be complete and fully functional. NOF is always associated with FB and never seen apart from the FB inverted repeats (IR). This is the reason why the FB-NOF composite element can be considered the complete element. At least one of its ORFs encodes a protein that has always been considered its transposase, but no detailed studies have been carried out to verify this. In this work we test the hypothesis that FB-NOF is an active transposon nowadays. We search for its expression product, obtaining its cDNA, and propose the ORF and the sequence of its potential protein. We found that the NOF protein is not a transposase as it lacks any of the motifs of known transposases and also shows structural homology with hydrolases, therefore FB-NOF cannot belong to the superfamily MuDR/foldback, as up to now it has been classified, and can be considered as a non-autonomous transposable element. The alignment with the published genomes of 12 Drosophila species shows that NOF presence is restricted only to the 6 Drosophila species belonging to the melanogaster group. Copyright © 2013 Elsevier B.V. All rights reserved.
Pearston, Douglas H.; Gordon, Mairi; Hardman, Norman
1985-01-01
A family of long, highly-repetitive sequences, referred to previously as `HpaII-repeats', dominates the genome of the eukaryotic slime mould Physarum polycephalum. These sequences are found exclusively in scrambled clusters. They account for about one-half of the total complement of repetitive DNA in Physarum, and represent the major sequence component found in hypermethylated, 20-50 kb segments of Physarum genomic DNA that fail to be cleaved using the restriction endonuclease HpaII. The structure of this abundant repetitive element was investigated by analysing cloned segments derived from the hypermethylated genomic DNA compartment. We show that the `HpaII-repeat' forms part of a larger repetitive DNA structure, ∼8.6 kb in length, with several structural features in common with recognised eukaryotic transposable genetic elements. Scrambled clusters of the sequence probably arise as a result of transposition-like events, during which the element preferentially recombines in either orientation with target sites located in other copies of the same repeated sequence. The target sites for transposition/recombination are not related in sequence but in all cases studied they are potentially capable of promoting the formation of small `cruciforms' or `Z-DNA' structures which might be recognised during the recombination process. ImagesFig. 3.Fig. 4. PMID:16453652
Animal vocal sequences: not the Markov chains we thought they were
Kershenbaum, Arik; Bowles, Ann E.; Freeberg, Todd M.; Jin, Dezhe Z.; Lameira, Adriano R.; Bohn, Kirsten
2014-01-01
Many animals produce vocal sequences that appear complex. Most researchers assume that these sequences are well characterized as Markov chains (i.e. that the probability of a particular vocal element can be calculated from the history of only a finite number of preceding elements). However, this assumption has never been explicitly tested. Furthermore, it is unclear how language could evolve in a single step from a Markovian origin, as is frequently assumed, as no intermediate forms have been found between animal communication and human language. Here, we assess whether animal taxa produce vocal sequences that are better described by Markov chains, or by non-Markovian dynamics such as the ‘renewal process’ (RP), characterized by a strong tendency to repeat elements. We examined vocal sequences of seven taxa: Bengalese finches Lonchura striata domestica, Carolina chickadees Poecile carolinensis, free-tailed bats Tadarida brasiliensis, rock hyraxes Procavia capensis, pilot whales Globicephala macrorhynchus, killer whales Orcinus orca and orangutans Pongo spp. The vocal systems of most of these species are more consistent with a non-Markovian RP than with the Markovian models traditionally assumed. Our data suggest that non-Markovian vocal sequences may be more common than Markov sequences, which must be taken into account when evaluating alternative hypotheses for the evolution of signalling complexity, and perhaps human language origins. PMID:25143037
Primate-Specific Evolution of an LDLR Enhancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qian-fei; Prabhakar, Shyam; Wang, Qianben
2006-06-28
Sequence changes in regulatory regions have often beeninvoked to explain phenotypic divergence among species, but molecularexamples of this have been difficult to obtain. In this study, weidentified an anthropoid primate specific sequence element thatcontributed to the regulatory evolution of the LDL receptor. Using acombination of close and distant species genomic sequence comparisonscoupled with in vivo and in vitro studies, we show that a functionalcholesterol-sensing sequence motif arose and was fixed within apre-existing enhancer in the common ancestor of anthropoid primates. Ourstudy demonstrates one molecular mechanism by which ancestral mammalianregulatory elements can evolve to perform new functions in the primatelineage leadingmore » to human.« less
ERIC Educational Resources Information Center
Exner, Robert; And Others
The sixteen chapters of this book provide the core material for the Elements of Mathematics Program, a secondary sequence developed for highly motivated students with strong verbal abilities. The sequence is based on a functional-relational approach to mathematics teaching, and emphasizes teaching by analysis of real-life situations. This text is…
ERIC Educational Resources Information Center
Stott, Jon C.
1987-01-01
Suggests that children, even in early elementary grades, can grasp basic elements of children's literature using a spiralled sequence story curriculum, which helps them examine types of character, such as the trickster; elements of plot, such as the journey; and generally see patterns in the stories they read. (JC)
FAST - FREEDOM ASSEMBLY SEQUENCING TOOL PROTOTYPE
NASA Technical Reports Server (NTRS)
Borden, C. S.
1994-01-01
FAST is a project management tool designed to optimize the assembly sequence of Space Station Freedom. An appropriate assembly sequence coordinates engineering, design, utilization, transportation availability, and operations requirements. Since complex designs tend to change frequently, FAST assesses the system level effects of detailed changes and produces output metrics that identify preferred assembly sequences. FAST incorporates Space Shuttle integration, Space Station hardware, on-orbit operations, and programmatic drivers as either precedence relations or numerical data. Hardware sequencing information can either be input directly and evaluated via the "specified" mode of operation or evaluated from the input precedence relations in the "flexible" mode. In the specified mode, FAST takes as its input a list of the cargo elements assigned to each flight. The program determines positions for the cargo elements that maximize the center of gravity (c.g.) margin. These positions are restricted by the geometry of the cargo elements and the location of attachment fittings both in the orbiter and on the cargo elements. FAST calculates every permutation of cargo element location according to its height, trunnion fitting locations, and required intercargo element spacing. Each cargo element is tested in both its normal and reversed orientation (rotated 180 degrees). The best solution is that which maximizes the c.g. margin for each flight. In the flexible mode, FAST begins with the first flight and determines all feasible combinations of cargo elements according to mass, volume, EVA, and precedence relation constraints. The program generates an assembly sequence that meets mass, volume, position, EVA, and precedence constraints while minimizing the total number of Shuttle flights required. Issues associated with ground operations, spacecraft performance, logistics requirements and user requirements will be addressed in future versions of the model. FAST is written in C-Language and has been implemented on DEC VAX series computers running VMS. The program is distributed in executable form. The source code is also provided, but it cannot be compiled without the Tree Manipulation Based Routines (TMBR) package from the Jet Propulsion Laboratory, which is not currently available from COSMIC. The main memory requirement is based on the data used to drive the FAST program. All applications should easily run on an installation with 10Mb of main memory. FAST was developed in 1990 and is a copyrighted work with all copyright vested in NASA. DEC, VAX and VMS are trademarks of Digital Equipment Corporation.
Sequence information signal processor for local and global string comparisons
Peterson, John C.; Chow, Edward T.; Waterman, Michael S.; Hunkapillar, Timothy J.
1997-01-01
A sequence information signal processing integrated circuit chip designed to perform high speed calculation of a dynamic programming algorithm based upon the algorithm defined by Waterman and Smith. The signal processing chip of the present invention is designed to be a building block of a linear systolic array, the performance of which can be increased by connecting additional sequence information signal processing chips to the array. The chip provides a high speed, low cost linear array processor that can locate highly similar global sequences or segments thereof such as contiguous subsequences from two different DNA or protein sequences. The chip is implemented in a preferred embodiment using CMOS VLSI technology to provide the equivalent of about 400,000 transistors or 100,000 gates. Each chip provides 16 processing elements, and is designed to provide 16 bit, two's compliment operation for maximum score precision of between -32,768 and +32,767. It is designed to provide a comparison between sequences as long as 4,194,304 elements without external software and between sequences of unlimited numbers of elements with the aid of external software. Each sequence can be assigned different deletion and insertion weight functions. Each processor is provided with a similarity measure device which is independently variable. Thus, each processor can contribute to maximum value score calculation using a different similarity measure.
Sun, Cheng; Wyngaard, Grace; Walton, D Brian; Wichman, Holly A; Mueller, Rachel Lockridge
2014-03-11
Chromatin diminution is the programmed deletion of DNA from presomatic cell or nuclear lineages during development, producing single organisms that contain two different nuclear genomes. Phylogenetically diverse taxa undergo chromatin diminution--some ciliates, nematodes, copepods, and vertebrates. In cyclopoid copepods, chromatin diminution occurs in taxa with massively expanded germline genomes; depending on species, germline genome sizes range from 15 - 75 Gb, 12-74 Gb of which are lost from pre-somatic cell lineages at germline--soma differentiation. This is more than an order of magnitude more sequence than is lost from other taxa. To date, the sequences excised from copepods have not been analyzed using large-scale genomic datasets, and the processes underlying germline genomic gigantism in this clade, as well as the functional significance of chromatin diminution, have remained unknown. Here, we used high-throughput genomic sequencing and qPCR to characterize the germline and somatic genomes of Mesocyclops edax, a freshwater cyclopoid copepod with a germline genome of ~15 Gb and a somatic genome of ~3 Gb. We show that most of the excised DNA consists of repetitive sequences that are either 1) verifiable transposable elements (TEs), or 2) non-simple repeats of likely TE origin. Repeat elements in both genomes are skewed towards younger (i.e. less divergent) elements. Excised DNA is a non-random sample of the germline repeat element landscape; younger elements, and high frequency DNA transposons and LINEs, are disproportionately eliminated from the somatic genome. Our results suggest that germline genome expansion in M. edax reflects explosive repeat element proliferation, and that billions of base pairs of such repeats are deleted from the somatic genome every generation. Thus, we hypothesize that chromatin diminution is a mechanism that controls repeat element load, and that this load can evolve to be divergent between tissue types within single organisms.
2014-01-01
Background Chromatin diminution is the programmed deletion of DNA from presomatic cell or nuclear lineages during development, producing single organisms that contain two different nuclear genomes. Phylogenetically diverse taxa undergo chromatin diminution — some ciliates, nematodes, copepods, and vertebrates. In cyclopoid copepods, chromatin diminution occurs in taxa with massively expanded germline genomes; depending on species, germline genome sizes range from 15 – 75 Gb, 12–74 Gb of which are lost from pre-somatic cell lineages at germline – soma differentiation. This is more than an order of magnitude more sequence than is lost from other taxa. To date, the sequences excised from copepods have not been analyzed using large-scale genomic datasets, and the processes underlying germline genomic gigantism in this clade, as well as the functional significance of chromatin diminution, have remained unknown. Results Here, we used high-throughput genomic sequencing and qPCR to characterize the germline and somatic genomes of Mesocyclops edax, a freshwater cyclopoid copepod with a germline genome of ~15 Gb and a somatic genome of ~3 Gb. We show that most of the excised DNA consists of repetitive sequences that are either 1) verifiable transposable elements (TEs), or 2) non-simple repeats of likely TE origin. Repeat elements in both genomes are skewed towards younger (i.e. less divergent) elements. Excised DNA is a non-random sample of the germline repeat element landscape; younger elements, and high frequency DNA transposons and LINEs, are disproportionately eliminated from the somatic genome. Conclusions Our results suggest that germline genome expansion in M. edax reflects explosive repeat element proliferation, and that billions of base pairs of such repeats are deleted from the somatic genome every generation. Thus, we hypothesize that chromatin diminution is a mechanism that controls repeat element load, and that this load can evolve to be divergent between tissue types within single organisms. PMID:24618421
Ehrmann, M A; Vogel, R E
2001-11-01
An insertion sequence has been identified in the genome of Lactobacillus sanfranciscensis DSM 20451T as segment of 1351 nucleotides containing 37-bp imperfect terminal inverted repeats. The sequence of this element encodes two out of phase, overlapping open reading frames, orfA and orfB, from which three putative proteins are produced. OrfAB is a transframe protein produced by -1 translational frame shifting between orf A and orf B that is presumed to be the transposase. The large orfAB of this element encodes a 342 amino acid protein that displays similarities with transposases encoded by bacterial insertion sequences belonging to the IS3 family. In L. sanfranciscensis type strain DSM 20451T multiple truncated IS elements were identified. Inverse PCR was used to analyze target sites of four of these elements, but except of their highly AT rich character not any sequence specificity was identified so far. Moreover, no flanking direct repeats were identified. Multiple copies of IS153 were detected by hybridization in other strains of L. sanfranciscensis. Resulting hybridization patterns were shown to differentiate between organisms at strain level rather than a probe targeted against the 16S rDNA. With a PCR based approach IS153 or highly similar sequences were detected in L. acidophilus, L. casei, L. malefermentans, L. plantarum, L. hilgardii, L. collinoides L. farciminis L. sakei and L. salivarius, L. reuteri as well as in Enterococcus faecium, Pediococcus acidilactici and P. pentosaceus.
Characterization of short interspersed elements (SINEs) in a red alga, Porphyra yezoensis.
Zhang, Wenbo; Lin, Xiaofei; Peddigari, Suresh; Takechi, Katsuaki; Takano, Hiroyoshi; Takio, Susumu
2007-02-01
Short interspersed element (SINE)-like sequences referred to as PySN1 and PySN2 were identified in a red alga, Porphyra yezoensis. Both elements contained an internal promoter with motifs (A box and B box) recognized by RNA polymerase III, and target site duplications at both ends. Genomic Southern blot analysis revealed that both elements were widely and abundantly distributed on the genome. 3' and 5' RACE suggested that PySN1 was expressed as a chimera transcript with flanking SINE-unrelated sequences and possessed the poly-A tail at the same position near the 3' end of PySN1.
ISEScan: automated identification of insertion sequence elements in prokaryotic genomes.
Xie, Zhiqun; Tang, Haixu
2017-11-01
The insertion sequence (IS) elements are the smallest but most abundant autonomous transposable elements in prokaryotic genomes, which play a key role in prokaryotic genome organization and evolution. With the fast growing genomic data, it is becoming increasingly critical for biology researchers to be able to accurately and automatically annotate ISs in prokaryotic genome sequences. The available automatic IS annotation systems are either providing only incomplete IS annotation or relying on the availability of existing genome annotations. Here, we present a new IS elements annotation pipeline to address these issues. ISEScan is a highly sensitive software pipeline based on profile hidden Markov models constructed from manually curated IS elements. ISEScan performs better than existing IS annotation systems when tested on prokaryotic genomes with curated annotations of IS elements. Applying it to 2784 prokaryotic genomes, we report the global distribution of IS families across taxonomic clades in Archaea and Bacteria. ISEScan is implemented in Python and released as an open source software at https://github.com/xiezhq/ISEScan. hatang@indiana.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Searching for nuclear export elements in hepatitis D virus RNA.
Freitas, Natália; Cunha, Celso
2013-08-12
To search for the presence of cis elements in hepatitis D virus (HDV) genomic and antigenomic RNA capable of promoting nuclear export. We made use of a well characterized chloramphenicol acetyl-transferase reporter system based on plasmid pDM138. Twenty cDNA fragments corresponding to different HDV genomic and antigenomic RNA sequences were inserted in plasmid pDM138, and used in transfection experiments in Huh7 cells. The relative amounts of HDV RNA in nuclear and cytoplasmic fractions were then determined by real-time polymerase chain reaction and Northern blotting. The secondary structure of the RNA sequences that displayed nuclear export ability was further predicted using a web interface. Finally, the sensitivity to leptomycin B was assessed in order to investigate possible cellular pathways involved in HDV RNA nuclear export. Analysis of genomic RNA sequences did not allow identifying an unequivocal nuclear export element. However, two regions were found to promote the export of reporter mRNAs with efficiency higher than the negative controls albeit lower than the positive control. These regions correspond to nucleotides 266-489 and 584-920, respectively. In addition, when analyzing antigenomic RNA sequences a nuclear export element was found in positions 214-417. Export mediated by the nuclear export element of HDV antigenomic RNA is sensitive to leptomycin B suggesting a possible role of CRM1 in this transport pathway. A cis-acting nuclear export element is present in nucleotides 214-417 of HDV antigenomic RNA.
Taylor, James; Tyekucheva, Svitlana; King, David C; Hardison, Ross C; Miller, Webb; Chiaromonte, Francesca
2006-12-01
Genomic sequence signals - such as base composition, presence of particular motifs, or evolutionary constraint - have been used effectively to identify functional elements. However, approaches based only on specific signals known to correlate with function can be quite limiting. When training data are available, application of computational learning algorithms to multispecies alignments has the potential to capture broader and more informative sequence and evolutionary patterns that better characterize a class of elements. However, effective exploitation of patterns in multispecies alignments is impeded by the vast number of possible alignment columns and by a limited understanding of which particular strings of columns may characterize a given class. We have developed a computational method, called ESPERR (evolutionary and sequence pattern extraction through reduced representations), which uses training examples to learn encodings of multispecies alignments into reduced forms tailored for the prediction of chosen classes of functional elements. ESPERR produces a greatly improved Regulatory Potential score, which can discriminate regulatory regions from neutral sites with excellent accuracy ( approximately 94%). This score captures strong signals (GC content and conservation), as well as subtler signals (with small contributions from many different alignment patterns) that characterize the regulatory elements in our training set. ESPERR is also effective for predicting other classes of functional elements, as we show for DNaseI hypersensitive sites and highly conserved regions with developmental enhancer activity. Our software, training data, and genome-wide predictions are available from our Web site (http://www.bx.psu.edu/projects/esperr).
Kijima, T E; Innan, Hideki
2013-11-01
A population genetic simulation framework is developed to understand the behavior and molecular evolution of DNA sequences of transposable elements. Our model incorporates random transposition and excision of transposable element (TE) copies, two modes of selection against TEs, and degeneration of transpositional activity by point mutations. We first investigated the relationships between the behavior of the copy number of TEs and these parameters. Our results show that when selection is weak, the genome can maintain a relatively large number of TEs, but most of them are less active. In contrast, with strong selection, the genome can maintain only a limited number of TEs but the proportion of active copies is large. In such a case, there could be substantial fluctuations of the copy number over generations. We also explored how DNA sequences of TEs evolve through the simulations. In general, active copies form clusters around the original sequence, while less active copies have long branches specific to themselves, exhibiting a star-shaped phylogeny. It is demonstrated that the phylogeny of TE sequences could be informative to understand the dynamics of TE evolution.
Okuda, A; Imagawa, M; Maeda, Y; Sakai, M; Muramatsu, M
1989-10-05
We have recently identified a typical enhancer, termed GPEI, located about 2.5 kilobases upstream from the transcription initiation site of the rat glutathione transferase P gene. Analyses of 5' and 3' deletion mutants revealed that the cis-acting sequence of GPEI contained the phorbol 12-O-tetradecanoate 13-acetate responsive element (TRE)-like sequence in it. For the maximal activity, however, GPEI required an adjacent upstream sequence of about 19 base pairs in addition to the TRE-like sequence. With the DNA binding gel-shift assay, we could detect protein(s) that specifically binds to the TRE-like sequence of GPEI fragment, which was possibly c-jun.c-fos complex or a similar protein complex. The sequence immediately upstream of the TRE-like sequence did not have any activity by itself, but augmented the latter activity by about 5-fold.
Identification of an active ID-like group of SINEs in the mouse
Kass, David H; Jamison, Nicole
2007-01-01
The mouse genome consists of five known families of SINEs: B1, B2, B4/RSINE, ID, and MIR. Using RT-PCR we identified a germ-line transcript that demonstrates 92.7% sequence identity to ID (excluding primer sequence), yet a BLAST search identified numerous matches of 100% sequence identity. We analyzed four of these elements for their presence in orthologous genes in strains and subspecies of M. musculus as well as other species of Mus using a PCR-based assay. All four analyzed elements were either identified only in M. musculus or exclusively in both M. musculus and M. domesticus indicative of recent integrations. In conjunction with the identification of transcripts, we present an active ID-like group of elements that is not derived from the proposed BC1 master gene of ID elements. A BLAST of the rat genome indicated that these elements were not in the rat. Therefore, this family of SINEs has recently evolved, and since thus far has mainly been observed in M. musculus, we then refer to this family as MMIDL. PMID:17572061
Identification of an active ID-like group of SINEs in the mouse.
Kass, David H; Jamison, Nicole
2007-09-01
The mouse genome consists of five known families of SINEs: B1, B2, B4/RSINE, ID, and MIR. Using RT-PCR we identified a germ-line transcript that demonstrates 92.7% sequence identity to ID (excluding primer sequence), yet a BLAST search identified numerous matches of 100% sequence identity. We analyzed four of these elements for their presence in orthologous genes in strains and subspecies of Mus musculus as well as other species of Mus using a PCR-based assay. All four analyzed elements were identified either only in M. musculus or exclusively in both M. musculus and M. domesticus, indicative of recent integrations. In conjunction with the identification of transcripts, we present an active ID-like group of elements that is not derived from the proposed BC1 master gene of ID elements. A BLAST of the rat genome indicated that these elements were not in the rat. Therefore, this family of SINEs has recently evolved, and since it has thus far been observed mainly in M. musculus, we refer to this family as MMIDL.
Early Evolution of Conserved Regulatory Sequences Associated with Development in Vertebrates
McEwen, Gayle K.; Goode, Debbie K.; Parker, Hugo J.; Woolfe, Adam; Callaway, Heather; Elgar, Greg
2009-01-01
Comparisons between diverse vertebrate genomes have uncovered thousands of highly conserved non-coding sequences, an increasing number of which have been shown to function as enhancers during early development. Despite their extreme conservation over 500 million years from humans to cartilaginous fish, these elements appear to be largely absent in invertebrates, and, to date, there has been little understanding of their mode of action or the evolutionary processes that have modelled them. We have now exploited emerging genomic sequence data for the sea lamprey, Petromyzon marinus, to explore the depth of conservation of this type of element in the earliest diverging extant vertebrate lineage, the jawless fish (agnathans). We searched for conserved non-coding elements (CNEs) at 13 human gene loci and identified lamprey elements associated with all but two of these gene regions. Although markedly shorter and less well conserved than within jawed vertebrates, identified lamprey CNEs are able to drive specific patterns of expression in zebrafish embryos, which are almost identical to those driven by the equivalent human elements. These CNEs are therefore a unique and defining characteristic of all vertebrates. Furthermore, alignment of lamprey and other vertebrate CNEs should permit the identification of persistent sequence signatures that are responsible for common patterns of expression and contribute to the elucidation of the regulatory language in CNEs. Identifying the core regulatory code for development, common to all vertebrates, provides a foundation upon which regulatory networks can be constructed and might also illuminate how large conserved regulatory sequence blocks evolve and become fixed in genomic DNA. PMID:20011110
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniels, C.J.
1993-06-01
We have established that a 100 bp DNA fragment from the Haloferax volcanii tRNALys gene directs transcription in vivo. This element served as the starting point for a detailed analysis of the requirements for in vivo transcription. Among several gene tentatively identified as reporter elements, we selected a eukaryotic intron-containing tRNAPro gene for when it is driven by the H. volcanii tRNALys promoter fragment, produces a single small transcript. Transcript analysis, by Sl mapping and primer extension, showed that this RNA initiated at the expected tRNALys BoxB sequence and terminated in the tRNAPro RNA Pol III termination element present onmore » the DNA fragment. In initial studies we determined that the 3 inches proximal region of this tRNALys promoter element was sufficient for transcription initiation in vivo. This 40 bp region contains only the BoxA and BoxB regions and short purine rich regions 5 inches to the BoxA and BoxB sequence. Using the tRNAPro gene as the reporter and this minimal promoter, we performed a comprehensive analysis of the BoxA region. Each position of the BoxA region was converted to an four possible nucleotides and the transcription of 36 mutants was quantitated. Among the sites analyzed, only five of the positions showed high levels of discrimination; the preferred BoxA element was 5 inches-TT({sub T}/A)({sup A}/T) ANNNN-3 inches. Mutational analysis demonstrated that a transition from T-rich to A-rich sequences in the BoxA element is essential and that there is some flexibility in the location of the ``TA`` sequence. Additionally the TA sequence appears to determine the location of the transcription start site. The BoxA element defined in this study is similar to those observed for Sulfolobus and the methanogen promoters, and supports the hypothesis that a similar core promoter element is used by all archaeal RNA polymerases.« less
Birchler, James A; Presting, Gernot G
2012-04-01
The centromeres of most eukaryotic organisms consist of highly repetitive arrays that are similar across nonhomologous chromosomes. These sequences evolve rapidly, thus posing a mystery as to how such arrays can be homogenized. Recent work in species in which centromere-enriched retrotransposons occur indicates that these elements preferentially insert into the centromeric regions. In two different Arabidopsis species, a related element was recognized in which the specificity for such targeting was altered. These observations provide a partial explanation for how homogenization of centromere DNA sequences occurs.
Evolution of Hsp70 Gene Expression: A Role for Changes in AT-Richness within Promoters
Ma, Ronghui; Zhang, Bo; Kang, Le
2011-01-01
In disparate organisms adaptation to thermal stress has been linked to changes in the expression of genes encoding heat-shock proteins (Hsp). The underlying genetics, however, remain elusive. We show here that two AT-rich sequence elements in the promoter region of the hsp70 gene of the fly Liriomyza sativae that are absent in the congeneric species, Liriomyza huidobrensis, have marked cis-regulatory consequences. We studied the cis-regulatory consequences of these elements (called ATRS1 and ATRS2) by measuring the constitutive and heat-shock-induced luciferase luminescence that they drive in cells transfected with constructs carrying them modified, deleted, or intact, in the hsp70 promoter fused to the luciferase gene. The elements affected expression level markedly and in different ways: Deleting ATRS1 augmented both the constitutive and the heat-shock-induced luminescence, suggesting that this element represses transcription. Interestingly, replacing the element with random sequences of the same length and A+T content delivered the wild-type luminescence pattern, proving that the element's high A+T content is crucial for its effects. Deleting ATRS2 decreased luminescence dramatically and almost abolished heat-shock inducibility and so did replacing the element with random sequences matching the element's length and A+T content, suggesting that ATRS2's effects on transcription and heat-shock inducibility involve a common mechanism requiring at least in part the element's specific primary structure. Finally, constitutive and heat-shock luminescence were reduced strongly when two putative binding sites for the Zeste transcription factor identified within ATRS2 were altered through site-directed mutagenesis, and the heat-shock-induced luminescence increased when Zeste was over-expressed, indicating that Zeste participates in the effects mapped to ATRS2 at least in part. AT-rich sequences are common in promoters and our results suggest that they should play important roles in regulatory evolution since they can affect expression markedly and constrain promoter DNA in at least two different ways. PMID:21655251
Shukla, Sanjay K; Kislow, Jennifer; Briska, Adam; Henkhaus, John; Dykes, Colin
2009-09-01
Staphylococcus aureus is a highly versatile and evolving bacterium of great clinical importance. S. aureus can evolve by acquiring single nucleotide polymorphisms and mobile genetic elements and by recombination events. Identification and location of novel genomic elements in a bacterial genome are not straightforward, unless the whole genome is sequenced. Optical mapping is a new tool that creates a high-resolution, in situ ordered restriction map of a bacterial genome. These maps can be used to determine genomic organization and perform comparative genomics to identify genomic rearrangements, such as insertions, deletions, duplications, and inversions, compared to an in silico (virtual) restriction map of a known genome sequence. Using this technology, we report here the identification, approximate location, and characterization of a genetic inversion of approximately 500 kb of a DNA element between the NRS387 (USA800) and FPR3757 (USA300) strains. The presence of the inversion and location of its junction sites were confirmed by site-specific PCR and sequencing. At both the left and right junction sites in NRS387, an IS1181 element and a 73-bp sequence were identified as inverted repeats, which could explain the possible mechanism of the inversion event.
Genomic deletion of a long-range bone enhancer misregulatessclerostin in Van Buchem disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loots, Gabriela G.; Kneissel, Michaela; Keller, Hansjoerg
2005-04-15
Mutations in distant regulatory elements can negatively impact human development and health, yet due to the difficulty of detecting these critical sequences we predominantly focus on coding sequences for diagnostic purposes. We have undertaken a comparative sequence-based approach to characterize a large noncoding region deleted in patients affected by Van Buchem disease (VB), a severe sclerosing bone dysplasia. Using BAC recombination and transgenesis we characterized the expression of human sclerostin (sost) from normal (hSOSTwt) or Van Buchem(hSOSTvb D) alleles. Only the hSOSTwt allele faithfully expressed high levels of human sost in the adult bone and impacted bone metabolism, consistent withmore » the model that the VB noncoding deletion removes a sost specific regulatory element. By exploiting cross-species sequence comparisons with in vitro and in vivo enhancer assays we were able to identify a candidate enhancer element that drives human sost expression in osteoblast-like cell lines in vitro and in the skeletal anlage of the E14.5 mouse embryo, and discovered a novel function for sclerostin during limb development. Our approach represents a framework for characterizing distant regulatory elements associated with abnormal human phenotypes.« less
Nakagome, Mariko; Solovieva, Elena; Takahashi, Akira; Yasue, Hiroshi; Hirochika, Hirohiko; Miyao, Akio
2014-03-14
Transposition event detection of transposable element (TE) in the genome using short reads from the next-generation sequence (NGS) was difficult, because the nucleotide sequence of TE itself is repetitive, making it difficult to identify locations of its insertions by alignment programs for NGS. We have developed a program with a new algorithm to detect the transpositions from NGS data. In the process of tool development, we used next-generation sequence (NGS) data of derivative lines (ttm2 and ttm5) of japonica rice cv. Nipponbare, regenerated through cell culture. The new program, called a transposon insertion finder (TIF), was applied to detect the de novo transpositions of Tos17 in the regenerated lines. TIF searched 300 million reads of a line within 20 min, identifying 4 and 12 de novo transposition in ttm2 and ttm5 lines, respectively. All of the transpositions were confirmed by PCR/electrophoresis and sequencing. Using the program, we also detected new transposon insertions of P-element from NGS data of Drosophila melanogaster. TIF operates to find the transposition of any elements provided that target site duplications (TSDs) are generated by their transpositions.
Current strategies for mobilome research.
Jørgensen, Tue S; Kiil, Anne S; Hansen, Martin A; Sørensen, Søren J; Hansen, Lars H
2014-01-01
Mobile genetic elements (MGEs) are pivotal for bacterial evolution and adaptation, allowing shuffling of genes even between distantly related bacterial species. The study of these elements is biologically interesting as the mode of genetic propagation is kaleidoscopic and important, as MGEs are the main vehicles of the increasing bacterial antibiotic resistance that causes thousands of human deaths each year. The study of MGEs has previously focused on plasmids from individual isolates, but the revolution in sequencing technology has allowed the study of mobile genomic elements of entire communities using metagenomic approaches. The problem in using metagenomic sequencing for the study of MGEs is that plasmids and other mobile elements only comprise a small fraction of the total genetic content that are difficult to separate from chromosomal DNA based on sequence alone. The distinction between plasmid and chromosome is important as the mobility and regulation of genes largely depend on their genetic context. Several different approaches have been proposed that specifically enrich plasmid DNA from community samples. Here, we review recent approaches used to study entire plasmid pools from complex environments, and point out possible future developments for and pitfalls of these approaches. Further, we discuss the use of the PacBio long-read sequencing technology for MGE discovery.
The role of heterologous chloroplast sequence elements in transgene integration and expression.
Ruhlman, Tracey; Verma, Dheeraj; Samson, Nalapalli; Daniell, Henry
2010-04-01
Heterologous regulatory elements and flanking sequences have been used in chloroplast transformation of several crop species, but their roles and mechanisms have not yet been investigated. Nucleotide sequence identity in the photosystem II protein D1 (psbA) upstream region is 59% across all taxa; similar variation was consistent across all genes and taxa examined. Secondary structure and predicted Gibbs free energy values of the psbA 5' untranslated region (UTR) among different families reflected this variation. Therefore, chloroplast transformation vectors were made for tobacco (Nicotiana tabacum) and lettuce (Lactuca sativa), with endogenous (Nt-Nt, Ls-Ls) or heterologous (Nt-Ls, Ls-Nt) psbA promoter, 5' UTR and 3' UTR, regulating expression of the anthrax protective antigen (PA) or human proinsulin (Pins) fused with the cholera toxin B-subunit (CTB). Unique lettuce flanking sequences were completely eliminated during homologous recombination in the transplastomic tobacco genomes but not unique tobacco sequences. Nt-Ls or Ls-Nt transplastomic lines showed reduction of 80% PA and 97% CTB-Pins expression when compared with endogenous psbA regulatory elements, which accumulated up to 29.6% total soluble protein PA and 72.0% total leaf protein CTB-Pins, 2-fold higher than Rubisco. Transgene transcripts were reduced by 84% in Ls-Nt-CTB-Pins and by 72% in Nt-Ls-PA lines. Transcripts containing endogenous 5' UTR were stabilized in nonpolysomal fractions. Stromal RNA-binding proteins were preferentially associated with endogenous psbA 5' UTR. A rapid and reproducible regeneration system was developed for lettuce commercial cultivars by optimizing plant growth regulators. These findings underscore the need for sequencing complete crop chloroplast genomes, utilization of endogenous regulatory elements and flanking sequences, as well as optimization of plant growth regulators for efficient chloroplast transformation.
Ruhlman, Tracey; Verma, Dheeraj; Samson, Nalapalli; Daniell, Henry
2010-01-01
Heterologous regulatory elements and flanking sequences have been used in chloroplast transformation of several crop species, but their roles and mechanisms have not yet been investigated. Nucleotide sequence identity in the photosystem II protein D1 (psbA) upstream region is 59% across all taxa; similar variation was consistent across all genes and taxa examined. Secondary structure and predicted Gibbs free energy values of the psbA 5′ untranslated region (UTR) among different families reflected this variation. Therefore, chloroplast transformation vectors were made for tobacco (Nicotiana tabacum) and lettuce (Lactuca sativa), with endogenous (Nt-Nt, Ls-Ls) or heterologous (Nt-Ls, Ls-Nt) psbA promoter, 5′ UTR and 3′ UTR, regulating expression of the anthrax protective antigen (PA) or human proinsulin (Pins) fused with the cholera toxin B-subunit (CTB). Unique lettuce flanking sequences were completely eliminated during homologous recombination in the transplastomic tobacco genomes but not unique tobacco sequences. Nt-Ls or Ls-Nt transplastomic lines showed reduction of 80% PA and 97% CTB-Pins expression when compared with endogenous psbA regulatory elements, which accumulated up to 29.6% total soluble protein PA and 72.0% total leaf protein CTB-Pins, 2-fold higher than Rubisco. Transgene transcripts were reduced by 84% in Ls-Nt-CTB-Pins and by 72% in Nt-Ls-PA lines. Transcripts containing endogenous 5′ UTR were stabilized in nonpolysomal fractions. Stromal RNA-binding proteins were preferentially associated with endogenous psbA 5′ UTR. A rapid and reproducible regeneration system was developed for lettuce commercial cultivars by optimizing plant growth regulators. These findings underscore the need for sequencing complete crop chloroplast genomes, utilization of endogenous regulatory elements and flanking sequences, as well as optimization of plant growth regulators for efficient chloroplast transformation. PMID:20130101
Chuzhanova, Nadia; Abeysinghe, Shaun S; Krawczak, Michael; Cooper, David N
2003-09-01
Translocations and gross deletions are responsible for a significant proportion of both cancer and inherited disease. Although such gene rearrangements are nonuniformly distributed in the human genome, the underlying mutational mechanisms remain unclear. We have studied the potential involvement of various types of repetitive sequence elements in the formation of secondary structure intermediates between the single-stranded DNA ends that recombine during rearrangements. Complexity analysis was used to assess the potential of these ends to form secondary structures, the maximum decrease in complexity consequent to a gross rearrangement being used as an indicator of the type of repeat and the specific DNA ends involved. A total of 175 pairs of deletion/translocation breakpoint junction sequences available from the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] were analyzed. Potential secondary structure was noted between the 5' flanking sequence of the first breakpoint and the 3' flanking sequence of the second breakpoint in 49% of rearrangements and between the 5' flanking sequence of the second breakpoint and the 3' flanking sequence of the first breakpoint in 36% of rearrangements. Inverted repeats, inversions of inverted repeats, and symmetric elements were found in association with gross rearrangements at approximately the same frequency. However, inverted repeats and inversions of inverted repeats accounted for the vast majority (83%) of deletions plus small insertions, symmetric elements for one-half of all antigen receptor-mediated translocations, while direct repeats appear only to be involved in mediating simple deletions. These findings extend our understanding of illegitimate recombination by highlighting the importance of secondary structure formation between single-stranded DNA ends at breakpoint junctions. Copyright 2003 Wiley-Liss, Inc.
Vermaak, Danielle; Bayes, Joshua J.
2009-01-01
Comparative genomics provides a facile way to address issues of evolutionary constraint acting on different elements of the genome. However, several important DNA elements have not reaped the benefits of this new approach. Some have proved intractable to current day sequencing technology. These include centromeric and heterochromatic DNA, which are essential for chromosome segregation as well as gene regulation, but the highly repetitive nature of the DNA sequences in these regions make them difficult to assemble into longer contigs. Other sequences, like dosage compensation X chromosomal sites, origins of DNA replication, or heterochromatic sequences that encode piwi-associated RNAs, have proved difficult to study because they do not have recognizable DNA features that allow them to be described functionally or computationally. We have employed an alternate approach to the direct study of these DNA elements. By using proteins that specifically bind these noncoding DNAs as surrogates, we can indirectly assay the evolutionary constraints acting on these important DNA elements. We review the impact that such “surrogate strategies” have had on our understanding of the evolutionary constraints shaping centromeres, origins of DNA replication, and dosage compensation X chromosomal sites. These have begun to reveal that in contrast to the view that such structural DNA elements are either highly constrained (under purifying selection) or free to drift (under neutral evolution), some of them may instead be shaped by adaptive evolution and genetic conflicts (these are not mutually exclusive). These insights also help to explain why the same elements (e.g., centromeres and replication origins), which are so complex in some eukaryotic genomes, can be simple and well defined in other where similar conflicts do not exist. PMID:19635763
Phylogenetic shadowing of primate sequences to find functional regions of the human genome.
Boffelli, Dario; McAuliffe, Jon; Ovcharenko, Dmitriy; Lewis, Keith D; Ovcharenko, Ivan; Pachter, Lior; Rubin, Edward M
2003-02-28
Nonhuman primates represent the most relevant model organisms to understand the biology of Homo sapiens. The recent divergence and associated overall sequence conservation between individual members of this taxon have nonetheless largely precluded the use of primates in comparative sequence studies. We used sequence comparisons of an extensive set of Old World and New World monkeys and hominoids to identify functional regions in the human genome. Analysis of these data enabled the discovery of primate-specific gene regulatory elements and the demarcation of the exons of multiple genes. Much of the information content of the comprehensive primate sequence comparisons could be captured with a small subset of phylogenetically close primates. These results demonstrate the utility of intraprimate sequence comparisons to discover common mammalian as well as primate-specific functional elements in the human genome, which are unattainable through the evaluation of more evolutionarily distant species.
Unrelated sequences at the 5' end of mouse LINE-1 repeated elements define two distinct subfamilies.
Wincker, P; Jubier-Maurin, V; Roizès, G
1987-01-01
Some full length members of the mouse long interspersed repeated DNA family L1Md have been shown to be associated at their 5' end with a variable number of tandem repetitions, the A repeats, that have been suggested to be transcription controlling elements. We report that the other type of repeat, named F, found at the 5' end of a few L1 elements is also an integral part of full length L1 copies. Sequencing shows that the F repeats are GC rich, and organized in tandem. The L1 copies associated with either A or F repeats can be correlated with two different subsets of L1 sequences distinguished by a series of variant nucleotides specific to each and by unassociated but frequent restriction sites. These findings suggest that sequence replacement has occurred at least once in 5' of L1Md, and is related to the generation of specific subfamilies. Images PMID:3684566
Clayton, William; Eaton, Carla Jane; Dupont, Pierre-Yves; Gillanders, Tim; Cameron, Nick; Saikia, Sanjay; Scott, Barry
2017-01-01
Epichloë grass endophytes comprise a group of filamentous fungi of both sexual and asexual species. Known for the beneficial characteristics they endow upon their grass hosts, the identification of these endophyte species has been of great interest agronomically and scientifically. The use of simple sequence repeat loci and the variation in repeat elements has been used to rapidly identify endophyte species and strains, however, little is known of how the structure of repeat elements changes between species and strains, and where these repeat elements are located in the fungal genome. We report on an in-depth analysis of the structure and genomic location of the simple sequence repeat locus B10, commonly used for Epichloë endophyte species identification. The B10 repeat was found to be located within an exon of a putative bZIP transcription factor, suggesting possible impacts on polypeptide sequence and thus protein function. Analysis of this repeat in the asexual endophyte hybrid Epichloë uncinata revealed that the structure of B10 alleles reflects the ancestral species that hybridized to give rise to this species. Understanding the structure and sequence of these simple sequence repeats provides a useful set of tools for readily distinguishing strains and for gaining insights into the ancestral species that have undergone hybridization events.
Animal vocal sequences: not the Markov chains we thought they were.
Kershenbaum, Arik; Bowles, Ann E; Freeberg, Todd M; Jin, Dezhe Z; Lameira, Adriano R; Bohn, Kirsten
2014-10-07
Many animals produce vocal sequences that appear complex. Most researchers assume that these sequences are well characterized as Markov chains (i.e. that the probability of a particular vocal element can be calculated from the history of only a finite number of preceding elements). However, this assumption has never been explicitly tested. Furthermore, it is unclear how language could evolve in a single step from a Markovian origin, as is frequently assumed, as no intermediate forms have been found between animal communication and human language. Here, we assess whether animal taxa produce vocal sequences that are better described by Markov chains, or by non-Markovian dynamics such as the 'renewal process' (RP), characterized by a strong tendency to repeat elements. We examined vocal sequences of seven taxa: Bengalese finches Lonchura striata domestica, Carolina chickadees Poecile carolinensis, free-tailed bats Tadarida brasiliensis, rock hyraxes Procavia capensis, pilot whales Globicephala macrorhynchus, killer whales Orcinus orca and orangutans Pongo spp. The vocal systems of most of these species are more consistent with a non-Markovian RP than with the Markovian models traditionally assumed. Our data suggest that non-Markovian vocal sequences may be more common than Markov sequences, which must be taken into account when evaluating alternative hypotheses for the evolution of signalling complexity, and perhaps human language origins. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Striatal and Hippocampal Involvement in Motor Sequence Chunking Depends on the Learning Strategy
Lungu, Ovidiu; Monchi, Oury; Albouy, Geneviève; Jubault, Thomas; Ballarin, Emanuelle; Burnod, Yves; Doyon, Julien
2014-01-01
Motor sequences can be learned using an incremental approach by starting with a few elements and then adding more as training evolves (e.g., learning a piano piece); conversely, one can use a global approach and practice the whole sequence in every training session (e.g., shifting gears in an automobile). Yet, the neural correlates associated with such learning strategies in motor sequence learning remain largely unexplored to date. Here we used functional magnetic resonance imaging to measure the cerebral activity of individuals executing the same 8-element sequence after they completed a 4-days training regimen (2 sessions each day) following either a global or incremental strategy. A network comprised of striatal and fronto-parietal regions was engaged significantly regardless of the learning strategy, whereas the global training regimen led to additional cerebellar and temporal lobe recruitment. Analysis of chunking/grouping of sequence elements revealed a common prefrontal network in both conditions during the chunk initiation phase, whereas execution of chunk cores led to higher mediotemporal activity (involving the hippocampus) after global than incremental training. The novelty of our results relate to the recruitment of mediotemporal regions conditional of the learning strategy. Thus, the present findings may have clinical implications suggesting that the ability of patients with lesions to the medial temporal lobe to learn and consolidate new motor sequences may benefit from using an incremental strategy. PMID:25148078
Striatal and hippocampal involvement in motor sequence chunking depends on the learning strategy.
Lungu, Ovidiu; Monchi, Oury; Albouy, Geneviève; Jubault, Thomas; Ballarin, Emanuelle; Burnod, Yves; Doyon, Julien
2014-01-01
Motor sequences can be learned using an incremental approach by starting with a few elements and then adding more as training evolves (e.g., learning a piano piece); conversely, one can use a global approach and practice the whole sequence in every training session (e.g., shifting gears in an automobile). Yet, the neural correlates associated with such learning strategies in motor sequence learning remain largely unexplored to date. Here we used functional magnetic resonance imaging to measure the cerebral activity of individuals executing the same 8-element sequence after they completed a 4-days training regimen (2 sessions each day) following either a global or incremental strategy. A network comprised of striatal and fronto-parietal regions was engaged significantly regardless of the learning strategy, whereas the global training regimen led to additional cerebellar and temporal lobe recruitment. Analysis of chunking/grouping of sequence elements revealed a common prefrontal network in both conditions during the chunk initiation phase, whereas execution of chunk cores led to higher mediotemporal activity (involving the hippocampus) after global than incremental training. The novelty of our results relate to the recruitment of mediotemporal regions conditional of the learning strategy. Thus, the present findings may have clinical implications suggesting that the ability of patients with lesions to the medial temporal lobe to learn and consolidate new motor sequences may benefit from using an incremental strategy.
Long-read sequencing and de novo assembly of a Chinese genome
USDA-ARS?s Scientific Manuscript database
Short-read sequencing has enabled the de novo assembly of several individual human genomes, but with inherent limitations in characterizing repeat elements. Here we sequence a Chinese individual HX1 by single-molecule real-time (SMRT) long-read sequencing, construct a physical map by NanoChannel arr...
An Evolutionary Machine Learning Framework for Big Data Sequence Mining
ERIC Educational Resources Information Center
Kamath, Uday Krishna
2014-01-01
Sequence classification is an important problem in many real-world applications. Unlike other machine learning data, there are no "explicit" features or signals in sequence data that can help traditional machine learning algorithms learn and predict from the data. Sequence data exhibits inter-relationships in the elements that are…
Quantifying transfer after perceptual-motor sequence learning: how inflexible is implicit learning?
Sanchez, Daniel J; Yarnik, Eric N; Reber, Paul J
2015-03-01
Studies of implicit perceptual-motor sequence learning have often shown learning to be inflexibly tied to the training conditions during learning. Since sequence learning is seen as a model task of skill acquisition, limits on the ability to transfer knowledge from the training context to a performance context indicates important constraints on skill learning approaches. Lack of transfer across contexts has been demonstrated by showing that when task elements are changed following training, this leads to a disruption in performance. These results have typically been taken as suggesting that the sequence knowledge relies on integrated representations across task elements (Abrahamse, Jiménez, Verwey, & Clegg, Psychon Bull Rev 17:603-623, 2010a). Using a relatively new sequence learning task, serial interception sequence learning, three experiments are reported that quantify this magnitude of performance disruption after selectively manipulating individual aspects of motor performance or perceptual information. In Experiment 1, selective disruption of the timing or order of sequential actions was examined using a novel response manipulandum that allowed for separate analysis of these two motor response components. In Experiments 2 and 3, transfer was examined after selective disruption of perceptual information that left the motor response sequence intact. All three experiments provided quantifiable estimates of partial transfer to novel contexts that suggest some level of information integration across task elements. However, the ability to identify quantifiable levels of successful transfer indicates that integration is not all-or-none and that measurement sensitivity is a key in understanding sequence knowledge representations.
Fujibuchi, Wataru; Anderson, John S. J.; Landsman, David
2001-01-01
Consensus pattern and matrix-based searches designed to predict cis-acting transcriptional regulatory sequences have historically been subject to large numbers of false positives. We sought to decrease false positives by incorporating expression profile data into a consensus pattern-based search method. We have systematically analyzed the expression phenotypes of over 6000 yeast genes, across 121 expression profile experiments, and correlated them with the distribution of 14 known regulatory elements over sequences upstream of the genes. Our method is based on a metric we term probabilistic element assessment (PEA), which is a ranking of potential sites based on sequence similarity in the upstream regions of genes with similar expression phenotypes. For eight of the 14 known elements that we examined, our method had a much higher selectivity than a naïve consensus pattern search. Based on our analysis, we have developed a web-based tool called PROSPECT, which allows consensus pattern-based searching of gene clusters obtained from microarray data. PMID:11574681
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Zepeda, E.A.; Sarafi, M.N.; Luster, A.D.
1997-05-01
Eotaxin is a CC chemokine that is a specific chemoattractant for eosinophils and is implicated in the pathogenesis of eosinophilic inflammatory diseases, such as asthma. We describe the genomic organization, complete sequence, including 1354 bp 5{prime} of the RNA initiation site, and chromosomal localization of the human eotaxin gene. Fluorescence in situ hybridization analysis localized eotaxin to human chromosome 17, in the region q21.1-q21.2, and the human gene name SCYA11 was assigned. We also present the 5{prime} flanking sequence of the mouse eotaxin gene and have identified several regulatory elements that are conserved between the murine and the human promoters.more » In particular, the presence of elements such as NF-{Kappa}B, interferon-{gamma} response element, and glucocorticoid response element may explain the observed regulation of the eotaxin gene by cytokines and glucocorticoids. 17 refs., 4 figs., 1 tab.« less
Xavier, Crislaine; Cabral-de-Mello, Diogo Cavalcanti; de Moura, Rita Cássia
2014-12-01
Cytogenetic studies of the Neotropical beetle genus Dichotomius (Scarabaeinae, Coleoptera) have shown dynamism for centromeric constitutive heterochromatin sequences. In the present work we studied the chromosomes and isolated repetitive sequences of Dichotomius schiffleri aiming to contribute to the understanding of coleopteran genome/chromosomal organization. Dichotomius schiffleri presented a conserved karyotype and heterochromatin distribution in comparison to other species of the genus with 2n = 18, biarmed chromosomes, and pericentromeric C-positive blocks. Similarly to heterochromatin distributional patterns, the highly and moderately repetitive DNA fraction (C 0 t-1 DNA) was detected in pericentromeric areas, contrasting with the euchromatic mapping of an isolated TE (named DsmarMITE). After structural analyses, the DsmarMITE was classified as a non-autonomous element of the type miniature inverted-repeat transposable element (MITE) with terminal inverted repeats similar to Mariner elements of insects from different orders. The euchromatic distribution for DsmarMITE indicates that it does not play a part in the dynamics of constitutive heterochromatin sequences.
Park, Mi-Ri; Kwon, Sun-Jung; Choi, Hong-Soo; Hemenway, Cynthia L; Kim, Kook-Hyung
2008-08-15
The repeated ACCA or AC-rich sequence and structural (SL1) elements in the 5' non-translated region (NTR) of the Potato virus X (PVX) RNA play vital roles in the PVX life cycle by controlling translation, RNA replication, movement, and assembly. It has already been shown that the repeated ACCA or AC-rich sequence affect both gRNA and sgRNA accumulation, while not affecting minus-strand RNA accumulation, and are also required for host protein binding. The functional significance of the repeated ACCA sequence elements in the 5' NTR region was investigated by analyzing the effects of deletion and site-directed mutations on PVX replication in Nicotiana benthamiana plants and NT1 protoplasts. Substitution (ACCA into AAAA or UUUU) mutations introduced in the first (nt 10-13) element in the 5' NTR of the PVX RNA significantly affected viral replication, while mutations introduced in the second (nt 17-20) and third (nt 20-23) elements did not. The fourth (nt 29-32) ACCA element weakly affected virus replication, whereas mutations in the fifth (nt 38-41) significantly reduced virus replication due to the structure disruption of SL1 by AAAA and/or UUUU substitutions. Further characterization of the first ACCA element indicated that duplication of ACCA at nt 10-13 (nt 10-17, ACCAACCA) caused severe symptom development as compared to that of wild type, while deletion of the single element (nt 10-13), DeltaACCA) or tripling of this element caused reduced symptom development. Single- and double-nucleotide substitutions introduced into the first ACCA element revealed the importance of CC located at nt positions 11 and 12. Altogether, these results indicate that the first ACCA element is important for PVX replication.
Brody, Thomas; Yavatkar, Amarendra S; Kuzin, Alexander; Kundu, Mukta; Tyson, Leonard J; Ross, Jermaine; Lin, Tzu-Yang; Lee, Chi-Hon; Awasaki, Takeshi; Lee, Tzumin; Odenwald, Ward F
2012-01-01
Background: Phylogenetic footprinting has revealed that cis-regulatory enhancers consist of conserved DNA sequence clusters (CSCs). Currently, there is no systematic approach for enhancer discovery and analysis that takes full-advantage of the sequence information within enhancer CSCs. Results: We have generated a Drosophila genome-wide database of conserved DNA consisting of >100,000 CSCs derived from EvoPrints spanning over 90% of the genome. cis-Decoder database search and alignment algorithms enable the discovery of functionally related enhancers. The program first identifies conserved repeat elements within an input enhancer and then searches the database for CSCs that score highly against the input CSC. Scoring is based on shared repeats as well as uniquely shared matches, and includes measures of the balance of shared elements, a diagnostic that has proven to be useful in predicting cis-regulatory function. To demonstrate the utility of these tools, a temporally-restricted CNS neuroblast enhancer was used to identify other functionally related enhancers and analyze their structural organization. Conclusions: cis-Decoder reveals that co-regulating enhancers consist of combinations of overlapping shared sequence elements, providing insights into the mode of integration of multiple regulating transcription factors. The database and accompanying algorithms should prove useful in the discovery and analysis of enhancers involved in any developmental process. Developmental Dynamics 241:169–189, 2012. © 2011 Wiley Periodicals, Inc. Key findings A genome-wide catalog of Drosophila conserved DNA sequence clusters. cis-Decoder discovers functionally related enhancers. Functionally related enhancers share balanced sequence element copy numbers. Many enhancers function during multiple phases of development. PMID:22174086
Gordon, Kacy L.; Arthur, Robert K.; Ruvinsky, Ilya
2015-01-01
Gene regulatory information guides development and shapes the course of evolution. To test conservation of gene regulation within the phylum Nematoda, we compared the functions of putative cis-regulatory sequences of four sets of orthologs (unc-47, unc-25, mec-3 and elt-2) from distantly-related nematode species. These species, Caenorhabditis elegans, its congeneric C. briggsae, and three parasitic species Meloidogyne hapla, Brugia malayi, and Trichinella spiralis, represent four of the five major clades in the phylum Nematoda. Despite the great phylogenetic distances sampled and the extensive sequence divergence of nematode genomes, all but one of the regulatory elements we tested are able to drive at least a subset of the expected gene expression patterns. We show that functionally conserved cis-regulatory elements have no more extended sequence similarity to their C. elegans orthologs than would be expected by chance, but they do harbor motifs that are important for proper expression of the C. elegans genes. These motifs are too short to be distinguished from the background level of sequence similarity, and while identical in sequence they are not conserved in orientation or position. Functional tests reveal that some of these motifs contribute to proper expression. Our results suggest that conserved regulatory circuitry can persist despite considerable turnover within cis elements. PMID:26020930
Organization and transient expression of the gene for human U11 snRNA
Clemens, Suter-Crazzolara; Walter, Keller
1991-01-01
The nucleotide sequence of U11 small nuclear RNA, a minor U RNA from HeLa cells, was determined. Computer analysis of the sequence (135 residues) predicts two strong hairpin loops which are separated by seventeen nucleotides containing an Sm binding site (AAUUUUUUGG). A synthetic gene was constructed in which the coding region of U11 RNA is under the control of a T7 promoter. This vector can be used to produce U11 RNA in vitro. Southern hybridization and PCR analysis of HeLa genomic DNA suggest that U11 RNA is encoded by a single copy gene, and that at least three genomic regions could be U11 RNA pseudogenes. A HeLa genomic copy of a U11 gene was isolated by inverted PCR. This gene contains the U11 RNA coding sequence and several sequence elements unique for the U RNA genes. These include a Distal Sequence Element (DSE, ATTTGCATA) present between positions −215 and −223 relative to the start of transcription; a Proximal Sequence Element (PSE, TTCACCTTTACCAAAAATG) located between positions −43 and −63 ; and a 3′box (GTTAGGCGAAATATTA) between positions +150 and +166. Transfection of HeLa cells with this gene revealed that it is functioning in vivo and can produce U11 RNA. PMID:1820214
Form drag in rivers due to small-scale natural topographic features: 2. Irregular sequences
Kean, J.W.; Smith, J.D.
2006-01-01
The size, shape, and spacing of small-scale topographic features found on the boundaries of natural streams, rivers, and floodplains can be quite variable. Consequently, a procedure for determining the form drag on irregular sequences of different-sized topographic features is essential for calculating near-boundary flows and sediment transport. A method for carrying out such calculations is developed in this paper. This method builds on the work of Kean and Smith (2006), which describes the flow field for the simpler case of a regular sequence of identical topographic features. Both approaches model topographic features as two-dimensional elements with Gaussian-shaped cross sections defined in terms of three parameters. Field measurements of bank topography are used to show that (1) the magnitude of these shape parameters can vary greatly between adjacent topographic features and (2) the variability of these shape parameters follows a lognormal distribution. Simulations using an irregular set of topographic roughness elements show that the drag on an individual element is primarily controlled by the size and shape of the feature immediately upstream and that the spatial average of the boundary shear stress over a large set of randomly ordered elements is relatively insensitive to the sequence of the elements. In addition, a method to transform the topography of irregular surfaces into an equivalently rough surface of regularly spaced, identical topographic elements also is given. The methods described in this paper can be used to improve predictions of flow resistance in rivers as well as quantify bank roughness.
Wireless autonomous device data transmission
NASA Technical Reports Server (NTRS)
Sammel, Jr., David W. (Inventor); Mickle, Marlin H. (Inventor); Cain, James T. (Inventor); Mi, Minhong (Inventor)
2013-01-01
A method of communicating information from a wireless autonomous device (WAD) to a base station. The WAD has a data element having a predetermined profile having a total number of sequenced possible data element combinations. The method includes receiving at the WAD an RF profile transmitted by the base station that includes a triggering portion having a number of pulses, wherein the number is at least equal to the total number of possible data element combinations. The method further includes keeping a count of received pulses and wirelessly transmitting a piece of data, preferably one bit, to the base station when the count reaches a value equal to the stored data element's particular number in the sequence. Finally, the method includes receiving the piece of data at the base station and using the receipt thereof to determine which of the possible data element combinations the stored data element is.
Meteorological Influences on Smoke/Obscurant Effectiveness. Phase 2. Volume 1
1991-11-01
daytime convective conditions. The intermittency (1) listed in the table is 8-14 XMB1 SINGLE PROJECTILE OATR 102-LOSI I 3- LOS1 2.39 2.89 1.59 I 1.59 0a...WU. 7 U 83N 400 500 M 7U TIME C! TIME C(3I 702- LOS1 1192-LOS2 2.3 1 2.M1 .UI 1.5 8.LS U.83 _ _._ _ ._, _ .. 90 U 1U 2 i = U 4 9 W SU 71N22NOi0050U5907M...SINGLE PROJECTILE DRTR 103- LOS1 303-LCS2 2.29 2.9 1.39 1 s " 1.9 a 159 9.2- ----- : 00 a 10 299 300 49 a 100 20 300 as TIM (SECI TIME (SEM1 305-LS2 30
Ashburner, M; Misra, S; Roote, J; Lewis, S E; Blazej, R; Davis, T; Doyle, C; Galle, R; George, R; Harris, N; Hartzell, G; Harvey, D; Hong, L; Houston, K; Hoskins, R; Johnson, G; Martin, C; Moshrefi, A; Palazzolo, M; Reese, M G; Spradling, A; Tsang, G; Wan, K; Whitelaw, K; Celniker, S
1999-01-01
A contiguous sequence of nearly 3 Mb from the genome of Drosophila melanogaster has been sequenced from a series of overlapping P1 and BAC clones. This region covers 69 chromosome polytene bands on chromosome arm 2L, including the genetically well-characterized "Adh region." A computational analysis of the sequence predicts 218 protein-coding genes, 11 tRNAs, and 17 transposable element sequences. At least 38 of the protein-coding genes are arranged in clusters of from 2 to 6 closely related genes, suggesting extensive tandem duplication. The gene density is one protein-coding gene every 13 kb; the transposable element density is one element every 171 kb. Of 73 genes in this region identified by genetic analysis, 49 have been located on the sequence; P-element insertions have been mapped to 43 genes. Ninety-five (44%) of the known and predicted genes match a Drosophila EST, and 144 (66%) have clear similarities to proteins in other organisms. Genes known to have mutant phenotypes are more likely to be represented in cDNA libraries, and far more likely to have products similar to proteins of other organisms, than are genes with no known mutant phenotype. Over 650 chromosome aberration breakpoints map to this chromosome region, and their nonrandom distribution on the genetic map reflects variation in gene spacing on the DNA. This is the first large-scale analysis of the genome of D. melanogaster at the sequence level. In addition to the direct results obtained, this analysis has allowed us to develop and test methods that will be needed to interpret the complete sequence of the genome of this species.Before beginning a Hunt, it is wise to ask someone what you are looking for before you begin looking for it. Milne 1926 PMID:10471707
Barghini, Elena; Mascagni, Flavia; Natali, Lucia; Giordani, Tommaso; Cavallini, Andrea
2017-02-01
Short Interspersed Nuclear Elements (SINEs) are nonautonomous retrotransposons in the genome of most eukaryotic species. While SINEs have been intensively investigated in humans and other animal systems, SINE identification has been carried out only in a limited number of plant species. This lack of information is apparent especially in non-model plants whose genome has not been sequenced yet. The aim of this work was to produce a specific bioinformatics pipeline for analysing second generation sequence reads of a non-model species and identifying SINEs. We have identified, for the first time, 227 putative SINEs of the olive tree (Olea europaea), that constitute one of the few sets of such sequences in dicotyledonous species. The identified SINEs ranged from 140 to 362 bp in length and were characterised with regard to the occurrence of the tRNA domain in their sequence. The majority of identified elements resulted in single copy or very lowly repeated, often in association with genic sequences. Analysis of sequence similarity allowed us to identify two major groups of SINEs showing different abundances in the olive tree genome, the former with sequence similarity to SINEs of Scrophulariaceae and Solanaceae and the latter to SINEs of Salicaceae. A comparison of sequence conservation between olive SINEs and LTR retrotransposon families suggested that SINE expansion in the genome occurred especially in very ancient times, before LTR retrotransposon expansion, and presumably before the separation of the rosids (to which Oleaceae belong) from the Asterids. Besides providing data on olive SINEs, our results demonstrate the suitability of the pipeline employed for SINE identification. Applying this pipeline will favour further structural and functional analyses on these relatively unknown elements to be performed also in other plant species, even in the absence of a reference genome, and will allow establishing general evolutionary patterns for this kind of repeats in plants.
RUDI, a short interspersed element of the V-SINE superfamily widespread in molluscan genomes.
Luchetti, Andrea; Šatović, Eva; Mantovani, Barbara; Plohl, Miroslav
2016-06-01
Short interspersed elements (SINEs) are non-autonomous retrotransposons that are widespread in eukaryotic genomes. They exhibit a chimeric sequence structure consisting of a small RNA-related head, an anonymous body and an AT-rich tail. Although their turnover and de novo emergence is rapid, some SINE elements found in distantly related species retain similarity in certain core segments (or highly conserved domains, HCD). We have characterized a new SINE element named RUDI in the bivalve molluscs Ruditapes decussatus and R. philippinarum and found this element to be widely distributed in the genomes of a number of mollusc species. An unexpected structural feature of RUDI is the HCD domain type V, which was first found in non-amniote vertebrate SINEs and in the SINE from one cnidarian species. In addition to the V domain, the overall sequence conservation pattern of RUDI elements resembles that found in ancient AmnSINE (~310 Myr old) and Au SINE (~320 Myr old) families, suggesting that RUDI might be among the most ancient SINE families. Sequence conservation suggests a monophyletic origin of RUDI. Nucleotide variability and phylogenetic analyses suggest long-term vertical inheritance combined with at least one horizontal transfer event as the most parsimonious explanation for the observed taxonomic distribution.
The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation.
Zubiaga, A M; Belasco, J G; Greenberg, M E
1995-01-01
Labile mRNAs that encode cytokine and immediate-early gene products often contain AU-rich sequences within their 3' untranslated region (UTR). These AU-rich sequences appear to be key determinants of the short half-lives of these mRNAs, although the sequence features of these elements and the mechanism by which they target mRNAs for rapid decay have not been fully defined. We have examined the features of AU-rich elements (AREs) that are crucial for their function as determinants of mRNA instability in mammalian cells by testing the ability of various mutant c-fos AREs and synthetic AREs to direct rapid mRNA deadenylation and decay when inserted within the 3' UTR of the normally stable beta-globin mRNA. Evidence is presented that the pentamer AUUUA, which previously was suggested to be the minimal determinant of instability present in mammalian AREs, cannot direct rapid mRNA deadenylation and decay. Instead, the nonomer UUAUUUAUU is the elemental AU-rich sequence motif that destabilizes mRNA. Removal of one uridine residue from either end of the nonamer (UUAUUUAU or UAUUUAUU) results in a decrease of potency of the element, while removal of a uridine residue from both ends of the nonamer (UAUUUAU) eliminates detectable destabilizing activity. The inclusion of an additional uridine residue at both ends of the nonamer (UUUAUUUAUUU) does not further increase the efficacy of the element. Taken together, these findings suggest that the nonamer UUAUUUAUU is the minimal AU-rich motif that effectively destabilizes mRNA. Additional ARE potency is achieved by combining multiple copies of this nonamer in a single mRNA 3' UTR. Furthermore, analysis of poly(A) shortening rates for ARE-containing mRNAs reveals that the UUAUUUAUU sequence also accelerates mRNA deadenylation and suggests that the UUAUUUAUU motif targets mRNA for rapid deadenylation as an early step in the mRNA decay process. PMID:7891716
Nakahata, Yasukazu; Yoshida, Mayumi; Takano, Atsuko; Soma, Haruhiko; Yamamoto, Takuro; Yasuda, Akio; Nakatsu, Toru; Takumi, Toru
2008-01-01
Background The circadian expression of the mammalian clock genes is based on transcriptional feedback loops. Two basic helix-loop-helix (bHLH) PAS (for Period-Arnt-Sim) domain-containing transcriptional activators, CLOCK and BMAL1, are known to regulate gene expression by interacting with a promoter element termed the E-box (CACGTG). The non-canonical E-boxes or E-box-like sequences have also been reported to be necessary for circadian oscillation. Results We report a new cis-element required for cell-autonomous circadian transcription of clock genes. This new element consists of a canonical E-box or a non-canonical E-box and an E-box-like sequence in tandem with the latter with a short interval, 6 base pairs, between them. We demonstrate that both E-box or E-box-like sequences are needed to generate cell-autonomous oscillation. We also verify that the spacing nucleotides with constant length between these 2 E-elements are crucial for robust oscillation. Furthermore, by in silico analysis we conclude that several clock and clock-controlled genes possess a direct repeat of the E-box-like elements in their promoter region. Conclusion We propose a novel possible mechanism regulated by double E-box-like elements, not to a single E-box, for circadian transcriptional oscillation. The direct repeat of the E-box-like elements identified in this study is the minimal required element for the generation of cell-autonomous transcriptional oscillation of clock and clock-controlled genes. PMID:18177499
Szeverényi, I; Hodel, A; Arber, W; Olasz, F
1996-09-26
We constructed and characterized a novel trap vector for rapid isolation of insertion sequences. The strategy used for the isolation of IS elements is based on the ability of many IS elements to turn on the expression of otherwise silent genes distal to some sites of insertion. The simple transposition of an IS element can sometimes cause the constitutive expression of promoterless antibiotic resistance genes resulting in selectable phenotypes. The trap vector pAW1326 is based on a pBR322 replicon, it carries ampicillin and streptomycin resistance genes, and also silenced genes that confer chloramphenicol and kanamycin resistance once activated. The trap vector pAW1326 proved to be efficient and 85 percent of all isolated mutations were insertions. The majority of IS elements resident in the studied Escherichia coli strains tested became trapped, namely IS2, IS3, IS5, IS150, IS186 and Tn1000. We also encountered an insertion sequence, called IS10L/R-2, which is a hybrid of the two IS variants IS10L and IS10R. IS10L/R-2 is absent from most E. coli strains, but it is detectable in some strains such as JM109 which had been submitted to Tn10 mutagenesis. The distribution of the insertion sequences within the trap region was not random. Rather, the integration of chromosomal mobile genetic elements into the offered target sequence occurred in element-specific clusters. This is explained both by the target specificity and by the specific requirements for the activation of gene transcription by the DNA rearrangement. The employed trap vector pAW1326 proved to be useful for the isolation of mobile genetic elements, for a demonstration of their transposition activity as well as for the further characterization of some of the functional parameters of transposition.
Cosate, Maria Raquel V; Sakamoto, Tetsu; de Oliveira Mendes, Tiago Antônio; Moreira, Élvio C; Regis da Silva, Carlos G; Brasil, Bruno S A F; Oliveira, Camila S F; de Azevedo, Vasco Ariston; Ortega, José Miguel; Leite, Rômulo C; Haddad, João Paulo
2017-06-15
Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira spp. This zoonotic disease is distributed globally and affects domestic animals, including cattle. Leptospira interrogans serogroup Sejroe serovar Hardjo and Leptospira borgpetersenii serogroup Sejroe serovar Hardjo remain important species associated with this reproductive disease in livestock production. Previous studies on Brazilian livestock have reported that L. interrogans serovar Hardjo is the most prevalent leptospiral agent in this country and is related to clinical signs of leptospirosis, which lead to economic losses in production. Here, we described the isolation of three clinical strains (Norma, Lagoa and Bolivia) obtained from leptospirosis outbreaks that occurred in Minas Gerais state in 1994 and 2008. Serological and molecular typing using housekeeping (secY and 16SrRNA) and rfb locus (ORF22 and ORF36) genes were applied for the identification and comparative analysis of Leptospira spp. Our results identified the three isolates as L. interrogans serogroup Sejroe serovar Hardjo and confirmed the occurrence of this bacterial strain in Brazilian livestock. Genetic analysis using ORF22 and ORF36 grouped the Leptospira into serogroup Sejroe and subtype Hardjoprajitno. Genetic approaches were also applied to compare distinct serovars of L. interrogans strains by verifying the copy numbers of the IS1500 and IS1533 insertion sequences (ISs). The IS1500 copy number varied among the analyzed L. interrogans strains. This study provides evidence that L. interrogans serogroup Sejroe serovar Hardjo subtype Hardjoprajitno causes bovine leptospirosis in Brazilian production. The molecular results suggested that rfb locus (ORF22 and ORF36) could improve epidemiological studies by allowing the identification of Leptospira spp. at the serogroup level. Additionally, the IS1500 and IS1533 IS copy number analysis suggested distinct genomic features among closely related leptospiral strains.
Kihara, A; Akiyama, Y; Ito, K
1997-05-27
The cII gene product of bacteriophage lambda is unstable and required for the establishment of lysogenization. Its intracellular amount is important for the decision between lytic growth and lysogenization. Two genetic loci of Escherichia coli are crucial for these commitments of infecting lambda genome. One of them, hflA encodes the HflKC membrane protein complex, which has been believed to be a protease degrading the cII protein. However, both its absence and overproduction stabilized cII in vivo and the proposed serine protease-like sequence motif in HflC was dispensable for the lysogenization control. Moreover, the HflKC protein was found to reside on the periplasmic side of the plasma membrane. In contrast, the other host gene, ftsH (hflB) encoding an integral membrane ATPase/protease, is positively required for degradation of cII, since loss of its function stabilized cII and its overexpression accelerated the cII degradation. In vitro, purified FtsH catalyzed ATP-dependent proteolysis of cII and HflKC antagonized the FtsH action. These results, together with our previous finding that FtsH and HflKC form a complex, suggest that FtsH is the cII degrading protease and HflKC is a modulator of the FtsH function. We propose that this transmembrane modulation differentiates the FtsH actions to different substrate proteins such as the membrane-bound SecY protein and the cytosolic cII protein. This study necessitates a revision of the prevailing view about the host control over lambda lysogenic decision.
LoRTE: Detecting transposon-induced genomic variants using low coverage PacBio long read sequences.
Disdero, Eric; Filée, Jonathan
2017-01-01
Population genomic analysis of transposable elements has greatly benefited from recent advances of sequencing technologies. However, the short size of the reads and the propensity of transposable elements to nest in highly repeated regions of genomes limits the efficiency of bioinformatic tools when Illumina or 454 technologies are used. Fortunately, long read sequencing technologies generating read length that may span the entire length of full transposons are now available. However, existing TE population genomic softwares were not designed to handle long reads and the development of new dedicated tools is needed. LoRTE is the first tool able to use PacBio long read sequences to identify transposon deletions and insertions between a reference genome and genomes of different strains or populations. Tested against simulated and genuine Drosophila melanogaster PacBio datasets, LoRTE appears to be a reliable and broadly applicable tool to study the dynamic and evolutionary impact of transposable elements using low coverage, long read sequences. LoRTE is an efficient and accurate tool to identify structural genomic variants caused by TE insertion or deletion. LoRTE is available for download at http://www.egce.cnrs-gif.fr/?p=6422.
The Repeat Sequences and Elevated Substitution Rates of the Chloroplast accD Gene in Cupressophytes
Li, Jia; Su, Yingjuan; Wang, Ting
2018-01-01
The plastid accD gene encodes a subunit of the acetyl-CoA carboxylase (ACCase) enzyme. The length of accD gene has been supposed to expand in Cryptomeria japonica, Taiwania cryptomerioides, Cephalotaxus, Taxus chinensis, and Podocarpus lambertii, and the main reason for this phenomenon was the existence of tandemly repeated sequences. However, it is still unknown whether the accD gene length in other cupressophytes has expanded. Here, in order to investigate how widespread this phenomenon was, 18 accD sequences and its surrounding regions of cupressophyte were sequenced and analyzed. Together with 39 GenBank sequence data, our taxon sampling covered all the extant gymnosperm orders. The repetitive elements and substitution rates of accD among 57 gymnosperm species were analyzed, the results show: (1) Reading frame length of accD gene in 18 cupressophytes species has also expanded. (2) Many repetitive elements were identified in accD gene of cupressophyte lineages. (3) The synonymous and non-synonymous substitution rates of accD were accelerated in cupressophytes. (4) accD was located in rearrangement endpoints. These results suggested that repetitive elements may mediate the chloroplast genome rearrangement and accelerated the substitution rates. PMID:29731764
2012-01-01
Background Bread wheat, one of the world’s staple food crops, has the largest, highly repetitive and polyploid genome among the cereal crops. The wheat genome holds the key to crop genetic improvement against challenges such as climate change, environmental degradation, and water scarcity. To unravel the complex wheat genome, the International Wheat Genome Sequencing Consortium (IWGSC) is pursuing a chromosome- and chromosome arm-based approach to physical mapping and sequencing. Here we report on the use of a BAC library made from flow-sorted telosomic chromosome 3A short arm (t3AS) for marker development and analysis of sequence composition and comparative evolution of homoeologous genomes of hexaploid wheat. Results The end-sequencing of 9,984 random BACs from a chromosome arm 3AS-specific library (TaaCsp3AShA) generated 11,014,359 bp of high quality sequence from 17,591 BAC-ends with an average length of 626 bp. The sequence represents 3.2% of t3AS with an average DNA sequence read every 19 kb. Overall, 79% of the sequence consisted of repetitive elements, 1.38% as coding regions (estimated 2,850 genes) and another 19% of unknown origin. Comparative sequence analysis suggested that 70-77% of the genes present in both 3A and 3B were syntenic with model species. Among the transposable elements, gypsy/sabrina (12.4%) was the most abundant repeat and was significantly more frequent in 3A compared to homoeologous chromosome 3B. Twenty novel repetitive sequences were also identified using de novo repeat identification. BESs were screened to identify simple sequence repeats (SSR) and transposable element junctions. A total of 1,057 SSRs were identified with a density of one per 10.4 kb, and 7,928 junctions between transposable elements (TE) and other sequences were identified with a density of one per 1.39 kb. With the objective of enhancing the marker density of chromosome 3AS, oligonucleotide primers were successfully designed from 758 SSRs and 695 Insertion Site Based Polymorphisms (ISBPs). Of the 96 ISBP primer pairs tested, 28 (29%) were 3A-specific and compared to 17 (18%) for 96 SSRs. Conclusion This work reports on the use of wheat chromosome arm 3AS-specific BAC library for the targeted generation of sequence data from a particular region of the huge genome of wheat. A large quantity of sequences were generated from the A genome of hexaploid wheat for comparative genome analysis with homoeologous B and D genomes and other model grass genomes. Hundreds of molecular markers were developed from the 3AS arm-specific sequences; these and other sequences will be useful in gene discovery and physical mapping. PMID:22559868
Unit-length line-1 transcripts in human teratocarcinoma cells.
Skowronski, J; Fanning, T G; Singer, M F
1988-01-01
We have characterized the approximately 6.5-kilobase cytoplasmic poly(A)+ Line-1 (L1) RNA present in a human teratocarcinoma cell line, NTera2D1, by primer extension and by analysis of cloned cDNAs. The bulk of the RNA begins (5' end) at the residue previously identified as the 5' terminus of the longest known primate genomic L1 elements, presumed to represent "unit" length. Several of the cDNA clones are close to 6 kilobase pairs, that is, close to full length. The partial sequences of 18 cDNA clones and full sequence of one (5,975 base pairs) indicate that many different genomic L1 elements contribute transcripts to the 6.5-kilobase cytoplasmic poly(A)+ RNA in NTera2D1 cells because no 2 of the 19 cDNAs analyzed had identical sequences. The transcribed elements appear to represent a subset of the total genomic L1s, a subset that has a characteristic consensus sequence in the 3' noncoding region and a high degree of sequence conservation throughout. Two open reading frames (ORFs) of 1,122 (ORF1) and 3,852 (ORF2) bases, flanked by about 800 and 200 bases of sequence at the 5' and 3' ends, respectively, can be identified in the cDNAs. Both ORFs are in the same frame, and they are separated by 33 bases bracketed by two conserved in-frame stop codons. ORF 2 is interrupted by at least one randomly positioned stop codon in the majority of the cDNAs. The data support proposals suggesting that the human L1 family includes one or more functional genes as well as an extraordinarily large number of pseudogenes whose ORFs are broken by stop codons. The cDNA structures suggest that both genes and pseudogenes are transcribed. At least one of the cDNAs (cD11), which was sequenced in its entirety, could, in principle, represent an mRNA for production of the ORF1 polypeptide. The similarity of mammalian L1s to several recently described invertebrate movable elements defines a new widely distributed class of elements which we term class II retrotransposons. Images PMID:2454389
Reading the tea leaves: Dead transposon copies reveal novel host and transposon biology.
McLaughlin, Richard N
2018-03-01
Transposable elements comprise a huge portion of most animal genomes. Unlike many pathogens, these elements leave a mark of their impact via their insertion into host genomes. With proper teasing, these sequences can relay information about the evolutionary history of transposons and their hosts. In a new publication, Larson and colleagues describe a previously unappreciated density of long interspersed element-1 (LINE-1) sequences that have been spliced (LINE-1 and other reverse transcribing elements are necessarily intronless). They provide data to suggest that the retention of these potentially deleterious splice sites in LINE-1 results from the sites' overlap with an important transcription factor binding site. These spliced LINE-1s (i.e., spliced integrated retrotransposed elements [SpiREs]) lose their ability to replicate, suggesting they are evolutionary dead ends. However, the lethality of this splicing could be an efficient means of blocking continued replication of LINE-1. In this way, the record of inactive LINE-1 sequences in the human genome revealed a new, though infrequent, event in the LINE-1 replication cycle and motivates future studies to test whether splicing might be another weapon in the anti-LINE-1 arsenal of host genomes.
Le Dréan, Y; Lazennec, G; Kern, L; Saligaut, D; Pakdel, F; Valotaire, Y
1995-08-01
We previously reported that the expression of the rainbow trout estrogen receptor (rtER) gene is markedly increased by estradiol (E2). In this paper, we have used transient transfection assays with reporter plasmids expressing chloramphenicol acetyl transferase (CAT), linked to 5' flanking regions of the rtER gene promoter, to identify cis-elements responsible for E2 inducibility. Deletion analysis localized an estrogen-responsive element (ERE), at position +242, with one mutation on the first base compared with the consensus sequence. This element confers estrogen responsiveness to CAT reporter linked to both the herpes simplex virus thymidine kinase promoter and the homologous rtER promoter. Moreover, using a 0.2 kb fragment of the rtER promoter encompassing the ERE and the rtER DNA binding domain obtained from a bacterial expression system, DNase I footprinting experiments demonstrated a specific protection covering 20 bp (+240/+260) containing the ERE sequence. Based on these studies, we believe that this ERE sequence, identified in the rtER gene promoter, may be a major cis-acting element involved in the regulation of the gene by estrogen.
Transterm: a database to aid the analysis of regulatory sequences in mRNAs
Jacobs, Grant H.; Chen, Augustine; Stevens, Stewart G.; Stockwell, Peter A.; Black, Michael A.; Tate, Warren P.; Brown, Chris M.
2009-01-01
Messenger RNAs, in addition to coding for proteins, may contain regulatory elements that affect how the protein is translated. These include protein and microRNA-binding sites. Transterm (http://mRNA.otago.ac.nz/Transterm.html) is a database of regions and elements that affect translation with two major unique components. The first is integrated results of analysis of general features that affect translation (initiation, elongation, termination) for species or strains in Genbank, processed through a standard pipeline. The second is curated descriptions of experimentally determined regulatory elements that function as translational control elements in mRNAs. Transterm focuses on protein binding sites, particularly those in 3′-untranslated regions (3′-UTR). For this release the interface has been extensively updated based on user feedback. The data is now accessible by strain rather than species, for example there are 10 Escherichia coli strains (genomes) analysed separately. In addition to providing a repository of data, the database also provides tools for users to query their own mRNA sequences. Users can search sequences for Transterm or user defined regulatory elements, including protein or miRNA targets. Transterm also provides a central core of links to related resources for complementary analyses. PMID:18984623
Control of transcriptional pausing by biased thermal fluctuations on repetitive genomic sequences
Imashimizu, Masahiko; Afek, Ariel; Takahashi, Hiroki; Lubkowska, Lucyna; Lukatsky, David B.
2016-01-01
In the process of transcription elongation, RNA polymerase (RNAP) pauses at highly nonrandom positions across genomic DNA, broadly regulating transcription; however, molecular mechanisms responsible for the recognition of such pausing positions remain poorly understood. Here, using a combination of statistical mechanical modeling and high-throughput sequencing and biochemical data, we evaluate the effect of thermal fluctuations on the regulation of RNAP pausing. We demonstrate that diffusive backtracking of RNAP, which is biased by repetitive DNA sequence elements, causes transcriptional pausing. This effect stems from the increased microscopic heterogeneity of an elongation complex, and thus is entropy-dominated. This report shows a linkage between repetitive sequence elements encoded in the genome and regulation of RNAP pausing driven by thermal fluctuations. PMID:27830653
Self-regulation of 70-kilodalton heat shock proteins in Saccharomyces cerevisiae.
Stone, D E; Craig, E A
1990-01-01
To determine whether the 70-kilodalton heat shock proteins of Saccharomyces cerevisiae play a role in regulating their own synthesis, we studied the effect of overexpressing the SSA1 protein on the activity of the SSA1 5'-regulatory region. The constitutive level of Ssa1p was increased by fusing the SSA1 structural gene to the GAL1 promoter. A reporter vector consisting of an SSA1-lacZ translational fusion was used to assess SSA1 promoter activity. In a strain producing approximately 10-fold the normal heat shock level of Ssa1p, induction of beta-galactosidase activity by heat shock was almost entirely blocked. Expression of a transcriptional fusion vector in which the CYC1 upstream activating sequence of a CYC1-lacZ chimera was replaced by a sequence containing a heat shock upstream activating sequence (heat shock element 2) from the 5'-regulatory region of SSA1 was inhibited by excess Ssa1p. The repression of an SSA1 upstream activating sequence by the SSA1 protein indicates that SSA1 self-regulation is at least partially mediated at the transcriptional level. The expression of another transcriptional fusion vector, containing heat shock element 2 and a lesser amount of flanking sequence, is not inhibited when Ssa1p is overexpressed. This suggests the existence of an element, proximal to or overlapping heat shock element 2, that confers sensitivity to the SSA1 protein. Images PMID:2181281
Fauzi, Hamid; Agyeman, Akwasi; Hines, Jennifer V.
2008-01-01
Many bacteria utilize riboswitch transcription regulation to monitor and appropriately respond to cellular levels of important metabolites or effector molecules. The T box transcription antitermination riboswitch responds to cognate uncharged tRNA by specifically stabilizing an antiterminator element in the 5′-untranslated mRNA leader region and precluding formation of a thermodynamically more stable terminator element. Stabilization occurs when the tRNA acceptor end base pairs with the first four nucleotides in the seven nucleotide bulge of the highly conserved antiterminator element. The significance of the conservation of the antiterminator bulge nucleotides that do not base pair with the tRNA is unknown, but they are required for optimal function. In vitro selection was used to determine if the isolated antiterminator bulge context alone dictates the mode in which the tRNA acceptor end binds the bulge nucleotides. No sequence conservation beyond complementarity was observed and the location was not constrained to the first four bases of the bulge. The results indicate that formation of a structure that recognizes the tRNA acceptor end in isolation is not the determinant driving force for the high phylogenetic sequence conservation observed within the antiterminator bulge. Additional factors or T box leader features more likely influenced the phylogenetic sequence conservation. PMID:19152843
Bäumlein, H; Wobus, U; Pustell, J; Kafatos, F C
1986-01-01
The field bean, Vicia faba L. var. minor, possesses two sub-families of 11 S legumin genes named A and B. We isolated from a genomic library a B-type gene (LeB4) and determined its primary DNA sequence. Gene LeB4 codes for a 484 amino acid residue prepropolypeptide, encompassing a signal peptide of 22 amino acid residues, an acidic, very hydrophilic alpha-chain of 281 residues and a basic, somewhat hydrophobic beta-chain of 181 residues. The latter two coding regions are immediately contiguous, but each is interrupted by a short intron. Type A legumin genes from soybean and pea are known to have introns in the same two positions, in addition to an extra intron (within the alpha-coding sequence). Sequence comparisons of legumin genes from these three plants revealed a highly conserved sequence element of at least 28 bp, centered at approximately 100 bp upstream of each cap site. The element is absent from the equivalent position of all non-legumin and other plant and fungal genes examined. We tentatively name this element "legumin box" and suggest that it may have a function in the regulation of legumin gene expression. PMID:3960730
Current strategies for mobilome research
Jørgensen, Tue S.; Kiil, Anne S.; Hansen, Martin A.; Sørensen, Søren J.; Hansen, Lars H.
2015-01-01
Mobile genetic elements (MGEs) are pivotal for bacterial evolution and adaptation, allowing shuffling of genes even between distantly related bacterial species. The study of these elements is biologically interesting as the mode of genetic propagation is kaleidoscopic and important, as MGEs are the main vehicles of the increasing bacterial antibiotic resistance that causes thousands of human deaths each year. The study of MGEs has previously focused on plasmids from individual isolates, but the revolution in sequencing technology has allowed the study of mobile genomic elements of entire communities using metagenomic approaches. The problem in using metagenomic sequencing for the study of MGEs is that plasmids and other mobile elements only comprise a small fraction of the total genetic content that are difficult to separate from chromosomal DNA based on sequence alone. The distinction between plasmid and chromosome is important as the mobility and regulation of genes largely depend on their genetic context. Several different approaches have been proposed that specifically enrich plasmid DNA from community samples. Here, we review recent approaches used to study entire plasmid pools from complex environments, and point out possible future developments for and pitfalls of these approaches. Further, we discuss the use of the PacBio long-read sequencing technology for MGE discovery. PMID:25657641
Dobinson, K F; Harris, R E; Hamer, J E
1993-01-01
The fungal phytopathogen Magnaporthe grisea parasitizes a wide variety of gramineous hosts. In the course of investigating the genetic relationship between pathogen genotype and host specificity we identified a retroelement that is present in some strains of M. grisea that infect finger millet and goosegrass (members of the plant genus Eleusine). The element, designated grasshopper (grh), is present in multiple copies and dispersed throughout the genome. DNA sequence analysis showed that grasshopper contains 198 base pair direct, long terminal repeats (LTRs) with features characteristic of retroviral and retrotransposon LTRs. Within the element we identified an open reading frame with sequences homologous to the reverse transcriptase, RNaseH, and integrase domains of retroelement pol genes. Comparison of the open reading frame with sequences from other retroelements showed that grh is related to the gypsy family of retrotransposons. Comparisons of the distribution of the grasshopper element with other dispersed repeated DNA sequences in M. grisea indicated that grasshopper was present in a broadly dispersed subgroup of Eleusine pathogens, suggesting that the element was acquired subsequent to the evolution of this host-specific form. We present arguments that the amplification of different retroelements within populations of M. grisea is a consequence of the clonal organization of the fungal populations.
Heideman, Simone G; van Ede, Freek; Nobre, Anna C
2018-05-24
In daily life, temporal expectations may derive from incidental learning of recurring patterns of intervals. We investigated the incidental acquisition and utilisation of combined temporal-ordinal (spatial/effector) structure in complex visual-motor sequences using a modified version of a serial reaction time (SRT) task. In this task, not only the series of targets/responses, but also the series of intervals between subsequent targets was repeated across multiple presentations of the same sequence. Each participant completed three sessions. In the first session, only the repeating sequence was presented. During the second and third session, occasional probe blocks were presented, where a new (unlearned) spatial-temporal sequence was introduced. We first confirm that participants not only got faster over time, but that they were slower and less accurate during probe blocks, indicating that they incidentally learned the sequence structure. Having established a robust behavioural benefit induced by the repeating spatial-temporal sequence, we next addressed our central hypothesis that implicit temporal orienting (evoked by the learned temporal structure) would have the largest influence on performance for targets following short (as opposed to longer) intervals between temporally structured sequence elements, paralleling classical observations in tasks using explicit temporal cues. We found that indeed, reaction time differences between new and repeated sequences were largest for the short interval, compared to the medium and long intervals, and that this was the case, even when comparing late blocks (where the repeated sequence had been incidentally learned), to early blocks (where this sequence was still unfamiliar). We conclude that incidentally acquired temporal expectations that follow a sequential structure can have a robust facilitatory influence on visually-guided behavioural responses and that, like more explicit forms of temporal orienting, this effect is most pronounced for sequence elements that are expected at short inter-element intervals. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
NASA Technical Reports Server (NTRS)
Hanna, M. F. (Inventor)
1973-01-01
An event sequence detector is described with input units, each associated with a row of bistable elements arranged in an array of rows and columns. The detector also includes a shift register which is responsive to clock pulses from any of the units to sequentially provide signals on its output lines each of which is connected to the bistable elements in a corresponding column. When the event-indicating signal is received by an input unit it provides a clock pulse to the shift register to provide the signal on one of its output lines. The input unit also enables all its bistable elements so that the particular element in the column supplied with the signal from the register is driven to an event-indicating state.
Jiang, Ning; Bao, Zhirong; Temnykh, Svetlana; Cheng, Zhukuan; Jiang, Jiming; Wing, Rod A; McCouch, Susan R; Wessler, Susan R
2002-07-01
A new and unusual family of LTR elements, Dasheng, has been discovered in the genome of Oryza sativa following database searches of approximately 100 Mb of rice genomic sequence and 78 Mb of BAC-end sequence information. With all of the cis-elements but none of the coding domains normally associated with retrotransposons (e.g., gag, pol), Dasheng is a novel nonautonomous LTR element with high copy number. Over half of the approximately 1000 Dasheng elements in the rice genome are full length (5.6-8.6 kb), and 60% are estimated to have amplified in the past 500,000 years. Using a modified AFLP technique called transposon display, 215 elements were mapped to all 12 rice chromosomes. Interestingly, more than half of the mapped elements are clustered in the heterochromatic regions around centromeres. The distribution pattern was further confirmed by FISH analysis. Despite clustering in heterochromatin, Dasheng elements are not nested, suggesting their potential value as molecular markers for these marker-poor regions. Taken together, Dasheng is one of the highest-copy-number LTR elements and one of the most recent elements to amplify in the rice genome.
Oggioni, M R; Claverys, J P
1999-10-01
A survey of all Streptococcus pneumoniae GenBank/EMBL DNA sequence entries and of the public domain sequence (representing more than 90% of the genome) of an S. pneumoniae type 4 strain allowed identification of 108 copies of a 107-bp-long highly repeated intergenic element called RUP (for repeat unit of pneumococcus). Several features of the element, revealed in this study, led to the proposal that RUP is an insertion sequence (IS)-derivative that could still be mobile. Among these features are: (1) a highly significant homology between the terminal inverted repeats (IRs) of RUPs and of IS630-Spn1, a new putative IS of S. pneumoniae; and (2) insertion at a TA dinucleotide, a characteristic target of several members of the IS630 family. Trans-mobilization of RUP is therefore proposed to be mediated by the transposase of IS630-Spn1. To account for the observation that RUPs are distributed among four subtypes which exhibit different degrees of sequence homogeneity, a scenario is invoked based on successive stages of RUP mobility and non-mobility, depending on whether an active transposase is present or absent. In the latter situation, an active transposase could be reintroduced into the species through natural transformation. Examination of sequences flanking RUP revealed a preferential association with ISs. It also provided evidence that RUPs promote sequence rearrangements, thereby contributing to genome flexibility. The possibility that RUP preferentially targets transforming DNA of foreign origin and subsequently favours disruption/rearrangement of exogenous sequences is discussed.
Quantifying transfer after perceptual-motor sequence learning: how inflexible is implicit learning?
Sanchez, Daniel J.; Yarnik, Eric N.
2015-01-01
Studies of implicit perceptual-motor sequence learning have often shown learning to be inflexibly tied to the training conditions during learning. Since sequence learning is seen as a model task of skill acquisition, limits on the ability to transfer knowledge from the training context to a performance context indicates important constraints on skill learning approaches. Lack of transfer across contexts has been demonstrated by showing that when task elements are changed following training, this leads to a disruption in performance. These results have typically been taken as suggesting that the sequence knowledge relies on integrated representations across task elements (Abrahamse, Jiménez, Verwey, & Clegg, Psychon Bull Rev 17:603–623, 2010a). Using a relatively new sequence learning task, serial interception sequence learning, three experiments are reported that quantify this magnitude of performance disruption after selectively manipulating individual aspects of motor performance or perceptual information. In Experiment 1, selective disruption of the timing or order of sequential actions was examined using a novel response manipulandum that allowed for separate analysis of these two motor response components. In Experiments 2 and 3, transfer was examined after selective disruption of perceptual information that left the motor response sequence intact. All three experiments provided quantifiable estimates of partial transfer to novel contexts that suggest some level of information integration across task elements. However, the ability to identify quantifiable levels of successful transfer indicates that integration is not all-or-none and that measurement sensitivity is a key in understanding sequence knowledge representations. PMID:24668505
A SINE in the genome of the cephalochordate amphioxus is an Alu element
Holland, Linda Z.
2006-01-01
Transposable elements of about 300 bp, termed “short interspersed nucleotide elements or SINEs are common in eukaryotes. However, Alu elements, SINEs containing restriction sites for the AluI enzyme, have been known only from primates. Here I report the first SINE found in the genome of the cephalochordate, amphioxus. It is an Alu element of 375 bp that does not share substantial identity with any genomic sequences in vertebrates. It was identified because it was located in the FoxD regulatory region in a cosmid derived from one individual, but absent from the two FoxD alleles of BACs from a second individual. However, searches of sequences of BACs and genomic traces from this second individual gave an estimate of 50-100 copies in the amphioxus genome. The finding of an Alu element in amphioxus raises the question of whether Alu elements in amphioxus and primates arose by convergent evolution or by inheritance from a common ancestor. Genome-wide analyses of transposable elements in amphioxus and other chordates such as tunicates, agnathans and cartilaginous fishes could well provide the answer. PMID:16733535
Vázquez, Martín; Ben-Dov, Claudia; Lorenzi, Hernan; Moore, Troy; Schijman, Alejandro; Levin, Mariano J.
2000-01-01
The short interspersed repetitive element (SIRE) of Trypanosoma cruzi was first detected when comparing the sequences of loci that encode the TcP2β genes. It is present in about 1,500–3,000 copies per genome, depending on the strain, and it is distributed in all chromosomes. An initial analysis of SIRE sequences from 21 genomic fragments allowed us to derive a consensus nucleotide sequence and structure for the element, consisting of three regions (I, II, and III) each harboring distinctive features. Analysis of 158 transcribed SIREs demonstrates that the consensus is highly conserved. The sequences of 51 cDNAs show that SIRE is included in the 3′ end of several mRNAs, always transcribed from the sense strand, contributing the polyadenylation site in 63% of the cases. This study led to the characterization of VIPER (vestigial interposed retroelement), a 2,326-bp-long unusual retroelement. VIPER's 5′ end is formed by the first 182 bp of SIRE, whereas its 3′ end is formed by the last 220 bp of the element. Both SIRE moieties are connected by a 1,924-bp-long fragment that carries a unique ORF encoding a complete reverse transcriptase-RNase H gene whose 15 C-terminal amino acids derive from codons specified by SIRE's region II. The amino acid sequence of VIPER's reverse transcriptase-RNase H shares significant homology to that of long terminal repeat retrotransposons. The fact that SIRE and VIPER sequences are found only in the T. cruzi genome may be of relevance for studies concerning the evolution and the genome flexibility of this protozoan parasite. PMID:10688909
Molecular Population Genetics of the Alcohol Dehydrogenase Gene Region of DROSOPHILA MELANOGASTER
Aquadro, Charles F.; Desse, Susan F.; Bland, Molly M.; Langley, Charles H.; Laurie-Ahlberg, Cathy C.
1986-01-01
Variation in the DNA restriction map of a 13-kb region of chromosome II including the alcohol dehydrogenase structural gene (Adh) was examined in Drosophila melanogaster from natural populations. Detailed analysis of 48 D. melanogaster lines representing four eastern United States populations revealed extensive DNA sequence variation due to base substitutions, insertions and deletions. Cloning of this region from several lines allowed characterization of length variation as due to unique sequence insertions or deletions [nine sizes; 21–200 base pairs (bp)] or transposable element insertions (several sizes, 340 bp to 10.2 kb, representing four different elements). Despite this extensive variation in sequences flanking the Adh gene, only one length polymorphism is clearly associated with altered Adh expression (a copia element approximately 250 bp 5' to the distal transcript start site). Nonetheless, the frequency spectra of transposable elements within and between Drosophila species suggests they are slightly deleterious. Strong nonrandom associations are observed among Adh region sequence variants, ADH allozyme (Fast vs. Slow), ADH enzyme activity and the chromosome inversion ln(2L) t. Phylogenetic analysis of restriction map haplotypes suggest that the major twofold component of ADH activity variation (high vs. low, typical of Fast and Slow allozymes, respectively) is due to sequence variation tightly linked to and possibly distinct from that underlying the allozyme difference. The patterns of nucleotide and haplotype variation for Fast and Slow allozyme lines are consistent with the recent increase in frequency and spread of the Fast haplotype associated with high ADH activity. These data emphasize the important role of evolutionary history and strong nonrandom associations among tightly linked sequence variation as determinants of the patterns of variation observed in natural populations. PMID:3026893
Analysis of an osmotically regulated pathogenesis-related osmotin gene promoter.
Raghothama, K G; Liu, D; Nelson, D E; Hasegawa, P M; Bressan, R A
1993-12-01
Osmotin is a small (24 kDa), basic, pathogenesis-related protein, that accumulates during adaptation of tobacco (Nicotiana tabacum) cells to osmotic stress. There are more than 10 inducers that activate the osmotin gene in various plant tissues. The osmotin promoter contains several sequences bearing a high degree of similarity to ABRE, as-1 and E-8 cis element sequences. Gel retardation studies indicated the presence of at least two regions in the osmotin promoter that show specific interactions with nuclear factors isolated from cultured cells or leaves. The abundance of these binding factors increased in response to salt, ABA and ethylene. Nuclear factors protected a 35 bp sequence of the promoter from DNase I digestion. Different 5' deletions of the osmotin promoter cloned into a promoter-less GUSNOS plasmid (pBI 201) were used in transient expression studies with a Biolistic gun. The transient expression studies revealed the presence of three distinct regions in the osmotin promoter. The promoter sequence from -108 to -248 bp is absolutely required for reporter gene activity, followed by a long stretch (up to -1052) of enhancer-like sequence and then a sequence upstream of -1052, which appears to contain negative elements. The responses to ABA, ethylene, salt, desiccation and wounding appear to be associated with the -248 bp sequence of the promoter. This region also contains a putative ABRE (CACTGTG) core element. Activation of the osmotin gene by various inducers is discussed in view of antifungal activity of the osmotin protein.
Odon, Valerie; Luke, Garry A.; Roulston, Claire; Brown, Jeremy D.; Ryan, Martin D.; Sukhodub, Andriy
2013-01-01
2A oligopeptide sequences (“2As”) mediate a cotranslational recoding event termed “ribosome skipping.” Previously we demonstrated the activity of 2As (and “2A-like sequences”) within a wide range of animal RNA virus genomes and non-long terminal repeat retrotransposons (non-LTRs) in the genomes of the unicellular organisms Trypanosoma brucei (Ingi) and T. cruzi (L1Tc). Here, we report the presence of 2A-like sequences in the genomes of a wide range of multicellular organisms and, as in the trypanosome genomes, within non-LTR retrotransposons (non-LTRs)—clustering in the Rex1, Crack, L2, L2A, and CR1 clades, in addition to Ingi. These 2A-like sequences were tested for translational recoding activity, and highly active sequences were found within the Rex1, L2, CR1, and Ingi clades. The presence of 2A-like sequences within non-LTRs may not only represent a method of controlling protein biogenesis but also shows some correlation with such apurinic/apyrimidinic DNA endonuclease-type non-LTRs encoding one, rather than two, open reading frames (ORFs). Interestingly, such non-LTRs cluster with closely related elements lacking 2A-like recoding elements but retaining ORF1. Taken together, these observations suggest that acquisition of 2A-like translational recoding sequences may have played a role in the evolution of these elements. PMID:23728794
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchman, A.R.; Kimmerly, W.J.; Rine, J.
1988-01-01
Two DNA-binding factors from Saccharomyces cerevisiae have been characterized, GRFI (general regulatory factor I) and ABFI (ARS-binding factor I), that recognize specific sequences within diverse genetic elements. GRFI bound to sequences at the negative regulatory elements (silencers) of the silent mating type loci HML E and HMR E and to the upstream activating sequence (UAS) required for transcription of the MAT ..cap alpha.. genes. A putative conserved UAS located at genes involved in translation (RPG box) was also recognized by GRFI. In addition, GRFI bound with high affinity to sequences within the (C/sub 1-3/A)-repeat region at yeast telomeres. Binding sitesmore » for GRFI with the highest affinity appeared to be of the form 5'-(A/G)(A/C)ACCCAN NCA(T/C)(T/C)-3', where N is any nucleotide. ABFI-binding sites were located next to autonomously replicating sequences (ARSs) at controlling elements of the silent mating type loci HMR E, HMR I, and HML I and were associated with ARS1, ARS2, and the 2..mu..m plasmid ARS. Two tandem ABFI binding sites were found between the HIS3 and DED1 genes, several kilobase pairs from any ARS, indicating that ABFI-binding sites are not restricted to ARSs. The sequences recognized by AFBI showed partial dyad-symmetry and appeared to be variations of the consensus 5'-TATCATTNNNNACGA-3'. GRFI and ABFI were both abundant DNA-binding factors and did not appear to be encoded by the SIR genes, whose product are required for repression of the silent mating type loci. Together, these results indicate that both GRFI and ABFI play multiple roles within the cell.« less
Jakubczak, J. L.; Zenni, M. K.; Woodruff, R. C.; Eickbush, T. H.
1992-01-01
R1 and R2 are distantly related non-long terminal repeat retrotransposable elements each of which inserts into a specific site in the 28S rRNA genes of most insects. We have analyzed aspects of R1 and R2 abundance and sequence variation in 27 geographical isolates of Drosophila melanogaster. The fraction of 28S rRNA genes containing these elements varied greatly between strains, 17-67% for R1 elements and 2-28% for R2 elements. The total percentage of the rDNA repeats inserted ranged from 32 to 77%. The fraction of the rDNA repeats that contained both of these elements suggested that R1 and R2 exhibit neither an inhibition of nor preference for insertion into a 28S gene already containing the other type of element. Based on the conservation of restriction sites in the elements of all strains, and sequence analysis of individual elements from three strains, nucleotide divergence is very low for R1 and R2 elements within or between strains (<0.6%). This sequence uniformity is the expected result of the forces of concerted evolution (unequal crossovers and gene conversion) which act on the rRNA genes themselves. Evidence for the role of retrotransposition in the turnover of R1 and R2 was obtained by using naturally occurring 5' length polymorphisms of the elements as markers for independent transposition events. The pattern of these different length 5' truncations of R1 and R2 was found to be diverse and unique to most strains analyzed. Because recombination can only, with time, amplify or eliminate those length variants already present, the diversity found in each strain suggests that retrotransposition has played a critical role in maintaining these elements in the rDNA repeats of D. melanogaster. PMID:1317313
Maruyama, Kyonoshin; Todaka, Daisuke; Mizoi, Junya; Yoshida, Takuya; Kidokoro, Satoshi; Matsukura, Satoko; Takasaki, Hironori; Sakurai, Tetsuya; Yamamoto, Yoshiharu Y.; Yoshiwara, Kyouko; Kojima, Mikiko; Sakakibara, Hitoshi; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko
2012-01-01
The genomes of three plants, Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and soybean (Glycine max), have been sequenced, and their many genes and promoters have been predicted. In Arabidopsis, cis-acting promoter elements involved in cold- and dehydration-responsive gene expression have been extensively analysed; however, the characteristics of such cis-acting promoter sequences in cold- and dehydration-inducible genes of rice and soybean remain to be clarified. In this study, we performed microarray analyses using the three species, and compared characteristics of identified cold- and dehydration-inducible genes. Transcription profiles of the cold- and dehydration-responsive genes were similar among these three species, showing representative upregulated (dehydrin/LEA) and downregulated (photosynthesis-related) genes. All (46 = 4096) hexamer sequences in the promoters of the three species were investigated, revealing the frequency of conserved sequences in cold- and dehydration-inducible promoters. A core sequence of the abscisic acid-responsive element (ABRE) was the most conserved in dehydration-inducible promoters of all three species, suggesting that transcriptional regulation for dehydration-inducible genes is similar among these three species, with the ABRE-dependent transcriptional pathway. In contrast, for cold-inducible promoters, the conserved hexamer sequences were diversified among these three species, suggesting the existence of diverse transcriptional regulatory pathways for cold-inducible genes among the species. PMID:22184637
Robust k-mer frequency estimation using gapped k-mers
Ghandi, Mahmoud; Mohammad-Noori, Morteza
2013-01-01
Oligomers of fixed length, k, commonly known as k-mers, are often used as fundamental elements in the description of DNA sequence features of diverse biological function, or as intermediate elements in the constuction of more complex descriptors of sequence features such as position weight matrices. k-mers are very useful as general sequence features because they constitute a complete and unbiased feature set, and do not require parameterization based on incomplete knowledge of biological mechanisms. However, a fundamental limitation in the use of k-mers as sequence features is that as k is increased, larger spatial correlations in DNA sequence elements can be described, but the frequency of observing any specific k-mer becomes very small, and rapidly approaches a sparse matrix of binary counts. Thus any statistical learning approach using k-mers will be susceptible to noisy estimation of k-mer frequencies once k becomes large. Because all molecular DNA interactions have limited spatial extent, gapped k-mers often carry the relevant biological signal. Here we use gapped k-mer counts to more robustly estimate the ungapped k-mer frequencies, by deriving an equation for the minimum norm estimate of k-mer frequencies given an observed set of gapped k-mer frequencies. We demonstrate that this approach provides a more accurate estimate of the k-mer frequencies in real biological sequences using a sample of CTCF binding sites in the human genome. PMID:23861010
Robust k-mer frequency estimation using gapped k-mers.
Ghandi, Mahmoud; Mohammad-Noori, Morteza; Beer, Michael A
2014-08-01
Oligomers of fixed length, k, commonly known as k-mers, are often used as fundamental elements in the description of DNA sequence features of diverse biological function, or as intermediate elements in the constuction of more complex descriptors of sequence features such as position weight matrices. k-mers are very useful as general sequence features because they constitute a complete and unbiased feature set, and do not require parameterization based on incomplete knowledge of biological mechanisms. However, a fundamental limitation in the use of k-mers as sequence features is that as k is increased, larger spatial correlations in DNA sequence elements can be described, but the frequency of observing any specific k-mer becomes very small, and rapidly approaches a sparse matrix of binary counts. Thus any statistical learning approach using k-mers will be susceptible to noisy estimation of k-mer frequencies once k becomes large. Because all molecular DNA interactions have limited spatial extent, gapped k-mers often carry the relevant biological signal. Here we use gapped k-mer counts to more robustly estimate the ungapped k-mer frequencies, by deriving an equation for the minimum norm estimate of k-mer frequencies given an observed set of gapped k-mer frequencies. We demonstrate that this approach provides a more accurate estimate of the k-mer frequencies in real biological sequences using a sample of CTCF binding sites in the human genome.
Alu repeats: A source for the genesis of primate microsatellites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arcot, S.S.; Batzer, M.A.; Wang, Zhenyuan
1995-09-01
As a result of their abundance, relatively uniform distribution, and high degree of polymorphism, microsatellites and minisatellites have become valuable tools in genetic mapping, forensic identity testing, and population studies. In recent years, a number of microsatellite repeats have been found to be associated with Alu interspersed repeated DNA elements. The association of an Alu element with a microsatellite repeat could result from the integration of an Alu element within a preexisting microsatellite repeat. Alternatively, Alu elements could have a direct role in the origin of microsatellite repeats. Errors introduced during reverse transcription of the primary transcript derived from anmore » Alu {open_quotes}master{close_quote} gene or the accumulation of random mutations in the middle A-rich regions and oligo(dA)-rich tails of Alu elements after insertion and subsequent expansion and contraction of these sequences could result in the genesis of a microsatellite repeat. We have tested these hypotheses by a direct evolutionary comparison of the sequences of some recent Alu elements that are found only in humans and are absent from nonhuman primates, as well as some older Alu elements that are present at orthologous positions in a number of nonhuman primates. The origin of {open_quotes}young{close_quotes} Alu insertions, absence of sequences that resemble microsatellite repeats at the orthologous loci in chimpanzees, and the gradual expansion of microsatellite repeats in some old Alu repeats at orthologous positions within the genomes of a number of nonhuman primates suggest that Alu elements are a source for the genesis of primate microsatellite repeats. 48 refs., 5 figs., 3 tabs.« less
A comprehensive list of cloned human DNA sequences
Schmidtke, Jörg; Cooper, David N.
1987-01-01
A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:3575113
A comprehensive list of cloned human DNA sequences
Schmidtke, Jörg; Cooper, David N.
1990-01-01
A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:2333227
A comprehensive list of cloned human DNA sequences
Schmidtke, Jörg; Cooper, David N.
1988-01-01
A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:3368330
A comprehensive list of cloned human DNA sequences
Schmidtke, Jörg; Cooper, David N.
1989-01-01
A list of DNA sequences cloned from the human genome is presented. Intended as a guide to clone availability, this list includes published reports of cDNA, genomic and synthetic clones comprising gene and pseudogene sequences, uncharacterised DNA segments and repetitive DNA elements. PMID:2654889
Orebody Modelling for Exploration: The Western Mineralisation, Broken Hill, NSW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lotfolah Hamedani, Mohammad, E-mail: mlotfham@gmail.com; Plimer, Ian Rutherford; Xu Chaoshui
2012-09-15
The Western Mineralisation in the Broken Hill deposit was studied to identify the zonation sequence of lithogeochemical haloes along and across the strike of the orebody. Samples used are from 77 drill holes and the samples were assayed for Pb, Zn, Fe, S, Cu, Ag, Cd, Sb, Bi and As. Variogram analyses were calculated for all the elements and kriging was used to construct the 3D block model. Analysis of cross sections along and across the strike of the orebody shows that Bi and Sb form broader halos around sulphide masses and this suggests that they are pathfinder elements formore » the Pb and Zn elements of this orebody. The threshold concentrations (minimum anomaly) of the 10 elements were determined using the concentration-area analysis. On east-west vertical cross sections, the values of linear productivity, variability gradient and zonality index were calculated for each element. Based on the maximum zonality index of each element, the sequence of geochemical zonation pattern was determined from top to bottom of the orebody. The result shows that S, Pb, Zn and Cd tend to concentrate in the upper part of the mineralisation whereas Ag, Cu, Bi and As have a tendency to concentrate in the lower part of the mineralised rocks. Also, an empirical product ratio index was developed based on the position of the elements in the zonation sequence. The methods and results of this research are applicable to exploration of similar Zn and Pb sulphide ore deposits.« less
Isolation and characterization of a water stress-specific genomic gene, pwsi 18, from rice.
Joshee, N; Kisaka, H; Kitagawa, Y
1998-01-01
One of the water stress-specific cDNA clones of rice characterised previously, wsi18, was selected for further study. The wsi18 gene can be induced by water stress conditions such as mannitol, NaCl, and dryness, but not by ABA, cold, or heat. A genomic clone for wsi18, pwsi18, contained about 1.7 kbp of the 5' upstream sequence, two introns, and the full coding sequence. The 5'-upstream sequence of pwsi18 contained putative cis-acting elements, namely an ABA-responsive element (ABRE), three G-boxes, three E-boxes, a MEF-2 sequence, four direct and two inverted repeats, and four sequences similar to DRE, which is involved in the dehydration response of Arabidopsis genes. The gusA reporter gene under the control of the pwsi18 promoter showed transient expression in response to water stress. Deletion of the downstream DRE-like sequence between the distal G-boxes-2 and -3 resulted in rather low GUS expression.
Brookfield, John F. Y.; Johnson, Louise J.
2006-01-01
Some families of mammalian interspersed repetitive DNA, such as the Alu SINE sequence, appear to have evolved by the serial replacement of one active sequence with another, consistent with there being a single source of transposition: the “master gene.” Alternative models, in which multiple source sequences are simultaneously active, have been called “transposon models.” Transposon models differ in the proportion of elements that are active and in whether inactivation occurs at the moment of transposition or later. Here we examine the predictions of various types of transposon model regarding the patterns of sequence variation expected at an equilibrium between transposition, inactivation, and deletion. Under the master gene model, all bifurcations in the true tree of elements occur in a single lineage. We show that this property will also hold approximately for transposon models in which most elements are inactive and where at least some of the inactivation events occur after transposition. Such tree shapes are therefore not conclusive evidence for a single source of transposition. PMID:16790583
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, R. L., Hamaguchi, L., Busch, M. A., and Weigel, D.
2003-06-01
OAK-B135 In Arabidopsis thaliana, cis-regulatory sequences of the floral homeotic gene AGAMOUS (AG) are located in the second intron. This 3 kb intron contains binding sites for two direct activators of AG, LEAFY (LFY) and WUSCHEL (WUS), along with other putative regulatory elements. We have used phylogenetic footprinting and the related technique of phylogenetic shadowing to identify putative cis-regulatory elements in this intron. Among 29 Brassicaceae, several other motifs, but not the LFY and WUS binding sites previously identified, are largely invariant. Using reporter gene analyses, we tested six of these motifs and found that they are all functionally importantmore » for activity of AG regulatory sequences in A. thaliana. Although there is little obvious sequence similarity outside the Brassicaceae, the intron from cucumber AG has at least partial activity in A. thaliana. Our studies underscore the value of the comparative approach as a tool that complements gene-by-gene promoter dissection, but also highlight that sequence-based studies alone are insufficient for a complete identification of cis-regulatory sites.« less
ProGeRF: Proteome and Genome Repeat Finder Utilizing a Fast Parallel Hash Function
Moraes, Walas Jhony Lopes; Rodrigues, Thiago de Souza; Bartholomeu, Daniella Castanheira
2015-01-01
Repetitive element sequences are adjacent, repeating patterns, also called motifs, and can be of different lengths; repetitions can involve their exact or approximate copies. They have been widely used as molecular markers in population biology. Given the sizes of sequenced genomes, various bioinformatics tools have been developed for the extraction of repetitive elements from DNA sequences. However, currently available tools do not provide options for identifying repetitive elements in the genome or proteome, displaying a user-friendly web interface, and performing-exhaustive searches. ProGeRF is a web site for extracting repetitive regions from genome and proteome sequences. It was designed to be efficient, fast, and accurate and primarily user-friendly web tool allowing many ways to view and analyse the results. ProGeRF (Proteome and Genome Repeat Finder) is freely available as a stand-alone program, from which the users can download the source code, and as a web tool. It was developed using the hash table approach to extract perfect and imperfect repetitive regions in a (multi)FASTA file, while allowing a linear time complexity. PMID:25811026
Markunas, Christina A; Johnson, Eric O; Hancock, Dana B
2017-07-01
Genome-wide association study (GWAS)-identified variants are enriched for functional elements. However, we have limited knowledge of how functional enrichment may differ by disease/trait and tissue type. We tested a broad set of eight functional elements for enrichment among GWAS-identified SNPs (p < 5×10 -8 ) from the NHGRI-EBI Catalog across seven disease/trait categories: cancer, cardiovascular disease, diabetes, autoimmune disease, psychiatric disease, neurological disease, and anthropometric traits. SNPs were annotated using HaploReg for the eight functional elements across any tissue: DNase sites, expression quantitative trait loci (eQTL), sequence conservation, enhancers, promoters, missense variants, sequence motifs, and protein binding sites. In addition, tissue-specific annotations were considered for brain vs. blood. Disease/trait SNPs were compared to a control set of 4809 SNPs matched to the GWAS SNPs (N = 1639) on allele frequency, gene density, distance to nearest gene, and linkage disequilibrium at ~3:1 ratio. Enrichment analyses were conducted using logistic regression, with Bonferroni correction. Overall, a significant enrichment was observed for all functional elements, except sequence motifs. Missense SNPs showed the strongest magnitude of enrichment. eQTLs were the only functional element significantly enriched across all diseases/traits. Magnitudes of enrichment were generally similar across diseases/traits, where enrichment was statistically significant. Blood vs. brain tissue effects on enrichment were dependent on disease/trait and functional element (e.g., cardiovascular disease: eQTLs P TissueDifference = 1.28 × 10 -6 vs. enhancers P TissueDifference = 0.94). Identifying disease/trait-relevant functional elements and tissue types could provide new insight into the underlying biology, by guiding a priori GWAS analyses (e.g., brain enhancer elements for psychiatric disease) or facilitating post hoc interpretation.
Cardiac cine imaging at 3 Tesla: initial experience with a 32-element body-array coil.
Fenchel, Michael; Deshpande, Vibhas S; Nael, Kambiz; Finn, J Paul; Miller, Stephan; Ruehm, Stefan; Laub, Gerhard
2006-08-01
We sought to assess the feasibility of cardiac cine imaging and evaluate image quality at 3 T using a body-array coil with 32 coil elements. Eight healthy volunteers (3 men; median age 29 years) were examined on a 3-T magnetic resonance scanner (Magnetom Trio, Siemens Medical Solutions) using a 32-element phased-array coil (prototype from In vivo Corp.). Gradient-recalled-echo (GRE) cine (GRAPPAx3), GRE cine with tagging lines, steady-state-free-precession (SSFP) cine (GRAPPAx3 and x4), and SSFP cine(TSENSEx4 andx6) images were acquired in short-axis and 4-chamber view. Reference images with identical scan parameters were acquired using the total-imaging-matrix (Tim) coil system with a total of 12 coil elements. Images were assessed by 2 observers in a consensus reading with regard to image quality, noise and presence of artifacts. Furthermore, signal-to-noise values were determined in phantom measurements. In phantom measurements signal-to-noise values were increased by 115-155% for the various cine sequences using the 32-element coil. Scoring of image quality yielded statistically significant increased image quality with the SSFP-GRAPPAx4, SSFP-TSENSEx4, and SSFP-TSENSEx6 sequence using the 32-element coil (P < 0.05). Similarly, scoring of image noise yielded a statistically significant lower noise rating with the SSFP-GRAPPAx4, GRE-GRAPPAx3, SSFP-TSENSEx4, and SSFP-TSENSEx6 sequence using the 32-element coil (P < 0.05). This study shows that cardiac cine imaging at 3 T using a 32-element body-array coil is feasible in healthy volunteers. Using a large number of coil elements with a favorable sensitivity profile supports faster image acquisition, with high diagnostic image quality even for high parallel imaging factors.
Storyboard method of end-user programming with natural language configuration
Bouchard, Ann M; Osbourn, Gordon C
2013-11-19
A technique for end-user programming includes populating a template with graphically illustrated actions and then invoking a command to generate a screen element based on the template. The screen element is rendered within a computing environment and provides a mechanism for triggering execution of a sequence of user actions. The sequence of user actions is based at least in part on the graphically illustrated actions populated into the template.
An Autonomous BMP2 Regulatory Element in Mesenchymal Cells
Kruithof, Boudewijn P.T.; Fritz, David T.; Liu, Yijun; Garsetti, Diane E.; Frank, David B.; Pregizer, Steven K.; Gaussin, Vinciane; Mortlock, Douglas P.; Rogers, Melissa B.
2014-01-01
BMP2 is a morphogen that controls mesenchymal cell differentiation and behavior. For example, BMP2 concentration controls the differentiation of mesenchymal precursors into myocytes, adipocytes, chondrocytes, and osteoblasts. Sequences within the 3′untranslated region (UTR) of the Bmp2 mRNA mediate a post-transcriptional block of protein synthesis. Interaction of cell and developmental stage-specific trans-regulatory factors with the 3′UTR is a nimble and versatile mechanism for modulating this potent morphogen in different cell types. We show here, that an ultra-conserved sequence in the 3′UTR functions independently of promoter, coding region, and 3′UTR context in primary and immortalized tissue culture cells and in transgenic mice. Our findings indicate that the ultra-conserved sequence is an autonomously functioning post-transcriptional element that may be used to modulate the level of BMP2 and other proteins while retaining tissue specific regulatory elements. PMID:21268088
Specificity determinants for the abscisic acid response element.
Sarkar, Aditya Kumar; Lahiri, Ansuman
2013-01-01
Abscisic acid (ABA) response elements (ABREs) are a group of cis-acting DNA elements that have been identified from promoter analysis of many ABA-regulated genes in plants. We are interested in understanding the mechanism of binding specificity between ABREs and a class of bZIP transcription factors known as ABRE binding factors (ABFs). In this work, we have modeled the homodimeric structure of the bZIP domain of ABRE binding factor 1 from Arabidopsis thaliana (AtABF1) and studied its interaction with ACGT core motif-containing ABRE sequences. We have also examined the variation in the stability of the protein-DNA complex upon mutating ABRE sequences using the protein design algorithm FoldX. The high throughput free energy calculations successfully predicted the ability of ABF1 to bind to alternative core motifs like GCGT or AAGT and also rationalized the role of the flanking sequences in determining the specificity of the protein-DNA interaction.
Franco, Bernardo; Hernández, Roberto; López-Villaseñor, Imelda
2012-09-01
Trichomonas vaginalis is a parasitic protozoan of both medical and biological relevance. Transcriptional studies in this organism have focused mainly on type II pol promoters, whereas the elements necessary for transcription by polI or polIII have not been investigated. Here, with the aid of a transient transcription system, we characterised the rDNA intergenic region, defining both the promoter and the terminator sequences required for transcription. We defined the promoter as a compact region of approximately 180 bp. We also identified a potential upstream control element (UCE) that was located 80 bp upstream of the transcription start point (TSP). A transcription termination element was identified within a 34 bp region that was located immediately downstream of the 28S coding sequence. The function of this element depends upon polarity and the presence of both a stretch of uridine residues (U's) and a hairpin structure in the transcript. Our observations provide a strong basis for the study of DNA recognition by the polI transcriptional machinery in this early divergent organism. Copyright © 2012 Elsevier B.V. All rights reserved.
Arimbasseri, Aneeshkumar G.; Maraia, Richard J.
2015-01-01
SUMMARY Understanding the mechanism of transcription termination by a eukaryotic RNA polymerase (RNAP) has been limited by lack of a characterizable intermediate that reflects transition from an elongation complex to a true termination event. While other multisubunit RNAPs require multipartite cis-signals and/or ancillary factors to mediate pausing and release of the nascent transcript from the clutches of these enzymes, RNAP III does so with precision and efficiency on a simple oligo(dT) tract, independent of other cis-elements or trans-factors. We report a RNAP III pre-termination complex that reveals termination mechanisms controlled by sequence-specific elements in the non-template strand. Furthermore, the TFIIF-like, RNAP III subunit, C37 is required for this function of the non-template strand signal. The results reveal the RNAP III terminator as an information-rich control element. While the template strand promotes destabilization via a weak oligo(rU:dA) hybrid, the non-template strand provides distinct sequence-specific destabilizing information through interactions with the C37 subunit. PMID:25959395
Kim, K H; Hemenway, C
1997-05-26
The putative subgenomic RNA (sgRNA) promoter regions upstream of the potato virus X (PVX) triple block and coat protein (CP) genes contain sequences common to other potexviruses. The importance of these sequences to PVX sgRNA accumulation was determined by inoculation of Nicotiana tabacum NT1 cell suspension protoplasts with transcripts derived from wild-type and modified PVX cDNA clones. Analyses of RNA accumulation by S1 nuclease digestion and primer extension indicated that a conserved octanucleotide sequence element and the spacing between this element and the start-site for sgRNA synthesis are critical for accumulation of the two major sgRNA species. The impact of mutations on CP sgRNA levels was also reflected in the accumulation of CP. In contrast, genomic minus- and plus-strand RNA accumulation were not significantly affected by mutations in these regions. Studies involving inoculation of tobacco plants with the modified transcripts suggested that the conserved octanucleotide element functions in sgRNA accumulation and some other aspect of the infection process.
Cartault, François; Munier, Patrick; Benko, Edgar; Desguerre, Isabelle; Hanein, Sylvain; Boddaert, Nathalie; Bandiera, Simonetta; Vellayoudom, Jeanine; Krejbich-Trotot, Pascale; Bintner, Marc; Hoarau, Jean-Jacques; Girard, Muriel; Génin, Emmanuelle; de Lonlay, Pascale; Fourmaintraux, Alain; Naville, Magali; Rodriguez, Diana; Feingold, Josué; Renouil, Michel; Munnich, Arnold; Westhof, Eric; Fähling, Michael; Lyonnet, Stanislas; Henrion-Caude, Alexandra
2012-01-01
The human genome is densely populated with transposons and transposon-like repetitive elements. Although the impact of these transposons and elements on human genome evolution is recognized, the significance of subtle variations in their sequence remains mostly unexplored. Here we report homozygosity mapping of an infantile neurodegenerative disease locus in a genetic isolate. Complete DNA sequencing of the 400-kb linkage locus revealed a point mutation in a primate-specific retrotransposon that was transcribed as part of a unique noncoding RNA, which was expressed in the brain. In vitro knockdown of this RNA increased neuronal apoptosis, consistent with the inappropriate dosage of this RNA in vivo and with the phenotype. Moreover, structural analysis of the sequence revealed a small RNA-like hairpin that was consistent with the putative gain of a functional site when mutated. We show here that a mutation in a unique transposable element-containing RNA is associated with lethal encephalopathy, and we suggest that RNAs that harbor evolutionarily recent repetitive elements may play important roles in human brain development. PMID:22411793
Hamada, K; Gleason, S L; Levi, B Z; Hirschfeld, S; Appella, E; Ozato, K
1989-11-01
Transcription of major histocompatibility complex (MHC) class I genes is regulated by the conserved MHC class I regulatory element (CRE). The CRE has two factor-binding sites, region I and region II, both of which elicit enhancer function. By screening a mouse lambda gt 11 library with the CRE as a probe, we isolated a cDNA clone that encodes a protein capable of binding to region II of the CRE. This protein, H-2RIIBP (H-2 region II binding protein), bound to the native region II sequence, but not to other MHC cis-acting sequences or to mutant region II sequences, similar to the naturally occurring region II factor in mouse cells. The deduced amino acid sequence of H-2RIIBP revealed two putative zinc fingers homologous to the DNA-binding domain of steroid/thyroid hormone receptors. Although sequence similarity in other regions was minimal, H-2RIIBP has apparent modular domains characteristic of the nuclear hormone receptors. Further analyses showed that both H-2RIIBP and the natural region II factor bind to the estrogen response element (ERE) of the vitellogenin A2 gene. The ERE is composed of a palindrome, and half of this palindrome resembles the region II binding site of the MHC CRE. These results indicate that H-2RIIBP (i) is a member of the superfamily of nuclear hormone receptors and (ii) may regulate not only MHC class I genes but also genes containing the ERE and related sequences. Sequences homologous to the H-2RIIBP gene are widely conserved in the animal kingdom. H-2RIIBP mRNA is expressed in many mouse tissues, in agreement with the distribution of the natural region II factor.
Application of a hybrid generation/utility assessment heuristic to a class of scheduling problems
NASA Technical Reports Server (NTRS)
Heyward, Ann O.
1989-01-01
A two-stage heuristic solution approach for a class of multiobjective, n-job, 1-machine scheduling problems is described. Minimization of job-to-job interference for n jobs is sought. The first stage generates alternative schedule sequences by interchanging pairs of schedule elements. The set of alternative sequences can represent nodes of a decision tree; each node is reached via decision to interchange job elements. The second stage selects the parent node for the next generation of alternative sequences through automated paired comparison of objective performance for all current nodes. An application of the heuristic approach to communications satellite systems planning is presented.
Proels, Reinhard K; Roitsch, Thomas
2006-03-01
Very few CACTA transposon-like sequences have been described in Solanaceae species. Sequence information has been restricted to partial transposase (TPase)-like fragments, and no target gene of CACTA-like transposon insertion has been described in tomato to date. In this manuscript, we report on a CACTA transposon-like insertion in intron I of tomato (Lycopersicon esculentum) invertase gene Lin5 and TPase-like sequences of several Solanaceae species. Consensus primers deduced from the TPase region of the tomato CACTA transposon-like element allowed the amplification of similar sequences from various Solanaceae species of different subfamilies including Solaneae (Solanum tuberosum), Cestreae (Nicotiana tabacum) and Datureae (Datura stramonium). This demonstrates the ubiquitous presence of CACTA-like elements in Solanaceae genomes. The obtained partial sequences are highly conserved, and allow further detection and detailed analysis of CACTA-like transposons throughout Solanaceae species. CACTA-like transposon sequences make possible the evaluation of their use for genome analysis, functional studies of genes and the evolutionary relationships between plant species.
Definition of RNA Polymerase II CoTC Terminator Elements in the Human Genome
Nojima, Takayuki; Dienstbier, Martin; Murphy, Shona; Proudfoot, Nicholas J.; Dye, Michael J.
2013-01-01
Summary Mammalian RNA polymerase II (Pol II) transcription termination is an essential step in protein-coding gene expression that is mediated by pre-mRNA processing activities and DNA-encoded terminator elements. Although much is known about the role of pre-mRNA processing in termination, our understanding of the characteristics and generality of terminator elements is limited. Whereas promoter databases list up to 40,000 known and potential Pol II promoter sequences, fewer than ten Pol II terminator sequences have been described. Using our knowledge of the human β-globin terminator mechanism, we have developed a selection strategy for mapping mammalian Pol II terminator elements. We report the identification of 78 cotranscriptional cleavage (CoTC)-type terminator elements at endogenous gene loci. The results of this analysis pave the way for the full understanding of Pol II termination pathways and their roles in gene expression. PMID:23562152
Zhao, Yan-Yan; Sun, Kai-Lai; Ashok, Kumar
1998-01-01
The work was aimed to identify the estrogen responsive element in the human angiotensinogen gene. The nucleotide sequence between the transcription initiation site and TATA box in angiotensinogen gene promoter was found to be strongly homologous with the consensus estrogen responsive element. This sequence was confirmed as the estrogen responsive element (HAG ERE) by electrophoretic mobility shift assay. The recombinant expression vectors were constructed in which chloramphenicol acetyltransferase (CAT) reporter gene was driven by angiotensinogen core promoter with HAG ERE of by TK core promoter with multiplied HAG ERE, and were used in cotransfection with the human estrogen receptor expression vector into HepG(2) cells; CAT assays showed an increase of the CAT activity on 17beta-estradiol treatment in those transfectants. These results suggest that the human angiotensinogen gene is transcriptionally up-regulated by estrogen through the estrogen responsive element near TATA box of the promoter.
Multichannel optical sensing device
Selkowitz, S.E.
1985-08-16
A multichannel optical sensing device is disclosed, for measuring the outdoor sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optical elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.
Multichannel optical sensing device
Selkowitz, Stephen E.
1990-01-01
A multichannel optical sensing device is disclosed, for measuring the outr sky luminance or illuminance or the luminance or illuminance distribution in a room, comprising a plurality of light receptors, an optical shutter matrix including a plurality of liquid crystal optical shutter elements operable by electrical control signals between light transmitting and light stopping conditions, fiber optic elements connected between the receptors and the shutter elements, a microprocessor based programmable control unit for selectively supplying control signals to the optical shutter elements in a programmable sequence, a photodetector including an optical integrating spherical chamber having an input port for receiving the light from the shutter matrix and at least one detector element in the spherical chamber for producing output signals corresponding to the light, and output units for utilizing the output signals including a storage unit having a control connection to the microprocessor based programmable control unit for storing the output signals under the sequence control of the programmable control unit.
Modulation of tissue repair by regeneration enhancer elements.
Kang, Junsu; Hu, Jianxin; Karra, Ravi; Dickson, Amy L; Tornini, Valerie A; Nachtrab, Gregory; Gemberling, Matthew; Goldman, Joseph A; Black, Brian L; Poss, Kenneth D
2016-04-14
How tissue regeneration programs are triggered by injury has received limited research attention. Here we investigate the existence of enhancer regulatory elements that are activated in regenerating tissue. Transcriptomic analyses reveal that leptin b (lepb) is highly induced in regenerating hearts and fins of zebrafish. Epigenetic profiling identified a short DNA sequence element upstream and distal to lepb that acquires open chromatin marks during regeneration and enables injury-dependent expression from minimal promoters. This element could activate expression in injured neonatal mouse tissues and was divisible into tissue-specific modules sufficient for expression in regenerating zebrafish fins or hearts. Simple enhancer-effector transgenes employing lepb-linked sequences upstream of pro- or anti-regenerative factors controlled the efficacy of regeneration in zebrafish. Our findings provide evidence for 'tissue regeneration enhancer elements' (TREEs) that trigger gene expression in injury sites and can be engineered to modulate the regenerative potential of vertebrate organs.
2018-01-01
Many implementations of pooled screens in mammalian cells rely on linking an element of interest to a barcode, with the latter subsequently quantitated by next generation sequencing. However, substantial uncoupling between these paired elements during lentiviral production has been reported, especially as the distance between elements increases. We detail that PCR amplification is another major source of uncoupling, and becomes more pronounced with increased amounts of DNA template molecules and PCR cycles. To lessen uncoupling in systems that use paired elements for detection, we recommend minimizing the distance between elements, using low and equal template DNA inputs for plasmid and genomic DNA during PCR, and minimizing the number of PCR cycles. We also present a vector design for conducting combinatorial CRISPR screens that enables accurate barcode-based detection with a single short sequencing read and minimal uncoupling. PMID:29799876
Marciniak, R A; Garcia-Blanco, M A; Sharp, P A
1990-01-01
Human immunodeficiency virus type 1 RNAs contain a sequence, trans-activation-response (TAR) element, which is required for tat protein-mediated trans-activation of viral gene expression. We have identified a nuclear protein from extracts of HeLa cells that binds to the TAR element RNA in a sequence-specific manner. The binding of this 68-kDa polypeptide was detected by UV cross-linking proteins to TAR element RNA transcribed in vitro. Competition experiments were performed by using a partially purified preparation of the protein to quantify the relative binding affinities of TAR element RNA mutants. The binding affinity of the TAR mutants paralleled the reported ability of those mutants to support tat trans-activation in vivo. We propose that this cellular protein moderates TAR activity in vivo. Images PMID:2333305
Novel in situ resistance measurement for the investigation of CIGS growth in a selenization process
NASA Astrophysics Data System (ADS)
Liu, Wei; Tian, Jian-Guo; Li, Zu-Bin; He, Qing; Li, Feng-Yan; Li, Chang-Jian; Sun, Yun
2009-03-01
During the selenization process of CIGS thin films, the relation between the element loss rate and the precursor depositions are analyzed. The growth of the CIGS thin films during the selenization process is investigated by the novel in situ resistance measurement, by which the formation of compound semiconductors can be observed directly and simultaneously. Their structures, phase evolutions and element losses are analyzed by XRD and XRF. Based on the experimental results, it can be concluded that the phase transforms have nothing to do with the deposition sequences of precursors, while the element loss rates are related to the deposition sequences in this process. In addition, element loss mechanisms of CIGS thin films prepared by the selenization process are analyzed by the phase evolutions and chemical combined path in the In, Ga-Se reaction processes. Moreover it is verified that the element losses are depressed by increasing the ramping-up rate finally. The results provide effective methods to fabricate high-quality CIGS thin films with low element losses.
Grove, J R; Deutsch, P J; Price, D J; Habener, J F; Avruch, J
1989-11-25
Plasmids that encode a bioactive amino-terminal fragment of the heat-stable inhibitor of the cAMP-dependent protein kinase, PKI(1-31), were employed to characterize the role of this protein kinase in the control of transcriptional activity mediated by three DNA regulatory elements in the JEG-3 human placental cell line. The 5'-flanking sequence of the human collagenase gene contains the heptameric sequence, 5'-TGAGTCA-3', previously identified as a "phorbol ester" response element. Reporter genes containing either the intact 1.2-kilobase 5'-flanking sequence from the human collagenase gene or just the 7-base pair (bp) response element, when coupled to an enhancerless promoter, each exhibit both cAMP and phorbol ester-stimulated expression in JEG-3 cells. Cotransfection of either construct with plasmids encoding PKI(1-31) inhibits cAMP-stimulated but not basal- or phorbol ester-stimulated expression. Pretreatment of cells with phorbol ester for 1 or 2 days abrogates completely the response to rechallenge with phorbol ester but does not alter the basal expression of either construct; cAMP-stimulated expression, while modestly inhibited, remains vigorous. The 5'-flanking sequence of the human chorionic gonadotropin-alpha subunit (HCG alpha) gene has two copies of the sequence, 5'-TGACGTCA-3', contained in directly adjacent identical 18-bp segments, previously identified as a cAMP-response element. Reporter genes containing either the intact 1.5 kilobase of 5'-flanking sequence from the HCG alpha gene, or just the 36-bp tandem repeat cAMP response element, when coupled to an enhancerless promoter, both exhibit a vigorous cAMP stimulation of expression but no response to phorbol ester in JEG-3 cells. Cotransfection with plasmids encoding PKI(1-31) inhibits both basal and cAMP-stimulated expression in a parallel fashion. The 5'-flanking sequence of the human enkephalin gene mediates cAMP-stimulated expression of reporter genes in both JEG-3 and CV-1 cells. Plasmids encoding PKI(1-31) inhibit the expression that is stimulated by the addition of cAMP analogs in both cell lines; basal expression, however, is inhibited by PKI(1-31) only in the JEG-3 cell line and not in the CV-1 cells. These observations indicate that, in JEG-3 cells, PKI(1-31) is a specific inhibitor of kinase A-mediated gene transcription, but it does not modify kinase C-directed transcription.(ABSTRACT TRUNCATED AT 400 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, J.M.; Fisher, L.W.; Termine, J.D.
The authors have isolated and partially sequenced the human bone sialoprotein gene (IBSP). IBSP has been sublocalized by in situ hybridization to chromosome 4q38-q31 and is composed of six small exons (51 to 159 bp) and 1 large exon ([approximately]2.6 kb). The intron/exon junctions defined by sequence analysis are of class O, retaining an intact coding triplet. Sequence analysis of the 5[prime] upstream region revealed a TATAA (nucleotides -30 to-25 from the transcriptional start point) and a CCAAT (nucleotides -56 to-52) box, both in the reverse orientation. Intron 1 contains interesting structural elements composed of polypyrimidine repeats followed by amore » poly(AC)[sub n] tract. Both types of structural elements have been detected in promoter regions of other genes and have been implicated in transcriptional regulation. Several differences between the previously published cDNA sequence and the authors' sequence have been identified, most of which are contained within the untranslated exon 1. Three base revisions in the coding region include a G to T (Gly to Val, amino acid 195), T to C (Val to Ala, amino acid 268), and T to A (Glu to Asp, amino acid 270). In conclusion, the genomic organization and potential regulatory elements of human IBSP have been elucidated. 42 refs., 4 figs., 1 tab.« less
Wei, Yunzhou; Chesne, Megan T.; Terns, Rebecca M.; Terns, Michael P.
2015-01-01
CRISPR-Cas systems are RNA-based immune systems that protect prokaryotes from invaders such as phages and plasmids. In adaptation, the initial phase of the immune response, short foreign DNA fragments are captured and integrated into host CRISPR loci to provide heritable defense against encountered foreign nucleic acids. Each CRISPR contains a ∼100–500 bp leader element that typically includes a transcription promoter, followed by an array of captured ∼35 bp sequences (spacers) sandwiched between copies of an identical ∼35 bp direct repeat sequence. New spacers are added immediately downstream of the leader. Here, we have analyzed adaptation to phage infection in Streptococcus thermophilus at the CRISPR1 locus to identify cis-acting elements essential for the process. We show that the leader and a single repeat of the CRISPR locus are sufficient for adaptation in this system. Moreover, we identified a leader sequence element capable of stimulating adaptation at a dormant repeat. We found that sequences within 10 bp of the site of integration, in both the leader and repeat of the CRISPR, are required for the process. Our results indicate that information at the CRISPR leader-repeat junction is critical for adaptation in this Type II-A system and likely other CRISPR-Cas systems. PMID:25589547
Gillespie, J J; Johnston, J S; Cannone, J J; Gutell, R R
2006-01-01
As an accompanying manuscript to the release of the honey bee genome, we report the entire sequence of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) ribosomal RNA (rRNA)-encoding gene sequences (rDNA) and related internally and externally transcribed spacer regions of Apis mellifera (Insecta: Hymenoptera: Apocrita). Additionally, we predict secondary structures for the mature rRNA molecules based on comparative sequence analyses with other arthropod taxa and reference to recently published crystal structures of the ribosome. In general, the structures of honey bee rRNAs are in agreement with previously predicted rRNA models from other arthropods in core regions of the rRNA, with little additional expansion in non-conserved regions. Our multiple sequence alignments are made available on several public databases and provide a preliminary establishment of a global structural model of all rRNAs from the insects. Additionally, we provide conserved stretches of sequences flanking the rDNA cistrons that comprise the externally transcribed spacer regions (ETS) and part of the intergenic spacer region (IGS), including several repetitive motifs. Finally, we report the occurrence of retrotransposition in the nuclear large subunit rDNA, as R2 elements are present in the usual insertion points found in other arthropods. Interestingly, functional R1 elements usually present in the genomes of insects were not detected in the honey bee rRNA genes. The reverse transcriptase products of the R2 elements are deduced from their putative open reading frames and structurally aligned with those from another hymenopteran insect, the jewel wasp Nasonia (Pteromalidae). Stretches of conserved amino acids shared between Apis and Nasonia are illustrated and serve as potential sites for primer design, as target amplicons within these R2 elements may serve as novel phylogenetic markers for Hymenoptera. Given the impending completion of the sequencing of the Nasonia genome, we expect our report eventually to shed light on the evolution of the hymenopteran genome within higher insects, particularly regarding the relative maintenance of conserved rDNA genes, related variable spacer regions and retrotransposable elements. PMID:17069639
Christensen, Shawn M; Ye, Junqiang; Eickbush, Thomas H
2006-11-21
Non-LTR retrotransposons insert into eukaryotic genomes by target-primed reverse transcription (TPRT), a process in which cleaved DNA targets are used to prime reverse transcription of the element's RNA transcript. Many of the steps in the integration pathway of these elements can be characterized in vitro for the R2 element because of the rigid sequence specificity of R2 for both its DNA target and its RNA template. R2 retrotransposition involves identical subunits of the R2 protein bound to different DNA sequences upstream and downstream of the insertion site. The key determinant regulating which DNA-binding conformation the protein adopts was found to be a 320-nt RNA sequence from near the 5' end of the R2 element. In the absence of this 5' RNA the R2 protein binds DNA sequences upstream of the insertion site, cleaves the first DNA strand, and conducts TPRT when RNA containing the 3' untranslated region of the R2 transcript is present. In the presence of the 320-nt 5' RNA, the R2 protein binds DNA sequences downstream of the insertion site. Cleavage of the second DNA strand by the downstream subunit does not appear to occur until after the 5' RNA is removed from this subunit. We postulate that the removal of the 5' RNA normally occurs during reverse transcription, and thus provides a critical temporal link to first- and second-strand DNA cleavage in the R2 retrotransposition reaction.
Localization of Action of the Is50-Encoded Transposase Protein
Phadnis, Suhas H.; Sasakawa, Chihiro; Berg, Douglas E.
1986-01-01
The movement of the bacterial insertion sequence IS50 and of composite elements containing direct terminal repeats of IS50 involves the two ends of IS50, designated O (outside) and I (inside), which are weakly matched in DNA sequence, and an IS50 encoded protein, transposase, which recognizes the O and I ends and acts preferentially in cis. Previous data had suggested that, initially, transposase interacts preferentially with the O end sequence and then, in a second step, with either an O or an I end. To better understand the cis action of transposase and how IS50 ends are selected, we generated a series of composite transposons which contain direct repeats of IS50 elements. In each transposon, one IS50 element encoded transposase (tnp +), and the other contained a null (tnp-) allele. In each of the five sets of composite transposons studied, the transposon for which the tnp+ IS50 element contained its O end was more active than a complementary transposon for which the tnp - IS50 element contained its O end. This pattern of O end use suggests models in which the cis action of transposase and its choice of ends is determined by protein tracking along DNA molecules. PMID:3007274
Identification of the core sequence elements in Penaeus stylirostris densovirus promoters
USDA-ARS?s Scientific Manuscript database
This manuscript describes the role of different core elements in the transcriptional activity of promoters in a marine parvovirus, Penaeus stylirostris densovirus (PstDNV) that infects shrimp. Although comprehensive information on the role of different elements in the promoters of several animal par...
Benevenuto, Juliana; Peters, Leila P.; Carvalho, Giselle; Palhares, Alessandra; Quecine, Maria C.; Nunes, Filipe R. S.; Kmit, Maria C. P.; Wai, Alvan; Hausner, Georg; Aitken, Karen S.; Berkman, Paul J.; Fraser, James A.; Moolhuijzen, Paula M.; Coutinho, Luiz L.; Creste, Silvana; Vieira, Maria L. C.; Kitajima, João P.; Monteiro-Vitorello, Claudia B.
2015-01-01
Sporisorium scitamineum is a biotrophic fungus responsible for the sugarcane smut, a worldwide spread disease. This study provides the complete sequence of individual chromosomes of S. scitamineum from telomere to telomere achieved by a combination of PacBio long reads and Illumina short reads sequence data, as well as a draft sequence of a second fungal strain. Comparative analysis to previous available sequences of another strain detected few polymorphisms among the three genomes. The novel complete sequence described herein allowed us to identify and annotate extended subtelomeric regions, repetitive elements and the mitochondrial DNA sequence. The genome comprises 19,979,571 bases, 6,677 genes encoding proteins, 111 tRNAs and 3 assembled copies of rDNA, out of our estimated number of copies as 130. Chromosomal reorganizations were detected when comparing to sequences of S. reilianum, the closest smut relative, potentially influenced by repeats of transposable elements. Repetitive elements may have also directed the linkage of the two mating-type loci. The fungal transcriptome profiling from in vitro and from interaction with sugarcane at two time points (early infection and whip emergence) revealed that 13.5% of the genes were differentially expressed in planta and particular to each developmental stage. Among them are plant cell wall degrading enzymes, proteases, lipases, chitin modification and lignin degradation enzymes, sugar transporters and transcriptional factors. The fungus also modulates transcription of genes related to surviving against reactive oxygen species and other toxic metabolites produced by the plant. Previously described effectors in smut/plant interactions were detected but some new candidates are proposed. Ten genomic islands harboring some of the candidate genes unique to S. scitamineum were expressed only in planta. RNAseq data was also used to reassure gene predictions. PMID:26065709
Multiple splicing defects in an intronic false exon.
Sun, H; Chasin, L A
2000-09-01
Splice site consensus sequences alone are insufficient to dictate the recognition of real constitutive splice sites within the typically large transcripts of higher eukaryotes, and large numbers of pseudoexons flanked by pseudosplice sites with good matches to the consensus sequences can be easily designated. In an attempt to identify elements that prevent pseudoexon splicing, we have systematically altered known splicing signals, as well as immediately adjacent flanking sequences, of an arbitrarily chosen pseudoexon from intron 1 of the human hprt gene. The substitution of a 5' splice site that perfectly matches the 5' consensus combined with mutation to match the CAG/G sequence of the 3' consensus failed to get this model pseudoexon included as the central exon in a dhfr minigene context. Provision of a real 3' splice site and a consensus 5' splice site and removal of an upstream inhibitory sequence were necessary and sufficient to confer splicing on the pseudoexon. This activated context also supported the splicing of a second pseudoexon sequence containing no apparent enhancer. Thus, both the 5' splice site sequence and the polypyrimidine tract of the pseudoexon are defective despite their good agreement with the consensus. On the other hand, the pseudoexon body did not exert a negative influence on splicing. The introduction into the pseudoexon of a sequence selected for binding to ASF/SF2 or its replacement with beta-globin exon 2 only partially reversed the effect of the upstream negative element and the defective polypyrimidine tract. These results support the idea that exon-bridging enhancers are not a prerequisite for constitutive exon definition and suggest that intrinsically defective splice sites and negative elements play important roles in distinguishing the real splicing signal from the vast number of false splicing signals.
1978-09-30
element output sequence, and h is an L element impulse response sequence with M = N+L-l, and E (m) represents noise or - measurement uncertainty at the...William K. Pratt ......... 123 3.2 Estimation of Image Signal with Poisson Noise - I - Chun Moo Lo and Alexander A. Sawchuk ........ 135 3.3 Computer... noise ratio (SNR) of 10.0. From these curves, it is apparent that the Sobel and Prewitt 3 x 3 operators are superior to the Roberts 2 x 2 operators. The
Age-related regulation of genes: slow homeostatic changes and age-dimension technology
NASA Astrophysics Data System (ADS)
Kurachi, Kotoku; Zhang, Kezhong; Huo, Jeffrey; Ameri, Afshin; Kuwahara, Mitsuhiro; Fontaine, Jean-Marc; Yamamoto, Kei; Kurachi, Sumiko
2002-11-01
Through systematic studies of pro- and anti-blood coagulation factors, we have determined molecular mechanisms involving two genetic elements, age-related stability element (ASE), GAGGAAG and age-related increase element (AIE), a unique stretch of dinucleotide repeats (AIE). ASE and AIE are essential for age-related patterns of stable and increased gene expression patterns, respectively. Such age-related gene regulatory mechanisms are also critical for explaining homeostasis in various physiological reactions as well as slow homeostatic changes in them. The age-related increase expression of the human factor IX (hFIX) gene requires the presence of both ASE and AIE, which apparently function additively. The anti-coagulant factor protein C (hPC) gene uses an ASE (CAGGAG) to produce age-related stable expression. Both ASE sequences (G/CAGAAG) share consensus sequence of the transcriptional factor PEA-3 element. No other similar sequences, including another PEA-3 consensus sequence, GAGGATG, function in conferring age-related gene regulation. The age-regulatory mechanisms involving ASE and AIE apparently function universally with different genes and across different animal species. These findings have led us to develop a new field of research and applications, which we named “age-dimension technology (ADT)”. ADT has exciting potential for modifying age-related expression of genes as well as associated physiological processes, and developing novel, more effective prophylaxis or treatments for age-related diseases.
Ben Lazhar-Ajroud, Wafa; Caruso, Aurore; Mezghani, Maha; Bouallegue, Maryem; Tastard, Emmanuelle; Denis, Françoise; Rouault, Jacques-Deric; Makni, Hanem; Capy, Pierre; Chénais, Benoît; Makni, Mohamed; Casse, Nathalie
2016-08-01
Genomic variation among species is commonly driven by transposable element (TE) invasion; thus, the pattern of TEs in a genome allows drawing an evolutionary history of the studied species. This paper reports in vitro and in silico detection and characterization of irritans mariner-like elements (MLEs) in the genome and transcriptome of Bactrocera oleae (Rossi) (Diptera: Tephritidae). Eleven irritans MLE sequences have been isolated in vitro using terminal inverted repeats (TIRs) as primers, and 215 have been extracted in silico from the sequenced genome of B. oleae. Additionally, the sequenced genomes of Bactrocera tryoni (Froggatt) and Bactrocera cucurbitae (Diptera: Tephritidae) have been explored to identify irritans MLEs. A total of 129 sequences from B. tryoni have been extracted, while the genome of B. cucurbitae appears probably devoid of irritans MLEs. All detected irritans MLEs are defective due to several mutations and are clustered together in a monophyletic group suggesting a common ancestor. The evolutionary history and dynamics of these TEs are discussed in relation with the phylogenetic distribution of their hosts. The knowledge on the structure, distribution, dynamic, and evolution of irritans MLEs in Bactrocera species contributes to the understanding of both their evolutionary history and the invasion history of their hosts. This could also be the basis for genetic control strategies using transposable elements.
Kim, H S; Wadekar, R V; Takenaka, O; Hyun, B H; Crow, T J
1999-01-01
Solitary long terminal repeats (LTRs) of the human endogenous retroviruses K family (HERV-K) have been found to be coexpressed with sequences of closely located genes. We identified forty-three HERV-K LTR-like elements in primates (African great apes, two Old World monkeys, and two New World monkeys) and analyzed them along with human-specific HERV-K LTRs. We report detection of HERV-K LTR-like elements from New World monkeys, as represented by the squirrel monkey and the night monkey, for the first time. Analysis revealed a high degree of sequence homology with human-specific HERV-K LTRs. A phylogenetic tree obtained by the neighbor-joining method revealed that five sequence (SMS-1, 2, 5, 6, 7) from the squirrel monkey and three sequences (NM6-4, 5, 9) from the night monkey are more closely related to human-specific HERV-K LTRs than they are to those of apes (the chimpanzee and gorilla) and Old World monkeys (the African green monkey and rhesus monkey). The findings are consistent with the concept the HERV-K LTR-like elements have proliferated independently and recently in the genome of primates, and that such proliferation has been more recent in Homo sapiens and in these representatives of New World monkeys than in some Old World monkeys.
Pelsy, F.; Merdinoglu, D.
2002-09-01
A chromosome-walking strategy was used to sequence and characterize retrotransposons in the grapevine genome. The reconstitution of a family of retroelements, named Tvv1, was achieved by six successive steps. These elements share a single, highly conserved open reading frame 4,153 nucleotides-long, putatively encoding the gag, pro, int, rt and rh proteins. Comparison of the Tvv1 open reading frame coding potential with those of drosophila copia and tobacco Tnt1, revealed that Tvv1 is closely related to Ty 1 copia-like retrotransposons. A highly variable untranslated leader region, upstream of the open reading frame, allowed us to differentiate Tvv1 variants, which represent a family of at least 28 copies, in varying sizes. This internal region is flanked by two long terminal repeats in direct orientation, sized between 149 and 157 bp. Among elements theoretically sized from 4,970 to 5,550 bp, we describe the full-length sequence of a reference element Tvv1-1, 5,343 nucleotides-long. The full-length sequence of Tvv1-1 compared to pea PDR1 shows a 53.3% identity. In addition, both elements contain long terminal repeats of nearly the same size in which the U5 region could be entirely absent. Therefore, we assume that Tvv1 and PDR1 could constitute a particular class of short LTRs retroelements.
The identification of cis-regulatory elements: A review from a machine learning perspective.
Li, Yifeng; Chen, Chih-Yu; Kaye, Alice M; Wasserman, Wyeth W
2015-12-01
The majority of the human genome consists of non-coding regions that have been called junk DNA. However, recent studies have unveiled that these regions contain cis-regulatory elements, such as promoters, enhancers, silencers, insulators, etc. These regulatory elements can play crucial roles in controlling gene expressions in specific cell types, conditions, and developmental stages. Disruption to these regions could contribute to phenotype changes. Precisely identifying regulatory elements is key to deciphering the mechanisms underlying transcriptional regulation. Cis-regulatory events are complex processes that involve chromatin accessibility, transcription factor binding, DNA methylation, histone modifications, and the interactions between them. The development of next-generation sequencing techniques has allowed us to capture these genomic features in depth. Applied analysis of genome sequences for clinical genetics has increased the urgency for detecting these regions. However, the complexity of cis-regulatory events and the deluge of sequencing data require accurate and efficient computational approaches, in particular, machine learning techniques. In this review, we describe machine learning approaches for predicting transcription factor binding sites, enhancers, and promoters, primarily driven by next-generation sequencing data. Data sources are provided in order to facilitate testing of novel methods. The purpose of this review is to attract computational experts and data scientists to advance this field. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.
A promoter recognition mechanism common to yeast mitochondrial and phage t7 RNA polymerases.
Nayak, Dhananjaya; Guo, Qing; Sousa, Rui
2009-05-15
Yeast mitochondrial (YMt) and phage T7 RNA polymerases (RNAPs) are two divergent representatives of a large family of single subunit RNAPs that are also found in the mitochondria and chloroplasts of higher eukaryotes, mammalian nuclei, and many other bacteriophage. YMt and phage T7 promoters differ greatly in sequence and length, and the YMt RNAP uses an accessory factor for initiation, whereas T7 RNAP does not. We obtain evidence here that, despite these apparent differences, both the YMt and T7 RNAPs utilize a similar promoter recognition loop to bind their respective promoters. Mutations in this element in YMt RNAP specifically disrupt mitochondrial promoter utilization, and experiments with site-specifically tethered chemical nucleases indicate that this element binds the mitochondrial promoter almost identically to how the promoter recognition loop from the phage RNAP binds its promoter. Sequence comparisons reveal that the other members of the single subunit RNAP family display loops of variable sequence and size at a position corresponding to the YMt and T7 RNAP promoter recognition loops. We speculate that these elements may be involved in promoter recognition in most or all of these enzymes and that this element's structure allows it to accommodate significant sequence and length variation to provide a mechanism for rapid evolution of new promoter specificities in this RNAP family.
Casals, Ferran; Cáceres, Mario; Manfrin, Maura Helena; González, Josefa; Ruiz, Alfredo
2005-04-01
Galileo is a foldback transposable element that has been implicated in the generation of two polymorphic chromosomal inversions in Drosophila buzzatii. Analysis of the inversion breakpoints led to the discovery of two additional elements, called Kepler and Newton, sharing sequence and structural similarities with Galileo. Here, we describe in detail the molecular structure of these three elements, on the basis of the 13 copies found at the inversion breakpoints plus 10 additional copies isolated during this work. Similarly to the foldback elements described in other organisms, these elements have long inverted terminal repeats, which in the case of Galileo possess a complex structure and display a high degree of internal variability between copies. A phylogenetic tree built with their shared sequences shows that the three elements are closely related and diverged approximately 10 million years ago. We have also analyzed the abundance and chromosomal distribution of these elements in D. buzzatii and other species of the repleta group by Southern analysis and in situ hybridization. Overall, the results suggest that these foldback elements are present in all the buzzatti complex species and may have played an important role in shaping their genomes. In addition, we show that recombination rate is the main factor determining the chromosomal distribution of these elements.
Small gene family encoding an eggshell (chorion) protein of the human parasite Schistosoma mansoni
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobek, L.A.; Rekosh, D.M.; Lo Verde, P.T.
1988-08-01
The authors isolated six independent genomic clones encoding schistosome chorion or eggshell proteins from a Schistosoma mansoni genomic library. A linkage map of five of the clones spanning 35 kilobase pairs (kbp) of the S. mansoni genome was constructed. The region contained two eggshell protein genes closely linked, separated by 7.5 kbp of intergenic DNA. The two genes of the cluster were arranged in the same orientation, that is, they were transcribed from the same strand. The sixth clone probably represents a third copy of the eggshell gene that is not contained within the 35-kbp region. The 5- end ofmore » the mRNA transcribed from these genes was defined by primer extension directly off the RNA. The ATCAT cap site sequence was homologous to a silkmoth chorion PuTCATT cap site sequence, where Pu indicates any purine. DNA sequence analysis showed that there were no introns in these genes. The DNA sequences of the three genes were very homologous to each other and to a cDNA clone, pSMf61-46, differing only in three or four nucleotices. A multiple TATA box was located at positions -23 to -31, and a CAAAT sequence was located at -52 upstream of the eggshell transcription unit. Comparison of sequences in regions further upstream with silkmoth and Drosophila sequences revealed very short elements that were shared. One such element, TCACGT, recently shown to be an essential cis-regulatory element for silkmoth chorion gene promoter function, was found at a similar position in all three organisms.« less
An Adaptive Defect Weighted Sampling Algorithm to Design Pseudoknotted RNA Secondary Structures
Zandi, Kasra; Butler, Gregory; Kharma, Nawwaf
2016-01-01
Computational design of RNA sequences that fold into targeted secondary structures has many applications in biomedicine, nanotechnology and synthetic biology. An RNA molecule is made of different types of secondary structure elements and an important RNA element named pseudoknot plays a key role in stabilizing the functional form of the molecule. However, due to the computational complexities associated with characterizing pseudoknotted RNA structures, most of the existing RNA sequence designer algorithms generally ignore this important structural element and therefore limit their applications. In this paper we present a new algorithm to design RNA sequences for pseudoknotted secondary structures. We use NUPACK as the folding algorithm to compute the equilibrium characteristics of the pseudoknotted RNAs, and describe a new adaptive defect weighted sampling algorithm named Enzymer to design low ensemble defect RNA sequences for targeted secondary structures including pseudoknots. We used a biological data set of 201 pseudoknotted structures from the Pseudobase library to benchmark the performance of our algorithm. We compared the quality characteristics of the RNA sequences we designed by Enzymer with the results obtained from the state of the art MODENA and antaRNA. Our results show our method succeeds more frequently than MODENA and antaRNA do, and generates sequences that have lower ensemble defect, lower probability defect and higher thermostability. Finally by using Enzymer and by constraining the design to a naturally occurring and highly conserved Hammerhead motif, we designed 8 sequences for a pseudoknotted cis-acting Hammerhead ribozyme. Enzymer is available for download at https://bitbucket.org/casraz/enzymer. PMID:27499762
Li, Ruichao; Xie, Miaomiao; Dong, Ning; Lin, Dachuan; Yang, Xuemei; Wong, Marcus Ho Yin; Chan, Edward Wai-Chi; Chen, Sheng
2018-03-01
Multidrug resistance (MDR)-encoding plasmids are considered major molecular vehicles responsible for transmission of antibiotic resistance genes among bacteria of the same or different species. Delineating the complete sequences of such plasmids could provide valuable insight into the evolution and transmission mechanisms underlying bacterial antibiotic resistance development. However, due to the presence of multiple repeats of mobile elements, complete sequencing of MDR plasmids remains technically complicated, expensive, and time-consuming. Here, we demonstrate a rapid and efficient approach to obtaining multiple MDR plasmid sequences through the use of the MinION nanopore sequencing platform, which is incorporated in a portable device. By assembling the long sequencing reads generated by a single MinION run according to a rapid barcoding sequencing protocol, we obtained the complete sequences of 20 plasmids harbored by multiple bacterial strains. Importantly, single long reads covering a plasmid end-to-end were recorded, indicating that de novo assembly may be unnecessary if the single reads exhibit high accuracy. This workflow represents a convenient and cost-effective approach for systematic assessment of MDR plasmids responsible for treatment failure of bacterial infections, offering the opportunity to perform detailed molecular epidemiological studies to probe the evolutionary and transmission mechanisms of MDR-encoding elements.
Durand, Pierre M; Oelofse, Andries J; Coetzer, Theresa L
2006-11-04
The completed genome sequences of the malaria parasites P. falciparum, P. y. yoelii and P. vivax have revealed some unusual features. P. falciparum contains the most AT rich genome sequenced so far--over 90% in some regions. In comparison, P. y. yoelii is approximately 77% and P. vivax is approximately 55% AT rich. The evolutionary reasons for these findings are unknown. Mobile genetic elements have a considerable impact on genome evolution but a thorough investigation of these elements in Plasmodium has not been undertaken. We therefore performed a comprehensive genome analysis of these elements and their derivatives in the three Plasmodium species. Whole genome analysis was performed using bioinformatic methods. Forty potential protein encoding sequences with features of transposable elements were identified in P. vivax, eight in P. y. yoelii and only six in P. falciparum. Further investigation of the six open reading frames in P. falciparum revealed that only one is potentially an active mobile genetic element. Most of the open reading frames identified in all three species are hypothetical proteins. Some represent annotated host proteins such as the putative telomerase reverse transcriptase genes in P. y. yoelii and P. falciparum. One of the P. vivax open reading frames identified in this study demonstrates similarity to telomerase reverse transcriptase and we conclude it to be the orthologue of this gene. There is a divergence in the frequencies of mobile genetic elements in the three Plasmodium species investigated. Despite the limitations of whole genome analytical methods, it is tempting to speculate that mobile genetic elements might have been a driving force behind the compositional bias of the P. falciparum genome.
Bhatia, S; Singh Negi, M; Lakshmikumaran, M
1996-11-01
EcoRI restriction of the B. nigra rDNA recombinants, isolated from a lambda genomic library, showed that the 3.9-kb fragment corresponded to the Intergenic Spacer (IGS), which was sequenced and found to be 3,928 bp in size. Sequence and dot-matrix analyses showed that the organization of the B. nigra rDNA IGS was typical of most rDNA spacers, consisting of a central repetitive region and flanking unique sequences on either side. The repetitive region was composed of two repeat families-RF 'A' and RF 'B.' The B. nigra RF 'A' consisted of a tandem array of three full-length copies of a 106-bp sequence element. RF 'B' was composed of 66 tandemly repeated elements. Each 'B' element was only 21-bp in size and this is the smallest repeat unit identified in plant rDNA to date. The putative transcription initiation site (TIS) was identified as nucleotide position 3,110. Based on the sequence analysis it was suggested that the present organization of the repeat families was generated by successive cycles of deletions and amplifications and was being maintained by homogenization processes such as gene conversion and crossing-over.A detailed comparison of the rDNA IGS sequences of the three diploid Brassica species-namely, B. nigra, B. campestris, and B. oleracea-was carried out. First, comparisons revealed that B. campestris and B. oleracea were close to each other as the repeat families in both showed high sequence homology between each other. Second, the repeat elements in both the species were organized in an interspersed manner. Third, a 52-bp sequence, present just downstream of the repeats in B. campestris, was found to be identical to the B. oleracea repeats, thereby suggesting a common progenitor. On the other hand, in B. nigra no interspersion pattern of organization of repeats was observed. Further, the B. nigra RF 'A' was identified as distinct from the repeat families of B. campestris and B. oleracea. Based on this analysis, it was suggested that during speciation B. campestris and B. oleracea evolved in one lineage whereas B. nigra diverged into a separate lineage. The comparative analysis of the IGS helped in identifying not only conserved ancestral sequence motifs of possible functional significance such as promoters and enhancers, but also sequences which showed variation between the three diploid species and were therefore identified as species-specific sequences.
Luchetti, Andrea; Mantovani, Barbara
2011-02-01
Short INterspersed Elements (SINEs) in invertebrates, and especially in animal inbred genomes such that of termites, are poorly known; in this paper we characterize three new SINE families (Talub, Taluc and Talud) through the analyses of 341 sequences, either isolated from the Reticulitermes lucifugus genome or drawn from EST Genbank collection. We further add new data to the only isopteran element known so far, Talua. These SINEs are tRNA-derived elements, with an average length ranging from 258 to 372 bp. The tails are made up by poly(A) or microsatellite motifs. Their copy number varies from 7.9 × 10(3) to 10(5) copies, well within the range observed for other metazoan genomes. Species distribution, age and target site duplication analysis indicate Talud as the oldest, possibly inactive SINE originated before the onset of Isoptera (~150 Myr ago). Taluc underwent to substantial sequence changes throughout the evolution of termites and data suggest it was silenced and then re-activated in the R. lucifugus lineage. Moreover, Taluc shares a conserved sequence block with other unrelated SINEs, as observed for some vertebrate and cephalopod elements. The study of genomic environment showed that insertions are mainly surrounded by microsatellites and other SINEs, indicating a biased accumulation within non-coding regions. The evolutionary dynamics of Talu~ elements is explained through selective mechanisms acting in an inbred genome; in this respect, the study of termites' SINEs activity may provide an interesting framework to address the (co)evolution of mobile elements and the host genome.
Lampe, David J; Witherspoon, David J; Soto-Adames, Felipe N; Robertson, Hugh M
2003-04-01
We report the isolation and sequencing of genomic copies of mariner transposons involved in recent horizontal transfers into the genomes of the European earwig, Forficula auricularia; the European honey bee, Apis mellifera; the Mediterranean fruit fly, Ceratitis capitata; and a blister beetle, Epicauta funebris, insects from four different orders. These elements are in the mellifera subfamily and are the second documented example of full-length mariner elements involved in this kind of phenomenon. We applied maximum likelihood methods to the coding sequences and determined that the copies in each genome were evolving neutrally, whereas reconstructed ancestral coding sequences appeared to be under selection, which strengthens our previous hypothesis that the primary selective constraint on mariner sequence evolution is the act of horizontal transfer between genomes.
Identification of Genetic Elements Associated with EPSPS Gene Amplification
Gaines, Todd A.; Wright, Alice A.; Molin, William T.; Lorentz, Lothar; Riggins, Chance W.; Tranel, Patrick J.; Beffa, Roland; Westra, Philip; Powles, Stephen B.
2013-01-01
Weed populations can have high genetic plasticity and rapid responses to environmental selection pressures. For example, 100-fold amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene evolved in the weed species Amaranthus palmeri to confer resistance to glyphosate, the world’s most important herbicide. However, the gene amplification mechanism is unknown. We sequenced the EPSPS gene and genomic regions flanking EPSPS loci in A. palmeri, and searched for mobile genetic elements or repetitive sequences. The EPSPS gene was 10,229 bp, containing 8 exons and 7 introns. The gene amplification likely proceeded through a DNA-mediated mechanism, as introns exist in the amplified gene copies and the entire amplified sequence is at least 30 kb in length. Our data support the presence of two EPSPS loci in susceptible (S) A. palmeri, and that only one of these was amplified in glyphosate-resistant (R) A. palmeri. The EPSPS gene amplification event likely occurred recently, as no sequence polymorphisms were found within introns of amplified EPSPS copies from R individuals. Sequences with homology to miniature inverted-repeat transposable elements (MITEs) were identified next to EPSPS gene copies only in R individuals. Additionally, a putative Activator (Ac) transposase and a repetitive sequence region were associated with amplified EPSPS genes. The mechanism controlling this DNA-mediated amplification remains unknown. Further investigation is necessary to determine if the gene amplification may have proceeded via DNA transposon-mediated replication, and/or unequal recombination between different genomic regions resulting in replication of the EPSPS gene. PMID:23762434
Conservation of CD44 exon v3 functional elements in mammals
Vela, Elena; Hilari, Josep M; Delclaux, María; Fernández-Bellon, Hugo; Isamat, Marcos
2008-01-01
Background The human CD44 gene contains 10 variable exons (v1 to v10) that can be alternatively spliced to generate hundreds of different CD44 protein isoforms. Human CD44 variable exon v3 inclusion in the final mRNA depends on a multisite bipartite splicing enhancer located within the exon itself, which we have recently described, and provides the protein domain responsible for growth factor binding to CD44. Findings We have analyzed the sequence of CD44v3 in 95 mammalian species to report high conservation levels for both its splicing regulatory elements (the 3' splice site and the exonic splicing enhancer), and the functional glycosaminglycan binding site coded by v3. We also report the functional expression of CD44v3 isoforms in peripheral blood cells of different mammalian taxa with both consensus and variant v3 sequences. Conclusion CD44v3 mammalian sequences maintain all functional splicing regulatory elements as well as the GAG binding site with the same relative positions and sequence identity previously described during alternative splicing of human CD44. The sequence within the GAG attachment site, which in turn contains the Y motif of the exonic splicing enhancer, is more conserved relative to the rest of exon. Amplification of CD44v3 sequence from mammalian species but not from birds, fish or reptiles, may lead to classify CD44v3 as an exclusive mammalian gene trait. PMID:18710510
Finding functional features in Saccharomyces genomes by phylogenetic footprinting.
Cliften, Paul; Sudarsanam, Priya; Desikan, Ashwin; Fulton, Lucinda; Fulton, Bob; Majors, John; Waterston, Robert; Cohen, Barak A; Johnston, Mark
2003-07-04
The sifting and winnowing of DNA sequence that occur during evolution cause nonfunctional sequences to diverge, leaving phylogenetic footprints of functional sequence elements in comparisons of genome sequences. We searched for such footprints among the genome sequences of six Saccharomyces species and identified potentially functional sequences. Comparison of these sequences allowed us to revise the catalog of yeast genes and identify sequence motifs that may be targets of transcriptional regulatory proteins. Some of these conserved sequence motifs reside upstream of genes with similar functional annotations or similar expression patterns or those bound by the same transcription factor and are thus good candidates for functional regulatory sequences.
García Guerreiro, M P; Fontdevila, A
2007-01-01
A new transposable element, Isis, is identified as a LTR retrotransposon in Drosophila buzzatii. DNA sequence analysis shows that Isis contains three long ORFs similar to gag, pol and env genes of retroviruses. The ORF1 exhibits sequence homology to matrix, capsid and nucleocapsid gag proteins and ORF2 encodes a putative protease (PR), a reverse transcriptase (RT), an Rnase H (RH) and an integrase (IN) region. The analysis of a putative env product, encoded by the env ORF3, shows a degenerated protein containing several stop codons. The molecular study of the putative proteins coded by this new element shows striking similarities to both Ulysses and Osvaldo elements, two LTR retrotransposons, present in D. virilis and D. buzzatii, respectively. Comparisons of the predicted Isis RT to several known retrotransposons show strong phylogenetic relationships to gypsy-like elements, particulary to Ulysses retrotransposon. Studies of Isis chromosomal distribution show a strong hybridization signal in centromeric and pericentromeric regions, and a scattered distribution along all chromosomal arms. The existence of insertional polymorphisms between different strains and high molecular weight bands by Southern blot suggests the existence of full-sized copies that have been active recently. The presence of euchromatic insertion sites coincident between Isis and Osvaldo could indicate preferential insertion sites of Osvaldo element into Isis sequence or vice versa. Moreover, the presence of Isis in different species of the buzzatii complex indicates the ancient origin of this element.
USDA-ARS?s Scientific Manuscript database
Background: Due to a relatively high level of codominant inheritance and transferability within and among taxonomic groups, simple sequence repeat (SSR) markers are important elements in comparative mapping and delineation of genomic regions associated with traits of economic importance. Expressed S...
Draft genome sequences of 64 swine associated LA-MRSA ST5 isolates from the USA
USDA-ARS?s Scientific Manuscript database
Methicillin resistant Staphylococcus aureus colonizes humans and other animals such as swine. LA-MRSA sequence type (ST) 5 isolates are a public concern due to their pathogenicity and ability to acquire mobile genetic elements. This report presents draft genome sequences for 64 LA-MRSA ST5 isolates ...
USDA-ARS?s Scientific Manuscript database
Repetitive sequence analysis has become an integral part of genome sequencing projects in addition to gene identification and annotation. Identification of repeats is important not only because it improves gene prediction, but also because of the role that repetitive sequences play in determining th...
Levy, Nitzan; Tatomer, Dierdre; Herber, Candice B.; Zhao, Xiaoyue; Tang, Hui; Sargeant, Toby; Ball, Lonnele J.; Summers, Jonathan; Speed, Terence P.; Leitman, Dale C.
2008-01-01
Estrogen receptors (ERs) regulate gene transcription by interacting with regulatory elements. Most information regarding how ER activates genes has come from studies using a small set of target genes or simple consensus sequences such as estrogen response element, activator protein 1, and Sp1 elements. However, these elements cannot explain the differences in gene regulation patterns and clinical effects observed with estradiol (E2) and selective estrogen receptor modulators. To obtain a greater understanding of how E2 and selective estrogen receptor modulators differentially regulate genes, it is necessary to investigate their action on a more comprehensive set of native regulatory elements derived from ER target genes. Here we used chromatin immunoprecipitation-cloning and sequencing to isolate 173 regulatory elements associated with ERα. Most elements were found in the introns (38%) and regions greater than 10 kb upstream of the transcription initiation site (38%); 24% of the elements were found in the proximal promoter region (<10 kb). Only 11% of the elements contained a classical estrogen response element; 23% of the elements did not have any known response elements, including one derived from the naked cuticle homolog gene, which was associated with the recruitment of p160 coactivators. Transfection studies found that 80% of the 173 elements were regulated by E2, raloxifene, or tamoxifen with ERα or ERβ. Tamoxifen was more effective than raloxifene at activating the elements with ERα, whereas raloxifene was superior with ERβ. Our findings demonstrate that E2, tamoxifen, and raloxifene differentially regulate native ER-regulatory elements isolated by chromatin immunoprecipitation with ERα and ERβ. PMID:17962382
Ronsseray, S.; Lehmann, M.; Nouaud, D.; Anxolabehere, D.
1996-01-01
Genetic recombination was used in Drosophila melanogaster to isolate P elements, inserted at the telomeres of X chromosomes (cytological site 1A) from natural populations, in a genetic background devoid of other P elements. We show that complete maternally inherited P repression in the germline (P cytotype) can be elicited by only two autonomous P elements at 1A and that a single element at this site has partial regulatory properties. The analysis of the surrounding chromosomal regions of the P elements at 1A shows that in all cases these elements are flanked by Telomeric Associated Sequences, tandemly repetitive noncoding sequences that have properties of heterochromatin. In addition, we show that the regulatory properties of P elements at 1A can be inhibited by some of the mutant alleles of the Su(var)205 gene and by a deficiency of this gene. However, the regulatory properties of reference P strains (Harwich and Texas 007) are not impaired by Su(var)205 mutations. Su(var)205 encodes Heterochromatin Protein 1 (HP1). These results suggest that the HP1 dosage effect on the P element properties is site-dependent and could involve the structure of the chromatin. PMID:8844154
Whistle sequences in wild killer whales (Orcinus orca).
Riesch, Rüdiger; Ford, John K B; Thomsen, Frank
2008-09-01
Combining different stereotyped vocal signals into specific sequences increases the range of information that can be transferred between individuals. The temporal emission pattern and the behavioral context of vocal sequences have been described in detail for a variety of birds and mammals. Yet, in cetaceans, the study of vocal sequences is just in its infancy. Here, we provide a detailed analysis of sequences of stereotyped whistles in killer whales off Vancouver Island, British Columbia. A total of 1140 whistle transitions in 192 whistle sequences recorded from resident killer whales were analyzed using common spectrographic analysis techniques. In addition to the stereotyped whistles described by Riesch et al., [(2006). "Stability and group specificity of stereotyped whistles in resident killer whales, Orcinus orca, off British Columbia," Anim. Behav. 71, 79-91.] We found a new and rare stereotyped whistle (W7) as well as two whistle elements, which are closely linked to whistle sequences: (1) stammers and (2) bridge elements. Furthermore, the frequency of occurrence of 12 different stereotyped whistle types within the sequences was not randomly distributed and the transition patterns between whistles were also nonrandom. Finally, whistle sequences were closely tied to close-range behavioral interactions (in particular among males). Hence, we conclude that whistle sequences in wild killer whales are complex signal series and propose that they are most likely emitted by single individuals.
Panzenhagen, P H N; Cabral, C C; Suffys, P N; Franco, R M; Rodrigues, D P; Conte-Junior, C A
2018-04-01
Salmonella pathogenicity relies on virulence factors many of which are clustered within the Salmonella pathogenicity islands. Salmonella also harbours mobile genetic elements such as virulence plasmids, prophage-like elements and antimicrobial resistance genes which can contribute to increase its pathogenicity. Here, we have genetically characterized a selected S. Typhimurium strain (CCRJ_26) from our previous study with Multiple Drugs Resistant profile and high-frequency PFGE clonal profile which apparently persists in the pork production centre of Rio de Janeiro State, Brazil. By whole-genome sequencing, we described the strain's genome virulent content and characterized the repertoire of bacterial plasmids, antibiotic resistance genes and prophage-like elements. Here, we have shown evidence that strain CCRJ_26 genome possible represent a virulence-associated phenotype which may be potentially virulent in human infection. Whole-genome sequencing technologies are still costly and remain underexplored for applied microbiology in Brazil. Hence, this genomic description of S. Typhimurium strain CCRJ_26 will provide help in future molecular epidemiological studies. The analysis described here reveals a quick and useful pipeline for bacterial virulence characterization using whole-genome sequencing approach. © 2018 The Society for Applied Microbiology.
Mind the gap; seven reasons to close fragmented genome assemblies.
Thomma, Bart P H J; Seidl, Michael F; Shi-Kunne, Xiaoqian; Cook, David E; Bolton, Melvin D; van Kan, Jan A L; Faino, Luigi
2016-05-01
Like other domains of life, research into the biology of filamentous microbes has greatly benefited from the advent of whole-genome sequencing. Next-generation sequencing (NGS) technologies have revolutionized sequencing, making genomic sciences accessible to many academic laboratories including those that study non-model organisms. Thus, hundreds of fungal genomes have been sequenced and are publically available today, although these initiatives have typically yielded considerably fragmented genome assemblies that often lack large contiguous genomic regions. Many important genomic features are contained in intergenic DNA that is often missing in current genome assemblies, and recent studies underscore the significance of non-coding regions and repetitive elements for the life style, adaptability and evolution of many organisms. The study of particular types of genetic elements, such as telomeres, centromeres, repetitive elements, effectors, and clusters of co-regulated genes, but also of phenomena such as structural rearrangements, genome compartmentalization and epigenetics, greatly benefits from having a contiguous and high-quality, preferably even complete and gapless, genome assembly. Here we discuss a number of important reasons to produce gapless, finished, genome assemblies to help answer important biological questions. Copyright © 2015 Elsevier Inc. All rights reserved.
Genome-wide mapping of autonomous promoter activity in human cells
van Arensbergen, Joris; FitzPatrick, Vincent D.; de Haas, Marcel; Pagie, Ludo; Sluimer, Jasper; Bussemaker, Harmen J.; van Steensel, Bas
2017-01-01
Previous methods to systematically characterize sequence-intrinsic activity of promoters have been limited by relatively low throughput and the length of sequences that could be tested. Here we present Survey of Regulatory Elements (SuRE), a method to assay more than 108 DNA fragments, each 0.2–2kb in size, for their ability to drive transcription autonomously. In SuRE, a plasmid library is constructed of random genomic fragments upstream of a 20bp barcode and decoded by paired-end sequencing. This library is then transfected into cells and transcribed barcodes are quantified in the RNA by high throughput sequencing. When applied to the human genome, we achieved a 55-fold genome coverage, allowing us to map autonomous promoter activity genome-wide. By computational modeling we delineated subregions within promoters that are relevant for their activity. For instance, we show that antisense promoter transcription is generally dependent on the sense core promoter sequences, and that most enhancers and several families of repetitive elements act as autonomous transcription initiation sites. PMID:28024146
Nanopore sequencing technology: a new route for the fast detection of unauthorized GMO.
Fraiture, Marie-Alice; Saltykova, Assia; Hoffman, Stefan; Winand, Raf; Deforce, Dieter; Vanneste, Kevin; De Keersmaecker, Sigrid C J; Roosens, Nancy H C
2018-05-21
In order to strengthen the current genetically modified organism (GMO) detection system for unauthorized GMO, we have recently developed a new workflow based on DNA walking to amplify unknown sequences surrounding a known DNA region. This DNA walking is performed on transgenic elements, commonly found in GMO, that were earlier detected by real-time PCR (qPCR) screening. Previously, we have demonstrated the ability of this approach to detect unauthorized GMO via the identification of unique transgene flanking regions and the unnatural associations of elements from the transgenic cassette. In the present study, we investigate the feasibility to integrate the described workflow with the MinION Next-Generation-Sequencing (NGS). The MinION sequencing platform can provide long read-lengths and deal with heterogenic DNA libraries, allowing for rapid and efficient delivery of sequences of interest. In addition, the ability of this NGS platform to characterize unauthorized and unknown GMO without any a priori knowledge has been assessed.
Conrad, Liza J; Brutnell, Thomas P
2005-12-01
We have identified and characterized a novel Activator (Ac) element that is incapable of excision yet contributes to the canonical negative dosage effect of Ac. Cloning and sequence analysis of this immobilized Ac (Ac-im) revealed that it is identical to Ac with the exception of a 10-bp deletion of sequences at the left end of the element. In screens of approximately 6800 seeds, no germinal transpositions of Ac-im were detected. Importantly, Ac-im catalyzes germinal excisions of a Ds element resident at the r1 locus resulting in the recovery of independent transposed Ds insertions in approximately 4.5% of progeny kernels. Many of these transposition events occur during gametophytic development. Furthermore, we demonstrate that Ac-im transactivates multiple Ds insertions in somatic tissues including those in reporter alleles at bronze1, anthocyaninless1, and anthocyaninless2. We propose a model for the generation of Ac-im as an aberrant transposition event that failed to generate an 8-bp target site duplication and resulted in the deletion of Ac end sequences. We also discuss the utility of Ac-im in two-component Ac/Ds gene-tagging programs in maize.
Loots, Gabriela G
2008-01-01
Despite remarkable recent advances in genomics that have enabled us to identify most of the genes in the human genome, comparable efforts to define transcriptional cis-regulatory elements that control gene expression are lagging behind. The difficulty of this task stems from two equally important problems: our knowledge of how regulatory elements are encoded in genomes remains elementary, and there is a vast genomic search space for regulatory elements, since most of mammalian genomes are noncoding. Comparative genomic approaches are having a remarkable impact on the study of transcriptional regulation in eukaryotes and currently represent the most efficient and reliable methods of predicting noncoding sequences likely to control the patterns of gene expression. By subjecting eukaryotic genomic sequences to computational comparisons and subsequent experimentation, we are inching our way toward a more comprehensive catalog of common regulatory motifs that lie behind fundamental biological processes. We are still far from comprehending how the transcriptional regulatory code is encrypted in the human genome and providing an initial global view of regulatory gene networks, but collectively, the continued development of comparative and experimental approaches will rapidly expand our knowledge of the transcriptional regulome.
Lim, Chun Shen; Brown, Chris M
2017-01-01
Structured RNA elements may control virus replication, transcription and translation, and their distinct features are being exploited by novel antiviral strategies. Viral RNA elements continue to be discovered using combinations of experimental and computational analyses. However, the wealth of sequence data, notably from deep viral RNA sequencing, viromes, and metagenomes, necessitates computational approaches being used as an essential discovery tool. In this review, we describe practical approaches being used to discover functional RNA elements in viral genomes. In addition to success stories in new and emerging viruses, these approaches have revealed some surprising new features of well-studied viruses e.g., human immunodeficiency virus, hepatitis C virus, influenza, and dengue viruses. Some notable discoveries were facilitated by new comparative analyses of diverse viral genome alignments. Importantly, comparative approaches for finding RNA elements embedded in coding and non-coding regions differ. With the exponential growth of computer power we have progressed from stem-loop prediction on single sequences to cutting edge 3D prediction, and from command line to user friendly web interfaces. Despite these advances, many powerful, user friendly prediction tools and resources are underutilized by the virology community.
Mathews, D H; Banerjee, A R; Luan, D D; Eickbush, T H; Turner, D H
1997-01-01
RNA transcripts corresponding to the 250-nt 3' untranslated region of the R2 non-LTR retrotransposable element are recognized by the R2 reverse transcriptase and are sufficient to serve as templates in the target DNA-primed reverse transcription (TPRT) reaction. The R2 protein encoded by the Bombyx mori R2 can recognize this region from both the B. mori and Drosophila melanogaster R2 elements even though these regions show little nucleotide sequence identity. A model for the RNA secondary structure of the 3' untranslated region of the D. melanogaster R2 retrotransposon was developed by sequence comparison of 10 species aided by free energy minimization. Chemical modification experiments are consistent with this prediction. A secondary structure model for the 3' untranslated region of R2 RNA from the R2 element from B. mori was obtained by a combination of chemical modification data and free energy minimization. These two secondary structure models, found independently, share several common sites. This study shows the utility of combining free energy minimization, sequence comparison, and chemical modification to model an RNA secondary structure. PMID:8990394
Lim, Chun Shen; Brown, Chris M.
2018-01-01
Structured RNA elements may control virus replication, transcription and translation, and their distinct features are being exploited by novel antiviral strategies. Viral RNA elements continue to be discovered using combinations of experimental and computational analyses. However, the wealth of sequence data, notably from deep viral RNA sequencing, viromes, and metagenomes, necessitates computational approaches being used as an essential discovery tool. In this review, we describe practical approaches being used to discover functional RNA elements in viral genomes. In addition to success stories in new and emerging viruses, these approaches have revealed some surprising new features of well-studied viruses e.g., human immunodeficiency virus, hepatitis C virus, influenza, and dengue viruses. Some notable discoveries were facilitated by new comparative analyses of diverse viral genome alignments. Importantly, comparative approaches for finding RNA elements embedded in coding and non-coding regions differ. With the exponential growth of computer power we have progressed from stem-loop prediction on single sequences to cutting edge 3D prediction, and from command line to user friendly web interfaces. Despite these advances, many powerful, user friendly prediction tools and resources are underutilized by the virology community. PMID:29354101
The transfer of movement sequences: effects of decreased and increased load.
Muehlbauer, Thomas; Panzer, Stefan; Shea, Charles H
2007-06-01
A number of recent experiments have demonstrated that a movement structure develops during the course of learning a movement sequence that provides the basis for transfer. After learning a movement sequence participants have been shown to be able to effectively produce the sequence when movement demands require that the sequence be rescaled in amplitude or produced with an unpractised set of effectors. The purpose of the present experiment was to determine whether participants, after learning a complex 16-element movement sequence with a 0.567-kg load, could also effectively produce the sequence when the load was decreased (0.0 kg) or increased (1.134 kg). The results indicated that participants were able to effectively compensate for decreased and increased load with virtually no changes in performance characteristics (displacement, velocity, acceleration, and pattern of element durations) while electromyographic (EMG) signals demonstrated that smaller (reduced load) or larger forces (increased load) were spontaneously generated to compensate for the change in load. The muscle activation patterns of the biceps and triceps as well as the level of coactivation appeared to be generally upscaled to generate and dissipate the changes in force requirement needed to compensate for the increased load.
Yang, V W; Marks, J A; Davis, B P; Jeffries, T W
1994-01-01
This paper describes the first high-efficiency transformation system for the xylose-fermenting yeast Pichia stipitis. The system includes integrating and autonomously replicating plasmids based on the gene for orotidine-5'-phosphate decarboxylase (URA3) and an autonomous replicating sequence (ARS) element (ARS2) isolated from P. stipitis CBS 6054. Ura- auxotrophs were obtained by selecting for resistance to 5-fluoroorotic acid and were identified as ura3 mutants by transformation with P. stipitis URA3. P. stipitis URA3 was cloned by its homology to Saccharomyces cerevisiae URA3, with which it is 69% identical in the coding region. P. stipitis ARS elements were cloned functionally through plasmid rescue. These sequences confer autonomous replication when cloned into vectors bearing the P. stipitis URA3 gene. P. stipitis ARS2 has features similar to those of the consensus ARS of S. cerevisiae and other ARS elements. Circular plasmids bearing the P. stipitis URA3 gene with various amounts of flanking sequences produced 600 to 8,600 Ura+ transformants per micrograms of DNA by electroporation. Most transformants obtained with circular vectors arose without integration of vector sequences. One vector yielded 5,200 to 12,500 Ura+ transformants per micrograms of DNA after it was linearized at various restriction enzyme sites within the P. stipitis URA3 insert. Transformants arising from linearized vectors produced stable integrants, and integration events were site specific for the genomic ura3 in 20% of the transformants examined. Plasmids bearing the P. stipitis URA3 gene and ARS2 element produced more than 30,000 transformants per micrograms of plasmid DNA. Autonomously replicating plasmids were stable for at least 50 generations in selection medium and were present at an average of 10 copies per nucleus. Images PMID:7811063
The recurrence sequences via Sylvester matrices
NASA Astrophysics Data System (ADS)
Karaduman, Erdal; Deveci, Ömür
2017-07-01
In this work, we define the Pell-Jacobsthal-Slyvester sequence and the Jacobsthal-Pell-Slyvester sequence by using the Slyvester matrices which are obtained from the characteristic polynomials of the Pell and Jacobsthal sequences and then, we study the sequences defined modulo m. Also, we obtain the cyclic groups and the semigroups from the generating matrices of these sequences when read modulo m and then, we derive the relationships among the orders of the cyclic groups and the periods of the sequences. Furthermore, we redefine Pell-Jacobsthal-Slyvester sequence and the Jacobsthal-Pell-Slyvester sequence by means of the elements of the groups and then, we examine them in the finite groups.
Oelze, I; Rittner, K; Sczakiel, G
1994-01-01
Adeno-associated virus type 2 (AAV-2), a human parvovirus which is apathogenic in adults, inhibits replication and gene expression of human immunodeficiency virus type 1 (HIV-1) in human cells. The rep gene of AAV-2, which was shown earlier to be sufficient for this negative interference, also down-regulated the expression of heterologous sequences driven by the long terminal repeat (LTR) of HIV-1. This effect was observed in the absence of the HIV-1 transactivator Tat, i.e., at basal levels of LTR-driven transcription. In this work, we studied the involvement of functional subsequences of the HIV-1 LTR in rep-mediated inhibition in the absence of Tat. Mutated LTRs driving an indicator gene (cat) were cointroduced into human SW480 cells together with rep alone or with double-stranded DNA fragments or RNA containing sequences of the HIV-1 LTR. The results indicate that rep strongly enhances the function of negative regulatory elements of the LTR. In addition, the experiments revealed a transcribed sequence element located within the TAR-coding sequence termed AHHH (AAV-HIV homology element derived from HIV-1) which is involved in rep-mediated inhibition. The AHHH element is also involved in down-regulation of basal expression levels in the absence of rep, suggesting that AHHH also contributes to negative regulatory functions of the LTR of HIV-1. In contrast, positive regulatory elements of the HIV-1 LTR such as the NF kappa B and SP1 binding sites have no significant influence on the rep-mediated inhibition. Images PMID:8289357
NASA Technical Reports Server (NTRS)
Breault, D. T.; Lichtler, A. C.; Rowe, D. W.
1997-01-01
Collagen reporter gene constructs have be used to identify cell-specific sequences needed for transcriptional activation. The elements required for endogenous levels of COL1A1 expression, however, have not been elucidated. The human COL1A1 minigene is expressed at high levels and likely harbors sequence elements required for endogenous levels of activity. Using stably transfected osteoblastic Py1a cells, we studied a series of constructs (pOBColCAT) designed to characterize further the elements required for high level of expression. pOBColCAT, which contains the COL1A1 first intron, was expressed at 50-100-fold higher levels than ColCAT 3.6, which lacks the first intron. This difference is best explained by improved mRNA processing rather than a transcriptional effect. Furthermore, variation in activity observed with the intron deletion constructs is best explained by altered mRNA splicing. Two major regions of the human COL1A1 minigene, the 3'-flanking sequences and the minigene body, were introduced into pOBColCAT to assess both transcriptional enhancing activity and the effect on mRNA stability. Analysis of the minigene body, which includes the first five exons and introns fused with the terminal six introns and exons, revealed an orientation-independent 5-fold increase in CAT activity. In contrast the 3'-flanking sequences gave rise to a modest 61% increase in CAT activity. Neither region increased the mRNA half-life of the parent construct, suggesting that CAT-specific mRNA instability elements may serve as dominant negative regulators of stability. This study suggests that other sites within the body of the COL1A1 minigene are important for high expression, e.g. during periods of rapid extracellular matrix production.
Carnivore-specific SINEs (Can-SINEs): distribution, evolution, and genomic impact.
Walters-Conte, Kathryn B; Johnson, Diana L E; Allard, Marc W; Pecon-Slattery, Jill
2011-01-01
Short interspersed nuclear elements (SINEs) are a type of class 1 transposable element (retrotransposon) with features that allow investigators to resolve evolutionary relationships between populations and species while providing insight into genome composition and function. Characterization of a Carnivora-specific SINE family, Can-SINEs, has, has aided comparative genomic studies by providing rare genomic changes, and neutral sequence variants often needed to resolve difficult evolutionary questions. In addition, Can-SINEs constitute a significant source of functional diversity with Carnivora. Publication of the whole-genome sequence of domestic dog, domestic cat, and giant panda serves as a valuable resource in comparative genomic inferences gleaned from Can-SINEs. In anticipation of forthcoming studies bolstered by new genomic data, this review describes the discovery and characterization of Can-SINE motifs as well as describes composition, distribution, and effect on genome function. As the contribution of noncoding sequences to genomic diversity becomes more apparent, SINEs and other transposable elements will play an increasingly large role in mammalian comparative genomics.
Carnivore-Specific SINEs (Can-SINEs): Distribution, Evolution, and Genomic Impact
Johnson, Diana L.E.; Allard, Marc W.; Pecon-Slattery, Jill
2011-01-01
Short interspersed nuclear elements (SINEs) are a type of class 1 transposable element (retrotransposon) with features that allow investigators to resolve evolutionary relationships between populations and species while providing insight into genome composition and function. Characterization of a Carnivora-specific SINE family, Can-SINEs, has, has aided comparative genomic studies by providing rare genomic changes, and neutral sequence variants often needed to resolve difficult evolutionary questions. In addition, Can-SINEs constitute a significant source of functional diversity with Carnivora. Publication of the whole-genome sequence of domestic dog, domestic cat, and giant panda serves as a valuable resource in comparative genomic inferences gleaned from Can-SINEs. In anticipation of forthcoming studies bolstered by new genomic data, this review describes the discovery and characterization of Can-SINE motifs as well as describes composition, distribution, and effect on genome function. As the contribution of noncoding sequences to genomic diversity becomes more apparent, SINEs and other transposable elements will play an increasingly large role in mammalian comparative genomics. PMID:21846743
USDA-ARS?s Scientific Manuscript database
Small RNAs regulate the genome by guiding transcriptional and post-transcriptional silencing machinery to specific target sequences, including genes and transposable elements (TEs). Although miniature inverted-repeat transposable elements (MITEs) are closely associated with euchromatic genes, the br...
Strategies for Improving Achievement within Diversity.
ERIC Educational Resources Information Center
Thomson, Scott D.
Understanding students' learning styles is one of the first steps to providing an effective education. Four elements must be present in schools for mastery of content to occur. These four elements operate in sequence and each supports those that follow. The elements are (1) diagnosis of student traits and skills, (2) development of specific…
Elements of Mathematics, Book 8: Elements of Geometry.
ERIC Educational Resources Information Center
Exner, Robert; And Others
One of 12 books developed for use with the core material (Book O) of the Elements of Mathematics Program, this text covers material well beyond the scope of the usual secondary mathematics sequences. These materials are designed for highly motivated students with strong verbal abilities; mathematical theories and ideas are developed through…
NASA Astrophysics Data System (ADS)
Omar, Aimi Farehah; Ismail, Ismanizan
2016-11-01
Sesquiterpene synthase (SS) catalyzes the formation of sesquiterpenes from farnesyl diphosphate (FDP) via carbocation intermediates. In this study, the promoter region of sesquiterpene synthase was isolated from Persicaria minor to identify possible cis-acting elements in the promoter. The full-length PmSS promoter of P. minor is 1824-bp sequences. The sequence was analyzed and several putative cis-acting regulatory elements were identified. Three cis-acting regulatory elements were selected for deletion analysis which are cis-acting element involved in wound responsiveness (WUN), cis - acting element involved in defense and stress responsiveness (TC) and cis-acting element involved in ABA responsiveness (ABRE). Series of deletions were conducted to assess the promoter activity producing three truncated fragments promoter; Prom 2 1606-bp, Prom 3 1144- bp, and Prom 4 921-bp. The full-length promoter and its deletion series were cloned into the pBGWFS7 vector which contain β-glucuronidase (GUS) gene and green fluorescent protein (GFP) as the reporter gene. All constructs were successfully transformed into Arabidopsis thaliana based on PCR of positive BASTA resistance plants.
The LINEs and SINEs of Entamoeba histolytica: comparative analysis and genomic distribution.
Bakre, Abhijeet A; Rawal, Kamal; Ramaswamy, Ram; Bhattacharya, Alok; Bhattacharya, Sudha
2005-07-01
Autonomous non-long terminal repeat retrotransposons are commonly referred to as long interspersed elements (LINEs). Short non-autonomous elements that borrow the LINE machinery are called SINES. The Entamoeba histolytica genome contains three classes of LINEs and SINEs. Together the EhLINEs/SINEs account for about 6% of the genome. The recognizable functional domains in all three EhLINEs included reverse transcriptase and endonuclease. A novel feature was the presence of two types of members-some with a single long ORF (less frequent) and some with two ORFs (more frequent) in both EhLINE1 and 2. The two ORFs were generated by conserved changes leading to stop codon. Computational analysis of the immediate flanking sequences for each element showed that they inserted in AT-rich sequences, with a preponderance of Ts in the upstream site. The elements were very frequently located close to protein-coding genes and other EhLINEs/SINEs. The possible influence of these elements on expression of neighboring genes needs to be determined.
Definition of RNA polymerase II CoTC terminator elements in the human genome.
Nojima, Takayuki; Dienstbier, Martin; Murphy, Shona; Proudfoot, Nicholas J; Dye, Michael J
2013-04-25
Mammalian RNA polymerase II (Pol II) transcription termination is an essential step in protein-coding gene expression that is mediated by pre-mRNA processing activities and DNA-encoded terminator elements. Although much is known about the role of pre-mRNA processing in termination, our understanding of the characteristics and generality of terminator elements is limited. Whereas promoter databases list up to 40,000 known and potential Pol II promoter sequences, fewer than ten Pol II terminator sequences have been described. Using our knowledge of the human β-globin terminator mechanism, we have developed a selection strategy for mapping mammalian Pol II terminator elements. We report the identification of 78 cotranscriptional cleavage (CoTC)-type terminator elements at endogenous gene loci. The results of this analysis pave the way for the full understanding of Pol II termination pathways and their roles in gene expression. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Garcia-Fernàndez, J; Bayascas-Ramírez, J R; Marfany, G; Muñoz-Mármol, A M; Casali, A; Baguñà, J; Saló, E
1995-05-01
Several DNA sequences similar to the mariner element were isolated and characterized in the platyhelminthe Dugesia (Girardia) tigrina. They were 1,288 bp long, flanked by two 32 bp-inverted repeats, and contained a single 339 amino acid open-reading frame (ORF) encoding the transposase. The number of copies of this element is approximately 8,000 per haploid genome, constituting a member of the middle-repetitive DNA of Dugesia tigrina. Sequence analysis of several elements showed a high percentage of conservation between the different copies. Most of them presented an intact ORF and the standard signals of actively expressed genes, which suggests that some of them are or have recently been functional transposons. The high degree of similarity shared with other mariner elements from some arthropods, together with the fact that this element is undetectable in other planarian species, strongly suggests a case of horizontal transfer between these two distant phyla.
NASA Astrophysics Data System (ADS)
Hulsbosch, Niels; Hertogen, Jan; Dewaele, Stijn; André, Luc; Muchez, Philippe
2014-05-01
This study presents a general model for the evaluation of Rayleigh fractional crystallisation as the principal differentiation mechanism in the formation of regionally zoned common and rare-element pegmatites. The magmatic evolution of these systems from a granitic source is reconstructed by means of alkali element and rare earth element (REE) analyses of rock-forming minerals (feldspars, micas and tourmaline), which represent a whole sequence of regional pegmatite zonation. The Gatumba pegmatite field (Rwanda, Central Africa) is chosen as case study area because of its well-developed regional zonation sequence. The pegmatites are spatially and temporally related to peraluminous G4-granites (986 ± 10 Ma). The regional zonation is developed around a G4-granite and the proximal pegmatites grade outwardly into biotite, two-mica and muscovite pegmatites. Rare-element (Nb-Ta-Sn) pegmatites occur most distal from the granite.
Otsuka, Sachio; Saiki, Jun
2016-02-01
Prior studies have shown that visual statistical learning (VSL) enhances familiarity (a type of memory) of sequences. How do statistical regularities influence the processing of each triplet element and inserted distractors that disrupt the regularity? Given that increased attention to triplets induced by VSL and inhibition of unattended triplets, we predicted that VSL would promote memory for each triplet constituent, and degrade memory for inserted stimuli. Across the first two experiments, we found that objects from structured sequences were more likely to be remembered than objects from random sequences, and that letters (Experiment 1) or objects (Experiment 2) inserted into structured sequences were less likely to be remembered than those inserted into random sequences. In the subsequent two experiments, we examined an alternative account for our results, whereby the difference in memory for inserted items between structured and random conditions is due to individuation of items within random sequences. Our findings replicated even when control letters (Experiment 3A) or objects (Experiment 3B) were presented before or after, rather than inserted into, random sequences. Our findings suggest that statistical learning enhances memory for each item in a regular set and impairs memory for items that disrupt the regularity. Copyright © 2015 Elsevier B.V. All rights reserved.
Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum.
VanBuren, Robert; Bryant, Doug; Edger, Patrick P; Tang, Haibao; Burgess, Diane; Challabathula, Dinakar; Spittle, Kristi; Hall, Richard; Gu, Jenny; Lyons, Eric; Freeling, Michael; Bartels, Dorothea; Ten Hallers, Boudewijn; Hastie, Alex; Michael, Todd P; Mockler, Todd C
2015-11-26
Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetium genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a 'near-complete' draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. The Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.
Tyrosine Recombinase Retrotransposons and Transposons.
Poulter, Russell T M; Butler, Margi I
2015-04-01
Retrotransposons carrying tyrosine recombinases (YR) are widespread in eukaryotes. The first described tyrosine recombinase mobile element, DIRS1, is a retroelement from the slime mold Dictyostelium discoideum. The YR elements are bordered by terminal repeats related to their replication via free circular dsDNA intermediates. Site-specific recombination is believed to integrate the circle without creating duplications of the target sites. Recently a large number of YR retrotransposons have been described, including elements from fungi (mucorales and basidiomycetes), plants (green algae) and a wide range of animals including nematodes, insects, sea urchins, fish, amphibia and reptiles. YR retrotransposons can be divided into three major groups: the DIRS elements, PAT-like and the Ngaro elements. The three groups form distinct clades on phylogenetic trees based on alignments of reverse transcriptase/ribonuclease H (RT/RH) and YR sequences, and also having some structural distinctions. A group of eukaryote DNA transposons, cryptons, also carry tyrosine recombinases. These DNA transposons do not encode a reverse transcriptase. They have been detected in several pathogenic fungi and oomycetes. Sequence comparisons suggest that the crypton YRs are related to those of the YR retrotransposons. We suggest that the YR retrotransposons arose from the combination of a crypton-like YR DNA transposon and the RT/RH encoding sequence of a retrotransposon. This acquisition must have occurred at a very early point in the evolution of eukaryotes.
Casals, Ferran; Cáceres, Mario; Manfrin, Maura Helena; González, Josefa; Ruiz, Alfredo
2005-01-01
Galileo is a foldback transposable element that has been implicated in the generation of two polymorphic chromosomal inversions in Drosophila buzzatii. Analysis of the inversion breakpoints led to the discovery of two additional elements, called Kepler and Newton, sharing sequence and structural similarities with Galileo. Here, we describe in detail the molecular structure of these three elements, on the basis of the 13 copies found at the inversion breakpoints plus 10 additional copies isolated during this work. Similarly to the foldback elements described in other organisms, these elements have long inverted terminal repeats, which in the case of Galileo possess a complex structure and display a high degree of internal variability between copies. A phylogenetic tree built with their shared sequences shows that the three elements are closely related and diverged ∼10 million years ago. We have also analyzed the abundance and chromosomal distribution of these elements in D. buzzatii and other species of the repleta group by Southern analysis and in situ hybridization. Overall, the results suggest that these foldback elements are present in all the buzzatti complex species and may have played an important role in shaping their genomes. In addition, we show that recombination rate is the main factor determining the chromosomal distribution of these elements. PMID:15695364
Przybilski, Rita; Hammann, Christian
2007-01-01
Tertiary interacting elements are important features of functional RNA molecules, for example, in all small nucleolytic ribozymes. The recent crystal structure of a tertiary stabilized type I hammerhead ribozyme revealed a conventional Watson–Crick base pair in the catalytic core, formed between nucleotides C3 and G8. We show that any Watson–Crick base pair between these positions retains cleavage competence in two type III ribozymes. In the Arabidopsis thaliana sequence, only moderate differences in cleavage rates are observed for the different base pairs, while the peach latent mosaic viroid (PLMVd) ribozyme exhibits a preference for a pyrimidine at position 3 and a purine at position 8. To understand these differences, we created a series of chimeric ribozymes in which we swapped sequence elements that surround the catalytic core. The kinetic characterization of the resulting ribozymes revealed that the tertiary interacting loop sequences of the PLMVd ribozyme are sufficient to induce the preference for Y3–R8 base pairs in the A. thaliana hammerhead ribozyme. In contrast to this, only when the entire stem–loops I and II of the A. thaliana sequences are grafted on the PLMVd ribozyme is any Watson–Crick base pair similarly tolerated. The data provide evidence for a complex interplay of secondary and tertiary structure elements that lead, mediated by long-range effects, to an individual modulation of the local structure in the catalytic core of different hammerhead ribozymes. PMID:17666711
Parallel evolution of chordate cis-regulatory code for development.
Doglio, Laura; Goode, Debbie K; Pelleri, Maria C; Pauls, Stefan; Frabetti, Flavia; Shimeld, Sebastian M; Vavouri, Tanya; Elgar, Greg
2013-11-01
Urochordates are the closest relatives of vertebrates and at the larval stage, possess a characteristic bilateral chordate body plan. In vertebrates, the genes that orchestrate embryonic patterning are in part regulated by highly conserved non-coding elements (CNEs), yet these elements have not been identified in urochordate genomes. Consequently the evolution of the cis-regulatory code for urochordate development remains largely uncharacterised. Here, we use genome-wide comparisons between C. intestinalis and C. savignyi to identify putative urochordate cis-regulatory sequences. Ciona conserved non-coding elements (ciCNEs) are associated with largely the same key regulatory genes as vertebrate CNEs. Furthermore, some of the tested ciCNEs are able to activate reporter gene expression in both zebrafish and Ciona embryos, in a pattern that at least partially overlaps that of the gene they associate with, despite the absence of sequence identity. We also show that the ability of a ciCNE to up-regulate gene expression in vertebrate embryos can in some cases be localised to short sub-sequences, suggesting that functional cross-talk may be defined by small regions of ancestral regulatory logic, although functional sub-sequences may also be dispersed across the whole element. We conclude that the structure and organisation of cis-regulatory modules is very different between vertebrates and urochordates, reflecting their separate evolutionary histories. However, functional cross-talk still exists because the same repertoire of transcription factors has likely guided their parallel evolution, exploiting similar sets of binding sites but in different combinations.
Salem, Nida’ M.; Miller, W. Allen; Rowhani, Adib; Golino, Deborah A.; Moyne, Anne-Laure; Falk, Bryce W.
2015-01-01
We determined the complete nucleotide sequence of the Rose spring dwarf-associated virus (RSDaV) genomic RNA (GenBank accession no. EU024678) and compared its predicted RNA structural characteristics affecting gene expression. A cDNA library was derived from RSDaV double-stranded RNAs (dsRNAs) purified from infected tissue. Nucleotide sequence analysis of the cloned cDNAs, plus for clones generated by 5′- and 3′-RACE showed the RSDaV genomic RNA to be 5,808 nucleotides. The genomic RNA contains five major open reading frames (ORFs), and three small ORFs in the 3′-terminal 800 nucleotides, typical for viruses of genus Luteovirus in the family Luteoviridae. Northern blot hybridization analysis revealed the genomic RNA and two prominent subgenomic RNAs of approximately 3 kb and 1 kb. Putative 5′ ends of the sgRNAs were predicted by identification of conserved sequences and secondary structures which resembled the Barley yellow dwarf virus (BYDV) genomic RNA 5′ end and subgenomic RNA promoter sequences. Secondary structures of the BYDV-like ribosomal frameshift elements and cap-independent translation elements, including long-distance base pairing spanning four kb were identified. These contain similarities but also informative differences with the BYDV structures, including a strikingly different structure predicted for the 3′ cap-independent translation element. These analyses of the RSDaV genomic RNA show more complexity for the RNA structural elements for members of the Luteoviridae. PMID:18329064
Salem, Nida' M; Miller, W Allen; Rowhani, Adib; Golino, Deborah A; Moyne, Anne-Laure; Falk, Bryce W
2008-06-05
We determined the complete nucleotide sequence of the Rose spring dwarf-associated virus (RSDaV) genomic RNA (GenBank accession no. EU024678) and compared its predicted RNA structural characteristics affecting gene expression. A cDNA library was derived from RSDaV double-stranded RNAs (dsRNAs) purified from infected tissue. Nucleotide sequence analysis of the cloned cDNAs, plus for clones generated by 5'- and 3'-RACE showed the RSDaV genomic RNA to be 5808 nucleotides. The genomic RNA contains five major open reading frames (ORFs), and three small ORFs in the 3'-terminal 800 nucleotides, typical for viruses of genus Luteovirus in the family Luteoviridae. Northern blot hybridization analysis revealed the genomic RNA and two prominent subgenomic RNAs of approximately 3 kb and 1 kb. Putative 5' ends of the sgRNAs were predicted by identification of conserved sequences and secondary structures which resembled the Barley yellow dwarf virus (BYDV) genomic RNA 5' end and subgenomic RNA promoter sequences. Secondary structures of the BYDV-like ribosomal frameshift elements and cap-independent translation elements, including long-distance base pairing spanning four kb were identified. These contain similarities but also informative differences with the BYDV structures, including a strikingly different structure predicted for the 3' cap-independent translation element. These analyses of the RSDaV genomic RNA show more complexity for the RNA structural elements for members of the Luteoviridae.
Transcriptional activity of transposable elements in coelacanth.
Forconi, Mariko; Chalopin, Domitille; Barucca, Marco; Biscotti, Maria Assunta; De Moro, Gianluca; Galiana, Delphine; Gerdol, Marco; Pallavicini, Alberto; Canapa, Adriana; Olmo, Ettore; Volff, Jean-Nicolas
2014-09-01
The morphological stasis of coelacanths has long suggested a slow evolutionary rate. General genomic stasis might also imply a decrease of transposable elements activity. To evaluate the potential activity of transposable elements (TEs) in "living fossil" species, transcriptomic data of Latimeria chalumnae and its Indonesian congener Latimeria menadoensis were compared through the RNA-sequencing mapping procedures in three different organs (liver, testis, and muscle). The analysis of coelacanth transcriptomes highlights a significant percentage of transcribed TEs in both species. Major contributors are LINE retrotransposons, especially from the CR1 family. Furthermore, some particular elements such as a LF-SINE and a LINE2 sequences seem to be more expressed than other elements. The amount of TEs expressed in testis suggests possible transposition burst in incoming generations. Moreover, significant amount of TEs in liver and muscle transcriptomes were also observed. Analyses of elements displaying marked organ-specific expression gave us the opportunity to highlight exaptation cases, that is, the recruitment of TEs as new cellular genes, but also to identify a new Latimeria-specific family of Short Interspersed Nuclear Elements called CoeG-SINEs. Overall, transcriptome results do not seem to be in line with a slow-evolving genome with poor TE activity. © 2013 Wiley Periodicals, Inc.
Turatsinze, Jean-Valery; Thomas-Chollier, Morgane; Defrance, Matthieu; van Helden, Jacques
2008-01-01
This protocol shows how to detect putative cis-regulatory elements and regions enriched in such elements with the regulatory sequence analysis tools (RSAT) web server (http://rsat.ulb.ac.be/rsat/). The approach applies to known transcription factors, whose binding specificity is represented by position-specific scoring matrices, using the program matrix-scan. The detection of individual binding sites is known to return many false predictions. However, results can be strongly improved by estimating P value, and by searching for combinations of sites (homotypic and heterotypic models). We illustrate the detection of sites and enriched regions with a study case, the upstream sequence of the Drosophila melanogaster gene even-skipped. This protocol is also tested on random control sequences to evaluate the reliability of the predictions. Each task requires a few minutes of computation time on the server. The complete protocol can be executed in about one hour.
Entropy and long-range memory in random symbolic additive Markov chains
NASA Astrophysics Data System (ADS)
Melnik, S. S.; Usatenko, O. V.
2016-06-01
The goal of this paper is to develop an estimate for the entropy of random symbolic sequences with elements belonging to a finite alphabet. As a plausible model, we use the high-order additive stationary ergodic Markov chain with long-range memory. Supposing that the correlations between random elements of the chain are weak, we express the conditional entropy of the sequence by means of the symbolic pair correlation function. We also examine an algorithm for estimating the conditional entropy of finite symbolic sequences. We show that the entropy contains two contributions, i.e., the correlation and the fluctuation. The obtained analytical results are used for numerical evaluation of the entropy of written English texts and DNA nucleotide sequences. The developed theory opens the way for constructing a more consistent and sophisticated approach to describe the systems with strong short-range and weak long-range memory.
Entropy and long-range memory in random symbolic additive Markov chains.
Melnik, S S; Usatenko, O V
2016-06-01
The goal of this paper is to develop an estimate for the entropy of random symbolic sequences with elements belonging to a finite alphabet. As a plausible model, we use the high-order additive stationary ergodic Markov chain with long-range memory. Supposing that the correlations between random elements of the chain are weak, we express the conditional entropy of the sequence by means of the symbolic pair correlation function. We also examine an algorithm for estimating the conditional entropy of finite symbolic sequences. We show that the entropy contains two contributions, i.e., the correlation and the fluctuation. The obtained analytical results are used for numerical evaluation of the entropy of written English texts and DNA nucleotide sequences. The developed theory opens the way for constructing a more consistent and sophisticated approach to describe the systems with strong short-range and weak long-range memory.
Berthier, Y; Thierry, D; Lemattre, M; Guesdon, J L
1994-01-01
A new insertion sequence was isolated from Xanthomonas campestris pv. dieffenbachiae. Sequence analysis showed that this element is 1,158 bp long and has 15-bp inverted repeat ends containing two mismatches. Comparison of this sequence with sequences in data bases revealed significant homology with Escherichia coli IS5. IS1051, which detected multiple restriction fragment length polymorphisms, was used as a probe to characterize strains from the pathovar dieffenbachiae. Images PMID:7906933
Intronic sequences are required for AINTEGUMENTA-LIKE6 expression in Arabidopsis flowers.
Krizek, Beth A
2015-10-12
The AINTEGUMENTA-LIKE6/PLETHORA3 (AIL6/PLT3) gene of Arabidopsis thaliana is a key regulator of growth and patterning in both shoots and roots. AIL6 encodes an AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) transcription factor that is expressed in the root stem cell niche, the peripheral region of the shoot apical meristem and young lateral organ primordia. In flowers, AIL6 acts redundantly with AINTEGUMENTA (ANT) to regulate floral organ positioning, growth, identity and patterning. Experiments were undertaken to define the genomic regions required for AIL6 function and expression in flowers. Transgenic plants expressing a copy of the coding region of AIL6 in the context of 7.7 kb of 5' sequence and 919 bp of 3' sequence (AIL6:cAIL6-3') fail to fully complement AIL6 function when assayed in the ant-4 ail6-2 double mutant background. In contrast, a genomic copy of AIL6 with the same amount of 5' and 3' sequence (AIL6:gAIL6-3') can fully complement ant-4 ail6-2. In addition, a genomic copy of AIL6 with 590 bp of 5' sequence and 919 bp of 3' sequence (AIL6m:gAIL6-3') complements ant-4 ail6-2 and contains all regulatory elements needed to confer normal AIL6 expression in inflorescences. Efforts to map cis-regulatory elements reveal that the third intron of AIL6 contains enhancer elements that confer expression in young flowers but in a broader pattern than that of AIL6 mRNA in wild-type flowers. Some AIL6:gAIL6-3' and AIL6m:gAIL6-3' lines confer an over-rescue phenotype in the ant-4 ail6-2 background that is correlated with higher levels of AIL6 mRNA accumulation. The results presented here indicate that AIL6 intronic sequences serve as transcriptional enhancer elements. In addition, the results show that increased expression of AIL6 can partially compensate for loss of ANT function in flowers.
Tn5401, a new class II transposable element from Bacillus thuringiensis.
Baum, J A
1994-01-01
A new class II (Tn3-like) transposable element, designated Tn5401, was recovered from a sporulation-deficient variant of Bacillus thuringiensis subsp. morrisoni EG2158 following its insertion into a recombinant plasmid. Sequence analysis of the insert revealed a 4,837-bp transposon with two large open reading frames, in the same orientation, encoding proteins of 36 kDa (306 residues) and 116 kDa (1,005 residues) and 53-bp terminal inverted repeats. The deduced amino acid sequence for the 36-kDa protein shows 24% sequence identity with the TnpI recombinase of the B. thuringiensis transposon Tn4430, a member of the phage integrase family of site-specific recombinases. The deduced amino acid sequence for the 116-kDa protein shows 42% sequence identity with the transposase of Tn3 but only 28% identity with the TnpA transposase of Tn4430. Two small open reading frames of unknown function, designated orf1 (85 residues) and orf2 (74 residues), were also identified. Southern blot analysis indicated that Tn5401, in contrast to Tn4430, is not commonly found among different subspecies of B. thuringiensis and is not typically associated with known insecticidal crystal protein genes. Transposition was studied with B. thuringiensis by using plasmid pEG922, a temperature-sensitive shuttle vector containing Tn5401. Tn5401 transposed to both chromosomal and plasmid target sites but displayed an apparent preference for plasmid sites. Transposition was replicative and resulted in the generation of a 5-bp duplication at the target site. Transcriptional start sites within Tn5401 were mapped by primer extension analysis. Two promoters, designated PL and PR, direct the transcription of orf1-orf2 and tnpI-tnpA, respectively, and are negatively regulated by TnpI. Sequence comparison of the promoter regions of Tn5401 and Tn4430 suggests that the conserved sequence element ATGTCCRCTAAY mediates TnpI binding and cointegrate resolution. The same element is contained within the 53-bp terminal inverted repeats, thus accounting for their unusual lengths and suggesting an additional role for TnpI in regulating Tn5401 transposition. Images PMID:7514590
Evaluating the protein coding potential of exonized transposable element sequences
Piriyapongsa, Jittima; Rutledge, Mark T; Patel, Sanil; Borodovsky, Mark; Jordan, I King
2007-01-01
Background Transposable element (TE) sequences, once thought to be merely selfish or parasitic members of the genomic community, have been shown to contribute a wide variety of functional sequences to their host genomes. Analysis of complete genome sequences have turned up numerous cases where TE sequences have been incorporated as exons into mRNAs, and it is widely assumed that such 'exonized' TEs encode protein sequences. However, the extent to which TE-derived sequences actually encode proteins is unknown and a matter of some controversy. We have tried to address this outstanding issue from two perspectives: i-by evaluating ascertainment biases related to the search methods used to uncover TE-derived protein coding sequences (CDS) and ii-through a probabilistic codon-frequency based analysis of the protein coding potential of TE-derived exons. Results We compared the ability of three classes of sequence similarity search methods to detect TE-derived sequences among data sets of experimentally characterized proteins: 1-a profile-based hidden Markov model (HMM) approach, 2-BLAST methods and 3-RepeatMasker. Profile based methods are more sensitive and more selective than the other methods evaluated. However, the application of profile-based search methods to the detection of TE-derived sequences among well-curated experimentally characterized protein data sets did not turn up many more cases than had been previously detected and nowhere near as many cases as recent genome-wide searches have. We observed that the different search methods used were complementary in the sense that they yielded largely non-overlapping sets of hits and differed in their ability to recover known cases of TE-derived CDS. The probabilistic analysis of TE-derived exon sequences indicates that these sequences have low protein coding potential on average. In particular, non-autonomous TEs that do not encode protein sequences, such as Alu elements, are frequently exonized but unlikely to encode protein sequences. Conclusion The exaptation of the numerous TE sequences found in exons as bona fide protein coding sequences may prove to be far less common than has been suggested by the analysis of complete genomes. We hypothesize that many exonized TE sequences actually function as post-transcriptional regulators of gene expression, rather than coding sequences, which may act through a variety of double stranded RNA related regulatory pathways. Indeed, their relatively high copy numbers and similarity to sequences dispersed throughout the genome suggests that exonized TE sequences could serve as master regulators with a wide scope of regulatory influence. Reviewers: This article was reviewed by Itai Yanai, Kateryna D. Makova, Melissa Wilson (nominated by Kateryna D. Makova) and Cedric Feschotte (nominated by John M. Logsdon Jr.). PMID:18036258
ERIC Educational Resources Information Center
Dawkins, Paul Christian
2012-01-01
This study presents how the introduction of a metaphor for sequence convergence constituted an experientially real context in which an undergraduate real analysis student developed a property-based definition of sequence convergence. I use elements from Zandieh and Rasmussen's (2010) Defining as a Mathematical Activity framework to trace the…
Heavy Element Abundances in Two B0-B0.5 Main Sequence Stars in the Small Magellanic Cloud
NASA Astrophysics Data System (ADS)
Peters, Geraldine J.
We propose FUSE observations of AV304 (B0.5V) and NGC346-637 B0V), two sharp-lined main-sequence stars in the Small Magellanic Cloud, to determine the abundances of heavy elements, especially those of the iron group. The FUSE spectral region contains numerous Fe III lines, including the resonance multiplet (UV 1) near 1130 Angstroms, that is excellent for abundance determinations and two strong multiplets of V III, an ion that does not produce measurable lines longward of 1200 Angstoms, in metal-deficient stars. In addition there are several measurable lines from Cr III and Mn III. A limited analyses of ground-based spectra of these stars by Dufton et al. (1990) and Rolleston et al. (1993) indicated an average underabundance of 0.7-0.8 dex for most light elements and a recent analysis of HSTSTIS data on AV304 by Peters & Grigsby (2001) suggests that the Fe group elements are depleted by the same amount relative to the sun. When combined with the HST-STIS results, this effort will represent the first attempt to measure the abundances of Fe group elements in the photospheres of early B, main sequence stars in an external galaxy. Although abundances of the Fe-peak elements are of interest because they are important for assessing opacities for stellar evolution calculations and the validity of theoretical calculations of explosive nucleosynthesis, the ground-based study did not yield this information because measurable lines from these species are found only in the UV spectral region. Abundances and abundance ratios of both heavy & light elements will be compared with the HST-STIS results from AV304, H II regions, supernova remnants, evolved massive stars in the SMC, and theoretical calculations of nucleosynthesis.
Villacreses, Javier; Rojas-Herrera, Marcelo; Sánchez, Carolina; Hewstone, Nicole; Undurraga, Soledad F.; Alzate, Juan F.; Manque, Patricio; Maracaja-Coutinho, Vinicius; Polanco, Victor
2015-01-01
Here, we report the genome sequence and evidence for transcriptional activity of a virus-like element in the native Chilean berry tree Aristotelia chilensis. We propose to name the endogenous sequence as Aristotelia chilensis Virus 1 (AcV1). High-throughput sequencing of the genome of this tree uncovered an endogenous viral element, with a size of 7122 bp, corresponding to the complete genome of AcV1. Its sequence contains three open reading frames (ORFs): ORFs 1 and 2 shares 66%–73% amino acid similarity with members of the Caulimoviridae virus family, especially the Petunia vein clearing virus (PVCV), Petuvirus genus. ORF1 encodes a movement protein (MP); ORF2 a Reverse Transcriptase (RT) and a Ribonuclease H (RNase H) domain; and ORF3 showed no amino acid sequence similarity with any other known virus proteins. Analogous to other known endogenous pararetrovirus sequences (EPRVs), AcV1 is integrated in the genome of Maqui Berry and showed low viral transcriptional activity, which was detected by deep sequencing technology (DNA and RNA-seq). Phylogenetic analysis of AcV1 and other pararetroviruses revealed a closer resemblance with Petuvirus. Overall, our data suggests that AcV1 could be a new member of Caulimoviridae family, genus Petuvirus, and the first evidence of this kind of virus in a fruit plant. PMID:25855242
LINE-1 retrotransposons: from 'parasite' sequences to functional elements.
Paço, Ana; Adega, Filomena; Chaves, Raquel
2015-02-01
Long interspersed nuclear elements-1 (LINE-1) are the most abundant and active retrotransposons in the mammalian genomes. Traditionally, the occurrence of LINE-1 sequences in the genome of mammals has been explained by the selfish DNA hypothesis. Nevertheless, recently, it has also been argued that these sequences could play important roles in these genomes, as in the regulation of gene expression, genome modelling and X-chromosome inactivation. The non-random chromosomal distribution is a striking feature of these retroelements that somehow reflects its functionality. In the present study, we have isolated and analysed a fraction of the open reading frame 2 (ORF2) LINE-1 sequence from three rodent species, Cricetus cricetus, Peromyscus eremicus and Praomys tullbergi. Physical mapping of the isolated sequences revealed an interspersed longitudinal AT pattern of distribution along all the chromosomes of the complement in the three genomes. A detailed analysis shows that these sequences are preferentially located in the euchromatic regions, although some signals could be detected in the heterochromatin. In addition, a coincidence between the location of imprinted gene regions (as Xist and Tsix gene regions) and the LINE-1 retroelements was also observed. According to these results, we propose an involvement of LINE-1 sequences in different genomic events as gene imprinting, X-chromosome inactivation and evolution of repetitive sequences located at the heterochromatic regions (e.g. satellite DNA sequences) of the rodents' genomes analysed.
Atrx promotes heterochromatin formation at retrotransposons
Sadic, Dennis; Schmidt, Katharina; Groh, Sophia; Kondofersky, Ivan; Ellwart, Joachim; Fuchs, Christiane; Theis, Fabian J; Schotta, Gunnar
2015-01-01
More than 50% of mammalian genomes consist of retrotransposon sequences. Silencing of retrotransposons by heterochromatin is essential to ensure genomic stability and transcriptional integrity. Here, we identified a short sequence element in intracisternal A particle (IAP) retrotransposons that is sufficient to trigger heterochromatin formation. We used this sequence in a genome-wide shRNA screen and identified the chromatin remodeler Atrx as a novel regulator of IAP silencing. Atrx binds to IAP elements and is necessary for efficient heterochromatin formation. In addition, Atrx facilitates a robust and largely inaccessible heterochromatin structure as Atrx knockout cells display increased chromatin accessibility at retrotransposons and non-repetitive heterochromatic loci. In summary, we demonstrate a direct role of Atrx in the establishment and robust maintenance of heterochromatin. PMID:26012739
Stepwise evolution of pandrug-resistance in Klebsiella pneumoniae
Zowawi, Hosam M.; Forde, Brian M.; Alfaresi, Mubarak; Alzarouni, Abdulqadir; Farahat, Yasser; Chong, Teik-Min; Yin, Wai-Fong; Chan, Kok-Gan; Li, Jian; Schembri, Mark A.; Beatson, Scott A.; Paterson, David L.
2015-01-01
Carbapenem resistant Enterobacteriaceae (CRE) pose an urgent risk to global human health. CRE that are non-susceptible to all commercially available antibiotics threaten to return us to the pre-antibiotic era. Using Single Molecule Real Time (SMRT) sequencing we determined the complete genome of a pandrug-resistant Klebsiella pneumoniae isolate, representing the first complete genome sequence of CRE resistant to all commercially available antibiotics. The precise location of acquired antibiotic resistance elements, including mobile elements carrying genes for the OXA-181 carbapenemase, were defined. Intriguingly, we identified three chromosomal copies of an ISEcp1-blaOXA-181 mobile element, one of which has disrupted the mgrB regulatory gene, accounting for resistance to colistin. Our findings provide the first description of pandrug-resistant CRE at the genomic level, and reveal the critical role of mobile resistance elements in accelerating the emergence of resistance to other last resort antibiotics. PMID:26478520
Useful DNA polymorphisms are identified by snapback, a midrepetitive element in Tribolium castaneum.
Stuart, J J; De Gortari, M J; Hall, P S; Maxwell, M E; Mocelin, G; Brown, S J; Muir, W M
1996-06-01
The red flour bettle, Tribolium castaneum, is both a pest of stored grain products and an important experimental organism. To improve its facility as a genetic model, we are developing DNA fingerprinting methods for this insect. A Tribolium DNA fragment, snapback-1 (SBI), identified among sequences that reassociate before a Cot of 0.03 mol.s/L, was found to produce a banding pattern in restriction endonuclease digested genomic DNA that is characteristic of a midrepetitive element. DNA fingerprints of individual beetles demonstrated that unvarying inherited DNA polymorphism is revealed, and that polymorphism is inherited in a dominant Mendelian fashion. Linkage between bands was minimal. The sequence of SBI was determined, and hybridization experiments indicated that SBI is a fragment of a larger midrepetitive element. Fingerprinting individuals with known inbreeding coefficients indicated that SBI loci have relatively high mutation rates. The possibility that SBI is a fragment of a transposable element is discussed.
Noncoding sequence classification based on wavelet transform analysis: part I
NASA Astrophysics Data System (ADS)
Paredes, O.; Strojnik, M.; Romo-Vázquez, R.; Vélez Pérez, H.; Ranta, R.; Garcia-Torales, G.; Scholl, M. K.; Morales, J. A.
2017-09-01
DNA sequences in human genome can be divided into the coding and noncoding ones. Coding sequences are those that are read during the transcription. The identification of coding sequences has been widely reported in literature due to its much-studied periodicity. Noncoding sequences represent the majority of the human genome. They play an important role in gene regulation and differentiation among the cells. However, noncoding sequences do not exhibit periodicities that correlate to their functions. The ENCODE (Encyclopedia of DNA elements) and Epigenomic Roadmap Project projects have cataloged the human noncoding sequences into specific functions. We study characteristics of noncoding sequences with wavelet analysis of genomic signals.
Dynamics of Tree Species Diversity in Unlogged and Selectively Logged Malaysian Forests.
Shima, Ken; Yamada, Toshihiro; Okuda, Toshinori; Fletcher, Christine; Kassim, Abdul Rahman
2018-01-18
Selective logging that is commonly conducted in tropical forests may change tree species diversity. In rarely disturbed tropical forests, locally rare species exhibit higher survival rates. If this non-random process occurs in a logged forest, the forest will rapidly recover its tree species diversity. Here we determined whether a forest in the Pasoh Forest Reserve, Malaysia, which was selectively logged 40 years ago, recovered its original species diversity (species richness and composition). To explore this, we compared the dynamics of secies diversity between unlogged forest plot (18.6 ha) and logged forest plot (5.4 ha). We found that 40 years are not sufficient to recover species diversity after logging. Unlike unlogged forests, tree deaths and recruitments did not contribute to increased diversity in the selectively logged forests. Our results predict that selectively logged forests require a longer time at least than our observing period (40 years) to regain their diversity.
Identification of distal silencing elements in the murine interferon-A11 gene promoter.
Roffet, P; Lopez, S; Navarro, S; Bandu, M T; Coulombel, C; Vignal, M; Doly, J; Vodjdani, G
1996-08-01
The murine interferon-A11 (Mu IFN-A11) gene is a member of the IFN-A multigenic family. In mouse L929 cells, the weak response of the gene's promoter to viral induction is due to a combination of both a point mutation in the virus responsive element (VRE) and the presence of negatively regulating sequences surrounding the VRE. In the distal part of the promoter, the negatively acting E1E2 sequence was delimited. This sequence displays an inhibitory effect in either orientation or position on the inducibility of a virus-responsive heterologous promoter. It selectively represses VRE-dependent transcription but is not able to reduce the transcriptional activity of a VRE-lacking promoter. In a transient transfection assay, an E1E2-containing DNA competitor was able to derepress the native Mu IFN-A11 promoter. Specific nuclear factors bind to this sequence; thus the binding of trans-regulators participates in the repression of the Mu IFN-A11 gene. The E1E2 sequence contains an IFN regulatory factor (IRF)-binding site. Recombinant IRF2 binds this sequence and anti-IRF2 antibodies supershift a major complex formed with nuclear extracts. The protein composing the complex is 50 kDa in size, indicating the presence of IRF2 or antigenically related proteins in the complex. The Mu IFN-A11 gene is the first example within the murine IFN-A family, in which a distal promoter element has been identified that can negatively modulate the transcriptional response to viral induction.
Marton, Szilvia; Ihász, Katalin; Lengyel, György; Farkas, Szilvia L; Dán, Ádám; Paulus, Petra; Bányai, Krisztián; Fehér, Enikő
2015-03-01
Circoviruses of pigs and birds are established pathogens, however, the exact role of other, recently described circoviruses and circovirus-like viruses remains to be elucidated. The aim of this study was the detection of circoviruses in neglected host species, including honey bees, exotic reptiles and free-living amoebae by widely used broad-spectrum polymerase chain reaction (PCR) assays specific for the replication initiation protein coding gene of these viruses. The majority of sequences obtained from honey bees were highly similar to canine and porcine circoviruses, or, were distantly related to dragonfly cycloviruses. Other rep sequences detected in some honey bees, reptiles and amoebae showed similarities to various rep sequences deposited in the GenBank. Back-to-back PCR primers designed for the amplification of whole viral genomes failed to work that suggested the existence of integrated rep-like elements in many samples. Rolling circle amplification and exonuclease treatment confirmed the absence of small circular DNA genomes in the specimens analysed. In case of honey bees Varroa mite DNA contamination might be a source of the identified endogenous rep-like elements. The reptile and amoebae rep-like sequences were nearly identical with each other and with sequences detected in chimpanzee feces raising the possibility that detection of novel or unusual rep-like elements in some host species might originate from the microbial community of the host. Our results indicate that attention is needed when broad-spectrum rep gene specific polymerase chain reaction is chosen for laboratory diagnosis of circovirus infections.
Annotation and sequence diversity of transposable elements in common bean (Phaseolus vulgaris).
Gao, Dongying; Abernathy, Brian; Rohksar, Daniel; Schmutz, Jeremy; Jackson, Scott A
2014-01-01
Common bean (Phaseolus vulgaris) is an important legume crop grown and consumed worldwide. With the availability of the common bean genome sequence, the next challenge is to annotate the genome and characterize functional DNA elements. Transposable elements (TEs) are the most abundant component of plant genomes and can dramatically affect genome evolution and genetic variation. Thus, it is pivotal to identify TEs in the common bean genome. In this study, we performed a genome-wide transposon annotation in common bean using a combination of homology and sequence structure-based methods. We developed a 2.12-Mb transposon database which includes 791 representative transposon sequences and is available upon request or from www.phytozome.org. Of note, nearly all transposons in the database are previously unrecognized TEs. More than 5,000 transposon-related expressed sequence tags (ESTs) were detected which indicates that some transposons may be transcriptionally active. Two Ty1-copia retrotransposon families were found to encode the envelope-like protein which has rarely been identified in plant genomes. Also, we identified an extra open reading frame (ORF) termed ORF2 from 15 Ty3-gypsy families that was located between the ORF encoding the retrotransposase and the 3'LTR. The ORF2 was in opposite transcriptional orientation to retrotransposase. Sequence homology searches and phylogenetic analysis suggested that the ORF2 may have an ancient origin, but its function is not clear. These transposon data provide a useful resource for understanding the genome organization and evolution and may be used to identify active TEs for developing transposon-tagging system in common bean and other related genomes.
Hamilton, P T; Reeve, J N
1985-01-01
DNA fragments cloned from the methanogenic archaebacterium Methanobrevibacter smithii which complement mutations in the purE and proC genes of E. coli have been sequenced. Sequence analyses, transposon mutagenesis and expression in E. coli minicells indicate that purE and proC complementations result from the synthesis of M. smithii polypeptides with molecular weights of 36,697 and 27,836 respectively. The encoding genes appear to be located in operons. The M. smithii genome contains 69% A/T basepairs (bp) which is reflected in unusual codon usages and intergenic regions containing approximately 85% A/T bp. An insertion element, designated ISM1, was found within the cloned M. smithii DNA located adjacent to the proC complementing region. ISM1 is 1381 bp in length, has 29 bp terminal inverted repeat sequences and contains one major ORF encoded in 87% of the ISM1 sequence. ISM1 is mobile, present in approximately 10 copies per genome and integration duplicates 8 bp at the site of insertion. The duplicated sequences show homology with sequences within the 29 bp terminal repeat sequence of ISM1. Comparison of our data with sequences from halophilic archaebacteria suggests that 5'GAANTTTCA and 5'TTTTAATATAAA may be consensus promoter sequences for archaebacteria. These sequences closely resemble the consensus sequences which precede Drosophila heat-shock genes (Pelham 1982; Davidson et al. 1983). Methanogens appear to employ the eubacterial system of mRNA: 16SrRNA hybridization to ensure initiation of translation; the consensus ribosome binding sequence is 5'AGGTGA.
Major and trace element abundances in volcanic rocks of orogenic areas.
NASA Technical Reports Server (NTRS)
Jakes, P.; White, A. J. R.
1972-01-01
The composition of recent island-arc volcanic rocks in relation to their geographic and stratigraphic relations is discussed. The differences in composition between volcanic rocks and those in continental margins are pointed out. Trace elements and major elements are shown to suggest a continuous gradational sequence from tholeiites through calc-alkaline rocks to shoshonites.
USDA-ARS?s Scientific Manuscript database
The rye genome features a high percentage of repetitive elements, especially transposable elements (TEs). However, studies about the constitution and organization of TEs on rye chromosomes are limited. In this study, 97 unique TE segments were isolated and characterized; 50 TE segmemts showed varyin...
Identification of a non-LTR retrotransposon from the gypsy moth
K.J. Garner; J.M. Slavicek
1999-01-01
A family of highly repetitive elements, named LDT1, has been identified in the gypsy moth, Lymantria dispar. The complete element is 5.4 kb in length and lacks long-terminal repeats, The element contains two open reading frames with a significant amino acid sequence similarity to several non-LTR retrotransposons. The first open reading frame contains...
8 CFR 299.4 - Reproduction of Public Use Forms by public and private entities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... read, or displays added or missing data elements, will be rejected by the Service. Any problems... official form. The wording and punctuation of all data elements and identifying information must match exactly. No data elements may be added or deleted. The sequence and format for each item on the form must...
Rebrikov, Denis V; Bulina, Maria E; Bogdanova, Ekaterina A; Vagner, Loura L; Lukyanov, Sergey A
2002-01-01
Background Freshwater planarians are widely used as models for investigation of pattern formation and studies on genetic variation in populations. Despite extensive information on the biology and genetics of planaria, the occurrence and distribution of viruses in these animals remains an unexplored area of research. Results Using a combination of Suppression Subtractive Hybridization (SSH) and Mirror Orientation Selection (MOS), we compared the genomes of two strains of freshwater planarian, Girardia tigrina. The novel extrachromosomal DNA-containing virus-like element denoted PEVE (Planarian Extrachromosomal Virus-like Element) was identified in one planarian strain. The PEVE genome (about 7.5 kb) consists of two unique regions (Ul and Us) flanked by inverted repeats. Sequence analyses reveal that PEVE comprises two helicase-like sequences in the genome, of which the first is a homolog of a circoviral replication initiator protein (Rep), and the second is similar to the papillomavirus E1 helicase domain. PEVE genome exists in at least two variant forms with different arrangements of single-stranded and double-stranded DNA stretches that correspond to the Us and Ul regions. Using PCR analysis and whole-mount in situ hybridization, we characterized PEVE distribution and expression in the planarian body. Conclusions PEVE is the first viral element identified in free-living flatworms. This element differs from all known viruses and viral elements, and comprises two potential helicases that are homologous to proteins from distant viral phyla. PEVE is unevenly distributed in the worm body, and is detected in specific parenchyma cells. PMID:12065025
Robinett, C C; O'Connor, A; Dunaway, M
1997-01-01
We have identified a novel activity for the region of the intergenic spacer of the Xenopus laevis rRNA genes that contains the 35- and 100-bp repeats. We devised a new assay for this region by constructing DNA plasmids containing a tandem repeat of rRNA reporter genes that were separated by the 35- and 100-bp repeat region and a rRNA gene enhancer. When the 35- and 100-bp repeat region is present in its normal position and orientation at the 3' end of the rRNA reporter genes, the enhancer activates the adjacent downstream promoter but not the upstream rRNA promoter on the same plasmid. Because this element can restrict the range of an enhancer's activity in the context of tandem genes, we have named it the repeat organizer (RO). The ability to restrict enhancer action is a feature of insulator elements, but unlike previously described insulator elements the RO does not block enhancer action in a simple enhancer-blocking assay. Instead, the activity of the RO requires that it be in its normal position and orientation with respect to the other sequence elements of the rRNA genes. The enhancer-binding transcription factor xUBF also binds to the repetitive sequences of the RO in vitro, but these sequences do not activate transcription in vivo. We propose that the RO is a specialized insulator element that organizes the tandem array of rRNA genes into single-gene expression units by promoting activation of a promoter by its proximal enhancers. PMID:9111359
Sequence of retrovirus provirus resembles that of bacterial transposable elements
NASA Astrophysics Data System (ADS)
Shimotohno, Kunitada; Mizutani, Satoshi; Temin, Howard M.
1980-06-01
The nucleotide sequences of the terminal regions of an infectious integrated retrovirus cloned in the modified λ phage cloning vector Charon 4A have been elucidated. There is a 569-base pair direct repeat at both ends of the viral DNA. The cell-virus junctions at each end consist of a 5-base pair direct repeat of cell DNA next to a 3-base pair inverted repeat of viral DNA. This structure resembles that of a transposable element and is consistent with the protovirus hypothesis that retroviruses evolved from the cell genome.
Yamada, Kazuhiko; Nishida-Umehara, Chizuko; Matsuda, Yoichi
2004-03-01
We isolated a new family of satellite DNA sequences from HaeIII- and EcoRI-digested genomic DNA of the Blakiston's fish owl ( Ketupa blakistoni). The repetitive sequences were organized in tandem arrays of the 174 bp element, and localized to the centromeric regions of all macrochromosomes, including the Z and W chromosomes, and microchromosomes. This hybridization pattern was consistent with the distribution of C-band-positive centromeric heterochromatin, and the satellite DNA sequences occupied 10% of the total genome as a major component of centromeric heterochromatin. The sequences were homogenized between macro- and microchromosomes in this species, and therefore intraspecific divergence of the nucleotide sequences was low. The 174 bp element cross-hybridized to the genomic DNA of six other Strigidae species, but not to that of the Tytonidae, suggesting that the satellite DNA sequences are conserved in the same family but fairly divergent between the different families in the Strigiformes. Secondly, the centromeric satellite DNAs were cloned from eight Strigidae species, and the nucleotide sequences of 41 monomer fragments were compared within and between species. Molecular phylogenetic relationships of the nucleotide sequences were highly correlated with both the taxonomy based on morphological traits and the phylogenetic tree constructed by DNA-DNA hybridization. These results suggest that the satellite DNA sequence has evolved by concerted evolution in the Strigidae and that it is a good taxonomic and phylogenetic marker to examine genetic diversity between Strigiformes species.
Budiman, Muhammad A.; Mao, Long; Wood, Todd C.; Wing, Rod A.
2000-01-01
Recently a new strategy using BAC end sequences as sequence-tagged connectors (STCs) was proposed for whole-genome sequencing projects. In this study, we present the construction and detailed characterization of a 15.0 haploid genome equivalent BAC library for the cultivated tomato, Lycopersicon esculentum cv. Heinz 1706. The library contains 129,024 clones with an average insert size of 117.5 kb and a chloroplast content of 1.11%. BAC end sequences from 1490 ends were generated and analyzed as a preliminary evaluation for using this library to develop an STC framework to sequence the tomato genome. A total of 1205 BAC end sequences (80.9%) were obtained, with an average length of 360 high-quality bases, and were searched against the GenBank database. Using a cutoff expectation value of <10−6, and combining the results from BLASTN, BLASTX, and TBLASTX searches, 24.3% of the BAC end sequences were similar to known sequences, of which almost half (48.7%) share sequence similarities to retrotransposons and 7% to known genes. Some of the transposable element sequences were the first reported in tomato, such as sequences similar to maize transposon Activator (Ac) ORF and tobacco pararetrovirus-like sequences. Interestingly, there were no BAC end sequences similar to the highly repeated TGRI and TGRII elements. However, the majority (70.3%) of STCs did not share significant sequence similarities to any sequences in GenBank at either the DNA or predicted protein levels, indicating that a large portion of the tomato genome is still unknown. Our data demonstrate that this BAC library is suitable for developing an STC database to sequence the tomato genome. The advantages of developing an STC framework for whole-genome sequencing of tomato are discussed. [The BAC end sequences described in this paper have been deposited in the GenBank data library under accession nos. AQ367111–AQ368361.] PMID:10645957
Grissa, Ibtissem; Vergnaud, Gilles; Pourcel, Christine
2007-01-01
Background In Archeae and Bacteria, the repeated elements called CRISPRs for "clustered regularly interspaced short palindromic repeats" are believed to participate in the defence against viruses. Short sequences called spacers are stored in-between repeated elements. In the current model, motifs comprising spacers and repeats may target an invading DNA and lead to its degradation through a proposed mechanism similar to RNA interference. Analysis of intra-species polymorphism shows that new motifs (one spacer and one repeated element) are added in a polarised fashion. Although their principal characteristics have been described, a lot remains to be discovered on the way CRISPRs are created and evolve. As new genome sequences become available it appears necessary to develop automated scanning tools to make available CRISPRs related information and to facilitate additional investigations. Description We have produced a program, CRISPRFinder, which identifies CRISPRs and extracts the repeated and unique sequences. Using this software, a database is constructed which is automatically updated monthly from newly released genome sequences. Additional tools were created to allow the alignment of flanking sequences in search for similarities between different loci and to build dictionaries of unique sequences. To date, almost six hundred CRISPRs have been identified in 475 published genomes. Two Archeae out of thirty-seven and about half of Bacteria do not possess a CRISPR. Fine analysis of repeated sequences strongly supports the current view that new motifs are added at one end of the CRISPR adjacent to the putative promoter. Conclusion It is hoped that availability of a public database, regularly updated and which can be queried on the web will help in further dissecting and understanding CRISPR structure and flanking sequences evolution. Subsequent analyses of the intra-species CRISPR polymorphism will be facilitated by CRISPRFinder and the dictionary creator. CRISPRdb is accessible at PMID:17521438
Filloux, Denis; Murrell, Sasha; Koohapitagtam, Maneerat; Golden, Michael; Julian, Charlotte; Galzi, Serge; Uzest, Marilyne; Rodier-Goud, Marguerite; D’Hont, Angélique; Vernerey, Marie Stephanie; Wilkin, Paul; Peterschmitt, Michel; Winter, Stephan; Murrell, Ben; Martin, Darren P.; Roumagnac, Philippe
2015-01-01
Endogenous viral sequences are essentially ‘fossil records’ that can sometimes reveal the genomic features of long extinct virus species. Although numerous known instances exist of single-stranded DNA (ssDNA) genomes becoming stably integrated within the genomes of bacteria and animals, there remain very few examples of such integration events in plants. The best studied of these events are those which yielded the geminivirus-related DNA elements found within the nuclear genomes of various Nicotiana species. Although other ssDNA virus-like sequences are included within the draft genomes of various plant species, it is not entirely certain that these are not contaminants. The Nicotiana geminivirus-related DNA elements therefore remain the only definitively proven instances of endogenous plant ssDNA virus sequences. Here, we characterize two new classes of endogenous plant virus sequence that are also apparently derived from ancient geminiviruses in the genus Begomovirus. These two endogenous geminivirus-like elements (EGV1 and EGV2) are present in the Dioscorea spp. of the Enantiophyllum clade. We used fluorescence in situ hybridization to confirm that the EGV1 sequences are integrated in the D. alata genome and showed that one or two ancestral EGV sequences likely became integrated more than 1.4 million years ago during or before the diversification of the Asian and African Enantiophyllum Dioscorea spp. Unexpectedly, we found evidence of natural selection actively favouring the maintenance of EGV-expressed replication-associated protein (Rep) amino acid sequences, which clearly indicates that functional EGV Rep proteins were probably expressed for prolonged periods following endogenization. Further, the detection in D. alata of EGV gene transcripts, small 21–24 nt RNAs that are apparently derived from these transcripts, and expressed Rep proteins, provides evidence that some EGV genes are possibly still functionally expressed in at least some of the Enantiophyllum clade species. PMID:27774276
Sansevere, Emily A; Luo, Xiao; Park, Joo Youn; Yoon, Sunghyun; Seo, Keun Seok; Robinson, D Ashley
2017-04-15
ICE 6013 represents one of two families of integrative conjugative elements (ICEs) identified in the pan-genome of the human and animal pathogen Staphylococcus aureus Here we investigated the excision and conjugation functions of ICE 6013 and further characterized the diversity of this element. ICE 6013 excision was not significantly affected by growth, temperature, pH, or UV exposure and did not depend on recA The IS 30 -like DDE transposase (Tpase; encoded by orf1 and orf2 ) of ICE 6013 must be uninterrupted for excision to occur, whereas disrupting three of the other open reading frames (ORFs) on the element significantly affects the level of excision. We demonstrate that ICE 6013 conjugatively transfers to different S. aureus backgrounds at frequencies approaching that of the conjugative plasmid pGO1. We found that excision is required for conjugation, that not all S. aureus backgrounds are successful recipients, and that transconjugants acquire the ability to transfer ICE 6013 Sequencing of chromosomal integration sites in serially passaged transconjugants revealed a significant integration site preference for a 15-bp AT-rich palindromic consensus sequence, which surrounds the 3-bp target site that is duplicated upon integration. A sequence analysis of ICE 6013 from different host strains of S. aureus and from eight other species of staphylococci identified seven divergent subfamilies of ICE 6013 that include sequences previously classified as a transposon, a plasmid, and various ICEs. In summary, these results indicate that the IS 30 -like Tpase functions as the ICE 6013 recombinase and that ICE 6013 represents a diverse family of mobile genetic elements that mediate conjugation in staphylococci. IMPORTANCE Integrative conjugative elements (ICEs) encode the abilities to integrate into and excise from bacterial chromosomes and plasmids and mediate conjugation between bacteria. As agents of horizontal gene transfer, ICEs may affect bacterial evolution. ICE 6013 represents one of two known families of ICEs in the pathogen Staphylococcus aureus , but its core functions of excision and conjugation are not well studied. Here, we show that ICE 6013 depends on its IS 30 -like DDE transposase for excision, which is unique among ICEs, and we demonstrate the conjugative transfer and integration site preference of ICE 6013 A sequence analysis revealed that ICE 6013 has diverged into seven subfamilies that are dispersed among staphylococci. Copyright © 2017 American Society for Microbiology.
How Modality Specific Is the Iambic-Trochaic Law? Evidence from Vision
ERIC Educational Resources Information Center
Pena, Marcela; Bion, Ricardo A. H.; Nespor, Marina
2011-01-01
The iambic-trochaic law has been proposed to account for the grouping of auditory stimuli: Sequences of sounds that differ only in duration are grouped as iambs (i.e., the most prominent element marks the end of a sequence of sounds), and sequences that differ only in pitch or intensity are grouped as trochees (i.e., the most prominent element…
Reversible second-order conditional sequences in incidental sequence learning tasks.
Pasquali, Antoine; Cleeremans, Axel; Gaillard, Vinciane
2018-06-01
In sequence learning tasks, participants' sensitivity to the sequential structure of a series of events often overshoots their ability to express relevant knowledge intentionally, as in generation tasks that require participants to produce either the next element of a sequence (inclusion) or a different element (exclusion). Comparing generation performance under inclusion and exclusion conditions makes it possible to assess the respective influences of conscious and unconscious learning. Recently, two main concerns have been expressed concerning such tasks. First, it is often difficult to design control sequences in such a way that they enable clear comparisons with the training material. Second, it is challenging to ask participants to perform appropriately under exclusion instructions, for the requirement to exclude familiar responses often leads them to adopt degenerate strategies (e.g., pushing on the same key all the time), which then need to be specifically singled out as invalid. To overcome both concerns, we introduce reversible second-order conditional (RSOC) sequences and show (a) that they elicit particularly strong transfer effects, (b) that dissociation of implicit and explicit influences becomes possible thanks to the removal of salient transitions in RSOCs, and (c) that exclusion instructions can be greatly simplified without losing sensitivity.
Kamoun, Choumouss; Payen, Thibaut; Hua-Van, Aurélie; Filée, Jonathan
2013-10-11
Insertion Sequences (ISs) and their non-autonomous derivatives (MITEs) are important components of prokaryotic genomes inducing duplication, deletion, rearrangement or lateral gene transfers. Although ISs and MITEs are relatively simple and basic genetic elements, their detection remains a difficult task due to their remarkable sequence diversity. With the advent of high-throughput genome and metagenome sequencing technologies, the development of fast, reliable and sensitive methods of ISs and MITEs detection become an important challenge. So far, almost all studies dealing with prokaryotic transposons have used classical BLAST-based detection methods against reference libraries. Here we introduce alternative methods of detection either taking advantages of the structural properties of the elements (de novo methods) or using an additional library-based method using profile HMM searches. In this study, we have developed three different work flows dedicated to ISs and MITEs detection: the first two use de novo methods detecting either repeated sequences or presence of Inverted Repeats; the third one use 28 in-house transposase alignment profiles with HMM search methods. We have compared the respective performances of each method using a reference dataset of 30 archaeal and 30 bacterial genomes in addition to simulated and real metagenomes. Compared to a BLAST-based method using ISFinder as library, de novo methods significantly improve ISs and MITEs detection. For example, in the 30 archaeal genomes, we discovered 30 new elements (+20%) in addition to the 141 multi-copies elements already detected by the BLAST approach. Many of the new elements correspond to ISs belonging to unknown or highly divergent families. The total number of MITEs has even doubled with the discovery of elements displaying very limited sequence similarities with their respective autonomous partners (mainly in the Inverted Repeats of the elements). Concerning metagenomes, with the exception of short reads data (<300 bp) for which both techniques seem equally limited, profile HMM searches considerably ameliorate the detection of transposase encoding genes (up to +50%) generating low level of false positives compare to BLAST-based methods. Compared to classical BLAST-based methods, the sensitivity of de novo and profile HMM methods developed in this study allow a better and more reliable detection of transposons in prokaryotic genomes and metagenomes. We believed that future studies implying ISs and MITEs identification in genomic data should combine at least one de novo and one library-based method, with optimal results obtained by running the two de novo methods in addition to a library-based search. For metagenomic data, profile HMM search should be favored, a BLAST-based step is only useful to the final annotation into groups and families.
qPMS9: An Efficient Algorithm for Quorum Planted Motif Search
NASA Astrophysics Data System (ADS)
Nicolae, Marius; Rajasekaran, Sanguthevar
2015-01-01
Discovering patterns in biological sequences is a crucial problem. For example, the identification of patterns in DNA sequences has resulted in the determination of open reading frames, identification of gene promoter elements, intron/exon splicing sites, and SH RNAs, location of RNA degradation signals, identification of alternative splicing sites, etc. In protein sequences, patterns have led to domain identification, location of protease cleavage sites, identification of signal peptides, protein interactions, determination of protein degradation elements, identification of protein trafficking elements, discovery of short functional motifs, etc. In this paper we focus on the identification of an important class of patterns, namely, motifs. We study the (l, d) motif search problem or Planted Motif Search (PMS). PMS receives as input n strings and two integers l and d. It returns all sequences M of length l that occur in each input string, where each occurrence differs from M in at most d positions. Another formulation is quorum PMS (qPMS), where the motif appears in at least q% of the strings. We introduce qPMS9, a parallel exact qPMS algorithm that offers significant runtime improvements on DNA and protein datasets. qPMS9 solves the challenging DNA (l, d)-instances (28, 12) and (30, 13). The source code is available at https://code.google.com/p/qpms9/.
Hermes Transposon Distribution and Structure in Musca domestica
Subramanian, Ramanand A.; Cathcart, Laura A.; Krafsur, Elliot S.; Atkinson, Peter W.
2009-01-01
Hermes are hAT transposons from Musca domestica that are very closely related to the hobo transposons from Drosophila melanogaster and are useful as gene vectors in a wide variety of organisms including insects, planaria, and yeast. hobo elements show distinct length variations in a rapidly evolving region of the transposase-coding region as a result of expansions and contractions of a simple repeat sequence encoding 3 amino acids threonine, proline, and glutamic acid (TPE). These variations in length may influence the function of the protein and the movement of hobo transposons in natural populations. Here, we determine the distribution of Hermes in populations of M. domestica as well as whether Hermes transposase has undergone similar sequence expansions and contractions during its evolution in this species. Hermes transposons were found in all M. domestica individuals sampled from 14 populations collected from 4 continents. All individuals with Hermes transposons had evidence for the presence of intact transposase open reading frames, and little sequence variation was observed among Hermes elements. A systematic analysis of the TPE-homologous region of the Hermes transposase-coding region revealed no evidence for length variation. The simple sequence repeat found in hobo elements is a feature of this transposon that evolved since the divergence of hobo and Hermes. PMID:19366812
Massive programmed translational jumping in mitochondria
Lang, B. Franz; Jakubkova, Michaela; Hegedusova, Eva; Daoud, Rachid; Forget, Lise; Brejova, Brona; Vinar, Tomas; Kosa, Peter; Fricova, Dominika; Nebohacova, Martina; Griac, Peter; Tomaska, Lubomir; Burger, Gertraud; Nosek, Jozef
2014-01-01
Programmed translational bypassing is a process whereby ribosomes “ignore” a substantial interval of mRNA sequence. Although discovered 25 y ago, the only experimentally confirmed example of this puzzling phenomenon is expression of the bacteriophage T4 gene 60. Bypassing requires translational blockage at a “takeoff codon” immediately upstream of a stop codon followed by a hairpin, which causes peptidyl-tRNA dissociation and reassociation with a matching “landing triplet” 50 nt downstream, where translation resumes. Here, we report 81 translational bypassing elements (byps) in mitochondria of the yeast Magnusiomyces capitatus and demonstrate in three cases, by transcript analysis and proteomics, that byps are retained in mitochondrial mRNAs but not translated. Although mitochondrial byps resemble the bypass sequence in the T4 gene 60, they utilize unused codons instead of stops for translational blockage and have relaxed matching rules for takeoff/landing sites. We detected byp-like sequences also in mtDNAs of several Saccharomycetales, indicating that byps are mobile genetic elements. These byp-like sequences lack bypassing activity and are tolerated when inserted in-frame in variable protein regions. We hypothesize that byp-like elements have the potential to contribute to evolutionary diversification of proteins by adding new domains that allow exploration of new structures and functions. PMID:24711422
Ruchko, Mykhaylo V; Gorodnya, Olena M; Pastukh, Viktor M; Swiger, Brad M; Middleton, Natavia S; Wilson, Glenn L; Gillespie, Mark N
2009-02-01
Reactive oxygen species (ROS) generated in hypoxic pulmonary artery endothelial cells cause transient oxidative base modifications in the hypoxia-response element (HRE) of the VEGF gene that bear a conspicuous relationship to induction of VEGF mRNA expression (K.A. Ziel et al., FASEB J. 19, 387-394, 2005). If such base modifications are indeed linked to transcriptional regulation, then they should be detected in HRE sequences associated with transcriptionally active nucleosomes. Southern blot analysis of the VEGF HRE associated with nucleosome fractions prepared by micrococcal nuclease digestion indicated that hypoxia redistributed some HRE sequences from multinucleosomes to transcriptionally active mono- and dinucleosome fractions. A simple PCR method revealed that VEGF HRE sequences harboring oxidative base modifications were found exclusively in mononucleosomes. Inhibition of hypoxia-induced ROS generation with myxathiozol prevented formation of oxidative base modifications but not the redistribution of HRE sequences into mono- and dinucleosome fractions. The histone deacetylase inhibitor trichostatin A caused retention of HRE sequences in compacted nucleosome fractions and prevented formation of oxidative base modifications. These findings suggest that the hypoxia-induced oxidant stress directed at the VEGF HRE requires the sequence to be repositioned into mononucleosomes and support the prospect that oxidative modifications in this sequence are an important step in transcriptional activation.
Sequence variation between 462 human individuals fine-tunes functional sites of RNA processing
NASA Astrophysics Data System (ADS)
Ferreira, Pedro G.; Oti, Martin; Barann, Matthias; Wieland, Thomas; Ezquina, Suzana; Friedländer, Marc R.; Rivas, Manuel A.; Esteve-Codina, Anna; Estivill, Xavier; Guigó, Roderic; Dermitzakis, Emmanouil; Antonarakis, Stylianos; Meitinger, Thomas; Strom, Tim M.; Palotie, Aarno; François Deleuze, Jean; Sudbrak, Ralf; Lerach, Hans; Gut, Ivo; Syvänen, Ann-Christine; Gyllensten, Ulf; Schreiber, Stefan; Rosenstiel, Philip; Brunner, Han; Veltman, Joris; Hoen, Peter A. C. T.; Jan van Ommen, Gert; Carracedo, Angel; Brazma, Alvis; Flicek, Paul; Cambon-Thomsen, Anne; Mangion, Jonathan; Bentley, David; Hamosh, Ada; Rosenstiel, Philip; Strom, Tim M.; Lappalainen, Tuuli; Guigó, Roderic; Sammeth, Michael
2016-09-01
Recent advances in the cost-efficiency of sequencing technologies enabled the combined DNA- and RNA-sequencing of human individuals at the population-scale, making genome-wide investigations of the inter-individual genetic impact on gene expression viable. Employing mRNA-sequencing data from the Geuvadis Project and genome sequencing data from the 1000 Genomes Project we show that the computational analysis of DNA sequences around splice sites and poly-A signals is able to explain several observations in the phenotype data. In contrast to widespread assessments of statistically significant associations between DNA polymorphisms and quantitative traits, we developed a computational tool to pinpoint the molecular mechanisms by which genetic markers drive variation in RNA-processing, cataloguing and classifying alleles that change the affinity of core RNA elements to their recognizing factors. The in silico models we employ further suggest RNA editing can moonlight as a splicing-modulator, albeit less frequently than genomic sequence diversity. Beyond existing annotations, we demonstrate that the ultra-high resolution of RNA-Seq combined from 462 individuals also provides evidence for thousands of bona fide novel elements of RNA processing—alternative splice sites, introns, and cleavage sites—which are often rare and lowly expressed but in other characteristics similar to their annotated counterparts.
Kaplan, Oktay I; Berber, Burak; Hekim, Nezih; Doluca, Osman
2016-11-02
Many studies show that short non-coding sequences are widely conserved among regulatory elements. More and more conserved sequences are being discovered since the development of next generation sequencing technology. A common approach to identify conserved sequences with regulatory roles relies on topological changes such as hairpin formation at the DNA or RNA level. G-quadruplexes, non-canonical nucleic acid topologies with little established biological roles, are increasingly considered for conserved regulatory element discovery. Since the tertiary structure of G-quadruplexes is strongly dependent on the loop sequence which is disregarded by the generally accepted algorithm, we hypothesized that G-quadruplexes with similar topology and, indirectly, similar interaction patterns, can be determined using phylogenetic clustering based on differences in the loop sequences. Phylogenetic analysis of 52 G-quadruplex forming sequences in the Escherichia coli genome revealed two conserved G-quadruplex motifs with a potential regulatory role. Further analysis revealed that both motifs tend to form hairpins and G quadruplexes, as supported by circular dichroism studies. The phylogenetic analysis as described in this work can greatly improve the discovery of functional G-quadruplex structures and may explain unknown regulatory patterns. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase.
Kaufmann, Isabelle; Martin, Georges; Friedlein, Arno; Langen, Hanno; Keller, Walter
2004-02-11
In mammals, polyadenylation of mRNA precursors (pre-mRNAs) by poly(A) polymerase (PAP) depends on cleavage and polyadenylation specificity factor (CPSF). CPSF is a multisubunit complex that binds to the canonical AAUAAA hexamer and to U-rich upstream sequence elements on the pre-mRNA, thereby stimulating the otherwise weakly active and nonspecific polymerase to elongate efficiently RNAs containing a poly(A) signal. Based on sequence similarity to the Saccharomyces cerevisiae polyadenylation factor Fip1p, we have identified human Fip1 (hFip1) and found that the protein is an integral subunit of CPSF. hFip1 interacts with PAP and has an arginine-rich RNA-binding motif that preferentially binds to U-rich sequence elements on the pre-mRNA. Recombinant hFip1 is sufficient to stimulate the in vitro polyadenylation activity of PAP in a U-rich element-dependent manner. hFip1, CPSF160 and PAP form a ternary complex in vitro, suggesting that hFip1 and CPSF160 act together in poly(A) site recognition and in cooperative recruitment of PAP to the RNA. These results show that hFip1 significantly contributes to CPSF-mediated stimulation of PAP activity.
Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase
Kaufmann, Isabelle; Martin, Georges; Friedlein, Arno; Langen, Hanno; Keller, Walter
2004-01-01
In mammals, polyadenylation of mRNA precursors (pre-mRNAs) by poly(A) polymerase (PAP) depends on cleavage and polyadenylation specificity factor (CPSF). CPSF is a multisubunit complex that binds to the canonical AAUAAA hexamer and to U-rich upstream sequence elements on the pre-mRNA, thereby stimulating the otherwise weakly active and nonspecific polymerase to elongate efficiently RNAs containing a poly(A) signal. Based on sequence similarity to the Saccharomyces cerevisiae polyadenylation factor Fip1p, we have identified human Fip1 (hFip1) and found that the protein is an integral subunit of CPSF. hFip1 interacts with PAP and has an arginine-rich RNA-binding motif that preferentially binds to U-rich sequence elements on the pre-mRNA. Recombinant hFip1 is sufficient to stimulate the in vitro polyadenylation activity of PAP in a U-rich element-dependent manner. hFip1, CPSF160 and PAP form a ternary complex in vitro, suggesting that hFip1 and CPSF160 act together in poly(A) site recognition and in cooperative recruitment of PAP to the RNA. These results show that hFip1 significantly contributes to CPSF-mediated stimulation of PAP activity. PMID:14749727
Chromodomains direct integration of retrotransposons to heterochromatin
Gao, Xiang; Hou, Yi; Ebina, Hirotaka; Levin, Henry L.; Voytas, Daniel F.
2008-01-01
The enrichment of mobile genetic elements in heterochromatin may be due, in part, to targeted integration. The chromoviruses are Ty3/gypsy retrotransposons with chromodomains at their integrase C termini. Chromodomains are logical determinants for targeting to heterochromatin, because the chromodomain of heterochromatin protein 1 (HP1) typically recognizes histone H3 K9 methylation, an epigenetic mark characteristic of heterochromatin. We describe three groups of chromoviruses based on amino acid sequence relationships of their integrase C termini. Genome sequence analysis indicates that representative chromoviruses from each group are enriched in gene-poor regions of the genome relative to other retrotransposons, and when fused to fluorescent marker proteins, the chromodomains target proteins to specific subnuclear foci coincident with heterochromatin. The chromodomain of the fungal element, MAGGY, interacts with histone H3 dimethyl- and trimethyl-K9, and when the MAGGY chromodomain is fused to integrase of the Schizosaccharomyces pombe Tf1 retrotransposon, new Tf1 insertions are directed to sites of H3 K9 methylation. Repetitive sequences such as transposable elements trigger the RNAi pathway resulting in their epigenetic modification. Our results suggest a dynamic interplay between retrotransposons and heterochromatin, wherein mobile elements recognize heterochromatin at the time of integration and then perpetuate the heterochromatic mark by triggering epigenetic modification. PMID:18256242
Transcriptomic analysis of rice aleurone cells identified a novel abscisic acid response element.
Watanabe, Kenneth A; Homayouni, Arielle; Gu, Lingkun; Huang, Kuan-Ying; Ho, Tuan-Hua David; Shen, Qingxi J
2017-09-01
Seeds serve as a great model to study plant responses to drought stress, which is largely mediated by abscisic acid (ABA). The ABA responsive element (ABRE) is a key cis-regulatory element in ABA signalling. However, its consensus sequence (ACGTG(G/T)C) is present in the promoters of only about 40% of ABA-induced genes in rice aleurone cells, suggesting other ABREs may exist. To identify novel ABREs, RNA sequencing was performed on aleurone cells of rice seeds treated with 20 μM ABA. Gibbs sampling was used to identify enriched elements, and particle bombardment-mediated transient expression studies were performed to verify the function. Gene ontology analysis was performed to predict the roles of genes containing the novel ABREs. This study revealed 2443 ABA-inducible genes and a novel ABRE, designated as ABREN, which was experimentally verified to mediate ABA signalling in rice aleurone cells. Many of the ABREN-containing genes are predicted to be involved in stress responses and transcription. Analysis of other species suggests that the ABREN may be monocot specific. This study also revealed interesting expression patterns of genes involved in ABA metabolism and signalling. Collectively, this study advanced our understanding of diverse cis-regulatory sequences and the transcriptomes underlying ABA responses in rice aleurone cells. © 2017 John Wiley & Sons Ltd.
Skull ontogeny: developmental patterns of fishes conserved across major tetrapod clades.
Schoch, Rainer R
2006-01-01
In vertebrates, the ontogeny of the bony skull forms a particularly complex part of embryonic development. Although this area used to be restricted to neontology, recent discoveries of fossil ontogenies provide an additional source of data. One of the most detailed ossification sequences is known from Permo-Carboniferous amphibians, the branchiosaurids. These temnospondyls form a near-perfect link between the piscine osteichthyans and the various clades of extant tetrapods, retaining a full complement of dermal bones in the skull. For the first time, the broader evolutionary significance of these event sequences is analyzed, focusing on the identification of sequence heterochronies. A set of 120 event pairs was analyzed by event pair cracking, which helped identify active movers. A cladistic analysis of the event pair data was also carried out, highlighting some shared patterns between widely divergent clades of tetrapods. The analyses revealed an unexpected degree of similarity between the widely divergent taxa. Most interesting is the apparently modular composition of the cranial sequence: five clusters of bones were discovered in each of which the elements form in the same time window: (1) jaw bones, (2) marginal palatal elements, (3) circumorbital bones, (4) skull roof elements, and (5) neurocranial ossifications. In the studied taxa, these "modules" have in most cases been shifted fore and back on the trajectory relative to the Amia sequence, but did not disintegrate. Such "modules" might indicate a high degree of evolutionary limitation (constraint).
[The ENCODE project and functional genomics studies].
Ding, Nan; Qu, Hongzhu; Fang, Xiangdong
2014-03-01
Upon the completion of the Human Genome Project, scientists have been trying to interpret the underlying genomic code for human biology. Since 2003, National Human Genome Research Institute (NHGRI) has invested nearly $0.3 billion and gathered over 440 scientists from more than 32 institutions in the United States, China, United Kingdom, Japan, Spain and Singapore to initiate the Encyclopedia of DNA Elements (ENCODE) project, aiming to identify and analyze all regulatory elements in the human genome. Taking advantage of the development of next-generation sequencing technologies and continuous improvement of experimental methods, ENCODE had made remarkable achievements: identified methylation and histone modification of DNA sequences and their regulatory effects on gene expression through altering chromatin structures, categorized binding sites of various transcription factors and constructed their regulatory networks, further revised and updated database for pseudogenes and non-coding RNA, and identified SNPs in regulatory sequences associated with diseases. These findings help to comprehensively understand information embedded in gene and genome sequences, the function of regulatory elements as well as the molecular mechanism underlying the transcriptional regulation by noncoding regions, and provide extensive data resource for life sciences, particularly for translational medicine. We re-viewed the contributions of high-throughput sequencing platform development and bioinformatical technology improve-ment to the ENCODE project, the association between epigenetics studies and the ENCODE project, and the major achievement of the ENCODE project. We also provided our prospective on the role of the ENCODE project in promoting the development of basic and clinical medicine.
Lusky, M; Berg, L; Weiher, H; Botchan, M
1983-01-01
Bovine papilloma virus (BPV) contains a cis-acting DNA element which can enhance transcription of distal promoters. Utilizing both direct and indirect transient transfection assays, we showed that a 59-base-pair DNA sequence from the BPV genome could activate the simian virus 40 promoter from distances exceeding 2.5 kilobases and in an orientation-independent manner. In contrast to the promoter 5'-proximal localization of other known viral activators, this element was located immediately 3' to the early polyadenylation signal in the BPV genome. Deletion of these sequences from the BPV genome inactivated the transforming ability of BPV recombinant plasmids. Orientation-independent reinsertion of this 59-base-pair sequence, or alternatively of activator DNA sequences from simian virus 40 or polyoma virus, restored the transforming activity of the BPV recombinant plasmids. Furthermore, the stable transformation frequency of the herpes simplex virus type 1 thymidine kinase gene was enhanced when linked to restriction fragments of BPV DNA which included the defined activator element. This enhancement was orientation independent with respect to the thymidine kinase promoter. The enhancement also appeared to be unrelated to the establishment of the recombinant plasmids as episomes, since in transformed cells these sequences are found linked to high-molecular-weight DNA. We propose that the enhancement of stable transformation frequencies and the activation of transcription units are in this case alternate manifestations of the same biochemical events. Images PMID:6308425
Mahillon, Jacques; Chandler, Michael
1998-01-01
Insertion sequences (ISs) constitute an important component of most bacterial genomes. Over 500 individual ISs have been described in the literature to date, and many more are being discovered in the ongoing prokaryotic and eukaryotic genome-sequencing projects. The last 10 years have also seen some striking advances in our understanding of the transposition process itself. Not least of these has been the development of various in vitro transposition systems for both prokaryotic and eukaryotic elements and, for several of these, a detailed understanding of the transposition process at the chemical level. This review presents a general overview of the organization and function of insertion sequences of eubacterial, archaebacterial, and eukaryotic origins with particular emphasis on bacterial elements and on different aspects of the transposition mechanism. It also attempts to provide a framework for classification of these elements by assigning them to various families or groups. A total of 443 members of the collection have been grouped in 17 families based on combinations of the following criteria: (i) similarities in genetic organization (arrangement of open reading frames); (ii) marked identities or similarities in the enzymes which mediate the transposition reactions, the recombinases/transposases (Tpases); (iii) similar features of their ends (terminal IRs); and (iv) fate of the nucleotide sequence of their target sites (generation of a direct target duplication of determined length). A brief description of the mechanism(s) involved in the mobility of individual ISs in each family and of the structure-function relationships of the individual Tpases is included where available. PMID:9729608
Szuplewska, Magdalena; Ludwiczak, Marta; Lyzwa, Katarzyna; Czarnecki, Jakub; Bartosik, Dariusz
2014-01-01
Functional transposable elements (TEs) of several Pseudomonas spp. strains isolated from black shale ore of Lubin mine and from post-flotation tailings of Zelazny Most in Poland, were identified using a positive selection trap plasmid strategy. This approach led to the capture and characterization of (i) 13 insertion sequences from 5 IS families (IS3, IS5, ISL3, IS30 and IS1380), (ii) isoforms of two Tn3-family transposons--Tn5563a and Tn4662a (the latter contains a toxin-antitoxin system), as well as (iii) non-autonomous TEs of diverse structure, ranging in size from 262 to 3892 bp. The non-autonomous elements transposed into AT-rich DNA regions and generated 5- or 6-bp sequence duplications at the target site of transposition. Although these TEs lack a transposase gene, they contain homologous 38-bp-long terminal inverted repeat sequences (IRs), highly conserved in Tn5563a and many other Tn3-family transposons. The simplest elements of this type, designated TIMEs (Tn3 family-derived Inverted-repeat Miniature Elements) (262 bp), were identified within two natural plasmids (pZM1P1 and pLM8P2) of Pseudomonas spp. It was demonstrated that TIMEs are able to mobilize segments of plasmid DNA for transposition, which results in the generation of more complex non-autonomous elements, resembling IS-driven composite transposons in structure. Such transposon-like elements may contain different functional genetic modules in their core regions, including plasmid replication systems. Another non-autonomous element "captured" with a trap plasmid was a TIME derivative containing a predicted resolvase gene and a res site typical for many Tn3-family transposons. The identification of a portable site-specific recombination system is another intriguing example confirming the important role of non-autonomous TEs of the TIME family in shuffling genetic information in bacterial genomes. Transposition of such mosaic elements may have a significant impact on diversity and evolution, not only of transposons and plasmids, but also of other types of mobile genetic elements.
Martoni, Francesco; Eickbush, Danna G.; Scavariello, Claudia; Luchetti, Andrea; Mantovani, Barbara
2015-01-01
R2 is an extensively investigated non-LTR retrotransposon that specifically inserts into the 28S rRNA gene sequences of a wide range of metazoans, disrupting its functionality. During R2 integration, first strand synthesis can be incomplete so that 5’ end deleted copies are occasionally inserted. While active R2 copies repopulate the locus by retrotransposing, the non-functional truncated elements should frequently be eliminated by molecular drive processes leading to the concerted evolution of the rDNA array(s). Although, multiple R2 lineages have been discovered in the genome of many animals, the rDNA of the stick insect Bacillus rossius exhibits a peculiar situation: it harbors both a canonical, functional R2 element (R2Brfun) as well as a full-length but degenerate element (R2Brdeg). An intensive sequencing survey in the present study reveals that all truncated variants in stick insects are present in multiple copies suggesting they were duplicated by unequal recombination. Sequencing results also demonstrate that all R2Brdeg copies are full-length, i. e. they have no associated 5' end deletions, and functional assays indicate they have lost the active ribozyme necessary for R2 RNA maturation. Although it cannot be completely ruled out, it seems unlikely that the degenerate elements replicate via reverse transcription, exploiting the R2Brfun element enzymatic machinery, but rather via genomic amplification of inserted 28S by unequal recombination. That inactive copies (both R2Brdeg or 5'-truncated elements) are not eliminated in a short term in stick insects contrasts with findings for the Drosophila R2, suggesting a widely different management of rDNA loci and a lower efficiency of the molecular drive while achieving the concerted evolution. PMID:25799008
Bardaji, Leire; Añorga, Maite; Jackson, Robert W.; Martínez-Bilbao, Alejandro; Yanguas-Casás, Natalia; Murillo, Jesús
2011-01-01
Mobile genetic elements are widespread in Pseudomonas syringae, and often associate with virulence genes. Genome reannotation of the model bean pathogen P. syringae pv. phaseolicola 1448A identified seventeen types of insertion sequences and two miniature inverted-repeat transposable elements (MITEs) with a biased distribution, representing 2.8% of the chromosome, 25.8% of the 132-kb virulence plasmid and 2.7% of the 52-kb plasmid. Employing an entrapment vector containing sacB, we estimated that transposition frequency oscillated between 2.6×10−5 and 1.1×10−6, depending on the clone, although it was stable for each clone after consecutive transfers in culture media. Transposition frequency was similar for bacteria grown in rich or minimal media, and from cells recovered from compatible and incompatible plant hosts, indicating that growth conditions do not influence transposition in strain 1448A. Most of the entrapped insertions contained a full-length IS801 element, with the remaining insertions corresponding to sequences smaller than any transposable element identified in strain 1448A, and collectively identified as miniature sequences. From these, fragments of 229, 360 and 679-nt of the right end of IS801 ended in a consensus tetranucleotide and likely resulted from one-ended transposition of IS801. An average 0.7% of the insertions analyzed consisted of IS801 carrying a fragment of variable size from gene PSPPH_0008/PSPPH_0017, showing that IS801 can mobilize DNA in vivo. Retrospective analysis of complete plasmids and genomes of P. syringae suggests, however, that most fragments of IS801 are likely the result of reorganizations rather than one-ended transpositions, and that this element might preferentially contribute to genome flexibility by generating homologous regions of recombination. A further miniature sequence previously found to affect host range specificity and virulence, designated MITEPsy1 (100-nt), represented an average 2.4% of the total number of insertions entrapped in sacB, demonstrating for the first time the mobilization of a MITE in bacteria. PMID:22016774
Bardaji, Leire; Añorga, Maite; Jackson, Robert W; Martínez-Bilbao, Alejandro; Yanguas-Casás, Natalia; Murillo, Jesús
2011-01-01
Mobile genetic elements are widespread in Pseudomonas syringae, and often associate with virulence genes. Genome reannotation of the model bean pathogen P. syringae pv. phaseolicola 1448A identified seventeen types of insertion sequences and two miniature inverted-repeat transposable elements (MITEs) with a biased distribution, representing 2.8% of the chromosome, 25.8% of the 132-kb virulence plasmid and 2.7% of the 52-kb plasmid. Employing an entrapment vector containing sacB, we estimated that transposition frequency oscillated between 2.6×10(-5) and 1.1×10(-6), depending on the clone, although it was stable for each clone after consecutive transfers in culture media. Transposition frequency was similar for bacteria grown in rich or minimal media, and from cells recovered from compatible and incompatible plant hosts, indicating that growth conditions do not influence transposition in strain 1448A. Most of the entrapped insertions contained a full-length IS801 element, with the remaining insertions corresponding to sequences smaller than any transposable element identified in strain 1448A, and collectively identified as miniature sequences. From these, fragments of 229, 360 and 679-nt of the right end of IS801 ended in a consensus tetranucleotide and likely resulted from one-ended transposition of IS801. An average 0.7% of the insertions analyzed consisted of IS801 carrying a fragment of variable size from gene PSPPH_0008/PSPPH_0017, showing that IS801 can mobilize DNA in vivo. Retrospective analysis of complete plasmids and genomes of P. syringae suggests, however, that most fragments of IS801 are likely the result of reorganizations rather than one-ended transpositions, and that this element might preferentially contribute to genome flexibility by generating homologous regions of recombination. A further miniature sequence previously found to affect host range specificity and virulence, designated MITEPsy1 (100-nt), represented an average 2.4% of the total number of insertions entrapped in sacB, demonstrating for the first time the mobilization of a MITE in bacteria.
The repetitive landscape of the chicken genome.
Wicker, Thomas; Robertson, Jon S; Schulze, Stefan R; Feltus, F Alex; Magrini, Vincent; Morrison, Jason A; Mardis, Elaine R; Wilson, Richard K; Peterson, Daniel G; Paterson, Andrew H; Ivarie, Robert
2005-01-01
Cot-based cloning and sequencing (CBCS) is a powerful tool for isolating and characterizing the various repetitive components of any genome, combining the established principles of DNA reassociation kinetics with high-throughput sequencing. CBCS was used to generate sequence libraries representing the high, middle, and low-copy fractions of the chicken genome. Sequencing high-copy DNA of chicken to about 2.7 x coverage of its estimated sequence complexity led to the initial identification of several new repeat families, which were then used for a survey of the newly released first draft of the complete chicken genome. The analysis provided insight into the diversity and biology of known repeat structures such as CR1 and CNM, for which only limited sequence data had previously been available. Cot sequence data also resulted in the identification of four novel repeats (Birddawg, Hitchcock, Kronos, and Soprano), two new subfamilies of CR1 repeats, and many elements absent from the chicken genome assembly. Multiple autonomous elements were found for a novel Mariner-like transposon, Galluhop, in addition to nonautonomous deletion derivatives. Phylogenetic analysis of the high-copy repeats CR1, Galluhop, and Birddawg provided insight into two distinct genome dispersion strategies. This study also exemplifies the power of the CBCS method to create representative databases for the repetitive fractions of genomes for which only limited sequence data is available.
The repetitive landscape of the chicken genome
Wicker, Thomas; Robertson, Jon S.; Schulze, Stefan R.; Feltus, F. Alex; Magrini, Vincent; Morrison, Jason A.; Mardis, Elaine R.; Wilson, Richard K.; Peterson, Daniel G.; Paterson, Andrew H.; Ivarie, Robert
2005-01-01
Cot-based cloning and sequencing (CBCS) is a powerful tool for isolating and characterizing the various repetitive components of any genome, combining the established principles of DNA reassociation kinetics with high-throughput sequencing. CBCS was used to generate sequence libraries representing the high, middle, and low-copy fractions of the chicken genome. Sequencing high-copy DNA of chicken to about 2.7× coverage of its estimated sequence complexity led to the initial identification of several new repeat families, which were then used for a survey of the newly released first draft of the complete chicken genome. The analysis provided insight into the diversity and biology of known repeat structures such as CR1 and CNM, for which only limited sequence data had previously been available. Cot sequence data also resulted in the identification of four novel repeats (Birddawg, Hitchcock, Kronos, and Soprano), two new subfamilies of CR1 repeats, and many elements absent from the chicken genome assembly. Multiple autonomous elements were found for a novel Mariner-like transposon, Galluhop, in addition to nonautonomous deletion derivatives. Phylogenetic analysis of the high-copy repeats CR1, Galluhop, and Birddawg provided insight into two distinct genome dispersion strategies. This study also exemplifies the power of the CBCS method to create representative databases for the repetitive fractions of genomes for which only limited sequence data is available. PMID:15256510
2018-01-01
FAM230C, a long intergenic non-coding RNA (lincRNA) gene in human chromosome 13 (chr13) is a member of lincRNA genes termed family with sequence similarity 230. An analysis using bioinformatics search tools and alignment programs was undertaken to determine properties of FAM230C and its related genes. Results reveal that the DNA translocation element, the Translocation Breakpoint Type A (TBTA) sequence, which consists of satellite DNA, Alu elements, and AT-rich sequences is embedded in the FAM230C gene. Eight lincRNA genes related to FAM230C also carry the TBTA sequences. These genes were formed from a large segment of the 3’ half of the FAM230C sequence duplicated in chr22, and are specifically in regions of low copy repeats (LCR22)s, in or close to the 22q.11.2 region. 22q11.2 is a chromosomal segment that undergoes a high rate of DNA translocation and is prone to genetic deletions. FAM230C-related genes present in other chromosomes do not carry the TBTA motif and were formed from the 5’ half region of the FAM230C sequence. These findings identify a high specificity in lincRNA gene formation by gene sequence duplication in different chromosomes. PMID:29668722
Mismer, D.; Rubin, G. M.
1989-01-01
We have analyzed the cis-acting regulatory sequences of the Rh1 (ninaE) gene in Drosophila melanogaster by P-element-mediated germline transformation of indicator genes transcribed from mutant ninaE promoter sequences. We have previously shown that a 200-bp region extending from -120 to +67 relative to the transcription start site is sufficient to obtain eye-specific expression from the ninaE promoter. In the present study, 22 different 4-13-bp sequences in the -120/+67 promoter region were altered by oligonucleotide-directed mutagenesis. Several of these sequences were found to be required for proper promoter function; two of these are conserved in the promoter of the homologous gene isolated from the related species Drosophila virilis. Alteration of a conserved 9-bp sequence results in aberrant, low level expression in the body. Alteration of a separate 11-bp sequence, found in the promoter regions of several photoreceptor-specific genes of Drosophila, results in an approximately 15-fold reduction in promoter efficiency but without apparent alteration of tissue-specificity. A protein factor capable of interacting with this 11-bp sequence has been detected by DNaseI footprinting in embryonic nuclear extracts. Finally, we have further characterized two separable enhancer sequences previously shown to be required for normal levels of expression from this promoter. PMID:2521839
Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum
DOE Office of Scientific and Technical Information (OSTI.GOV)
VanBuren, Robert; Bryant, Doug; Edger, Patrick P.
Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly1. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetiummore » genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a ‘near-complete’ draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. As a result, the Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.« less
Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum
VanBuren, Robert; Bryant, Doug; Edger, Patrick P.; ...
2015-11-11
Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly1. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetiummore » genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a ‘near-complete’ draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. As a result, the Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.« less
Carlson, M; Celenza, J L; Eng, F J
1985-01-01
The SUC gene family of Saccharomyces contains six structural genes for invertase (SUC1 through SUC5 and SUC7) which are located on different chromosomes. Most yeast strains do not carry all six SUC genes and instead carry natural negative (suc0) alleles at some or all SUC loci. We determined the physical structures of SUC and suc0 loci. Except for SUC2, which is an unusual member of the family, all of the SUC genes are located very close to telomeres and are flanked by homologous sequences. On the centromere-proximal side of the gene, the conserved region contains X sequences, which are sequences found adjacent to telomeres (C. S. M. Chan and B.-K. Tye, Cell 33:563-573, 1983). On the other side of the gene, the homology includes about 4 kilobases of flanking sequence and then extends into a Y' element, which is an element often found distal to the X sequence at telomeres (Chan and Tye, Cell 33:563-573, 1983). Thus, these SUC genes and flanking sequences are embedded in telomere-adjacent sequences. Chromosomes carrying suc0 alleles (except suc20) lack SUC structural genes and portions of the conserved flanking sequences. The results indicate that the dispersal of SUC genes to different chromosomes occurred by rearrangements of chromosome telomeres. Images PMID:3018485
Long interspersed repeated DNA (LINE) causes polymorphism at the rat insulin 1 locus.
Lakshmikumaran, M S; D'Ambrosio, E; Laimins, L A; Lin, D T; Furano, A V
1985-09-01
The insulin 1, but not the insulin 2, locus is polymorphic (i.e., exhibits allelic variation) in rats. Restriction enzyme analysis and hybridization studies showed that the polymorphic region is 2.2 kilobases upstream of the insulin 1 coding region and is due to the presence or absence of an approximately 2.7-kilobase repeated DNA element. DNA sequence determination showed that this DNA element is a member of a long interspersed repeated DNA family (LINE) that is highly repeated (greater than 50,000 copies) and highly transcribed in the rat. Although the presence or absence of LINE sequences at the insulin 1 locus occurs in both the homozygous and heterozygous states, LINE-containing insulin 1 alleles are more prevalent in the rat population than are alleles without LINEs. Restriction enzyme analysis of the LINE-containing alleles indicated that at least two versions of the LINE sequence may be present at the insulin 1 locus in different rats. Either repeated transposition of LINE sequences or gene conversion between the resident insulin 1 LINE and other sequences in the genome are possible explanations for this.
Supplementary motor area as key structure for domain-general sequence processing: A unified account.
Cona, Giorgia; Semenza, Carlo
2017-01-01
The Supplementary Motor Area (SMA) is considered as an anatomically and functionally heterogeneous region and is implicated in several functions. We propose that SMA plays a crucial role in domain-general sequence processes, contributing to the integration of sequential elements into higher-order representations regardless of the nature of such elements (e.g., motor, temporal, spatial, numerical, linguistic, etc.). This review emphasizes the domain-general involvement of the SMA, as this region has been found to support sequence operations in a variety of cognitive domains that, albeit different, share an inherent sequence processing. These include action, time and spatial processing, numerical cognition, music and language processing, and working memory. In this light, we reviewed and synthesized recent neuroimaging, stimulation and electrophysiological studies in order to compare and reconcile the distinct sources of data by proposing a unifying account for the role of the SMA. We also discussed the differential contribution of the pre-SMA and SMA-proper in sequence operations, and possible neural mechanisms by which such operations are executed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rivera-Vega, L; Mittapalli, O
2010-08-01
Emerald ash borer (EAB, Agrilus planipennis), an exotic invasive pest, has killed millions of ash trees (Fraxinus spp.) in North America and continues to threaten the very survival of the entire Fraxinus genus. Despite its high-impact status, to date very little knowledge exists for this devastating insect pest at the molecular level. Mariner-like elements (MLEs) are transposable elements, which are ubiquitous in occurrence in insects and other invertebrates. Because of their low specificity and broad host range, they can be used for epitope-tagging, gene mapping, and in vitro mutagenesis. The majority of the known MLEs are inactive due to in-frame shifts and stop codons within the open reading frame (ORF). We report on the cloning and characterization of two MLEs in A. planipennis genome (Apmar1 and Apmar2). Southern analysis indicated a very high copy number for Apmar1 and a moderate copy number for Apmar2. Phylogenetic analysis revealed that both elements belong to the irritans subfamily. Based on the high copy number for Apmar1, the full-length sequence was obtained using degenerate primers designed to the inverted terminal repeat (ITR) sequences of irritans MLEs. The recovered nucleotide sequence for Apmar1 consisted of 1,292 bases with perfect ITRs, and an ORF of 1,050 bases encoding a putative transposase of 349 amino acids. The deduced amino acid sequence of Apmar1 contained the conserved regions of mariner transposases including WVPHEL and YSPDLAP, and the D,D(34)D motif. Both Apmar1 and Apmar2 could represent useful genetic tools and provide insights on EAB adaptation.
Marenda, Marc; Barbe, Valérie; Gourgues, Géraldine; Mangenot, Sophie; Sagne, Evelyne; Citti, Christine
2006-01-01
An integrative conjugative element, ICEA, was characterized in Mycoplasma agalactiae strain 5632, in which it occurs as multiple chromosomal copies and as a free circular form. The distribution of ICEA sequences in M. agalactiae strains and their occurrence in Mycoplasma bovis suggest the spreading of the element within or between species. PMID:16707706