Mackey, Aaron J; Pearson, William R
2004-10-01
Relational databases are designed to integrate diverse types of information and manage large sets of search results, greatly simplifying genome-scale analyses. Relational databases are essential for management and analysis of large-scale sequence analyses, and can also be used to improve the statistical significance of similarity searches by focusing on subsets of sequence libraries most likely to contain homologs. This unit describes using relational databases to improve the efficiency of sequence similarity searching and to demonstrate various large-scale genomic analyses of homology-related data. This unit describes the installation and use of a simple protein sequence database, seqdb_demo, which is used as a basis for the other protocols. These include basic use of the database to generate a novel sequence library subset, how to extend and use seqdb_demo for the storage of sequence similarity search results and making use of various kinds of stored search results to address aspects of comparative genomic analysis.
Using SQL Databases for Sequence Similarity Searching and Analysis.
Pearson, William R; Mackey, Aaron J
2017-09-13
Relational databases can integrate diverse types of information and manage large sets of similarity search results, greatly simplifying genome-scale analyses. By focusing on taxonomic subsets of sequences, relational databases can reduce the size and redundancy of sequence libraries and improve the statistical significance of homologs. In addition, by loading similarity search results into a relational database, it becomes possible to explore and summarize the relationships between all of the proteins in an organism and those in other biological kingdoms. This unit describes how to use relational databases to improve the efficiency of sequence similarity searching and demonstrates various large-scale genomic analyses of homology-related data. It also describes the installation and use of a simple protein sequence database, seqdb_demo, which is used as a basis for the other protocols. The unit also introduces search_demo, a database that stores sequence similarity search results. The search_demo database is then used to explore the evolutionary relationships between E. coli proteins and proteins in other organisms in a large-scale comparative genomic analysis. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Mouse Vk gene classification by nucleic acid sequence similarity.
Strohal, R; Helmberg, A; Kroemer, G; Kofler, R
1989-01-01
Analyses of immunoglobulin (Ig) variable (V) region gene usage in the immune response, estimates of V gene germline complexity, and other nucleic acid hybridization-based studies depend on the extent to which such genes are related (i.e., sequence similarity) and their organization in gene families. While mouse Igh heavy chain V region (VH) gene families are relatively well-established, a corresponding systematic classification of Igk light chain V region (Vk) genes has not been reported. The present analysis, in the course of which we reviewed the known extent of the Vk germline gene repertoire and Vk gene usage in a variety of responses to foreign and self antigens, provides a classification of mouse Vk genes in gene families composed of members with greater than 80% overall nucleic acid sequence similarity. This classification differed in several aspects from that of VH genes: only some Vk gene families were as clearly separated (by greater than 25% sequence dissimilarity) as typical VH gene families; most Vk gene families were closely related and, in several instances, members from different families were very similar (greater than 80%) over large sequence portions; frequently, classification by nucleic acid sequence similarity diverged from existing classifications based on amino-terminal protein sequence similarity. Our data have implications for Vk gene analyses by nucleic acid hybridization and describe potentially important differences in sequence organization between VH and Vk genes.
CLAST: CUDA implemented large-scale alignment search tool.
Yano, Masahiro; Mori, Hiroshi; Akiyama, Yutaka; Yamada, Takuji; Kurokawa, Ken
2014-12-11
Metagenomics is a powerful methodology to study microbial communities, but it is highly dependent on nucleotide sequence similarity searching against sequence databases. Metagenomic analyses with next-generation sequencing technologies produce enormous numbers of reads from microbial communities, and many reads are derived from microbes whose genomes have not yet been sequenced, limiting the usefulness of existing sequence similarity search tools. Therefore, there is a clear need for a sequence similarity search tool that can rapidly detect weak similarity in large datasets. We developed a tool, which we named CLAST (CUDA implemented large-scale alignment search tool), that enables analyses of millions of reads and thousands of reference genome sequences, and runs on NVIDIA Fermi architecture graphics processing units. CLAST has four main advantages over existing alignment tools. First, CLAST was capable of identifying sequence similarities ~80.8 times faster than BLAST and 9.6 times faster than BLAT. Second, CLAST executes global alignment as the default (local alignment is also an option), enabling CLAST to assign reads to taxonomic and functional groups based on evolutionarily distant nucleotide sequences with high accuracy. Third, CLAST does not need a preprocessed sequence database like Burrows-Wheeler Transform-based tools, and this enables CLAST to incorporate large, frequently updated sequence databases. Fourth, CLAST requires <2 GB of main memory, making it possible to run CLAST on a standard desktop computer or server node. CLAST achieved very high speed (similar to the Burrows-Wheeler Transform-based Bowtie 2 for long reads) and sensitivity (equal to BLAST, BLAT, and FR-HIT) without the need for extensive database preprocessing or a specialized computing platform. Our results demonstrate that CLAST has the potential to be one of the most powerful and realistic approaches to analyze the massive amount of sequence data from next-generation sequencing technologies.
Ishikawa, Sohta A; Inagaki, Yuji; Hashimoto, Tetsuo
2012-01-01
In phylogenetic analyses of nucleotide sequences, 'homogeneous' substitution models, which assume the stationarity of base composition across a tree, are widely used, albeit individual sequences may bear distinctive base frequencies. In the worst-case scenario, a homogeneous model-based analysis can yield an artifactual union of two distantly related sequences that achieved similar base frequencies in parallel. Such potential difficulty can be countered by two approaches, 'RY-coding' and 'non-homogeneous' models. The former approach converts four bases into purine and pyrimidine to normalize base frequencies across a tree, while the heterogeneity in base frequency is explicitly incorporated in the latter approach. The two approaches have been applied to real-world sequence data; however, their basic properties have not been fully examined by pioneering simulation studies. Here, we assessed the performances of the maximum-likelihood analyses incorporating RY-coding and a non-homogeneous model (RY-coding and non-homogeneous analyses) on simulated data with parallel convergence to similar base composition. Both RY-coding and non-homogeneous analyses showed superior performances compared with homogeneous model-based analyses. Curiously, the performance of RY-coding analysis appeared to be significantly affected by a setting of the substitution process for sequence simulation relative to that of non-homogeneous analysis. The performance of a non-homogeneous analysis was also validated by analyzing a real-world sequence data set with significant base heterogeneity.
Large-Scale Concatenation cDNA Sequencing
Yu, Wei; Andersson, Björn; Worley, Kim C.; Muzny, Donna M.; Ding, Yan; Liu, Wen; Ricafrente, Jennifer Y.; Wentland, Meredith A.; Lennon, Greg; Gibbs, Richard A.
1997-01-01
A total of 100 kb of DNA derived from 69 individual human brain cDNA clones of 0.7–2.0 kb were sequenced by concatenated cDNA sequencing (CCS), whereby multiple individual DNA fragments are sequenced simultaneously in a single shotgun library. The method yielded accurate sequences and a similar efficiency compared with other shotgun libraries constructed from single DNA fragments (>20 kb). Computer analyses were carried out on 65 cDNA clone sequences and their corresponding end sequences to examine both nucleic acid and amino acid sequence similarities in the databases. Thirty-seven clones revealed no DNA database matches, 12 clones generated exact matches (≥98% identity), and 16 clones generated nonexact matches (57%–97% identity) to either known human or other species genes. Of those 28 matched clones, 8 had corresponding end sequences that failed to identify similarities. In a protein similarity search, 27 clone sequences displayed significant matches, whereas only 20 of the end sequences had matches to known protein sequences. Our data indicate that full-length cDNA insert sequences provide significantly more nucleic acid and protein sequence similarity matches than expressed sequence tags (ESTs) for database searching. [All 65 cDNA clone sequences described in this paper have been submitted to the GenBank data library under accession nos. U79240–U79304.] PMID:9110174
USDA-ARS?s Scientific Manuscript database
The 10 species of Streptomyces implicated as the etiological agents in scab disease of potatoes or soft rot disease of sweet potatoes are distributed among 7 different phylogenetic clades in analyses based on 16S rRNA gene sequences, but high sequence similarity of this gene among Streptomyces speci...
Nucleic and Amino Acid Sequences Support Structure-Based Viral Classification.
Sinclair, Robert M; Ravantti, Janne J; Bamford, Dennis H
2017-04-15
Viral capsids ensure viral genome integrity by protecting the enclosed nucleic acids. Interactions between the genome and capsid and between individual capsid proteins (i.e., capsid architecture) are intimate and are expected to be characterized by strong evolutionary conservation. For this reason, a capsid structure-based viral classification has been proposed as a way to bring order to the viral universe. The seeming lack of sufficient sequence similarity to reproduce this classification has made it difficult to reject structural convergence as the basis for the classification. We reinvestigate whether the structure-based classification for viral coat proteins making icosahedral virus capsids is in fact supported by previously undetected sequence similarity. Since codon choices can influence nascent protein folding cotranslationally, we searched for both amino acid and nucleotide sequence similarity. To demonstrate the sensitivity of the approach, we identify a candidate gene for the pandoravirus capsid protein. We show that the structure-based classification is strongly supported by amino acid and also nucleotide sequence similarities, suggesting that the similarities are due to common descent. The correspondence between structure-based and sequence-based analyses of the same proteins shown here allow them to be used in future analyses of the relationship between linear sequence information and macromolecular function, as well as between linear sequence and protein folds. IMPORTANCE Viral capsids protect nucleic acid genomes, which in turn encode capsid proteins. This tight coupling of protein shell and nucleic acids, together with strong functional constraints on capsid protein folding and architecture, leads to the hypothesis that capsid protein-coding nucleotide sequences may retain signatures of ancient viral evolution. We have been able to show that this is indeed the case, using the major capsid proteins of viruses forming icosahedral capsids. Importantly, we detected similarity at the nucleotide level between capsid protein-coding regions from viruses infecting cells belonging to all three domains of life, reproducing a previously established structure-based classification of icosahedral viral capsids. Copyright © 2017 Sinclair et al.
Nucleic and Amino Acid Sequences Support Structure-Based Viral Classification
Sinclair, Robert M.; Ravantti, Janne J.
2017-01-01
ABSTRACT Viral capsids ensure viral genome integrity by protecting the enclosed nucleic acids. Interactions between the genome and capsid and between individual capsid proteins (i.e., capsid architecture) are intimate and are expected to be characterized by strong evolutionary conservation. For this reason, a capsid structure-based viral classification has been proposed as a way to bring order to the viral universe. The seeming lack of sufficient sequence similarity to reproduce this classification has made it difficult to reject structural convergence as the basis for the classification. We reinvestigate whether the structure-based classification for viral coat proteins making icosahedral virus capsids is in fact supported by previously undetected sequence similarity. Since codon choices can influence nascent protein folding cotranslationally, we searched for both amino acid and nucleotide sequence similarity. To demonstrate the sensitivity of the approach, we identify a candidate gene for the pandoravirus capsid protein. We show that the structure-based classification is strongly supported by amino acid and also nucleotide sequence similarities, suggesting that the similarities are due to common descent. The correspondence between structure-based and sequence-based analyses of the same proteins shown here allow them to be used in future analyses of the relationship between linear sequence information and macromolecular function, as well as between linear sequence and protein folds. IMPORTANCE Viral capsids protect nucleic acid genomes, which in turn encode capsid proteins. This tight coupling of protein shell and nucleic acids, together with strong functional constraints on capsid protein folding and architecture, leads to the hypothesis that capsid protein-coding nucleotide sequences may retain signatures of ancient viral evolution. We have been able to show that this is indeed the case, using the major capsid proteins of viruses forming icosahedral capsids. Importantly, we detected similarity at the nucleotide level between capsid protein-coding regions from viruses infecting cells belonging to all three domains of life, reproducing a previously established structure-based classification of icosahedral viral capsids. PMID:28122979
Estimation of pairwise sequence similarity of mammalian enhancers with word neighbourhood counts.
Göke, Jonathan; Schulz, Marcel H; Lasserre, Julia; Vingron, Martin
2012-03-01
The identity of cells and tissues is to a large degree governed by transcriptional regulation. A major part is accomplished by the combinatorial binding of transcription factors at regulatory sequences, such as enhancers. Even though binding of transcription factors is sequence-specific, estimating the sequence similarity of two functionally similar enhancers is very difficult. However, a similarity measure for regulatory sequences is crucial to detect and understand functional similarities between two enhancers and will facilitate large-scale analyses like clustering, prediction and classification of genome-wide datasets. We present the standardized alignment-free sequence similarity measure N2, a flexible framework that is defined for word neighbourhoods. We explore the usefulness of adding reverse complement words as well as words including mismatches into the neighbourhood. On simulated enhancer sequences as well as functional enhancers in mouse development, N2 is shown to outperform previous alignment-free measures. N2 is flexible, faster than competing methods and less susceptible to single sequence noise and the occurrence of repetitive sequences. Experiments on the mouse enhancers reveal that enhancers active in different tissues can be separated by pairwise comparison using N2. N2 represents an improvement over previous alignment-free similarity measures without compromising speed, which makes it a good candidate for large-scale sequence comparison of regulatory sequences. The software is part of the open-source C++ library SeqAn (www.seqan.de) and a compiled version can be downloaded at http://www.seqan.de/projects/alf.html. Supplementary data are available at Bioinformatics online.
NASA Technical Reports Server (NTRS)
Van den Eynde, H.; De Baere, R.; Shah, H. N.; Gharbia, S. E.; Fox, G. E.; Michalik, J.; Van de Peer, Y.; De Wachter, R.
1989-01-01
The 5S ribosomal ribonucleic acid (rRNA) sequences were determined for Bacteroides fragilis, Bacteroides thetaiotaomicron, Bacteroides capillosus, Bacteroides veroralis, Porphyromonas gingivalis, Anaerorhabdus furcosus, Fusobacterium nucleatum, Fusobacterium mortiferum, and Fusobacterium varium. A dendrogram constructed by a clustering algorithm from these sequences, which were aligned with all other hitherto known eubacterial 5S rRNA sequences, showed differences as well as similarities with respect to results derived from 16S rRNA analyses. In the 5S rRNA dendrogram, Bacteroides clustered together with Cytophaga and Fusobacterium, as in 16S rRNA analyses. Intraphylum relationships deduced from 5S rRNAs suggested that Bacteroides is specifically related to Cytophaga rather than to Fusobacterium, as was suggested by 16S rRNA analyses. Previous taxonomic considerations concerning the genus Bacteroides, based on biochemical and physiological data, were confirmed by the 5S rRNA sequence analysis.
USDA-ARS?s Scientific Manuscript database
Phylogenetic analyses of species of Streptomyces based on 16S rRNA gene sequences resulted in a statistically well-supported clade (100% bootstrap value) containing 8 species having very similar gross morphology. These species, including Streptomyces bambergiensis, Streptomyces chlorus, Streptomyces...
Tracing common origins of Genomic Islands in prokaryotes based on genome signature analyses.
van Passel, Mark Wj
2011-09-01
Horizontal gene transfer constitutes a powerful and innovative force in evolution, but often little is known about the actual origins of transferred genes. Sequence alignments are generally of limited use in tracking the original donor, since still only a small fraction of the total genetic diversity is thought to be uncovered. Alternatively, approaches based on similarities in the genome specific relative oligonucleotide frequencies do not require alignments. Even though the exact origins of horizontally transferred genes may still not be established using these compositional analyses, it does suggest that compositionally very similar regions are likely to have had a common origin. These analyses have shown that up to a third of large acquired gene clusters that reside in the same genome are compositionally very similar, indicative of a shared origin. This brings us closer to uncovering the original donors of horizontally transferred genes, and could help in elucidating possible regulatory interactions between previously unlinked sequences.
GWFASTA: server for FASTA search in eukaryotic and microbial genomes.
Issac, Biju; Raghava, G P S
2002-09-01
Similarity searches are a powerful method for solving important biological problems such as database scanning, evolutionary studies, gene prediction, and protein structure prediction. FASTA is a widely used sequence comparison tool for rapid database scanning. Here we describe the GWFASTA server that was developed to assist the FASTA user in similarity searches against partially and/or completely sequenced genomes. GWFASTA consists of more than 60 microbial genomes, eight eukaryote genomes, and proteomes of annotatedgenomes. Infact, it provides the maximum number of databases for similarity searching from a single platform. GWFASTA allows the submission of more than one sequence as a single query for a FASTA search. It also provides integrated post-processing of FASTA output, including compositional analysis of proteins, multiple sequences alignment, and phylogenetic analysis. Furthermore, it summarizes the search results organism-wise for prokaryotes and chromosome-wise for eukaryotes. Thus, the integration of different tools for sequence analyses makes GWFASTA a powerful toolfor biologists.
Lei, Yong-Liang; Wang, Xiao-Guang; Liu, Fu-Ming; Chen, Xiu-Ying; Ye, Bi-Feng; Mei, Jian-Hua; Lan, Jin-Quan; Tang, Qing
2009-08-01
Based on sequencing the full-length genomes of two Chinese Ferret-Badger, we analyzed the properties of rabies viruses genetic variation in molecular level to get information on prevalence and variation of rabies viruses in Zhejiang, and to enrich the genome database of rabies viruses street strains isolated from Chinese wildlife. Overlapped fragments were amplified by RT-PCR and full-length genomes were assembled to analyze the nucleotide and deduced protein similarities and phylogenetic analyses of the N genes from Chinese Ferret-Badger, sika deer, vole, dog. Vaccine strains were then determined. The two full-length genomes were completely sequenced to find out that they had the same genetic structure with 11 923 nts including 58 nts-Leader, 1353 nts-NP, 894 nts-PP, 609 nts-MP, 1575 nts-GP, 6386 nts-LP, and 2, 5, 5 nts- intergenic regions (IGRs), 423 nts-Pseudogene-like sequence (Psi), 70 nts-Trailer. The two full-length genomes were in accordance with the properties of Rhabdoviridae Lyssa virus by blast and multi-sequence alignment. The nucleotide and amino acid sequences among Chinese strains had the highest similarity, especially among animals of the same species. Of the two full-length genomes, the similarity in amino acid level was dramatically higher than that in nucleotide level, so that the nucleotide mutations happened in these two genomes were most probably as synonymous mutations. Compared to the referenced rabies viruses, the lengths of the five protein coding regions did not show any changes or recombination, but only with a few-point mutations. It was evident that the five proteins appeared to be stable. The variation sites and types of the two ferret badgers genomes were similar to the referenced vaccine or street strains. The two strains were genotype 1 according to the multi-sequence and phylogenetic analyses, which possessing the distinct geographyphic characteristics of China. All the evidence suggested a cue that these two ferret badgers rabies viruses were likely to be street virus that already circulating in wildlife.
MaxAlign: maximizing usable data in an alignment.
Gouveia-Oliveira, Rodrigo; Sackett, Peter W; Pedersen, Anders G
2007-08-28
The presence of gaps in an alignment of nucleotide or protein sequences is often an inconvenience for bioinformatical studies. In phylogenetic and other analyses, for instance, gapped columns are often discarded entirely from the alignment. MaxAlign is a program that optimizes the alignment prior to such analyses. Specifically, it maximizes the number of nucleotide (or amino acid) symbols that are present in gap-free columns - the alignment area - by selecting the optimal subset of sequences to exclude from the alignment. MaxAlign can be used prior to phylogenetic and bioinformatical analyses as well as in other situations where this form of alignment improvement is useful. In this work we test MaxAlign's performance in these tasks and compare the accuracy of phylogenetic estimates including and excluding gapped columns from the analysis, with and without processing with MaxAlign. In this paper we also introduce a new simple measure of tree similarity, Normalized Symmetric Similarity (NSS) that we consider useful for comparing tree topologies. We demonstrate how MaxAlign is helpful in detecting misaligned or defective sequences without requiring manual inspection. We also show that it is not advisable to exclude gapped columns from phylogenetic analyses unless MaxAlign is used first. Finally, we find that the sequences removed by MaxAlign from an alignment tend to be those that would otherwise be associated with low phylogenetic accuracy, and that the presence of gaps in any given sequence does not seem to disturb the phylogenetic estimates of other sequences. The MaxAlign web-server is freely available online at http://www.cbs.dtu.dk/services/MaxAlign where supplementary information can also be found. The program is also freely available as a Perl stand-alone package.
msgbsR: An R package for analysing methylation-sensitive restriction enzyme sequencing data.
Mayne, Benjamin T; Leemaqz, Shalem Y; Buckberry, Sam; Rodriguez Lopez, Carlos M; Roberts, Claire T; Bianco-Miotto, Tina; Breen, James
2018-02-01
Genotyping-by-sequencing (GBS) or restriction-site associated DNA marker sequencing (RAD-seq) is a practical and cost-effective method for analysing large genomes from high diversity species. This method of sequencing, coupled with methylation-sensitive enzymes (often referred to as methylation-sensitive restriction enzyme sequencing or MRE-seq), is an effective tool to study DNA methylation in parts of the genome that are inaccessible in other sequencing techniques or are not annotated in microarray technologies. Current software tools do not fulfil all methylation-sensitive restriction sequencing assays for determining differences in DNA methylation between samples. To fill this computational need, we present msgbsR, an R package that contains tools for the analysis of methylation-sensitive restriction enzyme sequencing experiments. msgbsR can be used to identify and quantify read counts at methylated sites directly from alignment files (BAM files) and enables verification of restriction enzyme cut sites with the correct recognition sequence of the individual enzyme. In addition, msgbsR assesses DNA methylation based on read coverage, similar to RNA sequencing experiments, rather than methylation proportion and is a useful tool in analysing differential methylation on large populations. The package is fully documented and available freely online as a Bioconductor package ( https://bioconductor.org/packages/release/bioc/html/msgbsR.html ).
Vujaklija, Ivan; Bielen, Ana; Paradžik, Tina; Biđin, Siniša; Goldstein, Pavle; Vujaklija, Dušica
2016-02-18
The massive accumulation of protein sequences arising from the rapid development of high-throughput sequencing, coupled with automatic annotation, results in high levels of incorrect annotations. In this study, we describe an approach to decrease annotation errors of protein families characterized by low overall sequence similarity. The GDSL lipolytic family comprises proteins with multifunctional properties and high potential for pharmaceutical and industrial applications. The number of proteins assigned to this family has increased rapidly over the last few years. In particular, the natural abundance of GDSL enzymes reported recently in plants indicates that they could be a good source of novel GDSL enzymes. We noticed that a significant proportion of annotated sequences lack specific GDSL motif(s) or catalytic residue(s). Here, we applied motif-based sequence analyses to identify enzymes possessing conserved GDSL motifs in selected proteomes across the plant kingdom. Motif-based HMM scanning (Viterbi decoding-VD and posterior decoding-PD) and the here described PD/VD protocol were successfully applied on 12 selected plant proteomes to identify sequences with GDSL motifs. A significant number of identified GDSL sequences were novel. Moreover, our scanning approach successfully detected protein sequences lacking at least one of the essential motifs (171/820) annotated by Pfam profile search (PfamA) as GDSL. Based on these analyses we provide a curated list of GDSL enzymes from the selected plants. CLANS clustering and phylogenetic analysis helped us to gain a better insight into the evolutionary relationship of all identified GDSL sequences. Three novel GDSL subfamilies as well as unreported variations in GDSL motifs were discovered in this study. In addition, analyses of selected proteomes showed a remarkable expansion of GDSL enzymes in the lycophyte, Selaginella moellendorffii. Finally, we provide a general motif-HMM scanner which is easily accessible through the graphical user interface ( http://compbio.math.hr/ ). Our results show that scanning with a carefully parameterized motif-HMM is an effective approach for annotation of protein families with low sequence similarity and conserved motifs. The results of this study expand current knowledge and provide new insights into the evolution of the large GDSL-lipase family in land plants.
Comparative sequence analyses of sixteen reptilian paramyxoviruses
Ahne, W.; Batts, W.N.; Kurath, G.; Winton, J.R.
1999-01-01
Viral genomic RNA of Fer-de-Lance virus (FDLV), a paramyxovirus highly pathogenic for reptiles, was reverse transcribed and cloned. Plasmids with significant sequence similarities to the hemagglutinin-neuraminidase (HN) and polymerase (L) genes of mammalian paramyxoviruses were identified by BLAST search. Partial sequences of the FDLV genes were used to design primers for amplification by nested polymerase chain reaction (PCR) and sequencing of 518-bp L gene and 352-bp HN gene fragments from a collection of 15 previously uncharacterized reptilian paramyxoviruses. Phylogenetic analyses of the partial L and HN sequences produced similar trees in which there were two distinct subgroups of isolates that were supported with maximum bootstrap values, and several intermediate isolates. Within each subgroup the nucleotide divergence values were less than 2.5%, while the divergence between the two subgroups was 20-22%. This indicated that the two subgroups represent distinct virus species containing multiple virus strains. The five intermediate isolates had nucleotide divergence values of 11-20% and may represent additional distinct species. In addition to establishing diversity among reptilian paramyxoviruses, the phylogenetic groupings showed some correlation with geographic location, and clearly demonstrated a low level of host species-specificity within these viruses. Copyright (C) 1999 Elsevier Science B.V.
Lin, Jingxia; Wang, Xiuna; Deng, Xianbo; Feng, Youjun
2016-01-01
The emergence of the mobilized colistin resistance gene, representing a novel mechanism for bacterial drug resistance, challenges the last resort against the severe infections by Gram-negative bacteria with multi-drug resistances. Very recently, we showed the diversity in the mcr-1-carrying plasmid reservoirs from the gut microbiota. Here, we reported that a similar but more complex scenario is present in the healthy swine populations, Southern China, 2016. Amongst the 1026 pieces of Escherichia coli isolates from 3 different pig farms, 302 E. coli isolates were determined to be positive for the mcr-1 gene (30%, 302/1026). Multi-locus sequence typing assigned no less than 11 kinds of sequence types including one novel Sequence Type to these mcr-1-positive strains. PCR analyses combined with the direct DNA sequencing revealed unexpected complexity of the mcr-1-harbouring plasmids whose backbones are at least grouped into 6 types four of which are new. Transcriptional analyses showed that the mcr-1 promoter of different origins exhibits similar activity. It seems likely that complex dissemination of the diversified mcr-1-bearing plasmids occurs amongst the various ST E. coli inhabiting the healthy swine populations, in Southern China. PMID:27741523
The partial 16S rDNA gene sequences of two thermophilic archaeal strains, TY and TYS, previously isolated from the Guaymas Basin hydrothermal vent site were determined. Lipid analyses and a comparative analysis performed with 16S rDNA sequences of similar thermophilic species sho...
Molecular confirmation of Hepatozoon canis in Mauritius.
Daskalaki, Aikaterini Alexandra; Ionică, Angela Monica; Jeetah, Keshav; Gherman, Călin Mircea; Mihalca, Andrei Daniel
2018-01-01
In this study, Hepatozoon species was molecularly identified and characterized for the first time on the Indian Ocean island of Mauritius. Partial sequences of the 18S rRNA gene of the Hepatozoon isolates were analysed from three naturally infected dogs. The sequences of H. canis were similar to the 18S rRNA partial sequences (JX112783, AB365071 99%) from dog blood samples from West Indies and Nigeria. Our sequences were deposited in the GenBank database. Copyright © 2017 Elsevier B.V. All rights reserved.
Kröber, Magdalena; Bekel, Thomas; Diaz, Naryttza N; Goesmann, Alexander; Jaenicke, Sebastian; Krause, Lutz; Miller, Dimitri; Runte, Kai J; Viehöver, Prisca; Pühler, Alfred; Schlüter, Andreas
2009-06-01
The phylogenetic structure of the microbial community residing in a fermentation sample from a production-scale biogas plant fed with maize silage, green rye and liquid manure was analysed by an integrated approach using clone library sequences and metagenome sequence data obtained by 454-pyrosequencing. Sequencing of 109 clones from a bacterial and an archaeal 16S-rDNA amplicon library revealed that the obtained nucleotide sequences are similar but not identical to 16S-rDNA database sequences derived from different anaerobic environments including digestors and bioreactors. Most of the bacterial 16S-rDNA sequences could be assigned to the phylum Firmicutes with the most abundant class Clostridia and to the class Bacteroidetes, whereas most archaeal 16S-rDNA sequences cluster close to the methanogen Methanoculleus bourgensis. Further sequences of the archaeal library most probably represent so far non-characterised species within the genus Methanoculleus. A similar result derived from phylogenetic analysis of mcrA clone sequences. The mcrA gene product encodes the alpha-subunit of methyl-coenzyme-M reductase involved in the final step of methanogenesis. BLASTn analysis applying stringent settings resulted in assignment of 16S-rDNA metagenome sequence reads to 62 16S-rDNA amplicon sequences thus enabling frequency of abundance estimations for 16S-rDNA clone library sequences. Ribosomal Database Project (RDP) Classifier processing of metagenome 16S-rDNA reads revealed abundance of the phyla Firmicutes, Bacteroidetes and Euryarchaeota and the orders Clostridiales, Bacteroidales and Methanomicrobiales. Moreover, a large fraction of 16S-rDNA metagenome reads could not be assigned to lower taxonomic ranks, demonstrating that numerous microorganisms in the analysed fermentation sample of the biogas plant are still unclassified or unknown.
Species classifier choice is a key consideration when analysing low-complexity food microbiome data.
Walsh, Aaron M; Crispie, Fiona; O'Sullivan, Orla; Finnegan, Laura; Claesson, Marcus J; Cotter, Paul D
2018-03-20
The use of shotgun metagenomics to analyse low-complexity microbial communities in foods has the potential to be of considerable fundamental and applied value. However, there is currently no consensus with respect to choice of species classification tool, platform, or sequencing depth. Here, we benchmarked the performances of three high-throughput short-read sequencing platforms, the Illumina MiSeq, NextSeq 500, and Ion Proton, for shotgun metagenomics of food microbiota. Briefly, we sequenced six kefir DNA samples and a mock community DNA sample, the latter constructed by evenly mixing genomic DNA from 13 food-related bacterial species. A variety of bioinformatic tools were used to analyse the data generated, and the effects of sequencing depth on these analyses were tested by randomly subsampling reads. Compositional analysis results were consistent between the platforms at divergent sequencing depths. However, we observed pronounced differences in the predictions from species classification tools. Indeed, PERMANOVA indicated that there was no significant differences between the compositional results generated by the different sequencers (p = 0.693, R 2 = 0.011), but there was a significant difference between the results predicted by the species classifiers (p = 0.01, R 2 = 0.127). The relative abundances predicted by the classifiers, apart from MetaPhlAn2, were apparently biased by reference genome sizes. Additionally, we observed varying false-positive rates among the classifiers. MetaPhlAn2 had the lowest false-positive rate, whereas SLIMM had the greatest false-positive rate. Strain-level analysis results were also similar across platforms. Each platform correctly identified the strains present in the mock community, but accuracy was improved slightly with greater sequencing depth. Notably, PanPhlAn detected the dominant strains in each kefir sample above 500,000 reads per sample. Again, the outputs from functional profiling analysis using SUPER-FOCUS were generally accordant between the platforms at different sequencing depths. Finally, and expectedly, metagenome assembly completeness was significantly lower on the MiSeq than either on the NextSeq (p = 0.03) or the Proton (p = 0.011), and it improved with increased sequencing depth. Our results demonstrate a remarkable similarity in the results generated by the three sequencing platforms at different sequencing depths, and, in fact, the choice of bioinformatics methodology had a more evident impact on results than the choice of sequencer did.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mays, S.E.; Poloski, J.P.; Sullivan, W.H.
1982-07-01
A probabilistic risk assessment (PRA) was made of the Browns Ferry, Unit 1, nuclear plant as part of the Nuclear Regulatory Commission's Interim Reliability Evaluation Program (IREP). Specific goals of the study were to identify the dominant contributors to core melt, develop a foundation for more extensive use of PRA methods, expand the cadre of experienced PRA practitioners, and apply procedures for extension of IREP analyses to other domestic light water reactors. Event tree and fault tree analyses were used to estimate the frequency of accident sequences initiated by transients and loss of coolant accidents. External events such as floods,more » fires, earthquakes, and sabotage were beyond the scope of this study and were, therefore, excluded. From these sequences, the dominant contributors to probable core melt frequency were chosen. Uncertainty and sensitivity analyses were performed on these sequences to better understand the limitations associated with the estimated sequence frequencies. Dominant sequences were grouped according to common containment failure modes and corresponding release categories on the basis of comparison with analyses of similar designs rather than on the basis of detailed plant-specific calculations.« less
PipeOnline 2.0: automated EST processing and functional data sorting.
Ayoubi, Patricia; Jin, Xiaojing; Leite, Saul; Liu, Xianghui; Martajaja, Jeson; Abduraham, Abdurashid; Wan, Qiaolan; Yan, Wei; Misawa, Eduardo; Prade, Rolf A
2002-11-01
Expressed sequence tags (ESTs) are generated and deposited in the public domain, as redundant, unannotated, single-pass reactions, with virtually no biological content. PipeOnline automatically analyses and transforms large collections of raw DNA-sequence data from chromatograms or FASTA files by calling the quality of bases, screening and removing vector sequences, assembling and rewriting consensus sequences of redundant input files into a unigene EST data set and finally through translation, amino acid sequence similarity searches, annotation of public databases and functional data. PipeOnline generates an annotated database, retaining the processed unigene sequence, clone/file history, alignments with similar sequences, and proposed functional classification, if available. Functional annotation is automatic and based on a novel method that relies on homology of amino acid sequence multiplicity within GenBank records. Records are examined through a function ordered browser or keyword queries with automated export of results. PipeOnline offers customization for individual projects (MyPipeOnline), automated updating and alert service. PipeOnline is available at http://stress-genomics.org.
Lei, Yong-Liang; Wang, Xiao-Guang; Tao, Xiao-Yan; Li, Hao; Meng, Sheng-Li; Chen, Xiu-Ying; Liu, Fu-Ming; Ye, Bi-Feng; Tang, Qing
2010-01-01
Based on sequencing the full-length genomes of four Chinese Ferret-Badger and dog, we analyze the properties of rabies viruses genetic variation in molecular level, get the information about rabies viruses prevalence and variation in Zhejiang, and enrich the genome database of rabies viruses street strains isolated from China. Rabies viruses in suckling mice were isolated, overlapped fragments were amplified by RT-PCR and full-length genomes were assembled to analyze the nucleotide and deduced protein similarities and phylogenetic analyses from Chinese Ferret-Badger, dog, sika deer, vole, used vaccine strain were determined. The four full-length genomes were sequenced completely and had the same genetic structure with the length of 11, 923 nts or 11, 925 nts including 58 nts-Leader, 1353 nts-NP, 894 nts-PP, 609 nts-MP, 1575 nts-GP, 6386 nts-LP, and 2, 5, 5 nts- intergenic regions(IGRs), 423 nts-Pseudogene-like sequence (psi), 70 nts-Trailer. The four full-length genomes were in accordance with the properties of Rhabdoviridae Lyssa virus by BLAST and multi-sequence alignment. The nucleotide and amino acid sequences among Chinese strains had the highest similarity, especially among animals of the same species. Of the four full-length genomes, the similarity in amino acid level was dramatically higher than that in nucleotide level, so the nucleotide mutations happened in these four genomes were most synonymous mutations. Compared with the reference rabies viruses, the lengths of the five protein coding regions had no change, no recombination, only with a few point mutations. It was evident that the five proteins appeared to be stable. The variation sites and types of the four genomes were similar to the reference vaccine or street strains. And the four strains were genotype 1 according to the multi-sequence and phylogenetic analyses, which possessed the distinct district characteristics of China. Therefore, these four rabies viruses are likely to be street viruses already existing in the natural world.
Whale song analyses using bioinformatics sequence analysis approaches
NASA Astrophysics Data System (ADS)
Chen, Yian A.; Almeida, Jonas S.; Chou, Lien-Siang
2005-04-01
Animal songs are frequently analyzed using discrete hierarchical units, such as units, themes and songs. Because animal songs and bio-sequences may be understood as analogous, bioinformatics analysis tools DNA/protein sequence alignment and alignment-free methods are proposed to quantify the theme similarities of the songs of false killer whales recorded off northeast Taiwan. The eighteen themes with discrete units that were identified in an earlier study [Y. A. Chen, masters thesis, University of Charleston, 2001] were compared quantitatively using several distance metrics. These metrics included the scores calculated using the Smith-Waterman algorithm with the repeated procedure; the standardized Euclidian distance and the angle metrics based on word frequencies. The theme classifications based on different metrics were summarized and compared in dendrograms using cluster analyses. The results agree with earlier classifications derived by human observation qualitatively. These methods further quantify the similarities among themes. These methods could be applied to the analyses of other animal songs on a larger scale. For instance, these techniques could be used to investigate song evolution and cultural transmission quantifying the dissimilarities of humpback whale songs across different seasons, years, populations, and geographic regions. [Work supported by SC Sea Grant, and Ilan County Government, Taiwan.
Cucumis melo endornavirus: Genome organization, host range and codivergence with the host
USDA-ARS?s Scientific Manuscript database
A high molecular weight dsRNA was isolated from a Cucumis melo plant (referred to as“CL01”) of an unknown cultivar and completely sequenced. Sequence analyses showed similarities with members of the Endornaviridae. The name Cucumis melo endornavirus (CmEV) is proposed. The genome of CmEV-CL01 consis...
USDA-ARS?s Scientific Manuscript database
Previous phylogenetic analyses of species of Streptomyces based on 16S rRNA gene sequences resulted in a statistically well-supported clade (100% bootstrap value) containing 8 species that exhibited very similar gross morphology in producing open looped (Retinaculum-Apertum) to spiral (Spira) chains...
Analysis of functional redundancies within the Arabidopsis TCP transcription factor family.
Danisman, Selahattin; van Dijk, Aalt D J; Bimbo, Andrea; van der Wal, Froukje; Hennig, Lars; de Folter, Stefan; Angenent, Gerco C; Immink, Richard G H
2013-12-01
Analyses of the functions of TEOSINTE-LIKE1, CYCLOIDEA, and PROLIFERATING CELL FACTOR1 (TCP) transcription factors have been hampered by functional redundancy between its individual members. In general, putative functionally redundant genes are predicted based on sequence similarity and confirmed by genetic analysis. In the TCP family, however, identification is impeded by relatively low overall sequence similarity. In a search for functionally redundant TCP pairs that control Arabidopsis leaf development, this work performed an integrative bioinformatics analysis, combining protein sequence similarities, gene expression data, and results of pair-wise protein-protein interaction studies for the 24 members of the Arabidopsis TCP transcription factor family. For this, the work completed any lacking gene expression and protein-protein interaction data experimentally and then performed a comprehensive prediction of potential functional redundant TCP pairs. Subsequently, redundant functions could be confirmed for selected predicted TCP pairs by genetic and molecular analyses. It is demonstrated that the previously uncharacterized class I TCP19 gene plays a role in the control of leaf senescence in a redundant fashion with TCP20. Altogether, this work shows the power of combining classical genetic and molecular approaches with bioinformatics predictions to unravel functional redundancies in the TCP transcription factor family.
Analysis of functional redundancies within the Arabidopsis TCP transcription factor family
Danisman, Selahattin; de Folter, Stefan; Immink, Richard G. H.
2013-01-01
Analyses of the functions of TEOSINTE-LIKE1, CYCLOIDEA, and PROLIFERATING CELL FACTOR1 (TCP) transcription factors have been hampered by functional redundancy between its individual members. In general, putative functionally redundant genes are predicted based on sequence similarity and confirmed by genetic analysis. In the TCP family, however, identification is impeded by relatively low overall sequence similarity. In a search for functionally redundant TCP pairs that control Arabidopsis leaf development, this work performed an integrative bioinformatics analysis, combining protein sequence similarities, gene expression data, and results of pair-wise protein–protein interaction studies for the 24 members of the Arabidopsis TCP transcription factor family. For this, the work completed any lacking gene expression and protein–protein interaction data experimentally and then performed a comprehensive prediction of potential functional redundant TCP pairs. Subsequently, redundant functions could be confirmed for selected predicted TCP pairs by genetic and molecular analyses. It is demonstrated that the previously uncharacterized class I TCP19 gene plays a role in the control of leaf senescence in a redundant fashion with TCP20. Altogether, this work shows the power of combining classical genetic and molecular approaches with bioinformatics predictions to unravel functional redundancies in the TCP transcription factor family. PMID:24129704
2009-01-01
Background Tardigrades represent an animal phylum with extraordinary resistance to environmental stress. Results To gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (Milnesium tardigradum, Hypsibius dujardini, Echiniscus testudo, Tulinus stephaniae, Richtersius coronifer) and functional elements in tardigrade mRNAs are analysed. We find that 39.3% of the total sequences clustered in 58 clusters of more than 20 proteins. Among these are ten tardigrade specific as well as a number of stress-specific protein clusters. Tardigrade-specific functional adaptations include strong protein, DNA- and redox protection, maintenance and protein recycling. Specific regulatory elements regulate tardigrade mRNA stability such as lox P DICE elements whereas 14 other RNA elements of higher eukaryotes are not found. Further features of tardigrade specific adaption are rapidly identified by sequence and/or pattern search on the web-tool tardigrade analyzer http://waterbear.bioapps.biozentrum.uni-wuerzburg.de. The work-bench offers nucleotide pattern analysis for promotor and regulatory element detection (tardigrade specific; nrdb) as well as rapid COG search for function assignments including species-specific repositories of all analysed data. Conclusion Different protein clusters and regulatory elements implicated in tardigrade stress adaptations are analysed including unpublished tardigrade sequences. PMID:19821996
Förster, Frank; Liang, Chunguang; Shkumatov, Alexander; Beisser, Daniela; Engelmann, Julia C; Schnölzer, Martina; Frohme, Marcus; Müller, Tobias; Schill, Ralph O; Dandekar, Thomas
2009-10-12
Tardigrades represent an animal phylum with extraordinary resistance to environmental stress. To gain insights into their stress-specific adaptation potential, major clusters of related and similar proteins are identified, as well as specific functional clusters delineated comparing all tardigrades and individual species (Milnesium tardigradum, Hypsibius dujardini, Echiniscus testudo, Tulinus stephaniae, Richtersius coronifer) and functional elements in tardigrade mRNAs are analysed. We find that 39.3% of the total sequences clustered in 58 clusters of more than 20 proteins. Among these are ten tardigrade specific as well as a number of stress-specific protein clusters. Tardigrade-specific functional adaptations include strong protein, DNA- and redox protection, maintenance and protein recycling. Specific regulatory elements regulate tardigrade mRNA stability such as lox P DICE elements whereas 14 other RNA elements of higher eukaryotes are not found. Further features of tardigrade specific adaption are rapidly identified by sequence and/or pattern search on the web-tool tardigrade analyzer http://waterbear.bioapps.biozentrum.uni-wuerzburg.de. The work-bench offers nucleotide pattern analysis for promotor and regulatory element detection (tardigrade specific; nrdb) as well as rapid COG search for function assignments including species-specific repositories of all analysed data. Different protein clusters and regulatory elements implicated in tardigrade stress adaptations are analysed including unpublished tardigrade sequences.
Aas-Hanssen, Kristin; Thompson, Keith M; Bogen, Bjarne; Munthe, Ludvig A
2015-01-01
Systemic lupus erythematosus (SLE) is marked by a T helper (Th) cell-dependent B cell hyperresponsiveness, with frequent germinal center reactions, and gammaglobulinemia. A feature of SLE is the finding of IgG autoantibodies specific for dsDNA. The specificity of the Th cells that drive the expansion of anti-dsDNA B cells is unresolved. However, anti-microbial, anti-histone, and anti-idiotype Th cell responses have been hypothesized to play a role. It has been entirely unclear if these seemingly disparate Th cell responses and hypotheses could be related or unified. Here, we describe that H chain CDR3 idiotypes from IgG(+) B cells of lupus mice have sequence similarities with both microbial and self peptides. Matched sequences were more frequent within the mutated CDR3 repertoire and when sequences were derived from lupus mice with expanded anti-dsDNA B cells. Analyses of histone sequences showed that particular histone peptides were similar to VDJ junctions. Moreover, lupus mice had Th cell responses toward histone peptides similar to anti-dsDNA CDR3 sequences. The results suggest that Th cells in lupus may have multiple cross-reactive specificities linked to the IgVH CDR3 Id-peptide sequences as well as similar DNA-associated protein motifs.
Satellite DNA Sequences in Canidae and Their Chromosome Distribution in Dog and Red Fox.
Vozdova, Miluse; Kubickova, Svatava; Cernohorska, Halina; Fröhlich, Jan; Rubes, Jiri
2016-01-01
Satellite DNA is a characteristic component of mammalian centromeric heterochromatin, and a comparative analysis of its evolutionary dynamics can be used for phylogenetic studies. We analysed satellite and satellite-like DNA sequences available in NCBI for 4 species of the family Canidae (red fox, Vulpes vulpes, VVU; domestic dog, Canis familiaris, CFA; arctic fox, Vulpes lagopus, VLA; raccoon dog, Nyctereutes procyonoides procyonoides, NPR) by comparative sequence analysis, which revealed 86-90% intraspecies and 76-79% interspecies similarity. Comparative fluorescence in situ hybridisation in the red fox and dog showed signals of the red fox satellite probe in canine and vulpine autosomal centromeres, on VVUY, B chromosomes, and in the distal parts of VVU9q and VVU10p which were shown to contain nucleolus organiser regions. The CFA satellite probe stained autosomal centromeres only in the dog. The CFA satellite-like DNA did not show any significant sequence similarity with the satellite DNA of any species analysed and was localised to the centromeres of 9 canine chromosome pairs. No significant heterochromatin block was detected on the B chromosomes of the red fox. Our results show extensive heterogeneity of satellite sequences among Canidae and prove close evolutionary relationships between the red and arctic fox. © 2017 S. Karger AG, Basel.
Genotype diversity of hepatitis C virus (HCV) in HCV-associated liver disease patients in Indonesia.
Utama, Andi; Tania, Navessa Padma; Dhenni, Rama; Gani, Rino Alvani; Hasan, Irsan; Sanityoso, Andri; Lelosutan, Syafruddin A R; Martamala, Ruswhandi; Lesmana, Laurentius Adrianus; Sulaiman, Ali; Tai, Susan
2010-09-01
Hepatitis C virus (HCV) genotype distribution in Indonesia has been reported. However, the identification of HCV genotype was based on 5'-UTR or NS5B sequence. This study was aimed to observe HCV core sequence variation among HCV-associated liver disease patients in Jakarta, and to analyse the HCV genotype diversity based on the core sequence. Sixty-eight chronic hepatitis (CH), 48 liver cirrhosis (LC) and 34 hepatocellular carcinoma (HCC) were included in this study. HCV core variation was analysed by direct sequencing. Alignment of HCV core sequences demonstrated that the core sequence was relatively varied among the genotype. Indeed, 237 bases of the core sequence could classify the HCV subtype; however, 236 bases failed to differentiate several subtypes. Based on 237 bases of the core sequences, the HCV strains were classified into genotypes 1 (subtypes 1a, 1b and 1c), 2 (subtypes 2a, 2e and 2f) and 3 (subtypes 3a and 3k). The HCV 1b (47.3%) was the most prevalent, followed by subtypes 1c (18.7%), 3k (10.7%), 2a (10.0%), 1a (6.7%), 2e (5.3%), 2f (0.7%) and 3a (0.7%). HCV 1b was the most common in all patients, and the prevalence increased with the severity of liver disease (36.8% in CH, 54.2% in LC and 58.8% in HCC). These results were similar to a previous report based on NS5B sequence analysis. Hepatitis C virus core sequence (237 bases) could identify the HCV subtype and the prevalence of HCV subtype based on core sequence was similar to those based on the NS5B region.
Maruyama, Kyonoshin; Todaka, Daisuke; Mizoi, Junya; Yoshida, Takuya; Kidokoro, Satoshi; Matsukura, Satoko; Takasaki, Hironori; Sakurai, Tetsuya; Yamamoto, Yoshiharu Y.; Yoshiwara, Kyouko; Kojima, Mikiko; Sakakibara, Hitoshi; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko
2012-01-01
The genomes of three plants, Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and soybean (Glycine max), have been sequenced, and their many genes and promoters have been predicted. In Arabidopsis, cis-acting promoter elements involved in cold- and dehydration-responsive gene expression have been extensively analysed; however, the characteristics of such cis-acting promoter sequences in cold- and dehydration-inducible genes of rice and soybean remain to be clarified. In this study, we performed microarray analyses using the three species, and compared characteristics of identified cold- and dehydration-inducible genes. Transcription profiles of the cold- and dehydration-responsive genes were similar among these three species, showing representative upregulated (dehydrin/LEA) and downregulated (photosynthesis-related) genes. All (46 = 4096) hexamer sequences in the promoters of the three species were investigated, revealing the frequency of conserved sequences in cold- and dehydration-inducible promoters. A core sequence of the abscisic acid-responsive element (ABRE) was the most conserved in dehydration-inducible promoters of all three species, suggesting that transcriptional regulation for dehydration-inducible genes is similar among these three species, with the ABRE-dependent transcriptional pathway. In contrast, for cold-inducible promoters, the conserved hexamer sequences were diversified among these three species, suggesting the existence of diverse transcriptional regulatory pathways for cold-inducible genes among the species. PMID:22184637
Naser, Sabri M; Vancanneyt, Marc; Hoste, Bart; Snauwaert, Cindy; Swings, Jean
2006-07-01
The applicability of a multilocus sequence analysis (MLSA)-based identification system for lactobacilli was evaluated. Two housekeeping genes that code for the phenylalanyl-tRNA synthase alpha-subunit (pheS) and RNA polymerase alpha-subunit (rpoA) were sequenced and analysed for members of the Lactobacillus salivarius species group. The type strains of Lactobacillus acidipiscis and Lactobacillus cypricasei were investigated further using a third gene that encodes the alpha-subunit of ATP synthase (atpA). The MLSA data revealed close relatedness between L. acidipiscis and L. cypricasei, with 99.8-100 % pheS, rpoA and atpA gene sequence similarities. Comparison of the 16S rRNA gene sequences of the type strains of the two species confirmed the close relatedness (99.8 % gene sequence similarity) between the two taxa. Similar phenotypes and high DNA-DNA binding values in the range of 84 to 97.5 % confirmed that L. acidipiscis and L. cypricasei are synonymous species. On the basis of the present study, it is proposed that Lactobacillus cypricasei is a later heterotypic synonym of Lactobacillus acidipiscis.
Wong, Gerard; Leckie, Christopher; Gorringe, Kylie L; Haviv, Izhak; Campbell, Ian G; Kowalczyk, Adam
2010-04-15
High-density single nucleotide polymorphism (SNP) genotyping arrays are efficient and cost effective platforms for the detection of copy number variation (CNV). To ensure accuracy in probe synthesis and to minimize production costs, short oligonucleotide probe sequences are used. The use of short probe sequences limits the specificity of binding targets in the human genome. The specificity of these short probeset sequences has yet to be fully analysed against a normal reference human genome. Sequence similarity can artificially elevate or suppress copy number measurements, and hence reduce the reliability of affected probe readings. For the purpose of detecting narrow CNVs reliably down to the width of a single probeset, sequence similarity is an important issue that needs to be addressed. We surveyed the Affymetrix Human Mapping SNP arrays for probeset sequence similarity against the reference human genome. Utilizing sequence similarity results, we identified a collection of fine-scaled putative CNVs between gender from autosomal probesets whose sequence matches various loci on the sex chromosomes. To detect these variations, we utilized our statistical approach, Detecting REcurrent Copy number change using rank-order Statistics (DRECS), and showed that its performance was superior and more stable than the t-test in detecting CNVs. Through the application of DRECS on the HapMap population datasets with multi-matching probesets filtered, we identified biologically relevant SNPs in aberrant regions across populations with known association to physical traits, such as height, covered by the span of a single probe. This provided empirical confirmation of the existence of naturally occurring narrow CNVs as well as the sensitivity of the Affymetrix SNP array technology in detecting them. The MATLAB implementation of DRECS is available at http://ww2.cs.mu.oz.au/ approximately gwong/DRECS/index.html.
Comparative analysis of chloroplast genomes of the genus Citrus and its close relatives.
Liu, Xiaogang; Wu, Hongkun; Luo, Yan; Xi, Wanpeng; Zhou, Zhiqin
2017-01-01
The genus Citrus and its close relatives are economically and nutritionally important fruit trees. However, the huge controversy over the phylogeny of key wild species, as well as the genetic relationship between the cultivated species and their putative wild progenitors, remains unresolved. Comparative analyses of chloroplast (cp) genomes have been useful in resolving various phylogenetic issues. Thus far, the cp genomes of only two Citrus species have been sequenced. In this study, we sequenced six complete cp genomes, four belonging to the genus Citrus, and two belonging to the genera Fortunella and Poncirus, respectively. These newly sequenced genomes together with the two publicly available were used for comparative analyses of the genus Citrus and its close relatives. All eight cp genomes share similar basic structure, gene order and gene content. Phylogenetic analyses supported the monophyly of the three genera in the order Sapindales within the major clade Malvidae.
Defining objective clusters for rabies virus sequences using affinity propagation clustering
Fischer, Susanne; Freuling, Conrad M.; Pfaff, Florian; Bodenhofer, Ulrich; Höper, Dirk; Fischer, Mareike; Marston, Denise A.; Fooks, Anthony R.; Mettenleiter, Thomas C.; Conraths, Franz J.; Homeier-Bachmann, Timo
2018-01-01
Rabies is caused by lyssaviruses, and is one of the oldest known zoonoses. In recent years, more than 21,000 nucleotide sequences of rabies viruses (RABV), from the prototype species rabies lyssavirus, have been deposited in public databases. Subsequent phylogenetic analyses in combination with metadata suggest geographic distributions of RABV. However, these analyses somewhat experience technical difficulties in defining verifiable criteria for cluster allocations in phylogenetic trees inviting for a more rational approach. Therefore, we applied a relatively new mathematical clustering algorythm named ‘affinity propagation clustering’ (AP) to propose a standardized sub-species classification utilizing full-genome RABV sequences. Because AP has the advantage that it is computationally fast and works for any meaningful measure of similarity between data samples, it has previously been applied successfully in bioinformatics, for analysis of microarray and gene expression data, however, cluster analysis of sequences is still in its infancy. Existing (516) and original (46) full genome RABV sequences were used to demonstrate the application of AP for RABV clustering. On a global scale, AP proposed four clusters, i.e. New World cluster, Arctic/Arctic-like, Cosmopolitan, and Asian as previously assigned by phylogenetic studies. By combining AP with established phylogenetic analyses, it is possible to resolve phylogenetic relationships between verifiably determined clusters and sequences. This workflow will be useful in confirming cluster distributions in a uniform transparent manner, not only for RABV, but also for other comparative sequence analyses. PMID:29357361
Sequence Alignment to Predict Across Species Susceptibility ...
Conservation of a molecular target across species can be used as a line-of-evidence to predict the likelihood of chemical susceptibility. The web-based Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed to simplify, streamline, and quantitatively assess protein sequence/structural similarity across taxonomic groups as a means to predict relative intrinsic susceptibility. The intent of the tool is to allow for evaluation of any potential protein target, so it is amenable to variable degrees of protein characterization, depending on available information about the chemical/protein interaction and the molecular target itself. To allow for flexibility in the analysis, a layered strategy was adopted for the tool. The first level of the SeqAPASS analysis compares primary amino acid sequences to a query sequence, calculating a metric for sequence similarity (including detection of candidate orthologs), the second level evaluates sequence similarity within selected domains (e.g., ligand-binding domain, DNA binding domain), and the third level of analysis compares individual amino acid residue positions identified as being of importance for protein conformation and/or ligand binding upon chemical perturbation. Each level of the SeqAPASS analysis provides increasing evidence to apply toward rapid, screening-level assessments of probable cross species susceptibility. Such analyses can support prioritization of chemicals for further ev
Metagenomics and Bioinformatics in Microbial Ecology: Current Status and Beyond.
Hiraoka, Satoshi; Yang, Ching-Chia; Iwasaki, Wataru
2016-09-29
Metagenomic approaches are now commonly used in microbial ecology to study microbial communities in more detail, including many strains that cannot be cultivated in the laboratory. Bioinformatic analyses make it possible to mine huge metagenomic datasets and discover general patterns that govern microbial ecosystems. However, the findings of typical metagenomic and bioinformatic analyses still do not completely describe the ecology and evolution of microbes in their environments. Most analyses still depend on straightforward sequence similarity searches against reference databases. We herein review the current state of metagenomics and bioinformatics in microbial ecology and discuss future directions for the field. New techniques will allow us to go beyond routine analyses and broaden our knowledge of microbial ecosystems. We need to enrich reference databases, promote platforms that enable meta- or comprehensive analyses of diverse metagenomic datasets, devise methods that utilize long-read sequence information, and develop more powerful bioinformatic methods to analyze data from diverse perspectives.
Adhesive Proteins of Stalked and Acorn Barnacles Display Homology with Low Sequence Similarities
Jonker, Jaimie-Leigh; Abram, Florence; Pires, Elisabete; Varela Coelho, Ana; Grunwald, Ingo; Power, Anne Marie
2014-01-01
Barnacle adhesion underwater is an important phenomenon to understand for the prevention of biofouling and potential biotechnological innovations, yet so far, identifying what makes barnacle glue proteins ‘sticky’ has proved elusive. Examination of a broad range of species within the barnacles may be instructive to identify conserved adhesive domains. We add to extensive information from the acorn barnacles (order Sessilia) by providing the first protein analysis of a stalked barnacle adhesive, Lepas anatifera (order Lepadiformes). It was possible to separate the L. anatifera adhesive into at least 10 protein bands using SDS-PAGE. Intense bands were present at approximately 30, 70, 90 and 110 kilodaltons (kDa). Mass spectrometry for protein identification was followed by de novo sequencing which detected 52 peptides of 7–16 amino acids in length. None of the peptides matched published or unpublished transcriptome sequences, but some amino acid sequence similarity was apparent between L. anatifera and closely-related Dosima fascicularis. Antibodies against two acorn barnacle proteins (ab-cp-52k and ab-cp-68k) showed cross-reactivity in the adhesive glands of L. anatifera. We also analysed the similarity of adhesive proteins across several barnacle taxa, including Pollicipes pollicipes (a stalked barnacle in the order Scalpelliformes). Sequence alignment of published expressed sequence tags clearly indicated that P. pollicipes possesses homologues for the 19 kDa and 100 kDa proteins in acorn barnacles. Homology aside, sequence similarity in amino acid and gene sequences tended to decline as taxonomic distance increased, with minimum similarities of 18–26%, depending on the gene. The results indicate that some adhesive proteins (e.g. 100 kDa) are more conserved within barnacles than others (20 kDa). PMID:25295513
Adhesive proteins of stalked and acorn barnacles display homology with low sequence similarities.
Jonker, Jaimie-Leigh; Abram, Florence; Pires, Elisabete; Varela Coelho, Ana; Grunwald, Ingo; Power, Anne Marie
2014-01-01
Barnacle adhesion underwater is an important phenomenon to understand for the prevention of biofouling and potential biotechnological innovations, yet so far, identifying what makes barnacle glue proteins 'sticky' has proved elusive. Examination of a broad range of species within the barnacles may be instructive to identify conserved adhesive domains. We add to extensive information from the acorn barnacles (order Sessilia) by providing the first protein analysis of a stalked barnacle adhesive, Lepas anatifera (order Lepadiformes). It was possible to separate the L. anatifera adhesive into at least 10 protein bands using SDS-PAGE. Intense bands were present at approximately 30, 70, 90 and 110 kilodaltons (kDa). Mass spectrometry for protein identification was followed by de novo sequencing which detected 52 peptides of 7-16 amino acids in length. None of the peptides matched published or unpublished transcriptome sequences, but some amino acid sequence similarity was apparent between L. anatifera and closely-related Dosima fascicularis. Antibodies against two acorn barnacle proteins (ab-cp-52k and ab-cp-68k) showed cross-reactivity in the adhesive glands of L. anatifera. We also analysed the similarity of adhesive proteins across several barnacle taxa, including Pollicipes pollicipes (a stalked barnacle in the order Scalpelliformes). Sequence alignment of published expressed sequence tags clearly indicated that P. pollicipes possesses homologues for the 19 kDa and 100 kDa proteins in acorn barnacles. Homology aside, sequence similarity in amino acid and gene sequences tended to decline as taxonomic distance increased, with minimum similarities of 18-26%, depending on the gene. The results indicate that some adhesive proteins (e.g. 100 kDa) are more conserved within barnacles than others (20 kDa).
The Neandertal genome and ancient DNA authenticity
Green, Richard E; Briggs, Adrian W; Krause, Johannes; Prüfer, Kay; Burbano, Hernán A; Siebauer, Michael; Lachmann, Michael; Pääbo, Svante
2009-01-01
Recent advances in high-thoughput DNA sequencing have made genome-scale analyses of genomes of extinct organisms possible. With these new opportunities come new difficulties in assessing the authenticity of the DNA sequences retrieved. We discuss how these difficulties can be addressed, particularly with regard to analyses of the Neandertal genome. We argue that only direct assays of DNA sequence positions in which Neandertals differ from all contemporary humans can serve as a reliable means to estimate human contamination. Indirect measures, such as the extent of DNA fragmentation, nucleotide misincorporations, or comparison of derived allele frequencies in different fragment size classes, are unreliable. Fortunately, interim approaches based on mtDNA differences between Neandertals and current humans, detection of male contamination through Y chromosomal sequences, and repeated sequencing from the same fossil to detect autosomal contamination allow initial large-scale sequencing of Neandertal genomes. This will result in the discovery of fixed differences in the nuclear genome between Neandertals and current humans that can serve as future direct assays for contamination. For analyses of other fossil hominins, which may become possible in the future, we suggest a similar ‘boot-strap' approach in which interim approaches are applied until sufficient data for more definitive direct assays are acquired. PMID:19661919
An in-silico insight into the characteristics of β-propeller phytase.
Mathew, Akash; Verma, Anukriti; Gaur, Smriti
2014-06-01
Phytase is an enzyme that is found extensively in the plant kingdom and in some species of bacteria and fungi. This paper identifies and analyses the available full length sequences of β-propeller phytases (BPP). BPP was chosen due to its potential applicability in the field of aquaculture. The sequences were obtained from the Uniprot database and subject to various online bioinformatics tools to elucidate the physio-chemical characteristics, secondary structures and active site compositions of BPP. Protparam and SOPMA were used to analyse the physiochemical and secondary structure characteristics, while the Expasy online modelling tool and CASTp were used to model the 3-D structure and identify the active sites of the BPP sequences. The amino acid compositions of the four sequences were compared and composed in a graphical format to identify similarities and highlight the potentially important amino acids that form the active site of BPP. This study aims to analyse BPP and contribute to the clarification of the molecular mechanism involved in the enzyme activity of BPP and contribute in part to the possibility of constructing a synthetic version of BPP.
Culturing of female bladder bacteria reveals an interconnected urogenital microbiota.
Thomas-White, Krystal; Forster, Samuel C; Kumar, Nitin; Van Kuiken, Michelle; Putonti, Catherine; Stares, Mark D; Hilt, Evann E; Price, Travis K; Wolfe, Alan J; Lawley, Trevor D
2018-04-19
Metagenomic analyses have indicated that the female bladder harbors an indigenous microbiota. However, there are few cultured reference strains with sequenced genomes available for functional and experimental analyses. Here we isolate and genome-sequence 149 bacterial strains from catheterized urine of 77 women. This culture collection spans 78 species, representing approximately two thirds of the bacterial diversity within the sampled bladders, including Proteobacteria, Actinobacteria, and Firmicutes. Detailed genomic and functional comparison of the bladder microbiota to the gastrointestinal and vaginal microbiotas demonstrates similar vaginal and bladder microbiota, with functional capacities that are distinct from those observed in the gastrointestinal microbiota. Whole-genome phylogenetic analysis of bacterial strains isolated from the vagina and bladder in the same women identifies highly similar Escherichia coli, Streptococcus anginosus, Lactobacillus iners, and Lactobacillus crispatus, suggesting an interlinked female urogenital microbiota that is not only limited to pathogens but is also characteristic of health-associated commensals.
A filtering method to generate high quality short reads using illumina paired-end technology.
Eren, A Murat; Vineis, Joseph H; Morrison, Hilary G; Sogin, Mitchell L
2013-01-01
Consensus between independent reads improves the accuracy of genome and transcriptome analyses, however lack of consensus between very similar sequences in metagenomic studies can and often does represent natural variation of biological significance. The common use of machine-assigned quality scores on next generation platforms does not necessarily correlate with accuracy. Here, we describe using the overlap of paired-end, short sequence reads to identify error-prone reads in marker gene analyses and their contribution to spurious OTUs following clustering analysis using QIIME. Our approach can also reduce error in shotgun sequencing data generated from libraries with small, tightly constrained insert sizes. The open-source implementation of this algorithm in Python programming language with user instructions can be obtained from https://github.com/meren/illumina-utils.
Puli'uvea, Christopher; Khan, Subuhi; Chang, Wee-Leong; Valmonte, Gardette; Pearson, Michael N; Higgins, Colleen M
2017-02-01
We present the first complete genome of vanilla mosaic virus (VanMV). The VanMV genomic structure is consistent with that of a potyvirus, containing a single open reading frame (ORF) encoding a polyprotein of 3139 amino acids. Motif analyses indicate the polyprotein can be cleaved into the expected ten individual proteins; other recognised potyvirus motifs are also present. As expected, the VanMV genome shows high sequence similarity to the published Dasheen mosaic virus (DsMV) genome sequences; comparisons with DsMV continue to support VanMV as a vanilla infecting strain of DsMV. Phylogenetic analyses indicate that VanMV and DsMV share a common ancestor, with VanMV having the closest relationship with DsMV strains from the South Pacific.
Richert, Kathrin; Brambilla, Evelyne; Stackebrandt, Erko
2005-01-01
PCR primer sets were developed for the specific amplification and sequence analyses encoding the gyrase subunit B (gyrB) of members of the family Microbacteriaceae, class Actinobacteria. The family contains species highly related by 16S rRNA gene sequence analyses. In order to test if the gene sequence analysis of gyrB is appropriate to discriminate between closely related species, we evaluate the 16S rRNA gene phylogeny of its members. As the published universal primer set for gyrB failed to amplify the responding gene of the majority of the 80 type strains of the family, three new primer sets were identified that generated fragments with a composite sequence length of about 900 nt. However, the amplification of all three fragments was successful only in 25% of the 80 type strains. In this study, the substitution frequencies in genes encoding gyrase and 16S rDNA were compared for 10 strains of nine genera. The frequency of gyrB nucleotide substitution is significantly higher than that of the 16S rDNA, and no linear correlation exists between the similarities of both molecules among members of the Microbacteriaceae. The phylogenetic analyses using the gyrB sequences provide higher resolution than using 16S rDNA sequences and seem able to discriminate between closely related species.
Bifidobacterium aquikefiri sp. nov., isolated from water kefir.
Laureys, David; Cnockaert, Margo; De Vuyst, Luc; Vandamme, Peter
2016-03-01
A novel Bifidobacterium , strain LMG 28769 T , was isolated from a household water kefir fermentation process. Cells were Gram-stain-positive, non-motile, non-spore-forming, catalase-negative, oxidase-negative and facultatively anaerobic short rods. Analysis of its 16S rRNA gene sequence revealed Bifidobacterium crudilactis and Bifidobacterium psychraerophilum (97.4 and 97.1 % similarity towards the respective type strain sequences) as nearest phylogenetic neighbours. Its assignment to the genus Bifidobacterium was confirmed by the presence of fructose 6-phosphate phosphoketolase activity. Analysis of the hsp60 gene sequence revealed very low similarity with nucleotide sequences in the NCBI nucleotide database. The genotypic and phenotypic analyses allowed the differentiation of strain LMG 28769 T from all recognized Bifidobacterium species. Strain LMG 28769 T ( = CCUG 67145 T = R 54638 T ) therefore represents a novel species, for which the name Bifidobacterium aquikefiri sp. nov. is proposed.
Comparative analyses of putative toxin gene homologs from an Old World viper, Daboia russelii
Krishnan, Neeraja M.
2017-01-01
Availability of snake genome sequences has opened up exciting areas of research on comparative genomics and gene diversity. One of the challenges in studying snake genomes is the acquisition of biological material from live animals, especially from the venomous ones, making the process cumbersome and time-consuming. Here, we report comparative sequence analyses of putative toxin gene homologs from Russell’s viper (Daboia russelii) using whole-genome sequencing data obtained from shed skin. When compared with the major venom proteins in Russell’s viper studied previously, we found 45–100% sequence similarity between the venom proteins and their putative homologs in the skin. Additionally, comparative analyses of 20 putative toxin gene family homologs provided evidence of unique sequence motifs in nerve growth factor (NGF), platelet derived growth factor (PDGF), Kunitz/Bovine pancreatic trypsin inhibitor (Kunitz BPTI), cysteine-rich secretory proteins, antigen 5, andpathogenesis-related1 proteins (CAP) and cysteine-rich secretory protein (CRISP). In those derived proteins, we identified V11 and T35 in the NGF domain; F23 and A29 in the PDGF domain; N69, K2 and A5 in the CAP domain; and Q17 in the CRISP domain to be responsible for differences in the largest pockets across the protein domain structures in crotalines, viperines and elapids from the in silico structure-based analysis. Similarly, residues F10, Y11 and E20 appear to play an important role in the protein structures across the kunitz protein domain of viperids and elapids. Our study highlights the usefulness of shed skin in obtaining good quality high-molecular weight DNA for comparative genomic studies, and provides evidence towards the unique features and evolution of putative venom gene homologs in vipers. PMID:29230357
Parker, Jennifer K.; Havird, Justin C.
2012-01-01
Isolates of the plant pathogen Xylella fastidiosa are genetically very similar, but studies on their biological traits have indicated differences in virulence and infection symptomatology. Taxonomic analyses have identified several subspecies, and phylogenetic analyses of housekeeping genes have shown broad host-based genetic differences; however, results are still inconclusive for genetic differentiation of isolates within subspecies. This study employs multilocus sequence analysis of environmentally mediated genes (MLSA-E; genes influenced by environmental factors) to investigate X. fastidiosa relationships and differentiate isolates with low genetic variability. Potential environmentally mediated genes, including host colonization and survival genes related to infection establishment, were identified a priori. The ratio of the rate of nonsynonymous substitutions to the rate of synonymous substitutions (dN/dS) was calculated to select genes that may be under increased positive selection compared to previously studied housekeeping genes. Nine genes were sequenced from 54 X. fastidiosa isolates infecting different host plants across the United States. Results of maximum likelihood (ML) and Bayesian phylogenetic (BP) analyses are in agreement with known X. fastidiosa subspecies clades but show novel within-subspecies differentiation, including geographic differentiation, and provide additional information regarding host-based isolate variation and specificity. dN/dS ratios of environmentally mediated genes, though <1 due to high sequence similarity, are significantly greater than housekeeping gene dN/dS ratios and correlate with increased sequence variability. MLSA-E can more precisely resolve relationships between closely related bacterial strains with low genetic variability, such as X. fastidiosa isolates. Discovering the genetic relationships between X. fastidiosa isolates will provide new insights into the epidemiology of populations of X. fastidiosa, allowing improved disease management in economically important crops. PMID:22194287
Parker, Jennifer K; Havird, Justin C; De La Fuente, Leonardo
2012-03-01
Isolates of the plant pathogen Xylella fastidiosa are genetically very similar, but studies on their biological traits have indicated differences in virulence and infection symptomatology. Taxonomic analyses have identified several subspecies, and phylogenetic analyses of housekeeping genes have shown broad host-based genetic differences; however, results are still inconclusive for genetic differentiation of isolates within subspecies. This study employs multilocus sequence analysis of environmentally mediated genes (MLSA-E; genes influenced by environmental factors) to investigate X. fastidiosa relationships and differentiate isolates with low genetic variability. Potential environmentally mediated genes, including host colonization and survival genes related to infection establishment, were identified a priori. The ratio of the rate of nonsynonymous substitutions to the rate of synonymous substitutions (dN/dS) was calculated to select genes that may be under increased positive selection compared to previously studied housekeeping genes. Nine genes were sequenced from 54 X. fastidiosa isolates infecting different host plants across the United States. Results of maximum likelihood (ML) and Bayesian phylogenetic (BP) analyses are in agreement with known X. fastidiosa subspecies clades but show novel within-subspecies differentiation, including geographic differentiation, and provide additional information regarding host-based isolate variation and specificity. dN/dS ratios of environmentally mediated genes, though <1 due to high sequence similarity, are significantly greater than housekeeping gene dN/dS ratios and correlate with increased sequence variability. MLSA-E can more precisely resolve relationships between closely related bacterial strains with low genetic variability, such as X. fastidiosa isolates. Discovering the genetic relationships between X. fastidiosa isolates will provide new insights into the epidemiology of populations of X. fastidiosa, allowing improved disease management in economically important crops.
Bjørnsgaard Aas, Anders; Davey, Marie Louise; Kauserud, Håvard
2017-07-01
The formation of chimeric sequences can create significant methodological bias in PCR-based DNA metabarcoding analyses. During mixed-template amplification of barcoding regions, chimera formation is frequent and well documented. However, profiling of fungal communities typically uses the more variable rDNA region ITS. Due to a larger research community, tools for chimera detection have been developed mainly for the 16S/18S markers. However, these tools are widely applied to the ITS region without verification of their performance. We examined the rate of chimera formation during amplification and 454 sequencing of the ITS2 region from fungal mock communities of different complexities. We evaluated the chimera detecting ability of two common chimera-checking algorithms: perseus and uchime. Large proportions of the chimeras reported were false positives. No false negatives were found in the data set. Verified chimeras accounted for only 0.2% of the total ITS2 reads, which is considerably less than what is typically reported in 16S and 18S metabarcoding analyses. Verified chimeric 'parent sequences' had significantly higher per cent identity to one another than to random members of the mock communities. Community complexity increased the rate of chimera formation. GC content was higher around the verified chimeric break points, potentially facilitating chimera formation through base pair mismatching in the neighbouring regions of high similarity in the chimeric region. We conclude that the hypervariable nature of the ITS region seems to buffer the rate of chimera formation in comparison with other, less variable barcoding regions, due to shorter regions of high sequence similarity. © 2016 John Wiley & Sons Ltd.
Finding similar nucleotide sequences using network BLAST searches.
Ladunga, Istvan
2009-06-01
The Basic Local Alignment Search Tool (BLAST) is a keystone of bioinformatics due to its performance and user-friendliness. Beginner and intermediate users will learn how to design and submit blastn and Megablast searches on the Web pages at the National Center for Biotechnology Information. We map nucleic acid sequences to genomes, find identical or similar mRNA, expressed sequence tag, and noncoding RNA sequences, and run Megablast searches, which are much faster than blastn. Understanding results is assisted by taxonomy reports, genomic views, and multiple alignments. We interpret expected frequency thresholds, biological significance, and statistical significance. Weak hits provide no evidence, but hints for further analyses. We find genes that may code for homologous proteins by translated BLAST. We reduce false positives by filtering out low-complexity regions. Parsed BLAST results can be integrated into analysis pipelines. Links in the output connect to Entrez, PUBMED, structural, sequence, interaction, and expression databases. This facilitates integration with a wide spectrum of biological knowledge.
Two distinct DNA sequences recognized by transcription factors represent enthalpy and entropy optima
Yin, Yimeng; Das, Pratyush K; Jolma, Arttu; Zhu, Fangjie; Popov, Alexander; Xu, You; Nilsson, Lennart
2018-01-01
Most transcription factors (TFs) can bind to a population of sequences closely related to a single optimal site. However, some TFs can bind to two distinct sequences that represent two local optima in the Gibbs free energy of binding (ΔG). To determine the molecular mechanism behind this effect, we solved the structures of human HOXB13 and CDX2 bound to their two optimal DNA sequences, CAATAAA and TCGTAAA. Thermodynamic analyses by isothermal titration calorimetry revealed that both sites were bound with similar ΔG. However, the interaction with the CAA sequence was driven by change in enthalpy (ΔH), whereas the TCG site was bound with similar affinity due to smaller loss of entropy (ΔS). This thermodynamic mechanism that leads to at least two local optima likely affects many macromolecular interactions, as ΔG depends on two partially independent variables ΔH and ΔS according to the central equation of thermodynamics, ΔG = ΔH - TΔS. PMID:29638214
Computational analyses of mammalian lactate dehydrogenases: human, mouse, opossum and platypus LDHs.
Holmes, Roger S; Goldberg, Erwin
2009-10-01
Computational methods were used to predict the amino acid sequences and gene locations for mammalian lactate dehydrogenase (LDH) genes and proteins using genome sequence databanks. Human LDHA, LDHC and LDH6A genes were located in tandem on chromosome 11, while LDH6B and LDH6C genes were on chromosomes 15 and 12, respectively. Opossum LDHC and LDH6B genes were located in tandem with the opossum LDHA gene on chromosome 5 and contained 7 (LDHA and LDHC) or 8 (LDH6B) exons. An amino acid sequence prediction for the opossum LDH6B subunit gave an extended N-terminal sequence, similar to the human and mouse LDH6B sequences, which may support the export of this enzyme into mitochondria. The platypus genome contained at least 3 LDH genes encoding LDHA, LDHB and LDH6B subunits. Phylogenetic studies and sequence analyses indicated that LDHA, LDHB and LDH6B genes are present in all mammalian genomes examined, including a monotreme species (platypus), whereas the LDHC gene may have arisen more recently in marsupial mammals.
Computational analyses of mammalian lactate dehydrogenases: human, mouse, opossum and platypus LDHs
Holmes, Roger S; Goldberg, Erwin
2009-01-01
Computational methods were used to predict the amino acid sequences and gene locations for mammalian lactate dehydrogenase (LDH) genes and proteins using genome sequence databanks. Human LDHA, LDHC and LDH6A genes were located in tandem on chromosome 11, while LDH6B and LDH6C genes were on chromosomes 15 and 12, respectively. Opossum LDHC and LDH6B genes were located in tandem with the opossum LDHA gene on chromosome 5 and contained 7 (LDHA and LDHC) or 8 (LDH6B) exons. An amino acid sequence prediction for the opossum LDH6B subunit gave an extended N-terminal sequence, similar to the human and mouse LDH6B sequences, which may support the export of this enzyme into mitochondria. The platypus genome contained at least 3 LDH genes encoding LDHA, LDHB and LDH6B subunits. Phylogenetic studies and sequence analyses indicated that LDHA, LDHB and LDH6B genes are present in all mammalian genomes examined, including a monotreme species (platypus), whereas the LDHC gene may have arisen more recently in marsupial mammals. PMID:19679512
kWIP: The k-mer weighted inner product, a de novo estimator of genetic similarity.
Murray, Kevin D; Webers, Christfried; Ong, Cheng Soon; Borevitz, Justin; Warthmann, Norman
2017-09-01
Modern genomics techniques generate overwhelming quantities of data. Extracting population genetic variation demands computationally efficient methods to determine genetic relatedness between individuals (or "samples") in an unbiased manner, preferably de novo. Rapid estimation of genetic relatedness directly from sequencing data has the potential to overcome reference genome bias, and to verify that individuals belong to the correct genetic lineage before conclusions are drawn using mislabelled, or misidentified samples. We present the k-mer Weighted Inner Product (kWIP), an assembly-, and alignment-free estimator of genetic similarity. kWIP combines a probabilistic data structure with a novel metric, the weighted inner product (WIP), to efficiently calculate pairwise similarity between sequencing runs from their k-mer counts. It produces a distance matrix, which can then be further analysed and visualised. Our method does not require prior knowledge of the underlying genomes and applications include establishing sample identity and detecting mix-up, non-obvious genomic variation, and population structure. We show that kWIP can reconstruct the true relatedness between samples from simulated populations. By re-analysing several published datasets we show that our results are consistent with marker-based analyses. kWIP is written in C++, licensed under the GNU GPL, and is available from https://github.com/kdmurray91/kwip.
Secondary structural analyses of ITS1 in Paramecium.
Hoshina, Ryo
2010-01-01
The nuclear ribosomal RNA gene operon is interrupted by internal transcribed spacer (ITS) 1 and ITS2. Although the secondary structure of ITS2 has been widely investigated, less is known about ITS1 and its structure. In this study, the secondary structure of ITS1 sequences for Paramecium and other ciliates was predicted. Each Paramecium ITS1 forms an open loop with three helices, A through C. Helix B was highly conserved among Paramecium, and similar helices were found in other ciliates. A phylogenetic analysis using the ITS1 sequences showed high-resolution, implying that ITS1 is a good tool for species-level analyses.
Pooling across cells to normalize single-cell RNA sequencing data with many zero counts.
Lun, Aaron T L; Bach, Karsten; Marioni, John C
2016-04-27
Normalization of single-cell RNA sequencing data is necessary to eliminate cell-specific biases prior to downstream analyses. However, this is not straightforward for noisy single-cell data where many counts are zero. We present a novel approach where expression values are summed across pools of cells, and the summed values are used for normalization. Pool-based size factors are then deconvolved to yield cell-based factors. Our deconvolution approach outperforms existing methods for accurate normalization of cell-specific biases in simulated data. Similar behavior is observed in real data, where deconvolution improves the relevance of results of downstream analyses.
Mashiyama, Susan T.; Koupparis, Kyriacos; Caffrey, Conor R.; McKerrow, James H.; Babbitt, Patricia C.
2012-01-01
We performed a genome-level computational study of sequence and structure similarity, the latter using crystal structures and models, of the proteases of Homo sapiens and the human parasite Trypanosoma brucei. Using sequence and structure similarity networks to summarize the results, we constructed global views that show visually the relative abundance and variety of proteases in the degradome landscapes of these two species, and provide insights into evolutionary relationships between proteases. The results also indicate how broadly these sequence sets are covered by three-dimensional structures. These views facilitate cross-species comparisons and offer clues for drug design from knowledge about the sequences and structures of potential drug targets and their homologs. Two protease groups (“M32” and “C51”) that are very different in sequence from human proteases are examined in structural detail, illustrating the application of this global approach in mining new pathogen genomes for potential drug targets. Based on our analyses, a human ACE2 inhibitor was selected for experimental testing on one of these parasite proteases, TbM32, and was shown to inhibit it. These sequence and structure data, along with interactive versions of the protein similarity networks generated in this study, are available at http://babbittlab.ucsf.edu/resources.html. PMID:23236535
Amplification and chromosomal dispersion of human endogenous retroviral sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steele, P.E.; Martin, M.A.; Rabson, A.B.
1986-09-01
Endogenous retroviral sequences have undergone amplification events involving both viral and flanking cellular sequences. The authors cloned members of an amplified family of full-length endogenous retroviral sequences. Genomic blotting, employing a flanking cellular DNA probe derived from a member of this family, revealed a similar array of reactive bands in both humans and chimpanzees, indicating that an amplification event involving retroviral and associated cellular DNA sequences occurred before the evolutionary separation of these two primates. Southern analyses of restricted somatic cell hybrid DNA preparations suggested that endogenous retroviral segments are widely dispersed in the human genome and that amplification andmore » dispersion events may be linked.« less
NASA Astrophysics Data System (ADS)
Wüthrich, Lorenz; Bliedtner, Marcel; Kathrin Schäfer, Imke; Zech, Jana; Shajari, Fatemeh; Gaar, Dorian; Preusser, Frank; Salazar, Gary; Szidat, Sönke; Zech, Roland
2017-12-01
We present the results of leaf wax analyses (long-chain n-alkanes) from the 6.8 m deep loess sequence of Möhlin, Switzerland, spanning the last ˜ 70 kyr. Leaf waxes are well preserved and occur in sufficient amounts only down to 0.4 m and below 1.8 m depth, so no paleoenvironmental reconstructions can be done for marine isotope stage (MIS) 2. Compound-specific δ2Hwax analyses yielded similar values for late MIS 3 compared to the uppermost samples, indicating that various effects (e.g., more negative values due to lower temperatures, more positive values due to an enriched moisture source) cancel each other out. A pronounced ˜ 30 ‰ shift towards more negative values probably reflects more humid conditions before ˜ 32 ka. Radiocarbon dating of the n-alkanes corroborates the stratigraphic integrity of leaf waxes and their potential for dating loess-paleosol sequences (LPS) back to ˜ 30 ka.
Sequencing, Analysis, and Annotation of Expressed Sequence Tags for Camelus dromedarius
Al-Swailem, Abdulaziz M.; Shehata, Maher M.; Abu-Duhier, Faisel M.; Al-Yamani, Essam J.; Al-Busadah, Khalid A.; Al-Arawi, Mohammed S.; Al-Khider, Ali Y.; Al-Muhaimeed, Abdullah N.; Al-Qahtani, Fahad H.; Manee, Manee M.; Al-Shomrani, Badr M.; Al-Qhtani, Saad M.; Al-Harthi, Amer S.; Akdemir, Kadir C.; Otu, Hasan H.
2010-01-01
Despite its economical, cultural, and biological importance, there has not been a large scale sequencing project to date for Camelus dromedarius. With the goal of sequencing complete DNA of the organism, we first established and sequenced camel EST libraries, generating 70,272 reads. Following trimming, chimera check, repeat masking, cluster and assembly, we obtained 23,602 putative gene sequences, out of which over 4,500 potentially novel or fast evolving gene sequences do not carry any homology to other available genomes. Functional annotation of sequences with similarities in nucleotide and protein databases has been obtained using Gene Ontology classification. Comparison to available full length cDNA sequences and Open Reading Frame (ORF) analysis of camel sequences that exhibit homology to known genes show more than 80% of the contigs with an ORF>300 bp and ∼40% hits extending to the start codons of full length cDNAs suggesting successful characterization of camel genes. Similarity analyses are done separately for different organisms including human, mouse, bovine, and rat. Accompanying web portal, CAGBASE (http://camel.kacst.edu.sa/), hosts a relational database containing annotated EST sequences and analysis tools with possibility to add sequences from public domain. We anticipate our results to provide a home base for genomic studies of camel and other comparative studies enabling a starting point for whole genome sequencing of the organism. PMID:20502665
Analysis of Ribosome Inactivating Protein (RIP): A Bioinformatics Approach
NASA Astrophysics Data System (ADS)
Jothi, G. Edward Gnana; Majilla, G. Sahaya Jose; Subhashini, D.; Deivasigamani, B.
2012-10-01
In spite of the medical advances in recent years, the world is in need of different sources to encounter certain health issues.Ribosome Inactivating Proteins (RIPs) were found to be one among them. In order to get easy access about RIPs, there is a need to analyse RIPs towards constructing a database on RIPs. Also, multiple sequence alignment was done towards screening for homologues of significant RIPs from rare sources against RIPs from easily available sources in terms of similarity. Protein sequences were retrieved from SWISS-PROT and are further analysed using pair wise and multiple sequence alignment.Analysis shows that, 151 RIPs have been characterized to date. Amongst them, there are 87 type I, 37 type II, 1 type III and 25 unknown RIPs. The sequence length information of various RIPs about the availability of full or partial sequence was also found. The multiple sequence alignment of 37 type I RIP using the online server Multalin, indicates the presence of 20 conserved residues. Pairwise alignment and multiple sequence alignment of certain selected RIPs in two groups namely Group I and Group II were carried out and the consensus level was found to be 98%, 98% and 90% respectively.
The Maxillary Palp of Aedes aegypti, a Model of Multisensory Integration
2014-01-01
organization is similar to the maxillary palps of Drosophila melanogaster (de Bruyne et al., 1999; Stocker, 1994). The microtrichia are distributed...and sample quality was determined at 260 nm/280 nm. For Next-Generation Sequencing , RNA samples were sent to the Genomic Services Lab at Hudson Alpha... the Genomic Services Lab at Hudson Alpha Institute for Biotechnology for Illumina sequencing and data analyses. This work was sup- ported in part by a
Cis-acting elements in the promoter region of the human aldolase C gene.
Buono, P; de Conciliis, L; Olivetta, E; Izzo, P; Salvatore, F
1993-08-16
We investigated the cis-acting sequences involved in the expression of the human aldolase C gene by transient transfections into human neuroblastoma cells (SKNBE). We demonstrate that 420 bp of the 5'-flanking DNA direct at high efficiency the transcription of the CAT reporter gene. A deletion between -420 bp and -164 bp causes a 60% decrease of CAT activity. Gel shift and DNase I footprinting analyses revealed four protected elements: A, B, C and D. Competition analyses indicate that Sp1 or factors sharing a similar sequence specificity bind to elements A and B, but not to elements C and D. Sequence analysis shows a half palindromic ERE motif (GGTCA), in elements B and D. Region D binds a transactivating factor which appears also essential to stabilize the initiation complex.
Kaster, Krista M; Bonaunet, Kristin; Berland, Harald; Kjeilen-Eilertsen, Grethe; Brakstad, Odd Gunnar
2009-11-01
Recent studies have indicated that oil reservoirs harbour diverse microbial communities. Culture-dependent and culture-independent methods were used to evaluate the microbial diversity in produced water samples of the Ekofisk oil field, a high temperature, and fractured chalk reservoir in the North Sea. DGGE analyses of 16S rRNA gene fragments were used to assess the microbial diversity of both archaeal and bacterial communities in produced water samples and enrichment cultures from 4 different wells (B-08, X-08, X-18 and X-25). Low diversity communities were found when 16S rDNA libraries of bacterial and archaeal assemblages were generated from total community DNA obtained from produced water samples and enrichment cultures. Sequence analysis of the clones indicated close matches to microbes associated with high-temperature oil reservoirs or other similar environments. Sequences were found to be similar to members of the genera Thermotoga, Caminicella, Thermoanaerobacter, Archaeoglobus, Thermococcus, and Methanobulbus. Enrichment cultures obtained from the produced water samples were dominated by sheathed rods. Sequence analyses of the cultures indicated predominance of the genera Petrotoga, Arcobacter, Archaeoglobus and Thermococcus. The communities of both produced water and enrichment cultures appeared to be dominated by thermophilic fermenters capable of reducing sulphur compounds. These results suggest that the biochemical processes in the Ekofisk chalk reservoir are similar to those observed in high-temperature sandstone reservoirs.
Assessing the diversity of AM fungi in arid gypsophilous plant communities.
Alguacil, M M; Roldán, A; Torres, M P
2009-10-01
In the present study, we used PCR-Single-Stranded Conformation Polymorphism (SSCP) techniques to analyse arbuscular mycorrhizal fungi (AMF) communities in four sites within a 10 km(2) gypsum area in Southern Spain. Four common plant species from these ecosystems were selected. The AM fungal small-subunit (SSU) rRNA genes were subjected to PCR, cloning, SSCP analysis, sequencing and phylogenetic analyses. A total of 1443 SSU rRNA sequences were analysed, for 21 AM fungal types: 19 belonged to the genus Glomus, 1 to the genus Diversispora and 1 to the Scutellospora. Four sequence groups were identified, which showed high similarity to sequences of known glomalean species or isolates: Glo G18 to Glomus constrictum, Glo G1 to Glomus intraradices, Glo G16 to Glomus clarum, Scut to Scutellospora dipurpurescens and Div to one new genus in the family Diversisporaceae identified recently as Otospora bareai. There were three sequence groups that received strong support in the phylogenetic analysis, and did not seem to be related to any sequences of AM fungi in culture or previously found in the database; thus, they could be novel taxa within the genus Glomus: Glo G4, Glo G2 and Glo G14. We have detected the presence of both generalist and potential specialist AMF in gypsum ecosystems. The AMF communities were different in the plant studied suggesting some degree of preference in the interactions between these symbionts.
Analysis of whole genome sequencing for the Escherichia coli O157:H7 typing phages.
Cowley, Lauren A; Beckett, Stephen J; Chase-Topping, Margo; Perry, Neil; Dallman, Tim J; Gally, David L; Jenkins, Claire
2015-04-08
Shiga toxin producing Escherichia coli O157 can cause severe bloody diarrhea and haemolytic uraemic syndrome. Phage typing of E. coli O157 facilitates public health surveillance and outbreak investigations, certain phage types are more likely to occupy specific niches and are associated with specific age groups and disease severity. The aim of this study was to analyse the genome sequences of 16 (fourteen T4 and two T7) E. coli O157 typing phages and to determine the genes responsible for the subtle differences in phage type profiles. The typing phages were sequenced using paired-end Illumina sequencing at The Genome Analysis Centre and the Animal Health and Veterinary Laboratories Agency and bioinformatics programs including Velvet, Brig and Easyfig were used to analyse them. A two-way Euclidian cluster analysis highlighted the associations between groups of phage types and typing phages. The analysis showed that the T7 typing phages (9 and 10) differed by only three genes and that the T4 typing phages formed three distinct groups of similar genomic sequences: Group 1 (1, 8, 11, 12 and 15, 16), Group 2 (3, 6, 7 and 13) and Group 3 (2, 4, 5 and 14). The E. coli O157 phage typing scheme exhibited a significantly modular network linked to the genetic similarity of each group showing that these groups are specialised to infect a subset of phage types. Sequencing the typing phage has enabled us to identify the variable genes within each group and to determine how this corresponds to changes in phage type.
Genome-wide signatures of convergent evolution in echolocating mammals
Parker, Joe; Tsagkogeorga, Georgia; Cotton, James A.; Liu, Yuan; Provero, Paolo; Stupka, Elia; Rossiter, Stephen J.
2013-01-01
Evolution is typically thought to proceed through divergence of genes, proteins, and ultimately phenotypes1-3. However, similar traits might also evolve convergently in unrelated taxa due to similar selection pressures4,5. Adaptive phenotypic convergence is widespread in nature, and recent results from a handful of genes have suggested that this phenomenon is powerful enough to also drive recurrent evolution at the sequence level6-9. Where homoplasious substitutions do occur these have long been considered the result of neutral processes. However, recent studies have demonstrated that adaptive convergent sequence evolution can be detected in vertebrates using statistical methods that model parallel evolution9,10 although the extent to which sequence convergence between genera occurs across genomes is unknown. Here we analyse genomic sequence data in mammals that have independently evolved echolocation and show for the first time that convergence is not a rare process restricted to a handful of loci but is instead widespread, continuously distributed and commonly driven by natural selection acting on a small number of sites per locus. Systematic analyses of convergent sequence evolution in 805,053 amino acids within 2,326 orthologous coding gene sequences compared across 22 mammals (including four new bat genomes) revealed signatures consistent with convergence in nearly 200 loci. Strong and significant support for convergence among bats and the dolphin was seen in numerous genes linked to hearing or deafness, consistent with an involvement in echolocation. Surprisingly we also found convergence in many genes linked to vision: the convergent signal of many sensory genes was robustly correlated with the strength of natural selection. This first attempt to detect genome-wide convergent sequence evolution across divergent taxa reveals the phenomenon to be much more pervasive than previously recognised. PMID:24005325
Asrat, Asfawossen; Bahain, Jean-Jacques; Chapon, Cécile; Douville, Eric; Fragnol, Carole; Hernandez, Marion; Hovers, Erella; Leplongeon, Alice; Martin, Loïc; Pleurdeau, David; Pearson, Osbjorn; Puaud, Simon; Assefa, Zelalem
2017-01-01
Goda Buticha is a cave site near Dire Dawa in southeastern Ethiopia that contains an archaeological sequence sampling the late Pleistocene and Holocene of the region. The sedimentary sequence displays complex cultural, chronological and sedimentological histories that seem incongruent with one another. A first set of radiocarbon ages suggested a long sedimentological gap from the end of Marine Isotopic Stage (MIS) 3 to the mid-Holocene. Macroscopic observations suggest that the main sedimentological change does not coincide with the chronostratigraphic hiatus. The cultural sequence shows technological continuity with a late persistence of artifacts that are usually attributed to the Middle Stone Age into the younger parts of the stratigraphic sequence, yet become increasingly associated with lithic artifacts typically related to the Later Stone Age. While not a unique case, this combination of features is unusual in the Horn of Africa. In order to evaluate the possible implications of these observations, sedimentological analyses combined with optically stimulated luminescence (OSL) were conducted. The OSL data now extend the radiocarbon chronology up to 63 ± 7 ka; they also confirm the existence of the chronological gap between 24.8 ± 2.6 ka and 7.5 ± 0.3 ka. The sedimentological analyses suggest that the origin and mode of deposition were largely similar throughout the whole sequence, although the anthropic and faunal activities increased in the younger levels. Regional climatic records are used to support the sedimentological observations and interpretations. We discuss the implications of the sedimentological and dating analyses for understanding cultural processes in the region. PMID:28125597
Tribolo, Chantal; Asrat, Asfawossen; Bahain, Jean-Jacques; Chapon, Cécile; Douville, Eric; Fragnol, Carole; Hernandez, Marion; Hovers, Erella; Leplongeon, Alice; Martin, Loïc; Pleurdeau, David; Pearson, Osbjorn; Puaud, Simon; Assefa, Zelalem
2017-01-01
Goda Buticha is a cave site near Dire Dawa in southeastern Ethiopia that contains an archaeological sequence sampling the late Pleistocene and Holocene of the region. The sedimentary sequence displays complex cultural, chronological and sedimentological histories that seem incongruent with one another. A first set of radiocarbon ages suggested a long sedimentological gap from the end of Marine Isotopic Stage (MIS) 3 to the mid-Holocene. Macroscopic observations suggest that the main sedimentological change does not coincide with the chronostratigraphic hiatus. The cultural sequence shows technological continuity with a late persistence of artifacts that are usually attributed to the Middle Stone Age into the younger parts of the stratigraphic sequence, yet become increasingly associated with lithic artifacts typically related to the Later Stone Age. While not a unique case, this combination of features is unusual in the Horn of Africa. In order to evaluate the possible implications of these observations, sedimentological analyses combined with optically stimulated luminescence (OSL) were conducted. The OSL data now extend the radiocarbon chronology up to 63 ± 7 ka; they also confirm the existence of the chronological gap between 24.8 ± 2.6 ka and 7.5 ± 0.3 ka. The sedimentological analyses suggest that the origin and mode of deposition were largely similar throughout the whole sequence, although the anthropic and faunal activities increased in the younger levels. Regional climatic records are used to support the sedimentological observations and interpretations. We discuss the implications of the sedimentological and dating analyses for understanding cultural processes in the region.
BM-Map: Bayesian Mapping of Multireads for Next-Generation Sequencing Data
Ji, Yuan; Xu, Yanxun; Zhang, Qiong; Tsui, Kam-Wah; Yuan, Yuan; Norris, Clift; Liang, Shoudan; Liang, Han
2011-01-01
Summary Next-generation sequencing (NGS) technology generates millions of short reads, which provide valuable information for various aspects of cellular activities and biological functions. A key step in NGS applications (e.g., RNA-Seq) is to map short reads to correct genomic locations within the source genome. While most reads are mapped to a unique location, a significant proportion of reads align to multiple genomic locations with equal or similar numbers of mismatches; these are called multireads. The ambiguity in mapping the multireads may lead to bias in downstream analyses. Currently, most practitioners discard the multireads in their analysis, resulting in a loss of valuable information, especially for the genes with similar sequences. To refine the read mapping, we develop a Bayesian model that computes the posterior probability of mapping a multiread to each competing location. The probabilities are used for downstream analyses, such as the quantification of gene expression. We show through simulation studies and RNA-Seq analysis of real life data that the Bayesian method yields better mapping than the current leading methods. We provide a C++ program for downloading that is being packaged into a user-friendly software. PMID:21517792
ESTs from developed embryos, Chrysoperla rufilabris (Neuroptera: Chrysopidae)
USDA-ARS?s Scientific Manuscript database
Chrysoperla rufilabris (Burmeister) (Neuroptera: Chrysopidae), a green lacewing, is a generalist predator commercially sold as a biological control product. Very few molecular genetic analyses of this or similar organisms have been performed. To establish a baseline of expressed sequence data for th...
Evaluation of atpB nucleotide sequences for phylogenetic studies of ferns and other pteridophytes.
Wolf, P
1997-10-01
Inferring basal relationships among vascular plants poses a major challenge to plant systematists. The divergence events that describe these relationships occurred long ago and considerable homoplasy has since accrued for both molecular and morphological characters. A potential solution is to examine phylogenetic analyses from multiple data sets. Here I present a new source of phylogenetic data for ferns and other pteridophytes. I sequenced the chloroplast gene atpB from 23 pteridophyte taxa and used maximum parsimony to infer relationships. A 588-bp region of the gene appeared to contain a statistically significant amount of phylogenetic signal and the resulting trees were largely congruent with similar analyses of nucleotide sequences from rbcL. However, a combined analysis of atpB plus rbcL produced a better resolved tree than did either data set alone. In the shortest trees, leptosporangiate ferns formed a monophyletic group. Also, I detected a well-supported clade of Psilotaceae (Psilotum and Tmesipteris) plus Ophioglossaceae (Ophioglossum and Botrychium). The demonstrated utility of atpB suggests that sequences from this gene should play a role in phylogenetic analyses that incorporate data from chloroplast genes, nuclear genes, morphology, and fossil data.
GobyWeb: Simplified Management and Analysis of Gene Expression and DNA Methylation Sequencing Data
Dorff, Kevin C.; Chambwe, Nyasha; Zeno, Zachary; Simi, Manuele; Shaknovich, Rita; Campagne, Fabien
2013-01-01
We present GobyWeb, a web-based system that facilitates the management and analysis of high-throughput sequencing (HTS) projects. The software provides integrated support for a broad set of HTS analyses and offers a simple plugin extension mechanism. Analyses currently supported include quantification of gene expression for messenger and small RNA sequencing, estimation of DNA methylation (i.e., reduced bisulfite sequencing and whole genome methyl-seq), or the detection of pathogens in sequenced data. In contrast to previous analysis pipelines developed for analysis of HTS data, GobyWeb requires significantly less storage space, runs analyses efficiently on a parallel grid, scales gracefully to process tens or hundreds of multi-gigabyte samples, yet can be used effectively by researchers who are comfortable using a web browser. We conducted performance evaluations of the software and found it to either outperform or have similar performance to analysis programs developed for specialized analyses of HTS data. We found that most biologists who took a one-hour GobyWeb training session were readily able to analyze RNA-Seq data with state of the art analysis tools. GobyWeb can be obtained at http://gobyweb.campagnelab.org and is freely available for non-commercial use. GobyWeb plugins are distributed in source code and licensed under the open source LGPL3 license to facilitate code inspection, reuse and independent extensions http://github.com/CampagneLaboratory/gobyweb2-plugins. PMID:23936070
Bohmann, Kristine; Monadjem, Ara; Lehmkuhl Noer, Christina; Rasmussen, Morten; Zeale, Matt R. K.; Clare, Elizabeth; Jones, Gareth; Willerslev, Eske; Gilbert, M. Thomas P.
2011-01-01
Given the diversity of prey consumed by insectivorous bats, it is difficult to discern the composition of their diet using morphological or conventional PCR-based analyses of their faeces. We demonstrate the use of a powerful alternate tool, the use of the Roche FLX sequencing platform to deep-sequence uniquely 5′ tagged insect-generic barcode cytochrome c oxidase I (COI) fragments, that were PCR amplified from faecal pellets of two free-tailed bat species Chaerephon pumilus and Mops condylurus (family: Molossidae). Although the analyses were challenged by the paucity of southern African insect COI sequences in the GenBank and BOLD databases, similarity to existing collections allowed the preliminary identification of 25 prey families from six orders of insects within the diet of C. pumilus, and 24 families from seven orders within the diet of M. condylurus. Insects identified to families within the orders Lepidoptera and Diptera were widely present among the faecal samples analysed. The two families that were observed most frequently were Noctuidae and Nymphalidae (Lepidoptera). Species-level analysis of the data was accomplished using novel bioinformatics techniques for the identification of molecular operational taxonomic units (MOTU). Based on these analyses, our data provide little evidence of resource partitioning between sympatric M. condylurus and C. pumilus in the Simunye region of Swaziland at the time of year when the samples were collected, although as more complete databases against which to compare the sequences are generated this may have to be re-evaluated. PMID:21731749
Evans, L H; Cloyd, M W
1985-01-01
A group of mink cell focus-forming (MCF) viruses was derived by inoculation of NFS/N mice with Moloney murine leukemia virus (Mo-MuLV 1387) and was compared to a similarly derived group of MCF viruses from mice inoculated with Friend MuLV (Fr-MuLV 57). Antigenic analyses using monoclonal antibodies specific for MCF virus and xenotropic MuLV envelope proteins and genomic structural analyses by RNase T1-resistant oligonucleotide finger-printing indicated that the Moloney and Friend MCF viruses arose by recombination of the respective ecotropic MuLVs with different endogenous retrovirus sequences of NFS mice.
Wheeler, David
2007-01-01
GenBank(R) is a comprehensive database of publicly available DNA sequences for more than 205,000 named organisms and for more than 60,000 within the embryophyta, obtained through submissions from individual laboratories and batch submissions from large-scale sequencing projects. Daily data exchange with the European Molecular Biology Laboratory (EMBL) in Europe and the DNA Data Bank of Japan ensures worldwide coverage. GenBank is accessible through the National Center for Biotechnology Information (NCBI) retrieval system, Entrez, which integrates data from the major DNA and protein sequence databases with taxonomy, genome, mapping, protein structure, and domain information and the biomedical journal literature through PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available through FTP. GenBank usage scenarios ranging from local analyses of the data available through FTP to online analyses supported by the NCBI Web-based tools are discussed. To access GenBank and its related retrieval and analysis services, go to the NCBI Homepage at http://www.ncbi.nlm.nih.gov.
A conserved segmental duplication within ELA.
Brinkmeyer-Langford, C L; Murphy, W J; Childers, C P; Skow, L C
2010-12-01
The assembled genomic sequence of the horse major histocompatibility complex (MHC) (equine lymphocyte antigen, ELA) is very similar to the homologous human HLA, with the notable exception of a large segmental duplication at the boundary of ELA class I and class III that is absent in HLA. The segmental duplication consists of a ∼ 710 kb region of at least 11 repeated blocks: 10 blocks each contain an MHC class I-like sequence and the helicase domain portion of a BAT1-like sequence, and the remaining unit contains the full-length BAT1 gene. Similar genomic features were found in other Perissodactyls, indicating an ancient origin, which is consistent with phylogenetic analyses. Reverse-transcriptase PCR (RT-PCR) of mRNA from peripheral white blood cells of healthy and chronically or acutely infected horses detected transcription from predicted open reading frames in several of the duplicated blocks. This duplication is not present in the sequenced MHCs of most other mammals, although a similar feature at the same relative position is present in the feline MHC (FLA). Striking sequence conservation throughout Perissodactyl evolution is consistent with a functional role for at least some of the genes included within this segmental duplication. © 2010 The Authors, Journal compilation © 2010 Stichting International Foundation for Animal Genetics.
Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere.
Mehnaz, Samina; Weselowski, Brian; Lazarovits, George
2007-03-01
A free-living diazotrophic strain, DS2(T), was isolated from corn rhizosphere. Polyphasic taxonomy was performed including morphological characterization, Biolog analysis, and 16S rRNA, cpn60 and nifH gene sequence analyses. 16S rRNA gene sequence analysis indicated that strain DS2(T) was closely related to the genus Azospirillum (96 % similarity). Chemotaxonomic characteristics (DNA G+C content 67.9 mol%; Q-10 quinone system; major fatty acid 18 : 1omega7c) were also similar to those of the genus Azospirillum. In all the analyses, including phenotypic characterization using Biolog analysis and comparison of cellular fatty acids, this isolate was found to be different from the closely related species Azospirillum lipoferum, Azospirillum oryzae and Azospirillum brasilense. On the basis of these results, a novel species is proposed for this nitrogen-fixing strain. The name Azospirillum canadense sp. nov. is suggested with the type strain DS2(T) (=NCCB 100108(T)=LMG 23617(T)).
Yubuki, Naoji; Leander, Brian S; Silberman, Jeffrey D
2010-04-01
A novel free free-living phagotrophic flagellate, Rictus lutensis gen. et sp. nov., with two heterodynamic flagella, a permanent cytostome and a cytopharynx was isolated from muddy, low oxygen coastal sediments in Cape Cod, MA, USA. We cultivated and characterized this flagellate with transmission electron microscopy, scanning electron microscopy and molecular phylogenetic analyses inferred from small subunit (SSU) rDNA sequences. These data demonstrated that this organism has the key ultrastructural characters of the Bicosoecida, including similar transitional zones and a similar overall flagellar apparatus consisting of an x fiber and an L-shape microtubular root 2 involved in food capture. Although the molecular phylogenetic analyses were concordant with the ultrastructural data in placing R. lutensis with the bicosoecid clade, the internal position of this relatively divergent sequence within the clade was not resolved. Therefore, we interpret R. lutensis gen. et sp. nov. as a novel bicosoecid incertae sedis. Copyright 2009 Elsevier GmbH. All rights reserved.
Domier, L L; Latorre, I J; Steinlage, T A; McCoppin, N; Hartman, G L
2003-10-01
The variability of North American and Asian strains and isolates of Soybean mosaic virus was investigated. First, polymerase chain reaction (PCR) products representing the coat protein (CP)-coding regions of 38 SMVs were analyzed for restriction fragment length polymorphisms (RFLP). Second, the nucleotide and predicted amino acid sequence variability of the P1-coding region of 18 SMVs and the helper component/protease (HC/Pro) and CP-coding regions of 25 SMVs were assessed. The CP nucleotide and predicted amino acid sequences were the most similar and predicted phylogenetic relationships similar to those obtained from RFLP analysis. Neither RFLP nor sequence analyses of the CP-coding regions grouped the SMVs by geographical origin. The P1 and HC/Pro sequences were more variable and separated the North American and Asian SMV isolates into two groups similar to previously reported differences in pathogenic diversity of the two sets of SMV isolates. The P1 region was the most informative of the three regions analyzed. To assess the biological relevance of the sequence differences in the HC/Pro and CP coding regions, the transmissibility of 14 SMV isolates by Aphis glycines was tested. All field isolates of SMV were transmitted efficiently by A. glycines, but the laboratory isolates analyzed were transmitted poorly. The amino acid sequences from most, but not all, of the poorly transmitted isolates contained mutations in the aphid transmission-associated DAG and/or KLSC amino acid sequence motifs of CP and HC/Pro, respectively.
Genomic and molecular analysis of phage CMP1 from Clavibacter michiganensis subspecies michiganensis
Wittmann, Johannes; Gartemann, Karl-Heinz; Eichenlaub, Rudolf
2011-01-01
Bacteriophage CMP1 is a member of the Siphoviridae family that infects specifically the plant-pathogen Clavibacter michiganensis subsp. michiganensis. The linear double- stranded DNA is terminally redundant and not circularly permuted. The complete nucleotide sequence of the bacteriophage CMP1 genome consists of 58,652 bp including the terminal redundant ends of 791 bp. The G+C content of the phage (57%) is significantly lower than that of its host (72.66%). 74 potential open reading frames were identified and annotated by different bioinformatic tools. Two large clusters which encode the early and the late functions could be identified which are divergently transcribed. There are only a few hypothetical gene products with conserved domains and significant similarity to sequences from the databases. Functional analyses confirmed the activity of four gene products, an endonuclease, an exonuclease, a single-stranded DNA binding protein and a thymidylate synthase. Partial genomic sequences of CN77, a phage of Clavibacter michiganensis subsp. nebraskensis, revealed a similar genome structure and significant similarities on the level of deduced amino acid sequences. An endolysin with peptidase activity has been identified for both phages, which may be good tools for disease control of tomato plants against Clavibacter infections. PMID:21687530
Wittmann, Johannes; Gartemann, Karl-Heinz; Eichenlaub, Rudolf; Dreiseikelmann, Brigitte
2011-01-01
Bacteriophage CMP1 is a member of the Siphoviridae family that infects specifically the plant-pathogen Clavibacter michiganensis subsp. michiganensis. The linear double- stranded DNA is terminally redundant and not circularly permuted. The complete nucleotide sequence of the bacteriophage CMP1 genome consists of 58,652 bp including the terminal redundant ends of 791 bp. The G+C content of the phage (57%) is significantly lower than that of its host (72.66%). 74 potential open reading frames were identified and annotated by different bioinformatic tools. Two large clusters which encode the early and the late functions could be identified which are divergently transcribed. There are only a few hypothetical gene products with conserved domains and significant similarity to sequences from the databases. Functional analyses confirmed the activity of four gene products, an endonuclease, an exonuclease, a single-stranded DNA binding protein and a thymidylate synthase. Partial genomic sequences of CN77, a phage of Clavibacter michiganensis subsp. nebraskensis, revealed a similar genome structure and significant similarities on the level of deduced amino acid sequences. An endolysin with peptidase activity has been identified for both phages, which may be good tools for disease control of tomato plants against Clavibacter infections.
Diversity of Babesia bovis merozoite surface antigen genes in the Philippines.
Tattiyapong, Muncharee; Sivakumar, Thillaiampalam; Ybanez, Adrian Patalinghug; Ybanez, Rochelle Haidee Daclan; Perez, Zandro Obligado; Guswanto, Azirwan; Igarashi, Ikuo; Yokoyama, Naoaki
2014-02-01
Babesia bovis is the causative agent of fatal babesiosis in cattle. In the present study, we investigated the genetic diversity of B. bovis among Philippine cattle, based on the genes that encode merozoite surface antigens (MSAs). Forty-one B. bovis-positive blood DNA samples from cattle were used to amplify the msa-1, msa-2b, and msa-2c genes. In phylogenetic analyses, the msa-1, msa-2b, and msa-2c gene sequences generated from Philippine B. bovis-positive DNA samples were found in six, three, and four different clades, respectively. All of the msa-1 and most of the msa-2b sequences were found in clades that were formed only by Philippine msa sequences in the respective phylograms. While all the msa-1 sequences from the Philippines showed similarity to those formed by Australian msa-1 sequences, the msa-2b sequences showed similarity to either Australian or Mexican msa-2b sequences. In contrast, msa-2c sequences from the Philippines were distributed across all the clades of the phylogram, although one clade was formed exclusively by Philippine msa-2c sequences. Similarities among the deduced amino acid sequences of MSA-1, MSA-2b, and MSA-2c from the Philippines were 62.2-100, 73.1-100, and 67.3-100%, respectively. The present findings demonstrate that B. bovis populations are genetically diverse in the Philippines. This information will provide a good foundation for the future design and implementation of improved immunological preventive methodologies against bovine babesiosis in the Philippines. The study has also generated a set of data that will be useful for futher understanding of the global genetic diversity of this important parasite. © 2013.
Unprecedented genomic diversity of AhR1 and AhR2 genes in Atlantic salmon (Salmo salar L.).
Hansson, Maria C; Wittzell, Håkan; Persson, Kerstin; von Schantz, Torbjörn
2004-06-24
Aryl hydrocarbon receptor (AhR) genes encode proteins involved in mediating the toxic responses induced by several environmental pollutants. Here, we describe the identification of the first two AhR1 (alpha and beta) genes and two additional AhR2 (alpha and beta) genes in the tetraploid species Atlantic salmon (Salmo salar L.) from a cosmid library screening. Cosmid clones containing genomic salmon AhR sequences were isolated using a cDNA clone containing the coding region of the Atlantic salmon AhR2gamma as a probe. Screening revealed 14 positive clones, from which four were chosen for further analyses. One of the cosmids contained genomic AhR sequences that were highly similar to the rainbow trout (Oncorhynchus mykiss) AhR2alpha and beta genes. SMART RACE amplified two complete, highly similar but not identical AhR type 2 sequences from salmon cDNA, which from phylogenetic analyses were determined as the rainbow trout AhR2alpha and beta orthologs. The salmon AhR2alpha and beta encode proteins of 1071 and 1058 residues, respectively, and encompass characteristic AhR sequence elements like a basic-helix-loop-helix (bHLH) and two PER-ARNT-SIM (PAS) domains. Both genes are transcribed in liver, spleen and muscle tissues of adult salmon. A second cosmid contained partial sequences, which were identical to the previously characterized AhR2gamma gene. The last two cosmids contained partial genomic AhR sequences, which were more similar to other AhR type 1 fish genes than the four characterized salmon AhR2 genes. However, attempts to amplify the corresponding complete cDNA sequences of the inserts proved very difficult, suggesting that these genes are non-functional or very weakly transcribed in the examined tissues. Phylogenetic analyses of the conserved regions did, however, clearly indicate that these two AhRs belong to the AhR type 1 clade and have been assigned as the Atlantic salmon AhR1alpha and AhR1beta genes. Taken together, these findings demonstrate that multiple AhR genes are present in Atlantic salmon genome, which likely is a consequence of previous genome duplications in the evolutionary past of salmonids. Plausible explanations for the high incidence of AhR genes in fish and more specifically in salmonids, like rapid divergences in specialized functions, are discussed.
NASA Astrophysics Data System (ADS)
Uthicke, S.; McGuire, K.
2007-03-01
Bacterial communities in eight 16S rDNA clone libraries from calcareous sediments were investigated to provide an assessment of the bacterial diversity on sediments of the Great Barrier Reef (GBR) and to investigate differences due to decreased water quality. Sample effort was spread across two locations on each of four coral reefs, with two reefs located nearshore and two reefs on the outer shelf to allow robust statistical comparison of nearshore reefs (subjected to enhanced runoff) and outer shelf reefs (pristine conditions). Out of 221 non-chimeric sequences, 189 (85.5%) were unique and only one sequence occurred in more than one library. Rarefaction analyses and coverage calculations indicated that only a small fraction of the diversity was sampled. Cluster analyses and comparison to published sequences indicated that sequences retrieved belonged to the α, γ and δ subdivision of the Proteobacteria (6.8, 29.4 and 13.6% of the total, respectively), Cytophaga-Flavobacteria-Bacteroidetes (CFB) group (20.4%), Cyanobacteria (5.4%), Planctomycetaceae (7.7%), Verrucomicrobiaceae (6.8%), Acidobacteriaceae (2.7%). Analysis of Similarity (ANOSIM, based on grouping all retrieved sequences into 9 phylogenetic groups) indicated that subtle differences do exist in the community composition between nearshore and outer shelf reefs. Similarity percentage analysis (SIMPER) indicated that Acidobacteriaceae and Cyanobacteriaceae were the main contributors to the dissimilarity. A significant difference between bacteria on nearshore and outer shelf reefs also existed on the molecular level ( FST = 0.008, p = 0.007 for all samples, 0.006, p = 0.022 when repeated sequences within libraries were removed). Thus, bacterial communities on carbonate sediments investigated were highly diverse and differences in community composition may provide important leads for the search for indicator species or communities for water quality differences.
Bedon, Frank; Grima-Pettenati, Jacqueline; Mackay, John
2007-01-01
Background Several members of the R2R3-MYB family of transcription factors act as regulators of lignin and phenylpropanoid metabolism during wood formation in angiosperm and gymnosperm plants. The angiosperm Arabidopsis has over one hundred R2R3-MYBs genes; however, only a few members of this family have been discovered in gymnosperms. Results We isolated and characterised full-length cDNAs encoding R2R3-MYB genes from the gymnosperms white spruce, Picea glauca (13 sequences), and loblolly pine, Pinus taeda L. (five sequences). Sequence similarities and phylogenetic analyses placed the spruce and pine sequences in diverse subgroups of the large R2R3-MYB family, although several of the sequences clustered closely together. We searched the highly variable C-terminal region of diverse plant MYBs for conserved amino acid sequences and identified 20 motifs in the spruce MYBs, nine of which have not previously been reported and three of which are specific to conifers. The number and length of the introns in spruce MYB genes varied significantly, but their positions were well conserved relative to angiosperm MYB genes. Quantitative RTPCR of MYB genes transcript abundance in root and stem tissues revealed diverse expression patterns; three MYB genes were preferentially expressed in secondary xylem, whereas others were preferentially expressed in phloem or were ubiquitous. The MYB genes expressed in xylem, and three others, were up-regulated in the compression wood of leaning trees within 76 hours of induction. Conclusion Our survey of 18 conifer R2R3-MYB genes clearly showed a gene family structure similar to that of Arabidopsis. Three of the sequences are likely to play a role in lignin metabolism and/or wood formation in gymnosperm trees, including a close homolog of the loblolly pine PtMYB4, shown to regulate lignin biosynthesis in transgenic tobacco. PMID:17397551
Barghini, Elena; Mascagni, Flavia; Natali, Lucia; Giordani, Tommaso; Cavallini, Andrea
2017-02-01
Short Interspersed Nuclear Elements (SINEs) are nonautonomous retrotransposons in the genome of most eukaryotic species. While SINEs have been intensively investigated in humans and other animal systems, SINE identification has been carried out only in a limited number of plant species. This lack of information is apparent especially in non-model plants whose genome has not been sequenced yet. The aim of this work was to produce a specific bioinformatics pipeline for analysing second generation sequence reads of a non-model species and identifying SINEs. We have identified, for the first time, 227 putative SINEs of the olive tree (Olea europaea), that constitute one of the few sets of such sequences in dicotyledonous species. The identified SINEs ranged from 140 to 362 bp in length and were characterised with regard to the occurrence of the tRNA domain in their sequence. The majority of identified elements resulted in single copy or very lowly repeated, often in association with genic sequences. Analysis of sequence similarity allowed us to identify two major groups of SINEs showing different abundances in the olive tree genome, the former with sequence similarity to SINEs of Scrophulariaceae and Solanaceae and the latter to SINEs of Salicaceae. A comparison of sequence conservation between olive SINEs and LTR retrotransposon families suggested that SINE expansion in the genome occurred especially in very ancient times, before LTR retrotransposon expansion, and presumably before the separation of the rosids (to which Oleaceae belong) from the Asterids. Besides providing data on olive SINEs, our results demonstrate the suitability of the pipeline employed for SINE identification. Applying this pipeline will favour further structural and functional analyses on these relatively unknown elements to be performed also in other plant species, even in the absence of a reference genome, and will allow establishing general evolutionary patterns for this kind of repeats in plants.
Saijuntha, Weerachai; Sithithaworn, Paiboon; Duenngai, Kunyarat; Kiatsopit, Nadda; Andrews, Ross H; Petney, Trevor N
2011-03-01
Multilocus enzyme electrophoresis (MEE) and DNA sequencing of the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene were used to genetically compare four species of echinostomes of human health importance. Fixed genetic differences among adults of Echinostoma revolutum, Echinostoma malayanum, Echinoparyphium recurvatum and Hypoderaeum conoideum were detected at 51-75% of the enzyme loci examined, while interspecific differences in CO1 sequence were detected at 16-32 (8-16%) of the 205 alignment positions. The results of the MEE analyses also revealed fixed genetic differences between E. revolutum from Thailand and Lao PDR at five (19%) of 27 loci, which could either represent genetic variation between geographically separated populations of a single species, or the existence of a cryptic (i.e. genetically distinct but morphologically similar) species. However, there was no support for the existence of cryptic species within E. revolutum based on the CO1 sequence between the two geographical areas sampled. Genetic variation in CO1 sequence was also detected among E. malayanum from three different species of snail intermediate host. Separate phylogenetic analyses of the MEE and DNA sequence data revealed that the two species of Echinostoma (E. revolutum and E. malayanum) did not form a monophyletic clade. These results, together with the large number of morphologically similar species with inadequate descriptions, poor specific diagnoses and extensive synonymy, suggest that the morphological characters used for species taxonomy of echinostomes in South-East Asia should be reconsidered according to the concordance of biology, morphology and molecular classification. Copyright © 2010 Elsevier B.V. All rights reserved.
SlideSort: all pairs similarity search for short reads
Shimizu, Kana; Tsuda, Koji
2011-01-01
Motivation: Recent progress in DNA sequencing technologies calls for fast and accurate algorithms that can evaluate sequence similarity for a huge amount of short reads. Searching similar pairs from a string pool is a fundamental process of de novo genome assembly, genome-wide alignment and other important analyses. Results: In this study, we designed and implemented an exact algorithm SlideSort that finds all similar pairs from a string pool in terms of edit distance. Using an efficient pattern growth algorithm, SlideSort discovers chains of common k-mers to narrow down the search. Compared to existing methods based on single k-mers, our method is more effective in reducing the number of edit distance calculations. In comparison to backtracking methods such as BWA, our method is much faster in finding remote matches, scaling easily to tens of millions of sequences. Our software has an additional function of single link clustering, which is useful in summarizing short reads for further processing. Availability: Executable binary files and C++ libraries are available at http://www.cbrc.jp/~shimizu/slidesort/ for Linux and Windows. Contact: slidesort@m.aist.go.jp; shimizu-kana@aist.go.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21148542
Random whole metagenomic sequencing for forensic discrimination of soils.
Khodakova, Anastasia S; Smith, Renee J; Burgoyne, Leigh; Abarno, Damien; Linacre, Adrian
2014-01-01
Here we assess the ability of random whole metagenomic sequencing approaches to discriminate between similar soils from two geographically distinct urban sites for application in forensic science. Repeat samples from two parklands in residential areas separated by approximately 3 km were collected and the DNA was extracted. Shotgun, whole genome amplification (WGA) and single arbitrarily primed DNA amplification (AP-PCR) based sequencing techniques were then used to generate soil metagenomic profiles. Full and subsampled metagenomic datasets were then annotated against M5NR/M5RNA (taxonomic classification) and SEED Subsystems (metabolic classification) databases. Further comparative analyses were performed using a number of statistical tools including: hierarchical agglomerative clustering (CLUSTER); similarity profile analysis (SIMPROF); non-metric multidimensional scaling (NMDS); and canonical analysis of principal coordinates (CAP) at all major levels of taxonomic and metabolic classification. Our data showed that shotgun and WGA-based approaches generated highly similar metagenomic profiles for the soil samples such that the soil samples could not be distinguished accurately. An AP-PCR based approach was shown to be successful at obtaining reproducible site-specific metagenomic DNA profiles, which in turn were employed for successful discrimination of visually similar soil samples collected from two different locations.
Jangid, Kamlesh; Kao, Ming-Hung; Lahamge, Aishwarya; Williams, Mark A; Rathbun, Stephen L; Whitman, William B
2016-01-01
K-shuff is a new algorithm for comparing the similarity of gene sequence libraries, providing measures of the structural and compositional diversity as well as the significance of the differences between these measures. Inspired by Ripley's K-function for spatial point pattern analysis, the Intra K-function or IKF measures the structural diversity, including both the richness and overall similarity of the sequences, within a library. The Cross K-function or CKF measures the compositional diversity between gene libraries, reflecting both the number of OTUs shared as well as the overall similarity in OTUs. A Monte Carlo testing procedure then enables statistical evaluation of both the structural and compositional diversity between gene libraries. For 16S rRNA gene libraries from complex bacterial communities such as those found in seawater, salt marsh sediments, and soils, K-shuff yields reproducible estimates of structural and compositional diversity with libraries greater than 50 sequences. Similarly, for pyrosequencing libraries generated from a glacial retreat chronosequence and Illumina® libraries generated from US homes, K-shuff required >300 and 100 sequences per sample, respectively. Power analyses demonstrated that K-shuff is sensitive to small differences in Sanger or Illumina® libraries. This extra sensitivity of K-shuff enabled examination of compositional differences at much deeper taxonomic levels, such as within abundant OTUs. This is especially useful when comparing communities that are compositionally very similar but functionally different. K-shuff will therefore prove beneficial for conventional microbiome analysis as well as specific hypothesis testing.
cDNA sequences and organization of IgM heavy chain genes in two holostean fish.
Wilson, M R; van Ravenstein, E; Miller, N W; Clem, L W; Middleton, D L; Warr, G W
1995-01-01
Immunoglobulin M heavy chain (mu) sequences of two holostean fish, the bowfin, Amia calva, and the longnose gar, Lepisosteus osseus, were amplified from spleen mRNA by RACE-PCR, cloned, and sequenced. Each mu chain showed the conserved four constant domain structure typical of a secreted mu chain. Southern blot analyses with specific heavy chain variable (VH) and constant (CH) region probes suggest that both fish possess an IgH locus that resembles that of the teleosts, amphibians, and mammals in its organization. The overall sequence similarity of gar and bowfin mu chains was 60% and 48% at the nucleotide and amino acid levels, respectively, while similarity to the mu chains of teleosts and elasmobranchs was lower. The bowfin mu chain possesses a distinctive proline-rich sequence at the C mu 1/C mu 2 boundary; a shorter proline-rich sequence is present at this position in the gar mu chain. Both gar and bowfin show, in their C mu 4 sequences, motifs that could serve as cryptic splice donor sites for the production of mRNA encoding the membrane-bound form of the mu chains, and the bowfin also shows a potential cryptic splice donor site in the C mu 3 exon.
Halpern, Malka; Fridman, Svetlana; Aizenberg-Gershtein, Yana; Izhaki, Ido
2013-01-01
Pseudomonas flectens Johnson 1956, a plant-pathogenic bacterium on the pods of the French bean, is no longer considered to be a member of the genus Pseudomonas sensu stricto. A polyphasic approach that included examination of phenotypic properties and phylogenetic analyses based on 16S rRNA, rpoB and atpD gene sequences supported the transfer of Pseudomonas flectens Johnson 1956 to a new genus in the family Enterobacteriaceae as Phaseolibacter flectens gen. nov., comb. nov. Two strains of Phaseolibacter flectens were studied (ATCC 12775(T) and LMG 2186); the strains shared 99.8 % sequence similarity in their 16S rRNA genes and the housekeeping gene sequences were identical. Strains of Phaseolibacter flectens shared 96.6 % or less 16S rRNA gene sequence similarity with members of different genera in the family Enterobacteriaceae and only 84.7 % sequence similarity with Pseudomonas aeruginosa LMG 1242(T), demonstrating that they are not related to the genus Pseudomonas. As Phaseolibacter flectens formed an independent phyletic lineage in all of the phylogenetic analyses, it could not be affiliated to any of the recognized genera within the family Enterobacteriaceae and therefore was assigned to a new genus. Cells were Gram-negative, straight rods, motile by means of one or two polar flagella, fermentative, facultative anaerobes, oxidase-negative and catalase-positive. Growth occurred in the presence of 0-60 % sucrose. The DNA G+C content of the type strain was 44.3 mol%. On the basis of phenotypic properties and phylogenetic distinctiveness, Pseudomonas flectens Johnson 1956 is transferred to the novel genus Phaseolibacter gen. nov. as Phaseolibacter flectens gen. nov., comb. nov. The type strain of Phaseolibacter flectens is ATCC 12775(T) = CFBP 3281(T) = ICMP 745(T) = LMG 2187(T) = NCPPB 539(T).
Meganathan, P R; Pagan, Heidi J T; McCulloch, Eve S; Stevens, Richard D; Ray, David A
2012-01-15
Order Chiroptera is a unique group of mammals whose members have attained self-powered flight as their main mode of locomotion. Much speculation persists regarding bat evolution; however, lack of sufficient molecular data hampers evolutionary and conservation studies. Of ~1200 species, complete mitochondrial genome sequences are available for only eleven. Additional sequences should be generated if we are to resolve many questions concerning these fascinating mammals. Herein, we describe the complete mitochondrial genomes of three bats: Corynorhinus rafinesquii, Lasiurus borealis and Artibeus lituratus. We also compare the currently available mitochondrial genomes and analyze codon usage in Chiroptera. C. rafinesquii, L. borealis and A. lituratus mitochondrial genomes are 16438 bp, 17048 bp and 16709 bp, respectively. Genome organization and gene arrangements are similar to other bats. Phylogenetic analyses using complete mitochondrial genome sequences support previously established phylogenetic relationships and suggest utility in future studies focusing on the evolutionary aspects of these species. Comprehensive analyses of available bat mitochondrial genomes reveal distinct nucleotide patterns and synonymous codon preferences corresponding to different chiropteran families. These patterns suggest that mutational and selection forces are acting to different extents within Chiroptera and shape their mitochondrial genomes. Copyright © 2011 Elsevier B.V. All rights reserved.
Comparative Analyses of DNA Methylation and Sequence Evolution Using Nasonia Genomes
Park, Jungsun; Peng, Zuogang; Zeng, Jia; Elango, Navin; Park, Taesung; Wheeler, Dave; Werren, John H.; Yi, Soojin V.
2011-01-01
The functional and evolutionary significance of DNA methylation in insect genomes remains to be resolved. Nasonia is well situated for comparative analyses of DNA methylation and genome evolution, since the genomes of a moderately distant outgroup species as well as closely related sibling species are available. Using direct sequencing of bisulfite-converted DNA, we uncovered a substantial level of DNA methylation in 17 of 18 Nasonia vitripennis genes and a strong correlation between methylation level and CpG depletion. Notably, in the sex-determining locus transformer, the exon that is alternatively spliced between the sexes is heavily methylated in both males and females, whereas other exons are only sparsely methylated. Orthologous genes of the honeybee and Nasonia show highly similar relative levels of CpG depletion, despite ∼190 My divergence. Densely and sparsely methylated genes in these species also exhibit similar functional enrichments. We found that the degree of CpG depletion is negatively correlated with substitution rates between closely related Nasonia species for synonymous, nonsynonymous, and intron sites. This suggests that mutation rates increase with decreasing levels of germ line methylation. Thus, DNA methylation is prevalent in the Nasonia genome, may participate in regulatory processes such as sex determination and alternative splicing, and is correlated with several aspects of genome and sequence evolution. PMID:21693438
Pecon-Slattery, Jill; Troyer, Jennifer L; Johnson, Warren E; O'Brien, Stephen J
2008-05-15
Genetic analyses of feline immunodeficiency viruses provide significant insights on the worldwide distribution and evolutionary history of this emerging pathogen. Large-scale screening of over 3000 samples from all species of Felidae indicates that at least some individuals from most species possess antibodies that cross react to FIV. Phylogenetic analyses of genetic variation in the pol-RT gene demonstrate that FIV lineages are species-specific and suggest that there has been a prolonged period of viral-host co-evolution. The clinical effects of FIV specific to species other than domestic cat are controversial. Comparative genomic analyses of all full-length FIV genomes confirmed that FIV is host specific. Recently sequenced lion subtype E is marginally more similar to Pallas cat FIV though env is more similar to that of domestic cat FIV, indicating a possible recombination between two divergent strains in the wild. Here we review global patterns of FIV seroprevalence and endemnicity, assess genetic differences within and between species-specific FIV strains, and interpret these with patterns of felid speciation to propose an ancestral origin of FIV in Africa followed by interspecies transmission and global dissemination to Eurasia and the Americas. Continued comparative genomic analyses of full-length FIV from all seropositive animals, along with whole genome sequence of host species, will greatly advance our understanding of the role of recombination, selection and adaptation in retroviral emergence.
Pecon-Slattery, Jill; Troyer, Jennifer L.; Johnson, Warren E.; O’Brien, Stephen J.
2008-01-01
Genetic analyses of feline immunodeficiency viruses provide significant insights on the worldwide distribution and evolutionary history of this emerging pathogen. Large-scale screening of over 3000 samples from all species of Felidae indicates that at least some individuals from most species possess antibodies that cross react to FIV. Phylogenetic analyses of genetic variation in the pol-RT gene demonstrate that FIV lineages are species-specific and suggest that there has been a prolonged period of viral-host co-evolution. The clinical effects of FIV specific to species other than domestic cat are controversial. Comparative genomic analyses of all full-length FIV genomes confirmed that FIV is host specific. Recently sequenced lion subtype E is marginally more similar to Pallas cat FIV though env is more similar to that of domestic cat FIV, indicating a possible recombination between two divergent strains in the wild. Here we review global patterns of FIV seroprevalence and endemnicity, assess genetic differences within and between species-specific FIV strains, and interpret these with patterns of felid speciation to propose an ancestral origin of FIV in Africa followed by interspecies transmission and global dissemination to Eurasia and the Americas. Continued comparative genomic analyses of full-length FIV from all seropositive animals, along with whole genome sequence of host species, will greatly advance our understanding of the role of recombination, selection and adaptation in retroviral emergence. PMID:18359092
Maruyama, Sandra Regina; Castro-Jorge, Luiza Antunes; Ribeiro, José Marcos Chaves; Gardinassi, Luiz Gustavo; Garcia, Gustavo Rocha; Brandão, Lucinda Giampietro; Rodrigues, Aline Rezende; Okada, Marcos Ituo; Abrão, Emiliana Pereira; Ferreira, Beatriz Rossetti; da Fonseca, Benedito Antonio Lopes; de Miranda-Santos, Isabel Kinney Ferreira
2013-01-01
Transcripts similar to those that encode the nonstructural (NS) proteins NS3 and NS5 from flaviviruses were found in a salivary gland (SG) complementary DNA (cDNA) library from the cattle tick Rhipicephalus microplus. Tick extracts were cultured with cells to enable the isolation of viruses capable of replicating in cultured invertebrate and vertebrate cells. Deep sequencing of the viral RNA isolated from culture supernatants provided the complete coding sequences for the NS3 and NS5 proteins and their molecular characterisation confirmed similarity with the NS3 and NS5 sequences from other flaviviruses. Despite this similarity, phylogenetic analyses revealed that this potentially novel virus may be a highly divergent member of the genus Flavivirus. Interestingly, we detected the divergent NS3 and NS5 sequences in ticks collected from several dairy farms widely distributed throughout three regions of Brazil. This is the first report of flavivirus-like transcripts in R. microplus ticks. This novel virus is a potential arbovirus because it replicated in arthropod and mammalian cells; furthermore, it was detected in a cDNA library from tick SGs and therefore may be present in tick saliva. It is important to determine whether and by what means this potential virus is transmissible and to monitor the virus as a potential emerging tick-borne zoonotic pathogen. PMID:24626302
Yabsley, Michael J.; Clay, Sarah E.; Gibbs, Samantha E. J.; Cunningham, Mark W.; Austel, Michaela G.
2013-01-01
Demodex mites, although usually nonpathogenic, can cause a wide range of dermatological lesions ranging from mild skin irritation and alopecia to severe furunculosis. Recently, a case of demodicosis from a white-tailed deer (Odocoileus virginianus) revealed a Demodex species morphologically distinct from Demodex odocoilei. All life cycle stages were considerably larger than D. odocoilei and although similar in size to D. kutzeri and D. acutipes from European cervids, numerous morphometrics distinguished the four species. Adult males and females were 209.1 ± 13.1 and 225.5 ± 13.4 μm in length, respectively. Ova, larva, and nymphs measured 65.1 ± 4.1, 124.9 ± 11.6, and 205.1 ± 19.4 μm in length, respectively. For phylogenetic analyses, a portion of the 18S rRNA gene was amplified and sequenced from samples of the WTD Demodex sp., two Demodex samples from domestic dogs, and Demodex ursi from a black bear. Phylogenetic analyses indicated that the WTD Demodex was most similar to D. musculi from laboratory mice. A partial sequence from D. ursi was identical to the WTD Demodex sequence; however, these two species can be differentiated morphologically. This paper describes a second Demodex species from white-tailed deer and indicates that 18S rRNA is useful for phylogenetic analysis of most Demodex species, but two morphologically distinct species had identical partial sequences. Additional gene targets should be investigated for phylogenetic and parasite-host association studies. PMID:27335854
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Liyou; Yi, T. Y.; Van Nostrand, Joy
Phylogenetic analyses were done for the Shewanella strains isolated from Baltic Sea (38 strains), US DOE Hanford Uranium bioremediation site [Hanford Reach of the Columbia River (HRCR), 11 strains], Pacific Ocean and Hawaiian sediments (8 strains), and strains from other resources (16 strains) with three out group strains, Rhodopseudomonas palustris, Clostridium cellulolyticum, and Thermoanaerobacter ethanolicus X514, using DNA relatedness derived from WCGA-based DNA-DNA hybridizations, sequence similarities of 16S rRNA gene and gyrB gene, and sequence similarities of 6 loci of Shewanella genome selected from a shared gene list of the Shewanella strains with whole genome sequenced based on the averagemore » nucleotide identity of them (ANI). The phylogenetic trees based on 16S rRNA and gyrB gene sequences, and DNA relatedness derived from WCGA hybridizations of the tested Shewanella strains share exactly the same sub-clusters with very few exceptions, in which the strains were basically grouped by species. However, the phylogenetic analysis based on DNA relatedness derived from WCGA hybridizations dramatically increased the differentiation resolution at species and strains level within Shewanella genus. When the tree based on DNA relatedness derived from WCGA hybridizations was compared to the tree based on the combined sequences of the selected functional genes (6 loci), we found that the resolutions of both methods are similar, but the clustering of the tree based on DNA relatedness derived from WMGA hybridizations was clearer. These results indicate that WCGA-based DNA-DNA hybridization is an idea alternative of conventional DNA-DNA hybridization methods and it is superior to the phylogenetics methods based on sequence similarities of single genes. Detailed analysis is being performed for the re-classification of the strains examined.« less
Zemla, Adam T; Lang, Dorothy M; Kostova, Tanya; Andino, Raul; Ecale Zhou, Carol L
2011-06-02
Most of the currently used methods for protein function prediction rely on sequence-based comparisons between a query protein and those for which a functional annotation is provided. A serious limitation of sequence similarity-based approaches for identifying residue conservation among proteins is the low confidence in assigning residue-residue correspondences among proteins when the level of sequence identity between the compared proteins is poor. Multiple sequence alignment methods are more satisfactory--still, they cannot provide reliable results at low levels of sequence identity. Our goal in the current work was to develop an algorithm that could help overcome these difficulties by facilitating the identification of structurally (and possibly functionally) relevant residue-residue correspondences between compared protein structures. Here we present StralSV (structure-alignment sequence variability), a new algorithm for detecting closely related structure fragments and quantifying residue frequency from tight local structure alignments. We apply StralSV in a study of the RNA-dependent RNA polymerase of poliovirus, and we demonstrate that the algorithm can be used to determine regions of the protein that are relatively unique, or that share structural similarity with proteins that would be considered distantly related. By quantifying residue frequencies among many residue-residue pairs extracted from local structural alignments, one can infer potential structural or functional importance of specific residues that are determined to be highly conserved or that deviate from a consensus. We further demonstrate that considerable detailed structural and phylogenetic information can be derived from StralSV analyses. StralSV is a new structure-based algorithm for identifying and aligning structure fragments that have similarity to a reference protein. StralSV analysis can be used to quantify residue-residue correspondences and identify residues that may be of particular structural or functional importance, as well as unusual or unexpected residues at a given sequence position. StralSV is provided as a web service at http://proteinmodel.org/AS2TS/STRALSV/.
De Pittà, Cristiano; Bertolucci, Cristiano; Mazzotta, Gabriella M; Bernante, Filippo; Rizzo, Giorgia; De Nardi, Barbara; Pallavicini, Alberto; Lanfranchi, Gerolamo; Costa, Rodolfo
2008-01-01
Background Little is known about the genome sequences of Euphausiacea (krill) although these crustaceans are abundant components of the pelagic ecosystems in all oceans and used for aquaculture and pharmaceutical industry. This study reports the results of an expressed sequence tag (EST) sequencing project from different tissues of Euphausia superba (the Antarctic krill). Results We have constructed and sequenced five cDNA libraries from different Antarctic krill tissues: head, abdomen, thoracopods and photophores. We have identified 1.770 high-quality ESTs which were assembled into 216 overlapping clusters and 801 singletons resulting in a total of 1.017 non-redundant sequences. Quantitative RT-PCR analysis was performed to quantify and validate the expression levels of ten genes presenting different EST countings in krill tissues. In addition, bioinformatic screening of the non-redundant E. superba sequences identified 69 microsatellite containing ESTs. Clusters, consensuses and related similarity and gene ontology searches were organized in a dedicated E. superba database . Conclusion We defined the first tissue transcriptional signatures of E. superba based on functional categorization among the examined tissues. The analyses of annotated transcripts showed a higher similarity with genes from insects with respect to Malacostraca possibly as an effect of the limited number of Malacostraca sequences in the public databases. Our catalogue provides for the first time a genomic tool to investigate the biology of the Antarctic krill. PMID:18226200
Evolution of long centromeres in fire ants.
Huang, Yu-Ching; Lee, Chih-Chi; Kao, Chia-Yi; Chang, Ni-Chen; Lin, Chung-Chi; Shoemaker, DeWayne; Wang, John
2016-09-15
Centromeres are essential for accurate chromosome segregation, yet sequence conservation is low even among closely related species. Centromere drive predicts rapid turnover because some centromeric sequences may compete better than others during female meiosis. In addition to sequence composition, longer centromeres may have a transmission advantage. We report the first observations of extremely long centromeres, covering on average 34 % of the chromosomes, in the red imported fire ant Solenopsis invicta. By comparison, cytological examination of Solenopsis geminata revealed typical small centromeric constrictions. Bioinformatics and molecular analyses identified CenSol, the major centromeric satellite DNA repeat. We found that CenSol sequences are very similar between the two species but the CenSol copy number in S. invicta is much greater than that in S. geminata. In addition, centromere expansion in S. invicta is not correlated with the duplication of CenH3. Comparative analyses revealed that several closely related fire ant species also possess long centromeres. Our results are consistent with a model of simple runaway centromere expansion due to centromere drive. We suggest expanded centromeres may be more prevalent in hymenopteran insects, which use haplodiploid sex determination, than previously considered.
Hirasawa, Julia Sumiko; Sarti, Arnaldo; Del Aguila, Nora Katia Saavedra; Varesche, Maria Bernadete A
2008-10-01
In this paper, the microbial characteristics of the granular sludge in the presence of oxygen (3.0+/-0.7 mg O2 l(-1)) were analyzed using molecular biology techniques. The granules were provided by an upflow anaerobic sludge blanket (UASB) operated over 469 days and fed with synthetic substrate. Ethanol and sulfate were added to obtain different COD/SO4(2-) ratios (3.0, 2.0, and 1.6). The results of fluorescent in situ hybridization (FISH) analyses showed that archaeal cells, detected by the ARC915 probe, accounted for 77%, 84%, and 75% in the COD/SO(4)(2-) ratios (3.0, 2.0, and 1.6, respectively). Methanosaeta sp. was the predominant acetoclastic archaea observed by optical microscopy and FISH analyses, and confirmed by sequencing of the excised bands of the DGGE gel with a similarity of 96%. The sulfate-reducing bacterium Desulfovibrio vulgaris subsp. vulgaris (similarity of 99%) was verified by sequencing of the DGGE band. Others identified microorganism were similar to Shewanella sp. and Desulfitobacterium hafniense, with similarities of 95% and 99%, respectively. These results confirmed that the presence of oxygen did not severely affect the metabolism of microorganisms that are commonly considered strictly anaerobic. We obtained mean efficiencies of organic matter conversion and sulfate reducing higher than 74%.
Lelliottia aquatilis sp. nov., isolated from drinking water.
Kämpfer, Peter; Glaeser, Stefanie P; Packroff, Gabriele; Behringer, Katja; Exner, Martin; Chakraborty, Trinad; Schmithausen, Ricarda M; Doijad, Swapnil
2018-06-22
Five beige-pigmented, oxidase-negative bacterial isolates, 6331-17 T , 6332-17, 6333-17, 6334-17 and 9827-07, isolated either from a drinking water storage reservoir or drinking water in 2006 and 2017 in Germany, were examined in detail applying by a polyphasic taxonomic approach. Cells of the isolates were rod-shaped and Gram-stain-negative. Comparison of the 16S rRNA gene sequences of these five isolates showed highest sequence similarities to Lelliottia amnigena (99.98 %) and Lelliottia nimipressuralis (99.99 %). Multilocus sequence analyses based on concatenated partial rpoB, gyrB, infB and atpD sequences confirmed the clustering of these isolates with Lelliottia species, but also revealed a clear distinction to the closest related type strains. Analysis of the genome sequences of these isolates indicated >70 % in silico DNA-DNA hybridization and high average nucleotide identities between strains. Nevertheless, they showed only <70 and <95 % similarity to the type strains of these two Lelliottia species. The fatty acid profiles of these isolates were very similar and consisted of the major fatty acids C16:0, C17 : 0cyclo, C15 : 0iso 2-OH/C16 : 1ω7c and C18 : 1ω7c. In addition, physiological/biochemical tests revealed high phenotypic similarity to each other. These cumulative data indicate that these isolates represent a novel Lelliottia species, for which the name Lelliottia aquatilis sp. nov. is proposed, with strain 6331-17 T (=CCM 8846 T =CIP 111609 T =LMG 30560 T ) as the type strain.
Heuristics for multiobjective multiple sequence alignment.
Abbasi, Maryam; Paquete, Luís; Pereira, Francisco B
2016-07-15
Aligning multiple sequences arises in many tasks in Bioinformatics. However, the alignments produced by the current software packages are highly dependent on the parameters setting, such as the relative importance of opening gaps with respect to the increase of similarity. Choosing only one parameter setting may provide an undesirable bias in further steps of the analysis and give too simplistic interpretations. In this work, we reformulate multiple sequence alignment from a multiobjective point of view. The goal is to generate several sequence alignments that represent a trade-off between maximizing the substitution score and minimizing the number of indels/gaps in the sum-of-pairs score function. This trade-off gives to the practitioner further information about the similarity of the sequences, from which she could analyse and choose the most plausible alignment. We introduce several heuristic approaches, based on local search procedures, that compute a set of sequence alignments, which are representative of the trade-off between the two objectives (substitution score and indels). Several algorithm design options are discussed and analysed, with particular emphasis on the influence of the starting alignment and neighborhood search definitions on the overall performance. A perturbation technique is proposed to improve the local search, which provides a wide range of high-quality alignments. The proposed approach is tested experimentally on a wide range of instances. We performed several experiments with sequences obtained from the benchmark database BAliBASE 3.0. To evaluate the quality of the results, we calculate the hypervolume indicator of the set of score vectors returned by the algorithms. The results obtained allow us to identify reasonably good choices of parameters for our approach. Further, we compared our method in terms of correctly aligned pairs ratio and columns correctly aligned ratio with respect to reference alignments. Experimental results show that our approaches can obtain better results than TCoffee and Clustal Omega in terms of the first ratio.
MELOGEN: an EST database for melon functional genomics
Gonzalez-Ibeas, Daniel; Blanca, José; Roig, Cristina; González-To, Mireia; Picó, Belén; Truniger, Verónica; Gómez, Pedro; Deleu, Wim; Caño-Delgado, Ana; Arús, Pere; Nuez, Fernando; Garcia-Mas, Jordi; Puigdomènech, Pere; Aranda, Miguel A
2007-01-01
Background Melon (Cucumis melo L.) is one of the most important fleshy fruits for fresh consumption. Despite this, few genomic resources exist for this species. To facilitate the discovery of genes involved in essential traits, such as fruit development, fruit maturation and disease resistance, and to speed up the process of breeding new and better adapted melon varieties, we have produced a large collection of expressed sequence tags (ESTs) from eight normalized cDNA libraries from different tissues in different physiological conditions. Results We determined over 30,000 ESTs that were clustered into 16,637 non-redundant sequences or unigenes, comprising 6,023 tentative consensus sequences (contigs) and 10,614 unclustered sequences (singletons). Many potential molecular markers were identified in the melon dataset: 1,052 potential simple sequence repeats (SSRs) and 356 single nucleotide polymorphisms (SNPs) were found. Sixty-nine percent of the melon unigenes showed a significant similarity with proteins in databases. Functional classification of the unigenes was carried out following the Gene Ontology scheme. In total, 9,402 unigenes were mapped to one or more ontology. Remarkably, the distributions of melon and Arabidopsis unigenes followed similar tendencies, suggesting that the melon dataset is representative of the whole melon transcriptome. Bioinformatic analyses primarily focused on potential precursors of melon micro RNAs (miRNAs) in the melon dataset, but many other genes potentially controlling disease resistance and fruit quality traits were also identified. Patterns of transcript accumulation were characterised by Real-Time-qPCR for 20 of these genes. Conclusion The collection of ESTs characterised here represents a substantial increase on the genetic information available for melon. A database (MELOGEN) which contains all EST sequences, contig images and several tools for analysis and data mining has been created. This set of sequences constitutes also the basis for an oligo-based microarray for melon that is being used in experiments to further analyse the melon transcriptome. PMID:17767721
Snelling, Timothy J; Genç, Buğra; McKain, Nest; Watson, Mick; Waters, Sinéad M; Creevey, Christopher J; Wallace, R John
2014-01-01
Ruminal archaeomes of two mature sheep grazing in the Scottish uplands were analysed by different sequencing and analysis methods in order to compare the apparent archaeal communities. All methods revealed that the majority of methanogens belonged to the Methanobacteriales order containing the Methanobrevibacter, Methanosphaera and Methanobacteria genera. Sanger sequenced 1.3 kb 16S rRNA gene amplicons identified the main species of Methanobrevibacter present to be a SGMT Clade member Mbb. millerae (≥ 91% of OTUs); Methanosphaera comprised the remainder of the OTUs. The primers did not amplify ruminal Thermoplasmatales-related 16S rRNA genes. Illumina sequenced V6-V8 16S rRNA gene amplicons identified similar Methanobrevibacter spp. and Methanosphaera clades and also identified the Thermoplasmatales-related order as 13% of total archaea. Unusually, both methods concluded that Mbb. ruminantium and relatives from the same clade (RO) were almost absent. Sequences mapping to rumen 16S rRNA and mcrA gene references were extracted from Illumina metagenome data. Mapping of the metagenome data to 16S rRNA gene references produced taxonomic identification to Order level including 2-3% Thermoplasmatales, but was unable to discriminate to species level. Mapping of the metagenome data to mcrA gene references resolved 69% to unclassified Methanobacteriales. Only 30% of sequences were assigned to species level clades: of the sequences assigned to Methanobrevibacter, most mapped to SGMT (16%) and RO (10%) clades. The Sanger 16S amplicon and Illumina metagenome mcrA analyses showed similar species richness (Chao1 Index 19-35), while Illumina metagenome and amplicon 16S rRNA analysis gave lower richness estimates (10-18). The values of the Shannon Index were low in all methods, indicating low richness and uneven species distribution. Thus, although much information may be extracted from the other methods, Illumina amplicon sequencing of the V6-V8 16S rRNA gene would be the method of choice for studying rumen archaeal communities.
Two Different Rickettsial Bacteria Invading Volvox carteri
Kawafune, Kaoru; Hongoh, Yuichi; Hamaji, Takashi; Sakamoto, Tomoaki; Kurata, Tetsuya; Hirooka, Shunsuke; Miyagishima, Shin-ya; Nozaki, Hisayoshi
2015-01-01
Background Bacteria of the family Rickettsiaceae are principally associated with arthropods. Recently, endosymbionts of the Rickettsiaceae have been found in non-phagotrophic cells of the volvocalean green algae Carteria cerasiformis, Pleodorina japonica, and Volvox carteri. Such endosymbionts were present in only C. cerasiformis strain NIES-425 and V. carteri strain UTEX 2180, of various strains of Carteria and V. carteri examined, suggesting that rickettsial endosymbionts may have been transmitted to only a few algal strains very recently. However, in preliminary work, we detected a sequence similar to that of a rickettsial gene in the nuclear genome of V. carteri strain EVE. Methodology/Principal Findings Here we explored the origin of the rickettsial gene-like sequences in the endosymbiont-lacking V. carteri strain EVE, by performing comparative analyses on 13 strains of V. carteri. By reference to our ongoing genomic sequence of rickettsial endosymbionts in C. cerasiformis strain NIES-425 cells, we confirmed that an approximately 9-kbp DNA sequence encompassing a region similar to that of four rickettsial genes was present in the nuclear genome of V. carteri strain EVE. Phylogenetic analyses, and comparisons of the synteny of rickettsial gene-like sequences from various strains of V. carteri, indicated that the rickettsial gene-like sequences in the nuclear genome of V. carteri strain EVE were closely related to rickettsial gene sequences of P. japonica, rather than those of V. carteri strain UTEX 2180. Conclusion/Significance At least two different rickettsial organisms may have invaded the V. carteri lineage, one of which may be the direct ancestor of the endosymbiont of V. carteri strain UTEX 2180, whereas the other may be closely related to the endosymbiont of P. japonica. Endosymbiotic gene transfer from the latter rickettsial organism may have occurred in an ancestor of V. carteri. Thus, the rickettsiae may be widely associated with V. carteri, and likely have often been lost during host evolution. PMID:25671568
Okuda, A; Imagawa, M; Maeda, Y; Sakai, M; Muramatsu, M
1989-10-05
We have recently identified a typical enhancer, termed GPEI, located about 2.5 kilobases upstream from the transcription initiation site of the rat glutathione transferase P gene. Analyses of 5' and 3' deletion mutants revealed that the cis-acting sequence of GPEI contained the phorbol 12-O-tetradecanoate 13-acetate responsive element (TRE)-like sequence in it. For the maximal activity, however, GPEI required an adjacent upstream sequence of about 19 base pairs in addition to the TRE-like sequence. With the DNA binding gel-shift assay, we could detect protein(s) that specifically binds to the TRE-like sequence of GPEI fragment, which was possibly c-jun.c-fos complex or a similar protein complex. The sequence immediately upstream of the TRE-like sequence did not have any activity by itself, but augmented the latter activity by about 5-fold.
Jaén-Luchoro, Daniel; Aliaga-Lozano, Francisco; Gomila, Rosa Maria; Gomila, Margarita; Salvà-Serra, Francisco; Lalucat, Jorge; Bennasar-Figueras, Antoni
2017-01-01
A putative type II toxin-antitoxin (TA) system was found in the clinical isolate Mycobacterium sp. MHSD3, a strain closely related to Mycobacterium chelonae. Further analyses of the protein sequences of the two genes revealed the presence of domains related to a TA system. BLAST analyses indicated the presence of closely related proteins in the genomes of other recently published M. chelonae strains. The functionality of both elements of the TA system was demonstrated when expressed in Escherichia coli cells, and the predicted structure of the toxin is very similar to those of well-known zeta-toxins, leading to the definition of a type II TA system similar to epsilon/zeta TA systems in strains that are closely related to M. chelonae.
Chaves, Guilherme M; Terçarioli, Gisela R; Padovan, Ana Carolina B; Rosas, Robert C; Ferreira, Renata C; Melo, Analy S A; Colombo, Arnaldo L
2013-04-01
Candida rugosa is a yeast species that is emerging as a causative agent of invasive infection, particularly in Latin America. Recently, C. pseudorugosa was proposed as a new species closely related to C. rugosa. We evaluated in this investigation the genetic heterogeneity within the C. rugosa species complex. All clinical isolates used in this study were identified phenotypically as C. rugosa but were genotypically different from the C. rugosa type, ATCC 10571. RAPD marker analysis revealed less than 83% similarity between our clinical isolates and the C. rugosa type strain. The D1/D2 region sequences of our clinical isolates showed 98% identity with C. rugosa but only 94-95% identity with C. pseudorugosa. The ITS rDNA sequences of the Brazilian isolates showed 91% identity with the C. rugosa ATCC 10571 ITS sequence. Network and Bayesian analyses of ITS and housekeeping gene sequences separated our clinical isolates into different branches from C. rugosa type strain. These differences are sufficient to reassign our isolates to a distinct species, named C. mesorugosa.
Juhasz, E.; Muller, P.; Toth-Makk, A.; Hamor, T.; Farkas-Bulla, J.; Suto-Szentai, M.; Phillips, R.L.; Ricketts, B.
1996-01-01
Detailed sedimentological and paleontological analyses were carried out on more than 13,000 m of core from ten boreholes in the Late Neogene sediments of the Pannonian Basin, Hungary. These data provide the basis for determining the character of high-order depositional cycles and their stacking patterns. In the Late Neogene sediments of the Pannonian Basin there are two third-order sequences: the Late Miocene and the Pliocene ones. The Miocene sequence shows a regressive, upward-coarsening trend. There are four distinguishable sedimentary units in this sequence: the basal transgressive, the lower aggradational, the progradational and the upper aggradational units. The Pliocene sequence is also of aggradational character. The progradation does not coincide in time in the wells within the basin. The character of the relative water-level curves is similar throughout the basin but shows only very faint similarity to the sea-level curve. Therefore, it is unlikely that eustasy played any significant role in the pattern of basin filling. Rather, the dominant controls were the rapidly changing basin subsidence and high sedimentation rates, together with possible climatic factors.
Complete mitochondrial genomes of eleven extinct or possibly extinct bird species.
Anmarkrud, Jarl A; Lifjeld, Jan T
2017-03-01
Natural history museum collections represent a vast source of ancient and historical DNA samples from extinct taxa that can be utilized by high-throughput sequencing tools to reveal novel genetic and phylogenetic information about them. Here, we report on the successful sequencing of complete mitochondrial genome sequences (mitogenomes) from eleven extinct bird species, using de novo assembly of short sequences derived from toepad samples of degraded DNA from museum specimens. For two species (the Passenger Pigeon Ectopistes migratorius and the South Island Piopio Turnagra capensis), whole mitogenomes were already available from recent studies, whereas for five others (the Great Auk Pinguinis impennis, the Imperial Woodpecker Campehilus imperialis, the Huia Heteralocha acutirostris, the Kauai Oo Moho braccathus and the South Island Kokako Callaeas cinereus), there were partial mitochondrial sequences available for comparison. For all seven species, we found sequence similarities of >98%. For the remaining four species (the Kamao Myadestes myadestinus, the Paradise Parrot Psephotellus pulcherrimus, the Ou Psittirostra psittacea and the Lesser Akialoa Akialoa obscura), there was no sequence information available for comparison, so we conducted blast searches and phylogenetic analyses to determine their phylogenetic positions and identify their closest extant relatives. These mitogenomes will be valuable for future analyses of avian phylogenetics and illustrate the importance of museum collections as repositories for genomics resources. © 2016 John Wiley & Sons Ltd.
Phylogeny of Castanea (Fagaceae) based on chloroplast trnT-L-F sequence data
Ping Lang; Fenny Dane; Thomas L. Kubisiak
2005-01-01
Species in the genus Castanea are widely distributed in the deciduous forests of the Northern Hemisphere from Asia to Europe and North America. They show floristic similarity but differences in chestnut blight resistance especially among eastern Asian and eastern North American species. Phylogenetic analyses were conducted in this study using...
Kondo, Hideki; Hisano, Sakae; Chiba, Sotaro; Maruyama, Kazuyuki; Andika, Ida Bagus; Toyoda, Kazuhiro; Fujimori, Fumihiro; Suzuki, Nobuhiro
2016-02-02
The identification of mycoviruses contributes greatly to understanding of the diversity and evolutionary aspects of viruses. Powdery mildew fungi are important and widely studied obligate phytopathogenic agents, but there has been no report on mycoviruses infecting these fungi. In this study, we used a deep sequencing approach to analyze the double-stranded RNA (dsRNA) segments isolated from field-collected samples of powdery mildew fungus-infected red clover plants in Japan. Database searches identified the presence of at least ten totivirus (genus Totivirus)-like sequences, termed red clover powdery mildew-associated totiviruses (RPaTVs). The majority of these sequences shared moderate amino acid sequence identity with each other (<44%) and with other known totiviruses (<59%). Nine of these identified sequences (RPaTV1a, 1b and 2-8) resembled the genome of the prototype totivirus, Saccharomyces cerevisiae virus-L-A (ScV-L-A) in that they contained two overlapping open reading frames (ORFs) encoding a putative coat protein (CP) and an RNA dependent RNA polymerase (RdRp), while one sequence (RPaTV9) showed similarity to another totivirus, Ustilago maydis virus H1 (UmV-H1) that encodes a single polyprotein (CP-RdRp fusion). Similar to yeast totiviruses, each ScV-L-A-like RPaTV contains a -1 ribosomal frameshift site downstream of a predicted pseudoknot structure in the overlapping region of these ORFs, suggesting that the RdRp is translated as a CP-RdRp fusion. Moreover, several ScV-L-A-like sequences were also found by searches of the transcriptome shotgun assembly (TSA) libraries from rust fungi, plants and insects. Phylogenetic analyses show that nine ScV-L-A-like RPaTVs along with ScV-L-A-like sequences derived from TSA libraries are clustered with most established members of the genus Totivirus, while one RPaTV forms a new distinct clade with UmV-H1, possibly establishing an additional genus in the family. Taken together, our results indicate the presence of diverse, novel totiviruses in the powdery mildew fungus populations infecting red clover plants in the field. Copyright © 2015 Elsevier B.V. All rights reserved.
Hyun, Dong-Wook; Shin, Na-Ri; Kim, Min-Soo; Kim, Pil Soo; Kim, Joon Yong; Whon, Tae Woong; Bae, Jin-Woo
2014-02-01
A novel, Gram-staining-positive, facultatively anaerobic, non-motile and coccus-shaped bacterium, strain WL80(T), was isolated from the gut of an abalone, Haliotis discus hannai, collected from the northern coast of Jeju in Korea. Optimal growth occurred at 30 °C, pH 7-8 and with 1% (w/v) NaCl. Phylogenetic analyses based on the 16S rRNA gene sequence revealed that strain WL80(T) fell within the cluster of the genus Actinomyces, with highest sequence similarity to the type strains of Actinomyces radicidentis (98.8% similarity) and Actinomyces urogenitalis (97.0% similarity). The major cellular fatty acids were C18 : 1ω9c and C16 : 0. Menaquinone-10 (H4) was the major respiratory quinone. The genomic DNA G+C content of the isolate was 70.4 mol%. DNA-DNA hybridization values with closely related strains indicated less than 7.6% genomic relatedness. The results of physiological, biochemical, chemotaxonomic and genotypic analyses indicated that strain WL80(T) represents a novel species of the genus Actinomyces, for which the name Actinomyces haliotis sp. nov. is proposed. The type strain is WL80(T) ( = KACC 17211(T) = JCM 18848(T)).
Moreno, I M; Malpica, J M; Díaz-Pendón, J A; Moriones, E; Fraile, A; García-Arenal, F
2004-01-05
The genetic structure of the population of Watermelon mosaic virus (WMV) in Spain was analysed by the biological and molecular characterisation of isolates sampled from its main host plant, melon. The population was a highly homogeneous one, built of a single pathotype, and comprising isolates closely related genetically. There was indication of temporal replacement of genotypes, but not of spatial structure of the population. Analyses of nucleotide sequences in three genomic regions, that is, in the cistrons for the P1, cylindrical inclusion (CI) and capsid (CP) proteins, showed lower similar values of nucleotide diversity for the P1 than for the CI or CP cistrons. The CI protein and the CP were under tighter evolutionary constraints than the P1 protein. Also, for the CI and CP cistrons, but not for the P1 cistron, two groups of sequences, defining two genetic strains, were apparent. Thus, different genomic regions of WMV show different evolutionary dynamics. Interestingly, for the CI and CP cistrons, sequences were clustered into two regions of the sequence space, defining the two strains above, and no intermediary sequences were identified. Recombinant isolates were found, accounting for at least 7% of the population. These recombinants presented two interesting features: (i) crossover points were detected between the analysed regions in the CI and CP cistrons, but not between those in the P1 and CI cistrons, (ii) crossover points were not observed within the analysed coding regions for the P1, CI or CP proteins. This indicates strong selection against isolates with recombinant proteins, even when originated from closely related strains. Hence, data indicate that genotypes of WMV, generated by mutation or recombination, outside of acceptable, discrete, regions in the evolutionary space, are eliminated from the virus population by negative selection.
Characterization of tannase protein sequences of bacteria and fungi: an in silico study.
Banerjee, Amrita; Jana, Arijit; Pati, Bikash R; Mondal, Keshab C; Das Mohapatra, Pradeep K
2012-04-01
The tannase protein sequences of 149 bacteria and 36 fungi were retrieved from NCBI database. Among them only 77 bacterial and 31 fungal tannase sequences were taken which have different amino acid compositions. These sequences were analysed for different physical and chemical properties, superfamily search, multiple sequence alignment, phylogenetic tree construction and motif finding to find out the functional motif and the evolutionary relationship among them. The superfamily search for these tannase exposed the occurrence of proline iminopeptidase-like, biotin biosynthesis protein BioH, O-acetyltransferase, carboxylesterase/thioesterase 1, carbon-carbon bond hydrolase, haloperoxidase, prolyl oligopeptidase, C-terminal domain and mycobacterial antigens families and alpha/beta hydrolase superfamily. Some bacterial and fungal sequence showed similarity with different families individually. The multiple sequence alignment of these tannase protein sequences showed conserved regions at different stretches with maximum homology from amino acid residues 389-469 and 482-523 which could be used for designing degenerate primers or probes specific for tannase producing bacterial and fungal species. Phylogenetic tree showed two different clusters; one has only bacteria and another have both fungi and bacteria showing some relationship between these different genera. Although in second cluster near about all fungal species were found together in a corner which indicates the sequence level similarity among fungal genera. The distributions of fourteen motifs analysis revealed Motif 1 with a signature amino acid sequence of 29 amino acids, i.e. GCSTGGREALKQAQRWPHDYDGIIANNPA, was uniformly observed in 83.3 % of studied tannase sequences representing its participation with the structure and enzymatic function.
Jangid, Kamlesh; Kao, Ming-Hung; Lahamge, Aishwarya; Williams, Mark A.; Rathbun, Stephen L.; Whitman, William B.
2016-01-01
K-shuff is a new algorithm for comparing the similarity of gene sequence libraries, providing measures of the structural and compositional diversity as well as the significance of the differences between these measures. Inspired by Ripley’s K-function for spatial point pattern analysis, the Intra K-function or IKF measures the structural diversity, including both the richness and overall similarity of the sequences, within a library. The Cross K-function or CKF measures the compositional diversity between gene libraries, reflecting both the number of OTUs shared as well as the overall similarity in OTUs. A Monte Carlo testing procedure then enables statistical evaluation of both the structural and compositional diversity between gene libraries. For 16S rRNA gene libraries from complex bacterial communities such as those found in seawater, salt marsh sediments, and soils, K-shuff yields reproducible estimates of structural and compositional diversity with libraries greater than 50 sequences. Similarly, for pyrosequencing libraries generated from a glacial retreat chronosequence and Illumina® libraries generated from US homes, K-shuff required >300 and 100 sequences per sample, respectively. Power analyses demonstrated that K-shuff is sensitive to small differences in Sanger or Illumina® libraries. This extra sensitivity of K-shuff enabled examination of compositional differences at much deeper taxonomic levels, such as within abundant OTUs. This is especially useful when comparing communities that are compositionally very similar but functionally different. K-shuff will therefore prove beneficial for conventional microbiome analysis as well as specific hypothesis testing. PMID:27911946
Tel-Zur, Noemi; Abbo, Shahal; Bar-Zvi, Dudy; Mizrahi, Yosef
2004-10-01
Hylocereus and Selenicereus are native to tropical and sub-tropical America. Based on its taxonomic status and crossability relations it was postulated that H. megalanthus (syn. S. megalanthus) is an allotetraploid (2n = 4x = 44) derived from natural hybridization between two closely related diploid taxa. The present work aimed at elucidating the genetic relationships between species of the two genera. Crosses were performed and the putative hybrids were analysed by chromosome counts and morphological traits. The ploidy level of hybrids was confirmed by fluorescent in situ hybridization (FISH) of rDNA sites. Genomic in situ hybridization (GISH) was used in an attempt to identify the putative diploid genome donors of H. megalanthus and an artificial interploid hybrid. Reciprocal crosses among four diploid Hylocereus species (H. costaricensis, H. monacanthus (syn. H. polyrhizus), H. undatus and Hylocereus sp.) yielded viable diploid hybrids, with regular chromosome pairing. Reciprocal crosses between these Hylocereus spp. and H. megalanthus yielded viable triploid, pentaploid, hexaploid and aneuploid hybrids. Morphological and phenological traits confirm the hybrid origin. In situ detection of rDNA sites was in accord with the ploidy status of the species and hybrid studied. GISH results indicated that overall sequence composition of H. megalanthus is similar to that of H. ocamponis and S. grandiflorus. High sequence similarity was also found between the parental genomes of H. monacanthus and H. megalanthus in one triploid hybrid. The ease of obtaining partially fertile F1 hybrids and the relative sequence similarity (in GISH study) suggest close genetic relationships among the taxa analysed.
Candidate chemosensory ionotropic receptors in a Lepidoptera.
Olivier, V; Monsempes, C; François, M-C; Poivet, E; Jacquin-Joly, E
2011-04-01
A new family of candidate chemosensory ionotropic receptors (IRs) related to ionotropic glutamate receptors (iGluRs) was recently discovered in Drosophila melanogaster. Through Blast analyses of an expressed sequenced tag library prepared from male antennae of the noctuid moth Spodoptera littoralis, we identified 12 unigenes encoding proteins related to D. melanogaster and Bombyx mori IRs. Their full length sequences were obtained and the analyses of their expression patterns suggest that they were exclusively expressed or clearly enriched in chemosensory organs. The deduced protein sequences were more similar to B. mori and D. melanogaster IRs than to iGluRs and showed considerable variations in the predicted ligand-binding domains; none have the three glutamate-interacting residues found in iGluRs, suggesting different binding specificities. Our data suggest that we identified members of the insect IR chemosensory receptor family in S. littoralis and we report here the first demonstration of IR expression in Lepidoptera. © 2010 The Authors. Insect Molecular Biology © 2010 The Royal Entomological Society.
Lopes-Santos, Lucilene; Castro, Daniel Bedo Assumpção; Ferreira-Tonin, Mariana; Corrêa, Daniele Bussioli Alves; Weir, Bevan Simon; Park, Duckchul; Ottoboni, Laura Maria Mariscal; Neto, Júlio Rodrigues; Destéfano, Suzete Aparecida Lanza
2017-06-01
The phylogenetic classification of the species Burkholderia andropogonis within the Burkholderia genus was reassessed using 16S rRNA gene phylogenetic analysis and multilocus sequence analysis (MLSA). Both phylogenetic trees revealed two main groups, named A and B, strongly supported by high bootstrap values (100%). Group A encompassed all of the Burkholderia species complex, whi.le Group B only comprised B. andropogonis species, with low percentage similarities with other species of the genus, from 92 to 95% for 16S rRNA gene sequences and 83% for conserved gene sequences. Average nucleotide identity (ANI), tetranucleotide signature frequency, and percentage of conserved proteins POCP analyses were also carried out, and in the three analyses B. andropogonis showed lower values when compared to the other Burkholderia species complex, near 71% for ANI, from 0.484 to 0.724 for tetranucleotide signature frequency, and around 50% for POCP, reinforcing the distance observed in the phylogenetic analyses. Our findings provide an important insight into the taxonomy of B. andropogonis. It is clear from the results that this bacterial species exhibits genotypic differences and represents a new genus described herein as Robbsia andropogonis gen. nov., comb. nov.
Loh, Siew-May; Gillett, Amber; Ryan, Una; Irwin, Peter; Oskam, Charlotte
2017-04-01
Recently, a novel species of the genus Borreliawas identified in Bothriocroton concolor and Ixodes holocyclus ticks from echidnas. Analyses of 16S rRNA and flaB genes identified three closely related genotypes of this bacterium (Borrelia sp. Aus A-C) that were unique and distinct from previously described borreliae. Phylogenetic analyses of flaB (763 bp), groEL (1537 bp), gyrB (1702 bp) and glpQ (874 bp) gene sequences and concatenated sequences (3585 bp) of three gene loci (16S rRNA, flaB and gyrB) were consistent with previous findings and confirm that this novel species of the genus Borrelia is more closely related to, yet distinct from, the Reptile-associated (REP) and Relapsing Fever (RF) groups. At the flaB locus, genotypes A, B and C shared the highest percentage sequence similarities (87.9, 88 and 87.9 %, respectively) with B.orrelia turcica (REP), whereas at the groEL and gyrB loci, these genotypes were most similar (88.2-89.4 %) to B.orrelia hermsii (RF). At the glpQ locus, genotypes A and B were most similar (85.7 and 85.4 % respectively) to Borrelia sp. Tortoise14H1 (REP). The presence of the glpQ gene, which is absent in the Lyme Borreliosis group spirochaetes, further emphasises that the novel species of the genus Borrelia characterized in the present study does not belong to this group. Phylogenetic analyses at multiple loci produced consistent topographies revealing the monophyletic grouping of this bacterium, therefore providing strong support for its species status. We propose the name 'CandidatusBorrelia tachyglossi', and hypothesize that this species of the genus Borrelia may be endemic to Australia. The pathogenic potential of this bacterium is not yet known.
Loh, Siew-May; Gillett, Amber; Ryan, Una; Irwin, Peter
2017-01-01
Recently, a novel species of the genus Borreliawas identified in Bothriocroton concolor and Ixodes holocyclus ticks from echidnas. Analyses of 16S rRNA and flaB genes identified three closely related genotypes of this bacterium (Borrelia sp. Aus A-C) that were unique and distinct from previously described borreliae. Phylogenetic analyses of flaB (763 bp), groEL (1537 bp), gyrB (1702 bp) and glpQ (874 bp) gene sequences and concatenated sequences (3585 bp) of three gene loci (16S rRNA, flaB and gyrB) were consistent with previous findings and confirm that this novel species of the genus Borrelia is more closely related to, yet distinct from, the Reptile-associated (REP) and Relapsing Fever (RF) groups. At the flaB locus, genotypes A, B and C shared the highest percentage sequence similarities (87.9, 88 and 87.9 %, respectively) with B.orrelia turcica (REP), whereas at the groEL and gyrB loci, these genotypes were most similar (88.2–89.4 %) to B.orrelia hermsii (RF). At the glpQ locus, genotypes A and B were most similar (85.7 and 85.4 % respectively) to Borrelia sp. Tortoise14H1 (REP). The presence of the glpQ gene, which is absent in the Lyme Borreliosis group spirochaetes, further emphasises that the novel species of the genus Borrelia characterized in the present study does not belong to this group. Phylogenetic analyses at multiple loci produced consistent topographies revealing the monophyletic grouping of this bacterium, therefore providing strong support for its species status. We propose the name ‘Candidatus Borrelia tachyglossi’, and hypothesize that this species of the genus Borrelia may be endemic to Australia. The pathogenic potential of this bacterium is not yet known. PMID:28475032
Water-escape velocities in jumping blacktip sharks
Brunnschweiler, Juerg M
2005-01-01
This paper describes the first determination of water-escape velocities in free-ranging sharks. Two approximations are used to estimate the final swimming speed at the moment of penetrating the water surface. Blacktip sharks were videotaped from below the surface and parameters were estimated by analysing the sequences frame by frame. Water-escape velocities averaged 6.3 m s−1. These velocities for blacktip sharks seem accurate and are similar to estimates obtained for other shark species of similar size. PMID:16849197
Postel, Alexander; Schmeiser, Stefanie; Zimmermann, Bernd; Becher, Paul
2016-01-01
Molecular epidemiology has become an indispensable tool in the diagnosis of diseases and in tracing the infection routes of pathogens. Due to advances in conventional sequencing and the development of high throughput technologies, the field of sequence determination is in the process of being revolutionized. Platforms for sharing sequence information and providing standardized tools for phylogenetic analyses are becoming increasingly important. The database (DB) of the European Union (EU) and World Organisation for Animal Health (OIE) Reference Laboratory for classical swine fever offers one of the world’s largest semi-public virus-specific sequence collections combined with a module for phylogenetic analysis. The classical swine fever (CSF) DB (CSF-DB) became a valuable tool for supporting diagnosis and epidemiological investigations of this highly contagious disease in pigs with high socio-economic impacts worldwide. The DB has been re-designed and now allows for the storage and analysis of traditionally used, well established genomic regions and of larger genomic regions including complete viral genomes. We present an application example for the analysis of highly similar viral sequences obtained in an endemic disease situation and introduce the new geographic “CSF Maps” tool. The concept of this standardized and easy-to-use DB with an integrated genetic typing module is suited to serve as a blueprint for similar platforms for other human or animal viruses. PMID:27827988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemla, A; Lang, D; Kostova, T
2010-11-29
Most of the currently used methods for protein function prediction rely on sequence-based comparisons between a query protein and those for which a functional annotation is provided. A serious limitation of sequence similarity-based approaches for identifying residue conservation among proteins is the low confidence in assigning residue-residue correspondences among proteins when the level of sequence identity between the compared proteins is poor. Multiple sequence alignment methods are more satisfactory - still, they cannot provide reliable results at low levels of sequence identity. Our goal in the current work was to develop an algorithm that could overcome these difficulties and facilitatemore » the identification of structurally (and possibly functionally) relevant residue-residue correspondences between compared protein structures. Here we present StralSV, a new algorithm for detecting closely related structure fragments and quantifying residue frequency from tight local structure alignments. We apply StralSV in a study of the RNA-dependent RNA polymerase of poliovirus and demonstrate that the algorithm can be used to determine regions of the protein that are relatively unique or that shared structural similarity with structures that are distantly related. By quantifying residue frequencies among many residue-residue pairs extracted from local alignments, one can infer potential structural or functional importance of specific residues that are determined to be highly conserved or that deviate from a consensus. We further demonstrate that considerable detailed structural and phylogenetic information can be derived from StralSV analyses. StralSV is a new structure-based algorithm for identifying and aligning structure fragments that have similarity to a reference protein. StralSV analysis can be used to quantify residue-residue correspondences and identify residues that may be of particular structural or functional importance, as well as unusual or unexpected residues at a given sequence position.« less
Detection of a new bat gammaherpesvirus in the Philippines.
Watanabe, Shumpei; Ueda, Naoya; Iha, Koichiro; Masangkay, Joseph S; Fujii, Hikaru; Alviola, Phillip; Mizutani, Tetsuya; Maeda, Ken; Yamane, Daisuke; Walid, Azab; Kato, Kentaro; Kyuwa, Shigeru; Tohya, Yukinobu; Yoshikawa, Yasuhiro; Akashi, Hiroomi
2009-08-01
A new bat herpesvirus was detected in the spleen of an insectivorous bat (Hipposideros diadema, family Hipposideridae) collected on Panay Island, the Philippines. PCR analyses were performed using COnsensus-DEgenerate Hybrid Oligonucleotide Primers (CODEHOPs) targeting the herpesvirus DNA polymerase (DPOL) gene. Although we obtained PCR products with CODEHOPs, direct sequencing using the primers was not possible because of high degree of degeneracy. Direct sequencing technology developed in our rapid determination system of viral RNA sequences (RDV) was applied in this study, and a partial DPOL nucleotide sequence was determined. In addition, a partial gB gene nucleotide sequence was also determined using the same strategy. We connected the partial gB and DPOL sequences with long-distance PCR, and a 3741-bp nucleotide fragment, including the 3' part of the gB gene and the 5' part of the DPOL gene, was finally determined. Phylogenetic analysis showed that the sequence was novel and most similar to those of the subfamily Gammaherpesvirinae.
Schlötelburg, C; von Wintzingerode, F; Hauck, R; Hegemann, W; Göbel, U B
2000-07-01
A 16S-rDNA-based molecular study was performed to determine the bacterial diversity of an anaerobic, 1,2-dichloropropane-dechlorinating bioreactor consortium derived from sediment of the River Saale, Germany. Total community DNA was extracted and bacterial 16S rRNA genes were subsequently amplified using conserved primers. A clone library was constructed and analysed by sequencing the 16S rDNA inserts of randomly chosen clones followed by dot blot hybridization with labelled polynucleotide probes. The phylogenetic analysis revealed significant sequence similarities of several as yet uncultured bacterial species in the bioreactor to those found in other reductively dechlorinating freshwater consortia. In contrast, no close relationship was obtained with as yet uncultured bacteria found in reductively dechlorinating consortia derived from marine habitats. One rDNA clone showed >97% sequence similarity to Dehalobacter species, known for reductive dechlorination of tri- and tetrachloroethene. These results suggest that reductive dechlorination in microbial freshwater habitats depends upon a specific bacterial community structure.
Xavier, Crislaine; Cabral-de-Mello, Diogo Cavalcanti; de Moura, Rita Cássia
2014-12-01
Cytogenetic studies of the Neotropical beetle genus Dichotomius (Scarabaeinae, Coleoptera) have shown dynamism for centromeric constitutive heterochromatin sequences. In the present work we studied the chromosomes and isolated repetitive sequences of Dichotomius schiffleri aiming to contribute to the understanding of coleopteran genome/chromosomal organization. Dichotomius schiffleri presented a conserved karyotype and heterochromatin distribution in comparison to other species of the genus with 2n = 18, biarmed chromosomes, and pericentromeric C-positive blocks. Similarly to heterochromatin distributional patterns, the highly and moderately repetitive DNA fraction (C 0 t-1 DNA) was detected in pericentromeric areas, contrasting with the euchromatic mapping of an isolated TE (named DsmarMITE). After structural analyses, the DsmarMITE was classified as a non-autonomous element of the type miniature inverted-repeat transposable element (MITE) with terminal inverted repeats similar to Mariner elements of insects from different orders. The euchromatic distribution for DsmarMITE indicates that it does not play a part in the dynamics of constitutive heterochromatin sequences.
PCR Primers for Metazoan Nuclear 18S and 28S Ribosomal DNA Sequences
Machida, Ryuji J.; Knowlton, Nancy
2012-01-01
Background Metagenetic analyses, which amplify and sequence target marker DNA regions from environmental samples, are increasingly employed to assess the biodiversity of communities of small organisms. Using this approach, our understanding of microbial diversity has expanded greatly. In contrast, only a few studies using this approach to characterize metazoan diversity have been reported, despite the fact that many metazoan species are small and difficult to identify or are undescribed. One of the reasons for this discrepancy is the availability of universal primers for the target taxa. In microbial studies, analysis of the 16S ribosomal DNA is standard. In contrast, the best gene for metazoan metagenetics is less clear. In the present study, we have designed primers that amplify the nuclear 18S and 28S ribosomal DNA sequences of most metazoan species with the goal of providing effective approaches for metagenetic analyses of metazoan diversity in environmental samples, with a particular emphasis on marine biodiversity. Methodology/Principal Findings Conserved regions suitable for designing PCR primers were identified using 14,503 and 1,072 metazoan sequences of the nuclear 18S and 28S rDNA regions, respectively. The sequence similarity of both these newly designed and the previously reported primers to the target regions of these primers were compared for each phylum to determine the expected amplification efficacy. The nucleotide diversity of the flanking regions of the primers was also estimated for genera or higher taxonomic groups of 11 phyla to determine the variable regions within the genes. Conclusions/Significance The identified nuclear ribosomal DNA primers (five primer pairs for 18S and eleven for 28S) and the results of the nucleotide diversity analyses provide options for primer combinations for metazoan metagenetic analyses. Additionally, advantages and disadvantages of not only the 18S and 28S ribosomal DNA, but also other marker regions as targets for metazoan metagenetic analyses, are discussed. PMID:23049971
Mobberley, Jennifer M; Ortega, Maya C; Foster, Jamie S
2012-01-01
Thrombolites are unlaminated carbonate structures that form as a result of the metabolic interactions of complex microbial mat communities. Thrombolites have a long geological history; however, little is known regarding the microbes associated with modern structures. In this study, we use a barcoded 16S rRNA gene-pyrosequencing approach coupled with morphological analysis to assess the bacterial, cyanobacterial and archaeal diversity associated with actively forming thrombolites found in Highborne Cay, Bahamas. Analyses revealed four distinct microbial mat communities referred to as black, beige, pink and button mats on the surfaces of the thrombolites. At a coarse phylogenetic resolution, the domain bacterial sequence libraries from the four mats were similar, with Proteobacteria and Cyanobacteria being the most abundant. At the finer resolution of the rRNA gene sequences, significant differences in community structure were observed, with dramatically different cyanobacterial communities. Of the four mat types, the button mats contained the highest diversity of Cyanobacteria, and were dominated by two sequence clusters with high similarity to the genus Dichothrix, an organism associated with the deposition of carbonate. Archaeal diversity was low, but varied in all mat types, and the archaeal community was predominately composed of members of the Thaumarchaeota and Euryarchaeota. The morphological and genetic data support the hypothesis that the four mat types are distinctive thrombolitic mat communities. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
An archaebacterial homologue of the essential eubacterial cell division protein FtsZ.
Baumann, P; Jackson, S P
1996-06-25
Life falls into three fundamental domains--Archaea, Bacteria, and Eucarya (formerly archaebacteria, eubacteria, and eukaryotes,. respectively). Though Archaea lack nuclei and share many morphological features with Bacteria, molecular analyses, principally of the transcription and translation machineries, have suggested that Archaea are more related to Eucarya than to Bacteria. Currently, little is known about the archaeal cell division apparatus. In Bacteria, a crucial component of the cell division machinery is FtsZ, a GTPase that localizes to a ring at the site of septation. Interestingly, FtsZ is distantly related in sequence to eukaryotic tubulins, which also interact with GTP and are components of the eukaryotic cell cytoskeleton. By screening for the ability to bind radiolabeled nucleotides, we have identified a protein of the hyperthermophilic archaeon Pyrococcus woesei that interacts tightly and specifically with GTP. Furthermore, through screening an expression library of P. woesei genomic DNA, we have cloned the gene encoding this protein. Sequence comparisons reveal that the P. woesei GTP-binding protein is strikingly related in sequence to eubacterial FtsZ and is marginally more similar to eukaryotic tubulins than are bacterial FtsZ proteins. Phylogenetic analyses reinforce the notion that there is an evolutionary linkage between FtsZ and tubulins. These findings suggest that the archaeal cell division apparatus may be fundamentally similar to that of Bacteria and lead us to consider the evolutionary relationships between Archaea, Bacteria, and Eucarya.
Fowler, Elizabeth V; Peters, Jennifer M; Gatton, Michelle L; Chen, Nanhua; Cheng, Qin
2002-03-01
In Plasmodium falciparum a highly polymorphic multi-copy gene family, var, encodes the variant surface antigen P. falciparum erythrocyte membrane protein 1 (PfEMP1), which has an important role in cytoadherence and immune evasion. Using previously described universal PCR primers for the first Duffy binding-like domain (DBLalpha) of var we analysed the DBLalpha repertoires of Dd2 (originally from Thailand) and eight isolates from the Solomon Islands (n=4), Philippines (n=2), Papua New Guinea (n=1) and Africa (n=1). We found 15-32 unique DBLalpha sequence types among these isolates and estimated detectable DBLalpha repertoire sizes ranging from 33-38 to 52-57 copies per genome. Our data suggest that var gene repertoires generally consist of 40-50 copies per genome. Eighteen DBLalpha sequences appeared in more than one Asia-Pacific isolate with the number of sequences shared between any two isolates ranging from 0 to 6 (mean=2.0 +/-1.6). At the amino acid level DBLalpha sequence similarity within isolates ranged from 45.2 +/- 7.1 to 50.2 +/- 6.9%, and was not significantly different from the DBLalpha amino acid sequence similarity among isolates (P>0.1). Comparisons with published sequences also revealed little overlap among DBLalpha sequences from different regions. High DBLalpha sequence diversity and minimal overlap among these isolates suggest that the global var gene repertoire is immense, and may potentially be selected for by the host's protective immune response to the var gene products, PfEMP1.
Christie, Andrew E.; Fontanilla, Tiana M.; Nesbit, Katherine T.; Lenz, Petra H.
2013-01-01
Diel vertical migration and seasonal diapause are critical life history events for the copepod Calanus finmarchicus. While much is known about these behaviors phenomenologically, little is known about their molecular underpinnings. Recent studies in insects suggest that some circadian genes/proteins also contribute to the establishment of seasonal diapause. Thus, it is possible that in Calanus these distinct timing regimes share some genetic components. To begin to address this possibility, we used the well-established Drosophila melanogaster circadian system as a reference for mining clock transcripts from a 200,000+ sequence Calanus transcriptome; the proteins encoded by the identified transcripts were also deduced and characterized. Sequences encoding homologs of the Drosophila core clock proteins CLOCK, CYCLE, PERIOD and TIMELESS were identified, as was one encoding CRYPTOCHROME 2, a core clock protein in ancestral insect systems, but absent in Drosophila. Calanus transcripts encoding proteins known to modulate the Drosophila core clock were also identified and characterized, e.g. CLOCKWORK ORANGE, DOUBLETIME, SHAGGY and VRILLE. Alignment and structural analyses of the deduced Calanus proteins with their Drosophila counterparts revealed extensive sequence conservation, particularly in functional domains. Interestingly, reverse BLAST analyses of these sequences against all arthropod proteins typically revealed non-Drosophila isoforms to be most similar to the Calanus queries. This, in combination with the presence of both CRYPTOCHROME 1 (a clock input pathway protein) and CRYPTOCHROME 2 in Calanus, suggests that the organization of the copepod circadian system is an ancestral one, more similar to that of insects like Danaus plexippus than to that of Drosophila. PMID:23727418
P-type ATPase superfamily: evidence for critical roles for kingdom evolution.
Okamura, Hideyuki; Denawa, Masatsugu; Ohniwa, Ryosuke; Takeyasu, Kunio
2003-04-01
The P-type ATPase has become a protein superfamily. On the basis of sequence similarities, the phylogenetic analyses, and substrate specificities, this superfamily can be classified into 5 families and 11 subfamilies. A comparative phylogenetic analysis demonstrates the relationship between the molecular evolution of these subfamilies and the establishment of the kingdoms of living things.
Gil-Serna, Jessica; Vázquez, Covadonga; González-Jaén, María Teresa; Patiño, Belén
2015-12-02
Aspergillus steynii is probably the most relevant species of section Circumdati producing ochratoxin A (OTA). This mycotoxin contaminates a wide number of commodities and it is highly toxic for humans and animals. Little is known on the biosynthetic genes and their regulation in Aspergillus species. In this work, we identified and analysed three contiguous genes in A. steynii using 5'-RACE and genome walking approaches which predicted a cytochrome P450 monooxygenase (p450ste), a non-ribosomal peptide synthetase (nrpsste) and a polyketide synthase (pksste). These three genes were contiguous within a 20742 bp long genomic DNA fragment. Their corresponding cDNA were sequenced and their expression was analysed in three A. steynii strains using real time RT-PCR specific assays in permissive conditions in in vitro cultures. OTA was also analysed in these cultures. Comparative analyses of predicted genomic, cDNA and amino acid sequences were performed with sequences of similar gene functions. All the results obtained in these analyses were consistent and point out the involvement of these three genes in OTA biosynthesis by A. steynii and showed a co-ordinated expression pattern. This is the first time that a clustered organization OTA biosynthetic genes has been reported in Aspergillus genus. The results also suggested that this situation might be common in Aspergillus OTA-producing species and distinct to the one described for Penicillium species. Copyright © 2015 Elsevier B.V. All rights reserved.
Bioconductor Workflow for Microbiome Data Analysis: from raw reads to community analyses
Callahan, Ben J.; Sankaran, Kris; Fukuyama, Julia A.; McMurdie, Paul J.; Holmes, Susan P.
2016-01-01
High-throughput sequencing of PCR-amplified taxonomic markers (like the 16S rRNA gene) has enabled a new level of analysis of complex bacterial communities known as microbiomes. Many tools exist to quantify and compare abundance levels or OTU composition of communities in different conditions. The sequencing reads have to be denoised and assigned to the closest taxa from a reference database. Common approaches use a notion of 97% similarity and normalize the data by subsampling to equalize library sizes. In this paper, we show that statistical models allow more accurate abundance estimates. By providing a complete workflow in R, we enable the user to do sophisticated downstream statistical analyses, whether parametric or nonparametric. We provide examples of using the R packages dada2, phyloseq, DESeq2, ggplot2 and vegan to filter, visualize and test microbiome data. We also provide examples of supervised analyses using random forests and nonparametric testing using community networks and the ggnetwork package. PMID:27508062
Gao, Bo; Zhang, Jianming; Wang, Yuping; Chen, Fan; Zheng, Chaohui; Xie, Lianhui
2017-09-25
Over the past decade, indigenous dengue outbreaks have occurred occasionally in Fujian province in southeastern China because of sporadic imported dengue viruses (DENV). In this study, 3 DENV-2 and 2 DENV-4 strains were isolated from suspected febrile travelers at 2 ports of entry in Fujian between 2013-2015. Complete viral genome sequences of these new isolates were obtained with Sanger chemistry. Genomic sequence analyses revealed that these strains belonged to genotypes of 2-Cosmopolitan and 4-II. Consistent with the patients' travel information, phylogenetic analyses of the complete coding regions also indicated that most of the new isolates were genetically similar to the circulating strains in Southeast Asia rather than previous Chinese strains that were available. Therefore, phylogenetic analyses of the imported DENV demonstrated that multiple introductions of DENV emerged continuously in Fujian, and highlighted the importance of dengue surveillance at entry-exit ports in the subtropical regions of southern China.
2012-01-01
Background As a human replacement, the crab-eating macaque (Macaca fascicularis) is an invaluable non-human primate model for biomedical research, but the lack of genetic information on this primate has represented a significant obstacle for its broader use. Results Here, we sequenced the transcriptome of 16 tissues originated from two individuals of crab-eating macaque (male and female), and identified genes to resolve the main obstacles for understanding the biological response of the crab-eating macaque. From 4 million reads with 1.4 billion base sequences, 31,786 isotigs containing genes similar to those of humans, 12,672 novel isotigs, and 348,160 singletons were identified using the GS FLX sequencing method. Approximately 86% of human genes were represented among the genes sequenced in this study. Additionally, 175 tissue-specific transcripts were identified, 81 of which were experimentally validated. In total, 4,314 alternative splicing (AS) events were identified and analyzed. Intriguingly, 10.4% of AS events were associated with transposable element (TE) insertions. Finally, investigation of TE exonization events and evolutionary analysis were conducted, revealing interesting phenomena of human-specific amplified trends in TE exonization events. Conclusions This report represents the first large-scale transcriptome sequencing and genetic analyses of M. fascicularis and could contribute to its utility for biomedical research and basic biology. PMID:22554259
Brown, Shawn P; Callaham, Mac A; Oliver, Alena K; Jumpponen, Ari
2013-12-01
Prescribed burning is a common management tool to control fuel loads, ground vegetation, and facilitate desirable game species. We evaluated soil fungal community responses to long-term prescribed fire treatments in a loblolly pine forest on the Piedmont of Georgia and utilized deep Internal Transcribed Spacer Region 1 (ITS1) amplicon sequencing afforded by the recent Ion Torrent Personal Genome Machine (PGM). These deep sequence data (19,000 + reads per sample after subsampling) indicate that frequent fires (3-year fire interval) shift soil fungus communities, whereas infrequent fires (6-year fire interval) permit system resetting to a state similar to that without prescribed fire. Furthermore, in nonmetric multidimensional scaling analyses, primarily ectomycorrhizal taxa were correlated with axes associated with long fire intervals, whereas soil saprobes tended to be correlated with the frequent fire recurrence. We conclude that (1) multiplexed Ion Torrent PGM analyses allow deep cost effective sequencing of fungal communities but may suffer from short read lengths and inconsistent sequence quality adjacent to the sequencing adaptor; (2) frequent prescribed fires elicit a shift in soil fungal communities; and (3) such shifts do not occur when fire intervals are longer. Our results emphasize the general responsiveness of these forests to management, and the importance of fire return intervals in meeting management objectives. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Complete genome sequence of 285P, a novel T7-like polyvalent E. coli bacteriophage.
Xu, Bin; Ma, Xiangyu; Xiong, Hongyan; Li, Yafei
2014-06-01
Bacteriophages are considered potential biological agents for the control of infectious diseases and environmental disinfection. Here, we describe a novel T7-like polyvalent Escherichia coli bacteriophage, designated "285P," which can lyse several strains of E. coli. The genome, which consists of 39,270 base pairs with a G+C content of 48.73 %, was sequenced and annotated. Forty-three potential open reading frames were identified using bioinformatics tools. Based on whole-genome sequence comparison, phage 285P was identified as a novel strain of subgroup T7. It showed strongest sequence similarity to Kluyvera phage Kvp1. The phylogenetic analyses of both non-structural proteins (endonuclease gp3, amidase gp3.5, DNA primase/helicase gp4, DNA polymerase gp5, and exonuclease gp6) and structural protein (tail fiber protein gp17) led to the identification of 285P as T7-like phage. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analyses verified the annotation of the structural proteins (major capsid protein gp10a, tail protein gp12, and tail fiber protein gp17).
Genome sequence analysis of dengue virus 1 isolated in Key West, Florida.
Shin, Dongyoung; Richards, Stephanie L; Alto, Barry W; Bettinardi, David J; Smartt, Chelsea T
2013-01-01
Dengue virus (DENV) is transmitted to humans through the bite of mosquitoes. In November 2010, a dengue outbreak was reported in Monroe County in southern Florida (FL), including greater than 20 confirmed human cases. The virus collected from the human cases was verified as DENV serotype 1 (DENV-1) and one isolate was provided for sequence analysis. RNA was extracted from the DENV-1 isolate and was used in reverse transcription polymerase chain reaction (RT-PCR) to amplify PCR fragments to sequence. Nucleic acid primers were designed to generate overlapping PCR fragments that covered the entire genome. The DENV-1 isolate found in Key West (KW), FL was sequenced for whole genome characterization. Sequence assembly, Genbank searches, and recombination analyses were performed to verify the identity of the genome sequences and to determine percent similarity to known DENV-1 sequences. We show that the KW DENV-1 strain is 99% identical to Nicaraguan and Mexican DENV-1 strains. Phylogenetic and recombination analyses suggest that the DENV-1 isolated in KW originated from Nicaragua (NI) and the KW strain may circulate in KW. Also, recombination analysis results detected recombination events in the KW strain compared to DENV-1 strains from Puerto Rico. We evaluate the relative growth of KW strain of DENV-1 compared to other dengue viruses to determine whether the underlying genetics of the strain is associated with a replicative advantage, an important consideration since local transmission of DENV may result because domestic tourism can spread DENVs.
Chen, Honglin; Wang, Lixia; Liu, Xiaoyan; Hu, Liangliang; Wang, Suhua; Cheng, Xuzhen
2017-07-11
Cowpea [Vigna unguiculata (L.) Walp.] is one of the most important legumes in tropical and semi-arid regions. However, there is relatively little genomic information available for genetic research on and breeding of cowpea. The objectives of this study were to analyse the cowpea transcriptome and develop genic molecular markers for future genetic studies of this genus. Approximately 54 million high-quality cDNA sequence reads were obtained from cowpea based on Illumina paired-end sequencing technology and were de novo assembled to generate 47,899 unigenes with an N50 length of 1534 bp. Sequence similarity analysis revealed 36,289 unigenes (75.8%) with significant similarity to known proteins in the non-redundant (Nr) protein database, 23,471 unigenes (49.0%) with BLAST hits in the Swiss-Prot database, and 20,654 unigenes (43.1%) with high similarity in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Further analysis identified 5560 simple sequence repeats (SSRs) as potential genic molecular markers. Validating a random set of 500 SSR markers yielded 54 polymorphic markers among 32 cowpea accessions. This transcriptomic analysis of cowpea provided a valuable set of genomic data for characterizing genes with important agronomic traits in Vigna unguiculata and a new set of genic SSR markers for further genetic studies and breeding in cowpea and related Vigna species.
Genome and Transcriptome Sequencing of the Ostreid herpesvirus 1 From Tomales Bay, California
NASA Astrophysics Data System (ADS)
Burge, C. A.; Langevin, S.; Closek, C. J.; Roberts, S. B.; Friedman, C. S.
2016-02-01
Mass mortalities of larval and seed bivalve molluscs attributed to the Ostreid herpesvirus 1 (OsHV-1) occur globally. OsHV-1 was fully sequenced and characterized as a member of the Family Malacoherpesviridae. Multiple strains of OsHV-1 exist and may vary in virulence, i.e. OsHV-1 µvar. For most global variants of OsHV-1, sequence data is limited to PCR-based sequencing of segments, including two recent genomes. In the United States, OsHV-1 is limited to detection in adjacent embayments in California, Tomales and Drakes bays. Limited DNA sequence data of OsHV-1 infecting oysters in Tomales Bay indicates the virus detected in Tomales Bay is similar but not identical to any one global variant of OsHV-1. In order to better understand both strain variation and virulence of OsHV-1 infecting oysters in Tomales Bay, we used genomic and transcriptomic sequencing. Meta-genomic sequencing (Illumina MiSeq) was conducted from infected oysters (n=4 per year) collected in 2003, 2007, and 2014, where full OsHV-1 genome sequences and low overall microbial diversity were achieved from highly infected oysters. Increased microbial diversity was detected in three of four samples sequenced from 2003, where qPCR based genome copy numbers of OsHV-1 were lower. Expression analysis (SOLiD RNA sequencing) of OsHV-1 genes expressed in oyster larvae at 24 hours post exposure revealed a nearly complete transcriptome, with several highly expressed genes, which are similar to recent transcriptomic analyses of other OsHV-1 variants. Taken together, our results indicate that genome and transcriptome sequencing may be powerful tools in understanding both strain variation and virulence of non-culturable marine viruses.
The PARIGA server for real time filtering and analysis of reciprocal BLAST results.
Orsini, Massimiliano; Carcangiu, Simone; Cuccuru, Gianmauro; Uva, Paolo; Tramontano, Anna
2013-01-01
BLAST-based similarity searches are commonly used in several applications involving both nucleotide and protein sequences. These applications span from simple tasks such as mapping sequences over a database to more complex procedures as clustering or annotation processes. When the amount of analysed data increases, manual inspection of BLAST results become a tedious procedure. Tools for parsing or filtering BLAST results for different purposes are then required. We describe here PARIGA (http://resources.bioinformatica.crs4.it/pariga/), a server that enables users to perform all-against-all BLAST searches on two sets of sequences selected by the user. Moreover, since it stores the two BLAST output in a python-serialized-objects database, results can be filtered according to several parameters in real-time fashion, without re-running the process and avoiding additional programming efforts. Results can be interrogated by the user using logical operations, for example to retrieve cases where two queries match same targets, or when sequences from the two datasets are reciprocal best hits, or when a query matches a target in multiple regions. The Pariga web server is designed to be a helpful tool for managing the results of sequence similarity searches. The design and implementation of the server renders all operations very fast and easy to use.
Harper, B; McClain, S; Ganko, E W
2012-08-01
Global regulatory agencies require bioinformatic sequence analysis as part of their safety evaluation for transgenic crops. Analysis typically focuses on encoded proteins and adjacent endogenous flanking sequences. Recently, regulatory expectations have expanded to include all reading frames of the inserted DNA. The intent is to provide biologically relevant results that can be used in the overall assessment of safety. This paper evaluates the relevance of assessing the allergenic potential of all DNA reading frames found in common food genes using methods considered for the analysis of T-DNA sequences used in transgenic crops. FASTA and BLASTX algorithms were used to compare genes from maize, rice, soybean, cucumber, melon, watermelon, and tomato using international regulatory guidance. Results show that BLASTX for maize yielded 7254 alignments that exceeded allergen similarity thresholds and 210,772 alignments that matched eight or more consecutive amino acids with an allergen; other crops produced similar results. This analysis suggests that each nontransgenic crop has a much greater potential for allergenic risk than what has been observed clinically. We demonstrate that a meaningful safety assessment is unlikely to be provided by using methods with inherently high frequencies of false positive alignments when broadly applied to all reading frames of DNA sequence. Copyright © 2012 Elsevier Inc. All rights reserved.
Peyretaillade, E; Broussolle, V; Peyret, P; Méténier, G; Gouy, M; Vivarès, C P
1998-06-01
An intronless gene encoding a protein of 592 amino acid residues with similarity to 70-kDa heat shock proteins (HSP70s) has been cloned and sequenced from the amitochondrial protist Encephalitozoon cuniculi (phylum Microsporidia). Southern blot analyses show the presence of a single gene copy located on chromosome XI. The encoded protein exhibits an N-terminal hydrophobic leader sequence and two motifs shared by proteobacterial and mitochondrially expressed HSP70 homologs. Phylogenetic analysis using maximum likelihood and evolutionary distances place the E. cuniculi sequence in the cluster of mitochondrially expressed HSP70s, with a higher evolutionary rate than those of homologous sequences. Similar results were obtained after cloning a fragment of the homologous gene in the closely related species E. hellem. The presence of a nuclear targeting signal-like sequence supports a role of the Encephalitozoon HSP70 as a molecular chaperone of nuclear proteins. No evidence for cytosolic or endoplasmic reticulum forms of HSP70 was obtained through PCR amplification. These data suggest that Encephalitozoon species have evolved from an ancestor bearing mitochondria, which is in disagreement with the postulated presymbiotic origin of Microsporidia. The specific role and intracellular localization of the mitochondrial HSP70-like protein remain to be elucidated.
Jirsa, M.A.
2000-01-01
The Midway sequence is an assemblage of subaerially deposited clastic and volcanic rocks that forms a narrow wedge within Neoarchean greenstone of the western Wawa subprovince of the Superior Province. Volcanic conglomerate in the Midway sequence contains clasts of stratigraphically older greenstone, together with clasts of a distinctive hornblende-phyric trachyandesite that is not represented among the older greenstone flows. The trachyandesite forms flows and pyroclastic units that are interbedded with lenticular deposits of volcanic conglomerate in a manner interpreted to indicate approximately coeval volcanism and alluvial fan - Fluvial sedimentation within a linear, restricted, and tectonically active depocentre. The Midway sequence unconformably overlies greenstone on one side and is bounded by a regional-scale, strike-slip fault on the other. Structural analyses show that the Midway sequence was deposited after an early, precleavage folding event (D1) in greenstone, but before the regional metamorphic cleavage-forming D2 deformation. Lithologic and structural attributes are consistent with deposition in a strike-slip "pull-apart" basin. The stratigraphic and structural characteristics of the Midway sequence are generally similar to those of the Timiskaming Group and Timiskaming-type rocks in Canada, and more specifically to those of the Shebandowan Group in the Thunder Bay district. This similarity implies that the latest Archean tectonic and magmatic history of the western Wawa subprovince may have been nearly synchronous over great distances.
Identification of a Herbal Powder by Deoxyribonucleic Acid Barcoding and Structural Analyses.
Sheth, Bhavisha P; Thaker, Vrinda S
2015-10-01
Authentic identification of plants is essential for exploiting their medicinal properties as well as to stop the adulteration and malpractices with the trade of the same. To identify a herbal powder obtained from a herbalist in the local vicinity of Rajkot, Gujarat, using deoxyribonucleic acid (DNA) barcoding and molecular tools. The DNA was extracted from a herbal powder and selected Cassia species, followed by the polymerase chain reaction (PCR) and sequencing of the rbcL barcode locus. Thereafter the sequences were subjected to National Center for Biotechnology Information (NCBI) basic local alignment search tool (BLAST) analysis, followed by the protein three-dimension structure determination of the rbcL protein from the herbal powder and Cassia species namely Cassia fistula, Cassia tora and Cassia javanica (sequences obtained in the present study), Cassia Roxburghii, and Cassia abbreviata (sequences retrieved from Genbank). Further, the multiple and pairwise structural alignment were carried out in order to identify the herbal powder. The nucleotide sequences obtained from the selected species of Cassia were submitted to Genbank (Accession No. JX141397, JX141405, JX141420). The NCBI BLAST analysis of the rbcL protein from the herbal powder showed an equal sequence similarity (with reference to different parameters like E value, maximum identity, total score, query coverage) to C. javanica and C. roxburghii. In order to solve the ambiguities of the BLAST result, a protein structural approach was implemented. The protein homology models obtained in the present study were submitted to the protein model database (PM0079748-PM0079753). The pairwise structural alignment of the herbal powder (as template) and C. javanica and C. roxburghii (as targets individually) revealed a close similarity of the herbal powder with C. javanica. A strategy as used here, incorporating the integrated use of DNA barcoding and protein structural analyses could be adopted, as a novel rapid and economic procedure, especially in cases when protein coding loci are considered. Authentic identification of plants is essential for exploiting their medicinal properties as well as to stop the adulteration and malpractices with the trade of the same. A herbal powder was obtained from a herbalist in the local vicinity of Rajkot, Gujarat. An integrated approach using DNA barcoding and structural analyses was carried out to identify the herbal powder. The herbal powder was identified as Cassia javanica L.
Complete genome sequence of Menghai rhabdovirus, a novel mosquito-borne rhabdovirus from China.
Sun, Qiang; Zhao, Qiumin; An, Xiaoping; Guo, Xiaofang; Zuo, Shuqing; Zhang, Xianglilan; Pei, Guangqian; Liu, Wenli; Cheng, Shi; Wang, Yunfei; Shu, Peng; Mi, Zhiqiang; Huang, Yong; Zhang, Zhiyi; Tong, Yigang; Zhou, Hongning; Zhang, Jiusong
2017-04-01
Menghai rhabdovirus (MRV) was isolated from Aedes albopictus in Menghai county of Yunnan Province, China, in August 2010. Whole-genome sequencing of MRV was performed using an Ion PGM™ Sequencer. We found that MRV is a single-stranded, negative-sense RNA virus. The complete genome of MRV has 10,744 nt, with short inverted repeat termini, encoding five typical rhabdovirus proteins (N, P, M, G, and L) and an additional small hypothetical protein. Nucleotide BLAST analysis using the BLASTn method showed that the genome sequence most similar to that of MRV is that of Arboretum virus (NC_025393.1), with a Max score of 322, query coverage of 14%, and 66% identity. Genomic and phylogenetic analyses both demonstrated that MRV should be considered a member of a novel species of the family Rhabdoviridae.
Huiet, L; Feldstein, P A; Tsai, J H; Falk, B W
1993-12-01
Primer extension analyses and a PCR-based cloning strategy were used to identify and characterize 5' nucleotide sequences on the maize stripe virus (MStV) RNA4 mRNA transcripts encoding the major noncapsid protein (NCP). Direct RNA sequence analysis by primer extension showed that the NCP mRNA transcripts had 10-15 nucleotides beyond the 5' terminus of the MStV RNA4 nucleotide sequence. MStV genomic RNAs isolated from ribonucleoprotein particles (RNPs) lacked the additional 5' nucleotides. cDNA clones representing the 5' region of the mRNA transcripts were constructed, and the nucleotide sequences of the 5' regions were determined for 16 clones. Each was found to have a distinct 10-15 nucleotide sequence immediately 5' of the MStV RNA4 sequence. Eleven of 16 clones had the correct MStV RNA4 5' nucleotide sequence, while five showed minor variations at or near the 5' most MStV RNA4 nucleotide. These characteristics show strong similarities to other viral mRNA transcripts which are synthesized by cap snatching.
A Cyber-Attack Detection Model Based on Multivariate Analyses
NASA Astrophysics Data System (ADS)
Sakai, Yuto; Rinsaka, Koichiro; Dohi, Tadashi
In the present paper, we propose a novel cyber-attack detection model based on two multivariate-analysis methods to the audit data observed on a host machine. The statistical techniques used here are the well-known Hayashi's quantification method IV and cluster analysis method. We quantify the observed qualitative audit event sequence via the quantification method IV, and collect similar audit event sequence in the same groups based on the cluster analysis. It is shown in simulation experiments that our model can improve the cyber-attack detection accuracy in some realistic cases where both normal and attack activities are intermingled.
Liu, Shuaishuai; Zhang, Yanhong; Wang, Changming; Lin, Qiang
2016-07-01
The complete mitochondrial genome sequence of the hedgehog seahorse Hippocampus spinosissimus was first determined in this article. The total length of H. spinosissimus mitogenome is 16 527 bp and consists of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and 1 control region. The gene order and composition of H. spinosissimus were similar to those of most other vertebrates. The overall base composition of H. spinosissimus is 32.1% A, 30.3% T, 14.9% G and 22.7% C, with a slight A + T-rich feature (62.4%). Phylogenetic analyses based on complete mitochondrial genome sequence showed that H. spinosissimus has a close genetic relationship to H. ingens and H. kuda.
TEL-ZUR, NOEMI; ABBO, SHAHAL; BAR-ZVI, DUDY; MIZRAHI, YOSEF
2004-01-01
• Background and Aims Hylocereus and Selenicereus are native to tropical and sub-tropical America. Based on its taxonomic status and crossability relations it was postulated that H. megalanthus (syn. S. megalanthus) is an allotetraploid (2n = 4x = 44) derived from natural hybridization between two closely related diploid taxa. The present work aimed at elucidating the genetic relationships between species of the two genera. • Methods Crosses were performed and the putative hybrids were analysed by chromosome counts and morphological traits. The ploidy level of hybrids was confirmed by fluorescent in situ hybridization (FISH) of rDNA sites. Genomic in situ hybridization (GISH) was used in an attempt to identify the putative diploid genome donors of H. megalanthus and an artificial interploid hybrid. • Key Results Reciprocal crosses among four diploid Hylocereus species (H. costaricensis, H. monacanthus (syn. H. polyrhizus), H. undatus and Hylocereus sp.) yielded viable diploid hybrids, with regular chromosome pairing. Reciprocal crosses between these Hylocereus spp. and H. megalanthus yielded viable triploid, pentaploid, hexaploid and aneuploid hybrids. Morphological and phenological traits confirm the hybrid origin. In situ detection of rDNA sites was in accord with the ploidy status of the species and hybrid studied. GISH results indicated that overall sequence composition of H. megalanthus is similar to that of H. ocamponis and S. grandiflorus. High sequence similarity was also found between the parental genomes of H. monacanthus and H. megalanthus in one triploid hybrid. • Conclusions The ease of obtaining partially fertile F1 hybrids and the relative sequence similarity (in GISH study) suggest close genetic relationships among the taxa analysed. PMID:15329334
Davis, Gregg S; Waits, Kara; Nordstrom, Lora; Weaver, Brett; Aziz, Maliha; Gauld, Lori; Grande, Heidi; Bigler, Rick; Horwinski, Joseph; Porter, Stephen; Stegger, Marc; Johnson, James R; Liu, Cindy M; Price, Lance B
2015-09-15
Klebsiella pneumoniae is a common colonizer of the gastrointestinal tract of humans, companion animals, and livestock. To better understand potential contributions of foodborne K. pneumoniae to human clinical infections, we compared K. pneumoniae isolates from retail meat products and human clinical specimens to assess their similarity based on antibiotic resistance, genetic relatedness, and virulence. Klebsiella pneumoniae was isolated from retail meats from Flagstaff grocery stores in 2012 and from urine and blood specimens from Flagstaff Medical Center in 2011-2012. Isolates underwent antibiotic susceptibility testing and whole-genome sequencing. Genetic relatedness of the isolates was assessed using multilocus sequence typing and phylogenetic analyses. Extraintestinal virulence of several closely related meat-source and urine isolates was assessed using a murine sepsis model. Meat-source isolates were significantly more likely to be multidrug resistant and resistant to tetracycline and gentamicin than clinical isolates. Four sequence types occurred among both meat-source and clinical isolates. Phylogenetic analyses confirmed close relationships among meat-source and clinical isolates. Isolates from both sources showed similar virulence in the mouse sepsis model. Meat-source K. pneumoniae isolates were more likely than clinical isolates to be antibiotic resistant, which could reflect selective pressures from antibiotic use in food-animal production. The close genetic relatedness of meat-source and clinical isolates, coupled with similarities in virulence, suggest that the barriers to transmission between these 2 sources are low. Taken together, our results suggest that retail meat is a potential vehicle for transmitting virulent, antibiotic-resistant K. pneumoniae from food animals to humans. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.
Verma, Ashish; Mual, Poonam; Mayilraj, Shanmugam; Krishnamurthi, Srinivasan
2015-10-01
Two novel Gram-stain-negative, slow-growing, halotolerant strains with rod-shaped cells, designated as strains Mi-7T and Mi-8, which formed pin-point colonies on halophilic media were isolated during a study into the microbial diversity of a salt pan in the state of Tamilnadu, India. Both the strains had an obligate requirement for 1 % (w/v) NaCl for growth and were halotolerant, growing at NaCl concentrations of up to 20 % (w/v) in media. The strains, however, showed an inability to utilize the majority of substrates tested as sole carbon sources for growth and in fermentation reactions. Molecular phylogenetic analyses, based on 16S rRNA gene sequence revealed their closest phylogenetic neighbours to be members of the genus Marinobacter, with whom they showed the highest sequence similarity of 93.6 % and even less with the type strain of the type species, Marinobacter hydrocarbonoclasticus DSM 8798T (91.1 %). Similarities with other genera within the family Alteromonadaceae were below 91.0 %. However, the two strains were very closely related to each other with 99.9 % sequence similarity, and DNA–DNA hybridization analyses confirmed their placement in the same species. The DNA G+C content of both strains was 65 mol%. Using the polyphasic taxonomic data obtained from this study, strains Mi-7T and Mi-8 represent two strains of the same species of a novel genus for which the name Tamilnaduibacter salinus gen. nov., sp. nov., is proposed; the type strain of the novel species is Mi-7T ( = MTCC 12009T = DSM 28688T).
Solov'ev, V V; Kel', A E; Kolchanov, N A
1989-01-01
The factors, determining the presence of inverted and symmetrical repeats in genes coding for globular proteins, have been analysed. An interesting property of genetical code has been revealed in the analysis of symmetrical repeats: the pairs of symmetrical codons corresponded to pairs of amino acids with mostly similar physical-chemical parameters. This property may explain the presence of symmetrical repeats and palindromes only in genes coding for beta-structural proteins-polypeptides, where amino acids with similar physical-chemical properties occupy symmetrical positions. A stochastic model of evolution of polynucleotide sequences has been used for analysis of inverted repeats. The modelling demonstrated that only limiting of sequences (uneven frequencies of used codons) is enough for arising of nonrandom inverted repeats in genes.
Xu, Jian-Hua; Narabu, Takashi; Li, Hong-Mei; Fu, Peng
2002-01-01
Meloidogyne javanica, reproducing by mitotic parthenogenesis, is an economically important pathogen of a wide range of crops. A pair of near-isogenic lines virulent and avirulent toward the tomato resistance gene Mi were prepared for M. javanica by continuously selecting an avirulent population on the resistant tomato cultivar Momotaro over 19 generations. Random amplified polymorphic DNA (RAPD) analysis with 102 primers revealed that RAPD patterns were highly conserved between the virulent and avirulent lines, confirming that the two lines were genomically very similar. Nevertheless, with one of the primers a distinct polymorphic fragment, specific for the avirulent lines, was amplified. Southern hybridization results indicated that the polymorphic fragment and its homologs were deleted from the genome of the virulent line during the process of virulence acquisition. Sequence analysis and homology searches of public data bases, however, revealed no published sequences significantly similar to the sequence of the fragment, precluding a prediction of the potential function of the sequence. The successful preparation of the near-isogenic Mi-virulent and avirulent lines laid a firm foundation for the further identification and isolation of virulence-related genes in M. javanica.
Eisenberg, Tobias; Glaeser, Stefanie P; Ewers, Christa; Semmler, Torsten; Nicklas, Werner; Rau, Jörg; Mauder, Norman; Hofmann, Nicola; Imaoka, Koichi; Kimura, Masanobu; Kämpfer, Peter
2015-12-01
A pleomorphic, Gram-negative, rod-shaped, indole-, oxidase- and catalase-negative, non-spore-forming, non-motile bacterium was isolated in 1979 from the heart of a spinifex hopping mouse (Notomys alexis Thomas, 1922) with septicaemia and stored as Streptobacillus moniliformis in the strain collection of the Animal Health Laboratory, South Perth, Western Australia (AHL 370-1), as well as under CCUG 12425. On the basis of 16SrRNA gene sequence analyses, the strain was assigned to the genus Streptobacillus, with 99.4 % sequence similarity to the type strain of Streptobacillus moniliformis, 95.6 %sequence similarity to the type strain of Streptobacillus hongkongensis and 99.0 %sequence similarity to the type strain of Streptobacillus felis. The clear differentiation of strain AHL 370-1T from Streptobacillus moniliformis, Streptobacillus hongkongensis and Streptobacillus felis was also supported by rpoB, groEL and recA nucleotide and amino acid sequence analysis. Average nucleotide identity was 87.16 % between strain AHL 370-1T and Streptobacillus moniliformis DSM 12112T. Physiological data confirmed the allocation of strain AHL 370-1T to the family Leptotrichiaceae, considering the very similar profiles of enzyme activities and fatty acids compared to closely related species. Within the genus Streptobacillus,isolate AHL 370-1T could also be separated unambiguously from the type strains of Streptobacillus moniliformis, Streptobacillus hongkongensis and Streptobacillus felis by MALDI-TOF mass spectrometry. Two further strains (KWG2 and KWG24) isolated from asymptomatic black rats in Japan were highly similar to AHL 370-1T. On the basis of these data, we propose the novel species Streptobacillus notomytis sp. nov., with the type strain AHL370-1T (=CCUG 12425T=DSM 100026T=CCM 8593T=EF 12425T).
Gene structure and evolution of transthyretin in the order Chiroptera.
Khwanmunee, Jiraporn; Leelawatwattana, Ladda; Prapunpoj, Porntip
2016-02-01
Bats are mammals in the order Chiroptera. Although many extensive morphologic and molecular genetics analyses have been attempted, phylogenetic relationships of bats has not been completely resolved. The paraphyly of microbats is of particular controversy that needs to be confirmed. In this study, we attempted to use the nucleotide sequence of transthyretin (TTR) intron 1 to resolve the relationship among bats. To explore its utility, the complete sequences of TTR gene and intron 1 region of bats in Vespertilionidae: genus Eptesicus (Eptesicus fuscus) and genus Myotis (Myotis brandtii, Myotis davidii, and Myotis lucifugus), and Pteropodidae (Pteropus alecto and Pteropus vampyrus) were extracted from the retrieved sequences, whereas those of Rhinoluphus affinis and Scotophilus kuhlii were amplified and sequenced. The derived overall amino sequences of bat TTRs were found to be very similar to those in other eutherians but differed from those in other classes of vertebrates. However, missing of amino acids from N-terminal or C-terminal region was observed. The phylogenetic analysis of amino acid sequences suggested bat and other eutherian TTRs lineal descent from a single most recent common ancestor which differed from those of non-placental mammals and the other classes of vertebrates. The splicing of bat TTR precursor mRNAs was similar to those of other eutherian but different from those of marsupial, bird, reptile and amphibian. Based on TTR intron 1 sequence, the inferred evolutionary relationship within Chiroptera revealed more closely relatedness of R. affinis to megabats than to microbats. Accordingly, the paraphyly of microbats was suggested.
Comparative Genetic Analyses of Human Rhinovirus C (HRV-C) Complete Genome from Malaysia.
Khaw, Yam Sim; Chan, Yoke Fun; Jafar, Faizatul Lela; Othman, Norlijah; Chee, Hui Yee
2016-01-01
Human rhinovirus-C (HRV-C) has been implicated in more severe illnesses than HRV-A and HRV-B, however, the limited number of HRV-C complete genomes (complete 5' and 3' non-coding region and open reading frame sequences) has hindered the in-depth genetic study of this virus. This study aimed to sequence seven complete HRV-C genomes from Malaysia and compare their genetic characteristics with the 18 published HRV-Cs. Seven Malaysian HRV-C complete genomes were obtained with newly redesigned primers. The seven genomes were classified as HRV-C6, C12, C22, C23, C26, C42, and pat16 based on the VP4/VP2 and VP1 pairwise distance threshold classification. Five of the seven Malaysian isolates, namely, 3430-MY-10/C22, 8713-MY-10/C23, 8097-MY-11/C26, 1570-MY-10/C42, and 7383-MY-10/pat16 are the first newly sequenced complete HRV-C genomes. All seven Malaysian isolates genomes displayed nucleotide similarity of 63-81% among themselves and 63-96% with other HRV-Cs. Malaysian HRV-Cs had similar putative immunogenic sites, putative receptor utilization and potential antiviral sites as other HRV-Cs. The genomic features of Malaysian isolates were similar to those of other HRV-Cs. Negative selections were frequently detected in HRV-Cs complete coding sequences indicating that these sequences were under functional constraint. The present study showed that HRV-Cs from Malaysia have diverse genetic sequences but share conserved genomic features with other HRV-Cs. This genetic information could provide further aid in the understanding of HRV-C infection.
Lashkari, Mohammadreza; Manzari, Shahab; Sahragard, Ahad; Malagnini, Valeria; Boykin, Laura M; Hosseini, Reza
2014-07-01
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), is one of the most serious pests of citrus in the world, because it transmits the pathogen that causes citrus greening disease. To determine genetic variation among geographic populations of D. citri, microsatellite markers, mitochondrial gene cytochrome oxidase I (mtCOI) and the Wolbachia-Diaphorina, wDi, gene wsp sequence data were used to characterize Iranian and Pakistani populations. Also, a Bayesian phylogenetic technique was utilized to elucidate the relationships among the sequences data in this study and all mtCOI and wsp sequence data available in GenBank and the Wolbachia database. Microsatellite markers revealed significant genetic differentiation among Iranian populations, as well as between Iranian and Pakistani populations (FST = 0.0428, p < 0.01). Within Iran, the Sistan-Baluchestan population is significantly different from the Hormozgan (Fareghan) and Fars populations. By contrast, mtCOI data revealed two polymorphic sites separating the sequences from Iran and Pakistan. Global phylogenetic analyses showed that D. citri populations in Iran, India, Saudi Arabia, Brazil, Mexico, Florida and Texas (USA) are similar. Wolbachia, wDi, wsp sequences were similar among Iranian populations, but different between Iranian and Pakistani populations. The South West Asia (SWA) group is the most likely source of the introduced Iranian populations of D. citri. This assertion is also supported by the sequence similarity of the Wolbachia, wDi, strains from the Florida, USA and Iranian D. citri. These results should be considered when looking for biological controls in either country. © 2013 Society of Chemical Industry.
Elrobh, Mohamed S.; Alanazi, Mohammad S.; Khan, Wajahatullah; Abduljaleel, Zainularifeen; Al-Amri, Abdullah; Bazzi, Mohammad D.
2011-01-01
Heat shock proteins are ubiquitous, induced under a number of environmental and metabolic stresses, with highly conserved DNA sequences among mammalian species. Camelus dromedaries (the Arabian camel) domesticated under semi-desert environments, is well adapted to tolerate and survive against severe drought and high temperatures for extended periods. This is the first report of molecular cloning and characterization of full length cDNA of encoding a putative stress-induced heat shock HSPA6 protein (also called HSP70B′) from Arabian camel. A full-length cDNA (2417 bp) was obtained by rapid amplification of cDNA ends (RACE) and cloned in pET-b expression vector. The sequence analysis of HSPA6 gene showed 1932 bp-long open reading frame encoding 643 amino acids. The complete cDNA sequence of the Arabian camel HSPA6 gene was submitted to NCBI GeneBank (accession number HQ214118.1). The BLAST analysis indicated that C. dromedaries HSPA6 gene nucleotides shared high similarity (77–91%) with heat shock gene nucleotide of other mammals. The deduced 643 amino acid sequences (accession number ADO12067.1) showed that the predicted protein has an estimated molecular weight of 70.5 kDa with a predicted isoelectric point (pI) of 6.0. The comparative analyses of camel HSPA6 protein sequences with other mammalian heat shock proteins (HSPs) showed high identity (80–94%). Predicted camel HSPA6 protein structure using Protein 3D structural analysis high similarities with human and mouse HSPs. Taken together, this study indicates that the cDNA sequences of HSPA6 gene and its amino acid and protein structure from the Arabian camel are highly conserved and have similarities with other mammalian species. PMID:21845074
Comparative Genetic Analyses of Human Rhinovirus C (HRV-C) Complete Genome from Malaysia
Khaw, Yam Sim; Chan, Yoke Fun; Jafar, Faizatul Lela; Othman, Norlijah; Chee, Hui Yee
2016-01-01
Human rhinovirus-C (HRV-C) has been implicated in more severe illnesses than HRV-A and HRV-B, however, the limited number of HRV-C complete genomes (complete 5′ and 3′ non-coding region and open reading frame sequences) has hindered the in-depth genetic study of this virus. This study aimed to sequence seven complete HRV-C genomes from Malaysia and compare their genetic characteristics with the 18 published HRV-Cs. Seven Malaysian HRV-C complete genomes were obtained with newly redesigned primers. The seven genomes were classified as HRV-C6, C12, C22, C23, C26, C42, and pat16 based on the VP4/VP2 and VP1 pairwise distance threshold classification. Five of the seven Malaysian isolates, namely, 3430-MY-10/C22, 8713-MY-10/C23, 8097-MY-11/C26, 1570-MY-10/C42, and 7383-MY-10/pat16 are the first newly sequenced complete HRV-C genomes. All seven Malaysian isolates genomes displayed nucleotide similarity of 63–81% among themselves and 63–96% with other HRV-Cs. Malaysian HRV-Cs had similar putative immunogenic sites, putative receptor utilization and potential antiviral sites as other HRV-Cs. The genomic features of Malaysian isolates were similar to those of other HRV-Cs. Negative selections were frequently detected in HRV-Cs complete coding sequences indicating that these sequences were under functional constraint. The present study showed that HRV-Cs from Malaysia have diverse genetic sequences but share conserved genomic features with other HRV-Cs. This genetic information could provide further aid in the understanding of HRV-C infection. PMID:27199901
Azospirillum zeae sp. nov., a diazotrophic bacterium isolated from rhizosphere soil of Zea mays.
Mehnaz, Samina; Weselowski, Brian; Lazarovits, George
2007-12-01
Two free-living nitrogen-fixing bacterial strains, N6 and N7(T), were isolated from corn rhizosphere. A polyphasic taxonomic approach, including morphological characterization, Biolog analysis, DNA-DNA hybridization, and 16S rRNA, cpn60 and nifH gene sequence analysis, was taken to analyse the two strains. 16S rRNA gene sequence analysis indicated that strains N6 and N7(T) both belonged to the genus Azospirillum and were closely related to Azospirillum oryzae (98.7 and 98.8 % similarity, respectively) and Azospirillum lipoferum (97.5 and 97.6 % similarity, respectively). DNA-DNA hybridization of strains N6 and N7(T) showed reassociation values of 48 and 37 %, respectively, with A. oryzae and 43 % with A. lipoferum. Sequences of the nifH and cpn60 genes of both strains showed 99 and approximately 95 % similarity, respectively, with those of A. oryzae. Chemotaxonomic characteristics (Q-10 as quinone system, 18 : 1omega7c as major fatty acid) and G+C content of the DNA (67.6 mol%) were also similar to those of members of the genus Azospirillum. Gene sequences and Biolog and fatty acid analysis showed that strains N6 and N7(T) differed from the closely related species A. lipoferum and A. oryzae. On the basis of these results, it is proposed that these nitrogen-fixing strains represent a novel species. The name Azospirillum zeae sp. nov. is suggested, with N7(T) (=NCCB 100147(T)=LMG 23989(T)) as the type strain.
Silva, A T; Paiva, L V; Andrade, A C; Barduche, D
2013-05-21
Brazil possesses the most modern and productive coffee growing farms in the world, but technological development is desired to cope with the increasing world demand. One way to increase Brazilian coffee growing productivity is wide scale production of clones with superior genotypes, which can be obtained with in vitro propagation technique, or from tissue culture. These procedures can generate thousands of clones. However, the methodologies for in vitro cultivation are genotype-dependent, which leads to an almost empirical development of specific protocols for each species. Therefore, molecular markers linked to the biochemical events of somatic embryogenesis would greatly facilitate the development of such protocols. In this context, sequences potentially involved in embryogenesis processes in the coffee plant were identified in silico from libraries generated by the Brazilian Coffee Genome Project. Through these in silico analyses, we identified 15 EST-contigs related to the embryogenesis process. Among these, 5 EST-contigs (3605, 9850, 13686, 17240, and 17265) could readily be associated with plant embryogenesis. Sequence analysis of EST-contig 3605, 9850, and 17265 revealed similarity to a polygalacturonase, to a cysteine-proteinase, and to an allergenine, respectively. Results also show that EST-contig 17265 sequences presented similarity to an expansin. Finally, analysis of EST-contig 17240 revealed similarity to a protein of unknown function, but it grouped in the similarity dendrogram with the WUSCHEL transcription factor. The data suggest that these EST-contigs are related to the embryogenic process and have potential as molecular markers to increase methodological efficiency in obtaining coffee plant embryogenic materials.
Substrate-Driven Mapping of the Degradome by Comparison of Sequence Logos
Fuchs, Julian E.; von Grafenstein, Susanne; Huber, Roland G.; Kramer, Christian; Liedl, Klaus R.
2013-01-01
Sequence logos are frequently used to illustrate substrate preferences and specificity of proteases. Here, we employed the compiled substrates of the MEROPS database to introduce a novel metric for comparison of protease substrate preferences. The constructed similarity matrix of 62 proteases can be used to intuitively visualize similarities in protease substrate readout via principal component analysis and construction of protease specificity trees. Since our new metric is solely based on substrate data, we can engraft the protease tree including proteolytic enzymes of different evolutionary origin. Thereby, our analyses confirm pronounced overlaps in substrate recognition not only between proteases closely related on sequence basis but also between proteolytic enzymes of different evolutionary origin and catalytic type. To illustrate the applicability of our approach we analyze the distribution of targets of small molecules from the ChEMBL database in our substrate-based protease specificity trees. We observe a striking clustering of annotated targets in tree branches even though these grouped targets do not necessarily share similarity on protein sequence level. This highlights the value and applicability of knowledge acquired from peptide substrates in drug design of small molecules, e.g., for the prediction of off-target effects or drug repurposing. Consequently, our similarity metric allows to map the degradome and its associated drug target network via comparison of known substrate peptides. The substrate-driven view of protein-protein interfaces is not limited to the field of proteases but can be applied to any target class where a sufficient amount of known substrate data is available. PMID:24244149
Platypus and opossum calcitonins exhibit strong activities, even though they belong to mammals.
Yamashita, Teruhito; Udagawa, Nobuyuki; Thirukonda, Gnanasagar Janardhanan; Uehara, Shunsuke; Yamauchi, Hirose; Suzuki, Nobuo; Li, Feng; Kobayashi, Yasuhiro; Takahashi, Naoyuki
2017-05-15
In mammalian assay systems, calcitonin peptides of non-mammalian species exhibit stronger activity than those of mammals. Recently, comparative analyses of a wide-range of species revealed that platypus and opossum, which diverged early from other mammals, possess calcitonins that are more similar in amino acid sequence to those of non-mammals than mammals. We herein determined whether platypus and opossum calcitonins exhibit similar biological activities to those of non-mammalian calcitonins using an assay of actin ring formation in mouse osteoclasts. We also compared the dose-dependent effects of each calcitonin on cAMP production in osteoclasts. Consistent with the strong similarities in their primary amino acid sequences, platypus and opossum calcitonins disrupted actin rings with similar efficacies to that of salmon calcitonin. Human calcitonin exhibited the weakest inhibitory potency and required a 100-fold higher concentration (EC 50 =3×10 -11 M) than that of salmon calcitonin (EC 50 =2×10 -13 M). Platypus and opossum calcitonins also induced cAMP production in osteoclast cultures with the same efficacies as that of salmon calcitonin. Thus, platypus and opossum calcitonins exhibited strong biological activities, similar to those of the salmon. In addition, phylogenetic analysis revealed that platypus and opossum calcitonins clustered with the salmon-type group but not human- or porcine-type group. These results suggest that platypus and opossum calcitonins are classified into the salmon-type group, in terms of the biological activities and amino acid sequences. Copyright © 2017 Elsevier Inc. All rights reserved.
Camicia, Federico; Paredes, Rodolfo; Chalar, Cora; Galanti, Norbel; Kamenetzky, Laura; Gutierrez, Ariana; Rosenzvit, Mara C
2008-03-31
We have sequenced and partially characterized an Echinococcus granulosus cDNA, termed egat1, from a protoscolex signal sequence trap (SST) cDNA library. The isolated 1627 bp long cDNA contains an ORF of 489 amino acids and shows an amino acid identity of 30% with neutral and excitatory amino acid transporters members of the Dicarboxylate/Amino Acid Na+ and/or H+ Cation Symporter family (DAACS) (TC 2.A.23). Additional bioinformatics analysis of EgAT1, confirmed the results obtained by similarity searches and showed the presence of 9 to 10 transmembrane domains, consensus sequences for N-glycosylation between the third and fourth transmembrane domain, a highly similar hydropathy profile with ASCT1 (a known member of DAACS family), high score with SDF (Sodium Dicarboxilate Family) and similar motifs with EDTRANSPORT, a fingerprint of excitatory amino acid transporters. The localization of the putative amino acid transporter was analyzed by in situ hybridization and immunofluorescence in protoscoleces and associated germinal layer. The in situ hybridization labelling indicates the distribution of egat1 mRNA throughout the tegument. EgAT1 protein, which showed in Western blots a molecular mass of approximately 60 kD, is localized in the subtegumental region of the metacestode, particularly around suckers and rostellum of protoscoleces and layers from brood capsules. The sequence and expression analyses of EgAT1 pave the way for functional analysis of amino acids transporters of E. granulosus and its evaluation as new drug targets against cystic echinococcosis.
Padial, José M; Grant, Taran; Frost, Darrel R
2014-06-26
Brachycephaloidea is a monophyletic group of frogs with more than 1000 species distributed throughout the New World tropics, subtropics, and Andean regions. Recently, the group has been the target of multiple molecular phylogenetic analyses, resulting in extensive changes in its taxonomy. Here, we test previous hypotheses of phylogenetic relationships for the group by combining available molecular evidence (sequences of 22 genes representing 431 ingroup and 25 outgroup terminals) and performing a tree-alignment analysis under the parsimony optimality criterion using the program POY. To elucidate the effects of alignment and optimality criterion on phylogenetic inferences, we also used the program MAFFT to obtain a similarity-alignment for analysis under both parsimony and maximum likelihood using the programs TNT and GARLI, respectively. Although all three analytical approaches agreed on numerous points, there was also extensive disagreement. Tree-alignment under parsimony supported the monophyly of the ingroup and the sister group relationship of the monophyletic marsupial frogs (Hemiphractidae), while maximum likelihood and parsimony analyses of the MAFFT similarity-alignment did not. All three methods differed with respect to the position of Ceuthomantis smaragdinus (Ceuthomantidae), with tree-alignment using parsimony recovering this species as the sister of Pristimantis + Yunganastes. All analyses rejected the monophyly of Strabomantidae and Strabomantinae as originally defined, and the tree-alignment analysis under parsimony further rejected the recently redefined Craugastoridae and Pristimantinae. Despite the greater emphasis in the systematics literature placed on the choice of optimality criterion for evaluating trees than on the choice of method for aligning DNA sequences, we found that the topological differences attributable to the alignment method were as great as those caused by the optimality criterion. Further, the optimal tree-alignment indicates that insertions and deletions occurred in twice as many aligned positions as implied by the optimal similarity-alignment, confirming previous findings that sequence turnover through insertion and deletion events plays a greater role in molecular evolution than indicated by similarity-alignments. Our results also provide a clear empirical demonstration of the different effects of wildcard taxa produced by missing data in parsimony and maximum likelihood analyses. Specifically, maximum likelihood analyses consistently (81% bootstrap frequency) provided spurious resolution despite a lack of evidence, whereas parsimony correctly depicted the ambiguity due to missing data by collapsing unsupported nodes. We provide a new taxonomy for the group that retains previously recognized Linnaean taxa except for Ceuthomantidae, Strabomantidae, and Strabomantinae. A phenotypically diagnosable superfamily is recognized formally as Brachycephaloidea, with the informal, unranked name terrarana retained as the standard common name for these frogs. We recognize three families within Brachycephaloidea that are currently diagnosable solely on molecular grounds (Brachycephalidae, Craugastoridae, and Eleutherodactylidae), as well as five subfamilies (Craugastorinae, Eleutherodactylinae, Holoadeninae, Phyzelaphryninae, and Pristimantinae) corresponding in large part to previous families and subfamilies. Our analyses upheld the monophyly of all tested genera, but we found numerous subgeneric taxa to be non-monophyletic and modified the taxonomy accordingly.
Sul, Woo Jun; Cole, James R.; Jesus, Ederson da C.; Wang, Qiong; Farris, Ryan J.; Fish, Jordan A.; Tiedje, James M.
2011-01-01
High-throughput sequencing of 16S rRNA genes has increased our understanding of microbial community structure, but now even higher-throughput methods to the Illumina scale allow the creation of much larger datasets with more samples and orders-of-magnitude more sequences that swamp current analytic methods. We developed a method capable of handling these larger datasets on the basis of assignment of sequences into an existing taxonomy using a supervised learning approach (taxonomy-supervised analysis). We compared this method with a commonly used clustering approach based on sequence similarity (taxonomy-unsupervised analysis). We sampled 211 different bacterial communities from various habitats and obtained ∼1.3 million 16S rRNA sequences spanning the V4 hypervariable region by pyrosequencing. Both methodologies gave similar ecological conclusions in that β-diversity measures calculated by using these two types of matrices were significantly correlated to each other, as were the ordination configurations and hierarchical clustering dendrograms. In addition, our taxonomy-supervised analyses were also highly correlated with phylogenetic methods, such as UniFrac. The taxonomy-supervised analysis has the advantages that it is not limited by the exhaustive computation required for the alignment and clustering necessary for the taxonomy-unsupervised analysis, is more tolerant of sequencing errors, and allows comparisons when sequences are from different regions of the 16S rRNA gene. With the tremendous expansion in 16S rRNA data acquisition underway, the taxonomy-supervised approach offers the potential to provide more rapid and extensive community comparisons across habitats and samples. PMID:21873204
Demberg, Lilian M; Winkler, Jana; Wilde, Caroline; Simon, Kay-Uwe; Schön, Julia; Rothemund, Sven; Schöneberg, Torsten; Prömel, Simone; Liebscher, Ines
2017-03-17
Members of the adhesion G protein-coupled receptor (aGPCR) family carry an agonistic sequence within their large ectodomains. Peptides derived from this region, called the Stachel sequence, can activate the respective receptor. As the conserved core region of the Stachel sequence is highly similar between aGPCRs, the agonist specificity of Stachel sequence-derived peptides was tested between family members using cell culture-based second messenger assays. Stachel peptides derived from aGPCRs of subfamily VI (GPR110/ADGRF1, GPR116/ADGRF5) and subfamily VIII (GPR64/ADGRG2, GPR126/ADGRG6) are able to activate more than one member of the respective subfamily supporting their evolutionary relationship and defining them as pharmacological receptor subtypes. Extended functional analyses of the Stachel sequences and derived peptides revealed agonist promiscuity, not only within, but also between aGPCR subfamilies. For example, the Stachel -derived peptide of GPR110 (subfamily VI) can activate GPR64 and GPR126 (both subfamily VIII). Our results indicate that key residues in the Stachel sequence are very similar between aGPCRs allowing for agonist promiscuity of several Stachel -derived peptides. Therefore, aGPCRs appear to be pharmacologically more closely related than previously thought. Our findings have direct implications for many aGPCR studies, as potential functional overlap has to be considered for in vitro and in vivo studies. However, it also offers the possibility of a broader use of more potent peptides when the original Stachel sequence is less effective. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Kondo, Hideki; Hisano, Sakae; Chiba, Sotaro; Maruyama, Kazuyuki; Andika, Ida Bagus; Toyoda, Kazuhiro; Fujimori, Fumihiro; Suzuki, Nobuhiro
2016-07-02
The identification of mycoviruses contributes greatly to understanding of the diversity and evolutionary aspects of viruses. Powdery mildew fungi are important and widely studied obligate phytopathogenic agents, but there has been no report on mycoviruses infecting these fungi. In this study, we used a deep sequencing approach to analyze the double-stranded RNA (dsRNA) segments isolated from field-collected samples of powdery mildew fungus-infected red clover plants in Japan. Database searches identified the presence of at least ten totivirus (genus Totivirus)-like sequences, termed red clover powdery mildew-associated totiviruses (RPaTVs). The majority of these sequences shared moderate amino acid sequence identity with each other (<44%) and with other known totiviruses (<59%). Nine of these identified sequences (RPaTV1a, 1b and 2-8) resembled the genome of the prototype totivirus, Saccharomyces cerevisiae virus-L-A (ScV-L-A) in that they contained two overlapping open reading frames (ORFs) encoding a putative coat protein (CP) and an RNA dependent RNA polymerase (RdRp), while one sequence (RPaTV9) showed similarity to another totivirus, Ustilago maydis virus H1 (UmV-H1) that encodes a single polyprotein (CP-RdRp fusion). Similar to yeast totiviruses, each ScV-L-A-like RPaTV contains a -1 ribosomal frameshift site downstream of a predicted pseudoknot structure in the overlapping region of these ORFs, suggesting that the RdRp is translated as a CP-RdRp fusion. Moreover, several ScV-L-A-like sequences were also found by searches of the transcriptome shotgun assembly (TSA) libraries from rust fungi, plants and insects. Phylogenetic analyses show that nine ScV-L-A-like RPaTVs along with ScV-L-A-like sequences derived from TSA libraries are clustered with most established members of the genus Totivirus, while one RPaTV forms a new distinct clade with UmV-H1, possibly establishing an additional genus in the family. Taken together, our results indicate the presence of diverse, novel totiviruses in the powdery mildew fungus populations infecting red clover plants in the field. Copyright © 2015 Elsevier B.V. All rights reserved.
Taniguchi, Takako; Sekiya, Ayumi; Higa, Mariko; Saeki, Yuji; Umeki, Kazumi; Okayama, Akihiko; Hayashi, Tetsuya
2014-01-01
Helicobacter cinaedi infection is recognized as an increasingly important emerging disease in humans. Although H. cinaedi-like strains have been isolated from a variety of animals, it is difficult to identify particular isolates due to their unusual phenotypic profiles and the limited number of biochemical tests for detecting helicobacters. Moreover, analyses of the 16S rRNA gene sequences are also limited due to the high levels of similarity among closely related helicobacters. This study was conducted to evaluate intact-cell mass spectrometry (ICMS) profiling using matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) as a tool for the identification of H. cinaedi. A total of 68 strains of H. cinaedi isolated from humans, dogs, a cat, and hamsters were examined in addition to other Helicobacter species. The major ICMS profiles of H. cinaedi were identical and differed from those of Helicobacter bilis, which show >98% sequence similarity at the 16S rRNA sequence level. A phyloproteomic analysis of the H. cinaedi strains examined in this work revealed that human isolates formed a single cluster that was distinct from that of the animal isolates, with the exception of two strains from dogs. These phyloproteomic results agreed with those of the phylogenetic analysis based on the nucleotide sequences of the hsp60 gene. Because they formed a distinct cluster in both analyses, our data suggest that animal strains may not be a major source of infection in humans. In conclusion, the ICMS profiles obtained using a MALDI-TOF MS approach may be useful for the identification and subtyping of H. cinaedi. PMID:24153128
Sequence and expression analyses of porcine ISG15 and ISG43 genes.
Huang, Jiangnan; Zhao, Shuhong; Zhu, Mengjin; Wu, Zhenfang; Yu, Mei
2009-08-01
The coding sequences of porcine interferon-stimulated gene 15 (ISG15) and the interferon-stimulated gene (ISG43) were cloned from swine spleen mRNA. The amino acid sequences deduced from porcine ISG15 and ISG43 genes coding sequence shared 24-75% and 29-83% similarity with ISG15s and ISG43s from other vertebrates, respectively. Structural analyses revealed that porcine ISG15 comprises two ubiquitin homologues motifs (UBQ) domain and a conserved C-terminal LRLRGG conjugating motif. Porcine ISG43 contains an ubiquitin-processing proteases-like domain. Phylogenetic analyses showed that porcine ISG15 and ISG43 were mostly related to rat ISG15 and cattle ISG43, respectively. Using quantitative real-time PCR assay, significant increased expression levels of porcine ISG15 and ISG43 genes were detected in porcine kidney endothelial cells (PK15) cells treated with poly I:C. We also observed the enhanced mRNA expression of three members of dsRNA pattern-recognition receptors (PRR), TLR3, DDX58 and IFIH1, which have been reported to act as critical receptors in inducing the mRNA expression of ISG15 and ISG43 genes. However, we did not detect any induced mRNA expression of IFNalpha and IFNbeta, suggesting that transcriptional activations of ISG15 and ISG43 were mediated through IFN-independent signaling pathway in the poly I:C treated PK15 cells. Association analyses in a Landrace pig population revealed that ISG15 c.347T>C (BstUI) polymorphism and the ISG43 c.953T>G (BccI) polymorphism were significantly associated with hematological parameters and immune-related traits.
Applying Agrep to r-NSA to solve multiple sequences approximate matching.
Ni, Bing; Wong, Man-Hon; Lam, Chi-Fai David; Leung, Kwong-Sak
2014-01-01
This paper addresses the approximate matching problem in a database consisting of multiple DNA sequences, where the proposed approach applies Agrep to a new truncated suffix array, r-NSA. The construction time of the structure is linear to the database size, and the computations of indexing a substring in the structure are constant. The number of characters processed in applying Agrep is analysed theoretically, and the theoretical upper-bound can approximate closely the empirical number of characters, which is obtained through enumerating the characters in the actual structure built. Experiments are carried out using (synthetic) random DNA sequences, as well as (real) genome sequences including Hepatitis-B Virus and X-chromosome. Experimental results show that, compared to the straight-forward approach that applies Agrep to multiple sequences individually, the proposed approach solves the matching problem in much shorter time. The speed-up of our approach depends on the sequence patterns, and for highly similar homologous genome sequences, which are the common cases in real-life genomes, it can be up to several orders of magnitude.
The current status and portability of our sequence handling software.
Staden, R
1986-01-01
I describe the current status of our sequence analysis software. The package contains a comprehensive suite of programs for managing large shotgun sequencing projects, a program containing 61 functions for analysing single sequences and a program for comparing pairs of sequences for similarity. The programs that have been described before have been improved by the addition of new functions and by being made very much easier to use. The major interactive programs have 125 pages of online help available from within them. Several new programs are described including screen editing of aligned gel readings for shotgun sequencing projects; a method to highlight errors in aligned gel readings, new methods for searching for putative signals in sequences. We use the programs on a VAX computer but the whole package has been rewritten to make it easy to transport it to other machines. I believe the programs will now run on any machine with a FORTRAN77 compiler and sufficient memory. We are currently putting the programs onto an IBM PC XT/AT and another micro running under UNIX. PMID:3511446
Mourier, Tobias; Mollerup, Sarah; Vinner, Lasse; Hansen, Thomas Arn; Kjartansdóttir, Kristín Rós; Guldberg Frøslev, Tobias; Snogdal Boutrup, Torsten; Nielsen, Lars Peter; Willerslev, Eske; Hansen, Anders J.
2015-01-01
From Illumina sequencing of DNA from brain and liver tissue from the lion, Panthera leo, and tumor samples from the pike-perch, Sander lucioperca, we obtained two assembled sequence contigs with similarity to known retroviruses. Phylogenetic analyses suggest that the pike-perch retrovirus belongs to the epsilonretroviruses, and the lion retrovirus to the gammaretroviruses. To determine if these novel retroviral sequences originate from an endogenous retrovirus or from a recently integrated exogenous retrovirus, we assessed the genetic diversity of the parental sequences from which the short Illumina reads are derived. First, we showed by simulations that we can robustly infer the level of genetic diversity from short sequence reads. Second, we find that the measures of nucleotide diversity inferred from our retroviral sequences significantly exceed the level observed from Human Immunodeficiency Virus infections, prompting us to conclude that the novel retroviruses are both of endogenous origin. Through further simulations, we rule out the possibility that the observed elevated levels of nucleotide diversity are the result of co-infection with two closely related exogenous retroviruses. PMID:26493184
Evaluation of nearest-neighbor methods for detection of chimeric small-subunit rRNA sequences
NASA Technical Reports Server (NTRS)
Robison-Cox, J. F.; Bateson, M. M.; Ward, D. M.
1995-01-01
Detection of chimeric artifacts formed when PCR is used to retrieve naturally occurring small-subunit (SSU) rRNA sequences may rely on demonstrating that different sequence domains have different phylogenetic affiliations. We evaluated the CHECK_CHIMERA method of the Ribosomal Database Project and another method which we developed, both based on determining nearest neighbors of different sequence domains, for their ability to discern artificially generated SSU rRNA chimeras from authentic Ribosomal Database Project sequences. The reliability of both methods decreases when the parental sequences which contribute to chimera formation are more than 82 to 84% similar. Detection is also complicated by the occurrence of authentic SSU rRNA sequences that behave like chimeras. We developed a naive statistical test based on CHECK_CHIMERA output and used it to evaluate previously reported SSU rRNA chimeras. Application of this test also suggests that chimeras might be formed by retrieving SSU rRNAs as cDNA. The amount of uncertainty associated with nearest-neighbor analyses indicates that such tests alone are insufficient and that better methods are needed.
Characterization of isolates of meloidogyne from rice-wheat production fields in Nepal.
Pokharel, Ramesh R; Abawi, George S; Zhang, Ning; Duxbury, John M; Smart, Christine D
2007-09-01
Thirty-three isolates of root-knot nematode were recovered from soil samples from rice-wheat fields in Nepal and maintained on rice cv. BR 11. The isolates were characterized using morphology, host range and DNA sequence analyses in order to ascertain their identity. Results indicated phenotypic similarity (juvenile measurements, perennial pattern, host range and gall shape) of the Nepalese isolates with Meloidogyne graminicola, with minor variations. The rice varieties LA 110 and Labelle were susceptible to all of the Nepalese isolates, but differences in the aggressiveness of the isolates were observed. Phylogenetic analyses based on the sequences of partial internal transcribed spacer (ITS) of the rRNA genes indicated that all Nepalese isolates formed a distinct clade with known isolates of M. graminicola with high bootstrap support. Furthermore, two groups were identified within the M. graminicola clade. No correlation between ITS haplotype and aggressiveness or host range was found among the tested isolates.
An archaebacterial homologue of the essential eubacterial cell division protein FtsZ.
Baumann, P; Jackson, S P
1996-01-01
Life falls into three fundamental domains--Archaea, Bacteria, and Eucarya (formerly archaebacteria, eubacteria, and eukaryotes,. respectively). Though Archaea lack nuclei and share many morphological features with Bacteria, molecular analyses, principally of the transcription and translation machineries, have suggested that Archaea are more related to Eucarya than to Bacteria. Currently, little is known about the archaeal cell division apparatus. In Bacteria, a crucial component of the cell division machinery is FtsZ, a GTPase that localizes to a ring at the site of septation. Interestingly, FtsZ is distantly related in sequence to eukaryotic tubulins, which also interact with GTP and are components of the eukaryotic cell cytoskeleton. By screening for the ability to bind radiolabeled nucleotides, we have identified a protein of the hyperthermophilic archaeon Pyrococcus woesei that interacts tightly and specifically with GTP. Furthermore, through screening an expression library of P. woesei genomic DNA, we have cloned the gene encoding this protein. Sequence comparisons reveal that the P. woesei GTP-binding protein is strikingly related in sequence to eubacterial FtsZ and is marginally more similar to eukaryotic tubulins than are bacterial FtsZ proteins. Phylogenetic analyses reinforce the notion that there is an evolutionary linkage between FtsZ and tubulins. These findings suggest that the archaeal cell division apparatus may be fundamentally similar to that of Bacteria and lead us to consider the evolutionary relationships between Archaea, Bacteria, and Eucarya. Images Fig. 1 Fig. 2 PMID:8692886
Jürgenstein, Siiri; Kurina, Olavi; Põldmaa, Kadri
2015-01-01
Abstract European species of the Mycetophila ruficollis group are compared on the basis of morphology and sequences of mitochondrial cytochrome oxidase subunit one (COI) and the ITS2 region of nuclear ribosomal DNA. The study represents the first evaluation of morphology-based species delimitation of closely related fungus gnat species by applying molecular information. Detailed descriptions and illustrations of the male terminalia are presented along with a key for the identification of all nine European species of the group. Phylogenetic analyses of molecular data generally supported the morphological species discrimination. The barcoding region of COI superseded ITS2 rDNA in resolving species. In the COI barcoding region interspecific differences ranged from 2.9 to 10.6% and the intraspecific distance from 0.08 to 0.8%. Only COI data distinguished between the similar and closely related Mycetophila ichneumonea and Mycetophila uninotata of which the latter was observed to include cryptic species. The host range of some species is suggested to be narrower than previously considered and to depend on the forest type. Presented evidence indicates the importance of analysing sequence data of morphologically very similar mycetophages reared from identified host fungi for elucidating species delimitation as well as their geographic and host ranges. New country records, viz. Estonia for Mycetophila evanida, Georgia for Mycetophila ichneumonea, Mycetophila idonea and Mycetophila ruficollis, and Norway for Mycetophila strobli, widen the known distribution ranges of these species. PMID:26167119
Pigmentiphaga aceris sp. nov., isolated from tree sap.
Lee, Soon Dong
2017-09-01
Two Gram-stain-negative bacterial strains, SAP-32T and SAP-36, were isolated from sap drawn from the Acer pictum from Mount Halla in Jeju, Republic of Korea. The organisms were strictly aerobic, non-sporulating, motile rods and showed growth at 10-30 °C, pH 7-8 and with 0-2 % NaCl. The major isoprenoid quinone was Q-8. The predominant fatty acids were C16 : 0, cyclo-C17 : 0, summed feature 3 and C18 : 0. The polar lipids contained phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an unknown aminophosphoglycolipid, an unknown glycolipid, an unknown phospholipid and two unknown lipids. The DNA G+C content was 64.4 mol%. The results of phylogenetic analyses based on 16S rRNA gene sequences indicated that SAP-32T and SAP-36 formed a distinct cluster with members of the genus Pigmentiphaga within the family Alcaligenaceae. Both strains showed 16S rRNA gene sequence similarity of 100 % to each other. The closest relatives of the isolates were Pigmentiphaga daeguensis (97.08 % sequence similarity), Pigmentiphaga kullae (97.01 %) and Pigmentiphaga litoralis (96.73 %). On the basis of data from phenotypic, chemotaxonomic and phylogenetic analyses, SAP-32T (=KCTC 52619T=DSM 104039T) and SAP-36 (=KCTC 52620=DSM 104072) represent members of a novel species of the genus Pigmentiphaga, for which the name Pigmentiphaga aceris sp. nov. is proposed.
KinFin: Software for Taxon-Aware Analysis of Clustered Protein Sequences.
Laetsch, Dominik R; Blaxter, Mark L
2017-10-05
The field of comparative genomics is concerned with the study of similarities and differences between the information encoded in the genomes of organisms. A common approach is to define gene families by clustering protein sequences based on sequence similarity, and analyze protein cluster presence and absence in different species groups as a guide to biology. Due to the high dimensionality of these data, downstream analysis of protein clusters inferred from large numbers of species, or species with many genes, is nontrivial, and few solutions exist for transparent, reproducible, and customizable analyses. We present KinFin, a streamlined software solution capable of integrating data from common file formats and delivering aggregative annotation of protein clusters. KinFin delivers analyses based on systematic taxonomy of the species analyzed, or on user-defined, groupings of taxa, for example, sets based on attributes such as life history traits, organismal phenotypes, or competing phylogenetic hypotheses. Results are reported through graphical and detailed text output files. We illustrate the utility of the KinFin pipeline by addressing questions regarding the biology of filarial nematodes, which include parasites of veterinary and medical importance. We resolve the phylogenetic relationships between the species and explore functional annotation of proteins in clusters in key lineages and between custom taxon sets, identifying gene families of interest. KinFin can easily be integrated into existing comparative genomic workflows, and promotes transparent and reproducible analysis of clustered protein data. Copyright © 2017 Laetsch and Blaxter.
Liang, Li-Jung; Weiss, Robert E; Redelings, Benjamin; Suchard, Marc A
2009-10-01
Statistical analyses of phylogenetic data culminate in uncertain estimates of underlying model parameters. Lack of additional data hinders the ability to reduce this uncertainty, as the original phylogenetic dataset is often complete, containing the entire gene or genome information available for the given set of taxa. Informative priors in a Bayesian analysis can reduce posterior uncertainty; however, publicly available phylogenetic software specifies vague priors for model parameters by default. We build objective and informative priors using hierarchical random effect models that combine additional datasets whose parameters are not of direct interest but are similar to the analysis of interest. We propose principled statistical methods that permit more precise parameter estimates in phylogenetic analyses by creating informative priors for parameters of interest. Using additional sequence datasets from our lab or public databases, we construct a fully Bayesian semiparametric hierarchical model to combine datasets. A dynamic iteratively reweighted Markov chain Monte Carlo algorithm conveniently recycles posterior samples from the individual analyses. We demonstrate the value of our approach by examining the insertion-deletion (indel) process in the enolase gene across the Tree of Life using the phylogenetic software BALI-PHY; we incorporate prior information about indels from 82 curated alignments downloaded from the BAliBASE database.
Gebhardt, J S; Nierzwicki-Bauer, S A
1991-01-01
Symbiotically associated cyanobacteria from Azolla mexicana and Azolla pinnata were isolated and cultured in a free-living state. Morphological analyses revealed differences between the free-living isolates and their symbiotic counterparts, as did restriction fragment length polymorphism (RFLP) analyses with both single-copy glnA and rbcS gene probes and a multicopy psbA gene probe. RFLP analyses with Anabaena sp. strain PCC 7120 nifD excision element probes, including an xisA gene probe, detected homologous sequences in DNA extracted from the free-living isolates. Sequences homologous to these probes were not detected in DNA from the symbiotically associated cyanobacteria. These analyses indicated that the isolates were not identical to the major cyanobacterial symbiont species residing in leaf cavities of Azolla spp. Nevertheless, striking similarities between several free-living isolates were observed. In every instance, the isolate from A. pinnata displayed banding patterns virtually identical to those of free-living cultures previously isolated from Azolla caroliniana and Azolla filiculoides. These results suggest the ubiquitous presence of a culturable minor cyanobacterial symbiont in at least three species of Azolla. Images PMID:1685078
Yuri, Tamaki; Kimball, Rebecca T.; Harshman, John; Bowie, Rauri C. K.; Braun, Michael J.; Chojnowski, Jena L.; Han, Kin-Lan; Hackett, Shannon J.; Huddleston, Christopher J.; Moore, William S.; Reddy, Sushma; Sheldon, Frederick H.; Steadman, David W.; Witt, Christopher C.; Braun, Edward L.
2013-01-01
Insertion/deletion (indel) mutations, which are represented by gaps in multiple sequence alignments, have been used to examine phylogenetic hypotheses for some time. However, most analyses combine gap data with the nucleotide sequences in which they are embedded, probably because most phylogenetic datasets include few gap characters. Here, we report analyses of 12,030 gap characters from an alignment of avian nuclear genes using maximum parsimony (MP) and a simple maximum likelihood (ML) framework. Both trees were similar, and they exhibited almost all of the strongly supported relationships in the nucleotide tree, although neither gap tree supported many relationships that have proven difficult to recover in previous studies. Moreover, independent lines of evidence typically corroborated the nucleotide topology instead of the gap topology when they disagreed, although the number of conflicting nodes with high bootstrap support was limited. Filtering to remove short indels did not substantially reduce homoplasy or reduce conflict. Combined analyses of nucleotides and gaps resulted in the nucleotide topology, but with increased support, suggesting that gap data may prove most useful when analyzed in combination with nucleotide substitutions. PMID:24832669
A new fungal large subunit ribosomal RNA primer for high throughput sequencing surveys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Rebecca C.; Gallegos-Graves, La Verne; Kuske, Cheryl R.
The inclusion of phylogenetic metrics in community ecology has provided insights into important ecological processes, particularly when combined with high-throughput sequencing methods; however, these approaches have not been widely used in studies of fungal communities relative to other microbial groups. Two obstacles have been considered: (1) the internal transcribed spacer (ITS) region has limited utility for constructing phylogenies and (2) most PCR primers that target the large subunit (LSU) ribosomal unit generate amplicons that exceed current limits of high-throughput sequencing platforms. We designed and tested a PCR primer (LR22R) to target approximately 300–400 bp region of the D2 hypervariable regionmore » of the fungal LSU for use with the Illumina MiSeq platform. Both in silico and empirical analyses showed that the LR22R–LR3 pair captured a broad range of fungal taxonomic groups with a small fraction of non-fungal groups. Phylogenetic placement of publically available LSU D2 sequences showed broad agreement with taxonomic classification. Comparisons of the LSU D2 and the ITS2 ribosomal regions from environmental samples and known communities showed similar discriminatory abilities of the two primer sets. Altogether, these findings show that the LR22R–LR3 primer pair has utility for phylogenetic analyses of fungal communities using high-throughput sequencing methods.« less
Isolation, cloning, and characterization of the 2S albumin: a new allergen from hazelnut.
Garino, Cristiano; Zuidmeer, Laurian; Marsh, Justin; Lovegrove, Alison; Morati, Maria; Versteeg, Serge; Schilte, Piet; Shewry, Peter; Arlorio, Marco; van Ree, Ronald
2010-09-01
2S albumins are the major allergens involved in severe food allergy to nuts, seeds, and legumes. We aimed to isolate, clone, and express 2S albumin from hazelnut and determine its allergenicity. 2S albumin from hazelnut extract was purified using size exclusion chromatography and RP-HPLC. After N-terminal sequencing, degenerated and poly-d(T) primers were used to clone the 2S albumin sequence from hazelnut cDNA. After expression in Escherichia coli and affinity purification, IgE reactivity was evaluated by Immunoblot/ImmunoCAP (inhibition) analyses using sera of nut-allergic patients. N-terminal sequencing of a approximately 10 kDa peak from size exclusion chromatography/RP-HPLC gave two sequences highly homologous to pecan 2S albumin, an 11 amino acid (aa) N-terminal and a 10 aa internal peptide. The obtained clone (441 bp) encoded a 147 aa hazelnut 2S albumin consisting of a putative signal peptide (22 aa), a linker peptide (20 aa), and the mature protein sequence (105 aa). The latter was successfully expressed in E. coli. Both recombinant and natural 2S albumin demonstrated similar IgE reactivity in Immunoblot/ImmunoCAP (inhibition) analyses. We confirmed the postulated role of hazelnut 2S albumin as an allergen. The availability of recombinant molecules will allow establishing the importance of hazelnut 2S albumin for hazelnut allergy.
Feldman, Sanford H; Ntenda, Abraham M
2011-01-01
We used high-fidelity PCR to amplify 2 overlapping regions of the ribosomal gene complex from the rodent fur mite Myobia musculi. The amplicons encompassed a large portion of the mite's ribosomal gene complex spanning 3128 nucleotides containing the entire 18S rRNA, internal transcribed spacer (ITS) 1, 5.8S rRNA, ITS2, and a portion of the 5′-end of the 28S rRNA. M. musculi’s 179-nucleotide 5.8S rRNA nucleotide sequence was not conserved, so this region was identified by conservation of rRNA secondary structure. Maximum likelihood and Bayesian inference phylogenetic analyses were performed by using multiple sequence alignment consisting of 1524 nucleotides of M. musculi 18S rRNA and homologous sequences from 42 prostigmatid mites and the tick Dermacentor andersoni. The phylograms produced by both methods were in agreement regarding terminal, secondary, and some tertiary phylogenetic relationships among mites. Bayesian inference discriminated most infraordinal relationships between Eleutherengona and Parasitengona mites in the suborder Anystina. Basal relationships between suborders Anystina and Eupodina historically determined by comparing differences in anatomic characteristics were less well-supported by our molecular analysis. Our results recapitulated similar 18S rRNA sequence analyses recently reported. Our study supports M. musculi as belonging to the suborder Anystina, infraorder Eleutherenona, and superfamily Cheyletoidea. PMID:22330574
A new fungal large subunit ribosomal RNA primer for high throughput sequencing surveys
Mueller, Rebecca C.; Gallegos-Graves, La Verne; Kuske, Cheryl R.
2015-12-09
The inclusion of phylogenetic metrics in community ecology has provided insights into important ecological processes, particularly when combined with high-throughput sequencing methods; however, these approaches have not been widely used in studies of fungal communities relative to other microbial groups. Two obstacles have been considered: (1) the internal transcribed spacer (ITS) region has limited utility for constructing phylogenies and (2) most PCR primers that target the large subunit (LSU) ribosomal unit generate amplicons that exceed current limits of high-throughput sequencing platforms. We designed and tested a PCR primer (LR22R) to target approximately 300–400 bp region of the D2 hypervariable regionmore » of the fungal LSU for use with the Illumina MiSeq platform. Both in silico and empirical analyses showed that the LR22R–LR3 pair captured a broad range of fungal taxonomic groups with a small fraction of non-fungal groups. Phylogenetic placement of publically available LSU D2 sequences showed broad agreement with taxonomic classification. Comparisons of the LSU D2 and the ITS2 ribosomal regions from environmental samples and known communities showed similar discriminatory abilities of the two primer sets. Altogether, these findings show that the LR22R–LR3 primer pair has utility for phylogenetic analyses of fungal communities using high-throughput sequencing methods.« less
Integrated databanks access and sequence/structure analysis services at the PBIL.
Perrière, Guy; Combet, Christophe; Penel, Simon; Blanchet, Christophe; Thioulouse, Jean; Geourjon, Christophe; Grassot, Julien; Charavay, Céline; Gouy, Manolo; Duret, Laurent; Deléage, Gilbert
2003-07-01
The World Wide Web server of the PBIL (Pôle Bioinformatique Lyonnais) provides on-line access to sequence databanks and to many tools of nucleic acid and protein sequence analyses. This server allows to query nucleotide sequence banks in the EMBL and GenBank formats and protein sequence banks in the SWISS-PROT and PIR formats. The query engine on which our data bank access is based is the ACNUC system. It allows the possibility to build complex queries to access functional zones of biological interest and to retrieve large sequence sets. Of special interest are the unique features provided by this system to query the data banks of gene families developed at the PBIL. The server also provides access to a wide range of sequence analysis methods: similarity search programs, multiple alignments, protein structure prediction and multivariate statistics. An originality of this server is the integration of these two aspects: sequence retrieval and sequence analysis. Indeed, thanks to the introduction of re-usable lists, it is possible to perform treatments on large sets of data. The PBIL server can be reached at: http://pbil.univ-lyon1.fr.
Yurkov, Andrey; Guerreiro, Marco A; Sharma, Lav; Carvalho, Cláudia; Fonseca, Álvaro
2015-01-01
Cryptococcus flavescens and C. terrestris are phenotypically indistinguishable sister species that belong to the order Tremellales (Tremellomycetes, Basidiomycota) and which may be mistaken for C. laurentii based on phenotype. Phylogenetic separation between C. flavescens and C. terrestris was based on rDNA sequence analyses, but very little is known on their intraspecific genetic variability or propensity for sexual reproduction. We studied 59 strains from different substrates and geographic locations, and used a multilocus sequencing (MLS) approach complemented with the sequencing of mating type (MAT) genes to assess genetic variation and reexamine the boundaries of the two species, as well as their sexual status. The following five loci were chosen for MLS: the rDNA ITS-LSU region, the rDNA IGS1 spacer, and fragments of the genes encoding the largest subunit of RNA polymerase II (RPB1), the translation elongation factor 1 alpha (TEF1) and the p21-activated protein kinase (STE20). Phylogenetic network analyses confirmed the genetic separation of the two species and revealed two additional cryptic species, for which the names Cryptococcus baii and C. ruineniae are proposed. Further analyses of the data revealed a high degree of genetic heterogeneity within C. flavescens as well as evidence for recombination between lineages detected for this species. Strains of C. terrestris displayed higher levels of similarity in all analysed genes and appear to make up a single recombining group. The two MAT genes (STE3 and SXI1/SXI2) sequenced for C. flavescens strains confirmed the potential for sexual reproduction and suggest the presence of a tetrapolar mating system with a biallelic pheromone/receptor locus and a multiallelic HD locus. In C. terrestris we could only sequence STE3, which revealed a biallelic P/R locus. In spite of the strong evidence for sexual recombination in the two species, attempts at mating compatible strains of both species on culture media were unsuccessful.
Sharma, Lav; Carvalho, Cláudia; Fonseca, Álvaro
2015-01-01
Cryptococcus flavescens and C. terrestris are phenotypically indistinguishable sister species that belong to the order Tremellales (Tremellomycetes, Basidiomycota) and which may be mistaken for C. laurentii based on phenotype. Phylogenetic separation between C. flavescens and C. terrestris was based on rDNA sequence analyses, but very little is known on their intraspecific genetic variability or propensity for sexual reproduction. We studied 59 strains from different substrates and geographic locations, and used a multilocus sequencing (MLS) approach complemented with the sequencing of mating type (MAT) genes to assess genetic variation and reexamine the boundaries of the two species, as well as their sexual status. The following five loci were chosen for MLS: the rDNA ITS-LSU region, the rDNA IGS1 spacer, and fragments of the genes encoding the largest subunit of RNA polymerase II (RPB1), the translation elongation factor 1 alpha (TEF1) and the p21-activated protein kinase (STE20). Phylogenetic network analyses confirmed the genetic separation of the two species and revealed two additional cryptic species, for which the names Cryptococcus baii and C. ruineniae are proposed. Further analyses of the data revealed a high degree of genetic heterogeneity within C. flavescens as well as evidence for recombination between lineages detected for this species. Strains of C. terrestris displayed higher levels of similarity in all analysed genes and appear to make up a single recombining group. The two MAT genes (STE3 and SXI1/SXI2) sequenced for C. flavescens strains confirmed the potential for sexual reproduction and suggest the presence of a tetrapolar mating system with a biallelic pheromone/receptor locus and a multiallelic HD locus. In C. terrestris we could only sequence STE3, which revealed a biallelic P/R locus. In spite of the strong evidence for sexual recombination in the two species, attempts at mating compatible strains of both species on culture media were unsuccessful. PMID:25811603
Li, Chun-Xiang; Yang, Qun
2003-03-01
DNA sequences from 28S rDNA were used to assess relationships between and within traditional Taxodiaceae and Cupressaceae s.s. The MP tree and NJ tree generally are similar to one another. The results show that Taxodiaceae and Cupressaceae s.s. form a monophyletic conifer lineage excluding Sciadopitys. In the Taxodiaceae-Cupressaceae s.s. monophyletic group, the Taxodiaceae is paraphyletic. Taxodium, Glyptostrobus and Cryptomeria forming a clade(Taxodioideae), in which Glyptostrobus and Taxodium are closely related and sister to Cryptomeria; Sequoia, Sequoiadendron and Metasequoia are closely related to each other, forming another clade (Sequoioideae), in which Sequoia and Sequoiadendron are closely related and sister to Metasequoia; the seven genera of Cupressaceae s.s. are found to be closely related to form a monophyletic lineage (Cupressoideae). These results are basically similar to analyses from chloroplast gene data. But the relationships among Taiwania, Sequoioideae, Taxodioideae, and Cupressoideae remain unclear because of the slow evolution rate of 28S rDNA, which might best be answered by sequencing more rapidly evolving nuclear genes.
Nostoc thermotolerans sp. nov., a soil-dwelling species of Nostoc (Cyanobacteria).
Suradkar, Archana; Villanueva, Chelsea; Gaysina, Lira A; Casamatta, Dale A; Saraf, Aniket; Dighe, Gandhali; Mergu, Ratnaprabha; Singh, Prashant
2017-05-01
A filamentous, soil-dwelling cyanobacterial strain (9C-PST) was isolated from Mandsaur, Madhya Pradesh, India, and is described as a new species of the genus Nostoc. Extensive morphological and molecular characterization along with a thorough assessment of ecology was performed. The style of filament orientation, type and nature of the sheath (e.g. distribution and visibility across the trichome), and vegetative and heterocyte cell dimensions and shape were assessed for over one year using both the laboratory grown culture and the naturally occurring samples. Sequencing of the 16S rRNA gene showed 94 % similarity with Nostocpiscinale CENA21 while analyses of the secondary structures of the 16S-23S ITS region showed unique folding patterns that differentiated this strain from other species of Nostoc. The level of rbcl and rpoC1 gene sequence similarity was 91 and 94 % to Nostocsp. PCC 7524 and Nostocpiscinale CENA21, respectively, while the nifD gene sequence similarity was found to be 99 % with Nostocpiscinale CENA21. The phenotypic, ecological, genetic and phylogenetic observations indicate that the strain 9C-PST represents a novel species of the genus Nostoc with the name proposed being Nostoc thermotolerans sp. nov. according to the International Code of Nomenclature for Algae, Fungi, and Plants.
Genomic and proteomic characterization of a thermophilic Geobacillus bacteriophage GBSV1.
Liu, Bin; Zhou, Fengfeng; Wu, Suijie; Xu, Ying; Zhang, Xiaobo
2009-03-01
Phages are present wherever life is found, and play roles in many biogeochemical and ecological processes. The thermophilic bacteriophages, however, have not been well studied. In this study, phage GBSV1 was obtained from a thermophilic bacterium Geobacillus sp. 6k51 isolated from a hot spring. GBSV1 contains a double-stranded linear DNA of 34,683bp, which encodes 54 putative open reading frames (ORFs). Thirty three of these 54 ORFs exhibit sequence similarities to genes from 7 species of Geobacillus or Bacillus bacteria, as well as of bacteriophages infecting these bacteria. Twenty-two ORFs have been functionally annotated based on both their sequence similarities to known genes and predicted Pfam protein domains. Five structural proteins of the purified GBSV1 virion have been identified by proteomic analyses. Surprisingly, 7 of the GBSV1 ORFs share sequence similarities with genes from bacteria relevant to human diseases. This is the first report that genes of human disease-inducing bacteria are found in a thermophilic phage. It is suggested that thermophilic phages may be the potential evolutionary link between thermophiles and human pathogens. The characterization of GBSV1 may possibly lead to new insights into virus-host interactions and to a better understanding of gene transfers and evolution of life on earth in general.
Nanba, K.; King, G. M.; Dunfield, K.
2004-01-01
A 492- to 495-bp fragment of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) (rbcL) was amplified by PCR from facultatively lithotrophic aerobic CO-oxidizing bacteria, colorless and purple sulfide-oxidizing microbial mats, and genomic DNA extracts from tephra and ash deposits from Kilauea volcano, for which atmospheric CO and hydrogen have been previously documented as important substrates. PCR products from the mats and volcanic sites were used to construct rbcL clone libraries. Phylogenetic analyses showed that the rbcL sequences from all isolates clustered with form IC rbcL sequences derived from facultative lithotrophs. In contrast, the microbial mat clone sequences clustered with sequences from obligate lithotrophs representative of form IA rbcL. Clone sequences from volcanic sites fell within the form IC clade, suggesting that these sites were dominated by facultative lithotrophs, an observation consistent with biogeochemical patterns at the sites. Based on phylogenetic and statistical analyses, clone libraries differed significantly among volcanic sites, indicating that they support distinct lithotrophic assemblages. Although some of the clone sequences were similar to known rbcL sequences, most were novel. Based on nucleotide diversity and average pairwise difference, a forested site and an 1894 lava flow were found to support the most diverse and least diverse lithotrophic populations, respectively. These indices of diversity were not correlated with rates of atmospheric CO and hydrogen uptake but were correlated with estimates of respiration and microbial biomass. PMID:15066819
Nanba, K; King, G M; Dunfield, K
2004-04-01
A 492- to 495-bp fragment of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) (rbcL) was amplified by PCR from facultatively lithotrophic aerobic CO-oxidizing bacteria, colorless and purple sulfide-oxidizing microbial mats, and genomic DNA extracts from tephra and ash deposits from Kilauea volcano, for which atmospheric CO and hydrogen have been previously documented as important substrates. PCR products from the mats and volcanic sites were used to construct rbcL clone libraries. Phylogenetic analyses showed that the rbcL sequences from all isolates clustered with form IC rbcL sequences derived from facultative lithotrophs. In contrast, the microbial mat clone sequences clustered with sequences from obligate lithotrophs representative of form IA rbcL. Clone sequences from volcanic sites fell within the form IC clade, suggesting that these sites were dominated by facultative lithotrophs, an observation consistent with biogeochemical patterns at the sites. Based on phylogenetic and statistical analyses, clone libraries differed significantly among volcanic sites, indicating that they support distinct lithotrophic assemblages. Although some of the clone sequences were similar to known rbcL sequences, most were novel. Based on nucleotide diversity and average pairwise difference, a forested site and an 1894 lava flow were found to support the most diverse and least diverse lithotrophic populations, respectively. These indices of diversity were not correlated with rates of atmospheric CO and hydrogen uptake but were correlated with estimates of respiration and microbial biomass.
Thiel, William H.; Bair, Thomas; Peek, Andrew S.; Liu, Xiuying; Dassie, Justin; Stockdale, Katie R.; Behlke, Mark A.; Miller, Francis J.; Giangrande, Paloma H.
2012-01-01
Background The broad applicability of RNA aptamers as cell-specific delivery tools for therapeutic reagents depends on the ability to identify aptamer sequences that selectively access the cytoplasm of distinct cell types. Towards this end, we have developed a novel approach that combines a cell-based selection method (cell-internalization SELEX) with high-throughput sequencing (HTS) and bioinformatics analyses to rapidly identify cell-specific, internalization-competent RNA aptamers. Methodology/Principal Findings We demonstrate the utility of this approach by enriching for RNA aptamers capable of selective internalization into vascular smooth muscle cells (VSMCs). Several rounds of positive (VSMCs) and negative (endothelial cells; ECs) selection were performed to enrich for aptamer sequences that preferentially internalize into VSMCs. To identify candidate RNA aptamer sequences, HTS data from each round of selection were analyzed using bioinformatics methods: (1) metrics of selection enrichment; and (2) pairwise comparisons of sequence and structural similarity, termed edit and tree distance, respectively. Correlation analyses of experimentally validated aptamers or rounds revealed that the best cell-specific, internalizing aptamers are enriched as a result of the negative selection step performed against ECs. Conclusions and Significance We describe a novel approach that combines cell-internalization SELEX with HTS and bioinformatics analysis to identify cell-specific, cell-internalizing RNA aptamers. Our data highlight the importance of performing a pre-clear step against a non-target cell in order to select for cell-specific aptamers. We expect the extended use of this approach to enable the identification of aptamers to a multitude of different cell types, thereby facilitating the broad development of targeted cell therapies. PMID:22962591
R. Greg Thorn; Jean-Marc Moncalvo; Scott A. Redhead; Jean D. Martin Lodge
2005-01-01
A fungus with gelatinous poroid fruiting bodies was found in Puerto Rico and determined by macro- and micromorphology to be most similar to members of the lamellate agaric genus Resupinatus. This species is described as a new species, Resupinatus porosus. Phylogenetic analyses of ribosomal DNA sequences support the inclusion of this fungus in the clade containing...
Genetic and phylogenetic analysis of a novel parvovirus isolated from chickens in Guangxi, China.
Feng, Bin; Xie, Zhixun; Deng, Xianwen; Xie, Liji; Xie, Zhiqin; Huang, Li; Fan, Qin; Luo, Sisi; Huang, Jiaoling; Zhang, Yanfang; Zeng, Tingting; Wang, Sheng; Wang, Leyi
2016-11-01
A previously unidentified chicken parvovirus (ChPV) strain, associated with runting-stunting syndrome (RSS), is now endemic among chickens in China. To explore the genetic diversity of ChPV strains, we determined the first complete genome sequence of a novel ChPV isolate (GX-CH-PV-7) identified in chickens in Guang Xi, China, and showed moderate genome sequence similarity to reference strains. Analysis showed that the viral genome sequence is 86.4 %-93.9 % identical to those of other ChPVs. Genetic and phylogenetic analyses showed that this newly emergent GX-CH-PV-7 is closely related to Gallus gallus enteric parvovirus isolate ChPV 798 from the USA, indicating that they may share a common ancestor. The complete DNA sequence is 4612 bp long with an A+T content of 56.66 %. We determined the first complete genome sequence of a previously unidentified ChPV strain to elucidate its origin and evolutionary status.
Classification of viral zoonosis through receptor pattern analysis.
Bae, Se-Eun; Son, Hyeon Seok
2011-04-13
Viral zoonosis, the transmission of a virus from its primary vertebrate reservoir species to humans, requires ubiquitous cellular proteins known as receptor proteins. Zoonosis can occur not only through direct transmission from vertebrates to humans, but also through intermediate reservoirs or other environmental factors. Viruses can be categorized according to genotype (ssDNA, dsDNA, ssRNA and dsRNA viruses). Among them, the RNA viruses exhibit particularly high mutation rates and are especially problematic for this reason. Most zoonotic viruses are RNA viruses that change their envelope proteins to facilitate binding to various receptors of host species. In this study, we sought to predict zoonotic propensity through the analysis of receptor characteristics. We hypothesized that the major barrier to interspecies virus transmission is that receptor sequences vary among species--in other words, that the specific amino acid sequence of the receptor determines the ability of the viral envelope protein to attach to the cell. We analysed host-cell receptor sequences for their hydrophobicity/hydrophilicity characteristics. We then analysed these properties for similarities among receptors of different species and used a statistical discriminant analysis to predict the likelihood of transmission among species. This study is an attempt to predict zoonosis through simple computational analysis of receptor sequence differences. Our method may be useful in predicting the zoonotic potential of newly discovered viral strains.
Exploring the roles of DNA methylation in the metal-reducing bacterium Shewanella oneidensis MR-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bendall, Matthew L.; Luong, Khai; Wetmore, Kelly M.
2013-08-30
We performed whole genome analyses of DNA methylation in Shewanella 17 oneidensis MR-1 to examine its possible role in regulating gene expression and 18 other cellular processes. Single-Molecule Real Time (SMRT) sequencing 19 revealed extensive methylation of adenine (N6mA) throughout the 20 genome. These methylated bases were located in five sequence motifs, 21 including three novel targets for Type I restriction/modification enzymes. The 22 sequence motifs targeted by putative methyltranferases were determined via 23 SMRT sequencing of gene knockout mutants. In addition, we found S. 24 oneidensis MR-1 cultures grown under various culture conditions displayed 25 different DNA methylation patterns.more » However, the small number of differentially 26 methylated sites could not be directly linked to the much larger number of 27 differentially expressed genes in these conditions, suggesting DNA methylation is 28 not a major regulator of gene expression in S. oneidensis MR-1. The enrichment 29 of methylated GATC motifs in the origin of replication indicate DNA methylation 30 may regulate genome replication in a manner similar to that seen in Escherichia 31 coli. Furthermore, comparative analyses suggest that many 32 Gammaproteobacteria, including all members of the Shewanellaceae family, may 33 also utilize DNA methylation to regulate genome replication.« less
Li, S.-F.; Xu, J.-W.; Yang, Q.-L.; Wang, C.H.; Chen, Q.; Chapman, D.C.; Lu, G.
2009-01-01
Based upon morphological characters, Silver carp Hypophthalmichthys molitrix and bighead carp Hypophthalmichthys nobilis (or Aristichthys nobilis) have been classified into either the same genus or two distinct genera. Consequently, the taxonomic relationship of the two species at the generic level remains equivocal. This issue is addressed by sequencing complete mitochondrial genomes of H. molitrix and H. nobilis, comparing their mitogenome organization, structure and sequence similarity, and conducting a comprehensive phylogenetic analysis of cyprinid species. As with other cyprinid fishes, the mitogenomes of the two species were structurally conserved, containing 37 genes including 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA (tRNAs) genes and a putative control region (D-loop). Sequence similarity between the two mitogenomes varied in different genes or regions, being highest in the tRNA genes (98??8%), lowest in the control region (89??4%) and intermediate in the protein-coding genes (94??2%). Analyses of the sequence comparison and phylogeny using concatenated protein sequences support the view that the two species belong to the genus Hypophthalmichthys. Further studies using nuclear markers and involving more closely related species, and the systematic combination of traditional biology and molecular biology are needed in order to confirm this conclusion. ?? 2009 The Fisheries Society of the British Isles.
Zhang, Gengxin; Dong, Hailiang; Xu, Zhiqin; Zhao, Donggao; Zhang, Chuanlun
2005-06-01
Microbial communities in ultra-high-pressure (UHP) rocks and drilling fluids from the Chinese Continental Scientific Drilling Project were characterized. The rocks had a porosity of 1 to 3.5% and a permeability of approximately 0.5 mDarcy. Abundant fluid and gas inclusions were present in the minerals. The rocks contained significant amounts of Fe2O3, FeO, P2O5, and nitrate (3 to 16 ppm). Acridine orange direct counting and phospholipid fatty acid analysis indicated that the total counts in the rocks and the fluids were 5.2 x 10(3) to 2.4 x 10(4) cells/g and 3.5 x 10(8) to 4.2 x 10(9) cells/g, respectively. Enrichment assays resulted in successful growth of thermophilic and alkaliphilic bacteria from the fluids, and some of these bacteria reduced Fe(III) to magnetite. 16S rRNA gene analyses indicated that the rocks were dominated by sequences similar to sequences of Proteobacteria and that most organisms were related to nitrate reducers from a saline, alkaline, cold habitat; however, some phylotypes were either members of a novel lineage or closely related to uncultured clones. The bacterial communities in the fluids were more diverse and included Proteobacteria, Bacteroidetes, gram-positive bacteria, Planctomycetes, and Candidatus taxa. The archaeal diversity was lower, and most sequences were not related to any known cultivated species. Some archaeal sequences were 90 to 95% similar to sequences recovered from ocean sediments or other subsurface environments. Some archaeal sequences from the drilling fluids were >93% similar to sequences of Sulfolobus solfataricus, and the thermophilic nature was consistent with the in situ temperature. We inferred that the microbes in the UHP rocks reside in fluid and gas inclusions, whereas those in the drilling fluids may be derived from subsurface fluids.
Zhang, Gengxin; Dong, Hailiang; Xu, Zhiqin; Zhao, Donggao; Zhang, Chuanlun
2005-01-01
Microbial communities in ultra-high-pressure (UHP) rocks and drilling fluids from the Chinese Continental Scientific Drilling Project were characterized. The rocks had a porosity of 1 to 3.5% and a permeability of ∼0.5 mDarcy. Abundant fluid and gas inclusions were present in the minerals. The rocks contained significant amounts of Fe2O3, FeO, P2O5, and nitrate (3 to 16 ppm). Acridine orange direct counting and phospholipid fatty acid analysis indicated that the total counts in the rocks and the fluids were 5.2 × 103 to 2.4 × 104 cells/g and 3.5 × 108 to 4.2 × 109 cells/g, respectively. Enrichment assays resulted in successful growth of thermophilic and alkaliphilic bacteria from the fluids, and some of these bacteria reduced Fe(III) to magnetite. 16S rRNA gene analyses indicated that the rocks were dominated by sequences similar to sequences of Proteobacteria and that most organisms were related to nitrate reducers from a saline, alkaline, cold habitat; however, some phylotypes were either members of a novel lineage or closely related to uncultured clones. The bacterial communities in the fluids were more diverse and included Proteobacteria, Bacteroidetes, gram-positive bacteria, Planctomycetes, and Candidatus taxa. The archaeal diversity was lower, and most sequences were not related to any known cultivated species. Some archaeal sequences were 90 to 95% similar to sequences recovered from ocean sediments or other subsurface environments. Some archaeal sequences from the drilling fluids were >93% similar to sequences of Sulfolobus solfataricus, and the thermophilic nature was consistent with the in situ temperature. We inferred that the microbes in the UHP rocks reside in fluid and gas inclusions, whereas those in the drilling fluids may be derived from subsurface fluids. PMID:15933024
CPm gene diversity in field isolates of Citrus tristeza virus from Colombia.
Oliveros-Garay, Oscar Arturo; Martinez-Salazar, Natalhie; Torres-Ruiz, Yanneth; Acosta, Orlando
2009-01-01
The nucleotide sequence diversity of the CPm gene from 28 field isolates of Citrus tristeza virus (CTV) was assessed by SSCP and sequence analyses. These isolates showed two major shared haplotypes, which differed in distribution: A1 was the major haplotype in 23 isolates from different geographic regions, whereas R1 was found in isolates from a discrete region. Phylogenetic reconstruction clustered A1 within an independent group, while R1 was grouped with mild isolates T30 from Florida and T385 from Spain. Some isolates contained several minor haplotypes, which were very similar to, and associated with, the major haplotype.
Quaranfil, Johnston Atoll, and Lake Chad viruses are novel members of the family Orthomyxoviridae.
Presti, Rachel M; Zhao, Guoyan; Beatty, Wandy L; Mihindukulasuriya, Kathie A; da Rosa, Amelia P A Travassos; Popov, Vsevolod L; Tesh, Robert B; Virgin, Herbert W; Wang, David
2009-11-01
Arboviral infections are an important cause of emerging infections due to the movements of humans, animals, and hematophagous arthropods. Quaranfil virus (QRFV) is an unclassified arbovirus originally isolated from children with mild febrile illness in Quaranfil, Egypt, in 1953. It has subsequently been isolated in multiple geographic areas from ticks and birds. We used high-throughput sequencing to classify QRFV as a novel orthomyxovirus. The genome of this virus is comprised of multiple RNA segments; five were completely sequenced. Proteins with limited amino acid similarity to conserved domains in polymerase (PA, PB1, and PB2) and hemagglutinin (HA) genes from known orthomyxoviruses were predicted to be present in four of the segments. The fifth sequenced segment shared no detectable similarity to any protein and is of uncertain function. The end-terminal sequences of QRFV are conserved between segments and are different from those of the known orthomyxovirus genera. QRFV is known to cross-react serologically with two other unclassified viruses, Johnston Atoll virus (JAV) and Lake Chad virus (LKCV). The complete open reading frames of PB1 and HA were sequenced for JAV, while a fragment of PB1 of LKCV was identified by mass sequencing. QRFV and JAV PB1 and HA shared 80% and 70% amino acid identity to each other, respectively; the LKCV PB1 fragment shared 83% amino acid identity with the corresponding region of QRFV PB1. Based on phylogenetic analyses, virion ultrastructural features, and the unique end-terminal sequences identified, we propose that QRFV, JAV, and LKCV comprise a novel genus of the family Orthomyxoviridae.
Quaranfil, Johnston Atoll, and Lake Chad Viruses Are Novel Members of the Family Orthomyxoviridae▿
Presti, Rachel M.; Zhao, Guoyan; Beatty, Wandy L.; Mihindukulasuriya, Kathie A.; Travassos da Rosa, Amelia P. A.; Popov, Vsevolod L.; Tesh, Robert B.; Virgin, Herbert W.; Wang, David
2009-01-01
Arboviral infections are an important cause of emerging infections due to the movements of humans, animals, and hematophagous arthropods. Quaranfil virus (QRFV) is an unclassified arbovirus originally isolated from children with mild febrile illness in Quaranfil, Egypt, in 1953. It has subsequently been isolated in multiple geographic areas from ticks and birds. We used high-throughput sequencing to classify QRFV as a novel orthomyxovirus. The genome of this virus is comprised of multiple RNA segments; five were completely sequenced. Proteins with limited amino acid similarity to conserved domains in polymerase (PA, PB1, and PB2) and hemagglutinin (HA) genes from known orthomyxoviruses were predicted to be present in four of the segments. The fifth sequenced segment shared no detectable similarity to any protein and is of uncertain function. The end-terminal sequences of QRFV are conserved between segments and are different from those of the known orthomyxovirus genera. QRFV is known to cross-react serologically with two other unclassified viruses, Johnston Atoll virus (JAV) and Lake Chad virus (LKCV). The complete open reading frames of PB1 and HA were sequenced for JAV, while a fragment of PB1 of LKCV was identified by mass sequencing. QRFV and JAV PB1 and HA shared 80% and 70% amino acid identity to each other, respectively; the LKCV PB1 fragment shared 83% amino acid identity with the corresponding region of QRFV PB1. Based on phylogenetic analyses, virion ultrastructural features, and the unique end-terminal sequences identified, we propose that QRFV, JAV, and LKCV comprise a novel genus of the family Orthomyxoviridae. PMID:19726499
Poulsen, Knud; Reinholdt, Jesper; Jespersgaard, Christina; Boye, Kit; Brown, Thomas A.; Hauge, Majbritt; Kilian, Mogens
1998-01-01
An analysis of 13 immunoglobulin A1 (IgA1) protease genes (iga) of strains of Streptococcus pneumoniae, Streptococcus oralis, Streptococcus mitis, and Streptococcus sanguis was carried out to obtain information on the structure, polymorphism, and phylogeny of this specific protease, which enables bacteria to evade functions of the predominant Ig isotype on mucosal surfaces. The analysis included cloning and sequencing of iga genes from S. oralis and S. mitis biovar 1, sequencing of an additional seven iga genes from S. sanguis biovars 1 through 4, and restriction fragment length polymorphism (RFLP) analyses of iga genes of another 10 strains of S. mitis biovar 1 and 6 strains of S. oralis. All 13 genes sequenced had the potential of encoding proteins with molecular masses of approximately 200 kDa containing the sequence motif HEMTH and an E residue 20 amino acids downstream, which are characteristic of Zn metalloproteinases. In addition, all had a typical gram-positive cell wall anchor motif, LPNTG, which, in contrast to such motifs in other known streptococcal and staphylococcal proteins, was located in their N-terminal parts. Repeat structures showing variation in number and sequence were present in all strains and may be of relevance to the immunogenicities of the enzymes. Protease activities in cultures of the streptococcal strains were associated with species of different molecular masses ranging from 130 to 200 kDa, suggesting posttranslational processing possibly as a result of autoproteolysis at post-proline peptide bonds in the N-terminal parts of the molecules. Comparison of deduced amino acid sequences revealed a 94% similarity between S. oralis and S. mitis IgA1 proteases and a 75 to 79% similarity between IgA1 proteases of these species and those of S. pneumoniae and S. sanguis, respectively. Combined with the results of RFLP analyses using different iga gene fragments as probes, the results of nucleotide sequence comparisons provide evidence of horizontal transfer of iga gene sequences among individual strains of S. sanguis as well as among S. mitis and the two species S. pneumoniae and S. oralis. While iga genes of S. sanguis and S. oralis were highly homogeneous, the genes of S. pneumoniae and S. mitis showed extensive polymorphism reflected in different degrees of antigenic diversity. PMID:9423856
Soares, René Arderius; Passaglia, Luciane Maria Pereira
2010-10-01
Bradyrhizobium elkanii is successfully used in the formulation of commercial inoculants and, together with B. japonicum, it fully supplies the plant nitrogen demands. Despite the similarity between B. japonicum and B. elkanii species, several works demonstrated genetic and physiological differences between them. In this work Representational Difference Analysis (RDA) was used for genomic comparison between B. elkanii SEMIA 587, a crop inoculant strain, and B. japonicum USDA 110, a reference strain. Two hundred sequences were obtained. From these, 46 sequences belonged exclusively to the genome of B. elkanii strain, and 154 showed similarity to sequences from B. japonicum genome. From the 46 sequences with no similarity to sequences from B. japonicum, 39 showed no similarity to sequences in public databases and seven showed similarity to sequences of genes coding for known proteins. These seven sequences were divided in three groups: similar to sequences from other Bradyrhizobium strains, similar to sequences from other nitrogen-fixing bacteria, and similar to sequences from non nitrogen-fixing bacteria. These new sequences could be used as DNA markers in order to investigate the rates of genetic material gain and loss in natural Bradyrhizobium strains.
Radl, Viviane; Simões-Araújo, Jean Luiz; Leite, Jakson; Passos, Samuel Ribeiro; Martins, Lindete Míria Vieira; Xavier, Gustavo Ribeiro; Rumjanek, Norma Gouvêa; Baldani, José Ivo; Zilli, Jerri Edson
2014-03-01
16S rRNA gene sequence analysis of eight strains (BR 3299(T), BR 3296, BR 10192, BR 10193, BR 10194, BR 10195, BR 10196 and BR 10197) isolated from nodules of cowpea collected from a semi-arid region of Brazil showed 97 % similarity to sequences of recently described rhizobial species of the genus Microvirga. Phylogenetic analyses of four housekeeping genes (gyrB, recA, dnaK and rpoB), DNA-DNA relatedness and AFLP further indicated that these strains belong to a novel species within the genus Microvirga. Our data support the hypothesis that genes related to nitrogen fixation were obtained via horizontal gene transfer, as sequences of nifH genes were very similar to those found in members of the genera Rhizobium and Mesorhizobium, which are not immediate relatives of the genus Microvirga, as shown by 16S rRNA gene sequence analysis. Phenotypic traits, such as host range and carbon utilization, differentiate the novel strains from the most closely related species, Microvirga lotononidis, Microvirga zambiensis and Microvirga lupini. Therefore, these symbiotic nitrogen-fixing bacteria are proposed to be representatives of a novel species, for which the name Microvirga vignae sp. nov. is suggested. The type strain is BR3299(T) ( = HAMBI 3457(T)).
Koike-Takeshita, A; Koyama, T; Obata, S; Ogura, K
1995-08-04
The genes encoding two dissociable components essential for Bacillus stearothermophilus heptaprenyl diphosphate synthase (all-trans-hexparenyl-diphosphate:isopentenyl-diphosphate hexaprenyl-trans-transferase, EC 2.5.1.30) were cloned, and their nucleotide sequences were determined. Sequence analyses revealed the presence of three open reading frames within 2,350 base pairs, designated as ORF-1, ORF-2, and ORF-3 in order of nucleotide sequence, which encode proteins of 220, 234, and 323 amino acids, respectively. Deletion experiments have shown that expression of the enzymatic activity requires the presence of ORF-1 and ORF-3, but ORF-2 is not essential. As a result, this enzyme was proved genetically to consist of two different protein compounds with molecular masses of 25 kDa (Component I) and 36 kDa (Component II), encoded by two of the three tandem genes. The protein encoded by ORF-1 has no similarity to any protein so far registered. However, the protein encoded by ORF-3 shows a 32% similarity to the farnesyl diphosphate synthase of the same bacterium and has seven highly conserved regions that have been shown typical in prenyltransferases (Koyama, T., Obata, S., Osabe, M., Takeshita, A., Yokoyama, K., Uchida, M., Nishino, T., and Ogura, K. (1993) J. Biochem. (Tokyo) 113, 355-363).
Lu, Jing; Guo, Xue; Zhang, Yong; Li, Hui; Liu, Leng; Zeng, Hanri; Fang, Ling; Mo, Yanling; Yoshida, Hiromu; Yi, Lina; Liu, Tao; Rutherford, Shannon; Xu, Wenbo; Ke, Changwen
2015-01-01
An aseptic meningitis outbreak occurred in Luoding City of Guangdong, China, in 2012, and echovirus type 30 (ECHO30) was identified as the major causative pathogen. Environmental surveillance indicated that ECHO30 was detected in the sewage of a neighboring city, Guangzhou, from 2010 to 2012 and also in Luoding City sewage samples (6/43, 14%) collected after the outbreak. In order to track the potential origin of the outbreak viral strains, we sequenced the VP1 genes of 29 viral strains from clinical patients and environmental samples. Sequence alignments and phylogenetic analyses based on VP1 gene sequences revealed that virus strains isolated from the sewage of Guangzhou and Luoding cities matched well the clinical strains from the outbreak, with high nucleotide sequence similarity (98.5% to 100%) and similar cluster distribution. Five ECHO30 clinical strains were clustered with the Guangdong environmental strains but diverged from strains from other regions, suggesting that this subcluster of viruses most likely originated from the circulating virus in Guangdong rather than having been more recently imported from other regions. These findings underscore the importance of long-term, continuous environmental surveillance and genetic analysis to monitor circulating enteroviruses. PMID:25616804
Menon, Thangam; Gopalakrishnan, Sathya Narayanan; Balasubramanian, Rayvathy; Justin, Stalin Roy
2017-01-01
Oral health is suspected to be linked to heart disease since species of bacteria that cause periodontitis and dental caries have been found in the atherosclerotic plaque in arteries in the heart. The aim of this study was to characterize the oral microbiome in patients with coronary artery disease (CAD) and in a patient with dental caries (DC) without any clinical symptoms of CAD. DNA was extracted from the oral swabs collected from the patients and sequencing was performed by next generation sequencing method using Illumina (MiSeq) platform. The resulting sequencing data set was analysed using QIIME. A total of 31 phyla were found in all the samples. The predominant phylum found in both CAD and DC was Firmicutes (46.09% & 38.98%), Proteobacteria (17.73% & 9.79%), Fusobacteria (13.44% & 17.95%), Bacteroidetes (11.82% & 22.73%), Actinobacteria (8.33% & 7.71%) and TM7 (2.25% & 2.71%). We found a similarity in the bacterial diversity in the two groups of patients. A comparison of the oral microbiome in patients with CAD and DC shows a similarity in the composition of the oral microbiota with variations in the proportion of a few genera.
Identification of Y-Chromosome Sequences in Turner Syndrome.
Silva-Grecco, Roseane Lopes da; Trovó-Marqui, Alessandra Bernadete; Sousa, Tiago Alves de; Croce, Lilian Da; Balarin, Marly Aparecida Spadotto
2016-05-01
To investigate the presence of Y-chromosome sequences and determine their frequency in patients with Turner syndrome. The study included 23 patients with Turner syndrome from Brazil, who gave written informed consent for participating in the study. Cytogenetic analyses were performed in peripheral blood lymphocytes, with 100 metaphases per patient. Genomic DNA was also extracted from peripheral blood lymphocytes, and gene sequences DYZ1, DYZ3, ZFY and SRY were amplified by Polymerase Chain Reaction. The cytogenetic analysis showed a 45,X karyotype in 9 patients (39.2 %) and a mosaic pattern in 14 (60.8 %). In 8.7 % (2 out of 23) of the patients, Y-chromosome sequences were found. This prevalence is very similar to those reported previously. The initial karyotype analysis of these patients did not reveal Y-chromosome material, but they were found positive for Y-specific sequences in the lymphocyte DNA analysis. The PCR technique showed that 2 (8.7 %) of the patients with Turner syndrome had Y-chromosome sequences, both presenting marker chromosomes on cytogenetic analysis.
Orthologs in Arabidopsis thaliana of the Hsp70 interacting protein Hip
Webb, Mary Alice; Cavaletto, John M.; Klanrit, Preekamol; Thompson, Gary A.
2001-01-01
The Hsp70-interacting protein Hip binds to the adenosine triphosphatase domain of Hsp70, stabilizing it in the adenosine 5′-diphosphate–ligated conformation and promoting binding of target polypeptides. In mammalian cells, Hip is a component of the cytoplasmic chaperone heterocomplex that regulates signal transduction via interaction with hormone receptors and protein kinases. Analysis of the complete genome sequence of the model flowering plant Arabidopsis thaliana revealed 2 genes encoding Hip orthologs. The deduced sequence of AtHip-1 consists of 441 amino acid residues and is 42% identical to human Hip. AtHip-1 contains the same functional domains characterized in mammalian Hip, including an N-terminal dimerization domain, an acidic domain, 3 tetratricopeptide repeats flanked by a highly charged region, a series of degenerate GGMP repeats, and a C-terminal region similar to the Sti1/Hop/p60 protein. The deduced amino acid sequence of AtHip-2 consists of 380 amino acid residues. AtHip-2 consists of a truncated Hip-like domain that is 46% identical to human Hip, followed by a C-terminal domain related to thioredoxin. AtHip-2 is 63% identical to another Hip-thioredoxin protein recently identified in Vitis labrusca (grape). The truncated Hip domain in AtHip-2 includes the amino terminus, the acidic domain, and tetratricopeptide repeats with flanking charged region. Analyses of expressed sequence tag databases indicate that both AtHip-1 and AtHip-2 are expressed in A thaliana and that orthologs of Hip are also expressed widely in other plants. The similarity between AtHip-1 and its mammalian orthologs is consistent with a similar role in plant cells. The sequence of AtHip-2 suggests the possibility of additional unique chaperone functions. PMID:11599566
Community analysis of a full-scale anaerobic bioreactor treating paper mill wastewater.
Roest, Kees; Heilig, Hans G H J; Smidt, Hauke; de Vos, Willem M; Stams, Alfons J M; Akkermans, Antoon D L
2005-03-01
To get insight into the microbial community of an Upflow Anaerobic Sludge Blanket reactor treating paper mill wastewater, conventional microbiological methods were combined with 16S rRNA gene analyses. Particular attention was paid to microorganisms able to degrade propionate or butyrate in the presence or absence of sulphate. Serial enrichment dilutions allowed estimating the number of microorganisms per ml sludge that could use butyrate with or without sulphate (10(5)), propionate without sulphate (10(6)), or propionate and sulphate (10(8)). Quantitative RNA dot-blot hybridisation indicated that Archaea were two-times more abundant in the microbial community of anaerobic sludge than Bacteria. The microbial community composition was further characterised by 16S rRNA-gene-targeted Denaturing Gradient Gel Electrophoresis (DGGE) fingerprinting, and via cloning and sequencing of dominant amplicons from the bacterial and archaeal patterns. Most of the nearly full length (approximately 1.45 kb) bacterial 16S rRNA gene sequences showed less than 97% similarity to sequences present in public databases, in contrast to the archaeal clones (approximately. 1.3 kb) that were highly similar to known sequences. While Methanosaeta was found as the most abundant genus, also Crenarchaeote-relatives were identified. The microbial community was relatively stable over a period of 3 years (samples taken in July 1999, May 2001, March 2002 and June 2002) as indicated by the high similarity index calculated from DGGE profiles (81.9+/-2.7% for Bacteria and 75.1+/-3.1% for Archaea). 16S rRNA gene sequence analysis indicated the presence of unknown and yet uncultured microorganisms, but also showed that known sulphate-reducing bacteria and syntrophic fatty acid-oxidising microorganisms dominated the enrichments.
Serrano, Amaya; Williams, Trevor; Simón, Oihane; López-Ferber, Miguel; Caballero, Primitivo
2013-01-01
A natural Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) isolate from Florida shares a strikingly similar genotypic composition to that of a natural Spodoptera frugiperda MNPV (SfMNPV) isolate from Nicaragua. Both isolates comprise a high proportion of large-deletion genotypes that lack genes that are essential for viral replication or transmission. To determine the likely origins of such genotypically similar population structures, we performed genomic and functional analyses of these genotypes. The homology of nucleotides in the deleted regions was as high as 79%, similar to those of other colinear genomic regions, although some SfMNPV genes were not present in SeMNPV. In addition, no potential consensus sequences were shared between the deletion flanking sequences. These results indicate an evolutionary mechanism that independently generates and sustains deletion mutants within each virus population. Functional analyses using different proportions of complete and deletion genotypes were performed with the two viruses in mixtures of occlusion bodies (OBs) or co-occluded virions. Ratios greater than 3:1 of complete/deletion genotypes resulted in reduced pathogenicity (expressed as median lethal dose), but there were no significant changes in the speed of kill. In contrast, OB yields increased only in the 1:1 mixture. The three phenotypic traits analyzed provide a broader picture of the functional significance of the most extensively deleted SeMNPV genotype and contribute toward the elucidation of the role of such mutants in baculovirus populations. PMID:23204420
Streptococcus azizii sp. nov., isolated from naïve weanling mice.
Shewmaker, Patricia Lynn; Whitney, Anne M; Gulvik, Christopher A; Lipman, Neil S
2017-12-01
Three isolates of a previously reported novel catalase-negative, Gram-stain-positive, coccoid, alpha-haemolytic, Streptococcus species that were associated with meningoencephalitis in naïve weanling mice were further evaluated to confirm their taxonomic status and to determine additional phenotypic and molecular characteristics. Comparative 16S rRNA gene sequence analysis showed nearly identical intra-species sequence similarity (≥99.9 %), and revealed the closest phylogenetically related species, Streptococcus acidominimus and Streptococcuscuniculi, with 97.0 and 97.5 % sequence similarity, respectively. The rpoB, sodA and recN genes were identical for the three isolates and were 87.6, 85.7 and 82.5 % similar to S. acidominimus and 89.7, 86.2 and 80.7 % similar to S. cuniculi, respectively. In silico DNA-DNA hybridization analyses of mouse isolate 12-5202 T against S. acidominimus CCUG 27296 T and S. cuniculi CCUG 65085 T produced estimated values of 26.4 and 25.7 % relatedness, and the calculated average nucleotide identity values were 81.9 and 81.7, respectively. These data confirm the taxonomic status of 12-5202 T as a distinct Streptococcus species, and we formally propose the type strain, Streptococcusazizii 12-5202 T (=CCUG 69378 T =DSM 103678 T ). The genome of Streptococcus azizii sp. nov. 12-5202 T contains 2062 total genes with a size of 2.34 Mbp, and an average G+C content of 42.76 mol%.
Katayama, Takahiro; Yasukawa, Hiro
2008-10-01
It has been reported that Dictyostelium discoideum encodes four silent information regulator 2 (Sir2) proteins (Sir2A-D) showing sequence similarity to human homologues of Sir2 (SIRT1-3). Further screening in a database revealed that D. discoideum encodes an additional Sir2 homologue (Sir2E). The amino acid sequence of Sir2E is not similar to those of SIRTs but is similar to those of proteins encoded by Giardia lamblia, Cryptosporidium hominis and Cryptosporidium parvum. Fluorescence of Sir2E-green fluorescent protein fusion protein was detected in the D. discoideum nucleus, indicating that Sir2E is a nuclear localizing protein. Reverse transcription-polymerase chain reaction and whole-mount in situ hybridization analyses showed that D. discoideum expressed sir2E in amoebae in the growth phase and in prestalk cells in the developmental phase. D. discoideum overexpressing sir2E grew faster than the wild type. These results indicate that Sir2E plays important roles both in the growth phase and developmental phase of D. discoideum.
Platt, Roy N.; Amman, Brian R.; Keith, Megan S.; Thompson, Cody W.; Bradley, Robert D.
2015-01-01
The evolutionary relationships between Peromyscus, Habromys, Isthmomys, Megadontomys, Neotomodon, Osgoodomys, and Podomys are poorly understood. In order to further explore the evolutionary boundaries of Peromyscus and compare potential taxonomic solutions for this diverse group and its relatives, we conducted phylogenetic analyses of DNA sequence data from alcohol dehydrogenase (Adh1-I2), beta fibrinogen (Fgb-I7), interphotoreceptor retinoid-binding protein (Rbp3), and cytochrome-b (Cytb). Phylogenetic analyses of mitochondrial and nuclear genes produced similar topologies although levels of nodal support varied. The best-supported topology was obtained by combining nuclear and mitochondrial sequences. No monophyletic Peromyscus clade was supported. Instead, support was found for a clade containing Habromys, Megadontomys, Neotomodon, Osgoodomys, Podomys, and Peromyscus suggesting paraphyly of Peromyscus and confirming previous observations. Our analyses indicated an early divergence of Isthmomys from Peromyscus (approximately 8 million years ago), whereas most other peromyscine taxa emerged within the last 6 million years. To recover a monophyletic taxonomy from Peromyscus and affiliated lineages, we detail 3 taxonomic options in which Habromys, Megadontomys, Neotomodon, Osgoodomys, and Podomys are retained as genera, subsumed as subgenera, or subsumed as species groups within Peromyscus. Each option presents distinct taxonomic challenges, and the appropriate taxonomy must reflect the substantial levels of morphological divergence that characterize this group while maintaining the monophyletic relationships obtained from genetic data. PMID:26937047
Platt, Roy N; Amman, Brian R; Keith, Megan S; Thompson, Cody W; Bradley, Robert D
2015-08-03
The evolutionary relationships between Peromyscus , Habromys , Isthmomys , Megadontomys , Neotomodon , Osgoodomys , and Podomys are poorly understood. In order to further explore the evolutionary boundaries of Peromyscus and compare potential taxonomic solutions for this diverse group and its relatives, we conducted phylogenetic analyses of DNA sequence data from alcohol dehydrogenase ( Adh 1-I2), beta fibrinogen ( Fgb -I7), interphotoreceptor retinoid-binding protein ( Rbp 3), and cytochrome- b ( Cytb ). Phylogenetic analyses of mitochondrial and nuclear genes produced similar topologies although levels of nodal support varied. The best-supported topology was obtained by combining nuclear and mitochondrial sequences. No monophyletic Peromyscus clade was supported. Instead, support was found for a clade containing Habromys , Megadontomys , Neotomodon , Osgoodomys , Podomys , and Peromyscus suggesting paraphyly of Peromyscus and confirming previous observations. Our analyses indicated an early divergence of Isthmomys from Peromyscus (approximately 8 million years ago), whereas most other peromyscine taxa emerged within the last 6 million years. To recover a monophyletic taxonomy from Peromyscus and affiliated lineages, we detail 3 taxonomic options in which Habromys , Megadontomys , Neotomodon , Osgoodomys , and Podomys are retained as genera, subsumed as subgenera, or subsumed as species groups within Peromyscus . Each option presents distinct taxonomic challenges, and the appropriate taxonomy must reflect the substantial levels of morphological divergence that characterize this group while maintaining the monophyletic relationships obtained from genetic data.
Clinical and Molecular Characteristics of Human Rotavirus G8P[8] Outbreak Strain, Japan, 2014.
Kondo, Kenji; Tsugawa, Takeshi; Ono, Mayumi; Ohara, Toshio; Fujibayashi, Shinsuke; Tahara, Yasuo; Kubo, Noriaki; Nakata, Shuji; Higashidate, Yoshihito; Fujii, Yoshiki; Katayama, Kazuhiko; Yoto, Yuko; Tsutsumi, Hiroyuki
2017-06-01
During March-July 2014, rotavirus G8P[8] emerged as the predominant cause of rotavirus gastroenteritis among children in Hokkaido Prefecture, Japan. Clinical characteristics were similar for infections caused by G8 and non-G8 strains. Sequence and phylogenetic analyses suggest the strains were generated by multiple reassortment events between DS-1-like P[8] strains and bovine strains from Asia.
Karamian, Mehdi; Haghighi, Fatemeh; Hemmati, Mina; Taylor, Walter Robert; Salehabadi, Alireza; Ghatee, Mohammad Amin
2017-10-15
Little is known about the genotypes of Echinococcus spp. and their life cycles in eastern Iran. We analysed the partial sequences of the nad1 and cox1 genes from 17 isolates from hydatid cyst-infected patients (n=9), camels (n=5) and sheep (n=3) in Birjand, eastern Iran. A new primer pair was also used to amplify the long fragment (1180bp) of the cox1 gene. All camel and eight human isolates were G6 strains of Echinococcus canadensis while one human isolate and the three sheep isolates were G1 genotypes (sheep strain) of E. granulosus sensu stricto (s.s.). Nad1 and cox1 sequence analyses showed high G6 genetic homogeneity, similar to previously reported G6 strains from southeast and central Iran, Sudan and Mauritania. Low nucleotide and haplotype diversity similar to G6 strains from Russia (Altai republic) and Kazakhstan was also found, consistent with a bottleneck effect. In this study, G6 was the most common Echinococcus genotype. Genetic homogeneity of east, southeast and central Iranian G6 and its low genetic diversity may be due limited mobility and contact between humans and camels from other regions because of large, inhospitable deserts. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Dayeong; Soundrarajan, Nagasundarapandian; Lee, Juyeon; Cho, Hye-Sun; Choi, Minkyeung; Cha, Se-Yeoun; Ahn, Byeongyong; Jeon, Hyoim; Le, Minh Thong; Song, Hyuk; Kim, Jin-Hoi; Park, Chankyu
2017-09-01
In this study, we sought to identify novel antimicrobial peptides (AMPs) in Python bivittatus through bioinformatic analyses of publicly available genome information and experimental validation. In our analysis of the python genome, we identified 29 AMP-related candidate sequences. Of these, we selected five cathelicidin-like sequences and subjected them to further in silico analyses. The results showed that these sequences likely have antimicrobial activity. The sequences were named Pb-CATH1 to Pb-CATH5 according to their sequence similarity to previously reported snake cathelicidins. We predicted their molecular structure and then chemically synthesized the mature peptide for three putative cathelicidins and subjected them to biological activity tests. Interestingly, all three peptides showed potent antimicrobial effects against Gram-negative bacteria but very weak activity against Gram-positive bacteria. Remarkably, ΔPb-CATH4 showed potent activity against antibiotic-resistant clinical isolates and also was observed to possess very low hemolytic activity and cytotoxicity. ΔPb-CATH4 also showed considerable serum stability. Electron microscopic analysis indicated that ΔPb-CATH4 exerts its effects via toroidal pore preformation. Structural comparison of the cathelicidins identified in this study to previously reported ones revealed that these Pb-CATHs are representatives of a new group of reptilian cathelicidins lacking the acidic connecting domain. Furthermore, Pb-CATH4 possesses a completely different mature peptide sequence from those of previously described reptilian cathelicidins. These new AMPs may be candidates for the development of alternatives to or complements of antibiotics to control multidrug-resistant pathogens. Copyright © 2017 American Society for Microbiology.
Kim, Dayeong; Soundrarajan, Nagasundarapandian; Lee, Juyeon; Cho, Hye-sun; Choi, Minkyeung; Cha, Se-Yeoun; Ahn, Byeongyong; Jeon, Hyoim; Le, Minh Thong; Song, Hyuk; Kim, Jin-Hoi
2017-01-01
ABSTRACT In this study, we sought to identify novel antimicrobial peptides (AMPs) in Python bivittatus through bioinformatic analyses of publicly available genome information and experimental validation. In our analysis of the python genome, we identified 29 AMP-related candidate sequences. Of these, we selected five cathelicidin-like sequences and subjected them to further in silico analyses. The results showed that these sequences likely have antimicrobial activity. The sequences were named Pb-CATH1 to Pb-CATH5 according to their sequence similarity to previously reported snake cathelicidins. We predicted their molecular structure and then chemically synthesized the mature peptide for three putative cathelicidins and subjected them to biological activity tests. Interestingly, all three peptides showed potent antimicrobial effects against Gram-negative bacteria but very weak activity against Gram-positive bacteria. Remarkably, ΔPb-CATH4 showed potent activity against antibiotic-resistant clinical isolates and also was observed to possess very low hemolytic activity and cytotoxicity. ΔPb-CATH4 also showed considerable serum stability. Electron microscopic analysis indicated that ΔPb-CATH4 exerts its effects via toroidal pore preformation. Structural comparison of the cathelicidins identified in this study to previously reported ones revealed that these Pb-CATHs are representatives of a new group of reptilian cathelicidins lacking the acidic connecting domain. Furthermore, Pb-CATH4 possesses a completely different mature peptide sequence from those of previously described reptilian cathelicidins. These new AMPs may be candidates for the development of alternatives to or complements of antibiotics to control multidrug-resistant pathogens. PMID:28630199
Factor structure of paediatric timed motor examination and its relationship with IQ
MARTIN, REBECCA; TIGERA, CASSIE; DENCKLA, MARTHA B; MAHONE, E MARK
2012-01-01
AIM Brain systems supporting higher cognitive and motor control develop in a parallel manner, dependent on functional integrity and maturation of related regions, suggesting neighbouring neural circuitry. Concurrent examination of motor and cognitive control can provide a window into neurological development. However, identification of performance-based measures that do not correlate with IQ has been a challenge. METHOD Timed motor performance from the Physical and Neurological Examination of Subtle Signs and IQ were analysed in 136 children aged 6 to 16 (mean age 10y 2.6mo, SD 2y 6.4mo; 98 female, 38male) attending an outpatient neuropsychology clinic and 136 right-handed comparison individuals aged 6 to 16 (mean age 10y 3.1mo, SD 2y 6.1mo; 98 female, 38male). Timed activities – three repetitive movements (toe tapping, hand patting, finger tapping) and three sequenced movements (heel–toe tap, hand pronate/supinate, finger sequencing) each performed on the right and left – were included in exploratory factor analyses. RESULTS Among comparison individuals, factor analysis yielded two factors – repetitive and sequenced movements – with the sequenced factor significantly predictive of Verbal IQ (VIQ) (ΔR2=0.018, p=0.019), but not the repetitive factor (ΔR2=0.004, p=0.39). Factor analysis within the clinical group yielded two similar factors (repetitive and sequenced), both significantly predictive of VIQ, (ΔR2=0.028, p=0.015; ΔR2=0.046, p=0.002 respectively). INTERPRETATION Among typical children, repetitive timed tasks may be independent of IQ; however, sequenced tasks share more variance, implying shared neural substrates. Among neurologically vulnerable populations, however, both sequenced and repetitive movements covary with IQ, suggesting that repetitive speed is more indicative of underlying neurological integrity. PMID:20412260
Pilotte, Nils; Papaiakovou, Marina; Grant, Jessica R; Bierwert, Lou Ann; Llewellyn, Stacey; McCarthy, James S; Williams, Steven A
2016-03-01
The soil transmitted helminths are a group of parasitic worms responsible for extensive morbidity in many of the world's most economically depressed locations. With growing emphasis on disease mapping and eradication, the availability of accurate and cost-effective diagnostic measures is of paramount importance to global control and elimination efforts. While real-time PCR-based molecular detection assays have shown great promise, to date, these assays have utilized sub-optimal targets. By performing next-generation sequencing-based repeat analyses, we have identified high copy-number, non-coding DNA sequences from a series of soil transmitted pathogens. We have used these repetitive DNA elements as targets in the development of novel, multi-parallel, PCR-based diagnostic assays. Utilizing next-generation sequencing and the Galaxy-based RepeatExplorer web server, we performed repeat DNA analysis on five species of soil transmitted helminths (Necator americanus, Ancylostoma duodenale, Trichuris trichiura, Ascaris lumbricoides, and Strongyloides stercoralis). Employing high copy-number, non-coding repeat DNA sequences as targets, novel real-time PCR assays were designed, and assays were tested against established molecular detection methods. Each assay provided consistent detection of genomic DNA at quantities of 2 fg or less, demonstrated species-specificity, and showed an improved limit of detection over the existing, proven PCR-based assay. The utilization of next-generation sequencing-based repeat DNA analysis methodologies for the identification of molecular diagnostic targets has the ability to improve assay species-specificity and limits of detection. By exploiting such high copy-number repeat sequences, the assays described here will facilitate soil transmitted helminth diagnostic efforts. We recommend similar analyses when designing PCR-based diagnostic tests for the detection of other eukaryotic pathogens.
Reizer, J.; Hoischen, C.; Reizer, A.; Pham, T. N.; Saier, M. H.
1993-01-01
We have previously reported the overexpression, purification, and biochemical properties of the Bacillus subtilis Enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system (PTS) (Reizer, J., et al., 1992, J. Biol. Chem. 267, 9158-9169). We now report the sequencing of the ptsI gene of B. subtilis encoding Enzyme I (570 amino acids and 63,076 Da). Putative transcriptional regulatory signals are identified, and the pts operon is shown to be subject to carbon source-dependent regulation. Multiple alignments of the B. subtilis Enzyme I with (1) six other sequenced Enzymes I of the PTS from various bacterial species, (2) phosphoenolpyruvate synthase of Escherichia coli, and (3) bacterial and plant pyruvate: phosphate dikinases (PPDKs) revealed regions of sequence similarity as well as divergence. Statistical analyses revealed that these three types of proteins comprise a homologous family, and the phylogenetic tree of the 11 sequenced protein members of this family was constructed. This tree was compared with that of the 12 sequence HPr proteins or protein domains. Antibodies raised against the B. subtilis and E. coli Enzymes I exhibited immunological cross-reactivity with each other as well as with PPDK of Bacteroides symbiosus, providing support for the evolutionary relationships of these proteins suggested from the sequence comparisons. Putative flexible linkers tethering the N-terminal and the C-terminal domains of protein members of the Enzyme I family were identified, and their potential significance with regard to Enzyme I function is discussed. The codon choice pattern of the B. subtilis and E. coli ptsI and ptsH genes was found to exhibit a bias toward optimal codons in these organisms.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7686067
Bioinformatics analysis and genetic diversity of the poliovirus.
Liu, Yanhan; Ma, Tengfei; Liu, Jianzhu; Zhao, Xiaona; Cheng, Ziqiang; Guo, Huijun; Wang, Shujing; Xu, Ruixue
2014-12-01
Poliomyelitis, a disease which can manifest as muscle paralysis, is caused by the poliovirus, which is a human enterovirus and member of the family Picornaviridae that usually transmits by the faecal-oral route. The viruses of the OPV (oral poliovirus attenuated-live vaccine) strains can mutate in the human intestine during replication and some of these mutations can lead to the recovery of serious neurovirulence. Informatics research of the poliovirus genome can be used to explain further the characteristics of this virus. In this study, sequences from 100 poliovirus isolates were acquired from GenBank. To determine the evolutionary relationship between the strains, we compared and analysed the sequences of the complete poliovirus genome and the VP1 region. The reconstructed phylogenetic trees for the complete sequences and the VP1 sequences were both divided into two branches, indicating that the genetic relationships of the whole poliovirus genome and the VP1 sequences are very similar. This branching indicates that the virulence and pathogenicity of poliomyelitis may be associated with the VP1 region. Sequence alignment of the VP1 region revealed numerous mutation sites in which mutation rates of >30 % were detected. In a group of strains recorded in the USA, mutation sites and mutation types were the same and this may be associated with their distribution in the evolutionary tree and their genetic relationship. In conclusion, the genetic evolutionary relationships of poliovirus isolate sequences are determined to a great extent by the VP1 protein, and poliovirus strains located on the same branch of the phylogenetic tree contain the same mutation spots and mutation types. Hence, the genetic characteristics of the VP1 region in the poliovirus genome should be analysed to identify the transmission route of poliovirus and provide the basis of viral immunity development. © 2014 The Authors.
Mühldorfer, Kristin; Speck, Stephanie; Wibbelt, Gudrun
2014-07-01
Five bacterial strains isolated from bats of the family Vespertilionidae were characterized by phenotypic tests and multilocus sequence analysis (MLSA) using the 16S rRNA gene and four housekeeping genes (rpoA, rpoB, infB, recN). Phylogenetic analyses of individual and combined datasets indicated that the five strains represent a monophyletic cluster within the family Pasteurellaceae. Comparison of 16S rRNA gene sequences demonstrated a high degree of similarity (98.3-99.9%) among the group of bat-derived strains, while searches in nucleotide databases indicated less than 96% sequence similarity to known members of the Pasteurellaceae. The housekeeping genes rpoA, rpoB, infB and recN provided higher resolution compared with the 16S rRNA gene and subdivided the group according to the bat species from which the strains were isolated. Three strains derived from noctule bats shared 98.6-100% sequence similarity in all four genes investigated, whereas, based on rpoB, infB and recN gene sequences, 91.8-96% similarity was observed with and between the remaining two strains isolated from a serotine bat and a pipistrelle bat, respectively. Genome relatedness as deduced from recN gene sequences correlated well with the results of MLSA and indicated that the five strains represent a new genus. Based on these results, it is proposed to classify the five strains derived from bats within Vespertiliibacter pulmonis gen. nov., sp. nov. (the type species), Vespertiliibacter genomospecies 1 and Vespertiliibacter genomospecies 2. The genus can be distinguished phenotypically from recognized genera of the Pasteurellaceae by at least three characteristics. All strains are nutritionally fastidious and require a chemically defined supplement with NAD for growth. The DNA G+C content of strain E127/08(T) is 38.2 mol%. The type strain of Vespertiliibacter pulmonis gen. nov., sp. nov. is E127/08(T) ( = CCUG 64585(T) = DSM 27238(T)). The reference strains of Vespertiliibacter genomospecies 1 and 2 are E145/08 and E157/08, respectively. © 2014 IUMS.
Positive selection on MHC class II DRB and DQB genes in the bank vole (Myodes glareolus).
Scherman, Kristin; Råberg, Lars; Westerdahl, Helena
2014-05-01
The major histocompatibility complex (MHC) class IIB genes show considerable sequence similarity between loci. The MHC class II DQB and DRB genes are known to exhibit a high level of polymorphism, most likely maintained by parasite-mediated selection. Studies of the MHC in wild rodents have focused on DRB, whilst DQB has been given much less attention. Here, we characterised DQB genes in Swedish bank voles Myodes glareolus, using full-length transcripts. We then designed primers that specifically amplify exon 2 from DRB (202 bp) and DQB (205 bp) and investigated molecular signatures of natural selection on DRB and DQB alleles. The presence of two separate gene clusters was confirmed using BLASTN and phylogenetic analysis, where our seven transcripts clustered according to either DQB or DRB homologues. These gene clusters were again confirmed on exon 2 data from 454-amplicon sequencing. Our DRB primers amplify a similar number of alleles per individual as previously published DRB primers, though our reads are longer. Traditional d N/d S analyses of DRB sequences in the bank vole have not found a conclusive signal of positive selection. Using a more advanced substitution model (the Kumar method) we found positive selection in the peptide binding region (PBR) of both DRB and DQB genes. Maximum likelihood models of codon substitutions detected positively selected sites located in the PBR of both DQB and DRB. Interestingly, these analyses detected at least twice as many positively selected sites in DQB than DRB, suggesting that DQB has been under stronger positive selection than DRB over evolutionary time.
Bacillus horneckiae sp. nov., isolated from a spacecraft-assembly clean room.
Vaishampayan, Parag; Probst, Alexander; Krishnamurthi, Srinivasan; Ghosh, Sudeshna; Osman, Shariff; McDowall, Alasdair; Ruckmani, Arunachalam; Mayilraj, Shanmugam; Venkateswaran, Kasthuri
2010-05-01
Five Gram-stain-positive, motile, aerobic strains were isolated from a clean room of the Kennedy Space Center where the Phoenix spacecraft was assembled. All strains are rod-shaped, spore-forming bacteria, whose spores were resistant to UV radiation up to 1000 J m(-2). The spores were subterminally positioned and produced an external layer. A polyphasic taxonomic study including traditional biochemical tests, fatty acid analysis, cell-wall typing, lipid analyses, 16S rRNA gene sequencing and DNA-DNA hybridization studies was performed to characterize these novel strains. 16S rRNA gene sequencing and lipid analyses convincingly grouped these novel strains within the genus Bacillus as a cluster separate from already described species. The similarity of 16S rRNA gene sequences among the novel strains was >99 %, but the similarity was only about 97 % with their nearest neighbours Bacillus pocheonensis, Bacillus firmus and Bacillus bataviensis. DNA-DNA hybridization dissociation values were <24 % to the closest related type strains. The novel strains had a G+C content 35.6+/-0.5 mol% and could liquefy gelatin but did not utilize or produce acids from any of the carbon substrates tested. The major fatty acids were iso-C(15 : 0) and anteiso-C(15 : 0) and the cell-wall diamino acid was meso-diaminopimelic acid. Based on phylogenetic and phenotypic results, it is concluded that these strains represent a novel species of the genus Bacillus, for which the name Bacillus horneckiae sp. nov. is proposed. The type strain is 1P01SC(T) (=NRRL B-59162(T) =MTCC 9535(T)).
Molecular characterization of diazotrophic and denitrifying bacteria associated with mangrove roots.
Flores-Mireles, Ana L; Winans, Stephen C; Holguin, Gina
2007-11-01
An analysis of the molecular diversity of N(2) fixers and denitrifiers associated with mangrove roots was performed using terminal restriction length polymorphism (T-RFLP) of nifH (N(2) fixation) and nirS and nirK (denitrification), and the compositions and structures of these communities among three sites were compared. The number of operational taxonomic units (OTU) for nifH was higher than that for nirK or nirS at all three sites. Site 3, which had the highest organic matter and sand content in the rhizosphere sediment, as well as the lowest pore water oxygen concentration, had the highest nifH diversity. Principal component analysis of biogeochemical parameters identified soil texture, organic matter content, pore water oxygen concentration, and salinity as the main variables that differentiated the sites. Nonmetric multidimensional scaling (MDS) analyses of the T-RFLP data using the Bray-Curtis coefficient, group analyses, and pairwise comparisons between the sites clearly separated the OTU of site 3 from those of sites 1 and 2. For nirS, there were statistically significant differences in the composition of OTU among the sites, but the variability was less than for nifH. OTU defined on the basis of nirK were highly similar, and the three sites were not clearly separated on the basis of these sequences. The phylogenetic trees of nifH, nirK, and nirS showed that most of the cloned sequences were more similar to sequences from the rhizosphere isolates than to those from known strains or from other environments.
Molecular Characterization of Diazotrophic and Denitrifying Bacteria Associated with Mangrove Roots▿
Flores-Mireles, Ana L.; Winans, Stephen C.; Holguin, Gina
2007-01-01
An analysis of the molecular diversity of N2 fixers and denitrifiers associated with mangrove roots was performed using terminal restriction length polymorphism (T-RFLP) of nifH (N2 fixation) and nirS and nirK (denitrification), and the compositions and structures of these communities among three sites were compared. The number of operational taxonomic units (OTU) for nifH was higher than that for nirK or nirS at all three sites. Site 3, which had the highest organic matter and sand content in the rhizosphere sediment, as well as the lowest pore water oxygen concentration, had the highest nifH diversity. Principal component analysis of biogeochemical parameters identified soil texture, organic matter content, pore water oxygen concentration, and salinity as the main variables that differentiated the sites. Nonmetric multidimensional scaling (MDS) analyses of the T-RFLP data using the Bray-Curtis coefficient, group analyses, and pairwise comparisons between the sites clearly separated the OTU of site 3 from those of sites 1 and 2. For nirS, there were statistically significant differences in the composition of OTU among the sites, but the variability was less than for nifH. OTU defined on the basis of nirK were highly similar, and the three sites were not clearly separated on the basis of these sequences. The phylogenetic trees of nifH, nirK, and nirS showed that most of the cloned sequences were more similar to sequences from the rhizosphere isolates than to those from known strains or from other environments. PMID:17827324
Insights into rubber biosynthesis from transcriptome analysis of Hevea brasiliensis latex.
Chow, Keng-See; Wan, Kiew-Lian; Isa, Mohd Noor Mat; Bahari, Azlina; Tan, Siang-Hee; Harikrishna, K; Yeang, Hoong-Yeet
2007-01-01
Hevea brasiliensis is the most widely cultivated species for commercial production of natural rubber (cis-polyisoprene). In this study, 10,040 expressed sequence tags (ESTs) were generated from the latex of the rubber tree, which represents the cytoplasmic content of a single cell type, in order to analyse the latex transcription profile with emphasis on rubber biosynthesis-related genes. A total of 3,441 unique transcripts (UTs) were obtained after quality editing and assembly of EST sequences. Functional classification of UTs according to the Gene Ontology convention showed that 73.8% were related to genes of unknown function. Among highly expressed ESTs, a significant proportion encoded proteins related to rubber biosynthesis and stress or defence responses. Sequences encoding rubber particle membrane proteins (RPMPs) belonging to three protein families accounted for 12% of the ESTs. Characterization of these ESTs revealed nine RPMP variants (7.9-27 kDa) including the 14 kDa REF (rubber elongation factor) and 22 kDa SRPP (small rubber particle protein). The expression of multiple RPMP isoforms in latex was shown using antibodies against REF and SRPP. Both EST and quantitative reverse transcription-PCR (QRT-PCR) analyses demonstrated REF and SRPP to be the most abundant transcripts in latex. Besides rubber biosynthesis, comparative sequence analysis showed that the RPMPs are highly similar to sequences in the plant kingdom having stress-related functions. Implications of the RPMP function in cis-polyisoprene biosynthesis in the context of transcript abundance and differential gene expression are discussed.
Evaluation of next generation sequencing for the analysis of Eimeria communities in wildlife.
Vermeulen, Elke T; Lott, Matthew J; Eldridge, Mark D B; Power, Michelle L
2016-05-01
Next-generation sequencing (NGS) techniques are well-established for studying bacterial communities but not yet for microbial eukaryotes. Parasite communities remain poorly studied, due in part to the lack of reliable and accessible molecular methods to analyse eukaryotic communities. We aimed to develop and evaluate a methodology to analyse communities of the protozoan parasite Eimeria from populations of the Australian marsupial Petrogale penicillata (brush-tailed rock-wallaby) using NGS. An oocyst purification method for small sample sizes and polymerase chain reaction (PCR) protocol for the 18S rRNA locus targeting Eimeria was developed and optimised prior to sequencing on the Illumina MiSeq platform. A data analysis approach was developed by modifying methods from bacterial metagenomics and utilising existing Eimeria sequences in GenBank. Operational taxonomic unit (OTU) assignment at a high similarity threshold (97%) was more accurate at assigning Eimeria contigs into Eimeria OTUs but at a lower threshold (95%) there was greater resolution between OTU consensus sequences. The assessment of two amplification PCR methods prior to Illumina MiSeq, single and nested PCR, determined that single PCR was more sensitive to Eimeria as more Eimeria OTUs were detected in single amplicons. We have developed a simple and cost-effective approach to a data analysis pipeline for community analysis of eukaryotic organisms using Eimeria communities as a model. The pipeline provides a basis for evaluation using other eukaryotic organisms and potential for diverse community analysis studies. Copyright © 2016 Elsevier B.V. All rights reserved.
The influence of phonological priming on variability in articulation
NASA Astrophysics Data System (ADS)
Babel, Molly E.; Munson, Benjamin
2004-05-01
Previous research [Sevald and Dell, Cognition 53, 91-127 (1994)] has found that reiterant sequences of CVC words are produced more quickly when the prime word and target word share VC sequences (i.e., sequences like sit sick) than when they are identical (sequences like sick sick). Even slower production rates are found when primes and targets share a CV sequence (sequences like kick sick). These data have been used to support a model of speech production in which lexical items and their constituent phonemes are activated sequentially. The current experiment investigated whether phonological priming also influences variability in the acoustic characteristics of words. Specifically, we examined whether greater variability in the acoustic characteristics of target words was noted in the CV-related prime context than in the identical-prime context, and whether less variability was noted in the VC-related context. Thirty adult subjects with typical speech, language, and hearing ability produced reiterant two-word sequences that varied in their phonological similarity. The duration, first, and second formant frequencies of the target-words' vowels were measured. Preliminary analyses indicate that phonological priming does not have a systematic effect on variability in these acoustic parameters.
A highly divergent Puumala virus lineage in southern Poland.
Rosenfeld, Ulrike M; Drewes, Stephan; Ali, Hanan Sheikh; Sadowska, Edyta T; Mikowska, Magdalena; Heckel, Gerald; Koteja, Paweł; Ulrich, Rainer G
2017-05-01
Puumala virus (PUUV) represents one of the most important hantaviruses in Central Europe. Phylogenetic analyses of PUUV strains indicate a strong genetic structuring of this hantavirus. Recently, PUUV sequences were identified in the natural reservoir, the bank vole (Myodes glareolus), collected in the northern part of Poland. The objective of this study was to evaluate the presence of PUUV in bank voles from southern Poland. A total of 72 bank voles were trapped in 2009 at six sites in this part of Poland. RT-PCR and IgG-ELISA analyses detected three PUUV positive voles at one trapping site. The PUUV-infected animals were identified by cytochrome b gene analysis to belong to the Carpathian and Eastern evolutionary lineages of bank vole. The novel PUUV S, M and L segment nucleotide sequences showed the closest similarity to sequences of the Russian PUUV lineage from Latvia, but were highly divergent to those previously found in northern Poland, Slovakia and Austria. In conclusion, the detection of a highly divergent PUUV lineage in southern Poland indicates the necessity of further bank vole monitoring in this region allowing rational public health measures to prevent human infections.
Hurtado, Luis A; Santamaria, Carlos A; Fitzgerald, Lee A
2014-05-06
The phylogenetic position of the critically endangered Saint Croix ground lizard Ameiva polops is presently unknown and several hypotheses have been proposed. We investigated the phylogenetic position of this species using molecular phylogenetic methods. We obtained sequences of DNA fragments of the mitochondrial ribosomal genes 12S rDNA and 16S rDNA for this species. We aligned these sequences with published sequences of other Ameiva species, which include most of the Ameiva species from the West Indies, three Ameiva species from Central America and South America, and one from the teiid lizard Tupinambis teguixin, which was used as outgroup. We conducted Maximum Likelihood and Bayesian phylogenetic analyses. The phylogenetic reconstructions among the different methods were very similar, supporting the monophyly of West Indian Ameiva and showing within this lineage, a basal polytomy of four clades that are separated geographically. Ameiva polops grouped in a cluster that included the other two Ameiva species found in the Puerto Rican Bank: A. wetmorei and A. exsul. A sister relationship between A. polops and A. wetmorei is suggested by our analyses. We compare our results with a previous study on molecular systematics of West Indian Ameiva.
2012-01-01
We used an ITS2 primary and secondary structure and Compensatory Base Changes (CBCs) analyses on new French and Spanish Dunallela salina strains to investigate their phylogenetic position and taxonomic status within the genus Dunaliella. Our analyses show a great diversity within D. salina (with only some clades not statistically supported) and reveal considerable genetic diversity and structure within Dunaliella, although the CBC analysis did not bolster the existence of different biological groups within this taxon. The ITS2 sequences of the new Spanish and French D. salina strains were very similar except for two of them: ITC5105 "Janubio" from Spain and ITC5119 from France. Although the Spanish one had a unique ITS2 sequence profile and the phylogenetic tree indicates that this strain can represent a new species, this hypothesis was not confirmed by CBCs, and clarification of its taxonomic status requires further investigation with new data. Overall, the use of CBCs to define species boundaries within Dunaliella was not conclusive in some cases, and the ITS2 region does not contain a geographical signal overall. PMID:22520929
Lv, Zhao; Shao, Chen; Yi, Zhenzhen; Warren, Alan
2015-01-01
Traditionally classifications of the Urostyloida have been mainly based on morphology and morphogenesis. Recent molecular phylogenetic analyses have been largely based on single-gene data for a limited number of taxa. Consequently, incongruence has arisen between the morphological/morphogenetic and the molecular data. In this study, the three phylogenetic markers (SSU rDNA, ITS1-5.8S-ITS2 region, and LSU-rDNA) of three urostyloid genera represented by four species (Bakuella granulifera, Anteholosticha monilata, Caudiholosticha sylvatica, and C. tetracirra) were sequenced to investigate their phylogeny. The results show that: (1) all three genera should be regarded as the members of the order Urostyloida within the subclass Hypotrichia, as indicated by morphological characters; (2) phylogenetic analyses and sequence similarities both indicate that neither Anteholosticha nor Caudiholosticha are monophyletic and the systematic assignment of both genera awaits further evaluation; and (3) Bakuella has a closer relationship with Urostyla than with bakuellids (e.g. Apobakuella and Metaurostylopsis), suggesting Bakuella may belong to the family Urostylidae rather than the family Bakuellidae. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.
Borozan, Ivan; Watt, Stuart; Ferretti, Vincent
2015-05-01
Alignment-based sequence similarity searches, while accurate for some type of sequences, can produce incorrect results when used on more divergent but functionally related sequences that have undergone the sequence rearrangements observed in many bacterial and viral genomes. Here, we propose a classification model that exploits the complementary nature of alignment-based and alignment-free similarity measures with the aim to improve the accuracy with which DNA and protein sequences are characterized. Our model classifies sequences using a combined sequence similarity score calculated by adaptively weighting the contribution of different sequence similarity measures. Weights are determined independently for each sequence in the test set and reflect the discriminatory ability of individual similarity measures in the training set. Because the similarity between some sequences is determined more accurately with one type of measure rather than another, our classifier allows different sets of weights to be associated with different sequences. Using five different similarity measures, we show that our model significantly improves the classification accuracy over the current composition- and alignment-based models, when predicting the taxonomic lineage for both short viral sequence fragments and complete viral sequences. We also show that our model can be used effectively for the classification of reads from a real metagenome dataset as well as protein sequences. All the datasets and the code used in this study are freely available at https://collaborators.oicr.on.ca/vferretti/borozan_csss/csss.html. ivan.borozan@gmail.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
Borozan, Ivan; Watt, Stuart; Ferretti, Vincent
2015-01-01
Motivation: Alignment-based sequence similarity searches, while accurate for some type of sequences, can produce incorrect results when used on more divergent but functionally related sequences that have undergone the sequence rearrangements observed in many bacterial and viral genomes. Here, we propose a classification model that exploits the complementary nature of alignment-based and alignment-free similarity measures with the aim to improve the accuracy with which DNA and protein sequences are characterized. Results: Our model classifies sequences using a combined sequence similarity score calculated by adaptively weighting the contribution of different sequence similarity measures. Weights are determined independently for each sequence in the test set and reflect the discriminatory ability of individual similarity measures in the training set. Because the similarity between some sequences is determined more accurately with one type of measure rather than another, our classifier allows different sets of weights to be associated with different sequences. Using five different similarity measures, we show that our model significantly improves the classification accuracy over the current composition- and alignment-based models, when predicting the taxonomic lineage for both short viral sequence fragments and complete viral sequences. We also show that our model can be used effectively for the classification of reads from a real metagenome dataset as well as protein sequences. Availability and implementation: All the datasets and the code used in this study are freely available at https://collaborators.oicr.on.ca/vferretti/borozan_csss/csss.html. Contact: ivan.borozan@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25573913
Tetteh, Kevin K. A.; Loukas, Alex; Tripp, Cindy; Maizels, Rick M.
1999-01-01
Larvae of Toxocara canis, a nematode parasite of dogs, infect humans, causing visceral and ocular larva migrans. In noncanid hosts, larvae neither grow nor differentiate but endure in a state of arrested development. Reasoning that parasite protein production is orientated to immune evasion, we undertook a random sequencing project from a larval cDNA library to characterize the most highly expressed transcripts. In all, 266 clones were sequenced, most from both 3′ and 5′ ends, and similarity searches against GenBank protein and dbEST nucleotide databases were conducted. Cluster analyses showed that 128 distinct gene products had been found, all but 3 of which represented newly identified genes. Ninety-five genes were represented by a single clone, but seven transcripts were present at high frequencies, each composing >2% of all clones sequenced. These high-abundance transcripts include a mucin and a C-type lectin, which are both major excretory-secretory antigens released by parasites. Four highly expressed novel gene transcripts, termed ant (abundant novel transcript) genes, were found. Together, these four genes comprised 18% of all cDNA clones isolated, but no similar sequences occur in the Caenorhabditis elegans genome. While the coding regions of the four genes are dissimilar, their 3′ untranslated tracts have significant homology in nucleotide sequence. The discovery of these abundant, parasite-specific genes of newly identified lectins and mucins, as well as a range of conserved and novel proteins, provides defined candidates for future analysis of the molecular basis of immune evasion by T. canis. PMID:10456930
Nishizawa, M; Nishizawa, K
2000-10-01
The tendency for repetitiveness of nucleotides in DNA sequences has been reported for a variety of organisms. We show that the tendency for repetitive use of amino acids is widespread and is observed even for segments conserved between human and Drosophila melanogaster at the level of >50% amino acid identity. This indicates that repetitiveness influences not only the weakly constrained segments but also those sequence segments conserved among phyla. Not only glutamine (Q) but also many of the 20 amino acids show a comparable level of repetitiveness. Repetitiveness in bases at codon position 3 is stronger for human than for D.melanogaster, whereas local repetitiveness in intron sequences is similar between the two organisms. While genes for immune system-specific proteins, but not ancient human genes (i.e. human homologs of Escherichia coli genes), have repetitiveness at codon bases 1 and 2, repetitiveness at codon base 3 for these groups is similar, suggesting that the human genome has at least two mechanisms generating local repetitiveness. Neither amino acid nor nucleotide repetitiveness is observed beyond the exon boundary, denying the possibility that such repetitiveness could mainly stem from natural selection on mRNA or protein sequences. Analyses of mammalian sequence alignments show that while the 'between gene' GC content heterogeneity, which is linked to 'isochores', is a principal factor associated with the bias in substitution patterns in human, 'within gene' heterogeneity in nucleotide composition is also associated with such bias on a more local scale. The relationship amongst the various types of repetitiveness is discussed.
Nishizawa, Manami; Nishizawa, Kazuhisa
2000-01-01
The tendency for repetitiveness of nucleotides in DNA sequences has been reported for a variety of organisms. We show that the tendency for repetitive use of amino acids is widespread and is observed even for segments conserved between human and Drosophila melanogaster at the level of >50% amino acid identity. This indicates that repetitiveness influences not only the weakly constrained segments but also those sequence segments conserved among phyla. Not only glutamine (Q) but also many of the 20 amino acids show a comparable level of repetitiveness. Repetitiveness in bases at codon position 3 is stronger for human than for D.melanogaster, whereas local repetitiveness in intron sequences is similar between the two organisms. While genes for immune system-specific proteins, but not ancient human genes (i.e. human homologs of Escherichia coli genes), have repetitiveness at codon bases 1 and 2, repetitiveness at codon base 3 for these groups is similar, suggesting that the human genome has at least two mechanisms generating local repetitiveness. Neither amino acid nor nucleotide repetitiveness is observed beyond the exon boundary, denying the possibility that such repetitiveness could mainly stem from natural selection on mRNA or protein sequences. Analyses of mammalian sequence alignments show that while the ‘between gene’ GC content heterogeneity, which is linked to ‘isochores’, is a principal factor associated with the bias in substitution patterns in human, ‘within gene’ heterogeneity in nucleotide composition is also associated with such bias on a more local scale. The relationship amongst the various types of repetitiveness is discussed. PMID:11000273
Marton, Szilvia; Ihász, Katalin; Lengyel, György; Farkas, Szilvia L; Dán, Ádám; Paulus, Petra; Bányai, Krisztián; Fehér, Enikő
2015-03-01
Circoviruses of pigs and birds are established pathogens, however, the exact role of other, recently described circoviruses and circovirus-like viruses remains to be elucidated. The aim of this study was the detection of circoviruses in neglected host species, including honey bees, exotic reptiles and free-living amoebae by widely used broad-spectrum polymerase chain reaction (PCR) assays specific for the replication initiation protein coding gene of these viruses. The majority of sequences obtained from honey bees were highly similar to canine and porcine circoviruses, or, were distantly related to dragonfly cycloviruses. Other rep sequences detected in some honey bees, reptiles and amoebae showed similarities to various rep sequences deposited in the GenBank. Back-to-back PCR primers designed for the amplification of whole viral genomes failed to work that suggested the existence of integrated rep-like elements in many samples. Rolling circle amplification and exonuclease treatment confirmed the absence of small circular DNA genomes in the specimens analysed. In case of honey bees Varroa mite DNA contamination might be a source of the identified endogenous rep-like elements. The reptile and amoebae rep-like sequences were nearly identical with each other and with sequences detected in chimpanzee feces raising the possibility that detection of novel or unusual rep-like elements in some host species might originate from the microbial community of the host. Our results indicate that attention is needed when broad-spectrum rep gene specific polymerase chain reaction is chosen for laboratory diagnosis of circovirus infections.
Frey, Beat; Niklaus, Pascal A; Kremer, Johann; Lüscher, Peter; Zimmermann, Stephan
2011-09-01
Temperate forest soils are usually efficient sinks for the greenhouse gas methane, at least in the absence of significant amounts of methanogens. We demonstrate here that trafficking with heavy harvesting machines caused a large reduction in CH(4) consumption and even turned well-aerated forest soils into net methane sources. In addition to studying methane fluxes, we investigated the responses of methanogens after trafficking in two different forest sites. Trafficking generated wheel tracks with different impact (low, moderate, severe, and unaffected). We found that machine passes decreased the soils' macropore space and lowered hydraulic conductivities in wheel tracks. Severely compacted soils yielded high methanogenic abundance, as demonstrated by quantitative PCR analyses of methyl coenzyme M reductase (mcrA) genes, whereas these sequences were undetectable in unaffected soils. Even after a year after traffic compression, methanogen abundance in compacted soils did not decline, indicating a stability of methanogens here over time. Compacted wheel tracks exhibited a relatively constant community structure, since we found several persisting mcrA sequence types continuously present at all sampling times. Phylogenetic analysis revealed a rather large methanogen diversity in the compacted soil, and most mcrA gene sequences were mostly similar to known sequences from wetlands. The majority of mcrA gene sequences belonged either to the order Methanosarcinales or Methanomicrobiales, whereas both sites were dominated by members of the families Methanomicrobiaceae Fencluster, with similar sequences obtained from peatland environments. The results show that compacting wet forest soils by heavy machinery causes increases in methane production and release.
Kang, Hae Ji; Bennett, Shannon N.; Dizney, Laurie; Sumibcay, Laarni; Arai, Satoru; Ruedas, Luis A.; Song, Jin-Won; Yanagihara, Richard
2009-01-01
A genetically distinct hantavirus, designated Oxbow virus (OXBV), was detected in tissues of an American shrew mole (Neurotrichus gibbsii), captured in Gresham, Oregon, in September 2003. Pairwise analysis of full-length S- and M- and partial L-segment nucleotide and amino acid sequences of OXBV indicated low sequence similarity with rodent-borne hantaviruses. Phylogenetic analyses using maximum-likelihood and Bayesian methods, and host-parasite evolutionary comparisons, showed that OXBV and Asama virus, a hantavirus recently identified from the Japanese shrew mole (Urotrichus talpoides), were related to soricine shrew-borne hantaviruses from North America and Eurasia, respectively, suggesting parallel evolution associated with cross-species transmission. PMID:19394994
The genome-wide DNA sequence specificity of the anti-tumour drug bleomycin in human cells.
Murray, Vincent; Chen, Jon K; Tanaka, Mark M
2016-07-01
The cancer chemotherapeutic agent, bleomycin, cleaves DNA at specific sites. For the first time, the genome-wide DNA sequence specificity of bleomycin breakage was determined in human cells. Utilising Illumina next-generation DNA sequencing techniques, over 200 million bleomycin cleavage sites were examined to elucidate the bleomycin genome-wide DNA selectivity. The genome-wide bleomycin cleavage data were analysed by four different methods to determine the cellular DNA sequence specificity of bleomycin strand breakage. For the most highly cleaved DNA sequences, the preferred site of bleomycin breakage was at 5'-GT* dinucleotide sequences (where the asterisk indicates the bleomycin cleavage site), with lesser cleavage at 5'-GC* dinucleotides. This investigation also determined longer bleomycin cleavage sequences, with preferred cleavage at 5'-GT*A and 5'- TGT* trinucleotide sequences, and 5'-TGT*A tetranucleotides. For cellular DNA, the hexanucleotide DNA sequence 5'-RTGT*AY (where R is a purine and Y is a pyrimidine) was the most highly cleaved DNA sequence. It was striking that alternating purine-pyrimidine sequences were highly cleaved by bleomycin. The highest intensity cleavage sites in cellular and purified DNA were very similar although there were some minor differences. Statistical nucleotide frequency analysis indicated a G nucleotide was present at the -3 position (relative to the cleavage site) in cellular DNA but was absent in purified DNA.
Kimura, Tomohiro; Nakano, Toshiki; Yamaguchi, Toshiyasu; Sato, Minoru; Ogawa, Tomohisa; Muramoto, Koji; Yokoyama, Takehiko; Kan-No, Nobuhiro; Nagahisa, Eizou; Janssen, Frank; Grieshaber, Manfred K
2004-01-01
The complete complementary DNA sequences of genes presumably coding for opine dehydrogenases from Arabella iricolor (sandworm), Haliotis discus hannai (abalone), and Patinopecten yessoensis (scallop) were determined, and partial cDNA sequences were derived for Meretrix lusoria (Japanese hard clam) and Spisula sachalinensis (Sakhalin surf clam). The primers ODH-9F and ODH-11R proved useful for amplifying the sequences for opine dehydrogenases from the 4 mollusk species investigated in this study. The sequence of the sandworm was obtained using primers constructed from the amino acid sequence of tauropine dehydrogenase, the main opine dehydrogenase in A. iricolor. The complete cDNA sequence of A. iricolor, H. discus hannai, and P. yessoensis encode 397, 400, and 405 amino acids, respectively. All sequences were aligned and compared with published databank sequences of Loligo opalescens, Loligo vulgaris (squid), Sepia officinalis (cuttlefish), and Pecten maximus (scallop). As expected, a high level of homology was observed for the cDNA from closely related species, such as for cephalopods or scallops, whereas cDNA from the other species showed lower-level homologies. A similar trend was observed when the deduced amino acid sequences were compared. Furthermore, alignment of these sequences revealed some structural motifs that are possibly related to the binding sites of the substrates. The phylogenetic trees derived from the nucleotide and amino acid sequences were consistent with the classification of species resulting from classical taxonomic analyses.
Hodgetts, Jennifer; Boonham, Neil; Mumford, Rick; Harrison, Nigel; Dickinson, Matthew
2008-08-01
Phytoplasma phylogenetics has focused primarily on sequences of the non-coding 16S rRNA gene and the 16S-23S rRNA intergenic spacer region (16-23S ISR), and primers that enable amplification of these regions from all phytoplasmas by PCR are well established. In this study, primers based on the secA gene have been developed into a semi-nested PCR assay that results in a sequence of the expected size (about 480 bp) from all 34 phytoplasmas examined, including strains representative of 12 16Sr groups. Phylogenetic analysis of secA gene sequences showed similar clustering of phytoplasmas when compared with clusters resolved by similar sequence analyses of a 16-23S ISR-23S rRNA gene contig or of the 16S rRNA gene alone. The main differences between trees were in the branch lengths, which were elongated in the 16-23S ISR-23S rRNA gene tree when compared with the 16S rRNA gene tree and elongated still further in the secA gene tree, despite this being a shorter sequence. The improved resolution in the secA gene-derived phylogenetic tree resulted in the 16SrII group splitting into two distinct clusters, while phytoplasmas associated with coconut lethal yellowing-type diseases split into three distinct groups, thereby supporting past proposals that they represent different candidate species within 'Candidatus Phytoplasma'. The ability to differentiate 16Sr groups and subgroups by virtual RFLP analysis of secA gene sequences suggests that this gene may provide an informative alternative molecular marker for pathogen identification and diagnosis of phytoplasma diseases.
Kerschner, Joseph E; Erdos, Geza; Hu, Fen Ze; Burrows, Amy; Cioffi, Joseph; Khampang, Pawjai; Dahlgren, Margaret; Hayes, Jay; Keefe, Randy; Janto, Benjamin; Post, J Christopher; Ehrlich, Garth D
2010-04-01
We sought to construct and partially characterize complementary DNA (cDNA) libraries prepared from the middle ear mucosa (MEM) of chinchillas to better understand pathogenic aspects of infection and inflammation, particularly with respect to leukotriene biogenesis and response. Chinchilla MEM was harvested from controls and after middle ear inoculation with nontypeable Haemophilus influenzae. RNA was extracted to generate cDNA libraries. Randomly selected clones were subjected to sequence analysis to characterize the libraries and to provide DNA sequence for phylogenetic analyses. Reverse transcription-polymerase chain reaction of the RNA pools was used to generate cDNA sequences corresponding to genes associated with leukotriene biosynthesis and metabolism. Sequence analysis of 921 randomly selected clones from the uninfected MEM cDNA library produced approximately 250,000 nucleotides of almost entirely novel sequence data. Searches of the GenBank database with the Basic Local Alignment Search Tool provided for identification of 515 unique genes expressed in the MEM and not previously described in chinchillas. In almost all cases, the chinchilla cDNA sequences displayed much greater homology to human or other primate genes than with rodent species. Genes associated with leukotriene metabolism were present in both normal and infected MEM. Based on both phylogenetic comparisons and gene expression similarities with humans, chinchilla MEM appears to be an excellent model for the study of middle ear inflammation and infection. The higher degree of sequence similarity between chinchillas and humans compared to chinchillas and rodents was unexpected. The cDNA libraries from normal and infected chinchilla MEM will serve as useful molecular tools in the study of otitis media and should yield important information with respect to middle ear pathogenesis.
Kerschner, Joseph E.; Erdos, Geza; Hu, Fen Ze; Burrows, Amy; Cioffi, Joseph; Khampang, Pawjai; Dahlgren, Margaret; Hayes, Jay; Keefe, Randy; Janto, Benjamin; Post, J. Christopher; Ehrlich, Garth D.
2010-01-01
Objectives We sought to construct and partially characterize complementary DNA (cDNA) libraries prepared from the middle ear mucosa (MEM) of chinchillas to better understand pathogenic aspects of infection and inflammation, particularly with respect to leukotriene biogenesis and response. Methods Chinchilla MEM was harvested from controls and after middle ear inoculation with nontypeable Haemophilus influenzae. RNA was extracted to generate cDNA libraries. Randomly selected clones were subjected to sequence analysis to characterize the libraries and to provide DNA sequence for phylogenetic analyses. Reverse transcription–polymerase chain reaction of the RNA pools was used to generate cDNA sequences corresponding to genes associated with leukotriene biosynthesis and metabolism. Results Sequence analysis of 921 randomly selected clones from the uninfected MEM cDNA library produced approximately 250,000 nucleotides of almost entirely novel sequence data. Searches of the GenBank database with the Basic Local Alignment Search Tool provided for identification of 515 unique genes expressed in the MEM and not previously described in chinchillas. In almost all cases, the chinchilla cDNA sequences displayed much greater homology to human or other primate genes than with rodent species. Genes associated with leukotriene metabolism were present in both normal and infected MEM. Conclusions Based on both phylogenetic comparisons and gene expression similarities with humans, chinchilla MEM appears to be an excellent model for the study of middle ear inflammation and infection. The higher degree of sequence similarity between chinchillas and humans compared to chinchillas and rodents was unexpected. The cDNA libraries from normal and infected chinchilla MEM will serve as useful molecular tools in the study of otitis media and should yield important information with respect to middle ear pathogenesis. PMID:20433028
Rojas-Cartagena, Carmencita; Ortíz-Pineda, Pablo; Ramírez-Gómez, Francisco; Suárez-Castillo, Edna C.; Matos-Cruz, Vanessa; Rodríguez, Carlos; Ortíz-Zuazaga, Humberto; García-Arrarás, José E.
2010-01-01
Repair and regeneration are key processes for tissue maintenance, and their disruption may lead to disease states. Little is known about the molecular mechanisms that underline the repair and regeneration of the digestive tract. The sea cucumber Holothuria glaberrima represents an excellent model to dissect and characterize the molecular events during intestinal regeneration. To study the gene expression profile, cDNA libraries were constructed from normal, 3-day, and 7-day regenerating intestines of H. glaberrima. Clones were randomly sequenced and queried against the nonredundant protein database at the National Center for Biotechnology Information. RT-PCR analyses were made of several genes to determine their expression profile during intestinal regeneration. A total of 5,173 sequences from three cDNA libraries were obtained. About 46.2, 35.6, and 26.2% of the sequences for the normal, 3-days, and 7-days cDNA libraries, respectively, shared significant similarity with known sequences in the protein database of GenBank but only present 10% of similarity among them. Analysis of the libraries in terms of functional processes, protein domains, and most common sequences suggests that a differential expression profile is taking place during the regeneration process. Further examination of the expressed sequence tag dataset revealed that 12 putative genes are differentially expressed at significant level (R > 6). Experimental validation by RT-PCR analysis reveals that at least three genes (unknown C-4677-1, melanotransferrin, and centaurin) present a differential expression during regeneration. These findings strongly suggest that the gene expression profile varies among regeneration stages and provide evidence for the existence of differential gene expression. PMID:17579180
Li, Chunhua; Lu, Ling; Wu, Xianghong; Wang, Chuanxi; Bennett, Phil; Lu, Teng; Murphy, Donald
2009-08-01
In this study, we characterized the full-length genomic sequences of 13 distinct hepatitis C virus (HCV) genotype 4 isolates/subtypes: QC264/4b, QC381/4c, QC382/4d, QC193/4g, QC383/4k, QC274/4l, QC249/4m, QC97/4n, QC93/4o, QC139/4p, QC262/4q, QC384/4r and QC155/4t. These were amplified, using RT-PCR, from the sera of patients now residing in Canada, 11 of which were African immigrants. The resulting genomes varied between 9421 and 9475 nt in length and each contains a single ORF of 9018-9069 nt. The sequences showed nucleotide similarities of 77.3-84.3 % in comparison with subtypes 4a (GenBank accession no. Y11604) and 4f (EF589160) and 70.6-72.8 % in comparison with genotype 1 (M62321/1a, M58335/1b, D14853/1c, and 1?/AJ851228) reference sequences. These similarities were often higher than those currently defined by HCV classification criteria for subtype (75.0-80.0 %) and genotype (67.0-70.0 %) division, respectively. Further analyses of the complete and partial E1 and partial NS5B sequences confirmed these 13 'provisionally assigned subtypes'.
The sdA problem - I. Physical properties
NASA Astrophysics Data System (ADS)
Pelisoli, Ingrid; Kepler, S. O.; Koester, D.
2018-04-01
The so-called sdA stars are defined by having H-rich spectra and surface gravities similar to hot subdwarf stars, but effective temperature below the zero-age horizontal branch. Their evolutionary history is an enigma: their surface gravity is too high for main-sequence stars, but too low for single evolution white dwarfs. They are most likely byproducts of binary evolution, including blue-stragglers, extremely-low mass white dwarf stars (ELMs) and their precursors (pre-ELMs). A small number of ELMs with similar properties to sdAs is known. Other possibilities include metal-poor A/F dwarfs, second generation stars, or even stars accreted from dwarf galaxies. In this work, we analyse colours, proper motions, and spacial velocities of a sample of sdAs from the Sloan Digital Sky Survey to assess their nature and evolutionary origin. We define a probability of belonging to the main sequence and a probability of being a (pre-)ELM based on these properties. We find that 7 per cent of the sdAs are more likely to be (pre-)ELMs than main-sequence stars. However, the spacial velocity distribution suggests that over 35 per cent of them cannot be explained as single metal-poor A/F stars.
Prevotella massiliensis sp. nov. isolated from human blood.
Berger, Pierre; Adékambi, Toïdi; Mallet, Marie-Noelle; Drancourt, Michel
2005-12-01
We report a bacterial isolate (Marseille isolate) recovered from the blood of a patient hospitalized in an intensive care unit, presenting with severe trauma, fever and mechanical ventilation. Colonies appeared at 37 degrees C on blood agar after 72 h incubation. This isolate was a strictly anaerobic, Gram-negative rod phenotypically related to other Prevotella species described to date: non-motile, catalase-negative, oxidase-positive, non-glucose fermenting, resistant to vancomycin and susceptible to kanamycin. Cells exhibited a trilamellar membrane under electron microscopy. The fatty acid methyl ester profile was marginally related to that of Clostridium botulinum group A (distance: 26.27%) and Bifidobacterium bifidum GC subgroup B (distance: 26.38%). 16S rRNA gene sequence similarity was 90.0% with that of Prevotella oris and 89.1% with that of Prevotella melaninogenica. Partial rpoB gene sequence similarity was 84.5 and 86.4% with P. oris and P. melaninogenica, respectively. According to current standards, phenotypic traits, 16S rRNA and rpoB gene sequence analyses indicated that the Marseille isolate belonged to a previously unrecognized species of the genus Prevotella, and we propose classifying it in the new taxon "Prevotella massiliensis" sp. nov.
Hubert, Casey R J; Oldenburg, Thomas B P; Fustic, Milovan; Gray, Neil D; Larter, Stephen R; Penn, Kevin; Rowan, Arlene K; Seshadri, Rekha; Sherry, Angela; Swainsbury, Richard; Voordouw, Gerrit; Voordouw, Johanna K; Head, Ian M
2012-01-01
Summary The subsurface microbiology of an Athabasca oil sands reservoir in western Canada containing severely biodegraded oil was investigated by combining 16S rRNA gene- and polar lipid-based analyses of reservoir formation water with geochemical analyses of the crude oil and formation water. Biomass was filtered from formation water, DNA was extracted using two different methods, and 16S rRNA gene fragments were amplified with several different primer pairs prior to cloning and sequencing or community fingerprinting by denaturing gradient gel electrophoresis (DGGE). Similar results were obtained irrespective of the DNA extraction method or primers used. Archaeal libraries were dominated by Methanomicrobiales (410 of 414 total sequences formed a dominant phylotype affiliated with a Methanoregula sp.), consistent with the proposed dominant role of CO2-reducing methanogens in crude oil biodegradation. In two bacterial 16S rRNA clone libraries generated with different primer pairs, > 99% and 100% of the sequences were affiliated with Epsilonproteobacteria (n = 382 and 72 total clones respectively). This massive dominance of Epsilonproteobacteria sequences was again obtained in a third library (99% of sequences; n = 96 clones) using a third universal bacterial primer pair (inosine-341f and 1492r). Sequencing of bands from DGGE profiles and intact polar lipid analyses were in accordance with the bacterial clone library results. Epsilonproteobacterial OTUs were affiliated with Sulfuricurvum, Arcobacter and Sulfurospirillum spp. detected in other oil field habitats. The dominant organism revealed by the bacterial libraries (87% of all sequences) is a close relative of Sulfuricurvum kujiense – an organism capable of oxidizing reduced sulfur compounds in crude oil. Geochemical analysis of organic extracts from bitumen at different reservoir depths down to the oil water transition zone of these oil sands indicated active biodegradation of dibenzothiophenes, and stable sulfur isotope ratios for elemental sulfur and sulfate in formation waters were indicative of anaerobic oxidation of sulfur compounds. Microbial desulfurization of crude oil may be an important metabolism for Epsilonproteobacteria indigenous to oil reservoirs with elevated sulfur content and may explain their prevalence in formation waters from highly biodegraded petroleum systems. PMID:21824242
Chen, Jie; Moinard, Magalie; Xu, Jianping; Wang, Shouxian; Foulongne-Oriol, Marie; Zhao, Ruilin; Hyde, Kevin D.; Callac, Philippe
2016-01-01
The internal transcribed spacer (ITS) region of the nuclear ribosomal RNA gene cluster is widely used in fungal taxonomy and phylogeographic studies. The medicinal and edible mushroom Agaricus subrufescens has a worldwide distribution with a high level of polymorphism in the ITS region. A previous analysis suggested notable ITS sequence heterogeneity within the wild French isolate CA487. The objective of this study was to investigate the pattern and potential mechanism of ITS sequence heterogeneity within this strain. Using PCR, cloning, and sequencing, we identified three types of ITS sequences, A, B, and C with a balanced distribution, which differed from each other at 13 polymorphic positions. The phylogenetic comparisons with samples from different continents revealed that the type C sequence was similar to those found in Oceanian and Asian specimens of A. subrufescens while types A and B sequences were close to those found in the Americas or in Europe. We further investigated the inheritance of these three ITS sequence types by analyzing their distribution among single-spore isolates from CA487. In this analysis, three co-dominant markers were used firstly to distinguish the homokaryotic offspring from the heterokaryotic offspring. The homokaryotic offspring were then analyzed for their ITS types. Our genetic analyses revealed that types A and B were two alleles segregating at one locus ITSI, while type C was not allelic with types A and B but was located at another unlinked locus ITSII. Furthermore, type C was present in only one of the two constitutive haploid nuclei (n) of the heterokaryotic (n+n) parent CA487. These data suggest that there was a relatively recent introduction of the type C sequence and a duplication of the ITS locus in this strain. Whether other genes were also transferred and duplicated and their impacts on genome structure and stability remain to be investigated. PMID:27228131
Clinical and Molecular Characteristics of Human Rotavirus G8P[8] Outbreak Strain, Japan, 2014
Kondo, Kenji; Ono, Mayumi; Ohara, Toshio; Fujibayashi, Shinsuke; Tahara, Yasuo; Kubo, Noriaki; Nakata, Shuji; Higashidate, Yoshihito; Fujii, Yoshiki; Katayama, Kazuhiko; Yoto, Yuko; Tsutsumi, Hiroyuki
2017-01-01
During March–July 2014, rotavirus G8P[8] emerged as the predominant cause of rotavirus gastroenteritis among children in Hokkaido Prefecture, Japan. Clinical characteristics were similar for infections caused by G8 and non-G8 strains. Sequence and phylogenetic analyses suggest the strains were generated by multiple reassortment events between DS-1–like P[8] strains and bovine strains from Asia. PMID:28518031
de Jong, W W; Zweers, A; Versteeg, M; Dessauer, H C; Goodman, M
1985-11-01
The amino acid sequences of the eye lens protein alpha-crystallin A from many mammalian and avian species, two frog species, and a dogfish have provided detailed information about the molecular evolution of this protein and allowed some useful inferences about phylogenetic relationships among these species. We now have isolated and sequenced the alpha-crystallins of the American alligator and the common tegu lizard. The reptilian alpha A chains appear to have evolved as slowly as those of other vertebrates, i.e., at two to three amino acid replacements per 100 residues in 100 Myr. The lack of charged replacements and the general types and distribution of replacements also are similar to those in other vertebrate alpha A chains. Maximum-parsimony analyses of the total data set of 67 vertebrate alpha A sequences support the monophyletic origin of alligator, tegu, and birds and favor the grouping of crocodilians and birds as surviving sister groups in the subclass Archosauria.
The BaMM web server for de-novo motif discovery and regulatory sequence analysis.
Kiesel, Anja; Roth, Christian; Ge, Wanwan; Wess, Maximilian; Meier, Markus; Söding, Johannes
2018-05-28
The BaMM web server offers four tools: (i) de-novo discovery of enriched motifs in a set of nucleotide sequences, (ii) scanning a set of nucleotide sequences with motifs to find motif occurrences, (iii) searching with an input motif for similar motifs in our BaMM database with motifs for >1000 transcription factors, trained from the GTRD ChIP-seq database and (iv) browsing and keyword searching the motif database. In contrast to most other servers, we represent sequence motifs not by position weight matrices (PWMs) but by Bayesian Markov Models (BaMMs) of order 4, which we showed previously to perform substantially better in ROC analyses than PWMs or first order models. To address the inadequacy of P- and E-values as measures of motif quality, we introduce the AvRec score, the average recall over the TP-to-FP ratio between 1 and 100. The BaMM server is freely accessible without registration at https://bammmotif.mpibpc.mpg.de.
Liew, Pauline Woanying; Jong, Bor Chyan
2008-05-01
Two culture-independent methods, namely ribosomal DNA libraries and denaturing gradient gel electrophoresis (DGGE), were adopted to examine the microbial community of a Malaysian light crude oil. In this study, both 16S and 18S rDNAs were PCR-amplified from bulk DNA of crude oil samples, cloned, and sequenced. Analyses of restriction fragment length polymorphism (RFLP) and phylogenetics clustered the 16S and 18S rDNA sequences into seven and six groups, respectively. The ribosomal DNA sequences obtained showed sequence similarity between 90 to 100% to those available in the GenBank database. The closest relatives documented for the 16S rDNAs include member species of Thermoincola and Rhodopseudomonas, whereas the closest fungal relatives include Acremonium, Ceriporiopsis, Xeromyces, Lecythophora, and Candida. Others were affiliated to uncultured bacteria and uncultured ascomycete. The 16S rDNA library demonstrated predomination by a single uncultured bacterial type by >80% relative abundance. The predomination was confirmed by DGGE analysis.
A generalized global alignment algorithm.
Huang, Xiaoqiu; Chao, Kun-Mao
2003-01-22
Homologous sequences are sometimes similar over some regions but different over other regions. Homologous sequences have a much lower global similarity if the different regions are much longer than the similar regions. We present a generalized global alignment algorithm for comparing sequences with intermittent similarities, an ordered list of similar regions separated by different regions. A generalized global alignment model is defined to handle sequences with intermittent similarities. A dynamic programming algorithm is designed to compute an optimal general alignment in time proportional to the product of sequence lengths and in space proportional to the sum of sequence lengths. The algorithm is implemented as a computer program named GAP3 (Global Alignment Program Version 3). The generalized global alignment model is validated by experimental results produced with GAP3 on both DNA and protein sequences. The GAP3 program extends the ability of standard global alignment programs to recognize homologous sequences of lower similarity. The GAP3 program is freely available for academic use at http://bioinformatics.iastate.edu/aat/align/align.html.
The Neural Correlates of Implicit Sequence Learning in Schizophrenia
Marvel, Cherie L.; Turner, Beth M.; O’Leary, Daniel S.; Johnson, Hans J.; Pierson, Ronald K.; Boles Ponto, Laura L.; Andreasen, Nancy C.
2009-01-01
Twenty-seven schizophrenia spectrum patients and 25 healthy controls performed a probabilistic version of the serial reaction time task (SRT) that included sequence trials embedded within random trials. Patients showed diminished, yet measurable, sequence learning. Postexperimental analyses revealed that a group of patients performed above chance when generating short spans of the sequence. This high-generation group showed SRT learning that was similar in magnitude to that of controls. Their learning was evident from the very 1st block; however, unlike controls, learning did not develop further with continued testing. A subset of 12 patients and 11 controls performed the SRT in conjunction with positron emission tomography. High-generation performance, which corresponded to SRT learning in patients, correlated to activity in the premotor cortex and parahippocampus. These areas have been associated with stimulus-driven visuospatial processing. Taken together, these results suggest that a subset of patients who showed moderate success on the SRT used an explicit stimulus-driven strategy to process the sequential stimuli. This adaptive strategy facilitated sequence learning but may have interfered with conventional implicit learning of the overall stimulus pattern. PMID:17983290
Yedavalli, Venkat R. K.; Chappey, Colombe; Ahmad, Nafees
1998-01-01
The vpr sequences from six human immunodeficiency virus type 1 (HIV-1)-infected mother-infant pairs following perinatal transmission were analyzed. We found that 153 of the 166 clones analyzed from uncultured peripheral blood mononuclear cell DNA samples showed a 92.17% frequency of intact vpr open reading frames. There was a low degree of heterogeneity of vpr genes within mothers, within infants, and between epidemiologically linked mother-infant pairs. The distances between vpr sequences were greater in epidemiologically unlinked individuals than in epidemiologically linked mother-infant pairs. Moreover, the infants’ sequences displayed patterns similar to those seen in their mothers. The functional domains essential for Vpr activity, including virion incorporation, nuclear import, and cell cycle arrest and differentiation were highly conserved in most of the sequences. Phylogenetic analyses of 166 mother-infant pairs and 195 other available vpr sequences from HIV databases formed distinct clusters for each mother-infant pair and for other vpr sequences and grouped the six mother-infant pairs’ sequences with subtype B sequences. A high degree of conservation of intact and functional vpr supports the notion that vpr plays an important role in HIV-1 infection and replication in mother-infant isolates that are involved in perinatal transmission. PMID:9658150
Gerdes, Kenn; Wagner, E Gerhart H
2007-04-01
Recent genomic analyses revealed a surprisingly large number of toxin-antitoxin loci in free-living prokaryotes. The antitoxins are proteins or antisense RNAs that counteract the toxins. Two antisense RNA-regulated toxin-antitoxin gene families, hok/sok and ldr, are unrelated sequence-wise but have strikingly similar properties at the level of gene and RNA organization. Recently, two SOS-induced toxins were found to be regulated by RNA antitoxins. One such toxin, SymE, exhibits similarity with MazE antitoxin and, surprisingly, inhibits translation. Thus, it is possible that an ancestral antitoxin gene evolved into the present toxin gene (symE) whose translation is repressed by an RNA antitoxin (SymR).
Lee, Mei-Chong Wendy; Lopez-Diaz, Fernando J; Khan, Shahid Yar; Tariq, Muhammad Akram; Dayn, Yelena; Vaske, Charles Joseph; Radenbaugh, Amie J; Kim, Hyunsung John; Emerson, Beverly M; Pourmand, Nader
2014-11-04
The acute cellular response to stress generates a subpopulation of reversibly stress-tolerant cells under conditions that are lethal to the majority of the population. Stress tolerance is attributed to heterogeneity of gene expression within the population to ensure survival of a minority. We performed whole transcriptome sequencing analyses of metastatic human breast cancer cells subjected to the chemotherapeutic agent paclitaxel at the single-cell and population levels. Here we show that specific transcriptional programs are enacted within untreated, stressed, and drug-tolerant cell groups while generating high heterogeneity between single cells within and between groups. We further demonstrate that drug-tolerant cells contain specific RNA variants residing in genes involved in microtubule organization and stabilization, as well as cell adhesion and cell surface signaling. In addition, the gene expression profile of drug-tolerant cells is similar to that of untreated cells within a few doublings. Thus, single-cell analyses reveal the dynamics of the stress response in terms of cell-specific RNA variants driving heterogeneity, the survival of a minority population through generation of specific RNA variants, and the efficient reconversion of stress-tolerant cells back to normalcy.
Lee, Mei-Chong Wendy; Lopez-Diaz, Fernando J.; Khan, Shahid Yar; Tariq, Muhammad Akram; Dayn, Yelena; Vaske, Charles Joseph; Radenbaugh, Amie J.; Kim, Hyunsung John; Emerson, Beverly M.; Pourmand, Nader
2014-01-01
The acute cellular response to stress generates a subpopulation of reversibly stress-tolerant cells under conditions that are lethal to the majority of the population. Stress tolerance is attributed to heterogeneity of gene expression within the population to ensure survival of a minority. We performed whole transcriptome sequencing analyses of metastatic human breast cancer cells subjected to the chemotherapeutic agent paclitaxel at the single-cell and population levels. Here we show that specific transcriptional programs are enacted within untreated, stressed, and drug-tolerant cell groups while generating high heterogeneity between single cells within and between groups. We further demonstrate that drug-tolerant cells contain specific RNA variants residing in genes involved in microtubule organization and stabilization, as well as cell adhesion and cell surface signaling. In addition, the gene expression profile of drug-tolerant cells is similar to that of untreated cells within a few doublings. Thus, single-cell analyses reveal the dynamics of the stress response in terms of cell-specific RNA variants driving heterogeneity, the survival of a minority population through generation of specific RNA variants, and the efficient reconversion of stress-tolerant cells back to normalcy. PMID:25339441
Díaz-Quiñonez, José Alberto; Hernández-Monroy, Irma; Montes-Colima, Norma Angélica; Moreno-Pérez, María Asunción; Galicia-Nicolás, Adriana Guadalupe; López-Martínez, Irma; Ruiz-Matus, Cuitláhuac; Kuri-Morales, Pablo; Ortíz-Alcántara, Joanna María; Garcés-Ayala, Fabiola; Ramírez-González, José Ernesto
2016-05-01
The first week of September 2013, the National Epidemiological Surveillance System identified two cases of cholera in Mexico City. The cultures of both samples were confirmed as Vibrio cholerae serogroup O1, serotype Ogawa, biotype El Tor. Initial analyses by PFGE and by PCR-amplification of the virulence genes, suggested that both strains were similar, but different from those previously reported in Mexico. The following week, four more cases were identified in a community in the state of Hidalgo, located 121 km northeast of Mexico City. Thereafter a cholera outbreak started in the region of La Huasteca. Genomic analyses of the four strains obtained in this study confirmed the presence of Pathogenicity Islands VPI-1 and -2, VSP-1 and -2, and of the integrative element SXT. The genomic structure of the 4 isolates was similar to that of V. cholerae strain 2010 EL-1786, identified during the epidemic in Haiti in 2010. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Shimada, Norimoto; Sato, Shusei; Akashi, Tomoyoshi; Nakamura, Yasukazu; Tabata, Satoshi; Ayabe, Shin-ichi; Aoki, Toshio
2007-01-01
Abstract A model legume Lotus japonicus (Regel) K. Larsen is one of the subjects of genome sequencing and functional genomics programs. In the course of targeted approaches to the legume genomics, we analyzed the genes encoding enzymes involved in the biosynthesis of the legume-specific 5-deoxyisoflavonoid of L. japonicus, which produces isoflavan phytoalexins on elicitor treatment. The paralogous biosynthetic genes were assigned as comprehensively as possible by biochemical experiments, similarity searches, comparison of the gene structures, and phylogenetic analyses. Among the 10 biosynthetic genes investigated, six comprise multigene families, and in many cases they form gene clusters in the chromosomes. Semi-quantitative reverse transcriptase–PCR analyses showed coordinate up-regulation of most of the genes during phytoalexin induction and complex accumulation patterns of the transcripts in different organs. Some paralogous genes exhibited similar expression specificities, suggesting their genetic redundancy. The molecular evolution of the biosynthetic genes is discussed. The results presented here provide reliable annotations of the genes and genetic markers for comparative and functional genomics of leguminous plants. PMID:17452423
Phylogeny of Kinorhyncha Based on Morphology and Two Molecular Loci
Sørensen, Martin V.; Dal Zotto, Matteo; Rho, Hyun Soo; Herranz, Maria; Sánchez, Nuria; Pardos, Fernando; Yamasaki, Hiroshi
2015-01-01
The phylogeny of Kinorhyncha was analyzed using morphology and the molecular loci 18S rRNA and 28S rRNA. The different datasets were analyzed separately and in combination, using maximum likelihood and Bayesian Inference. Bayesian inference of molecular sequence data in combination with morphology supported the division of Kinorhyncha into two major clades: Cyclorhagida comb. nov. and Allomalorhagida nom. nov. The latter clade represents a new kinorhynch class, and accommodates Dracoderes, Franciscideres, a yet undescribed genus which is closely related with Franciscideres, and the traditional homalorhagid genera. Homalorhagid monophyly was not supported by any analyses with molecular sequence data included. Analysis of the combined molecular and morphological data furthermore supported a cyclorhagid clade which included all traditional cyclorhagid taxa, except Dracoderes that no longer should be considered a cyclorhagid genus. Accordingly, Cyclorhagida is divided into three main lineages: Echinoderidae, Campyloderidae, and a large clade, ‘Kentrorhagata’, which except for species of Campyloderes, includes all species with a midterminal spine present in adult individuals. Maximum likelihood analysis of the combined datasets produced a rather unresolved tree that was not regarded in the following discussion. Results of the analyses with only molecular sequence data included were incongruent at different points. However, common for all analyses was the support of several major clades, i.e., Campyloderidae, Kentrorhagata, Echinoderidae, Dracoderidae, Pycnophyidae, and a clade with Paracentrophyes + New Genus and Franciscideres (in those analyses where the latter was included). All molecular analyses including 18S rRNA sequence data furthermore supported monophyly of Allomalorhagida. Cyclorhagid monophyly was only supported in analyses of combined 18S rRNA and 28S rRNA (both ML and BI), and only in a restricted dataset where taxa with incomplete information from 28S rRNA had been omitted. Analysis of the morphological data produced results that were similar with those from the combined molecular and morphological analysis. E.g., the morphological data also supported exclusion of Dracoderes from Cyclorhagida. The main differences between the morphological analysis and analyses based on the combined datasets include: 1) Homalorhagida appears as monophyletic in the morphological tree only, 2) the morphological analyses position Franciscideres and the new genus within Cyclorhagida near Zelinkaderidae and Cateriidae, whereas analyses including molecular data place the two genera inside Allomalorhagida, and 3) species of Campyloderes appear in a basal trichotomy within Kentrorhagata in the morphological tree, whereas analysis of the combined datasets places species of Campyloderes as a sister clade to Echinoderidae and Kentrorhagata. PMID:26200115
Li, De-Zhu
2011-01-01
Background Bambusoideae is the only subfamily that contains woody members in the grass family, Poaceae. In phylogenetic analyses, Bambusoideae, Pooideae and Ehrhartoideae formed the BEP clade, yet the internal relationships of this clade are controversial. The distinctive life history (infrequent flowering and predominance of asexual reproduction) of woody bamboos makes them an interesting but taxonomically difficult group. Phylogenetic analyses based on large DNA fragments could only provide a moderate resolution of woody bamboo relationships, although a robust phylogenetic tree is needed to elucidate their evolutionary history. Phylogenomics is an alternative choice for resolving difficult phylogenies. Methodology/Principal Findings Here we present the complete nucleotide sequences of six woody bamboo chloroplast (cp) genomes using Illumina sequencing. These genomes are similar to those of other grasses and rather conservative in evolution. We constructed a phylogeny of Poaceae from 24 complete cp genomes including 21 grass species. Within the BEP clade, we found strong support for a sister relationship between Bambusoideae and Pooideae. In a substantial improvement over prior studies, all six nodes within Bambusoideae were supported with ≥0.95 posterior probability from Bayesian inference and 5/6 nodes resolved with 100% bootstrap support in maximum parsimony and maximum likelihood analyses. We found that repeats in the cp genome could provide phylogenetic information, while caution is needed when using indels in phylogenetic analyses based on few selected genes. We also identified relatively rapidly evolving cp genome regions that have the potential to be used for further phylogenetic study in Bambusoideae. Conclusions/Significance The cp genome of Bambusoideae evolved slowly, and phylogenomics based on whole cp genome could be used to resolve major relationships within the subfamily. The difficulty in resolving the diversification among three clades of temperate woody bamboos, even with complete cp genome sequences, suggests that these lineages may have diverged very rapidly. PMID:21655229
Sequence-similar, structure-dissimilar protein pairs in the PDB.
Kosloff, Mickey; Kolodny, Rachel
2008-05-01
It is often assumed that in the Protein Data Bank (PDB), two proteins with similar sequences will also have similar structures. Accordingly, it has proved useful to develop subsets of the PDB from which "redundant" structures have been removed, based on a sequence-based criterion for similarity. Similarly, when predicting protein structure using homology modeling, if a template structure for modeling a target sequence is selected by sequence alone, this implicitly assumes that all sequence-similar templates are equivalent. Here, we show that this assumption is often not correct and that standard approaches to create subsets of the PDB can lead to the loss of structurally and functionally important information. We have carried out sequence-based structural superpositions and geometry-based structural alignments of a large number of protein pairs to determine the extent to which sequence similarity ensures structural similarity. We find many examples where two proteins that are similar in sequence have structures that differ significantly from one another. The source of the structural differences usually has a functional basis. The number of such proteins pairs that are identified and the magnitude of the dissimilarity depend on the approach that is used to calculate the differences; in particular sequence-based structure superpositioning will identify a larger number of structurally dissimilar pairs than geometry-based structural alignments. When two sequences can be aligned in a statistically meaningful way, sequence-based structural superpositioning provides a meaningful measure of structural differences. This approach and geometry-based structure alignments reveal somewhat different information and one or the other might be preferable in a given application. Our results suggest that in some cases, notably homology modeling, the common use of nonredundant datasets, culled from the PDB based on sequence, may mask important structural and functional information. We have established a data base of sequence-similar, structurally dissimilar protein pairs that will help address this problem (http://luna.bioc.columbia.edu/rachel/seqsimstrdiff.htm).
Evidence for the Concerted Evolution between Short Linear Protein Motifs and Their Flanking Regions
Chica, Claudia; Diella, Francesca; Gibson, Toby J.
2009-01-01
Background Linear motifs are short modules of protein sequences that play a crucial role in mediating and regulating many protein–protein interactions. The function of linear motifs strongly depends on the context, e.g. functional instances mainly occur inside flexible regions that are accessible for interaction. Sometimes linear motifs appear as isolated islands of conservation in multiple sequence alignments. However, they also occur in larger blocks of sequence conservation, suggesting an active role for the neighbouring amino acids. Results The evolution of regions flanking 116 functional linear motif instances was studied. The conservation of the amino acid sequence and order/disorder tendency of those regions was related to presence/absence of the instance. For the majority of the analysed instances, the pairs of sequences conserving the linear motif were also observed to maintain a similar local structural tendency and/or to have higher local sequence conservation when compared to pairs of sequences where one is missing the linear motif. Furthermore, those instances have a higher chance to co–evolve with the neighbouring residues in comparison to the distant ones. Those findings are supported by examples where the regulation of the linear motif–mediated interaction has been shown to depend on the modifications (e.g. phosphorylation) at neighbouring positions or is thought to benefit from the binding versatility of disordered regions. Conclusion The results suggest that flanking regions are relevant for linear motif–mediated interactions, both at the structural and sequence level. More interestingly, they indicate that the prediction of linear motif instances can be enriched with contextual information by performing a sequence analysis similar to the one presented here. This can facilitate the understanding of the role of these predicted instances in determining the protein function inside the broader context of the cellular network where they arise. PMID:19584925
Öncü, Ceren; Brinkmann, Annika; Günay, Filiz; Kar, Sırrı; Öter, Kerem; Sarıkaya, Yasemen; Nitsche, Andreas; Linton, Yvonne-Marie; Alten, Bülent; Ergünay, Koray
2018-01-01
Mosquitoes are involved in the transmission and maintenance of several viral diseases with significant health impact. Biosurveillance efforts have also revealed insect-specific viruses, observed to cocirculate with pathogenic strains. This report describes the findings of flavivirus and rhabdovirus screening, performed in eastern Thrace and Aegean region of Anatolia during 2016, including and expanding on locations with previously-documented virus activity. A mosquito cohort of 1545 individuals comprising 14 species were collected and screened in 108 pools via generic and specific amplification and direct metagenomics by next generation sequencing. Seven mosquito pools (6.4%) were positive in the flavivirus screening. West Nile virus lineage 1 clade 1a sequences were characterized in a pool Culex pipiens sensu lato specimens, providing the initial virus detection in Aegean region following 2010 outbreak. In an Anopheles maculipennis sensu lato pool, sequences closely-related to Anopheles flaviviruses were obtained, with similarities to several African and Australian strains of this new insect-specific flavivirus clade. In pools comprising Uranotaenia unguiculata (n=3), Cx. pipiens s.l. (n=1) and Aedes caspius (n=1) mosquitoes, sequences of a novel flavivirus, distantly-related to Flavivirus AV2011, identified previously in Spain and Turkey, were characterized. Moreover, DNA forms of the novel flavivirus were detected in two Ur. unguiculata pools. These sequences were highly-similar to the sequences amplified from viral RNA, with undisrupted reading frames, suggest the occurrence of viral DNA forms in natural conditions within mosquito hosts. Rhabdovirus screening revealed sequences of a recently-described novel virus, named the Merida-like virus Turkey (MERDLVT) in 5 Cx. pipiens s.l. pools (4.6%). Partial L and N gene sequences of MERDLVT were well-conserved among strains, with evidence for geographical clustering in phylogenetic analyses. Metagenomics provided the near-full genomic sequence in a specimen, revealing an identical genome organization and limited divergence from the prototype MERDLVT isolate. Copyright © 2017 Elsevier B.V. All rights reserved.
Huh, T L; Ryu, J H; Huh, J W; Sung, H C; Oh, I U; Song, B J; Veech, R L
1993-01-01
Mitochondrial NADP(+)-specific isocitrate dehydrogenase (IDP) was co-purified with the pyruvate dehydrogenase complex from bovine kidney mitochondria. The determination of its N-terminal 16-amino-acid sequence revealed that it is highly similar to the IDP from yeast. A cDNA clone (1.8 kb long) encoding this protein was isolated from a bovine kidney lambda gt11 cDNA library using a synthetic oligodeoxynucleotide. The deduced protein sequence of this cDNA clone rendered a precursor protein of 452 amino-acid residues (50,830 Da) and a mature protein of 413 amino-acid residues (46,519 Da). It is 100% identical to the internal tryptic peptide sequences of the autologous form from pig heart and 62% similar to that from yeast. However, it shares little similarity with the mitochondrial NAD(+)-specific isoenzyme from yeast. Structural analyses of the deduced proteins of IDP isoenzymes from different species indicated that similarity exists in certain regions, which may represent the common domains for the active sites or coenzyme-binding sites. In Northern-blot analysis, one species of mRNA (about 2.2 kb for both bovine and human) was hybridized with a 32P-labelled cDNA probe. Southern-blot analysis of genomic DNAs verified simple patterns of hybridization with this cDNA. These results strongly indicate that the mitochondrial IDP may be derived from a single gene family which does not appear to be closely related to that of the NAD(+)-specific isoenzyme. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:8318002
Ciric, Lena; Griffiths, Robert I; Philp, James C; Whiteley, Andrew S
2010-07-01
A diesel contaminated groundwater site was surveyed using 16S rRNA gene based analyses to investigate the effect of bioaugmentation on the bacterial communities present. The analyses included the use of denaturing gradient gel electrophoresis (DGGE) to profile microbial community structure and the construction and sequencing of clone libraries in order to identify the organisms present. Community analyses revealed a high degree of similarity in the inoculated compartments during bioaugmentation, not observed once inoculation had ceased. However, it was also shown that there was very little community similarity between the inoculum and the inoculated samples. Instead, the similarity seen during the application of the bioaugmentation treatment was thought to be due to nutrient addition applied along with the inoculum. Furthermore, once the bioaugmentation treatment had ceased the communities around the site became more diverse, suggesting that the hierarchical structure seen during treatment was due to the stimulation of a group of opportunistic indigenous organisms by the nutrients added. The findings not only highlight the importance of monitoring the fate of inocula used in bioaugmentation but also how crucial the process of the selection of species and the culture conditions used in the construction of these consortia. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Kang, Seokha; Sultana, Tahera; Eom, Keeseon S; Park, Yung Chul; Soonthornpong, Nathan; Nadler, Steven A; Park, Joong-Ki
2009-01-15
The complete mitochondrial genome sequence was determined for the human pinworm Enterobius vermicularis (Oxyurida: Nematoda) and used to infer its phylogenetic relationship to other major groups of chromadorean nematodes. The E. vermicularis genome is a 14,010-bp circular DNA molecule that encodes 36 genes (12 proteins, 22 tRNAs, and 2 rRNAs). This mtDNA genome lacks atp8, as reported for almost all other nematode species investigated. Phylogenetic analyses (maximum parsimony, maximum likelihood, neighbor joining, and Bayesian inference) of nucleotide sequences for the 12 protein-coding genes of 25 nematode species placed E. vermicularis, a representative of the order Oxyurida, as sister to the main Ascaridida+Rhabditida group. Tree topology comparisons using statistical tests rejected an alternative hypothesis favoring a closer relationship among Ascaridida, Spirurida, and Oxyurida, which has been supported from most studies based on nuclear ribosomal DNA sequences. Unlike the relatively conserved gene arrangement found for most chromadorean taxa, E. vermicularis mtDNA gene order is very unique, not sharing similarity to any other nematode species reported to date. This lack of gene order similarity may represent idiosyncratic gene rearrangements unique to this specific lineage of the oxyurids. To more fully understand the extent of gene rearrangement and its evolutionary significance within the nematode phylogenetic framework, additional mitochondrial genomes representing a greater evolutionary diversity of species must be characterized.
Evidence for the principle of minimal frustration in the evolution of protein folding landscapes.
Tzul, Franco O; Vasilchuk, Daniel; Makhatadze, George I
2017-02-28
Theoretical and experimental studies have firmly established that protein folding can be described by a funneled energy landscape. This funneled energy landscape is the result of foldable protein sequences evolving following the principle of minimal frustration, which allows proteins to rapidly fold to their native biologically functional conformations. For a protein family with a given functional fold, the principle of minimal frustration suggests that, independent of sequence, all proteins within this family should fold with similar rates. However, depending on the optimal living temperature of the organism, proteins also need to modulate their thermodynamic stability. Consequently, the difference in thermodynamic stability should be primarily caused by differences in the unfolding rates. To test this hypothesis experimentally, we performed comprehensive thermodynamic and kinetic analyses of 15 different proteins from the thioredoxin family. Eight of these thioredoxins were extant proteins from psychrophilic, mesophilic, or thermophilic organisms. The other seven protein sequences were obtained using ancestral sequence reconstruction and can be dated back over 4 billion years. We found that all studied proteins fold with very similar rates but unfold with rates that differ up to three orders of magnitude. The unfolding rates correlate well with the thermodynamic stability of the proteins. Moreover, proteins that unfold slower are more resistant to proteolysis. These results provide direct experimental support to the principle of minimal frustration hypothesis.
McFrederick, Quinn S; Vuong, Hoang Q; Rothman, Jason A
2018-06-01
Gram-stain-positive, rod-shaped, non-spore forming bacteria have been isolated from flowers and the guts of adult wild bees in the families Megachilidae and Halictidae. Phylogenetic analysis of the 16S rRNA gene indicated that these bacteria belong to the genus Lactobacillus, and are most closely related to the honey-bee associated bacteria Lactobacillus kunkeei (97.0 % sequence similarity) and Lactobacillus apinorum (97.0 % sequence similarity). Phylogenetic analyses of 16S rRNA genes and six single-copy protein coding genes, in situ and in silico DNA-DNA hybridization, and fatty-acid profiling differentiates the newly isolated bacteria as three novel Lactobacillus species: Lactobacillus micheneri sp. nov. with the type strain Hlig3 T (=DSM 104126 T ,=NRRL B-65473 T ), Lactobacillus timberlakei with the type strain HV_12 T (=DSM 104128 T ,=NRRL B-65472 T ), and Lactobacillus quenuiae sp. nov. with the type strain HV_6 T (=DSM 104127 T ,=NRRL B-65474 T ).
Murine mesenchymal and embryonic stem cells express a similar Hox gene profile.
Phinney, Donald G; Gray, Andrew J; Hill, Katy; Pandey, Amitabh
2005-12-30
Using degenerate oligonucleotide primers targeting the homeobox domain, we amplified by PCR and sequenced 723 clones from five murine cell populations and lines derived from embryonic mesoderm and adult bone marrow. Transcripts from all four vertebrate Hox clusters were expressed by the different populations. Hierarchical clustering of the data revealed that mesenchymal stem cells (MSCs) and the embryonic stem (ES) cell line D3 shared a similar Hox expression profile. These populations exclusively expressed Hoxb2, Hoxb5, Hoxb7, and Hoxc4, transcripts regulating self-renewal and differentiation of other stem cells. Additionally, Hoxa7 transcript quantified by real-time PCR strongly correlated (r2=0.89) with the number of Hoxa7 clones identified by sequencing, validating that data from the PCR screen reflects differences in Hox mRNA abundance between populations. This is the first study to catalogue Hox transcripts in murine MSCs and by comparative analyses identify specific Hox genes that may contribute to their stem cell character.
[Methods, challenges and opportunities for big data analyses of microbiome].
Sheng, Hua-Fang; Zhou, Hong-Wei
2015-07-01
Microbiome is a novel research field related with a variety of chronic inflamatory diseases. Technically, there are two major approaches to analysis of microbiome: metataxonome by sequencing the 16S rRNA variable tags, and metagenome by shot-gun sequencing of the total microbial (mainly bacterial) genome mixture. The 16S rRNA sequencing analyses pipeline includes sequence quality control, diversity analyses, taxonomy and statistics; metagenome analyses further includes gene annotation and functional analyses. With the development of the sequencing techniques, the cost of sequencing will decrease, and big data analyses will become the central task. Data standardization, accumulation, modeling and disease prediction are crucial for future exploit of these data. Meanwhile, the information property in these data, and the functional verification with culture-dependent and culture-independent experiments remain the focus in future research. Studies of human microbiome will bring a better understanding of the relations between the human body and the microbiome, especially in the context of disease diagnosis and therapy, which promise rich research opportunities.
Sechovcová, Hana; Killer, Jiri; Pechar, Radko; Geigerová, Martina; Švejstil, Roman; Salmonová, Hana; Mekadim, Chahrazed; Rada, Vojtěch; Vlková, Eva; Kofroňová, Olga; Benada, Oldřich
2017-08-01
A slightly irregular, short rod-shaped bacterial strain, MOZIV/2T, showing activity of fructose 6-phosphate phosphoketolase was isolated from the oral cavity of a home-bred guinea-pig. Based on comparative 16S rRNA gene sequence analyses, its closest relatives were Alloscardovia omnicolens DSM 21503T and Alloscardovia criceti DSM 17774T with 96.0 and 95.6 % pairwise similarities, respectively. Completeness of the compared sequences was 97.3 and 96.9 %, respectively. Growth was found only under anaerobic conditions. Activities of α- and β-gluco(galacto)sidases were detected in strain MOZIV/2T, which is characteristic for almost all members of the family Bifidobacteriaceae. Sequencing of other molecular markers (fusA, gyrB and xfp) revealed low gene sequence similarities to A. omnicolens DSM 21503T ranging from 72.7 to 87.5 %. Strain MOZIV/2T differed from other species within the genus Alloscardovia by the presence of C18 : 1ω9t. In addition, much higher proportions of C8 : 0, C11 : 0, C12 : 0, C14 : 1, C16 : 1 and C17 : 0 fatty acids were found in cells of strain MOZIV/2T. The peptidoglycan structure was of type A4α [l-Lys(l-Orn)-d-Asp], which is consistent with its classification within the genus Alloscardovia. The DNA G+C content (45.8 mol%) was lower than those found in other alloscardovia. Phylogenetic studies and evaluation of phenotypic characteristics including the results of biochemical, physiological and chemotaxonomic analyses confirmed the novel species status for strain MOZIV/2T, for which the name Alloscardovia venturai sp. nov. is proposed. The type strain is MOZIV/2T (=DSM 100237T=CCM 8604T=LMG 28781T).
Wassermann, Marion; Raisch, Lisa; Lyons, Jessica Ann; Natusch, Daniel James Deans; Richter, Sarah; Wirth, Mareike; Preeprem, Piyarat; Khoprasert, Yuvaluk; Ginting, Sulaiman; Mackenstedt, Ute; Jäkel, Thomas
2017-01-01
We examined Sarcocystis spp. in giant snakes from the Indo-Australian Archipelago and Australia using a combination of morphological (size of sporocyst) and molecular analyses. We amplified by PCR nuclear 18S rDNA from single sporocysts in order to detect mixed infections and unequivocally assign the retrieved sequences to the corresponding parasite stage. Sarcocystis infection was generally high across the study area, with 78 (68%) of 115 examined pythons being infected by one or more Sarcocystis spp. Among 18 randomly chosen, sporocyst-positive samples (11 from Southeast Asia, 7 from Northern Australia) the only Sarcocystis species detected in Southeast Asian snakes was S. singaporensis (in reticulated pythons), which was absent from all Australian samples. We distinguished three different Sarcocystis spp. in the Australian sample set; two were excreted by scrub pythons and one by the spotted python. The sequence of the latter is an undescribed species phylogenetically related to S. lacertae. Of the two Sarcocystis species found in scrub pythons, one showed an 18S rRNA gene sequence similar to S. zamani, which is described from Australia for the first time. The second sequence was identical/similar to that of S. nesbitti, a known human pathogen that was held responsible for outbreaks of disease among tourists in Malaysia. The potential presence of S. nesbitti in Australia challenges the current hypothesis of a snake-primate life cycle, and would have implications for human health in the region. Further molecular and biological characterizations are required to confirm species identity and determine whether or not the Australian isolate has the same zoonotic potential as its Malaysian counterpart. Finally, the absence of S. nesbitti in samples from reticulated pythons (which were reported to be definitive hosts), coupled with our phylogenetic analyses, suggest that alternative snake hosts may be responsible for transmitting this parasite in Malaysia.
Molecular phylogeny of some avian species using Cytochrome b gene sequence analysis
Awad, A; Khalil, S. R; Abd-Elhakim, Y. M
2015-01-01
Veritable identification and differentiation of avian species is a vital step in conservative, taxonomic, forensic, legal and other ornithological interventions. Therefore, this study involved the application of molecular approach to identify some avian species i.e. Chicken (Gallus gallus), Muskovy duck (Cairina moschata), Japanese quail (Coturnix japonica), Laughing dove (Streptopelia senegalensis), and Rock pigeon (Columba livia). Genomic DNA was extracted from blood samples and partial sequence of the mitochondrial cytochrome b gene (358 bp) was amplified and sequenced using universal primers. Sequences alignment and phylogenetic analyses were performed by CLC main workbench program. The obtained five sequences were deposited in GenBank and compared with those previously registered in GenBank. The similarity percentage was 88.60% between Gallus gallus and Coturnix japonica and 80.46% between Gallus gallus and Columba livia. The percentage of identity between the studied species and GenBank species ranged from 77.20% (Columba oenas and Anas platyrhynchos) to 100% (Gallus gallus and Gallus sonneratii, Coturnix coturnix and Coturnix japonica, Meleagris gallopavo and Columba livia). Amplification of the partial sequence of mitochondrial cytochrome b gene proved to be practical for identification of an avian species unambiguously. PMID:27175180
Using Behavior Sequence Analysis to Map Serial Killers' Life Histories.
Keatley, David A; Golightly, Hayley; Shephard, Rebecca; Yaksic, Enzo; Reid, Sasha
2018-03-01
The aim of the current research was to provide a novel method for mapping the developmental sequences of serial killers' life histories. An in-depth biographical account of serial killers' lives, from birth through to conviction, was gained and analyzed using Behavior Sequence Analysis. The analyses highlight similarities in behavioral events across the serial killers' lives, indicating not only which risk factors occur, but the temporal order of these factors. Results focused on early childhood environment, indicating the role of parental abuse; behaviors and events surrounding criminal histories of serial killers, showing that many had previous convictions and were known to police for other crimes; behaviors surrounding their murders, highlighting differences in victim choice and modus operandi; and, finally, trial pleas and convictions. The present research, therefore, provides a novel approach to synthesizing large volumes of data on criminals and presenting results in accessible, understandable outcomes.
Ciok, Anna; Adamczuk, Marcin; Bartosik, Dariusz; Dziewit, Lukasz
2016-11-28
Pseudomonas strains isolated from the heavily contaminated Lubin copper mine and Zelazny Most post-flotation waste reservoir in Poland were screened for the presence of integrons. This analysis revealed that two strains carried homologous DNA regions composed of a gene encoding a DNA_BRE_C domain-containing tyrosine recombinase (with no significant sequence similarity to other integrases of integrons) plus a three-component array of putative integron gene cassettes. The predicted gene cassettes encode three putative polypeptides with homology to (i) transmembrane proteins, (ii) GCN5 family acetyltransferases, and (iii) hypothetical proteins of unknown function (homologous proteins are encoded by the gene cassettes of several class 1 integrons). Comparative sequence analyses identified three structural variants of these novel integron-like elements within the sequenced bacterial genomes. Analysis of their distribution revealed that they are found exclusively in strains of the genus Pseudomonas .
Livebearing or egg-laying mammals: 27 decisive nucleotides of FAM168.
Pramanik, Subrata; Kutzner, Arne; Heese, Klaus
2017-05-23
In the present study, we determine comprehensive molecular phylogenetic relationships of the novel myelin-associated neurite-outgrowth inhibitor (MANI) gene across the entire eukaryotic lineage. Combined computational genomic and proteomic sequence analyses revealed MANI as one of the two members of the novel family with sequence similarity 168 member (FAM168) genes, consisting of FAM168A and FAM168B, having distinct genetic differences that illustrate diversification in its biological function and genetic taxonomy across the phylogenetic tree. Phylogenetic analyses based on coding sequences of these FAM168 genes revealed that they are paralogs and that the earliest emergence of these genes occurred in jawed vertebrates such as Callorhinchus milii. Surprisingly, these two genes are absent in other chordates that have a notochord at some stage in their lives, such as branchiostoma and tunicates. In the context of phylogenetic relationships among eukaryotic species, our results demonstrate the presence of FAM168 orthologs in vertebrates ranging from Callorhinchus milii to Homo sapiens, displaying distinct taxonomic clusters, comprised of fish, amphibians, reptiles, birds, and mammals. Analyses of individual FAM168 exons in our sample provide new insights into the molecular relationships between FAM168A and FAM168B (MANI) on the one hand and livebearing and egg-laying mammals on the other hand, demonstrating that a distinctive intermediate exon 4, comprised of 27 nucleotides, appears suddenly only in FAM168A and there in the livebearing mammals only but is absent from all other species including the egg-laying mammals.
Rojas, Miguel; Gonçalves, Jorge Luiz S; Dias, Helver G; Manchego, Alberto; Pezo, Danilo; Santos, Norma
2016-11-30
The SA44 isolate of Rotavirus A (RVA) was identified from a neonatal Peruvian alpaca presenting with diarrhea, and the full-length genome sequence of the isolate (designated RVA/Alpaca-tc/PER/SA44/2014/G3P[40]) was determined. Phylogenetic analyses showed that the isolate possessed the genotype constellation G3-P[40]-I8-R3-C3-M3-A9-N3-T3-E3-H6, which differs considerably from those of RVA strains isolated from other species of the order Artiodactyla. Overall, the genetic constellation of the SA44 strain was quite similar to those of RVA strains isolated from a bat in Asia (MSLH14 and MYAS33). Nonetheless, phylogenetic analyses of each genome segment identified a distinct combination of genes. Several sequences were closely related to corresponding gene sequences in RVA strains from other species, including human (VP1, VP2, NSP1, and NSP2), simian (VP3 and NSP5), bat (VP6 and NSP4), and equine (NSP3). The VP7 gene sequence was closely related to RVA strains from a Peruvian alpaca (K'ayra/3368-10; 99.0% nucleotide and 99.7% amino acid identity) and from humans (RCH272; 95% nucleotide and 99.0% amino acid identity). The nucleotide sequence of the VP4 gene was distantly related to other VP4 sequences and was designated as the reference strain for the new P[40] genotype. This unique genetic makeup suggests that the SA44 strain emerged from multiple reassortment events between bat-, equine-, and human-like RVA strains. Copyright © 2016 Elsevier B.V. All rights reserved.
Santibáñez-López, Carlos E; Cid-Uribe, Jimena I; Zamudio, Fernando Z; Batista, Cesar V F; Ortiz, Ernesto; Possani, Lourival D
2017-07-01
The soluble venom from the Mexican scorpion Megacormus gertschi of the family Euscorpiidae was obtained and its biological effects were tested in several animal models. This venom is not toxic to mice at doses of 100 μg per 20 g of mouse weight, while being lethal to arthropods (insects and crustaceans), at doses of 20 μg (for crickets) and 100 μg (for shrimps) per animal. Samples of the venom were separated by high performance liquid chromatography and circa 80 distinct chromatographic fractions were obtained from which 67 components have had their molecular weights determined by mass spectrometry analysis. The N-terminal amino acid sequence of seven protein/peptides were obtained by Edman degradation and are reported. Among the high molecular weight components there are enzymes with experimentally-confirmed phospholipase activity. A pair of telsons from this scorpion species was dissected, from which total RNA was extracted and used for cDNA library construction. Massive sequencing by the Illumina protocol, followed by de novo assembly, resulted in a total of 110,528 transcripts. From those, we were able to annotate 182, which putatively code for peptides/proteins with sequence similarity to previously-reported venom components available from different protein databases. Transcripts seemingly coding for enzymes showed the richest diversity, with 52 sequences putatively coding for proteases, 20 for phospholipases, 8 for lipases and 5 for hyaluronidases. The number of different transcripts potentially coding for peptides with sequence similarity to those that affect ion channels was 19, for putative antimicrobial peptides 19, and for protease inhibitor-like peptides, 18. Transcripts seemingly coding for other venom components were identified and described. The LC/MS analysis of a trypsin-digested venom aliquot resulted in 23 matches with the translated transcriptome database, which validates the transcriptome. The proteomic and transcriptomic analyses reported here constitute the first approach to study the venom components from a scorpion species belonging to the family Euscorpiidae. The data certainly show that this venom is different from all the ones described thus far in the literature. Copyright © 2017 Elsevier Ltd. All rights reserved.
Seo, Joo-Hyun; Park, Jihyang; Kim, Eun-Mi; Kim, Juhan; Joo, Keehyoung; Lee, Jooyoung; Kim, Byung-Gee
2014-02-01
Sequence subgrouping for a given sequence set can enable various informative tasks such as the functional discrimination of sequence subsets and the functional inference of unknown sequences. Because an identity threshold for sequence subgrouping may vary according to the given sequence set, it is highly desirable to construct a robust subgrouping algorithm which automatically identifies an optimal identity threshold and generates subgroups for a given sequence set. To meet this end, an automatic sequence subgrouping method, named 'Subgrouping Automata' was constructed. Firstly, tree analysis module analyzes the structure of tree and calculates the all possible subgroups in each node. Sequence similarity analysis module calculates average sequence similarity for all subgroups in each node. Representative sequence generation module finds a representative sequence using profile analysis and self-scoring for each subgroup. For all nodes, average sequence similarities are calculated and 'Subgrouping Automata' searches a node showing statistically maximum sequence similarity increase using Student's t-value. A node showing the maximum t-value, which gives the most significant differences in average sequence similarity between two adjacent nodes, is determined as an optimum subgrouping node in the phylogenetic tree. Further analysis showed that the optimum subgrouping node from SA prevents under-subgrouping and over-subgrouping. Copyright © 2013. Published by Elsevier Ltd.
CoVaCS: a consensus variant calling system.
Chiara, Matteo; Gioiosa, Silvia; Chillemi, Giovanni; D'Antonio, Mattia; Flati, Tiziano; Picardi, Ernesto; Zambelli, Federico; Horner, David Stephen; Pesole, Graziano; Castrignanò, Tiziana
2018-02-05
The advent and ongoing development of next generation sequencing technologies (NGS) has led to a rapid increase in the rate of human genome re-sequencing data, paving the way for personalized genomics and precision medicine. The body of genome resequencing data is progressively increasing underlining the need for accurate and time-effective bioinformatics systems for genotyping - a crucial prerequisite for identification of candidate causal mutations in diagnostic screens. Here we present CoVaCS, a fully automated, highly accurate system with a web based graphical interface for genotyping and variant annotation. Extensive tests on a gold standard benchmark data-set -the NA12878 Illumina platinum genome- confirm that call-sets based on our consensus strategy are completely in line with those attained by similar command line based approaches, and far more accurate than call-sets from any individual tool. Importantly our system exhibits better sensitivity and higher specificity than equivalent commercial software. CoVaCS offers optimized pipelines integrating state of the art tools for variant calling and annotation for whole genome sequencing (WGS), whole-exome sequencing (WES) and target-gene sequencing (TGS) data. The system is currently hosted at Cineca, and offers the speed of a HPC computing facility, a crucial consideration when large numbers of samples must be analysed. Importantly, all the analyses are performed automatically allowing high reproducibility of the results. As such, we believe that CoVaCS can be a valuable tool for the analysis of human genome resequencing studies. CoVaCS is available at: https://bioinformatics.cineca.it/covacs .
Jarvi, S.I.; Tarr, C.L.; Mcintosh, C.E.; Atkinson, C.T.; Fleischer, R.C.
2004-01-01
The native Hawaiian honeycreepers represent a classic example of adaptive radiation and speciation, but currently face one the highest extinction rates in the world. Although multiple factors have likely influenced the fate of Hawaiian birds, the relatively recent introduction of avian malaria is thought to be a major factor limiting honeycreeper distribution and abundance. We have initiated genetic analyses of class II ?? chain Mhc genes in four species of honeycreepers using methods that eliminate the possibility of sequencing mosaic variants formed by cloning heteroduplexed polymerase chain reaction products. Phylogenetic analyses group the honeycreeper Mhc sequences into two distinct clusters. Variation within one cluster is high, with dN > d S and levels of diversity similar to other studies of Mhc (B system) genes in birds. The second cluster is nearly invariant and includes sequences from honeycreepers (Fringillidae), a sparrow (Emberizidae) and a blackbird (Emberizidae). This highly conserved cluster appears reminiscent of the independently segregating Rfp-Y system of genes defined in chickens. The notion that balancing selection operates at the Mhc in the honeycreepers is supported by transpecies polymorphism and strikingly high dN/dS ratios at codons putatively involved in peptide interaction. Mitochondrial DNA control region sequences were invariant in the i'iwi, but were highly variable in the 'amakihi. By contrast, levels of variability of class II ?? chain Mhc sequence codons that are hypothesized to be directly involved in peptide interactions appear comparable between i'iwi and 'amakihi. In the i'iwi, natural selection may have maintained variation within the Mhc, even in the face of what appears to a genetic bottleneck.
Urabe, N; Ishii, Y; Hyodo, Y; Aoki, K; Yoshizawa, S; Saga, T; Murayama, S Y; Sakai, K; Homma, S; Tateda, K
2016-04-01
Between 18 November and 3 December 2011, five renal transplant patients at the Department of Nephrology, Toho University Omori Medical Centre, Tokyo, were diagnosed with Pneumocystis pneumonia (PCP). We used molecular epidemiologic methods to determine whether the patients were infected with the same strain of Pneumocystis jirovecii. DNA extracted from the residual bronchoalveolar lavage fluid from the five outbreak cases and from another 20 cases of PCP between 2007 and 2014 were used for multilocus sequence typing to compare the genetic similarity of the P. jirovecii. DNA base sequencing by the Sanger method showed some regions where two bases overlapped and could not be defined. A next-generation sequencer was used to analyse the types and ratios of these overlapping bases. DNA base sequences of P. jirovecii in the bronchoalveolar lavage fluid from four of the five PCP patients in the 2011 outbreak and from another two renal transplant patients who developed PCP in 2013 were highly homologous. The Sanger method revealed 14 genomic regions where two differing DNA bases overlapped and could not be identified. Analyses of the overlapping bases by a next-generation sequencer revealed that the differing types of base were present in almost identical ratios. There is a strong possibility that the PCP outbreak at the Toho University Omori Medical Centre was caused by the same strain of P. jirovecii. Two different types of base present in some regions may be due to P. jirovecii's being a diploid species. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
The paradox of HBV evolution as revealed from a 16th century mummy
Duggan, Ana T.; Poinar, Debi; Poinar, Hendrik N.
2018-01-01
Hepatitis B virus (HBV) is a ubiquitous viral pathogen associated with large-scale morbidity and mortality in humans. However, there is considerable uncertainty over the time-scale of its origin and evolution. Initial shotgun data from a mid-16th century Italian child mummy, that was previously paleopathologically identified as having been infected with Variola virus (VARV, the agent of smallpox), showed no DNA reads for VARV yet did for hepatitis B virus (HBV). Previously, electron microscopy provided evidence for the presence of VARV in this sample, although similar analyses conducted here did not reveal any VARV particles. We attempted to enrich and sequence for both VARV and HBV DNA. Although we did not recover any reads identified as VARV, we were successful in reconstructing an HBV genome at 163.8X coverage. Strikingly, both the HBV sequence and that of the associated host mitochondrial DNA displayed a nearly identical cytosine deamination pattern near the termini of DNA fragments, characteristic of an ancient origin. In contrast, phylogenetic analyses revealed a close relationship between the putative ancient virus and contemporary HBV strains (of genotype D), at first suggesting contamination. In addressing this paradox we demonstrate that HBV evolution is characterized by a marked lack of temporal structure. This confounds attempts to use molecular clock-based methods to date the origin of this virus over the time-frame sampled so far, and means that phylogenetic measures alone cannot yet be used to determine HBV sequence authenticity. If genuine, this phylogenetic pattern indicates that the genotypes of HBV diversified long before the 16th century, and enables comparison of potential pathogenic similarities between modern and ancient HBV. These results have important implications for our understanding of the emergence and evolution of this common viral pathogen. PMID:29300782
Lim, Shu Yong; Yap, Kien-Pong; Teh, Cindy Shuan Ju; Jabar, Kartini Abdul; Thong, Kwai Lin
2017-04-01
Enterococcus faecium is both a commensal of the human intestinal tract and an opportunistic pathogen. The increasing incidence of enterococcal infections is mainly due to the ability of this organism to develop resistance to multiple antibiotics, including vancomycin. The aim of this study was to perform comparative genome analyses on four vancomycin-resistant Enterococcus faecium (VRE fm ) strains isolated from two fatal cases in a tertiary hospital in Malaysia. Two sequence types, ST80 and ST203, were identified which belong to the clinically important clonal complex (CC) 17. This is the first report on the emergence of ST80 strains in Malaysia. Three of the studied strains (VREr5, VREr6, VREr7) were each isolated from different body sites of a single patient (patient Y) and had different PFGE patterns. While VREr6 and VREr7 were phenotypically and genotypically similar, the initial isolate, VREr5, was found to be more similar to VRE2 isolated from another patient (patient X), in terms of the genome contents, sequence types and phylogenomic relationship. Both the clinical records and genome sequence data suggested that patient Y was infected by multiple strains from different clones and the strain that infected patient Y could have derived from the same clone from patient X. These multidrug resistant strains harbored a number of virulence genes such as the epa locus and pilus-associated genes which could enhance their persistence. Apart from that, a homolog of E. faecalis bee locus was identified in VREr5 which might be involved in biofilm formation. Overall, our comparative genomic analyses had provided insight into the genetic relatedness, as well as the virulence potential, of the four clinical strains. Copyright © 2016 Elsevier B.V. All rights reserved.
Imbriaco, Massimo; Nappi, Carmela; Puglia, Marta; De Giorgi, Marco; Dell'Aversana, Serena; Cuocolo, Renato; Ponsiglione, Andrea; De Giorgi, Igino; Polito, Maria Vincenza; Klain, Michele; Piscione, Federico; Pace, Leonardo; Cuocolo, Alberto
2017-10-26
To compare cardiac magnetic resonance (CMR) qualitative and quantitative analysis methods for the noninvasive assessment of myocardial inflammation in patients with suspected acute myocarditis (AM). A total of 61 patients with suspected AM underwent coronary angiography and CMR. Qualitative analysis was performed applying Lake-Louise Criteria (LLC), followed by quantitative analysis based on the evaluation of edema ratio (ER) and global relative enhancement (RE). Diagnostic performance was assessed for each method by measuring the area under the curves (AUC) of the receiver operating characteristic analyses. The final diagnosis of AM was based on symptoms and signs suggestive of cardiac disease, evidence of myocardial injury as defined by electrocardiogram changes, elevated troponin I, exclusion of coronary artery disease by coronary angiography, and clinical and echocardiographic follow-up at 3 months after admission to the chest pain unit. In all patients, coronary angiography did not show significant coronary artery stenosis. Troponin I levels and creatine kinase were higher in patients with AM compared to those without (both P < .001). There were no significant differences among LLC, T2-weighted short inversion time inversion recovery (STIR) sequences, early (EGE), and late (LGE) gadolinium-enhancement sequences for diagnosis of AM. The AUC for qualitative (T2-weighted STIR 0.92, EGE 0.87 and LGE 0.88) and quantitative (ER 0.89 and global RE 0.80) analyses were also similar. Qualitative and quantitative CMR analysis methods show similar diagnostic accuracy for the diagnosis of AM. These findings suggest that a simplified approach using a shortened CMR protocol including only T2-weighted STIR sequences might be useful to rule out AM in patients with acute coronary syndrome and normal coronary angiography.
Garcia-Pichel, F.; Johnson, S.L.; Youngkin, D.; Belnap, J.
2003-01-01
We characterized, at millimeter resolution, bacterial biomass, diversity, and vertical stratification of biological soil crusts in arid lands from the Colorado Plateau. Microscopic counts, extractable DNA, and plate counts of viable aerobic copiotrophs (VAC) revealed that the top centimeter of crusted soils contained atypically large bacterial populations, tenfold larger than those in uncrusted, deeper soils. The plate counts were not always consistent with more direct estimates of microbial biomass. Bacterial populations peaked at the immediate subsurface (1-2 mm) in light-appearing, young crusts, and at the surface (0-1 mm) in well-developed, dark crusts, which corresponds to the location of cyanobacterial populations. Bacterial abundance decreased with depth below these horizons. Spatially resolved DGGE fingerprints of Bacterial 16S rRNA genes demonstrated the presence of highly diverse natural communities, but we could detect neither trends with depth in bacterial richness or diversity, nor a difference in diversity indices between crust types. Fingerprints, however, revealed the presence of marked stratification in the structure of the microbial communities, probably a result of vertical gradients in physicochemical parameters. Sequencing and phylogenetic analyses indicated that most of the naturally occurring bacteria are novel types, with low sequence similarity (83-93%) to those available in public databases. DGGE analyses of the VAC populations indicated communities of lower diversity, with most types having sequences more than 94% similar to those in public databases. Our study indicates that soil crusts represent small-scale mantles of fertility in arid ecosystems, harboring vertically structured, little-known bacterial populations that are not well represented by standard cultivation methods.
Isolation and characterization of the pea cytochrome c oxidase Vb gene.
Kubo, Nakao; Arimura, Shin-Ichi; Tsutsumi, Nobuhiro; Kadowaki, Koh-Ichi; Hirai, Masashi
2006-11-01
Three copies of the gene that encodes cytochrome c oxidase subunit Vb were isolated from the pea (PscoxVb-1, PscoxVb-2, and PscoxVb-3). Northern Blot and reverse transcriptase-PCR analyses suggest that all 3 genes are transcribed in the pea. Each pea coxVb gene has an N-terminal extended sequence that can encode a mitochondrial targeting signal, called a presequence. The localization of green fluorescent proteins fused with the presequence strongly suggests the targeting of pea COXVb proteins to mitochondria. Each pea coxVb gene has 5 intron sites within the coding region. These are similar to Arabidopsis and rice, although the intron lengths vary greatly. A phylogenetic analysis of coxVb suggests the occurrence of gene duplication events during angiosperm evolution. In particular, 2 duplication events might have occurred in legumes, grasses, and Solanaceae. A comparison of amino acid sequences in COXVb or its counterpart shows the conservation of several amino acids within a zinc finger motif. Interestingly, a homology search analysis showed that bacterial protein COG4391 and a mitochondrial complex I 13 kDa subunit also have similar amino acid compositions around this motif. Such similarity might reflect evolutionary relationships among the 3 proteins.
Morsy, Mustafa R; Oswald, Jennifer; He, Ji; Tang, Yuhong; Roossinck, Marilyn J
2010-10-15
The fungus Curvularia protuberata carries a dsRNA virus, Curvularia thermal tolerance virus, and develops a three-way symbiotic relationship with plants to enable their survival in extreme soil temperatures. To learn about the genome of C. protuberata and possible mechanisms of heat tolerance a collection of expressed sequence tags (ESTs) were developed from two subtracted cDNA libraries from mycelial cultures grown under control and heat stress conditions. We analyzed 4207 ESTs that were assembled into 1926 unique transcripts. Of the unique transcripts, 1347 (70%) had sequence similarity with GenBank entries using BLASTX while the rest represented unknown proteins with no matches in the databases. The majority of ESTs with known similarities were homologues to fungal genes. The EST collection presents a rich source of heat stress and viral induced genes of a fungal endophyte that is involved in a symbiotic relationship with plants. Expression profile analyses of some candidate genes suggest possible involvement of osmoprotectants such as trehalose, glycine betaine, and taurine in the heat stress response. The fungal pigment melanin, and heat shock proteins also may be involved in the thermotolerance of C. protuberata in culture. The results assist in understanding the molecular basis of thermotolerance of the three-way symbiosis. Further studies will confirm or refute the involvement of these pathways in stress tolerance. Copyright © 2010 Elsevier Inc. All rights reserved.
da Cruz, Marcos de O R; Weksler, Marcelo
2018-02-01
The use of genetic data and tree-based algorithms to delimit evolutionary lineages is becoming an important practice in taxonomic identification, especially in morphologically cryptic groups. The effects of different phylogenetic and/or coalescent models in the analyses of species delimitation, however, are not clear. In this paper, we assess the impact of different evolutionary priors in phylogenetic estimation, species delimitation, and molecular dating of the genus Oligoryzomys (Mammalia: Rodentia), a group with complex taxonomy and morphological cryptic species. Phylogenetic and coalescent analyses included 20 of the 24 recognized species of the genus, comprising of 416 Cytochrome b sequences, 26 Cytochrome c oxidase I sequences, and 27 Beta-Fibrinogen Intron 7 sequences. For species delimitation, we employed the General Mixed Yule Coalescent (GMYC) and Bayesian Poisson tree processes (bPTP) analyses, and contrasted 4 genealogical and phylogenetic models: Pure-birth (Yule), Constant Population Size Coalescent, Multiple Species Coalescent, and a mixed Yule-Coalescent model. GMYC analyses of trees from different genealogical models resulted in similar species delimitation and phylogenetic relationships, with incongruence restricted to areas of poor nodal support. bPTP results, however, significantly differed from GMYC for 5 taxa. Oligoryzomys early diversification was estimated to have occurred in the Early Pleistocene, between 0.7 and 2.6 MYA. The mixed Yule-Coalescent model, however, recovered younger dating estimates for Oligoryzomys diversification, and for the threshold for the speciation-coalescent horizon in GMYC. Eight of the 20 included Oligoryzomys species were identified as having two or more independent evolutionary units, indicating that current taxonomy of Oligoryzomys is still unsettled. Copyright © 2017 Elsevier Inc. All rights reserved.
King, Brian R; Aburdene, Maurice; Thompson, Alex; Warres, Zach
2014-01-01
Digital signal processing (DSP) techniques for biological sequence analysis continue to grow in popularity due to the inherent digital nature of these sequences. DSP methods have demonstrated early success for detection of coding regions in a gene. Recently, these methods are being used to establish DNA gene similarity. We present the inter-coefficient difference (ICD) transformation, a novel extension of the discrete Fourier transformation, which can be applied to any DNA sequence. The ICD method is a mathematical, alignment-free DNA comparison method that generates a genetic signature for any DNA sequence that is used to generate relative measures of similarity among DNA sequences. We demonstrate our method on a set of insulin genes obtained from an evolutionarily wide range of species, and on a set of avian influenza viral sequences, which represents a set of highly similar sequences. We compare phylogenetic trees generated using our technique against trees generated using traditional alignment techniques for similarity and demonstrate that the ICD method produces a highly accurate tree without requiring an alignment prior to establishing sequence similarity.
Hong, Soon Gyu; Cramer, Robert A; Lawrence, Christopher B; Pryor, Barry M
2005-02-01
A gene for the Alternaria major allergen, Alt a 1, was amplified from 52 species of Alternaria and related genera, and sequence information was used for phylogenetic study. Alt a 1 gene sequences evolved 3.8 times faster and contained 3.5 times more parsimony-informative sites than glyceraldehyde-3-phosphate dehydrogenase (gpd) sequences. Analyses of Alt a 1 gene and gpd exon sequences strongly supported grouping of Alternaria spp. and related taxa into several species-groups described in previous studies, especially the infectoria, alternata, porri, brassicicola, and radicina species-groups and the Embellisia group. The sonchi species-group was newly suggested in this study. Monophyly of the Nimbya group was moderately supported, and monophyly of the Ulocladium group was weakly supported. Relationships among species-groups and among closely related species of the same species-group were not fully resolved. However, higher resolution could be obtained using Alt a 1 sequences or a combined dataset than using gpd sequences alone. Despite high levels of variation in amino acid sequences, results of in silico prediction of protein secondary structure for Alt a 1 demonstrated a high degree of structural similarity for most of the species suggesting a conservation of function.
QueTAL: a suite of tools to classify and compare TAL effectors functionally and phylogenetically
Pérez-Quintero, Alvaro L.; Lamy, Léo; Gordon, Jonathan L.; Escalon, Aline; Cunnac, Sébastien; Szurek, Boris; Gagnevin, Lionel
2015-01-01
Transcription Activator-Like (TAL) effectors from Xanthomonas plant pathogenic bacteria can bind to the promoter region of plant genes and induce their expression. DNA-binding specificity is governed by a central domain made of nearly identical repeats, each determining the recognition of one base pair via two amino acid residues (a.k.a. Repeat Variable Di-residue, or RVD). Knowing how TAL effectors differ from each other within and between strains would be useful to infer functional and evolutionary relationships, but their repetitive nature precludes reliable use of traditional alignment methods. The suite QueTAL was therefore developed to offer tailored tools for comparison of TAL effector genes. The program DisTAL considers each repeat as a unit, transforms a TAL effector sequence into a sequence of coded repeats and makes pair-wise alignments between these coded sequences to construct trees. The program FuncTAL is aimed at finding TAL effectors with similar DNA-binding capabilities. It calculates correlations between position weight matrices of potential target DNA sequence predicted from the RVD sequence, and builds trees based on these correlations. The programs accurately represented phylogenetic and functional relationships between TAL effectors using either simulated or literature-curated data. When using the programs on a large set of TAL effector sequences, the DisTAL tree largely reflected the expected species phylogeny. In contrast, FuncTAL showed that TAL effectors with similar binding capabilities can be found between phylogenetically distant taxa. This suite will help users to rapidly analyse any TAL effector genes of interest and compare them to other available TAL genes and should improve our understanding of TAL effectors evolution. It is available at http://bioinfo-web.mpl.ird.fr/cgi-bin2/quetal/quetal.cgi. PMID:26284082
Complete genome sequence of Fer-de-Lance Virus reveals a novel gene in reptilian Paramyxoviruses
Kurath, G.; Batts, W.N.; Ahne, W.; Winton, J.R.
2004-01-01
The complete RNA genome sequence of the archetype reptilian paramyxovirus, Fer-de-Lance virus (FDLV), has been determined. The genome is 15,378 nucleotides in length and consists of seven nonoverlapping genes in the order 3??? N-U-P-M-F-HN-L 5???, coding for the nucleocapsid, unknown, phospho-, matrix, fusion, hemagglutinin-neuraminidase, and large polymerase proteins, respectively. The gene junctions contain highly conserved transcription start and stop signal sequences and tri-nucleotide intergenic regions similar to those of other Paramyxoviridae. The FDLV P gene expression strategy is like that of rubulaviruses, which express the accessory V protein from the primary transcript and edit a portion of the mRNA to encode P and I proteins. There is also an overlapping open reading frame potentially encoding a small basic protein in the P gene. The gene designated U (unknown), encodes a deduced protein of 19.4 kDa that has no counterpart in other paramyxoviruses and has no similarity with sequences in the National Center for Biotechnology Information database. Active transcription of the U gene in infected cells was demonstrated by Northern blot analysis, and bicistronic N-U mRNA was also evident. The genomes of two other snake paramyxovirus genotypes were also found to have U genes, with 11 to 16% nucleotide divergence from the FDLV U gene. Pairwise comparisons of amino acid identities and phylogenetic analyses of all deduced FDLV protein sequences with homologous sequences from other Paramyxoviridae indicate that FDLV represents a new genus within the subfamily Paramyxovirinae. We suggest the name Ferlavirus for the new genus, with FDLV as the type species.
Jiang, Yuan; Yang, Zhongqi; Wang, Xiaoyi; Hou, Yuxia
2015-01-01
The species belonging to Sclerodermus (Hymenoptera: Bethylidae) are currently the most important insect natural enemies of wood borer pests, mainly buprestid and cerambycid beetles, in China. However, some sibling species of this genus are very difficult to distinguish because of their similar morphological features. To address this issue, we conducted phylogenetic and genetic analyses of cytochrome oxidase subunit I (COI) and 28S RNA gene sequences from eight species of Sclerodermus reared from different wood borer pests. The eight sibling species were as follows: S. guani Xiao et Wu, S. sichuanensis Xiao, S. pupariae Yang et Yao, and Sclerodermus spp. (Nos. 1–5). A 594-bp fragment of COI and 750-bp fragment of 28S were subsequently sequenced. For COI, the G-C content was found to be low in all the species, averaging to about 30.0%. Sequence divergences (Kimura-2-parameter distances) between congeneric species averaged to 4.5%, and intraspecific divergences averaged to about 0.09%. Further, the maximum sequence divergences between congeneric species and Sclerodermus sp. (No. 5) averaged to about 16.5%. All 136 samples analyzed were included in six reciprocally monophyletic clades in the COI neighbor-joining (NJ) tree. The NJ tree inferred from the 28S rRNA sequence yielded almost identical results, but the samples from S. guani, S. sichuanensis, S. pupariae, and Sclerodermus spp. (Nos. 1–4) clustered together and only Sclerodermus sp. (No. 5) clustered separately. Our findings indicate that the standard barcode region of COI can be efficiently used to distinguish morphologically similar Sclerodermus species. Further, we speculate that Sclerodermus sp. (No. 5) might be a new species of Sclerodermus. PMID:25782000
Emmenegger, E.J.; Kurath, G.
2002-01-01
Infectious hematopoietic necrosis virus (IHNV) is a pathogen that infects many Pacific salmonid stocks from the watersheds of North America. Previous studies have thoroughly characterized the genetic diversity of IHNV isolates from Alaska and the Hagerman Valley in Idaho. To enhance understanding of the evolution and viral transmission patterns of IHNV within the Pacific Northwest geographic range, we analyzed the G gene of IHNV isolates from the coastal watersheds of Washington State by ribonuclease protection assay (RPA) and nucleotide sequencing. The RPA analysis of 23 isolates indicated that the Skagit basin IHNV isolates were relatively homogeneous as a result of the dominance of one G gene haplotype (S). Sequence analysis of 303 bases in the middle of the G gene (midG region) of 61 isolates confirmed the high frequency of a Skagit River basin sequence and identified another sequence commonly found in isolates from the Lake Washington basin. Overall, both the RPA and sequence analysis showed that the Washington coastal IHNV isolates are genetically homogeneous and have little genetic diversity. This is similar to the genetic diversity pattern of IHNV from Alaska and contrasts sharply with the high genetic diversity demonstrated for IHNV isolates from fish farms along the Snake River in Idaho. The high degree of sequence and haplotype similarity between the Washington coastal IHNV isolates and those from Alaska and British Columbia suggests that they have a common viral ancestor. Phylogenetic analyses of the isolates we studied and those from different regions throughout the virus's geographic range confirms a conserved pattern of evolution of the virus in salmonid stocks north of the Columbia River, which forms Washington's southern border.
Repetitive sequences: the hidden diversity of heterochromatin in prochilodontid fish
Terencio, Maria L.; Schneider, Carlos H.; Gross, Maria C.; do Carmo, Edson Junior; Nogaroto, Viviane; de Almeida, Mara Cristina; Artoni, Roberto Ferreira; Vicari, Marcelo R.; Feldberg, Eliana
2015-01-01
Abstract The structure and organization of repetitive elements in fish genomes are still relatively poorly understood, although most of these elements are believed to be located in heterochromatic regions. Repetitive elements are considered essential in evolutionary processes as hotspots for mutations and chromosomal rearrangements, among other functions – thus providing new genomic alternatives and regulatory sites for gene expression. The present study sought to characterize repetitive DNA sequences in the genomes of Semaprochilodus insignis (Jardine & Schomburgk, 1841) and Semaprochilodus taeniurus (Valenciennes, 1817) and identify regions of conserved syntenic blocks in this genome fraction of three species of Prochilodontidae (Semaprochilodus insignis, Semaprochilodus taeniurus, and Prochilodus lineatus (Valenciennes, 1836) by cross-FISH using Cot-1 DNA (renaturation kinetics) probes. We found that the repetitive fractions of the genomes of Semaprochilodus insignis and Semaprochilodus taeniurus have significant amounts of conserved syntenic blocks in hybridization sites, but with low degrees of similarity between them and the genome of Prochilodus lineatus, especially in relation to B chromosomes. The cloning and sequencing of the repetitive genomic elements of Semaprochilodus insignis and Semaprochilodus taeniurus using Cot-1 DNA identified 48 fragments that displayed high similarity with repetitive sequences deposited in public DNA databases and classified as microsatellites, transposons, and retrotransposons. The repetitive fractions of the Semaprochilodus insignis and Semaprochilodus taeniurus genomes exhibited high degrees of conserved syntenic blocks in terms of both the structures and locations of hybridization sites, but a low degree of similarity with the syntenic blocks of the Prochilodus lineatus genome. Future comparative analyses of other prochilodontidae species will be needed to advance our understanding of the organization and evolution of the genomes in this group of fish. PMID:26752156
HLA Diversity in the 1000 Genomes Dataset
Gourraud, Pierre-Antoine; Khankhanian, Pouya; Cereb, Nezih; Yang, Soo Young; Feolo, Michael; Maiers, Martin; D. Rioux, John; Hauser, Stephen; Oksenberg, Jorge
2014-01-01
The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation by sequencing at a level that should allow the genome-wide detection of most variants with frequencies as low as 1%. However, in the major histocompatibility complex (MHC), only the top 10 most frequent haplotypes are in the 1% frequency range whereas thousands of haplotypes are present at lower frequencies. Given the limitation of both the coverage and the read length of the sequences generated by the 1000 Genomes Project, the highly variable positions that define HLA alleles may be difficult to identify. We used classical Sanger sequencing techniques to type the HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 genes in the available 1000 Genomes samples and combined the results with the 103,310 variants in the MHC region genotyped by the 1000 Genomes Project. Using pairwise identity-by-descent distances between individuals and principal component analysis, we established the relationship between ancestry and genetic diversity in the MHC region. As expected, both the MHC variants and the HLA phenotype can identify the major ancestry lineage, informed mainly by the most frequent HLA haplotypes. To some extent, regions of the genome with similar genetic or similar recombination rate have similar properties. An MHC-centric analysis underlines departures between the ancestral background of the MHC and the genome-wide picture. Our analysis of linkage disequilibrium (LD) decay in these samples suggests that overestimation of pairwise LD occurs due to a limited sampling of the MHC diversity. This collection of HLA-specific MHC variants, available on the dbMHC portal, is a valuable resource for future analyses of the role of MHC in population and disease studies. PMID:24988075
HLA diversity in the 1000 genomes dataset.
Gourraud, Pierre-Antoine; Khankhanian, Pouya; Cereb, Nezih; Yang, Soo Young; Feolo, Michael; Maiers, Martin; Rioux, John D; Hauser, Stephen; Oksenberg, Jorge
2014-01-01
The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation by sequencing at a level that should allow the genome-wide detection of most variants with frequencies as low as 1%. However, in the major histocompatibility complex (MHC), only the top 10 most frequent haplotypes are in the 1% frequency range whereas thousands of haplotypes are present at lower frequencies. Given the limitation of both the coverage and the read length of the sequences generated by the 1000 Genomes Project, the highly variable positions that define HLA alleles may be difficult to identify. We used classical Sanger sequencing techniques to type the HLA-A, HLA-B, HLA-C, HLA-DRB1 and HLA-DQB1 genes in the available 1000 Genomes samples and combined the results with the 103,310 variants in the MHC region genotyped by the 1000 Genomes Project. Using pairwise identity-by-descent distances between individuals and principal component analysis, we established the relationship between ancestry and genetic diversity in the MHC region. As expected, both the MHC variants and the HLA phenotype can identify the major ancestry lineage, informed mainly by the most frequent HLA haplotypes. To some extent, regions of the genome with similar genetic or similar recombination rate have similar properties. An MHC-centric analysis underlines departures between the ancestral background of the MHC and the genome-wide picture. Our analysis of linkage disequilibrium (LD) decay in these samples suggests that overestimation of pairwise LD occurs due to a limited sampling of the MHC diversity. This collection of HLA-specific MHC variants, available on the dbMHC portal, is a valuable resource for future analyses of the role of MHC in population and disease studies.
Isolation of Brucella inopinata-Like Bacteria from White's and Denny's Tree Frogs.
Kimura, Masanobu; Une, Yumi; Suzuki, Michio; Park, Eun-Sil; Imaoka, Koichi; Morikawa, Shigeru
2017-05-01
Brucella inopinata strain BO1 and B. sp. strain BO2 isolated from human patients, respectively, are genetically different from classical Brucella species. We isolated bacteria of the genus Brucella from two species of wild-caught tropical frogs kept in the facilities in Japan: White's tree frog, which inhabits Oceania, and Denny's tree frog, which inhabits Southeast Asia. Phylogenetic analyses based on 16S rRNA and recA gene sequences and multilocus sequence analysis showed that two isolates of Brucella spp. showed significant similarity to BO1, BO2, and the isolates from other wild-caught frogs. These results suggest that a variety of frog species are susceptible to a novel clade of Brucella bacteria, including B. inopinata.
Crinipellis brasiliensis, a new species based on morphological and molecular data.
de Arruda, Maricília C C; Sepulveda, German F; Miller, Robert N G; Ferreira, Marisa A S V; Santiago, Denise V R; Resende, Mário Lúcio V; Dianese, José Carmine; Felipe, Maria Sueli S
2005-01-01
Crinipellis perniciosa infects a diversity of hosts causing severe damage to T. cacao production in many Brazilian growing regions. We compared isolates of Crinipellis from different geographic origins and hosts in Brazil by structural analysis using light (LM) and scanning electronic microscopy (SEM), as well as RFLP and sequence data based on the nuclear rDNA ITS region. Statistical analyses of morphometric data of basidia and basidiospores revealed a distinct group of isolates of Crinipellis obtained from Heteropterys acutifolia when compared to representatives from Theobroma cacao, Solanum lycocarpum and Heteropterys nervosa. A similar distinction also was observed based on sequence data of the ITS region such that combined results allowed for the segregation of a new species within the genus Crinipellis.
Reece, Kimberly S; Scott, Gail P; Dang, Cécile; Dungan, Christopher F
2017-09-01
A monoclonal Perkinsus chesapeaki isolate was established from 1 of 10 infected Australian Anadara trapezia cockles. Morphological features were similar to those of described P. chesapeaki isolates, and also included a unique vermiform schizont cell-type. Perkinsus olseni-specific PCR primers amplified DNAs from all 10 cockles. Perkinsus chesapeaki-specific primers also amplified DNAs from 4/10 cockles, including DNA from the isolate source cockle. Three different sets of DNA sequences from the monoclonal isolate grouped with the homologous, previously deposited, P. chesapeaki sequences in phylogenetic analyses. In situ hybridization assays detected both P. chesapeaki and P. olseni cells in histological sections from the source cockle for monoclonal isolate ATCC PRA-425. Copyright © 2017 Elsevier Inc. All rights reserved.
A range-wide synthesis and timeline for phylogeographic events in the red fox (Vulpes vulpes).
Kutschera, Verena E; Lecomte, Nicolas; Janke, Axel; Selva, Nuria; Sokolov, Alexander A; Haun, Timm; Steyer, Katharina; Nowak, Carsten; Hailer, Frank
2013-06-05
Many boreo-temperate mammals have a Pleistocene fossil record throughout Eurasia and North America, but only few have a contemporary distribution that spans this large area. Examples of Holarctic-distributed carnivores are the brown bear, grey wolf, and red fox, all three ecological generalists with large dispersal capacity and a high adaptive flexibility. While the two former have been examined extensively across their ranges, no phylogeographic study of the red fox has been conducted across its entire Holarctic range. Moreover, no study included samples from central Asia, leaving a large sampling gap in the middle of the Eurasian landmass. Here we provide the first mitochondrial DNA sequence data of red foxes from central Asia (Siberia), and new sequences from several European populations. In a range-wide synthesis of 729 red fox mitochondrial control region sequences, including 677 previously published and 52 newly obtained sequences, this manuscript describes the pattern and timing of major phylogeographic events in red foxes, using a Bayesian coalescence approach with multiple fossil tip and root calibration points. In a 335 bp alignment we found in total 175 unique haplotypes. All newly sequenced individuals belonged to the previously described Holarctic lineage. Our analyses confirmed the presence of three Nearctic- and two Japan-restricted lineages that were formed since the Mid/Late Pleistocene. The phylogeographic history of red foxes is highly similar to that previously described for grey wolves and brown bears, indicating that climatic fluctuations and habitat changes since the Pleistocene had similar effects on these highly mobile generalist species. All three species originally diversified in Eurasia and later colonized North America and Japan. North American lineages persisted through the last glacial maximum south of the ice sheets, meeting more recent colonizers from Beringia during postglacial expansion into the northern Nearctic. Both brown bears and red foxes colonized Japan's northern island Hokkaido at least three times, all lineages being most closely related to different mainland lineages. Red foxes, grey wolves, and brown bears thus represent an interesting case where species that occupy similar ecological niches also exhibit similar phylogeographic histories.
A range-wide synthesis and timeline for phylogeographic events in the red fox (Vulpes vulpes)
2013-01-01
Background Many boreo-temperate mammals have a Pleistocene fossil record throughout Eurasia and North America, but only few have a contemporary distribution that spans this large area. Examples of Holarctic-distributed carnivores are the brown bear, grey wolf, and red fox, all three ecological generalists with large dispersal capacity and a high adaptive flexibility. While the two former have been examined extensively across their ranges, no phylogeographic study of the red fox has been conducted across its entire Holarctic range. Moreover, no study included samples from central Asia, leaving a large sampling gap in the middle of the Eurasian landmass. Results Here we provide the first mitochondrial DNA sequence data of red foxes from central Asia (Siberia), and new sequences from several European populations. In a range-wide synthesis of 729 red fox mitochondrial control region sequences, including 677 previously published and 52 newly obtained sequences, this manuscript describes the pattern and timing of major phylogeographic events in red foxes, using a Bayesian coalescence approach with multiple fossil tip and root calibration points. In a 335 bp alignment we found in total 175 unique haplotypes. All newly sequenced individuals belonged to the previously described Holarctic lineage. Our analyses confirmed the presence of three Nearctic- and two Japan-restricted lineages that were formed since the Mid/Late Pleistocene. Conclusions The phylogeographic history of red foxes is highly similar to that previously described for grey wolves and brown bears, indicating that climatic fluctuations and habitat changes since the Pleistocene had similar effects on these highly mobile generalist species. All three species originally diversified in Eurasia and later colonized North America and Japan. North American lineages persisted through the last glacial maximum south of the ice sheets, meeting more recent colonizers from Beringia during postglacial expansion into the northern Nearctic. Both brown bears and red foxes colonized Japan’s northern island Hokkaido at least three times, all lineages being most closely related to different mainland lineages. Red foxes, grey wolves, and brown bears thus represent an interesting case where species that occupy similar ecological niches also exhibit similar phylogeographic histories. PMID:23738594
Model-free aftershock forecasts constructed from similar sequences in the past
NASA Astrophysics Data System (ADS)
van der Elst, N.; Page, M. T.
2017-12-01
The basic premise behind aftershock forecasting is that sequences in the future will be similar to those in the past. Forecast models typically use empirically tuned parametric distributions to approximate past sequences, and project those distributions into the future to make a forecast. While parametric models do a good job of describing average outcomes, they are not explicitly designed to capture the full range of variability between sequences, and can suffer from over-tuning of the parameters. In particular, parametric forecasts may produce a high rate of "surprises" - sequences that land outside the forecast range. Here we present a non-parametric forecast method that cuts out the parametric "middleman" between training data and forecast. The method is based on finding past sequences that are similar to the target sequence, and evaluating their outcomes. We quantify similarity as the Poisson probability that the observed event count in a past sequence reflects the same underlying intensity as the observed event count in the target sequence. Event counts are defined in terms of differential magnitude relative to the mainshock. The forecast is then constructed from the distribution of past sequences outcomes, weighted by their similarity. We compare the similarity forecast with the Reasenberg and Jones (RJ95) method, for a set of 2807 global aftershock sequences of M≥6 mainshocks. We implement a sequence-specific RJ95 forecast using a global average prior and Bayesian updating, but do not propagate epistemic uncertainty. The RJ95 forecast is somewhat more precise than the similarity forecast: 90% of observed sequences fall within a factor of two of the median RJ95 forecast value, whereas the fraction is 85% for the similarity forecast. However, the surprise rate is much higher for the RJ95 forecast; 10% of observed sequences fall in the upper 2.5% of the (Poissonian) forecast range. The surprise rate is less than 3% for the similarity forecast. The similarity forecast may be useful to emergency managers and non-specialists when confidence or expertise in parametric forecasting may be lacking. The method makes over-tuning impossible, and minimizes the rate of surprises. At the least, this forecast constitutes a useful benchmark for more precisely tuned parametric forecasts.
Kück, Patrick; Meusemann, Karen; Dambach, Johannes; Thormann, Birthe; von Reumont, Björn M; Wägele, Johann W; Misof, Bernhard
2010-03-31
Methods of alignment masking, which refers to the technique of excluding alignment blocks prior to tree reconstructions, have been successful in improving the signal-to-noise ratio in sequence alignments. However, the lack of formally well defined methods to identify randomness in sequence alignments has prevented a routine application of alignment masking. In this study, we compared the effects on tree reconstructions of the most commonly used profiling method (GBLOCKS) which uses a predefined set of rules in combination with alignment masking, with a new profiling approach (ALISCORE) based on Monte Carlo resampling within a sliding window, using different data sets and alignment methods. While the GBLOCKS approach excludes variable sections above a certain threshold which choice is left arbitrary, the ALISCORE algorithm is free of a priori rating of parameter space and therefore more objective. ALISCORE was successfully extended to amino acids using a proportional model and empirical substitution matrices to score randomness in multiple sequence alignments. A complex bootstrap resampling leads to an even distribution of scores of randomly similar sequences to assess randomness of the observed sequence similarity. Testing performance on real data, both masking methods, GBLOCKS and ALISCORE, helped to improve tree resolution. The sliding window approach was less sensitive to different alignments of identical data sets and performed equally well on all data sets. Concurrently, ALISCORE is capable of dealing with different substitution patterns and heterogeneous base composition. ALISCORE and the most relaxed GBLOCKS gap parameter setting performed best on all data sets. Correspondingly, Neighbor-Net analyses showed the most decrease in conflict. Alignment masking improves signal-to-noise ratio in multiple sequence alignments prior to phylogenetic reconstruction. Given the robust performance of alignment profiling, alignment masking should routinely be used to improve tree reconstructions. Parametric methods of alignment profiling can be easily extended to more complex likelihood based models of sequence evolution which opens the possibility of further improvements.
Grissa, Ibtissem; Vergnaud, Gilles; Pourcel, Christine
2007-01-01
Background In Archeae and Bacteria, the repeated elements called CRISPRs for "clustered regularly interspaced short palindromic repeats" are believed to participate in the defence against viruses. Short sequences called spacers are stored in-between repeated elements. In the current model, motifs comprising spacers and repeats may target an invading DNA and lead to its degradation through a proposed mechanism similar to RNA interference. Analysis of intra-species polymorphism shows that new motifs (one spacer and one repeated element) are added in a polarised fashion. Although their principal characteristics have been described, a lot remains to be discovered on the way CRISPRs are created and evolve. As new genome sequences become available it appears necessary to develop automated scanning tools to make available CRISPRs related information and to facilitate additional investigations. Description We have produced a program, CRISPRFinder, which identifies CRISPRs and extracts the repeated and unique sequences. Using this software, a database is constructed which is automatically updated monthly from newly released genome sequences. Additional tools were created to allow the alignment of flanking sequences in search for similarities between different loci and to build dictionaries of unique sequences. To date, almost six hundred CRISPRs have been identified in 475 published genomes. Two Archeae out of thirty-seven and about half of Bacteria do not possess a CRISPR. Fine analysis of repeated sequences strongly supports the current view that new motifs are added at one end of the CRISPR adjacent to the putative promoter. Conclusion It is hoped that availability of a public database, regularly updated and which can be queried on the web will help in further dissecting and understanding CRISPR structure and flanking sequences evolution. Subsequent analyses of the intra-species CRISPR polymorphism will be facilitated by CRISPRFinder and the dictionary creator. CRISPRdb is accessible at PMID:17521438
Whitfield, A E; Rotenberg, D; Aritua, V; Hogenhout, S A
2011-04-01
The corn planthopper, Peregrinus maidis, causes direct feeding damage to plants and transmits Maize mosaic rhabdovirus (MMV) in a persistent-propagative manner. MMV must cross several insect tissue layers for successful transmission to occur, and the gut serves as an important barrier for rhabdovirus transmission. In order to facilitate the identification of proteins that may interact with MMV either by facilitating acquisition or responding to virus infection, we generated and analysed the gut transcriptome of P. maidis. From two normalized cDNA libraries, we generated a P. maidis gut transcriptome composed of 20,771 expressed sequence tags (ESTs). Assembly of the sequences yielded 1860 contigs and 14,032 singletons, and biological roles were assigned to 5793 (36%). Comparison of P. maidis ESTs with other insect amino acid sequences revealed that P. maidis shares greatest sequence similarity with another hemipteran, the brown planthopper Nilaparvata lugens. We identified 202 P. maidis transcripts with putative homology to proteins associated with insect innate immunity, including those implicated in the Toll, Imd, JAK/STAT, Jnk and the small-interfering RNA-mediated pathways. Sequence comparisons between our P. maidis gut EST collection and the currently available National Center for Biotechnology Information EST database collection for Ni. lugens revealed that a pathogen recognition receptor in the Imd pathway, peptidoglycan recognition protein-long class (PGRP-LC), is present in these two members of the family Delphacidae; however, these recognition receptors are lacking in the model hemipteran Acyrthosiphon pisum. In addition, we identified sequences in the P. maidis gut transcriptome that share significant amino acid sequence similarities with the rhabdovirus receptor molecule, acetylcholine receptor (AChR), found in other hosts. This EST analysis sheds new light on immune response pathways in hemipteran guts that will be useful for further dissecting innate defence response pathways to rhabdovirus infection. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.
Junttila, N; Lévêque, N; Magnius, L O; Kabue, J P; Muyembe-Tamfum, J J; Maslin, J; Lina, B; Norder, H
2015-03-01
Complete coding regions were sequenced for two new enterovirus genomes: EV-B93 previously identified by VP1 sequencing, derived from a child with acute flaccid paralysis in the Democratic Republic of Congo; and EV-C95 from a French soldier with acute gastroenteritis in Djibouti. The EV-B93 P1 had more than 30% nucleotide divergence from other EV-B types, with highest similarity to E-15 and EV-B80. The P1 nucleotide sequence of EV-C95 was most similar, 71%, to CV-A21. Complete coding regions for the new enteroviruses were compared with those of 135 EV-B and 176 EV-C strains representing all types available in GenBank. When strains from the same outbreak or strains isolated during the same year in the same geographical region were excluded, 27 of the 58 EV-B, and 16 of the 23 EV-C types were represented by more than one sequence. However, for EV-B the P3 sequences formed three clades mainly according to origin or time of isolation, irrespective of type, while for EV-C the P3 sequences segregated mainly according to disease manifestation, with most strains causing paralysis, including polioviruses, forming one clade, and strains causing respiratory illness forming another. There was no intermixing of types between these two clades, apart from two EV-C96 strains. The EV-B P3 sequences had lower inter-clade and higher intra-clade variability as compared to the EV-C sequences, which may explain why inter-clade recombinations are more frequent in EV-B. Further analysis of more isolates may shed light on the role of recombinations in the evolution of EV-B in geographical context. © 2014 Wiley Periodicals, Inc.
Dombrovsky, Aviv; Glanz, Eyal; Lachman, Oded; Sela, Noa; Doron-Faigenboim, Adi; Antignus, Yehezkel
2013-01-01
We determined the complete sequence and organization of the genome of a putative member of the genus Polerovirus tentatively named Pepper yellow leaf curl virus (PYLCV). PYLCV has a wider host range than Tobacco vein-distorting virus (TVDV) and has a close serological relationship with Cucurbit aphid-borne yellows virus (CABYV) (both poleroviruses). The extracted viral RNA was subjected to SOLiD next-generation sequence analysis and used as a template for reverse transcription synthesis, which was followed by PCR amplification. The ssRNA genome of PYLCV includes 6,028 nucleotides encoding six open reading frames (ORFs), which is typical of the genus Polerovirus. Comparisons of the deduced amino acid sequences of the PYLCV ORFs 2-4 and ORF5, indicate that there are high levels of similarity between these sequences to ORFs 2-4 of TVDV (84-93%) and to ORF5 of CABYV (87%). Both PYLCV and Pepper vein yellowing virus (PeVYV) contain sequences that point to a common ancestral polerovirus. The recombination breakpoint which is located at CABYV ORF3, which encodes the viral coat protein (CP), may explain the CABYV-like sequences found in the genomes of the pepper infecting viruses PYLCV and PeVYV. Two additional regions unique to PYLCV (PY1 and PY2) were identified between nucleotides 4,962 and 5,061 (ORF 5) and between positions 5,866 and 6,028 in the 3' NCR. Sequence analysis of the pepper-infecting PeVYV revealed three unique regions (Pe1-Pe3) with no similarity to other members of the genus Polerovirus. Genomic analyses of PYLCV and PeVYV suggest that the speciation of these viruses occurred through putative recombination event(s) between poleroviruses co-infecting a common host(s), resulting in the emergence of PYLCV, a novel pathogen with a wider host range. PMID:23936244
Dombrovsky, Aviv; Glanz, Eyal; Lachman, Oded; Sela, Noa; Doron-Faigenboim, Adi; Antignus, Yehezkel
2013-01-01
We determined the complete sequence and organization of the genome of a putative member of the genus Polerovirus tentatively named Pepper yellow leaf curl virus (PYLCV). PYLCV has a wider host range than Tobacco vein-distorting virus (TVDV) and has a close serological relationship with Cucurbit aphid-borne yellows virus (CABYV) (both poleroviruses). The extracted viral RNA was subjected to SOLiD next-generation sequence analysis and used as a template for reverse transcription synthesis, which was followed by PCR amplification. The ssRNA genome of PYLCV includes 6,028 nucleotides encoding six open reading frames (ORFs), which is typical of the genus Polerovirus. Comparisons of the deduced amino acid sequences of the PYLCV ORFs 2-4 and ORF5, indicate that there are high levels of similarity between these sequences to ORFs 2-4 of TVDV (84-93%) and to ORF5 of CABYV (87%). Both PYLCV and Pepper vein yellowing virus (PeVYV) contain sequences that point to a common ancestral polerovirus. The recombination breakpoint which is located at CABYV ORF3, which encodes the viral coat protein (CP), may explain the CABYV-like sequences found in the genomes of the pepper infecting viruses PYLCV and PeVYV. Two additional regions unique to PYLCV (PY1 and PY2) were identified between nucleotides 4,962 and 5,061 (ORF 5) and between positions 5,866 and 6,028 in the 3' NCR. Sequence analysis of the pepper-infecting PeVYV revealed three unique regions (Pe1-Pe3) with no similarity to other members of the genus Polerovirus. Genomic analyses of PYLCV and PeVYV suggest that the speciation of these viruses occurred through putative recombination event(s) between poleroviruses co-infecting a common host(s), resulting in the emergence of PYLCV, a novel pathogen with a wider host range.
Gruel, Jérémy; LeBorgne, Michel; LeMeur, Nolwenn; Théret, Nathalie
2011-09-12
Regulation of gene expression plays a pivotal role in cellular functions. However, understanding the dynamics of transcription remains a challenging task. A host of computational approaches have been developed to identify regulatory motifs, mainly based on the recognition of DNA sequences for transcription factor binding sites. Recent integration of additional data from genomic analyses or phylogenetic footprinting has significantly improved these methods. Here, we propose a different approach based on the compilation of Simple Shared Motifs (SSM), groups of sequences defined by their length and similarity and present in conserved sequences of gene promoters. We developed an original algorithm to search and count SSM in pairs of genes. An exceptional number of SSM is considered as a common regulatory pattern. The SSM approach is applied to a sample set of genes and validated using functional gene-set enrichment analyses. We demonstrate that the SSM approach selects genes that are over-represented in specific biological categories (Ontology and Pathways) and are enriched in co-expressed genes. Finally we show that genes co-expressed in the same tissue or involved in the same biological pathway have increased SSM values. Using unbiased clustering of genes, Simple Shared Motifs analysis constitutes an original contribution to provide a clearer definition of expression networks.
2011-01-01
Background Regulation of gene expression plays a pivotal role in cellular functions. However, understanding the dynamics of transcription remains a challenging task. A host of computational approaches have been developed to identify regulatory motifs, mainly based on the recognition of DNA sequences for transcription factor binding sites. Recent integration of additional data from genomic analyses or phylogenetic footprinting has significantly improved these methods. Results Here, we propose a different approach based on the compilation of Simple Shared Motifs (SSM), groups of sequences defined by their length and similarity and present in conserved sequences of gene promoters. We developed an original algorithm to search and count SSM in pairs of genes. An exceptional number of SSM is considered as a common regulatory pattern. The SSM approach is applied to a sample set of genes and validated using functional gene-set enrichment analyses. We demonstrate that the SSM approach selects genes that are over-represented in specific biological categories (Ontology and Pathways) and are enriched in co-expressed genes. Finally we show that genes co-expressed in the same tissue or involved in the same biological pathway have increased SSM values. Conclusions Using unbiased clustering of genes, Simple Shared Motifs analysis constitutes an original contribution to provide a clearer definition of expression networks. PMID:21910886
García-Vásquez, Adriana; Pinacho-Pinacho, Carlos Daniel; Martínez-Ramírez, Emilio; Rubio-Godoy, Miguel
2018-08-01
In the present study, two new species of Gyrodactylus are described from Profundulus oaxacae, a fish endemic to the Pacific slope of Oaxaca State, Mexico. Fishes were collected within their distribution range in 5 localities in the Atoyac-Verde River. Gyrodactylus montealbani n. sp. and G. zapoteco n. sp. were erected and characterized morphologically (sclerites of the attachment apparatus and the male copulatory organ) and molecularly (sequences of the Internal Transcribed Spacer region of rDNA). The haptoral sclerites of the new species are similar to those of Gyrodactylus iunuri and Gyrodactylus tepari, both recently described from the goodeid fish Goodea atripinnis, from the Mexican States of Jalisco and Querétaro, respectively; and to Gyrodactylus xtachuna described from the poeciliid Poeciliopsis gracilis in Veracruz State, Mexico - nonetheless, these species can all be discriminated based on their marginal hook morphology. Specimens of G. montealbani n. sp. and G. zapoteco n. sp. were sequenced, and were aligned with sequences of 25 other Gyrodactylus spp. Both Maximum likelihood and Bayesian inference analyses indicated that the two new species are members of independent, well-supported lineages - these are the first Gyrodactylus species described from Profundulus oaxacae. Copyright © 2018 Elsevier B.V. All rights reserved.
Corradi, Nicolas; Hijri, Mohamed; Fumagalli, Luca; Sanders, Ian R
2004-11-01
The genes encoding alpha- and beta-tubulins have been widely sampled in most major fungal phyla and they are useful tools for fungal phylogeny. Here, we report the first isolation of alpha-tubulin sequences from arbuscular mycorrhizal fungi (AMF). In parallel, AMF beta-tubulins were sampled and analysed to identify the presence of paralogs of this gene. The AMF alpha-tubulin amino acid phylogeny was congruent with the results previously reported for AMF beta-tubulins and showed that AMF tubulins group together at a basal position in the fungal clade and showed high sequence similarities with members of the Chytridiomycota. This is in contrast with phylogenies for other regions of the AMF genome. The amount and nature of substitutions are consistent with an ancient divergence of both orthologs and paralogs of AMF tubulins. At the amino acid level, however, AMF tubulins have hardly evolved from those of the chytrids. This is remarkable given that these two groups are ancient and the monophyletic Glomeromycota probably diverged from basal fungal ancestors at least 500 million years ago. The specific primers we designed for the AMF tubulins, together with the high molecular variation we found among the AMF species we analysed, make AMF tubulin sequences potentially useful for AMF identification purposes.
Wonczak, Stephan; Thiele, Holger; Nieroda, Lech; Jabbari, Kamel; Borowski, Stefan; Sinha, Vishal; Gunia, Wilfried; Lang, Ulrich; Achter, Viktor; Nürnberg, Peter
2015-01-01
Next generation sequencing (NGS) has been a great success and is now a standard method of research in the life sciences. With this technology, dozens of whole genomes or hundreds of exomes can be sequenced in rather short time, producing huge amounts of data. Complex bioinformatics analyses are required to turn these data into scientific findings. In order to run these analyses fast, automated workflows implemented on high performance computers are state of the art. While providing sufficient compute power and storage to meet the NGS data challenge, high performance computing (HPC) systems require special care when utilized for high throughput processing. This is especially true if the HPC system is shared by different users. Here, stability, robustness and maintainability are as important for automated workflows as speed and throughput. To achieve all of these aims, dedicated solutions have to be developed. In this paper, we present the tricks and twists that we utilized in the implementation of our exome data processing workflow. It may serve as a guideline for other high throughput data analysis projects using a similar infrastructure. The code implementing our solutions is provided in the supporting information files. PMID:25942438
NASA Astrophysics Data System (ADS)
Silva, Pablo G.; Roquero, Elvira; López-Recio, Mario; Huerta, Pedro; Martínez-Graña, Antonio M.
2017-06-01
This work analyses the chronology of fluvial terrace sequences of the two most important fluvial basins from central Spain draining to the Atlantic Ocean (Upper Tagus and Duero drainage basins). Both basins evolved under similar Mediterranean climatic conditions throughout the Pleistocene and present comparable number of fluvial terraces (16-17) after excluding the higher terrace levels of the Tagus (T1-T5) entrenched in the Raña surface. These higher ;rañizo terraces; was formed in response to fan-head trenching in this high alluvial piedmont (+220 m) and therefore not properly controlled by Quaternary fluvial downcutting. The study accomplishes the implementation of multiple regression analyses for terrace height-age relationships. To transform relative terrace heights above the present river thalwegs (i.e. +100 m) in numerical ages a ;height-age transference function; has been developed on the basis of preliminary statistical geochronological approaches proposed for Central Spain. The resultant height-age transference function gather 73 published geochronological data for terrace sequences, featuring a 3rd Order Polynomial Function (R2 0.90). This function describes the overall trend of valley downcutting for the last c. 2.3 Ma in Central Spain and is used to assign numerical ages to terrace levels at different relative elevation.
Clinical and Molecular Epidemiology of Human Parainfluenza Viruses 1-4 in Children from Viet Nam.
Linster, Martin; Do, Lien Anh Ha; Minh, Ngo Ngoc Quang; Chen, Yihui; Zhe, Zhu; Tuan, Tran Anh; Tuan, Ha Manh; Su, Yvonne C F; van Doorn, H Rogier; Moorthy, Mahesh; Smith, Gavin J D
2018-05-01
HPIVs are serologically and genetically grouped into four species that account for up to 10% of all hospitalizations due to acute respiratory infection in children under the age of five. Genetic and epidemiological data for the four HPIVs derived from two pediatric cohorts in Viet Nam are presented. Respiratory samples were screened for HPIV1-4 by real-time PCR. Demographic and clinical data of patients infected with different HPIV were compared. We used a hemi-nested PCR approach to generate viral genome sequences from HPIV-positive samples and conducted a comprehensive phylogenetic analysis. In total, 170 samples tested positive for HPIV. HPIV3 was most commonly detected in our cohort and 80 co-detections of HPIV with other respiratory viruses were found. Phylogenetic analyses suggest local endemic circulation as well as punctuated introductions of new HPIV lineages. Viral gene flow analysis revealed that Viet Nam is a net importer of viral genetic diversity. Epidemiological analyses imply similar disease severity for all HPIV species. HPIV sequences from Viet Nam formed local clusters and were interspersed with sequences from diverse geographic regions. Combined, this new knowledge will help to investigate global HPIV circulation patterns in more detail and ultimately define more suitable vaccine strains.
Low-pass sequencing for microbial comparative genomics
Goo, Young Ah; Roach, Jared; Glusman, Gustavo; Baliga, Nitin S; Deutsch, Kerry; Pan, Min; Kennedy, Sean; DasSarma, Shiladitya; Victor Ng, Wailap; Hood, Leroy
2004-01-01
Background We studied four extremely halophilic archaea by low-pass shotgun sequencing: (1) the metabolically versatile Haloarcula marismortui; (2) the non-pigmented Natrialba asiatica; (3) the psychrophile Halorubrum lacusprofundi and (4) the Dead Sea isolate Halobaculum gomorrense. Approximately one thousand single pass genomic sequences per genome were obtained. The data were analyzed by comparative genomic analyses using the completed Halobacterium sp. NRC-1 genome as a reference. Low-pass shotgun sequencing is a simple, inexpensive, and rapid approach that can readily be performed on any cultured microbe. Results As expected, the four archaeal halophiles analyzed exhibit both bacterial and eukaryotic characteristics as well as uniquely archaeal traits. All five halophiles exhibit greater than sixty percent GC content and low isoelectric points (pI) for their predicted proteins. Multiple insertion sequence (IS) elements, often involved in genome rearrangements, were identified in H. lacusprofundi and H. marismortui. The core biological functions that govern cellular and genetic mechanisms of H. sp. NRC-1 appear to be conserved in these four other halophiles. Multiple TATA box binding protein (TBP) and transcription factor IIB (TFB) homologs were identified from most of the four shotgunned halophiles. The reconstructed molecular tree of all five halophiles shows a large divergence between these species, but with the closest relationship being between H. sp. NRC-1 and H. lacusprofundi. Conclusion Despite the diverse habitats of these species, all five halophiles share (1) high GC content and (2) low protein isoelectric points, which are characteristics associated with environmental exposure to UV radiation and hypersalinity, respectively. Identification of multiple IS elements in the genome of H. lacusprofundi and H. marismortui suggest that genome structure and dynamic genome reorganization might be similar to that previously observed in the IS-element rich genome of H. sp. NRC-1. Identification of multiple TBP and TFB homologs in these four halophiles are consistent with the hypothesis that different types of complex transcriptional regulation may occur through multiple TBP-TFB combinations in response to rapidly changing environmental conditions. Low-pass shotgun sequence analyses of genomes permit extensive and diverse analyses, and should be generally useful for comparative microbial genomics. PMID:14718067
Guinea Pig ID-Like Families of SINEs
Kass, David H.; Schaetz, Brian A.; Beitler, Lindsey; Bonney, Kevin M.; Jamison, Nicole; Wiesner, Cathy
2009-01-01
Previous studies have indicated a paucity of SINEs within the genomes of the guinea pig and nutria, representatives of the Hystricognathi suborder of rodents. More recent work has shown that the guinea pig genome contains a large number of B1 elements, expanding to various levels among different rodents. In this work we utilized A–B PCR and screened GenBank with sequences from isolated clones to identify potentially uncharacterized SINEs within the guinea pig genome, and identified numerous sequences with a high degree of similarity (>92%) specific to the guinea pig. The presence of A-tails and flanking direct repeats associated with these sequences supported the identification of a full-length SINE, with a consensus sequence notably distinct from other rodent SINEs. Although most similar to the ID SINE, it clearly was not derived from the known ID master gene (BC1), hence we refer to this element as guinea pig ID-like (GPIDL). Using the consensus to screen the guinea pig genomic database (Assembly CavPor2) with Ensembl BlastView, we estimated at least 100,000 copies, which contrasts markedly to just over 100 copies of ID elements. Additionally we provided evidence of recent integrations of GPIDL as two of seven analyzed conserved GPIDL-containing loci demonstrated presence/absence variants in Cavia porcellus and C. aperea. Using intra-IDL PCR and sequence analyses we also provide evidence that GPIDL is derived from a hystricognath-specific SINE family. These results demonstrate that this SINE family continues to contribute to the dynamics of genomes of hystricognath rodents. PMID:19232383
Guinea pig ID-like families of SINEs.
Kass, David H; Schaetz, Brian A; Beitler, Lindsey; Bonney, Kevin M; Jamison, Nicole; Wiesner, Cathy
2009-05-01
Previous studies have indicated a paucity of SINEs within the genomes of the guinea pig and nutria, representatives of the Hystricognathi suborder of rodents. More recent work has shown that the guinea pig genome contains a large number of B1 elements, expanding to various levels among different rodents. In this work we utilized A-B PCR and screened GenBank with sequences from isolated clones to identify potentially uncharacterized SINEs within the guinea pig genome, and identified numerous sequences with a high degree of similarity (>92%) specific to the guinea pig. The presence of A-tails and flanking direct repeats associated with these sequences supported the identification of a full-length SINE, with a consensus sequence notably distinct from other rodent SINEs. Although most similar to the ID SINE, it clearly was not derived from the known ID master gene (BC1), hence we refer to this element as guinea pig ID-like (GPIDL). Using the consensus to screen the guinea pig genomic database (Assembly CavPor2) with Ensembl BlastView, we estimated at least 100,000 copies, which contrasts markedly to just over 100 copies of ID elements. Additionally we provided evidence of recent integrations of GPIDL as two of seven analyzed conserved GPIDL-containing loci demonstrated presence/absence variants in Cavia porcellus and C. aperea. Using intra-IDL PCR and sequence analyses we also provide evidence that GPIDL is derived from a hystricognath-specific SINE family. These results demonstrate that this SINE family continues to contribute to the dynamics of genomes of hystricognath rodents.
Ikram, Najmul; Qadir, Muhammad Abdul; Afzal, Muhammad Tanvir
2018-01-01
Sequence similarity is a commonly used measure to compare proteins. With the increasing use of ontologies, semantic (function) similarity is getting importance. The correlation between these measures has been applied in the evaluation of new semantic similarity methods, and in protein function prediction. In this research, we investigate the relationship between the two similarity methods. The results suggest absence of a strong correlation between sequence and semantic similarities. There is a large number of proteins with low sequence similarity and high semantic similarity. We observe that Pearson's correlation coefficient is not sufficient to explain the nature of this relationship. Interestingly, the term semantic similarity values above 0 and below 1 do not seem to play a role in improving the correlation. That is, the correlation coefficient depends only on the number of common GO terms in proteins under comparison, and the semantic similarity measurement method does not influence it. Semantic similarity and sequence similarity have a distinct behavior. These findings are of significant effect for future works on protein comparison, and will help understand the semantic similarity between proteins in a better way.
Nair, Pradeep S; John, Eugene B
2007-01-01
Aligning specific sequences against a very large number of other sequences is a central aspect of bioinformatics. With the widespread availability of personal computers in biology laboratories, sequence alignment is now often performed locally. This makes it necessary to analyse the performance of personal computers for sequence aligning bioinformatics benchmarks. In this paper, we analyse the performance of a personal computer for the popular BLAST and FASTA sequence alignment suites. Results indicate that these benchmarks have a large number of recurring operations and use memory operations extensively. It seems that the performance can be improved with a bigger L1-cache.
β-Propeller Blades as Ancestral Peptides in Protein Evolution
Kopec, Klaus O.; Lupas, Andrei N.
2013-01-01
Proteins of the β-propeller fold are ubiquitous in nature and widely used as structural scaffolds for ligand binding and enzymatic activity. This fold comprises between four and twelve four-stranded β-meanders, the so called blades that are arranged circularly around a central funnel-shaped pore. Despite the large size range of β-propellers, their blades frequently show sequence similarity indicative of a common ancestry and it has been proposed that the majority of β-propellers arose divergently by amplification and diversification of an ancestral blade. Given the structural versatility of β-propellers and the hypothesis that the first folded proteins evolved from a simpler set of peptides, we investigated whether this blade may have given rise to other folds as well. Using sequence comparisons, we identified proteins of four other folds as potential homologs of β-propellers: the luminal domain of inositol-requiring enzyme 1 (IRE1-LD), type II β-prisms, β-pinwheels, and WW domains. Because, with increasing evolutionary distance and decreasing sequence length, the statistical significance of sequence comparisons becomes progressively harder to distinguish from the background of convergent similarities, we complemented our analyses with a new method that evaluates possible homology based on the correlation between sequence and structure similarity. Our results indicate a homologous relationship of IRE1-LD and type II β-prisms with β-propellers, and an analogous one for β-pinwheels and WW domains. Whereas IRE1-LD most likely originated by fold-changing mutations from a fully formed PQQ motif β-propeller, type II β-prisms originated by amplification and differentiation of a single blade, possibly also of the PQQ type. We conclude that both β-propellers and type II β-prisms arose by independent amplification of a blade-sized fragment, which represents a remnant of an ancient peptide world. PMID:24143202
2013-01-01
Background MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in regulating post transcriptional gene expression. Gall midges encompass a large group of insects that are of economic importance and also possess fascinating biological traits. The gall midge Mayetiola destructor, commonly known as the Hessian fly, is a destructive pest of wheat and model organism for studying gall midge biology and insect – host plant interactions. Results In this study, we systematically analyzed miRNAs from the Hessian fly. Deep-sequencing a Hessian fly larval transcriptome led to the identification of 89 miRNA species that are either identical or very similar to known miRNAs from other insects, and 184 novel miRNAs that have not been reported from other species. A genome-wide search through a draft Hessian fly genome sequence identified a total of 611 putative miRNA-encoding genes based on sequence similarity and the existence of a stem-loop structure for miRNA precursors. Analysis of the 611 putative genes revealed a striking feature: the dramatic expansion of several miRNA gene families. The largest family contained 91 genes that encoded 20 different miRNAs. Microarray analyses revealed the expression of miRNA genes was strictly regulated during Hessian fly larval development and abundance of many miRNA genes were affected by host genotypes. Conclusion The identification of a large number of miRNAs for the first time from a gall midge provides a foundation for further studies of miRNA functions in gall midge biology and behavior. The dramatic expansion of identical or similar miRNAs provides a unique system to study functional relations among miRNA iso-genes as well as changes in sequence specificity due to small changes in miRNAs and in their mRNA targets. These results may also facilitate the identification of miRNA genes for potential pest control through transgenic approaches. PMID:23496979
Crampton, Mollee; Sripathi, Venkateswara R; Hossain, Khwaja; Kalavacharla, Venu
2016-01-01
Common bean (Phaseolus vulgaris L.) is economically important for its high protein, fiber, and micronutrient contents, with a relatively small genome size of ∼587 Mb. Common bean is genetically diverse with two major gene pools, Meso-American and Andean. The phenotypic variability within common bean is partly attributed to the genetic diversity and epigenetic changes that are largely influenced by environmental factors. It is well established that an important epigenetic regulator of gene expression is DNA methylation. Here, we present results generated from two high-throughput sequencing technologies, methylated DNA immunoprecipitation-sequencing (MeDIP-seq) and whole genome bisulfite-sequencing (BS-Seq). Our analyses revealed that this Meso-American common bean displays similar methylation patterns as other previously published plant methylomes, with CG ∼50%, CHG ∼30%, and CHH ∼2.7% methylation, however, these differ from the common bean reference methylome of Andean origin. We identified higher CG methylation levels in both promoter and genic regions than CHG and CHH contexts. Moreover, we found relatively higher CG methylation levels in genes than in promoters. Conversely, the CHG and CHH methylation levels were highest in promoters than in genes. This is the first genome-wide DNA methylation profiling study in a Meso-American common bean cultivar ("Sierra") using NGS approaches. Our long-term goal is to generate genome-wide epigenomic maps in common bean focusing on chromatin accessibility, histone modifications, and DNA methylation.
Li, Tian-Cheng; Yoshizaki, Sayaka; Kataoka, Michiyo; Ami, Yasushi; Suzaki, Yuriko; Doan, Yen Hai; Haga, Kei; Ishii, Koji; Takeda, Naokazu; Wakita, Takaji
2017-07-01
A novel cluster of five ferret hepatitis E virus (HEV) strains was detected from nine laboratory ferrets (Mustela putorius furo) imported from a ferret farm in the U.S. Our detection of ferret HEV RNA and anti-HEV antibodies, and alanine aminotransferase (ALT) value assessment indicated that all of the 9 ferrets were infected with ferret HEV, and that the infection exhibited three patterns: sub-clinical infection (n=2), acute hepatitis (n=6) and persistent infection (n=1). Next-generation sequence analyses of the entire genome sequences of the five strains revealed that their nucleotide sequence identities ranged from 99.5% to 99.9%, indicating that genetically similar ferret HEVs had been circulating at this the U.S. ferret farm. In contrast, the strains shared 82% and 89% nucleotide sequence identities with other ferret HEV that isolated from the Netherlands (JN998607) and the U.S. (AB890374), suggesting that these strains form a novel cluster of ferret HEV with diverse genomes depending on the region where their host. Particles with a diameter of ~35nm at a density of 1.201g/cm 3 were observed in the fecal specimens by electron microscopy. There was no evidence that the particles were associated with the cell membrane. The ferret HEV RNA was not constantly detected in urine, suggesting that the excretion of ferret HEV into urine is not a common feature of HEV infection. Copyright © 2017 Elsevier B.V. All rights reserved.
Hobo, T; Asada, M; Kowyama, Y; Hattori, T
1999-09-01
ACGT-containing ABA response elements (ABREs) have been functionally identified in the promoters of various genes. In addition, single copies of ABRE have been found to require a cis-acting, coupling element to achieve ABA induction. A coupling element 3 (CE3) sequence, originally identified as such in the barley HVA1 promoter, is found approximately 30 bp downstream of motif A (ACGT-containing ABRE) in the promoter of the Osem gene. The relationship between these two elements was further defined by linker-scan analyses of a 55 bp fragment of the Osem promoter, which is sufficient for ABA-responsiveness and VP1 activation. The analyses revealed that both motif A and CE3 sequence were required not only for ABA-responsiveness but also for VP1 activation. Since the sequences of motif A and CE3 were found to be similar, motif-exchange experiments were carried out. The experiments demonstrated that motif A and CE3 were interchangeable by each other with respect to both ABA and VP1 regulation. In addition, both sequences were shown to be recognized by a VP1-interacting, ABA-responsive bZIP factor TRAB1. These results indicate that ACGT-containing ABREs and CE3 are functionally equivalent cis-acting elements. Furthermore, TRAB1 was shown to bind two other non-ACGT ABREs. Based on these results, all these ABREs including CE3 are proposed to be categorized into a single class of cis-acting elements.
Crampton, Mollee; Sripathi, Venkateswara R.; Hossain, Khwaja; Kalavacharla, Venu
2016-01-01
Common bean (Phaseolus vulgaris L.) is economically important for its high protein, fiber, and micronutrient contents, with a relatively small genome size of ∼587 Mb. Common bean is genetically diverse with two major gene pools, Meso-American and Andean. The phenotypic variability within common bean is partly attributed to the genetic diversity and epigenetic changes that are largely influenced by environmental factors. It is well established that an important epigenetic regulator of gene expression is DNA methylation. Here, we present results generated from two high-throughput sequencing technologies, methylated DNA immunoprecipitation-sequencing (MeDIP-seq) and whole genome bisulfite-sequencing (BS-Seq). Our analyses revealed that this Meso-American common bean displays similar methylation patterns as other previously published plant methylomes, with CG ∼50%, CHG ∼30%, and CHH ∼2.7% methylation, however, these differ from the common bean reference methylome of Andean origin. We identified higher CG methylation levels in both promoter and genic regions than CHG and CHH contexts. Moreover, we found relatively higher CG methylation levels in genes than in promoters. Conversely, the CHG and CHH methylation levels were highest in promoters than in genes. This is the first genome-wide DNA methylation profiling study in a Meso-American common bean cultivar (“Sierra”) using NGS approaches. Our long-term goal is to generate genome-wide epigenomic maps in common bean focusing on chromatin accessibility, histone modifications, and DNA methylation. PMID:27199997
Method and apparatus for biological sequence comparison
Marr, T.G.; Chang, W.I.
1997-12-23
A method and apparatus are disclosed for comparing biological sequences from a known source of sequences, with a subject (query) sequence. The apparatus takes as input a set of target similarity levels (such as evolutionary distances in units of PAM), and finds all fragments of known sequences that are similar to the subject sequence at each target similarity level, and are long enough to be statistically significant. The invention device filters out fragments from the known sequences that are too short, or have a lower average similarity to the subject sequence than is required by each target similarity level. The subject sequence is then compared only to the remaining known sequences to find the best matches. The filtering member divides the subject sequence into overlapping blocks, each block being sufficiently large to contain a minimum-length alignment from a known sequence. For each block, the filter member compares the block with every possible short fragment in the known sequences and determines a best match for each comparison. The determined set of short fragment best matches for the block provide an upper threshold on alignment values. Regions of a certain length from the known sequences that have a mean alignment value upper threshold greater than a target unit score are concatenated to form a union. The current block is compared to the union and provides an indication of best local alignment with the subject sequence. 5 figs.
Method and apparatus for biological sequence comparison
Marr, Thomas G.; Chang, William I-Wei
1997-01-01
A method and apparatus for comparing biological sequences from a known source of sequences, with a subject (query) sequence. The apparatus takes as input a set of target similarity levels (such as evolutionary distances in units of PAM), and finds all fragments of known sequences that are similar to the subject sequence at each target similarity level, and are long enough to be statistically significant. The invention device filters out fragments from the known sequences that are too short, or have a lower average similarity to the subject sequence than is required by each target similarity level. The subject sequence is then compared only to the remaining known sequences to find the best matches. The filtering member divides the subject sequence into overlapping blocks, each block being sufficiently large to contain a minimum-length alignment from a known sequence. For each block, the filter member compares the block with every possible short fragment in the known sequences and determines a best match for each comparison. The determined set of short fragment best matches for the block provide an upper threshold on alignment values. Regions of a certain length from the known sequences that have a mean alignment value upper threshold greater than a target unit score are concatenated to form a union. The current block is compared to the union and provides an indication of best local alignment with the subject sequence.
Kuraku, Shigehiro; Zmasek, Christian M; Nishimura, Osamu; Katoh, Kazutaka
2013-07-01
We report a new web server, aLeaves (http://aleaves.cdb.riken.jp/), for homologue collection from diverse animal genomes. In molecular comparative studies involving multiple species, orthology identification is the basis on which most subsequent biological analyses rely. It can be achieved most accurately by explicit phylogenetic inference. More and more species are subjected to large-scale sequencing, but the resultant resources are scattered in independent project-based, and multi-species, but separate, web sites. This complicates data access and is becoming a serious barrier to the comprehensiveness of molecular phylogenetic analysis. aLeaves, launched to overcome this difficulty, collects sequences similar to an input query sequence from various data sources. The collected sequences can be passed on to the MAFFT sequence alignment server (http://mafft.cbrc.jp/alignment/server/), which has been significantly improved in interactivity. This update enables to switch between (i) sequence selection using the Archaeopteryx tree viewer, (ii) multiple sequence alignment and (iii) tree inference. This can be performed as a loop until one reaches a sensible data set, which minimizes redundancy for better visibility and handling in phylogenetic inference while covering relevant taxa. The work flow achieved by the seamless link between aLeaves and MAFFT provides a convenient online platform to address various questions in zoology and evolutionary biology.
Kuraku, Shigehiro; Zmasek, Christian M.; Nishimura, Osamu; Katoh, Kazutaka
2013-01-01
We report a new web server, aLeaves (http://aleaves.cdb.riken.jp/), for homologue collection from diverse animal genomes. In molecular comparative studies involving multiple species, orthology identification is the basis on which most subsequent biological analyses rely. It can be achieved most accurately by explicit phylogenetic inference. More and more species are subjected to large-scale sequencing, but the resultant resources are scattered in independent project-based, and multi-species, but separate, web sites. This complicates data access and is becoming a serious barrier to the comprehensiveness of molecular phylogenetic analysis. aLeaves, launched to overcome this difficulty, collects sequences similar to an input query sequence from various data sources. The collected sequences can be passed on to the MAFFT sequence alignment server (http://mafft.cbrc.jp/alignment/server/), which has been significantly improved in interactivity. This update enables to switch between (i) sequence selection using the Archaeopteryx tree viewer, (ii) multiple sequence alignment and (iii) tree inference. This can be performed as a loop until one reaches a sensible data set, which minimizes redundancy for better visibility and handling in phylogenetic inference while covering relevant taxa. The work flow achieved by the seamless link between aLeaves and MAFFT provides a convenient online platform to address various questions in zoology and evolutionary biology. PMID:23677614
Kinetics of hairpin ribozyme cleavage in yeast.
Donahue, C P; Fedor, M J
1997-01-01
Hairpin ribozymes catalyze a self-cleavage reaction that provides a simple model for quantitative analyses of intracellular mechanisms of RNA catalysis. Decay rates of chimeric mRNAs containing self-cleaving ribozymes give a direct measure of intracellular cleavage kinetics in yeast. Intracellular ribozyme-mediated cleavage occurs at similar rates and shows similar inhibition by ribozyme mutations as ribozyme-mediated reactions in vitro, but only when ribozymes are located in a favorable mRNA sequence context. The impact of cleavage on mRNA abundance is shown to depend directly on intrinsic mRNA stability. Surprisingly, cleavage products are no more labile than uncleaved mRNAs despite the loss of terminal cap structures or poly (A). PMID:9292496
Miranda, Priscilla J.; McLain, Nathan K.; Hatzenpichler, Roland; Orphan, Victoria J.; Dillon, Jesse G.
2016-01-01
The shallow-sea hydrothermal vents at White Point (WP) in Palos Verdes on the southern California coast support microbial mats and provide easily accessed settings in which to study chemolithoautotrophic sulfur cycling. Previous studies have cultured sulfur-oxidizing bacteria from the WP mats; however, almost nothing is known about the in situ diversity and activity of the microorganisms in these habitats. We studied the diversity, micron-scale spatial associations and metabolic activity of the mat community via sequence analysis of 16S rRNA and aprA genes, fluorescence in situ hybridization (FISH) microscopy and sulfate reduction rate (SRR) measurements. Sequence analysis revealed a diverse group of bacteria, dominated by sulfur cycling gamma-, epsilon-, and deltaproteobacterial lineages such as Marithrix, Sulfurovum, and Desulfuromusa. FISH microscopy suggests a close physical association between sulfur-oxidizing and sulfur-reducing genotypes, while radiotracer studies showed low, but detectable, SRR. Comparative 16S rRNA gene sequence analyses indicate the WP sulfur vent microbial mat community is similar, but distinct from other hydrothermal vent communities representing a range of biotopes and lithologic settings. These findings suggest a complete biological sulfur cycle is operating in the WP mat ecosystem mediated by diverse bacterial lineages, with some similarity with deep-sea hydrothermal vent communities. PMID:27512390
Romanenko, Lyudmila A; Tanaka, Naoto; Svetashev, Vassilii I; Kalinovskaya, Natalia I
2013-04-01
A novel bacterial strain Sl 79(T) was isolated from a deep surface sediment sample obtained from the Sea of Japan and investigated by phenotypic and molecular methods. The bacterium Sl 79(T) was Gram-positive, facultatively anaerobic, spore-forming, motile and able to form two different types of colonies. It contained the major menaquinone MK-7 and anteiso-C(15:0) followed by iso-C(15:0) as predominant fatty acids. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Sl 79(T) belonged to the genus Paenibacillus where it clustered to Paenibacillus apiarius NRRL NRS-1438(T) with a sequence similarity of 97.7 % and sharing sequence similarities below than 96.7 % to other validly named Paenibacillus species. Strain Sl 79(T) was found to possess a remarkable inhibitory activity against indicatory microorganisms. On the basis of combined spectral analyses, strain Paenibacillus sp. Sl 79(T) was established to produce isocoumarin and novel peptide antibiotics. On the basis of DNA-DNA relatedness, phenotypic and phylogenetic data obtained, it was concluded that strain Sl 79(T) represents a novel species, Paenibacillus profundus sp. nov. with the type strain Sl 79(T) = KMM 9420(T) = NRIC 0885(T).
Monogonont Rotifer, Brachionus calyciflorus, Possesses Exceptionally Large, Fragmented Mitogenome
Nie, Zhi-Juan; Gu, Ruo-Bo; Du, Fu-Kuan; Shao, Nai-Lin; Xu, Pao; Xu, Gang-Chun
2016-01-01
In contrast to the highly conserved mitogenomic structure and organisation in most animals (including rotifers), the two previously sequenced monogonont rotifer mitogenomes were fragmented into two chromosomes similar in size, each of which possessed one major non-coding region (mNCR) of about 4–5 Kbp. To further explore this phenomenon, we have sequenced and analysed the mitogenome of one of the most studied monogonont rotifers, Brachionus calyciflorus. It is also composed of two circular chromosomes, but the chromosome-I is extremely large (27 535 bp; 3 mNCRs), whereas the chromosome-II is relatively small (9 833 bp; 1 mNCR). With the total size of 37 368 bp, it is one of the largest metazoan mitogenomes ever reported. In comparison to other monogononts, gene distribution between the two chromosomes and gene order are different and the number of mNCRs is doubled. Atp8 was not found (common in rotifers), and Cytb was present in two copies (the first report in rotifers). A high number (99) of SNPs indicates fast evolution of the Cytb-1 copy. The four mNCRs (5.3–5.5 Kb) were relatively similar. Publication of this sequence shall contribute to the understanding of the evolutionary history of the unique mitogenomic organisation in this group of rotifers. PMID:27959933
Olapade, Ola A
2012-01-01
The diel change in abundance and community diversity of the bacterioplankton assemblages within the Pacific Ocean at a fixed location in Monterey Bay, California (USA) were examined with several culture-independent (i.e., nucleic acid staining, fluorescence in situ hybridization {FISH}, and 16S ribosomal RNA gene libraries) approaches over a tidal cycle. FISH analyses revealed the quantitative predominance of bacterial members belonging to the Cytophaga-Flavobacterium cluster as well as two Proteobacteria (α- and γ-) subclasses within the bacterioplankton assemblages, especially during high tide (HT) and outgoing tide (OT) than the other tidal events. While the clone libraries showed that majority of the sequences were similar to the 16S rRNA gene sequences of unknown bacteria (32% to 73%), however, the operational taxonomic units from members of the α-Proteobacteria, Bacteroidetes, Firmicutes, and Cyanobacteria were also well represented during the four tidal events examined. Comparatively, sequence diversity was highest in OT, lowest in low tide, and very similar between HT and incoming tide. The results indicate that the dynamics of bacterial occurrence and diversity appeared to be more pronounced during HT and OT, further indicative of the ecological importance of several environmental variables including temperature, light intensity, and nutrient availability that are also concurrently fluctuating during these tidal events in marine systems.
Yoon, Jung-Hoon; Oh, Tae-Kwang; Park, Yong-Ha
2004-11-01
A Gram-variable, endospore-forming moderately halophilic rod, strain SF-121, was isolated from a marine solar saltern of the Yellow Sea in Korea. The result of 16S rRNA gene sequence analysis showed that strain SF-121 has highest sequence similarity (99.7 %) with the type strain of Bacillus halodenitrificans. Phylogenetic analyses based on 16S rRNA gene sequences revealed that B. halodenitrificans DSM 10037(T) and strain SF-121 are more closely related to the genus Virgibacillus than to the genus Bacillus. Strain SF-121 and B. halodenitrificans DSM 10037(T) exhibited 16S rRNA gene similarity levels of 95.3-97.5 % with the type strains of Virgibacillus species and 94.0 % with the type strain of Bacillus subtilis. DNA-DNA relatedness and phenotypic data indicated that B. halodenitrificans DSM 10037(T) and strain SF-121 are members of the same species. B. halodenitrificans DSM 10037(T) and strain SF-121 exhibited DNA-DNA relatedness values of 9-11 % with the type strains of Virgibacillus carmonensis and Virgibacillus marismortui. On the basis of the phenotypic, chemotaxonomic, phylogenetic and genetic data, B. halodenitrificans should be reclassified in the genus Virgibacillus as Virgibacillus halodenitrificans comb. nov.
Ouvrard, Pierre; Hicks, Damien M; Mouland, Molly; Nicholls, James A; Baldock, Katherine C R; Goddard, Mark A; Kunin, William E; Potts, Simon G; Thieme, Thomas; Veromann, Eve; Stone, Graham N
2016-12-01
Pollen beetles (Nitidulidae: Meligethinae) are among the most abundant flower-visiting insects in Europe. While some species damage millions of hectares of crops annually, the biology of many species is little known. We assessed the utility of a 797 base pair fragment of the cytochrome oxidase 1 gene to resolve molecular operational taxonomic units (MOTUs) in 750 adult pollen beetles sampled from flowers of 63 plant species sampled across the UK and continental Europe. We used the same locus to analyse region-scale patterns in population structure and demography in an economically important pest, Brassicogethes aeneus. We identified 44 Meligethinae at ∼2% divergence, 35 of which contained published sequences. A few specimens could not be identified because the MOTUs containing them included published sequences for multiple Linnaean species, suggesting either retention of ancestral haplotype polymorphism or identification errors in published sequences. Over 90% of UK specimens were identifiable as B. aeneus. Plant associations of adult B. aeneus were found to be far wider taxonomically than for their larvae. UK B. aeneus populations showed contrasting affiliations between the north (most similar to Scandinavia and the Baltic) and south (most similar to western continental Europe), with strong signatures of population growth in the south.
Hongmei, Jing; Aitchison, Jonathan C; Lacap, Donnabella C; Peerapornpisal, Yuwadee; Sompong, Udomluk; Pointing, Stephen B
2005-08-01
Most community molecular studies of thermophilic cyanobacterial mats to date have focused on Synechococcus occurring at temperatures of approximately 50-65 degrees C. These reveal that molecular diversity exceeds that indicated by morphology, and that phylogeographic lineages exist. The moderately thermophilic and generally filamentous cyanobacterial mat communities occurring at lower temperatures have not previously been investigated at the community molecular level. Here we report community diversity in mats of 42-53 degrees C recovered from previously unstudied geothermal locations. Separation of 16S rRNA gene-defined genotypes from community DNA was achieved by DGGE. Genotypic diversity was greater than morphotype diversity in all mats sampled, although genotypes generally corresponded to observed morphotypes. Thirty-six sequences were recovered from DGGE bands. Phylogenetic analyses revealed these to form novel thermophilic lineages distinct from their mesophilic counterparts, within Calothrix, Cyanothece, Fischerella, Phormidium, Pleurocapsa, Oscillatoria and Synechococcus. Where filamentous cyanobacterial sequences belonging to the same genus were recovered from the same site, these were generally closely affiliated. Location-specific sequences were observed for some genotypes recovered from geochemically similar yet spatially separated sites, thus providing evidence for phylogeographic lineages that evolve in isolation. Other genotypes were more closely affiliated to geographically remote counterparts from similar habitats suggesting that adaptation to certain niches is also important.
Zheng, Hongying; Chen, Jiong; Chen, Jianping; Adams, Michael J; Hou, Mingsheng
2002-06-01
Potyvirus isolates from asparagus bean ( Vigna sesquipedalis) plants in Zhejiang province, China, caused either rugose and vein banding mosaic symptoms (isolate R) or severe yellowing (isolate Y) in this host, but were otherwise similar in host range. Both isolates were completely sequenced and shown to be isolates of Bean common mosaic virus (BCMV). The complete sequences were 9992 (R) or 10062 (Y) nucleotides long and shared 91.7% identical nucleotides (93.2% identical amino acids) in their genomes and were more distantly related to the BCMV-Peanut stripe virus sequence (PStV). The isolates were much less similar to one another in the 5'-UTR and the N-terminal region of the P1 protein. In the P1, isolate Y was closer to PStV (76.1% identical amino acids) than to isolate R (64.8%). Phylogenetic analyses of the coat protein region showed that the new isolates grouped with other isolates from Vigna spp., forming the blackeye cowpea mosaic strain subgroup of BCMV with 94-98% nucleotides (96-99% amino acids) identical to one another and about 90% identity to other BCMV isolates. Other significant subgroupings amongst published BCMV isolates were detected.
Isolation of genes from female sterile flowers in Medicago sativa.
Capomaccio, Stefano; Barone, Pierluigi; Reale, Lara; Veronesi, Fabio; Rosellini, Daniele
2009-06-01
A better knowledge of female sporogenesis and gametogenesis could have several practical applications, from commercial hybrid seed production to gene containment in GM crops. With the purpose of isolating genes involved in the megasporogenesis process, the cDNA-AFLP technique was employed to isolate transcript-derived fragments (TDF) differentially expressed between female-fertile and female-sterile full-sib alfalfa plants. This female sterility trait involves female-specific arrest of sporogenesis at early prophase associated with ectopic, massive callose deposition within the nucellus. Ninety-six TDFs were generated and BLAST analyses revealed similarities with genes involved in different Gene Ontology categories. Three TDFs were selected based on their putative functions: showing high similarity to a soybean flower-expressed beta 1,3-glucanase, to an Arabidopsis thaliana MAPKKK, and to an A. thaliana eukaryotic initiation translation factor eIF4G III, respectively. The full length mRNA sequences were obtained. RT-PCR and in situ hybridizations were performed to confirm differential expression during flower development. The genomic organization of the three genes was assessed through sequencing and Southern experiments. Sequence polymorphisms were found between sterile and fertile plants. Our approach based on differential display and bulked segregant analysis was successful in isolating genes that were differentially expressed between fertile and sterile alfalfa plants.
Lorsirigool, Athip; Saeng-Chuto, Kepalee; Madapong, Adthakorn; Temeeyasen, Gun; Tripipat, Thitima; Kaewprommal, Pavita; Tantituvanont, Angkana; Piriyapongsa, Jittima; Nilubol, Dachrit
2017-04-01
Porcine deltacoronavirus (PDCoV) was identified in intestinal samples collected from piglets with diarrhea in Thailand in 2015. Two Thai PDCoV isolates, P23_15_TT_1115 and P24_15_NT1_1215, were isolated and identified. The full-length genome sequences of the P23_15_TT_1115 and P24_15_NT1_1215 isolates were 25,404 and 25,407 nucleotides in length, respectively, which were relatively shorter than that of US and China PDCoV. The phylogenetic analysis based on the full-length genome demonstrated that Thai PDCoV isolates form a new cluster separated from US and China PDCoV but relatively were more closely related to China PDCoV than US isolates. The genetic analyses demonstrated that Thai PDCoVs have 97.0-97.8 and 92.2-94.0% similarities with China PDCoV at nucleotide and amino acid levels, respectively, but share 97.1-97.3 and 92.5-93.0 similarity with US PDCoV at the nucleotide and amino acid levels, respectively. Thai PDCoV possesses two discontinuous deletions of five amino acids in ORF1a/b region. One additional deletion of one amino acid was identified in P23_15_TT_1115. The variation analyses demonstrated that six regions (nt 1317-1436, 2997-3096, 19,737-19,836, 20,277-20,376, 21,177-21,276, and 22,371-22,416) in ORF1a/b and spike genes exhibit high sequence variation between Thai and other PDCoV. The analyses of amino acid changes suggested that they could potentially be from different lineages.
Castor, Delivette; Low, Andrea; Evering, Teresa; Karmon, Sharon; Davis, Brandi; Figueroa, Amir; LaMar, Melissa; Garmon, Donald; Mehandru, Saurabh; Markowitz, Martin
2012-01-01
Background Transmitted drug resistance (TDR) is critical to managing HIV-1 infected individuals as well as being a public health concern. Here we report on TDR prevalence and include analyses of phylogenetic clustering of HIV-1 in a predominantly MSM cohort diagnosed during acute/recent HIV-1 infection (AHI) in New York City. Methods Genotypic resistance testing was conducted on plasma samples of 600 individuals with AHI (1995–2010). Sequences were used for resistance and phylogenetic analyses. Demographic and clinical data were abstracted from medical records. TDR was defined according to IAS USA and Stanford HIV database guidelines. Phylogenetic and other analyses were conducted using PAUP*4.0 and SAS, respectively. Results The mean duration since HIV-1 infection was 66.5 days. TDR prevalence was 14.3%, and stably ranged between 10.8% and 21.6% (Ptrend=0.42). NRTI resistance declined from 15.5% to 2.7% over the study period (Ptrend=0.005). M41L (3.7%), T215Y (4.0%), and K103N/S (4.7%) were the most common mutations. K103N/S prevalence increased from 1.9% to 8.0% between 1995 and 2010 (Ptrend=0.04). Using a rigorous definition of clustering, 19.3% (112/581) of subtype B viral sequences co-segregated into transmission clusters, and clusters increased over time. There were fewer and smaller transmission clusters than had been reported in a similar cohort in Montreal, but similar to reports from elsewhere. Conclusions TDR is stable in this cohort and remains a significant concern to both individual patient management and the public health. PMID:22592583
Angly, Florent E; Willner, Dana; Prieto-Davó, Alejandra; Edwards, Robert A; Schmieder, Robert; Vega-Thurber, Rebecca; Antonopoulos, Dionysios A; Barott, Katie; Cottrell, Matthew T; Desnues, Christelle; Dinsdale, Elizabeth A; Furlan, Mike; Haynes, Matthew; Henn, Matthew R; Hu, Yongfei; Kirchman, David L; McDole, Tracey; McPherson, John D; Meyer, Folker; Miller, R Michael; Mundt, Egbert; Naviaux, Robert K; Rodriguez-Mueller, Beltran; Stevens, Rick; Wegley, Linda; Zhang, Lixin; Zhu, Baoli; Rohwer, Forest
2009-12-01
Metagenomic studies characterize both the composition and diversity of uncultured viral and microbial communities. BLAST-based comparisons have typically been used for such analyses; however, sampling biases, high percentages of unknown sequences, and the use of arbitrary thresholds to find significant similarities can decrease the accuracy and validity of estimates. Here, we present Genome relative Abundance and Average Size (GAAS), a complete software package that provides improved estimates of community composition and average genome length for metagenomes in both textual and graphical formats. GAAS implements a novel methodology to control for sampling bias via length normalization, to adjust for multiple BLAST similarities by similarity weighting, and to select significant similarities using relative alignment lengths. In benchmark tests, the GAAS method was robust to both high percentages of unknown sequences and to variations in metagenomic sequence read lengths. Re-analysis of the Sargasso Sea virome using GAAS indicated that standard methodologies for metagenomic analysis may dramatically underestimate the abundance and importance of organisms with small genomes in environmental systems. Using GAAS, we conducted a meta-analysis of microbial and viral average genome lengths in over 150 metagenomes from four biomes to determine whether genome lengths vary consistently between and within biomes, and between microbial and viral communities from the same environment. Significant differences between biomes and within aquatic sub-biomes (oceans, hypersaline systems, freshwater, and microbialites) suggested that average genome length is a fundamental property of environments driven by factors at the sub-biome level. The behavior of paired viral and microbial metagenomes from the same environment indicated that microbial and viral average genome sizes are independent of each other, but indicative of community responses to stressors and environmental conditions.
Taylor, Robin L; Bailey, Jeffrey Craig; Freshwater, David Wilson
2017-06-01
Identification of Cladophora species is challenging due to conservation of gross morphology, few discrete autapomorphies, and environmental influences on morphology. Twelve species of marine Cladophora were reported from North Carolina waters. Cladophora specimens were collected from inshore and offshore marine waters for DNA sequence and morphological analyses. The nuclear-encoded rRNA internal transcribed spacer regions (ITS) were sequenced for 105 specimens and used in molecular assisted identification. The ITS1 and ITS2 region was highly variable, and sequences were sorted into ITS Sets of Alignable Sequences (SASs). Sequencing of short hyper-variable ITS1 sections from Cladophora type specimens was used to positively identify species represented by SASs when the types were made available. Secondary structures for the ITS1 locus were also predicted for each specimen and compared to predicted structures from Cladophora sequences available in GenBank. Nine ITS SASs were identified and representative specimens chosen for phylogenetic analyses of 18S and 28S rRNA gene sequences to reveal relationships with other Cladophora species. Phylogenetic analyses indicated that marine Cladophorales were polyphyletic and separated into two clades, the Cladophora clade and the "Siphonocladales" clade. Morphological analyses were performed to assess the consistency of character states within species, and complement the DNA sequence analyses. These analyses revealed intra- and interspecific character state variation, and that combined molecular and morphological analyses were required for the identification of species. One new report, Cladophora dotyana, and one new species Cladophora subtilissima sp. nov., were revealed, and increased the biodiversity of North Carolina marine Cladophora to 14 species. © 2017 Phycological Society of America.
Sequence information signal processor
Peterson, John C.; Chow, Edward T.; Waterman, Michael S.; Hunkapillar, Timothy J.
1999-01-01
An electronic circuit is used to compare two sequences, such as genetic sequences, to determine which alignment of the sequences produces the greatest similarity. The circuit includes a linear array of series-connected processors, each of which stores a single element from one of the sequences and compares that element with each successive element in the other sequence. For each comparison, the processor generates a scoring parameter that indicates which segment ending at those two elements produces the greatest degree of similarity between the sequences. The processor uses the scoring parameter to generate a similar scoring parameter for a comparison between the stored element and the next successive element from the other sequence. The processor also delivers the scoring parameter to the next processor in the array for use in generating a similar scoring parameter for another pair of elements. The electronic circuit determines which processor and alignment of the sequences produce the scoring parameter with the highest value.
The neural correlates of implicit sequence learning in schizophrenia.
Marvel, Cherie L; Turner, Beth M; O'Leary, Daniel S; Johnson, Hans J; Pierson, Ronald K; Ponto, Laura L Boles; Andreasen, Nancy C
2007-11-01
Twenty-seven schizophrenia spectrum patients and 25 healthy controls performed a probabilistic version of the serial reaction time task (SRT) that included sequence trials embedded within random trials. Patients showed diminished, yet measurable, sequence learning. Postexperimental analyses revealed that a group of patients performed above chance when generating short spans of the sequence. This high-generation group showed SRT learning that was similar in magnitude to that of controls. Their learning was evident from the very 1st block; however, unlike controls, learning did not develop further with continued testing. A subset of 12 patients and 11 controls performed the SRT in conjunction with positron emission tomography. High-generation performance, which corresponded to SRT learning in patients, correlated to activity in the premotor cortex and parahippocampus. These areas have been associated with stimulus-driven visuospatial processing. Taken together, these results suggest that a subset of patients who showed moderate success on the SRT used an explicit stimulus-driven strategy to process the sequential stimuli. This adaptive strategy facilitated sequence learning but may have interfered with conventional implicit learning of the overall stimulus pattern. PsycINFO Database Record (c) 2007 APA, all rights reserved.
Discovering frequently recurring movement sequences in team-sport athlete spatiotemporal data.
Sweeting, Alice J; Aughey, Robert J; Cormack, Stuart J; Morgan, Stuart
2017-12-01
Athlete external load is typically analysed from predetermined movement thresholds. The combination of movement sequences and differences in these movements between playing positions is also currently unknown. This study developed a method to discover the frequently recurring movement sequences across playing position during matches. The external load of 12 international female netball athletes was collected by a local positioning system during four national-level matches. Velocity, acceleration and angular velocity were calculated from positional (X, Y) data, clustered via one-dimensional k-means and assigned a unique alphabetic label. Combinations of velocity, acceleration and angular velocity movement were compared using the Levenshtein distance and similarities computed by the longest common substring problem. The contribution of each movement sequence, according to playing position and relative to the wider data set, was then calculated via the Minkowski distance. A total of 10 frequently recurring combinations of movement were discovered, regardless of playing position. Only the wing attack, goal attack and goal defence playing positions are closely related. We developed a technique to discover the movement sequences, according to playing position, performed by elite netballers. This methodology can be extended to discover the frequently recurring movements within other team sports and across levels of competition.
Barony, Gustavo M; Tavares, Guilherme C; Pereira, Felipe L; Carvalho, Alex F; Dorella, Fernanda A; Leal, Carlos A G; Figueiredo, Henrique C P
2017-10-19
Streptococcus agalactiae is a major pathogen and a hindrance on tilapia farming worldwide. The aims of this work were to analyze the genomic evolution of Brazilian strains of S. agalactiae and to establish spatial and temporal relations between strains isolated from different outbreaks of streptococcosis. A total of 39 strains were obtained from outbreaks and their whole genomes were sequenced and annotated for comparative analysis of multilocus sequence typing, genomic similarity and whole genome multilocus sequence typing (wgMLST). The Brazilian strains presented two sequence types, including a newly described ST, and a non-typeable lineage. The use of wgMLST could differentiate each strain in a single clone and was used to establish temporal and geographical correlations among strains. Bayesian phylogenomic analysis suggests that the studied Brazilian population was co-introduced in the country with their host, approximately 60 years ago. Brazilian strains of S. agalactiae were shown to be heterogeneous in their genome sequences and were distributed in different regions of the country according to their genotype, which allowed the use of wgMLST analysis to track each outbreak event individually.
Conrads, Georg; Citron, Diane M; Tyrrell, Kerin L; Horz, Hans-Peter; Goldstein, Ellie J C
2005-03-01
The 16S-23S rRNA gene internal transcribed spacer (ITS) regions of 11 reference strains of Porphyromonas species, together with Bacteroides distasonis and Tannerella forsythensis, were analysed to examine interspecies relationships. Compared with the phylogenetic tree generated using 16S rRNA gene sequences, the resolution of the ITS sequence-based tree was higher, but species positioning and clustering were similar with both approaches. The recent separation of Porphyromonas gulae and Porphyromonas gingivalis into distinct species was confirmed by the ITS data. In addition, analysis of the ITS sequences of 24 clinical isolates of Porphyromonas asaccharolytica plus the type strain ATCC 25260(T) divided the sequences into two clusters, of which one was alpha-fucosidase-positive (like the type strain) while the other was alpha-fucosidase-negative. The latter resembled the previously studied unusual extra-oral isolates of 'Porphyromonas endodontalis-like organisms' (PELOs) which could therefore be called 'Porphyromonas asaccharolytica-like organisms' (PALOs), based on the genetic identification. Moreover, the proposal of alpha-fucosidase-negative P. asaccharolytica strains as a new species should also be considered.
Verwaaijen, Bart; Wibberg, Daniel; Nelkner, Johanna; Gordin, Miriam; Rupp, Oliver; Winkler, Anika; Bremges, Andreas; Blom, Jochen; Grosch, Rita; Pühler, Alfred; Schlüter, Andreas
2018-02-10
Lettuce (Lactuca sativa, L.) is an important annual plant of the family Asteraceae (Compositae). The commercial lettuce cultivar Tizian has been used in various scientific studies investigating the interaction of the plant with phytopathogens or biological control agents. Here, we present the de novo draft genome sequencing and gene prediction for this specific cultivar derived from transcriptome sequence data. The assembled scaffolds amount to a size of 2.22 Gb. Based on RNAseq data, 31,112 transcript isoforms were identified. Functional predictions for these transcripts were determined within the GenDBE annotation platform. Comparison with the cv. Salinas reference genome revealed a high degree of sequence similarity on genome and transcriptome levels, with an average amino acid identity of 99%. Furthermore, it was observed that two large regions are either missing or are highly divergent within the cv. Tizian genome compared to cv. Salinas. One of these regions covers the major resistance complex 1 region of cv. Salinas. The cv. Tizian draft genome sequence provides a valuable resource for future functional and transcriptome analyses focused on this lettuce cultivar. Copyright © 2017 Elsevier B.V. All rights reserved.
Phylogenetic Analysis of Theileria annulata Infected Cell Line S15 Iran Vaccine Strain.
Habibi, Gh
2012-01-01
Bovine theileriosis results from infection with obligate intracellular protozoa of the genus Theileria. The phylogenetic relationships between two isolates of Theileria annulata, and 36 Theileria spp., as well as 6 outgroup including Babesia spp. and coccidian protozoa were analyzed using the 18S rRNA gene sequence. The target DNA segment was amplified by PCR. The PCR product was used for direct sequencing. The length of the 18S rRNA gene of all Theileria spp. involved in this study was around 1,400 bp. A phylogenetic tree was inferred based on the 18S rRNA gene sequence of the Iran and Iraq isolates, and other species of Theileria available in GenBank. In the constructed tree, Theileria annulata (Iran vaccine strain) was closely related to other T. annulata from Europe, Asia, as well as T. lestoquardi, T. parva and T. taurotragi all in one clade. Phylogenetic analyses based on small subunit ribosomal RNA gene suggested that the percent identity of the sequence of Iran vaccine strain was completely the same as Iraq sequence (100% identical), but the similarity of Iran vaccine strain with other T. annulata reported from China, Spain and Italy determined the 97.9 to 99.9% identity.
Sisinthy, Shivaji; Chakraborty, Dwaipayan; Adicherla, Harikrishna; Gundlapally, Sathyanarayana Reddy
2017-09-01
Phylogenetic analyses were performed for members of the family Chromatiaceae, signature nucleotides deduced and the genus Alishewanella transferred to Chromatiaceae. Phylogenetic analyses were executed for the genera Alishewanella, Arsukibacterium and Rheinheimera and the genus Rheinheimera is proposed to be split, with the creation of the Pararheinheimera gen. nov. Furthermore, the species Rheinheimera longhuensis, is transferred to the genus Alishewanella as Alishewanella longhuensis comb. nov. Besides, the genera Alishewanella and Rheinheimera are also emended. Strain LNK-7.1 T was isolated from a water sample from the Lonar Lake, India. Cells were Gram-negative, motile rods, positive for catalase, oxidase, phosphatase, contained C 16:0 , C 17:1 ω8c, summed feature3 (C 16:1 ω6c and/or C 16:1 ω7c) and summed feature 8 (C 18:1 ω7c) as major fatty acids, PE and PG as the major lipids and Q-8 as the sole respiratory quinone. Phylogenetic analyses using NJ, ME, ML and Maximum parsimony, based on 16S rRNA gene sequences, identified Alishewanella tabrizica RCRI4 T as the closely related species of strain LNK-7.1 T with a 16S rRNA gene sequence similarity of 98.13%. The DNA-DNA similarity between LNK-7.1 T and the closely related species (A. tabrizica) was only 12.0% and, therefore, strain LNK-7.1 T was identified as a novel species of the genus Alishewanella with the proposed name Alishewanella alkalitolerans sp. nov. In addition phenotypic characteristics confirmed the species status to strain LNK-7.1 T . The type strain of A. alkalitolerans is LNK-7.1 T (LMG 29592 T = KCTC 52279 T ), isolated from a water sample collected from the Lonar lake, India.
DNA repair in Chromobacterium violaceum.
Duarte, Fábio Teixeira; Carvalho, Fabíola Marques de; Bezerra e Silva, Uaska; Scortecci, Kátia Castanho; Blaha, Carlos Alfredo Galindo; Agnez-Lima, Lucymara Fassarella; Batistuzzo de Medeiros, Silvia Regina
2004-03-31
Chromobacterium violaceum is a Gram-negative beta-proteobacterium that inhabits a variety of ecosystems in tropical and subtropical regions, including the water and banks of the Negro River in the Brazilian Amazon. This bacterium has been the subject of extensive study over the last three decades, due to its biotechnological properties, including the characteristic violacein pigment, which has antimicrobial and anti-tumoral activities. C. violaceum promotes the solubilization of gold in a mercury-free process, and has been used in the synthesis of homopolyesters suitable for the production of biodegradable polymers. The complete genome sequence of this organism has been completed by the Brazilian National Genome Project Consortium. The aim of our group was to study the DNA repair genes in this organism, due to their importance in the maintenance of genomic integrity. We identified DNA repair genes involved in different pathways in C. violaceum through a similarity search against known sequences deposited in databases. The phylogenetic analyses were done using programs of the PHILYP package. This analysis revealed various metabolic pathways, including photoreactivation, base excision repair, nucleotide excision repair, mismatch repair, recombinational repair, and the SOS system. The similarity between the C. violaceum sequences and those of Neisserie miningitidis and Ralstonia solanacearum was greater than that between the C. violaceum and Escherichia coli sequences. The peculiarities found in the C. violaceum genome were the absence of LexA, some horizontal transfer events and a large number of repair genes involved with alkyl and oxidative DNA damage.
Phylogenetics of Saccharomycetales, the ascomycete yeasts.
Suh, Sung-Oui; Blackwell, Meredith; Kurtzman, Cletus P; Lachance, Marc-André
2006-01-01
Ascomycete yeasts (phylum Ascomycota: subphylum Saccharomycotina: class Saccharomycetes: order Saccharomycetales) comprise a monophyletic lineage with a single order of about 1000 known species. These yeasts live as saprobes, often in association with plants, animals and their interfaces. A few species account for most human mycotic infections, and fewer than 10 species are plant pathogens. Yeasts are responsible for important industrial and biotechnological processes, including baking, brewing and synthesis of recombinant proteins. Species such as Saccharomyces cerevisiae are model organisms in research, some of which led to a Nobel Prize. Yeasts usually reproduce asexually by budding, and their sexual states are not enclosed in a fruiting body. The group also is well defined by synapomorphies visible at the ultrastructural level. Yeast identification and classification changed dramatically with the availability of DNA sequencing. Species identification now benefits from a constantly updated sequence database and no longer relies on ambiguous growth tests. A phylogeny based on single gene analyses has shown the order to be remarkably divergent despite morphological similarities among members. The limits of many previously described genera are not supported by sequence comparisons, and multigene phylogenetic studies are under way to provide a stable circumscription of genera, families and orders. One recent multigene study has resolved species of the Saccharomycetaceae into genera that differ markedly from those defined by analysis of morphology and growth responses, and similar changes are likely to occur in other branches of the yeast tree as additional sequences become available.
Waugh, Caryll; Cromer, Deborah; Grimm, Andrew; Chopra, Abha; Mallal, Simon; Davenport, Miles; Mak, Johnson
2015-04-09
Massive, parallel sequencing is a potent tool for dissecting the regulation of biological processes by revealing the dynamics of the cellular RNA profile under different conditions. Similarly, massive, parallel sequencing can be used to reveal the complexity of viral quasispecies that are often found in the RNA virus infected host. However, the production of cDNA libraries for next-generation sequencing (NGS) necessitates the reverse transcription of RNA into cDNA and the amplification of the cDNA template using PCR, which may introduce artefact in the form of phantom nucleic acids species that can bias the composition and interpretation of original RNA profiles. Using HIV as a model we have characterised the major sources of error during the conversion of viral RNA to cDNA, namely excess RNA template and the RNaseH activity of the polymerase enzyme, reverse transcriptase. In addition we have analysed the effect of PCR cycle on detection of recombinants and assessed the contribution of transfection of highly similar plasmid DNA to the formation of recombinant species during the production of our control viruses. We have identified RNA template concentrations, RNaseH activity of reverse transcriptase, and PCR conditions as key parameters that must be carefully optimised to minimise chimeric artefacts. Using our optimised RT-PCR conditions, in combination with our modified PCR amplification procedure, we have developed a reliable technique for accurate determination of RNA species using NGS technology.
Complete genome sequences of two novel European clade bovine foamy viruses from Germany and Poland.
Hechler, Torsten; Materniak, Magdalena; Kehl, Timo; Kuzmak, Jacek; Löchelt, Martin
2012-10-01
Bovine foamy virus (BFV), or bovine spumaretrovirus, is an infectious agent of cattle with no obvious disease association but high prevalence in its host. Here, we report two complete BFV sequences, BFV-Riems, isolated in 1978 in East Germany, and BFV100, isolated in 2005 in Poland. Both new BFV isolates share the overall genetic makeup of other foamy viruses (FV). Although isolated almost 25 years apart and propagated in either bovine (BFV-Riems) or nonbovine (BFV100) cells, both viruses are highly related, forming the European BFV clade. Despite clear differences, BFV-Riems and BFV100 are still very similar to BFV isolates from China and the United States, comprising the non-European BFV clade. The genomic sequences presented here confirm the concept of high sequence conservation across most of the FV genome. Analyses of cell culture-derived genomes reveal that proviral DNA may specifically lack introns in the env-bel coding region. The spacing of the splice sites in this region suggests that BFV has developed a novel mode to express a secretory but nonfunctional Env protein.
Complete Genome Sequences of Two Novel European Clade Bovine Foamy Viruses from Germany and Poland
Hechler, Torsten; Materniak, Magdalena; Kehl, Timo; Kuzmak, Jacek
2012-01-01
Bovine foamy virus (BFV), or bovine spumaretrovirus, is an infectious agent of cattle with no obvious disease association but high prevalence in its host. Here, we report two complete BFV sequences, BFV-Riems, isolated in 1978 in East Germany, and BFV100, isolated in 2005 in Poland. Both new BFV isolates share the overall genetic makeup of other foamy viruses (FV). Although isolated almost 25 years apart and propagated in either bovine (BFV-Riems) or nonbovine (BFV100) cells, both viruses are highly related, forming the European BFV clade. Despite clear differences, BFV-Riems and BFV100 are still very similar to BFV isolates from China and the United States, comprising the non-European BFV clade. The genomic sequences presented here confirm the concept of high sequence conservation across most of the FV genome. Analyses of cell culture-derived genomes reveal that proviral DNA may specifically lack introns in the env-bel coding region. The spacing of the splice sites in this region suggests that BFV has developed a novel mode to express a secretory but nonfunctional Env protein. PMID:22966195
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, R. L., Hamaguchi, L., Busch, M. A., and Weigel, D.
2003-06-01
OAK-B135 In Arabidopsis thaliana, cis-regulatory sequences of the floral homeotic gene AGAMOUS (AG) are located in the second intron. This 3 kb intron contains binding sites for two direct activators of AG, LEAFY (LFY) and WUSCHEL (WUS), along with other putative regulatory elements. We have used phylogenetic footprinting and the related technique of phylogenetic shadowing to identify putative cis-regulatory elements in this intron. Among 29 Brassicaceae, several other motifs, but not the LFY and WUS binding sites previously identified, are largely invariant. Using reporter gene analyses, we tested six of these motifs and found that they are all functionally importantmore » for activity of AG regulatory sequences in A. thaliana. Although there is little obvious sequence similarity outside the Brassicaceae, the intron from cucumber AG has at least partial activity in A. thaliana. Our studies underscore the value of the comparative approach as a tool that complements gene-by-gene promoter dissection, but also highlight that sequence-based studies alone are insufficient for a complete identification of cis-regulatory sites.« less
QuickProbs 2: Towards rapid construction of high-quality alignments of large protein families
Gudyś, Adam; Deorowicz, Sebastian
2017-01-01
The ever-increasing size of sequence databases caused by the development of high throughput sequencing, poses to multiple alignment algorithms one of the greatest challenges yet. As we show, well-established techniques employed for increasing alignment quality, i.e., refinement and consistency, are ineffective when large protein families are investigated. We present QuickProbs 2, an algorithm for multiple sequence alignment. Based on probabilistic models, equipped with novel column-oriented refinement and selective consistency, it offers outstanding accuracy. When analysing hundreds of sequences, Quick-Probs 2 is noticeably better than ClustalΩ and MAFFT, the previous leaders for processing numerous protein families. In the case of smaller sets, for which consistency-based methods are the best performing, QuickProbs 2 is also superior to the competitors. Due to low computational requirements of selective consistency and utilization of massively parallel architectures, presented algorithm has similar execution times to ClustalΩ, and is orders of magnitude faster than full consistency approaches, like MSAProbs or PicXAA. All these make QuickProbs 2 an excellent tool for aligning families ranging from few, to hundreds of proteins. PMID:28139687
Malakauskas, David M.; Snipes, Robert Benjamin; Thompson, Ann M.; Schloesser, Donald W.
2016-01-01
We used PCR to screen pooled individuals of Manayunkia speciosa from western Lake Erie, Michigan, USA for myxosporean parasites. Amplicons from positive PCRs were sequenced and showed a Ceratonova species in an estimated 1.1% (95% CI = 0.46%, 1.8%) of M. speciosa individuals. We sequenced 18S, ITS1, 5.8S, ITS2 and most of the 28S rDNA regions of this Ceratonova sp., and part of the protein-coding EF2 gene. Phylogenetic analyses of ribosomal and EF2 sequences showed the Lake Erie Ceratonova sp. is most similar to, but genetically distinct from, Ceratonova shasta. Marked interspecific polymorphism in all genes examined, including the ITS barcoding genes, along with geographic location suggests this is an undescribed Ceratonova species. COI sequences showed M. speciosa individuals in Michigan and California are the same species. These findings represent a third parasite in the genus Ceratonovapotentially hosted by M. speciosa.
Analysis of SINE and LINE repeat content of Y chromosomes in the platypus, Ornithorhynchus anatinus.
Kortschak, R Daniel; Tsend-Ayush, Enkhjargal; Grützner, Frank
2009-01-01
Monotremes feature an extraordinary sex-chromosome system that consists of five X and five Y chromosomes in males. These sex chromosomes share homology with bird sex chromosomes but no homology with the therian X. The genome of a female platypus was recently completed, providing unique insights into sequence and gene content of autosomes and X chromosomes, but no Y-specific sequence has so far been analysed. Here we report the isolation, sequencing and analysis of approximately 700 kb of sequence of the non-recombining regions of Y2, Y3 and Y5, which revealed differences in base composition and repeat content between autosomes and sex chromosomes, and within the sex chromosomes themselves. This provides the first insights into repeat content of Y chromosomes in platypus, which overall show similar patterns of repeat composition to Y chromosomes in other species. Interestingly, we also observed differences between the various Y chromosomes, and in combination with timing and activity patterns we provide an approach that can be used to examine the evolutionary history of the platypus sex-chromosome chain.
Takeo, Toshinori; Tanaka, Tetsuya; Matsubayashi, Makoto; Maeda, Hiroki; Kusakisako, Kodai; Matsui, Toshihiro; Mochizuki, Masami; Matsuo, Tomohide
2014-08-01
Previously, we characterized an undocumented strain of Eimeria krijgsmanni by morphological and biological features. Here, we present a detailed molecular phylogenetic analysis of this organism. Namely, 18S ribosomal RNA gene (rDNA) sequences of E. krijgsmanni were analyzed to incorporate this species into a comprehensive Eimeria phylogeny. As a result, partial 18S rDNA sequence from E. krijgsmanni was successfully determined, and two different types, Type A and Type B, that differed by 1 base pair were identified. E. krijgsmanni was originally isolated from a single oocyst, and thus the result show that the two types might have allelic sequence heterogeneity in the 18S rDNA. Based on phylogenetic analyses, the two types of E. krijgsmanni 18S rDNA formed one of two clades among murine Eimeria spp.; these Eimeria clades reflected morphological similarity among the Eimeria spp. This is the third molecular phylogenetic characterization of a murine Eimeria spp. in addition to E. falciformis and E. papillata. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Ji, Boyang; Zhang, Sheng-Da; Zhang, Wei-Jia; Rouy, Zoe; Alberto, François; Santini, Claire-Lise; Mangenot, Sophie; Gagnot, Séverine; Philippe, Nadège; Pradel, Nathalie; Zhang, Lichen; Tempel, Sébastien; Li, Ying; Médigue, Claudine; Henrissat, Bernard; Coutinho, Pedro M; Barbe, Valérie; Talla, Emmanuel; Wu, Long-Fei
2017-03-01
Magnetotactic bacteria (MTB) are a group of phylogenetically and physiologically diverse Gram-negative bacteria that synthesize intracellular magnetic crystals named magnetosomes. MTB are affiliated with three classes of Proteobacteria phylum, Nitrospirae phylum, Omnitrophica phylum and probably with the candidate phylum Latescibacteria. The evolutionary origin and physiological diversity of MTB compared with other bacterial taxonomic groups remain to be illustrated. Here, we analysed the genome of the marine magneto-ovoid strain MO-1 and found that it is closely related to Magnetococcus marinus MC-1. Detailed analyses of the ribosomal proteins and whole proteomes of 390 genomes reveal that, among the Proteobacteria analysed, only MO-1 and MC-1 have coding sequences (CDSs) with a similarly high proportion of origins from Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria and Gammaproteobacteria. Interestingly, a comparative metabolic network analysis with anoxic network enzymes from sequenced MTB and non-MTB successfully allows the eventual prediction of an organism with a metabolic profile compatible for magnetosome production. Altogether, our genomic analysis reveals multiple origins of MO-1 and M. marinus MC-1 genomes and suggests a metabolism-restriction model for explaining whether a bacterium could become an MTB upon acquisition of magnetosome encoding genes. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Motor and cognitive stereotypies in the BTBR T+tf/J mouse model of autism
Pearson, BL; Pobbe, RLH; Defensor, EB; Oasay, L; Bolivar, VJ; Blanchard, DC; Blanchard, RJ
2010-01-01
The BTBR T+tf/J inbred mouse strain displays a variety of persistent phenotypic alterations similar to those exhibited in autism spectrum disorders. The unique genetic background of the BTBR strain is thought to underlie its lack of reciprocal social interactions, elevated repetitive self-directed grooming and restricted exploratory behaviors. In order to clarify the existence, range and mechanisms of abnormal repetitive behaviors within BTBR mice, we performed detailed analyses of the microstructure of self-grooming patterns and noted increased overall grooming, higher percentages of interruptions in grooming bouts and a concomitant decrease in the proportion of incorrect sequence transitions compared to C57BL/6J inbred mice. Analyses of active phase home cage behavior also revealed an increase in stereotypic bar-biting behavior in the BTBR strain relative to B6 mice. Finally, in a novel object investigation task, BTBR mice exhibited greater baseline preference for specific unfamiliar objects as well as more patterned sequences of sequential investigations of those items. These results suggest that the repetitive, stereotyped behavior patterns of BTBR mice are relatively pervasive and reflect both motor and cognitive mechanisms. Furthermore, other pre-clinical mouse models of autism spectrum disorders may benefit from these more detailed analyses of stereotypic behavior. PMID:21040460
Mitochondrial DNA variation in the Viking age population of Norway.
Krzewińska, Maja; Bjørnstad, Gro; Skoglund, Pontus; Olason, Pall Isolfur; Bill, Jan; Götherström, Anders; Hagelberg, Erika
2015-01-19
The medieval Norsemen or Vikings had an important biological and cultural impact on many parts of Europe through raids, colonization and trade, from about AD 793 to 1066. To help understand the genetic affinities of the ancient Norsemen, and their genetic contribution to the gene pool of other Europeans, we analysed DNA markers in Late Iron Age skeletal remains from Norway. DNA was extracted from 80 individuals, and mitochondrial DNA polymorphisms were detected by next-generation sequencing. The sequences of 45 ancient Norwegians were verified as genuine through the identification of damage patterns characteristic of ancient DNA. The ancient Norwegians were genetically similar to previously analysed ancient Icelanders, and to present-day Shetland and Orkney Islanders, Norwegians, Swedes, Scots, English, German and French. The Viking Age population had higher frequencies of K*, U*, V* and I* haplogroups than their modern counterparts, but a lower proportion of T* and H* haplogroups. Three individuals carried haplotypes that are rare in Norway today (U5b1b1, Hg A* and an uncommon variant of H*). Our combined analyses indicate that Norse women were important agents in the overseas expansion and settlement of the Vikings, and that women from the Orkneys and Western Isles contributed to the colonization of Iceland. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Mitochondrial DNA variation in the Viking age population of Norway
Krzewińska, Maja; Bjørnstad, Gro; Skoglund, Pontus; Olason, Pall Isolfur; Bill, Jan; Götherström, Anders; Hagelberg, Erika
2015-01-01
The medieval Norsemen or Vikings had an important biological and cultural impact on many parts of Europe through raids, colonization and trade, from about AD 793 to 1066. To help understand the genetic affinities of the ancient Norsemen, and their genetic contribution to the gene pool of other Europeans, we analysed DNA markers in Late Iron Age skeletal remains from Norway. DNA was extracted from 80 individuals, and mitochondrial DNA polymorphisms were detected by next-generation sequencing. The sequences of 45 ancient Norwegians were verified as genuine through the identification of damage patterns characteristic of ancient DNA. The ancient Norwegians were genetically similar to previously analysed ancient Icelanders, and to present-day Shetland and Orkney Islanders, Norwegians, Swedes, Scots, English, German and French. The Viking Age population had higher frequencies of K*, U*, V* and I* haplogroups than their modern counterparts, but a lower proportion of T* and H* haplogroups. Three individuals carried haplotypes that are rare in Norway today (U5b1b1, Hg A* and an uncommon variant of H*). Our combined analyses indicate that Norse women were important agents in the overseas expansion and settlement of the Vikings, and that women from the Orkneys and Western Isles contributed to the colonization of Iceland. PMID:25487335
Beauveria medogensis sp. nov., a new fungus of the entomopathogenic genus from China.
Imoulan, Abdessamad; Wu, Hai-Jun; Lu, Wei-Lai; Li, Yi; Li, Bin-Bin; Yang, Rei-Heng; Wang, Wen-Jing; Wang, Xiao-Liang; Kirk, Paul M; Yao, Yi-Jian
2016-09-01
Beauveria is among the most ubiquitous genera of entomopathogenic fungi throughout the world. A previously unknown species of the genus was recently discovered from a soil sample collected from Tibetan Plateau, China and is here described as new to science, B. medogensis sp. nov. The new species is distinguished from its closest relatives based on both morphological characterization and molecular phylogenetic analyses. Beauveria medogensis is characterized by globose to subglobose conidia, morphologically similar to some other species of in the genus, but was conclusively separated from those species in the phylogenetic analyses including sequences of four nuclear genes (RPB1, RPB2, TEF1 and Bloc). The new species was clustered in the analyses in a single terminal lineage which was grouped with B. australis sequences together as a sister clade to the B. brongniartii terminal clade. Although molecularly closely related, the new species is distinct morphologically from its closest sisters, B. australis and B. brongniartii, in producing globose to subglobose conidia rather than subglobose, broadly ellipsoid to ellipsoid conidia or ellipsoidal to cylindrical conidia. As isolated from a soil sample, the entomopathogenicity of the new species has been confirmed using Helicoverpa armigera and Tenebrio molitor larvae. Copyright © 2016 Elsevier Inc. All rights reserved.
Eid, Neveen H; Al Doghaither, Huda A; Kumosani, Taha A; Gull, Munazza
2017-01-01
To evaluate the indigenous bacterial strains of drinking water from the most commercial water types including bottled and filtered water that are currently used in Saudi Arabia. Thirty randomly selected commercial brands of bottled water were purchased from Saudi local markets. Moreover, samples from tap water and filtered water were collected in sterilized glass bottles and stored at 4°C. Biochemical analyses including pH, temperature, lactose fermentation test (LAC), indole test (IND), methyl red test (MR), Voges-Proskauer test (VP), urease test (URE), catalase test (CAT), aerobic and anaerobic test (Ae/An) were measured. Molecular identification and comparative sequence analyses were done by full length 16S rRNA gene sequences using gene bank databases and phylogenetic trees were constructed to see the closely related similarity index between bacterial strains. Among 30 water samples tested, 18 were found positive for bacterial growth. Molecular identification of four selected bacterial strains indicated the alarming presence of pathogenic bacteria Bacillus spp . in most common commercial types of drinking water used in Saudi Arabia. The lack of awareness about good sanitation, poor personal hygienic practices and failure of safe water management and supply are the important factors for poor drinking water quality in these sources, need to be addressed.
Legionella busanensis sp. nov., isolated from cooling tower water in Korea.
Park, Mi-Yeoun; Ko, Kwan Soo; Lee, Hae Kyung; Park, Man-Suk; Kook, Yoon-Hoh
2003-01-01
Three Legionella-like micro-organisms, isolated from cooling tower water of a building in Busan, Korea, were characterized by a variety of biochemical and molecular phylogenetic tests. Analyses of whole-cell fatty acids and results of biochemical tests revealed that these three isolates are distinct from previously described Legionella species. Furthermore, results of comparative analyses of 16S rDNA (1476-1488 bp), mip (408 bp) and rpoB (300 bp) sequences also confirmed that these strains represent a novel species within the genus Legionella. The 16S rDNA sequences of the three Korean isolates had similarities of less than 95.8% to other Legionella species. Phylogenetic trees formed by analysis of the 16S rRNA, rpoB and mip genes revealed that the isolates formed a distinct cluster within the genus Legionella. Based on the evaluated phenotypic and phylogenetic characteristics, it is proposed that these Korean isolates from water be classified as a novel species, Legionella busanensis sp. nov.; the type strain is strain K9951T (=KCTC 12084T =ATCC BAA-518T).
Wada, Fumitaka; Ogawa, Atsuko; Hanai, Yuko; Nakamura, Akio; Maki, Masatoshi; Hitomi, Kiyotaka
2004-11-01
Transglutaminase (TGase) is an enzyme that modifies proteins by crosslinking or polyamination. Physarum polycephalum, an acellular slime mold, is the evolutionally lowest organism that has a mammalian-type transglutaminase. We have cloned a cDNA for Physarum polycephalum TGase (PpTGB), homologous to a previously identified TGase (PpTGA), whose sequence is similar to that of mammalian TGases. PpTGB encodes a primary sequence identical to that of PpTGA except for 11 amino acid residues at the N-terminus. Reverse transcription-PCR and Western blotting analyses showed that both PpTGA and PpTGB are expressed in microplasmodia and macroplasmodia during their life cycle, except for in sporangia. For biochemical characterization, we carried out the ectopical expressions of PpTGA and PpTGB in Dictyostelium discoideum. Subcellular fractionation of these Dictyostelium cells showed that the expressed PpTGA, but not PpTGB, localizes to the membrane fraction. Furthermore, in Physarum, subcellular fractionation and immunostaining indicated specific localization at the plasma membrane in macroplasmodia, while the localization was entirely cytoplasmic in microplasmodia.
Comprehensive analysis of Arabidopsis expression level polymorphisms with simple inheritance
Plantegenet, Stephanie; Weber, Johann; Goldstein, Darlene R; Zeller, Georg; Nussbaumer, Cindy; Thomas, Jérôme; Weigel, Detlef; Harshman, Keith; Hardtke, Christian S
2009-01-01
In Arabidopsis thaliana, gene expression level polymorphisms (ELPs) between natural accessions that exhibit simple, single locus inheritance are promising quantitative trait locus (QTL) candidates to explain phenotypic variability. It is assumed that such ELPs overwhelmingly represent regulatory element polymorphisms. However, comprehensive genome-wide analyses linking expression level, regulatory sequence and gene structure variation are missing, preventing definite verification of this assumption. Here, we analyzed ELPs observed between the Eil-0 and Lc-0 accessions. Compared with non-variable controls, 5′ regulatory sequence variation in the corresponding genes is indeed increased. However, ∼42% of all the ELP genes also carry major transcription unit deletions in one parent as revealed by genome tiling arrays, representing a >4-fold enrichment over controls. Within the subset of ELPs with simple inheritance, this proportion is even higher and deletions are generally more severe. Similar results were obtained from analyses of the Bay-0 and Sha accessions, using alternative technical approaches. Collectively, our results suggest that drastic structural changes are a major cause for ELPs with simple inheritance, corroborating experimentally observed indel preponderance in cloned Arabidopsis QTL. PMID:19225455
Genetic structure of typical and atypical populations of Candida albicans from Africa.
Forche, A; Schönian, G; Gräser, Y; Vilgalys, R; Mitchell, T G
1999-11-01
Atypical isolates of the pathogenic yeast Candida albicans have been reported with increasing frequency. To investigate the origin of a set of atypical isolates and their relationship to typical isolates, we employed a combination of molecular phylogenetic and population genetic analyses using rDNA sequencing, PCR fingerprinting, and analysis of co-dominant DNA nucleotide polymorphisms to characterize the population structure of one typical and two atypical populations of C. albicans from Angola and Madagascar. The extent of clonality and recombination was assessed in each population. The analyses revealed that the structure of all three populations of C. albicans was predominantly clonal but, as in previous studies, there was also evidence for recombination. Allele frequencies differed significantly between the typical and the atypical populations, suggesting very low levels of gene flow between them. However, allele frequencies were quite similar in the two atypical C. albicans populations, suggesting that they are closely related. Phylogenetic analysis of partial sequences encoding the nuclear 26S rDNA demonstrated that all three populations belong to a single monophyletic group, which includes the type strain of C. albicans. Copyright 1999 Academic Press.
Waveform Classification of the 2016 Gyeongju Earthquake Sequence Using Hierarchical Clustering
NASA Astrophysics Data System (ADS)
Shin, J. S.; Son, M.; Cho, C.
2017-12-01
The 2016 Gyeongju earthquakes, including the ML 5.8 earthquake of September 12, 2016 ccurred around the Yangsan Fault System, which is the most prominent set of lineaments on the Korean Peninsula. The main event is the largest earthquake recorded since instrumental recording began in South Korea We analysed the waveforms of earthquake sequence to better understand the seismicity around this fault system. We defined groups of relocated hypocenters using hierarchical clustering based on waveform similarity. The 2016 Gyeongju events are classified into three major groups: Group A with 185 events, Group B with 134 events, and Group C with 45 events. The waveform similarity of each group was confirmed by the matrix of correlation coefficients. The three groups of waveforms wereare identified in space: the events of Group A occurred at shallower depths than those of Group B, while those of Group C occurred at intermediate depths at the north side. The eight major events occurred in the area including Group A and Group B, whereas the area of Group C produceds no major events. Therefore, the area of Group C couldcan be excluded in considering a major asperity for the Gyeongju earthquakes. Earthquakes that are close together spatially with similar rupture mechanisms produce similar waveforms at the same common station. Thus, the hypocenters classified from the three groups of waveforms, based on waveform similarity imply that the inferred fault plane contains three zones locked under slightly different conditions.
Vander Lugt correlation of DNA sequence data
NASA Astrophysics Data System (ADS)
Christens-Barry, William A.; Hawk, James F.; Martin, James C.
1990-12-01
DNA, the molecule containing the genetic code of an organism, is a linear chain of subunits. It is the sequence of subunits, of which there are four kinds, that constitutes the unique blueprint of an individual. This sequence is the focus of a large number of analyses performed by an army of geneticists, biologists, and computer scientists. Most of these analyses entail searches for specific subsequences within the larger set of sequence data. Thus, most analyses are essentially pattern recognition or correlation tasks. Yet, there are special features to such analysis that influence the strategy and methods of an optical pattern recognition approach. While the serial processing employed in digital electronic computers remains the main engine of sequence analyses, there is no fundamental reason that more efficient parallel methods cannot be used. We describe an approach using optical pattern recognition (OPR) techniques based on matched spatial filtering. This allows parallel comparison of large blocks of sequence data. In this study we have simulated a Vander Lugt1 architecture implementing our approach. Searches for specific target sequence strings within a block of DNA sequence from the Co/El plasmid2 are performed.
Version VI of the ESTree db: an improved tool for peach transcriptome analysis
Lazzari, Barbara; Caprera, Andrea; Vecchietti, Alberto; Merelli, Ivan; Barale, Francesca; Milanesi, Luciano; Stella, Alessandra; Pozzi, Carlo
2008-01-01
Background The ESTree database (db) is a collection of Prunus persica and Prunus dulcis EST sequences that in its current version encompasses 75,404 sequences from 3 almond and 19 peach libraries. Nine peach genotypes and four peach tissues are represented, from four fruit developmental stages. The aim of this work was to implement the already existing ESTree db by adding new sequences and analysis programs. Particular care was given to the implementation of the web interface, that allows querying each of the database features. Results A Perl modular pipeline is the backbone of sequence analysis in the ESTree db project. Outputs obtained during the pipeline steps are automatically arrayed into the fields of a MySQL database. Apart from standard clustering and annotation analyses, version VI of the ESTree db encompasses new tools for tandem repeat identification, annotation against genomic Rosaceae sequences, and positioning on the database of oligomer sequences that were used in a peach microarray study. Furthermore, known protein patterns and motifs were identified by comparison to PROSITE. Based on data retrieved from sequence annotation against the UniProtKB database, a script was prepared to track positions of homologous hits on the GO tree and build statistics on the ontologies distribution in GO functional categories. EST mapping data were also integrated in the database. The PHP-based web interface was upgraded and extended. The aim of the authors was to enable querying the database according to all the biological aspects that can be investigated from the analysis of data available in the ESTree db. This is achieved by allowing multiple searches on logical subsets of sequences that represent different biological situations or features. Conclusions The version VI of ESTree db offers a broad overview on peach gene expression. Sequence analyses results contained in the database, extensively linked to external related resources, represent a large amount of information that can be queried via the tools offered in the web interface. Flexibility and modularity of the ESTree analysis pipeline and of the web interface allowed the authors to set up similar structures for different datasets, with limited manual intervention. PMID:18387211
Tsangaras, Kyriakos; Mayer, Jens; Alquezar-Planas, David E; Greenwood, Alex D
2015-11-24
Transcriptome analysis of polar bear (Ursus maritimus) tissues identified sequences with similarity to Porcine Endogenous Retroviruses (PERV). Based on these sequences, four proviral copies and 15 solo long terminal repeats (LTRs) of a newly described endogenous retrovirus were characterized from the polar bear draft genome sequence. Closely related sequences were identified by PCR analysis of brown bear (Ursus arctos) and black bear (Ursus americanus) but were absent in non-Ursinae bear species. The virus was therefore designated UrsusERV. Two distinct groups of LTRs were observed including a recombinant ERV that contained one LTR belonging to each group indicating that genomic invasions by at least two UrsusERV variants have recently occurred. Age estimates based on proviral LTR divergence and conservation of integration sites among ursids suggest the viral group is only a few million years old. The youngest provirus was polar bear specific, had intact open reading frames (ORFs) and could potentially encode functional proteins. Phylogenetic analyses of UrsusERV consensus protein sequences suggest that it is part of a pig, gibbon and koala retrovirus clade. The young age estimates and lineage specificity of the virus suggests UrsusERV is a recent cross species transmission from an unknown reservoir and places the viral group among the youngest of ERVs identified in mammals.
Falk, K.; Batts, W.N.; Kvellestad, A.; Kurath, G.; Wiik-Nielsen, J.; Winton, J.R.
2008-01-01
Atlantic salmon paramyxovirus (ASPV) was isolated in 1995 from gills of farmed Atlantic salmon suffering from proliferative gill inflammation. The complete genome sequence of ASPV was determined, revealing a genome 16,968 nucleotides in length consisting of six non-overlapping genes coding for the nucleo- (N), phospho- (P), matrix- (M), fusion- (F), haemagglutinin-neuraminidase- (HN) and large polymerase (L) proteins in the order 3???-N-P-M-F-HN-L-5???. The various conserved features related to virus replication found in most paramyxoviruses were also found in ASPV. These include: conserved and complementary leader and trailer sequences, tri-nucleotide intergenic regions and highly conserved transcription start and stop signal sequences. The P gene expression strategy of ASPV was like that of the respiro-, morbilli- and henipaviruses, which express the P and C proteins from the primary transcript and edit a portion of the mRNA to encode V and W proteins. Sequence similarities among various features related to virus replication, pairwise comparisons of all deduced ASPV protein sequences with homologous regions from other members of the family Paramyxoviridae, and phylogenetic analyses of these amino acid sequences suggested that ASPV was a novel member of the sub-family Paramyxovirinae, most closely related to the respiroviruses. ?? 2008 Elsevier B.V. All rights reserved.
Tsangaras, Kyriakos; Mayer, Jens; Alquezar-Planas, David E.; Greenwood, Alex D.
2015-01-01
Transcriptome analysis of polar bear (Ursus maritimus) tissues identified sequences with similarity to Porcine Endogenous Retroviruses (PERV). Based on these sequences, four proviral copies and 15 solo long terminal repeats (LTRs) of a newly described endogenous retrovirus were characterized from the polar bear draft genome sequence. Closely related sequences were identified by PCR analysis of brown bear (Ursus arctos) and black bear (Ursus americanus) but were absent in non-Ursinae bear species. The virus was therefore designated UrsusERV. Two distinct groups of LTRs were observed including a recombinant ERV that contained one LTR belonging to each group indicating that genomic invasions by at least two UrsusERV variants have recently occurred. Age estimates based on proviral LTR divergence and conservation of integration sites among ursids suggest the viral group is only a few million years old. The youngest provirus was polar bear specific, had intact open reading frames (ORFs) and could potentially encode functional proteins. Phylogenetic analyses of UrsusERV consensus protein sequences suggest that it is part of a pig, gibbon and koala retrovirus clade. The young age estimates and lineage specificity of the virus suggests UrsusERV is a recent cross species transmission from an unknown reservoir and places the viral group among the youngest of ERVs identified in mammals. PMID:26610552
Haug, Ingeborg; Setaro, Sabrina; Suárez, Juan Pablo
2013-01-01
Arbuscular mycorrhizae are important for growth and survival of tropical trees. We studied the community of arbuscular mycorrhizal fungi in a tropical mountain rain forest and in neighbouring reforestation plots in the area of Reserva Biológica San Francisco (South Ecuador). The arbuscular mycorrhizal fungi were analysed with molecular methods sequencing part of the 18 S rDNA. The sequences were classified as Operational Taxonomic Units (OTUs). We found high fungal species richness with OTUs belonging to Glomerales, Diversisporales and Archaeosporales. Despite intensive sampling, the rarefaction curves are still unsaturated for the pristine forest and the reforestation plots. The communities consisted of few frequent and many rare species. No specific interactions are recognizable. The plant individuals are associated with one to ten arbuscular mycorrhizal fungi and mostly with one to four. The fungal compositions associated with single plant individuals show a great variability and variety within one plant species. Planted and naturally occurring plants show high similarities in their fungal communities. Pristine forest and reforestation plots showed similar richness, similar diversity and a significantly nested structure of plant-AMF community. The results indicate that small-scale fragmentation presently found in this area has not destroyed the natural AMF community, at least yet. Thus, the regeneration potential of natural forest vegetation at the tested sites is not inhibited by a lack of appropriate mycobionts. PMID:23671682
Yoon, Jun-Hee; Kim, Thomas W; Mendez, Pedro; Jablons, David M; Kim, Il-Jin
2017-01-01
The development of next-generation sequencing (NGS) technology allows to sequence whole exomes or genome. However, data analysis is still the biggest bottleneck for its wide implementation. Most laboratories still depend on manual procedures for data handling and analyses, which translates into a delay and decreased efficiency in the delivery of NGS results to doctors and patients. Thus, there is high demand for developing an automatic and an easy-to-use NGS data analyses system. We developed comprehensive, automatic genetic analyses controller named Mobile Genome Express (MGE) that works in smartphones or other mobile devices. MGE can handle all the steps for genetic analyses, such as: sample information submission, sequencing run quality check from the sequencer, secured data transfer and results review. We sequenced an Actrometrix control DNA containing multiple proven human mutations using a targeted sequencing panel, and the whole analysis was managed by MGE, and its data reviewing program called ELECTRO. All steps were processed automatically except for the final sequencing review procedure with ELECTRO to confirm mutations. The data analysis process was completed within several hours. We confirmed the mutations that we have identified were consistent with our previous results obtained by using multi-step, manual pipelines.
Is the phonological similarity effect in working memory due to proactive interference?
Baddeley, Alan D; Hitch, Graham J; Quinlan, Philip T
2018-04-12
Immediate serial recall of verbal material is highly sensitive to impairment attributable to phonological similarity. Although this has traditionally been interpreted as a within-sequence similarity effect, Engle (2007) proposed an interpretation based on interference from prior sequences, a phenomenon analogous to that found in the Peterson short-term memory (STM) task. We use the method of serial reconstruction to test this in an experiment contrasting the standard paradigm in which successive sequences are drawn from the same set of phonologically similar or dissimilar words and one in which the vowel sound on which similarity is based is switched from trial to trial, a manipulation analogous to that producing release from PI in the Peterson task. A substantial similarity effect occurs under both conditions although there is a small advantage from switching across similar sequences. There is, however, no evidence for the suggestion that the similarity effect will be absent from the very first sequence tested. Our results support the within-sequence similarity rather than a between-list PI interpretation. Reasons for the contrast with the classic Peterson short-term forgetting task are briefly discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
New phylogenomic and comparative analyses provide corroborating evidence that Myxozoa is Cnidaria.
Feng, Jin-Mei; Xiong, Jie; Zhang, Jin-Yong; Yang, Ya-Lin; Yao, Bin; Zhou, Zhi-Gang; Miao, Wei
2014-12-01
Myxozoa, a diverse group of morphologically simplified endoparasites, are well known fish parasites causing substantial economic losses in aquaculture. Despite active research, the phylogenetic position of Myxozoa remains ambiguous. After obtaining the genome and transcriptome data of the myxozoan Thelohanellus kitauei, we examined the phylogenetic position of Myxozoa from three different perspectives. First, phylogenomic analyses with the newly sequenced genomic data strongly supported the monophyly of Myxozoa and that Myxozoa is sister to Medusozoa within Cnidaria. Second, we detected two homologs to cnidarian-specific minicollagens in the T. kitauei genome with molecular characteristics similar to cnidarian-specific minicollagens, suggesting that the minicollagen homologs in T. kitauei may have functions similar to those in Cnidaria and that Myxozoa is Cnidaria. Additionally, phylogenetic analyses revealed that the minicollagens in myxozoans and medusozoans have a common ancestor. Third, we detected 11 of the 19 proto-mesodermalgenes in the T. kitauei genome, which were also present in the cnidarian Hydra magnipapillata, indicating Myxozoa is within Cnidaria. Thus, our results robustly support Myxozoa as a derived cnidarian taxon with an affinity to Medusozoa, helping to understand the diversity of the morphology, development and life cycle of Cnidaria and its evolution. Copyright © 2014 Elsevier Inc. All rights reserved.
LaPierre, Lorie A.; Holzschu, Donald L.; Bowser, Paul R.; Casey, James W.
1999-01-01
Walleye epidermal hyperplasia virus types 1 and 2 (WEHV1 and WEHV2, respectively) are associated with a hyperproliferative skin lesion on walleyes that appears and regresses seasonally. We have determined the complete nucleotide sequences and transcriptional profiles of these viruses. WEHV1 and WEHV2 are large, complex retroviruses of 12,999 and 13,125 kb in length, respectively, that are closely related to one another and to walleye dermal sarcoma virus (WDSV). These walleye retroviruses contain three open reading frames, orfA, orfB, and orfC, in addition to gag, pol, and env. orfA and orfB are adjacent to one another and located downstream of env. The OrfA proteins were previously identified as cyclin D homologs that may contribute to the induction of cell proliferation leading to epidermal hyperplasia and dermal sarcoma. The sequence analysis of WEHV1 and WEHV2 revealed that the OrfB proteins are distantly related to the OrfA proteins, suggesting that orfB arose by gene duplication. Presuming that the precursor of orfA and orfB was derived from a cellular cyclin, these genes are the first accessory genes of complex retroviruses that can be traced to a cellular origin. WEHV1, WEHV2, and WDSV are the only retroviruses that have an open reading frame, orfC, of considerable size (ca. 130 amino acids) in the leader region preceding gag. While we were unable to predict a function for the OrfC proteins, they are more conserved than OrfA and OrfB, suggesting that they may be biologically important to the viruses. The transcriptional profiles of WEHV1 and WEHV2 were also similar to that of WDSV; Northern blot analyses detected only low levels of the orfA transcripts in developing lesions, whereas abundant levels of genomic, env, orfA, and orfB transcripts were detected in regressing lesions. The splice donors and acceptors of individual transcripts were identified by reverse transcriptase PCR. The similarities of WEHV1, WEHV2, and WDSV suggest that these viruses use similar strategies of viral replication and induce cell proliferation by a similar mechanism. PMID:10516048
Antell, Gregory C.; Zhong, Wen; Kercher, Katherine; Passic, Shendra; Williams, Jean; Liu, Yucheng; James, Tony; Jacobson, Jeffrey M.; Szep, Zsofia
2017-01-01
Vpr is an HIV-1 accessory protein that plays numerous roles during viral replication, and some of which are cell type dependent. To test the hypothesis that HIV-1 tropism extends beyond the envelope into the vpr gene, studies were performed to identify the associations between coreceptor usage and Vpr variation in HIV-1-infected patients. Colinear HIV-1 Env-V3 and Vpr amino acid sequences were obtained from the LANL HIV-1 sequence database and from well-suppressed patients in the Drexel/Temple Medicine CNS AIDS Research and Eradication Study (CARES) Cohort. Genotypic classification of Env-V3 sequences as X4 (CXCR4-utilizing) or R5 (CCR5-utilizing) was used to group colinear Vpr sequences. To reveal the sequences associated with a specific coreceptor usage genotype, Vpr amino acid sequences were assessed for amino acid diversity and Jensen-Shannon divergence between the two groups. Five amino acid alphabets were used to comprehensively examine the impact of amino acid substitutions involving side chains with similar physiochemical properties. Positions 36, 37, 41, 89, and 96 of Vpr were characterized by statistically significant divergence across multiple alphabets when X4 and R5 sequence groups were compared. In addition, consensus amino acid switches were found at positions 37 and 41 in comparisons of the R5 and X4 sequence populations. These results suggest an evolutionary link between Vpr and gp120 in HIV-1-infected patients. PMID:28620613
Ji, Feng; Zhao, Jing-Zhuang; Liu, Miao; Lu, Tong-Yan; Liu, Hong-Bai; Yin, Jiasheng; Xu, Li-Ming
2017-04-01
Infectious pancreatic necrosis (IPN) is a significant disease of farmed salmonids resulting in direct economic losses due to high mortality in China. However, no gene sequence of any Chinese infectious pancreatic necrosis virus (IPNV) isolates was available. In the study, moribund rainbow trout fry samples were collected during an outbreak of IPN in Yunnan province of southwest China in 2013. An IPNV was isolated and tentatively named ChRtm213. We determined the full genome sequence of the IPNV ChRtm213 and compared it with previously identified IPNV sequences worldwide. The sequences of different structural and non-structural protein genes were compared to those of other aquatic birnaviruses sequenced to date. The results indicated that the complete genome sequence of ChRtm213 strain contains a segment A (3099 nucleotides) coding a polyprotein VP2-VP4-VP3, and a segment B (2789 nucleotides) coding a RNA-dependent RNA polymerase VP1. The phylogenetic analyses showed that ChRtm213 strain fell within genogroup 1, serotype A9 (Jasper), having similarities of 96.3% (segment A) and 97.3% (segment B) with the IPNV strain AM98 from Japan. The results suggest that the Chinese IPNV isolate has relative closer relationship with Japanese IPNV strains. The sequence of ChRtm213 was the first gene sequence of IPNV isolates in China. This study provided a robust reference for diagnosis and/or control of IPNV prevalent in China.
ITS1: a DNA barcode better than ITS2 in eukaryotes?
Wang, Xin-Cun; Liu, Chang; Huang, Liang; Bengtsson-Palme, Johan; Chen, Haimei; Zhang, Jian-Hui; Cai, Dayong; Li, Jian-Qin
2015-05-01
A DNA barcode is a short piece of DNA sequence used for species determination and discovery. The internal transcribed spacer (ITS/ITS2) region has been proposed as the standard DNA barcode for fungi and seed plants and has been widely used in DNA barcoding analyses for other biological groups, for example algae, protists and animals. The ITS region consists of both ITS1 and ITS2 regions. Here, a large-scale meta-analysis was carried out to compare ITS1 and ITS2 from three aspects: PCR amplification, DNA sequencing and species discrimination, in terms of the presence of DNA barcoding gaps, species discrimination efficiency, sequence length distribution, GC content distribution and primer universality. In total, 85 345 sequence pairs in 10 major groups of eukaryotes, including ascomycetes, basidiomycetes, liverworts, mosses, ferns, gymnosperms, monocotyledons, eudicotyledons, insects and fishes, covering 611 families, 3694 genera, and 19 060 species, were analysed. Using similarity-based methods, we calculated species discrimination efficiencies for ITS1 and ITS2 in all major groups, families and genera. Using Fisher's exact test, we found that ITS1 has significantly higher efficiencies than ITS2 in 17 of the 47 families and 20 of the 49 genera, which are sample-rich. By in silico PCR amplification evaluation, primer universality of the extensively applied ITS1 primers was found superior to that of ITS2 primers. Additionally, shorter length of amplification product and lower GC content was discovered to be two other advantages of ITS1 for sequencing. In summary, ITS1 represents a better DNA barcode than ITS2 for eukaryotic species. © 2014 John Wiley & Sons Ltd.
Brewer, Marin Talbot; Turner, Ashley N; Brannen, Phillip M; Cline, William O; Richardson, Elizabeth A
2014-01-01
Exobasidium leaf and fruit spot of blueberry (Vaccinium section Cyanococcus) is an emerging disease that has rapidly increased in prevalence throughout the southeastern USA. To determine whether this disease is caused by a new species of Exobasidium, we studied the morphology and phylogenetic relationship of the causal fungus compared with other members of the genus, including the type species E. vaccinii and other species that parasitize blueberry and cranberry (V. macrocarpon). Both scanning electron microscopy and light microscopy were used for morphological characterization. For phylogenetic analyses, we sequenced the large subunit of the rDNA (LSU) from 10 isolates collected from leaf or fruit spots of rabbiteye blueberry (V. virgatum), highbush blueberry (V. corymbosum) and southern highbush blueberry (Vaccinium interspecific hybrid) from Georgia and North Carolina and six isolates from leaf spots of lowbush blueberry (V. angustifolium) from Maine and Nova Scotia, Canada. LSU was sequenced from isolates causing red leaf disease of lowbush blueberry and red leaf spot (E. rostrupii) and red shoot (E. perenne) of cranberry. In addition, LSU sequences from GenBank, including sequences with high similarity to the emerging parasite and from Exobasidium spp. parasitizing other Vaccinium spp. and related hosts, were obtained. All sequences were aligned and subjected to phylogenetic analyses. Results indicated that the emerging parasite in the southeastern USA differs morphologically and phylogenetically from other described species and is described herein as Exobasidium maculosum. Within the southeastern USA, clustering based on host species, host tissue type (leaf or fruit) or geographic region was not detected; however, leaf spot isolates from lowbush blueberry were genetically different and likely represent a unique species. © 2014 by The Mycological Society of America.
Population Genomics of Paramecium Species.
Johri, Parul; Krenek, Sascha; Marinov, Georgi K; Doak, Thomas G; Berendonk, Thomas U; Lynch, Michael
2017-05-01
Population-genomic analyses are essential to understanding factors shaping genomic variation and lineage-specific sequence constraints. The dearth of such analyses for unicellular eukaryotes prompted us to assess genomic variation in Paramecium, one of the most well-studied ciliate genera. The Paramecium aurelia complex consists of ∼15 morphologically indistinguishable species that diverged subsequent to two rounds of whole-genome duplications (WGDs, as long as 320 MYA) and possess extremely streamlined genomes. We examine patterns of both nuclear and mitochondrial polymorphism, by sequencing whole genomes of 10-13 worldwide isolates of each of three species belonging to the P. aurelia complex: P. tetraurelia, P. biaurelia, P. sexaurelia, as well as two outgroup species that do not share the WGDs: P. caudatum and P. multimicronucleatum. An apparent absence of global geographic population structure suggests continuous or recent dispersal of Paramecium over long distances. Intergenic regions are highly constrained relative to coding sequences, especially in P. caudatum and P. multimicronucleatum that have shorter intergenic distances. Sequence diversity and divergence are reduced up to ∼100-150 bp both upstream and downstream of genes, suggesting strong constraints imposed by the presence of densely packed regulatory modules. In addition, comparison of sequence variation at non-synonymous and synonymous sites suggests similar recent selective pressures on paralogs within and orthologs across the deeply diverging species. This study presents the first genome-wide population-genomic analysis in ciliates and provides a valuable resource for future studies in evolutionary and functional genetics in Paramecium. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Xiong, Lan; Dion, Patrick; Montplaisir, Jacques; Levchenko, Anastasia; Thibodeau, Pascale; Karemera, Liliane; Rivière, Jean-Baptiste; St-Onge, Judith; Gaspar, Claudia; Dubé, Marie-Pierre; Desautels, Alex; Turecki, Gustavo; Rouleau, Guy A
2007-10-05
Converging evidence from clinical observations, brain imaging and pathological findings strongly indicate impaired brain iron regulation in restless legs syndrome (RLS). Animal models with mutation in (DMT1) divalent metal transporter 1 gene, an important brain iron transporter, demonstrate a similar iron deficiency profile as found in RLS brain. The human DMT1 gene, mapped to chromosome 12q near the RLS1 locus, qualifies as an excellent functional and possible positional candidate for RLS. DMT1 protein levels were assessed in lymphoblastoid cell lines from RLS patients and controls. Linkage analyses were carried out with markers flanking and within the DMT1 gene. Selected patient samples from RLS families with compatible linkage to the RLS1 locus on 12q were fully sequenced in both the coding regions and the long stretches of UTR sequences. Finally, selected sequence variants were further studied in case/control and family-based association tests. A clinical association of anemia and RLS was further confirmed in this study. There was no detectable difference in DMT1 protein levels between RLS patient lymphoblastoid cell lines and normal controls. Non-parametric linkage analyses failed to identify any significant linkage signals within the DMT1 gene region. Sequencing of selected patients did not detect any sequence variant(s) compatible with DMT1 harboring RLS causative mutation(s). Further studies did not find any association between ten SNPs, spanning the whole DMT1 gene region, and RLS affection status. Finally, two DMT1 intronic SNPs showed positive association with RLS in patients with a history of anemia, when compared to RLS patients without anemia. (c) 2007 Wiley-Liss, Inc.
Genetic characterization of a novel astrovirus in Pekin ducks.
Liao, Qinfeng; Liu, Ning; Wang, Xiaoyan; Wang, Fumin; Zhang, Dabing
2015-06-01
Three divergent groups of duck astroviruses (DAstVs), namely DAstV-1, DAstV-2 (formerly duck hepatitis virus type 3) and DAstV-3 (isolate CPH), and other avastroviruses are known to infect domestic ducks. To provide more data regarding the molecular epidemiology of astroviruses in domestic ducks, we examined the prevalence of astroviruses in 136 domestic duck samples collected from four different provinces of China. Nineteen goose samples were also included. Using an astrovirus-specific reverse transcription-PCR assay, two groups of astroviruses were detected from our samples. A group of astroviruses detected from Pekin ducks, Shaoxing ducks and Landes geese were highly similar to the newly discovered DAstV-3. More interestingly, a novel group of avastroviruses, which we named DAstV-4, was detected in Pekin ducks. Following full-length sequencing and sequence analysis, the variation between DAstV-4 and other avastroviruses in terms of lengths of genome and internal component was highlighted. Sequence identity and phylogenetic analyses based on the amino acid sequences of the three open reading frames (ORFs) clearly demonstrated that DAstV-4 was highly divergent from all other avastroviruses. Further analyses showed that DAstV-4 shared low levels of genome identities (50-58%) and high levels of mean amino acid genetic distances in the ORF2 sequences (0.520-0.801) with other avastroviruses, suggesting DAstV-4 may represent an additional avastrovirus species although the taxonomic relationship of DAstV-4 to DAstV-3 remains to be resolved. The present works contribute to the understanding of epidemiology, ecology and taxonomy of astroviruses in ducks. Copyright © 2015 Elsevier B.V. All rights reserved.
Begum, Rabeya; Zakrzewski, Falk; Menzel, Gerhard; Weber, Beatrice; Alam, Sheikh Shamimul; Schmidt, Thomas
2013-07-01
The cultivated jute species Corchorus olitorius and Corchorus capsularis are important fibre crops. The analysis of repetitive DNA sequences, comprising a major part of plant genomes, has not been carried out in jute but is useful to investigate the long-range organization of chromosomes. The aim of this study was the identification of repetitive DNA sequences to facilitate comparative molecular and cytogenetic studies of two jute cultivars and to develop a fluorescent in situ hybridization (FISH) karyotype for chromosome identification. A plasmid library was generated from C. olitorius and C. capsularis with genomic restriction fragments of 100-500 bp, which was complemented by targeted cloning of satellite DNA by PCR. The diversity of the repetitive DNA families was analysed comparatively. The genomic abundance and chromosomal localization of different repeat classes were investigated by Southern analysis and FISH, respectively. The cytosine methylation of satellite arrays was studied by immunolabelling. Major satellite repeats and retrotransposons have been identified from C. olitorius and C. capsularis. The satellite family CoSat I forms two undermethylated species-specific subfamilies, while the long terminal repeat (LTR) retrotransposons CoRetro I and CoRetro II show similarity to the Metaviridea of plant retroelements. FISH karyotypes were developed by multicolour FISH using these repetitive DNA sequences in combination with 5S and 18S-5·8S-25S rRNA genes which enable the unequivocal chromosome discrimination in both jute species. The analysis of the structure and diversity of the repeated DNA is crucial for genome sequence annotation. The reference karyotypes will be useful for breeding of jute and provide the basis for karyotyping homeologous chromosomes of wild jute species to reveal the genetic and evolutionary relationship between cultivated and wild Corchorus species.
Hamada, K; Gleason, S L; Levi, B Z; Hirschfeld, S; Appella, E; Ozato, K
1989-11-01
Transcription of major histocompatibility complex (MHC) class I genes is regulated by the conserved MHC class I regulatory element (CRE). The CRE has two factor-binding sites, region I and region II, both of which elicit enhancer function. By screening a mouse lambda gt 11 library with the CRE as a probe, we isolated a cDNA clone that encodes a protein capable of binding to region II of the CRE. This protein, H-2RIIBP (H-2 region II binding protein), bound to the native region II sequence, but not to other MHC cis-acting sequences or to mutant region II sequences, similar to the naturally occurring region II factor in mouse cells. The deduced amino acid sequence of H-2RIIBP revealed two putative zinc fingers homologous to the DNA-binding domain of steroid/thyroid hormone receptors. Although sequence similarity in other regions was minimal, H-2RIIBP has apparent modular domains characteristic of the nuclear hormone receptors. Further analyses showed that both H-2RIIBP and the natural region II factor bind to the estrogen response element (ERE) of the vitellogenin A2 gene. The ERE is composed of a palindrome, and half of this palindrome resembles the region II binding site of the MHC CRE. These results indicate that H-2RIIBP (i) is a member of the superfamily of nuclear hormone receptors and (ii) may regulate not only MHC class I genes but also genes containing the ERE and related sequences. Sequences homologous to the H-2RIIBP gene are widely conserved in the animal kingdom. H-2RIIBP mRNA is expressed in many mouse tissues, in agreement with the distribution of the natural region II factor.
Structural studies of the Sputnik virophage.
Sun, Siyang; La Scola, Bernard; Bowman, Valorie D; Ryan, Christopher M; Whitelegge, Julian P; Raoult, Didier; Rossmann, Michael G
2010-01-01
The virophage Sputnik is a satellite virus of the giant mimivirus and is the only satellite virus reported to date whose propagation adversely affects its host virus' production. Genome sequence analysis showed that Sputnik has genes related to viruses infecting all three domains of life. Here, we report structural studies of Sputnik, which show that it is about 740 A in diameter, has a T=27 icosahedral capsid, and has a lipid membrane inside the protein shell. Structural analyses suggest that the major capsid protein of Sputnik is likely to have a double jelly-roll fold, although sequence alignments do not show any detectable similarity with other viral double jelly-roll capsid proteins. Hence, the origin of Sputnik's capsid might have been derived from other viruses prior to its association with mimivirus.
Structural Studies of the Sputnik Virophage▿
Sun, Siyang; La Scola, Bernard; Bowman, Valorie D.; Ryan, Christopher M.; Whitelegge, Julian P.; Raoult, Didier; Rossmann, Michael G.
2010-01-01
The virophage Sputnik is a satellite virus of the giant mimivirus and is the only satellite virus reported to date whose propagation adversely affects its host virus' production. Genome sequence analysis showed that Sputnik has genes related to viruses infecting all three domains of life. Here, we report structural studies of Sputnik, which show that it is about 740 Å in diameter, has a T=27 icosahedral capsid, and has a lipid membrane inside the protein shell. Structural analyses suggest that the major capsid protein of Sputnik is likely to have a double jelly-roll fold, although sequence alignments do not show any detectable similarity with other viral double jelly-roll capsid proteins. Hence, the origin of Sputnik's capsid might have been derived from other viruses prior to its association with mimivirus. PMID:19889775
Gopal, J; Yebra, M J; Bhagwat, A S
1994-01-01
The methyltransferase (MTase) in the DsaV restriction--modification system methylates within 5'-CCNGG sequences. We have cloned the gene for this MTase and determined its sequence. The predicted sequence of the MTase protein contains sequence motifs conserved among all cytosine-5 MTases and is most similar to other MTases that methylate CCNGG sequences, namely M.ScrFI and M.SsoII. All three MTases methylate the internal cytosine within their recognition sequence. The 'variable' region within the three enzymes that methylate CCNGG can be aligned with the sequences of two enzymes that methylate CCWGG sequences. Remarkably, two segments within this region contain significant similarity with the region of M.HhaI that is known to contact DNA bases. These alignments suggest that many cytosine-5 MTases are likely to interact with DNA using a similar structural framework. Images PMID:7971279
BLAST and FASTA similarity searching for multiple sequence alignment.
Pearson, William R
2014-01-01
BLAST, FASTA, and other similarity searching programs seek to identify homologous proteins and DNA sequences based on excess sequence similarity. If two sequences share much more similarity than expected by chance, the simplest explanation for the excess similarity is common ancestry-homology. The most effective similarity searches compare protein sequences, rather than DNA sequences, for sequences that encode proteins, and use expectation values, rather than percent identity, to infer homology. The BLAST and FASTA packages of sequence comparison programs provide programs for comparing protein and DNA sequences to protein databases (the most sensitive searches). Protein and translated-DNA comparisons to protein databases routinely allow evolutionary look back times from 1 to 2 billion years; DNA:DNA searches are 5-10-fold less sensitive. BLAST and FASTA can be run on popular web sites, but can also be downloaded and installed on local computers. With local installation, target databases can be customized for the sequence data being characterized. With today's very large protein databases, search sensitivity can also be improved by searching smaller comprehensive databases, for example, a complete protein set from an evolutionarily neighboring model organism. By default, BLAST and FASTA use scoring strategies target for distant evolutionary relationships; for comparisons involving short domains or queries, or searches that seek relatively close homologs (e.g. mouse-human), shallower scoring matrices will be more effective. Both BLAST and FASTA provide very accurate statistical estimates, which can be used to reliably identify protein sequences that diverged more than 2 billion years ago.
Martín, A C; López, R; García, P
1996-06-01
Cp-1, a bacteriophage infecting Streptococcus pneumoniae, has a linear double-stranded DNA genome, with a terminal protein covalently linked to its 5' ends, that replicates by the protein-priming mechanism. We describe here the complete DNA sequence and transcriptional map of the Cp-1 genome. These analyses have led to the firm assignment of 10 genes and the localization of 19 additional open reading frames in the 19,345-bp Cp-1 DNA. Striking similarities and differences between some of these proteins and those of the Bacillus subtilis phage phi 29, a system that also replicates its DNA by the protein-priming mechanism, have been revealed. The genes coding for structural proteins and assembly factors are located in the central part of the Cp-1 genome. Several proteins corresponding to the predicted gene products were identified by in vitro and in vivo expression of the cloned genes. Mature major head protein from the virion particles results from hydrolysis of the primary gene product at the His-49 residue, whereas the phage gene is expressed in Escherichia coli without modification. We have also identified two open reading frames coding for proteins that show high degrees of similarity to the N- and C-terminal regions, respectively, of the single tail protein identified in phi 29. Sequencing and primer extension analysis suggest transcription of a small RNA showing a secondary structure similar to that of the prohead RNA required for the ATP-dependent packaging of phi 29 DNA. On the basis of its temporal expression, transcription of the Cp-1 genome takes place in two stages, early and late. Combined Northern (RNA) blot and primer extension experiments allowed us to map the 5' initiation sites of the transcripts, and we found that only three genes were transcribed from right to left. These analyses reveal that there are also noticeable differences between Cp-l and phi 29 in transcriptional organization. Considered together, the observations reported here provide new tangible evidence on phylogenetic relationships between B. subtilis and S. pneumoniae.
Raju, Nikku L; Gnanesh, Belaghihalli N; Lekha, Pazhamala; Jayashree, Balaji; Pande, Suresh; Hiremath, Pavana J; Byregowda, Munishamappa; Singh, Nagendra K; Varshney, Rajeev K
2010-03-11
Pigeonpea (Cajanus cajan (L.) Millsp) is one of the major grain legume crops of the tropics and subtropics, but biotic stresses [Fusarium wilt (FW), sterility mosaic disease (SMD), etc.] are serious challenges for sustainable crop production. Modern genomic tools such as molecular markers and candidate genes associated with resistance to these stresses offer the possibility of facilitating pigeonpea breeding for improving biotic stress resistance. Availability of limited genomic resources, however, is a serious bottleneck to undertake molecular breeding in pigeonpea to develop superior genotypes with enhanced resistance to above mentioned biotic stresses. With an objective of enhancing genomic resources in pigeonpea, this study reports generation and analysis of comprehensive resource of FW- and SMD- responsive expressed sequence tags (ESTs). A total of 16 cDNA libraries were constructed from four pigeonpea genotypes that are resistant and susceptible to FW ('ICPL 20102' and 'ICP 2376') and SMD ('ICP 7035' and 'TTB 7') and a total of 9,888 (9,468 high quality) ESTs were generated and deposited in dbEST of GenBank under accession numbers GR463974 to GR473857 and GR958228 to GR958231. Clustering and assembly analyses of these ESTs resulted into 4,557 unique sequences (unigenes) including 697 contigs and 3,860 singletons. BLASTN analysis of 4,557 unigenes showed a significant identity with ESTs of different legumes (23.2-60.3%), rice (28.3%), Arabidopsis (33.7%) and poplar (35.4%). As expected, pigeonpea ESTs are more closely related to soybean (60.3%) and cowpea ESTs (43.6%) than other plant ESTs. Similarly, BLASTX similarity results showed that only 1,603 (35.1%) out of 4,557 total unigenes correspond to known proteins in the UniProt database (
2010-01-01
Background Pigeonpea (Cajanus cajan (L.) Millsp) is one of the major grain legume crops of the tropics and subtropics, but biotic stresses [Fusarium wilt (FW), sterility mosaic disease (SMD), etc.] are serious challenges for sustainable crop production. Modern genomic tools such as molecular markers and candidate genes associated with resistance to these stresses offer the possibility of facilitating pigeonpea breeding for improving biotic stress resistance. Availability of limited genomic resources, however, is a serious bottleneck to undertake molecular breeding in pigeonpea to develop superior genotypes with enhanced resistance to above mentioned biotic stresses. With an objective of enhancing genomic resources in pigeonpea, this study reports generation and analysis of comprehensive resource of FW- and SMD- responsive expressed sequence tags (ESTs). Results A total of 16 cDNA libraries were constructed from four pigeonpea genotypes that are resistant and susceptible to FW ('ICPL 20102' and 'ICP 2376') and SMD ('ICP 7035' and 'TTB 7') and a total of 9,888 (9,468 high quality) ESTs were generated and deposited in dbEST of GenBank under accession numbers GR463974 to GR473857 and GR958228 to GR958231. Clustering and assembly analyses of these ESTs resulted into 4,557 unique sequences (unigenes) including 697 contigs and 3,860 singletons. BLASTN analysis of 4,557 unigenes showed a significant identity with ESTs of different legumes (23.2-60.3%), rice (28.3%), Arabidopsis (33.7%) and poplar (35.4%). As expected, pigeonpea ESTs are more closely related to soybean (60.3%) and cowpea ESTs (43.6%) than other plant ESTs. Similarly, BLASTX similarity results showed that only 1,603 (35.1%) out of 4,557 total unigenes correspond to known proteins in the UniProt database (≤ 1E-08). Functional categorization of the annotated unigenes sequences showed that 153 (3.3%) genes were assigned to cellular component category, 132 (2.8%) to biological process, and 132 (2.8%) in molecular function. Further, 19 genes were identified differentially expressed between FW- responsive genotypes and 20 between SMD- responsive genotypes. Generated ESTs were compiled together with 908 ESTs available in public domain, at the time of analysis, and a set of 5,085 unigenes were defined that were used for identification of molecular markers in pigeonpea. For instance, 3,583 simple sequence repeat (SSR) motifs were identified in 1,365 unigenes and 383 primer pairs were designed. Assessment of a set of 84 primer pairs on 40 elite pigeonpea lines showed polymorphism with 15 (28.8%) markers with an average of four alleles per marker and an average polymorphic information content (PIC) value of 0.40. Similarly, in silico mining of 133 contigs with ≥ 5 sequences detected 102 single nucleotide polymorphisms (SNPs) in 37 contigs. As an example, a set of 10 contigs were used for confirming in silico predicted SNPs in a set of four genotypes using wet lab experiments. Occurrence of SNPs were confirmed for all the 6 contigs for which scorable and sequenceable amplicons were generated. PCR amplicons were not obtained in case of 4 contigs. Recognition sites for restriction enzymes were identified for 102 SNPs in 37 contigs that indicates possibility of assaying SNPs in 37 genes using cleaved amplified polymorphic sequences (CAPS) assay. Conclusion The pigeonpea EST dataset generated here provides a transcriptomic resource for gene discovery and development of functional markers associated with biotic stress resistance. Sequence analyses of this dataset have showed conservation of a considerable number of pigeonpea transcripts across legume and model plant species analysed as well as some putative pigeonpea specific genes. Validation of identified biotic stress responsive genes should provide candidate genes for allele mining as well as candidate markers for molecular breeding. PMID:20222972
Categorizing accident sequences in the external radiotherapy for risk analysis
2013-01-01
Purpose This study identifies accident sequences from the past accidents in order to help the risk analysis application to the external radiotherapy. Materials and Methods This study reviews 59 accidental cases in two retrospective safety analyses that have collected the incidents in the external radiotherapy extensively. Two accident analysis reports that accumulated past incidents are investigated to identify accident sequences including initiating events, failure of safety measures, and consequences. This study classifies the accidents by the treatments stages and sources of errors for initiating events, types of failures in the safety measures, and types of undesirable consequences and the number of affected patients. Then, the accident sequences are grouped into several categories on the basis of similarity of progression. As a result, these cases can be categorized into 14 groups of accident sequence. Results The result indicates that risk analysis needs to pay attention to not only the planning stage, but also the calibration stage that is committed prior to the main treatment process. It also shows that human error is the largest contributor to initiating events as well as to the failure of safety measures. This study also illustrates an event tree analysis for an accident sequence initiated in the calibration. Conclusion This study is expected to provide sights into the accident sequences for the prospective risk analysis through the review of experiences. PMID:23865005
Gulitz, A; Stadie, J; Ehrmann, M A; Ludwig, W; Vogel, R F
2013-04-01
The aim of this study was to analyse the bacterial microbiota of water kefir using culture-independent methods. We compared four water kefirs of different origins using 16S rDNA amplicon sequencing and ARDRA. The microbiota consisted of different proportions of the genera Lactobacillus (Lact.), Leuconostoc (Leuc.), Acetobacter (Acet.) and Gluconobacter. Surprisingly, varying but consistently high numbers of sequences representing members of the genus Bifidobacterium (Bif.) were found in all kefirs. Whereas part of the bifidobacterial sequences could be assigned to Bifidobacterium psychraerophilum, a majority of sequences identical to each other could not be assigned to any known species. A nearly full-length sequence of the latter exhibited a beyond-species similarity (96.4%) with the sequence from the closest relative species Bif. psychraerophilum. A Bifidobacterium-specific ARDRA analysis reflected the abundance of the novel Bifidobacterium species by revealing its unique MboI restriction profile. Attempts to isolate the bifidobacteria were successful for Bif. psychraerophilum only. The complexity of the water kefir microbiota has been underestimated in previously studies. The occurrence of bifidobacteria as part of the consortium is novel. These data give new insights into the understanding of the complexity of food fermentations and underline the need for approaches detecting noncultivable organisms. © 2013 The Society for Applied Microbiology.
Genome Sequences of Pseudomonas spp. Isolated from Cereal Crops
Stiller, Jiri; Covarelli, Lorenzo; Lindeberg, Magdalen; Shivas, Roger G.; Manners, John M.
2013-01-01
Compared to those of dicot-infecting bacteria, the available genome sequences of bacteria that infect wheat and barley are limited. Herein, we report the draft genome sequences of four pseudomonads originally isolated from these cereals. These genome sequences provide a useful resource for comparative analyses within the genus and for cross-kingdom analyses of plant pathogenesis. PMID:23661484
Family values in the age of genomics: comparative analyses of temperate bacteriophage HK022.
Weisberg, R A; Gottesmann, M E; Hendrix, R W; Little, J W
1999-01-01
HK022 is a temperate coliphage related to phage lambda. Its chromosome has been completely sequenced, and several aspects of its life cycle have been intensively studied. In the overall arrangement, expression, and function of most of its genes, HK022 broadly resembles lambda and other members of the lambda family. Upon closer view, significant differences emerge. The differences reveal alternative strategies used by related phages to cope with similar problems and illuminate previously unknown regulatory and structural motifs. HK022 prophages protect lysogens from superinfection by producing a sequence-specific RNA binding protein that prematurely terminates nascent transcripts of infecting phage. It uses a novel RNA-based mechanism to antiterminate its own early transcription. The HK022 protein shell is strengthened by a complex pattern of covalent subunit interlinking to form a unitary structure that resembles chain-mail armour. Its integrase and repressor proteins are similar to those of lambda, but the differences provide insights into the evolution of biological specificity and the elements needed for construction of a stable genetic switch.
Oba, Yuichi; Ojika, Makoto; Inouye, Satoshi
2004-03-31
This is the first identification of a long-chain fatty acyl-CoA synthetase in Drosophila by enzymatic characterization. The gene product of CG6178 (CG6178) in Drosophila melanogaster genome, which has a high sequence similarity to firefly luciferase, has been expressed and characterized. CG6178 showed long-chain fatty acyl-CoA synthetic activity in the presence of ATP, CoA and Mg(2+), suggesting a fatty acyl adenylate is an intermediate. Recently, it was revealed that firefly luciferase has two catalytic functions, monooxygenase (luciferase) and AMP-mediated CoA ligase (fatty acyl-CoA synthetase). However, unlike firefly luciferase, CG6178 did not show luminescence activity in the presence of firefly luciferin, ATP, CoA and Mg(2+). The enzymatic properties of CG6178 including substrate specificity, pH dependency and optimal temperature were close to those of firefly luciferase and rat fatty acyl-CoA synthetase. Further, phylogenic analyses strongly suggest that the firefly luciferase gene may have evolved from a fatty acyl-CoA synthetase gene as a common ancestral gene.
Milanin, Tiago; Atkinson, Stephen D; Silva, Márcia R M; Alves, Roberto G; Tavares, Luiz Eduardo R; Ribeiro, Amanda M; Maia, Antonio A M
2018-06-01
We investigated the involvement of oligochaetes in the life cycles of fresh water myxozoan parasites in Brazil. In a fish farm in the State of Mato Grosso do Sul, we examined 192 oligochaetes and found that two (1%) released Aurantiactinomyxon type actinospores. We identified infected oligochaetes by morphology: both were Pristina synclites, from family Naididae. This is the first report of the involvement of this species in the life cycle of myxozoans. Small-subunit ribosomal DNA sequences of Aurantiactinomyxon type 1 (1882 nt) and Aurantiactinomyxon type 2 (1900 nt) did not match any previously sequenced myxozoan in the NCBI database, with the highest BLAST search similarities of 83% with Myxobolus batalhensis MF361090 and 93% with Henneguya maculosus KF296344, respectively, and the two aurantiactinomyxons were only 75% similar to each other (over ~ 1900 bases). Phylogenetic analyses showed that Aurantiactinomyxon type 1 had closest affinities with myxozoans from fish hosts in Order Characiformes, and Aurantiactinomyxon type 2 had affinities with myxozoans from fish of Order Siluriformes.
Molecular Evidence of Chlamydia-Like Organisms in the Feces of Myotis daubentonii Bats.
Hokynar, K; Vesterinen, E J; Lilley, T M; Pulliainen, A T; Korhonen, S J; Paavonen, J; Puolakkainen, M
2017-01-15
Chlamydia-like organisms (CLOs) are recently identified members of the Chlamydiales order. CLOs share intracellular lifestyles and biphasic developmental cycles, and they have been detected in environmental samples as well as in various hosts such as amoebae and arthropods. In this study, we screened bat feces for the presence of CLOs by molecular analysis. Using pan-Chlamydiales PCR targeting the 16S rRNA gene, Chlamydiales DNA was detected in 54% of the specimens. PCR amplification, sequencing, and phylogenetic analysis of the 16S rRNA and 23S rRNA genes were used to classify positive specimens and infer their phylogenetic relationships. Most sequences matched best with Rhabdochlamydia species or uncultured Chlamydia sequences identified in ticks. Another set of sequences matched best with sequences of the Chlamydia genus or uncultured Chlamydiales from snakes. To gain evidence of whether CLOs in bat feces are merely diet borne, we analyzed insects trapped from the same location where the bats foraged. Interestingly, the CLO sequences resembling Rhabdochlamydia spp. were detected in insect material as well, but the other set of CLO sequences was not, suggesting that this set might not originate from prey. Thus, bats represent another potential host for Chlamydiales and could harbor novel, previously unidentified members of this order. Several pathogenic viruses are known to colonize bats, and recent analyses indicate that bats are also reservoir hosts for bacterial genera. Chlamydia-like organisms (CLOs) have been detected in several animal species. CLOs have high 16S rRNA sequence similarity to Chlamydiaceae and exhibit similar intracellular lifestyles and biphasic developmental cycles. Our study describes the frequent occurrence of CLO DNA in bat feces, suggesting an expanding host species spectrum for the Chlamydiales As bats can acquire various infectious agents through their diet, prey insects were also studied. We identified CLO sequences in bats that matched best with sequences in prey insects but also CLO sequences not detected in prey insects. This suggests that a portion of CLO DNA present in bat feces is not prey borne. Furthermore, some sequences from bat droppings not originating from their diet might well represent novel, previously unidentified members of the Chlamydiales order. Copyright © 2016 American Society for Microbiology.
Mahoney, Meredith J.; Parks, Duncan S.M.; Fellers, Gary M.
2003-01-01
Uta stansburiana and Elgaria multicarinata occur on several California Channel Islands, and recent introduction of some populations has been suggested because of similarity in life-history traits and body size to mainland populations. We sequenced representatives of each species from mainland southern California and some of the islands on which they occur. For each species, cytochrome bsequence divergence is low across the narrow geographic area sampled. Analyses of 14 haplotypes of U. stansburiana suggest long-established residency on Santa Catalina and San Clemente Islands but more recent arrival on San Nicolas and Santa Cruz Islands. Analyses of eight haplotypes of E. multicarinata suggest these lizards may have been recently transported to San Nicolas Island.
NASA Astrophysics Data System (ADS)
Dolezalova, J.; Popelka, S.
2016-06-01
The paper is dealing with scanpath comparison of eye-tracking data recorded during case study focused on the evaluation of 2D and 3D city maps. The experiment contained screenshots from three map portals. Two types of maps were used - standard map and 3D visualization. Respondents' task was to find particular point symbol on the map as fast as possible. Scanpath comparison is one group of the eye-tracking data analyses methods used for revealing the strategy of the respondents. In cartographic studies, the most commonly used application for scanpath comparison is eyePatterns that output is hierarchical clustering and a tree graph representing the relationships between analysed sequences. During an analysis of the algorithm generating a tree graph, it was found that the outputs do not correspond to the reality. We proceeded to the creation of a new tool called ScanGraph. This tool uses visualization of cliques in simple graphs and is freely available at www.eyetracking.upol.cz/scangraph. Results of the study proved the functionality of the tool and its suitability for analyses of different strategies of map readers. Based on the results of the tool, similar scanpaths were selected, and groups of respondents with similar strategies were identified. With this knowledge, it is possible to analyse the relationship between belonging to the group with similar strategy and data gathered from the questionnaire (age, sex, cartographic knowledge, etc.) or type of stimuli (2D, 3D map).
2011-01-01
Background Pneumonia and myocarditis are the most commonly reported diseases due to Histophilus somni, an opportunistic pathogen of the reproductive and respiratory tracts of cattle. Thus far only a few genes involved in metabolic and virulence functions have been identified and characterized in H. somni using traditional methods. Analyses of the genome sequences of several Pasteurellaceae species have provided insights into their biology and evolution. In view of the economic and ecological importance of H. somni, the genome sequence of pneumonia strain 2336 has been determined and compared to that of commensal strain 129Pt and other members of the Pasteurellaceae. Results The chromosome of strain 2336 (2,263,857 bp) contained 1,980 protein coding genes, whereas the chromosome of strain 129Pt (2,007,700 bp) contained only 1,792 protein coding genes. Although the chromosomes of the two strains differ in size, their average GC content, gene density (total number of genes predicted on the chromosome), and percentage of sequence (number of genes) that encodes proteins were similar. The chromosomes of these strains also contained a number of discrete prophage regions and genomic islands. One of the genomic islands in strain 2336 contained genes putatively involved in copper, zinc, and tetracycline resistance. Using the genome sequence data and comparative analyses with other members of the Pasteurellaceae, several H. somni genes that may encode proteins involved in virulence (e.g., filamentous haemaggutinins, adhesins, and polysaccharide biosynthesis/modification enzymes) were identified. The two strains contained a total of 17 ORFs that encode putative glycosyltransferases and some of these ORFs had characteristic simple sequence repeats within them. Most of the genes/loci common to both the strains were located in different regions of the two chromosomes and occurred in opposite orientations, indicating genome rearrangement since their divergence from a common ancestor. Conclusions Since the genome of strain 129Pt was ~256,000 bp smaller than that of strain 2336, these genomes provide yet another paradigm for studying evolutionary gene loss and/or gain in regard to virulence repertoire and pathogenic ability. Analyses of the complete genome sequences revealed that bacteriophage- and transposon-mediated horizontal gene transfer had occurred at several loci in the chromosomes of strains 2336 and 129Pt. It appears that these mobile genetic elements have played a major role in creating genomic diversity and phenotypic variability among the two H. somni strains. PMID:22111657
Siddaramappa, Shivakumara; Challacombe, Jean F; Duncan, Alison J; Gillaspy, Allison F; Carson, Matthew; Gipson, Jenny; Orvis, Joshua; Zaitshik, Jeremy; Barnes, Gentry; Bruce, David; Chertkov, Olga; Detter, J Chris; Han, Cliff S; Tapia, Roxanne; Thompson, Linda S; Dyer, David W; Inzana, Thomas J
2011-11-23
Pneumonia and myocarditis are the most commonly reported diseases due to Histophilus somni, an opportunistic pathogen of the reproductive and respiratory tracts of cattle. Thus far only a few genes involved in metabolic and virulence functions have been identified and characterized in H. somni using traditional methods. Analyses of the genome sequences of several Pasteurellaceae species have provided insights into their biology and evolution. In view of the economic and ecological importance of H. somni, the genome sequence of pneumonia strain 2336 has been determined and compared to that of commensal strain 129Pt and other members of the Pasteurellaceae. The chromosome of strain 2336 (2,263,857 bp) contained 1,980 protein coding genes, whereas the chromosome of strain 129Pt (2,007,700 bp) contained only 1,792 protein coding genes. Although the chromosomes of the two strains differ in size, their average GC content, gene density (total number of genes predicted on the chromosome), and percentage of sequence (number of genes) that encodes proteins were similar. The chromosomes of these strains also contained a number of discrete prophage regions and genomic islands. One of the genomic islands in strain 2336 contained genes putatively involved in copper, zinc, and tetracycline resistance. Using the genome sequence data and comparative analyses with other members of the Pasteurellaceae, several H. somni genes that may encode proteins involved in virulence (e.g., filamentous haemaggutinins, adhesins, and polysaccharide biosynthesis/modification enzymes) were identified. The two strains contained a total of 17 ORFs that encode putative glycosyltransferases and some of these ORFs had characteristic simple sequence repeats within them. Most of the genes/loci common to both the strains were located in different regions of the two chromosomes and occurred in opposite orientations, indicating genome rearrangement since their divergence from a common ancestor. Since the genome of strain 129Pt was ~256,000 bp smaller than that of strain 2336, these genomes provide yet another paradigm for studying evolutionary gene loss and/or gain in regard to virulence repertoire and pathogenic ability. Analyses of the complete genome sequences revealed that bacteriophage- and transposon-mediated horizontal gene transfer had occurred at several loci in the chromosomes of strains 2336 and 129Pt. It appears that these mobile genetic elements have played a major role in creating genomic diversity and phenotypic variability among the two H. somni strains.
Amarante, M R V; Bassetto, C C; Neves, J H; Amarante, A F T
2014-12-01
Agricultural ruminants usually harbour mixed infections of gastrointestinal nematodes. A specific diagnosis is important because distinct species can differ significantly in their fecundity and pathogenicity. Haemonchus spp. and Cooperia spp. are the most important gastrointestinal nematodes infecting ruminants in subtropical/tropical environments. In Brazil, C. punctata is more adapted to cattle than sheep. Additionally, C. spatulata appears to be more adapted to cattle, whereas C. curticei is more adapted to sheep. However, infection of sheep with C. punctata is common when cattle and sheep share the same pasture. Although morphological analyses have been widely used to identify nematodes, molecular methods can overcome technical limitations and help improve species-specific diagnoses. Genetic markers in the first and second internal transcribed spacers (ITS-1 and ITS-2, respectively) of nuclear ribosomal DNA (rDNA) have been used successfully to detect helminths. In the present study, the ITS-1 region was analysed and used to design a species-specific oligonucleotide primer pair to identify C. curticei. The polymerase chain reaction (PCR) product was sequenced and showed 97% similarity to C. oncophora partial ITS-1 clones and 99% similarity to the C. curticei sequence JF680982. The specificity of this primer pair was corroborated by the analysis of 17 species of helminths, including C. curticei, C. punctata and C. spatulata. Species-specific diagnosis, which has implications for rapid and reliable identification, can support studies on the biology, ecology and epidemiology of trichostrongylid nematodes in a particular geographical location.
Zhao, Guangyu; Li, Hu; Zhao, Ping; Cai, Wanzhi
2015-01-01
In this study, we sequenced four new mitochondrial genomes and presented comparative mitogenomic analyses of five species in the genus Peirates (Hemiptera: Reduviidae). Mitochondrial genomes of these five assassin bugs had a typical set of 37 genes and retained the ancestral gene arrangement of insects. The A+T content, AT- and GC-skews were similar to the common base composition biases of insect mtDNA. Genomic size ranges from 15,702 bp to 16,314 bp and most of the size variation was due to length and copy number of the repeat unit in the putative control region. All of the control region sequences included large tandem repeats present in two or more copies. Our result revealed similarity in mitochondrial genomes of P. atromaculatus, P. fulvescens and P. turpis, as well as the highly conserved genomic-level characteristics of these three species, e.g., the same start and stop codons of protein-coding genes, conserved secondary structure of tRNAs, identical location and length of non-coding and overlapping regions, and conservation of structural elements and tandem repeat unit in control region. Phylogenetic analyses also supported a close relationship between P. atromaculatus, P. fulvescens and P. turpis, which might be recently diverged species. The present study indicates that mitochondrial genome has important implications on phylogenetics, population genetics and speciation in the genus Peirates. PMID:25689825
Piñar, Guadalupe; Garcia-Valles, Maite; Gimeno-Torrente, Domingo; Fernandez-Turiel, Jose Luis; Ettenauer, Jörg; Sterflinger, Katja
2013-01-01
We investigated the decayed historical church window glasses of two Catalonian churches, both under Mediterranean climate. Glass surfaces were studied by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and X-ray diffraction (XRD). Their chemical composition was determined by wavelength-dispersive spectrometry (WDS) microprobe analysis. The biodiversity was investigated by molecular methods: DNA extraction from glass, amplification by PCR targeting the16S rRNA and ITS regions, and fingerprint analyses by denaturing gradient gel electrophoresis (DGGE). Clone libraries containing either PCR fragments of the bacterial 16S rDNA or the fungal ITS regions were screened by DGGE. Clone inserts were sequenced and compared with the EMBL database. Similarity values ranged from 89 to 100% to known bacteria and fungi. Biological activity in both sites was evidenced in the form of orange patinas, bio-pitting, and mineral precipitation. Analyses revealed complex bacterial communities consisting of members of the phyla Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Fungi showed less diversity than bacteria, and species of the genera Cladosporium and Phoma were dominant. The detected Actinobacteria and fungi may be responsible for the observed bio-pitting phenomenon. Moreover, some of the detected bacteria are known for their mineral precipitation capabilities. Sequence results also showed similarities with bacteria commonly found on deteriorated stone monuments, supporting the idea that medieval stained glass biodeterioration in the Mediterranean area shows a pattern comparable to that on stone. PMID:24092957
2012-01-01
Background The feline genome is valuable to the veterinary and model organism genomics communities because the cat is an obligate carnivore and a model for endangered felids. The initial public release of the Felis catus genome assembly provided a framework for investigating the genomic basis of feline biology. However, the entire set of protein coding genes has not been elucidated. Results We identified and characterized 1227 protein coding feline sequences, of which 913 map to public sequences and 314 are novel. These sequences have been deposited into NCBI's genbank database and complement public genomic resources by providing additional protein coding sequences that fill in some of the gaps in the feline genome assembly. Through functional and comparative genomic analyses, we gained an understanding of the role of these sequences in feline development, nutrition and health. Specifically, we identified 104 orthologs of human genes associated with Mendelian disorders. We detected negative selection within sequences with gene ontology annotations associated with intracellular trafficking, cytoskeleton and muscle functions. We detected relatively less negative selection on protein sequences encoding extracellular networks, apoptotic pathways and mitochondrial gene ontology annotations. Additionally, we characterized feline cDNA sequences that have mouse orthologs associated with clinical, nutritional and developmental phenotypes. Together, this analysis provides an overview of the value of our cDNA sequences and enhances our understanding of how the feline genome is similar to, and different from other mammalian genomes. Conclusions The cDNA sequences reported here expand existing feline genomic resources by providing high-quality sequences annotated with comparative genomic information providing functional, clinical, nutritional and orthologous gene information. PMID:22257742
Diversity in VP3, NSP3, and NSP4 of rotavirus B detected from Japanese cattle.
Hayashi-Miyamoto, Michiko; Murakami, Toshiaki; Minami-Fukuda, Fujiko; Tsuchiaka, Shinobu; Kishimoto, Mai; Sano, Kaori; Naoi, Yuki; Asano, Keigo; Ichimaru, Toru; Haga, Kei; Omatsu, Tsutomu; Katayama, Yukie; Oba, Mami; Aoki, Hiroshi; Shirai, Junsuke; Ishida, Motohiko; Katayama, Kazuhiko; Mizutani, Tetsuya; Nagai, Makoto
2017-04-01
Bovine rotavirus B (RVB) is an etiological agent of diarrhea mostly in adult cattle. Currently, a few sequences of viral protein (VP)1, 2, 4, 6, and 7 and nonstructural protein (NSP)1, 2, and 5 of bovine RVB are available in the DDBJ/EMBL/GenBank databases, and none have been reported for VP3, NSP3, and NSP4. In order to fill this gap in the genetic characterization of bovine RVB strains, we used a metagenomics approach and sequenced and analyzed the complete coding sequences (CDS) of VP3, NSP3, and NSP4 genes, as well as the partial or complete CDS of other genes of RVBs detected from Japanese cattle. VP3, NSP3, and NSP4 of bovine RVBs shared low nucleotide sequence identities (63.3-64.9% for VP3, 65.9-68.2% for NSP3, and 52.6-56.2% for NSP4) with those of murine, human, and porcine RVBs, suggesting that bovine RVBs belong to a novel genotype. Furthermore, significantly low amino acid sequence identities were observed for NSP4 (36.1-39.3%) between bovine RVBs and the RVBs of other species. In contrast, hydrophobic plot analysis of NSP4 revealed profiles similar to those of RVBs of other species and rotavirus A (RVA) strains. Phylogenetic analyses of all gene segments revealed that bovine RVB strains formed a cluster that branched distantly from other RVBs. These results suggest that bovine RVBs have evolved independently from other RVBs but in a similar manner to other rotaviruses. These findings provide insights into the evolution and diversity of RVB strains. Copyright © 2017 Elsevier B.V. All rights reserved.
GenoMycDB: a database for comparative analysis of mycobacterial genes and genomes.
Catanho, Marcos; Mascarenhas, Daniel; Degrave, Wim; Miranda, Antonio Basílio de
2006-03-31
Several databases and computational tools have been created with the aim of organizing, integrating and analyzing the wealth of information generated by large-scale sequencing projects of mycobacterial genomes and those of other organisms. However, with very few exceptions, these databases and tools do not allow for massive and/or dynamic comparison of these data. GenoMycDB (http://www.dbbm.fiocruz.br/GenoMycDB) is a relational database built for large-scale comparative analyses of completely sequenced mycobacterial genomes, based on their predicted protein content. Its central structure is composed of the results obtained after pair-wise sequence alignments among all the predicted proteins coded by the genomes of six mycobacteria: Mycobacterium tuberculosis (strains H37Rv and CDC1551), M. bovis AF2122/97, M. avium subsp. paratuberculosis K10, M. leprae TN, and M. smegmatis MC2 155. The database stores the computed similarity parameters of every aligned pair, providing for each protein sequence the predicted subcellular localization, the assigned cluster of orthologous groups, the features of the corresponding gene, and links to several important databases. Tables containing pairs or groups of potential homologs between selected species/strains can be produced dynamically by user-defined criteria, based on one or multiple sequence similarity parameters. In addition, searches can be restricted according to the predicted subcellular localization of the protein, the DNA strand of the corresponding gene and/or the description of the protein. Massive data search and/or retrieval are available, and different ways of exporting the result are offered. GenoMycDB provides an on-line resource for the functional classification of mycobacterial proteins as well as for the analysis of genome structure, organization, and evolution.
Thanh, Nguyen Minh; Jung, Hyungtaek; Lyons, Russell E; Njaci, Isaac; Yoon, Byoung-Ha; Chand, Vincent; Tuan, Nguyen Viet; Thu, Vo Thi Minh; Mather, Peter
2015-10-01
Striped catfish (Pangasianodon hypophthalmus) is a commercially important freshwater fish used in inland aquaculture in the Mekong Delta, Vietnam. The culture industry is facing a significant challenge however from saltwater intrusion into many low topographical coastal provinces across the Mekong Delta as a result of predicted climate change impacts. Developing genomic resources for this species can facilitate the production of improved culture lines that can withstand raised salinity conditions, and so we have applied high-throughput Ion Torrent sequencing of transcriptome libraries from six target osmoregulatory organs from striped catfish as a genomic resource for use in future selection strategies. We obtained 12,177,770 reads after trimming and processing with an average length of 97bp. De novo assemblies were generated using CLC Genomic Workbench, Trinity and Velvet/Oases with the best overall contig performance resulting from the CLC assembly. De novo assembly using CLC yielded 66,451 contigs with an average length of 478bp and N50 length of 506bp. A total of 37,969 contigs (57%) possessed significant similarity with proteins in the non-redundant database. Comparative analyses revealed that a significant number of contigs matched sequences reported in other teleost fishes, ranging in similarity from 45.2% with Atlantic cod to 52% with zebrafish. In addition, 28,879 simple sequence repeats (SSRs) and 55,721 single nucleotide polymorphisms (SNPs) were detected in the striped catfish transcriptome. The sequence collection generated in the current study represents the most comprehensive genomic resource for P. hypophthalmus available to date. Our results illustrate the utility of next-generation sequencing as an efficient tool for constructing a large genomic database for marker development in non-model species. Copyright © 2015 Elsevier B.V. All rights reserved.
Humphreys-Pereira, Danny A; Elling, Axel A
2014-01-01
Root-knot nematodes (Meloidogyne spp.) are among the most important plant pathogens. In this study, the mitochondrial (mt) genomes of the root-knot nematodes, M. chitwoodi and M. incognita were sequenced. PCR analyses suggest that both mt genomes are circular, with an estimated size of 19.7 and 18.6-19.1kb, respectively. The mt genomes each contain a large non-coding region with tandem repeats and the control region. The mt gene arrangement of M. chitwoodi and M. incognita is unlike that of other nematodes. Sequence alignments of the two Meloidogyne mt genomes showed three translocations; two in transfer RNAs and one in cox2. Compared with other nematode mt genomes, the gene arrangement of M. chitwoodi and M. incognita was most similar to Pratylenchus vulnus. Phylogenetic analyses (Maximum Likelihood and Bayesian inference) were conducted using 78 complete mt genomes of diverse nematode species. Analyses based on nucleotides and amino acids of the 12 protein-coding mt genes showed strong support for the monophyly of class Chromadorea, but only amino acid-based analyses supported the monophyly of class Enoplea. The suborder Spirurina was not monophyletic in any of the phylogenetic analyses, contradicting the Clade III model, which groups Ascaridomorpha, Spiruromorpha and Oxyuridomorpha based on the small subunit ribosomal RNA gene. Importantly, comparisons of mt gene arrangement and tree-based methods placed Meloidogyne as sister taxa of Pratylenchus, a migratory plant endoparasitic nematode, and not with the sedentary endoparasitic Heterodera. Thus, comparative analyses of mt genomes suggest that sedentary endoparasitism in Meloidogyne and Heterodera is based on convergent evolution. Copyright © 2014 Elsevier B.V. All rights reserved.
Matsuoka, Masanari; Sugita, Masatake; Kikuchi, Takeshi
2014-09-18
Proteins that share a high sequence homology while exhibiting drastically different 3D structures are investigated in this study. Recently, artificial proteins related to the sequences of the GA and IgG binding GB domains of human serum albumin have been designed. These artificial proteins, referred to as GA and GB, share 98% amino acid sequence identity but exhibit different 3D structures, namely, a 3α bundle versus a 4β + α structure. Discriminating between their 3D structures based on their amino acid sequences is a very difficult problem. In the present work, in addition to using bioinformatics techniques, an analysis based on inter-residue average distance statistics is used to address this problem. It was hard to distinguish which structure a given sequence would take only with the results of ordinary analyses like BLAST and conservation analyses. However, in addition to these analyses, with the analysis based on the inter-residue average distance statistics and our sequence tendency analysis, we could infer which part would play an important role in its structural formation. The results suggest possible determinants of the different 3D structures for sequences with high sequence identity. The possibility of discriminating between the 3D structures based on the given sequences is also discussed.
Cai, Na; Bigdeli, Tim B; Kretzschmar, Warren W; Li, Yihan; Liang, Jieqin; Hu, Jingchu; Peterson, Roseann E; Bacanu, Silviu; Webb, Bradley Todd; Riley, Brien; Li, Qibin; Marchini, Jonathan; Mott, Richard; Kendler, Kenneth S; Flint, Jonathan
2017-02-14
The China, Oxford and Virginia Commonwealth University Experimental Research on Genetic Epidemiology (CONVERGE) project on Major Depressive Disorder (MDD) sequenced 11,670 female Han Chinese at low-coverage (1.7X), providing the first large-scale whole genome sequencing resource representative of the largest ethnic group in the world. Samples are collected from 58 hospitals from 23 provinces around China. We are able to call 22 million high quality single nucleotide polymorphisms (SNP) from the nuclear genome, representing the largest SNP call set from an East Asian population to date. We use these variants for imputation of genotypes across all samples, and this has allowed us to perform a successful genome wide association study (GWAS) on MDD. The utility of these data can be extended to studies of genetic ancestry in the Han Chinese and evolutionary genetics when integrated with data from other populations. Molecular phenotypes, such as copy number variations and structural variations can be detected, quantified and analysed in similar ways.
Leyva-Mir, Santos G; Velázquez-Martínez, Guadalupe C; Tlapal-Bolaños, Bertha; Tovar-Pedraza, Juan M; Rosas-Saito, Greta H; Alvarado-Gómez, Omar G
2015-01-01
Charcoal rot caused by Macrophomina phaseolina is an important disease of sugarcane in Mexico. This study was carried out to characterize isolates of M. phaseolina obtained from sugarcane by the combination of morphological and molecular analyses. The morphological characterization of 10 isolates was performed using scanning electron microscopy and light microscopy. To confirm the morphological identification, rDNA from two representative isolates was extracted, and the internal transcribed spacer (ITS) region was amplified by polymerase chain reaction and sequenced using specific primers MpKF1 and MpKR1. Based on their morphological characteristics, all isolates were identified as M. phaseolina. Moreover, the analysis of two ITS sequences showed 100% similarity with the M. phaseolina sequences deposited in the GenBank. To our knowledge, this is the first study in the world aimed at characterizing isolates of M. phaseolina obtained from sugarcane. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.
The genome of the Lactobacillus sanfranciscensis temperate phage EV3
2013-01-01
Background Bacteriophages infection modulates microbial consortia and transduction is one of the most important mechanism involved in the bacterial evolution. However, phage contamination brings food fermentations to a halt causing economic setbacks. The number of phage genome sequences of lactic acid bacteria especially of lactobacilli is still limited. We analysed the genome of a temperate phage active on Lactobacillus sanfranciscensis, the predominant strain in type I sourdough fermentations. Results Sequencing of the DNA of EV3 phage revealed a genome of 34,834 bp and a G + C content of 36.45%. Of the 43 open reading frames (ORFs) identified, all but eight shared homology with other phages of lactobacilli. A similar genomic organization and mosaic pattern of identities align EV3 with the closely related Lactobacillus vaginalis ATCC 49540 prophage. Four unknown ORFs that had no homologies in the databases or predicted functions were identified. Notably, EV3 encodes a putative dextranase. Conclusions EV3 is the first L. sanfranciscensis phage that has been completely sequenced so far. PMID:24308641
Clades of Adeno-Associated Viruses Are Widely Disseminated in Human Tissues
Gao, Guangping; Vandenberghe, Luk H.; Alvira, Mauricio R.; Lu, You; Calcedo, Roberto; Zhou, Xiangyang; Wilson, James M.
2004-01-01
The potential for using Adeno-associated virus (AAV) as a vector for human gene therapy has stimulated interest in the Dependovirus genus. Serologic data suggest that AAV infections are prevalent in humans, although analyses of viruses and viral sequences from clinical samples are extremely limited. Molecular techniques were used in this study to successfully detect endogenous AAV sequences in 18% of all human tissues screened, with the liver and bone marrow being the most predominant sites. Sequence characterization of rescued AAV DNAs indicated a diverse array of molecular forms which segregate into clades whose members share functional and serologic similarities. One of the most predominant human clades is a hybrid of two previously described AAV serotypes, while another clade was found in humans and several species of nonhuman primates, suggesting a cross-species transmission of this virus. These data provide important information regarding the biology of parvoviruses in humans and their use as gene therapy vectors. PMID:15163731
Convergence among cave catfishes: long-branch attraction and a Bayesian relative rates test.
Wilcox, T P; García de León, F J; Hendrickson, D A; Hillis, D M
2004-06-01
Convergence has long been of interest to evolutionary biologists. Cave organisms appear to be ideal candidates for studying convergence in morphological, physiological, and developmental traits. Here we report apparent convergence in two cave-catfishes that were described on morphological grounds as congeners: Prietella phreatophila and Prietella lundbergi. We collected mitochondrial DNA sequence data from 10 species of catfishes, representing five of the seven genera in Ictaluridae, as well as seven species from a broad range of siluriform outgroups. Analysis of the sequence data under parsimony supports a monophyletic Prietella. However, both maximum-likelihood and Bayesian analyses support polyphyly of the genus, with P. lundbergi sister to Ictalurus and P. phreatophila sister to Ameiurus. The topological difference between parsimony and the other methods appears to result from long-branch attraction between the Prietella species. Similarly, the sequence data do not support several other relationships within Ictaluridae supported by morphology. We develop a new Bayesian method for examining variation in molecular rates of evolution across a phylogeny.
Lactobacillus allii sp. nov. isolated from scallion kimchi.
Jung, Min Young; Lee, Se Hee; Lee, Moeun; Song, Jung Hee; Chang, Ji Yoon
2017-12-01
A novel strain of lactic acid bacteria, WiKim39 T , was isolated from a scallion kimchi sample consisting of fermented chili peppers and vegetables. The isolate was a Gram-positive, rod-shaped, non-motile, catalase-negative and facultatively anaerobic lactic acid bacterium. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain WiKim39 T belonged to the genus Lactobacillus, and shared 97.1-98.2 % pair-wise sequence similarities with related type strains, Lactobacillus nodensis, Lactobacillus insicii, Lactobacillus versmoldensis, Lactobacillus tucceti and Lactobacillus furfuricola. The G+C content of the strain based on its genome sequence was 35.3 mol%. The ANI values between WiKim39 T and the closest relatives were lower than 80 %. Based on the phenotypic, biochemical, and phylogenetic analyses, strain WiKim39 T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus allii sp. nov. is proposed. The type strain is WiKim39 T (=KCTC 21077 T =JCM 31938 T ).
Bacterial genomes in epidemiology—present and future
Croucher, Nicholas J.; Harris, Simon R.; Grad, Yonatan H.; Hanage, William P.
2013-01-01
Sequence data are well established in the reconstruction of the phylogenetic and demographic scenarios that have given rise to outbreaks of viral pathogens. The application of similar methods to bacteria has been hindered in the main by the lack of high-resolution nucleotide sequence data from quality samples. Developing and already available genomic methods have greatly increased the amount of data that can be used to characterize an isolate and its relationship to others. However, differences in sequencing platforms and data analysis mean that these enhanced data come with a cost in terms of portability: results from one laboratory may not be directly comparable with those from another. Moreover, genomic data for many bacteria bear the mark of a history including extensive recombination, which has the potential to greatly confound phylogenetic and coalescent analyses. Here, we discuss the exacting requirements of genomic epidemiology, and means by which the distorting signal of recombination can be minimized to permit the leverage of growing datasets of genomic data from bacterial pathogens. PMID:23382424
Lactobacillus allii sp. nov. isolated from scallion kimchi
Jung, Min Young; Lee, Se Hee; Lee, Moeun; Song, Jung Hee; Chang, Ji Yoon
2017-01-01
A novel strain of lactic acid bacteria, WiKim39T, was isolated from a scallion kimchi sample consisting of fermented chili peppers and vegetables. The isolate was a Gram-positive, rod-shaped, non-motile, catalase-negative and facultatively anaerobic lactic acid bacterium. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain WiKim39T belonged to the genus Lactobacillus, and shared 97.1–98.2 % pair-wise sequence similarities with related type strains, Lactobacillus nodensis, Lactobacillus insicii, Lactobacillus versmoldensis, Lactobacillus tucceti and Lactobacillus furfuricola. The G+C content of the strain based on its genome sequence was 35.3 mol%. The ANI values between WiKim39T and the closest relatives were lower than 80 %. Based on the phenotypic, biochemical, and phylogenetic analyses, strain WiKim39T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus allii sp. nov. is proposed. The type strain is WiKim39T (=KCTC 21077T=JCM 31938T). PMID:29043955
Genetic characterization of Vibrio vulnificus strains isolated from oyster samples in Mexico.
Guerrero, Abraham; Gómez Gil Rodríguez, Bruno; Wong-Chang, Irma; Lizárraga-Partida, Marcial Leonardo
2015-01-01
Vibrio vulnificus strains were isolated from oysters that were collected at the main seafood market in Mexico City. Strains were characterized with regard to vvhA, vcg genotype, PFGE, multilocus sequence typing (MLST), and rtxA1. Analyses included a comparison with rtxA1 reference sequences. Environmental (vcgE) and clinical (vcgC) genotypes were isolated at nearly equal percentages. PFGE had high heterogeneity, but the strains clustered by vcgE or vcgC genotype. Select housekeeping genes for MLST and primers that were designed for rtxA1 domains divided the strains into two clusters according to the E or C genotype. Reference rtxA1 sequences and those from this study were also clustered according to genotype. These results confirm that this genetic dimorphism is not limited to vcg genotyping, as other studies have reported. Some environmental C genotype strains had high similarity to reference strains, which have been reported to be virulent, indicating a potential risk for oyster consumers in Mexico City.
Cloning and characterization of a DNA polymerase beta gene from Trypanosoma cruzi.
Venegas, Juan A; Aslund, Lena; Solari, Aldo
2009-06-01
A gene coding for a DNA polymerase beta from the Trypanosoma cruzi Miranda clone, belonging to the TcI lineage, was cloned (Miranda Tcpol beta), using the information from eight peptides of the T. cruzi beta-like DNA polymerase purified previously. The gene encodes for a protein of 403 amino acids which is very similar to the two T. cruzi CL Brener (TcIIe lineage) sequences published, but has three different residues in highly conserved segments. At the amino acid level, the identity of TcI-pol beta with mitochondrial pol beta and pol beta-PAK from other trypanosomatids was between 68-80% and 22-30%, respectively. Miranda Tc-pol beta protein has an N-terminal sequence similar to that described in the mitochondrial Crithidia fasciculata pol beta, which suggests that the TcI-pol beta plays a role in the organelle. Northern and Western analyses showed that this T. cruzi gene is highly expressed both in proliferative and non-proliferative developmental forms. These results suggest that, in addition to replication of kDNA in proliferative cells, this enzyme may have another function in non-proliferative cells, such as DNA repair role similar to that which has extensively been described in a vast spectrum of eukaryotic cells.
Ogura, Atsushi; Ikeo, Kazuho; Gojobori, Takashi
2004-01-01
Although the camera eye of the octopus is very similar to that of humans, phylogenetic and embryological analyses have suggested that their camera eyes have been acquired independently. It has been known as a typical example of convergent evolution. To study the molecular basis of convergent evolution of camera eyes, we conducted a comparative analysis of gene expression in octopus and human camera eyes. We sequenced 16,432 ESTs of the octopus eye, leading to 1052 nonredundant genes that have matches in the protein database. Comparing these 1052 genes with 13,303 already-known ESTs of the human eye, 729 (69.3%) genes were commonly expressed between the human and octopus eyes. On the contrary, when we compared octopus eye ESTs with human connective tissue ESTs, the expression similarity was quite low. To trace the evolutionary changes that are potentially responsible for camera eye formation, we also compared octopus-eye ESTs with the completed genome sequences of other organisms. We found that 1019 out of the 1052 genes had already existed at the common ancestor of bilateria, and 875 genes were conserved between humans and octopuses. It suggests that a larger number of conserved genes and their similar gene expression may be responsible for the convergent evolution of the camera eye. PMID:15289475
A local duplication of the Melanocortin receptor 1 locus in Astyanax
Gross, Joshua B.; Weagley, James; Stahl, Bethany A.; Ma, Li; Espinasa, Luis; McGaugh, Suzanne E.
2017-01-01
In this study, we report evidence of a novel duplication of Melanocortin receptor 1 (Mc1r) in the cavefish genome. This locus was discovered following the observation of excessive allelic diversity in a ~820 bp fragment of Mc1r amplified via degenerate PCR from a natural population of Astyanax aeneus fish from Guerrero, Mexico. The cavefish genome reveals the presence of two closely related Mc1r open reading frames separated by a 1.46 kb intergenic region. One open reading frame corresponds to the previously reported Mc1r receptor, and the other open reading frame (duplicate copy) is 975 bp in length, encoding a receptor of 325 amino acids. Sequence similarity analyses position both copies in the syntenic region of the single Mc1r locus in 16 representative craniate genomes spanning bony fish (including Astyanax) to mammals, suggesting we discovered tandem duplicates of this important gene. The two Mc1r copies share ~89% sequence similarity, and, within Astyanax, are more similar to one another compared to other melanocortin family members. Future studies will inform the precise functional significance of the duplicated Mc1r locus, and if this novel copy number variant may have adaptive significance for the Astyanax lineage. PMID:28738163
Urrutia, Eugene; Lee, Seunggeun; Maity, Arnab; Zhao, Ni; Shen, Judong; Li, Yun; Wu, Michael C
Analysis of rare genetic variants has focused on region-based analysis wherein a subset of the variants within a genomic region is tested for association with a complex trait. Two important practical challenges have emerged. First, it is difficult to choose which test to use. Second, it is unclear which group of variants within a region should be tested. Both depend on the unknown true state of nature. Therefore, we develop the Multi-Kernel SKAT (MK-SKAT) which tests across a range of rare variant tests and groupings. Specifically, we demonstrate that several popular rare variant tests are special cases of the sequence kernel association test which compares pair-wise similarity in trait value to similarity in the rare variant genotypes between subjects as measured through a kernel function. Choosing a particular test is equivalent to choosing a kernel. Similarly, choosing which group of variants to test also reduces to choosing a kernel. Thus, MK-SKAT uses perturbation to test across a range of kernels. Simulations and real data analyses show that our framework controls type I error while maintaining high power across settings: MK-SKAT loses power when compared to the kernel for a particular scenario but has much greater power than poor choices.
Descriptive and experimental analyses of variables maintaining self-injurious behavior.
Lerman, D C; Iwata, B A
1993-01-01
Independent descriptive (correlational) and functional (experimental) analyses were conducted to determine the extent to which the two methods would yield data supporting similar conclusions about variables maintaining the self-injurious behavior (SIB) of 6 subjects. For the descriptive analyses, subjects were observed in their residences and at training sites at various times each day while observers recorded naturally occurring sequences of specified subject and staff behaviors. The subjects also participated in a day program for the assessment and treatment of SIB, in which they were exposed to functional analyses that manipulated potential maintaining variables in multielement designs. Both sets of data were analyzed via conditional probabilities to identify relevant antecedent and consequent events for subjects' SIB. Using outcomes of the experimental analysis as the standard for comparison, results indicated that the descriptive analysis was useful in identifying the extent to which SIB was related to social versus nonsocial contingencies, but was limited in its ability to distinguish between positive and negative reinforcement (i.e., attention versus escape). PMID:8407680
da Silva Malone, Camila Francieli; Rigonato, Janaína; Laughinghouse, Haywood Dail; Schmidt, Éder Carlos; Bouzon, Zenilda Laurita; Wilmotte, Annick; Fiore, Marli Fátima; Sant'Anna, Célia Leite
2015-09-01
For more than a decade, the taxonomy of the Phormidiaceae has been problematic, since morphologically similar organisms represent phylogenetically distinct entities. Based on 16S rRNA gene sequence analyses, the polyphyletic genus Phormidium and other gas-vacuolated oscillatorioids appear scattered throughout the cyanobacterial tree of life. Recently, several studies have focused on understanding the oscillatorioid taxa at the generic level. At the specific level, few studies have characterized cyanobacterial strains using combined datasets (morphology, ultrastructure and molecular multilocus analyses). Using a multifaceted approach, we propose a new, well-defined genus, Cephalothrix gen. nov., by analysing seven filamentous strains that are morphologically 'intermediate' between gas-vacuolated taxa and Phormidium. Furthermore, we characterize two novel species: Cephalothrix komarekiana sp. nov. (strains CCIBt 3277, CCIBt 3279, CCIBt 3523, CCALA 155, SAG 75.79 and UTEX 1580) and Cephalothrix lacustris sp. nov. (strain CCIBt 3261). The generic name and specific epithets are proposed under the provisions of the International Code of Nomenclature for Algae, Fungi, and Plants.
Agent of whirling disease meets orphan worm: phylogenomic analyses firmly place Myxozoa in Cnidaria.
Nesnidal, Maximilian P; Helmkampf, Martin; Bruchhaus, Iris; El-Matbouli, Mansour; Hausdorf, Bernhard
2013-01-01
Myxozoa are microscopic obligate endoparasites with complex live cycles. Representatives are Myxobolus cerebralis, the causative agent of whirling disease in salmonids, and the enigmatic "orphan worm" Buddenbrockia plumatellae parasitizing in Bryozoa. Originally, Myxozoa were classified as protists, but later several metazoan characteristics were reported. However, their phylogenetic relationships remained doubtful. Some molecular phylogenetic analyses placed them as sister group to or even within Bilateria, whereas the possession of polar capsules that are similar to nematocysts of Cnidaria and of minicollagen genes suggest a close relationship between Myxozoa and Cnidaria. EST data of Buddenbrockia also indicated a cnidarian origin of Myxozoa, but were not sufficient to reject a closer relationship to bilaterians. Phylogenomic analyses of new genomic sequences of Myxobolus cerebralis firmly place Myxozoa as sister group to Medusozoa within Cnidaria. Based on the new dataset, the alternative hypothesis that Myxozoa form a clade with Bilateria can be rejected using topology tests. Sensitivity analyses indicate that this result is not affected by long branch attraction artifacts or compositional bias.
NASA Astrophysics Data System (ADS)
Strocchi, S.; Ghielmi, M.; Basilico, F.; Macchi, A.; Novario, R.; Ferretti, R.; Binaghi, E.
2016-03-01
This work quantitatively evaluates the effects induced by susceptibility characteristics of materials commonly used in dental practice on the quality of head MR images in a clinical 1.5T device. The proposed evaluation procedure measures the image artifacts induced by susceptibility in MR images by providing an index consistent with the global degradation as perceived by the experts. Susceptibility artifacts were evaluated in a near-clinical setup, using a phantom with susceptibility and geometric characteristics similar to that of a human head. We tested different dentist materials, called PAL Keramit, Ti6Al4V-ELI, Keramit NP, ILOR F, Zirconia and used different clinical MR acquisition sequences, such as "classical" SE and fast, gradient, and diffusion sequences. The evaluation is designed as a matching process between reference and artifacts affected images recording the same scene. The extent of the degradation induced by susceptibility is then measured in terms of similarity with the corresponding reference image. The matching process involves a multimodal registration task and the use an adequate similarity index psychophysically validated, based on correlation coefficient. The proposed analyses are integrated within a computer-supported procedure that interactively guides the users in the different phases of the evaluation method. 2-Dimensional and 3-dimensional indexes are used for each material and each acquisition sequence. From these, we drew a ranking of the materials, averaging the results obtained. Zirconia and ILOR F appear to be the best choice from the susceptibility artefacts point of view, followed, in order, by PAL Keramit, Ti6Al4V-ELI and Keramit NP.
Saha, P; Chakrabarti, T
2006-05-01
An aquatic bacterium, strain GPTSA100-15T, was isolated on nutritionally poor medium TSBA100 (tryptic soy broth diluted 100 times and solidified with 1.5 % agarose) and characterized using a polyphasic approach. The isolate was unable to grow on commonly used nutritionally rich media such as tryptic soy agar, nutrient agar and Luria-Bertani agar. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate was affiliated with the family 'Flexibacteraceae' in the phylum Bacteroidetes. Phylogenetically, it showed closest similarity (94.0 %) with an uncultured bacterial clone, HP1A92, detected in a sludge microbial community. Among the culturable bacteria, the isolate had highest 16S rRNA gene sequence similarity with Leadbetterella byssophila 4M15T (87.8 %). Sequence similarities with other members of the phylum Bacteroidetes were less than 85 %. The fatty acid profile of the isolate grown on TSBA100 indicated that the major fatty acid was iso-C15:0, which is also present in many members of the family 'Flexibacteraceae'. Cells of strain GPTSA100-15T are Gram-negative, strictly aerobic rods. The DNA G+C content of the isolate is 36.9 mol%. Results of phenotypic, chemotaxonomic and phylogenetic analyses clearly indicate that strain GPTSA100-15T represents a new genus within the family 'Flexibacteraceae'; the name Emticicia gen. nov. is proposed for the genus, with Emticicia oligotrophica sp. nov. as the type species. The type strain of Emticicia oligotrophica is GPTSA100-15T (=MTCC 6937T=DSM 17448T).
Yedavalli, Venkat R. K.; Chappey, Colombe; Matala, Erik; Ahmad, Nafees
1998-01-01
The human immunodeficiency virus type 1 (HIV-1) vif gene is conserved among most lentiviruses, suggesting that vif is important for natural infection. To determine whether an intact vif gene is positively selected during mother-to-infant transmission, we analyzed vif sequences from five infected mother-infant pairs following perinatal transmission. The coding potential of the vif open reading frame directly derived from uncultured peripheral blood mononuclear cell DNA was maintained in most of the 78,912 bp sequenced. We found that 123 of the 137 clones analyzed showed an 89.8% frequency of intact vif open reading frames. There was a low degree of heterogeneity of vif genes within mothers, within infants, and between epidemiologically linked mother-infant pairs. The distances between vif sequences were greater in epidemiologically unlinked individuals than in epidemiologically linked mother-infant pairs. Furthermore, the epidemiologically linked mother-infant pair vif sequences displayed similar patterns that were not seen in vif sequences from epidemiologically unlinked individuals. The functional domains, including the two cysteines at positions 114 and 133, a serine phosphorylation site at position 144, and the C-terminal basic amino acids essential for vif protein function, were highly conserved in most of the sequences. Phylogenetic analyses of 137 mother-infant pair vif sequences and 187 other available vif sequences from HIV-1 databases revealed distinct clusters for vif sequences from each mother-infant pair and for other vif sequences. Taken together, these findings suggest that vif plays an important role in HIV-1 infection and replication in mothers and their perinatally infected infants. PMID:9445004
Genome-Wide Search Identifies 1.9 Mb from the Polar Bear Y Chromosome for Evolutionary Analyses
Bidon, Tobias; Schreck, Nancy; Hailer, Frank; Nilsson, Maria A.; Janke, Axel
2015-01-01
The male-inherited Y chromosome is the major haploid fraction of the mammalian genome, rendering Y-linked sequences an indispensable resource for evolutionary research. However, despite recent large-scale genome sequencing approaches, only a handful of Y chromosome sequences have been characterized to date, mainly in model organisms. Using polar bear (Ursus maritimus) genomes, we compare two different in silico approaches to identify Y-linked sequences: 1) Similarity to known Y-linked genes and 2) difference in the average read depth of autosomal versus sex chromosomal scaffolds. Specifically, we mapped available genomic sequencing short reads from a male and a female polar bear against the reference genome and identify 112 Y-chromosomal scaffolds with a combined length of 1.9 Mb. We verified the in silico findings for the longer polar bear scaffolds by male-specific in vitro amplification, demonstrating the reliability of the average read depth approach. The obtained Y chromosome sequences contain protein-coding sequences, single nucleotide polymorphisms, microsatellites, and transposable elements that are useful for evolutionary studies. A high-resolution phylogeny of the polar bear patriline shows two highly divergent Y chromosome lineages, obtained from analysis of the identified Y scaffolds in 12 previously published male polar bear genomes. Moreover, we find evidence of gene conversion among ZFX and ZFY sequences in the giant panda lineage and in the ancestor of ursine and tremarctine bears. Thus, the identification of Y-linked scaffold sequences from unordered genome sequences yields valuable data to infer phylogenomic and population-genomic patterns in bears. PMID:26019166
Target gene analyses of 39 amelogenesis imperfecta kindreds
Chan, Hui-Chen; Estrella, Ninna M. R. P.; Milkovich, Rachel N.; Kim, Jung-Wook; Simmer, James P.; Hu, Jan C-C.
2012-01-01
Previously, mutational analyses identified six disease-causing mutations in 24 amelogenesis imperfecta (AI) kindreds. We have since expanded the number of AI kindreds to 39, and performed mutation analyses covering the coding exons and adjoining intron sequences for the six proven AI candidate genes [amelogenin (AMELX), enamelin (ENAM), family with sequence similarity 83, member H (FAM83H), WD repeat containing domain 72 (WDR72), enamelysin (MMP20), and kallikrein-related peptidase 4 (KLK4)] and for ameloblastin (AMBN) (a suspected candidate gene). All four of the X-linked AI families (100%) had disease-causing mutations in AMELX, suggesting that AMELX is the only gene involved in the aetiology of X-linked AI. Eighteen families showed an autosomal-dominant pattern of inheritance. Disease-causing mutations were identified in 12 (67%): eight in FAM83H, and four in ENAM. No FAM83H coding-region or splice-junction mutations were identified in three probands with autosomal-dominant hypocalcification AI (ADHCAI), suggesting that a second gene may contribute to the aetiology of ADHCAI. Six families showed an autosomal-recessive pattern of inheritance, and disease-causing mutations were identified in three (50%): two in MMP20, and one in WDR72. No disease-causing mutations were found in 11 families with only one affected member. We conclude that mutation analyses of the current candidate genes for AI have about a 50% chance of identifying the disease-causing mutation in a given kindred. PMID:22243262
Podsiadlowski, Lars; Braband, Anke; Struck, Torsten H; von Döhren, Jörn; Bartolomaeus, Thomas
2009-01-01
Background The new animal phylogeny established several taxa which were not identified by morphological analyses, most prominently the Ecdysozoa (arthropods, roundworms, priapulids and others) and Lophotrochozoa (molluscs, annelids, brachiopods and others). Lophotrochozoan interrelationships are under discussion, e.g. regarding the position of Nemertea (ribbon worms), which were discussed to be sister group to e.g. Mollusca, Brachiozoa or Platyhelminthes. Mitochondrial genomes contributed well with sequence data and gene order characters to the deep metazoan phylogeny debate. Results In this study we present the first complete mitochondrial genome record for a member of the Nemertea, Lineus viridis. Except two trnP and trnT, all genes are located on the same strand. While gene order is most similar to that of the brachiopod Terebratulina retusa, sequence based analyses of mitochondrial genes place nemerteans close to molluscs, phoronids and entoprocts without clear preference for one of these taxa as sister group. Conclusion Almost all recent analyses with large datasets show good support for a taxon comprising Annelida, Mollusca, Brachiopoda, Phoronida and Nemertea. But the relationships among these taxa vary between different studies. The analysis of gene order differences gives evidence for a multiple independent occurrence of a large inversion in the mitochondrial genome of Lophotrochozoa and a re-inversion of the same part in gastropods. We hypothesize that some regions of the genome have a higher chance for intramolecular recombination than others and gene order data have to be analysed carefully to detect convergent rearrangement events. PMID:19660126
Genomic analysis reveals extensive gene duplication within the bovine TRB locus
Connelley, Timothy; Aerts, Jan; Law, Andy; Morrison, W Ivan
2009-01-01
Background Diverse TR and IG repertoires are generated by V(D)J somatic recombination. Genomic studies have been pivotal in cataloguing the V, D, J and C genes present in the various TR/IG loci and describing how duplication events have expanded the number of these genes. Such studies have also provided insights into the evolution of these loci and the complex mechanisms that regulate TR/IG expression. In this study we analyze the sequence of the third bovine genome assembly to characterize the germline repertoire of bovine TRB genes and compare the organization, evolution and regulatory structure of the bovine TRB locus with that of humans and mice. Results The TRB locus in the third bovine genome assembly is distributed over 5 scaffolds, extending to ~730 Kb. The available sequence contains 134 TRBV genes, assigned to 24 subgroups, and 3 clusters of DJC genes, each comprising a single TRBD gene, 5–7 TRBJ genes and a single TRBC gene. Seventy-nine of the TRBV genes are predicted to be functional. Comparison with the human and murine TRB loci shows that the gene order, as well as the sequences of non-coding elements that regulate TRB expression, are highly conserved in the bovine. Dot-plot analyses demonstrate that expansion of the genomic TRBV repertoire has occurred via a complex and extensive series of duplications, predominantly involving DNA blocks containing multiple genes. These duplication events have resulted in massive expansion of several TRBV subgroups, most notably TRBV6, 9 and 21 which contain 40, 35 and 16 members respectively. Similarly, duplication has lead to the generation of a third DJC cluster. Analyses of cDNA data confirms the diversity of the TRBV genes and, in addition, identifies a substantial number of TRBV genes, predominantly from the larger subgroups, which are still absent from the genome assembly. The observed gene duplication within the bovine TRB locus has created a repertoire of phylogenetically diverse functional TRBV genes, which is substantially larger than that described for humans and mice. Conclusion The analyses completed in this study reveal that, although the gene content and organization of the bovine TRB locus are broadly similar to that of humans and mice, multiple duplication events have led to a marked expansion in the number of TRB genes. Similar expansions in other ruminant TR loci suggest strong evolutionary pressures in this lineage have selected for the development of enlarged sets of TR genes that can contribute to diverse TR repertoires. PMID:19393068
An improved model for whole genome phylogenetic analysis by Fourier transform.
Yin, Changchuan; Yau, Stephen S-T
2015-10-07
DNA sequence similarity comparison is one of the major steps in computational phylogenetic studies. The sequence comparison of closely related DNA sequences and genomes is usually performed by multiple sequence alignments (MSA). While the MSA method is accurate for some types of sequences, it may produce incorrect results when DNA sequences undergone rearrangements as in many bacterial and viral genomes. It is also limited by its computational complexity for comparing large volumes of data. Previously, we proposed an alignment-free method that exploits the full information contents of DNA sequences by Discrete Fourier Transform (DFT), but still with some limitations. Here, we present a significantly improved method for the similarity comparison of DNA sequences by DFT. In this method, we map DNA sequences into 2-dimensional (2D) numerical sequences and then apply DFT to transform the 2D numerical sequences into frequency domain. In the 2D mapping, the nucleotide composition of a DNA sequence is a determinant factor and the 2D mapping reduces the nucleotide composition bias in distance measure, and thus improving the similarity measure of DNA sequences. To compare the DFT power spectra of DNA sequences with different lengths, we propose an improved even scaling algorithm to extend shorter DFT power spectra to the longest length of the underlying sequences. After the DFT power spectra are evenly scaled, the spectra are in the same dimensionality of the Fourier frequency space, then the Euclidean distances of full Fourier power spectra of the DNA sequences are used as the dissimilarity metrics. The improved DFT method, with increased computational performance by 2D numerical representation, can be applicable to any DNA sequences of different length ranges. We assess the accuracy of the improved DFT similarity measure in hierarchical clustering of different DNA sequences including simulated and real datasets. The method yields accurate and reliable phylogenetic trees and demonstrates that the improved DFT dissimilarity measure is an efficient and effective similarity measure of DNA sequences. Due to its high efficiency and accuracy, the proposed DFT similarity measure is successfully applied on phylogenetic analysis for individual genes and large whole bacterial genomes. Copyright © 2015 Elsevier Ltd. All rights reserved.
2012-01-01
Background Short-chain dehydrogenases/reductases (SDRs) form one of the largest and oldest NAD(P)(H) dependent oxidoreductase families. Despite a conserved ‘Rossmann-fold’ structure, members of the SDR superfamily exhibit low sequence similarities, which constituted a bottleneck in terms of identification. Recent classification methods, relying on hidden-Markov models (HMMs), improved identification and enabled the construction of a nomenclature. However, functional annotations of plant SDRs remain scarce. Results Wide-scale analyses were performed on ten plant genomes. The combination of hidden Markov model (HMM) based analyses and similarity searches led to the construction of an exhaustive inventory of plant SDR. With 68 to 315 members found in each analysed genome, the inventory confirmed the over-representation of SDRs in plants compared to animals, fungi and prokaryotes. The plant SDRs were first classified into three major types — ‘classical’, ‘extended’ and ‘divergent’ — but a minority (10% of the predicted SDRs) could not be classified into these general types (‘unknown’ or ‘atypical’ types). In a second step, we could categorize the vast majority of land plant SDRs into a set of 49 families. Out of these 49 families, 35 appeared early during evolution since they are commonly found through all the Green Lineage. Yet, some SDR families — tropinone reductase-like proteins (SDR65C), ‘ABA2-like’-NAD dehydrogenase (SDR110C), ‘salutaridine/menthone-reductase-like’ proteins (SDR114C), ‘dihydroflavonol 4-reductase’-like proteins (SDR108E) and ‘isoflavone-reductase-like’ (SDR460A) proteins — have undergone significant functional diversification within vascular plants since they diverged from Bryophytes. Interestingly, these diversified families are either involved in the secondary metabolism routes (terpenoids, alkaloids, phenolics) or participate in developmental processes (hormone biosynthesis or catabolism, flower development), in opposition to SDR families involved in primary metabolism which are poorly diversified. Conclusion The application of HMMs to plant genomes enabled us to identify 49 families that encompass all Angiosperms (‘higher plants’) SDRs, each family being sufficiently conserved to enable simpler analyses based only on overall sequence similarity. The multiplicity of SDRs in plant kingdom is mainly explained by the diversification of large families involved in different secondary metabolism pathways, suggesting that the chemical diversification that accompanied the emergence of vascular plants acted as a driving force for SDR evolution. PMID:23167570
Arnold, Roland; Goldenberg, Florian; Mewes, Hans-Werner; Rattei, Thomas
2014-01-01
The Similarity Matrix of Proteins (SIMAP, http://mips.gsf.de/simap/) database has been designed to massively accelerate computationally expensive protein sequence analysis tasks in bioinformatics. It provides pre-calculated sequence similarities interconnecting the entire known protein sequence universe, complemented by pre-calculated protein features and domains, similarity clusters and functional annotations. SIMAP covers all major public protein databases as well as many consistently re-annotated metagenomes from different repositories. As of September 2013, SIMAP contains >163 million proteins corresponding to ∼70 million non-redundant sequences. SIMAP uses the sensitive FASTA search heuristics, the Smith–Waterman alignment algorithm, the InterPro database of protein domain models and the BLAST2GO functional annotation algorithm. SIMAP assists biologists by facilitating the interactive exploration of the protein sequence universe. Web-Service and DAS interfaces allow connecting SIMAP with any other bioinformatic tool and resource. All-against-all protein sequence similarity matrices of project-specific protein collections are generated on request. Recent improvements allow SIMAP to cover the rapidly growing sequenced protein sequence universe. New Web-Service interfaces enhance the connectivity of SIMAP. Novel tools for interactive extraction of protein similarity networks have been added. Open access to SIMAP is provided through the web portal; the portal also contains instructions and links for software access and flat file downloads. PMID:24165881
2011-01-01
Background Livestock fascioliasis is a problem throughout Ecuador, Colombia and Venezuela, mainly in Andean areas where the disease also appears to affect humans. Transmission patterns and epidemiological scenarios of liver fluke infection have shown to differ according to the lymnaeid vector snail species involved. These Andean countries present the vectors Lymnaea cousini, L. bogotensis and L. ubaquensis, unknown in the rest of Latin America. An exhaustive combined haplotype study of these species is performed by means of DNA sequencing of the nuclear ribosomal 18S RNA gene, ITS-2 and ITS-1, and mitochondrial DNA cox1 gene. Results The conserved 5.8S rDNA sequence corroborated that no pseudogenes are involved in the numerous non-microsatellite/minisatellite-related indels appearing between the ITS-2 and ITS-1 sequences when comparing different L. cousini - L. bogotensis populations. Sequence analyses and phylogenetic reconstruction methods including other lymnaeid vector species show that (i) L. bogotensis is a synonym of L. cousini, (ii) L. ubaquensis is a synonym of Pseudosuccinea columella, and (iii) populations of L. cousini hitherto known from Venezuelan highlands indeed belong to a new species for which the name L. meridensis n. sp. is proposed. This new species is described and a complete phenotypic differentiation provided. Conclusions ITS-2, ITS-1 and cox1 prove to be good markers for specimen classification and haplotype characterisation of these morphologically similar lymnaeids in endemic areas. Analysis of the 18S gene and phylogenetic reconstructions indicate that L. cousini and L. meridensis n. sp. cluster in an evolutionary line different from the one of P. columella, despite their external resemblance. This suggests an evolutionary phenotypic convergence related to similar environments and which has given rise to frequent specimen misclassification. Body size and phylogenetic relationships of L. meridensis n. sp. with well-known vectors as Lymnaea cousini and P. columella, as well as with Galba/Fossaria species, suggest that the new species may participate in disease transmission to both animals and humans in altitude areas during the yearly window in which temperatures are higher than the F. hepatica minimum development threshold. The involvement of L. cousini and P. columella in the transmission and geographical/altitudinal distribution of fascioliasis in these Andean countries is analysed. PMID:21749718
Frías-De-León, María Guadalupe; Ramírez-Bárcenas, José Antonio; Rodríguez-Arellanes, Gabriela; Velasco-Castrejón, Oscar; Taylor, Maria Lucia; Reyes-Montes, María Del Rocío
2017-03-01
Histoplasmosis is considered the most important systemic mycosis in Mexico, and its diagnosis requires fast and reliable methodologies. The present study evaluated the usefulness of PCR using Hcp100 and 1281-1283 (220) molecular markers in detecting Histoplasma capsulatum in occupational and recreational outbreaks. Seven clinical serum samples of infected individuals from three different histoplasmosis outbreaks were processed by enzyme-linked immunosorbent assay (ELISA) to titre anti-H. capsulatum antibodies and to extract DNA. Fourteen environmental samples were also processed for H. capsulatum isolation and DNA extraction. Both clinical and environmental DNA samples were analysed by PCR with Hcp100 and 1281-1283 (220) markers. Antibodies to H. capsulatum were detected by ELISA in all serum samples using specific antigens, and in six of these samples, the PCR products of both molecular markers were amplified. Four environmental samples amplified one of the two markers, but only one sample amplified both markers and an isolate of H. capsulatum was cultured from this sample. All PCR products were sequenced, and the sequences for each marker were analysed using the Basic Local Alignment Search Tool (BLASTn), which revealed 95-98 and 98-100 % similarities with the reference sequences deposited in the GenBank for Hcp100 and 1281-1283 (220) , respectively. Both molecular markers proved to be useful in studying histoplasmosis outbreaks because they are matched for pathogen detection in either clinical or environmental samples.
Edgar, Robyn; Veerapaneni, Ram S.; D’Elia, Tom; Morris, Paul F.; Rogers, Scott O.
2013-01-01
Lake Vostok, the 7th largest (by volume) and 4th deepest lake on Earth, is covered by more than 3,700 m of ice, making it the largest subglacial lake known. The combination of cold, heat (from possible hydrothermal activity), pressure (from the overriding glacier), limited nutrients and complete darkness presents extreme challenges to life. Here, we report metagenomic/metatranscriptomic sequence analyses from four accretion ice sections from the Vostok 5G ice core. Two sections accreted in the vicinity of an embayment on the southwestern end of the lake, and the other two represented part of the southern main basin. We obtained 3,507 unique gene sequences from concentrates of 500 ml of 0.22 µm-filtered accretion ice meltwater. Taxonomic classifications (to genus and/or species) were possible for 1,623 of the sequences. Species determinations in combination with mRNA gene sequence results allowed deduction of the metabolic pathways represented in the accretion ice and, by extension, in the lake. Approximately 94% of the sequences were from Bacteria and 6% were from Eukarya. Only two sequences were from Archaea. In general, the taxa were similar to organisms previously described from lakes, brackish water, marine environments, soil, glaciers, ice, lake sediments, deep-sea sediments, deep-sea thermal vents, animals and plants. Sequences from aerobic, anaerobic, psychrophilic, thermophilic, halophilic, alkaliphilic, acidophilic, desiccation-resistant, autotrophic and heterotrophic organisms were present, including a number from multicellular eukaryotes. PMID:23843994
Shtarkman, Yury M; Koçer, Zeynep A; Edgar, Robyn; Veerapaneni, Ram S; D'Elia, Tom; Morris, Paul F; Rogers, Scott O
2013-01-01
Lake Vostok, the 7(th) largest (by volume) and 4(th) deepest lake on Earth, is covered by more than 3,700 m of ice, making it the largest subglacial lake known. The combination of cold, heat (from possible hydrothermal activity), pressure (from the overriding glacier), limited nutrients and complete darkness presents extreme challenges to life. Here, we report metagenomic/metatranscriptomic sequence analyses from four accretion ice sections from the Vostok 5G ice core. Two sections accreted in the vicinity of an embayment on the southwestern end of the lake, and the other two represented part of the southern main basin. We obtained 3,507 unique gene sequences from concentrates of 500 ml of 0.22 µm-filtered accretion ice meltwater. Taxonomic classifications (to genus and/or species) were possible for 1,623 of the sequences. Species determinations in combination with mRNA gene sequence results allowed deduction of the metabolic pathways represented in the accretion ice and, by extension, in the lake. Approximately 94% of the sequences were from Bacteria and 6% were from Eukarya. Only two sequences were from Archaea. In general, the taxa were similar to organisms previously described from lakes, brackish water, marine environments, soil, glaciers, ice, lake sediments, deep-sea sediments, deep-sea thermal vents, animals and plants. Sequences from aerobic, anaerobic, psychrophilic, thermophilic, halophilic, alkaliphilic, acidophilic, desiccation-resistant, autotrophic and heterotrophic organisms were present, including a number from multicellular eukaryotes.
Al-Bustan, Suzanne A; Al-Serri, Ahmad; Annice, Babitha G; Alnaqeeb, Majed A; Al-Kandari, Wafa Y; Dashti, Mohammed
2018-01-01
The role interethnic genetic differences play in plasma lipid level variation across populations is a global health concern. Several genes involved in lipid metabolism and transport are strong candidates for the genetic association with lipid level variation especially lipoprotein lipase (LPL). The objective of this study was to re-sequence the full LPL gene in Kuwaiti Arabs, analyse the sequence variation and identify variants that could attribute to variation in plasma lipid levels for further genetic association. Samples (n = 100) of an Arab ethnic group from Kuwait were analysed for sequence variation by Sanger sequencing across the 30 Kb LPL gene and its flanking sequences. A total of 293 variants including 252 single nucleotide polymorphisms (SNPs) and 39 insertions/deletions (InDels) were identified among which 47 variants (32 SNPs and 15 InDels) were novel to Kuwaiti Arabs. This study is the first to report sequence data and analysis of frequencies of variants at the LPL gene locus in an Arab ethnic group with a novel "rare" variant (LPL:g.18704C>A) significantly associated to HDL (B = -0.181; 95% CI (-0.357, -0.006); p = 0.043), TG (B = 0.134; 95% CI (0.004-0.263); p = 0.044) and VLDL (B = 0.131; 95% CI (-0.001-0.263); p = 0.043) levels. Sequence variation in Kuwaiti Arabs was compared to other populations and was found to be similar with regards to the number of SNPs, InDels and distribution of the number of variants across the LPL gene locus and minor allele frequency (MAF). Moreover, comparison of the identified variants and their MAF with other reports provided a list of 46 potential variants across the LPL gene to be considered for future genetic association studies. The findings warrant further investigation into the association of g.18704C>A with lipid levels in other ethnic groups and with clinical manifestations of dyslipidemia.
Al-Serri, Ahmad; Annice, Babitha G.; Alnaqeeb, Majed A.; Al-Kandari, Wafa Y.; Dashti, Mohammed
2018-01-01
The role interethnic genetic differences play in plasma lipid level variation across populations is a global health concern. Several genes involved in lipid metabolism and transport are strong candidates for the genetic association with lipid level variation especially lipoprotein lipase (LPL). The objective of this study was to re-sequence the full LPL gene in Kuwaiti Arabs, analyse the sequence variation and identify variants that could attribute to variation in plasma lipid levels for further genetic association. Samples (n = 100) of an Arab ethnic group from Kuwait were analysed for sequence variation by Sanger sequencing across the 30 Kb LPL gene and its flanking sequences. A total of 293 variants including 252 single nucleotide polymorphisms (SNPs) and 39 insertions/deletions (InDels) were identified among which 47 variants (32 SNPs and 15 InDels) were novel to Kuwaiti Arabs. This study is the first to report sequence data and analysis of frequencies of variants at the LPL gene locus in an Arab ethnic group with a novel “rare” variant (LPL:g.18704C>A) significantly associated to HDL (B = -0.181; 95% CI (-0.357, -0.006); p = 0.043), TG (B = 0.134; 95% CI (0.004–0.263); p = 0.044) and VLDL (B = 0.131; 95% CI (-0.001–0.263); p = 0.043) levels. Sequence variation in Kuwaiti Arabs was compared to other populations and was found to be similar with regards to the number of SNPs, InDels and distribution of the number of variants across the LPL gene locus and minor allele frequency (MAF). Moreover, comparison of the identified variants and their MAF with other reports provided a list of 46 potential variants across the LPL gene to be considered for future genetic association studies. The findings warrant further investigation into the association of g.18704C>A with lipid levels in other ethnic groups and with clinical manifestations of dyslipidemia. PMID:29438437
Lewis, William H; Sendra, Kacper M; Embley, T Martin; Esteban, Genoveva F
2018-01-01
Many anaerobic ciliated protozoa contain organelles of mitochondrial ancestry called hydrogenosomes. These organelles generate molecular hydrogen that is consumed by methanogenic Archaea, living in endosymbiosis within many of these ciliates. Here we describe a new species of anaerobic ciliate, Trimyema finlayi n. sp., by using silver impregnation and microscopy to conduct a detailed morphometric analysis. Comparisons with previously published morphological data for this species, as well as the closely related species, Trimyema compressum , demonstrated that despite them being similar, both the mean cell size and the mean number of somatic kineties are lower for T. finlayi than for T. compressum , which suggests that they are distinct species. This was also supported by analysis of the 18S rRNA genes from these ciliates, the sequences of which are 97.5% identical (6 substitutions, 1479 compared bases), and in phylogenetic analyses these sequences grouped with other 18S rRNA genes sequenced from previous isolates of the same respective species. Together these data provide strong evidence that T. finlayi is a novel species of Trimyema , within the class Plagiopylea. Various microscopic techniques demonstrated that T. finlayi n. sp. contains polymorphic endosymbiotic methanogens, and analysis of the endosymbionts' 16S rRNA gene showed that they belong to the genus Methanocorpusculum , which was confirmed using fluorescence in situ hybridization with specific probes. Despite the degree of similarity and close relationship between these ciliates, T. compressum contains endosymbiotic methanogens from a different genus, Methanobrevibacter . In phylogenetic analyses of 16S rRNA genes, the Methanocorpusculum endosymbiont of T. finlayi n. sp. grouped with sequences from Methanomicrobia, including the endosymbiont of an earlier isolate of the same species, ' Trimyema sp.,' which was sampled approximately 22 years earlier, at a distant (∼400 km) geographical location. Identification of the same endosymbiont species in the two separate isolates of T. finlayi n. sp. provides evidence for spatial and temporal stability of the Methanocorpusculum-T. finlayi n. sp. endosymbiosis. T. finlayi n. sp. and T. compressum provide an example of two closely related anaerobic ciliates that have endosymbionts from different methanogen genera, suggesting that the endosymbionts have not co-speciated with their hosts.
Dacks, Joel B; Marinets, Alexandra; Ford Doolittle, W; Cavalier-Smith, Thomas; Logsdon, John M
2002-06-01
The phylogenetic relationships among major eukaryotic protist lineages are largely uncertain. Two significant obstacles in reconstructing eukaryotic phylogeny are long-branch attraction (LBA) effects and poor taxon sampling of free-living protists. We have obtained and analyzed gene sequences encoding the largest subunit of RNA Polymerase II (RPB1) from Naegleria gruberi (a heterolobosean), Cercomonas ATCC 50319 (a cercozoan), and Ochromonas danica (a heterokont); we have also analyzed the RPB1 gene from the nucleomorph (nm) genome of Guillardia theta (a cryptomonad). Using a variety of phylogenetic methods our analysis shows that RPB1s from Giardia intestinalis and Trichomonas vaginalis are probably subject to intense LBA effects. Thus, the deep branching of these taxa on RPB1 trees is questionable and should not be interpreted as evidence favoring their early divergence. Similar effects are discernable, to a lesser extent, with the Mastigamoeba invertens RPB1 sequence. Upon removal of the outgroup and these problematic sequences, analyses of the remaining RPB1s indicate some resolution among major eukaryotic groups. The most robustly supported higher-level clades are the opisthokonts (animals plus fungi) and the red algae plus the cryptomonad nm-the latter result gives added support to the red algal origin of cryptomonad chloroplasts. Clades comprising Dictyostelium discoideum plus Acanthamoeba castellanii (Amoebozoa) and Ochromonas plus Plasmodium falciparum (chromalveolates) are consistently observed and moderately supported. The clades supported by our RPB1 analyses are congruent with other data, suggesting that bona fide phylogenetic relationships are being resolved. Thus, the RPB1 gene has apparently retained some phylogenetically meaningful signal, making it worthwhile to obtain sequences from more diverse protist taxa. Additional RPB1 data, especially in combination with other genes, should provide further resolution of branching orders among protist groups within the apparently rapid early divergence of eukaryotes.
Chakona, Albert; Swartz, Ernst R.; Gouws, Gavin
2013-01-01
This study used phylogenetic analyses of mitochondrial cytochrome b sequences to investigate genetic diversity within three broadly co-distributed freshwater fish genera (Galaxias, Pseudobarbus and Sandelia) to shed some light on the processes that promoted lineage diversification and shaped geographical distribution patterns. A total of 205 sequences of Galaxias, 177 sequences of Pseudobarbus and 98 sequences of Sandelia from 146 localities across nine river systems in the south-western Cape Floristic Region (South Africa) were used. The data were analysed using phylogenetic and haplotype network methods and divergence times for the clades retrieved were estimated using *BEAST. Nine extremely divergent (3.5–25.3%) lineages were found within Galaxias. Similarly, deep phylogeographic divergence was evident within Pseudobarbus, with four markedly distinct (3.8–10.0%) phylogroups identified. Sandelia had two deeply divergent (5.5–5.9%) lineages, but seven minor lineages with strong geographical congruence were also identified. The Miocene-Pliocene major sea-level transgression and the resultant isolation of populations in upland refugia appear to have driven widespread allopatric divergence within the three genera. Subsequent coalescence of rivers during the Pleistocene major sea-level regression as well as intermittent drainage connections during wet periods are proposed to have facilitated range expansion of lineages that currently occur across isolated river systems. The high degree of genetic differentiation recovered from the present and previous studies suggest that freshwater fish diversity within the south-western CFR may be vastly underestimated, and taxonomic revisions are required. PMID:23951050
Comparative oncology DNA sequencing of canine T cell lymphoma via human hotspot panel
Beheshti, Afshin; Pilichowska, Monika; Burgess, Kristine; Ricks-Santi, Luisel; McNiel, Elizabeth; London, Cheryl B.; Ravi, Dashnamoorthy; Evens, Andrew M.
2018-01-01
T-cell lymphoma (TCL) is an uncommon and aggressive form of human cancer. Lymphoma is the most common hematopoietic tumor in canines (companion animals), with TCL representing approximately 30% of diagnoses. Collectively, the canine is an appealing model for cancer research given the spontaneous occurrence of cancer, intact immune system, and phytogenetic proximity to humans. We sought to establish mutational congruence of the canine with known human TCL mutations in order to identify potential actionable oncogenic pathways. Following pathologic confirmation, DNA was sequenced in 16 canine TCL (cTCL) cases using a custom Human Cancer Hotspot Panel of 68 genes commonly mutated in human TCL. Sequencing identified 4,527,638 total reads with average length of 229 bases containing 346 unique variants and 1,474 total variants; each sample had an average of 92 variants. Among these, there were 258 germline and 32 somatic variants. Among the 32 somatic variants there were 8 missense variants, 1 splice junction variant and the remaining were intron or synonymous variants. A frequency of 4 somatic mutations per sample were noted with >7 mutations detected in MET, KDR, STK11 and BRAF. Expression of these associated proteins were also detected via Western blot analyses. In addition, Sanger sequencing confirmed three variants of high quality (MYC, MET, and TP53 missense mutation). Taken together, the mutational spectrum and protein analyses showed mutations in signaling pathways similar to human TCL and also identified novel mutations that may serve as drug targets as well as potential biomarkers. PMID:29854308
Dong, Yun-Wei; Liao, Ming-Ling; Meng, Xian-Liang; Somero, George N
2018-02-06
Orthologous proteins of species adapted to different temperatures exhibit differences in stability and function that are interpreted to reflect adaptive variation in structural "flexibility." However, quantifying flexibility and comparing flexibility across proteins has remained a challenge. To address this issue, we examined temperature effects on cytosolic malate dehydrogenase (cMDH) orthologs from differently thermally adapted congeners of five genera of marine molluscs whose field body temperatures span a range of ∼60 °C. We describe consistent patterns of convergent evolution in adaptation of function [temperature effects on K M of cofactor (NADH)] and structural stability (rate of heat denaturation of activity). To determine how these differences depend on flexibilities of overall structure and of regions known to be important in binding and catalysis, we performed molecular dynamics simulation (MDS) analyses. MDS analyses revealed a significant negative correlation between adaptation temperature and heat-induced increase of backbone atom movements [root mean square deviation (rmsd) of main-chain atoms]. Root mean square fluctuations (RMSFs) of movement by individual amino acid residues varied across the sequence in a qualitatively similar pattern among orthologs. Regions of sequence involved in ligand binding and catalysis-termed mobile regions 1 and 2 (MR1 and MR2), respectively-showed the largest values for RMSF. Heat-induced changes in RMSF values across the sequence and, importantly, in MR1 and MR2 were greatest in cold-adapted species. MDS methods are shown to provide powerful tools for examining adaptation of enzymes by providing a quantitative index of protein flexibility and identifying sequence regions where adaptive change in flexibility occurs.
What can we learn about lyssavirus genomes using 454 sequencing?
Höper, Dirk; Finke, Stefan; Freuling, Conrad M; Hoffmann, Bernd; Beer, Martin
2012-01-01
The main task of the individual project number four"Whole genome sequencing, virus-host adaptation, and molecular epidemiological analyses of lyssaviruses "within the network" Lyssaviruses--a potential re-emerging public health threat" is to provide high quality complete genome sequences from lyssaviruses. These sequences are analysed in-depth with regard to the diversity of the viral populations as to both quasi-species and so-called defective interfering RNAs. Moreover, the sequence data will facilitate further epidemiological analyses, will provide insight into the evolution of lyssaviruses and will be the basis for the design of novel nucleic acid based diagnostics. The first results presented here indicate that not only high quality full-length lyssavirus genome sequences can be generated, but indeed efficient analysis of the viral population gets feasible.
Thompson, Cristiane C; Vicente, Ana Carolina P; Souza, Rangel C; Vasconcelos, Ana Tereza R; Vesth, Tammi; Alves, Nelson; Ussery, David W; Iida, Tetsuya; Thompson, Fabiano L
2009-01-01
Background Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera) from 32 genome sequences of different vibrio species. We use a variety of tools to explore the taxonomic relationship between the sequenced genomes, including Multilocus Sequence Analysis (MLSA), supertrees, Average Amino Acid Identity (AAI), genomic signatures, and Genome BLAST atlases. Our aim is to analyse the usefulness of these tools for species identification in vibrios. Results We have generated four new genome sequences of three Vibrio species, i.e., V. alginolyticus 40B, V. harveyi-like 1DA3, and V. mimicus strains VM573 and VM603, and present a broad analyses of these genomes along with other sequenced Vibrio species. The genome atlas and pangenome plots provide a tantalizing image of the genomic differences that occur between closely related sister species, e.g. V. cholerae and V. mimicus. The vibrio pangenome contains around 26504 genes. The V. cholerae core genome and pangenome consist of 1520 and 6923 genes, respectively. Pangenomes might allow different strains of V. cholerae to occupy different niches. MLSA and supertree analyses resulted in a similar phylogenetic picture, with a clear distinction of four groups (Vibrio core group, V. cholerae-V. mimicus, Aliivibrio spp., and Photobacterium spp.). A Vibrio species is defined as a group of strains that share > 95% DNA identity in MLSA and supertree analysis, > 96% AAI, ≤ 10 genome signature dissimilarity, and > 61% proteome identity. Strains of the same species and species of the same genus will form monophyletic groups on the basis of MLSA and supertree. Conclusion The combination of different analytical and bioinformatics tools will enable the most accurate species identification through genomic computational analysis. This endeavour will culminate in the birth of the online genomic taxonomy whereby researchers and end-users of taxonomy will be able to identify their isolates through a web-based server. This novel approach to microbial systematics will result in a tremendous advance concerning biodiversity discovery, description, and understanding. PMID:19860885
Klopfenstein, Ned B; Stewart, Jane E; Ota, Yuko; Hanna, John W; Richardson, Bryce A; Ross-Davis, Amy L; Elías-Román, Rubén D; Korhonen, Kari; Keča, Nenad; Iturritxa, Eugenia; Alvarado-Rosales, Dionicio; Solheim, Halvor; Brazee, Nicholas J; Łakomy, Piotr; Cleary, Michelle R; Hasegawa, Eri; Kikuchi, Taisei; Garza-Ocañas, Fortunato; Tsopelas, Panaghiotis; Rigling, Daniel; Prospero, Simone; Tsykun, Tetyana; Bérubé, Jean A; Stefani, Franck O P; Jafarpour, Saeideh; Antonín, Vladimír; Tomšovský, Michal; McDonald, Geral I; Woodward, Stephen; Kim, Mee-Sook
2017-01-01
Armillaria possesses several intriguing characteristics that have inspired wide interest in understanding phylogenetic relationships within and among species of this genus. Nuclear ribosomal DNA sequence-based analyses of Armillaria provide only limited information for phylogenetic studies among widely divergent taxa. More recent studies have shown that translation elongation factor 1-α (tef1) sequences are highly informative for phylogenetic analysis of Armillaria species within diverse global regions. This study used Neighbor-net and coalescence-based Bayesian analyses to examine phylogenetic relationships of newly determined and existing tef1 sequences derived from diverse Armillaria species from across the Northern Hemisphere, with Southern Hemisphere Armillaria species included for reference. Based on the Bayesian analysis of tef1 sequences, Armillaria species from the Northern Hemisphere are generally contained within the following four superclades, which are named according to the specific epithet of the most frequently cited species within the superclade: (i) Socialis/Tabescens (exannulate) superclade including Eurasian A. ectypa, North American A. socialis (A. tabescens), and Eurasian A. socialis (A. tabescens) clades; (ii) Mellea superclade including undescribed annulate North American Armillaria sp. (Mexico) and four separate clades of A. mellea (Europe and Iran, eastern Asia, and two groups from North America); (iii) Gallica superclade including Armillaria Nag E (Japan), multiple clades of A. gallica (Asia and Europe), A. calvescens (eastern North America), A. cepistipes (North America), A. altimontana (western USA), A. nabsnona (North America and Japan), and at least two A. gallica clades (North America); and (iv) Solidipes/Ostoyae superclade including two A. solidipes/ostoyae clades (North America), A. gemina (eastern USA), A. solidipes/ostoyae (Eurasia), A. cepistipes (Europe and Japan), A. sinapina (North America and Japan), and A. borealis (Eurasia) clade 2. Of note is that A. borealis (Eurasia) clade 1 appears basal to the Solidipes/Ostoyae and Gallica superclades. The Neighbor-net analysis showed similar phylogenetic relationships. This study further demonstrates the utility of tef1 for global phylogenetic studies of Armillaria species and provides critical insights into multiple taxonomic issues that warrant further study.
Woebken, Dagmar; Burow, Luke C.; Prufert-Bebout, Leslie; ...
2012-01-12
N 2 fixation is a key process in photosynthetic microbial mats to support the nitrogen demands associated with primary production. Despite its importance, groups that actively fix N 2 and contribute to the input of organic N in these ecosystems still remain largely unclear. To investigate the active diazotrophic community in microbial mats from the Elkhorn Slough estuary, Monterey Bay, CA, USA, we conducted an extensive combined approach, including biogeochemical, molecular and high-resolution secondary ion mass spectrometry (NanoSIMS) analyses. Detailed analysis of dinitrogenase reductase (nifH) transcript clone libraries from mat samples that fixed N 2 at night indicated that cyanobacterialmore » nifH transcripts were abundant and formed a novel monophyletic lineage. Independent NanoSIMS analysis of 15N2-incubated samples revealed significant incorporation of 15N into small, non-heterocystous cyanobacterial filaments. Mat-derived enrichment cultures yielded a unicyanobacterial culture with similar filaments (named Elkhorn Slough Filamentous Cyanobacterium-1 (ESFC-1)) that contained nifH gene sequences grouping with the novel cyanobacterial lineage identified in the transcript clone libraries, displaying up to 100% amino-acid sequence identity. The 16S rRNA gene sequence recovered from this enrichment allowed for the identification of related sequences from Elkhorn Slough mats and revealed great sequence diversity in this cluster. Furthermore, by combining 15N 2 tracer experiments, fluorescence in situ hybridization and NanoSIMS, in situ N 2 fixation activity by the novel ESFC-1 group was demonstrated, suggesting that this group may be the most active cyanobacterial diazotroph in the Elkhorn Slough mat. Pyrotag sequences affiliated with ESFC-1 were recovered from mat samples throughout 2009, demonstrating the prevalence of this group. Here, this work illustrates that combining standard and single-cell analyses can link phylogeny and function to identify previously unknown key functional groups in complex ecosystems.« less
A review of bioinformatic methods for forensic DNA analyses.
Liu, Yao-Yuan; Harbison, SallyAnn
2018-03-01
Short tandem repeats, single nucleotide polymorphisms, and whole mitochondrial analyses are three classes of markers which will play an important role in the future of forensic DNA typing. The arrival of massively parallel sequencing platforms in forensic science reveals new information such as insights into the complexity and variability of the markers that were previously unseen, along with amounts of data too immense for analyses by manual means. Along with the sequencing chemistries employed, bioinformatic methods are required to process and interpret this new and extensive data. As more is learnt about the use of these new technologies for forensic applications, development and standardization of efficient, favourable tools for each stage of data processing is being carried out, and faster, more accurate methods that improve on the original approaches have been developed. As forensic laboratories search for the optimal pipeline of tools, sequencer manufacturers have incorporated pipelines into sequencer software to make analyses convenient. This review explores the current state of bioinformatic methods and tools used for the analyses of forensic markers sequenced on the massively parallel sequencing (MPS) platforms currently most widely used. Copyright © 2017 Elsevier B.V. All rights reserved.
Rubin, D A; Dores, R M
1995-06-01
In order to obtain a more resolute phylogeny of teleosts based on growth hormone (GH) sequences, phylogenetic analyses were performed in which deletions (gaps), which appear to be order specific, were upheld to maintain GH's structural information. Sequences were analyzed at 194 amino acid positions. In addition, the two closest genealogically related groups to the teleosts, Amia calva and Acipenser guldenstadti, were used as outgroups. Modified sequence alignments were also analyzed to determine clade stability. Analyses indicated, in the most parsimonious cladogram, that molecular and morphological relationships for the orders of fishes are congruent. With GH molecular sequence data it was possible to resolve all clades at the familial level. Analyses of the primary sequence data indicate that: (a) the halecomorphean and chondrostean GH sequences are the appropriate outgroups for generating the most parsimonious cladogram for teleosts; (b) proper alignment of teleost GH sequence by the inclusion of gaps is necessary for resolution of the Percomorpha; and (c) removal of sequence information by deleting improperly aligned sequence decreases the phylogenetic signal obtained.
Budiman, Muhammad A.; Mao, Long; Wood, Todd C.; Wing, Rod A.
2000-01-01
Recently a new strategy using BAC end sequences as sequence-tagged connectors (STCs) was proposed for whole-genome sequencing projects. In this study, we present the construction and detailed characterization of a 15.0 haploid genome equivalent BAC library for the cultivated tomato, Lycopersicon esculentum cv. Heinz 1706. The library contains 129,024 clones with an average insert size of 117.5 kb and a chloroplast content of 1.11%. BAC end sequences from 1490 ends were generated and analyzed as a preliminary evaluation for using this library to develop an STC framework to sequence the tomato genome. A total of 1205 BAC end sequences (80.9%) were obtained, with an average length of 360 high-quality bases, and were searched against the GenBank database. Using a cutoff expectation value of <10−6, and combining the results from BLASTN, BLASTX, and TBLASTX searches, 24.3% of the BAC end sequences were similar to known sequences, of which almost half (48.7%) share sequence similarities to retrotransposons and 7% to known genes. Some of the transposable element sequences were the first reported in tomato, such as sequences similar to maize transposon Activator (Ac) ORF and tobacco pararetrovirus-like sequences. Interestingly, there were no BAC end sequences similar to the highly repeated TGRI and TGRII elements. However, the majority (70.3%) of STCs did not share significant sequence similarities to any sequences in GenBank at either the DNA or predicted protein levels, indicating that a large portion of the tomato genome is still unknown. Our data demonstrate that this BAC library is suitable for developing an STC database to sequence the tomato genome. The advantages of developing an STC framework for whole-genome sequencing of tomato are discussed. [The BAC end sequences described in this paper have been deposited in the GenBank data library under accession nos. AQ367111–AQ368361.] PMID:10645957
ERIC Educational Resources Information Center
Marcer, D.; And Others
1977-01-01
Compares the rates of forgetting of five-item sequences of acoustically similar and dissimilar consonants and words in the absence of proactive and retroactive interference in order to test whether within sequence similarity rather than stimulus length would have a greater influence on retention. (Author/RK)
A space-efficient algorithm for local similarities.
Huang, X Q; Hardison, R C; Miller, W
1990-10-01
Existing dynamic-programming algorithms for identifying similar regions of two sequences require time and space proportional to the product of the sequence lengths. Often this space requirement is more limiting than the time requirement. We describe a dynamic-programming local-similarity algorithm that needs only space proportional to the sum of the sequence lengths. The method can also find repeats within a single long sequence. To illustrate the algorithm's potential, we discuss comparison of a 73,360 nucleotide sequence containing the human beta-like globin gene cluster and a corresponding 44,594 nucleotide sequence for rabbit, a problem well beyond the capabilities of other dynamic-programming software.
Hwang, Chiachi; Wu, Weimin; Gentry, Terry J; Carley, Jack; Corbin, Gail A; Carroll, Sue L; Watson, David B; Jardine, Phil M; Zhou, Jizhong; Criddle, Craig S; Fields, Matthew W
2009-01-01
Bacterial community succession was investigated in a field-scale subsurface reactor formed by a series of wells that received weekly ethanol additions to re-circulating groundwater. Ethanol additions stimulated denitrification, metal reduction, sulfate reduction and U(VI) reduction to sparingly soluble U(IV). Clone libraries of SSU rRNA gene sequences from groundwater samples enabled tracking of spatial and temporal changes over a 1.5-year period. Analyses showed that the communities changed in a manner consistent with geochemical variations that occurred along temporal and spatial scales. Canonical correspondence analysis revealed that the levels of nitrate, uranium, sulfide, sulfate and ethanol were strongly correlated with particular bacterial populations. As sulfate and U(VI) levels declined, sequences representative of sulfate reducers and metal reducers were detected at high levels. Ultimately, sequences associated with sulfate-reducing populations predominated, and sulfate levels declined as U(VI) remained at low levels. When engineering controls were compared with the population variation through canonical ordination, changes could be related to dissolved oxygen control and ethanol addition. The data also indicated that the indigenous populations responded differently to stimulation for bioreduction; however, the two biostimulated communities became more similar after different transitions in an idiosyncratic manner. The strong associations between particular environmental variables and certain populations provide insight into the establishment of practical and successful remediation strategies in radionuclide-contaminated environments with respect to engineering controls and microbial ecology.
Iwasa, Masahiro A; Kawamura, Sayaka; Myoshu, Hikari; Suzuki, Taichi A
2018-03-01
It has been thought that the Japanese house mouse carries the A w allele at the agouti locus causing light-colored bellies, but they do not always show this coloration. Thus, the presence of the A w allele seems to be doubtful in them. To ascertain whether the A w allele is present, a two-pronged approach was used. First, we compared lengths of DNA fragments obtained from three PCRs conducted on them to the known fragment sizes generated from mouse strains exhibiting homozygosities of either a/a, A/A, or A w /A w . PCR I, PCR II, and PCR III amplify only in the A and A w alleles, the a and A w alleles, and the a allele, respectively, and we detected amplifications in strains with A/A and A w /A w by PCR I, in those with a/a and the Japanese house mouse by PCR II, and in those with a/a by PCR III. Second, we sequenced the exon 1A region of the agouti gene and obtained sequences corresponding to the above strains and the Japanese house mouse, but their sequences were similar to those of the a allele. We concluded that their agouti allele is not identical to the A w allele and seems to be a novel type similar to the a allele.
Brzuszkiewicz, Elzbieta; Thürmer, Andrea; Schuldes, Jörg; Leimbach, Andreas; Liesegang, Heiko; Meyer, Frauke-Dorothee; Boelter, Jürgen; Petersen, Heiko; Gottschalk, Gerhard; Daniel, Rolf
2011-12-01
The genome sequences of two Escherichia coli O104:H4 strains derived from two different patients of the 2011 German E. coli outbreak were determined. The two analyzed strains were designated E. coli GOS1 and GOS2 (German outbreak strain). Both isolates comprise one chromosome of approximately 5.31 Mbp and two putative plasmids. Comparisons of the 5,217 (GOS1) and 5,224 (GOS2) predicted protein-encoding genes with various E. coli strains, and a multilocus sequence typing analysis revealed that the isolates were most similar to the entero-aggregative E. coli (EAEC) strain 55989. In addition, one of the putative plasmids of the outbreak strain is similar to pAA-type plasmids of EAEC strains, which contain aggregative adhesion fimbrial operons. The second putative plasmid harbors genes for extended-spectrum β-lactamases. This type of plasmid is widely distributed in pathogenic E. coli strains. A significant difference of the E. coli GOS1 and GOS2 genomes to those of EAEC strains is the presence of a prophage encoding the Shiga toxin, which is characteristic for enterohemorrhagic E. coli (EHEC) strains. The unique combination of genomic features of the German outbreak strain, containing characteristics from pathotypes EAEC and EHEC, suggested that it represents a new pathotype Entero-Aggregative-Haemorrhagic E scherichia c oli (EAHEC).
Kim, Jiyeon; Kern, Elizabeth; Kim, Taeho; Sim, Mikang; Kim, Jaebum; Kim, Yuseob; Park, Chungoo; Nadler, Steven A; Park, Joong-Ki
2017-02-01
Plectida is an important nematode order with species that occupy many different biological niches. The order includes free-living aquatic and soil-dwelling species, but its phylogenetic position has remained uncertain. We sequenced the complete mitochondrial genomes of two members of this order, Plectus acuminatus and Plectus aquatilis and compared them with those of other major nematode clades. The genome size and base composition of these species are similar to other nematodes; 14,831 and 14,372bp, respectively, with AT contents of 71.0% and 70.1%. Gene content was also similar to other nematodes, but gene order and coding direction of Plectus mtDNAs were dissimilar from other chromadorean species. P. acuminatus and P. aquatilis are the first chromadorean species found to contain a gene inversion. We reconstructed mitochondrial genome phylogenetic trees using nucleotide and amino acid datasets from 87 nematodes that represent major nematode clades, including the Plectus sequences. Trees from phylogenetic analyses using maximum likelihood and Bayesian methods depicted Plectida as the sister group to other sequenced chromadorean nematodes. This finding is consistent with several phylogenetic results based on SSU rDNA, but disagrees with a classification based on morphology. Mitogenomes representing other basal chromadorean groups (Araeolaimida, Monhysterida, Desmodorida, Chromadorida) are needed to confirm their phylogenetic relationships. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, Feng; Yi, Zhenzhen; Gong, Jun; Al-Rasheid Khaled, A. S.; Song, Weibo
2010-05-01
To separate and redefine the ambiguous Holosticha-complex, a confusing group of hypotrichous ciliates, six strains belonging to five morphospecies of three genera, Holosticha heterofoissneri, Anteholosticha sp. pop1, Anteholosticha sp. pop2, A. manca, A. gracilis and Nothoholosticha fasciola, were analyzed using 12 restriction enzymes on the basis of amplified ribosomal DNA restriction analysis. Nine of the 12 enzymes could digest the DNA products, four ( Hinf I, Hind III, Msp I, Taq I) yielded species-specific restriction patterns, and Hind III and Taq I produced different patterns for two Anteholosticha sp. populations. Distinctly different restriction digestion haplotypes and similarity indices can be used to separate the species. The secondary structures of the five species were predicted based on the ITS2 transcripts and there were several minor differences among species, while two Anteholosticha sp. populations were identical. In addition, phylogenies based on the SSrRNA gene sequences were reconstructed using multiple algorithms, which grouped them generally into four clades, and exhibited that the genus Anteholosticha should be a convergent assemblage. The fact that Holosticha species clustered with the oligotrichs and choreotrichs, though with very low support values, indicated that the topology may be very divergent and unreliable when the number of sequence data used in the analyses is too low.
Proposal of Mucilaginibacter galii sp. nov. isolated from leaves of Galium album.
Aydogan, Ebru L; Busse, Hans-Jürgen; Moser, Gerald; Müller, Christoph; Kämpfer, Peter; Glaeser, Stefanie P
2017-05-01
A pale-pink-pigmented, Gram-stain-negative, rod-shaped, non-spore-forming bacterial strain, PP-F2F-G47T, was isolated from the phyllosphere of the herbaceous plant Galium album. Phylogenetic analysis based on the nearly full-length 16S rRNA gene sequence revealed highest sequence similarity to the type strains of Mucilaginibacter daejeonensis (96.2 %), Mucilaginibacter dorajii (95.7 %) and Mucilaginibacter phyllosphaerae (95.5 %). 16S rRNA gene sequence similarities to all other type strains were below 95.5 %. The predominant cellular fatty acids of the strain were C16 : 1ω7c/iso-C15 : 0 2-OH (measured as summed feature 3) and iso-C15 : 0. The major compound in the polyamine pattern was sym-homospermidine and major quinone was menaquinone MK-7. The polar lipid profile was composed of phosphatidylethanolamine and several unidentified aminolipipids, phospholipids, aminophospholipids and lipids without a functional group. A sphingophospholipid could not be detected but a ninhydrin-positive alkaline-stable lipid was visible. The diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid. Based on phylogenetic, chemotaxonomic and phenotypic analyses a novel species is proposed, Mucilaginibacter galii sp. nov., with PP-F2F-G47T (=CCM 8711T=CIP 111182T=LMG 29767T) as the type strain.