Sample records for sequence-based phylogenetic analyses

  1. Systematics of Plant-Pathogenic and Related Streptomyces Species Based on Phylogenetic Analyses of Multiple Gene Loci

    USDA-ARS?s Scientific Manuscript database

    The 10 species of Streptomyces implicated as the etiological agents in scab disease of potatoes or soft rot disease of sweet potatoes are distributed among 7 different phylogenetic clades in analyses based on 16S rRNA gene sequences, but high sequence similarity of this gene among Streptomyces speci...

  2. A molecular phylogenetic appraisal of the acanthostomines Acanthostomum and Timoniella and their position within Cryptogonimidae (Trematoda: Opisthorchioidea)

    PubMed Central

    Vidal-Martínez, Victor M.

    2017-01-01

    The phylogenetic position of three taxa from two trematode genera, belonging to the subfamily Acanthostominae (Opisthorchioidea: Cryptogonimidae), were analysed using partial 28S ribosomal DNA (Domains 1–2) and internal transcribed spacers (ITS1–5.8S–ITS2). Bayesian inference and Maximum likelihood analyses of combined 28S rDNA and ITS1 + 5.8S + ITS2 sequences indicated the monophyly of the genus Acanthostomum (A. cf. americanum and A. burminis) and paraphyly of the Acanthostominae. These phylogenetic relationships were consistent in analyses of 28S alone and concatenated 28S + ITS1 + 5.8S + ITS2 sequences analyses. Based on molecular phylogenetic analyses, the subfamily Acanthostominae is therefore a paraphyletic taxon, in contrast with previous classifications based on morphological data. Phylogenetic patterns of host specificity inferred from adult stages of other cryptogonimid taxa are also well supported. However, analyses using additional genera and species are necessary to support the phylogenetic inferences from this study. Our molecular phylogenetic reconstruction linked two larval stages of A. cf. americanum cercariae and metacercariae. Here, we present the evolutionary and ecological implications of parasitic infections in freshwater and brackish environments. PMID:29250471

  3. A molecular phylogenetic appraisal of the acanthostomines Acanthostomum and Timoniella and their position within Cryptogonimidae (Trematoda: Opisthorchioidea).

    PubMed

    Martínez-Aquino, Andrés; Vidal-Martínez, Victor M; Aguirre-Macedo, M Leopoldina

    2017-01-01

    The phylogenetic position of three taxa from two trematode genera, belonging to the subfamily Acanthostominae (Opisthorchioidea: Cryptogonimidae), were analysed using partial 28S ribosomal DNA (Domains 1-2) and internal transcribed spacers (ITS1-5.8S-ITS2). Bayesian inference and Maximum likelihood analyses of combined 28S rDNA and ITS1 + 5.8S + ITS2 sequences indicated the monophyly of the genus Acanthostomum ( A. cf. americanum and A. burminis ) and paraphyly of the Acanthostominae . These phylogenetic relationships were consistent in analyses of 28S alone and concatenated 28S + ITS1 + 5.8S + ITS2 sequences analyses. Based on molecular phylogenetic analyses, the subfamily Acanthostominae is therefore a paraphyletic taxon, in contrast with previous classifications based on morphological data. Phylogenetic patterns of host specificity inferred from adult stages of other cryptogonimid taxa are also well supported. However, analyses using additional genera and species are necessary to support the phylogenetic inferences from this study. Our molecular phylogenetic reconstruction linked two larval stages of A. cf. americanum cercariae and metacercariae. Here, we present the evolutionary and ecological implications of parasitic infections in freshwater and brackish environments.

  4. The phylogenetic position of an Armillaria species from Amami-Oshima, a subtropical island of Japan, based on elongation factor and ITS sequences

    Treesearch

    Yuko Ota; Mee-Sook Kim; Hitoshi Neda; Ned B. Klopfenstein; Eri Hasegawa

    2011-01-01

    An undetermined Armillaria species was collected on Amami-Oshima, a subtropical island of Japan. The phylogenetic position of the Armillaria sp. was determined using sequences of the elongation factor-1a (EF-1a) gene and the internal transcribed spacer (ITS) region (ITS1-5.8S-ITS2) of ribosomal DNA (rDNA). The phylogenetic analyses based on EF-1a and ITS sequences...

  5. Armillaria phylogeny based on tef-1α sequences suggests ongoing divergent speciation within the boreal floristic kingdom

    Treesearch

    Ned B. Klopfenstein; John W. Hanna; Amy L. Ross-Davis; Jane E. Stewart; Yuko Ota; Rosario Medel-Ortiz; Miguel Armando Lopez-Ramirez; Ruben Damian Elias-Roman; Dionicio Alvarado-Rosales; Mee-Sook Kim

    2013-01-01

    Armillaria plays diverse ecological roles in forests worldwide, which has inspired interest in understanding phylogenetic relationships within and among species of this genus. Previous rDNA sequence-based phylogenetic analyses of Armillaria have shown general relationships among widely divergent taxa, but rDNA sequences were not reliable for separating closely related...

  6. Insights into the phylogeny of Northern Hemisphere Armillaria: Neighbor-net and Bayesian analyses of translation elongation factor 1-α gene sequences

    Treesearch

    Ned B. Klopfenstein; Jane E. Stewart; Yuko Ota; John W. Hanna; Bryce A. Richardson; Amy L. Ross-Davis; Ruben D. Elias-Roman; Kari Korhonen; Nenad Keca; Eugenia Iturritxa; Dionicio Alvarado-Rosales; Halvor Solheim; Nicholas J. Brazee; Piotr Lakomy; Michelle R. Cleary; Eri Hasegawa; Taisei Kikuchi; Fortunato Garza-Ocanas; Panaghiotis Tsopelas; Daniel Rigling; Simone Prospero; Tetyana Tsykun; Jean A. Berube; Franck O. P. Stefani; Saeideh Jafarpour; Vladimir Antonin; Michal Tomsovsky; Geral I. McDonald; Stephen Woodward; Mee-Sook Kim

    2017-01-01

    Armillaria possesses several intriguing characteristics that have inspired wide interest in understanding phylogenetic relationships within and among species of this genus. Nuclear ribosomal DNA sequence–based analyses of Armillaria provide only limited information for phylogenetic studies among widely divergent taxa. More recent studies have shown that translation...

  7. HAlign-II: efficient ultra-large multiple sequence alignment and phylogenetic tree reconstruction with distributed and parallel computing.

    PubMed

    Wan, Shixiang; Zou, Quan

    2017-01-01

    Multiple sequence alignment (MSA) plays a key role in biological sequence analyses, especially in phylogenetic tree construction. Extreme increase in next-generation sequencing results in shortage of efficient ultra-large biological sequence alignment approaches for coping with different sequence types. Distributed and parallel computing represents a crucial technique for accelerating ultra-large (e.g. files more than 1 GB) sequence analyses. Based on HAlign and Spark distributed computing system, we implement a highly cost-efficient and time-efficient HAlign-II tool to address ultra-large multiple biological sequence alignment and phylogenetic tree construction. The experiments in the DNA and protein large scale data sets, which are more than 1GB files, showed that HAlign II could save time and space. It outperformed the current software tools. HAlign-II can efficiently carry out MSA and construct phylogenetic trees with ultra-large numbers of biological sequences. HAlign-II shows extremely high memory efficiency and scales well with increases in computing resource. THAlign-II provides a user-friendly web server based on our distributed computing infrastructure. HAlign-II with open-source codes and datasets was established at http://lab.malab.cn/soft/halign.

  8. Molecular phylogeny of 21 tropical bamboo species reconstructed by integrating non-coding internal transcribed spacer (ITS1 and 2) sequences and their consensus secondary structure.

    PubMed

    Ghosh, Jayadri Sekhar; Bhattacharya, Samik; Pal, Amita

    2017-06-01

    The unavailability of the reproductive structure and unpredictability of vegetative characters for the identification and phylogenetic study of bamboo prompted the application of molecular techniques for greater resolution and consensus. We first employed internal transcribed spacer (ITS1, 5.8S rRNA and ITS2) sequences to construct the phylogenetic tree of 21 tropical bamboo species. While the sequence alone could grossly reconstruct the traditional phylogeny amongst the 21-tropical species studied, some anomalies were encountered that prompted a further refinement of the phylogenetic analyses. Therefore, we integrated the secondary structure of the ITS sequences to derive individual sequence-structure matrix to gain more resolution on the phylogenetic reconstruction. The results showed that ITS sequence-structure is the reliable alternative to the conventional phenotypic method for the identification of bamboo species. The best-fit topology obtained by the sequence-structure based phylogeny over the sole sequence based one underscores closer clustering of all the studied Bambusa species (Sub-tribe Bambusinae), while Melocanna baccifera, which belongs to Sub-Tribe Melocanneae, disjointedly clustered as an out-group within the consensus phylogenetic tree. In this study, we demonstrated the dependability of the combined (ITS sequence+structure-based) approach over the only sequence-based analysis for phylogenetic relationship assessment of bamboo.

  9. Preliminary Classification of Novel Hemorrhagic Fever-Causing Viruses Using Sequence-Based PAirwise Sequence Comparison (PASC) Analysis.

    PubMed

    Bào, Yīmíng; Kuhn, Jens H

    2018-01-01

    During the last decade, genome sequence-based classification of viruses has become increasingly prominent. Viruses can be even classified based on coding-complete genome sequence data alone. Nevertheless, classification remains arduous as experts are required to establish phylogenetic trees to depict the evolutionary relationships of such sequences for preliminary taxonomic placement. Pairwise sequence comparison (PASC) of genomes is one of several novel methods for establishing relationships among viruses. This method, provided by the US National Center for Biotechnology Information as an open-access tool, circumvents phylogenetics, and yet PASC results are often in agreement with those of phylogenetic analyses. Computationally inexpensive, PASC can be easily performed by non-taxonomists. Here we describe how to use the PASC tool for the preliminary classification of novel viral hemorrhagic fever-causing viruses.

  10. High-Throughput Sequencing of Six Bamboo Chloroplast Genomes: Phylogenetic Implications for Temperate Woody Bamboos (Poaceae: Bambusoideae)

    PubMed Central

    Li, De-Zhu

    2011-01-01

    Background Bambusoideae is the only subfamily that contains woody members in the grass family, Poaceae. In phylogenetic analyses, Bambusoideae, Pooideae and Ehrhartoideae formed the BEP clade, yet the internal relationships of this clade are controversial. The distinctive life history (infrequent flowering and predominance of asexual reproduction) of woody bamboos makes them an interesting but taxonomically difficult group. Phylogenetic analyses based on large DNA fragments could only provide a moderate resolution of woody bamboo relationships, although a robust phylogenetic tree is needed to elucidate their evolutionary history. Phylogenomics is an alternative choice for resolving difficult phylogenies. Methodology/Principal Findings Here we present the complete nucleotide sequences of six woody bamboo chloroplast (cp) genomes using Illumina sequencing. These genomes are similar to those of other grasses and rather conservative in evolution. We constructed a phylogeny of Poaceae from 24 complete cp genomes including 21 grass species. Within the BEP clade, we found strong support for a sister relationship between Bambusoideae and Pooideae. In a substantial improvement over prior studies, all six nodes within Bambusoideae were supported with ≥0.95 posterior probability from Bayesian inference and 5/6 nodes resolved with 100% bootstrap support in maximum parsimony and maximum likelihood analyses. We found that repeats in the cp genome could provide phylogenetic information, while caution is needed when using indels in phylogenetic analyses based on few selected genes. We also identified relatively rapidly evolving cp genome regions that have the potential to be used for further phylogenetic study in Bambusoideae. Conclusions/Significance The cp genome of Bambusoideae evolved slowly, and phylogenomics based on whole cp genome could be used to resolve major relationships within the subfamily. The difficulty in resolving the diversification among three clades of temperate woody bamboos, even with complete cp genome sequences, suggests that these lineages may have diverged very rapidly. PMID:21655229

  11. Genomic Repeat Abundances Contain Phylogenetic Signal

    PubMed Central

    Dodsworth, Steven; Chase, Mark W.; Kelly, Laura J.; Leitch, Ilia J.; Macas, Jiří; Novák, Petr; Piednoël, Mathieu; Weiss-Schneeweiss, Hanna; Leitch, Andrew R.

    2015-01-01

    A large proportion of genomic information, particularly repetitive elements, is usually ignored when researchers are using next-generation sequencing. Here we demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, utilizing comparative graph-based clustering of next-generation sequence reads, which results in abundance estimates of different classes of genomic repeats. Phylogenetic trees are then inferred based on the genome-wide abundance of different repeat types treated as continuously varying characters; such repeats are scattered across chromosomes and in angiosperms can constitute a majority of nuclear genomic DNA. In six diverse examples, five angiosperms and one insect, this method provides generally well-supported relationships at interspecific and intergeneric levels that agree with results from more standard phylogenetic analyses of commonly used markers. We propose that this methodology may prove especially useful in groups where there is little genetic differentiation in standard phylogenetic markers. At the same time as providing data for phylogenetic inference, this method additionally yields a wealth of data for comparative studies of genome evolution. PMID:25261464

  12. Whole genome sequencing data and de novo draft assemblies for 66 teleost species

    PubMed Central

    Malmstrøm, Martin; Matschiner, Michael; Tørresen, Ole K.; Jakobsen, Kjetill S.; Jentoft, Sissel

    2017-01-01

    Teleost fishes comprise more than half of all vertebrate species, yet genomic data are only available for 0.2% of their diversity. Here, we present whole genome sequencing data for 66 new species of teleosts, vastly expanding the availability of genomic data for this important vertebrate group. We report on de novo assemblies based on low-coverage (9–39×) sequencing and present detailed methodology for all analyses. To facilitate further utilization of this data set, we present statistical analyses of the gene space completeness and verify the expected phylogenetic position of the sequenced genomes in a large mitogenomic context. We further present a nuclear marker set used for phylogenetic inference and evaluate each gene tree in relation to the species tree to test for homogeneity in the phylogenetic signal. Collectively, these analyses illustrate the robustness of this highly diverse data set and enable extensive reuse of the selected phylogenetic markers and the genomic data in general. This data set covers all major teleost lineages and provides unprecedented opportunities for comparative studies of teleosts. PMID:28094797

  13. Stratification of co-evolving genomic groups using ranked phylogenetic profiles

    PubMed Central

    Freilich, Shiri; Goldovsky, Leon; Gottlieb, Assaf; Blanc, Eric; Tsoka, Sophia; Ouzounis, Christos A

    2009-01-01

    Background Previous methods of detecting the taxonomic origins of arbitrary sequence collections, with a significant impact to genome analysis and in particular metagenomics, have primarily focused on compositional features of genomes. The evolutionary patterns of phylogenetic distribution of genes or proteins, represented by phylogenetic profiles, provide an alternative approach for the detection of taxonomic origins, but typically suffer from low accuracy. Herein, we present rank-BLAST, a novel approach for the assignment of protein sequences into genomic groups of the same taxonomic origin, based on the ranking order of phylogenetic profiles of target genes or proteins across the reference database. Results The rank-BLAST approach is validated by computing the phylogenetic profiles of all sequences for five distinct microbial species of varying degrees of phylogenetic proximity, against a reference database of 243 fully sequenced genomes. The approach - a combination of sequence searches, statistical estimation and clustering - analyses the degree of sequence divergence between sets of protein sequences and allows the classification of protein sequences according to the species of origin with high accuracy, allowing taxonomic classification of 64% of the proteins studied. In most cases, a main cluster is detected, representing the corresponding species. Secondary, functionally distinct and species-specific clusters exhibit different patterns of phylogenetic distribution, thus flagging gene groups of interest. Detailed analyses of such cases are provided as examples. Conclusion Our results indicate that the rank-BLAST approach can capture the taxonomic origins of sequence collections in an accurate and efficient manner. The approach can be useful both for the analysis of genome evolution and the detection of species groups in metagenomics samples. PMID:19860884

  14. Dynamically heterogenous partitions and phylogenetic inference: an evaluation of analytical strategies with cytochrome b and ND6 gene sequences in cranes.

    PubMed

    Krajewski, C; Fain, M G; Buckley, L; King, D G

    1999-11-01

    ki ctes over whether molecular sequence data should be partitioned for phylogenetic analysis often confound two types of heterogeneity among partitions. We distinguish historical heterogeneity (i.e., different partitions have different evolutionary relationships) from dynamic heterogeneity (i.e., different partitions show different patterns of sequence evolution) and explore the impact of the latter on phylogenetic accuracy and precision with a two-gene, mitochondrial data set for cranes. The well-established phylogeny of cranes allows us to contrast tree-based estimates of relevant parameter values with estimates based on pairwise comparisons and to ascertain the effects of incorporating different amounts of process information into phylogenetic estimates. We show that codon positions in the cytochrome b and NADH dehydrogenase subunit 6 genes are dynamically heterogenous under both Poisson and invariable-sites + gamma-rates versions of the F84 model and that heterogeneity includes variation in base composition and transition bias as well as substitution rate. Estimates of transition-bias and relative-rate parameters from pairwise sequence comparisons were comparable to those obtained as tree-based maximum likelihood estimates. Neither rate-category nor mixed-model partitioning strategies resulted in a loss of phylogenetic precision relative to unpartitioned analyses. We suggest that weighted-average distances provide a computationally feasible alternative to direct maximum likelihood estimates of phylogeny for mixed-model analyses of large, dynamically heterogenous data sets. Copyright 1999 Academic Press.

  15. Improving phylogenetic analyses by incorporating additional information from genetic sequence databases.

    PubMed

    Liang, Li-Jung; Weiss, Robert E; Redelings, Benjamin; Suchard, Marc A

    2009-10-01

    Statistical analyses of phylogenetic data culminate in uncertain estimates of underlying model parameters. Lack of additional data hinders the ability to reduce this uncertainty, as the original phylogenetic dataset is often complete, containing the entire gene or genome information available for the given set of taxa. Informative priors in a Bayesian analysis can reduce posterior uncertainty; however, publicly available phylogenetic software specifies vague priors for model parameters by default. We build objective and informative priors using hierarchical random effect models that combine additional datasets whose parameters are not of direct interest but are similar to the analysis of interest. We propose principled statistical methods that permit more precise parameter estimates in phylogenetic analyses by creating informative priors for parameters of interest. Using additional sequence datasets from our lab or public databases, we construct a fully Bayesian semiparametric hierarchical model to combine datasets. A dynamic iteratively reweighted Markov chain Monte Carlo algorithm conveniently recycles posterior samples from the individual analyses. We demonstrate the value of our approach by examining the insertion-deletion (indel) process in the enolase gene across the Tree of Life using the phylogenetic software BALI-PHY; we incorporate prior information about indels from 82 curated alignments downloaded from the BAliBASE database.

  16. Phylogenetic Analysis of Ruminant Theileria spp. from China Based on 28S Ribosomal RNA Gene

    PubMed Central

    Gou, Huitian; Guan, Guiquan; Ma, Miling; Liu, Aihong; Liu, Zhijie; Xu, Zongke; Ren, Qiaoyun; Li, Youquan; Yang, Jifei; Chen, Ze

    2013-01-01

    Species identification using DNA sequences is the basis for DNA taxonomy. In this study, we sequenced the ribosomal large-subunit RNA gene sequences (3,037-3,061 bp) in length of 13 Chinese Theileria stocks that were infective to cattle and sheep. The complete 28S rRNA gene is relatively difficult to amplify and its conserved region is not important for phylogenetic study. Therefore, we selected the D2-D3 region from the complete 28S rRNA sequences for phylogenetic analysis. Our analyses of 28S rRNA gene sequences showed that the 28S rRNA was useful as a phylogenetic marker for analyzing the relationships among Theileria spp. in ruminants. In addition, the D2-D3 region was a short segment that could be used instead of the whole 28S rRNA sequence during the phylogenetic analysis of Theileria, and it may be an ideal DNA barcode. PMID:24327775

  17. Phylogenetic analysis of ruminant Theileria spp. from China based on 28S ribosomal RNA gene.

    PubMed

    Gou, Huitian; Guan, Guiquan; Ma, Miling; Liu, Aihong; Liu, Zhijie; Xu, Zongke; Ren, Qiaoyun; Li, Youquan; Yang, Jifei; Chen, Ze; Yin, Hong; Luo, Jianxun

    2013-10-01

    Species identification using DNA sequences is the basis for DNA taxonomy. In this study, we sequenced the ribosomal large-subunit RNA gene sequences (3,037-3,061 bp) in length of 13 Chinese Theileria stocks that were infective to cattle and sheep. The complete 28S rRNA gene is relatively difficult to amplify and its conserved region is not important for phylogenetic study. Therefore, we selected the D2-D3 region from the complete 28S rRNA sequences for phylogenetic analysis. Our analyses of 28S rRNA gene sequences showed that the 28S rRNA was useful as a phylogenetic marker for analyzing the relationships among Theileria spp. in ruminants. In addition, the D2-D3 region was a short segment that could be used instead of the whole 28S rRNA sequence during the phylogenetic analysis of Theileria, and it may be an ideal DNA barcode.

  18. A molecular phylogenetic investigation of bakuella, anteholosticha, and caudiholosticha (protista, ciliophora, hypotrichia) based on three-gene sequences.

    PubMed

    Lv, Zhao; Shao, Chen; Yi, Zhenzhen; Warren, Alan

    2015-01-01

    Traditionally classifications of the Urostyloida have been mainly based on morphology and morphogenesis. Recent molecular phylogenetic analyses have been largely based on single-gene data for a limited number of taxa. Consequently, incongruence has arisen between the morphological/morphogenetic and the molecular data. In this study, the three phylogenetic markers (SSU rDNA, ITS1-5.8S-ITS2 region, and LSU-rDNA) of three urostyloid genera represented by four species (Bakuella granulifera, Anteholosticha monilata, Caudiholosticha sylvatica, and C. tetracirra) were sequenced to investigate their phylogeny. The results show that: (1) all three genera should be regarded as the members of the order Urostyloida within the subclass Hypotrichia, as indicated by morphological characters; (2) phylogenetic analyses and sequence similarities both indicate that neither Anteholosticha nor Caudiholosticha are monophyletic and the systematic assignment of both genera awaits further evaluation; and (3) Bakuella has a closer relationship with Urostyla than with bakuellids (e.g. Apobakuella and Metaurostylopsis), suggesting Bakuella may belong to the family Urostylidae rather than the family Bakuellidae. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.

  19. Analyzing the relationship between sequence divergence and nodal support using Bayesian phylogenetic analyses.

    PubMed

    Makowsky, Robert; Cox, Christian L; Roelke, Corey; Chippindale, Paul T

    2010-11-01

    Determining the appropriate gene for phylogeny reconstruction can be a difficult process. Rapidly evolving genes tend to resolve recent relationships, but suffer from alignment issues and increased homoplasy among distantly related species. Conversely, slowly evolving genes generally perform best for deeper relationships, but lack sufficient variation to resolve recent relationships. We determine the relationship between sequence divergence and Bayesian phylogenetic reconstruction ability using both natural and simulated datasets. The natural data are based on 28 well-supported relationships within the subphylum Vertebrata. Sequences of 12 genes were acquired and Bayesian analyses were used to determine phylogenetic support for correct relationships. Simulated datasets were designed to determine whether an optimal range of sequence divergence exists across extreme phylogenetic conditions. Across all genes we found that an optimal range of divergence for resolving the correct relationships does exist, although this level of divergence expectedly depends on the distance metric. Simulated datasets show that an optimal range of sequence divergence exists across diverse topologies and models of evolution. We determine that a simple to measure property of genetic sequences (genetic distance) is related to phylogenic reconstruction ability in Bayesian analyses. This information should be useful for selecting the most informative gene to resolve any relationships, especially those that are difficult to resolve, as well as minimizing both cost and confounding information during project design. Copyright © 2010. Published by Elsevier Inc.

  20. The complete mitochondrial genome of Koerneria sudhausi (Diplogasteromorpha: Nematoda) supports monophyly of Diplogasteromorpha within Rhabditomorpha.

    PubMed

    Kim, Taeho; Kim, Jiyeon; Nadler, Steven A; Park, Joong-Ki

    2016-05-01

    Testing hypotheses of monophyly for different nematode groups in the context of broad representation of nematode diversity is central to understanding the patterns and processes of nematode evolution. Herein sequence information from mitochondrial genomes is used to test the monophyly of diplogasterids, which includes an important nematode model organism. The complete mitochondrial genome sequence of Koerneria sudhausi, a representative of Diplogasteromorpha, was determined and used for phylogenetic analyses along with 60 other nematode species. The mtDNA of K. sudhausi is comprised of 16,005 bp that includes 36 genes (12 protein-coding genes, 2 ribosomal RNA genes and 22 transfer RNA genes) encoded in the same direction. Phylogenetic trees inferred from amino acid and nucleotide sequence data for the 12 protein-coding genes strongly supported the sister relationship of K. sudhausi with Pristionchus pacificus, supporting Diplogasteromorpha. The gene order of K. sudhausi is identical to that most commonly found in members of the Rhabditomorpha + Ascaridomorpha + Diplogasteromorpha clade, with an exception of some tRNA translocations. Both the gene order pattern and sequence-based phylogenetic analyses support a close relationship between the diplogasterid species and Rhabditomorpha. The nesting of the two diplogasteromorph species within Rhabditomorpha is consistent with most molecular phylogenies for the group, but inconsistent with certain morphology-based hypotheses that asserted phylogenetic affinity between diplogasteromorphs and tylenchomorphs. Phylogenetic analysis of mitochondrial genome sequences strongly supports monophyly of the diplogasteromorpha.

  1. Unique Phylogenetic Lineage Found in the Fusarium-like Clade after Re-examining BCCM/IHEM Fungal Culture Collection Material

    PubMed Central

    De Cremer, Koen; Piérard, Denis; Hendrickx, Marijke

    2016-01-01

    Recently, the Fusarium genus has been narrowed based upon phylogenetic analyses and a Fusarium-like clade was adopted. The few species of the Fusarium-like clade were moved to new, re-installed or existing genera or provisionally retained as "Fusarium." Only a limited number of reference strains and DNA marker sequences are available for this clade and not much is known about its actual species diversity. Here, we report six strains, preserved by the Belgian fungal culture collection BCCM/IHEM as a Fusarium species, that belong to the Fusarium-like clade. They showed a slow growth and produced pionnotes, typical morphological characteristics of many Fusarium-like species. Multilocus sequencing with comparative sequence analyses in GenBank and phylogenetic analyses, using reference sequences of type material, confirmed that they were indeed member of the Fusarium-like clade. One strain was identified as "Fusarium" ciliatum whereas another strain was identified as Fusicolla merismoides. The four remaining strains were shown to represent a unique phylogenetic lineage in the Fusarium-like clade and were also found morphologically distinct from other members of the Fusarium-like clade. Based upon phylogenetic considerations, a new genus, Pseudofusicolla gen. nov., and a new species, Pseudofusicolla belgica sp. nov., were installed for this lineage. A formal description is provided in this study. Additional sampling will be required to gather isolates other than the historical strains presented in the present study as well as to further reveal the actual species diversity in the Fusarium-like clade. PMID:27790062

  2. Re-evaluation of the taxonomy of the Mitis group of the genus Streptococcus based on whole genome phylogenetic analyses, and proposed reclassification of Streptococcus dentisani as Streptococcus oralis subsp. dentisani comb. nov., Streptococcus tigurinus as Streptococcus oralis subsp. tigurinus comb. nov., and Streptococcus oligofermentans as a later synonym of Streptococcus cristatus.

    PubMed

    Jensen, Anders; Scholz, Christian F P; Kilian, Mogens

    2016-11-01

    The Mitis group of the genus Streptococcus currently comprises 20 species with validly published names, including the pathogen S. pneumoniae. They have been the subject of much taxonomic confusion, due to phenotypic overlap and genetic heterogeneity, which has hampered a full appreciation of their clinical significance. The purpose of this study was to critically re-examine the taxonomy of the Mitis group using 195 publicly available genomes, including designated type strains for phylogenetic analyses based on core genomes, multilocus sequences and 16S rRNA gene sequences, combined with estimates of average nucleotide identity (ANI) and in silico and in vitro analyses of specific phenotypic characteristics. Our core genomic phylogenetic analyses revealed distinct clades that, to some extent, and from the clustering of type strains represent known species. However, many of the genomes have been incorrectly identified adding to the current confusion. Furthermore, our data show that 16S rRNA gene sequences and ANI are unsuitable for identifying and circumscribing new species of the Mitis group of the genus Streptococci. Based on the clustering patterns resulting from core genome phylogenetic analysis, we conclude that S. oligofermentans is a later synonym of S. cristatus. The recently described strains of the species Streptococcus dentisani includes one previously referred to as 'S. mitis biovar 2'. Together with S. oralis, S. dentisani and S. tigurinus form subclusters within a coherent phylogenetic clade. We propose that the species S. oralis consists of three subspecies: S. oralis subsp. oralis subsp. nov., S. oralis subsp. tigurinus comb. nov., and S. oralis subsp. dentisani comb. nov.

  3. Blastocystis phylogeny among various isolates from humans to insects.

    PubMed

    Yoshikawa, Hisao; Koyama, Yukiko; Tsuchiya, Erika; Takami, Kazutoshi

    2016-12-01

    Blastocystis is a common unicellular eukaryotic parasite found not only in humans, but also in various kinds of animal species worldwide. Since Blastocystis isolates are morphologically indistinguishable, many molecular biological approaches have been applied to classify these isolates. The complete or partial sequences of the small subunit rRNA gene (SSU rDNA) are mainly used for comparisons and phylogenetic analyses among Blastocystis isolates. However, various lengths of the partial SSU rDNA sequence have been used for phylogenetic inference among genetically different isolates. Based on the complete SSU rDNA sequences, consensus terminology of nine subtypes (STs) of Blastocystis sp. that were supported by phylogenetically monophyletic nine clades was proposed in 2007. Thereafter, eight additional kinds of STs comprising non-human mammalian Blastocystis isolates have been reported based on the phylogeny of SSU rDNA sequences, while STs 11 and 12 were only proposed on the base of partial sequences. Although many sequence data from mammalian and avian Blastocystis are registered in GenBank, only limited data on SSU rDNA are available for poikilotherm-derived Blastocystis isolates. Therefore, the phylogenetic positions of the reptilian/amphibian Blastocystis clades are unstable. The phylogenetic inference of various STs comprising mammalian and/or avian Blastocystis isolates was verified herein based on comparisons between partial and complete SSU rDNA sequences, and the phylogenetic positions of reptilian and amphibian Blastocystis isolates were also investigated using 14 new Blastocystis isolates from reptiles with all known isolates from other reptilians, amphibians, and insects registered in GenBank. Copyright © 2016. Published by Elsevier Ireland Ltd.

  4. Phylogenetic position of the genus Perkinsus (Protista, Apicomplexa) based on small subunit ribosomal RNA.

    PubMed

    Goggin, C L; Barker, S C

    1993-07-01

    Parasites of the genus Perkinsus destroy marine molluscs worldwide. Their phylogenetic position within the kingdom Protista is controversial. Nucleotide sequence data (1792 bp) from the small subunit rRNA gene of Perkinsus sp. from Anadara trapezia (Mollusca: Bivalvia) from Moreton Bay, Queensland, was used to examine the phylogenetic affinities of this enigmatic genus. These data were aligned with nucleotide sequences from 6 apicomplexans, 3 ciliates, 3 flagellates, a dinoflagellate, 3 fungi, maize and human. Phylogenetic trees were constructed after analysis with maximum parsimony and distance matrix methods. Our analyses indicate that Perkinsus is phylogenetically closer to dinoflagellates and to coccidean and piroplasm apicomplexans than to fungi or flagellates.

  5. The chordate proteome history database.

    PubMed

    Levasseur, Anthony; Paganini, Julien; Dainat, Jacques; Thompson, Julie D; Poch, Olivier; Pontarotti, Pierre; Gouret, Philippe

    2012-01-01

    The chordate proteome history database (http://ioda.univ-provence.fr) comprises some 20,000 evolutionary analyses of proteins from chordate species. Our main objective was to characterize and study the evolutionary histories of the chordate proteome, and in particular to detect genomic events and automatic functional searches. Firstly, phylogenetic analyses based on high quality multiple sequence alignments and a robust phylogenetic pipeline were performed for the whole protein and for each individual domain. Novel approaches were developed to identify orthologs/paralogs, and predict gene duplication/gain/loss events and the occurrence of new protein architectures (domain gains, losses and shuffling). These important genetic events were localized on the phylogenetic trees and on the genomic sequence. Secondly, the phylogenetic trees were enhanced by the creation of phylogroups, whereby groups of orthologous sequences created using OrthoMCL were corrected based on the phylogenetic trees; gene family size and gene gain/loss in a given lineage could be deduced from the phylogroups. For each ortholog group obtained from the phylogenetic or the phylogroup analysis, functional information and expression data can be retrieved. Database searches can be performed easily using biological objects: protein identifier, keyword or domain, but can also be based on events, eg, domain exchange events can be retrieved. To our knowledge, this is the first database that links group clustering, phylogeny and automatic functional searches along with the detection of important events occurring during genome evolution, such as the appearance of a new domain architecture.

  6. Multilocus sequence analysis for assessment of phylogenetic diversity and biogeography in Thalassospira bacteria from diverse marine environments.

    PubMed

    Lai, Qiliang; Liu, Yang; Yuan, Jun; Du, Juan; Wang, Liping; Sun, Fengqin; Shao, Zongze

    2014-01-01

    Thalassospira bacteria are widespread and have been isolated from various marine environments. Less is known about their genetic diversity and biogeography, as well as their role in marine environments, many of them cannot be discriminated merely using the 16S rRNA gene. To address these issues, in this report, the phylogenetic analysis of 58 strains from seawater and deep sea sediments were carried out using the multilocus sequence analysis (MLSA) based on acsA, aroE, gyrB, mutL, rpoD and trpB genes, and the DNA-DNA hybridization (DDH) and average nucleotide identity (ANI) based on genome sequences. The MLSA analysis demonstrated that the 58 strains were clearly separated into 15 lineages, corresponding to seven validly described species and eight potential novel species. The DDH and ANI values further confirmed the validity of the MLSA analysis and eight potential novel species. The MLSA interspecies gap of the genus Thalassospira was determined to be 96.16-97.12% sequence identity on the basis of the combined analyses of the DDH and MLSA, while the ANIm interspecies gap was 95.76-97.20% based on the in silico DDH analysis. Meanwhile, phylogenetic analyses showed that the Thalassospira bacteria exhibited distribution pattern to a certain degree according to geographic regions. Moreover, they clustered together according to the habitats depth. For short, the phylogenetic analyses and biogeography of the Thalassospira bacteria were systematically investigated for the first time. These results will be helpful to explore further their ecological role and adaptive evolution in marine environments.

  7. Multilocus Sequence Analysis for Assessment of Phylogenetic Diversity and Biogeography in Thalassospira Bacteria from Diverse Marine Environments

    PubMed Central

    Yuan, Jun; Du, Juan; Wang, Liping; Sun, Fengqin; Shao, Zongze

    2014-01-01

    Thalassospira bacteria are widespread and have been isolated from various marine environments. Less is known about their genetic diversity and biogeography, as well as their role in marine environments, many of them cannot be discriminated merely using the 16S rRNA gene. To address these issues, in this report, the phylogenetic analysis of 58 strains from seawater and deep sea sediments were carried out using the multilocus sequence analysis (MLSA) based on acsA, aroE, gyrB, mutL, rpoD and trpB genes, and the DNA-DNA hybridization (DDH) and average nucleotide identity (ANI) based on genome sequences. The MLSA analysis demonstrated that the 58 strains were clearly separated into 15 lineages, corresponding to seven validly described species and eight potential novel species. The DDH and ANI values further confirmed the validity of the MLSA analysis and eight potential novel species. The MLSA interspecies gap of the genus Thalassospira was determined to be 96.16–97.12% sequence identity on the basis of the combined analyses of the DDH and MLSA, while the ANIm interspecies gap was 95.76–97.20% based on the in silico DDH analysis. Meanwhile, phylogenetic analyses showed that the Thalassospira bacteria exhibited distribution pattern to a certain degree according to geographic regions. Moreover, they clustered together according to the habitats depth. For short, the phylogenetic analyses and biogeography of the Thalassospira bacteria were systematically investigated for the first time. These results will be helpful to explore further their ecological role and adaptive evolution in marine environments. PMID:25198177

  8. Obtaining a more resolute teleost growth hormone phylogeny by the introduction of gaps in sequence alignment.

    PubMed

    Rubin, D A; Dores, R M

    1995-06-01

    In order to obtain a more resolute phylogeny of teleosts based on growth hormone (GH) sequences, phylogenetic analyses were performed in which deletions (gaps), which appear to be order specific, were upheld to maintain GH's structural information. Sequences were analyzed at 194 amino acid positions. In addition, the two closest genealogically related groups to the teleosts, Amia calva and Acipenser guldenstadti, were used as outgroups. Modified sequence alignments were also analyzed to determine clade stability. Analyses indicated, in the most parsimonious cladogram, that molecular and morphological relationships for the orders of fishes are congruent. With GH molecular sequence data it was possible to resolve all clades at the familial level. Analyses of the primary sequence data indicate that: (a) the halecomorphean and chondrostean GH sequences are the appropriate outgroups for generating the most parsimonious cladogram for teleosts; (b) proper alignment of teleost GH sequence by the inclusion of gaps is necessary for resolution of the Percomorpha; and (c) removal of sequence information by deleting improperly aligned sequence decreases the phylogenetic signal obtained.

  9. Phylogenomics and taxonomy of Lecomtelleae (Poaceae), an isolated panicoid lineage from Madagascar

    PubMed Central

    Besnard, Guillaume; Christin, Pascal-Antoine; Malé, Pierre-Jean G.; Coissac, Eric; Ralimanana, Hélène; Vorontsova, Maria S.

    2013-01-01

    Background and Aims An accurate characterization of biodiversity requires analyses of DNA sequences in addition to classical morphological descriptions. New methods based on high-throughput sequencing may allow investigation of specimens with a large set of genetic markers to infer their evolutionary history. In the grass family, the phylogenetic position of the monotypic genus Lecomtella, a rare bamboo-like endemic from Madagascar, has never been appropriately evaluated. Until now its taxonomic treatment has remained controversial, indicating the need for re-evaluation based on a combination of molecular and morphological data. Methods The phylogenetic position of Lecomtella in Poaceae was evaluated based on sequences from the nuclear and plastid genomes generated by next-generation sequencing (NGS). In addition, a detailed morphological description of L. madagascariensis was produced, and its distribution and habit were investigated in order to assess its conservation status. Key Results The complete plastid sequence, a ribosomal DNA unit and fragments of low-copy nuclear genes (phyB and ppc) were obtained. All phylogenetic analyses place Lecomtella as an isolated member of the core panicoids, which last shared a common ancestor with other species >20 million years ago. Although Lecomtella exhibits morphological characters typical of Panicoideae, an unusual combination of traits supports its treatment as a separate group. Conclusions The study showed that NGS can be used to generate abundant phylogenetic information rapidly, opening new avenues for grass phylogenetics. These data clearly showed that Lecomtella forms an isolated lineage, which, in combination with its morphological peculiarities, justifies its treatment as a separate tribe: Lecomtelleae. New descriptions of the tribe, genus and species are presented with a typification, a distribution map and an IUCN conservation assessment. PMID:23985988

  10. Phylogenomics and taxonomy of Lecomtelleae (Poaceae), an isolated panicoid lineage from Madagascar.

    PubMed

    Besnard, Guillaume; Christin, Pascal-Antoine; Malé, Pierre-Jean G; Coissac, Eric; Ralimanana, Hélène; Vorontsova, Maria S

    2013-10-01

    An accurate characterization of biodiversity requires analyses of DNA sequences in addition to classical morphological descriptions. New methods based on high-throughput sequencing may allow investigation of specimens with a large set of genetic markers to infer their evolutionary history. In the grass family, the phylogenetic position of the monotypic genus Lecomtella, a rare bamboo-like endemic from Madagascar, has never been appropriately evaluated. Until now its taxonomic treatment has remained controversial, indicating the need for re-evaluation based on a combination of molecular and morphological data. The phylogenetic position of Lecomtella in Poaceae was evaluated based on sequences from the nuclear and plastid genomes generated by next-generation sequencing (NGS). In addition, a detailed morphological description of L. madagascariensis was produced, and its distribution and habit were investigated in order to assess its conservation status. The complete plastid sequence, a ribosomal DNA unit and fragments of low-copy nuclear genes (phyB and ppc) were obtained. All phylogenetic analyses place Lecomtella as an isolated member of the core panicoids, which last shared a common ancestor with other species >20 million years ago. Although Lecomtella exhibits morphological characters typical of Panicoideae, an unusual combination of traits supports its treatment as a separate group. The study showed that NGS can be used to generate abundant phylogenetic information rapidly, opening new avenues for grass phylogenetics. These data clearly showed that Lecomtella forms an isolated lineage, which, in combination with its morphological peculiarities, justifies its treatment as a separate tribe: Lecomtelleae. New descriptions of the tribe, genus and species are presented with a typification, a distribution map and an IUCN conservation assessment.

  11. Insights into the phylogeny of Northern Hemisphere Armillaria: Neighbor-net and Bayesian analyses of translation elongation factor 1-α gene sequences.

    PubMed

    Klopfenstein, Ned B; Stewart, Jane E; Ota, Yuko; Hanna, John W; Richardson, Bryce A; Ross-Davis, Amy L; Elías-Román, Rubén D; Korhonen, Kari; Keča, Nenad; Iturritxa, Eugenia; Alvarado-Rosales, Dionicio; Solheim, Halvor; Brazee, Nicholas J; Łakomy, Piotr; Cleary, Michelle R; Hasegawa, Eri; Kikuchi, Taisei; Garza-Ocañas, Fortunato; Tsopelas, Panaghiotis; Rigling, Daniel; Prospero, Simone; Tsykun, Tetyana; Bérubé, Jean A; Stefani, Franck O P; Jafarpour, Saeideh; Antonín, Vladimír; Tomšovský, Michal; McDonald, Geral I; Woodward, Stephen; Kim, Mee-Sook

    2017-01-01

    Armillaria possesses several intriguing characteristics that have inspired wide interest in understanding phylogenetic relationships within and among species of this genus. Nuclear ribosomal DNA sequence-based analyses of Armillaria provide only limited information for phylogenetic studies among widely divergent taxa. More recent studies have shown that translation elongation factor 1-α (tef1) sequences are highly informative for phylogenetic analysis of Armillaria species within diverse global regions. This study used Neighbor-net and coalescence-based Bayesian analyses to examine phylogenetic relationships of newly determined and existing tef1 sequences derived from diverse Armillaria species from across the Northern Hemisphere, with Southern Hemisphere Armillaria species included for reference. Based on the Bayesian analysis of tef1 sequences, Armillaria species from the Northern Hemisphere are generally contained within the following four superclades, which are named according to the specific epithet of the most frequently cited species within the superclade: (i) Socialis/Tabescens (exannulate) superclade including Eurasian A. ectypa, North American A. socialis (A. tabescens), and Eurasian A. socialis (A. tabescens) clades; (ii) Mellea superclade including undescribed annulate North American Armillaria sp. (Mexico) and four separate clades of A. mellea (Europe and Iran, eastern Asia, and two groups from North America); (iii) Gallica superclade including Armillaria Nag E (Japan), multiple clades of A. gallica (Asia and Europe), A. calvescens (eastern North America), A. cepistipes (North America), A. altimontana (western USA), A. nabsnona (North America and Japan), and at least two A. gallica clades (North America); and (iv) Solidipes/Ostoyae superclade including two A. solidipes/ostoyae clades (North America), A. gemina (eastern USA), A. solidipes/ostoyae (Eurasia), A. cepistipes (Europe and Japan), A. sinapina (North America and Japan), and A. borealis (Eurasia) clade 2. Of note is that A. borealis (Eurasia) clade 1 appears basal to the Solidipes/Ostoyae and Gallica superclades. The Neighbor-net analysis showed similar phylogenetic relationships. This study further demonstrates the utility of tef1 for global phylogenetic studies of Armillaria species and provides critical insights into multiple taxonomic issues that warrant further study.

  12. Phylogenetic Analysis of Shewanella Strains by DNA Relatedness Derived from Whole Genome Microarray DNA-DNA Hybridization and Comparison with Other Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Liyou; Yi, T. Y.; Van Nostrand, Joy

    Phylogenetic analyses were done for the Shewanella strains isolated from Baltic Sea (38 strains), US DOE Hanford Uranium bioremediation site [Hanford Reach of the Columbia River (HRCR), 11 strains], Pacific Ocean and Hawaiian sediments (8 strains), and strains from other resources (16 strains) with three out group strains, Rhodopseudomonas palustris, Clostridium cellulolyticum, and Thermoanaerobacter ethanolicus X514, using DNA relatedness derived from WCGA-based DNA-DNA hybridizations, sequence similarities of 16S rRNA gene and gyrB gene, and sequence similarities of 6 loci of Shewanella genome selected from a shared gene list of the Shewanella strains with whole genome sequenced based on the averagemore » nucleotide identity of them (ANI). The phylogenetic trees based on 16S rRNA and gyrB gene sequences, and DNA relatedness derived from WCGA hybridizations of the tested Shewanella strains share exactly the same sub-clusters with very few exceptions, in which the strains were basically grouped by species. However, the phylogenetic analysis based on DNA relatedness derived from WCGA hybridizations dramatically increased the differentiation resolution at species and strains level within Shewanella genus. When the tree based on DNA relatedness derived from WCGA hybridizations was compared to the tree based on the combined sequences of the selected functional genes (6 loci), we found that the resolutions of both methods are similar, but the clustering of the tree based on DNA relatedness derived from WMGA hybridizations was clearer. These results indicate that WCGA-based DNA-DNA hybridization is an idea alternative of conventional DNA-DNA hybridization methods and it is superior to the phylogenetics methods based on sequence similarities of single genes. Detailed analysis is being performed for the re-classification of the strains examined.« less

  13. Ghost-tree: creating hybrid-gene phylogenetic trees for diversity analyses.

    PubMed

    Fouquier, Jennifer; Rideout, Jai Ram; Bolyen, Evan; Chase, John; Shiffer, Arron; McDonald, Daniel; Knight, Rob; Caporaso, J Gregory; Kelley, Scott T

    2016-02-24

    Fungi play critical roles in many ecosystems, cause serious diseases in plants and animals, and pose significant threats to human health and structural integrity problems in built environments. While most fungal diversity remains unknown, the development of PCR primers for the internal transcribed spacer (ITS) combined with next-generation sequencing has substantially improved our ability to profile fungal microbial diversity. Although the high sequence variability in the ITS region facilitates more accurate species identification, it also makes multiple sequence alignment and phylogenetic analysis unreliable across evolutionarily distant fungi because the sequences are hard to align accurately. To address this issue, we created ghost-tree, a bioinformatics tool that integrates sequence data from two genetic markers into a single phylogenetic tree that can be used for diversity analyses. Our approach starts with a "foundation" phylogeny based on one genetic marker whose sequences can be aligned across organisms spanning divergent taxonomic groups (e.g., fungal families). Then, "extension" phylogenies are built for more closely related organisms (e.g., fungal species or strains) using a second more rapidly evolving genetic marker. These smaller phylogenies are then grafted onto the foundation tree by mapping taxonomic names such that each corresponding foundation-tree tip would branch into its new "extension tree" child. We applied ghost-tree to graft fungal extension phylogenies derived from ITS sequences onto a foundation phylogeny derived from fungal 18S sequences. Our analysis of simulated and real fungal ITS data sets found that phylogenetic distances between fungal communities computed using ghost-tree phylogenies explained significantly more variance than non-phylogenetic distances. The phylogenetic metrics also improved our ability to distinguish small differences (effect sizes) between microbial communities, though results were similar to non-phylogenetic methods for larger effect sizes. The Silva/UNITE-based ghost tree presented here can be easily integrated into existing fungal analysis pipelines to enhance the resolution of fungal community differences and improve understanding of these communities in built environments. The ghost-tree software package can also be used to develop phylogenetic trees for other marker gene sets that afford different taxonomic resolution, or for bridging genome trees with amplicon trees. ghost-tree is pip-installable. All source code, documentation, and test code are available under the BSD license at https://github.com/JTFouquier/ghost-tree .

  14. Cultural studies coupled with DNA based sequence analyses and its implication on pigmentation as a phylogenetic marker in Pestalotiopsis taxonomy.

    PubMed

    Liu, Ai-Rong; Chen, Shuang-Chen; Wu, Shang-Ying; Xu, Tong; Guo, Liang-Dong; Jeewon, Rajesh; Wei, Ji-Guang

    2010-11-01

    Previous phylogenetic studies based on DNA sequence data have partially resolved taxonomic relationships among Pestalotiopsis species. There are still some morphological characters whose phylogenetic significance have not been assessed properly due to limited taxon sampling, in particular the degree of pigmentation of median cells. In this study, the stability of pigmentation of median cells of conidia in Pestalotiopsis species was evaluated in subculture, and a molecular phylogenetic analysis was conducted on 45 strains belonging to 26 species in order to reappraise the pigmentation of median cells for its significance in the taxonomy of Pestalotiopsis. Phylogenetic relationships were inferred from nucleotide sequences in ITS regions (ITS1, 5.8S and ITS2) and β-tubulin 2 gene (tub2). The results showed that pigmentation of median cells was stable and it could be a key character in the taxonomy of Pestalotiopsis species. Instead of "concolorous" and "versicolor" proposed by Steyeart (1949), "brown to olivaceous" and "umber to fuliginous" are described and proposed in this paper. Copyright © 2010. Published by Elsevier Inc.

  15. Delimitation of the Thoracosphaeraceae (Dinophyceae), including the calcareous dinoflagellates, based on large amounts of ribosomal RNA sequence data.

    PubMed

    Gottschling, Marc; Soehner, Sylvia; Zinssmeister, Carmen; John, Uwe; Plötner, Jörg; Schweikert, Michael; Aligizaki, Katerina; Elbrächter, Malte

    2012-01-01

    The phylogenetic relationships of the Dinophyceae (Alveolata) are not sufficiently resolved at present. The Thoracosphaeraceae (Peridiniales) are the only group of the Alveolata that include members with calcareous coccoid stages; this trait is considered apomorphic. Although the coccoid stage apparently is not calcareous, Bysmatrum has been assigned to the Thoracosphaeraceae based on thecal morphology. We tested the monophyly of the Thoracosphaeraceae using large sets of ribosomal RNA sequence data of the Alveolata including the Dinophyceae. Phylogenetic analyses were performed using Maximum Likelihood and Bayesian approaches. The Thoracosphaeraceae were monophyletic, but included also a number of non-calcareous dinophytes (such as Pentapharsodinium and Pfiesteria) and even parasites (such as Duboscquodinium and Tintinnophagus). Bysmatrum had an isolated and uncertain phylogenetic position outside the Thoracosphaeraceae. The phylogenetic relationships among calcareous dinophytes appear complex, and the assumption of the single origin of the potential to produce calcareous structures is challenged. The application of concatenated ribosomal RNA sequence data may prove promising for phylogenetic reconstructions of the Dinophyceae in future. Copyright © 2011 Elsevier GmbH. All rights reserved.

  16. Molecular and phylogenetic characterizations of an Eimeria krijgsmanni Yakimoff & Gouseff, 1938 (Apicomplexa: Eimeriidae) mouse intestinal protozoan parasite by partial 18S ribosomal RNA gene sequence analysis.

    PubMed

    Takeo, Toshinori; Tanaka, Tetsuya; Matsubayashi, Makoto; Maeda, Hiroki; Kusakisako, Kodai; Matsui, Toshihiro; Mochizuki, Masami; Matsuo, Tomohide

    2014-08-01

    Previously, we characterized an undocumented strain of Eimeria krijgsmanni by morphological and biological features. Here, we present a detailed molecular phylogenetic analysis of this organism. Namely, 18S ribosomal RNA gene (rDNA) sequences of E. krijgsmanni were analyzed to incorporate this species into a comprehensive Eimeria phylogeny. As a result, partial 18S rDNA sequence from E. krijgsmanni was successfully determined, and two different types, Type A and Type B, that differed by 1 base pair were identified. E. krijgsmanni was originally isolated from a single oocyst, and thus the result show that the two types might have allelic sequence heterogeneity in the 18S rDNA. Based on phylogenetic analyses, the two types of E. krijgsmanni 18S rDNA formed one of two clades among murine Eimeria spp.; these Eimeria clades reflected morphological similarity among the Eimeria spp. This is the third molecular phylogenetic characterization of a murine Eimeria spp. in addition to E. falciformis and E. papillata. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Characterization and Evolution of Cell Division and Cell Wall Synthesis Genes in the Bacterial Phyla Verrucomicrobia, Lentisphaerae, Chlamydiae, and Planctomycetes and Phylogenetic Comparison with rRNA Genes▿ †

    PubMed Central

    Pilhofer, Martin; Rappl, Kristina; Eckl, Christina; Bauer, Andreas Peter; Ludwig, Wolfgang; Schleifer, Karl-Heinz; Petroni, Giulio

    2008-01-01

    In the past, studies on the relationships of the bacterial phyla Planctomycetes, Chlamydiae, Lentisphaerae, and Verrucomicrobia using different phylogenetic markers have been controversial. Investigations based on 16S rRNA sequence analyses suggested a relationship of the four phyla, showing the branching order Planctomycetes, Chlamydiae, Verrucomicrobia/Lentisphaerae. Phylogenetic analyses of 23S rRNA genes in this study also support a monophyletic grouping and their branching order—this grouping is significant for understanding cell division, since the major bacterial cell division protein FtsZ is absent from members of two of the phyla Chlamydiae and Planctomycetes. In Verrucomicrobia, knowledge about cell division is mainly restricted to the recent report of ftsZ in the closely related genera Prosthecobacter and Verrucomicrobium. In this study, genes of the conserved division and cell wall (dcw) cluster (ddl, ftsQ, ftsA, and ftsZ) were characterized in all verrucomicrobial subdivisions (1 to 4) with cultivable representatives (1 to 4). Sequence analyses and transcriptional analyses in Verrucomicrobia and genome data analyses in Lentisphaerae suggested that cell division is based on FtsZ in all verrucomicrobial subdivisions and possibly also in the sister phylum Lentisphaerae. Comprehensive sequence analyses of available genome data for representatives of Verrucomicrobia, Lentisphaerae, Chlamydiae, and Planctomycetes strongly indicate that their last common ancestor possessed a conserved, ancestral type of dcw gene cluster and an FtsZ-based cell division mechanism. This implies that Planctomycetes and Chlamydiae may have shifted independently to a non-FtsZ-based cell division mechanism after their separate branchings from their last common ancestor with Verrucomicrobia. PMID:18310338

  18. Molecular Tracing of Hepatitis C Virus Genotype 1 Isolates in Iran: A NS5B Phylogenetic Analysis with Systematic Review.

    PubMed

    Hesamizadeh, Khashayar; Alavian, Seyed Moayed; Najafi Tireh Shabankareh, Azar; Sharafi, Heidar

    2016-12-01

    Hepatitis C virus (HCV) is characterized by a high degree of genetic heterogeneity and classified into 7 genotypes and different subtypes. It heterogeneously distributed through various risk groups and geographical regions. A well-established phylogenetic relationship can simplify the tracing of HCV hierarchical strata into geographical regions. The current study aimed to find genetic phylogeny of subtypes 1a and 1b of HCV isolates based on NS5B nucleotide sequences in Iran and other members of Eastern Mediterranean regional office of world health organization, as well as other Middle Eastern countries, with a systematic review of available published and unpublished studies. The phylogenetic analyses were performed based on the nucleotide sequences of NS5B gene of HCV genotype 1 (HCV-1), which were registered in the GenBank database. The literature review was performed in two steps: 1) searching studies evaluating the NS5B sequences of HCV-1, on PubMed, Scopus, and Web of Science, and 2) Searching sequences of unpublished studies registered in the GenBank database. In this study, 442 sequences from HCV-1a and 232 from HCV-1b underwent phylogenetic analysis. Phylogenetic analysis of all sequences revealed different clusters in the phylogenetic trees. The results showed that the proportion of HCV-1a and -1b isolates from Iranian patients probably originated from domestic sources. Moreover, the HCV-1b isolates from Iranian patients may have similarities with the European ones. In this study, phylogenetic reconstruction of HCV-1 sequences clearly indicated for molecular tracing and ancestral relationships of the HCV genotypes in Iran, and showed the likelihood of domestic origin for HCV-1a and various origin for HCV-1b.

  19. Phylogenetic Analysis of Theileria annulata Infected Cell Line S15 Iran Vaccine Strain.

    PubMed

    Habibi, Gh

    2012-01-01

    Bovine theileriosis results from infection with obligate intracellular protozoa of the genus Theileria. The phylogenetic relationships between two isolates of Theileria annulata, and 36 Theileria spp., as well as 6 outgroup including Babesia spp. and coccidian protozoa were analyzed using the 18S rRNA gene sequence. The target DNA segment was amplified by PCR. The PCR product was used for direct sequencing. The length of the 18S rRNA gene of all Theileria spp. involved in this study was around 1,400 bp. A phylogenetic tree was inferred based on the 18S rRNA gene sequence of the Iran and Iraq isolates, and other species of Theileria available in GenBank. In the constructed tree, Theileria annulata (Iran vaccine strain) was closely related to other T. annulata from Europe, Asia, as well as T. lestoquardi, T. parva and T. taurotragi all in one clade. Phylogenetic analyses based on small subunit ribosomal RNA gene suggested that the percent identity of the sequence of Iran vaccine strain was completely the same as Iraq sequence (100% identical), but the similarity of Iran vaccine strain with other T. annulata reported from China, Spain and Italy determined the 97.9 to 99.9% identity.

  20. Listeria booriae sp. nov. and Listeria newyorkensis sp. nov., from food processing environments in the USA.

    PubMed

    Weller, Daniel; Andrus, Alexis; Wiedmann, Martin; den Bakker, Henk C

    2015-01-01

    Sampling of seafood and dairy processing facilities in the north-eastern USA produced 18 isolates of Listeria spp. that could not be identified at the species-level using traditional phenotypic and genotypic identification methods. Results of phenotypic and genotypic analyses suggested that the isolates represent two novel species with an average nucleotide blast identity of less than 92% with previously described species of the genus Listeria. Phylogenetic analyses based on whole genome sequences, 16S rRNA gene and sigB gene sequences confirmed that the isolates represented by type strain FSL M6-0635(T) and FSL A5-0209 cluster phylogenetically with Listeria cornellensis. Phylogenetic analyses also showed that the isolates represented by type strain FSL A5-0281(T) cluster phylogenetically with Listeria riparia. The name Listeria booriae sp. nov. is proposed for the species represented by type strain FSL A5-0281(T) ( =DSM 28860(T) =LMG 28311(T)), and the name Listeria newyorkensis sp. nov. is proposed for the species represented by type strain FSL M6-0635(T) ( =DSM 28861(T) =LMG 28310(T)). Phenotypic and genotypic analyses suggest that neither species is pathogenic. © 2015 IUMS.

  1. Complete cpDNA genome sequence of Smilax china and phylogenetic placement of Liliales--influences of gene partitions and taxon sampling.

    PubMed

    Liu, Juan; Qi, Zhe-Chen; Zhao, Yun-Peng; Fu, Cheng-Xin; Jenny Xiang, Qiu-Yun

    2012-09-01

    The complete nucleotide sequence of the chloroplast genome (cpDNA) of Smilax china L. (Smilacaceae) is reported. It is the first complete cp genome sequence in Liliales. Genomic analyses were conducted to examine the rate and pattern of cpDNA genome evolution in Smilax relative to other major lineages of monocots. The cpDNA genomic sequences were combined with those available for Lilium to evaluate the phylogenetic position of Liliales and to investigate the influence of taxon sampling, gene sampling, gene function, natural selection, and substitution rate on phylogenetic inference in monocots. Phylogenetic analyses using sequence data of gene groups partitioned according to gene function, selection force, and total substitution rate demonstrated evident impacts of these factors on phylogenetic inference of monocots and the placement of Liliales, suggesting potential evolutionary convergence or adaptation of some cpDNA genes in monocots. Our study also demonstrated that reduced taxon sampling reduced the bootstrap support for the placement of Liliales in the cpDNA phylogenomic analysis. Analyses of sequences of 77 protein genes with some missing data and sequences of 81 genes (all protein genes plus the rRNA genes) support a sister relationship of Liliales to the commelinids-Asparagales clade, consistent with the APG III system. Analyses of 63 cpDNA protein genes for 32 taxa with few missing data, however, support a sister relationship of Liliales (represented by Smilax and Lilium) to Dioscoreales-Pandanales. Topology tests indicated that these two alignments do not significantly differ given any of these three cpDNA genomic sequence data sets. Furthermore, we found no saturation effect of the data, suggesting that the cpDNA genomic sequence data used in the study are appropriate for monocot phylogenetic study and long-branch attraction is unlikely to be the cause to explain the result of two well-supported, conflict placements of Liliales. Further analyses using sufficient nuclear data remain necessary to evaluate these two phylogenetic hypotheses regarding the position of Liliales and to address the causes of signal conflict among genes and partitions. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Genome-wide comparisons of phylogenetic similarities between partial genomic regions and the full-length genome in Hepatitis E virus genotyping.

    PubMed

    Wang, Shuai; Wei, Wei; Luo, Xuenong; Cai, Xuepeng

    2014-01-01

    Besides the complete genome, different partial genomic sequences of Hepatitis E virus (HEV) have been used in genotyping studies, making it difficult to compare the results based on them. No commonly agreed partial region for HEV genotyping has been determined. In this study, we used a statistical method to evaluate the phylogenetic performance of each partial genomic sequence from a genome wide, by comparisons of evolutionary distances between genomic regions and the full-length genomes of 101 HEV isolates to identify short genomic regions that can reproduce HEV genotype assignments based on full-length genomes. Several genomic regions, especially one genomic region at the 3'-terminal of the papain-like cysteine protease domain, were detected to have relatively high phylogenetic correlations with the full-length genome. Phylogenetic analyses confirmed the identical performances between these regions and the full-length genome in genotyping, in which the HEV isolates involved could be divided into reasonable genotypes. This analysis may be of value in developing a partial sequence-based consensus classification of HEV species.

  3. Impact of tree priors in species delimitation and phylogenetics of the genus Oligoryzomys (Rodentia: Cricetidae).

    PubMed

    da Cruz, Marcos de O R; Weksler, Marcelo

    2018-02-01

    The use of genetic data and tree-based algorithms to delimit evolutionary lineages is becoming an important practice in taxonomic identification, especially in morphologically cryptic groups. The effects of different phylogenetic and/or coalescent models in the analyses of species delimitation, however, are not clear. In this paper, we assess the impact of different evolutionary priors in phylogenetic estimation, species delimitation, and molecular dating of the genus Oligoryzomys (Mammalia: Rodentia), a group with complex taxonomy and morphological cryptic species. Phylogenetic and coalescent analyses included 20 of the 24 recognized species of the genus, comprising of 416 Cytochrome b sequences, 26 Cytochrome c oxidase I sequences, and 27 Beta-Fibrinogen Intron 7 sequences. For species delimitation, we employed the General Mixed Yule Coalescent (GMYC) and Bayesian Poisson tree processes (bPTP) analyses, and contrasted 4 genealogical and phylogenetic models: Pure-birth (Yule), Constant Population Size Coalescent, Multiple Species Coalescent, and a mixed Yule-Coalescent model. GMYC analyses of trees from different genealogical models resulted in similar species delimitation and phylogenetic relationships, with incongruence restricted to areas of poor nodal support. bPTP results, however, significantly differed from GMYC for 5 taxa. Oligoryzomys early diversification was estimated to have occurred in the Early Pleistocene, between 0.7 and 2.6 MYA. The mixed Yule-Coalescent model, however, recovered younger dating estimates for Oligoryzomys diversification, and for the threshold for the speciation-coalescent horizon in GMYC. Eight of the 20 included Oligoryzomys species were identified as having two or more independent evolutionary units, indicating that current taxonomy of Oligoryzomys is still unsettled. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Phylogenetic relationships of Sarcocystis neurona of horses and opossums to other cyst-forming coccidia deduced from SSU rRNA gene sequences.

    PubMed

    Elsheikha, Hany M; Lacher, David W; Mansfield, Linda S

    2005-11-01

    Phylogenetic analyses based on sequences of the nuclear-encoded small subunit rRNA (ssurRNA) gene were performed to examine the origin, phylogeny, and biogeographic relationships of Sarcocystis neurona isolates from opossums and horses from the State of Michigan, USA, in relation to other cyst-forming coccidia. A total of 31 taxa representing all recognized subfamilies and genera of Sarcocystidae were included in the analyses with clonal isolates of two opossum and two horse S. neurona. Phylogenies obtained by the four tree-building methods were consistent with the classical taxonomy based on morphological criteria. The "isosporid" coccidia Neospora, Toxoplasma, Besnoitia, Isospora lacking stieda bodies, and Hyaloklossia formed a sister group to the Sarcocystis spp. Sarcocystis species were divided into three main lineages; S. neurona isolates were located in the second lineage and clustered with S. mucosa, S. dispersa, S. lacertae, S. rodentifelis, S. muris, and Frenkelia spp. Alignment of S. neurona SSU rRNA gene sequences of Michigan opossum isolates (MIOP5, MIOP20) and a S. neurona Michigan horse isolate (MIH8) showed 100% identity. These Michigan isolates differed in 2/1085 bp (0.2%) from a Kentucky S. neurona horse isolate (SN5). Additionally, S. neurona isolates from horses and opossums were identical based on the ultrastructural features and PCR-RFLP analyses thus forming a phylogenetically indistinct group in these regions. These findings revealed the concordance between the morphological and molecular data and confirmed that S. neurona from opossums and horses originated from the same phylogenetic origin.

  5. Impact of recent molecular phylogenetic studies on classification of ascomycete yeasts

    USDA-ARS?s Scientific Manuscript database

    Analyses of concatenated gene sequences as well as whole genome sequences are resolving relationships among the ascomycete yeasts (Saccharomycotina), thus allowing classification of members of this subphylum to be based on phylogeny. In addition, changes implemented in the new Botanical Code [Intern...

  6. Taxonomic evaluation of Streptomyces hirsutus and related species using multi-locus sequence analysis

    USDA-ARS?s Scientific Manuscript database

    Phylogenetic analyses of species of Streptomyces based on 16S rRNA gene sequences resulted in a statistically well-supported clade (100% bootstrap value) containing 8 species having very similar gross morphology. These species, including Streptomyces bambergiensis, Streptomyces chlorus, Streptomyces...

  7. Defining objective clusters for rabies virus sequences using affinity propagation clustering

    PubMed Central

    Fischer, Susanne; Freuling, Conrad M.; Pfaff, Florian; Bodenhofer, Ulrich; Höper, Dirk; Fischer, Mareike; Marston, Denise A.; Fooks, Anthony R.; Mettenleiter, Thomas C.; Conraths, Franz J.; Homeier-Bachmann, Timo

    2018-01-01

    Rabies is caused by lyssaviruses, and is one of the oldest known zoonoses. In recent years, more than 21,000 nucleotide sequences of rabies viruses (RABV), from the prototype species rabies lyssavirus, have been deposited in public databases. Subsequent phylogenetic analyses in combination with metadata suggest geographic distributions of RABV. However, these analyses somewhat experience technical difficulties in defining verifiable criteria for cluster allocations in phylogenetic trees inviting for a more rational approach. Therefore, we applied a relatively new mathematical clustering algorythm named ‘affinity propagation clustering’ (AP) to propose a standardized sub-species classification utilizing full-genome RABV sequences. Because AP has the advantage that it is computationally fast and works for any meaningful measure of similarity between data samples, it has previously been applied successfully in bioinformatics, for analysis of microarray and gene expression data, however, cluster analysis of sequences is still in its infancy. Existing (516) and original (46) full genome RABV sequences were used to demonstrate the application of AP for RABV clustering. On a global scale, AP proposed four clusters, i.e. New World cluster, Arctic/Arctic-like, Cosmopolitan, and Asian as previously assigned by phylogenetic studies. By combining AP with established phylogenetic analyses, it is possible to resolve phylogenetic relationships between verifiably determined clusters and sequences. This workflow will be useful in confirming cluster distributions in a uniform transparent manner, not only for RABV, but also for other comparative sequence analyses. PMID:29357361

  8. Organellar phylogenomics of an emerging model system: Sphagnum (peatmoss).

    PubMed

    Jonathan Shaw, A; Devos, Nicolas; Liu, Yang; Cox, Cymon J; Goffinet, Bernard; Flatberg, Kjell Ivar; Shaw, Blanka

    2016-08-01

    Sphagnum-dominated peatlands contain approx. 30 % of the terrestrial carbon pool in the form of partially decomposed plant material (peat), and, as a consequence, Sphagnum is currently a focus of studies on biogeochemistry and control of global climate. Sphagnum species differ in ecologically important traits that scale up to impact ecosystem function, and sequencing of the genome from selected Sphagnum species is currently underway. As an emerging model system, these resources for Sphagnum will facilitate linking nucleotide variation to plant functional traits, and through those traits to ecosystem processes. A solid phylogenetic framework for Sphagnum is crucial to comparative analyses of species-specific traits, but relationships among major clades within Sphagnum have been recalcitrant to resolution because the genus underwent a rapid radiation. Herein a well-supported hypothesis for phylogenetic relationships among major clades within Sphagnum based on organellar genome sequences (plastid, mitochondrial) is provided. We obtained nucleotide sequences (273 753 nucleotides in total) from the two organellar genomes from 38 species (including three outgroups). Phylogenetic analyses were conducted using a variety of methods applied to nucleotide and amino acid sequences. The Sphagnum phylogeny was rooted with sequences from the related Sphagnopsida genera, Eosphagnum and Flatbergium Phylogenetic analyses of the data converge on the following subgeneric relationships: (Rigida (((Subsecunda) (Cuspidata)) ((Sphagnum) (Acutifolia))). All relationships were strongly supported. Species in the two major clades (i.e. Subsecunda + Cuspidata and Sphagnum + Acutifolia), which include >90 % of all Sphagnum species, differ in ecological niches and these differences correlate with other functional traits that impact biogeochemical cycling. Mitochondrial intron presence/absence are variable among species and genera of the Sphagnopsida. Two new nomenclatural combinations are made, in the genera Eosphagnum and Flatbergium Newly resolved relationships now permit phylogenetic analyses of morphological, biochemical and ecological traits among Sphagnum species. The results clarify long-standing disagreements about subgeneric relationships and intrageneric classification. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Organellar phylogenomics of an emerging model system: Sphagnum (peatmoss)

    PubMed Central

    Jonathan Shaw, A.; Devos, Nicolas; Liu, Yang; Cox, Cymon J.; Goffinet, Bernard; Flatberg, Kjell Ivar; Shaw, Blanka

    2016-01-01

    Background and Aims Sphagnum-dominated peatlands contain approx. 30 % of the terrestrial carbon pool in the form of partially decomposed plant material (peat), and, as a consequence, Sphagnum is currently a focus of studies on biogeochemistry and control of global climate. Sphagnum species differ in ecologically important traits that scale up to impact ecosystem function, and sequencing of the genome from selected Sphagnum species is currently underway. As an emerging model system, these resources for Sphagnum will facilitate linking nucleotide variation to plant functional traits, and through those traits to ecosystem processes. A solid phylogenetic framework for Sphagnum is crucial to comparative analyses of species-specific traits, but relationships among major clades within Sphagnum have been recalcitrant to resolution because the genus underwent a rapid radiation. Herein a well-supported hypothesis for phylogenetic relationships among major clades within Sphagnum based on organellar genome sequences (plastid, mitochondrial) is provided. Methods We obtained nucleotide sequences (273 753 nucleotides in total) from the two organellar genomes from 38 species (including three outgroups). Phylogenetic analyses were conducted using a variety of methods applied to nucleotide and amino acid sequences. The Sphagnum phylogeny was rooted with sequences from the related Sphagnopsida genera, Eosphagnum and Flatbergium. Key Results Phylogenetic analyses of the data converge on the following subgeneric relationships: (Rigida (((Subsecunda) (Cuspidata)) ((Sphagnum) (Acutifolia))). All relationships were strongly supported. Species in the two major clades (i.e. Subsecunda + Cuspidata and Sphagnum + Acutifolia), which include >90 % of all Sphagnum species, differ in ecological niches and these differences correlate with other functional traits that impact biogeochemical cycling. Mitochondrial intron presence/absence are variable among species and genera of the Sphagnopsida. Two new nomenclatural combinations are made, in the genera Eosphagnum and Flatbergium. Conclusions Newly resolved relationships now permit phylogenetic analyses of morphological, biochemical and ecological traits among Sphagnum species. The results clarify long-standing disagreements about subgeneric relationships and intrageneric classification. PMID:27268484

  10. Biodiversity of the Betta smaragdina (Teleostei: Perciformes) in the northeast region of Thailand as determined by mitochondrial COI and nuclear ITS1 gene sequences☆

    PubMed Central

    Kowasupat, Chanon; Panijpan, Bhinyo; Laosinchai, Parames; Ruenwongsa, Pintip; Phongdara, Amornrat; Wanna, Warapond; Senapin, Saengchan; Phiwsaiya, Kornsunee

    2014-01-01

    In Thailand, there are currently five recognized species members of the bubble-nesting Betta genus, namely Betta splendens, B. smaragdina, B. imbellis, B. mahachaiensis and B. siamorientalis. In 2010, we indicated the possibility, based on COI barcoding evidence, that there might be two additional species, albeit cryptic, related to the type-locality B. smaragdina in some provinces in the northeast of Thailand. In the present study, after a more extensive survey of the northeast, and phylogenetic analyses based on COI and ITS1 sequences, the B. smaragdina group may be composed of at least 3 cryptic species members. The phylogenetic positions of these B. smaragdina group members in the bubble-nesting bettas' tree together with those of their congeners have been consolidated by better DNA sequence quality and phylogenetic analyses. With a better supported tree, the species statuses of B. siamorientalis and the Cambodian B. smaragdina-like fish, B. stiktos, are also confirmed. PMID:25606392

  11. Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia

    PubMed Central

    Jaklitsch, W.M.; Voglmayr, H.

    2015-01-01

    The first large-scale survey of sexual and asexual Trichoderma morphs collected from plant and fungal materials conducted in Southern Europe and Macaronesia including a few collections from French islands east of Africa yielded more than 650 specimens identified to the species level. Routine sequencing of tef1 revealed a genetic variation among these isolates that exceeds previous experience and ca. 90 species were recognized, of which 74 are named and 17 species newly described. Aphysiostroma stercorarium is combined in Trichoderma. For the first time a sexual morph is described for T. hamatum. The hitherto most complete phylogenetic tree is presented for the entire genus Trichoderma, based on rpb2 sequences. For the first time also a genus-wide phylogenetic tree based on acl1 sequences is shown. Detailed phylogenetic analyses using tef1 sequences are presented in four separate trees representing major clades of Trichoderma. Discussions involve species composition of clades and ecological and biogeographic considerations including distribution of species. PMID:26955191

  12. Phylogenetic relationships within the cyst-forming nematodes (Nematoda, Heteroderidae) based on analysis of sequences from the ITS regions of ribosomal DNA.

    PubMed

    Subbotin, S A; Vierstraete, A; De Ley, P; Rowe, J; Waeyenberge, L; Moens, M; Vanfleteren, J R

    2001-10-01

    The ITS1, ITS2, and 5.8S gene sequences of nuclear ribosomal DNA from 40 taxa of the family Heteroderidae (including the genera Afenestrata, Cactodera, Heterodera, Globodera, Punctodera, Meloidodera, Cryphodera, and Thecavermiculatus) were sequenced and analyzed. The ITS regions displayed high levels of sequence divergence within Heteroderinae and compared to outgroup taxa. Unlike recent findings in root knot nematodes, ITS sequence polymorphism does not appear to complicate phylogenetic analysis of cyst nematodes. Phylogenetic analyses with maximum-parsimony, minimum-evolution, and maximum-likelihood methods were performed with a range of computer alignments, including elision and culled alignments. All multiple alignments and phylogenetic methods yielded similar basic structure for phylogenetic relationships of Heteroderidae. The cyst-forming nematodes are represented by six main clades corresponding to morphological characters and host specialization, with certain clades assuming different positions depending on alignment procedure and/or method of phylogenetic inference. Hypotheses of monophyly of Punctoderinae and Heteroderinae are, respectively, strongly and moderately supported by the ITS data across most alignments. Close relationships were revealed between the Avenae and the Sacchari groups and between the Humuli group and the species H. salixophila within Heteroderinae. The Goettingiana group occupies a basal position within this subfamily. The validity of the genera Afenestrata and Bidera was tested and is discussed based on molecular data. We conclude that ITS sequence data are appropriate for studies of relationships within the different species groups and less so for recovery of more ancient speciations within Heteroderidae. Copyright 2001 Academic Press.

  13. Comparative phylogenetic analyses of Halomonas variabilis and related organisms based on 16S rRNA, gyrB and ectBC gene sequences.

    PubMed

    Okamoto, Takuji; Maruyama, Akihiko; Imura, Satoshi; Takeyama, Haruko; Naganuma, Takeshi

    2004-05-01

    Halomonas variabilis and phylogenetically related organisms were isolated from various habitats such as Antarctic terrain and saline ponds, deep-sea sediment, deep-sea waters affected by hydrothermal plumes, and hydrothermal vent fluids. Ten strains were selected for physiological and phylogenetic characterization in detail. All of those strains were found to be piezotolerant and psychrotolerant, as well as euryhaline halophilic or halotolerant. Their stress tolerance may facilitate their wide occurrence, even in so-called extreme environments. The 16S rDNA-based phylogenetic relationship was complemented by analyses of the DNA gyrase subunit B gene (gyrB) and genes involved in the synthesis of the major compatible solute, ectoine: diaminobutyric acid aminotransferase gene (ectB) and ectoine synthase gene (ectC). The phylogenetic relationships of H. variabilis and related organisms were very similar in terms of 16S rDNA, gyrB, and ectB. The ectC-based tree was inconsistent with the other phylogenetic trees. For that reason, ectC was inferred to derive from horizontal transfer.

  14. Plastome sequences and exploration of tree-space help to resolve the phylogeny of riceflowers (Thymelaeaceae: Pimelea).

    PubMed

    Foster, Charles S P; Henwood, Murray J; Ho, Simon Y W

    2018-05-25

    Data sets comprising small numbers of genetic markers are not always able to resolve phylogenetic relationships. This has frequently been the case in molecular systematic studies of plants, with many analyses being based on sequence data from only two or three chloroplast genes. An example of this comes from the riceflowers Pimelea Banks & Sol. ex Gaertn. (Thymelaeaceae), a large genus of flowering plants predominantly distributed in Australia. Despite the considerable morphological variation in the genus, low sequence divergence in chloroplast markers has led to the phylogeny of Pimelea remaining largely uncertain. In this study, we resolve the backbone of the phylogeny of Pimelea in comprehensive Bayesian and maximum-likelihood analyses of plastome sequences from 41 taxa. However, some relationships received only moderate to poor support, and the Pimelea clade contained extremely short internal branches. By using topology-clustering analyses, we demonstrate that conflicting phylogenetic signals can be found across the trees estimated from individual chloroplast protein-coding genes. A relaxed-clock dating analysis reveals that Pimelea arose in the mid-Miocene, with most divergences within the genus occurring during a subsequent rapid diversification. Our new phylogenetic estimate offers better resolution and is more strongly supported than previous estimates, providing a platform for future taxonomic revisions of both Pimelea and the broader subfamily. Our study has demonstrated the substantial improvements in phylogenetic resolution that can be achieved using plastome-scale data sets in plant molecular systematics. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Reconsideration of systematic relationships within the order Euplotida (Protista, Ciliophora) using new sequences of the gene coding for small-subunit rRNA and testing the use of combined data sets to construct phylogenies of the Diophrys-complex.

    PubMed

    Yi, Zhenzhen; Song, Weibo; Clamp, John C; Chen, Zigui; Gao, Shan; Zhang, Qianqian

    2009-03-01

    Comprehensive molecular analyses of phylogenetic relationships within euplotid ciliates are relatively rare, and the relationships among some families remain questionable. We performed phylogenetic analyses of the order Euplotida based on new sequences of the gene coding for small-subunit RNA (SSrRNA) from a variety of taxa across the entire order as well as sequences from some of these taxa of other genes (ITS1-5.8S-ITS2 region and histone H4) that have not been included in previous analyses. Phylogenetic trees based on SSrRNA gene sequences constructed with four different methods had a consistent branching pattern that included the following features: (1) the "typical" euplotids comprised a paraphyletic assemblage composed of two divergent clades (family Uronychiidae and families Euplotidae-Certesiidae-Aspidiscidae-Gastrocirrhidae), (2) in the family Uronychiidae, the genera Uronychia and Paradiophrys formed a clearly outlined, well-supported clade that seemed to be rather divergent from Diophrys and Diophryopsis, suggesting that the Diophrys-complex may have had a longer and more separate evolutionary history than previously supposed, (3) inclusion of 12 new SSrRNA sequences in analyses of Euplotidae revealed two new clades of species within the family and cast additional doubt on the present classification of genera within the family, and (4) the intraspecific divergence among five species of Aspidisca was far greater than those of closely related genera. The ITS1-5.8S-ITS2 coding regions and partial histone H4 genes of six morphospecies in the Diophrys-complex were sequenced along with their SSrRNA genes and used to compare phylogenies constructed from single data sets to those constructed from combined sets. Results indicated that combined analyses could be used to construct more reliable, less ambiguous phylogenies of complex groups like the order Euplotida, because they provide a greater amount and diversity of information.

  16. Genetic Diversity and Phylogenetic Analysis of the Iranian Leishmania Parasites Based on HSP70 Gene PCR-RFLP and Sequence Analysis.

    PubMed

    Nemati, Sara; Fazaeli, Asghar; Hajjaran, Homa; Khamesipour, Ali; Anbaran, Mohsen Falahati; Bozorgomid, Arezoo; Zarei, Fatah

    2017-08-01

    Despite the broad distribution of leishmaniasis among Iranians and animals across the country, little is known about the genetic characteristics of the causative agents. Applying both HSP70 PCR-RFLP and sequence analyses, this study aimed to evaluate the genetic diversity and phylogenetic relationships among Leishmania spp. isolated from Iranian endemic foci and available reference strains. A total of 36 Leishmania isolates from almost all districts across the country were genetically analyzed for the HSP70 gene using both PCR-RFLP and sequence analysis. The original HSP70 gene sequences were aligned along with homologous Leishmania sequences retrieved from NCBI, and subjected to the phylogenetic analysis. Basic parameters of genetic diversity were also estimated. The HSP70 PCR-RFLP presented 3 different electrophoretic patterns, with no further intraspecific variation, corresponding to 3 Leishmania species available in the country, L. tropica, L. major, and L. infantum. Phylogenetic analyses presented 5 major clades, corresponding to 5 species complexes. Iranian lineages, including L. major, L. tropica, and L. infantum, were distributed among 3 complexes L. major, L. tropica, and L. donovani. However, within the L. major and L. donovani species complexes, the HSP70 phylogeny was not able to distinguish clearly between the L. major and L. turanica isolates, and between the L. infantum, L. donovani, and L. chagasi isolates, respectively. Our results indicated that both HSP70 PCR-RFLP and sequence analyses are medically applicable tools for identification of Leishmania species in Iranian patients. However, the reduced genetic diversity of the target gene makes it inevitable that its phylogeny only resolves the major groups, namely, the species complexes.

  17. Phylogenetic characterization of culturable bacteria and fungi associated with tarballs from Betul beach, Goa, India.

    PubMed

    Shinde, Varsha Laxman; Meena, Ram Murti; Shenoy, Belle Damodara

    2018-03-01

    Tarballs are semisolid blobs of crude oil, normally formed due to weathering of crude-oil in the sea after any kind of oil spills. Microorganisms are believed to thrive on hydrocarbon-rich tarballs and possibly assist in biodegradation. The taxonomy of ecologically and economically important tarball-associated microbes, however, needs improvement as DNA-based identification and phylogenetic characterization have been scarcely incorporated into it. In this study, bacteria and fungi associated with tarballs from touristic Betul beach in Goa, India were isolated, followed by phylogenetic analyses of 16S rRNA gene and the ITS sequence-data to decipher their clustering patterns with closely-related taxa. The gene-sequence analyses identified phylogenetically diverse 20 bacterial genera belonging to the phyla Proteobacteria (14), Actinobacteria (3), Firmicutes (2) and Bacteroidetes (1), and 8 fungal genera belonging to the classes Eurotiomycetes (6), Sordariomycetes (1) and Leotiomycetes (1) associated with the Betul tarball samples. Future studies employing a polyphasic approach, including multigene sequence-data, are needed for species-level identification of culturable tarball-associated microbes. This paper also discusses potentials of tarball-associated microbes to degrade hydrocarbons. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Characterization of the complete mitochondrial genome of Marshallagia marshalli and phylogenetic implications for the superfamily Trichostrongyloidea.

    PubMed

    Sun, Miao-Miao; Han, Liang; Zhang, Fu-Kai; Zhou, Dong-Hui; Wang, Shu-Qing; Ma, Jun; Zhu, Xing-Quan; Liu, Guo-Hua

    2018-01-01

    Marshallagia marshalli (Nematoda: Trichostrongylidae) infection can lead to serious parasitic gastroenteritis in sheep, goat, and wild ruminant, causing significant socioeconomic losses worldwide. Up to now, the study concerning the molecular biology of M. marshalli is limited. Herein, we sequenced the complete mitochondrial (mt) genome of M. marshalli and examined its phylogenetic relationship with selected members of the superfamily Trichostrongyloidea using Bayesian inference (BI) based on concatenated mt amino acid sequence datasets. The complete mt genome sequence of M. marshalli is 13,891 bp, including 12 protein-coding genes, 22 transfer RNA genes, and 2 ribosomal RNA genes. All protein-coding genes are transcribed in the same direction. Phylogenetic analyses based on concatenated amino acid sequences of the 12 protein-coding genes supported the monophylies of the families Haemonchidae, Molineidae, and Dictyocaulidae with strong statistical support, but rejected the monophyly of the family Trichostrongylidae. The determination of the complete mt genome sequence of M. marshalli provides novel genetic markers for studying the systematics, population genetics, and molecular epidemiology of M. marshalli and its congeners.

  19. Phylogenetic analysis of two Plectus mitochondrial genomes (Nematoda: Plectida) supports a sister group relationship between Plectida and Rhabditida within Chromadorea.

    PubMed

    Kim, Jiyeon; Kern, Elizabeth; Kim, Taeho; Sim, Mikang; Kim, Jaebum; Kim, Yuseob; Park, Chungoo; Nadler, Steven A; Park, Joong-Ki

    2017-02-01

    Plectida is an important nematode order with species that occupy many different biological niches. The order includes free-living aquatic and soil-dwelling species, but its phylogenetic position has remained uncertain. We sequenced the complete mitochondrial genomes of two members of this order, Plectus acuminatus and Plectus aquatilis and compared them with those of other major nematode clades. The genome size and base composition of these species are similar to other nematodes; 14,831 and 14,372bp, respectively, with AT contents of 71.0% and 70.1%. Gene content was also similar to other nematodes, but gene order and coding direction of Plectus mtDNAs were dissimilar from other chromadorean species. P. acuminatus and P. aquatilis are the first chromadorean species found to contain a gene inversion. We reconstructed mitochondrial genome phylogenetic trees using nucleotide and amino acid datasets from 87 nematodes that represent major nematode clades, including the Plectus sequences. Trees from phylogenetic analyses using maximum likelihood and Bayesian methods depicted Plectida as the sister group to other sequenced chromadorean nematodes. This finding is consistent with several phylogenetic results based on SSU rDNA, but disagrees with a classification based on morphology. Mitogenomes representing other basal chromadorean groups (Araeolaimida, Monhysterida, Desmodorida, Chromadorida) are needed to confirm their phylogenetic relationships. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Correlations between oxygen affinity and sequence classifications of plant hemoglobins

    USDA-ARS?s Scientific Manuscript database

    Plants express three phylogenetic classes of hemoglobins (Hb) based on sequence analyses. Class 1 and 2 Hbs are full length globins with the classical 8 helix Mb-like fold, whereas Class 3 plant Hbs resemble the truncated globins found in bacteria. With the exception of the specialized leghemoglobin...

  1. Molecular characterization of the vitamin D receptor (VDR) gene in Holstein cows.

    PubMed

    Ali, Mayar O; El-Adl, Mohamed A; Ibrahim, Hussam M M; Elseedy, Youssef Y; Rizk, Mohamed A; El-Khodery, Sabry A

    2018-06-01

    Vitamin D plays a vital role in calcium homeostasis, growth, and immunoregulation. Because little is known about the vitamin D receptor (VDR) gene in cattle, the aim of the present investigation was to present the molecular characterization of exons 5 and 6 of the VDR gene in Holstein cows. DNA extraction, genomic sequencing, phylogenetic analysis, synteny mapping and single nucleotide gene polymorphism analysis of the VDR gene were performed to assess blood samples collected from 50 clinically healthy Holstein cows. The results revealed the presence of a 450-base pair (bp) nucleotide sequence that resembled exons 5 and 6 with intron 5 enclosed between these exons. Sequence alignment and phylogenetic analysis revealed a close relationship between the sequenced VDR region and that found in Hereford cattle. A close association between this region and the corresponding region in small ruminants was also documented. Moreover, a single nucleotide polymorphism (SNP) that caused the replacement of a glutamate with an arginine in the deduced amino acid sequence was detected at position 7 of exon 5. In conclusion, Holstein and Hereford cattle differ with respect to exon 5 of the VDR gene. Phylogenetic analysis of the VDR gene based on nucleotide sequence produced different results from prior analyses based on amino acid sequence. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Phylogenetic patterns in populations of Chilean species of the genus Orestias (Teleostei: Cyprinodontidae): results of mitochondrial DNA analysis.

    PubMed

    Lüssen, Arne; Falk, Thomas M; Villwock, Wolfgang

    2003-10-01

    Patterns of molecular genetic differentiation among taxa of the "agassii species complex" (Parenti, 1984) were analysed based on partial mtDNA control region sequences. Special attention has been paid to Chilean populations of Orestias agassii and species from isolated lakes of northern Chile, e.g., O. agassii, Orestias chungarensis, Orestias parinacotensis, Orestias laucaensis, and Orestias ascotanensis. Orestias tschudii, Orestias luteus, and Orestias ispi were analysed comparatively. Our findings support the utility of mtDNA control region sequences for phylogenetic studies within the "agassii species complex" and confirmed the monophyly of this particular lineage, excluding O. luteus. However, the monophyly of further morphologically defined lineages within the "agassii complex" appears doubtful. No support was found for the utility of these data sets for inferring phylogenetic relationships between more distantly related taxa originating from Lake Titicaca.

  3. Targeted Enrichment of Large Gene Families for Phylogenetic Inference: Phylogeny and Molecular Evolution of Photosynthesis Genes in the Portullugo Clade (Caryophyllales).

    PubMed

    Moore, Abigail J; Vos, Jurriaan M De; Hancock, Lillian P; Goolsby, Eric; Edwards, Erika J

    2018-05-01

    Hybrid enrichment is an increasingly popular approach for obtaining hundreds of loci for phylogenetic analysis across many taxa quickly and cheaply. The genes targeted for sequencing are typically single-copy loci, which facilitate a more straightforward sequence assembly and homology assignment process. However, this approach limits the inclusion of most genes of functional interest, which often belong to multi-gene families. Here, we demonstrate the feasibility of including large gene families in hybrid enrichment protocols for phylogeny reconstruction and subsequent analyses of molecular evolution, using a new set of bait sequences designed for the "portullugo" (Caryophyllales), a moderately sized lineage of flowering plants (~ 2200 species) that includes the cacti and harbors many evolutionary transitions to C$_{\\mathrm{4}}$ and CAM photosynthesis. Including multi-gene families allowed us to simultaneously infer a robust phylogeny and construct a dense sampling of sequences for a major enzyme of C$_{\\mathrm{4}}$ and CAM photosynthesis, which revealed the accumulation of adaptive amino acid substitutions associated with C$_{\\mathrm{4}}$ and CAM origins in particular paralogs. Our final set of matrices for phylogenetic analyses included 75-218 loci across 74 taxa, with ~ 50% matrix completeness across data sets. Phylogenetic resolution was greatly improved across the tree, at both shallow and deep levels. Concatenation and coalescent-based approaches both resolve the sister lineage of the cacti with strong support: Anacampserotaceae $+$ Portulacaceae, two lineages of mostly diminutive succulent herbs of warm, arid regions. In spite of this congruence, BUCKy concordance analyses demonstrated strong and conflicting signals across gene trees. Our results add to the growing number of examples illustrating the complexity of phylogenetic signals in genomic-scale data.

  4. MaxAlign: maximizing usable data in an alignment.

    PubMed

    Gouveia-Oliveira, Rodrigo; Sackett, Peter W; Pedersen, Anders G

    2007-08-28

    The presence of gaps in an alignment of nucleotide or protein sequences is often an inconvenience for bioinformatical studies. In phylogenetic and other analyses, for instance, gapped columns are often discarded entirely from the alignment. MaxAlign is a program that optimizes the alignment prior to such analyses. Specifically, it maximizes the number of nucleotide (or amino acid) symbols that are present in gap-free columns - the alignment area - by selecting the optimal subset of sequences to exclude from the alignment. MaxAlign can be used prior to phylogenetic and bioinformatical analyses as well as in other situations where this form of alignment improvement is useful. In this work we test MaxAlign's performance in these tasks and compare the accuracy of phylogenetic estimates including and excluding gapped columns from the analysis, with and without processing with MaxAlign. In this paper we also introduce a new simple measure of tree similarity, Normalized Symmetric Similarity (NSS) that we consider useful for comparing tree topologies. We demonstrate how MaxAlign is helpful in detecting misaligned or defective sequences without requiring manual inspection. We also show that it is not advisable to exclude gapped columns from phylogenetic analyses unless MaxAlign is used first. Finally, we find that the sequences removed by MaxAlign from an alignment tend to be those that would otherwise be associated with low phylogenetic accuracy, and that the presence of gaps in any given sequence does not seem to disturb the phylogenetic estimates of other sequences. The MaxAlign web-server is freely available online at http://www.cbs.dtu.dk/services/MaxAlign where supplementary information can also be found. The program is also freely available as a Perl stand-alone package.

  5. Phylogenetic Analysis and Epidemic History of Hepatitis C Virus Genotype 2 in Tunisia, North Africa

    PubMed Central

    Rajhi, Mouna; Ghedira, Kais; Chouikha, Anissa; Djebbi, Ahlem; Cheikh, Imed; Ben Yahia, Ahlem; Sadraoui, Amel; Hammami, Walid; Azouz, Msaddek; Ben Mami, Nabil; Triki, Henda

    2016-01-01

    HCV genotype 2 (HCV-2) has a worldwide distribution with prevalence rates that vary from country to country. High genetic diversity and long-term endemicity were suggested in West African countries. A global dispersal of HCV-2 would have occurred during the 20th century, especially in European countries. In Tunisia, genotype 2 was the second prevalent genotype after genotype 1 and most isolates belong to subtypes 2c and 2k. In this study, phylogenetic analyses based on the NS5B genomic sequences of 113 Tunisian HCV isolates from subtypes 2c and 2k were carried out. A Bayesian coalescent-based framework was used to estimate the origin and the spread of these subtypes circulating in Tunisia. Phylogenetic analyses of HCV-2c sequences suggest the absence of country-specific or time-specific variants. In contrast, the phylogenetic grouping of HCV-2k sequences shows the existence of two major genetic clusters that may represent two distinct circulating variants. Coalescent analysis indicated a most recent common ancestor (tMRCA) of Tunisian HCV-2c around 1886 (1869–1902) before the introduction of HCV-2k in 1901 (1867–1931). Our findings suggest that the introduction of HCV-2c in Tunisia is possibly a result of population movements between Tunisia and European population following the French colonization. PMID:27100294

  6. Phylogenetic Analysis and Epidemic History of Hepatitis C Virus Genotype 2 in Tunisia, North Africa.

    PubMed

    Rajhi, Mouna; Ghedira, Kais; Chouikha, Anissa; Djebbi, Ahlem; Cheikh, Imed; Ben Yahia, Ahlem; Sadraoui, Amel; Hammami, Walid; Azouz, Msaddek; Ben Mami, Nabil; Triki, Henda

    2016-01-01

    HCV genotype 2 (HCV-2) has a worldwide distribution with prevalence rates that vary from country to country. High genetic diversity and long-term endemicity were suggested in West African countries. A global dispersal of HCV-2 would have occurred during the 20th century, especially in European countries. In Tunisia, genotype 2 was the second prevalent genotype after genotype 1 and most isolates belong to subtypes 2c and 2k. In this study, phylogenetic analyses based on the NS5B genomic sequences of 113 Tunisian HCV isolates from subtypes 2c and 2k were carried out. A Bayesian coalescent-based framework was used to estimate the origin and the spread of these subtypes circulating in Tunisia. Phylogenetic analyses of HCV-2c sequences suggest the absence of country-specific or time-specific variants. In contrast, the phylogenetic grouping of HCV-2k sequences shows the existence of two major genetic clusters that may represent two distinct circulating variants. Coalescent analysis indicated a most recent common ancestor (tMRCA) of Tunisian HCV-2c around 1886 (1869-1902) before the introduction of HCV-2k in 1901 (1867-1931). Our findings suggest that the introduction of HCV-2c in Tunisia is possibly a result of population movements between Tunisia and European population following the French colonization.

  7. Evaluation of atpB nucleotide sequences for phylogenetic studies of ferns and other pteridophytes.

    PubMed

    Wolf, P

    1997-10-01

    Inferring basal relationships among vascular plants poses a major challenge to plant systematists. The divergence events that describe these relationships occurred long ago and considerable homoplasy has since accrued for both molecular and morphological characters. A potential solution is to examine phylogenetic analyses from multiple data sets. Here I present a new source of phylogenetic data for ferns and other pteridophytes. I sequenced the chloroplast gene atpB from 23 pteridophyte taxa and used maximum parsimony to infer relationships. A 588-bp region of the gene appeared to contain a statistically significant amount of phylogenetic signal and the resulting trees were largely congruent with similar analyses of nucleotide sequences from rbcL. However, a combined analysis of atpB plus rbcL produced a better resolved tree than did either data set alone. In the shortest trees, leptosporangiate ferns formed a monophyletic group. Also, I detected a well-supported clade of Psilotaceae (Psilotum and Tmesipteris) plus Ophioglossaceae (Ophioglossum and Botrychium). The demonstrated utility of atpB suggests that sequences from this gene should play a role in phylogenetic analyses that incorporate data from chloroplast genes, nuclear genes, morphology, and fossil data.

  8. Genetic analysis of duck circovirus in Pekin ducks from South Korea.

    PubMed

    Cha, S-Y; Kang, M; Cho, J-G; Jang, H-K

    2013-11-01

    The genetic organization of the 24 duck circovirus (DuCV) strains detected in commercial Pekin ducks from South Korea between 2011 and 2012 is described in this study. Multiple sequence alignment and phylogenetic analyses were performed on the 24 viral genome sequences as well as on 45 genome sequences available from the GenBank database. Phylogenetic analyses based on the genomic and open reading frame 2/cap sequences demonstrated that all DuCV strains belonged to genotype 1 and were designated in a subcluster under genotype 1. Analysis of the capsid protein amino acid sequences of the 24 Korean DuCV strains showed 10 substitutions compared with that of other genotype 1 strains. Our analysis showed that genotype 1 is predominant and circulating in South Korea. These present results serve as incentive to add more data to the DuCV database and provide insight to conduct further intensive study on the geographic relationships among these virus strains.

  9. Assessing the potential of RAD-sequencing to resolve phylogenetic relationships within species radiations: The fly genus Chiastocheta (Diptera: Anthomyiidae) as a case study.

    PubMed

    Suchan, Tomasz; Espíndola, Anahí; Rutschmann, Sereina; Emerson, Brent C; Gori, Kevin; Dessimoz, Christophe; Arrigo, Nils; Ronikier, Michał; Alvarez, Nadir

    2017-09-01

    Determining phylogenetic relationships among recently diverged species has long been a challenge in evolutionary biology. Cytoplasmic DNA markers, which have been widely used, notably in the context of molecular barcoding, have not always proved successful in resolving such phylogenies. However, with the advent of next-generation-sequencing technologies and associated techniques of reduced genome representation, phylogenies of closely related species have been resolved at a much higher detail in the last couple of years. Here we examine the potential and limitations of one of such techniques-Restriction-site Associated DNA (RAD) sequencing, a method that produces thousands of (mostly) anonymous nuclear markers, in disentangling the phylogeny of the fly genus Chiastocheta (Diptera: Anthomyiidae). In Europe, this genus encompasses seven species of seed predators, which have been widely studied in the context of their ecological and evolutionary interactions with the plant Trollius europaeus (Ranunculaceae). So far, phylogenetic analyses using mitochondrial markers failed to resolve monophyly of most of the species from this recently diversified genus, suggesting that their taxonomy may need a revision. However, relying on a single, non-recombining marker and ignoring potential incongruences between mitochondrial and nuclear loci may provide an incomplete account of the lineage history. In this study, we applied both classical Sanger sequencing of three mtDNA regions and RAD-sequencing, for reconstructing the phylogeny of the genus. Contrasting with results based on mitochondrial markers, RAD-sequencing analyses retrieved the monophyly of all seven species, in agreement with the morphological species assignment. We found robust nuclear-based species assignment of individual samples, and low levels of estimated contemporary gene flow among them. However, despite recovering species' monophyly, interspecific relationships varied depending on the set of RAD loci considered, producing contradictory topologies. Moreover, coalescence-based phylogenetic analyses revealed low supports for most of the interspecific relationships. Our results indicate that despite the higher performance of RAD-sequencing in terms of species trees resolution compared to cytoplasmic markers, reconstructing inter-specific relationships among recently-diverged lineages may lie beyond the possibilities offered by large sets of RAD-sequencing markers in cases of strong gene tree incongruence. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Phylogenetic analysis of the true water bugs (Insecta: Hemiptera: Heteroptera: Nepomorpha): evidence from mitochondrial genomes

    PubMed Central

    Hua, Jimeng; Li, Ming; Dong, Pengzhi; Cui, Ying; Xie, Qiang; Bu, Wenjun

    2009-01-01

    Background The true water bugs are grouped in infraorder Nepomorpha (Insecta: Hemiptera: Heteroptera) and are of great economic importance. The phylogenetic relationships within Nepomorpha and the taxonomic hierarchies of Pleoidea and Aphelocheiroidea are uncertain. Most of the previous studies were based on morphological characters without algorithmic assessment. In the latest study, the molecular markers employed in phylogenetic analyses were partial sequences of 16S rDNA and 18S rDNA with a total length about 1 kb. Up to now, no mitochondrial genome of the true water bugs has been sequenced, which is one of the largest data sets that could be compared across animal taxa. In this study we analyzed the unresolved problems in Nepomorpha using evidence from mitochondrial genomes. Results Nine mitochondrial genomes of Nepomorpha and five of other hemipterans were sequenced. These mitochondrial genomes contain the commonly found 37 genes without gene rearrangements. Based on the nucleotide sequences of mt-genomes, Pleoidea is not a member of the Nepomorpha and Aphelocheiroidea should be grouped back into Naucoroidea. Phylogenetic relationships among the superfamilies of Nepomorpha were resolved robustly. Conclusion The mt-genome is an effective data source for resolving intraordinal phylogenetic problems at the superfamily level within Heteroptera. The mitochondrial genomes of the true water bugs are typical insect mt-genomes. Based on the nucleotide sequences of the mt-genomes, we propose the Pleoidea to be a separate heteropteran infraorder. The infraorder Nepomorpha consists of five superfamilies with the relationships (Corixoidea + ((Naucoroidea + Notonectoidea) + (Ochteroidea + Nepoidea))). PMID:19523246

  11. Mitochondrial DNA Evidence Supports the Hypothesis that Triodontophorus Species Belong to Cyathostominae

    PubMed Central

    Gao, Yuan; Zhang, Yan; Yang, Xin; Qiu, Jian-Hua; Duan, Hong; Xu, Wen-Wen; Chang, Qiao-Cheng; Wang, Chun-Ren

    2017-01-01

    Equine strongyles, the significant nematode pathogens of horses, are characterized by high quantities and species abundance, but classification of this group of parasitic nematodes is debated. Mitochondrial (mt) genome DNA data are often used to address classification controversies. Thus, the objectives of this study were to determine the complete mt genomes of three Cyathostominae nematode species (Cyathostomum catinatum, Cylicostephanus minutus, and Poteriostomum imparidentatum) of horses and reconstruct the phylogenetic relationship of Strongylidae with other nematodes in Strongyloidea to test the hypothesis that Triodontophorus spp. belong to Cyathostominae using the mt genomes. The mt genomes of Cy. catinatum, Cs. minutus, and P. imparidentatum were 13,838, 13,826, and 13,817 bp in length, respectively. Complete mt nucleotide sequence comparison of all Strongylidae nematodes revealed that sequence identity ranged from 77.8 to 91.6%. The mt genome sequences of Triodontophorus species had relatively high identity with Cyathostominae nematodes, rather than Strongylus species of the same subfamily (Strongylinae). Comparative analyses of mt genome organization for Strongyloidea nematodes sequenced to date revealed that members of this superfamily possess identical gene arrangements. Phylogenetic analyses using mtDNA data indicated that the Triodontophorus species clustered with Cyathostominae species instead of Strongylus species. The present study first determined the complete mt genome sequences of Cy. catinatum, Cs. minutus, and P. imparidentatum, which will provide novel genetic markers for further studies of Strongylidae taxonomy, population genetics, and systematics. Importantly, sequence comparison and phylogenetic analyses based on mtDNA sequences supported the hypothesis that Triodontophorus belongs to Cyathostominae. PMID:28824575

  12. Molecular identification and phylogenetic analysis of important medicinal plant species in genus Paeonia based on rDNA-ITS, matK, and rbcL DNA barcode sequences.

    PubMed

    Kim, W J; Ji, Y; Choi, G; Kang, Y M; Yang, S; Moon, B C

    2016-08-05

    This study was performed to identify and analyze the phylogenetic relationship among four herbaceous species of the genus Paeonia, P. lactiflora, P. japonica, P. veitchii, and P. suffruticosa, using DNA barcodes. These four species, which are commonly used in traditional medicine as Paeoniae Radix and Moutan Radicis Cortex, are pharmaceutically defined in different ways in the national pharmacopoeias in Korea, Japan, and China. To authenticate the different species used in these medicines, we evaluated rDNA-internal transcribed spacers (ITS), matK and rbcL regions, which provide information capable of effectively distinguishing each species from one another. Seventeen samples were collected from different geographic regions in Korea and China, and DNA barcode regions were amplified using universal primers. Comparative analyses of these DNA barcode sequences revealed species-specific nucleotide sequences capable of discriminating the four Paeonia species. Among the entire sequences of three barcodes, marker nucleotides were identified at three positions in P. lactiflora, eleven in P. japonica, five in P. veitchii, and 25 in P. suffruticosa. Phylogenetic analyses also revealed four distinct clusters showing homogeneous clades with high resolution at the species level. The results demonstrate that the analysis of these three DNA barcode sequences is a reliable method for identifying the four Paeonia species and can be used to authenticate Paeoniae Radix and Moutan Radicis Cortex at the species level. Furthermore, based on the assessment of amplicon sizes, inter/intra-specific distances, marker nucleotides, and phylogenetic analysis, rDNA-ITS was the most suitable DNA barcode for identification of these species.

  13. Mitochondrial genomes of Meloidogyne chitwoodi and M. incognita (Nematoda: Tylenchina): comparative analysis, gene order and phylogenetic relationships with other nematodes.

    PubMed

    Humphreys-Pereira, Danny A; Elling, Axel A

    2014-01-01

    Root-knot nematodes (Meloidogyne spp.) are among the most important plant pathogens. In this study, the mitochondrial (mt) genomes of the root-knot nematodes, M. chitwoodi and M. incognita were sequenced. PCR analyses suggest that both mt genomes are circular, with an estimated size of 19.7 and 18.6-19.1kb, respectively. The mt genomes each contain a large non-coding region with tandem repeats and the control region. The mt gene arrangement of M. chitwoodi and M. incognita is unlike that of other nematodes. Sequence alignments of the two Meloidogyne mt genomes showed three translocations; two in transfer RNAs and one in cox2. Compared with other nematode mt genomes, the gene arrangement of M. chitwoodi and M. incognita was most similar to Pratylenchus vulnus. Phylogenetic analyses (Maximum Likelihood and Bayesian inference) were conducted using 78 complete mt genomes of diverse nematode species. Analyses based on nucleotides and amino acids of the 12 protein-coding mt genes showed strong support for the monophyly of class Chromadorea, but only amino acid-based analyses supported the monophyly of class Enoplea. The suborder Spirurina was not monophyletic in any of the phylogenetic analyses, contradicting the Clade III model, which groups Ascaridomorpha, Spiruromorpha and Oxyuridomorpha based on the small subunit ribosomal RNA gene. Importantly, comparisons of mt gene arrangement and tree-based methods placed Meloidogyne as sister taxa of Pratylenchus, a migratory plant endoparasitic nematode, and not with the sedentary endoparasitic Heterodera. Thus, comparative analyses of mt genomes suggest that sedentary endoparasitism in Meloidogyne and Heterodera is based on convergent evolution. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. The Salmonella In Silico Typing Resource (SISTR): An Open Web-Accessible Tool for Rapidly Typing and Subtyping Draft Salmonella Genome Assemblies.

    PubMed

    Yoshida, Catherine E; Kruczkiewicz, Peter; Laing, Chad R; Lingohr, Erika J; Gannon, Victor P J; Nash, John H E; Taboada, Eduardo N

    2016-01-01

    For nearly 100 years serotyping has been the gold standard for the identification of Salmonella serovars. Despite the increasing adoption of DNA-based subtyping approaches, serotype information remains a cornerstone in food safety and public health activities aimed at reducing the burden of salmonellosis. At the same time, recent advances in whole-genome sequencing (WGS) promise to revolutionize our ability to perform advanced pathogen characterization in support of improved source attribution and outbreak analysis. We present the Salmonella In Silico Typing Resource (SISTR), a bioinformatics platform for rapidly performing simultaneous in silico analyses for several leading subtyping methods on draft Salmonella genome assemblies. In addition to performing serovar prediction by genoserotyping, this resource integrates sequence-based typing analyses for: Multi-Locus Sequence Typing (MLST), ribosomal MLST (rMLST), and core genome MLST (cgMLST). We show how phylogenetic context from cgMLST analysis can supplement the genoserotyping analysis and increase the accuracy of in silico serovar prediction to over 94.6% on a dataset comprised of 4,188 finished genomes and WGS draft assemblies. In addition to allowing analysis of user-uploaded whole-genome assemblies, the SISTR platform incorporates a database comprising over 4,000 publicly available genomes, allowing users to place their isolates in a broader phylogenetic and epidemiological context. The resource incorporates several metadata driven visualizations to examine the phylogenetic, geospatial and temporal distribution of genome-sequenced isolates. As sequencing of Salmonella isolates at public health laboratories around the world becomes increasingly common, rapid in silico analysis of minimally processed draft genome assemblies provides a powerful approach for molecular epidemiology in support of public health investigations. Moreover, this type of integrated analysis using multiple sequence-based methods of sub-typing allows for continuity with historical serotyping data as we transition towards the increasing adoption of genomic analyses in epidemiology. The SISTR platform is freely available on the web at https://lfz.corefacility.ca/sistr-app/.

  15. Isolation and characterization of major histocompatibility complex class II B genes in cranes.

    PubMed

    Kohyama, Tetsuo I; Akiyama, Takuya; Nishida, Chizuko; Takami, Kazutoshi; Onuma, Manabu; Momose, Kunikazu; Masuda, Ryuichi

    2015-11-01

    In this study, we isolated and characterized the major histocompatibility complex (MHC) class II B genes in cranes. Genomic sequences spanning exons 1 to 4 were amplified and determined in 13 crane species and three other species closely related to cranes. In all, 55 unique sequences were identified, and at least two polymorphic MHC class II B loci were found in most species. An analysis of sequence polymorphisms showed the signature of positive selection and recombination. A phylogenetic reconstruction based on exon 2 sequences indicated that trans-species polymorphism has persisted for at least 10 million years, whereas phylogenetic analyses of the sequences flanking exon 2 revealed a pattern of concerted evolution. These results suggest that both balancing selection and recombination play important roles in the crane MHC evolution.

  16. Characterization of North American Armillaria species: Genetic relationships determined by ribosomal DNA sequences and AFLP markers

    Treesearch

    M. -S. Kim; N. B. Klopfenstein; J. W. Hanna; G. I. McDonald

    2006-01-01

    Phylogenetic and genetic relationships among 10 North American Armillaria species were analysed using sequence data from ribosomal DNA (rDNA), including intergenic spacer (IGS-1), internal transcribed spacers with associated 5.8S (ITS + 5.8S), and nuclear large subunit rDNA (nLSU), and amplified fragment length polymorphism (AFLP) markers. Based on rDNA sequence data,...

  17. Combined molecular and morphological phylogenetic analyses of the New Zealand wolf spider genus Anoteropsis (Araneae: Lycosidae).

    PubMed

    Vink, Cor J; Paterson, Adrian M

    2003-09-01

    Datasets from the mitochondrial gene regions NADH dehydrogenase subunit I (ND1) and cytochrome c oxidase subunit I (COI) of the 20 species in the New Zealand wolf spider (Lycosidae) genus Anoteropsis were generated. Sequence data were phylogenetically analysed using parsimony and maximum likelihood analyses. The phylogenies generated from the ND1 and COI sequence data and a previously generated morphological dataset were significantly congruent (p<0.001). Sequence data were combined with morphological data and phylogenetically analysed using parsimony. The ND1 region sequenced included part of tRNA(Leu(CUN)), which appears to have an unstable amino-acyl arm and no TpsiC arm in lycosids. Analyses supported the existence of five species groups within Anoteropsis and the monophyly of species represented by multiple samples. A radiation of Anoteropsis species within the last five million years is inferred from the ND1 and COI likelihood phylograms, habitat and geological data, which also indicates that Anoteropsis arrived in New Zealand some time after it separated from Gondwana.

  18. The complete mitochondrial genomes of three parasitic nematodes of birds: a unique gene order and insights into nematode phylogeny

    PubMed Central

    2013-01-01

    Background Analyses of mitochondrial (mt) genome sequences in recent years challenge the current working hypothesis of Nematoda phylogeny proposed from morphology, ecology and nuclear small subunit rRNA gene sequences, and raise the need to sequence additional mt genomes for a broad range of nematode lineages. Results We sequenced the complete mt genomes of three Ascaridia species (family Ascaridiidae) that infest chickens, pigeons and parrots, respectively. These three Ascaridia species have an identical arrangement of mt genes to each other but differ substantially from other nematodes. Phylogenetic analyses of the mt genome sequences of the Ascaridia species, together with 62 other nematode species, support the monophylies of seven high-level taxa of the phylum Nematoda: 1) the subclass Dorylaimia; 2) the orders Rhabditida, Trichinellida and Mermithida; 3) the suborder Rhabditina; and 4) the infraorders Spiruromorpha and Oxyuridomorpha. Analyses of mt genome sequences, however, reject the monophylies of the suborders Spirurina and Tylenchina, and the infraorders Rhabditomorpha, Panagrolaimomorpha and Tylenchomorpha. Monophyly of the infraorder Ascaridomorpha varies depending on the methods of phylogenetic analysis. The Ascaridomorpha was more closely related to the infraorders Rhabditomorpha and Diplogasteromorpha (suborder Rhabditina) than they were to the other two infraorders of the Spirurina: Oxyuridorpha and Spiruromorpha. The closer relationship among Ascaridomorpha, Rhabditomorpha and Diplogasteromorpha was also supported by a shared common pattern of mitochondrial gene arrangement. Conclusions Analyses of mitochondrial genome sequences and gene arrangement has provided novel insights into the phylogenetic relationships among several major lineages of nematodes. Many lineages of nematodes, however, are underrepresented or not represented in these analyses. Expanding taxon sampling is necessary for future phylogenetic studies of nematodes with mt genome sequences. PMID:23800363

  19. Systematics of Cladophora spp. (Chlorophyta) from North Carolina, USA, based upon morphology and DNA sequence data with a description of Cladophora subtilissima sp. nov.

    PubMed

    Taylor, Robin L; Bailey, Jeffrey Craig; Freshwater, David Wilson

    2017-06-01

    Identification of Cladophora species is challenging due to conservation of gross morphology, few discrete autapomorphies, and environmental influences on morphology. Twelve species of marine Cladophora were reported from North Carolina waters. Cladophora specimens were collected from inshore and offshore marine waters for DNA sequence and morphological analyses. The nuclear-encoded rRNA internal transcribed spacer regions (ITS) were sequenced for 105 specimens and used in molecular assisted identification. The ITS1 and ITS2 region was highly variable, and sequences were sorted into ITS Sets of Alignable Sequences (SASs). Sequencing of short hyper-variable ITS1 sections from Cladophora type specimens was used to positively identify species represented by SASs when the types were made available. Secondary structures for the ITS1 locus were also predicted for each specimen and compared to predicted structures from Cladophora sequences available in GenBank. Nine ITS SASs were identified and representative specimens chosen for phylogenetic analyses of 18S and 28S rRNA gene sequences to reveal relationships with other Cladophora species. Phylogenetic analyses indicated that marine Cladophorales were polyphyletic and separated into two clades, the Cladophora clade and the "Siphonocladales" clade. Morphological analyses were performed to assess the consistency of character states within species, and complement the DNA sequence analyses. These analyses revealed intra- and interspecific character state variation, and that combined molecular and morphological analyses were required for the identification of species. One new report, Cladophora dotyana, and one new species Cladophora subtilissima sp. nov., were revealed, and increased the biodiversity of North Carolina marine Cladophora to 14 species. © 2017 Phycological Society of America.

  20. Reconsideration of Protocrea (Hypocreales, Hypocreaceae)

    USDA-ARS?s Scientific Manuscript database

    The genus Protocrea is re-defined, based on holotype and fresh specimens of its type species P. farinosa, using morphology of teleomorph and anamorph and phylogenetic analyses of rpb2 sequences. Data based on currently available specimens suggest the existence of six species. Apart from the type, P....

  1. A phylogenetic analysis of Diurideae (Orchidaceae) based on plastid DNA sequence data.

    PubMed

    Kores, P J; Molvray, M; Weston, P H; Hopper, S D; Brown, A P; Cameron, K M; Chase, M W

    2001-10-01

    DNA sequence data from plastid matK and trnL-F regions were used in phylogenetic analyses of Diurideae, which indicate that Diurideae are not monophyletic as currently delimited. However, if Chloraeinae and Pterostylidinae are excluded from Diurideae, the remaining subtribes form a well-supported, monophyletic group that is sister to a "spiranthid" clade. Chloraea, Gavilea, and Megastylis pro parte (Chloraeinae) are all placed among the spiranthid orchids and form a grade with Pterostylis leading to a monophyletic Cranichideae. Codonorchis, previously included among Chloraeinae, is sister to Orchideae. Within the more narrowly delimited Diurideae two major lineages are apparent. One includes Diuridinae, Cryptostylidinae, Thelymitrinae, and an expanded Drakaeinae; the other includes Caladeniinae s.s., Prasophyllinae, and Acianthinae. The achlorophyllous subtribe Rhizanthellinae is a member of Diurideae, but its placement is otherwise uncertain. The sequence-based trees indicate that some morphological characters used in previous classifications, such as subterranean storage organs, anther position, growth habit, fungal symbionts, and pollination syndromes have more complex evolutionary histories than previously hypothesized. Treatments based upon these characters have produced conflicting classifications, and molecular data offer a tool for reevaluating these phylogenetic hypotheses.

  2. Parsimony and Model-Based Analyses of Indels in Avian Nuclear Genes Reveal Congruent and Incongruent Phylogenetic Signals

    PubMed Central

    Yuri, Tamaki; Kimball, Rebecca T.; Harshman, John; Bowie, Rauri C. K.; Braun, Michael J.; Chojnowski, Jena L.; Han, Kin-Lan; Hackett, Shannon J.; Huddleston, Christopher J.; Moore, William S.; Reddy, Sushma; Sheldon, Frederick H.; Steadman, David W.; Witt, Christopher C.; Braun, Edward L.

    2013-01-01

    Insertion/deletion (indel) mutations, which are represented by gaps in multiple sequence alignments, have been used to examine phylogenetic hypotheses for some time. However, most analyses combine gap data with the nucleotide sequences in which they are embedded, probably because most phylogenetic datasets include few gap characters. Here, we report analyses of 12,030 gap characters from an alignment of avian nuclear genes using maximum parsimony (MP) and a simple maximum likelihood (ML) framework. Both trees were similar, and they exhibited almost all of the strongly supported relationships in the nucleotide tree, although neither gap tree supported many relationships that have proven difficult to recover in previous studies. Moreover, independent lines of evidence typically corroborated the nucleotide topology instead of the gap topology when they disagreed, although the number of conflicting nodes with high bootstrap support was limited. Filtering to remove short indels did not substantially reduce homoplasy or reduce conflict. Combined analyses of nucleotides and gaps resulted in the nucleotide topology, but with increased support, suggesting that gap data may prove most useful when analyzed in combination with nucleotide substitutions. PMID:24832669

  3. Phylogenetic analyses of complete mitochondrial genome sequences suggest a basal divergence of the enigmatic rodent Anomalurus

    PubMed Central

    Horner, David S; Lefkimmiatis, Konstantinos; Reyes, Aurelio; Gissi, Carmela; Saccone, Cecilia; Pesole, Graziano

    2007-01-01

    Background Phylogenetic relationships between Lagomorpha, Rodentia and Primates and their allies (Euarchontoglires) have long been debated. While it is now generally agreed that Rodentia constitutes a monophyletic sister-group of Lagomorpha and that this clade (Glires) is sister to Primates and Dermoptera, higher-level relationships within Rodentia remain contentious. Results We have sequenced and performed extensive evolutionary analyses on the mitochondrial genome of the scaly-tailed flying squirrel Anomalurus sp., an enigmatic rodent whose phylogenetic affinities have been obscure and extensively debated. Our phylogenetic analyses of the coding regions of available complete mitochondrial genome sequences from Euarchontoglires suggest that Anomalurus is a sister taxon to the Hystricognathi, and that this clade represents the most basal divergence among sampled Rodentia. Bayesian dating methods incorporating a relaxed molecular clock provide divergence-time estimates which are consistently in agreement with the fossil record and which indicate a rapid radiation within Glires around 60 million years ago. Conclusion Taken together, the data presented provide a working hypothesis as to the phylogenetic placement of Anomalurus, underline the utility of mitochondrial sequences in the resolution of even relatively deep divergences and go some way to explaining the difficulty of conclusively resolving higher-level relationships within Glires with available data and methodologies. PMID:17288612

  4. Genetic characterization of Echinostoma revolutum and Echinoparyphium recurvatum (Trematoda: Echinostomatidae) in Thailand and phylogenetic relationships with other isolates inferred by ITS1 sequence.

    PubMed

    Saijuntha, Weerachai; Tantrawatpan, Chairat; Sithithaworn, Paiboon; Andrews, Ross H; Petney, Trevor N

    2011-03-01

    Echinostomatidae are common, widely distributed intestinal parasites causing significant disease in both animals and humans worldwide. In spite of their importance, the taxonomy of these echinostomes is still controversial. The taxonomic status of two species, Echinostoma revolutum and Echinoparyphium recurvatum, which commonly infect poultry and other birds, as well as human, is problematical. Previous phylogenetic analyses of Southeast Asian strains indicate that these species cluster as sister taxa. In the present study, the first internal transcribed spacer (ITS1) sequence was used for genetic characterization and to examine the phylogenetic relationships between an isolate from Thailand with other isolates available from GenBank database. Interspecies differences in ITS1 sequence between E. revolutum and E. recurvatum were detected at 6 (3%) of the 203 alignment positions. Of these, nucleotide deletion at positions 25, 26, and 27, pyrimidine transition at 50, 189, and pyrimidine transversion at 118 were observed. Phylogenetic analysis revealed that E. recurvatum from Thailand clustered as a sister taxa with E. revolutum and not with other members of the genus Echinoparyphium. Interestingly, this result confirms a previous report based on allozyme electrophoresis and mitochondrial DNA that E. revolutum and E. recurvatum in Southeast Asia are sister species. Hence, the taxonomic status of E. recurvatum in Thailand, as well as in Southeast Asian countries needs to be confirmed and revised using more comprehensive analyses based on morphology and other molecular techniques.

  5. Livebearing or egg-laying mammals: 27 decisive nucleotides of FAM168.

    PubMed

    Pramanik, Subrata; Kutzner, Arne; Heese, Klaus

    2017-05-23

    In the present study, we determine comprehensive molecular phylogenetic relationships of the novel myelin-associated neurite-outgrowth inhibitor (MANI) gene across the entire eukaryotic lineage. Combined computational genomic and proteomic sequence analyses revealed MANI as one of the two members of the novel family with sequence similarity 168 member (FAM168) genes, consisting of FAM168A and FAM168B, having distinct genetic differences that illustrate diversification in its biological function and genetic taxonomy across the phylogenetic tree. Phylogenetic analyses based on coding sequences of these FAM168 genes revealed that they are paralogs and that the earliest emergence of these genes occurred in jawed vertebrates such as Callorhinchus milii. Surprisingly, these two genes are absent in other chordates that have a notochord at some stage in their lives, such as branchiostoma and tunicates. In the context of phylogenetic relationships among eukaryotic species, our results demonstrate the presence of FAM168 orthologs in vertebrates ranging from Callorhinchus milii to Homo sapiens, displaying distinct taxonomic clusters, comprised of fish, amphibians, reptiles, birds, and mammals. Analyses of individual FAM168 exons in our sample provide new insights into the molecular relationships between FAM168A and FAM168B (MANI) on the one hand and livebearing and egg-laying mammals on the other hand, demonstrating that a distinctive intermediate exon 4, comprised of 27 nucleotides, appears suddenly only in FAM168A and there in the livebearing mammals only but is absent from all other species including the egg-laying mammals.

  6. RY-Coding and Non-Homogeneous Models Can Ameliorate the Maximum-Likelihood Inferences From Nucleotide Sequence Data with Parallel Compositional Heterogeneity.

    PubMed

    Ishikawa, Sohta A; Inagaki, Yuji; Hashimoto, Tetsuo

    2012-01-01

    In phylogenetic analyses of nucleotide sequences, 'homogeneous' substitution models, which assume the stationarity of base composition across a tree, are widely used, albeit individual sequences may bear distinctive base frequencies. In the worst-case scenario, a homogeneous model-based analysis can yield an artifactual union of two distantly related sequences that achieved similar base frequencies in parallel. Such potential difficulty can be countered by two approaches, 'RY-coding' and 'non-homogeneous' models. The former approach converts four bases into purine and pyrimidine to normalize base frequencies across a tree, while the heterogeneity in base frequency is explicitly incorporated in the latter approach. The two approaches have been applied to real-world sequence data; however, their basic properties have not been fully examined by pioneering simulation studies. Here, we assessed the performances of the maximum-likelihood analyses incorporating RY-coding and a non-homogeneous model (RY-coding and non-homogeneous analyses) on simulated data with parallel convergence to similar base composition. Both RY-coding and non-homogeneous analyses showed superior performances compared with homogeneous model-based analyses. Curiously, the performance of RY-coding analysis appeared to be significantly affected by a setting of the substitution process for sequence simulation relative to that of non-homogeneous analysis. The performance of a non-homogeneous analysis was also validated by analyzing a real-world sequence data set with significant base heterogeneity.

  7. Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae), a mammalian family that experienced rapid speciation.

    PubMed

    Yu, Li; Li, Yi-Wei; Ryder, Oliver A; Zhang, Ya-Ping

    2007-10-24

    Despite the small number of ursid species, bear phylogeny has long been a focus of study due to their conservation value, as all bear genera have been classified as endangered at either the species or subspecies level. The Ursidae family represents a typical example of rapid evolutionary radiation. Previous analyses with a single mitochondrial (mt) gene or a small number of mt genes either provide weak support or a large unresolved polytomy for ursids. We revisit the contentious relationships within Ursidae by analyzing complete mt genome sequences and evaluating the performance of both entire mt genomes and constituent mtDNA genes in recovering a phylogeny of extremely recent speciation events. This mitochondrial genome-based phylogeny provides strong evidence that the spectacled bear diverged first, while within the genus Ursus, the sloth bear is the sister taxon of all the other five ursines. The latter group is divided into the brown bear/polar bear and the two black bears/sun bear assemblages. These findings resolve the previous conflicts between trees using partial mt genes. The ability of different categories of mt protein coding genes to recover the correct phylogeny is concordant with previous analyses for taxa with deep divergence times. This study provides a robust Ursidae phylogenetic framework for future validation by additional independent evidence, and also has significant implications for assisting in the resolution of other similarly difficult phylogenetic investigations. Identification of base composition bias and utilization of the combined data of whole mitochondrial genome sequences has allowed recovery of a strongly supported phylogeny that is upheld when using multiple alternative outgroups for the Ursidae, a mammalian family that underwent a rapid radiation since the mid- to late Pliocene. It remains to be seen if the reliability of mt genome analysis will hold up in studies of other difficult phylogenetic issues. Although the whole mitochondrial DNA sequence based phylogeny is robust, it remains in conflict with phylogenetic relationships suggested by analysis of limited nuclear-encoded data, a situation that will require gathering more nuclear DNA sequence information.

  8. Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae), a mammalian family that experienced rapid speciation

    PubMed Central

    Yu, Li; Li, Yi-Wei; Ryder, Oliver A; Zhang, Ya-Ping

    2007-01-01

    Background Despite the small number of ursid species, bear phylogeny has long been a focus of study due to their conservation value, as all bear genera have been classified as endangered at either the species or subspecies level. The Ursidae family represents a typical example of rapid evolutionary radiation. Previous analyses with a single mitochondrial (mt) gene or a small number of mt genes either provide weak support or a large unresolved polytomy for ursids. We revisit the contentious relationships within Ursidae by analyzing complete mt genome sequences and evaluating the performance of both entire mt genomes and constituent mtDNA genes in recovering a phylogeny of extremely recent speciation events. Results This mitochondrial genome-based phylogeny provides strong evidence that the spectacled bear diverged first, while within the genus Ursus, the sloth bear is the sister taxon of all the other five ursines. The latter group is divided into the brown bear/polar bear and the two black bears/sun bear assemblages. These findings resolve the previous conflicts between trees using partial mt genes. The ability of different categories of mt protein coding genes to recover the correct phylogeny is concordant with previous analyses for taxa with deep divergence times. This study provides a robust Ursidae phylogenetic framework for future validation by additional independent evidence, and also has significant implications for assisting in the resolution of other similarly difficult phylogenetic investigations. Conclusion Identification of base composition bias and utilization of the combined data of whole mitochondrial genome sequences has allowed recovery of a strongly supported phylogeny that is upheld when using multiple alternative outgroups for the Ursidae, a mammalian family that underwent a rapid radiation since the mid- to late Pliocene. It remains to be seen if the reliability of mt genome analysis will hold up in studies of other difficult phylogenetic issues. Although the whole mitochondrial DNA sequence based phylogeny is robust, it remains in conflict with phylogenetic relationships suggested by analysis of limited nuclear-encoded data, a situation that will require gathering more nuclear DNA sequence information. PMID:17956639

  9. Taxonomic evaluation of species in the Streptomyces hirsutus clade using multi-locus sequence analysis and proposals to reclassify several species in this clade

    USDA-ARS?s Scientific Manuscript database

    Previous phylogenetic analyses of species of Streptomyces based on 16S rRNA gene sequences resulted in a statistically well-supported clade (100% bootstrap value) containing 8 species that exhibited very similar gross morphology in producing open looped (Retinaculum-Apertum) to spiral (Spira) chains...

  10. The complete mitochondrial genome of the tapeworm Cladotaenia vulturi (Cestoda: Paruterinidae): gene arrangement and phylogenetic relationships with other cestodes.

    PubMed

    Guo, Aijiang

    2016-08-31

    Tapeworms Cladotaenia spp. are among the most important wildlife pathogens in birds of prey. The genus Cladotaenia is placed in the family Paruterinidae based on morphological characteristics and hosts. However, limited molecular information is available for studying the phylogenetic position of this genus in relation to other cestodes. In this study, the complete mitochondrial (mt) genome of Cladotaenia vulturi was amplified using "Long-PCR" and then sequenced by primer walking. Sequence annotation and gene identification were performed by comparison with published flatworm mt genomes. The phylogenetic relationships of C. vulturi with other cestode species were established using the concatenated amino acid sequences of 12 protein-coding genes with Bayesian Inference and Maximum Likelihood methods. The complete mitochondrial genome of the Cladotaenia vulturi is 13,411 kb in size and contains 36 genes. The gene arrangement of C. vulturi is identical to those in Anoplocephala spp. (Anoplocephalidae), Hymenolepis spp. (Hymenolepididae) and Dipylidium caninum (Dipylidiidae), but different from that in taeniids owing to the order shift between the tRNA (L1) and tRNA (S2) genes. Phylogenetic analyses based on the amino acid sequences of the concatenated 12 protein-coding genes showed that the species in the Taeniidae form a group and C. vulturi is a sister taxon to the species of the family Taeniidae. To our knowledge, the present study provides the first molecular data to support the early proposal from morphological evidence that the Taeniidae is a sister group to the family Paruterinidae. This novel mt genome sequence will be useful for further investigations into the population genetics, phylogenetics and systematics of the family Paruterinidae and inferring phylogenetic relationships among several lineages within the order Cyclophyllidea.

  11. Uncommonly isolated clinical Pseudomonas: identification and phylogenetic assignation.

    PubMed

    Mulet, M; Gomila, M; Ramírez, A; Cardew, S; Moore, E R B; Lalucat, J; García-Valdés, E

    2017-02-01

    Fifty-two Pseudomonas strains that were difficult to identify at the species level in the phenotypic routine characterizations employed by clinical microbiology laboratories were selected for genotypic-based analysis. Species level identifications were done initially by partial sequencing of the DNA dependent RNA polymerase sub-unit D gene (rpoD). Two other gene sequences, for the small sub-unit ribosonal RNA (16S rRNA) and for DNA gyrase sub-unit B (gyrB) were added in a multilocus sequence analysis (MLSA) study to confirm the species identifications. These sequences were analyzed with a collection of reference sequences from the type strains of 161 Pseudomonas species within an in-house multi-locus sequence analysis database. Whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analyses of these strains complemented the DNA sequenced-based phylogenetic analyses and were observed to be in accordance with the results of the sequence data. Twenty-three out of 52 strains were assigned to 12 recognized species not commonly detected in clinical specimens and 29 (56 %) were considered representatives of at least ten putative new species. Most strains were distributed within the P. fluorescens and P. aeruginosa lineages. The value of rpoD sequences in species-level identifications for Pseudomonas is emphasized. The correct species identifications of clinical strains is essential for establishing the intrinsic antibiotic resistance patterns and improved treatment plans.

  12. A comprehensive framework for functional diversity patterns of marine chromophytic phytoplankton using rbcL phylogeny

    PubMed Central

    Samanta, Brajogopal; Bhadury, Punyasloke

    2016-01-01

    Marine chromophytes are taxonomically diverse group of algae and contribute approximately half of the total oceanic primary production. To understand the global patterns of functional diversity of chromophytic phytoplankton, robust bioinformatics and statistical analyses including deep phylogeny based on 2476 form ID rbcL gene sequences representing seven ecologically significant oceanographic ecoregions were undertaken. In addition, 12 form ID rbcL clone libraries were generated and analyzed (148 sequences) from Sundarbans Biosphere Reserve representing the world’s largest mangrove ecosystem as part of this study. Global phylogenetic analyses recovered 11 major clades of chromophytic phytoplankton in varying proportions with several novel rbcL sequences in each of the seven targeted ecoregions. Majority of OTUs was found to be exclusive to each ecoregion, whereas some were shared by two or more ecoregions based on beta-diversity analysis. Present phylogenetic and bioinformatics analyses provide a strong statistical support for the hypothesis that different oceanographic regimes harbor distinct and coherent groups of chromophytic phytoplankton. It has been also shown as part of this study that varying natural selection pressure on form ID rbcL gene under different environmental conditions could lead to functional differences and overall fitness of chromophytic phytoplankton populations. PMID:26861415

  13. Multilocus phylogeny and phylogenomics of Eriochrysis P. Beauv. (Poaceae-Andropogoneae): Taxonomic implications and evidence of interspecific hybridization.

    PubMed

    Welker, Cassiano A D; Souza-Chies, Tatiana T; Longhi-Wagner, Hilda M; Peichoto, Myriam Carolina; McKain, Michael R; Kellogg, Elizabeth A

    2016-06-01

    Species delimitation is a vital issue concerning evolutionary biology and conservation of biodiversity. However, it is a challenging task for several reasons, including the low interspecies variability of markers currently used in phylogenetic reconstructions and the occurrence of reticulate evolution and polyploidy in many lineages of flowering plants. The first phylogeny of the grass genus Eriochrysis is presented here, focusing on the New World species, in order to examine its relationships to other genera of the subtribe Saccharinae/tribe Andropogoneae and to define the circumscriptions of its taxonomically complicated species. Molecular cloning and sequencing of five regions of four low-copy nuclear genes (apo1, d8, ep2-ex7 and ep2-ex8, kn1) were performed, as well as complete plastome sequencing. Trees were reconstructed using maximum parsimony, maximum likelihood, and Bayesian inference analyses. The present phylogenetic analyses indicate that Eriochrysis is monophyletic and the Old World E. pallida is sister to the New World species. Subtribe Saccharinae is polyphyletic, as is the genus Eulalia. Based on nuclear and plastome sequences plus morphology, we define the circumscriptions of the New World species of Eriochrysis: E. laxa is distinct from E. warmingiana, and E. villosa is distinct from E. cayennensis. Natural hybrids occur between E. laxa and E. villosa. The hybrids are probably tetraploids, based on the number of paralogues in the nuclear gene trees. This is the first record of a polyploid taxon in the genus Eriochrysis. Some incongruities between nuclear genes and plastome analyses were detected and are potentially caused by incomplete lineage sorting and/or ancient hybridization. The set of low-copy nuclear genes used in this study seems to be sufficient to resolve phylogenetic relationships and define the circumscriptions of other species complexes in the grass family and relatives, even in the presence of polyploidy and reticulate evolution. Complete plastome sequencing is also a promising tool for phylogenetic inference. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Treetrimmer: a method for phylogenetic dataset size reduction.

    PubMed

    Maruyama, Shinichiro; Eveleigh, Robert J M; Archibald, John M

    2013-04-12

    With rapid advances in genome sequencing and bioinformatics, it is now possible to generate phylogenetic trees containing thousands of operational taxonomic units (OTUs) from a wide range of organisms. However, use of rigorous tree-building methods on such large datasets is prohibitive and manual 'pruning' of sequence alignments is time consuming and raises concerns over reproducibility. There is a need for bioinformatic tools with which to objectively carry out such pruning procedures. Here we present 'TreeTrimmer', a bioinformatics procedure that removes unnecessary redundancy in large phylogenetic datasets, alleviating the size effect on more rigorous downstream analyses. The method identifies and removes user-defined 'redundant' sequences, e.g., orthologous sequences from closely related organisms and 'recently' evolved lineage-specific paralogs. Representative OTUs are retained for more rigorous re-analysis. TreeTrimmer reduces the OTU density of phylogenetic trees without sacrificing taxonomic diversity while retaining the original tree topology, thereby speeding up downstream computer-intensive analyses, e.g., Bayesian and maximum likelihood tree reconstructions, in a reproducible fashion.

  15. Molecular evolution of Adh and LEAFY and the phylogenetic utility of their introns in Pyrus (Rosaceae)

    PubMed Central

    2011-01-01

    Background The genus Pyrus belongs to the tribe Pyreae (the former subfamily Maloideae) of the family Rosaceae, and includes one of the most important commercial fruit crops, pear. The phylogeny of Pyrus has not been definitively reconstructed. In our previous efforts, the internal transcribed spacer region (ITS) revealed a poorly resolved phylogeny due to non-concerted evolution of nrDNA arrays. Therefore, introns of low copy nuclear genes (LCNG) are explored here for improved resolution. However, paralogs and lineage sorting are still two challenges for applying LCNGs in phylogenetic studies, and at least two independent nuclear loci should be compared. In this work the second intron of LEAFY and the alcohol dehydrogenase gene (Adh) were selected to investigate their molecular evolution and phylogenetic utility. Results DNA sequence analyses revealed a complex ortholog and paralog structure of Adh genes in Pyrus and Malus, the pears and apples. Comparisons between sequences from RT-PCR and genomic PCR indicate that some Adh homologs are putatively nonfunctional. A partial region of Adh1 was sequenced for 18 Pyrus species and three subparalogs representing Adh1-1 were identified. These led to poorly resolved phylogenies due to low sequence divergence and the inclusion of putative recombinants. For the second intron of LEAFY, multiple inparalogs were discovered for both LFY1int2 and LFY2int2. LFY1int2 is inadequate for phylogenetic analysis due to lineage sorting of two inparalogs. LFY2int2-N, however, showed a relatively high sequence divergence and led to the best-resolved phylogeny. This study documents the coexistence of outparalogs and inparalogs, and lineage sorting of these paralogs and orthologous copies. It reveals putative recombinants that can lead to incorrect phylogenetic inferences, and presents an improved phylogenetic resolution of Pyrus using LFY2int2-N. Conclusions Our study represents the first phylogenetic analyses based on LCNGs in Pyrus. Ancient and recent duplications lead to a complex structure of Adh outparalogs and inparalogs in Pyrus and Malus, resulting in neofunctionalization, nonfunctionalization and possible subfunctionalization. Among all investigated orthologs, LFY2int2-N is the best nuclear marker for phylogenetic reconstruction of Pyrus due to suitable sequence divergence and the absence of lineage sorting. PMID:21917170

  16. A Phylogenetic Analysis of the Genus Fragaria (Strawberry) Using Intron-Containing Sequence from the ADH-1 Gene

    PubMed Central

    DiMeglio, Laura M.; Yu, Hongrun; Davis, Thomas M.

    2014-01-01

    The genus Fragaria encompasses species at ploidy levels ranging from diploid to decaploid. The cultivated strawberry, Fragaria×ananassa, and its two immediate progenitors, F. chiloensis and F. virginiana, are octoploids. To elucidate the ancestries of these octoploid species, we performed a phylogenetic analysis using intron-containing sequences of the nuclear ADH-1 gene from 39 germplasm accessions representing nineteen Fragaria species and one outgroup species, Dasiphora fruticosa. All trees from Maximum Parsimony and Maximum Likelihood analyses showed two major clades, Clade A and Clade B. Each of the sampled octoploids contributed alleles to both major clades. All octoploid-derived alleles in Clade A clustered with alleles of diploid F. vesca, with the exception of one octoploid allele that clustered with the alleles of diploid F. mandshurica. All octoploid-derived alleles in clade B clustered with the alleles of only one diploid species, F. iinumae. When gaps encoded as binary characters were included in the Maximum Parsimony analysis, tree resolution was improved with the addition of six nodes, and the bootstrap support was generally higher, rising above the 50% threshold for an additional nine branches. These results, coupled with the congruence of the sequence data and the coded gap data, validate and encourage the employment of sequence sets containing gaps for phylogenetic analysis. Our phylogenetic conclusions, based upon sequence data from the ADH-1 gene located on F. vesca linkage group II, complement and generally agree with those obtained from analyses of protein-encoding genes GBSSI-2 and DHAR located on F. vesca linkage groups V and VII, respectively, but differ from a previous study that utilized rDNA sequences and did not detect the ancestral role of F. iinumae. PMID:25078607

  17. Biological pattern and transcriptomic exploration and phylogenetic analysis in the odd floral architecture tree: Helwingia willd.

    PubMed

    Sun, Cheng; Yu, Guoliang; Bao, Manzhu; Zheng, Bo; Ning, Guogui

    2014-06-27

    Odd traits in few of plant species usually implicate potential biology significances in plant evolutions. The genus Helwingia Willd, a dioecious medical shrub in Aquifoliales order, has an odd floral architecture-epiphyllous inflorescence. The potential significances and possible evolutionary origin of this specie are not well understood due to poorly available data of biological and genetic studies. In addition, the advent of genomics-based technologies has widely revolutionized plant species with unknown genomic information. Morphological and biological pattern were detailed via anatomical and pollination analyses. An RNA sequencing based transcriptomic analysis were undertaken and a high-resolution phylogenetic analysis was conducted based on single-copy genes in more than 80 species of seed plants, including H. japonica. It is verified that a potential fusion of rachis to the leaf midvein facilitates insect pollination. RNA sequencing yielded a total of 111450 unigenes; half of them had significant similarity with proteins in the public database, and 20281 unigenes were mapped to 119 pathways. Deduced from the phylogenetic analysis based on single-copy genes, the group of Helwingia is closer with Euasterids II and rather than Euasterids, congruent with previous reports using plastid sequences. The odd flower architecture make H. Willd adapt to insect pollination by hosting those insects larger than the flower in size via leave, which has little common character that other insect pollination plants hold. Further the present transcriptome greatly riches genomics information of Helwingia species and nucleus genes based phylogenetic analysis also greatly improve the resolution and robustness of phylogenetic reconstruction in H. japonica.

  18. Genetic relationships among freshwater mussel species from fifteen Amazonian rivers and inferences on the evolution of the Hyriidae (Mollusca: Bivalvia: Unionida).

    PubMed

    Santos-Neto, Guilherme da Cruz; Beasley, Colin Robert; Schneider, Horacio; Pimpão, Daniel Mansur; Hoeh, Walter Randolph; Simone, Luiz Ricardo Lopes de; Tagliaro, Claudia Helena

    2016-07-01

    The current phylogenetic framework for the South American Hyriidae is solely based on morphological data. However, freshwater bivalve morphology is highly variable due to both genetic and environmental factors. The present study used both mitochondrial (COI and 16S) and nuclear (18S-ITS1) sequences in molecular phylogenetic analyses of nine Neotropical species of Hyriidae, collected from 15 South American rivers, and sequences of hyriids from Australia and New Zealand obtained from GenBank. The present molecular findings support traditional taxonomic proposals, based on morphology, for the South American subfamily Hyriinae, currently divided in three tribes: Hyriini, Castaliini and Rhipidodontini. Phylogenetic trees based on COI nucleotide sequences revealed at least four geographical groups of Castalia ambigua: northeast Amazon (Piriá, Tocantins and Caeté rivers), central Amazon, including C. quadrata (Amazon and Aripuanã rivers), north (Trombetas river), and C. ambigua from Peru. Genetic distances suggest that some specimens may be cryptic species. Among the Hyriini, a total evidence data set generated phylogenetic trees indicating that Paxyodon syrmatophorus and Prisodon obliquus are more closely related, followed by Triplodon corrugatus. The molecular clock, based on COI, agreed with the fossil record of Neotropical hyriids. The ancestor of both Australasian and Neotropical Hyriidae is estimated to have lived around 225million years ago. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Revisiting the taxonomical classification of Porcine Circovirus type 2 (PCV2): still a real challenge.

    PubMed

    Franzo, Giovanni; Cortey, Martí; Olvera, Alex; Novosel, Dinko; Castro, Alessandra Marnie Martins Gomes De; Biagini, Philippe; Segalés, Joaquim; Drigo, Michele

    2015-08-28

    PCV2 has emerged as one of the most devastating viral infections of swine farming, causing a relevant economic impact due to direct losses and control strategies expenses. Epidemiological and experimental studies have evidenced that genetic diversity is potentially affecting the virulence of PVC2. The growing number of PCV2 complete genomes and partial sequences available at GenBank questioned the accepted PCV2 classification. Nine hundred seventy five PCV2 complete genomes and 1,270 ORF2 sequences available from GenBank were subjected to recombination, PASC and phylogenetic analyses and results were used for comparison with previous classification scheme. The outcome of these analyses favors the recognition of four genotypes on the basis of ORF2 sequences, namely PCV2a, PCV2b, PCV2c and PCV2d-mPCV2b. To deal with the difficulty of founding an unambiguous classification and accounting the impossibility to define a p-distance cut-off, a set of reference sequences that could be used in further phylogenetic studies for PCV2 genotyping was established. Being aware that extensive phylogenetic analyses are time-consuming and often impracticable during routine diagnostic activity, ORF2 nucleotide positions adequately conserved in the reference sequences were identified and reported to allow a quick genotype differentiation. Globally, the present work provides an updated scenario of PCV2 genotypes distribution and, based on the limits of the previous classification criteria, proposes new rapid and effective schemes for differentiating the four defined PCV2 genotypes.

  20. The “Naked Coral” Hypothesis Revisited – Evidence for and Against Scleractinian Monophyly

    PubMed Central

    Forêt, Sylvain; Huttley, Gavin; Miller, David J.; Chen, Chaolun Allen

    2014-01-01

    The relationship between Scleractinia and Corallimorpharia, Orders within Anthozoa distinguished by the presence of an aragonite skeleton in the former, is controversial. Although classically considered distinct groups, some phylogenetic analyses have placed the Corallimorpharia within a larger Scleractinia/Corallimorpharia clade, leading to the suggestion that the Corallimorpharia are “naked corals” that arose via skeleton loss during the Cretaceous from a Scleractinian ancestor. Scleractinian paraphyly is, however, contradicted by a number of recent phylogenetic studies based on mt nucleotide (nt) sequence data. Whereas the “naked coral” hypothesis was based on analysis of the sequences of proteins encoded by a relatively small number of mt genomes, here a much-expanded dataset was used to reinvestigate hexacorallian phylogeny. The initial observation was that, whereas analyses based on nt data support scleractinian monophyly, those based on amino acid (aa) data support the “naked coral” hypothesis, irrespective of the method and with very strong support. To better understand the bases of these contrasting results, the effects of systematic errors were examined. Compared to other hexacorallians, the mt genomes of “Robust” corals have a higher (A+T) content, codon usage is far more constrained, and the proteins that they encode have a markedly higher phenylalanine content, leading us to suggest that mt DNA repair may be impaired in this lineage. Thus the “naked coral” topology could be caused by high levels of saturation in these mitochondrial sequences, long-branch effects or model violations. The equivocal results of these extensive analyses highlight the fundamental problems of basing coral phylogeny on mitochondrial sequence data. PMID:24740380

  1. [Analysis of chloroplast rpS16 intron sequences in Lemnaceae].

    PubMed

    Martirosian, E V; Ryzhova, N N; Kochieva, E Z; Skriabin, K G

    2009-01-01

    Chloroplast rpS16 gene intron sequences were determined and characterized for twenty-five Lemnaceae accessions representing nine duckweed species. For each Lemnaceae species nucleotide substitutions and for Lemna minor, Lemna aequinoctialis, Wolffia arrhiza different indels were detected. Most of indels were found for Wolffia arrhiza and Lemna aequinoctialis. The analyses of intraspecific polymorphism resulted in identification of several gaplotypes in L. gibba and L. trisulca. Lemnaceae phylogenetic relationship based on rpS16 intron variability data has revealed significant differences between L. aequinoctialis and other Lemna species. Genetic distance values corroborated competence of Landoltia punctata separations from Spirodela into an independent generic taxon. The acceptability of rpS16 intron sequences for phylogenetic studies in Lemnaceae was shown.

  2. Shaking the Tree: Multi-locus Sequence Typing Usurps Current Onchocercid (Filarial Nematode) Phylogeny

    PubMed Central

    Lefoulon, Emilie; Bourret, Jérôme; Junker, Kerstin; Guerrero, Ricardo; Cañizales, Israel; Kuzmin, Yuriy; Satoto, Tri Baskoro T.; Cardenas-Callirgos, Jorge Manuel; de Souza Lima, Sueli; Raccurt, Christian; Mutafchiev, Yasen; Gavotte, Laurent; Martin, Coralie

    2015-01-01

    During the past twenty years, a number of molecular analyses have been performed to determine the evolutionary relationships of Onchocercidae, a family of filarial nematodes encompassing several species of medical or veterinary importance. However, opportunities for broad taxonomic sampling have been scarce, and analyses were based mainly on 12S rDNA and coxI gene sequences. While being suitable for species differentiation, these mitochondrial genes cannot be used to infer phylogenetic hypotheses at higher taxonomic levels. In the present study, 48 species, representing seven of eight subfamilies within the Onchocercidae, were sampled and sequences of seven gene loci (nuclear and mitochondrial) analysed, resulting in the hitherto largest molecular phylogenetic investigation into this family. Although our data support the current hypothesis that the Oswaldofilariinae, Waltonellinae and Icosiellinae subfamilies separated early from the remaining onchocercids, Setariinae was recovered as a well separated clade. Dirofilaria, Loxodontofilaria and Onchocerca constituted a strongly supported clade despite belonging to different subfamilies (Onchocercinae and Dirofilariinae). Finally, the separation between Splendidofilariinae, Dirofilariinae and Onchocercinae will have to be reconsidered. PMID:26588229

  3. Phylogenetic relationships of South American lizards of the genus Stenocercus (Squamata: Iguania): A new approach using a general mixture model for gene sequence data.

    PubMed

    Torres-Carvajal, Omar; Schulte, James A; Cadle, John E

    2006-04-01

    The South American iguanian lizard genus Stenocercus includes 54 species occurring mostly in the Andes and adjacent lowland areas from northern Venezuela and Colombia to central Argentina at elevations of 0-4000m. Small taxon or character sampling has characterized all phylogenetic analyses of Stenocercus, which has long been recognized as sister taxon to the Tropidurus Group. In this study, we use mtDNA sequence data to perform phylogenetic analyses that include 32 species of Stenocercus and 12 outgroup taxa. Monophyly of this genus is strongly supported by maximum parsimony and Bayesian analyses. Evolutionary relationships within Stenocercus are further analyzed with a Bayesian implementation of a general mixture model, which accommodates variability in the pattern of evolution across sites. These analyses indicate a basal split of Stenocercus into two clades, one of which receives very strong statistical support. In addition, we test previous hypotheses using non-parametric and parametric statistical methods, and provide a phylogenetic classification for Stenocercus.

  4. [Molecular phylogeny and systematics of flowering plants of the family Crassulaceae DC].

    PubMed

    Goncharova, S B; Goncharov, A A

    2009-01-01

    Crassulaceae is the most species rich (ca. 1400) family in the order Saxifragales. Most members of the family are succulent plants. Phenotypic diversity and a large number of species complicate systematics of the family and reconstruction of relationship within it. Phylogenetic analyses based on morphological and molecular markers placed Crassulaceae as one of the crown clades of Saxifragales. In this contribution a review of phylogenetic studies of the family Crassulaceae, based on DNA nucleotide sequence comparisons is presented; major clades established in the family are characterised; their structure and polyphylesis of some genera related to it are discussed. It was shown that the traditional taxonomic structure of Crassulaceae contradicts pattern of phylogenetic relationships between its members. We critically analysed recent taxonomic systems of the family and stress that homoplasy of morphological characters does not allow to use them to reconstruct relationships between crassulacean taxa even at the low taxonomic levels.

  5. Alignment methods: strategies, challenges, benchmarking, and comparative overview.

    PubMed

    Löytynoja, Ari

    2012-01-01

    Comparative evolutionary analyses of molecular sequences are solely based on the identities and differences detected between homologous characters. Errors in this homology statement, that is errors in the alignment of the sequences, are likely to lead to errors in the downstream analyses. Sequence alignment and phylogenetic inference are tightly connected and many popular alignment programs use the phylogeny to divide the alignment problem into smaller tasks. They then neglect the phylogenetic tree, however, and produce alignments that are not evolutionarily meaningful. The use of phylogeny-aware methods reduces the error but the resulting alignments, with evolutionarily correct representation of homology, can challenge the existing practices and methods for viewing and visualising the sequences. The inter-dependency of alignment and phylogeny can be resolved by joint estimation of the two; methods based on statistical models allow for inferring the alignment parameters from the data and correctly take into account the uncertainty of the solution but remain computationally challenging. Widely used alignment methods are based on heuristic algorithms and unlikely to find globally optimal solutions. The whole concept of one correct alignment for the sequences is questionable, however, as there typically exist vast numbers of alternative, roughly equally good alignments that should also be considered. This uncertainty is hidden by many popular alignment programs and is rarely correctly taken into account in the downstream analyses. The quest for finding and improving the alignment solution is complicated by the lack of suitable measures of alignment goodness. The difficulty of comparing alternative solutions also affects benchmarks of alignment methods and the results strongly depend on the measure used. As the effects of alignment error cannot be predicted, comparing the alignments' performance in downstream analyses is recommended.

  6. Molecular Identification of Dendrobium Species (Orchidaceae) Based on the DNA Barcode ITS2 Region and Its Application for Phylogenetic Study.

    PubMed

    Feng, Shangguo; Jiang, Yan; Wang, Shang; Jiang, Mengying; Chen, Zhe; Ying, Qicai; Wang, Huizhong

    2015-09-11

    The over-collection and habitat destruction of natural Dendrobium populations for their commercial medicinal value has led to these plants being under severe threat of extinction. In addition, many Dendrobium plants are similarly shaped and easily confused during the absence of flowering stages. In the present study, we examined the application of the ITS2 region in barcoding and phylogenetic analyses of Dendrobium species (Orchidaceae). For barcoding, ITS2 regions of 43 samples in Dendrobium were amplified. In combination with sequences from GenBank, the sequences were aligned using Clustal W and genetic distances were computed using MEGA V5.1. The success rate of PCR amplification and sequencing was 100%. There was a significant divergence between the inter- and intra-specific genetic distances of ITS2 regions, while the presence of a barcoding gap was obvious. Based on the BLAST1, nearest distance and TaxonGAP methods, our results showed that the ITS2 regions could successfully identify the species of most Dendrobium samples examined; Second, we used ITS2 as a DNA marker to infer phylogenetic relationships of 64 Dendrobium species. The results showed that cluster analysis using the ITS2 region mainly supported the relationship between the species of Dendrobium established by traditional morphological methods and many previous molecular analyses. To sum up, the ITS2 region can not only be used as an efficient barcode to identify Dendrobium species, but also has the potential to contribute to the phylogenetic analysis of the genus Dendrobium.

  7. Resolving Recent Plant Radiations: Power and Robustness of Genotyping-by-Sequencing.

    PubMed

    Fernández-Mazuecos, Mario; Mellers, Greg; Vigalondo, Beatriz; Sáez, Llorenç; Vargas, Pablo; Glover, Beverley J

    2018-03-01

    Disentangling species boundaries and phylogenetic relationships within recent evolutionary radiations is a challenge due to the poor morphological differentiation and low genetic divergence between species, frequently accompanied by phenotypic convergence, interspecific gene flow and incomplete lineage sorting. Here we employed a genotyping-by-sequencing (GBS) approach, in combination with morphometric analyses, to investigate a small western Mediterranean clade in the flowering plant genus Linaria that radiated in the Quaternary. After confirming the morphological and genetic distinctness of eight species, we evaluated the relative performances of concatenation and coalescent methods to resolve phylogenetic relationships. Specifically, we focused on assessing the robustness of both approaches to variations in the parameter used to estimate sequence homology (clustering threshold). Concatenation analyses suffered from strong systematic bias, as revealed by the high statistical support for multiple alternative topologies depending on clustering threshold values. By contrast, topologies produced by two coalescent-based methods (NJ$_{\\mathrm{st}}$, SVDquartets) were robust to variations in the clustering threshold. Reticulate evolution may partly explain incongruences between NJ$_{\\mathrm{st}}$, SVDquartets and concatenated trees. Integration of morphometric and coalescent-based phylogenetic results revealed (i) extensive morphological divergence associated with recent splits between geographically close or sympatric sister species and (ii) morphological convergence in geographically disjunct species. These patterns are particularly true for floral traits related to pollinator specialization, including nectar spur length, tube width and corolla color, suggesting pollinator-driven diversification. Given its relatively simple and inexpensive implementation, GBS is a promising technique for the phylogenetic and systematic study of recent radiations, but care must be taken to evaluate the robustness of results to variation of data assembly parameters.

  8. Molecular Identification of Dendrobium Species (Orchidaceae) Based on the DNA Barcode ITS2 Region and Its Application for Phylogenetic Study

    PubMed Central

    Feng, Shangguo; Jiang, Yan; Wang, Shang; Jiang, Mengying; Chen, Zhe; Ying, Qicai; Wang, Huizhong

    2015-01-01

    The over-collection and habitat destruction of natural Dendrobium populations for their commercial medicinal value has led to these plants being under severe threat of extinction. In addition, many Dendrobium plants are similarly shaped and easily confused during the absence of flowering stages. In the present study, we examined the application of the ITS2 region in barcoding and phylogenetic analyses of Dendrobium species (Orchidaceae). For barcoding, ITS2 regions of 43 samples in Dendrobium were amplified. In combination with sequences from GenBank, the sequences were aligned using Clustal W and genetic distances were computed using MEGA V5.1. The success rate of PCR amplification and sequencing was 100%. There was a significant divergence between the inter- and intra-specific genetic distances of ITS2 regions, while the presence of a barcoding gap was obvious. Based on the BLAST1, nearest distance and TaxonGAP methods, our results showed that the ITS2 regions could successfully identify the species of most Dendrobium samples examined; Second, we used ITS2 as a DNA marker to infer phylogenetic relationships of 64 Dendrobium species. The results showed that cluster analysis using the ITS2 region mainly supported the relationship between the species of Dendrobium established by traditional morphological methods and many previous molecular analyses. To sum up, the ITS2 region can not only be used as an efficient barcode to identify Dendrobium species, but also has the potential to contribute to the phylogenetic analysis of the genus Dendrobium. PMID:26378526

  9. Sequence variation and phylogenetic analysis of envelope glycoprotein of hepatitis G virus.

    PubMed

    Lim, M Y; Fry, K; Yun, A; Chong, S; Linnen, J; Fung, K; Kim, J P

    1997-11-01

    A transfusion-transmissible agent provisionally designated hepatitis G virus (HGV) was recently identified. In this study, we examined the variability of the HGV genome by analysing sequences in the putative envelope region from 72 isolates obtained from diverse geographical sources. The 1561 nucleotide sequence of the E1/E2/NS2a region of HGV was determined from 12 isolates, and compared with three published sequences. The most variability was observed in 400 nucleotides at the N terminus of E2. We next analysed this 400 nucleotide envelope variable region (EV) from an additional 60 HGV isolates. This sequence varied considerably among the 75 isolates, with overall identity ranging from 79.3% to 99.5% at the nucleotide level, and from 83.5% to 100% at the amino acid level. However, hypervariable regions were not identified. Phylogenetic analyses indicated that the 75 HGV isolates belong to a single genotype. A single-tier distribution of evolutionary distances was observed among the 15 E1/E2/NS2a sequences and the 75 EV sequences. In contrast, 11 isolates of HCV were analysed and showed a three-tiered distribution, representing genotypes, subtypes, and isolates. The 75 isolates of HGV fell into four clusters on the phylogenetic tree. Tight geographical clustering was observed among the HGV isolates from Japan and Korea.

  10. Positioning the red deer (Cervus elaphus) hunted by the Tyrolean Iceman into a mitochondrial DNA phylogeny.

    PubMed

    Olivieri, Cristina; Marota, Isolina; Rizzi, Ermanno; Ermini, Luca; Fusco, Letizia; Pietrelli, Alessandro; De Bellis, Gianluca; Rollo, Franco; Luciani, Stefania

    2014-01-01

    In the last years several phylogeographic studies of both extant and extinct red deer populations have been conducted. Three distinct mitochondrial lineages (western, eastern and North-African/Sardinian) have been identified reflecting different glacial refugia and postglacial recolonisation processes. However, little is known about the genetics of the Alpine populations and no mitochondrial DNA sequences from Alpine archaeological specimens are available. Here we provide the first mitochondrial sequences of an Alpine Copper Age Cervus elaphus. DNA was extracted from hair shafts which were part of the remains of the clothes of the glacier mummy known as the Tyrolean Iceman or Ötzi (5,350-5,100 years before present). A 2,297 base pairs long fragment was sequenced using a mixed sequencing procedure based on PCR amplifications and 454 sequencing of pooled amplification products. We analyzed the phylogenetic relationships of the Alpine Copper Age red deer's haplotype with haplotypes of modern and ancient European red deer. The phylogenetic analyses showed that the haplotype of the Alpine Copper Age red deer falls within the western European mitochondrial lineage in contrast with the current populations from the Italian Alps belonging to the eastern lineage. We also discussed the phylogenetic relationships of the Alpine Copper Age red deer with the populations from Mesola Wood (northern Italy) and Sardinia.

  11. Comprehensive evolutionary and phylogenetic analysis of Hepacivirus N (HNV).

    PubMed

    da Silva, M S; Junqueira, D M; Baumbach, L F; Cibulski, S P; Mósena, A C S; Weber, M N; Silveira, S; de Moraes, G M; Maia, R D; Coimbra, V C S; Canal, C W

    2018-05-24

    Hepaciviruses (HVs) have been detected in several domestic and wild animals and present high genetic diversity. The actual classification divides the genus Hepacivirus into 14 species (A-N), according to their phylogenetic relationships, including the bovine hepacivirus [Hepacivirus N (HNV)]. In this study, we confirmed HNV circulation in Brazil and sequenced the whole genome of two strains. Based on the current classification of HCV, which is divided into genotypes and subtypes, we analysed all available bovine hepacivirus sequences in the GenBank database and proposed an HNV classification. All of the sequences were grouped into a single genotype, putatively named 'genotype 1'. This genotype can be clearly divided into four subtypes: A and D containing sequences from Germany and Brazil, respectively, and B and C containing Ghanaian sequences. In addition, the NS3-coding region was used to estimate the time to the most recent common ancestor (TMRCA) of each subtype, using a Bayesian approach and a relaxed molecular clock model. The analyses indicated a common origin of the virus circulating in Germany and Brazil. Ghanaian sequences seemed to have an older TMRCA, indicating a long time of circulation of these viruses in the African continent.

  12. Molecular systematics of Indian Alysicarpus (Fabaceae) based on analyses of nuclear ribosomal DNA sequences.

    PubMed

    Gholami, Akram; Subramaniam, Shweta; Geeta, R; Pandey, Arun K

    2017-06-01

    Alysicarpus Necker ex Desvaux (Fabaceae, Desmodieae) consists of ~30 species that are distributed in tropical and subtropical regions of theworld. In India, the genus is represented by ca. 18 species, ofwhich seven are endemic. Sequences of the nuclear Internal transcribed spacer from38 accessions representing 16 Indian specieswere subjected to phylogenetic analyses. The ITS sequence data strongly support the monophyly of the genus Alysicarpus. Analyses revealed four major well-supported clades within Alysicarpus. Ancestral state reconstructions were done for two morphological characters, namely calyx length in relation to pod (macrocalyx and microcalyx) and pod surface ornamentation (transversely rugose and nonrugose). The present study is the first report on molecular systematics of Indian Alysicarpus.

  13. Posterior Predictive Bayesian Phylogenetic Model Selection

    PubMed Central

    Lewis, Paul O.; Xie, Wangang; Chen, Ming-Hui; Fan, Yu; Kuo, Lynn

    2014-01-01

    We present two distinctly different posterior predictive approaches to Bayesian phylogenetic model selection and illustrate these methods using examples from green algal protein-coding cpDNA sequences and flowering plant rDNA sequences. The Gelfand–Ghosh (GG) approach allows dissection of an overall measure of model fit into components due to posterior predictive variance (GGp) and goodness-of-fit (GGg), which distinguishes this method from the posterior predictive P-value approach. The conditional predictive ordinate (CPO) method provides a site-specific measure of model fit useful for exploratory analyses and can be combined over sites yielding the log pseudomarginal likelihood (LPML) which is useful as an overall measure of model fit. CPO provides a useful cross-validation approach that is computationally efficient, requiring only a sample from the posterior distribution (no additional simulation is required). Both GG and CPO add new perspectives to Bayesian phylogenetic model selection based on the predictive abilities of models and complement the perspective provided by the marginal likelihood (including Bayes Factor comparisons) based solely on the fit of competing models to observed data. [Bayesian; conditional predictive ordinate; CPO; L-measure; LPML; model selection; phylogenetics; posterior predictive.] PMID:24193892

  14. 16S and 23S plastid rDNA phylogenies of Prototheca species and their auxanographic phenotypes.

    PubMed

    Ewing, Aren; Brubaker, Shane; Somanchi, Aravind; Yu, Esther; Rudenko, George; Reyes, Nina; Espina, Karen; Grossman, Arthur; Franklin, Scott

    2014-08-01

    Because algae have become more accepted as sources of human nutrition, phylogenetic analysis can help resolve the taxonomy of taxa that have not been well studied. This can help establish algal evolutionary relationships. Here, we compare Auxenochlorella protothecoides and 23 strains of Prototheca based on their complete 16S and partial 23S plastid rDNA sequences along with nutrient utilization (auxanographic) profiles. These data demonstrate that some of the species groupings are not in agreement with the molecular phylogenetic analyses and that auxanographic profiles are poor predictors of phylogenetic relationships.

  15. 16S and 23S plastid rDNA phylogenies of Prototheca species and their auxanographic phenotypes1

    PubMed Central

    Ewing, Aren; Brubaker, Shane; Somanchi, Aravind; Yu, Esther; Rudenko, George; Reyes, Nina; Espina, Karen; Grossman, Arthur; Franklin, Scott

    2014-01-01

    Because algae have become more accepted as sources of human nutrition, phylogenetic analysis can help resolve the taxonomy of taxa that have not been well studied. This can help establish algal evolutionary relationships. Here, we compare Auxenochlorella protothecoides and 23 strains of Prototheca based on their complete 16S and partial 23S plastid rDNA sequences along with nutrient utilization (auxanographic) profiles. These data demonstrate that some of the species groupings are not in agreement with the molecular phylogenetic analyses and that auxanographic profiles are poor predictors of phylogenetic relationships. PMID:25937672

  16. Ersiphe trifolii-a newly recognized powdery mildew pathogen of pea.

    USDA-ARS?s Scientific Manuscript database

    Population diversity of powdery mildews infecting pea (Pisum sativum) in the US Pacific Northwest was investigated in order to assess inconsistent resistance performances of pea genotypes in different environments. Phylogenetic analyses based on ITS sequences, in combination with assessment of morph...

  17. Hedysarum L. (Fabaceae: Hedysareae) Is Not Monophyletic – Evidence from Phylogenetic Analyses Based on Five Nuclear and Five Plastid Sequences

    PubMed Central

    Liu, Pei-Liang; Wen, Jun; Duan, Lei; Arslan, Emine; Ertuğrul, Kuddisi; Chang, Zhao-Yang

    2017-01-01

    The legume family (Fabaceae) exhibits a high level of species diversity and evolutionary success worldwide. Previous phylogenetic studies of the genus Hedysarum L. (Fabaceae: Hedysareae) showed that the nuclear and the plastid topologies might be incongruent, and the systematic position of the Hedysarum sect. Stracheya clade was uncertain. In this study, phylogenetic relationships of Hedysarum were investigated based on the nuclear ITS, ETS, PGDH, SQD1, TRPT and the plastid psbA-trnH, trnC-petN, trnL-trnF, trnS-trnG, petN-psbM sequences. Both nuclear and plastid data support two major lineages in Hedysarum: the Hedysarum s.s. clade and the Sartoria clade. In the nuclear tree, Hedysarum is biphyletic with the Hedysarum s.s. clade sister to the Corethrodendron + Eversmannia + Greuteria + Onobrychis clade (the CEGO clade), whereas the Sartoria clade is sister to the genus Taverniera DC. In the plastid tree, Hedysarum is monophyletic and sister to Taverniera. The incongruent position of the Hedysarum s.s. clade between the nuclear and plastid trees may be best explained by a chloroplast capture hypothesis via introgression. The Hedysarum sect. Stracheya clade is resolved as sister to the H. sect. Hedysarum clade in both nuclear and plastid trees, and our analyses support merging Stracheya into Hedysarum. Based on our new evidence from multiple sequences, Hedysarum is not monophyletic, and its generic delimitation needs to be reconsidered. PMID:28122062

  18. Hedysarum L. (Fabaceae: Hedysareae) Is Not Monophyletic - Evidence from Phylogenetic Analyses Based on Five Nuclear and Five Plastid Sequences.

    PubMed

    Liu, Pei-Liang; Wen, Jun; Duan, Lei; Arslan, Emine; Ertuğrul, Kuddisi; Chang, Zhao-Yang

    2017-01-01

    The legume family (Fabaceae) exhibits a high level of species diversity and evolutionary success worldwide. Previous phylogenetic studies of the genus Hedysarum L. (Fabaceae: Hedysareae) showed that the nuclear and the plastid topologies might be incongruent, and the systematic position of the Hedysarum sect. Stracheya clade was uncertain. In this study, phylogenetic relationships of Hedysarum were investigated based on the nuclear ITS, ETS, PGDH, SQD1, TRPT and the plastid psbA-trnH, trnC-petN, trnL-trnF, trnS-trnG, petN-psbM sequences. Both nuclear and plastid data support two major lineages in Hedysarum: the Hedysarum s.s. clade and the Sartoria clade. In the nuclear tree, Hedysarum is biphyletic with the Hedysarum s.s. clade sister to the Corethrodendron + Eversmannia + Greuteria + Onobrychis clade (the CEGO clade), whereas the Sartoria clade is sister to the genus Taverniera DC. In the plastid tree, Hedysarum is monophyletic and sister to Taverniera. The incongruent position of the Hedysarum s.s. clade between the nuclear and plastid trees may be best explained by a chloroplast capture hypothesis via introgression. The Hedysarum sect. Stracheya clade is resolved as sister to the H. sect. Hedysarum clade in both nuclear and plastid trees, and our analyses support merging Stracheya into Hedysarum. Based on our new evidence from multiple sequences, Hedysarum is not monophyletic, and its generic delimitation needs to be reconsidered.

  19. REFGEN and TREENAMER: Automated Sequence Data Handling for Phylogenetic Analysis in the Genomic Era

    PubMed Central

    Leonard, Guy; Stevens, Jamie R.; Richards, Thomas A.

    2009-01-01

    The phylogenetic analysis of nucleotide sequences and increasingly that of amino acid sequences is used to address a number of biological questions. Access to extensive datasets, including numerous genome projects, means that standard phylogenetic analyses can include many hundreds of sequences. Unfortunately, most phylogenetic analysis programs do not tolerate the sequence naming conventions of genome databases. Managing large numbers of sequences and standardizing sequence labels for use in phylogenetic analysis programs can be a time consuming and laborious task. Here we report the availability of an online resource for the management of gene sequences recovered from public access genome databases such as GenBank. These web utilities include the facility for renaming every sequence in a FASTA alignment file, with each sequence label derived from a user-defined combination of the species name and/or database accession number. This facility enables the user to keep track of the branching order of the sequences/taxa during multiple tree calculations and re-optimisations. Post phylogenetic analysis, these webpages can then be used to rename every label in the subsequent tree files (with a user-defined combination of species name and/or database accession number). Together these programs drastically reduce the time required for managing sequence alignments and labelling phylogenetic figures. Additional features of our platform include the automatic removal of identical accession numbers (recorded in the report file) and generation of species and accession number lists for use in supplementary materials or figure legends. PMID:19812722

  20. Molecular phylogenetic and dating analyses using mitochondrial DNA sequences of eyelid geckos (Squamata: Eublepharidae).

    PubMed

    Jonniaux, Pierre; Kumazawa, Yoshinori

    2008-01-15

    Mitochondrial DNA sequences of approximately 2.3 kbp including the complete NADH dehydrogenase subunit 2 gene and its flanking genes, as well as parts of 12S and 16S rRNA genes were determined from major species of the eyelid gecko family Eublepharidae sensu [Kluge, A.G. 1987. Cladistic relationships in the Gekkonoidea (Squamata, Sauria). Misc. Publ. Mus. Zool. Univ. Michigan 173, 1-54.]. In contrast to previous morphological studies, phylogenetic analyses based on these sequences supported that Eublepharidae and Gekkonidae form a sister group with Pygopodidae, raising the possibility of homoplasious character change in some key features of geckos, such as reduction of movable eyelids and innovation of climbing toe pads. The phylogenetic analyses also provided a well-resolved tree for relationships between the eublepharid species. The Bayesian estimation of divergence times without assuming the molecular clock suggested the Jurassic divergence of Eublepharidae from Gekkonidae and radiations of most eublepharid genera around the Cretaceous. These dating results appeared to be robust against some conditional changes for time estimation, such as gene regions used, taxon representation, and data partitioning. Taken together with geological evidence, these results support the vicariant divergence of Eublepharidae and Gekkonidae by the breakup of Pangea into Laurasia and Gondwanaland, and recent dispersal of two African eublepharid genera from Eurasia to Africa after these landmasses were connected in the Early Miocene.

  1. Phylogenetic Network for European mtDNA

    PubMed Central

    Finnilä, Saara; Lehtonen, Mervi S.; Majamaa, Kari

    2001-01-01

    The sequence in the first hypervariable segment (HVS-I) of the control region has been used as a source of evolutionary information in most phylogenetic analyses of mtDNA. Population genetic inference would benefit from a better understanding of the variation in the mtDNA coding region, but, thus far, complete mtDNA sequences have been rare. We determined the nucleotide sequence in the coding region of mtDNA from 121 Finns, by conformation-sensitive gel electrophoresis and subsequent sequencing and by direct sequencing of the D loop. Furthermore, 71 sequences from our previous reports were included, so that the samples represented all the mtDNA haplogroups present in the Finnish population. We found a total of 297 variable sites in the coding region, which allowed the compilation of unambiguous phylogenetic networks. The D loop harbored 104 variable sites, and, in most cases, these could be localized within the coding-region networks, without discrepancies. Interestingly, many homoplasies were detected in the coding region. Nucleotide variation in the rRNA and tRNA genes was 6%, and that in the third nucleotide positions of structural genes amounted to 22% of that in the HVS-I. The complete networks enabled the relationships between the mtDNA haplogroups to be analyzed. Phylogenetic networks based on the entire coding-region sequence in mtDNA provide a rich source for further population genetic studies, and complete sequences make it easier to differentiate between disease-causing mutations and rare polymorphisms. PMID:11349229

  2. A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families

    PubMed Central

    Miadlikowska, Jolanta; Kauff, Frank; Högnabba, Filip; Oliver, Jeffrey C.; Molnár, Katalin; Fraker, Emily; Gaya, Ester; Hafellner, Josef; Hofstetter, Valérie; Gueidan, Cécile; Otálora, Mónica A.G.; Hodkinson, Brendan; Kukwa, Martin; Lücking, Robert; Björk, Curtis; Sipman, Harrie J.M.; Burgaz, Ana Rosa; Thell, Arne; Passo, Alfredo; Myllys, Leena; Goward, Trevor; Fernández-Brime, Samantha; Hestmark, Geir; Lendemer, James; Lumbsch, H. Thorsten; Schmull, Michaela; Schoch, Conrad; Sérusiaux, Emmanuël; Maddison, David R.; Arnold, A. Elizabeth; Lutzoni, François; Stenroos, Soili

    2014-01-01

    The Lecanoromycetes is the largest class of lichenized Fungi, and one of the most species-rich classes in the kingdom. Here we provide a multigene phylogenetic synthesis (using three ribosomal RNA-coding and two protein-coding genes) of the Lecanoromycetes based on 642 newly generated and 3329 publicly available sequences representing 1139 taxa, 317 genera, 66 families, 17 orders and five subclasses (four currently recognized: Acarosporomycetidae, Lecanoromycetidae, Ostropomycetidae, Umbilicariomycetidae; and one provisionarily recognized, ‘Candelariomycetidae’). Maximum likelihood phylogenetic analyses on four multigene datasets assembled using a cumulative supermatrix approach with a progressively higher number of species and missing data (5-gene, 5+4-gene, 5+4+3-gene and 5+4+3+2-gene datasets) show that the current classification includes non-monophyletic taxa at various ranks, which need to be recircumscribed and require revisionary treatments based on denser taxon sampling and more loci. Two newly circumscribed orders (Arctomiales and Hymeneliales in the Ostropomycetidae) and three families (Ramboldiaceae and Psilolechiaceae in the Lecanorales, and Strangosporaceae in the Lecanoromycetes inc. sed.) are introduced. The potential resurrection of the families Eigleraceae and Lopadiaceae is considered here to alleviate phylogenetic and classification disparities. An overview of the photobionts associated with the main fungal lineages in the Lecanoromycetes based on available published records is provided. A revised schematic classification at the family level in the phylogenetic context of widely accepted and newly revealed relationships across Lecanoromycetes is included. The cumulative addition of taxa with an increasing amount of missing data (i.e., a cumulative supermatrix approach, starting with taxa for which sequences were available for all five targeted genes and ending with the addition of taxa for which only two genes have been sequenced) revealed relatively stable relationships for many families and orders. However, the increasing number of taxa without the addition of more loci also resulted in an expected substantial loss of phylogenetic resolving power and support (especially for deep phylogenetic relationships), potentially including the misplacements of several taxa. Future phylogenetic analyses should include additional single copy protein-coding markers in order to improve the tree of the Lecanoromycetes. As part of this study, a new module (“Hypha”) of the freely available Mesquite software was developed to compare and display the internodal support values derived from this cumulative supermatrix approach. PMID:24747130

  3. Morphological, molecular and phylogenetic analyses of Diplotriaena bargusinica Skrjabin, 1917 (Nematoda: Diplotriaenidae).

    PubMed

    Dutra Vieira, Thainá; Pegoraro de Macedo, Marcia Raquel; Fedatto Bernardon, Fabiana; Müller, Gertrud

    2017-10-01

    The nematode Diplotriaena bargusinica is a bird air sac parasite, and its taxonomy is based mainly on morphological and morphometric characteristics. Increasing knowledge of genetic information variability has spurred the use of DNA markers in conjunction with morphological data for inferring phylogenetic relationships in different taxa. Considering the potential of molecular biology in taxonomy, this study presents the morphological and molecular characterization of D. bargusinica, and establishes the phylogenetic position of the nematode in Spirurina. Twenty partial sequences of the 18S region of D. bargusinica rDNA were generated. Phylogenetic trees were obtained through the Maximum Likelihood and Bayesian Inference methods where both had similar topology. The group Diplotriaenoidea is monophyletic and the topologies generated corroborate the phylogenetic studies based on traditional and previously performed molecular taxonomy. This study is the first to generate molecular data associated with the morphology of the species. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The phylogenetic position of the Critically Endangered Saint Croix ground lizard Ameiva polops: revisiting molecular systematics of West Indian Ameiva.

    PubMed

    Hurtado, Luis A; Santamaria, Carlos A; Fitzgerald, Lee A

    2014-05-06

    The phylogenetic position of the critically endangered Saint Croix ground lizard Ameiva polops is presently unknown and several hypotheses have been proposed. We investigated the phylogenetic position of this species using molecular phylogenetic methods. We obtained sequences of DNA fragments of the mitochondrial ribosomal genes 12S rDNA and 16S rDNA for this species. We aligned these sequences with published sequences of other Ameiva species, which include most of the Ameiva species from the West Indies, three Ameiva species from Central America and South America, and one from the teiid lizard Tupinambis teguixin, which was used as outgroup. We conducted Maximum Likelihood and Bayesian phylogenetic analyses. The phylogenetic reconstructions among the different methods were very similar, supporting the monophyly of West Indian Ameiva and showing within this lineage, a basal polytomy of four clades that are separated geographically. Ameiva polops grouped in a cluster that included the other two Ameiva species found in the Puerto Rican Bank: A. wetmorei and A. exsul. A sister relationship between A. polops and A. wetmorei is suggested by our analyses. We compare our results with a previous study on molecular systematics of West Indian Ameiva. 

  5. ProtPhylo: identification of protein-phenotype and protein-protein functional associations via phylogenetic profiling.

    PubMed

    Cheng, Yiming; Perocchi, Fabiana

    2015-07-01

    ProtPhylo is a web-based tool to identify proteins that are functionally linked to either a phenotype or a protein of interest based on co-evolution. ProtPhylo infers functional associations by comparing protein phylogenetic profiles (co-occurrence patterns of orthology relationships) for more than 9.7 million non-redundant protein sequences from all three domains of life. Users can query any of 2048 fully sequenced organisms, including 1678 bacteria, 255 eukaryotes and 115 archaea. In addition, they can tailor ProtPhylo to a particular kind of biological question by choosing among four main orthology inference methods based either on pair-wise sequence comparisons (One-way Best Hits and Best Reciprocal Hits) or clustering of orthologous proteins across multiple species (OrthoMCL and eggNOG). Next, ProtPhylo ranks phylogenetic neighbors of query proteins or phenotypic properties using the Hamming distance as a measure of similarity between pairs of phylogenetic profiles. Candidate hits can be easily and flexibly prioritized by complementary clues on subcellular localization, known protein-protein interactions, membrane spanning regions and protein domains. The resulting protein list can be quickly exported into a csv text file for further analyses. ProtPhylo is freely available at http://www.protphylo.org. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Exobasidium maculosum, a new species causing leaf and fruit spots on blueberry in the southeastern USA and its relationship with other Exobasidium spp. parasitic to blueberry and cranberry.

    PubMed

    Brewer, Marin Talbot; Turner, Ashley N; Brannen, Phillip M; Cline, William O; Richardson, Elizabeth A

    2014-01-01

    Exobasidium leaf and fruit spot of blueberry (Vaccinium section Cyanococcus) is an emerging disease that has rapidly increased in prevalence throughout the southeastern USA. To determine whether this disease is caused by a new species of Exobasidium, we studied the morphology and phylogenetic relationship of the causal fungus compared with other members of the genus, including the type species E. vaccinii and other species that parasitize blueberry and cranberry (V. macrocarpon). Both scanning electron microscopy and light microscopy were used for morphological characterization. For phylogenetic analyses, we sequenced the large subunit of the rDNA (LSU) from 10 isolates collected from leaf or fruit spots of rabbiteye blueberry (V. virgatum), highbush blueberry (V. corymbosum) and southern highbush blueberry (Vaccinium interspecific hybrid) from Georgia and North Carolina and six isolates from leaf spots of lowbush blueberry (V. angustifolium) from Maine and Nova Scotia, Canada. LSU was sequenced from isolates causing red leaf disease of lowbush blueberry and red leaf spot (E. rostrupii) and red shoot (E. perenne) of cranberry. In addition, LSU sequences from GenBank, including sequences with high similarity to the emerging parasite and from Exobasidium spp. parasitizing other Vaccinium spp. and related hosts, were obtained. All sequences were aligned and subjected to phylogenetic analyses. Results indicated that the emerging parasite in the southeastern USA differs morphologically and phylogenetically from other described species and is described herein as Exobasidium maculosum. Within the southeastern USA, clustering based on host species, host tissue type (leaf or fruit) or geographic region was not detected; however, leaf spot isolates from lowbush blueberry were genetically different and likely represent a unique species. © 2014 by The Mycological Society of America.

  7. Transmission clustering among newly diagnosed HIV patients in Chicago, 2008 to 2011: using phylogenetics to expand knowledge of regional HIV transmission patterns

    PubMed Central

    Lubelchek, Ronald J.; Hoehnen, Sarah C.; Hotton, Anna L.; Kincaid, Stacey L.; Barker, David E.; French, Audrey L.

    2014-01-01

    Introduction HIV transmission cluster analyses can inform HIV prevention efforts. We describe the first such assessment for transmission clustering among HIV patients in Chicago. Methods We performed transmission cluster analyses using HIV pol sequences from newly diagnosed patients presenting to Chicago’s largest HIV clinic between 2008 and 2011. We compared sequences via progressive pairwise alignment, using neighbor joining to construct an un-rooted phylogenetic tree. We defined clusters as >2 sequences among which each sequence had at least one partner within a genetic distance of ≤ 1.5%. We used multivariable regression to examine factors associated with clustering and used geospatial analysis to assess geographic proximity of phylogenetically clustered patients. Results We compared sequences from 920 patients; median age 35 years; 75% male; 67% Black, 23% Hispanic; 8% had a Rapid Plasma Reagin (RPR) titer ≥ 1:16 concurrent with their HIV diagnosis. We had HIV transmission risk data for 54%; 43% identified as men who have sex with men (MSM). Phylogenetic analysis demonstrated 123 patients (13%) grouped into 26 clusters, the largest having 20 members. In multivariable regression, age < 25, Black race, MSM status, male gender, higher HIV viral load, and RPR ≥ 1:16 associated with clustering. We did not observe geographic grouping of genetically clustered patients. Discussion Our results demonstrate high rates of HIV transmission clustering, without local geographic foci, among young Black MSM in Chicago. Applied prospectively, phylogenetic analyses could guide prevention efforts and help break the cycle of transmission. PMID:25321182

  8. DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi.

    PubMed

    Krüger, Manuela; Stockinger, Herbert; Krüger, Claudia; Schüssler, Arthur

    2009-01-01

    * At present, molecular ecological studies of arbuscular mycorrhizal fungi (AMF) are only possible above species level when targeting entire communities. To improve molecular species characterization and to allow species level community analyses in the field, a set of newly designed AMF specific PCR primers was successfully tested. * Nuclear rDNA fragments from diverse phylogenetic AMF lineages were sequenced and analysed to design four primer mixtures, each targeting one binding site in the small subunit (SSU) or large subunit (LSU) rDNA. To allow species resolution, they span a fragment covering the partial SSU, whole internal transcribed spacer (ITS) rDNA region and partial LSU. * The new primers are suitable for specifically amplifying AMF rDNA from material that may be contaminated by other organisms (e.g., samples from pot cultures or the field), characterizing the diversity of AMF species from field samples, and amplifying a SSU-ITS-LSU fragment that allows phylogenetic analyses with species level resolution. * The PCR primers can be used to monitor entire AMF field communities, based on a single rDNA marker region. Their application will improve the base for deep sequencing approaches; moreover, they can be efficiently used as DNA barcoding primers.

  9. Evolution and phylogeny of the mud shrimps (Crustacea: Decapoda) revealed from complete mitochondrial genomes.

    PubMed

    Lin, Feng-Jiau; Liu, Yuan; Sha, Zhongli; Tsang, Ling Ming; Chu, Ka Hou; Chan, Tin-Yam; Liu, Ruiyu; Cui, Zhaoxia

    2012-11-16

    The evolutionary history and relationships of the mud shrimps (Crustacea: Decapoda: Gebiidea and Axiidea) are contentious, with previous attempts revealing mixed results. The mud shrimps were once classified in the infraorder Thalassinidea. Recent molecular phylogenetic analyses, however, suggest separation of the group into two individual infraorders, Gebiidea and Axiidea. Mitochondrial (mt) genome sequence and structure can be especially powerful in resolving higher systematic relationships that may offer new insights into the phylogeny of the mud shrimps and the other decapod infraorders, and test the hypothesis of dividing the mud shrimps into two infraorders. We present the complete mitochondrial genome sequences of five mud shrimps, Austinogebia edulis, Upogebia major, Thalassina kelanang (Gebiidea), Nihonotrypaea thermophilus and Neaxius glyptocercus (Axiidea). All five genomes encode a standard set of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and a putative control region. Except for T. kelanang, mud shrimp mitochondrial genomes exhibited rearrangements and novel patterns compared to the pancrustacean ground pattern. Each of the two Gebiidea species (A. edulis and U. major) and two Axiidea species (N. glyptocercus and N. thermophiles) share unique gene order specific to their infraorders and analyses further suggest these two derived gene orders have evolved independently. Phylogenetic analyses based on the concatenated nucleotide and amino acid sequences of 13 protein-coding genes indicate the possible polyphyly of mud shrimps, supporting the division of the group into two infraorders. However, the infraordinal relationships among the Gebiidea and Axiidea, and other reptants are poorly resolved. The inclusion of mt genome from more taxa, in particular the reptant infraorders Polychelida and Glypheidea is required in further analysis. Phylogenetic analyses on the mt genome sequences and the distinct gene orders provide further evidences for the divergence between the two mud shrimp infraorders, Gebiidea and Axiidea, corroborating previous molecular phylogeny and justifying their infraordinal status. Mitochondrial genome sequences appear to be promising markers for resolving phylogenetic issues concerning decapod crustaceans that warrant further investigations and our present study has also provided further information concerning the mt genome evolution of the Decapoda.

  10. Evolution and phylogeny of the mud shrimps (Crustacea: Decapoda) revealed from complete mitochondrial genomes

    PubMed Central

    2012-01-01

    Background The evolutionary history and relationships of the mud shrimps (Crustacea: Decapoda: Gebiidea and Axiidea) are contentious, with previous attempts revealing mixed results. The mud shrimps were once classified in the infraorder Thalassinidea. Recent molecular phylogenetic analyses, however, suggest separation of the group into two individual infraorders, Gebiidea and Axiidea. Mitochondrial (mt) genome sequence and structure can be especially powerful in resolving higher systematic relationships that may offer new insights into the phylogeny of the mud shrimps and the other decapod infraorders, and test the hypothesis of dividing the mud shrimps into two infraorders. Results We present the complete mitochondrial genome sequences of five mud shrimps, Austinogebia edulis, Upogebia major, Thalassina kelanang (Gebiidea), Nihonotrypaea thermophilus and Neaxius glyptocercus (Axiidea). All five genomes encode a standard set of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and a putative control region. Except for T. kelanang, mud shrimp mitochondrial genomes exhibited rearrangements and novel patterns compared to the pancrustacean ground pattern. Each of the two Gebiidea species (A. edulis and U. major) and two Axiidea species (N. glyptocercus and N. thermophiles) share unique gene order specific to their infraorders and analyses further suggest these two derived gene orders have evolved independently. Phylogenetic analyses based on the concatenated nucleotide and amino acid sequences of 13 protein-coding genes indicate the possible polyphyly of mud shrimps, supporting the division of the group into two infraorders. However, the infraordinal relationships among the Gebiidea and Axiidea, and other reptants are poorly resolved. The inclusion of mt genome from more taxa, in particular the reptant infraorders Polychelida and Glypheidea is required in further analysis. Conclusions Phylogenetic analyses on the mt genome sequences and the distinct gene orders provide further evidences for the divergence between the two mud shrimp infraorders, Gebiidea and Axiidea, corroborating previous molecular phylogeny and justifying their infraordinal status. Mitochondrial genome sequences appear to be promising markers for resolving phylogenetic issues concerning decapod crustaceans that warrant further investigations and our present study has also provided further information concerning the mt genome evolution of the Decapoda. PMID:23153176

  11. Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of 'Candidatus Phytoplasma'.

    PubMed

    Hodgetts, Jennifer; Boonham, Neil; Mumford, Rick; Harrison, Nigel; Dickinson, Matthew

    2008-08-01

    Phytoplasma phylogenetics has focused primarily on sequences of the non-coding 16S rRNA gene and the 16S-23S rRNA intergenic spacer region (16-23S ISR), and primers that enable amplification of these regions from all phytoplasmas by PCR are well established. In this study, primers based on the secA gene have been developed into a semi-nested PCR assay that results in a sequence of the expected size (about 480 bp) from all 34 phytoplasmas examined, including strains representative of 12 16Sr groups. Phylogenetic analysis of secA gene sequences showed similar clustering of phytoplasmas when compared with clusters resolved by similar sequence analyses of a 16-23S ISR-23S rRNA gene contig or of the 16S rRNA gene alone. The main differences between trees were in the branch lengths, which were elongated in the 16-23S ISR-23S rRNA gene tree when compared with the 16S rRNA gene tree and elongated still further in the secA gene tree, despite this being a shorter sequence. The improved resolution in the secA gene-derived phylogenetic tree resulted in the 16SrII group splitting into two distinct clusters, while phytoplasmas associated with coconut lethal yellowing-type diseases split into three distinct groups, thereby supporting past proposals that they represent different candidate species within 'Candidatus Phytoplasma'. The ability to differentiate 16Sr groups and subgroups by virtual RFLP analysis of secA gene sequences suggests that this gene may provide an informative alternative molecular marker for pathogen identification and diagnosis of phytoplasma diseases.

  12. The complete mitochondrial genome of Papilio glaucus and its phylogenetic implications.

    PubMed

    Shen, Jinhui; Cong, Qian; Grishin, Nick V

    2015-09-01

    Due to the intriguing morphology, lifecycle, and diversity of butterflies and moths, Lepidoptera are emerging as model organisms for the study of genetics, evolution and speciation. The progress of these studies relies on decoding Lepidoptera genomes, both nuclear and mitochondrial. Here we describe a protocol to obtain mitogenomes from Next Generation Sequencing reads performed for whole-genome sequencing and report the complete mitogenome of Papilio (Pterourus) glaucus. The circular mitogenome is 15,306 bp in length and rich in A and T. It contains 13 protein-coding genes (PCGs), 22 transfer-RNA-coding genes (tRNA), and 2 ribosomal-RNA-coding genes (rRNA), with a gene order typical for mitogenomes of Lepidoptera. We performed phylogenetic analyses based on PCG and RNA-coding genes or protein sequences using Bayesian Inference and Maximum Likelihood methods. The phylogenetic trees consistently show that among species with available mitogenomes Papilio glaucus is the closest to Papilio (Agehana) maraho from Asia.

  13. Regulatory elements of the floral homeotic gene AGAMOUS identified by phylogenetic footprinting and shadowing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, R. L., Hamaguchi, L., Busch, M. A., and Weigel, D.

    2003-06-01

    OAK-B135 In Arabidopsis thaliana, cis-regulatory sequences of the floral homeotic gene AGAMOUS (AG) are located in the second intron. This 3 kb intron contains binding sites for two direct activators of AG, LEAFY (LFY) and WUSCHEL (WUS), along with other putative regulatory elements. We have used phylogenetic footprinting and the related technique of phylogenetic shadowing to identify putative cis-regulatory elements in this intron. Among 29 Brassicaceae, several other motifs, but not the LFY and WUS binding sites previously identified, are largely invariant. Using reporter gene analyses, we tested six of these motifs and found that they are all functionally importantmore » for activity of AG regulatory sequences in A. thaliana. Although there is little obvious sequence similarity outside the Brassicaceae, the intron from cucumber AG has at least partial activity in A. thaliana. Our studies underscore the value of the comparative approach as a tool that complements gene-by-gene promoter dissection, but also highlight that sequence-based studies alone are insufficient for a complete identification of cis-regulatory sites.« less

  14. Using phylogenetically-informed annotation (PIA) to search for light-interacting genes in transcriptomes from non-model organisms.

    PubMed

    Speiser, Daniel I; Pankey, M Sabrina; Zaharoff, Alexander K; Battelle, Barbara A; Bracken-Grissom, Heather D; Breinholt, Jesse W; Bybee, Seth M; Cronin, Thomas W; Garm, Anders; Lindgren, Annie R; Patel, Nipam H; Porter, Megan L; Protas, Meredith E; Rivera, Ajna S; Serb, Jeanne M; Zigler, Kirk S; Crandall, Keith A; Oakley, Todd H

    2014-11-19

    Tools for high throughput sequencing and de novo assembly make the analysis of transcriptomes (i.e. the suite of genes expressed in a tissue) feasible for almost any organism. Yet a challenge for biologists is that it can be difficult to assign identities to gene sequences, especially from non-model organisms. Phylogenetic analyses are one useful method for assigning identities to these sequences, but such methods tend to be time-consuming because of the need to re-calculate trees for every gene of interest and each time a new data set is analyzed. In response, we employed existing tools for phylogenetic analysis to produce a computationally efficient, tree-based approach for annotating transcriptomes or new genomes that we term Phylogenetically-Informed Annotation (PIA), which places uncharacterized genes into pre-calculated phylogenies of gene families. We generated maximum likelihood trees for 109 genes from a Light Interaction Toolkit (LIT), a collection of genes that underlie the function or development of light-interacting structures in metazoans. To do so, we searched protein sequences predicted from 29 fully-sequenced genomes and built trees using tools for phylogenetic analysis in the Osiris package of Galaxy (an open-source workflow management system). Next, to rapidly annotate transcriptomes from organisms that lack sequenced genomes, we repurposed a maximum likelihood-based Evolutionary Placement Algorithm (implemented in RAxML) to place sequences of potential LIT genes on to our pre-calculated gene trees. Finally, we implemented PIA in Galaxy and used it to search for LIT genes in 28 newly-sequenced transcriptomes from the light-interacting tissues of a range of cephalopod mollusks, arthropods, and cubozoan cnidarians. Our new trees for LIT genes are available on the Bitbucket public repository ( http://bitbucket.org/osiris_phylogenetics/pia/ ) and we demonstrate PIA on a publicly-accessible web server ( http://galaxy-dev.cnsi.ucsb.edu/pia/ ). Our new trees for LIT genes will be a valuable resource for researchers studying the evolution of eyes or other light-interacting structures. We also introduce PIA, a high throughput method for using phylogenetic relationships to identify LIT genes in transcriptomes from non-model organisms. With simple modifications, our methods may be used to search for different sets of genes or to annotate data sets from taxa outside of Metazoa.

  15. Legionella busanensis sp. nov., isolated from cooling tower water in Korea.

    PubMed

    Park, Mi-Yeoun; Ko, Kwan Soo; Lee, Hae Kyung; Park, Man-Suk; Kook, Yoon-Hoh

    2003-01-01

    Three Legionella-like micro-organisms, isolated from cooling tower water of a building in Busan, Korea, were characterized by a variety of biochemical and molecular phylogenetic tests. Analyses of whole-cell fatty acids and results of biochemical tests revealed that these three isolates are distinct from previously described Legionella species. Furthermore, results of comparative analyses of 16S rDNA (1476-1488 bp), mip (408 bp) and rpoB (300 bp) sequences also confirmed that these strains represent a novel species within the genus Legionella. The 16S rDNA sequences of the three Korean isolates had similarities of less than 95.8% to other Legionella species. Phylogenetic trees formed by analysis of the 16S rRNA, rpoB and mip genes revealed that the isolates formed a distinct cluster within the genus Legionella. Based on the evaluated phenotypic and phylogenetic characteristics, it is proposed that these Korean isolates from water be classified as a novel species, Legionella busanensis sp. nov.; the type strain is strain K9951T (=KCTC 12084T =ATCC BAA-518T).

  16. Resolving the Lophiostoma bipolare complex: Generic delimitations within Lophiostomataceae.

    PubMed

    Hashimoto, A; Hirayama, K; Takahashi, H; Matsumura, M; Okada, G; Chen, C Y; Huang, J W; Kakishima, M; Ono, T; Tanaka, K

    2018-06-01

    Lophiostoma bipolare was taxonomically revised based on the morphological observations and phylogenetic analyses of molecular data from nuclear rDNA SSU-ITS-LSU, TUB , tef1 , and rpb2 genes. Twenty-nine strains were morphologically similar to Lo . bipolare . A total of 174 sequences were generated from the Lo . bipolare complex. Phylogenetic analyses based on TUB sequence revealed 11 distinct species within the Lo. bipolare complex. Morphological features of the ascospores and the anatomical structure of the ascomata from both field collections as well as axenic culture, which have been reported previously as variable features at intraspecific levels, were compared to evaluate the taxonomic reliability of these features. To clarify the generic position of the 11 species, phylogenetic analyses were done on SSU-ITS-LSU- tef1 - rpb2 gene sequences. The Lo . bipolare complex shared phylogenetic relationships with Pseudolophiostoma and Vaginatispora , and formed an additional five distinct clades from other members of Lophiostomataceae . According to its phylogenetic position, Lo. bipolare sensu stricto was distantly related to Lophiostoma s. str., and formed an independent clade within Lophiostomataceae. Lophiostoma bipolare s. str. could be distinguished from the other lophiostomataceous genera by the clypeus around the ostiolar neck and by the thin and uniformly thick peridium. A novel genus described as Lentistoma was established to accommodate this species, and the epitypification of Lentistoma bipolare (basionym: Massarina bipolaris ) was proposed. Other lineages of the Lo. bipolare complex could not be separated on the basis of the ascospore size and sheath variations, but were distinguished based on ascomatal features, such as the existence of the clypeus, brown hyphae surrounding the peridium, and the contexture of the peridium, which were stable indicators of generic boundaries in Lophiostomataceae . Four additional new genera with five new species were recognised based on these morphological differences: Crassiclypeus ( C . aquaticus ), Flabellascoma ( F . cycadicola and F . minimum ), Leptoparies ( Lep . palmarum ), and Pseudopaucispora ( Pseudop . brunneospora ). Three new species were added to Pseudolophiostoma ( Pseudol . cornisporum , Pseudol . obtusisporum , and Pseudol . tropicum ) and two new species were added to Vaginatispora ( V . amygdali and V . scabrispora ). The re-evaluation of the validity of several previously recognised genera resulted in the introduction of two new genera with new combinations for Lophiostoma pseudoarmatisporum as Parapaucispora pseudoarmatispora and Vaginatispora fuckelii as Neovaginatispora fuckelii .

  17. A Phylogenomic Approach Based on PCR Target Enrichment and High Throughput Sequencing: Resolving the Diversity within the South American Species of Bartsia L. (Orobanchaceae)

    PubMed Central

    Tank, David C.

    2016-01-01

    Advances in high-throughput sequencing (HTS) have allowed researchers to obtain large amounts of biological sequence information at speeds and costs unimaginable only a decade ago. Phylogenetics, and the study of evolution in general, is quickly migrating towards using HTS to generate larger and more complex molecular datasets. In this paper, we present a method that utilizes microfluidic PCR and HTS to generate large amounts of sequence data suitable for phylogenetic analyses. The approach uses the Fluidigm Access Array System (Fluidigm, San Francisco, CA, USA) and two sets of PCR primers to simultaneously amplify 48 target regions across 48 samples, incorporating sample-specific barcodes and HTS adapters (2,304 unique amplicons per Access Array). The final product is a pooled set of amplicons ready to be sequenced, and thus, there is no need to construct separate, costly genomic libraries for each sample. Further, we present a bioinformatics pipeline to process the raw HTS reads to either generate consensus sequences (with or without ambiguities) for every locus in every sample or—more importantly—recover the separate alleles from heterozygous target regions in each sample. This is important because it adds allelic information that is well suited for coalescent-based phylogenetic analyses that are becoming very common in conservation and evolutionary biology. To test our approach and bioinformatics pipeline, we sequenced 576 samples across 96 target regions belonging to the South American clade of the genus Bartsia L. in the plant family Orobanchaceae. After sequencing cleanup and alignment, the experiment resulted in ~25,300bp across 486 samples for a set of 48 primer pairs targeting the plastome, and ~13,500bp for 363 samples for a set of primers targeting regions in the nuclear genome. Finally, we constructed a combined concatenated matrix from all 96 primer combinations, resulting in a combined aligned length of ~40,500bp for 349 samples. PMID:26828929

  18. Genetic differences between blood- and brain-derived viral sequences from human immunodeficiency virus type 1-infected patients: evidence of conserved elements in the V3 region of the envelope protein of brain-derived sequences.

    PubMed Central

    Korber, B T; Kunstman, K J; Patterson, B K; Furtado, M; McEvilly, M M; Levy, R; Wolinsky, S M

    1994-01-01

    Human immunodeficiency virus type 1 (HIV-1) sequences were generated from blood and from brain tissue obtained by stereotactic biopsy from six patients undergoing a diagnostic neurosurgical procedure. Proviral DNA was directly amplified by nested PCR, and 8 to 36 clones from each sample were sequenced. Phylogenetic analysis of intrapatient envelope V3-V5 region HIV-1 DNA sequence sets revealed that brain viral sequences were clustered relative to the blood viral sequences, suggestive of tissue-specific compartmentalization of the virus in four of the six cases. In the other two cases, the blood and brain virus sequences were intermingled in the phylogenetic analyses, suggesting trafficking of virus between the two tissues. Slide-based PCR-driven in situ hybridization of two of the patients' brain biopsy samples confirmed our interpretation of the intrapatient phylogenetic analyses. Interpatient V3 region brain-derived sequence distances were significantly less than blood-derived sequence distances. Relative to the tip of the loop, the set of brain-derived viral sequences had a tendency towards negative or neutral charge compared with the set of blood-derived viral sequences. Entropy calculations were used as a measure of the variability at each position in alignments of blood and brain viral sequences. A relatively conserved set of positions were found, with a significantly lower entropy in the brain-than in the blood-derived viral sequences. These sites constitute a brain "signature pattern," or a noncontiguous set of amino acids in the V3 region conserved in viral sequences derived from brain tissue. This brain-derived signature pattern was also well preserved among isolates previously characterized in vitro as macrophage tropic. Macrophage-monocyte tropism may be the biological constraint that results in the conservation of the viral brain signature pattern. Images PMID:7933130

  19. A phylogenetic framework for root lesion nematodes of the genus Pratylenchus (Nematoda): Evidence from 18S and D2-D3 expansion segments of 28S ribosomal RNA genes and morphological characters.

    PubMed

    Subbotin, Sergei A; Ragsdale, Erik J; Mullens, Teresa; Roberts, Philip A; Mundo-Ocampo, Manuel; Baldwin, James G

    2008-08-01

    The root lesion nematodes of the genus Pratylenchus Filipjev, 1936 are migratory endoparasites of plant roots, considered among the most widespread and important nematode parasites in a variety of crops. We obtained gene sequences from the D2 and D3 expansion segments of 28S rRNA partial and 18S rRNA from 31 populations belonging to 11 valid and two unidentified species of root lesion nematodes and five outgroup taxa. These datasets were analyzed using maximum parsimony and Bayesian inference. The alignments were generated using the secondary structure models for these molecules and analyzed with Bayesian inference under the standard models and the complex model, considering helices under the doublet model and loops and bulges under the general time reversible model. The phylogenetic informativeness of morphological characters is tested by reconstruction of their histories on rRNA based trees using parallel parsimony and Bayesian approaches. Phylogenetic and sequence analyses of the 28S D2-D3 dataset with 145 accessions for 28 species and 18S dataset with 68 accessions for 15 species confirmed among large numbers of geographical diverse isolates that most classical morphospecies are monophyletic. Phylogenetic analyses revealed at least six distinct major clades of examined Pratylenchus species and these clades are generally congruent with those defined by characters derived from lip patterns, numbers of lip annules, and spermatheca shape. Morphological results suggest the need for sophisticated character discovery and analysis for morphology based phylogenetics in nematodes.

  20. Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes

    PubMed Central

    Chase, Mark W.; Kim, Joo-Hwan

    2013-01-01

    Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny. The network method should play a greater role in phylogenetic analyses than it has in the past. To advance the understanding of evolutionary history of the largest order of monocots Asparagales, absolute diversification times were estimated for family-level clades using relaxed molecular clock analyses. PMID:23544071

  1. Refined NrfA phylogeny improves PCR-based nrfA gene detection

    USDA-ARS?s Scientific Manuscript database

    Dissimilatory nitrate reduction to ammonium (DNRA) promotes N-retention in the terrestrial nitrogen- (N-) cycle. Respiratory nitrite reduction to ammonium is catalyzed by the nitrite reductase NrfA. Prior phylogenetic analyses showed that NrfA divided into18 distinct clades amongst available sequenc...

  2. A method of alignment masking for refining the phylogenetic signal of multiple sequence alignments.

    PubMed

    Rajan, Vaibhav

    2013-03-01

    Inaccurate inference of positional homologies in multiple sequence alignments and systematic errors introduced by alignment heuristics obfuscate phylogenetic inference. Alignment masking, the elimination of phylogenetically uninformative or misleading sites from an alignment before phylogenetic analysis, is a common practice in phylogenetic analysis. Although masking is often done manually, automated methods are necessary to handle the much larger data sets being prepared today. In this study, we introduce the concept of subsplits and demonstrate their use in extracting phylogenetic signal from alignments. We design a clustering approach for alignment masking where each cluster contains similar columns-similarity being defined on the basis of compatible subsplits; our approach then identifies noisy clusters and eliminates them. Trees inferred from the columns in the retained clusters are found to be topologically closer to the reference trees. We test our method on numerous standard benchmarks (both synthetic and biological data sets) and compare its performance with other methods of alignment masking. We find that our method can eliminate sites more accurately than other methods, particularly on divergent data, and can improve the topologies of the inferred trees in likelihood-based analyses. Software available upon request from the author.

  3. Reassessment of the taxonomic position of Burkholderia andropogonis and description of Robbsia andropogonis gen. nov., comb. nov.

    PubMed

    Lopes-Santos, Lucilene; Castro, Daniel Bedo Assumpção; Ferreira-Tonin, Mariana; Corrêa, Daniele Bussioli Alves; Weir, Bevan Simon; Park, Duckchul; Ottoboni, Laura Maria Mariscal; Neto, Júlio Rodrigues; Destéfano, Suzete Aparecida Lanza

    2017-06-01

    The phylogenetic classification of the species Burkholderia andropogonis within the Burkholderia genus was reassessed using 16S rRNA gene phylogenetic analysis and multilocus sequence analysis (MLSA). Both phylogenetic trees revealed two main groups, named A and B, strongly supported by high bootstrap values (100%). Group A encompassed all of the Burkholderia species complex, whi.le Group B only comprised B. andropogonis species, with low percentage similarities with other species of the genus, from 92 to 95% for 16S rRNA gene sequences and 83% for conserved gene sequences. Average nucleotide identity (ANI), tetranucleotide signature frequency, and percentage of conserved proteins POCP analyses were also carried out, and in the three analyses B. andropogonis showed lower values when compared to the other Burkholderia species complex, near 71% for ANI, from 0.484 to 0.724 for tetranucleotide signature frequency, and around 50% for POCP, reinforcing the distance observed in the phylogenetic analyses. Our findings provide an important insight into the taxonomy of B. andropogonis. It is clear from the results that this bacterial species exhibits genotypic differences and represents a new genus described herein as Robbsia andropogonis gen. nov., comb. nov.

  4. Marine turtle mitogenome phylogenetics and evolution.

    PubMed

    Duchene, Sebastián; Frey, Amy; Alfaro-Núñez, Alonzo; Dutton, Peter H; Thomas P Gilbert, M; Morin, Phillip A

    2012-10-01

    The sea turtles are a group of cretaceous origin containing seven recognized living species: leatherback, hawksbill, Kemp's ridley, olive ridley, loggerhead, green, and flatback. The leatherback is the single member of the Dermochelidae family, whereas all other sea turtles belong in Cheloniidae. Analyses of partial mitochondrial sequences and some nuclear markers have revealed phylogenetic inconsistencies within Cheloniidae, especially regarding the placement of the flatback. Population genetic studies based on D-Loop sequences have shown considerable structuring in species with broad geographic distributions, shedding light on complex migration patterns and possible geographic or climatic events as driving forces of sea-turtle distribution. We have sequenced complete mitogenomes for all sea-turtle species, including samples from their geographic range extremes, and performed phylogenetic analyses to assess sea-turtle evolution with a large molecular dataset. We found variation in the length of the ATP8 gene and a highly variable site in ND4 near a proton translocation channel in the resulting protein. Complete mitogenomes show strong support and resolution for phylogenetic relationships among all sea turtles, and reveal phylogeographic patterns within globally-distributed species. Although there was clear concordance between phylogenies and geographic origin of samples in most taxa, we found evidence of more recent dispersal events in the loggerhead and olive ridley turtles, suggesting more recent migrations (<1 Myr) in these species. Overall, our results demonstrate the complexity of sea-turtle diversity, and indicate the need for further research in phylogeography and molecular evolution. Published by Elsevier Inc.

  5. Genetic diversity of Grapevine virus A in Washington and California vineyards.

    PubMed

    Alabi, Olufemi J; Al Rwahnih, Maher; Mekuria, Tefera A; Naidu, Rayapati A

    2014-05-01

    Grapevine virus A (GVA; genus Vitivirus, family Betaflexiviridae) has been implicated with the Kober stem grooving disorder of the rugose wood disease complex. In this study, 26 isolates of GVA recovered from wine grape (Vitis vinifera) cultivars from California and Washington were analyzed for their genetic diversity. An analysis of a portion of the RNA-dependent RNA polymerase (RdRp) and complete coat protein (CP) sequences revealed intra- and inter-isolate sequence diversity. Our results indicated that both RdRp and CP are under strong negative selection based on the normalized values for the ratio of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site. A global phylogenetic analysis of CP sequences revealed segregation of virus isolates into four major clades with no geographic clustering. In contrast, the RdRp-based phylogenetic tree indicated segregation of GVA isolates from California and Washington into six clades, independent of geographic origin or cultivar. Phylogenetic network coupled with recombination analyses showed putative recombination events in both RdRp and CP sequence data sets, with more of these events located in the CP sequence. The preponderance of divergent variants of GVA co-replicating within individual grapevines could increase viral genotypic complexity with implications for phylogenetic analysis and evolutionary history of the virus. The knowledge of genetic diversity of GVA generated in this study will provide a foundation for elucidating the epidemiological characteristics of virus populations at different scales and implementing appropriate management strategies for minimizing the spread of genetic variants of the virus by vectors and via planting materials supplied to nurseries and grape growers.

  6. Short Tree, Long Tree, Right Tree, Wrong Tree: New Acquisition Bias Corrections for Inferring SNP Phylogenies

    PubMed Central

    Leaché, Adam D.; Banbury, Barbara L.; Felsenstein, Joseph; de Oca, Adrián nieto-Montes; Stamatakis, Alexandros

    2015-01-01

    Single nucleotide polymorphisms (SNPs) are useful markers for phylogenetic studies owing in part to their ubiquity throughout the genome and ease of collection. Restriction site associated DNA sequencing (RADseq) methods are becoming increasingly popular for SNP data collection, but an assessment of the best practises for using these data in phylogenetics is lacking. We use computer simulations, and new double digest RADseq (ddRADseq) data for the lizard family Phrynosomatidae, to investigate the accuracy of RAD loci for phylogenetic inference. We compare the two primary ways RAD loci are used during phylogenetic analysis, including the analysis of full sequences (i.e., SNPs together with invariant sites), or the analysis of SNPs on their own after excluding invariant sites. We find that using full sequences rather than just SNPs is preferable from the perspectives of branch length and topological accuracy, but not of computational time. We introduce two new acquisition bias corrections for dealing with alignments composed exclusively of SNPs, a conditional likelihood method and a reconstituted DNA approach. The conditional likelihood method conditions on the presence of variable characters only (the number of invariant sites that are unsampled but known to exist is not considered), while the reconstituted DNA approach requires the user to specify the exact number of unsampled invariant sites prior to the analysis. Under simulation, branch length biases increase with the amount of missing data for both acquisition bias correction methods, but branch length accuracy is much improved in the reconstituted DNA approach compared to the conditional likelihood approach. Phylogenetic analyses of the empirical data using concatenation or a coalescent-based species tree approach provide strong support for many of the accepted relationships among phrynosomatid lizards, suggesting that RAD loci contain useful phylogenetic signal across a range of divergence times despite the presence of missing data. Phylogenetic analysis of RAD loci requires careful attention to model assumptions, especially if downstream analyses depend on branch lengths. PMID:26227865

  7. Complete mitochondrial genomes of eleven extinct or possibly extinct bird species.

    PubMed

    Anmarkrud, Jarl A; Lifjeld, Jan T

    2017-03-01

    Natural history museum collections represent a vast source of ancient and historical DNA samples from extinct taxa that can be utilized by high-throughput sequencing tools to reveal novel genetic and phylogenetic information about them. Here, we report on the successful sequencing of complete mitochondrial genome sequences (mitogenomes) from eleven extinct bird species, using de novo assembly of short sequences derived from toepad samples of degraded DNA from museum specimens. For two species (the Passenger Pigeon Ectopistes migratorius and the South Island Piopio Turnagra capensis), whole mitogenomes were already available from recent studies, whereas for five others (the Great Auk Pinguinis impennis, the Imperial Woodpecker Campehilus imperialis, the Huia Heteralocha acutirostris, the Kauai Oo Moho braccathus and the South Island Kokako Callaeas cinereus), there were partial mitochondrial sequences available for comparison. For all seven species, we found sequence similarities of >98%. For the remaining four species (the Kamao Myadestes myadestinus, the Paradise Parrot Psephotellus pulcherrimus, the Ou Psittirostra psittacea and the Lesser Akialoa Akialoa obscura), there was no sequence information available for comparison, so we conducted blast searches and phylogenetic analyses to determine their phylogenetic positions and identify their closest extant relatives. These mitogenomes will be valuable for future analyses of avian phylogenetics and illustrate the importance of museum collections as repositories for genomics resources. © 2016 John Wiley & Sons Ltd.

  8. Phylogeny of the New World diploid cottons (Gossypium L., Malvaceae) based on sequences of three low-copy nuclear genes.

    Treesearch

    I. Alvarez; R. Cronn; J.F. Wendel

    2005-01-01

    American diploid cottons (Gossypium L., subgenus Houzingenia Fryxell) form a monophyletic group of 13 species distributed mainly in western Mexico, extending into Arizona, Baja California, and with one disjunct species each in the Galapagos Islands and Peru. Prior phylogenetic analyses based on an alcohol dehydrogenase gene (...

  9. Newly developed primers for complete YCF1 amplification in Pinus (Pinaceae) chloroplasts with possible family-wide utility

    Treesearch

    Matthew Parks; Aaron Liston; Rich Cronn

    2011-01-01

    Primers were designed to amplify the highly variable locus ycf1 from all 11 subsections of Pinus to facilitate plastome assemblies based on short sequence reads as well as future phylogenetic and population genetic analyses. Primer design was based on alignment of 33 Pinus and four Pinaceae plastomes with...

  10. Polymorphism and selection in the major histocompatibility complex DRA and DQA genes in the family Equidae.

    PubMed

    Janova, Eva; Matiasovic, Jan; Vahala, Jiri; Vodicka, Roman; Van Dyk, Enette; Horin, Petr

    2009-07-01

    The major histocompatibility complex genes coding for antigen binding and presenting molecules are the most polymorphic genes in the vertebrate genome. We studied the DRA and DQA gene polymorphism of the family Equidae. In addition to 11 previously reported DRA and 24 DQA alleles, six new DRA sequences and 13 new DQA alleles were identified in the genus Equus. Phylogenetic analysis of both DRA and DQA sequences provided evidence for trans-species polymorphism in the family Equidae. The phylogenetic trees differed from species relationships defined by standard taxonomy of Equidae and from trees based on mitochondrial or neutral gene sequence data. Analysis of selection showed differences between the less variable DRA and more variable DQA genes. DRA alleles were more often shared by more species. The DQA sequences analysed showed strong amongst-species positive selection; the selected amino acid positions mostly corresponded to selected positions in rodent and human DQA genes.

  11. Are humans the initial source of canine mange?

    PubMed

    Andriantsoanirina, Valérie; Fang, Fang; Ariey, Frédéric; Izri, Arezki; Foulet, Françoise; Botterel, Françoise; Bernigaud, Charlotte; Chosidow, Olivier; Huang, Weiyi; Guillot, Jacques; Durand, Rémy

    2016-03-25

    Scabies, or mange as it is called in animals, is an ectoparasitic contagious infestation caused by the mite Sarcoptes scabiei. Sarcoptic mange is an important veterinary disease leading to significant morbidity and mortality in wild and domestic animals. A widely accepted hypothesis, though never substantiated by factual data, suggests that humans were the initial source of the animal contamination. In this study we performed phylogenetic analyses of populations of S. scabiei from humans and from canids to validate or not the hypothesis of a human origin of the mites infecting domestic dogs. Mites from dogs and foxes were obtained from three French sites and from other countries. A part of cytochrome c oxidase subunit 1 (cox1) gene was amplified and directly sequenced. Other sequences corresponding to mites from humans, raccoon dogs, foxes, jackal and dogs from various geographical areas were retrieved from GenBank. Phylogenetic analyses were performed using the Otodectes cynotis cox1 sequence as outgroup. Maximum Likelihood and Bayesian Inference analysis approaches were used. To visualize the relationship between the haplotypes, a median joining haplotype network was constructed using Network v4.6 according to host. Twenty-one haplotypes were observed among mites collected from five different host species, including humans and canids from nine geographical areas. The phylogenetic trees based on Maximum Likelihood and Bayesian Inference analyses showed similar topologies with few differences in node support values. The results were not consistent with a human origin of S. scabiei mites in dogs and, on the contrary, did not exclude the opposite hypothesis of a host switch from dogs to humans. Phylogenetic relatedness may have an impact in terms of epidemiological control strategy. Our results and other recent studies suggest to re-evaluate the level of transmission between domestic dogs and humans.

  12. Pinworm diversity in free-ranging howler monkeys (Alouatta spp.) in Mexico: Morphological and molecular evidence for two new Trypanoxyuris species (Nematoda: Oxyuridae).

    PubMed

    Solórzano-García, Brenda; Nadler, Steven A; Pérez-Ponce de León, Gerardo

    2016-10-01

    Two new species of Trypanoxyuris are described from the intestine of free-ranging howler monkeys in Mexico, Trypanoxyuris multilabiatus n. sp. from the mantled howler Alouatta palliata, and Trypanoxyuris pigrae n. sp. from the black howler Alouatta pigra. An integrative taxonomic approach is followed, where conspicuous morphological traits and phylogenetic trees based on DNA sequences are used to test the validity of the two new species. The mitochondrial cytochrome oxidase subunit 1 gene, and the nuclear ribosomal 18S and 28S rRNA genes were used for evolutionary analyses, with the concatenated dataset of all three genes used for maximum likelihood and Bayesian phylogenetic analyses. The two new species of pinworms from howler monkeys were morphologically distinct and formed reciprocally monophyletic lineages in molecular phylogenetic trees. The three species from howler monkeys, T. multilabiatus n. sp., T. pigrae n. sp., and Trypanoxyuris minutus, formed a monophyletic group with high bootstrap and posterior probability support values. Phylogenetic patterns inferred from sequence data support the hypothesis of a close evolutionary association between these primate hosts and their pinworm parasites. The results suggest that the diversity of pinworm parasites from Neotropical primates might be underestimated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Whence the red panda?

    PubMed

    Flynn, J J; Nedbal, M A; Dragoo, J W; Honeycutt, R L

    2000-11-01

    The evolutionary history of the red panda (Ailurus fulgens) plays a pivotal role in the higher-level phylogeny of the "bear-like" arctoid carnivoran mammals. Characters from morphology and molecules have provided inconsistent evidence for placement of the red panda. Whereas it certainly is an arctoid, there has been major controversy about whether it should be placed with the bears (ursids), ursids plus pinnipeds (seals, sea lions, walrus), raccoons (procyonids), musteloids (raccoons plus weasels, skunks, otters, and badgers [mustelids]), or as a monotypic lineage of uncertain phylogenetic affinities. Nucleotide sequence data from three mitochondrial genes and one nuclear intron were analyzed, with more complete taxonomic sampling of relevant taxa (arctoids) than previously available in analyses of primary molecular data, to clarify the phylogenetic relationships of the red panda to other arctoid carnivorans. This study provides detailed phylogenetic analyses (both parsimony and maximum-likelihood) of primary character data for arctoid carnivorans, including bootstrap and decay indices for all arctoid nodes, and three statistical tests of alternative phylogenetic hypotheses for the placement of the red panda. Combined phylogenetic analyses reject the hypotheses that the red panda is most closely related to the bears (ursids) or to the raccoons (procyonids). Rather, evidence from nucleotide sequences strongly support placement of the red panda within a broad Musteloidea (sensu lato) clade, including three major lineages (the red panda, the skunks [mephitids], and a clearly monophyletic clade of procyonids plus mustelids [sensu stricto, excluding skunks]). Within the Musteloidea, interrelationships of the three major lineages are unclear and probably are best considered an unresolved trichotomy. These data provide compelling evidence for the relationships of the red panda and demonstrate that small taxonomic sample sizes can result in misleading or possibly erroneous (based on prior modeling, as well as conflict between the results of our analyses of less and more complete data sets) conclusions about phylogenetic relationships and taxonomy. Copyright 2000 Academic Press.

  14. Phylogeny and classification of bacteria in the genera Clavibacter and Rathayibacter on the basis of 16s rRNA gene sequence analyses.

    PubMed

    Lee, I M; Bartoszyk, I M; Gundersen-Rindal, D E; Davis, R E

    1997-07-01

    A phylogenetic analysis by parsimony of 16S rRNA gene sequences (16S rDNA) revealed that species and subspecies of Clavibacter and Rathayibacter form a discrete monophyletic clade, paraphyletic to Corynebacterium species. Within the Clavibacter-Rathayibacter clade, four major phylogenetic groups (subclades) with a total of 10 distinct taxa were recognized: (I) species C. michiganensis; (II) species C. xyli; (III) species R. iranicus and R. tritici; and (IV) species R. rathayi. The first three groups form a monophyletic cluster, paraphyletic to R. rathayi. On the basis of the phylogeny inferred, reclassification of members of Clavibacter-Rathayibacter group is proposed. A system for classification of taxa in Clavibacter and Rathayibacter was developed based on restriction fragment length polymorphism (RFLP) analysis of the PCR-amplified 16S rDNA sequences. The groups delineated on the basis of RFLP patterns of 16S rDNA coincided well with the subclades delineated on the basis of phylogeny. In contrast to previous classification systems, which are based primarily on phenotypic properties and are laborious, the RFLP analyses allow for rapid differentiation among species and subspecies in the two genera.

  15. Positioning the Red Deer (Cervus elaphus) Hunted by the Tyrolean Iceman into a Mitochondrial DNA Phylogeny

    PubMed Central

    Olivieri, Cristina; Marota, Isolina; Rizzi, Ermanno; Ermini, Luca; Fusco, Letizia; Pietrelli, Alessandro; De Bellis, Gianluca; Rollo, Franco; Luciani, Stefania

    2014-01-01

    In the last years several phylogeographic studies of both extant and extinct red deer populations have been conducted. Three distinct mitochondrial lineages (western, eastern and North-African/Sardinian) have been identified reflecting different glacial refugia and postglacial recolonisation processes. However, little is known about the genetics of the Alpine populations and no mitochondrial DNA sequences from Alpine archaeological specimens are available. Here we provide the first mitochondrial sequences of an Alpine Copper Age Cervus elaphus. DNA was extracted from hair shafts which were part of the remains of the clothes of the glacier mummy known as the Tyrolean Iceman or Ötzi (5,350–5,100 years before present). A 2,297 base pairs long fragment was sequenced using a mixed sequencing procedure based on PCR amplifications and 454 sequencing of pooled amplification products. We analyzed the phylogenetic relationships of the Alpine Copper Age red deer's haplotype with haplotypes of modern and ancient European red deer. The phylogenetic analyses showed that the haplotype of the Alpine Copper Age red deer falls within the western European mitochondrial lineage in contrast with the current populations from the Italian Alps belonging to the eastern lineage. We also discussed the phylogenetic relationships of the Alpine Copper Age red deer with the populations from Mesola Wood (northern Italy) and Sardinia. PMID:24988290

  16. The Complete Chloroplast Genome Sequences of Five Epimedium Species: Lights into Phylogenetic and Taxonomic Analyses

    PubMed Central

    Zhang, Yanjun; Du, Liuwen; Liu, Ao; Chen, Jianjun; Wu, Li; Hu, Weiming; Zhang, Wei; Kim, Kyunghee; Lee, Sang-Choon; Yang, Tae-Jin; Wang, Ying

    2016-01-01

    Epimedium L. is a phylogenetically and economically important genus in the family Berberidaceae. We here sequenced the complete chloroplast (cp) genomes of four Epimedium species using Illumina sequencing technology via a combination of de novo and reference-guided assembly, which was also the first comprehensive cp genome analysis on Epimedium combining the cp genome sequence of E. koreanum previously reported. The five Epimedium cp genomes exhibited typical quadripartite and circular structure that was rather conserved in genomic structure and the synteny of gene order. However, these cp genomes presented obvious variations at the boundaries of the four regions because of the expansion and contraction of the inverted repeat (IR) region and the single-copy (SC) boundary regions. The trnQ-UUG duplication occurred in the five Epimedium cp genomes, which was not found in the other basal eudicotyledons. The rapidly evolving cp genome regions were detected among the five cp genomes, as well as the difference of simple sequence repeats (SSR) and repeat sequence were identified. Phylogenetic relationships among the five Epimedium species based on their cp genomes showed accordance with the updated system of the genus on the whole, but reminded that the evolutionary relationships and the divisions of the genus need further investigation applying more evidences. The availability of these cp genomes provided valuable genetic information for accurately identifying species, taxonomy and phylogenetic resolution and evolution of Epimedium, and assist in exploration and utilization of Epimedium plants. PMID:27014326

  17. Phylogenetic species identification in Rattus highlights rapid radiation and morphological similarity of New Guinean species.

    PubMed

    Robins, Judith H; Tintinger, Vernon; Aplin, Ken P; Hingston, Melanie; Matisoo-Smith, Elizabeth; Penny, David; Lavery, Shane D

    2014-01-01

    The genus Rattus is highly speciose, the taxonomy is complex, and individuals are often difficult to identify to the species level. Previous studies have demonstrated the usefulness of phylogenetic approaches to identification in Rattus but some species, especially among the endemics of the New Guinean region, showed poor resolution. Possible reasons for this are simple misidentification, incomplete gene lineage sorting, hybridization, and phylogenetically distinct lineages that are unrecognised taxonomically. To assess these explanations we analysed 217 samples, representing nominally 25 Rattus species, collected in New Guinea, Asia, Australia and the Pacific. To reduce misidentification problems we sequenced museum specimens from earlier morphological studies and recently collected tissues from samples with associated voucher specimens. We also reassessed vouchers from previously sequenced specimens. We inferred combined and separate phylogenies from two mitochondrial DNA regions comprising 550 base pair D-loop sequences and both long (655 base pair) and short (150 base pair) cytochrome oxidase I sequences. Our phylogenetic species identification for 17 species was consistent with morphological designations and current taxonomy thus reinforcing the usefulness of this approach. We reduced misidentifications and consequently the number of polyphyletic species in our phylogenies but the New Guinean Rattus clades still exhibited considerable complexity. Only three of our eight New Guinean species were monophyletic. We found good evidence for either incomplete mitochondrial lineage sorting or hybridization between species within two pairs, R. leucopus/R. cf. verecundus and R. steini/R. praetor. Additionally, our results showed that R. praetor, R. niobe and R. verecundus each likely encompass more than one species. Our study clearly points to the need for a revised taxonomy of the rats of New Guinea, based on broader sampling and informed by both morphology and phylogenetics. The remaining taxonomic complexity highlights the recent and rapid radiation of Rattus in the Australo-Papuan region.

  18. Phylogenetic Species Identification in Rattus Highlights Rapid Radiation and Morphological Similarity of New Guinean Species

    PubMed Central

    Robins, Judith H.; Tintinger, Vernon; Aplin, Ken P.; Hingston, Melanie; Matisoo-Smith, Elizabeth; Penny, David; Lavery, Shane D.

    2014-01-01

    The genus Rattus is highly speciose, the taxonomy is complex, and individuals are often difficult to identify to the species level. Previous studies have demonstrated the usefulness of phylogenetic approaches to identification in Rattus but some species, especially among the endemics of the New Guinean region, showed poor resolution. Possible reasons for this are simple misidentification, incomplete gene lineage sorting, hybridization, and phylogenetically distinct lineages that are unrecognised taxonomically. To assess these explanations we analysed 217 samples, representing nominally 25 Rattus species, collected in New Guinea, Asia, Australia and the Pacific. To reduce misidentification problems we sequenced museum specimens from earlier morphological studies and recently collected tissues from samples with associated voucher specimens. We also reassessed vouchers from previously sequenced specimens. We inferred combined and separate phylogenies from two mitochondrial DNA regions comprising 550 base pair D-loop sequences and both long (655 base pair) and short (150 base pair) cytochrome oxidase I sequences. Our phylogenetic species identification for 17 species was consistent with morphological designations and current taxonomy thus reinforcing the usefulness of this approach. We reduced misidentifications and consequently the number of polyphyletic species in our phylogenies but the New Guinean Rattus clades still exhibited considerable complexity. Only three of our eight New Guinean species were monophyletic. We found good evidence for either incomplete mitochondrial lineage sorting or hybridization between species within two pairs, R. leucopus/R. cf. verecundus and R. steini/R. praetor. Additionally, our results showed that R. praetor, R. niobe and R. verecundus each likely encompass more than one species. Our study clearly points to the need for a revised taxonomy of the rats of New Guinea, based on broader sampling and informed by both morphology and phylogenetics. The remaining taxonomic complexity highlights the recent and rapid radiation of Rattus in the Australo-Papuan region. PMID:24865350

  19. Complete genome sequence and phylogenetic analyses of an aquabirnavirus isolated from a diseased marbled eel culture in Taiwan.

    PubMed

    Wen, Chiu-Ming

    2017-08-01

    An aquabirnavirus was isolated from diseased marbled eels (Anguilla marmorata; MEIPNV1310) with gill haemorrhages and associated mortality. Its genome segment sequences were obtained through next-generation sequencing and compared with published aquabirnavirus sequences. The results indicated that the genome sequence of MEIPNV1310 contains segment A (3099 nucleotides) and segment B (2789 nucleotides). Phylogenetic analysis showed that MEIPNV1310 is closely related to the infectious pancreatic necrosis Ab strain within genogroup II. This genome sequence is beneficial for studying the geographic distribution and evolution of aquabirnaviruses.

  20. Analysis of complete mitochondrial genomes from extinct and extant rhinoceroses reveals lack of phylogenetic resolution

    PubMed Central

    Willerslev, Eske; Gilbert, M Thomas P; Binladen, Jonas; Ho, Simon YW; Campos, Paula F; Ratan, Aakrosh; Tomsho, Lynn P; da Fonseca, Rute R; Sher, Andrei; Kuznetsova, Tatanya V; Nowak-Kemp, Malgosia; Roth, Terri L; Miller, Webb; Schuster, Stephan C

    2009-01-01

    Background The scientific literature contains many examples where DNA sequence analyses have been used to provide definitive answers to phylogenetic problems that traditional (non-DNA based) approaches alone have failed to resolve. One notable example concerns the rhinoceroses, a group for which several contradictory phylogenies were proposed on the basis of morphology, then apparently resolved using mitochondrial DNA fragments. Results In this study we report the first complete mitochondrial genome sequences of the extinct ice-age woolly rhinoceros (Coelodonta antiquitatis), and the threatened Javan (Rhinoceros sondaicus), Sumatran (Dicerorhinus sumatrensis), and black (Diceros bicornis) rhinoceroses. In combination with the previously published mitochondrial genomes of the white (Ceratotherium simum) and Indian (Rhinoceros unicornis) rhinoceroses, this data set putatively enables reconstruction of the rhinoceros phylogeny. While the six species cluster into three strongly supported sister-pairings: (i) The black/white, (ii) the woolly/Sumatran, and (iii) the Javan/Indian, resolution of the higher-level relationships has no statistical support. The phylogenetic signal from individual genes is highly diffuse, with mixed topological support from different genes. Furthermore, the choice of outgroup (horse vs tapir) has considerable effect on reconstruction of the phylogeny. The lack of resolution is suggestive of a hard polytomy at the base of crown-group Rhinocerotidae, and this is supported by an investigation of the relative branch lengths. Conclusion Satisfactory resolution of the rhinoceros phylogeny may not be achievable without additional analyses of substantial amounts of nuclear DNA. This study provides a compelling demonstration that, in spite of substantial sequence length, there are significant limitations with single-locus phylogenetics. We expect further examples of this to appear as next-generation, large-scale sequencing of complete mitochondrial genomes becomes commonplace in evolutionary studies. "The human factor in classification is nowhere more evident than in dealing with this superfamily (Rhinocerotoidea)." G. G. Simpson (1945) PMID:19432984

  1. aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity.

    PubMed

    Kuraku, Shigehiro; Zmasek, Christian M; Nishimura, Osamu; Katoh, Kazutaka

    2013-07-01

    We report a new web server, aLeaves (http://aleaves.cdb.riken.jp/), for homologue collection from diverse animal genomes. In molecular comparative studies involving multiple species, orthology identification is the basis on which most subsequent biological analyses rely. It can be achieved most accurately by explicit phylogenetic inference. More and more species are subjected to large-scale sequencing, but the resultant resources are scattered in independent project-based, and multi-species, but separate, web sites. This complicates data access and is becoming a serious barrier to the comprehensiveness of molecular phylogenetic analysis. aLeaves, launched to overcome this difficulty, collects sequences similar to an input query sequence from various data sources. The collected sequences can be passed on to the MAFFT sequence alignment server (http://mafft.cbrc.jp/alignment/server/), which has been significantly improved in interactivity. This update enables to switch between (i) sequence selection using the Archaeopteryx tree viewer, (ii) multiple sequence alignment and (iii) tree inference. This can be performed as a loop until one reaches a sensible data set, which minimizes redundancy for better visibility and handling in phylogenetic inference while covering relevant taxa. The work flow achieved by the seamless link between aLeaves and MAFFT provides a convenient online platform to address various questions in zoology and evolutionary biology.

  2. aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity

    PubMed Central

    Kuraku, Shigehiro; Zmasek, Christian M.; Nishimura, Osamu; Katoh, Kazutaka

    2013-01-01

    We report a new web server, aLeaves (http://aleaves.cdb.riken.jp/), for homologue collection from diverse animal genomes. In molecular comparative studies involving multiple species, orthology identification is the basis on which most subsequent biological analyses rely. It can be achieved most accurately by explicit phylogenetic inference. More and more species are subjected to large-scale sequencing, but the resultant resources are scattered in independent project-based, and multi-species, but separate, web sites. This complicates data access and is becoming a serious barrier to the comprehensiveness of molecular phylogenetic analysis. aLeaves, launched to overcome this difficulty, collects sequences similar to an input query sequence from various data sources. The collected sequences can be passed on to the MAFFT sequence alignment server (http://mafft.cbrc.jp/alignment/server/), which has been significantly improved in interactivity. This update enables to switch between (i) sequence selection using the Archaeopteryx tree viewer, (ii) multiple sequence alignment and (iii) tree inference. This can be performed as a loop until one reaches a sensible data set, which minimizes redundancy for better visibility and handling in phylogenetic inference while covering relevant taxa. The work flow achieved by the seamless link between aLeaves and MAFFT provides a convenient online platform to address various questions in zoology and evolutionary biology. PMID:23677614

  3. Hal: an automated pipeline for phylogenetic analyses of genomic data.

    PubMed

    Robbertse, Barbara; Yoder, Ryan J; Boyd, Alex; Reeves, John; Spatafora, Joseph W

    2011-02-07

    The rapid increase in genomic and genome-scale data is resulting in unprecedented levels of discrete sequence data available for phylogenetic analyses. Major analytical impasses exist, however, prior to analyzing these data with existing phylogenetic software. Obstacles include the management of large data sets without standardized naming conventions, identification and filtering of orthologous clusters of proteins or genes, and the assembly of alignments of orthologous sequence data into individual and concatenated super alignments. Here we report the production of an automated pipeline, Hal that produces multiple alignments and trees from genomic data. These alignments can be produced by a choice of four alignment programs and analyzed by a variety of phylogenetic programs. In short, the Hal pipeline connects the programs BLASTP, MCL, user specified alignment programs, GBlocks, ProtTest and user specified phylogenetic programs to produce species trees. The script is available at sourceforge (http://sourceforge.net/projects/bio-hal/). The results from an example analysis of Kingdom Fungi are briefly discussed.

  4. Molecular Phylogenetics and Systematics of the Bivalve Family Ostreidae Based on rRNA Sequence-Structure Models and Multilocus Species Tree

    PubMed Central

    Salvi, Daniele; Macali, Armando; Mariottini, Paolo

    2014-01-01

    The bivalve family Ostreidae has a worldwide distribution and includes species of high economic importance. Phylogenetics and systematic of oysters based on morphology have proved difficult because of their high phenotypic plasticity. In this study we explore the phylogenetic information of the DNA sequence and secondary structure of the nuclear, fast-evolving, ITS2 rRNA and the mitochondrial 16S rRNA genes from the Ostreidae and we implemented a multi-locus framework based on four loci for oyster phylogenetics and systematics. Sequence-structure rRNA models aid sequence alignment and improved accuracy and nodal support of phylogenetic trees. In agreement with previous molecular studies, our phylogenetic results indicate that none of the currently recognized subfamilies, Crassostreinae, Ostreinae, and Lophinae, is monophyletic. Single gene trees based on Maximum likelihood (ML) and Bayesian (BA) methods and on sequence-structure ML were congruent with multilocus trees based on a concatenated (ML and BA) and coalescent based (BA) approaches and consistently supported three main clades: (i) Crassostrea, (ii) Saccostrea, and (iii) an Ostreinae-Lophinae lineage. Therefore, the subfamily Crassotreinae (including Crassostrea), Saccostreinae subfam. nov. (including Saccostrea and tentatively Striostrea) and Ostreinae (including Ostreinae and Lophinae taxa) are recognized. Based on phylogenetic and biogeographical evidence the Asian species of Crassostrea from the Pacific Ocean are assigned to Magallana gen. nov., whereas an integrative taxonomic revision is required for the genera Ostrea and Dendostrea. This study pointed out the suitability of the ITS2 marker for DNA barcoding of oyster and the relevance of using sequence-structure rRNA models and features of the ITS2 folding in molecular phylogenetics and taxonomy. The multilocus approach allowed inferring a robust phylogeny of Ostreidae providing a broad molecular perspective on their systematics. PMID:25250663

  5. Molecular phylogenetics and systematics of the bivalve family Ostreidae based on rRNA sequence-structure models and multilocus species tree.

    PubMed

    Salvi, Daniele; Macali, Armando; Mariottini, Paolo

    2014-01-01

    The bivalve family Ostreidae has a worldwide distribution and includes species of high economic importance. Phylogenetics and systematic of oysters based on morphology have proved difficult because of their high phenotypic plasticity. In this study we explore the phylogenetic information of the DNA sequence and secondary structure of the nuclear, fast-evolving, ITS2 rRNA and the mitochondrial 16S rRNA genes from the Ostreidae and we implemented a multi-locus framework based on four loci for oyster phylogenetics and systematics. Sequence-structure rRNA models aid sequence alignment and improved accuracy and nodal support of phylogenetic trees. In agreement with previous molecular studies, our phylogenetic results indicate that none of the currently recognized subfamilies, Crassostreinae, Ostreinae, and Lophinae, is monophyletic. Single gene trees based on Maximum likelihood (ML) and Bayesian (BA) methods and on sequence-structure ML were congruent with multilocus trees based on a concatenated (ML and BA) and coalescent based (BA) approaches and consistently supported three main clades: (i) Crassostrea, (ii) Saccostrea, and (iii) an Ostreinae-Lophinae lineage. Therefore, the subfamily Crassostreinae (including Crassostrea), Saccostreinae subfam. nov. (including Saccostrea and tentatively Striostrea) and Ostreinae (including Ostreinae and Lophinae taxa) are recognized [corrected]. Based on phylogenetic and biogeographical evidence the Asian species of Crassostrea from the Pacific Ocean are assigned to Magallana gen. nov., whereas an integrative taxonomic revision is required for the genera Ostrea and Dendostrea. This study pointed out the suitability of the ITS2 marker for DNA barcoding of oyster and the relevance of using sequence-structure rRNA models and features of the ITS2 folding in molecular phylogenetics and taxonomy. The multilocus approach allowed inferring a robust phylogeny of Ostreidae providing a broad molecular perspective on their systematics.

  6. Phylogenetic inferences of Nepenthes species in Peninsular Malaysia revealed by chloroplast (trnL intron) and nuclear (ITS) DNA sequences.

    PubMed

    Bunawan, Hamidun; Yen, Choong Chee; Yaakop, Salmah; Noor, Normah Mohd

    2017-01-26

    The chloroplastic trnL intron and the nuclear internal transcribed spacer (ITS) region were sequenced for 11 Nepenthes species recorded in Peninsular Malaysia to examine their phylogenetic relationship and to evaluate the usage of trnL intron and ITS sequences for phylogenetic reconstruction of this genus. Phylogeny reconstruction was carried out using neighbor-joining, maximum parsimony and Bayesian analyses. All the trees revealed two major clusters, a lowland group consisting of N. ampullaria, N. mirabilis, N. gracilis and N. rafflesiana, and another containing both intermediately distributed species (N. albomarginata and N. benstonei) and four highland species (N. sanguinea, N. macfarlanei, N. ramispina and N. alba). The trnL intron and ITS sequences proved to provide phylogenetic informative characters for deriving a phylogeny of Nepenthes species in Peninsular Malaysia. To our knowledge, this is the first molecular phylogenetic study of Nepenthes species occurring along an altitudinal gradient in Peninsular Malaysia.

  7. Open Reading Frame Phylogenetic Analysis on the Cloud

    PubMed Central

    2013-01-01

    Phylogenetic analysis has become essential in researching the evolutionary relationships between viruses. These relationships are depicted on phylogenetic trees, in which viruses are grouped based on sequence similarity. Viral evolutionary relationships are identified from open reading frames rather than from complete sequences. Recently, cloud computing has become popular for developing internet-based bioinformatics tools. Biocloud is an efficient, scalable, and robust bioinformatics computing service. In this paper, we propose a cloud-based open reading frame phylogenetic analysis service. The proposed service integrates the Hadoop framework, virtualization technology, and phylogenetic analysis methods to provide a high-availability, large-scale bioservice. In a case study, we analyze the phylogenetic relationships among Norovirus. Evolutionary relationships are elucidated by aligning different open reading frame sequences. The proposed platform correctly identifies the evolutionary relationships between members of Norovirus. PMID:23671843

  8. Species Diversity of Puerto Rican Heterotermes (Dictyoptera: Rhinotermitidae) Revealed by Phylogenetic Analyses of Two Mitochondrial Genes

    PubMed Central

    Jones, Susan C.; Jenkins, Tracie M.

    2016-01-01

    The goal of this study was to infer Heterotermes (Froggatt) (Dictyoptera: Rhinotermitidae) species diversity on the island of Puerto Rico from phylogenetic analyses of DNA sequence data from two mitochondrial genes, 16S rRNA and cytochrome oxidase II (COII). This termite genus is a structural pest known to be well adapted to arid environments in subtropical and tropical regions worldwide including Puerto Rico and many other Caribbean islands. Extensive sampling was accomplished across Puerto Rico, and phylogenetic analyses of individual gene sequences from these samples indicated robust datasets of congruent gene tree topologies showing three monophyletic groups: H. cardini (Snyder), H. convexinotatus (Snyder), and H. tenuis (Hagen). We found that H. cardini and H. convexinotatus were widespread in the arid coastal regions of Puerto Rico, whereas H. tenuis was uncommon and may represent a relatively new introduction. We found only H. convexinotatus on Culebra Island. We provide strong evidence that Puerto Rico may be linked to the Heterotermes in southern Florida, USA, since its GenBank 16S sequence was identical to that of seven Puerto Rican H. cardini sequences. Our study represents the first records of H. cardini from Puerto Rico and Grand Bahama.

  9. Fixing Formalin: A Method to Recover Genomic-Scale DNA Sequence Data from Formalin-Fixed Museum Specimens Using High-Throughput Sequencing.

    PubMed

    Hykin, Sarah M; Bi, Ke; McGuire, Jimmy A

    2015-01-01

    For 150 years or more, specimens were routinely collected and deposited in natural history collections without preserving fresh tissue samples for genetic analysis. In the case of most herpetological specimens (i.e. amphibians and reptiles), attempts to extract and sequence DNA from formalin-fixed, ethanol-preserved specimens-particularly for use in phylogenetic analyses-has been laborious and largely ineffective due to the highly fragmented nature of the DNA. As a result, tens of thousands of specimens in herpetological collections have not been available for sequence-based phylogenetic studies. Massively parallel High-Throughput Sequencing methods and the associated bioinformatics, however, are particularly suited to recovering meaningful genetic markers from severely degraded/fragmented DNA sequences such as DNA damaged by formalin-fixation. In this study, we compared previously published DNA extraction methods on three tissue types subsampled from formalin-fixed specimens of Anolis carolinensis, followed by sequencing. Sufficient quality DNA was recovered from liver tissue, making this technique minimally destructive to museum specimens. Sequencing was only successful for the more recently collected specimen (collected ~30 ybp). We suspect this could be due either to the conditions of preservation and/or the amount of tissue used for extraction purposes. For the successfully sequenced sample, we found a high rate of base misincorporation. After rigorous trimming, we successfully mapped 27.93% of the cleaned reads to the reference genome, were able to reconstruct the complete mitochondrial genome, and recovered an accurate phylogenetic placement for our specimen. We conclude that the amount of DNA available, which can vary depending on specimen age and preservation conditions, will determine if sequencing will be successful. The technique described here will greatly improve the value of museum collections by making many formalin-fixed specimens available for genetic analysis.

  10. A phylogenetic framework facilitates Y-STR variant discovery and classification via massively parallel sequencing.

    PubMed

    Huszar, Tunde I; Jobling, Mark A; Wetton, Jon H

    2018-04-12

    Short tandem repeats on the male-specific region of the Y chromosome (Y-STRs) are permanently linked as haplotypes, and therefore Y-STR sequence diversity can be considered within the robust framework of a phylogeny of haplogroups defined by single nucleotide polymorphisms (SNPs). Here we use massively parallel sequencing (MPS) to analyse the 23 Y-STRs in Promega's prototype PowerSeq™ Auto/Mito/Y System kit (containing the markers of the PowerPlex® Y23 [PPY23] System) in a set of 100 diverse Y chromosomes whose phylogenetic relationships are known from previous megabase-scale resequencing. Including allele duplications and alleles resulting from likely somatic mutation, we characterised 2311 alleles, demonstrating 99.83% concordance with capillary electrophoresis (CE) data on the same sample set. The set contains 267 distinct sequence-based alleles (an increase of 58% compared to the 169 detectable by CE), including 60 novel Y-STR variants phased with their flanking sequences which have not been reported previously to our knowledge. Variation includes 46 distinct alleles containing non-reference variants of SNPs/indels in both repeat and flanking regions, and 145 distinct alleles containing repeat pattern variants (RPV). For DYS385a,b, DYS481 and DYS390 we observed repeat count variation in short flanking segments previously considered invariable, and suggest new MPS-based structural designations based on these. We considered the observed variation in the context of the Y phylogeny: several specific haplogroup associations were observed for SNPs and indels, reflecting the low mutation rates of such variant types; however, RPVs showed less phylogenetic coherence and more recurrence, reflecting their relatively high mutation rates. In conclusion, our study reveals considerable additional diversity at the Y-STRs of the PPY23 set via MPS analysis, demonstrates high concordance with CE data, facilitates nomenclature standardisation, and places Y-STR sequence variants in their phylogenetic context. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Cross-validation to select Bayesian hierarchical models in phylogenetics.

    PubMed

    Duchêne, Sebastián; Duchêne, David A; Di Giallonardo, Francesca; Eden, John-Sebastian; Geoghegan, Jemma L; Holt, Kathryn E; Ho, Simon Y W; Holmes, Edward C

    2016-05-26

    Recent developments in Bayesian phylogenetic models have increased the range of inferences that can be drawn from molecular sequence data. Accordingly, model selection has become an important component of phylogenetic analysis. Methods of model selection generally consider the likelihood of the data under the model in question. In the context of Bayesian phylogenetics, the most common approach involves estimating the marginal likelihood, which is typically done by integrating the likelihood across model parameters, weighted by the prior. Although this method is accurate, it is sensitive to the presence of improper priors. We explored an alternative approach based on cross-validation that is widely used in evolutionary analysis. This involves comparing models according to their predictive performance. We analysed simulated data and a range of viral and bacterial data sets using a cross-validation approach to compare a variety of molecular clock and demographic models. Our results show that cross-validation can be effective in distinguishing between strict- and relaxed-clock models and in identifying demographic models that allow growth in population size over time. In most of our empirical data analyses, the model selected using cross-validation was able to match that selected using marginal-likelihood estimation. The accuracy of cross-validation appears to improve with longer sequence data, particularly when distinguishing between relaxed-clock models. Cross-validation is a useful method for Bayesian phylogenetic model selection. This method can be readily implemented even when considering complex models where selecting an appropriate prior for all parameters may be difficult.

  12. Phylogenetic place of guinea pigs: no support of the rodent-polyphyly hypothesis from maximum-likelihood analyses of multiple protein sequences.

    PubMed

    Cao, Y; Adachi, J; Yano, T; Hasegawa, M

    1994-07-01

    Graur et al.'s (1991) hypothesis that the guinea pig-like rodents have an evolutionary origin within mammals that is separate from that of other rodents (the rodent-polyphyly hypothesis) was reexamined by the maximum-likelihood method for protein phylogeny, as well as by the maximum-parsimony and neighbor-joining methods. The overall evidence does not support Graur et al.'s hypothesis, which radically contradicts the traditional view of rodent monophyly. This work demonstrates that we must be careful in choosing a proper method for phylogenetic inference and that an argument based on a small data set (with respect to the length of the sequence and especially the number of species) may be unstable.

  13. Phylodynamic analysis and molecular diversity of the avian infectious bronchitis virus of chickens in Brazil.

    PubMed

    Fraga, Aline Padilha de; Gräf, Tiago; Pereira, Cleiton Schneider; Ikuta, Nilo; Fonseca, André Salvador Kazantzi; Lunge, Vagner Ricardo

    2018-07-01

    Avian infectious bronchitis virus (IBV) is the etiological agent of a highly contagious disease, which results in severe economic losses to the poultry industry. The spike protein (S1 subunit) is responsible for the molecular diversity of the virus and many sero/genotypes are described around the world. Recently a new standardized classification of the IBV molecular diversity was conducted, based on phylogenetic analysis of the S1 gene sequences sampled worldwide. Brazil is one of the biggest poultry producers in the world and the present study aimed to review the molecular diversity and reconstruct the evolutionary history of IBV in the country. All IBV S1 gene sequences, with local and year of collection information available on GenBank, were retrieved. Phylogenetic analyses were carried out based on a maximum likelihood method for the classification of genotypes occurring in Brazil, according to the new classification. Bayesian phylogenetic analyses were performed with the Brazilian clade and related international sequences to determine the evolutionary history of IBV in Brazil. A total of 143 Brazilian sequences were classified as GI-11 and 46 as GI-1 (Mass). Within the GI-11 clade, we have identified a potential recombinant strain circulating in Brazil. Phylodynamic analysis demonstrated that IBV GI-11 lineage was introduced in Brazil in the 1950s (1951, 1917-1975 95% HPD) and population dynamics was mostly constant throughout the time. Despite the national vaccination protocols, our results show the widespread dissemination and maintenance of the IBV GI-11 lineage in Brazil and highlight the importance of continuous surveillance to evaluate the impact of currently used vaccine strains on the observed viral diversity of the country. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Lactobacillus allii sp. nov. isolated from scallion kimchi.

    PubMed

    Jung, Min Young; Lee, Se Hee; Lee, Moeun; Song, Jung Hee; Chang, Ji Yoon

    2017-12-01

    A novel strain of lactic acid bacteria, WiKim39 T , was isolated from a scallion kimchi sample consisting of fermented chili peppers and vegetables. The isolate was a Gram-positive, rod-shaped, non-motile, catalase-negative and facultatively anaerobic lactic acid bacterium. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain WiKim39 T belonged to the genus Lactobacillus, and shared 97.1-98.2 % pair-wise sequence similarities with related type strains, Lactobacillus nodensis, Lactobacillus insicii, Lactobacillus versmoldensis, Lactobacillus tucceti and Lactobacillus furfuricola. The G+C content of the strain based on its genome sequence was 35.3 mol%. The ANI values between WiKim39 T and the closest relatives were lower than 80 %. Based on the phenotypic, biochemical, and phylogenetic analyses, strain WiKim39 T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus allii sp. nov. is proposed. The type strain is WiKim39 T (=KCTC 21077 T =JCM 31938 T ).

  15. Lactobacillus allii sp. nov. isolated from scallion kimchi

    PubMed Central

    Jung, Min Young; Lee, Se Hee; Lee, Moeun; Song, Jung Hee; Chang, Ji Yoon

    2017-01-01

    A novel strain of lactic acid bacteria, WiKim39T, was isolated from a scallion kimchi sample consisting of fermented chili peppers and vegetables. The isolate was a Gram-positive, rod-shaped, non-motile, catalase-negative and facultatively anaerobic lactic acid bacterium. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain WiKim39T belonged to the genus Lactobacillus, and shared 97.1–98.2 % pair-wise sequence similarities with related type strains, Lactobacillus nodensis, Lactobacillus insicii, Lactobacillus versmoldensis, Lactobacillus tucceti and Lactobacillus furfuricola. The G+C content of the strain based on its genome sequence was 35.3 mol%. The ANI values between WiKim39T and the closest relatives were lower than 80 %. Based on the phenotypic, biochemical, and phylogenetic analyses, strain WiKim39T represents a novel species of the genus Lactobacillus, for which the name Lactobacillus allii sp. nov. is proposed. The type strain is WiKim39T (=KCTC 21077T=JCM 31938T). PMID:29043955

  16. Molecular Analysis of Dehalococcoides 16S Ribosomal DNA from Chloroethene-Contaminated Sites throughout North America and Europe

    PubMed Central

    Hendrickson, Edwin R.; Payne, Jo Ann; Young, Roslyn M.; Starr, Mark G.; Perry, Michael P.; Fahnestock, Stephen; Ellis, David E.; Ebersole, Richard C.

    2002-01-01

    The environmental distribution of Dehalococcoides group organisms and their association with chloroethene-contaminated sites were examined. Samples from 24 chloroethene-dechlorinating sites scattered throughout North America and Europe were tested for the presence of members of the Dehalococcoides group by using a PCR assay developed to detect Dehalococcoides 16S rRNA gene (rDNA) sequences. Sequences identified by sequence analysis as sequences of members of the Dehalococcoides group were detected at 21 sites. Full dechlorination of chloroethenes to ethene occurred at these sites. Dehalococcoides sequences were not detected in samples from three sites at which partial dechlorination of chloroethenes occurred, where dechlorination appeared to stop at 1,2-cis-dichloroethene. Phylogenetic analysis of the 16S rDNA amplicons confirmed that Dehalococcoides sequences formed a unique 16S rDNA group. These 16S rDNA sequences were divided into three subgroups based on specific base substitution patterns in variable regions 2 and 6 of the Dehalococcoides 16S rDNA sequence. Analyses also demonstrated that specific base substitution patterns were signature patterns. The specific base substitutions distinguished the three sequence subgroups phylogenetically. These results demonstrated that members of the Dehalococcoides group are widely distributed in nature and can be found in a variety of geological formations and in different climatic zones. Furthermore, the association of these organisms with full dechlorination of chloroethenes suggests that they are promising candidates for engineered bioremediation and may be important contributors to natural attenuation of chloroethenes. PMID:11823182

  17. Phylogenetic relationships in the mushroom genus Coprinus and dark-spored allies based on sequence data from the nuclear gene coding for the large ribosomal subunit RNA: divergent domains, outgroups, and monophyly.

    PubMed

    Hopple, J S; Vilgalys, R

    1999-10-01

    Phylogenetic relationships were investigated in the mushroom genus Coprinus based on sequence data from the nuclear encoded large-subunit rDNA gene. Forty-seven species of Coprinus and 19 additional species from the families Coprinaceae, Strophariaceae, Bolbitiaceae, Agaricaceae, Podaxaceae, and Montagneaceae were studied. A total of 1360 sites was sequenced across seven divergent domains and intervening sequences. A total of 302 phylogenetically informative characters was found. Ninety-eight percent of the average divergence between taxa was located within the divergent domains, with domains D2 and D8 being most divergent and domains D7 and D10 the least divergent. An empirical test of phylogenetic signal among divergent domains also showed that domains D2 and D3 had the lowest levels of homoplasy. Two equally most parsimonious trees were resolved using Wagner parsimony. A character-state weighted analysis produced 12 equally most parsimonious trees similar to those generated by Wagner parsimony. Phylogenetic analyses employing topological constraints suggest that none of the major taxonomic systems proposed for subgeneric classification is able to completely reflect phylogenetic relationships in Coprinus. A strict consensus integration of the two Wagner trees demonstrates the problematic nature of choosing outgroups within dark-spored mushrooms. The genus Coprinus is found to be polyphyletic and is separated into three distinct clades. Most Coprinus taxa belong to the first two clades, which together form a larger monophyletic group with Lacrymaria and Psathyrella in basal positions. A third clade contains members of Coprinus section Comati as well as the genus Leucocoprinus, Podaxis pistillaris, Montagnea arenaria, and Agaricus pocillator. This third clade is separated from the other species of Coprinus by members of the families Strophariaceae and Bolbitiaceae and the genus Panaeolus. Copyright 1999 Academic Press.

  18. A Polyglot Approach to Bioinformatics Data Integration: A Phylogenetic Analysis of HIV-1

    PubMed Central

    Reisman, Steven; Hatzopoulos, Thomas; Läufer, Konstantin; Thiruvathukal, George K.; Putonti, Catherine

    2016-01-01

    As sequencing technologies continue to drop in price and increase in throughput, new challenges emerge for the management and accessibility of genomic sequence data. We have developed a pipeline for facilitating the storage, retrieval, and subsequent analysis of molecular data, integrating both sequence and metadata. Taking a polyglot approach involving multiple languages, libraries, and persistence mechanisms, sequence data can be aggregated from publicly available and local repositories. Data are exposed in the form of a RESTful web service, formatted for easy querying, and retrieved for downstream analyses. As a proof of concept, we have developed a resource for annotated HIV-1 sequences. Phylogenetic analyses were conducted for >6,000 HIV-1 sequences revealing spatial and temporal factors influence the evolution of the individual genes uniquely. Nevertheless, signatures of origin can be extrapolated even despite increased globalization. The approach developed here can easily be customized for any species of interest. PMID:26819543

  19. Dasytricha dominance in Surti buffalo rumen revealed by 18S rRNA sequences and real-time PCR assay.

    PubMed

    Singh, K M; Tripathi, A K; Pandya, P R; Rank, D N; Kothari, R K; Joshi, C G

    2011-09-01

    The genetic diversity of protozoa in Surti buffalo rumen was studied by amplified ribosomal DNA restriction analysis, 18S rDNA sequence homology and phylogenetic and Real-time PCR analysis methods. Three animals were fed diet comprised green fodder Napier bajra 21 (Pennisetum purpureum), mature pasture grass (Dicanthium annulatum) and concentrate mixture (20% crude protein, 65% total digestible nutrients). A protozoa-specific primer (P-SSU-342f) and a eukarya-specific primer (Medlin B) were used to amplify a 1,360 bp fragment of DNA encoding protozoal small subunit (SSU) ribosomal RNA from rumen fluid. A total of 91 clones were examined and identified 14 different 18S RNA sequences based on PCR-RFLP pattern. These 14 phylotypes were distributed into four genera-based 18S rDNA database sequences and identified as Dasytricha (57 clones), Isotricha (14 clones), Ostracodinium (11 clones) and Polyplastron (9 clones). Phylogenetic analyses were also used to infer the makeup of protozoa communities in the rumen of Surti buffalo. Out of 14 sequences, 8 sequences (69 clones) clustered with the Dasytricha ruminantium-like clone and 4 sequences (13 clones) were also phylogenetically placed with the Isotricha prostoma-like clone. Moreover, 2 phylotypes (9 clones) were related to Polyplastron multivesiculatum-like clone. In addition, the number of 18S rDNA gene copies of Dasytricha ruminantium (0.05% to ciliate protozoa) was higher than Entodinium sp. (2.0 × 10(5) vs. 1.3 × 10(4)) in per ml ruminal fluid.

  20. Veterinary Fusarioses within the United States

    USDA-ARS?s Scientific Manuscript database

    Multilocus DNA sequence data was used to retrospectively assess the genetic diversity and evolutionary relationships of 67 Fusarium strains from veterinary sources, most of which were from the United States. Molecular phylogenetic analyses revealed that the strains comprised 23 phylogenetically dist...

  1. Transcriptional and phylogenetic analysis of five complete ambystomatid salamander mitochondrial genomes.

    PubMed

    Samuels, Amy K; Weisrock, David W; Smith, Jeramiah J; France, Katherine J; Walker, John A; Putta, Srikrishna; Voss, S Randal

    2005-04-11

    We report on a study that extended mitochondrial transcript information from a recent EST project to obtain complete mitochondrial genome sequence for 5 tiger salamander complex species (Ambystoma mexicanum, A. t. tigrinum, A. andersoni, A. californiense, and A. dumerilii). We describe, for the first time, aspects of mitochondrial transcription in a representative amphibian, and then use complete mitochondrial sequence data to examine salamander phylogeny at both deep and shallow levels of evolutionary divergence. The available mitochondrial ESTs for A. mexicanum (N=2481) and A. t. tigrinum (N=1205) provided 92% and 87% coverage of the mitochondrial genome, respectively. Complete mitochondrial sequences for all species were rapidly obtained by using long distance PCR and DNA sequencing. A number of genome structural characteristics (base pair length, base composition, gene number, gene boundaries, codon usage) were highly similar among all species and to other distantly related salamanders. Overall, mitochondrial transcription in Ambystoma approximated the pattern observed in other vertebrates. We inferred from the mapping of ESTs onto mtDNA that transcription occurs from both heavy and light strand promoters and continues around the entire length of the mtDNA, followed by post-transcriptional processing. However, the observation of many short transcripts corresponding to rRNA genes indicates that transcription may often terminate prematurely to bias transcription of rRNA genes; indeed an rRNA transcription termination signal sequence was observed immediately following the 16S rRNA gene. Phylogenetic analyses of salamander family relationships consistently grouped Ambystomatidae in a clade containing Cryptobranchidae and Hynobiidae, to the exclusion of Salamandridae. This robust result suggests a novel alternative hypothesis because previous studies have consistently identified Ambystomatidae and Salamandridae as closely related taxa. Phylogenetic analyses of tiger salamander complex species also produced robustly supported trees. The D-loop, used in previous molecular phylogenetic studies of the complex, was found to contain a relatively low level of variation and we identified mitochondrial regions with higher rates of molecular evolution that are more useful in resolving relationships among species. Our results show the benefit of using complete genome mitochondrial information in studies of recently and rapidly diverged taxa.

  2. The mitochondrial genome sequence of Enterobius vermicularis (Nematoda: Oxyurida)--an idiosyncratic gene order and phylogenetic information for chromadorean nematodes.

    PubMed

    Kang, Seokha; Sultana, Tahera; Eom, Keeseon S; Park, Yung Chul; Soonthornpong, Nathan; Nadler, Steven A; Park, Joong-Ki

    2009-01-15

    The complete mitochondrial genome sequence was determined for the human pinworm Enterobius vermicularis (Oxyurida: Nematoda) and used to infer its phylogenetic relationship to other major groups of chromadorean nematodes. The E. vermicularis genome is a 14,010-bp circular DNA molecule that encodes 36 genes (12 proteins, 22 tRNAs, and 2 rRNAs). This mtDNA genome lacks atp8, as reported for almost all other nematode species investigated. Phylogenetic analyses (maximum parsimony, maximum likelihood, neighbor joining, and Bayesian inference) of nucleotide sequences for the 12 protein-coding genes of 25 nematode species placed E. vermicularis, a representative of the order Oxyurida, as sister to the main Ascaridida+Rhabditida group. Tree topology comparisons using statistical tests rejected an alternative hypothesis favoring a closer relationship among Ascaridida, Spirurida, and Oxyurida, which has been supported from most studies based on nuclear ribosomal DNA sequences. Unlike the relatively conserved gene arrangement found for most chromadorean taxa, E. vermicularis mtDNA gene order is very unique, not sharing similarity to any other nematode species reported to date. This lack of gene order similarity may represent idiosyncratic gene rearrangements unique to this specific lineage of the oxyurids. To more fully understand the extent of gene rearrangement and its evolutionary significance within the nematode phylogenetic framework, additional mitochondrial genomes representing a greater evolutionary diversity of species must be characterized.

  3. Phylogeny of Castanea (Fagaceae) based on chloroplast trnT-L-F sequence data

    Treesearch

    Ping Lang; Fenny Dane; Thomas L. Kubisiak

    2005-01-01

    Species in the genus Castanea are widely distributed in the deciduous forests of the Northern Hemisphere from Asia to Europe and North America. They show floristic similarity but differences in chestnut blight resistance especially among eastern Asian and eastern North American species. Phylogenetic analyses were conducted in this study using...

  4. Cryptolepiota, a new sequestrate genus in the Agaricaceae with evidence for adaptive radiation in western North America

    Treesearch

    Bradley R. Kropp; Steve Albee-Scott; Michael A. Castellano; James M. Trappe

    2012-01-01

    Phylogenetic analyses based on nLSU and ITS sequence data indicate that the sequestrate genus Gigasperma is polyphyletic. Gigasperma cryptica, which is known only from New Zealand, has affinities with the Cortinariaceae whereas G. americanum and two additional undescribed taxa from western North America are...

  5. Phylogenetic analyses of mtDNA sequences corroborate taxonomic designations based on cuticular hydrocarbons in subterranean termites

    Treesearch

    Kirsten A. Copren; Lori J. Nelson; Edward L. Vargo; Michael I. Haverty

    2005-01-01

    Cuticular hydrocarbons (CHCs) are valuable characters for the analysis of cryptic insect species with few discernible morphological characters. Yet, their use in insect systematics, speciWcally in subterranean termites in the genus Reticulitermes (Isoptera: Rhinotermitidae), remains controversial. In this paper, we show that taxonomic designations...

  6. Thysanophora penicillioides includes multiple genetically diverged groups that coexist respectively in Abies mariesii forests in Japan.

    PubMed

    Iwamoto, Susumu; Tokumasu, Seiji; Suyama, Yoshihisa; Kakishima, Makoto

    2005-01-01

    We investigated intraspecific diversity and genetic structures of a saprotrophic fungus--Thysanophora penicillioides--based on sequences of nuclear ribosomal internal transcribed spacer (ITS) in 15 discontinuous Abies mariesii forests of Japan. In such a well-defined morphological species, numerous unexpected ITS variations were revealed: 12 ITS sequence types detected in 254 isolates collected from 15 local populations were classified into five ITS sequence groups. Maximally, four ITS groups consisted of seven ITS types coexisting in one population. However, group 1 was dominant with approximately 65%; in particular, one haplotype, 1a, was most dominant with approximately 60% in respective populations. Therefore, few differences were recognized in genetic structure among local populations, implying that the gene flow of each lineage of the fungus occurs among local populations without geographic limitations. However, minor haplotypes in some ITS groups were found only in restricted areas, suggesting that they might expand steadily from their places of origin to neighboring A. mariesii forests. Aggregating sequence data of seven European strains and four North American strains from various substrates to those of Japanese strains, 18 ITS sequence types and 28 variable sites were recognized. They were clustered into nine lineages by phylogenetic analyses of the beta-tubulin and combined ITS and beta-tubulin datasets. According to phylogenetic species recognition by the concordance of genealogies, respective lineages correspond to phylogenetic species. Plural phylogenetic species coexist in a local population in an A. mariesii forest in Japan.

  7. Analysis of Facultative Lithotroph Distribution and Diversity on Volcanic Deposits by Use of the Large Subunit of Ribulose 1,5-Bisphosphate Carboxylase/Oxygenase†

    PubMed Central

    Nanba, K.; King, G. M.; Dunfield, K.

    2004-01-01

    A 492- to 495-bp fragment of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) (rbcL) was amplified by PCR from facultatively lithotrophic aerobic CO-oxidizing bacteria, colorless and purple sulfide-oxidizing microbial mats, and genomic DNA extracts from tephra and ash deposits from Kilauea volcano, for which atmospheric CO and hydrogen have been previously documented as important substrates. PCR products from the mats and volcanic sites were used to construct rbcL clone libraries. Phylogenetic analyses showed that the rbcL sequences from all isolates clustered with form IC rbcL sequences derived from facultative lithotrophs. In contrast, the microbial mat clone sequences clustered with sequences from obligate lithotrophs representative of form IA rbcL. Clone sequences from volcanic sites fell within the form IC clade, suggesting that these sites were dominated by facultative lithotrophs, an observation consistent with biogeochemical patterns at the sites. Based on phylogenetic and statistical analyses, clone libraries differed significantly among volcanic sites, indicating that they support distinct lithotrophic assemblages. Although some of the clone sequences were similar to known rbcL sequences, most were novel. Based on nucleotide diversity and average pairwise difference, a forested site and an 1894 lava flow were found to support the most diverse and least diverse lithotrophic populations, respectively. These indices of diversity were not correlated with rates of atmospheric CO and hydrogen uptake but were correlated with estimates of respiration and microbial biomass. PMID:15066819

  8. Analysis of facultative lithotroph distribution and diversity on volcanic deposits by use of the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase.

    PubMed

    Nanba, K; King, G M; Dunfield, K

    2004-04-01

    A 492- to 495-bp fragment of the gene coding for the large subunit of the form I ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) (rbcL) was amplified by PCR from facultatively lithotrophic aerobic CO-oxidizing bacteria, colorless and purple sulfide-oxidizing microbial mats, and genomic DNA extracts from tephra and ash deposits from Kilauea volcano, for which atmospheric CO and hydrogen have been previously documented as important substrates. PCR products from the mats and volcanic sites were used to construct rbcL clone libraries. Phylogenetic analyses showed that the rbcL sequences from all isolates clustered with form IC rbcL sequences derived from facultative lithotrophs. In contrast, the microbial mat clone sequences clustered with sequences from obligate lithotrophs representative of form IA rbcL. Clone sequences from volcanic sites fell within the form IC clade, suggesting that these sites were dominated by facultative lithotrophs, an observation consistent with biogeochemical patterns at the sites. Based on phylogenetic and statistical analyses, clone libraries differed significantly among volcanic sites, indicating that they support distinct lithotrophic assemblages. Although some of the clone sequences were similar to known rbcL sequences, most were novel. Based on nucleotide diversity and average pairwise difference, a forested site and an 1894 lava flow were found to support the most diverse and least diverse lithotrophic populations, respectively. These indices of diversity were not correlated with rates of atmospheric CO and hydrogen uptake but were correlated with estimates of respiration and microbial biomass.

  9. What is the phylogenetic signal limit from mitogenomes? The reconciliation between mitochondrial and nuclear data in the Insecta class phylogeny

    PubMed Central

    2011-01-01

    Background Efforts to solve higher-level evolutionary relationships within the class Insecta by using mitochondrial genomic data are hindered due to fast sequence evolution of several groups, most notably Hymenoptera, Strepsiptera, Phthiraptera, Hemiptera and Thysanoptera. Accelerated rates of substitution on their sequences have been shown to have negative consequences in phylogenetic inference. In this study, we tested several methodological approaches to recover phylogenetic signal from whole mitochondrial genomes. As a model, we used two classical problems in insect phylogenetics: The relationships within Paraneoptera and within Holometabola. Moreover, we assessed the mitochondrial phylogenetic signal limits in the deeper Eumetabola dataset, and we studied the contribution of individual genes. Results Long-branch attraction (LBA) artefacts were detected in all the datasets. Methods using Bayesian inference outperformed maximum likelihood approaches, and LBA was avoided in Paraneoptera and Holometabola when using protein sequences and the site-heterogeneous mixture model CAT. The better performance of this method was evidenced by resulting topologies matching generally accepted hypotheses based on nuclear and/or morphological data, and was confirmed by cross-validation and simulation analyses. Using the CAT model, the order Strepsiptera was recovered as sister to Coleoptera for the first time using mitochondrial sequences, in agreement with recent results based on large nuclear and morphological datasets. Also the Hymenoptera-Mecopterida association was obtained, leaving Coleoptera and Strepsiptera as the basal groups of the holometabolan insects, which coincides with one of the two main competing hypotheses. For the Paraneroptera, the currently accepted non-monophyly of Homoptera was documented as a phylogenetic novelty for mitochondrial data. However, results were not satisfactory when exploring the entire Eumetabola, revealing the limits of the phylogenetic signal that can be extracted from Insecta mitogenomes. Based on the combined use of the five best topology-performing genes we obtained comparable results to whole mitogenomes, highlighting the important role of data quality. Conclusion We show for the first time that mitogenomic data agrees with nuclear and morphological data for several of the most controversial insect evolutionary relationships, adding a new independent source of evidence to study relationships among insect orders. We propose that deeper divergences cannot be inferred with the current available methods due to sequence saturation and compositional bias inconsistencies. Our exploratory analysis indicates that the CAT model is the best dealing with LBA and it could be useful for other groups and datasets with similar phylogenetic difficulties. PMID:22032248

  10. On the phylogenetic placement of human T cell leukemia virus type 1 sequences associated with an Andean mummy.

    PubMed

    Coulthart, Michael B; Posada, David; Crandall, Keith A; Dekaban, Gregory A

    2006-03-01

    Recently, the putative finding of ancient human T cell leukemia virus type 1 (HTLV-1) long terminal repeat (LTR) DNA sequences in association with a 1500-year-old Chilean mummy has stirred vigorous debate. The debate is based partly on the inherent uncertainties associated with phylogenetic reconstruction when only short sequences of closely related genotypes are available. However, a full analysis of what phylogenetic information is present in the mummy data has not previously been published, leaving open the question of what precisely is the range of admissible interpretation. To fulfill this need, we re-analyzed the mummy data in a new way. We first performed phylogenetic analysis of 188 published LTR DNA sequences from extant strains belonging to the HTLV-1 Cosmopolitan clade, using the method of statistical parsimony which is designed both to optimize phylogenetic resolution among sequences with little evolutionary divergence, and to permit precise mapping of individual sequence mutations onto branches of a divergence network. We then deduced possible phylogenetic positions for the two main categories of published Chilean mummy sequences, based on their published 157-nucleotide LTR sequences. The possible phylogenetic placements for one of the mummy sequence categories are consistent with a modern origin. However, one of these placements for the other mummy sequence category falls very close to the root of the Cosmopolitan clade, consistent with an ancient origin for both this mummy sequence and the Cosmopolitan clade.

  11. Phylogenetic selection of target species in Amaryllidaceae tribe Haemantheae for acetylcholinesterase inhibition and affinity to the serotonin reuptake transport protein

    USDA-ARS?s Scientific Manuscript database

    We present phylogenetic analyses of 37 taxa of Amaryllidaceae, tribe Haemantheae and Amaryllis belladonna L. as an outgroup, in order to provide a phylogenetic framework for the selection of candidate plants for lead discoveries in relation to Alzheimer´s disease and depression. DNA sequences from t...

  12. Phylogeny and biogeography of Allium (Amaryllidaceae: Allieae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China

    PubMed Central

    Li, Qin-Qin; Zhou, Song-Dong; He, Xing-Jin; Yu, Yan; Zhang, Yu-Cheng; Wei, Xian-Qin

    2010-01-01

    Background and Aims The genus Allium comprises more than 800 species, placing it among the largest monocotyledonous genera. It is a variable group that is spread widely across the Holarctic region. Previous studies of Allium have been useful in identifying and assessing its evolutionary lineages. However, there are still many gaps in our knowledge of infrageneric taxonomy and evolution of Allium. Further understanding of its phylogeny and biogeography will be achieved only through continued phylogenetic studies, especially of those species endemic to China that have often been excluded from previous analyses. Earlier molecular studies have shown that Chinese Allium is not monophyletic, so the goal of the present study was to infer the phylogeny and biogeography of Allium and to provide a classification of Chinese Allium by placement of Chinese species in the context of the entire phylogeny. Methods Phylogenetic studies were based on sequence data of the nuclear ribosomal internal transcribed spacer (ITS) and chloroplast rps16 intron, analysed using parsimony and Bayesian approaches. Biogeographical patterns were conducted using statistical dispersal–vicariance analysis (S-DIVA). Key Results Phylogenetic analyses indicate that Allium is monophyletic and consists of three major clades. Optimal reconstructions have favoured the ancestors of Amerallium, Anguinum, Vvedenskya, Porphyroprason and Melanocrommyum as originating in eastern Asia. Conclusions Phylogenetic analyses reveal that Allium is monophyletic but that some subgenera are not. The large genetic distances imply that Allium is of ancient origin. Molecular data suggest that its evolution proceeded along three separate evolutionary lines. S-DIVA indicates that the ancestor of Amerallium, Anguinum, Vvedenskya, Porphyroprason and Melanocrommyum originated from eastern Asia and underwent different biogeographical pathways. A taxonomic synopsis of Chinese Allium at sectional level is given, which divides Chinese Allium into 13 subgenera and 34 sections. PMID:20966186

  13. Genomics of an emerging clone of Salmonella serovar Typhimurium ST313 from Nigeria and the Democratic Republic of Congo.

    PubMed

    Leekitcharoenphon, Pimlapas; Friis, Carsten; Zankari, Ea; Svendsen, Christina Aaby; Price, Lance B; Rahmani, Maral; Herrero-Fresno, Ana; Fashae, Kayode; Vandenberg, Olivier; Aarestrup, Frank M; Hendriksen, Rene S

    2013-10-15

    Salmonella enterica serovar Typhimurium ST313 is an invasive and phylogenetically distinct lineage present in sub-Saharan Africa. We report the presence of S. Typhimurium ST313 from patients in the Democratic Republic of Congo and Nigeria. Eighteen S. Typhimurium ST313 isolates were characterized by antimicrobial susceptibility testing, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST). Additionally, six of the isolates were characterized by whole genome sequence typing (WGST). The presence of a putative virulence determinant was examined in 177 Salmonella isolates belonging to 57 different serovars. All S. Typhimurium ST313 isolates harbored resistant genes encoded by blaTEM1b, catA1, strA/B, sul1, and dfrA1. Additionally, aac(6')1aa gene was detected. Phylogenetic analyses revealed close genetic relationships among Congolese and Nigerian isolates from both blood and stool. Comparative genomic analyses identified a putative virulence fragment (ST313-TD) unique to S. Typhimurium ST313 and S. Dublin. We showed in a limited number of isolates that S. Typhimurium ST313 is a prevalent sequence-type causing gastrointestinal diseases and septicemia in patients from Nigeria and DRC. We found three distinct phylogenetic clusters based on the origin of isolation suggesting some spatial evolution. Comparative genomics showed an interesting putative virulence fragment (ST313-TD) unique to S. Typhimurium ST313 and invasive S. Dublin.

  14. A proteomic approach for studying insect phylogeny: CAPA peptides of ancient insect taxa (Dictyoptera, Blattoptera) as a test case

    PubMed Central

    Roth, Steffen; Fromm, Bastian; Gäde, Gerd; Predel, Reinhard

    2009-01-01

    Background Neuropeptide ligands have to fit exactly into their respective receptors and thus the evolution of the coding regions of their genes is constrained and may be strongly conserved. As such, they may be suitable for the reconstruction of phylogenetic relationships within higher taxa. CAPA peptides of major lineages of cockroaches (Blaberidae, Blattellidae, Blattidae, Polyphagidae, Cryptocercidae) and of the termite Mastotermes darwiniensis were chosen to test the above hypothesis. The phylogenetic relationships within various groups of the taxon Dictyoptera (praying mantids, termites and cockroaches) are still highly disputed. Results Tandem mass spectrometry of neuropeptides from perisympathetic organs was used to obtain sequence data of CAPA peptides from single specimens; the data were analysed by Maximum Parsimony and Bayesian Interference. The resulting cladograms, taking 61 species into account, show a topology which is in general agreement with recent molecular and morphological phylogenetic analyses, including the recent phylogenetic arrangement placing termites within the cockroaches. When sequence data sets from other neuropeptides, viz. adipokinetic hormones and sulfakinins, were included, the general topology of the cladogram did not change but bootstrap values increased considerably. Conclusion This study represents the first comprehensive survey of neuropeptides of insects for solely phylogenetic purposes and concludes that sequences of short neuropeptides are suitable to complement molecular biological and morphological data for the reconstruction of phylogenetic relationships. PMID:19257902

  15. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chlL gene, trnL-trnF IGS region, and trnL intron sequences.

    PubMed

    Kusumi, J; Tsumura, Y; Yoshimaru, H; Tachida, H

    2000-10-01

    Nucleotide sequences from four chloroplast genes, the matK, chlL, intergenic spacer (IGS) region between trnL and trnF, and an intron of trnL, were determined from all species of Taxodiaceae and five species of Cupressaceae sensu stricto (s.s.). Phylogenetic trees were constructed using the maximum parsimony and the neighbor-joining methods with Cunninghamia as an outgroup. These analyses provided greater resolution of relationships among genera and higher bootstrap supports for clades compared to previous analyses. Results indicate that Taiwania diverged first, and then Athrotaxis diverged from the remaining genera. Metasequoia, Sequoia, and Sequoiadendron form a clade. Taxodium and Glyptostrobus form a clade, which is the sister to Cryptomeria. Cupressaceae s.s. are derived from within Taxodiaceae, being the most closely related to the Cryptomeria/Taxodium/Glyptostrobus clade. These relationships are consistent with previous morphological groupings and the analyses of molecular data. In addition, we found acceleration of evolutionary rates in Cupressaceae s.s. Possible causes for the acceleration are discussed.

  16. PHYLOGENETIC RELATIONSHIP OF ALEXANDRIUM MONILATUM (DINOPHYCEAE) TO OTHER ALEXANDRIUM SPECIES BASED ON 18S RIBOSOMAL RNA GENE SEQUENCES

    EPA Science Inventory

    The phylogenetic relationship of Alexandrium monilatum to other Alexandrium spp. was explored using 18S rDNA sequences. Maximum likelilhood phylogenetic analysis of the combined rDNA sequences established that A. monilatum paired with Alexandrium taylori and that the pair was the...

  17. PHYLOGENETIC RELATIONSHIP OF ALEXANDRIUM MONILATUM (DINOPHYCAE)TO OTHER ALEXANDRIUM SPECIES BASED ON 18S RIBOSOMAL RNA GENE SEQUENCES

    EPA Science Inventory

    The phylogenetic relationship of Alexandrium monilatum to other Alexandrium spp. was explored using 18S rDNA sequences. Maximum likelihood phylogenetic analysis of the combined rDNA sequences established that A. monilatum paired with Alexandrium taylori and that the pair was the ...

  18. The giant zooxanthellae-bearing ciliate Maristentor dinoferus (Heterotrichea) is closely related to folliculinidae.

    PubMed

    Miao, Wei; Simpson, Alastair G B; Fu, Chengjie; Lobban, Christopher S

    2005-01-01

    The small subunit rDNA sequence of Maristentor dinoferus (Lobban, Schefter, Simpson, Pochon, Pawlowski, and Foissner, 2002) was determined and compared with sequences from other Heterotrichea and Karyorelictea. Maristentor resembles Stentor in basic morphology and had been provisionally assigned to Stentoridae. However, our phylogenetic analyses show that Maristentor is more closely related to Folliculinidae. Our results support the creation of a separate family for Maristentor, Maristentoridae n. fam., and also confirm the phylogenetic grouping of Folliculindae, Stentoridae, Blepharismidae, and Maristentoridae, which we informally call 'stentorids'. Maristentor, rather than Stentor itself, appears to be most significant in understanding the origins of folliculinids from their aloricate ancestors. Our analyses suggest continued uncertainty in the exact placement of the root of heterotrichs with this phylogenetic marker.

  19. Characterization and complete genome sequence of a panicovirus from Bermuda grass by high-throughput sequencing.

    PubMed

    Tahir, Muhammad N; Lockhart, Ben; Grinstead, Samuel; Mollov, Dimitre

    2017-04-01

    Bermuda grass samples were examined by transmission electron microscopy and 28-30 nm spherical virus particles were observed. Total RNA from these plants was subjected to high-throughput sequencing (HTS). The nearly full genome sequence of a panicovirus was identified from one HTS scaffold. Sanger sequencing was used to confirm the HTS results and complete the genome sequence of 4404 nt. This virus was provisionally named Bermuda grass latent virus (BGLV). Its predicted open reading frames follow the typical arrangement of the genus Panicovirus. Based on sequence comparisons and phylogenetic analyses BGLV differs from other viruses and therefore taxonomically it is a new member of the genus Panicovirus, family Tombusviridae.

  20. Molecular phylogenetics of subfamily Ornithogaloideae (Hyacinthaceae) based on nuclear and plastid DNA regions, including a new taxonomic arrangement

    PubMed Central

    Martínez-Azorín, Mario; Crespo, Manuel B.; Juan, Ana; Fay, Michael F.

    2011-01-01

    Background and Aims The taxonomic arrangement within subfamily Ornithogaloideae (Hyacinthaceae) has been a matter of controversy in recent decades: several new taxonomic treatments have been proposed, based exclusively on plastid DNA sequences, and these have resulted in classifications which are to a great extent contradictory. Some authors have recognized only a single genus Ornithogalum for the whole subfamily, including 250–300 species of variable morphology, whereas others have recognized many genera. In the latter case, the genera are inevitably much smaller and they are better defined morphologically. However, some are not monophyletic as circumscribed. Methods Phylogenetic analyses of Ornithogaloideae were based on nucleotide sequences of four plastid regions (trnL intron, trnL-F spacer, rbcL and matK) and a nuclear region (ITS). Eighty species covering all relevant taxonomic groups previously recognized in the subfamily were sampled. Parsimony and Bayesian analyses were performed. The molecular data were compared with a matrix of 34 morphological characters. Key Results Combinations of plastid and nuclear data yielded phylogenetic trees which are better resolved than those obtained with any plastid region alone or plastid regions in combination. Three main clades are found, corresponding to the previously recognized tribes Albuceae, Dipcadieae and Ornithogaleae. In these, up to 19 clades are described which are definable by morphology and biogeography. These mostly correspond to previously described taxa, though some need recircumscription. Morphological characters are assessed for their diagnostic value for taxonomy in the subfamily. Conclusions On the basis of the phylogenetic analyses, 19 monophyletic genera are accepted within Ornithogaloideae: Albuca, Avonsera, Battandiera, Cathissa, Coilonox, Dipcadi, Eliokarmos, Elsiea, Ethesia, Galtonia, Honorius, Loncomelos, Melomphis, Neopatersonia, Nicipe, Ornithogalum, Pseudogaltonia, Stellarioides and Trimelopter. Each of these has a particular syndrome of morphological characters. As a result, 105 new combinations are made and two new names are proposed to accommodate the taxa studied in the new arrangement. A short morphological diagnosis, synonymy, details of distribution and an identification key are presented. PMID:21163815

  1. ITS2 data corroborate a monophyletic chlorophycean DO-group (Sphaeropleales)

    PubMed Central

    2008-01-01

    Background Within Chlorophyceae the ITS2 secondary structure shows an unbranched helix I, except for the 'Hydrodictyon' and the 'Scenedesmus' clade having a ramified first helix. The latter two are classified within the Sphaeropleales, characterised by directly opposed basal bodies in their flagellar apparatuses (DO-group). Previous studies could not resolve the taxonomic position of the 'Sphaeroplea' clade within the Chlorophyceae without ambiguity and two pivotal questions remain open: (1) Is the DO-group monophyletic and (2) is a branched helix I an apomorphic feature of the DO-group? In the present study we analysed the secondary structure of three newly obtained ITS2 sequences classified within the 'Sphaeroplea' clade and resolved sphaeroplealean relationships by applying different phylogenetic approaches based on a combined sequence-structure alignment. Results The newly obtained ITS2 sequences of Ankyra judayi, Atractomorpha porcata and Sphaeroplea annulina of the 'Sphaeroplea' clade do not show any branching in the secondary structure of their helix I. All applied phylogenetic methods highly support the 'Sphaeroplea' clade as a sister group to the 'core Sphaeropleales'. Thus, the DO-group is monophyletic. Furthermore, based on characteristics in the sequence-structure alignment one is able to distinguish distinct lineages within the green algae. Conclusion In green algae, a branched helix I in the secondary structure of the ITS2 evolves past the 'Sphaeroplea' clade. A branched helix I is an apomorph characteristic within the monophyletic DO-group. Our results corroborate the fundamental relevance of including the secondary structure in sequence analysis and phylogenetics. PMID:18655698

  2. Analysis of host preference and geographical distribution of Anastrepha suspensa (Diptera: Tephritidae) using phylogenetic analyses of mitochondrial cytochrome oxidase I DNA sequence data.

    PubMed

    Boykin, L M; Shatters, R G; Hall, D G; Burns, R E; Franqui, R A

    2006-10-01

    Anastrepha suspensa (Loew) is an economically important pest, restricted to the Greater Antilles and southern Florida. It infests a wide variety of hosts and is of quarantine importance in citrus, a multi-million dollar industry in Florida. The observed recent increase in citrus infested with A. suspensa in Florida has raised questions regarding host-specificity of certain populations and genetic diversity of the pest throughout its geographical distribution. Cytochrome oxidase I (COI) DNA sequence data was used to characterize the genetic diversity of A. suspensa from Florida and Caribbean populations reared from different host plants. Maximum likelihood and Bayesian phylogenetic methods were used to analyse COI data. Sequence variation among mitochondrial COI genes from 107 A. suspensa samples collected throughout Florida and the Caribbean ranged between 0 and 10% and placed all A. suspensa as a monophyletic group that united all A. suspensa in a clade sister to a Central American group of the A. fraterculus paraphyletic species complex. The most likely tree of the COI locus indicated that COI sequence variation was too low to provide resolution at the subspecies level, therefore monophyletic groups based on host-plant use, geography (Florida, Jamaica, Cayman Islands, Puerto Rico or Dominican Republic) or population sampled are not supported. This result indicates that either no population segregation has occurred based on these biological or geographical distinctions and that this is a generalist, polyphagous invasive genotype. Alternatively, if populations are distinct, the segregation event was more recent than can be distinguished based on COI sequence variation.

  3. The evolutionary history of holometabolous insects inferred from transcriptome-based phylogeny and comprehensive morphological data.

    PubMed

    Peters, Ralph S; Meusemann, Karen; Petersen, Malte; Mayer, Christoph; Wilbrandt, Jeanne; Ziesmann, Tanja; Donath, Alexander; Kjer, Karl M; Aspöck, Ulrike; Aspöck, Horst; Aberer, Andre; Stamatakis, Alexandros; Friedrich, Frank; Hünefeld, Frank; Niehuis, Oliver; Beutel, Rolf G; Misof, Bernhard

    2014-03-20

    Despite considerable progress in systematics, a comprehensive scenario of the evolution of phenotypic characters in the mega-diverse Holometabola based on a solid phylogenetic hypothesis was still missing. We addressed this issue by de novo sequencing transcriptome libraries of representatives of all orders of holometabolan insects (13 species in total) and by using a previously published extensive morphological dataset. We tested competing phylogenetic hypotheses by analyzing various specifically designed sets of amino acid sequence data, using maximum likelihood (ML) based tree inference and Four-cluster Likelihood Mapping (FcLM). By maximum parsimony-based mapping of the morphological data on the phylogenetic relationships we traced evolutionary transformations at the phenotypic level and reconstructed the groundplan of Holometabola and of selected subgroups. In our analysis of the amino acid sequence data of 1,343 single-copy orthologous genes, Hymenoptera are placed as sister group to all remaining holometabolan orders, i.e., to a clade Aparaglossata, comprising two monophyletic subunits Mecopterida (Amphiesmenoptera + Antliophora) and Neuropteroidea (Neuropterida + Coleopterida). The monophyly of Coleopterida (Coleoptera and Strepsiptera) remains ambiguous in the analyses of the transcriptome data, but appears likely based on the morphological data. Highly supported relationships within Neuropterida and Antliophora are Raphidioptera + (Neuroptera + monophyletic Megaloptera), and Diptera + (Siphonaptera + Mecoptera). ML tree inference and FcLM yielded largely congruent results. However, FcLM, which was applied here for the first time to large phylogenomic supermatrices, displayed additional signal in the datasets that was not identified in the ML trees. Our phylogenetic results imply that an orthognathous larva belongs to the groundplan of Holometabola, with compound eyes and well-developed thoracic legs, externally feeding on plants or fungi. Ancestral larvae of Aparaglossata were prognathous, equipped with single larval eyes (stemmata), and possibly agile and predacious. Ancestral holometabolan adults likely resembled in their morphology the groundplan of adult neopteran insects. Within Aparaglossata, the adult's flight apparatus and ovipositor underwent strong modifications. We show that the combination of well-resolved phylogenies obtained by phylogenomic analyses and well-documented extensive morphological datasets is an appropriate basis for reconstructing complex morphological transformations and for the inference of evolutionary histories.

  4. 16S-23S rRNA gene internal transcribed spacer sequences for analysis of the phylogenetic relationships among species of the genus Porphyromonas.

    PubMed

    Conrads, Georg; Citron, Diane M; Tyrrell, Kerin L; Horz, Hans-Peter; Goldstein, Ellie J C

    2005-03-01

    The 16S-23S rRNA gene internal transcribed spacer (ITS) regions of 11 reference strains of Porphyromonas species, together with Bacteroides distasonis and Tannerella forsythensis, were analysed to examine interspecies relationships. Compared with the phylogenetic tree generated using 16S rRNA gene sequences, the resolution of the ITS sequence-based tree was higher, but species positioning and clustering were similar with both approaches. The recent separation of Porphyromonas gulae and Porphyromonas gingivalis into distinct species was confirmed by the ITS data. In addition, analysis of the ITS sequences of 24 clinical isolates of Porphyromonas asaccharolytica plus the type strain ATCC 25260(T) divided the sequences into two clusters, of which one was alpha-fucosidase-positive (like the type strain) while the other was alpha-fucosidase-negative. The latter resembled the previously studied unusual extra-oral isolates of 'Porphyromonas endodontalis-like organisms' (PELOs) which could therefore be called 'Porphyromonas asaccharolytica-like organisms' (PALOs), based on the genetic identification. Moreover, the proposal of alpha-fucosidase-negative P. asaccharolytica strains as a new species should also be considered.

  5. Phylogenetic and ecological analyses of soil and sporocarp DNA sequences reveal high diversity and strong habitat partitioning in the boreal ectomycorrhizal genus Russula (Russulales; Basidiomycota)

    Treesearch

    József Geml; Gary A. Laursen; Ian C. Herriott; Jack M. McFarland; Michael G. Booth; Niall Lennon; H. Chad Nusbaum; D. Lee Taylor

    2010-01-01

    Although critical for the functioning of ecosystems, fungi are poorly known in high-latitude regions. Here, we provide the first genetic diversity assessment of one of the most diverse and abundant ectomycorrhizal genera in Alaska: Russula. We analyzed internal transcribed spacer rDNA sequences from sporocarps and soil samples using phylogenetic...

  6. Reassessing the evolutionary history of ass-like equids: insights from patterns of genetic variation in contemporary extant populations.

    PubMed

    Rosenbom, Sónia; Costa, Vânia; Chen, Shanyuan; Khalatbari, Leili; Yusefi, Gholam Hosein; Abdukadir, Ablimit; Yangzom, Chamba; Kebede, Fanuel; Teclai, Redae; Yohannes, Hagos; Hagos, Futsum; Moehlman, Patricia D; Beja-Pereira, Albano

    2015-04-01

    All extant equid species are grouped in a single genus - Equus. Among those, ass-like equids have remained particularly unstudied and their phylogenetic relations were poorly understood, most probably because they inhabit extreme environments in remote geographic areas. To gain further insights into the evolutionary history of ass-like equids, we have used a non-invasive sampling approach to collect representative fecal samples of extant African and Asiatic ass-like equid populations across their distribution range and mitochondrial DNA (mtDNA) sequencing analyses to examine intraspecific genetic diversity and population structure, and to reconstruct phylogenetic relations among wild ass species/subspecies. Sequence analyses of 410 base pairs of the fast evolving mtDNA control region identified the Asiatic wild ass population of Kalamaili (China) as the one displaying the highest diversity among all wild ass populations. Phylogenetic analyses of complete cytochrome b sequences revealed that African and Asiatic wild asses shared a common ancestor approximately 2.3Mya and that diversification in both groups occurred much latter, probably driven by climatic events during the Pleistocene. Inferred genetic relationships among Asiatic wild ass species do not support E. kiang monophyly, highlighting the need of more extensive studies in order to clarify the taxonomic status of species/subspecies belonging to this branch of the Equus phylogeny. These results highlight the importance of re-assessing the evolutionary history of ass-like equid species, and urge to extend studies at the population level to efficiently design conservation and management actions for these threatened species. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Use of phylogenetic and phenotypic analyses to identify nonhemolytic streptococci isolated from bacteremic patients.

    PubMed

    Hoshino, Tomonori; Fujiwara, Taku; Kilian, Mogens

    2005-12-01

    The aim of this study was to evaluate molecular and phenotypic methods for the identification of nonhemolytic streptococci. A collection of 148 strains consisting of 115 clinical isolates from cases of infective endocarditis, septicemia, and meningitis and 33 reference strains, including type strains of all relevant Streptococcus species, were examined. Identification was performed by phylogenetic analysis of nucleotide sequences of four housekeeping genes, ddl, gdh, rpoB, and sodA; by PCR analysis of the glucosyltransferase (gtf) gene; and by conventional phenotypic characterization and identification using two commercial kits, Rapid ID 32 STREP and STREPTOGRAM and the associated databases. A phylogenetic tree based on concatenated sequences of the four housekeeping genes allowed unequivocal differentiation of recognized species and was used as the reference. Analysis of single gene sequences revealed deviation clustering in eight strains (5.4%) due to homologous recombination with other species. This was particularly evident in S. sanguinis and in members of the anginosus group of streptococci. The rate of correct identification of the strains by both commercial identification kits was below 50% but varied significantly between species. The most significant problems were observed with S. mitis and S. oralis and 11 Streptococcus species described since 1991. Our data indicate that identification based on multilocus sequence analysis is optimal. As a more practical alternative we recommend identification based on sodA sequences with reference to a comprehensive set of sequences that is available for downloading from our server. An analysis of the species distribution of 107 nonhemolytic streptococci from bacteremic patients showed a predominance of S. oralis and S. anginosus with various underlying infections.

  8. Micromonospora halotolerans sp. nov., isolated from the rhizosphere of a Pisum sativum plant.

    PubMed

    Carro, Lorena; Pukall, Rüdiger; Spröer, Cathrin; Kroppenstedt, Reiner M; Trujillo, Martha E

    2013-06-01

    A filamentous actinomycete strain designated CR18(T) was isolated on humic acid agar from the rhizosphere of a Pisum sativum plant collected in Spain. This isolate was observed to grow optimally at 28 °C, pH 7.0 and in the presence of 5 % NaCl. Phylogenetic analyses based on the 16S rRNA gene sequence indicated a close relationship with the type strains of Micromonospora chersina and Micromonospora endolithica. A further analysis based on a concatenated DNA sequence stretch of 4,523 bp that included partial sequences of the atpD, gyrB, recA, rpoB and 16S rRNA genes clearly differentiated the new strain from recognized Micromonospora species compared. DNA-DNA hybridization studies further supported the taxonomic position of strain CR18(T) as a novel genomic species. Chemotaxonomic analyses which included whole cell sugars, polar lipids, fatty acid profiles and menaquinone composition confirmed the affiliation of the new strain to the genus Micromonospora and also highlighted differences at the species level. These studies were finally complemented with an array of physiological tests to help differentiate between the new strain and its phylogenetic neighbours. Consequently, strain CR18(T) (= CECT 7890(T) = DSM 45598(T)) is proposed as the type strain of a novel species, Micromonospora halotolerans sp. nov.

  9. Differentiation of Xylella fastidiosa Strains via Multilocus Sequence Analysis of Environmentally Mediated Genes (MLSA-E)

    PubMed Central

    Parker, Jennifer K.; Havird, Justin C.

    2012-01-01

    Isolates of the plant pathogen Xylella fastidiosa are genetically very similar, but studies on their biological traits have indicated differences in virulence and infection symptomatology. Taxonomic analyses have identified several subspecies, and phylogenetic analyses of housekeeping genes have shown broad host-based genetic differences; however, results are still inconclusive for genetic differentiation of isolates within subspecies. This study employs multilocus sequence analysis of environmentally mediated genes (MLSA-E; genes influenced by environmental factors) to investigate X. fastidiosa relationships and differentiate isolates with low genetic variability. Potential environmentally mediated genes, including host colonization and survival genes related to infection establishment, were identified a priori. The ratio of the rate of nonsynonymous substitutions to the rate of synonymous substitutions (dN/dS) was calculated to select genes that may be under increased positive selection compared to previously studied housekeeping genes. Nine genes were sequenced from 54 X. fastidiosa isolates infecting different host plants across the United States. Results of maximum likelihood (ML) and Bayesian phylogenetic (BP) analyses are in agreement with known X. fastidiosa subspecies clades but show novel within-subspecies differentiation, including geographic differentiation, and provide additional information regarding host-based isolate variation and specificity. dN/dS ratios of environmentally mediated genes, though <1 due to high sequence similarity, are significantly greater than housekeeping gene dN/dS ratios and correlate with increased sequence variability. MLSA-E can more precisely resolve relationships between closely related bacterial strains with low genetic variability, such as X. fastidiosa isolates. Discovering the genetic relationships between X. fastidiosa isolates will provide new insights into the epidemiology of populations of X. fastidiosa, allowing improved disease management in economically important crops. PMID:22194287

  10. Differentiation of Xylella fastidiosa strains via multilocus sequence analysis of environmentally mediated genes (MLSA-E).

    PubMed

    Parker, Jennifer K; Havird, Justin C; De La Fuente, Leonardo

    2012-03-01

    Isolates of the plant pathogen Xylella fastidiosa are genetically very similar, but studies on their biological traits have indicated differences in virulence and infection symptomatology. Taxonomic analyses have identified several subspecies, and phylogenetic analyses of housekeeping genes have shown broad host-based genetic differences; however, results are still inconclusive for genetic differentiation of isolates within subspecies. This study employs multilocus sequence analysis of environmentally mediated genes (MLSA-E; genes influenced by environmental factors) to investigate X. fastidiosa relationships and differentiate isolates with low genetic variability. Potential environmentally mediated genes, including host colonization and survival genes related to infection establishment, were identified a priori. The ratio of the rate of nonsynonymous substitutions to the rate of synonymous substitutions (dN/dS) was calculated to select genes that may be under increased positive selection compared to previously studied housekeeping genes. Nine genes were sequenced from 54 X. fastidiosa isolates infecting different host plants across the United States. Results of maximum likelihood (ML) and Bayesian phylogenetic (BP) analyses are in agreement with known X. fastidiosa subspecies clades but show novel within-subspecies differentiation, including geographic differentiation, and provide additional information regarding host-based isolate variation and specificity. dN/dS ratios of environmentally mediated genes, though <1 due to high sequence similarity, are significantly greater than housekeeping gene dN/dS ratios and correlate with increased sequence variability. MLSA-E can more precisely resolve relationships between closely related bacterial strains with low genetic variability, such as X. fastidiosa isolates. Discovering the genetic relationships between X. fastidiosa isolates will provide new insights into the epidemiology of populations of X. fastidiosa, allowing improved disease management in economically important crops.

  11. The phylogenetic relationships and molecular systematics of scincid lizards of the genus Heremites (Sauria, Scincidae) in the Middle East based on mtDNA sequences.

    PubMed

    Bahmani, Zahed; Rastegar-Pouyani, Eskandar; Rastegar-Pouyani, Nasrullah

    2017-09-08

    The taxonomic status of species included in the genus Heremites in Iran and Iraq is uncertain. Three of these species have been assigned to the genus based on morphology: Heremites auratus transcaucasica, H. vittatus, and H. septemtaeniatus. We examined the phylogenetic relationships and taxonomic status of the Iranian and Iraqi species of Heremites by performing phylogenetic analyses using mitochondrial DNA sequences (cytochrome b and 16S rRNA). Phylogenetic relationships and estimated genetic distances indicated that the Heremites populations of the area (Iran and Iraq) form five distinct clades. Three of these clades are found only in Iran, specifically in: (1) Fars and Hormozgan provinces; (2) Northeastern Khuzestan; and (3) Khorasan and Isfahan provinces. The fourth clade (H. septemtaeniatus) is found in west and Mahshahr in Iran as well as in eastern and northern parts of Iraq. The fifth clade, Heremites vittatus, is found in Iran and Iraq. We also confirm the absence of H. auratus in Iran and Iraq. It also indicated that H. vittatus is sister taxon to the other groups that our analyses estimate the divergence of this clade in the Middle Miocene (15.9 Mya). The clade containing the Fars-Hormozgan and Khuzestan populations diverged at the end of the Miocene (8.5 Mya). The Isfahan and Khorasan populations separated at the Pliocene (4.2 Mya) from the western Iranian group, the group in Mahshahr, Iran and the groups in northern and eastern Iraq.

  12. Phylogeny and evolutionary histories of Pyrus L. revealed by phylogenetic trees and networks based on data from multiple DNA sequences

    USDA-ARS?s Scientific Manuscript database

    Reconstructing the phylogeny of Pyrus has been difficult due to the wide distribution of the genus and lack of informative data. In this study, we collected 110 accessions representing 25 Pyrus species and constructed both phylogenetic trees and phylogenetic networks based on multiple DNA sequence d...

  13. A Distance Measure for Genome Phylogenetic Analysis

    NASA Astrophysics Data System (ADS)

    Cao, Minh Duc; Allison, Lloyd; Dix, Trevor

    Phylogenetic analyses of species based on single genes or parts of the genomes are often inconsistent because of factors such as variable rates of evolution and horizontal gene transfer. The availability of more and more sequenced genomes allows phylogeny construction from complete genomes that is less sensitive to such inconsistency. For such long sequences, construction methods like maximum parsimony and maximum likelihood are often not possible due to their intensive computational requirement. Another class of tree construction methods, namely distance-based methods, require a measure of distances between any two genomes. Some measures such as evolutionary edit distance of gene order and gene content are computational expensive or do not perform well when the gene content of the organisms are similar. This study presents an information theoretic measure of genetic distances between genomes based on the biological compression algorithm expert model. We demonstrate that our distance measure can be applied to reconstruct the consensus phylogenetic tree of a number of Plasmodium parasites from their genomes, the statistical bias of which would mislead conventional analysis methods. Our approach is also used to successfully construct a plausible evolutionary tree for the γ-Proteobacteria group whose genomes are known to contain many horizontally transferred genes.

  14. Molecular characterization of Hepatozoon sp. from Brazilian dogs and its phylogenetic relationship with other Hepatozoon spp.

    PubMed

    Forlano, M D; Teixeira, K R S; Scofield, A; Elisei, C; Yotoko, K S C; Fernandes, K R; Linhares, G F C; Ewing, S A; Massard, C L

    2007-04-10

    To characterize phylogenetically the species which causes canine hepatozoonosis at two rural areas of Rio de Janeiro State, Brazil, we used universal or Hepatozoon spp. primer sets for the 18S SSU rRNA coding region. DNA extracts were obtained from blood samples of thirteen dogs naturally infected, from four experimentally infected, and from five puppies infected by vertical transmission from a dam, that was experimentally infected. DNA of sporozoites of Hepatozoon americanum was used as positive control. The amplification of DNA extracts from blood of dogs infected with sporozoites of Hepatozoon spp. was observed in the presence of primers to 18S SSU rRNA gene of Hepatozoon spp., whereas DNA of H. americanum sporozoites was amplified in the presence of either universal or Hepatozoon spp.-specific primer sets; the amplified products were approximately 600bp in size. Cloned PCR products obtained from DNA extracts of blood from two dogs experimentally infected with Hepatozoon sp. were sequenced. The consensus sequence, derived from six sequence data sets, were blasted against sequences of 18S SSU rRNA of Hepatozoon spp. available at GenBank and aligned to homologous sequences to perform the phylogenetic analysis. This analysis clearly showed that our sequence clustered, independently of H. americanum sequences, within a group comprising other Hepatozoon canis sequences. Our results confirmed the hypothesis that the agent causing hepatozoonosis in the areas studied in Brazil is H. canis, supporting previous reports that were based on morphological and morphometric analyses.

  15. Analysis of heterogeneity of Copia-like retrotransposons in the genome of cassava (Manihot esculenta Crantz).

    PubMed

    Gbadegesin, Micheal A; Beeching, John R

    2011-12-20

    Retrotransposons are ubiquitous in eukaryotic genomes and now proving to be useful genetic tools for genetic diversity and phylogenetic analyses, especially in plants. In order to assess the diversity of Ty1/Copia-like retrotransposons of cassava, we used PCR primers anchored on the conserved domains of reverse transcriptases (RTs) to amplify cassava Ty1/Copia-like RT. The PCR product was cloned and sequenced. Sequences analysis of the clones revealed the presence of 69 families of Ty1/Copia-like retrotransposon in the genome of cassava. Comparative analyses of the predicted amino acid sequences of these clones with those of other plants showed that retroelements of this class are very heterogeneous in cassava. Cassava is widely grown for its edible roots in the tropical and subtropical regions of the world. Cassava roots, though poor in protein, are rich in starch (makes up about 80% of the dry matter), vitamin C, carotenes, calcium and potassium. It has a great commercial importance as a source of starch and starch based products. Realizing the importance of cassava, it stands out as a crop to benefit from biotechnology development. Heterogeneity of Mecops (Manihot esculenta copia-like Retrotransposons) showed that they may be useful for genetic diversity and phylogenetic analyses of cassava germplasm.

  16. Comprehensive Genetic Characterization of Intraprostatic Chronic Inflammation and Prostate Cancer in African American Men

    DTIC Science & Technology

    2017-09-01

    with new methodologies of intratumoral phylogenetic analyses, will yield pivotal information in elucidating the key genes involved evolution of PCa...combined with both clinical and experimental genetic data produced by this study may empower patients and doctors to make personalized treatment decisions...sequencing, paired with new methodologies of intratumoral phylogenetic analyses, will yield pivotal information in elucidating the key genes involved

  17. Analyses of the radiation of birnaviruses from diverse host phyla and of their evolutionary affinities with other double-stranded RNA and positive strand RNA viruses using robust structure-based multiple sequence alignments and advanced phylogenetic methods

    PubMed Central

    2013-01-01

    Background Birnaviruses form a distinct family of double-stranded RNA viruses infecting animals as different as vertebrates, mollusks, insects and rotifers. With such a wide host range, they constitute a good model for studying the adaptation to the host. Additionally, several lines of evidence link birnaviruses to positive strand RNA viruses and suggest that phylogenetic analyses may provide clues about transition. Results We characterized the genome of a birnavirus from the rotifer Branchionus plicalitis. We used X-ray structures of RNA-dependent RNA polymerases and capsid proteins to obtain multiple structure alignments that allowed us to obtain reliable multiple sequence alignments and we employed “advanced” phylogenetic methods to study the evolutionary relationships between some positive strand and double-stranded RNA viruses. We showed that the rotifer birnavirus genome exhibited an organization remarkably similar to other birnaviruses. As this host was phylogenetically very distant from the other known species targeted by birnaviruses, we revisited the evolutionary pathways within the Birnaviridae family using phylogenetic reconstruction methods. We also applied a number of phylogenetic approaches based on structurally conserved domains/regions of the capsid and RNA-dependent RNA polymerase proteins to study the evolutionary relationships between birnaviruses, other double-stranded RNA viruses and positive strand RNA viruses. Conclusions We show that there is a good correlation between the phylogeny of the birnaviruses and that of their hosts at the phylum level using the RNA-dependent RNA polymerase (genomic segment B) on the one hand and a concatenation of the capsid protein, protease and ribonucleoprotein (genomic segment A) on the other hand. This correlation tends to vanish within phyla. The use of advanced phylogenetic methods and robust structure-based multiple sequence alignments allowed us to obtain a more accurate picture (in terms of probability of the tree topologies) of the evolutionary affinities between double-stranded RNA and positive strand RNA viruses. In particular, we were able to show that there exists a good statistical support for the claims that dsRNA viruses are not monophyletic and that viruses with permuted RdRps belong to a common evolution lineage as previously proposed by other groups. We also propose a tree topology with a good statistical support describing the evolutionary relationships between the Picornaviridae, Caliciviridae, Flaviviridae families and a group including the Alphatetraviridae, Nodaviridae, Permutotretraviridae, Birnaviridae, and Cystoviridae families. PMID:23865988

  18. Juglanconis gen. nov. on Juglandaceae, and the new family Juglanconidaceae (Diaporthales)

    USDA-ARS?s Scientific Manuscript database

    Molecular phylogenetic analyses of ITS-LSU rDNA sequence data demonstrate that Melanconis species occurring on Juglandaceae are phylogenetically distinct from Melanconis sensu stricto, and the new genus Juglanconis is described. Morphologically, the genus Juglanconis differs from Melanconis by light...

  19. Let's jump in: A phylogenetic study of the great basin springfishes and poolfishes, Crenichthys and Empetrichthys (Cyprinodontiformes: Goodeidae)

    PubMed Central

    2017-01-01

    North America’s Great Basin has long been of interest to biologists due to its high level of organismal endemicity throughout its endorheic watersheds. One example of such a group is the subfamily Empetricthyinae. In this paper, we analyzed the relationships of the Empetrichtyinae and assessed the validity of the subspecies designations given by Williams and Wilde within the group using concatenated phylogenetic tree estimation and species tree estimation. Samples from 19 populations were included covering the entire distribution of the three extant species of Empetricthyinae–Crenichthys nevadae, Crenichthys baileyi and Empetricthys latos. Three nuclear introns (S8 intron 4, S7 intron 1, and P0 intron 1) and one mitochondrial gene (Cytb) were sequenced for phylogenetic analysis. Using these sequences, we generated two separate hypotheses of the evolutionary relationships of Empetrichtyinae- one based on the mitochondrial data and one based on the nuclear data using Bayesian phylogenetics. Haplotype networks were also generated to look at the relationships of the populations within Empetrichthyinae. After comparing the two phylogenetic hypotheses, species trees were generated using *BEAST with the nuclear data to further test the validity of the subspecies within Empetrichthyinae. The mitochondrial analyses supported four lineages within C. baileyi and 2 within C. nevadae. The concatenated nuclear tree was more conserved, supporting one clade and an unresolved polytomy in both species. The species tree analysis supported the presence of two species within both C. baileyi and C. nevadae. Based on the results of these analyses, the subspecies designations of Williams and Wilde are not valid, rather a conservative approach suggests there are two species within C. nevadae and two species within C. baileyi. No structure was found for E. latos or the populations of Empetricthyinae. This study represents one of many demonstrating the invalidity of subspecies and their detriment to species identification, conservation, and understanding. PMID:29077708

  20. Molecular phylogenetic reconstruction of the endemic Asian salamander family Hynobiidae (Amphibia, Caudata).

    PubMed

    Weisrock, David W; Macey, J Robert; Matsui, Masafumi; Mulcahy, Daniel G; Papenfuss, Theodore J

    2013-01-01

    The salamander family Hynobiidae contains over 50 species and has been the subject of a number of molecular phylogenetic investigations aimed at reconstructing branches across the entire family. In general, studies using the greatest amount of sequence data have used reduced taxon sampling, while the study with the greatest taxon sampling has used a limited sequence data set. Here, we provide insights into the phylogenetic history of the Hynobiidae using both dense taxon sampling and a large mitochondrial DNA sequence data set. We report exclusive new mitochondrial DNA data of 2566 aligned bases (with 151 excluded sites, of included sites 1157 are variable with 957 parsimony informative). This is sampled from two genic regions encoding a 12S-16S region (the 3' end of 12S rRNA, tRNA(VAI), and the 5' end of 16S rRNA), and a ND2-COI region (ND2, tRNA(Trp), tRNA(Ala), tRNA(Asn), the origin for light strand replication--O(L), tRNA(Cys), tRNAT(Tyr), and the 5' end of COI). Analyses using parsimony, Bayesian, and maximum likelihood optimality criteria produce similar phylogenetic trees, with discordant branches generally receiving low levels of branch support. Monophyly of the Hynobiidae is strongly supported across all analyses, as is the sister relationship and deep divergence between the genus Onychodactylus with all remaining hynobiids. Within this latter grouping our phylogenetic results identify six clades that are relatively divergent from one another, but for which there is minimal support for their phylogenetic placement. This includes the genus Batrachuperus, the genus Hynobius, the genus Pachyhynobius, the genus Salamandrella, a clade containing the genera Ranodon and Paradactylodon, and a clade containing the genera Liua and Pseudohynobius. This latter clade receives low bootstrap support in the parsimony analysis, but is consistent across all three analytical methods. Our results also clarify a number of well-supported relationships within the larger Batrachuperus and Hynobius clades. While the relationships identified in this study do much to clarify the phylogenetic history of the Hynobiidae, the poor resolution among major hynobiid clades, and the contrast of mtDNA-derived relationships with recent phylogenetic results from a small number of nuclear genes, highlights the need for continued phylogenetic study with larger numbers of nuclear loci.

  1. Understanding phylogenetic incongruence: lessons from phyllostomid bats

    PubMed Central

    Dávalos, Liliana M; Cirranello, Andrea L; Geisler, Jonathan H; Simmons, Nancy B

    2012-01-01

    All characters and trait systems in an organism share a common evolutionary history that can be estimated using phylogenetic methods. However, differential rates of change and the evolutionary mechanisms driving those rates result in pervasive phylogenetic conflict. These drivers need to be uncovered because mismatches between evolutionary processes and phylogenetic models can lead to high confidence in incorrect hypotheses. Incongruence between phylogenies derived from morphological versus molecular analyses, and between trees based on different subsets of molecular sequences has become pervasive as datasets have expanded rapidly in both characters and species. For more than a decade, evolutionary relationships among members of the New World bat family Phyllostomidae inferred from morphological and molecular data have been in conflict. Here, we develop and apply methods to minimize systematic biases, uncover the biological mechanisms underlying phylogenetic conflict, and outline data requirements for future phylogenomic and morphological data collection. We introduce new morphological data for phyllostomids and outgroups and expand previous molecular analyses to eliminate methodological sources of phylogenetic conflict such as taxonomic sampling, sparse character sampling, or use of different algorithms to estimate the phylogeny. We also evaluate the impact of biological sources of conflict: saturation in morphological changes and molecular substitutions, and other processes that result in incongruent trees, including convergent morphological and molecular evolution. Methodological sources of incongruence play some role in generating phylogenetic conflict, and are relatively easy to eliminate by matching taxa, collecting more characters, and applying the same algorithms to optimize phylogeny. The evolutionary patterns uncovered are consistent with multiple biological sources of conflict, including saturation in morphological and molecular changes, adaptive morphological convergence among nectar-feeding lineages, and incongruent gene trees. Applying methods to account for nucleotide sequence saturation reduces, but does not completely eliminate, phylogenetic conflict. We ruled out paralogy, lateral gene transfer, and poor taxon sampling and outgroup choices among the processes leading to incongruent gene trees in phyllostomid bats. Uncovering and countering the possible effects of introgression and lineage sorting of ancestral polymorphism on gene trees will require great leaps in genomic and allelic sequencing in this species-rich mammalian family. We also found evidence for adaptive molecular evolution leading to convergence in mitochondrial proteins among nectar-feeding lineages. In conclusion, the biological processes that generate phylogenetic conflict are ubiquitous, and overcoming incongruence requires better models and more data than have been collected even in well-studied organisms such as phyllostomid bats. PMID:22891620

  2. RAPD and Internal Transcribed Spacer Sequence Analyses Reveal Zea nicaraguensis as a Section Luxuriantes Species Close to Zea luxurians

    PubMed Central

    Wang, Pei; Lu, Yanli; Zheng, Mingmin; Rong, Tingzhao; Tang, Qilin

    2011-01-01

    Genetic relationship of a newly discovered teosinte from Nicaragua, Zea nicaraguensis with waterlogging tolerance, was determined based on randomly amplified polymorphic DNA (RAPD) markers and the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA using 14 accessions from Zea species. RAPD analysis showed that a total of 5,303 fragments were produced by 136 random decamer primers, of which 84.86% bands were polymorphic. RAPD-based UPGMA analysis demonstrated that the genus Zea can be divided into section Luxuriantes including Zea diploperennis, Zea luxurians, Zea perennis and Zea nicaraguensis, and section Zea including Zea mays ssp. mexicana, Zea mays ssp. parviglumis, Zea mays ssp. huehuetenangensis and Zea mays ssp. mays. ITS sequence analysis showed the lengths of the entire ITS region of the 14 taxa in Zea varied from 597 to 605 bp. The average GC content was 67.8%. In addition to the insertion/deletions, 78 variable sites were recorded in the total ITS region with 47 in ITS1, 5 in 5.8S, and 26 in ITS2. Sequences of these taxa were analyzed with neighbor-joining (NJ) and maximum parsimony (MP) methods to construct the phylogenetic trees, selecting Tripsacum dactyloides L. as the outgroup. The phylogenetic relationships of Zea species inferred from the ITS sequences are highly concordant with the RAPD evidence that resolved two major subgenus clades. Both RAPD and ITS sequence analyses indicate that Zea nicaraguensis is more closely related to Zea luxurians than the other teosintes and cultivated maize, which should be regarded as a section Luxuriantes species. PMID:21525982

  3. Kakusan4 and Aminosan: two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data.

    PubMed

    Tanabe, Akifumi S

    2011-09-01

    Proportional and separate models able to apply different combination of substitution rate matrix (SRM) and among-site rate variation model (ASRVM) to each locus are frequently used in phylogenetic studies of multilocus data. A proportional model assumes that branch lengths are proportional among partitions and a separate model assumes that each partition has an independent set of branch lengths. However, the selection from among nonpartitioned (i.e., a common combination of models is applied to all-loci concatenated sequences), proportional and separate models is usually based on the researcher's preference rather than on any information criteria. This study describes two programs, 'Kakusan4' (for DNA sequences) and 'Aminosan' (for amino-acid sequences), which allow the selection of evolutionary models based on several types of information criteria. The programs can handle both multilocus and single-locus data, in addition to providing an easy-to-use wizard interface and a noninteractive command line interface. In the case of multilocus data, SRMs and ASRVMs are compared at each locus and at all-loci concatenated sequences, after which nonpartitioned, proportional and separate models are compared based on information criteria. The programs also provide model configuration files for mrbayes, paup*, phyml, raxml and Treefinder to support further phylogenetic analysis using a selected model. When likelihoods are optimized by Treefinder, the best-fit models were found to differ depending on the data set. Furthermore, differences in the information criteria among nonpartitioned, proportional and separate models were much larger than those among the nonpartitioned models. These findings suggest that selecting from nonpartitioned, proportional and separate models results in a better phylogenetic tree. Kakusan4 and Aminosan are available at http://www.fifthdimension.jp/. They are licensed under gnugpl Ver.2, and are able to run on Windows, MacOS X and Linux. © 2011 Blackwell Publishing Ltd.

  4. Extracting phylogenetic signal and accounting for bias in whole-genome data sets supports the Ctenophora as sister to remaining Metazoa.

    PubMed

    Borowiec, Marek L; Lee, Ernest K; Chiu, Joanna C; Plachetzki, David C

    2015-11-23

    Understanding the phylogenetic relationships among major lineages of multicellular animals (the Metazoa) is a prerequisite for studying the evolution of complex traits such as nervous systems, muscle tissue, or sensory organs. Transcriptome-based phylogenies have dramatically improved our understanding of metazoan relationships in recent years, although several important questions remain. The branching order near the base of the tree, in particular the placement of the poriferan (sponges, phylum Porifera) and ctenophore (comb jellies, phylum Ctenophora) lineages is one outstanding issue. Recent analyses have suggested that the comb jellies are sister to all remaining metazoan phyla including sponges. This finding is surprising because it suggests that neurons and other complex traits, present in ctenophores and eumetazoans but absent in sponges or placozoans, either evolved twice in Metazoa or were independently, secondarily lost in the lineages leading to sponges and placozoans. To address the question of basal metazoan relationships we assembled a novel dataset comprised of 1080 orthologous loci derived from 36 publicly available genomes representing major lineages of animals. From this large dataset we procured an optimized set of partitions with high phylogenetic signal for resolving metazoan relationships. This optimized data set is amenable to the most appropriate and computationally intensive analyses using site-heterogeneous models of sequence evolution. We also employed several strategies to examine the potential for long-branch attraction to bias our inferences. Our analyses strongly support the Ctenophora as the sister lineage to other Metazoa. We find no support for the traditional view uniting the ctenophores and Cnidaria. Our findings are supported by Bayesian comparisons of topological hypotheses and we find no evidence that they are biased by long-branch attraction. Our study further clarifies relationships among early branching metazoan lineages. Our phylogeny supports the still-controversial position of ctenophores as sister group to all other metazoans. This study also provides a workflow and computational tools for minimizing systematic bias in genome-based phylogenetic analyses. Future studies of metazoan phylogeny will benefit from ongoing efforts to sequence the genomes of additional invertebrate taxa that will continue to inform our view of the relationships among the major lineages of animals.

  5. A multi-gene phylogeny of Chlorophyllum (Agaricaceae, Basidiomycota): new species, new combination and infrageneric classification

    PubMed Central

    Ge, Zai-Wei; Jacobs, Adriaana; Vellinga, Else C.; Sysouphanthong, Phongeun; van der Walt, Retha; Lavorato, Carmine; An, Yi-Feng; Yang, Zhu L.

    2018-01-01

    Abstract Taxonomic and phylogenetic studies of Chlorophyllum were carried out on the basis of morphological differences and molecular phylogenetic analyses. Based on the phylogeny inferred from the internal transcribed spacer (ITS), the partial large subunit nuclear ribosomal DNA (nrLSU), the second largest subunit of RNA polymerase II (rpb2) and translation elongation factor 1-α (tef1) sequences, six well-supported clades and 17 phylogenetic species are recognised. Within this phylogenetic framework and considering the diagnostic morphological characters, two new species, C. africanum and C. palaeotropicum, are described. In addition, a new infrageneric classification of Chlorophyllum is proposed, in which the genus is divided into six sections. One new combination is also made. This study provides a robust basis for a more detailed investigation of diversity and biogeography of Chlorophyllum. PMID:29681738

  6. COI (cytochrome oxidase-I) sequence based studies of Carangid fishes from Kakinada coast, India.

    PubMed

    Persis, M; Chandra Sekhar Reddy, A; Rao, L M; Khedkar, G D; Ravinder, K; Nasruddin, K

    2009-09-01

    Mitochondrial DNA, cytochrome oxidase-1 gene sequences were analyzed for species identification and phylogenetic relationship among the very high food value and commercially important Indian carangid fish species. Sequence analysis of COI gene very clearly indicated that all the 28 fish species fell into five distinct groups, which are genetically distant from each other and exhibited identical phylogenetic reservation. All the COI gene sequences from 28 fishes provide sufficient phylogenetic information and evolutionary relationship to distinguish the carangid species unambiguously. This study proves the utility of mtDNA COI gene sequence based approach in identifying fish species at a faster pace.

  7. Mitogenome Phylogenetics: The Impact of Using Single Regions and Partitioning Schemes on Topology, Substitution Rate and Divergence Time Estimation

    PubMed Central

    Duchêne, Sebastián; Archer, Frederick I.; Vilstrup, Julia; Caballero, Susana; Morin, Phillip A.

    2011-01-01

    The availability of mitochondrial genome sequences is growing as a result of recent technological advances in molecular biology. In phylogenetic analyses, the complete mitogenome is increasingly becoming the marker of choice, usually providing better phylogenetic resolution and precision relative to traditional markers such as cytochrome b (CYTB) and the control region (CR). In some cases, the differences in phylogenetic estimates between mitogenomic and single-gene markers have yielded incongruent conclusions. By comparing phylogenetic estimates made from different genes, we identified the most informative mitochondrial regions and evaluated the minimum amount of data necessary to reproduce the same results as the mitogenome. We compared results among individual genes and the mitogenome for recently published complete mitogenome datasets of selected delphinids (Delphinidae) and killer whales (genus Orcinus). Using Bayesian phylogenetic methods, we investigated differences in estimation of topologies, divergence dates, and clock-like behavior among genes for both datasets. Although the most informative regions were not the same for each taxonomic group (COX1, CYTB, ND3 and ATP6 for Orcinus, and ND1, COX1 and ND4 for Delphinidae), in both cases they were equivalent to less than a quarter of the complete mitogenome. This suggests that gene information content can vary among groups, but can be adequately represented by a portion of the complete sequence. Although our results indicate that complete mitogenomes provide the highest phylogenetic resolution and most precise date estimates, a minimum amount of data can be selected using our approach when the complete sequence is unavailable. Studies based on single genes can benefit from the addition of a few more mitochondrial markers, producing topologies and date estimates similar to those obtained using the entire mitogenome. PMID:22073275

  8. Phylogenetic study on Shiraia bambusicola by rDNA sequence analyses.

    PubMed

    Cheng, Tian-Fan; Jia, Xiao-Ming; Ma, Xiao-Hang; Lin, Hai-Ping; Zhao, Yu-Hua

    2004-01-01

    In this study, 18S rDNA and ITS-5.8S rDNA regions of four Shiraia bambusicola isolates collected from different species of bamboos were amplified by PCR with universal primer pairs NS1/NS8 and ITS5/ITS4, respectively, and sequenced. Phylogenetic analyses were conducted on three selected datasets of rDNA sequences. Maximum parsimony, distance and maximum likelihood criteria were used to infer trees. Morphological characteristics were also observed. The positioning of Shiraia in the order Pleosporales was well supported by bootstrap, which agreed with the placement by Amano (1980) according to their morphology. We did not find significant inter-hostal differences among these four isolates from different species of bamboos. From the results of analyses and comparison of their rDNA sequences, we conclude that Shiraia should be classified into Pleosporales as Amano (1980) proposed and suggest that it might be positioned in the family Phaeosphaeriaceae. Copyright 2004 WILEY-VCH Verlag GmbH & Co.

  9. Bioinformatic Workflows for Generating Complete Plastid Genome Sequences-An Example from Cabomba (Cabombaceae) in the Context of the Phylogenomic Analysis of the Water-Lily Clade.

    PubMed

    Gruenstaeudl, Michael; Gerschler, Nico; Borsch, Thomas

    2018-06-21

    The sequencing and comparison of plastid genomes are becoming a standard method in plant genomics, and many researchers are using this approach to infer plant phylogenetic relationships. Due to the widespread availability of next-generation sequencing, plastid genome sequences are being generated at breakneck pace. This trend towards massive sequencing of plastid genomes highlights the need for standardized bioinformatic workflows. In particular, documentation and dissemination of the details of genome assembly, annotation, alignment and phylogenetic tree inference are needed, as these processes are highly sensitive to the choice of software and the precise settings used. Here, we present the procedure and results of sequencing, assembling, annotating and quality-checking of three complete plastid genomes of the aquatic plant genus Cabomba as well as subsequent gene alignment and phylogenetic tree inference. We accompany our findings by a detailed description of the bioinformatic workflow employed. Importantly, we share a total of eleven software scripts for each of these bioinformatic processes, enabling other researchers to evaluate and replicate our analyses step by step. The results of our analyses illustrate that the plastid genomes of Cabomba are highly conserved in both structure and gene content.

  10. Characterization of the first complete genome sequence of an Impatiens necrotic spot orthotospovirus isolate from the United States and worldwide phylogenetic analyses of INSV isolates.

    PubMed

    Zhao, Kaixi; Margaria, Paolo; Rosa, Cristina

    2018-05-10

    Impatiens necrotic spot orthotospovirus (INSV) can impact economically important ornamental plants and vegetables worldwide. Characterization studies on INSV are limited. For most INSV isolates, there are no complete genome sequences available. This lack of genomic information has a negative impact on the understanding of the INSV genetic diversity and evolution. Here we report the first complete nucleotide sequence of a US INSV isolate. INSV-UP01 was isolated from an impatiens in Pennsylvania, US. RT-PCR was used to clone its full-length genome and Vector NTI to assemble overlapping sequences. Phylogenetic trees were constructed by using MEGA7 software to show the phylogenetic relationships with other available INSV sequences worldwide. This US isolate has genome and biological features classical of INSV species and clusters in the Western Hemisphere clade, but its origin appears to be recent. Furthermore, INSV-UP01 might have been involved in a recombination event with an Italian isolate belonging to the Asian clade. Our analyses support that INSV isolates infect a broad plant-host range they group by geographic origin and not by host, and are subjected to frequent recombination events. These results justify the need to generate and analyze complete genome sequences of orthotospoviruses in general and INSV in particular.

  11. galaxie--CGI scripts for sequence identification through automated phylogenetic analysis.

    PubMed

    Nilsson, R Henrik; Larsson, Karl-Henrik; Ursing, Björn M

    2004-06-12

    The prevalent use of similarity searches like BLAST to identify sequences and species implicitly assumes the reference database to be of extensive sequence sampling. This is often not the case, restraining the correctness of the outcome as a basis for sequence identification. Phylogenetic inference outperforms similarity searches in retrieving correct phylogenies and consequently sequence identities, and a project was initiated to design a freely available script package for sequence identification through automated Web-based phylogenetic analysis. Three CGI scripts were designed to facilitate qualified sequence identification from a Web interface. Query sequences are aligned to pre-made alignments or to alignments made by ClustalW with entries retrieved from a BLAST search. The subsequent phylogenetic analysis is based on the PHYLIP package for inferring neighbor-joining and parsimony trees. The scripts are highly configurable. A service installation and a version for local use are found at http://andromeda.botany.gu.se/galaxiewelcome.html and http://galaxie.cgb.ki.se

  12. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree

    PubMed Central

    2010-01-01

    Background Likelihood-based phylogenetic inference is generally considered to be the most reliable classification method for unknown sequences. However, traditional likelihood-based phylogenetic methods cannot be applied to large volumes of short reads from next-generation sequencing due to computational complexity issues and lack of phylogenetic signal. "Phylogenetic placement," where a reference tree is fixed and the unknown query sequences are placed onto the tree via a reference alignment, is a way to bring the inferential power offered by likelihood-based approaches to large data sets. Results This paper introduces pplacer, a software package for phylogenetic placement and subsequent visualization. The algorithm can place twenty thousand short reads on a reference tree of one thousand taxa per hour per processor, has essentially linear time and memory complexity in the number of reference taxa, and is easy to run in parallel. Pplacer features calculation of the posterior probability of a placement on an edge, which is a statistically rigorous way of quantifying uncertainty on an edge-by-edge basis. It also can inform the user of the positional uncertainty for query sequences by calculating expected distance between placement locations, which is crucial in the estimation of uncertainty with a well-sampled reference tree. The software provides visualizations using branch thickness and color to represent number of placements and their uncertainty. A simulation study using reads generated from 631 COG alignments shows a high level of accuracy for phylogenetic placement over a wide range of alignment diversity, and the power of edge uncertainty estimates to measure placement confidence. Conclusions Pplacer enables efficient phylogenetic placement and subsequent visualization, making likelihood-based phylogenetics methodology practical for large collections of reads; it is freely available as source code, binaries, and a web service. PMID:21034504

  13. Comparative analysis of chloroplast genomes of the genus Citrus and its close relatives.

    PubMed

    Liu, Xiaogang; Wu, Hongkun; Luo, Yan; Xi, Wanpeng; Zhou, Zhiqin

    2017-01-01

    The genus Citrus and its close relatives are economically and nutritionally important fruit trees. However, the huge controversy over the phylogeny of key wild species, as well as the genetic relationship between the cultivated species and their putative wild progenitors, remains unresolved. Comparative analyses of chloroplast (cp) genomes have been useful in resolving various phylogenetic issues. Thus far, the cp genomes of only two Citrus species have been sequenced. In this study, we sequenced six complete cp genomes, four belonging to the genus Citrus, and two belonging to the genera Fortunella and Poncirus, respectively. These newly sequenced genomes together with the two publicly available were used for comparative analyses of the genus Citrus and its close relatives. All eight cp genomes share similar basic structure, gene order and gene content. Phylogenetic analyses supported the monophyly of the three genera in the order Sapindales within the major clade Malvidae.

  14. A new species of cellular slime mold from southern Portugal based on morphology, ITS and SSU sequences.

    PubMed

    Romeralo, M; Baldauf, S L; Cavender, J C

    2009-01-01

    Sampling soils to look for dictyostelids in southern Portugal we found an isolate that has a morphology that differed from any previously described species of the group. We sequenced the internally transcribed spacer (ITS) and small subunit (SSU) genes of the nuclear ribosomal RNA and found that both sequences are distinct from all previously described sequences. Phylogenetic analyses place the new species in dictyostelid Group 3 (Rhizostelids) together with D. potamoides, with which it shares 65.8% identity for ITS and 96.6% for SSU. In this paper we describe a new species of cellular slime mold, Dictyostelium ibericum, based on morphological and molecular characters. It is a small species with polar granules in its spores.

  15. Inferring Phylogenetic Relationships of Indian Citron (Citrus medica L.) based on rbcL and matK Sequences of Chloroplast DNA.

    PubMed

    Uchoi, Ajit; Malik, Surendra Kumar; Choudhary, Ravish; Kumar, Susheel; Rohini, M R; Pal, Digvender; Ercisli, Sezai; Chaudhury, Rekha

    2016-06-01

    Phylogenetic relationships of Indian Citron (Citrus medica L.) with other important Citrus species have been inferred through sequence analyses of rbcL and matK gene region of chloroplast DNA. The study was based on 23 accessions of Citrus genotypes representing 15 taxa of Indian Citrus, collected from wild, semi-wild, and domesticated stocks. The phylogeny was inferred using the maximum parsimony (MP) and neighbor-joining (NJ) methods. Both MP and NJ trees separated all the 23 accessions of Citrus into five distinct clusters. The chloroplast DNA (cpDNA) analysis based on rbcL and matK sequence data carried out in Indian taxa of Citrus was useful in differentiating all the true species and species/varieties of probable hybrid origin in distinct clusters or groups. Sequence analysis based on rbcL and matK gene provided unambiguous identification and disposition of true species like C. maxima, C. medica, C. reticulata, and related hybrids/cultivars. The separation of C. maxima, C. medica, and C. reticulata in distinct clusters or sub-clusters supports their distinctiveness as the basic species of edible Citrus. However, the cpDNA sequence analysis of rbcL and matK gene could not find any clear cut differentiation between subgenera Citrus and Papeda as proposed in Swingle's system of classification.

  16. Plastid Phylogenomics Resolve Deep Relationships among Eupolypod II Ferns with Rapid Radiation and Rate Heterogeneity

    PubMed Central

    Wei, Ran; Yan, Yue-Hong; Harris, AJ; Kang, Jong-Soo; Shen, Hui; Zhang, Xian-Chun

    2017-01-01

    Abstract The eupolypods II ferns represent a classic case of evolutionary radiation and, simultaneously, exhibit high substitution rate heterogeneity. These factors have been proposed to contribute to the contentious resolutions among clades within this fern group in multilocus phylogenetic studies. We investigated the deep phylogenetic relationships of eupolypod II ferns by sampling all major families and using 40 plastid genomes, or plastomes, of which 33 were newly sequenced with next-generation sequencing technology. We performed model-based analyses to evaluate the diversity of molecular evolutionary rates for these ferns. Our plastome data, with more than 26,000 informative characters, yielded good resolution for deep relationships within eupolypods II and unambiguously clarified the position of Rhachidosoraceae and the monophyly of Athyriaceae. Results of rate heterogeneity analysis revealed approximately 33 significant rate shifts in eupolypod II ferns, with the most heterogeneous rates (both accelerations and decelerations) occurring in two phylogenetically difficult lineages, that is, the Rhachidosoraceae–Aspleniaceae and Athyriaceae clades. These observations support the hypothesis that rate heterogeneity has previously constrained the deep phylogenetic resolution in eupolypods II. According to the plastome data, we propose that 14 chloroplast markers are particularly phylogenetically informative for eupolypods II both at the familial and generic levels. Our study demonstrates the power of a character-rich plastome data set and high-throughput sequencing for resolving the recalcitrant lineages, which have undergone rapid evolutionary radiation and dramatic changes in substitution rates. PMID:28854625

  17. Evolution of electric communication signals in the South American ghost knifefishes (Gymnotiformes: Apteronotidae): A phylogenetic comparative study using a sequence-based phylogeny

    PubMed Central

    Smith, Adam R.; Proffitt, Melissa R.; Ho, Winnie W.; Mullaney, Claire B.; Maldonado-Ocampo, Javier A.; Lovejoy, Nathan R.; Alves-Gomes, José A.; Smith, G. Troy

    2018-01-01

    The electric communication signals of weakly electric ghost knifefishes (Gymnotiformes: Apteronotidae) provide a valuable model system for understanding the evolution and physiology of behavior. Apteronotids produce continuous wave-type electric organ discharges (EODs) that are used for electrolocation and communication. The frequency and waveform of EODs, as well as the structure of transient EOD modulations (chirps), vary substantially across species. Understanding how these signals have evolved, however, has been hampered by the lack of a well-supported phylogeny for this family. We constructed a molecular phylogeny for the Apteronotidae by using sequence data from three genes (cytochrome c oxidase subunit 1, recombination activating gene 2, and cytochrome oxidase B) in 32 species representing 13 apteronotid genera. This phylogeny and an extensive database of apteronotid signals allowed us to examine signal evolution by using ancestral state reconstruction (ASR) and phylogenetic generalized least squares (PGLS) models. Our molecular phylogeny largely agrees with another recent sequence-based phylogeny and identified five robust apteronotid clades: (i) Sternarchorhamphus + Orthosternarchus, (ii) Adontosternarchus, (iii) Apteronotus + Parapteronotus, (iv) Sternarchorhynchus, and (v) a large clade including Porotergus, ‘Apteronotus’, Compsaraia, Sternarchogiton, Sternarchella, and Magosternarchus. We analyzed novel chirp recordings from two apteronotid species (Orthosternarchus tamandua and Sternarchorhynchus mormyrus), and combined data from these species with that from previously recorded species in our phylogenetic analyses. Some signal parameters in O. tamandua were plesiomorphic (e.g., low frequency EODs and chirps with little frequency modulation that nevertheless interrupt the EOD), suggesting that ultra-high frequency EODs and ‘‘big” chirps evolved after apteronotids diverged from other gymnotiforms. In contrast to previous studies, our PGLS analyses using the new phylogeny indicated the presence of phylogenetic signals in the relationships between some EOD and chirp parameters. The ASR demonstrated that most EOD and chirp parameters are evolutionarily labile and have often diversified even among closely related species. PMID:27769924

  18. Evolution of electric communication signals in the South American ghost knifefishes (Gymnotiformes: Apteronotidae): A phylogenetic comparative study using a sequence-based phylogeny.

    PubMed

    Smith, Adam R; Proffitt, Melissa R; Ho, Winnie W; Mullaney, Claire B; Maldonado-Ocampo, Javier A; Lovejoy, Nathan R; Alves-Gomes, José A; Smith, G Troy

    2016-10-01

    The electric communication signals of weakly electric ghost knifefishes (Gymnotiformes: Apteronotidae) provide a valuable model system for understanding the evolution and physiology of behavior. Apteronotids produce continuous wave-type electric organ discharges (EODs) that are used for electrolocation and communication. The frequency and waveform of EODs, as well as the structure of transient EOD modulations (chirps), vary substantially across species. Understanding how these signals have evolved, however, has been hampered by the lack of a well-supported phylogeny for this family. We constructed a molecular phylogeny for the Apteronotidae by using sequence data from three genes (cytochrome c oxidase subunit 1, recombination activating gene 2, and cytochrome oxidase B) in 32 species representing 13 apteronotid genera. This phylogeny and an extensive database of apteronotid signals allowed us to examine signal evolution by using ancestral state reconstruction (ASR) and phylogenetic generalized least squares (PGLS) models. Our molecular phylogeny largely agrees with another recent sequence-based phylogeny and identified five robust apteronotid clades: (i) Sternarchorhamphus+Orthosternarchus, (ii) Adontosternarchus, (iii) Apteronotus+Parapteronotus, (iv) Sternarchorhynchus, and (v) a large clade including Porotergus, 'Apteronotus', Compsaraia, Sternarchogiton, Sternarchella, and Magosternarchus. We analyzed novel chirp recordings from two apteronotid species (Orthosternarchus tamandua and Sternarchorhynchus mormyrus), and combined data from these species with that from previously recorded species in our phylogenetic analyses. Some signal parameters in O. tamandua were plesiomorphic (e.g., low frequency EODs and chirps with little frequency modulation that nevertheless interrupt the EOD), suggesting that ultra-high frequency EODs and "big" chirps evolved after apteronotids diverged from other gymnotiforms. In contrast to previous studies, our PGLS analyses using the new phylogeny indicated the presence of phylogenetic signals in the relationships between some EOD and chirp parameters. The ASR demonstrated that most EOD and chirp parameters are evolutionarily labile and have often diversified even among closely related species. Published by Elsevier Ltd.

  19. Complete Mitochondrial Genome of Echinostoma hortense (Digenea: Echinostomatidae).

    PubMed

    Liu, Ze-Xuan; Zhang, Yan; Liu, Yu-Ting; Chang, Qiao-Cheng; Su, Xin; Fu, Xue; Yue, Dong-Mei; Gao, Yuan; Wang, Chun-Ren

    2016-04-01

    Echinostoma hortense (Digenea: Echinostomatidae) is one of the intestinal flukes with medical importance in humans. However, the mitochondrial (mt) genome of this fluke has not been known yet. The present study has determined the complete mt genome sequences of E. hortense and assessed the phylogenetic relationships with other digenean species for which the complete mt genome sequences are available in GenBank using concatenated amino acid sequences inferred from 12 protein-coding genes. The mt genome of E. hortense contained 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 non-coding region. The length of the mt genome of E. hortense was 14,994 bp, which was somewhat smaller than those of other trematode species. Phylogenetic analyses based on concatenated nucleotide sequence datasets for all 12 protein-coding genes using maximum parsimony (MP) method showed that E. hortense and Hypoderaeum conoideum gathered together, and they were closer to each other than to Fasciolidae and other echinostomatid trematodes. The availability of the complete mt genome sequences of E. hortense provides important genetic markers for diagnostics, population genetics, and evolutionary studies of digeneans.

  20. Complete Mitochondrial Genome of Echinostoma hortense (Digenea: Echinostomatidae)

    PubMed Central

    Liu, Ze-Xuan; Zhang, Yan; Liu, Yu-Ting; Chang, Qiao-Cheng; Su, Xin; Fu, Xue; Yue, Dong-Mei; Gao, Yuan; Wang, Chun-Ren

    2016-01-01

    Echinostoma hortense (Digenea: Echinostomatidae) is one of the intestinal flukes with medical importance in humans. However, the mitochondrial (mt) genome of this fluke has not been known yet. The present study has determined the complete mt genome sequences of E. hortense and assessed the phylogenetic relationships with other digenean species for which the complete mt genome sequences are available in GenBank using concatenated amino acid sequences inferred from 12 protein-coding genes. The mt genome of E. hortense contained 12 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 non-coding region. The length of the mt genome of E. hortense was 14,994 bp, which was somewhat smaller than those of other trematode species. Phylogenetic analyses based on concatenated nucleotide sequence datasets for all 12 protein-coding genes using maximum parsimony (MP) method showed that E. hortense and Hypoderaeum conoideum gathered together, and they were closer to each other than to Fasciolidae and other echinostomatid trematodes. The availability of the complete mt genome sequences of E. hortense provides important genetic markers for diagnostics, population genetics, and evolutionary studies of digeneans. PMID:27180575

  1. Listeria costaricensis sp. nov.

    PubMed

    Núñez-Montero, Kattia; Leclercq, Alexandre; Moura, Alexandra; Vales, Guillaume; Peraza, Johnny; Pizarro-Cerdá, Javier; Lecuit, Marc

    2018-03-01

    A bacterial strain isolated from a food processing drainage system in Costa Rica fulfilled the criteria as belonging to the genus Listeria, but could not be assigned to any of the known species. Phylogenetic analysis based on the 16S rRNA gene revealed highest sequence similarity with the type strain of Listeria floridensis (98.7 %). Phylogenetic analysis based on Listeria core genomes placed the novel taxon within the Listeria fleishmannii, L. floridensis and Listeria aquatica clade (Listeria sensu lato). Whole-genome sequence analyses based on the average nucleotide blast identity (ANI<80 %) indicated that this isolate belonged to a novel species. Results of pairwise amino acid identity (AAI>70 %) and percentage of conserved proteins (POCP>68 %) with currently known Listeria species, as well as of biochemical characterization, confirmed that the strain constituted a novel species within the genus Listeria. The name Listeria costaricensis sp. nov. is proposed for the novel species, and is represented by the type strain CLIP 2016/00682 T (=CIP 111400 T =DSM 105474 T ).

  2. Multigene assessment of the species boundaries and sexual status of the basidiomycetous yeasts Cryptococcus flavescens and C. terrestris (Tremellales).

    PubMed

    Yurkov, Andrey; Guerreiro, Marco A; Sharma, Lav; Carvalho, Cláudia; Fonseca, Álvaro

    2015-01-01

    Cryptococcus flavescens and C. terrestris are phenotypically indistinguishable sister species that belong to the order Tremellales (Tremellomycetes, Basidiomycota) and which may be mistaken for C. laurentii based on phenotype. Phylogenetic separation between C. flavescens and C. terrestris was based on rDNA sequence analyses, but very little is known on their intraspecific genetic variability or propensity for sexual reproduction. We studied 59 strains from different substrates and geographic locations, and used a multilocus sequencing (MLS) approach complemented with the sequencing of mating type (MAT) genes to assess genetic variation and reexamine the boundaries of the two species, as well as their sexual status. The following five loci were chosen for MLS: the rDNA ITS-LSU region, the rDNA IGS1 spacer, and fragments of the genes encoding the largest subunit of RNA polymerase II (RPB1), the translation elongation factor 1 alpha (TEF1) and the p21-activated protein kinase (STE20). Phylogenetic network analyses confirmed the genetic separation of the two species and revealed two additional cryptic species, for which the names Cryptococcus baii and C. ruineniae are proposed. Further analyses of the data revealed a high degree of genetic heterogeneity within C. flavescens as well as evidence for recombination between lineages detected for this species. Strains of C. terrestris displayed higher levels of similarity in all analysed genes and appear to make up a single recombining group. The two MAT genes (STE3 and SXI1/SXI2) sequenced for C. flavescens strains confirmed the potential for sexual reproduction and suggest the presence of a tetrapolar mating system with a biallelic pheromone/receptor locus and a multiallelic HD locus. In C. terrestris we could only sequence STE3, which revealed a biallelic P/R locus. In spite of the strong evidence for sexual recombination in the two species, attempts at mating compatible strains of both species on culture media were unsuccessful.

  3. Multigene Assessment of the Species Boundaries and Sexual Status of the Basidiomycetous Yeasts Cryptococcus flavescens and C. terrestris (Tremellales)

    PubMed Central

    Sharma, Lav; Carvalho, Cláudia; Fonseca, Álvaro

    2015-01-01

    Cryptococcus flavescens and C. terrestris are phenotypically indistinguishable sister species that belong to the order Tremellales (Tremellomycetes, Basidiomycota) and which may be mistaken for C. laurentii based on phenotype. Phylogenetic separation between C. flavescens and C. terrestris was based on rDNA sequence analyses, but very little is known on their intraspecific genetic variability or propensity for sexual reproduction. We studied 59 strains from different substrates and geographic locations, and used a multilocus sequencing (MLS) approach complemented with the sequencing of mating type (MAT) genes to assess genetic variation and reexamine the boundaries of the two species, as well as their sexual status. The following five loci were chosen for MLS: the rDNA ITS-LSU region, the rDNA IGS1 spacer, and fragments of the genes encoding the largest subunit of RNA polymerase II (RPB1), the translation elongation factor 1 alpha (TEF1) and the p21-activated protein kinase (STE20). Phylogenetic network analyses confirmed the genetic separation of the two species and revealed two additional cryptic species, for which the names Cryptococcus baii and C. ruineniae are proposed. Further analyses of the data revealed a high degree of genetic heterogeneity within C. flavescens as well as evidence for recombination between lineages detected for this species. Strains of C. terrestris displayed higher levels of similarity in all analysed genes and appear to make up a single recombining group. The two MAT genes (STE3 and SXI1/SXI2) sequenced for C. flavescens strains confirmed the potential for sexual reproduction and suggest the presence of a tetrapolar mating system with a biallelic pheromone/receptor locus and a multiallelic HD locus. In C. terrestris we could only sequence STE3, which revealed a biallelic P/R locus. In spite of the strong evidence for sexual recombination in the two species, attempts at mating compatible strains of both species on culture media were unsuccessful. PMID:25811603

  4. A synthetic phylogeny of freshwater crayfish: insights for conservation.

    PubMed

    Owen, Christopher L; Bracken-Grissom, Heather; Stern, David; Crandall, Keith A

    2015-02-19

    Phylogenetic systematics is heading for a renaissance where we shift from considering our phylogenetic estimates as a static image in a published paper and taxonomies as a hardcopy checklist to treating both the phylogenetic estimate and dynamic taxonomies as metadata for further analyses. The Open Tree of Life project (opentreeoflife.org) is developing synthesis tools for harnessing the power of phylogenetic inference and robust taxonomy to develop a synthetic tree of life. We capitalize on this approach to estimate a synthesis tree for the freshwater crayfish. The crayfish make an exceptional group to demonstrate the utility of the synthesis approach, as there recently have been a number of phylogenetic studies on the crayfishes along with a robust underlying taxonomic framework. Importantly, the crayfish have also been extensively assessed by an IUCN Red List team and therefore have accurate and up-to-date area and conservation status data available for analysis within a phylogenetic context. Here, we develop a synthesis phylogeny for the world's freshwater crayfish and examine the phylogenetic distribution of threat. We also estimate a molecular phylogeny based on all available GenBank crayfish sequences and use this tree to estimate divergence times and test for divergence rate variation. Finally, we conduct EDGE and HEDGE analyses and identify a number of species of freshwater crayfish of highest priority in conservation efforts. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. A synthetic phylogeny of freshwater crayfish: insights for conservation

    PubMed Central

    Owen, Christopher L.; Bracken-Grissom, Heather; Stern, David; Crandall, Keith A.

    2015-01-01

    Phylogenetic systematics is heading for a renaissance where we shift from considering our phylogenetic estimates as a static image in a published paper and taxonomies as a hardcopy checklist to treating both the phylogenetic estimate and dynamic taxonomies as metadata for further analyses. The Open Tree of Life project (opentreeoflife.org) is developing synthesis tools for harnessing the power of phylogenetic inference and robust taxonomy to develop a synthetic tree of life. We capitalize on this approach to estimate a synthesis tree for the freshwater crayfish. The crayfish make an exceptional group to demonstrate the utility of the synthesis approach, as there recently have been a number of phylogenetic studies on the crayfishes along with a robust underlying taxonomic framework. Importantly, the crayfish have also been extensively assessed by an IUCN Red List team and therefore have accurate and up-to-date area and conservation status data available for analysis within a phylogenetic context. Here, we develop a synthesis phylogeny for the world's freshwater crayfish and examine the phylogenetic distribution of threat. We also estimate a molecular phylogeny based on all available GenBank crayfish sequences and use this tree to estimate divergence times and test for divergence rate variation. Finally, we conduct EDGE and HEDGE analyses and identify a number of species of freshwater crayfish of highest priority in conservation efforts. PMID:25561670

  6. Phylogenetic and Evolutionary Patterns in Microbial Carotenoid Biosynthesis Are Revealed by Comparative Genomics

    PubMed Central

    Klassen, Jonathan L.

    2010-01-01

    Background Carotenoids are multifunctional, taxonomically widespread and biotechnologically important pigments. Their biosynthesis serves as a model system for understanding the evolution of secondary metabolism. Microbial carotenoid diversity and evolution has hitherto been analyzed primarily from structural and biosynthetic perspectives, with the few phylogenetic analyses of microbial carotenoid biosynthetic proteins using either used limited datasets or lacking methodological rigor. Given the recent accumulation of microbial genome sequences, a reappraisal of microbial carotenoid biosynthetic diversity and evolution from the perspective of comparative genomics is warranted to validate and complement models of microbial carotenoid diversity and evolution based upon structural and biosynthetic data. Methodology/Principal Findings Comparative genomics were used to identify and analyze in silico microbial carotenoid biosynthetic pathways. Four major phylogenetic lineages of carotenoid biosynthesis are suggested composed of: (i) Proteobacteria; (ii) Firmicutes; (iii) Chlorobi, Cyanobacteria and photosynthetic eukaryotes; and (iv) Archaea, Bacteroidetes and two separate sub-lineages of Actinobacteria. Using this phylogenetic framework, specific evolutionary mechanisms are proposed for carotenoid desaturase CrtI-family enzymes and carotenoid cyclases. Several phylogenetic lineage-specific evolutionary mechanisms are also suggested, including: (i) horizontal gene transfer; (ii) gene acquisition followed by differential gene loss; (iii) co-evolution with other biochemical structures such as proteorhodopsins; and (iv) positive selection. Conclusions/Significance Comparative genomics analyses of microbial carotenoid biosynthetic proteins indicate a much greater taxonomic diversity then that identified based on structural and biosynthetic data, and divides microbial carotenoid biosynthesis into several, well-supported phylogenetic lineages not evident previously. This phylogenetic framework is applicable to understanding the evolution of specific carotenoid biosynthetic proteins or the unique characteristics of carotenoid biosynthetic evolution in a specific phylogenetic lineage. Together, these analyses suggest a “bramble” model for microbial carotenoid biosynthesis whereby later biosynthetic steps exhibit greater evolutionary plasticity and reticulation compared to those closer to the biosynthetic “root”. Structural diversification may be constrained (“trimmed”) where selection is strong, but less so where selection is weaker. These analyses also highlight likely productive avenues for future research and bioprospecting by identifying both gaps in current knowledge and taxa which may particularly facilitate carotenoid diversification. PMID:20582313

  7. Molecular taxonomy of Dunaliella (Chlorophyceae), with a special focus on D. salina: ITS2 sequences revisited with an extensive geographical sampling

    PubMed Central

    2012-01-01

    We used an ITS2 primary and secondary structure and Compensatory Base Changes (CBCs) analyses on new French and Spanish Dunallela salina strains to investigate their phylogenetic position and taxonomic status within the genus Dunaliella. Our analyses show a great diversity within D. salina (with only some clades not statistically supported) and reveal considerable genetic diversity and structure within Dunaliella, although the CBC analysis did not bolster the existence of different biological groups within this taxon. The ITS2 sequences of the new Spanish and French D. salina strains were very similar except for two of them: ITC5105 "Janubio" from Spain and ITC5119 from France. Although the Spanish one had a unique ITS2 sequence profile and the phylogenetic tree indicates that this strain can represent a new species, this hypothesis was not confirmed by CBCs, and clarification of its taxonomic status requires further investigation with new data. Overall, the use of CBCs to define species boundaries within Dunaliella was not conclusive in some cases, and the ITS2 region does not contain a geographical signal overall. PMID:22520929

  8. Phylogenetic relationships in Cortinarius, section Calochroi, inferred from nuclear DNA sequences

    PubMed Central

    Garnica, Sigisfredo; Weiß, Michael; Oertel, Bernhard; Ammirati, Joseph; Oberwinkler, Franz

    2009-01-01

    Background Section Calochroi is one of the most species-rich lineages in the genus Cortinarius (Agaricales, Basidiomycota) and is widely distributed across boreo-nemoral areas, with some extensions into meridional zones. Previous phylogenetic studies of Calochroi (incl. section Fulvi) have been geographically restricted; therefore, phylogenetic and biogeographic relationships within this lineage at a global scale have been largely unknown. In this study, we obtained DNA sequences from a nearly complete taxon sampling of known species from Europe, Central America and North America. We inferred intra- and interspecific phylogenetic relationships as well as major morphological evolutionary trends within section Calochroi based on 576 ITS sequences, 230 ITS + 5.8S + D1/D2 sequences, and a combined dataset of ITS + 5.8S + D1/D2 and RPB1 sequences of a representative subsampling of 58 species. Results More than 100 species were identified by integrating DNA sequences with morphological, macrochemical and ecological data. Cortinarius section Calochroi was consistently resolved with high branch support into at least seven major lineages: Calochroi, Caroviolacei, Dibaphi, Elegantiores, Napi, Pseudoglaucopodes and Splendentes; whereas Rufoolivacei and Sulfurini appeared polyphyletic. A close relationship between Dibaphi, Elegantiores, Napi and Splendentes was consistently supported. Combinations of specific morphological, pigmentation and molecular characters appear useful in circumscribing clades. Conclusion Our analyses demonstrate that Calochroi is an exclusively northern hemispheric lineage, where species follow their host trees throughout their natural ranges within and across continents. Results of this study contribute substantially to defining European species in this group and will help to either identify or to name new species occurring across the northern hemisphere. Major groupings are in partial agreement with earlier morphology-based and molecular phylogenetic hypotheses, but some relationships were unexpected, based on external morphology. In such cases, their true affinities appear to have been obscured by the repeated appearance of similar features among distantly related species. Therefore, further taxonomic studies are needed to evaluate the consistency of species concepts and interpretations of morphological features in a more global context. Reconstruction of ancestral states yielded two major evolutionary trends within section Calochroi: (1) the development of bright pigments evolved independently multiple times, and (2) the evolution of abruptly marginate to flattened stipe bulbs represents an autapomorphy of the Calochroi clade. PMID:19121213

  9. Floral gene resources from basal angiosperms for comparative genomics research

    PubMed Central

    Albert, Victor A; Soltis, Douglas E; Carlson, John E; Farmerie, William G; Wall, P Kerr; Ilut, Daniel C; Solow, Teri M; Mueller, Lukas A; Landherr, Lena L; Hu, Yi; Buzgo, Matyas; Kim, Sangtae; Yoo, Mi-Jeong; Frohlich, Michael W; Perl-Treves, Rafael; Schlarbaum, Scott E; Bliss, Barbara J; Zhang, Xiaohong; Tanksley, Steven D; Oppenheimer, David G; Soltis, Pamela S; Ma, Hong; dePamphilis, Claude W; Leebens-Mack, James H

    2005-01-01

    Background The Floral Genome Project was initiated to bridge the genomic gap between the most broadly studied plant model systems. Arabidopsis and rice, although now completely sequenced and under intensive comparative genomic investigation, are separated by at least 125 million years of evolutionary time, and cannot in isolation provide a comprehensive perspective on structural and functional aspects of flowering plant genome dynamics. Here we discuss new genomic resources available to the scientific community, comprising cDNA libraries and Expressed Sequence Tag (EST) sequences for a suite of phylogenetically basal angiosperms specifically selected to bridge the evolutionary gaps between model plants and provide insights into gene content and genome structure in the earliest flowering plants. Results Random sequencing of cDNAs from representatives of phylogenetically important eudicot, non-grass monocot, and gymnosperm lineages has so far (as of 12/1/04) generated 70,514 ESTs and 48,170 assembled unigenes. Efficient sorting of EST sequences into putative gene families based on whole Arabidopsis/rice proteome comparison has permitted ready identification of cDNA clones for finished sequencing. Preliminarily, (i) proportions of functional categories among sequenced floral genes seem representative of the entire Arabidopsis transcriptome, (ii) many known floral gene homologues have been captured, and (iii) phylogenetic analyses of ESTs are providing new insights into the process of gene family evolution in relation to the origin and diversification of the angiosperms. Conclusion Initial comparisons illustrate the utility of the EST data sets toward discovery of the basic floral transcriptome. These first findings also afford the opportunity to address a number of conspicuous evolutionary genomic questions, including reproductive organ transcriptome overlap between angiosperms and gymnosperms, genome-wide duplication history, lineage-specific gene duplication and functional divergence, and analyses of adaptive molecular evolution. Since not all genes in the floral transcriptome will be associated with flowering, these EST resources will also be of interest to plant scientists working on other functions, such as photosynthesis, signal transduction, and metabolic pathways. PMID:15799777

  10. Phylogenetic study of Class Armophorea (Alveolata, Ciliophora) based on 18S-rDNA data.

    PubMed

    da Silva Paiva, Thiago; do Nascimento Borges, Bárbara; da Silva-Neto, Inácio Domingos

    2013-12-01

    The 18S rDNA phylogeny of Class Armophorea, a group of anaerobic ciliates, is proposed based on an analysis of 44 sequences (out of 195) retrieved from the NCBI/GenBank database. Emphasis was placed on the use of two nucleotide alignment criteria that involved variation in the gap-opening and gap-extension parameters and the use of rRNA secondary structure to orientate multiple-alignment. A sensitivity analysis of 76 data sets was run to assess the effect of variations in indel parameters on tree topologies. Bayesian inference, maximum likelihood and maximum parsimony phylogenetic analyses were used to explore how different analytic frameworks influenced the resulting hypotheses. A sensitivity analysis revealed that the relationships among higher taxa of the Intramacronucleata were dependent upon how indels were determined during multiple-alignment of nucleotides. The phylogenetic analyses rejected the monophyly of the Armophorea most of the time and consistently indicated that the Metopidae and Nyctotheridae were related to the Litostomatea. There was no consensus on the placement of the Caenomorphidae, which could be a sister group of the Metopidae + Nyctorheridae, or could have diverged at the base of the Spirotrichea branch or the Intramacronucleata tree.

  11. Phylogenetic study of Class Armophorea (Alveolata, Ciliophora) based on 18S-rDNA data

    PubMed Central

    da Silva Paiva, Thiago; do Nascimento Borges, Bárbara; da Silva-Neto, Inácio Domingos

    2013-01-01

    The 18S rDNA phylogeny of Class Armophorea, a group of anaerobic ciliates, is proposed based on an analysis of 44 sequences (out of 195) retrieved from the NCBI/GenBank database. Emphasis was placed on the use of two nucleotide alignment criteria that involved variation in the gap-opening and gap-extension parameters and the use of rRNA secondary structure to orientate multiple-alignment. A sensitivity analysis of 76 data sets was run to assess the effect of variations in indel parameters on tree topologies. Bayesian inference, maximum likelihood and maximum parsimony phylogenetic analyses were used to explore how different analytic frameworks influenced the resulting hypotheses. A sensitivity analysis revealed that the relationships among higher taxa of the Intramacronucleata were dependent upon how indels were determined during multiple-alignment of nucleotides. The phylogenetic analyses rejected the monophyly of the Armophorea most of the time and consistently indicated that the Metopidae and Nyctotheridae were related to the Litostomatea. There was no consensus on the placement of the Caenomorphidae, which could be a sister group of the Metopidae + Nyctorheridae, or could have diverged at the base of the Spirotrichea branch or the Intramacronucleata tree. PMID:24385862

  12. A Genome-Scale Investigation of How Sequence, Function, and Tree-Based Gene Properties Influence Phylogenetic Inference.

    PubMed

    Shen, Xing-Xing; Salichos, Leonidas; Rokas, Antonis

    2016-09-02

    Molecular phylogenetic inference is inherently dependent on choices in both methodology and data. Many insightful studies have shown how choices in methodology, such as the model of sequence evolution or optimality criterion used, can strongly influence inference. In contrast, much less is known about the impact of choices in the properties of the data, typically genes, on phylogenetic inference. We investigated the relationships between 52 gene properties (24 sequence-based, 19 function-based, and 9 tree-based) with each other and with three measures of phylogenetic signal in two assembled data sets of 2,832 yeast and 2,002 mammalian genes. We found that most gene properties, such as evolutionary rate (measured through the percent average of pairwise identity across taxa) and total tree length, were highly correlated with each other. Similarly, several gene properties, such as gene alignment length, Guanine-Cytosine content, and the proportion of tree distance on internal branches divided by relative composition variability (treeness/RCV), were strongly correlated with phylogenetic signal. Analysis of partial correlations between gene properties and phylogenetic signal in which gene evolutionary rate and alignment length were simultaneously controlled, showed similar patterns of correlations, albeit weaker in strength. Examination of the relative importance of each gene property on phylogenetic signal identified gene alignment length, alongside with number of parsimony-informative sites and variable sites, as the most important predictors. Interestingly, the subsets of gene properties that optimally predicted phylogenetic signal differed considerably across our three phylogenetic measures and two data sets; however, gene alignment length and RCV were consistently included as predictors of all three phylogenetic measures in both yeasts and mammals. These results suggest that a handful of sequence-based gene properties are reliable predictors of phylogenetic signal and could be useful in guiding the choice of phylogenetic markers. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Investigation of the protein osteocalcin of Camelops hesternus: Sequence, structure and phylogenetic implications

    NASA Astrophysics Data System (ADS)

    Humpula, James F.; Ostrom, Peggy H.; Gandhi, Hasand; Strahler, John R.; Walker, Angela K.; Stafford, Thomas W.; Smith, James J.; Voorhies, Michael R.; George Corner, R.; Andrews, Phillip C.

    2007-12-01

    Ancient DNA sequences offer an extraordinary opportunity to unravel the evolutionary history of ancient organisms. Protein sequences offer another reservoir of genetic information that has recently become tractable through the application of mass spectrometric techniques. The extent to which ancient protein sequences resolve phylogenetic relationships, however, has not been explored. We determined the osteocalcin amino acid sequence from the bone of an extinct Camelid (21 ka, Camelops hesternus) excavated from Isleta Cave, New Mexico and three bones of extant camelids: bactrian camel ( Camelus bactrianus); dromedary camel ( Camelus dromedarius) and guanaco ( Llama guanacoe) for a diagenetic and phylogenetic assessment. There was no difference in sequence among the four taxa. Structural attributes observed in both modern and ancient osteocalcin include a post-translation modification, Hyp 9, deamidation of Gln 35 and Gln 39, and oxidation of Met 36. Carbamylation of the N-terminus in ancient osteocalcin may result in blockage and explain previous difficulties in sequencing ancient proteins via Edman degradation. A phylogenetic analysis using osteocalcin sequences of 25 vertebrate taxa was conducted to explore osteocalcin protein evolution and the utility of osteocalcin sequences for delineating phylogenetic relationships. The maximum likelihood tree closely reflected generally recognized taxonomic relationships. For example, maximum likelihood analysis recovered rodents, birds and, within hominins, the Homo-Pan-Gorilla trichotomy. Within Artiodactyla, character state analysis showed that a substitution of Pro 4 for His 4 defines the Capra-Ovis clade within Artiodactyla. Homoplasy in our analysis indicated that osteocalcin evolution is not a perfect indicator of species evolution. Limited sequence availability prevented assigning functional significance to sequence changes. Our preliminary analysis of osteocalcin evolution represents an initial step towards a complete character analysis aimed at determining the evolutionary history of this functionally significant protein. We emphasize that ancient protein sequencing and phylogenetic analyses using amino acid sequences must pay close attention to post-translational modifications, amino acid substitutions due to diagenetic alteration and the impacts of isobaric amino acids on mass shifts and sequence alignments.

  14. Component identification of electron transport chains in curdlan-producing Agrobacterium sp. ATCC 31749 and its genome-specific prediction using comparative genome and phylogenetic trees analysis.

    PubMed

    Zhang, Hongtao; Setubal, Joao Carlos; Zhan, Xiaobei; Zheng, Zhiyong; Yu, Lijun; Wu, Jianrong; Chen, Dingqiang

    2011-06-01

    Agrobacterium sp. ATCC 31749 (formerly named Alcaligenes faecalis var. myxogenes) is a non-pathogenic aerobic soil bacterium used in large scale biotechnological production of curdlan. However, little is known about its genomic information. DNA partial sequence of electron transport chains (ETCs) protein genes were obtained in order to understand the components of ETC and genomic-specificity in Agrobacterium sp. ATCC 31749. Degenerate primers were designed according to ETC conserved sequences in other reported species. DNA partial sequences of ETC genes in Agrobacterium sp. ATCC 31749 were cloned by the PCR method using degenerate primers. Based on comparative genomic analysis, nine electron transport elements were ascertained, including NADH ubiquinone oxidoreductase, succinate dehydrogenase complex II, complex III, cytochrome c, ubiquinone biosynthesis protein ubiB, cytochrome d terminal oxidase, cytochrome bo terminal oxidase, cytochrome cbb (3)-type terminal oxidase and cytochrome caa (3)-type terminal oxidase. Similarity and phylogenetic analyses of these genes revealed that among fully sequenced Agrobacterium species, Agrobacterium sp. ATCC 31749 is closest to Agrobacterium tumefaciens C58. Based on these results a comprehensive ETC model for Agrobacterium sp. ATCC 31749 is proposed.

  15. Novel Primer Sets for Next Generation Sequencing-Based Analyses of Water Quality

    PubMed Central

    Lee, Elvina; Khurana, Maninder S.; Whiteley, Andrew S.; Monis, Paul T.; Bath, Andrew; Gordon, Cameron; Ryan, Una M.; Paparini, Andrea

    2017-01-01

    Next generation sequencing (NGS) has rapidly become an invaluable tool for the detection, identification and relative quantification of environmental microorganisms. Here, we demonstrate two new 16S rDNA primer sets, which are compatible with NGS approaches and are primarily for use in water quality studies. Compared to 16S rRNA gene based universal primers, in silico and experimental analyses demonstrated that the new primers showed increased specificity for the Cyanobacteria and Proteobacteria phyla, allowing increased sensitivity for the detection, identification and relative quantification of toxic bloom-forming microalgae, microbial water quality bioindicators and common pathogens. Significantly, Cyanobacterial and Proteobacterial sequences accounted for ca. 95% of all sequences obtained within NGS runs (when compared to ca. 50% with standard universal NGS primers), providing higher sensitivity and greater phylogenetic resolution of key water quality microbial groups. The increased selectivity of the new primers allow the parallel sequencing of more samples through reduced sequence retrieval levels required to detect target groups, potentially reducing NGS costs by 50% but still guaranteeing optimal coverage and species discrimination. PMID:28118368

  16. Plant DNA barcodes and assessment of phylogenetic community structure of a tropical mixed dipterocarp forest in Brunei Darussalam (Borneo)

    PubMed Central

    Abu Salim, Kamariah; Chase, Mark W.; Dexter, Kyle G.; Pennington, R. Toby; Tan, Sylvester; Kaye, Maria Ellen; Samuel, Rosabelle

    2017-01-01

    DNA barcoding is a fast and reliable tool to assess and monitor biodiversity and, via community phylogenetics, to investigate ecological and evolutionary processes that may be responsible for the community structure of forests. In this study, DNA barcodes for the two widely used plastid coding regions rbcL and matK are used to contribute to identification of morphologically undetermined individuals, as well as to investigate phylogenetic structure of tree communities in 70 subplots (10 × 10m) of a 25-ha forest-dynamics plot in Brunei (Borneo, Southeast Asia). The combined matrix (rbcL + matK) comprised 555 haplotypes (from ≥154 genera, 68 families and 25 orders sensu APG, Angiosperm Phylogeny Group, 2016), making a substantial contribution to tree barcode sequences from Southeast Asia. Barcode sequences were used to reconstruct phylogenetic relationships using maximum likelihood, both with and without constraining the topology of taxonomic orders to match that proposed by the Angiosperm Phylogeny Group. A third phylogenetic tree was reconstructed using the program Phylomatic to investigate the influence of phylogenetic resolution on results. Detection of non-random patterns of community assembly was determined by net relatedness index (NRI) and nearest taxon index (NTI). In most cases, community assembly was either random or phylogenetically clustered, which likely indicates the importance to community structure of habitat filtering based on phylogenetically correlated traits in determining community structure. Different phylogenetic trees gave similar overall results, but the Phylomatic tree produced greater variation across plots for NRI and NTI values, presumably due to noise introduced by using an unresolved phylogenetic tree. Our results suggest that using a DNA barcode tree has benefits over the traditionally used Phylomatic approach by increasing precision and accuracy and allowing the incorporation of taxonomically unidentified individuals into analyses. PMID:29049301

  17. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov.

    PubMed

    Scholz, Christian F P; Kilian, Mogens

    2016-11-01

    The genus Propionibacterium in the family Propionibacteriaceaeconsists of species of various habitats, including mature cheese, cattle rumen and human skin. Traditionally, these species have been grouped as either classical or cutaneous propionibacteria based on characteristic phenotypes and source of isolation. To re-evaluate the taxonomy of the family and to elucidate the interspecies relatedness we compared 162 public whole-genome sequences of strains representing species of the family Propionibacteriaceae. We found substantial discrepancies between the phylogenetic signals of 16S rRNA gene sequence analysis and our high-resolution core-genome analysis. To accommodate these discrepancies, and to address the long-standing issue of the taxonomically problematic Propionibacterium propionicum, we propose three novel genera, Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov., and an amended description of the genus Propionibacterium. Furthermore, our genome-based analyses support the amounting evidence that the subdivision of Propionibacterium freudenreichii into subspecies is not warranted. Our proposals are supported by phylogenetic analyses, DNA G+C content, peptidoglycan composition and patterns of the gene losses and acquisitions in the cutaneous propionibacteria during their adaptation to the human host.

  18. A RAD-based phylogenetics for Orestias fishes from Lake Titicaca.

    PubMed

    Takahashi, Tetsumi; Moreno, Edmundo

    2015-12-01

    The fish genus Orestias is endemic to the Andes highlands, and Lake Titicaca is the centre of the species diversity of the genus. Previous phylogenetic studies based on a single locus of mitochondrial and nuclear DNA strongly support the monophyly of a group composed of many of species endemic to the Lake Titicaca basin (the Lake Titicaca radiation), but the relationships among the species in the radiation remain unclear. Recently, restriction site-associated DNA (RAD) sequencing, which can produce a vast number of short sequences from various loci of nuclear DNA, has emerged as a useful way to resolve complex phylogenetic problems. To propose a new phylogenetic hypothesis of Orestias fishes of the Lake Titicaca radiation, we conducted a cluster analysis based on morphological similarities among fish samples and a molecular phylogenetic analysis based on RAD sequencing. From a morphological cluster analysis, we recognised four species groups in the radiation, and three of the four groups were resolved as monophyletic groups in maximum-likelihood trees based on RAD sequencing data. The other morphology-based group was not resolved as a monophyletic group in molecular phylogenies, and some members of the group were diverged from its sister group close to the root of the Lake Titicaca radiation. The evolution of these fishes is discussed from the phylogenetic relationships. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Phylogenetic relationships among superfamilies of Neritimorpha (Mollusca: Gastropoda).

    PubMed

    Uribe, Juan E; Colgan, Don; Castro, Lyda R; Kano, Yasunori; Zardoya, Rafael

    2016-11-01

    Despite the extraordinary morphological and ecological diversity of Neritimorpha, few studies have focused on the phylogenetic relationships of this lineage of gastropods, which includes four extant superfamilies: Neritopsoidea, Hydrocenoidea, Helicinoidea, and Neritoidea. Here, the nucleotide sequences of the complete mitochondrial genomes of Georissa bangueyensis (Hydrocenoidea), Neritina usnea (Neritoidea), and Pleuropoma jana (Helicinoidea) and the nearly complete mt genomes of Titiscania sp. (Neritopsoidea) and Theodoxus fluviatilis (Neritoidea) were determined. Phylogenetic reconstructions using probabilistic methods were based on mitochondrial (13 protein coding genes and two ribosomal rRNA genes), nuclear (partial 28S rRNA, 18S rRNA, actin, and histone H3 genes) and combined sequence data sets. All phylogenetic analyses except one converged on a single, highly supported tree in which Neritopsoidea was recovered as the sister group of a clade including Helicinoidea as the sister group of Hydrocenoidea and Neritoidea. This topology agrees with the fossil record and supports at least three independent invasions of land by neritimorph snails. The mitochondrial genomes of Titiscania sp., G. bangueyensis, N. usnea, and T. fluviatilis share the same gene organization previously described for Nerita mt genomes whereas that of P. jana has undergone major rearrangements. We sequenced about half of the mitochondrial genome of another species of Helicinoidea, Viana regina, and confirmed that this species shares the highly derived gene order of P. jana. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Molecular epidemiology and evolution of avian infectious bronchitis virus in Spain over a fourteen-year period.

    PubMed

    Dolz, Roser; Pujols, Joan; Ordóñez, German; Porta, Ramon; Majó, Natàlia

    2008-04-25

    An in-depth molecular study of infectious bronchitis viruses (IBV) with particular interest in evolutionary aspects of IBV in Spain was carried out in the present study based on the S1 gene molecular characterization of twenty-six Spanish strains isolated over a fourteen-year period. Four genotypes were identified based on S1 gene sequence analyses and phylogenetic studies. A drastic virus population shift was demonstrated along time and the novel Italy 02 serotype was shown to have displaced the previous predominant serotype 4/91 in the field. Detailed analyses of synonymous to non-synonymous ratio of the S1 gene sequences of this new serotype Italy 02 suggested positive selection pressures might have contributed to the successful establishment of Italy 02 serotype in our country. In addition, differences on the fitness abilities of new emergent genotypes were indicated. Furthermore, intergenic sequences (IGs)-like motifs within S1 gene sequences of IBV isolates were suggested to enhance the recombination abilities of certain serotypes.

  1. Pan-genome and phylogeny of Bacillus cereus sensu lato.

    PubMed

    Bazinet, Adam L

    2017-08-02

    Bacillus cereus sensu lato (s. l.) is an ecologically diverse bacterial group of medical and agricultural significance. In this study, I use publicly available genomes and novel bioinformatic workflows to characterize the B. cereus s. l. pan-genome and perform the largest phylogenetic and population genetic analyses of this group to date in terms of the number of genes and taxa included. With these fundamental data in hand, I identify genes associated with particular phenotypic traits (i.e., "pan-GWAS" analysis), and quantify the degree to which taxa sharing common attributes are phylogenetically clustered. A rapid k-mer based approach (Mash) was used to create reduced representations of selected Bacillus genomes, and a fast distance-based phylogenetic analysis of this data (FastME) was performed to determine which species should be included in B. cereus s. l. The complete genomes of eight B. cereus s. l. species were annotated de novo with Prokka, and these annotations were used by Roary to produce the B. cereus s. l. pan-genome. Scoary was used to associate gene presence and absence patterns with various phenotypes. The orthologous protein sequence clusters produced by Roary were filtered and used to build HaMStR databases of gene models that were used in turn to construct phylogenetic data matrices. Phylogenetic analyses used RAxML, DendroPy, ClonalFrameML, PAUP*, and SplitsTree. Bayesian model-based population genetic analysis assigned taxa to clusters using hierBAPS. The genealogical sorting index was used to quantify the phylogenetic clustering of taxa sharing common attributes. The B. cereus s. l. pan-genome currently consists of ≈60,000 genes, ≈600 of which are "core" (common to at least 99% of taxa sampled). Pan-GWAS analysis revealed genes associated with phenotypes such as isolation source, oxygen requirement, and ability to cause diseases such as anthrax or food poisoning. Extensive phylogenetic analyses using an unprecedented amount of data produced phylogenies that were largely concordant with each other and with previous studies. Phylogenetic support as measured by bootstrap probabilities increased markedly when all suitable pan-genome data was included in phylogenetic analyses, as opposed to when only core genes were used. Bayesian population genetic analysis recommended subdividing the three major clades of B. cereus s. l. into nine clusters. Taxa sharing common traits and species designations exhibited varying degrees of phylogenetic clustering. All phylogenetic analyses recapitulated two previously used classification systems, and taxa were consistently assigned to the same major clade and group. By including accessory genes from the pan-genome in the phylogenetic analyses, I produced an exceptionally well-supported phylogeny of 114 complete B. cereus s. l. genomes. The best-performing methods were used to produce a phylogeny of all 498 publicly available B. cereus s. l. genomes, which was in turn used to compare three different classification systems and to test the monophyly status of various B. cereus s. l. species. The majority of the methodology used in this study is generic and could be leveraged to produce pan-genome estimates and similarly robust phylogenetic hypotheses for other bacterial groups.

  2. Novel relationships among ten fish model species revealed based on a phylogenomic analysis using ESTs.

    PubMed

    Steinke, Dirk; Salzburger, Walter; Meyer, Axel

    2006-06-01

    The power of comparative phylogenomic analyses also depends on the amount of data that are included in such studies. We used expressed sequence tags (ESTs) from fish model species as a proof of principle approach in order to test the reliability of using ESTs for phylogenetic inference. As expected, the robustness increases with the amount of sequences. Although some progress has been made in the elucidation of the phylogeny of teleosts, relationships among the main lineages of the derived fish (Euteleostei) remain poorly defined and are still debated. We performed a phylogenomic analysis of a set of 42 of orthologous genes from 10 available fish model systems from seven different orders (Salmoniformes, Siluriformes, Cypriniformes, Tetraodontiformes, Cyprinodontiformes, Beloniformes, and Perciformes) of euteleostean fish to estimate divergence times and evolutionary relationships among those lineages. All 10 fish species serve as models for developmental, aquaculture, genomic, and comparative genetic studies. The phylogenetic signal and the strength of the contribution of each of the 42 orthologous genes were estimated with randomly chosen data subsets. Our study revealed a molecular phylogeny of higher-level relationships of derived teleosts, which indicates that the use of multiple genes produces robust phylogenies, a finding that is expected to apply to other phylogenetic issues among distantly related taxa. Our phylogenomic analyses confirm that the euteleostean superorders Ostariophysi and Acanthopterygii are monophyletic and the Protacanthopterygii and Ostariophysi are sister clades. In addition, and contrary to the traditional phylogenetic hypothesis, our analyses determine that killifish (Cyprinodontiformes), medaka (Beloniformes), and cichlids (Perciformes) appear to be more closely related to each other than either of them is to pufferfish (Tetraodontiformes). All 10 lineages split before or during the fragmentation of the supercontinent Pangea in the Jurassic.

  3. The Complete Mitochondrial Genomes of Two Octopods Cistopus chinensis and Cistopus taiwanicus: Revealing the Phylogenetic Position of the Genus Cistopus within the Order Octopoda

    PubMed Central

    Cheng, Rubin; Zheng, Xiaodong; Ma, Yuanyuan; Li, Qi

    2013-01-01

    In the present study, we determined the complete mitochondrial DNA (mtDNA) sequences of two species of Cistopus, namely C. chinensis and C. taiwanicus, and conducted a comparative mt genome analysis across the class Cephalopoda. The mtDNA length of C. chinensis and C. taiwanicus are 15706 and 15793 nucleotides with an AT content of 76.21% and 76.5%, respectively. The sequence identity of mtDNA between C. chinensis and C. taiwanicus was 88%, suggesting a close relationship. Compared with C. taiwanicus and other octopods, C. chinensis encoded two additional tRNA genes, showing a novel gene arrangement. In addition, an unusual 23 poly (A) signal structure is found in the ATP8 coding region of C. chinensis. The entire genome and each protein coding gene of the two Cistopus species displayed notable levels of AT and GC skews. Based on sliding window analysis among Octopodiformes, ND1 and DN5 were considered to be more reliable molecular beacons. Phylogenetic analyses based on the 13 protein-coding genes revealed that C. chinensis and C. taiwanicus form a monophyletic group with high statistical support, consistent with previous studies based on morphological characteristics. Our results also indicated that the phylogenetic position of the genus Cistopus is closer to Octopus than to Amphioctopus and Callistoctopus. The complete mtDNA sequence of C. chinensis and C. taiwanicus represent the first whole mt genomes in the genus Cistopus. These novel mtDNA data will be important in refining the phylogenetic relationships within Octopodiformes and enriching the resource of markers for systematic, population genetic and evolutionary biological studies of Cephalopoda. PMID:24358345

  4. Whole-genome sequencing and analyses identify high genetic heterogeneity, diversity and endemicity of rotavirus genotype P[6] strains circulating in Africa.

    PubMed

    Nyaga, Martin M; Tan, Yi; Seheri, Mapaseka L; Halpin, Rebecca A; Akopov, Asmik; Stucker, Karla M; Fedorova, Nadia B; Shrivastava, Susmita; Duncan Steele, A; Mwenda, Jason M; Pickett, Brett E; Das, Suman R; Jeffrey Mphahlele, M

    2018-05-18

    Rotavirus A (RVA) exhibits a wide genotype diversity globally. Little is known about the genetic composition of genotype P[6] from Africa. This study investigated possible evolutionary mechanisms leading to genetic diversity of genotype P[6] VP4 sequences. Phylogenetic analyses on 167 P[6] VP4 full-length sequences were conducted, which included six porcine-origin sequences. Of the 167 sequences, 57 were newly acquired through whole genome sequencing as part of this study. The other 110 sequences were all publicly-available global P[6] VP4 full-length sequences downloaded from GenBank. The strength of association between the phenotypic features and the phylogeny was also determined. A number of reassortment and mixed infections of RVA genotype P[6] strains were observed in this study. Phylogenetic analyses demostrated the extensive genetic diversity that exists among human P[6] strains, porcine-like strains, their concomitant clades/subclades and estimated that P[6] VP4 gene has a higher substitution rate with the mean of 1.05E-3 substitutions/site/year. Further, the phylogenetic analyses indicated that genotype P[6] strains were endemic in Africa, characterised by an extensive genetic diversity and long-time local evolution of the viruses. This was also supported by phylogeographic clustering and G-genotype clustering of the P[6] strains when Bayesian Tip-association Significance testing (BaTS) was applied, clearly supporting that the viruses evolved locally in Africa instead of spatial mixing among different regions. Overall, the results demonstrated that multiple mechanisms such as reassortment events, various mutations and possibly interspecies transmission account for the enormous diversity of genotype P[6] strains in Africa. These findings highlight the need for continued global surveillance of rotavirus diversity. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. QueTAL: a suite of tools to classify and compare TAL effectors functionally and phylogenetically

    PubMed Central

    Pérez-Quintero, Alvaro L.; Lamy, Léo; Gordon, Jonathan L.; Escalon, Aline; Cunnac, Sébastien; Szurek, Boris; Gagnevin, Lionel

    2015-01-01

    Transcription Activator-Like (TAL) effectors from Xanthomonas plant pathogenic bacteria can bind to the promoter region of plant genes and induce their expression. DNA-binding specificity is governed by a central domain made of nearly identical repeats, each determining the recognition of one base pair via two amino acid residues (a.k.a. Repeat Variable Di-residue, or RVD). Knowing how TAL effectors differ from each other within and between strains would be useful to infer functional and evolutionary relationships, but their repetitive nature precludes reliable use of traditional alignment methods. The suite QueTAL was therefore developed to offer tailored tools for comparison of TAL effector genes. The program DisTAL considers each repeat as a unit, transforms a TAL effector sequence into a sequence of coded repeats and makes pair-wise alignments between these coded sequences to construct trees. The program FuncTAL is aimed at finding TAL effectors with similar DNA-binding capabilities. It calculates correlations between position weight matrices of potential target DNA sequence predicted from the RVD sequence, and builds trees based on these correlations. The programs accurately represented phylogenetic and functional relationships between TAL effectors using either simulated or literature-curated data. When using the programs on a large set of TAL effector sequences, the DisTAL tree largely reflected the expected species phylogeny. In contrast, FuncTAL showed that TAL effectors with similar binding capabilities can be found between phylogenetically distant taxa. This suite will help users to rapidly analyse any TAL effector genes of interest and compare them to other available TAL genes and should improve our understanding of TAL effectors evolution. It is available at http://bioinfo-web.mpl.ird.fr/cgi-bin2/quetal/quetal.cgi. PMID:26284082

  6. Partial sequence homogenization in the 5S multigene families may generate sequence chimeras and spurious results in phylogenetic reconstructions.

    PubMed

    Galián, José A; Rosato, Marcela; Rosselló, Josep A

    2014-03-01

    Multigene families have provided opportunities for evolutionary biologists to assess molecular evolution processes and phylogenetic reconstructions at deep and shallow systematic levels. However, the use of these markers is not free of technical and analytical challenges. Many evolutionary studies that used the nuclear 5S rDNA gene family rarely used contiguous 5S coding sequences due to the routine use of head-to-tail polymerase chain reaction primers that are anchored to the coding region. Moreover, the 5S coding sequences have been concatenated with independent, adjacent gene units in many studies, creating simulated chimeric genes as the raw data for evolutionary analysis. This practice is based on the tacitly assumed, but rarely tested, hypothesis that strict intra-locus concerted evolution processes are operating in 5S rDNA genes, without any empirical evidence as to whether it holds for the recovered data. The potential pitfalls of analysing the patterns of molecular evolution and reconstructing phylogenies based on these chimeric genes have not been assessed to date. Here, we compared the sequence integrity and phylogenetic behavior of entire versus concatenated 5S coding regions from a real data set obtained from closely related plant species (Medicago, Fabaceae). Our results suggest that within arrays sequence homogenization is partially operating in the 5S coding region, which is traditionally assumed to be highly conserved. Consequently, concatenating 5S genes increases haplotype diversity, generating novel chimeric genotypes that most likely do not exist within the genome. In addition, the patterns of gene evolution are distorted, leading to incorrect haplotype relationships in some evolutionary reconstructions.

  7. Clarification of the Concept of Ganoderma orbiforme with High Morphological Plasticity

    PubMed Central

    Wang, Dong-Mei; Wu, Sheng-Hua; Yao, Yi-Jian

    2014-01-01

    Ganoderma has been considered a very difficult genus among the polypores to classify and is currently in a state of taxonomic chaos. In a study of Ganoderma collections including numerous type specimens, we found that six species namely G. cupreum, G. densizonatum, G. limushanense, G. mastoporum, G. orbiforme, G. subtornatum, and records of G. fornicatum from Mainland China and Taiwan are very similar to one another in basidiocarp texture, pilear cuticle structure, context color, pore color and basidiospore characteristics. Further, we sequenced the nrDNA ITS region (ITS1 and ITS2) and partial mtDNA SSU region of the studied materials, and performed phylogenetic analyses based on these sequence data. The nrDNA ITS sequence analysis results show that the eight nrDNA ITS sequences derived from this study have single-nucleotide polymorphisms in ITS1 and/or ITS2 at inter- and intra-individual levels. In the nrDNA ITS phylogenetic trees, all the sequences from this study are grouped together with those of G. cupreum and G. mastoporum retrieved from GenBank to form a distinct clade. The mtDNA SSU sequence analysis results reveal that the five mtDNA SSU sequences derived from this study are clustered together with those of G. cupreum retrieved from GenBank and also form a distinct clade in the mtDNA SSU phylogenetic trees. Based on morphological and molecular data, we conclude that the studied taxa are conspecific. Among the names assigned to this species, G. fornicatum given to Asian collections has nomenclatural priority over the others. However, the type of G. fornicatum from Brazil is probably lost and a modern description based on the type lacks. The identification of the Asian collections to G. fornicatum therefore cannot be confirmed. To the best of our knowledge, G. orbiforme is the earliest valid name for use. PMID:24875218

  8. The first complete mitochondrial genome of Bactrocera tsuneonis (Miyake) (Diptera: Tephritidae) by next-generation sequencing and its phylogenetic implications.

    PubMed

    Zhang, Yue; Feng, Shiqian; Zeng, Yiying; Ning, Hong; Liu, Lijun; Zhao, Zihua; Jiang, Fan; Li, Zhihong

    2018-06-23

    Bactrocera tsuneonis (Miyake), generally known as the Japanese orange fly, is considered to be a major pest of commercial citrus crops. It has a limited distribution in China, Japan and Vietnam, but it has the potential to invade areas outside of Asia. More genetic information of B. tsuneonis should be obtained in order to develop effective methodologies for rapid and accurate molecular identification due to the difficulty of distinguishing it from Bactrocera minax based on morphological features. We report here the whole mitochondrial genome of B. tsuneonis sequenced by next-generation sequencing. This mitogenome sequence had a total length of 15,865 bp, a typical circular molecule comprising 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a non-coding region (A + T-rich control region). The structure and organization of the molecule were typical and similar compared with the published homologous sequences of other fruit flies in Tephritidae. The phylogenetic analyses based on the mitochondrial genome data presented a close genetic relationship between B. tsuneonis and B. minax. This is the first report of the complete mitochondrial genome of B. tsuneonis, and it can be used in further studies of species diagnosis, evolutionary biology, prevention and control. Copyright © 2018. Published by Elsevier B.V.

  9. Phylogenetic relationship of the genus Gilbertella and related genera within the order Mucorales based on 5.8 S ribosomal DNA sequences.

    PubMed

    Papp, T; Acs, Klára; Nyilasi, Ildikó; Nagy, Erzsébet; Vágvölgyi, Cs

    2003-01-01

    The complete ITS (internal transcribed spacer) region coding the ITS1, the ITS2 and the 5.8S rDNA was amplified by polymerase chain reaction from two strains of Gilbertella persicaria, six strains in the Mucoraceae (Mucor piriformis, M. rouxii, M. circinelloides, Rhizomucor miehei, R. pusillus and R. tauricus) and four strains representing three species of the Choanephoraceae (Blakeslea trispora, Choanephora infundibulifera and Poitrasia circinans). Sequences of the amplified DNA fragments were determined and analysed. G. persicaria belongs to the monogeneric family (Gilbertellaceae), however, originally it was described as Choanephora persicaria. The goal of this study was to reveal the phylogenetic relationship among fungi belonging to Gilbertellaceae, Choanephoraceae and Mucoraceae. Our results support that the "intermediate" position of this family is between Choanephoraceae and Mucoraceae.

  10. Phylogenetic analysis and confirmation of the endospore-forming nature of Pasteuria penetrans based on the spo0A gene.

    PubMed

    Trotter, James R; Bishop, Alistair H

    2003-08-29

    Pasteuria penetrans is an obligate parasite of plant parasitic nematodes and has yet to be grown in vitro. We have cloned the pivotal sporulation gene, spo0A, which is the first whole gene yet to come from this organism. Partial spo0A sequences were also obtained from the related bacteria, Pasteuria ramosa and Alicyclobacillus acidocaldarius. Phylogenetic analyses using the spo0A sequence data from this and previous studies confirmed the closeness of the genera Pasteuria and members of the supergenus Bacillus. A segment of the spo0A gene was also used to show that genetic heterogeneity exists within and between populations of P. penetrans. This may explain, partly at least, the variability of P. penetrans as a biological control agent of nematodes.

  11. Basal jawed vertebrate phylogeny inferred from multiple nuclear DNA-coded genes

    PubMed Central

    Kikugawa, Kanae; Katoh, Kazutaka; Kuraku, Shigehiro; Sakurai, Hiroshi; Ishida, Osamu; Iwabe, Naoyuki; Miyata, Takashi

    2004-01-01

    Background Phylogenetic analyses of jawed vertebrates based on mitochondrial sequences often result in confusing inferences which are obviously inconsistent with generally accepted trees. In particular, in a hypothesis by Rasmussen and Arnason based on mitochondrial trees, cartilaginous fishes have a terminal position in a paraphyletic cluster of bony fishes. No previous analysis based on nuclear DNA-coded genes could significantly reject the mitochondrial trees of jawed vertebrates. Results We have cloned and sequenced seven nuclear DNA-coded genes from 13 vertebrate species. These sequences, together with sequences available from databases including 13 jawed vertebrates from eight major groups (cartilaginous fishes, bichir, chondrosteans, gar, bowfin, teleost fishes, lungfishes and tetrapods) and an outgroup (a cyclostome and a lancelet), have been subjected to phylogenetic analyses based on the maximum likelihood method. Conclusion Cartilaginous fishes have been inferred to be basal to other jawed vertebrates, which is consistent with the generally accepted view. The minimum log-likelihood difference between the maximum likelihood tree and trees not supporting the basal position of cartilaginous fishes is 18.3 ± 13.1. The hypothesis by Rasmussen and Arnason has been significantly rejected with the minimum log-likelihood difference of 123 ± 23.3. Our tree has also shown that living holosteans, comprising bowfin and gar, form a monophyletic group which is the sister group to teleost fishes. This is consistent with a formerly prevalent view of vertebrate classification, although inconsistent with both of the current morphology-based and mitochondrial sequence-based trees. Furthermore, the bichir has been shown to be the basal ray-finned fish. Tetrapods and lungfish have formed a monophyletic cluster in the tree inferred from the concatenated alignment, being consistent with the currently prevalent view. It also remains possible that tetrapods are more closely related to ray-finned fishes than to lungfishes. PMID:15070407

  12. Phylogenetic Analyses of Novel Squamate Adenovirus Sequences in Wild-Caught Anolis Lizards

    PubMed Central

    Ascher, Jill M.; Geneva, Anthony J.; Ng, Julienne; Wyatt, Jeffrey D.; Glor, Richard E.

    2013-01-01

    Adenovirus infection has emerged as a serious threat to the health of captive snakes and lizards (i.e., squamates), but we know relatively little about this virus' range of possible hosts, pathogenicity, modes of transmission, and sources from nature. We report the first case of adenovirus infection in the Iguanidae, a diverse family of lizards that is widely-studied and popular in captivity. We report adenovirus infections from two closely-related species of Anolis lizards (anoles) that were recently imported from wild populations in the Dominican Republic to a laboratory colony in the United States. We investigate the evolution of adenoviruses in anoles and other squamates using phylogenetic analyses of adenovirus polymerase gene sequences sampled from Anolis and a range of other vertebrate taxa. These phylogenetic analyses reveal that (1) the sequences detected from each species of Anolis are novel, and (2) adenoviruses are not necessarily host-specific and do not always follow a co-speciation model under which host and virus phylogenies are perfectly concordant. Together with the fact that the Anolis adenovirus sequences reported in our study were detected in animals that became ill and subsequently died shortly after importation while exhibiting clinical signs consistent with acute adenovirus infection, our discoveries suggest the need for renewed attention to biosecurity measures intended to prevent the spread of adenovirus both within and among species of snakes and lizards housed in captivity. PMID:23593364

  13. Analyzing endocrine system conservation and evolution.

    PubMed

    Bonett, Ronald M

    2016-08-01

    Analyzing variation in rates of evolution can provide important insights into the factors that constrain trait evolution, as well as those that promote diversification. Metazoan endocrine systems exhibit apparent variation in evolutionary rates of their constituent components at multiple levels, yet relatively few studies have quantified these patterns and analyzed them in a phylogenetic context. This may be in part due to historical and current data limitations for many endocrine components and taxonomic groups. However, recent technological advancements such as high-throughput sequencing provide the opportunity to collect large-scale comparative data sets for even non-model species. Such ventures will produce a fertile data landscape for evolutionary analyses of nucleic acid and amino acid based endocrine components. Here I summarize evolutionary rate analyses that can be applied to categorical and continuous endocrine traits, and also those for nucleic acid and protein-based components. I emphasize analyses that could be used to test whether other variables (e.g., ecology, ontogenetic timing of expression, etc.) are related to patterns of rate variation and endocrine component diversification. The application of phylogenetic-based rate analyses to comparative endocrine data will greatly enhance our understanding of the factors that have shaped endocrine system evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Identification of Bari Transposons in 23 Sequenced Drosophila Genomes Reveals Novel Structural Variants, MITEs and Horizontal Transfer

    PubMed Central

    D’Addabbo, Pietro; Caizzi, Ruggiero

    2016-01-01

    Bari elements are members of the Tc1-mariner superfamily of DNA transposons, originally discovered in Drosophila melanogaster, and subsequently identified in silico in 11 sequenced Drosophila genomes and as experimentally isolated in four non-sequenced Drosophila species. Bari-like elements have been also studied for their mobility both in vivo and in vitro. We analyzed 23 Drosophila genomes and carried out a detailed characterization of the Bari elements identified, including those from the heterochromatic Bari1 cluster in D. melanogaster. We have annotated 401 copies of Bari elements classified either as putatively autonomous or inactive according to the structure of the terminal sequences and the presence of a complete transposase-coding region. Analyses of the integration sites revealed that Bari transposase prefers AT-rich sequences in which the TA target is cleaved and duplicated. Furthermore evaluation of transposon’s co-occurrence near the integration sites of Bari elements showed a non-random distribution of other transposable elements. We also unveil the existence of a putatively autonomous Bari1 variant characterized by two identical long Terminal Inverted Repeats, in D. rhopaloa. In addition, we detected MITEs related to Bari transposons in 9 species. Phylogenetic analyses based on transposase gene and the terminal sequences confirmed that Bari-like elements are distributed into three subfamilies. A few inconsistencies in Bari phylogenetic tree with respect to the Drosophila species tree could be explained by the occurrence of horizontal transfer events as also suggested by the results of dS analyses. This study further clarifies the Bari transposon’s evolutionary dynamics and increases our understanding on the Tc1-mariner elements’ biology. PMID:27213270

  15. Identification of Bari Transposons in 23 Sequenced Drosophila Genomes Reveals Novel Structural Variants, MITEs and Horizontal Transfer.

    PubMed

    Palazzo, Antonio; Lovero, Domenica; D'Addabbo, Pietro; Caizzi, Ruggiero; Marsano, René Massimiliano

    2016-01-01

    Bari elements are members of the Tc1-mariner superfamily of DNA transposons, originally discovered in Drosophila melanogaster, and subsequently identified in silico in 11 sequenced Drosophila genomes and as experimentally isolated in four non-sequenced Drosophila species. Bari-like elements have been also studied for their mobility both in vivo and in vitro. We analyzed 23 Drosophila genomes and carried out a detailed characterization of the Bari elements identified, including those from the heterochromatic Bari1 cluster in D. melanogaster. We have annotated 401 copies of Bari elements classified either as putatively autonomous or inactive according to the structure of the terminal sequences and the presence of a complete transposase-coding region. Analyses of the integration sites revealed that Bari transposase prefers AT-rich sequences in which the TA target is cleaved and duplicated. Furthermore evaluation of transposon's co-occurrence near the integration sites of Bari elements showed a non-random distribution of other transposable elements. We also unveil the existence of a putatively autonomous Bari1 variant characterized by two identical long Terminal Inverted Repeats, in D. rhopaloa. In addition, we detected MITEs related to Bari transposons in 9 species. Phylogenetic analyses based on transposase gene and the terminal sequences confirmed that Bari-like elements are distributed into three subfamilies. A few inconsistencies in Bari phylogenetic tree with respect to the Drosophila species tree could be explained by the occurrence of horizontal transfer events as also suggested by the results of dS analyses. This study further clarifies the Bari transposon's evolutionary dynamics and increases our understanding on the Tc1-mariner elements' biology.

  16. Epidemiology, pathology, and genetic analysis of a canine distemper epidemic in Namibia.

    PubMed

    Gowtage-Sequeira, Sonya; Banyard, Ashley C; Barrett, Tom; Buczkowski, Hubert; Funk, Stephan M; Cleaveland, Sarah

    2009-10-01

    Severe population declines have resulted from the spillover of canine distemper virus (CDV) into susceptible wildlife, with both domestic and wild canids being involved in the maintenance and transmission of the virus. This study (March 2001 to October 2003) collated case data, serologic, pathologic, and molecular data to describe the spillover of CDV from domestic dogs (Canis familiaris) to black-backed jackals (Canis mesomelas) during an epidemic on the Namibian coast. Antibody prevalence in jackals peaked at 74.1%, and the clinical signs and histopathologic observations closely resembled those observed in domestic dog cases. Viral RNA was isolated from the brain of a domestic dog from the outbreak area. Sequence data from the phosphoprotein (P) gene and the hemagglutinin (H) genes were used for phylogenetic analyses. The P gene sequence from the domestic dog shared 98% identity with the sequence data available for other CDV isolates of African carnivores. For the H gene, the two sequences available from the outbreak that decimated the lion population in Tanzania in 1994 were the closest match with the Namibian sample, being 94% identical across 1,122 base pairs (bp). Phylogenetic analyses based on this region clustered the Namibian sample with the CDV that is within the morbilliviruses. This is the first description of an epidemic involving black-backed jackals in Namibia, demonstrating that this species has the capacity for rapid and large-scale dissemination of CDV. This work highlights the threat posed to endangered wildlife in Namibia by the spillover of CDV from domestic dog populations. Very few sequence data are currently available for CDV isolates from African carnivores, and this work provides the first sequence data from a Namibian CDV isolate.

  17. Phylogenetic estimation and morphological evolution of Arundinarieae (Bambusoideae: Poaceae) based on plastome phylogenomic analysis.

    PubMed

    Attigala, Lakshmi; Wysocki, William P; Duvall, Melvin R; Clark, Lynn G

    2016-08-01

    We explored phylogenetic relationships among the twelve lineages of the temperate woody bamboo clade (tribe Arundinarieae) based on plastid genome (plastome) sequence data. A representative sample of 28 taxa was used and maximum parsimony, maximum likelihood and Bayesian inference analyses were conducted to estimate the Arundinarieae phylogeny. All the previously recognized clades of Arundinarieae were supported, with Ampelocalamus calcareus (Clade XI) as sister to the rest of the temperate woody bamboos. Well supported sister relationships between Bergbambos tessellata (Clade I) and Thamnocalamus spathiflorus (Clade VII) and between Kuruna (Clade XII) and Chimonocalmus (Clade III) were revealed by the current study. The plastome topology was tested by taxon removal experiments and alternative hypothesis testing and the results supported the current plastome phylogeny as robust. Neighbor-net analyses showed few phylogenetic signal conflicts, but suggested some potentially complex relationships among these taxa. Analyses of morphological character evolution of rhizomes and reproductive structures revealed that pachymorph rhizomes were most likely the ancestral state in Arundinarieae. In contrast leptomorph rhizomes either evolved once with reversions to the pachymorph condition or multiple times in Arundinarieae. Further, pseudospikelets evolved independently at least twice in the Arundinarieae, but the ancestral state is ambiguous. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Fusarium proliferatum - Causal agent of garlic bulb rot in Spain: Genetic variability and mycotoxin production.

    PubMed

    Gálvez, Laura; Urbaniak, Monika; Waśkiewicz, Agnieszka; Stępień, Łukasz; Palmero, Daniel

    2017-10-01

    Fusarium proliferatum is a world-wide occurring fungal pathogen affecting several crops included garlic bulbs. In Spain, this is the most frequent pathogenic fungus associated with garlic rot during storage. Moreover, F. proliferatum is an important mycotoxigenic species, producing a broad range of toxins, which may pose a risk for food safety. The aim of this study is to assess the intraspecific variability of the garlic pathogen in Spain implied by analyses of translation elongation factor (tef-1α) and FUM1 gene sequences as well as the differences in growth rates. Phylogenetic characterization has been complemented with the characterization of mating type alleles as well as the species potential as a toxin producer. Phylogenetic trees based on the sequence of the translation elongation factor and FUM1 genes from seventy nine isolates from garlic revealed a considerable intraspecific variability as well as high level of diversity in growth speed. Based on the MAT alleles amplified by PCR, F. proliferatum isolates were separated into different groups on both trees. All isolates collected from garlic in Spain proved to be fumonisin B 1 , B 2 , and B 3 producers. Quantitative analyses of fumonisins, beauvericin and moniliformin (common secondary metabolites of F. proliferatum) showed no correlation with phylogenetic analysis neither mycelial growth. This pathogen presents a high intraspecific variability within the same geographical region and host, which is necessary to be considered in the management of the disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Phylogenetic diversity of bacterial communities in bovine rumen as affected by diets and microenvironments.

    PubMed

    Kim, Minseok; Morrison, Mark; Yu, Zhongtang

    2011-09-01

    Phylogenetic analysis was conducted to examine ruminal bacteria in two ruminal fractions (adherent fraction vs. liquid fraction) collected from cattle fed with two different diets: forage alone vs. forage plus concentrate. One hundred forty-four 16S rRNA gene (rrs) sequences were obtained from clone libraries constructed from the four samples. These rrs sequences were assigned to 116 different operational taxonomic units (OTUs) defined at 0.03 phylogenetic distance. Most of these OTUs could not be assigned to any known genus. The phylum Firmicutes was represented by approximately 70% of all the sequences. By comparing to the OTUs already documented in the rumen, 52 new OTUs were identified. UniFrac, SONS, and denaturing gradient gel electrophoresis analyses revealed difference in diversity between the two fractions and between the two diets. This study showed that rrs sequences recovered from small clone libraries can still help identify novel species-level OTUs.

  20. Welcome to pandoraviruses at the ‘Fourth TRUC’ club

    PubMed Central

    Sharma, Vikas; Colson, Philippe; Chabrol, Olivier; Scheid, Patrick; Pontarotti, Pierre; Raoult, Didier

    2015-01-01

    Nucleocytoplasmic large DNA viruses, or representatives of the proposed order Megavirales, belong to families of giant viruses that infect a broad range of eukaryotic hosts. Megaviruses have been previously described to comprise a fourth monophylogenetic TRUC (things resisting uncompleted classification) together with cellular domains in the universal tree of life. Recently described pandoraviruses have large (1.9–2.5 MB) and highly divergent genomes. In the present study, we updated the classification of pandoraviruses and other reported giant viruses. Phylogenetic trees were constructed based on six informational genes. Hierarchical clustering was performed based on a set of informational genes from Megavirales members and cellular organisms. Homologous sequences were selected from cellular organisms using TimeTree software, comprising comprehensive, and representative sets of members from Bacteria, Archaea, and Eukarya. Phylogenetic analyses based on three conserved core genes clustered pandoraviruses with phycodnaviruses, exhibiting their close relatedness. Additionally, hierarchical clustering analyses based on informational genes grouped pandoraviruses with Megavirales members as a super group distinct from cellular organisms. Thus, the analyses based on core conserved genes revealed that pandoraviruses are new genuine members of the ‘Fourth TRUC’ club, encompassing distinct life forms compared with cellular organisms. PMID:26042093

  1. Welcome to pandoraviruses at the 'Fourth TRUC' club.

    PubMed

    Sharma, Vikas; Colson, Philippe; Chabrol, Olivier; Scheid, Patrick; Pontarotti, Pierre; Raoult, Didier

    2015-01-01

    Nucleocytoplasmic large DNA viruses, or representatives of the proposed order Megavirales, belong to families of giant viruses that infect a broad range of eukaryotic hosts. Megaviruses have been previously described to comprise a fourth monophylogenetic TRUC (things resisting uncompleted classification) together with cellular domains in the universal tree of life. Recently described pandoraviruses have large (1.9-2.5 MB) and highly divergent genomes. In the present study, we updated the classification of pandoraviruses and other reported giant viruses. Phylogenetic trees were constructed based on six informational genes. Hierarchical clustering was performed based on a set of informational genes from Megavirales members and cellular organisms. Homologous sequences were selected from cellular organisms using TimeTree software, comprising comprehensive, and representative sets of members from Bacteria, Archaea, and Eukarya. Phylogenetic analyses based on three conserved core genes clustered pandoraviruses with phycodnaviruses, exhibiting their close relatedness. Additionally, hierarchical clustering analyses based on informational genes grouped pandoraviruses with Megavirales members as a super group distinct from cellular organisms. Thus, the analyses based on core conserved genes revealed that pandoraviruses are new genuine members of the 'Fourth TRUC' club, encompassing distinct life forms compared with cellular organisms.

  2. West Nile Virus lineage-2 in Culex specimens from Iran.

    PubMed

    Shahhosseini, Nariman; Chinikar, Sadegh; Moosa-Kazemi, Seyed Hassan; Sedaghat, Mohammad Mehdi; Kayedi, Mohammad Hassan; Lühken, Renke; Schmidt-Chanasit, Jonas

    2017-10-01

    Screening of mosquitoes for viruses is an important forecasting tool for emerging and re-emerging arboviruses. Iran has been known to harbour medically important arboviruses such as West Nile virus (WNV) and dengue virus (DENV) based on seroepidemiological data. However, there are no data about the potential mosquito vectors for arboviruses in Iran. This study was performed to provide mosquito and arbovirus data from Iran. A total of 32 317 mosquitos were collected at 16 sites in five provinces of Iran in 2015 and 2016. RT-PCR for detection of flaviviruses was performed. The PCR amplicons were sequenced, and 109 WNV sequences, including one obtained in this study, were used for phylogenetic analyses. The 32 317 mosquito specimens belonging to 25 species were morphologically distinguished and distributed into 1222 pools. Culex pipiens s.l. comprised 56.429%. One mosquito pool (0.08%), containing 46 unfed Cx. pipiens pipiens form pipiens (Cpp) captured in August 2015, was positive for flavivirus RNA. Subsequent sequencing and phylogenetic analyses revealed that the detected Iranian WNV strain belongs to lineage 2 and clusters with a strain recently detected in humans. No flaviviruses other than WNV were detected in the mosquito pools. Cpp could be a vector for WNV in Iran. Our findings indicate recent circulation of WNV lineage-2 strain in Iran and provide a solid base for more targeted arbovirus surveillance programs. © 2017 John Wiley & Sons Ltd.

  3. Characterization of the groEL and groES loci in Bifidobacterium breve UCC 2003: genetic, transcriptional, and phylogenetic analyses.

    PubMed

    Ventura, Marco; Canchaya, Carlos; Zink, Ralf; Fitzgerald, Gerald F; van Sinderen, Douwe

    2004-10-01

    The bacterial heat shock response is characterized by the elevated expression of a number of chaperone complexes, including the GroEL and GroES proteins. The groES and groEL genes are highly conserved among eubacteria and are typically arranged as an operon. Genome analysis of Bifidobacterium breve UCC 2003 revealed that the groES and groEL genes are located in different chromosomal regions. The heat inducibility of the groEL and groES genes of B. breve UCC 2003 was verified by slot blot analysis. Northern blot analyses showed that the cspA gene is cotranscribed with the groEL gene, while the groES gene is transcribed as a monocistronic unit. The transcription initiation sites of these two mRNAs were determined by primer extension. Sequence and transcriptional analyses of the region flanking the groEL and groES genes of various bifidobacteria revealed similar groEL-cspA and groES gene units, suggesting a novel genetic organization of these chaperones. Phylogenetic analysis of the available bifidobacterial groES and groEL genes suggested that these genes evolved differently. Discrepancies in the phylogenetic positioning of groES-based trees make this gene an unreliable molecular marker. On the other hand, the bifidobacterial groEL gene sequences can be used as an alternative to current methods for tracing Bifidobacterium species, particularly because they allow a high level of discrimination between closely related species of this genus.

  4. Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing.

    PubMed

    Kröber, Magdalena; Bekel, Thomas; Diaz, Naryttza N; Goesmann, Alexander; Jaenicke, Sebastian; Krause, Lutz; Miller, Dimitri; Runte, Kai J; Viehöver, Prisca; Pühler, Alfred; Schlüter, Andreas

    2009-06-01

    The phylogenetic structure of the microbial community residing in a fermentation sample from a production-scale biogas plant fed with maize silage, green rye and liquid manure was analysed by an integrated approach using clone library sequences and metagenome sequence data obtained by 454-pyrosequencing. Sequencing of 109 clones from a bacterial and an archaeal 16S-rDNA amplicon library revealed that the obtained nucleotide sequences are similar but not identical to 16S-rDNA database sequences derived from different anaerobic environments including digestors and bioreactors. Most of the bacterial 16S-rDNA sequences could be assigned to the phylum Firmicutes with the most abundant class Clostridia and to the class Bacteroidetes, whereas most archaeal 16S-rDNA sequences cluster close to the methanogen Methanoculleus bourgensis. Further sequences of the archaeal library most probably represent so far non-characterised species within the genus Methanoculleus. A similar result derived from phylogenetic analysis of mcrA clone sequences. The mcrA gene product encodes the alpha-subunit of methyl-coenzyme-M reductase involved in the final step of methanogenesis. BLASTn analysis applying stringent settings resulted in assignment of 16S-rDNA metagenome sequence reads to 62 16S-rDNA amplicon sequences thus enabling frequency of abundance estimations for 16S-rDNA clone library sequences. Ribosomal Database Project (RDP) Classifier processing of metagenome 16S-rDNA reads revealed abundance of the phyla Firmicutes, Bacteroidetes and Euryarchaeota and the orders Clostridiales, Bacteroidales and Methanomicrobiales. Moreover, a large fraction of 16S-rDNA metagenome reads could not be assigned to lower taxonomic ranks, demonstrating that numerous microorganisms in the analysed fermentation sample of the biogas plant are still unclassified or unknown.

  5. Phylogenetic Placement of Exact Amplicon Sequences Improves Associations with Clinical Information

    PubMed Central

    McDonald, Daniel; Gonzalez, Antonio; Navas-Molina, Jose A.; Jiang, Lingjing; Xu, Zhenjiang Zech; Winker, Kevin; Kado, Deborah M.; Orwoll, Eric; Manary, Mark; Mirarab, Siavash

    2018-01-01

    ABSTRACT Recent algorithmic advances in amplicon-based microbiome studies enable the inference of exact amplicon sequence fragments. These new methods enable the investigation of sub-operational taxonomic units (sOTU) by removing erroneous sequences. However, short (e.g., 150-nucleotide [nt]) DNA sequence fragments do not contain sufficient phylogenetic signal to reproduce a reasonable tree, introducing a barrier in the utilization of critical phylogenetically aware metrics such as Faith’s PD or UniFrac. Although fragment insertion methods do exist, those methods have not been tested for sOTUs from high-throughput amplicon studies in insertions against a broad reference phylogeny. We benchmarked the SATé-enabled phylogenetic placement (SEPP) technique explicitly against 16S V4 sequence fragments and showed that it outperforms the conceptually problematic but often-used practice of reconstructing de novo phylogenies. In addition, we provide a BSD-licensed QIIME2 plugin (https://github.com/biocore/q2-fragment-insertion) for SEPP and integration into the microbial study management platform QIITA. IMPORTANCE The move from OTU-based to sOTU-based analysis, while providing additional resolution, also introduces computational challenges. We demonstrate that one popular method of dealing with sOTUs (building a de novo tree from the short sequences) can provide incorrect results in human gut metagenomic studies and show that phylogenetic placement of the new sequences with SEPP resolves this problem while also yielding other benefits over existing methods. PMID:29719869

  6. KinFin: Software for Taxon-Aware Analysis of Clustered Protein Sequences.

    PubMed

    Laetsch, Dominik R; Blaxter, Mark L

    2017-10-05

    The field of comparative genomics is concerned with the study of similarities and differences between the information encoded in the genomes of organisms. A common approach is to define gene families by clustering protein sequences based on sequence similarity, and analyze protein cluster presence and absence in different species groups as a guide to biology. Due to the high dimensionality of these data, downstream analysis of protein clusters inferred from large numbers of species, or species with many genes, is nontrivial, and few solutions exist for transparent, reproducible, and customizable analyses. We present KinFin, a streamlined software solution capable of integrating data from common file formats and delivering aggregative annotation of protein clusters. KinFin delivers analyses based on systematic taxonomy of the species analyzed, or on user-defined, groupings of taxa, for example, sets based on attributes such as life history traits, organismal phenotypes, or competing phylogenetic hypotheses. Results are reported through graphical and detailed text output files. We illustrate the utility of the KinFin pipeline by addressing questions regarding the biology of filarial nematodes, which include parasites of veterinary and medical importance. We resolve the phylogenetic relationships between the species and explore functional annotation of proteins in clusters in key lineages and between custom taxon sets, identifying gene families of interest. KinFin can easily be integrated into existing comparative genomic workflows, and promotes transparent and reproducible analysis of clustered protein data. Copyright © 2017 Laetsch and Blaxter.

  7. Redescriptions of three trachelocercid ciliates (Protista, Ciliophora, Karyorelictea), with notes on their phylogeny based on small subunit rRNA gene sequences.

    PubMed

    Yan, Ying; Xu, Yuan; Yi, Zhenzhen; Warren, Alan

    2013-09-01

    Three trachelocercid ciliates, Kovalevaia sulcata (Kovaleva, 1966) Foissner, 1997, Trachelocerca sagitta (Müller, 1786) Ehrenberg, 1840 and Trachelocerca ditis (Wright, 1982) Foissner, 1996, isolated from two coastal habitats at Qingdao, China, were investigated using live observation and silver impregnation methods. Data on their infraciliature and morphology are supplied. The small subunit rRNA (SSU rRNA) genes of K. sulcata and Trachelocerca sagitta were sequenced for the first time. Phylogenetic analyses based on SSU rRNA gene sequence data indicate that both organisms, and the previously sequenced Trachelocerca ditis, are located within the trachelocercid assemblage and that K. sulcata is sister to an unidentified taxon forming a clade that is basal to the core trachelocercids.

  8. Phylogenetic relationships in Peniocereus (Cactaceae) inferred from plastid DNA sequence data.

    PubMed

    Arias, Salvador; Terrazas, Teresa; Arreola-Nava, Hilda J; Vázquez-Sánchez, Monserrat; Cameron, Kenneth M

    2005-10-01

    The phylogenetic relationships of Peniocereus (Cactaceae) species were studied using parsimony analyses of DNA sequence data. The plastid rpl16 and trnL-F regions were sequenced for 98 taxa including 17 species of Peniocereus, representatives from all genera of tribe Pachycereeae, four genera of tribe Hylocereeae, as well as from three additional outgroup genera of tribes Calymmantheae, Notocacteae, and Trichocereeae. Phylogenetic analyses support neither the monophyly of Peniocereus as currently circumscribed, nor the monophyly of tribe Pachycereeae since species of Peniocereus subgenus Pseudoacanthocereus are embedded within tribe Hylocereeae. Furthermore, these results show that the eight species of Peniocereus subgenus Peniocereus (Peniocereus sensu stricto) form a well-supported clade within subtribe Pachycereinae; P. serpentinus is also a member of this subtribe, but is sister to Bergerocactus. Moreover, Nyctocereus should be resurrected as a monotypic genus. Species of Peniocereus subgenus Pseudoacanthocereus are positioned among species of Acanthocereus within tribe Hylocereeae, indicating that they may be better classified within that genus. A number of morphological and anatomical characters, especially related to the presence or absence of dimorphic branches, are discussed to support these relationships.

  9. Comparative analyses of plastid genomes from fourteen Cornales species: inferences for phylogenetic relationships and genome evolution.

    PubMed

    Fu, Chao-Nan; Li, Hong-Tao; Milne, Richard; Zhang, Ting; Ma, Peng-Fei; Yang, Jing; Li, De-Zhu; Gao, Lian-Ming

    2017-12-08

    The Cornales is the basal lineage of the asterids, the largest angiosperm clade. Phylogenetic relationships within the order were previously not fully resolved. Fifteen plastid genomes representing 14 species, ten genera and seven families of Cornales were newly sequenced for comparative analyses of genome features, evolution, and phylogenomics based on different partitioning schemes and filtering strategies. All plastomes of the 14 Cornales species had the typical quadripartite structure with a genome size ranging from 156,567 bp to 158,715 bp, which included two inverted repeats (25,859-26,451 bp) separated by a large single-copy region (86,089-87,835 bp) and a small single-copy region (18,250-18,856 bp) region. These plastomes encoded the same set of 114 unique genes including 31 transfer RNA, 4 ribosomal RNA and 79 coding genes, with an identical gene order across all examined Cornales species. Two genes (rpl22 and ycf15) contained premature stop codons in seven and five species respectively. The phylogenetic relationships among all sampled species were fully resolved with maximum support. Different filtering strategies (none, light and strict) of sequence alignment did not have an effect on these relationships. The topology recovered from coding and noncoding data sets was the same as for the whole plastome, regardless of filtering strategy. Moreover, mutational hotspots and highly informative regions were identified. Phylogenetic relationships among families and intergeneric relationships within family of Cornales were well resolved. Different filtering strategies and partitioning schemes do not influence the relationships. Plastid genomes have great potential to resolve deep phylogenetic relationships of plants.

  10. Bacteria of an anaerobic 1,2-dichloropropane-dechlorinating mixed culture are phylogenetically related to those of other anaerobic dechlorinating consortia.

    PubMed

    Schlötelburg, C; von Wintzingerode, F; Hauck, R; Hegemann, W; Göbel, U B

    2000-07-01

    A 16S-rDNA-based molecular study was performed to determine the bacterial diversity of an anaerobic, 1,2-dichloropropane-dechlorinating bioreactor consortium derived from sediment of the River Saale, Germany. Total community DNA was extracted and bacterial 16S rRNA genes were subsequently amplified using conserved primers. A clone library was constructed and analysed by sequencing the 16S rDNA inserts of randomly chosen clones followed by dot blot hybridization with labelled polynucleotide probes. The phylogenetic analysis revealed significant sequence similarities of several as yet uncultured bacterial species in the bioreactor to those found in other reductively dechlorinating freshwater consortia. In contrast, no close relationship was obtained with as yet uncultured bacteria found in reductively dechlorinating consortia derived from marine habitats. One rDNA clone showed >97% sequence similarity to Dehalobacter species, known for reductive dechlorination of tri- and tetrachloroethene. These results suggest that reductive dechlorination in microbial freshwater habitats depends upon a specific bacterial community structure.

  11. On the Evolutionary and Biogeographic History of Saxifraga sect. Trachyphyllum (Gaud.) Koch (Saxifragaceae Juss.)

    PubMed Central

    DeChaine, Eric G.; Anderson, Stacy A.; McNew, Jennifer M.; Wendling, Barry M.

    2013-01-01

    Arctic-alpine plants in the genus Saxifraga L. (Saxifragaceae Juss.) provide an excellent system for investigating the process of diversification in northern regions. Yet, sect. Trachyphyllum (Gaud.) Koch, which is comprised of about 8 to 26 species, has still not been explored by molecular systematists even though taxonomists concur that the section needs to be thoroughly re-examined. Our goals were to use chloroplast trnL-F and nuclear ITS DNA sequence data to circumscribe the section phylogenetically, test models of geographically-based population divergence, and assess the utility of morphological characters in estimating evolutionary relationships. To do so, we sequenced both genetic markers for 19 taxa within the section. The phylogenetic inferences of sect. Trachyphyllum using maximum likelihood and Bayesian analyses showed that the section is polyphyletic, with S. aspera L. and S bryoides L. falling outside the main clade. In addition, the analyses supported several taxonomic re-classifications to prior names. We used two approaches to test biogeographic hypotheses: i) a coalescent approach in Mesquite to test the fit of our reconstructed gene trees to geographically-based models of population divergence and ii) a maximum likelihood inference in Lagrange. These tests uncovered strong support for an origin of the clade in the Southern Rocky Mountains of North America followed by dispersal and divergence episodes across refugia. Finally we adopted a stochastic character mapping approach in SIMMAP to investigate the utility of morphological characters in estimating evolutionary relationships among taxa. We found that few morphological characters were phylogenetically informative and many were misleading. Our molecular analyses provide a foundation for the diversity and evolutionary relationships within sect. Trachyphyllum and hypotheses for better understanding the patterns and processes of divergence in this section, other saxifrages, and plants inhabiting the North Pacific Rim. PMID:23922810

  12. GPSit: An automated method for evolutionary analysis of nonculturable ciliated microeukaryotes.

    PubMed

    Chen, Xiao; Wang, Yurui; Sheng, Yalan; Warren, Alan; Gao, Shan

    2018-05-01

    Microeukaryotes are among the most important components of the microbial food web in almost all aquatic and terrestrial ecosystems worldwide. In order to gain a better understanding their roles and functions in ecosystems, sequencing coupled with phylogenomic analyses of entire genomes or transcriptomes is increasingly used to reconstruct the evolutionary history and classification of these microeukaryotes and thus provide a more robust framework for determining their systematics and diversity. More importantly, phylogenomic research usually requires high levels of hands-on bioinformatics experience. Here, we propose an efficient automated method, "Guided Phylogenomic Search in trees" (GPSit), which starts from predicted protein sequences of newly sequenced species and a well-defined customized orthologous database. Compared with previous protocols, our method streamlines the entire workflow by integrating all essential and other optional operations. In so doing, the manual operation time for reconstructing phylogenetic relationships is reduced from days to several hours, compared to other methods. Furthermore, GPSit supports user-defined parameters in most steps and thus allows users to adapt it to their studies. The effectiveness of GPSit is demonstrated by incorporating available online data and new single-cell data of three nonculturable marine ciliates (Anteholosticha monilata, Deviata sp. and Diophrys scutum) under moderate sequencing coverage (~5×). Our results indicate that the former could reconstruct robust "deep" phylogenetic relationships while the latter reveals the presence of intermediate taxa in shallow relationships. Based on empirical phylogenomic data, we also used GPSit to evaluate the impact of different levels of missing data on two commonly used methods of phylogenetic analyses, maximum likelihood (ML) and Bayesian inference (BI) methods. We found that BI is less sensitive to missing data when fast-evolving sites are removed. © 2018 John Wiley & Sons Ltd.

  13. Cephalothrix gen. nov. (Cyanobacteria): towards an intraspecific phylogenetic evaluation by multilocus analyses.

    PubMed

    da Silva Malone, Camila Francieli; Rigonato, Janaína; Laughinghouse, Haywood Dail; Schmidt, Éder Carlos; Bouzon, Zenilda Laurita; Wilmotte, Annick; Fiore, Marli Fátima; Sant'Anna, Célia Leite

    2015-09-01

    For more than a decade, the taxonomy of the Phormidiaceae has been problematic, since morphologically similar organisms represent phylogenetically distinct entities. Based on 16S rRNA gene sequence analyses, the polyphyletic genus Phormidium and other gas-vacuolated oscillatorioids appear scattered throughout the cyanobacterial tree of life. Recently, several studies have focused on understanding the oscillatorioid taxa at the generic level. At the specific level, few studies have characterized cyanobacterial strains using combined datasets (morphology, ultrastructure and molecular multilocus analyses). Using a multifaceted approach, we propose a new, well-defined genus, Cephalothrix gen. nov., by analysing seven filamentous strains that are morphologically 'intermediate' between gas-vacuolated taxa and Phormidium. Furthermore, we characterize two novel species: Cephalothrix komarekiana sp. nov. (strains CCIBt 3277, CCIBt 3279, CCIBt 3523, CCALA 155, SAG 75.79 and UTEX 1580) and Cephalothrix lacustris sp. nov. (strain CCIBt 3261). The generic name and specific epithets are proposed under the provisions of the International Code of Nomenclature for Algae, Fungi, and Plants.

  14. Agent of whirling disease meets orphan worm: phylogenomic analyses firmly place Myxozoa in Cnidaria.

    PubMed

    Nesnidal, Maximilian P; Helmkampf, Martin; Bruchhaus, Iris; El-Matbouli, Mansour; Hausdorf, Bernhard

    2013-01-01

    Myxozoa are microscopic obligate endoparasites with complex live cycles. Representatives are Myxobolus cerebralis, the causative agent of whirling disease in salmonids, and the enigmatic "orphan worm" Buddenbrockia plumatellae parasitizing in Bryozoa. Originally, Myxozoa were classified as protists, but later several metazoan characteristics were reported. However, their phylogenetic relationships remained doubtful. Some molecular phylogenetic analyses placed them as sister group to or even within Bilateria, whereas the possession of polar capsules that are similar to nematocysts of Cnidaria and of minicollagen genes suggest a close relationship between Myxozoa and Cnidaria. EST data of Buddenbrockia also indicated a cnidarian origin of Myxozoa, but were not sufficient to reject a closer relationship to bilaterians. Phylogenomic analyses of new genomic sequences of Myxobolus cerebralis firmly place Myxozoa as sister group to Medusozoa within Cnidaria. Based on the new dataset, the alternative hypothesis that Myxozoa form a clade with Bilateria can be rejected using topology tests. Sensitivity analyses indicate that this result is not affected by long branch attraction artifacts or compositional bias.

  15. Genome-wide-analyses of Listeria monocytogenes from food-processing plants reveal clonal diversity and date the emergence of persisting sequence types.

    PubMed

    Knudsen, Gitte M; Nielsen, Jesper Boye; Marvig, Rasmus L; Ng, Yin; Worning, Peder; Westh, Henrik; Gram, Lone

    2017-08-01

    Whole genome sequencing is increasing used in epidemiology, e.g. for tracing outbreaks of food-borne diseases. This requires in-depth understanding of pathogen emergence, persistence and genomic diversity along the food production chain including in food processing plants. We sequenced the genomes of 80 isolates of Listeria monocytogenes sampled from Danish food processing plants over a time-period of 20 years, and analysed the sequences together with 10 public available reference genomes to advance our understanding of interplant and intraplant genomic diversity of L. monocytogenes. Except for three persisting sequence types (ST) based on Multi Locus Sequence Typing being ST7, ST8 and ST121, long-term persistence of clonal groups was limited, and new clones were introduced continuously, potentially from raw materials. No particular gene could be linked to the persistence phenotype. Using time-based phylogenetic analyses of the persistent STs, we estimate the L. monocytogenes evolutionary rate to be 0.18-0.35 single nucleotide polymorphisms/year, suggesting that the persistent STs emerged approximately 100 years ago, which correlates with the onset of industrialization and globalization of the food market. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Chloroplast genes as genetic markers for inferring patterns of change, maternal ancestry and phylogenetic relationships among Eleusine species

    PubMed Central

    Agrawal, Renuka; Agrawal, Nitin; Tandon, Rajesh; Raina, Soom Nath

    2013-01-01

    Assessment of phylogenetic relationships is an important component of any successful crop improvement programme, as wild relatives of the crop species often carry agronomically beneficial traits. Since its domestication in East Africa, Eleusine coracana (2n = 4x = 36), a species belonging to the genus Eleusine (x = 8, 9, 10), has held a prominent place in the semi-arid regions of India, Nepal and Africa. The patterns of variation between the cultivated and wild species reported so far and the interpretations based upon them have been considered primarily in terms of nuclear events. We analysed, for the first time, the phylogenetic relationship between finger millet (E. coracana) and its wild relatives by species-specific chloroplast deoxyribonucleic acid (cpDNA) polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) and chloroplast simple sequence repeat (cpSSR) markers/sequences. Restriction fragment length polymorphism of the seven amplified chloroplast genes/intergenic spacers (trnK, psbD, psaA, trnH–trnK, trnL–trnF, 16S and trnS–psbC), nucleotide sequencing of the chloroplast trnK gene and chloroplast microsatellite polymorphism were analysed in all nine known species of Eleusine. The RFLP of all seven amplified chloroplast genes/intergenic spacers and trnK gene sequences in the diploid (2n = 16, 18, 20) and allotetraploid (2n = 36, 38) species resulted in well-resolved phylogenetic trees with high bootstrap values. Eleusine coracana, E. africana, E. tristachya, E. indica and E. kigeziensis did not show even a single change in restriction site. Eleusine intermedia and E. floccifolia were also shown to have identical cpDNA fragment patterns. The cpDNA diversity in Eleusine multiflora was found to be more extensive than that of the other eight species. The trnK gene sequence data complemented the results obtained by PCR–RFLP. The maternal lineage of all three allotetraploid species (AABB, AADD) was the same, with E. indica being the maternal diploid progenitor species. The markers specific to certain species were also identified. PMID:24790119

  17. Chloroplast genes as genetic markers for inferring patterns of change, maternal ancestry and phylogenetic relationships among Eleusine species.

    PubMed

    Agrawal, Renuka; Agrawal, Nitin; Tandon, Rajesh; Raina, Soom Nath

    2014-01-01

    Assessment of phylogenetic relationships is an important component of any successful crop improvement programme, as wild relatives of the crop species often carry agronomically beneficial traits. Since its domestication in East Africa, Eleusine coracana (2n = 4x = 36), a species belonging to the genus Eleusine (x = 8, 9, 10), has held a prominent place in the semi-arid regions of India, Nepal and Africa. The patterns of variation between the cultivated and wild species reported so far and the interpretations based upon them have been considered primarily in terms of nuclear events. We analysed, for the first time, the phylogenetic relationship between finger millet (E. coracana) and its wild relatives by species-specific chloroplast deoxyribonucleic acid (cpDNA) polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and chloroplast simple sequence repeat (cpSSR) markers/sequences. Restriction fragment length polymorphism of the seven amplified chloroplast genes/intergenic spacers (trnK, psbD, psaA, trnH-trnK, trnL-trnF, 16S and trnS-psbC), nucleotide sequencing of the chloroplast trnK gene and chloroplast microsatellite polymorphism were analysed in all nine known species of Eleusine. The RFLP of all seven amplified chloroplast genes/intergenic spacers and trnK gene sequences in the diploid (2n = 16, 18, 20) and allotetraploid (2n = 36, 38) species resulted in well-resolved phylogenetic trees with high bootstrap values. Eleusine coracana, E. africana, E. tristachya, E. indica and E. kigeziensis did not show even a single change in restriction site. Eleusine intermedia and E. floccifolia were also shown to have identical cpDNA fragment patterns. The cpDNA diversity in Eleusine multiflora was found to be more extensive than that of the other eight species. The trnK gene sequence data complemented the results obtained by PCR-RFLP. The maternal lineage of all three allotetraploid species (AABB, AADD) was the same, with E. indica being the maternal diploid progenitor species. The markers specific to certain species were also identified.

  18. Homoplastic microinversions and the avian tree of life

    PubMed Central

    2011-01-01

    Background Microinversions are cytologically undetectable inversions of DNA sequences that accumulate slowly in genomes. Like many other rare genomic changes (RGCs), microinversions are thought to be virtually homoplasy-free evolutionary characters, suggesting that they may be very useful for difficult phylogenetic problems such as the avian tree of life. However, few detailed surveys of these genomic rearrangements have been conducted, making it difficult to assess this hypothesis or understand the impact of microinversions upon genome evolution. Results We surveyed non-coding sequence data from a recent avian phylogenetic study and found substantially more microinversions than expected based upon prior information about vertebrate inversion rates, although this is likely due to underestimation of these rates in previous studies. Most microinversions were lineage-specific or united well-accepted groups. However, some homoplastic microinversions were evident among the informative characters. Hemiplasy, which reflects differences between gene trees and the species tree, did not explain the observed homoplasy. Two specific loci were microinversion hotspots, with high numbers of inversions that included both the homoplastic as well as some overlapping microinversions. Neither stem-loop structures nor detectable sequence motifs were associated with microinversions in the hotspots. Conclusions Microinversions can provide valuable phylogenetic information, although power analysis indicates that large amounts of sequence data will be necessary to identify enough inversions (and similar RGCs) to resolve short branches in the tree of life. Moreover, microinversions are not perfect characters and should be interpreted with caution, just as with any other character type. Independent of their use for phylogenetic analyses, microinversions are important because they have the potential to complicate alignment of non-coding sequences. Despite their low rate of accumulation, they have clearly contributed to genome evolution, suggesting that active identification of microinversions will prove useful in future phylogenomic studies. PMID:21612607

  19. Whole Genome Sequence and Phylogenetic Analysis Show Helicobacter pylori Strains from Latin America Have Followed a Unique Evolution Pathway

    PubMed Central

    Muñoz-Ramírez, Zilia Y.; Mendez-Tenorio, Alfonso; Kato, Ikuko; Bravo, Maria M.; Rizzato, Cosmeri; Thorell, Kaisa; Torres, Roberto; Aviles-Jimenez, Francisco; Camorlinga, Margarita; Canzian, Federico; Torres, Javier

    2017-01-01

    Helicobacter pylori (HP) genetics may determine its clinical outcomes. Despite high prevalence of HP infection in Latin America (LA), there have been no phylogenetic studies in the region. We aimed to understand the structure of HP populations in LA mestizo individuals, where gastric cancer incidence remains high. The genome of 107 HP strains from Mexico, Nicaragua and Colombia were analyzed with 59 publicly available worldwide genomes. To study bacterial relationship on whole genome level we propose a virtual hybridization technique using thousands of high-entropy 13 bp DNA probes to generate fingerprints. Phylogenetic virtual genome fingerprint (VGF) was compared with Multi Locus Sequence Analysis (MLST) and with phylogenetic analyses of cagPAI virulence island sequences. With MLST some Nicaraguan and Mexican strains clustered close to Africa isolates, whereas European isolates were spread without clustering and intermingled with LA isolates. VGF analysis resulted in increased resolution of populations, separating European from LA strains. Furthermore, clusters with exclusively Colombian, Mexican, or Nicaraguan strains were observed, where the Colombian cluster separated from Europe, Asia, and Africa, while Nicaraguan and Mexican clades grouped close to Africa. In addition, a mixed large LA cluster including Mexican, Colombian, Nicaraguan, Peruvian, and Salvadorian strains was observed; all LA clusters separated from the Amerind clade. With cagPAI sequence analyses LA clades clearly separated from Europe, Asia and Amerind, and Colombian strains formed a single cluster. A NeighborNet analyses suggested frequent and recent recombination events particularly among LA strains. Results suggests that in the new world, H. pylori has evolved to fit mestizo LA populations, already 500 years after the Spanish colonization. This co-adaption may account for regional variability in gastric cancer risk. PMID:28293542

  20. Random sampling of constrained phylogenies: conducting phylogenetic analyses when the phylogeny is partially known.

    PubMed

    Housworth, E A; Martins, E P

    2001-01-01

    Statistical randomization tests in evolutionary biology often require a set of random, computer-generated trees. For example, earlier studies have shown how large numbers of computer-generated trees can be used to conduct phylogenetic comparative analyses even when the phylogeny is uncertain or unknown. These methods were limited, however, in that (in the absence of molecular sequence or other data) they allowed users to assume that no phylogenetic information was available or that all possible trees were known. Intermediate situations where only a taxonomy or other limited phylogenetic information (e.g., polytomies) are available are technically more difficult. The current study describes a procedure for generating random samples of phylogenies while incorporating limited phylogenetic information (e.g., four taxa belong together in a subclade). The procedure can be used to conduct comparative analyses when the phylogeny is only partially resolved or can be used in other randomization tests in which large numbers of possible phylogenies are needed.

  1. Phylogenetic Analysis of Klebsiella pneumoniae from Hospitalized Children, Pakistan.

    PubMed

    Ejaz, Hasan; Wang, Nancy; Wilksch, Jonathan J; Page, Andrew J; Cao, Hanwei; Gujaran, Shruti; Keane, Jacqueline A; Lithgow, Trevor; Ul-Haq, Ikram; Dougan, Gordon; Strugnell, Richard A; Heinz, Eva

    2017-11-01

    Klebsiella pneumoniae shows increasing emergence of multidrug-resistant lineages, including strains resistant to all available antimicrobial drugs. We conducted whole-genome sequencing of 178 highly drug-resistant isolates from a tertiary hospital in Lahore, Pakistan. Phylogenetic analyses to place these isolates into global context demonstrate the expansion of multiple independent lineages, including K. quasipneumoniae.

  2. Origin, evolution, and biogeography of Juglans: a phylogenetic perspective

    USDA-ARS?s Scientific Manuscript database

    Phylogenetic analyses of extant Juglans (Juglandaceae) using five cpDNA intergenic spacer (IGS) sequences (trnT-trnF, psbA-trnH, atpB-rbcL, trnV-16S rRNA, and trnS-trnfM) were performed to elucidate the origin, diversification, historical biogeography, and evolutionary relationships within the genus...

  3. Phylogenetic Copy-Number Factorization of Multiple Tumor Samples.

    PubMed

    Zaccaria, Simone; El-Kebir, Mohammed; Klau, Gunnar W; Raphael, Benjamin J

    2018-04-16

    Cancer is an evolutionary process driven by somatic mutations. This process can be represented as a phylogenetic tree. Constructing such a phylogenetic tree from genome sequencing data is a challenging task due to the many types of mutations in cancer and the fact that nearly all cancer sequencing is of a bulk tumor, measuring a superposition of somatic mutations present in different cells. We study the problem of reconstructing tumor phylogenies from copy-number aberrations (CNAs) measured in bulk-sequencing data. We introduce the Copy-Number Tree Mixture Deconvolution (CNTMD) problem, which aims to find the phylogenetic tree with the fewest number of CNAs that explain the copy-number data from multiple samples of a tumor. We design an algorithm for solving the CNTMD problem and apply the algorithm to both simulated and real data. On simulated data, we find that our algorithm outperforms existing approaches that either perform deconvolution/factorization of mixed tumor samples or build phylogenetic trees assuming homogeneous tumor samples. On real data, we analyze multiple samples from a prostate cancer patient, identifying clones within these samples and a phylogenetic tree that relates these clones and their differing proportions across samples. This phylogenetic tree provides a higher resolution view of copy-number evolution of this cancer than published analyses.

  4. Fourteen coprophilous species of Psathyrella identified in the Nordic countries using morphology and nuclear rDNA sequence data.

    PubMed

    Larsson, Ellen; Orstadius, Leif

    2008-10-01

    Psathyrella species growing on dung or occasionally on dung in the Nordic countries were studied using morphological characters and nu-rDNA sequence data and type collections were examined when available. Fourteen species capable of growing on dung were identified. Descriptions are given of all dung-inhabiting species and to a lesser extent of the species occasionally growing on dung. Three new species are described: Psathyrella fimiseda, P. merdicola, and P. scatophila. P. stercoraria is described as a new species in order to validate the name. A key to the coprophilous species in Europe including the species described by Peck & Smith from North America is provided. The phylogenetic analyses recovered four major supported clades within Psathyrellaceae corresponding to Parasola, Coprinopsis, Lacrymaria/Spadiceae pro parte, and Psathyrella. The status of Coprinellus was ambiguous. The current morphology-based infrageneric classification of Psathyrella was not supported by the phylogenetic analyses and a coprophilous habit has apparently evolved on multiple occasions. Three new combinations are proposed: Parasola conopilus, Coprinopsis marcescibilis, and Coprinopsis pannucioides.

  5. Sequence diversity within the reovirus S2 gene: reovirus genes reassort in nature, and their termini are predicted to form a panhandle motif.

    PubMed Central

    Chapell, J D; Goral, M I; Rodgers, S E; dePamphilis, C W; Dermody, T S

    1994-01-01

    To better understand genetic diversity within mammalian reoviruses, we determined S2 nucleotide and deduced sigma 2 amino acid sequences of nine reovirus strains and compared these sequences with those of prototype strains of the three reovirus serotypes. The S2 gene and sigma 2 protein are highly conserved among the four type 1, one type 2, and seven type 3 strains studied. Phylogenetic analyses based on S2 nucleotide sequences of the 12 reovirus strains indicate that diversity within the S2 gene is independent of viral serotype. Additionally, we found marked topological differences between phylogenetic trees generated from S1 and S2 gene nucleotide sequences of the seven type 3 strains. These results demonstrate that reovirus S1 and S2 genes have distinct evolutionary histories, thus providing phylogenetic evidence for lateral transfer of reovirus genes in nature. When variability among the 12 sigma 2-encoding S2 nucleotide sequences was analyzed at synonymous positions, we found that approximately 60 nucleotides at the 5' terminus and 30 nucleotides at the 3' terminus were markedly conserved in comparison with other sigma 2-encoding regions of S2. Predictions of RNA secondary structures indicate that the more conserved S2 sequences participate in the formation of an extended region of duplex RNA interrupted by a pair of stem-loops. Among the 12 deduced sigma 2 amino acid sequences examined, substitutions were observed at only 11% of amino acid positions. This finding suggests that constraints on the structure or function of sigma 2, perhaps in part because of its location in the virion core, have limited sequence diversity within this protein. PMID:8289378

  6. EGenBio: A Data Management System for Evolutionary Genomics and Biodiversity

    PubMed Central

    Nahum, Laila A; Reynolds, Matthew T; Wang, Zhengyuan O; Faith, Jeremiah J; Jonna, Rahul; Jiang, Zhi J; Meyer, Thomas J; Pollock, David D

    2006-01-01

    Background Evolutionary genomics requires management and filtering of large numbers of diverse genomic sequences for accurate analysis and inference on evolutionary processes of genomic and functional change. We developed Evolutionary Genomics and Biodiversity (EGenBio; ) to begin to address this. Description EGenBio is a system for manipulation and filtering of large numbers of sequences, integrating curated sequence alignments and phylogenetic trees, managing evolutionary analyses, and visualizing their output. EGenBio is organized into three conceptual divisions, Evolution, Genomics, and Biodiversity. The Genomics division includes tools for selecting pre-aligned sequences from different genes and species, and for modifying and filtering these alignments for further analysis. Species searches are handled through queries that can be modified based on a tree-based navigation system and saved. The Biodiversity division contains tools for analyzing individual sequences or sequence alignments, whereas the Evolution division contains tools involving phylogenetic trees. Alignments are annotated with analytical results and modification history using our PRAED format. A miscellaneous Tools section and Help framework are also available. EGenBio was developed around our comparative genomic research and a prototype database of mtDNA genomes. It utilizes MySQL-relational databases and dynamic page generation, and calls numerous custom programs. Conclusion EGenBio was designed to serve as a platform for tools and resources to ease combined analysis in evolution, genomics, and biodiversity. PMID:17118150

  7. Phylogeny of economically important insect pests that infesting several crops species in Malaysia

    NASA Astrophysics Data System (ADS)

    Ghazali, Siti Zafirah; Zain, Badrul Munir Md.; Yaakop, Salmah

    2014-09-01

    This paper reported molecular data on insect pests of commercial crops in Peninsular Malaysia. Fifteen insect pests (Metisa plana, Calliteara horsefeldii, Cotesia vestalis, Bactrocera papayae, Bactrocera carambolae, Bactrocera latifrons, Conopomorpha cramella, Sesamia inferens, Chilo polychrysa, Rhynchophorus vulneratus, and Rhynchophorus ferrugineus) of nine crops were sampled (oil palm, coconut, paddy, cocoa, starfruit, angled loofah, guava, chili and mustard) and also four species that belong to the fern's pest (Herpetogramma platycapna) and storage and rice pests (Tribolium castaneum, Oryzaephilus surinamensis and Cadra cautella). The presented phylogeny summarized the initial phylogenetic hypothesis, which concerning by implementation of the economically important insect pests. In this paper, phylogenetic relationships among 39 individuals of 15 species that belonging to three orders under 12 genera were inferred from DNA sequences of mitochondrial marker, cytochrome oxidase subunit I (COI) and nuclear marker, ribosomal DNA 28S D2 region. The phylogenies resulted from the phylogenetic analyses of both genes are relatively similar, but differ in the sequence of evolution. Interestingly, this most recent molecular data of COI sequences data by using Bayesian Inference analysis resulted a more-resolved phylogeny that corroborated with traditional hypotheses of holometabolan relationships based on traditional hypotheses of holometabolan relationships and most of recently molecular study compared to 28S sequences. This finding provides the information on relationships of pests species, which infested several crops in Malaysia and also estimation on Holometabola's order relationships. The identification of the larval stages of insect pests could be done accurately, without waiting the emergence of adults and supported by the phylogenetic tree.

  8. Molecular epidemiology of Plum pox virus in Japan.

    PubMed

    Maejima, Kensaku; Himeno, Misako; Komatsu, Ken; Takinami, Yusuke; Hashimoto, Masayoshi; Takahashi, Shuichiro; Yamaji, Yasuyuki; Oshima, Kenro; Namba, Shigetou

    2011-05-01

    For a molecular epidemiological study based on complete genome sequences, 37 Plum pox virus (PPV) isolates were collected from the Kanto region in Japan. Pair-wise analyses revealed that all 37 Japanese isolates belong to the PPV-D strain, with low genetic diversity (less than 0.8%). In phylogenetic analysis of the PPV-D strain based on complete nucleotide sequences, the relationships of the PPV-D strain were reconstructed with high resolution: at the global level, the American, Canadian, and Japanese isolates formed their own distinct monophyletic clusters, suggesting that the routes of viral entry into these countries were independent; at the local level, the actual transmission histories of PPV were precisely reconstructed with high bootstrap support. This is the first description of the molecular epidemiology of PPV based on complete genome sequences.

  9. Emended description of the family Chromatiaceae, phylogenetic analyses of the genera Alishewanella, Rheinheimera and Arsukibacterium, transfer of Rheinheimera longhuensis LH2-2T to the genus Alishewanella and description of Alishewanella alkalitolerans sp. nov. from Lonar Lake, India.

    PubMed

    Sisinthy, Shivaji; Chakraborty, Dwaipayan; Adicherla, Harikrishna; Gundlapally, Sathyanarayana Reddy

    2017-09-01

    Phylogenetic analyses were performed for members of the family Chromatiaceae, signature nucleotides deduced and the genus Alishewanella transferred to Chromatiaceae. Phylogenetic analyses were executed for the genera Alishewanella, Arsukibacterium and Rheinheimera and the genus Rheinheimera is proposed to be split, with the creation of the Pararheinheimera gen. nov. Furthermore, the species Rheinheimera longhuensis, is transferred to the genus Alishewanella as Alishewanella longhuensis comb. nov. Besides, the genera Alishewanella and Rheinheimera are also emended. Strain LNK-7.1 T was isolated from a water sample from the Lonar Lake, India. Cells were Gram-negative, motile rods, positive for catalase, oxidase, phosphatase, contained C 16:0 , C 17:1 ω8c, summed feature3 (C 16:1 ω6c and/or C 16:1 ω7c) and summed feature 8 (C 18:1 ω7c) as major fatty acids, PE and PG as the major lipids and Q-8 as the sole respiratory quinone. Phylogenetic analyses using NJ, ME, ML and Maximum parsimony, based on 16S rRNA gene sequences, identified Alishewanella tabrizica RCRI4 T as the closely related species of strain LNK-7.1 T with a 16S rRNA gene sequence similarity of 98.13%. The DNA-DNA similarity between LNK-7.1 T and the closely related species (A. tabrizica) was only 12.0% and, therefore, strain LNK-7.1 T was identified as a novel species of the genus Alishewanella with the proposed name Alishewanella alkalitolerans sp. nov. In addition phenotypic characteristics confirmed the species status to strain LNK-7.1 T . The type strain of A. alkalitolerans is LNK-7.1 T (LMG 29592 T  = KCTC 52279 T ), isolated from a water sample collected from the Lonar lake, India.

  10. Molecular, phylogenetic and comparative genomic analysis of the cytokinin oxidase/dehydrogenase gene family in the Poaceae.

    PubMed

    Mameaux, Sabine; Cockram, James; Thiel, Thomas; Steuernagel, Burkhard; Stein, Nils; Taudien, Stefan; Jack, Peter; Werner, Peter; Gray, John C; Greenland, Andy J; Powell, Wayne

    2012-01-01

    The genomes of cereals such as wheat (Triticum aestivum) and barley (Hordeum vulgare) are large and therefore problematic for the map-based cloning of agronomicaly important traits. However, comparative approaches within the Poaceae permit transfer of molecular knowledge between species, despite their divergence from a common ancestor sixty million years ago. The finding that null variants of the rice gene cytokinin oxidase/dehydrogenase 2 (OsCKX2) result in large yield increases provides an opportunity to explore whether similar gains could be achieved in other Poaceae members. Here, phylogenetic, molecular and comparative analyses of CKX families in the sequenced grass species rice, brachypodium, sorghum, maize and foxtail millet, as well as members identified from the transcriptomes/genomes of wheat and barley, are presented. Phylogenetic analyses define four Poaceae CKX clades. Comparative analyses showed that CKX phylogenetic groupings can largely be explained by a combination of local gene duplication, and the whole-genome duplication event that predates their speciation. Full-length OsCKX2 homologues in barley (HvCKX2.1, HvCKX2.2) and wheat (TaCKX2.3, TaCKX2.4, TaCKX2.5) are characterized, with comparative analysis at the DNA, protein and genetic/physical map levels suggesting that true CKX2 orthologs have been identified. Furthermore, our analysis shows CKX2 genes in barley and wheat have undergone a Triticeae-specific gene-duplication event. Finally, by identifying ten of the eleven CKX genes predicted to be present in barley by comparative analyses, we show that next-generation sequencing approaches can efficiently determine the gene space of large-genome crops. Together, this work provides the foundation for future functional investigation of CKX family members within the Poaceae. © 2011 National Institute of Agricultural Botany (NIAB). Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  11. Ptilagrostis contracta (Stipeae, Poaceae), a New Species Endemic to Qinghai-Tibet Plateau.

    PubMed

    Zhang, Zhong-Shuai; Li, Ling-Lu; Chen, Wen-Li

    2017-01-01

    A new species, Ptilagrostis contracta, endemic to Qinghai-Tibet Plateau is described and illustrated. It is distinguished from other species in Ptilagrostis by having contracted panicles, 1-geniculate awns with hairy columns and scabrous bristles and evenly pubescent lemmas. Evidence from lemma epidermal pattern, cytology and molecular phylogenetic analyses based on the nuclear ITS sequence data confirm its systematic position in Ptilagrostis.

  12. Origin and spread of photosynthesis based upon conserved sequence features in key bacteriochlorophyll biosynthesis proteins.

    PubMed

    Gupta, Radhey S

    2012-11-01

    The origin of photosynthesis and how this capability has spread to other bacterial phyla remain important unresolved questions. I describe here a number of conserved signature indels (CSIs) in key proteins involved in bacteriochlorophyll (Bchl) biosynthesis that provide important insights in these regards. The proteins BchL and BchX, which are essential for Bchl biosynthesis, are derived by gene duplication in a common ancestor of all phototrophs. More ancient gene duplication gave rise to the BchX-BchL proteins and the NifH protein of the nitrogenase complex. The sequence alignment of NifH-BchX-BchL proteins contain two CSIs that are uniquely shared by all NifH and BchX homologs, but not by any BchL homologs. These CSIs and phylogenetic analysis of NifH-BchX-BchL protein sequences strongly suggest that the BchX homologs are ancestral to BchL and that the Bchl-based anoxygenic photosynthesis originated prior to the chlorophyll (Chl)-based photosynthesis in cyanobacteria. Another CSI in the BchX-BchL sequence alignment that is uniquely shared by all BchX homologs and the BchL sequences from Heliobacteriaceae, but absent in all other BchL homologs, suggests that the BchL homologs from Heliobacteriaceae are primitive in comparison to all other photosynthetic lineages. Several other identified CSIs in the BchN homologs are commonly shared by all proteobacterial homologs and a clade consisting of the marine unicellular Cyanobacteria (Clade C). These CSIs in conjunction with the results of phylogenetic analyses and pair-wise sequence similarity on the BchL, BchN, and BchB proteins, where the homologs from Clade C Cyanobacteria and Proteobacteria exhibited close relationship, provide strong evidence that these two groups have incurred lateral gene transfers. Additionally, phylogenetic analyses and several CSIs in the BchL-N-B proteins that are uniquely shared by all Chlorobi and Chloroflexi homologs provide evidence that the genes for these proteins have also been laterally transferred between these groups. Other results and observations reported here indicate that the genes for the BchL-N-B proteins in Proteobacteria are derived from the Clade C Cyanobacteria, whereas those in Chlorobi were acquired from Chloroflexus or related bacteria by means of LGTs. Some implications of these observations regarding the origin and spread of photosynthesis are discussed.

  13. Complete mitochondrial genome sequence of the hedgehog seahorse Hippocampus spinosissimus Weber, 1933 (Gasterosteiformes:Syngnathidae).

    PubMed

    Liu, Shuaishuai; Zhang, Yanhong; Wang, Changming; Lin, Qiang

    2016-07-01

    The complete mitochondrial genome sequence of the hedgehog seahorse Hippocampus spinosissimus was first determined in this article. The total length of H. spinosissimus mitogenome is 16 527 bp and consists of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and 1 control region. The gene order and composition of H. spinosissimus were similar to those of most other vertebrates. The overall base composition of H. spinosissimus is 32.1% A, 30.3% T, 14.9% G and 22.7% C, with a slight A + T-rich feature (62.4%). Phylogenetic analyses based on complete mitochondrial genome sequence showed that H. spinosissimus has a close genetic relationship to H. ingens and H. kuda.

  14. Separating the wheat from the chaff: mitigating the effects of noise in a plastome phylogenomic data set from Pinus L. (Pinaceae)

    PubMed Central

    2012-01-01

    Background Through next-generation sequencing, the amount of sequence data potentially available for phylogenetic analyses has increased exponentially in recent years. Simultaneously, the risk of incorporating ‘noisy’ data with misleading phylogenetic signal has also increased, and may disproportionately influence the topology of weakly supported nodes and lineages featuring rapid radiations and/or elevated rates of evolution. Results We investigated the influence of phylogenetic noise in large data sets by applying two fundamental strategies, variable site removal and long-branch exclusion, to the phylogenetic analysis of a full plastome alignment of 107 species of Pinus and six Pinaceae outgroups. While high overall phylogenetic resolution resulted from inclusion of all data, three historically recalcitrant nodes remained conflicted with previous analyses. Close investigation of these nodes revealed dramatically different responses to data removal. Whereas topological resolution and bootstrap support for two clades peaked with removal of highly variable sites, the third clade resolved most strongly when all sites were included. Similar trends were observed using long-branch exclusion, but patterns were neither as strong nor as clear. When compared to previous phylogenetic analyses of nuclear loci and morphological data, the most highly supported topologies seen in Pinus plastome analysis are congruent for the two clades gaining support from variable site removal and long-branch exclusion, but in conflict for the clade with highest support from the full data set. Conclusions These results suggest that removal of misleading signal in phylogenomic datasets can result not only in increased resolution for poorly supported nodes, but may serve as a tool for identifying erroneous yet highly supported topologies. For Pinus chloroplast genomes, removal of variable sites appears to be more effective than long-branch exclusion for clarifying phylogenetic hypotheses. PMID:22731878

  15. A nuclear phylogenetic analysis: SNPs, indels and SSRs deliver new insights into the relationships in the ‘true citrus fruit trees’ group (Citrinae, Rutaceae) and the origin of cultivated species

    PubMed Central

    Garcia-Lor, Andres; Curk, Franck; Snoussi-Trifa, Hager; Morillon, Raphael; Ancillo, Gema; Luro, François; Navarro, Luis; Ollitrault, Patrick

    2013-01-01

    Background and Aims Despite differences in morphology, the genera representing ‘true citrus fruit trees’ are sexually compatible, and their phylogenetic relationships remain unclear. Most of the important commercial ‘species’ of Citrus are believed to be of interspecific origin. By studying polymorphisms of 27 nuclear genes, the average molecular differentiation between species was estimated and some phylogenetic relationships between ‘true citrus fruit trees’ were clarified. Methods Sanger sequencing of PCR-amplified fragments from 18 genes involved in metabolite biosynthesis pathways and nine putative genes for salt tolerance was performed for 45 genotypes of Citrus and relatives of Citrus to mine single nucleotide polymorphisms (SNPs) and indel polymorphisms. Fifty nuclear simple sequence repeats (SSRs) were also analysed. Key Results A total of 16 238 kb of DNA was sequenced for each genotype, and 1097 single nucleotide polymorphisms (SNPs) and 50 indels were identified. These polymorphisms were more valuable than SSRs for inter-taxon differentiation. Nuclear phylogenetic analysis revealed that Citrus reticulata and Fortunella form a cluster that is differentiated from the clade that includes three other basic taxa of cultivated citrus (C. maxima, C. medica and C. micrantha). These results confirm the taxonomic subdivision between the subgenera Metacitrus and Archicitrus. A few genes displayed positive selection patterns within or between species, but most of them displayed neutral patterns. The phylogenetic inheritance patterns of the analysed genes were inferred for commercial Citrus spp. Conclusions Numerous molecular polymorphisms (SNPs and indels), which are potentially useful for the analysis of interspecific genetic structures, have been identified. The nuclear phylogenetic network for Citrus and its sexually compatible relatives was consistent with the geographical origins of these genera. The positive selection observed for a few genes will help further works to analyse the molecular basis of the variability of the associated traits. This study presents new insights into the origin of C. sinensis. PMID:23104641

  16. A nuclear phylogenetic analysis: SNPs, indels and SSRs deliver new insights into the relationships in the 'true citrus fruit trees' group (Citrinae, Rutaceae) and the origin of cultivated species.

    PubMed

    Garcia-Lor, Andres; Curk, Franck; Snoussi-Trifa, Hager; Morillon, Raphael; Ancillo, Gema; Luro, François; Navarro, Luis; Ollitrault, Patrick

    2013-01-01

    Despite differences in morphology, the genera representing 'true citrus fruit trees' are sexually compatible, and their phylogenetic relationships remain unclear. Most of the important commercial 'species' of Citrus are believed to be of interspecific origin. By studying polymorphisms of 27 nuclear genes, the average molecular differentiation between species was estimated and some phylogenetic relationships between 'true citrus fruit trees' were clarified. Sanger sequencing of PCR-amplified fragments from 18 genes involved in metabolite biosynthesis pathways and nine putative genes for salt tolerance was performed for 45 genotypes of Citrus and relatives of Citrus to mine single nucleotide polymorphisms (SNPs) and indel polymorphisms. Fifty nuclear simple sequence repeats (SSRs) were also analysed. A total of 16 238 kb of DNA was sequenced for each genotype, and 1097 single nucleotide polymorphisms (SNPs) and 50 indels were identified. These polymorphisms were more valuable than SSRs for inter-taxon differentiation. Nuclear phylogenetic analysis revealed that Citrus reticulata and Fortunella form a cluster that is differentiated from the clade that includes three other basic taxa of cultivated citrus (C. maxima, C. medica and C. micrantha). These results confirm the taxonomic subdivision between the subgenera Metacitrus and Archicitrus. A few genes displayed positive selection patterns within or between species, but most of them displayed neutral patterns. The phylogenetic inheritance patterns of the analysed genes were inferred for commercial Citrus spp. Numerous molecular polymorphisms (SNPs and indels), which are potentially useful for the analysis of interspecific genetic structures, have been identified. The nuclear phylogenetic network for Citrus and its sexually compatible relatives was consistent with the geographical origins of these genera. The positive selection observed for a few genes will help further works to analyse the molecular basis of the variability of the associated traits. This study presents new insights into the origin of C. sinensis.

  17. Molecular systematics of European Hyalodaphnia: the role of contemporary hybridization in ancient species.

    PubMed Central

    Schwenk, K; Posada, D; Hebert, P D

    2000-01-01

    We examined phylogenetic relationships among Daphnia using mitochondrial DNA (mtDNA) sequences from the small subunit ribosomal RNA (12S), cytochrome c oxidase subunit I and nuclear DNA sequences from the first and second internal transcribed spacer representing 1612 base positions. Phylogenetic analyses using several species of the three main Daphnia subgenera, Ctenodaphnia, Hyalodaphnia and Daphnia, revealed that the Hyalodaphnia are a monophyletic sister group of the Daphnia. Most Hyalodaphnia species occur on one continent, whereas only three are found in North America and Europe. Endemicity of species is associated with variation in thermal tolerance and habitat differentiation. Although many species of the Hyalodaphnia are known to hybridize in nature, mtDNA divergence is relatively high ca. 9%) compared to other hybridizing arthropods (ca. 3%). Reproductive isolation in Daphnia seems to evolve significantly slower than genetic isolation. We related these findings to what is known about the ecology and genetics of Daphnia in order to better understand the evolutionary diversification of lineages. The relationship of these data to phylogenetic patterns is discussed in the context of speciation processes in Daphnia. PMID:11052533

  18. The Cladophora complex (Chlorophyta): new views based on 18S rRNA gene sequences.

    PubMed

    Bakker, F T; Olsen, J L; Stam, W T; van den Hoek, C

    1994-12-01

    Evolutionary relationships among species traditionally ascribed to the Siphonocladales/Cladophorales have remained unclear due to a lack of phylogenetically informative characters and extensive morphological plasticity resulting in morphological convergence. This study explores some of the diversity within the generic complex Cladophora and its siphonocladalaen allies. Twelve species of Cladophora representing 6 of the 11 morphological sections recognized by van den Hoek were analyzed along with 8 siphonocladalaen species using 18S rRNA gene sequences. The final alignment consisted of 1460 positions containing 92 phylogenetically informative substitutions. Weighting schemes (EOR weighting, combinatorial weighting) were applied in maximum parsimony analysis to correct for substitution bias. Stem characters were weighted 0.66 relative to single-stranded characters to correct for secondary structural constraints. Both weighting approaches resulted in greater phylogenetic resolution. Results confirm that there is no basis for the independent recognition of the Cladophorales and Siphonocladales. The Siphonocladales is polyphyletic, and Cladophora is paraphyletic. All analyses support two principal lineages, of which one contains predominantly tropical members including almost all siphonocladalean taxa, while the other lineage consists of mostly warm- to cold-temperate species of Cladophora.

  19. 1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life

    DOE PAGES

    Mukherjee, Supratim; Seshadri, Rekha; Varghese, Neha J.; ...

    2017-06-12

    We present 1,003 reference genomes that were sequenced as part of the Genomic Encyclopedia of Bacteria and Archaea (GEBA) initiative, selected to maximize sequence coverage of phylogenetic space. These genomes double the number of existing type strains and expand their overall phylogenetic diversity by 25%. Comparative analyses with previously available finished and draft genomes reveal a 10.5% increase in novel protein families as a function of phylogenetic diversity. The GEBA genomes recruit 25 million previously unassigned metagenomic proteins from 4,650 samples, improving their phylogenetic and functional interpretation. We identify numerous biosynthetic clusters and experimentally validate a divergent phenazine cluster withmore » potential new chemical structure and antimicrobial activity. This Resource is the largest single release of reference genomes to date. Bacterial and archaeal isolate sequence space is still far from saturated, and future endeavors in this direction will continue to be a valuable resource for scientific discovery.« less

  20. 1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Supratim; Seshadri, Rekha; Varghese, Neha J.

    We present 1,003 reference genomes that were sequenced as part of the Genomic Encyclopedia of Bacteria and Archaea (GEBA) initiative, selected to maximize sequence coverage of phylogenetic space. These genomes double the number of existing type strains and expand their overall phylogenetic diversity by 25%. Comparative analyses with previously available finished and draft genomes reveal a 10.5% increase in novel protein families as a function of phylogenetic diversity. The GEBA genomes recruit 25 million previously unassigned metagenomic proteins from 4,650 samples, improving their phylogenetic and functional interpretation. We identify numerous biosynthetic clusters and experimentally validate a divergent phenazine cluster withmore » potential new chemical structure and antimicrobial activity. This Resource is the largest single release of reference genomes to date. Bacterial and archaeal isolate sequence space is still far from saturated, and future endeavors in this direction will continue to be a valuable resource for scientific discovery.« less

  1. Comparative chloroplast genomics and phylogenetics of Fagopyrum esculentum ssp. ancestrale – A wild ancestor of cultivated buckwheat

    PubMed Central

    Logacheva, Maria D; Samigullin, Tahir H; Dhingra, Amit; Penin, Aleksey A

    2008-01-01

    Background Chloroplast genome sequences are extremely informative about species-interrelationships owing to its non-meiotic and often uniparental inheritance over generations. The subject of our study, Fagopyrum esculentum, is a member of the family Polygonaceae belonging to the order Caryophyllales. An uncertainty remains regarding the affinity of Caryophyllales and the asterids that could be due to undersampling of the taxa. With that background, having access to the complete chloroplast genome sequence for Fagopyrum becomes quite pertinent. Results We report the complete chloroplast genome sequence of a wild ancestor of cultivated buckwheat, Fagopyrum esculentum ssp. ancestrale. The sequence was rapidly determined using a previously described approach that utilized a PCR-based method and employed universal primers, designed on the scaffold of multiple sequence alignment of chloroplast genomes. The gene content and order in buckwheat chloroplast genome is similar to Spinacia oleracea. However, some unique structural differences exist: the presence of an intron in the rpl2 gene, a frameshift mutation in the rpl23 gene and extension of the inverted repeat region to include the ycf1 gene. Phylogenetic analysis of 61 protein-coding gene sequences from 44 complete plastid genomes provided strong support for the sister relationships of Caryophyllales (including Polygonaceae) to asterids. Further, our analysis also provided support for Amborella as sister to all other angiosperms, but interestingly, in the bayesian phylogeny inference based on first two codon positions Amborella united with Nymphaeales. Conclusion Comparative genomics analyses revealed that the Fagopyrum chloroplast genome harbors the characteristic gene content and organization as has been described for several other chloroplast genomes. However, it has some unique structural features distinct from previously reported complete chloroplast genome sequences. Phylogenetic analysis of the dataset, including this new sequence from non-core Caryophyllales supports the sister relationship between Caryophyllales and asterids. PMID:18492277

  2. Complete Chloroplast Genome of Pinus massoniana (Pinaceae): Gene Rearrangements, Loss of ndh Genes, and Short Inverted Repeats Contraction, Expansion.

    PubMed

    Ni, ZhouXian; Ye, YouJu; Bai, Tiandao; Xu, Meng; Xu, Li-An

    2017-09-11

    The chloroplast genome (CPG) of Pinus massoniana belonging to the genus Pinus (Pinaceae), which is a primary source of turpentine, was sequenced and analyzed in terms of gene rearrangements, ndh genes loss, and the contraction and expansion of short inverted repeats (IRs). P. massoniana CPG has a typical quadripartite structure that includes large single copy (LSC) (65,563 bp), small single copy (SSC) (53,230 bp) and two IRs (IRa and IRb, 485 bp). The 108 unique genes were identified, including 73 protein-coding genes, 31 tRNAs, and 4 rRNAs. Most of the 81 simple sequence repeats (SSRs) identified in CPG were mononucleotides motifs of A/T types and located in non-coding regions. Comparisons with related species revealed an inversion (21,556 bp) in the LSC region; P. massoniana CPG lacks all 11 intact ndh genes (four ndh genes lost completely; the five remained truncated as pseudogenes; and the other two ndh genes remain as pseudogenes because of short insertions or deletions). A pair of short IRs was found instead of large IRs, and size variations among pine species were observed, which resulted from short insertions or deletions and non-synchronized variations between "IRa" and "IRb". The results of phylogenetic analyses based on whole CPG sequences of 16 conifers indicated that the whole CPG sequences could be used as a powerful tool in phylogenetic analyses.

  3. Molecular Phylogenetics: Concepts for a Newcomer.

    PubMed

    Ajawatanawong, Pravech

    Molecular phylogenetics is the study of evolutionary relationships among organisms using molecular sequence data. The aim of this review is to introduce the important terminology and general concepts of tree reconstruction to biologists who lack a strong background in the field of molecular evolution. Some modern phylogenetic programs are easy to use because of their user-friendly interfaces, but understanding the phylogenetic algorithms and substitution models, which are based on advanced statistics, is still important for the analysis and interpretation without a guide. Briefly, there are five general steps in carrying out a phylogenetic analysis: (1) sequence data preparation, (2) sequence alignment, (3) choosing a phylogenetic reconstruction method, (4) identification of the best tree, and (5) evaluating the tree. Concepts in this review enable biologists to grasp the basic ideas behind phylogenetic analysis and also help provide a sound basis for discussions with expert phylogeneticists.

  4. Short branches lead to systematic artifacts when BLAST searches are used as surrogate for phylogenetic reconstruction.

    PubMed

    Dick, Amanda A; Harlow, Timothy J; Gogarten, J Peter

    2017-02-01

    Long Branch Attraction (LBA) is a well-known artifact in phylogenetic reconstruction when dealing with branch length heterogeneity. Here we show another phenomenon, Short Branch Attraction (SBA), which occurs when BLAST searches, a phenetic analysis, are used as a surrogate method for phylogenetic analysis. This error also results from branch length heterogeneity, but this time it is the short branches that are attracting. The SBA artifact is reciprocal and can be returned 100% of the time when multiple branches differ in length by a factor of more than two. SBA is an intended feature of BLAST searches, but becomes an issue, when top scoring BLAST hit analyses are used to infer Horizontal Gene Transfers (HGTs), assign taxonomic category with environmental sequence data in phylotyping, or gather homologous sequences for building gene families. SBA can lead researchers to believe that there has been a HGT event when only vertical descent has occurred, cause slowly evolving taxa to be over-represented and quickly evolving taxa to be under-represented in phylotyping, or systematically exclude quickly evolving taxa from analyses. SBA also contributes to the changing results of top scoring BLAST hit analyses as the database grows, because more slowly evolving taxa, or short branches, are added over time, introducing more potential for SBA. SBA can be detected by examining reciprocal best BLAST hits among a larger group of taxa, including the known closest phylogenetic neighbors. Therefore, one should look for this phenomenon when conducting best BLAST hit analyses as a surrogate method to identify HGTs, in phylotyping, or when using BLAST to gather homologous sequences. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Molecular phylogeny of noctilucoid dinoflagellates (Noctilucales, Dinophyceae).

    PubMed

    Gómez, Fernando; Moreira, David; López-García, Purificación

    2010-07-01

    The order Noctilucales or class Noctiluciphyceae encompasses three families of aberrant dinoflagellates (Noctilucaceae, Leptodiscaceae and Kofoidiniaceae) that, at least in some life stages, lack typical dinoflagellate characters such as the ribbon-like transversal flagellum or condensed chromosomes. Noctiluca scintillans, the first dinoflagellate to be described, has been intensively investigated. However, its phylogenetic position based on the small subunit ribosomal DNA (SSU rDNA) sequence is unstable and controversial. Noctiluca has been placed either as an early diverging lineage that diverged after Oxyrrhis and before the dinokaryotes -core dinoflagellates- or as a recent lineage branching from unarmoured dino fl agellates in the order Gymnodiniales. So far, the lack of other noctilucoid sequences has hampered the elucidation of their phylogenetic relationships to other dino fl agellates. Furthermore, even the monophyly of the noctilucoids remained uncertain. We have determined SSU rRNA gene sequences for Kofoidiniaceae, those of the type Spatulodinium (=Gymnodinium) pseudonoctiluca and another Spatulodinium species, as well as of two species of Kofoidinium, and the first gene sequence of Leptodiscaceae, that of Abedinium (=Leptophyllus) dasypus. These taxa were collected from their type localities, the English Channel and the NW Mediterranean Sea, respectively. Phylogenetic analyses place the Noctilucales as a monophyletic group at a basal position close to parasites of the Marine Alveolate Group I (MAGI) and the Syndiniales (MAGII), before the core of dinokaryotic dinoflagellates, although with moderate support. 2010 Elsevier GmbH. All rights reserved.

  6. Taxonomic evaluation of Streptomyces albus and related species using multilocus sequence analysis

    USDA-ARS?s Scientific Manuscript database

    In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp. albus NRRL B-1811T formed a cluster with 5 other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these ot...

  7. Morphologic and Molecular Characterization of a Demodex (Acari: Demodicidae) Species from White-Tailed Deer (Odocoileus virginianus)

    PubMed Central

    Yabsley, Michael J.; Clay, Sarah E.; Gibbs, Samantha E. J.; Cunningham, Mark W.; Austel, Michaela G.

    2013-01-01

    Demodex mites, although usually nonpathogenic, can cause a wide range of dermatological lesions ranging from mild skin irritation and alopecia to severe furunculosis. Recently, a case of demodicosis from a white-tailed deer (Odocoileus virginianus) revealed a Demodex species morphologically distinct from Demodex odocoilei. All life cycle stages were considerably larger than D. odocoilei and although similar in size to D. kutzeri and D. acutipes from European cervids, numerous morphometrics distinguished the four species. Adult males and females were 209.1 ± 13.1 and 225.5 ± 13.4 μm in length, respectively. Ova, larva, and nymphs measured 65.1 ± 4.1, 124.9 ± 11.6, and 205.1 ± 19.4 μm in length, respectively. For phylogenetic analyses, a portion of the 18S rRNA gene was amplified and sequenced from samples of the WTD Demodex sp., two Demodex samples from domestic dogs, and Demodex ursi from a black bear. Phylogenetic analyses indicated that the WTD Demodex was most similar to D. musculi from laboratory mice. A partial sequence from D. ursi was identical to the WTD Demodex sequence; however, these two species can be differentiated morphologically. This paper describes a second Demodex species from white-tailed deer and indicates that 18S rRNA is useful for phylogenetic analysis of most Demodex species, but two morphologically distinct species had identical partial sequences. Additional gene targets should be investigated for phylogenetic and parasite-host association studies. PMID:27335854

  8. The complete chloroplast genome sequence of Dodonaea viscosa: comparative and phylogenetic analyses.

    PubMed

    Saina, Josphat K; Gichira, Andrew W; Li, Zhi-Zhong; Hu, Guang-Wan; Wang, Qing-Feng; Liao, Kuo

    2018-02-01

    The plant chloroplast (cp) genome is a highly conserved structure which is beneficial for evolution and systematic research. Currently, numerous complete cp genome sequences have been reported due to high throughput sequencing technology. However, there is no complete chloroplast genome of genus Dodonaea that has been reported before. To better understand the molecular basis of Dodonaea viscosa chloroplast, we used Illumina sequencing technology to sequence its complete genome. The whole length of the cp genome is 159,375 base pairs (bp), with a pair of inverted repeats (IRs) of 27,099 bp separated by a large single copy (LSC) 87,204 bp, and small single copy (SSC) 17,972 bp. The annotation analysis revealed a total of 115 unique genes of which 81 were protein coding, 30 tRNA, and four ribosomal RNA genes. Comparative genome analysis with other closely related Sapindaceae members showed conserved gene order in the inverted and single copy regions. Phylogenetic analysis clustered D. viscosa with other species of Sapindaceae with strong bootstrap support. Finally, a total of 249 SSRs were detected. Moreover, a comparison of the synonymous (Ks) and nonsynonymous (Ka) substitution rates in D. viscosa showed very low values. The availability of cp genome reported here provides a valuable genetic resource for comprehensive further studies in genetic variation, taxonomy and phylogenetic evolution of Sapindaceae family. In addition, SSR markers detected will be used in further phylogeographic and population structure studies of the species in this genus.

  9. VKCDB: voltage-gated K+ channel database updated and upgraded.

    PubMed

    Gallin, Warren J; Boutet, Patrick A

    2011-01-01

    The Voltage-gated K(+) Channel DataBase (VKCDB) (http://vkcdb.biology.ualberta.ca) makes a comprehensive set of sequence data readily available for phylogenetic and comparative analysis. The current update contains 2063 entries for full-length or nearly full-length unique channel sequences from Bacteria (477), Archaea (18) and Eukaryotes (1568), an increase from 346 solely eukaryotic entries in the original release. In addition to protein sequences for channels, corresponding nucleotide sequences of the open reading frames corresponding to the amino acid sequences are now available and can be extracted in parallel with sets of protein sequences. Channels are categorized into subfamilies by phylogenetic analysis and by using hidden Markov model analyses. Although the raw database contains a number of fragmentary, duplicated, obsolete and non-channel sequences that were collected in early steps of data collection, the web interface will only return entries that have been validated as likely K(+) channels. The retrieval function of the web interface allows retrieval of entries that contain a substantial fraction of the core structural elements of VKCs, fragmentary entries, or both. The full database can be downloaded as either a MySQL dump or as an XML dump from the web site. We have now implemented automated updates at quarterly intervals.

  10. The complete chloroplast genome of Gentiana straminea (Gentianaceae), an endemic species to the Sino-Himalayan subregion.

    PubMed

    Ni, Lianghong; Zhao, Zhili; Xu, Hongxi; Chen, Shilin; Dorje, Gaawe

    2016-02-15

    Endemic to the Sino-Himalayan subregion, the medicinal alpine plant Gentiana straminea is a threatened species. The genetic and molecular data about it is deficient. Here we report the complete chloroplast (cp) genome sequence of G. straminea, as the first sequenced member of the family Gentianaceae. The cp genome is 148,991bp in length, including a large single copy (LSC) region of 81,240bp, a small single copy (SSC) region of 17,085bp and a pair of inverted repeats (IRs) of 25,333bp. It contains 112 unique genes, including 78 protein-coding genes, 30 tRNAs and 4 rRNAs. The rps16 gene lacks exon2 between trnK-UUU and trnQ-UUG, which is the first rps16 pseudogene found in the nonparasitic plants of Asterids clade. Sequence analysis revealed the presence of 13 forward repeats, 13 palindrome repeats and 39 simple sequence repeats (SSRs). An entire cp genome comparison study of G. straminea and four other species in Gentianales was carried out. Phylogenetic analyses using maximum likelihood (ML) and maximum parsimony (MP) were performed based on 69 protein-coding genes from 36 species of Asterids. The results strongly supported the position of Gentianaceae as one member of the order Gentianales. The complete chloroplast genome sequence will provide intragenic information for its conservation and contribute to research on the genetic and phylogenetic analyses of Gentianales and Asterids. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Molecular taxonomy, phylogeny and evolution in the family Stichopodidae (Aspidochirotida: Holothuroidea) based on COI and 16S mitochondrial DNA.

    PubMed

    Byrne, Maria; Rowe, Frank; Uthicke, Sven

    2010-09-01

    The Stichopodidae comprise a diverse assemblage of holothuroids most of which occur in the Indo-Pacific. Phylogenetic analyses of mitochondrial gene (COI, 16S rRNA) sequence for 111 individuals (7 genera, 17 species) clarified taxonomic uncertainties, species relationships, biogeography and evolution of the family. A monophyly of the genus Stichopus was supported with the exception of Stichopus ellipes. Molecular analyses confirmed genus level taxonomy based on morphology. Most specimens harvested as S. horrens fell in the S. monotuberculatus clade, a morphologically variable assemblage with others from the S. naso clade. Taxonomic clarification of species fished as S. horrens will assist conservation measures. Evolutionary rates based on comparison of sequence from trans-ithmian Isostichopus species estimated that Stichopus and Isostichopus diverged ca. 5.5-10.7Ma (Miocene). More recent splits were estimated to be younger than 1Ma. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Bradyrhizobium algeriense sp. nov., a novel species isolated from effective nodules of Retama sphaerocarpa from Northeastern Algeria.

    PubMed

    Ahnia, Hadjira; Bourebaba, Yasmina; Durán, David; Boulila, Farida; Palacios, José M; Rey, Luis; Ruiz-Argüeso, Tomás; Boulila, Abdelghani; Imperial, Juan

    2018-04-04

    We have characterized genetic, phenotypic and symbiotic properties of bacterial strains previously isolated from nitrogen-fixing nodules of Retama sphaerocarpa from Northern Algeria. Phylogenetic analyses of 16S rRNA genes and three concatenated housekeeping genes, recA, atpD and glnII, placed them in a new divergent group that is proposed to form a new Bradyrhizobium species, Bradyrhizobium algeriense sp. nov. (type strain RST89 T , LMG 27618 and CECT 8363). Based on these phylogenetic markers and on genomic identity data derived from draft genomic sequences, Bradyrhizobium valentinum LmjM3 T , Bradyrhizobium lablabi CCBAU 23086 T , Bradyrhizobium retamae Ro19 T , and Bradyrhizobium jicamae PAC68 T are the closest relatives of B. algeriense RST89 T , with sequence identities of 92-94% and Average Nucleotide Identities (ANIm) under 90%, well below the 95-96% species circumscription threshold. Likewise, a comparison of whole-cell proteomic patterns, estimated by Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight (MALDI-TOF) mass spectrometric analysis, yielded almost identical spectra between B. algeriense strains but significant differences with B. valentinum, Bradyrhizobium paxllaeri, Bradyrhizobium icense, B. lablabi, B. jicamae and B. retamae. A phylogenetic tree based on symbiotic gene nodC revealed that the B. algeriense sequences cluster with sequences from the Bradyrhizobium symbiovar retamae, previously defined with B. retamae strains isolated from Retama monosperma. B. algeriense strains were able to establish effective symbioses with Retama raetam, Lupinus micranthus, Lupinus albus and Genista numidica, but not with Lupinus angustifolius or Glycine max. Copyright © 2018 Elsevier GmbH. All rights reserved.

  13. Phylogeny of Syndermata (syn. Rotifera): Mitochondrial gene order verifies epizoic Seisonidea as sister to endoparasitic Acanthocephala within monophyletic Hemirotifera.

    PubMed

    Sielaff, Malte; Schmidt, Hanno; Struck, Torsten H; Rosenkranz, David; Mark Welch, David B; Hankeln, Thomas; Herlyn, Holger

    2016-03-01

    A monophyletic origin of endoparasitic thorny-headed worms (Acanthocephala) and wheel-animals (Rotifera) is widely accepted. However, the phylogeny inside the clade, be it called Syndermata or Rotifera, has lacked validation by mitochondrial (mt) data. Herein, we present the first mt genome of the key taxon Seison and report conflicting results of phylogenetic analyses: while mt sequence-based topologies showed monophyletic Lemniscea (Bdelloidea+Acanthocephala), gene order analyses supported monophyly of Pararotatoria (Seisonidea+Acanthocephala) and Hemirotifera (Bdelloidea+Pararotatoria). Sequence-based analyses obviously suffered from substitution saturation, compositional bias, and branch length heterogeneity; however, we observed no compromising effects in gene order analyses. Moreover, gene order-based topologies were robust to changes in coding (genes vs. gene pairs, two-state vs. multistate, aligned vs. non-aligned), tree reconstruction methods, and the treatment of the two monogonont mt genomes. Thus, mt gene order verifies seisonids as sister to acanthocephalans within monophyletic Hemirotifera, while deviating results of sequence-based analyses reflect artificial signal. This conclusion implies that the complex life cycle of extant acanthocephalans evolved from a free-living state, as retained by most monogononts and bdelloids, via an epizoic state with a simple life cycle, as shown by seisonids. Hence, Acanthocephala represent a rare example where ancestral transitional stages have counterparts amongst the closest relatives. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. A New Zamilon-like Virophage Partial Genome Assembled from a Bioreactor Metagenome

    PubMed Central

    Bekliz, Meriem; Verneau, Jonathan; Benamar, Samia; Raoult, Didier; La Scola, Bernard; Colson, Philippe

    2015-01-01

    Virophages replicate within viral factories inside the Acanthamoeba cytoplasm, and decrease the infectivity and replication of their associated giant viruses. Culture isolation and metagenome analyses have suggested that they are common in our environment. By screening metagenomic databases in search of amoebal viruses, we detected virophage-related sequences among sequences generated from the same non-aerated bioreactor metagenome as recently screened by another team for virophage capsid-encoding genes. We describe here the assembled partial genome of a virophage closely related to Zamilon, which infects Acanthamoeba with mimiviruses of lineages B and C but not A. Searches for sequences related to amoebal giant viruses, other Megavirales representatives and virophages were conducted using BLAST against this bioreactor metagenome (PRJNA73603). Comparative genomic and phylogenetic analyses were performed using sequences from previously identified virophages. A total of 72 metagenome contigs generated from the bioreactor were identified as best matching with sequences from Megavirales representatives, mostly Pithovirus sibericum, pandoraviruses and amoebal mimiviruses from three lineages A–C, as well as from virophages. In addition, a partial genome from a Zamilon-like virophage, we named Zamilon 2, was assembled. This genome has a size of 6716 base pairs, corresponding to 39% of the Zamilon genome, and comprises partial or full-length homologs for 15 Zamilon predicted open reading frames (ORFs). Mean nucleotide and amino acid identities for these 15 Zamilon 2 ORFs with their Zamilon counterparts were 89% (range, 81–96%) and 91% (range, 78–99%), respectively. Notably, these ORFs included two encoding a capsid protein and a packaging ATPase. Comparative genomics and phylogenetic analyses indicated that the partial genome was that of a new Zamilon-like virophage. Further studies are needed to gain better knowledge of the tropism and prevalence of virophages in our biosphere and in humans. PMID:26640459

  15. Toxicity phenotype does not correlate with phylogeny of Cylindrospermopsis raciborskii strains.

    PubMed

    Stucken, Karina; Murillo, Alejandro A; Soto-Liebe, Katia; Fuentes-Valdés, Juan J; Méndez, Marco A; Vásquez, Mónica

    2009-02-01

    Cylindrospermopsis raciborskii is a species of freshwater, bloom-forming cyanobacterium. C. raciborskii produces toxins, including cylindrospermopsin (hepatotoxin) and saxitoxin (neurotoxin), although non toxin-producing strains are also observed. In spite of differences in toxicity, C. raciborskii strains comprise a monophyletic group, based upon 16S rRNA gene sequence identities (greater than 99%). We performed phylogenetic analyses; 16S rRNA gene and 16S-23S rRNA gene internally transcribed spacer (ITS-1) sequence comparisons, and genomic DNA restriction fragment length polymorphism (RFLP), resolved by pulsed-field gel electrophoresis (PFGE), of strains of C. raciborskii, obtained mainly from the Australian phylogeographic cluster. Our results showed no correlation between toxic phenotype and phylogenetic association in the Australian strains. Analyses of the 16S rRNA gene and the respective ITS-1 sequences (long L, and short S) showed an independent evolution of each ribosomal operon. The genes putatively involved in the cylindrospermopsin biosynthetic pathway were present in one locus and only in the hepatotoxic strains, demonstrating a common genomic organization for these genes and the absence of mutated or inactivated biosynthetic genes in the non toxic strains. In summary, our results support the hypothesis that the genes involved in toxicity may have been transferred as an island by processes of gene lateral transfer, rather than convergent evolution.

  16. Phylogenetic Relationships of Yessotoxin-Producing Dinoflagellates, Based on the Large Subunit and Internal Transcribed Spacer Ribosomal DNA Domains▿

    PubMed Central

    Howard, Meredith D. A.; Smith, G. Jason; Kudela, Raphael M.

    2009-01-01

    Yessotoxin (YTX) is a globally distributed marine toxin produced by some isolates of the dinoflagellate species Protoceratium reticulatum, Lingulodinium polyedrum, and Gonyaulax spinifera within the order Gonyaulacales. The process of isolating cells and testing each isolate individually for YTX production during toxic blooms are labor intensive, and this impedes our ability to respond quickly to toxic blooms. In this study, we used molecular sequences from the large subunit and internal transcribed spacer genomic regions in the ribosomal operon of known YTX-producing dinoflagellates to determine if genetic differences exist among geographically distinct populations or between toxic and nontoxic isolates within species. In all analyses, all three YTX-producing species fell within the Gonyaulacales order in agreement with morphological taxonomy. Phylogenetic analyses of available rRNA gene sequences indicate that the capacity for YTX production appears to be confined to the order Gonyaulacales. These findings indicate that Gonyaulacoloid dinoflagellate species are the most likely to produce YTX and thus should be prioritized for YTX screening during events. Dinoflagellate species that fall outside of the Gonyaulacales order are unlikely to produce YTX. Although the rRNA operon offers multiple sequence domains to resolve species level diversification within this dinoflagellate order, these domains are not sufficiently variable to provide robust markers for YTX toxicity. PMID:19011074

  17. Building Phylogenetic Trees from DNA Sequence Data: Investigating Polar Bear and Giant Panda Ancestry.

    ERIC Educational Resources Information Center

    Maier, Caroline Alexandra

    2001-01-01

    Presents an activity in which students seek answers to questions about evolutionary relationships by using genetic databases and bioinformatics software. Students build genetic distance matrices and phylogenetic trees based on molecular sequence data using web-based resources. Provides a flowchart of steps involved in accessing, retrieving, and…

  18. Phylogeny of triatomine vectors of Trypanosoma cruzi suggested by mitochondrial DNA sequences.

    PubMed

    Sainz, Andrés C; Mauro, Laura V; Moriyama, Etsuko N; García, Beatriz A

    2004-07-01

    The subfamily Triatominae (Hemiptera: Reduviidae) comprises hematophagous insects, most of which are actual or potential vectors of Trypanosoma cruzi, the protozoan agent of Chagas' disease (American trypanosomiasis). DNA sequence comparisons of mitochondrial DNA (mtDNA) genes were used to infer phylogenetic relationships among 32 species of the subfamily Triatominae, 26 belonging to the genus Triatoma and six species of different genera. We analyzed mtDNA fragments of the 12S and 16S ribosomal RNA genes (totaling 848-851 bp) from each of the 32 species, as well as of the cytochrome oxidase I (COI, 1447 bp) gene from nine. The phylogenetic analyses unambiguously supported several clusters within the genus Triatoma. In the morphological classification, T. costalimai was placed tentatively within the infestans complex while T. guazu was not included in any Triatoma complex. The placement of these species in the molecular phylogeny indicated that both belong to the infestans complex. We confirmed with a strong support the inclusion of T. circummaculata, a member of a different complex based on morphology, within the infestans complex. On the other hand, the present phylogenetics analysis did not support the monophyly of the infestans complex species as it was suggested in our previous studies. While no strong inference of polyphyly of the genus Triatoma was provided by the bootstrap analyses, the other species belonging to Triatomini analyzed could not be distinguished from the species of Triatoma.

  19. Genes with minimal phylogenetic information are problematic for coalescent analyses when gene tree estimation is biased.

    PubMed

    Xi, Zhenxiang; Liu, Liang; Davis, Charles C

    2015-11-01

    The development and application of coalescent methods are undergoing rapid changes. One little explored area that bears on the application of gene-tree-based coalescent methods to species tree estimation is gene informativeness. Here, we investigate the accuracy of these coalescent methods when genes have minimal phylogenetic information, including the implementation of the multilocus bootstrap approach. Using simulated DNA sequences, we demonstrate that genes with minimal phylogenetic information can produce unreliable gene trees (i.e., high error in gene tree estimation), which may in turn reduce the accuracy of species tree estimation using gene-tree-based coalescent methods. We demonstrate that this problem can be alleviated by sampling more genes, as is commonly done in large-scale phylogenomic analyses. This applies even when these genes are minimally informative. If gene tree estimation is biased, however, gene-tree-based coalescent analyses will produce inconsistent results, which cannot be remedied by increasing the number of genes. In this case, it is not the gene-tree-based coalescent methods that are flawed, but rather the input data (i.e., estimated gene trees). Along these lines, the commonly used program PhyML has a tendency to infer one particular bifurcating topology even though it is best represented as a polytomy. We additionally corroborate these findings by analyzing the 183-locus mammal data set assembled by McCormack et al. (2012) using ultra-conserved elements (UCEs) and flanking DNA. Lastly, we demonstrate that when employing the multilocus bootstrap approach on this 183-locus data set, there is no strong conflict between species trees estimated from concatenation and gene-tree-based coalescent analyses, as has been previously suggested by Gatesy and Springer (2014). Copyright © 2015 Elsevier Inc. All rights reserved.

  20. P-type ATPase superfamily: evidence for critical roles for kingdom evolution.

    PubMed

    Okamura, Hideyuki; Denawa, Masatsugu; Ohniwa, Ryosuke; Takeyasu, Kunio

    2003-04-01

    The P-type ATPase has become a protein superfamily. On the basis of sequence similarities, the phylogenetic analyses, and substrate specificities, this superfamily can be classified into 5 families and 11 subfamilies. A comparative phylogenetic analysis demonstrates the relationship between the molecular evolution of these subfamilies and the establishment of the kingdoms of living things.

  1. Phylogenetic Analysis of Klebsiella pneumoniae from Hospitalized Children, Pakistan

    PubMed Central

    Ejaz, Hasan; Wang, Nancy; Wilksch, Jonathan J.; Page, Andrew J.; Cao, Hanwei; Gujaran, Shruti; Keane, Jacqueline A.; Lithgow, Trevor; ul-Haq, Ikram; Dougan, Gordon

    2017-01-01

    Klebsiella pneumoniae shows increasing emergence of multidrug-resistant lineages, including strains resistant to all available antimicrobial drugs. We conducted whole-genome sequencing of 178 highly drug-resistant isolates from a tertiary hospital in Lahore, Pakistan. Phylogenetic analyses to place these isolates into global context demonstrate the expansion of multiple independent lineages, including K. quasipneumoniae. PMID:29048298

  2. Molecular diversification of Trichuris spp. from Sigmodontinae (Cricetidae) rodents from Argentina based on mitochondrial DNA sequences.

    PubMed

    Callejón, Rocío; Robles, María Del Rosario; Panei, Carlos Javier; Cutillas, Cristina

    2016-08-01

    A molecular phylogenetic hypothesis is presented for the genus Trichuris based on sequence data from mitochondrial cytochrome c oxidase 1 (cox1) and cytochrome b (cob). The taxa consisted of nine populations of whipworm from five species of Sigmodontinae rodents from Argentina. Bayesian Inference, Maximum Parsimony, and Maximum Likelihood methods were used to infer phylogenies for each gene separately but also for the combined mitochondrial data and the combined mitochondrial and nuclear dataset. Phylogenetic results based on cox1 and cob mitochondrial DNA (mtDNA) revealed three clades strongly resolved corresponding to three different species (Trichuris navonae, Trichuris bainae, and Trichuris pardinasi) showing phylogeographic variation, but relationships among Trichuris species were poorly resolved. Phylogenetic reconstruction based on concatenated sequences had greater phylogenetic resolution for delimiting species and populations intra-specific of Trichuris than those based on partitioned genes. Thus, populations of T. bainae and T. pardinasi could be affected by geographical factors and co-divergence parasite-host.

  3. A new fungal large subunit ribosomal RNA primer for high throughput sequencing surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Rebecca C.; Gallegos-Graves, La Verne; Kuske, Cheryl R.

    The inclusion of phylogenetic metrics in community ecology has provided insights into important ecological processes, particularly when combined with high-throughput sequencing methods; however, these approaches have not been widely used in studies of fungal communities relative to other microbial groups. Two obstacles have been considered: (1) the internal transcribed spacer (ITS) region has limited utility for constructing phylogenies and (2) most PCR primers that target the large subunit (LSU) ribosomal unit generate amplicons that exceed current limits of high-throughput sequencing platforms. We designed and tested a PCR primer (LR22R) to target approximately 300–400 bp region of the D2 hypervariable regionmore » of the fungal LSU for use with the Illumina MiSeq platform. Both in silico and empirical analyses showed that the LR22R–LR3 pair captured a broad range of fungal taxonomic groups with a small fraction of non-fungal groups. Phylogenetic placement of publically available LSU D2 sequences showed broad agreement with taxonomic classification. Comparisons of the LSU D2 and the ITS2 ribosomal regions from environmental samples and known communities showed similar discriminatory abilities of the two primer sets. Altogether, these findings show that the LR22R–LR3 primer pair has utility for phylogenetic analyses of fungal communities using high-throughput sequencing methods.« less

  4. Phylogenetic Analysis of Myobia musculi (Schranck, 1781) by Using the 18S Small Ribosomal Subunit Sequence

    PubMed Central

    Feldman, Sanford H; Ntenda, Abraham M

    2011-01-01

    We used high-fidelity PCR to amplify 2 overlapping regions of the ribosomal gene complex from the rodent fur mite Myobia musculi. The amplicons encompassed a large portion of the mite's ribosomal gene complex spanning 3128 nucleotides containing the entire 18S rRNA, internal transcribed spacer (ITS) 1, 5.8S rRNA, ITS2, and a portion of the 5′-end of the 28S rRNA. M. musculi’s 179-nucleotide 5.8S rRNA nucleotide sequence was not conserved, so this region was identified by conservation of rRNA secondary structure. Maximum likelihood and Bayesian inference phylogenetic analyses were performed by using multiple sequence alignment consisting of 1524 nucleotides of M. musculi 18S rRNA and homologous sequences from 42 prostigmatid mites and the tick Dermacentor andersoni. The phylograms produced by both methods were in agreement regarding terminal, secondary, and some tertiary phylogenetic relationships among mites. Bayesian inference discriminated most infraordinal relationships between Eleutherengona and Parasitengona mites in the suborder Anystina. Basal relationships between suborders Anystina and Eupodina historically determined by comparing differences in anatomic characteristics were less well-supported by our molecular analysis. Our results recapitulated similar 18S rRNA sequence analyses recently reported. Our study supports M. musculi as belonging to the suborder Anystina, infraorder Eleutherenona, and superfamily Cheyletoidea. PMID:22330574

  5. A new fungal large subunit ribosomal RNA primer for high throughput sequencing surveys

    DOE PAGES

    Mueller, Rebecca C.; Gallegos-Graves, La Verne; Kuske, Cheryl R.

    2015-12-09

    The inclusion of phylogenetic metrics in community ecology has provided insights into important ecological processes, particularly when combined with high-throughput sequencing methods; however, these approaches have not been widely used in studies of fungal communities relative to other microbial groups. Two obstacles have been considered: (1) the internal transcribed spacer (ITS) region has limited utility for constructing phylogenies and (2) most PCR primers that target the large subunit (LSU) ribosomal unit generate amplicons that exceed current limits of high-throughput sequencing platforms. We designed and tested a PCR primer (LR22R) to target approximately 300–400 bp region of the D2 hypervariable regionmore » of the fungal LSU for use with the Illumina MiSeq platform. Both in silico and empirical analyses showed that the LR22R–LR3 pair captured a broad range of fungal taxonomic groups with a small fraction of non-fungal groups. Phylogenetic placement of publically available LSU D2 sequences showed broad agreement with taxonomic classification. Comparisons of the LSU D2 and the ITS2 ribosomal regions from environmental samples and known communities showed similar discriminatory abilities of the two primer sets. Altogether, these findings show that the LR22R–LR3 primer pair has utility for phylogenetic analyses of fungal communities using high-throughput sequencing methods.« less

  6. Mitochondrial and nuclear DNA reveals reticulate evolution in hares (Lepus spp., Lagomorpha, Mammalia) from Ethiopia

    PubMed Central

    Bekele, Endashaw; Tesfaye, Kassahun; Ben Slimen, Hichem; Valqui, Juan; Getahun, Abebe; Hartl, Günther B.; Suchentrunk, Franz

    2017-01-01

    For hares (Lepus spp., Leporidae, Lagomorpha, Mammalia) from Ethiopia no conclusive molecular phylogenetic data are available. To provide a first molecular phylogenetic model for the Abyssinian Hare (Lepus habessinicus), the Ethiopian Hare (L. fagani), and the Ethiopian Highland Hare (L. starcki) and their evolutionary relationships to hares from Africa, Eurasia, and North America, we phylogenetically analysed mitochondrial ATPase subunit 6 (ATP6; n = 153 / 416bp) and nuclear transferrin (TF; n = 155 / 434bp) sequences of phenotypically determined individuals. For the hares from Ethiopia, genotype composition at twelve microsatellite loci (n = 107) was used to explore both interspecific gene pool separation and levels of current hybridization, as has been observed in some other Lepus species. For phylogenetic analyses ATP6 and TF sequences of Lepus species from South and North Africa (L. capensis, L. saxatilis), the Anatolian peninsula and Europe (L. europaeus, L. timidus) were also produced and additional TF sequences of 18 Lepus species retrieved from GenBank were included as well. Median joining networks, neighbour joining, maximum likelihood analyses, as well as Bayesian inference resulted in similar models of evolution of the three species from Ethiopia for the ATP6 and TF sequences, respectively. The Ethiopian species are, however, not monophyletic, with signatures of contemporary uni- and bidirectional mitochondrial introgression and/ or shared ancestral polymorphism. Lepus habessinicus carries mtDNA distinct from South African L. capensis and North African L. capensis sensu lato; that finding is not in line with earlier suggestions of its conspecificity with L. capensis. Lepus starcki has mtDNA distinct from L. capensis and L. europaeus, which is not in line with earlier suggestions to include it either in L. capensis or L. europaeus. Lepus fagani shares mitochondrial haplotypes with the other two species from Ethiopia, despite its distinct phenotypic and microsatellite differences; moreover, it is not represented by a species-specific mitochondrial haplogroup, suggesting considerable mitochondrial capture by the other species from Ethiopia or species from other parts of Africa. Both mitochondrial and nuclear sequences indicate close phylogenetic relationships among all three Lepus species from Ethiopia, with L. fagani being surprisingly tightly connected to L. habessinicus. TF sequences suggest close evolutionary relationships between the three Ethiopian species and Cape hares from South and North Africa; they further suggest that hares from Ethiopia hold a position ancestral to many Eurasian and North American species. PMID:28767659

  7. Phylogenetic studies in Psathyrella focusing on sections Pennatae and Spadiceae--new evidence for the paraphyly of the genus.

    PubMed

    Vasutová, Martina; Antonín, Vladimír; Urban, Alexander

    2008-10-01

    The sections Pennatae and Spadiceae were chosen to test the agreement of current infrageneric classifications of Psathyrella (Psathyrellaceae, Agaricales) with molecular phylogenetic data and to evaluate the systematic significance of relevant morphological characters. The ITS and partial LSU regions of nu-rDNA from 53 specimens representing 34 species of Psathyrella were sequenced and analysed with parsimony-based and model-based phylogenetic methods. According to our analyses, the sections Pennatae and Spadiceae are polyphyletic and distributed across the family Psathyrellaceae, which is divided into at least five major groups. The first one comprises most of the included Psathyrella species and, probably, the whole genus Coprinellus. The second group is made up of Psathyrella gossypina and P. delineata. The third clade consists of the genus Coprinopsis and includes Psathyrella aff. huronensis and P. marcescibilis. The fourth clade is composed of two sister groups, the subgenus Homophron and the genus Lacrymaria, and the fifth group represents the genus Parasola including Psathyrella conopilus. These results are in agreement with neither the current circumscription of the two subgenera, Psathyra and Psathyrella, nor with the pre-sent disposition of the Psathyrellaceae. Taxonomically important morphological characters in the genus Psathyrella show a high degree of homoplasy. Although these characters are useful for species delimitation, and in some cases for the circumscription of sections, they appear insufficient for a phylogenetically correct generic concept.

  8. Saturnia jonasii Butler, 1877 on Jejudo Island, a new saturnid moth of South Korea with DNA data and morphology (Lepidoptera: Saturniidae).

    PubMed

    Kim, Min Jee; Choi, Sei-Woong; Kim, Iksoo

    2015-04-10

    Saturnia (Rinaca) jonasii Butler, 1877 is distributed in Japan, including Tsushima Island and Taiwan, whereas S. boisduvalii Eversmann, 1846 is distributed in northern areas, such as China, Russia, and South Korea. In the present study we found that the specimens from Mt. Hallasan on Jejudo, a southern remote offshore island, were S. jonasii, rather than S. boisduvalii based on morphology, DNA barcode, and nuclear elongation factor 1 alpha (EF-1α) sequences. The major morphological differences between the two species included the shape of wing pattern elements of fore- and hindwings and male and female genitalia. A DNA barcode analysis of the sequences of the Jejudo specimens and S. boisduvalii, along with those of Saturnia species obtained from a public database showed a minimum sequence divergence of 4.26% (28 bp). A phylogenetic analysis also showed clustering of the Jejudo specimens with S. jonasii, separating S. boisduvalii (Bayesian posterior probability = 0.99). The EF-1α-based sequence and phylogenetic analyses of the two species from Jejudo Island and the Korean mainland showed the uniqueness of the Jejudo specimens from S. boisduvalii collected on the Korean mainland, indicating distribution of S. jonasii on Jejudo Island in South Korea, instead of S. boisduvalii.

  9. Divergent nuclear 18S rDNA paralogs in a turkey coccidium, Eimeria meleagrimitis, complicate molecular systematics and identification.

    PubMed

    El-Sherry, Shiem; Ogedengbe, Mosun E; Hafeez, Mian A; Barta, John R

    2013-07-01

    Multiple 18S rDNA sequences were obtained from two single-oocyst-derived lines of each of Eimeria meleagrimitis and Eimeria adenoeides. After analysing the 15 new 18S rDNA sequences from two lines of E. meleagrimitis and 17 new sequences from two lines of E. adenoeides, there were clear indications that divergent, paralogous 18S rDNA copies existed within the nuclear genome of E. meleagrimitis. In contrast, mitochondrial cytochrome c oxidase subunit I (COI) partial sequences from all lines of a particular Eimeria sp. were identical and, in phylogenetic analyses, COI sequences clustered unambiguously in monophyletic and highly-supported clades specific to individual Eimeria sp. Phylogenetic analysis of the new 18S rDNA sequences from E. meleagrimitis showed that they formed two distinct clades: Type A with four new sequences; and Type B with nine new sequences; both Types A and B sequences were obtained from each of the single-oocyst-derived lines of E. meleagrimitis. Together these rDNA types formed a well-supported E. meleagrimitis clade. Types A and B 18S rDNA sequences from E. meleagrimitis had a mean sequence identity of only 97.4% whereas mean sequence identity within types was 99.1-99.3%. The observed intraspecific sequence divergence among E. meleagrimitis 18S rDNA sequence types was even higher (approximately 2.6%) than the interspecific sequence divergence present between some well-recognized species such as Eimeria tenella and Eimeria necatrix (1.1%). Our observations suggest that, unlike COI sequences, 18S rDNA sequences are not reliable molecular markers to be used alone for species identification with coccidia, although 18S rDNA sequences have clear utility for phylogenetic reconstruction of apicomplexan parasites at the genus and higher taxonomic ranks. Copyright © 2013. Published by Elsevier Ltd.

  10. Mind the gap! The mitochondrial control region and its power as a phylogenetic marker in echinoids.

    PubMed

    Bronstein, Omri; Kroh, Andreas; Haring, Elisabeth

    2018-05-30

    In Metazoa, mitochondrial markers are the most commonly used targets for inferring species-level molecular phylogenies due to their extremely low rate of recombination, maternal inheritance, ease of use and fast substitution rate in comparison to nuclear DNA. The mitochondrial control region (CR) is the main non-coding area of the mitochondrial genome and contains the mitochondrial origin of replication and transcription. While sequences of the cytochrome oxidase subunit 1 (COI) and 16S rRNA genes are the prime mitochondrial markers in phylogenetic studies, the highly variable CR is typically ignored and not targeted in such analyses. However, the higher substitution rate of the CR can be harnessed to infer the phylogeny of closely related species, and the use of a non-coding region alleviates biases resulting from both directional and purifying selection. Additionally, complete mitochondrial genome assemblies utilizing next generation sequencing (NGS) data often show exceptionally low coverage at specific regions, including the CR. This can only be resolved by targeted sequencing of this region. Here we provide novel sequence data for the echinoid mitochondrial control region in over 40 species across the echinoid phylogenetic tree. We demonstrate the advantages of directly targeting the CR and adjacent tRNAs to facilitate complementing low coverage NGS data from complete mitochondrial genome assemblies. Finally, we test the performance of this region as a phylogenetic marker both in the lab and in phylogenetic analyses, and demonstrate its superior performance over the other available mitochondrial markers in echinoids. Our target region of the mitochondrial CR (1) facilitates the first thorough investigation of this region across a wide range of echinoid taxa, (2) provides a tool for complementing missing data in NGS experiments, and (3) identifies the CR as a powerful, novel marker for phylogenetic inference in echinoids due to its high variability, lack of selection, and high compatibility across the entire class, outperforming conventional mitochondrial markers.

  11. Interordinal gene capture, the phylogenetic position of Steller's sea cow based on molecular and morphological data, and the macroevolutionary history of Sirenia.

    PubMed

    Springer, Mark S; Signore, Anthony V; Paijmans, Johanna L A; Vélez-Juarbe, Jorge; Domning, Daryl P; Bauer, Cameron E; He, Kai; Crerar, Lorelei; Campos, Paula F; Murphy, William J; Meredith, Robert W; Gatesy, John; Willerslev, Eske; MacPhee, Ross D E; Hofreiter, Michael; Campbell, Kevin L

    2015-10-01

    The recently extinct (ca. 1768) Steller's sea cow (Hydrodamalis gigas) was a large, edentulous North Pacific sirenian. The phylogenetic affinities of this taxon to other members of this clade, living and extinct, are uncertain based on previous morphological and molecular studies. We employed hybridization capture methods and second generation sequencing technology to obtain >30kb of exon sequences from 26 nuclear genes for both H. gigas and Dugong dugon. We also obtained complete coding sequences for the tooth-related enamelin (ENAM) gene. Hybridization probes designed using dugong and manatee sequences were both highly effective in retrieving sequences from H. gigas (mean=98.8% coverage), as were more divergent probes for regions of ENAM (99.0% coverage) that were designed exclusively from a proboscidean (African elephant) and a hyracoid (Cape hyrax). New sequences were combined with available sequences for representatives of all other afrotherian orders. We also expanded a previously published morphological matrix for living and fossil Sirenia by adding both new taxa and nine new postcranial characters. Maximum likelihood and parsimony analyses of the molecular data provide robust support for an association of H. gigas and D. dugon to the exclusion of living trichechids (manatees). Parsimony analyses of the morphological data also support the inclusion of H. gigas in Dugongidae with D. dugon and fossil dugongids. Timetree analyses based on calibration density approaches with hard- and soft-bounded constraints suggest that H. gigas and D. dugon diverged in the Oligocene and that crown sirenians last shared a common ancestor in the Eocene. The coding sequence for the ENAM gene in H. gigas does not contain frameshift mutations or stop codons, but there is a transversion mutation (AG to CG) in the acceptor splice site of intron 2. This disruption in the edentulous Steller's sea cow is consistent with previous studies that have documented inactivating mutations in tooth-specific loci of a variety of edentulous and enamelless vertebrates including birds, turtles, aardvarks, pangolins, xenarthrans, and baleen whales. Further, branch-site dN/dS analyses provide evidence for positive selection in ENAM on the stem dugongid branch where extensive tooth reduction occurred, followed by neutral evolution on the Hydrodamalis branch. Finally, we present a synthetic evolutionary tree for living and fossil sirenians showing several key innovations in the history of this clade including character state changes that parallel those that occurred in the evolutionary history of cetaceans. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Nuclear and cpDNA sequences combined provide strong inference of higher phylogenetic relationships in the phlox family (Polemoniaceae).

    PubMed

    Johnson, Leigh A; Chan, Lauren M; Weese, Terri L; Busby, Lisa D; McMurry, Samuel

    2008-09-01

    Members of the phlox family (Polemoniaceae) serve as useful models for studying various evolutionary and biological processes. Despite its biological importance, no family-wide phylogenetic estimate based on multiple DNA regions with complete generic sampling is available. Here, we analyze one nuclear and five chloroplast DNA sequence regions (nuclear ITS, chloroplast matK, trnL intron plus trnL-trnF intergeneric spacer, and the trnS-trnG, trnD-trnT, and psbM-trnD intergenic spacers) using parsimony and Bayesian methods, as well as assessments of congruence and long branch attraction, to explore phylogenetic relationships among 84 ingroup species representing all currently recognized Polemoniaceae genera. Relationships inferred from the ITS and concatenated chloroplast regions are similar overall. A combined analysis provides strong support for the monophyly of Polemoniaceae and subfamilies Acanthogilioideae, Cobaeoideae, and Polemonioideae. Relationships among subfamilies, and thus for the precise root of Polemoniaceae, remain poorly supported. Within the largest subfamily, Polemonioideae, four clades corresponding to tribes Polemonieae, Phlocideae, Gilieae, and Loeselieae receive strong support. The monogeneric Polemonieae appears sister to Phlocideae. Relationships within Polemonieae, Phlocideae, and Gilieae are mostly consistent between analyses and data permutations. Many relationships within Loeselieae remain uncertain. Overall, inferred phylogenetic relationships support a higher-level classification for Polemoniaceae proposed in 2000.

  13. Phylogenetic analyses of Andromedeae (Ericaceae subfam. Vaccinioideae).

    PubMed

    Kron, K A; Judd, W S; Crayn, D M

    1999-09-01

    Phylogenetic relationships within the Andromedeae and closely related taxa were investigated by means of cladistic analyses based on phenotypic (morphology, anatomy, chromosome number, and secondary chemistry) and molecular (rbcL and matK nucleotide sequences) characters. An analysis based on combined molecular and phenotypic characters indicates that the tribe is composed of two major clades-the Gaultheria group (incl. Andromeda, Chamaedaphne, Diplycosia, Gaultheria, Leucothoë, Pernettya, Tepuia, and Zenobia) and the Lyonia group (incl. Agarista, Craibiodendron, Lyonia, and Pieris). Andromedeae are shown to be paraphyletic in all analyses because the Vaccinieae link with some or all of the genera of the Gaultheria group. Oxydendrum is sister to the clade containing the Vaccinieae, Gaultheria group, and Lyonia group. The monophyly of Agarista, Lyonia, Pieris, and Gaultheria (incl. Pernettya) is supported, while that of Leucothoë is problematic. The close relationship of Andromeda and Zenobia is novel and was strongly supported in the molecular (but not morphological) analyses. Diplycosia, Tepuia, Gaultheria, and Pernettya form a well-supported clade, which can be diagnosed by the presence of fleshy calyx lobes and methyl salicylate. Recognition of Andromedeae is not reflective of our understanding of geneological relationships and should be abandoned; the Lyonia group is formally recognized at the tribal level.

  14. Transfer of Pseudomonas flectens Johnson 1956 to Phaseolibacter gen. nov., in the family Enterobacteriaceae, as Phaseolibacter flectens gen. nov., comb. nov.

    PubMed

    Halpern, Malka; Fridman, Svetlana; Aizenberg-Gershtein, Yana; Izhaki, Ido

    2013-01-01

    Pseudomonas flectens Johnson 1956, a plant-pathogenic bacterium on the pods of the French bean, is no longer considered to be a member of the genus Pseudomonas sensu stricto. A polyphasic approach that included examination of phenotypic properties and phylogenetic analyses based on 16S rRNA, rpoB and atpD gene sequences supported the transfer of Pseudomonas flectens Johnson 1956 to a new genus in the family Enterobacteriaceae as Phaseolibacter flectens gen. nov., comb. nov. Two strains of Phaseolibacter flectens were studied (ATCC 12775(T) and LMG 2186); the strains shared 99.8 % sequence similarity in their 16S rRNA genes and the housekeeping gene sequences were identical. Strains of Phaseolibacter flectens shared 96.6 % or less 16S rRNA gene sequence similarity with members of different genera in the family Enterobacteriaceae and only 84.7 % sequence similarity with Pseudomonas aeruginosa LMG 1242(T), demonstrating that they are not related to the genus Pseudomonas. As Phaseolibacter flectens formed an independent phyletic lineage in all of the phylogenetic analyses, it could not be affiliated to any of the recognized genera within the family Enterobacteriaceae and therefore was assigned to a new genus. Cells were Gram-negative, straight rods, motile by means of one or two polar flagella, fermentative, facultative anaerobes, oxidase-negative and catalase-positive. Growth occurred in the presence of 0-60 % sucrose. The DNA G+C content of the type strain was 44.3 mol%. On the basis of phenotypic properties and phylogenetic distinctiveness, Pseudomonas flectens Johnson 1956 is transferred to the novel genus Phaseolibacter gen. nov. as Phaseolibacter flectens gen. nov., comb. nov. The type strain of Phaseolibacter flectens is ATCC 12775(T) = CFBP 3281(T) = ICMP 745(T) = LMG 2187(T) = NCPPB 539(T).

  15. Advances in the phylogenesis of Agaricales and its higher ranks and strategies for establishing phylogenetic hypotheses§

    PubMed Central

    Zhao, Rui-lin; Desjardin, Dennis E.; Soytong, Kasem; Hyde, Kevin D.

    2008-01-01

    We present an overview of previous research results on the molecular phylogenetic analyses in Agaricales and its higher ranks (Agaricomycetes/Agaricomycotina/Basidiomycota) along with the most recent treatments of taxonomic systems in these taxa. Establishing phylogenetic hypotheses using DNA sequences, from which an understanding of the natural evolutionary relationships amongst clades may be derived, requires a robust dataset. It has been recognized that single-gene phylogenies may not truly represent organismal phylogenies, but the concordant phylogenetic genealogies from multiple-gene datasets can resolve this problem. The genes commonly used in mushroom phylogenetic research are summarized. PMID:18837104

  16. Evaluation of positive Rift Valley fever virus formalin-fixed paraffin embedded samples as a source of sequence data for retrospective phylogenetic analysis.

    PubMed

    Mubemba, B; Thompson, P N; Odendaal, L; Coetzee, P; Venter, E H

    2017-05-01

    Rift Valley fever (RVF), caused by an arthropod borne Phlebovirus in the family Bunyaviridae, is a haemorrhagic disease that affects ruminants and humans. Due to the zoonotic nature of the virus, a biosafety level 3 laboratory is required for isolation of the virus. Fresh and frozen samples are the preferred sample type for isolation and acquisition of sequence data. However, these samples are scarce in addition to posing a health risk to laboratory personnel. Archived formalin-fixed, paraffin-embedded (FFPE) tissue samples are safe and readily available, however FFPE derived RNA is in most cases degraded and cross-linked in peptide bonds and it is unknown whether the sample type would be suitable as reference material for retrospective phylogenetic studies. A RT-PCR assay targeting a 490 nt portion of the structural G N glycoprotein encoding gene of the RVFV M-segment was applied to total RNA extracted from archived RVFV positive FFPE samples. Several attempts to obtain target amplicons were unsuccessful. FFPE samples were then analysed using next generation sequencing (NGS), i.e. Truseq ® (Illumina) and sequenced on the Miseq ® genome analyser (Illumina). Using reference mapping, gapped virus sequence data of varying degrees of shallow depth was aligned to a reference sequence. However, the NGS did not yield long enough contigs that consistently covered the same genome regions in all samples to allow phylogenetic analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Phylogenetic placement of the enigmatic parasite, Polypodium hydriforme, within the Phylum Cnidaria

    PubMed Central

    2008-01-01

    Background Polypodium hydriforme is a parasite with an unusual life cycle and peculiar morphology, both of which have made its systematic position uncertain. Polypodium has traditionally been considered a cnidarian because it possesses nematocysts, the stinging structures characteristic of this phylum. However, recent molecular phylogenetic studies using 18S rDNA sequence data have challenged this interpretation, and have shown that Polypodium is a close relative to myxozoans and together they share a closer affinity to bilaterians than cnidarians. Due to the variable rates of 18S rDNA sequences, these results have been suggested to be an artifact of long-branch attraction (LBA). A recent study, using multiple protein coding markers, shows that the myxozoan Buddenbrockia, is nested within cnidarians. Polypodium was not included in this study. To further investigate the phylogenetic placement of Polypodium, we have performed phylogenetic analyses of metazoans with 18S and partial 28S rDNA sequences in a large dataset that includes Polypodium and a comprehensive sampling of cnidarian taxa. Results Analyses of a combined dataset of 18S and partial 28S sequences, and partial 28S alone, support the placement of Polypodium within Cnidaria. Removal of the long-branched myxozoans from the 18S dataset also results in Polypodium being nested within Cnidaria. These results suggest that previous reports showing that Polypodium and Myxozoa form a sister group to Bilateria were an artifact of long-branch attraction. Conclusion By including 28S rDNA sequences and a comprehensive sampling of cnidarian taxa, we demonstrate that previously conflicting hypotheses concerning the phylogenetic placement of Polypodium can be reconciled. Specifically, the data presented provide evidence that Polypodium is indeed a cnidarian and is either the sister taxon to Hydrozoa, or part of the hydrozoan clade, Leptothecata. The former hypothesis is consistent with the traditional view that Polypodium should be placed in its own cnidarian class, Polypodiozoa. PMID:18471296

  18. Phylogenetic placement of the enigmatic parasite, Polypodium hydriforme, within the Phylum Cnidaria.

    PubMed

    Evans, Nathaniel M; Lindner, Alberto; Raikova, Ekaterina V; Collins, Allen G; Cartwright, Paulyn

    2008-05-09

    Polypodium hydriforme is a parasite with an unusual life cycle and peculiar morphology, both of which have made its systematic position uncertain. Polypodium has traditionally been considered a cnidarian because it possesses nematocysts, the stinging structures characteristic of this phylum. However, recent molecular phylogenetic studies using 18S rDNA sequence data have challenged this interpretation, and have shown that Polypodium is a close relative to myxozoans and together they share a closer affinity to bilaterians than cnidarians. Due to the variable rates of 18S rDNA sequences, these results have been suggested to be an artifact of long-branch attraction (LBA). A recent study, using multiple protein coding markers, shows that the myxozoan Buddenbrockia, is nested within cnidarians. Polypodium was not included in this study. To further investigate the phylogenetic placement of Polypodium, we have performed phylogenetic analyses of metazoans with 18S and partial 28S rDNA sequences in a large dataset that includes Polypodium and a comprehensive sampling of cnidarian taxa. Analyses of a combined dataset of 18S and partial 28S sequences, and partial 28S alone, support the placement of Polypodium within Cnidaria. Removal of the long-branched myxozoans from the 18S dataset also results in Polypodium being nested within Cnidaria. These results suggest that previous reports showing that Polypodium and Myxozoa form a sister group to Bilateria were an artifact of long-branch attraction. By including 28S rDNA sequences and a comprehensive sampling of cnidarian taxa, we demonstrate that previously conflicting hypotheses concerning the phylogenetic placement of Polypodium can be reconciled. Specifically, the data presented provide evidence that Polypodium is indeed a cnidarian and is either the sister taxon to Hydrozoa, or part of the hydrozoan clade, Leptothecata. The former hypothesis is consistent with the traditional view that Polypodium should be placed in its own cnidarian class, Polypodiozoa.

  19. Developing a statistically powerful measure for quartet tree inference using phylogenetic identities and Markov invariants.

    PubMed

    Sumner, Jeremy G; Taylor, Amelia; Holland, Barbara R; Jarvis, Peter D

    2017-12-01

    Recently there has been renewed interest in phylogenetic inference methods based on phylogenetic invariants, alongside the related Markov invariants. Broadly speaking, both these approaches give rise to polynomial functions of sequence site patterns that, in expectation value, either vanish for particular evolutionary trees (in the case of phylogenetic invariants) or have well understood transformation properties (in the case of Markov invariants). While both approaches have been valued for their intrinsic mathematical interest, it is not clear how they relate to each other, and to what extent they can be used as practical tools for inference of phylogenetic trees. In this paper, by focusing on the special case of binary sequence data and quartets of taxa, we are able to view these two different polynomial-based approaches within a common framework. To motivate the discussion, we present three desirable statistical properties that we argue any invariant-based phylogenetic method should satisfy: (1) sensible behaviour under reordering of input sequences; (2) stability as the taxa evolve independently according to a Markov process; and (3) explicit dependence on the assumption of a continuous-time process. Motivated by these statistical properties, we develop and explore several new phylogenetic inference methods. In particular, we develop a statistically bias-corrected version of the Markov invariants approach which satisfies all three properties. We also extend previous work by showing that the phylogenetic invariants can be implemented in such a way as to satisfy property (3). A simulation study shows that, in comparison to other methods, our new proposed approach based on bias-corrected Markov invariants is extremely powerful for phylogenetic inference. The binary case is of particular theoretical interest as-in this case only-the Markov invariants can be expressed as linear combinations of the phylogenetic invariants. A wider implication of this is that, for models with more than two states-for example DNA sequence alignments with four-state models-we find that methods which rely on phylogenetic invariants are incapable of satisfying all three of the stated statistical properties. This is because in these cases the relevant Markov invariants belong to a class of polynomials independent from the phylogenetic invariants.

  20. Phylogenomic Analyses Support Traditional Relationships within Cnidaria

    PubMed Central

    Zapata, Felipe; Goetz, Freya E.; Smith, Stephen A.; Howison, Mark; Siebert, Stefan; Church, Samuel H.; Sanders, Steven M.; Ames, Cheryl Lewis; McFadden, Catherine S.; France, Scott C.; Daly, Marymegan; Collins, Allen G.; Haddock, Steven H. D.; Dunn, Casey W.; Cartwright, Paulyn

    2015-01-01

    Cnidaria, the sister group to Bilateria, is a highly diverse group of animals in terms of morphology, lifecycles, ecology, and development. How this diversity originated and evolved is not well understood because phylogenetic relationships among major cnidarian lineages are unclear, and recent studies present contrasting phylogenetic hypotheses. Here, we use transcriptome data from 15 newly-sequenced species in combination with 26 publicly available genomes and transcriptomes to assess phylogenetic relationships among major cnidarian lineages. Phylogenetic analyses using different partition schemes and models of molecular evolution, as well as topology tests for alternative phylogenetic relationships, support the monophyly of Medusozoa, Anthozoa, Octocorallia, Hydrozoa, and a clade consisting of Staurozoa, Cubozoa, and Scyphozoa. Support for the monophyly of Hexacorallia is weak due to the equivocal position of Ceriantharia. Taken together, these results further resolve deep cnidarian relationships, largely support traditional phylogenetic views on relationships, and provide a historical framework for studying the evolutionary processes involved in one of the most ancient animal radiations. PMID:26465609

  1. Phylogenomic Analyses Support Traditional Relationships within Cnidaria.

    PubMed

    Zapata, Felipe; Goetz, Freya E; Smith, Stephen A; Howison, Mark; Siebert, Stefan; Church, Samuel H; Sanders, Steven M; Ames, Cheryl Lewis; McFadden, Catherine S; France, Scott C; Daly, Marymegan; Collins, Allen G; Haddock, Steven H D; Dunn, Casey W; Cartwright, Paulyn

    2015-01-01

    Cnidaria, the sister group to Bilateria, is a highly diverse group of animals in terms of morphology, lifecycles, ecology, and development. How this diversity originated and evolved is not well understood because phylogenetic relationships among major cnidarian lineages are unclear, and recent studies present contrasting phylogenetic hypotheses. Here, we use transcriptome data from 15 newly-sequenced species in combination with 26 publicly available genomes and transcriptomes to assess phylogenetic relationships among major cnidarian lineages. Phylogenetic analyses using different partition schemes and models of molecular evolution, as well as topology tests for alternative phylogenetic relationships, support the monophyly of Medusozoa, Anthozoa, Octocorallia, Hydrozoa, and a clade consisting of Staurozoa, Cubozoa, and Scyphozoa. Support for the monophyly of Hexacorallia is weak due to the equivocal position of Ceriantharia. Taken together, these results further resolve deep cnidarian relationships, largely support traditional phylogenetic views on relationships, and provide a historical framework for studying the evolutionary processes involved in one of the most ancient animal radiations.

  2. Adaptive MCMC in Bayesian phylogenetics: an application to analyzing partitioned data in BEAST.

    PubMed

    Baele, Guy; Lemey, Philippe; Rambaut, Andrew; Suchard, Marc A

    2017-06-15

    Advances in sequencing technology continue to deliver increasingly large molecular sequence datasets that are often heavily partitioned in order to accurately model the underlying evolutionary processes. In phylogenetic analyses, partitioning strategies involve estimating conditionally independent models of molecular evolution for different genes and different positions within those genes, requiring a large number of evolutionary parameters that have to be estimated, leading to an increased computational burden for such analyses. The past two decades have also seen the rise of multi-core processors, both in the central processing unit (CPU) and Graphics processing unit processor markets, enabling massively parallel computations that are not yet fully exploited by many software packages for multipartite analyses. We here propose a Markov chain Monte Carlo (MCMC) approach using an adaptive multivariate transition kernel to estimate in parallel a large number of parameters, split across partitioned data, by exploiting multi-core processing. Across several real-world examples, we demonstrate that our approach enables the estimation of these multipartite parameters more efficiently than standard approaches that typically use a mixture of univariate transition kernels. In one case, when estimating the relative rate parameter of the non-coding partition in a heterochronous dataset, MCMC integration efficiency improves by > 14-fold. Our implementation is part of the BEAST code base, a widely used open source software package to perform Bayesian phylogenetic inference. guy.baele@kuleuven.be. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  3. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment.

    PubMed Central

    Barns, S M; Fundyga, R E; Jeffries, M W; Pace, N R

    1994-01-01

    Of the three primary phylogenetic domains--Archaea (archaebacteria), Bacteria (eubacteria), and Eucarya (eukaryotes)--Archaea is the least understood in terms of its diversity, physiologies, and ecological panorama. Although many species of Crenarchaeota (one of the two recognized archaeal kingdoms sensu Woese [Woese, C. R., Kandler, O. & Wheelis, M. L. (1990) Proc. Natl. Acad. Sci. USA 87, 4576-4579]) have been isolated, they constitute a relatively tight-knit cluster of lineages in phylogenetic analyses of rRNA sequences. It seemed possible that this limited diversity is merely apparent and reflects only a failure to culture organisms, not their absence. We report here phylogenetic characterization of many archaeal small subunit rRNA gene sequences obtained by polymerase chain reaction amplification of mixed population DNA extracted directly from sediment of a hot spring in Yellowstone National Park. This approach obviates the need for cultivation to identify organisms. The analyses document the existence not only of species belonging to well-characterized crenarchaeal genera or families but also of crenarchaeal species for which no close relatives have so far been found. The large number of distinct archaeal sequence types retrieved from this single hot spring was unexpected and demonstrates that Crenarchaeota is a much more diverse group than was previously suspected. The results have impact on our concepts of the phylogenetic organization of Archaea. PMID:7510403

  4. Molecular classification based on apomorphic amino acids (Arthropoda, Hexapoda): Integrative taxonomy in the era of phylogenomics.

    PubMed

    Wu, Hao-Yang; Wang, Yan-Hui; Xie, Qiang; Ke, Yun-Ling; Bu, Wen-Jun

    2016-06-17

    With the great development of sequencing technologies and systematic methods, our understanding of evolutionary relationships at deeper levels within the tree of life has greatly improved over the last decade. However, the current taxonomic methodology is insufficient to describe the growing levels of diversity in both a standardised and general way due to the limitations of using only morphological traits to describe clades. Herein, we propose the idea of a molecular classification based on hierarchical and discrete amino acid characters. Clades are classified based on the results of phylogenetic analyses and described using amino acids with group specificity in phylograms. Practices based on the recently published phylogenomic datasets of insects together with 15 de novo sequenced transcriptomes in this study demonstrate that such a methodology can accommodate various higher ranks of taxonomy. Such an approach has the advantage of describing organisms in a standard and discrete way within a phylogenetic framework, thereby facilitating the recognition of clades from the view of the whole lineage, as indicated by PhyloCode. By combining identification keys and phylogenies, the molecular classification based on hierarchical and discrete characters may greatly boost the progress of integrative taxonomy.

  5. Molecular classification based on apomorphic amino acids (Arthropoda, Hexapoda): Integrative taxonomy in the era of phylogenomics

    PubMed Central

    Wu, Hao-Yang; Wang, Yan-Hui; Xie, Qiang; Ke, Yun-Ling; Bu, Wen-Jun

    2016-01-01

    With the great development of sequencing technologies and systematic methods, our understanding of evolutionary relationships at deeper levels within the tree of life has greatly improved over the last decade. However, the current taxonomic methodology is insufficient to describe the growing levels of diversity in both a standardised and general way due to the limitations of using only morphological traits to describe clades. Herein, we propose the idea of a molecular classification based on hierarchical and discrete amino acid characters. Clades are classified based on the results of phylogenetic analyses and described using amino acids with group specificity in phylograms. Practices based on the recently published phylogenomic datasets of insects together with 15 de novo sequenced transcriptomes in this study demonstrate that such a methodology can accommodate various higher ranks of taxonomy. Such an approach has the advantage of describing organisms in a standard and discrete way within a phylogenetic framework, thereby facilitating the recognition of clades from the view of the whole lineage, as indicated by PhyloCode. By combining identification keys and phylogenies, the molecular classification based on hierarchical and discrete characters may greatly boost the progress of integrative taxonomy. PMID:27312960

  6. Ultrastructure and molecular phylogenetic position of a novel phagotrophic stramenopile from low oxygen environments: Rictus lutensis gen. et sp. nov. (Bicosoecida, incertae sedis).

    PubMed

    Yubuki, Naoji; Leander, Brian S; Silberman, Jeffrey D

    2010-04-01

    A novel free free-living phagotrophic flagellate, Rictus lutensis gen. et sp. nov., with two heterodynamic flagella, a permanent cytostome and a cytopharynx was isolated from muddy, low oxygen coastal sediments in Cape Cod, MA, USA. We cultivated and characterized this flagellate with transmission electron microscopy, scanning electron microscopy and molecular phylogenetic analyses inferred from small subunit (SSU) rDNA sequences. These data demonstrated that this organism has the key ultrastructural characters of the Bicosoecida, including similar transitional zones and a similar overall flagellar apparatus consisting of an x fiber and an L-shape microtubular root 2 involved in food capture. Although the molecular phylogenetic analyses were concordant with the ultrastructural data in placing R. lutensis with the bicosoecid clade, the internal position of this relatively divergent sequence within the clade was not resolved. Therefore, we interpret R. lutensis gen. et sp. nov. as a novel bicosoecid incertae sedis. Copyright 2009 Elsevier GmbH. All rights reserved.

  7. Bifidobacterium reuteri sp. nov., Bifidobacterium callitrichos sp. nov., Bifidobacterium saguini sp. nov., Bifidobacterium stellenboschense sp. nov. and Bifidobacterium biavatii sp. nov. isolated from faeces of common marmoset (Callithrix jacchus) and red-handed tamarin (Saguinus midas).

    PubMed

    Endo, Akihito; Futagawa-Endo, Yuka; Schumann, Peter; Pukall, Rüdiger; Dicks, Leon M T

    2012-03-01

    Five strains of bifidobacteria were isolated from faeces of a common marmoset (Callithrix jacchus) and a red-handed tamarin (Saguinus midas). The five isolates clustered inside the phylogenetic group of the genus Bifidobacterium but did not show high sequence similarities between the isolates and to known species in the genus by phylogenetic analysis based on 16S rRNA gene sequences. Sequence analyses of dnaJ1 and hsp60 also indicated their independent phylogenetic positions to each other in the Bifidobacterium cluster. DNA G+C contents of the species ranged from 57.3 to 66.3 mol%, which is within the values recorded for Bifidobacterium species. All isolates showed fructose-6-phosphate phosphoketolase activity. Based on the data provided, the five isolates represent five novel species, for which the names Bifidobacterium reuteri sp. nov. (type strain: AFB22-1(T) = JCM 17295(T) = DSM 23975(T)), Bifidobacterium callitrichos sp. nov. (type strain: AFB22-5(T) = JCM 17296(T) = DSM 23973(T)), Bifidobacterium saguini sp. nov. (type strain: AFB23-1(T) = JCM 17297(T) = DSM 23967(T)), Bifidobacterium stellenboschense sp. nov. (type strain: AFB23-3(T) = JCM 17298(T) = DSM 23968(T)) and Bifidobacterium biavatii sp. nov. (type strain: AFB23-4(T) = JCM 17299(T) = DSM 23969(T)) are proposed. Copyright © 2011 Elsevier GmbH. All rights reserved.

  8. Beauveria medogensis sp. nov., a new fungus of the entomopathogenic genus from China.

    PubMed

    Imoulan, Abdessamad; Wu, Hai-Jun; Lu, Wei-Lai; Li, Yi; Li, Bin-Bin; Yang, Rei-Heng; Wang, Wen-Jing; Wang, Xiao-Liang; Kirk, Paul M; Yao, Yi-Jian

    2016-09-01

    Beauveria is among the most ubiquitous genera of entomopathogenic fungi throughout the world. A previously unknown species of the genus was recently discovered from a soil sample collected from Tibetan Plateau, China and is here described as new to science, B. medogensis sp. nov. The new species is distinguished from its closest relatives based on both morphological characterization and molecular phylogenetic analyses. Beauveria medogensis is characterized by globose to subglobose conidia, morphologically similar to some other species of in the genus, but was conclusively separated from those species in the phylogenetic analyses including sequences of four nuclear genes (RPB1, RPB2, TEF1 and Bloc). The new species was clustered in the analyses in a single terminal lineage which was grouped with B. australis sequences together as a sister clade to the B. brongniartii terminal clade. Although molecularly closely related, the new species is distinct morphologically from its closest sisters, B. australis and B. brongniartii, in producing globose to subglobose conidia rather than subglobose, broadly ellipsoid to ellipsoid conidia or ellipsoidal to cylindrical conidia. As isolated from a soil sample, the entomopathogenicity of the new species has been confirmed using Helicoverpa armigera and Tenebrio molitor larvae. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fixing bacteria.

    PubMed

    Gaby, John Christian; Buckley, Daniel H

    2014-01-01

    We describe a nitrogenase gene sequence database that facilitates analysis of the evolution and ecology of nitrogen-fixing organisms. The database contains 32 954 aligned nitrogenase nifH sequences linked to phylogenetic trees and associated sequence metadata. The database includes 185 linked multigene entries including full-length nifH, nifD, nifK and 16S ribosomal RNA (rRNA) gene sequences. Evolutionary analyses enabled by the multigene entries support an ancient horizontal transfer of nitrogenase genes between Archaea and Bacteria and provide evidence that nifH has a different history of horizontal gene transfer from the nifDK enzyme core. Further analyses show that lineages in nitrogenase cluster I and cluster III have different rates of substitution within nifD, suggesting that nifD is under different selection pressure in these two lineages. Finally, we find that that the genetic divergence of nifH and 16S rRNA genes does not correlate well at sequence dissimilarity values used commonly to define microbial species, as stains having <3% sequence dissimilarity in their 16S rRNA genes can have up to 23% dissimilarity in nifH. The nifH database has a number of uses including phylogenetic and evolutionary analyses, the design and assessment of primers/probes and the evaluation of nitrogenase sequence diversity. Database URL: http://www.css.cornell.edu/faculty/buckley/nifh.htm.

  10. A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fixing bacteria

    PubMed Central

    Gaby, John Christian; Buckley, Daniel H.

    2014-01-01

    We describe a nitrogenase gene sequence database that facilitates analysis of the evolution and ecology of nitrogen-fixing organisms. The database contains 32 954 aligned nitrogenase nifH sequences linked to phylogenetic trees and associated sequence metadata. The database includes 185 linked multigene entries including full-length nifH, nifD, nifK and 16S ribosomal RNA (rRNA) gene sequences. Evolutionary analyses enabled by the multigene entries support an ancient horizontal transfer of nitrogenase genes between Archaea and Bacteria and provide evidence that nifH has a different history of horizontal gene transfer from the nifDK enzyme core. Further analyses show that lineages in nitrogenase cluster I and cluster III have different rates of substitution within nifD, suggesting that nifD is under different selection pressure in these two lineages. Finally, we find that that the genetic divergence of nifH and 16S rRNA genes does not correlate well at sequence dissimilarity values used commonly to define microbial species, as stains having <3% sequence dissimilarity in their 16S rRNA genes can have up to 23% dissimilarity in nifH. The nifH database has a number of uses including phylogenetic and evolutionary analyses, the design and assessment of primers/probes and the evaluation of nitrogenase sequence diversity. Database URL: http://www.css.cornell.edu/faculty/buckley/nifh.htm PMID:24501396

  11. PhyloTreePruner: A Phylogenetic Tree-Based Approach for Selection of Orthologous Sequences for Phylogenomics.

    PubMed

    Kocot, Kevin M; Citarella, Mathew R; Moroz, Leonid L; Halanych, Kenneth M

    2013-01-01

    Molecular phylogenetics relies on accurate identification of orthologous sequences among the taxa of interest. Most orthology inference programs available for use in phylogenomics rely on small sets of pre-defined orthologs from model organisms or phenetic approaches such as all-versus-all sequence comparisons followed by Markov graph-based clustering. Such approaches have high sensitivity but may erroneously include paralogous sequences. We developed PhyloTreePruner, a software utility that uses a phylogenetic approach to refine orthology inferences made using phenetic methods. PhyloTreePruner checks single-gene trees for evidence of paralogy and generates a new alignment for each group containing only sequences inferred to be orthologs. Importantly, PhyloTreePruner takes into account support values on the tree and avoids unnecessarily deleting sequences in cases where a weakly supported tree topology incorrectly indicates paralogy. A test of PhyloTreePruner on a dataset generated from 11 completely sequenced arthropod genomes identified 2,027 orthologous groups sampled for all taxa. Phylogenetic analysis of the concatenated supermatrix yielded a generally well-supported topology that was consistent with the current understanding of arthropod phylogeny. PhyloTreePruner is freely available from http://sourceforge.net/projects/phylotreepruner/.

  12. The complete genome sequence of a south Indian isolate of Rice tungro spherical virus reveals evidence of genetic recombination between distinct isolates.

    PubMed

    Sailaja, B; Anjum, Najreen; Patil, Yogesh K; Agarwal, Surekha; Malathi, P; Krishnaveni, D; Balachandran, S M; Viraktamath, B C; Mangrauthia, Satendra K

    2013-12-01

    In this study, complete genome of a south Indian isolate of Rice tungro spherical virus (RTSV) from Andhra Pradesh (AP) was sequenced, and the predicted amino acid sequence was analysed. The RTSV RNA genome consists of 12,171 nt without the poly(A) tail, encoding a putative typical polyprotein of 3,470 amino acids. Furthermore, cleavage sites and sequence motifs of the polyprotein were predicted. Multiple alignment with other RTSV isolates showed a nucleotide sequence identity of 95% to east Indian isolates and 90% to Philippines isolates. A phylogenetic tree based on complete genome sequence showed that Indian isolates clustered together, while Vt6 and PhilA isolates of Philippines formed two separate clusters. Twelve recombination events were detected in RNA genome of RTSV using the Recombination Detection Program version 3. Recombination analysis suggested significant role of 5' end and central region of genome in virus evolution. Further, AP and Odisha isolates appeared as important RTSV isolates involved in diversification of this virus in India through recombination phenomenon. The new addition of complete genome of first south Indian isolate provided an opportunity to establish the molecular evolution of RTSV through recombination analysis and phylogenetic relationship.

  13. The origin and diversification of eukaryotes: problems with molecular phylogenetics and molecular clock estimation

    PubMed Central

    Roger, Andrew J; Hug, Laura A

    2006-01-01

    Determining the relationships among and divergence times for the major eukaryotic lineages remains one of the most important and controversial outstanding problems in evolutionary biology. The sequencing and phylogenetic analyses of ribosomal RNA (rRNA) genes led to the first nearly comprehensive phylogenies of eukaryotes in the late 1980s, and supported a view where cellular complexity was acquired during the divergence of extant unicellular eukaryote lineages. More recently, however, refinements in analytical methods coupled with the availability of many additional genes for phylogenetic analysis showed that much of the deep structure of early rRNA trees was artefactual. Recent phylogenetic analyses of a multiple genes and the discovery of important molecular and ultrastructural phylogenetic characters have resolved eukaryotic diversity into six major hypothetical groups. Yet relationships among these groups remain poorly understood because of saturation of sequence changes on the billion-year time-scale, possible rapid radiations of major lineages, phylogenetic artefacts and endosymbiotic or lateral gene transfer among eukaryotes. Estimating the divergence dates between the major eukaryote lineages using molecular analyses is even more difficult than phylogenetic estimation. Error in such analyses comes from a myriad of sources including: (i) calibration fossil dates, (ii) the assumed phylogenetic tree, (iii) the nucleotide or amino acid substitution model, (iv) substitution number (branch length) estimates, (v) the model of how rates of evolution change over the tree, (vi) error inherent in the time estimates for a given model and (vii) how multiple gene data are treated. By reanalysing datasets from recently published molecular clock studies, we show that when errors from these various sources are properly accounted for, the confidence intervals on inferred dates can be very large. Furthermore, estimated dates of divergence vary hugely depending on the methods used and their assumptions. Accurate dating of divergence times among the major eukaryote lineages will require a robust tree of eukaryotes, a much richer Proterozoic fossil record of microbial eukaryotes assignable to extant groups for calibration, more sophisticated relaxed molecular clock methods and many more genes sampled from the full diversity of microbial eukaryotes. PMID:16754613

  14. Tidying Up International Nucleotide Sequence Databases: Ecological, Geographical and Sequence Quality Annotation of ITS Sequences of Mycorrhizal Fungi

    PubMed Central

    Tedersoo, Leho; Abarenkov, Kessy; Nilsson, R. Henrik; Schüssler, Arthur; Grelet, Gwen-Aëlle; Kohout, Petr; Oja, Jane; Bonito, Gregory M.; Veldre, Vilmar; Jairus, Teele; Ryberg, Martin; Larsson, Karl-Henrik; Kõljalg, Urmas

    2011-01-01

    Sequence analysis of the ribosomal RNA operon, particularly the internal transcribed spacer (ITS) region, provides a powerful tool for identification of mycorrhizal fungi. The sequence data deposited in the International Nucleotide Sequence Databases (INSD) are, however, unfiltered for quality and are often poorly annotated with metadata. To detect chimeric and low-quality sequences and assign the ectomycorrhizal fungi to phylogenetic lineages, fungal ITS sequences were downloaded from INSD, aligned within family-level groups, and examined through phylogenetic analyses and BLAST searches. By combining the fungal sequence database UNITE and the annotation and search tool PlutoF, we also added metadata from the literature to these accessions. Altogether 35,632 sequences belonged to mycorrhizal fungi or originated from ericoid and orchid mycorrhizal roots. Of these sequences, 677 were considered chimeric and 2,174 of low read quality. Information detailing country of collection, geographical coordinates, interacting taxon and isolation source were supplemented to cover 78.0%, 33.0%, 41.7% and 96.4% of the sequences, respectively. These annotated sequences are publicly available via UNITE (http://unite.ut.ee/) for downstream biogeographic, ecological and taxonomic analyses. In European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena/), the annotated sequences have a special link-out to UNITE. We intend to expand the data annotation to additional genes and all taxonomic groups and functional guilds of fungi. PMID:21949797

  15. Complete chloroplast genome of Prunus yedoensis Matsum.(Rosaceae), wild and endemic flowering cherry on Jeju Island, Korea.

    PubMed

    Cho, Myong-Suk; Hyun Cho, Chung; Yeon Kim, Su; Su Yoon, Hwan; Kim, Seung-Chul

    2016-09-01

    The complete chloroplast genome sequences of the wild flowering cherry, Prunus yedoensis Matsum., which is native and endemic to Jeju Island, Korea, is reported in this study. The genome size is 157 786 bp in length with 36.7% GC content, which is composed of LSC region of 85 908 bp, SSC region of 19 120 bp and two IR copies of 26 379 bp each. The cp genome contains 131 genes, including 86 coding genes, 8 rRNA genes and 37 tRNA genes. The maximum likelihood analysis was conducted to verify a phylogenetic position of the newly sequenced cp genome of P. yedoensis using 11 representatives of complete cp genome sequences within the family Rosaceae. The genus Prunus exhibited monophyly and the result of the phylogenetic relationship agreed with the previous phylogenetic analyses within Rosaceae.

  16. Yersinia pekkanenii sp. nov.

    PubMed

    Murros-Kontiainen, Anna; Johansson, Per; Niskanen, Taina; Fredriksson-Ahomaa, Maria; Korkeala, Hannu; Björkroth, Johanna

    2011-10-01

    The taxonomic position of three strains from water, soil and lettuce samples was studied by using a polyphasic taxonomic approach. The strains were reported to lack the virulence-encoding genes inv and virF in a previous study. Controversially, API 20 E and some other phenotypic tests suggested that the strains belong to Yersinia pseudotuberculosis, which prompted this polyphasic taxonomic study. In both the phylogenetic analyses of four housekeeping genes (glnA, gyrB, recA and HSP60) and numerical analyses of HindIII and EcoRI ribopatterns, the strains formed a separate group within the genus Yersinia. Analysis of the 16S rRNA gene sequences showed that the strains were related to Yersinia aldovae and Yersinia mollaretii, but DNA-DNA hybridization analysis differentiated them from these species. Based on the results of the phylogenetic and DNA-DNA hybridization analyses, a novel species, Yersinia pekkanenii sp. nov., is proposed. The type strain is ÅYV7.1KOH2(T) ( = DSM 22769(T)  = LMG 25369(T)).

  17. A Comprehensive Phylogenetic Analysis of the Scleractinia (Cnidaria, Anthozoa) Based on Mitochondrial CO1 Sequence Data

    PubMed Central

    Kitahara, Marcelo V.; Cairns, Stephen D.; Stolarski, Jarosław; Blair, David; Miller, David J.

    2010-01-01

    Background Classical morphological taxonomy places the approximately 1400 recognized species of Scleractinia (hard corals) into 27 families, but many aspects of coral evolution remain unclear despite the application of molecular phylogenetic methods. In part, this may be a consequence of such studies focusing on the reef-building (shallow water and zooxanthellate) Scleractinia, and largely ignoring the large number of deep-sea species. To better understand broad patterns of coral evolution, we generated molecular data for a broad and representative range of deep sea scleractinians collected off New Caledonia and Australia during the last decade, and conducted the most comprehensive molecular phylogenetic analysis to date of the order Scleractinia. Methodology Partial (595 bp) sequences of the mitochondrial cytochrome oxidase subunit 1 (CO1) gene were determined for 65 deep-sea (azooxanthellate) scleractinians and 11 shallow-water species. These new data were aligned with 158 published sequences, generating a 234 taxon dataset representing 25 of the 27 currently recognized scleractinian families. Principal Findings/Conclusions There was a striking discrepancy between the taxonomic validity of coral families consisting predominantly of deep-sea or shallow-water species. Most families composed predominantly of deep-sea azooxanthellate species were monophyletic in both maximum likelihood and Bayesian analyses but, by contrast (and consistent with previous studies), most families composed predominantly of shallow-water zooxanthellate taxa were polyphyletic, although Acroporidae, Poritidae, Pocilloporidae, and Fungiidae were exceptions to this general pattern. One factor contributing to this inconsistency may be the greater environmental stability of deep-sea environments, effectively removing taxonomic “noise” contributed by phenotypic plasticity. Our phylogenetic analyses imply that the most basal extant scleractinians are azooxanthellate solitary corals from deep-water, their divergence predating that of the robust and complex corals. Deep-sea corals are likely to be critical to understanding anthozoan evolution and the origins of the Scleractinia. PMID:20628613

  18. On the relationships of 'Marmosa' formosa Shamel, 1930 (Marsupialia: Didelphidae), a phylogenetic puzzle from the Chaco of northern Argentina

    USGS Publications Warehouse

    Voss, Robert S.; Gardner, Afred L.; Jansa, Sharon A.

    2004-01-01

    The holotype and only known specimen of Marmosa formosa Shamel, a nominal species currently synonymized with Gracilinanus agilis Burmeister, is strikingly unlike any other known didelphid marsupial. Phylogenetic analyses based on nonmolecular characters and IRBP sequences suggest that formosa is either the sister-taxon of Thylamys (including Lestodelphys) or Monodelphis. Because neither alternative is strongly supported by the data at hand, and because including formosa in Thylamys or in Monodelphis would compromise the diagnosability of those taxa, a new genus?Chacodelphys?is proposed to contain it. Currently known only from northern Argentina, Chacodelphys formosa may be widely distributed in the Chaco and other adjacent Neotropical biomes.

  19. Variability and molecular typing of the woody-tree infecting prunus necrotic ringspot ilarvirus.

    PubMed

    Vasková, D; Petrzik, K; Karesová, R

    2000-01-01

    The 3'-part of the movement protein gene, the intergenic region and the complete coat protein gene of sixteen isolates of Prunus necrotic ringspot virus (PNRSV) from five different host species from the Czech Republic were sequenced in order to search for the bases of extensive variability of viroses caused by this pathogen. According to phylogenetic analyses all the 46 isolates sequenced to date split into three main groups, which correlated to a certain extend with their geographic origin. Modelled serological properties showed that all the new isolates belong to one serotype.

  20. The importance of molecular analyses for understanding the genetic diversity of Histoplasma capsulatum: an overview.

    PubMed

    Vite-Garín, Tania; Estrada-Bárcenas, Daniel Alfonso; Cifuentes, Joaquín; Taylor, Maria Lucia

    2014-01-01

    Advances in the classification of the human pathogen Histoplasma capsulatum (H. capsulatum) (ascomycete) are sustained by the results of several genetic analyses that support the high diversity of this dimorphic fungus. The present mini-review highlights the great genetic plasticity of H. capsulatum. Important records with different molecular tools, mainly single- or multi-locus sequence analyses developed with this fungus, are discussed. Recent phylogenetic data with a multi-locus sequence analysis using 5 polymorphic loci support a new clade and/or phylogenetic species of H. capsulatum for the Americas, which was associated with fungal isolates obtained from the migratory bat Tadarida brasiliensis. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  1. Comprehensive phylogenetic analysis of bacterial reverse transcriptases.

    PubMed

    Toro, Nicolás; Nisa-Martínez, Rafael

    2014-01-01

    Much less is known about reverse transcriptases (RTs) in prokaryotes than in eukaryotes, with most prokaryotic enzymes still uncharacterized. Two surveys involving BLAST searches for RT genes in prokaryotic genomes revealed the presence of large numbers of diverse, uncharacterized RTs and RT-like sequences. Here, using consistent annotation across all sequenced bacterial species from GenBank and other sources via RAST, available from the PATRIC (Pathogenic Resource Integration Center) platform, we have compiled the data for currently annotated reverse transcriptases from completely sequenced bacterial genomes. RT sequences are broadly distributed across bacterial phyla, but green sulfur bacteria and cyanobacteria have the highest levels of RT sequence diversity (≤85% identity) per genome. By contrast, phylum Actinobacteria, for which a large number of genomes have been sequenced, was found to have a low RT sequence diversity. Phylogenetic analyses revealed that bacterial RTs could be classified into 17 main groups: group II introns, retrons/retron-like RTs, diversity-generating retroelements (DGRs), Abi-like RTs, CRISPR-Cas-associated RTs, group II-like RTs (G2L), and 11 other groups of RTs of unknown function. Proteobacteria had the highest potential functional diversity, as they possessed most of the RT groups. Group II introns and DGRs were the most widely distributed RTs in bacterial phyla. Our results provide insights into bacterial RT phylogeny and the basis for an update of annotation systems based on sequence/domain homology.

  2. Comprehensive Phylogenetic Analysis of Bacterial Reverse Transcriptases

    PubMed Central

    Toro, Nicolás; Nisa-Martínez, Rafael

    2014-01-01

    Much less is known about reverse transcriptases (RTs) in prokaryotes than in eukaryotes, with most prokaryotic enzymes still uncharacterized. Two surveys involving BLAST searches for RT genes in prokaryotic genomes revealed the presence of large numbers of diverse, uncharacterized RTs and RT-like sequences. Here, using consistent annotation across all sequenced bacterial species from GenBank and other sources via RAST, available from the PATRIC (Pathogenic Resource Integration Center) platform, we have compiled the data for currently annotated reverse transcriptases from completely sequenced bacterial genomes. RT sequences are broadly distributed across bacterial phyla, but green sulfur bacteria and cyanobacteria have the highest levels of RT sequence diversity (≤85% identity) per genome. By contrast, phylum Actinobacteria, for which a large number of genomes have been sequenced, was found to have a low RT sequence diversity. Phylogenetic analyses revealed that bacterial RTs could be classified into 17 main groups: group II introns, retrons/retron-like RTs, diversity-generating retroelements (DGRs), Abi-like RTs, CRISPR-Cas-associated RTs, group II-like RTs (G2L), and 11 other groups of RTs of unknown function. Proteobacteria had the highest potential functional diversity, as they possessed most of the RT groups. Group II introns and DGRs were the most widely distributed RTs in bacterial phyla. Our results provide insights into bacterial RT phylogeny and the basis for an update of annotation systems based on sequence/domain homology. PMID:25423096

  3. Genetic Diversity and Phylogenetic Evolution of Tibetan Sheep Based on mtDNA D-Loop Sequences

    PubMed Central

    Yue, Yaojing; Guo, Xian; Guo, Tingting; Chu, Min; Wang, Fan; Han, Jilong; Feng, Ruilin; Sun, Xiaoping; Niu, Chune; Yang, Bohui; Guo, Jian; Yuan, Chao

    2016-01-01

    The molecular and population genetic evidence of the phylogenetic status of the Tibetan sheep (Ovis aries) is not well understood, and little is known about this species’ genetic diversity. This knowledge gap is partly due to the difficulty of sample collection. This is the first work to address this question. Here, the genetic diversity and phylogenetic relationship of 636 individual Tibetan sheep from fifteen populations were assessed using 642 complete sequences of the mitochondrial DNA D-loop. Samples were collected from the Qinghai-Tibetan Plateau area in China, and reference data were obtained from the six reference breed sequences available in GenBank. The length of the sequences varied considerably, between 1031 and 1259 bp. The haplotype diversity and nucleotide diversity were 0.992±0.010 and 0.019±0.001, respectively. The average number of nucleotide differences was 19.635. The mean nucleotide composition of the 350 haplotypes was 32.961% A, 29.708% T, 22.892% C, 14.439% G, 62.669% A+T, and 37.331% G+C. Phylogenetic analysis showed that all four previously defined haplogroups (A, B, C, and D) were found in the 636 individuals of the fifteen Tibetan sheep populations but that only the D haplogroup was found in Linzhou sheep. Further, the clustering analysis divided the fifteen Tibetan sheep populations into at least two clusters. The estimation of the demographic parameters from the mismatch analyses showed that haplogroups A, B, and C had at least one demographic expansion in Tibetan sheep. These results contribute to the knowledge of Tibetan sheep populations and will help inform future conservation programs about the Tibetan sheep native to the Qinghai-Tibetan Plateau. PMID:27463976

  4. A phylogenetic analysis of Aquifex pyrophilus

    NASA Technical Reports Server (NTRS)

    Burggraf, S.; Olsen, G. J.; Stetter, K. O.; Woese, C. R.

    1992-01-01

    The 16S rRNA of the bacterion Aquifex pyrophilus, a microaerophilic, oxygen-reducing hyperthermophile, has been sequenced directly from the the PCR amplified gene. Phylogenetic analyses show the Aq. pyrophilus lineage to be probably the deepest (earliest) in the (eu)bacterial tree. The addition of this deep branching to the bacterial tree further supports the argument that the Bacteria are of thermophilic ancestry.

  5. Phylogenetic position of the North American isolate of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines, as inferred from 16S rDNA sequence analysis.

    PubMed

    Atibalentja, N; Noel, G R; Domier, L L

    2000-03-01

    A 1341 bp sequence of the 16S rDNA of an undescribed species of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines, was determined and then compared with a homologous sequence of Pasteuria ramosa, a parasite of cladoceran water fleas of the family Daphnidae. The two Pasteuria sequences, which diverged from each other by a dissimilarity index of 7%, also were compared with the 16S rDNA sequences of 30 other bacterial species to determine the phylogenetic position of the genus Pasteuria among the Gram-positive eubacteria. Phylogenetic analyses using maximum-likelihood, maximum-parsimony and neighbour-joining methods showed that the Heterodera glycines-infecting Pasteuria and its sister species, P. ramosa, form a distinct line of descent within the Alicyclobacillus group of the Bacillaceae. These results are consistent with the view that the genus Pasteuria is a deeply rooted member of the Clostridium-Bacillus-Streptococcus branch of the Gram-positive eubacteria, neither related to the actinomycetes nor closely related to true endospore-forming bacteria.

  6. Metabolic Pathway Assignment of Plant Genes based on Phylogenetic Profiling–A Feasibility Study

    PubMed Central

    Weißenborn, Sandra; Walther, Dirk

    2017-01-01

    Despite many developed experimental and computational approaches, functional gene annotation remains challenging. With the rapidly growing number of sequenced genomes, the concept of phylogenetic profiling, which predicts functional links between genes that share a common co-occurrence pattern across different genomes, has gained renewed attention as it promises to annotate gene functions based on presence/absence calls alone. We applied phylogenetic profiling to the problem of metabolic pathway assignments of plant genes with a particular focus on secondary metabolism pathways. We determined phylogenetic profiles for 40,960 metabolic pathway enzyme genes with assigned EC numbers from 24 plant species based on sequence and pathway annotation data from KEGG and Ensembl Plants. For gene sequence family assignments, needed to determine the presence or absence of particular gene functions in the given plant species, we included data of all 39 species available at the Ensembl Plants database and established gene families based on pairwise sequence identities and annotation information. Aside from performing profiling comparisons, we used machine learning approaches to predict pathway associations from phylogenetic profiles alone. Selected metabolic pathways were indeed found to be composed of gene families of greater than expected phylogenetic profile similarity. This was particularly evident for primary metabolism pathways, whereas for secondary pathways, both the available annotation in different species as well as the abstraction of functional association via distinct pathways proved limiting. While phylogenetic profile similarity was generally not found to correlate with gene co-expression, direct physical interactions of proteins were reflected by a significantly increased profile similarity suggesting an application of phylogenetic profiling methods as a filtering step in the identification of protein-protein interactions. This feasibility study highlights the potential and challenges associated with phylogenetic profiling methods for the detection of functional relationships between genes as well as the need to enlarge the set of plant genes with proven secondary metabolism involvement as well as the limitations of distinct pathways as abstractions of relationships between genes. PMID:29163570

  7. Phylotranscriptomic analysis of the origin and early diversification of land plants

    PubMed Central

    Wickett, Norman J.; Mirarab, Siavash; Nguyen, Nam; Warnow, Tandy; Carpenter, Eric; Matasci, Naim; Ayyampalayam, Saravanaraj; Barker, Michael S.; Burleigh, J. Gordon; Gitzendanner, Matthew A.; Ruhfel, Brad R.; Wafula, Eric; Graham, Sean W.; Mathews, Sarah; Melkonian, Michael; Soltis, Douglas E.; Soltis, Pamela S.; Miles, Nicholas W.; Rothfels, Carl J.; Pokorny, Lisa; Shaw, A. Jonathan; DeGironimo, Lisa; Stevenson, Dennis W.; Surek, Barbara; Villarreal, Juan Carlos; Roure, Béatrice; Philippe, Hervé; dePamphilis, Claude W.; Chen, Tao; Deyholos, Michael K.; Baucom, Regina S.; Kutchan, Toni M.; Augustin, Megan M.; Wang, Jun; Zhang, Yong; Tian, Zhijian; Yan, Zhixiang; Wu, Xiaolei; Sun, Xiao; Wong, Gane Ka-Shu; Leebens-Mack, James

    2014-01-01

    Reconstructing the origin and evolution of land plants and their algal relatives is a fundamental problem in plant phylogenetics, and is essential for understanding how critical adaptations arose, including the embryo, vascular tissue, seeds, and flowers. Despite advances in molecular systematics, some hypotheses of relationships remain weakly resolved. Inferring deep phylogenies with bouts of rapid diversification can be problematic; however, genome-scale data should significantly increase the number of informative characters for analyses. Recent phylogenomic reconstructions focused on the major divergences of plants have resulted in promising but inconsistent results. One limitation is sparse taxon sampling, likely resulting from the difficulty and cost of data generation. To address this limitation, transcriptome data for 92 streptophyte taxa were generated and analyzed along with 11 published plant genome sequences. Phylogenetic reconstructions were conducted using up to 852 nuclear genes and 1,701,170 aligned sites. Sixty-nine analyses were performed to test the robustness of phylogenetic inferences to permutations of the data matrix or to phylogenetic method, including supermatrix, supertree, and coalescent-based approaches, maximum-likelihood and Bayesian methods, partitioned and unpartitioned analyses, and amino acid versus DNA alignments. Among other results, we find robust support for a sister-group relationship between land plants and one group of streptophyte green algae, the Zygnematophyceae. Strong and robust support for a clade comprising liverworts and mosses is inconsistent with a widely accepted view of early land plant evolution, and suggests that phylogenetic hypotheses used to understand the evolution of fundamental plant traits should be reevaluated. PMID:25355905

  8. Phylogenetic and Protein Sequence Analysis of Bacterial Chemoreceptors.

    PubMed

    Ortega, Davi R; Zhulin, Igor B

    2018-01-01

    Identifying chemoreceptors in sequenced bacterial genomes, revealing their domain architecture, inferring their evolutionary relationships, and comparing them to chemoreceptors of known function become important steps in genome annotation and chemotaxis research. Here, we describe bioinformatics procedures that enable such analyses, using two closely related bacterial genomes as examples.

  9. Phylogenetic origins of the plant mitochondrion based on a comparative analysis of 5S ribosomal RNA sequences

    NASA Technical Reports Server (NTRS)

    Villanueva, E.; Delihas, N.; Luehrsen, K. R.; Fox, G. E.; Gibson, J.

    1985-01-01

    The complete nucleotide sequences of 5S ribosomal RNAs from Rhodocyclus gelatinosa, Rhodobacter sphaeroides, and Pseudomonas cepacia were determined. Comparisons of these 5S RNA sequences show that rather than being phylogenetically related to one another, the two photosynthetic bacterial 5S RNAs share more sequence and signature homology with the RNAs of two nonphotosynthetic strains. Rhodobacter sphaeroides is specifically related to Paracoccus denitrificans and Rc. gelatinosa is related to Ps. cepacia. These results support earlier 16S ribosomal RNA studies and add two important groups to the 5S RNA data base. Unique 5S RNA structural features previously found in P. denitrificans are present also in the 5S RNA of Rb. sphaeroides; these provide the basis for subdivisional signatures. The immediate consequence of obtaining these new sequences is that it is possible to clarify the phylogenetic origins of the plant mitochondrion. In particular, a close phylogenetic relationship is found between the plant mitochondria and members of the alpha subdivision of the purple photosynthetic bacteria, namely, Rb. sphaeroides, P. denitrificans, and Rhodospirillum rubrum.

  10. The structural analysis of the mitochondrial SSUrRNA implies a close phylogenetic relationship between mitochondria from plants and from the heterotrophic alga Prototheca wickerhamii.

    PubMed

    Wolff, G; Kück, U

    1990-04-01

    The gene for the mitochondrial small subunit rRNA (SSUrRNA) from the heterotrophic alga Prototheca wickerhamii has been isolated from a gene library of extranuclear DNA. Sequence and structural analyses allow the determination of a secondary structure model for this rRNA. In addition, several sequence motifs are present which are typically found in SSUrRNAs of various mitochondrial origins. Unexpectedly, the Prototheca RNA sequence has more features in common with mitochondrial SSUrRNAs from plants than with that from the green alga Chlamydomonas reinhardtii. The phylogenetic relationship between mitochondria from plants and algae is discussed.

  11. Complete mitochondrial genome sequences from five Eimeria species (Apicomplexa; Coccidia; Eimeriidae) infecting domestic turkeys

    PubMed Central

    2014-01-01

    Background Clinical and subclinical coccidiosis is cosmopolitan and inflicts significant losses to the poultry industry globally. Seven named Eimeria species are responsible for coccidiosis in turkeys: Eimeria dispersa; Eimeria meleagrimitis; Eimeria gallopavonis; Eimeria meleagridis; Eimeria adenoeides; Eimeria innocua; and, Eimeria subrotunda. Although attempts have been made to characterize these parasites molecularly at the nuclear 18S rDNA and ITS loci, the maternally-derived and mitotically replicating mitochondrial genome may be more suited for species level molecular work; however, only limited sequence data are available for Eimeria spp. infecting turkeys. The purpose of this study was to sequence and annotate the complete mitochondrial genomes from 5 Eimeria species that commonly infect the domestic turkey (Meleagris gallopavo). Methods Six single-oocyst derived cultures of five Eimeria species infecting turkeys were PCR-amplified and sequenced completely prior to detailed annotation. Resulting sequences were aligned and used in phylogenetic analyses (BI, ML, and MP) that included complete mitochondrial genomes from 16 Eimeria species or concatenated CDS sequences from each genome. Results Complete mitochondrial genome sequences were obtained for Eimeria adenoeides Guelph, 6211 bp; Eimeria dispersa Briston, 6238 bp; Eimeria meleagridis USAR97-01, 6212 bp; Eimeria meleagrimitis USMN08-01, 6165 bp; Eimeria gallopavonis Weybridge, 6215 bp; and Eimeria gallopavonis USKS06-01, 6215 bp). The order, orientation and CDS lengths of the three protein coding genes (COI, COIII and CytB) as well as rDNA fragments encoding ribosomal large and small subunit rRNA were conserved among all sequences. Pairwise sequence identities between species ranged from 88.1% to 98.2%; sequence variability was concentrated within CDS or between rDNA fragments (where indels were common). No phylogenetic reconstruction supported monophyly of Eimeria species infecting turkeys; Eimeria dispersa may have arisen via host switching from another avian host. Phylogenetic analyses suggest E. necatrix and E. tenella are related distantly to other Eimeria of chickens. Conclusions Mitochondrial genomes of Eimeria species sequenced to date are highly conserved with regard to gene content and structure. Nonetheless, complete mitochondrial genome sequences and, particularly the three CDS, possess sufficient sequence variability for differentiating Eimeria species of poultry. The mitochondrial genome sequences are highly suited for molecular diagnostics and phylogenetics of coccidia and, potentially, genetic markers for molecular epidemiology. PMID:25034633

  12. Complete mitochondrial genome sequences from five Eimeria species (Apicomplexa; Coccidia; Eimeriidae) infecting domestic turkeys.

    PubMed

    Ogedengbe, Mosun E; El-Sherry, Shiem; Whale, Julia; Barta, John R

    2014-07-17

    Clinical and subclinical coccidiosis is cosmopolitan and inflicts significant losses to the poultry industry globally. Seven named Eimeria species are responsible for coccidiosis in turkeys: Eimeria dispersa; Eimeria meleagrimitis; Eimeria gallopavonis; Eimeria meleagridis; Eimeria adenoeides; Eimeria innocua; and, Eimeria subrotunda. Although attempts have been made to characterize these parasites molecularly at the nuclear 18S rDNA and ITS loci, the maternally-derived and mitotically replicating mitochondrial genome may be more suited for species level molecular work; however, only limited sequence data are available for Eimeria spp. infecting turkeys. The purpose of this study was to sequence and annotate the complete mitochondrial genomes from 5 Eimeria species that commonly infect the domestic turkey (Meleagris gallopavo). Six single-oocyst derived cultures of five Eimeria species infecting turkeys were PCR-amplified and sequenced completely prior to detailed annotation. Resulting sequences were aligned and used in phylogenetic analyses (BI, ML, and MP) that included complete mitochondrial genomes from 16 Eimeria species or concatenated CDS sequences from each genome. Complete mitochondrial genome sequences were obtained for Eimeria adenoeides Guelph, 6211 bp; Eimeria dispersa Briston, 6238 bp; Eimeria meleagridis USAR97-01, 6212 bp; Eimeria meleagrimitis USMN08-01, 6165 bp; Eimeria gallopavonis Weybridge, 6215 bp; and Eimeria gallopavonis USKS06-01, 6215 bp). The order, orientation and CDS lengths of the three protein coding genes (COI, COIII and CytB) as well as rDNA fragments encoding ribosomal large and small subunit rRNA were conserved among all sequences. Pairwise sequence identities between species ranged from 88.1% to 98.2%; sequence variability was concentrated within CDS or between rDNA fragments (where indels were common). No phylogenetic reconstruction supported monophyly of Eimeria species infecting turkeys; Eimeria dispersa may have arisen via host switching from another avian host. Phylogenetic analyses suggest E. necatrix and E. tenella are related distantly to other Eimeria of chickens. Mitochondrial genomes of Eimeria species sequenced to date are highly conserved with regard to gene content and structure. Nonetheless, complete mitochondrial genome sequences and, particularly the three CDS, possess sufficient sequence variability for differentiating Eimeria species of poultry. The mitochondrial genome sequences are highly suited for molecular diagnostics and phylogenetics of coccidia and, potentially, genetic markers for molecular epidemiology.

  13. Phylogenetic Status of an Unrecorded Species of Curvularia, C. spicifera, Based on Current Classification System of Curvularia and Bipolaris Group Using Multi Loci.

    PubMed

    Jeon, Sun Jeong; Nguyen, Thi Thuong Thuong; Lee, Hyang Burm

    2015-09-01

    A seed-borne fungus, Curvularia sp. EML-KWD01, was isolated from an indigenous wheat seed by standard blotter method. This fungus was characterized based on the morphological characteristics and molecular phylogenetic analysis. Phylogenetic status of the fungus was determined using sequences of three loci: rDNA internal transcribed spacer, large ribosomal subunit, and glyceraldehyde 3-phosphate dehydrogenase gene. Multi loci sequencing analysis revealed that this fungus was Curvularia spicifera within Curvularia group 2 of family Pleosporaceae.

  14. Identification, characterization and description of Arcobacter faecis sp. nov., isolated from a human waste septic tank.

    PubMed

    Whiteduck-Léveillée, Kerri; Whiteduck-Léveillée, Jenni; Cloutier, Michel; Tambong, James T; Xu, Renlin; Topp, Edward; Arts, Michael T; Chao, Jerry; Adam, Zaky; Lévesque, C André; Lapen, David R; Villemur, Richard; Khan, Izhar U H

    2016-03-01

    A study on the taxonomic classification of Arcobacter species was performed on the cultures isolated from various fecal sources where an Arcobacter strain AF1078(T) from human waste septic tank near Ottawa, Ontario, Canada was characterized using a polyphasic approach. Genetic investigations including 16S rRNA, atpA, cpn60, gyrA, gyrB and rpoB gene sequences of strain AF1078(T) are unique in comparison with other arcobacters. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the strain is most closely related to Arcobacter lanthieri and Arcobacter cibarius. Analyses of atpA, cpn60, gyrA, gyrB and rpoB gene sequences suggested that strain AF1078(T) formed a phylogenetic lineage independent of other species in the genus. Whole-genome sequence, DNA-DNA hybridization, fatty acid profile and phenotypic analysis further supported the conclusion that strain AF1078(T) represents a novel Arcobacter species, for which the name Arcobacter faecis sp. nov. is proposed, with type strain AF1078(T) (=LMG 28519(T); CCUG 66484(T)). Crown Copyright © 2015. Published by Elsevier GmbH. All rights reserved.

  15. Genetic Diversity and Phylogenetic Analysis of South-East Asian Duck Populations Based on the mtDNA D-loop Sequences

    PubMed Central

    Sultana, H.; Seo, D. W.; Bhuiyan, M. S. A.; Choi, N. R.; Hoque, M. R.; Heo, K. N.; Lee, J. H.

    2016-01-01

    The maternally inherited mitochondrial DNA (mtDNA) D–loop region is widely used for exploring genetic relationships and for investigating the origin of various animal species. Currently, domestic ducks play an important role in animal protein supply. In this study, partial mtDNA D–loop sequences were obtained from 145 samples belonging to six South-East Asian duck populations and commercial duck population. All these populations were closely related to the mallard duck (Anas platyrhynchos), as indicated by their mean overall genetic distance. Sixteen nucleotide substitutions were identified in sequence analyses allowing the distinction of 28 haplotypes. Around 42.76% of the duck sequences were classified as Hap_02, which completely matched with Anas platyrhynchos duck species. The neighbor-joining phylogenetic tree also revealed that South-East Asian duck populations were closely related to Anas platyrhynchos. Network profiles were also traced using the 28 haplotypes. Overall, results showed that those duck populations D-loop haplotypes were shared between several duck breeds from Korea and Bangladesh sub continental regions. Therefore, these results confirmed that South-East Asian domestic duck populations have been domesticated from Anas platyrhynchos duck as the maternal origins. PMID:27004808

  16. Molecular phylogeny of Systellognatha (Plecoptera: Arctoperlaria) inferred from mitochondrial genome sequences.

    PubMed

    Chen, Zhi-Teng; Zhao, Meng-Yuan; Xu, Cheng; Du, Yu-Zhou

    2018-05-01

    The infraorder Systellognatha is the most species-rich clade in the insect order Plecoptera and includes six families in two superfamilies: Pteronarcyoidea (Pteronarcyidae, Peltoperlidae, and Styloperlidae) and Perloidea (Perlidae, Perlodidae, and Chloroperlidae). To resolve the debatable phylogeny of Systellognatha, we carried out the first mitochondrial phylogenetic analysis covering all the six families, including three newly sequenced mitogenomes from two families (Perlodidae and Peltoperlidae) and 15 published mitogenomes. The three newly reported mitogenomes share conserved mitogenomic features with other sequenced stoneflies. For phylogenetic analyses, we assembled five datasets with two inference methods to assess their influence on topology and nodal support within Systellognatha. The results indicated that inclusion of the third codon positions of PCGs, exclusion of rRNA genes, the use of nucleotide datasets and Bayesian inference could improve the phylogenetic reconstruction of Systellognatha. The monophyly of Perloidea was supported in the mitochondrial phylogeny, but Pteronarcyoidea was recovered as paraphyletic and remained controversial. In this mitochondrial phylogenetic study, the relationships within Systellognatha were recovered as (((Perlidae + (Perlodidae + Chloroperlidae)) + (Pteronarcyidae + Styloperlidae)) + Peltoperlidae). Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Molecular characterization and phylogenetic inferences of Dermanyssus gallinae isolates in Italy within an European framework.

    PubMed

    Marangi, M; Cantacessi, C; Sparagano, O A E; Camarda, A; Giangaspero, A

    2014-12-01

    In order to investigate the genetic relationships between Dermanyssus gallinae (Metastigmata: Dermanyssidae) (de Geer) isolates from poultry farms in Italy and other European countries, phylogenetic analysis was performed using a portion of the cytochrome c oxidase subunit 1 (cox1) gene of the mitochondrial DNA and the internal transcribed spacers (ITS1+5.8S+ITS2) of the ribosomal DNA. A total of 360 cox1 sequences and 360 ITS+ sequences were obtained from mites collected on 24 different poultry farms in 10 different regions of Northern and Southern Italy. Phylogenetic analysis of the cox1 sequences resulted in the clustering of two groups (A and B), whereas phylogenetic analysis of the ITS+ resulted in largely unresolved clusters. Knowledge of the genetic make-up of mite populations within countries, together with comparative analyses of D. gallinae isolates from different countries, will provide better understanding of the population dynamics of D. gallinae. This will also allow the identification of genetic markers of emerging acaricide resistance and the development of alternative strategies for the prevention and treatment of infestations. © 2014 The Royal Entomological Society.

  18. Agent of Whirling Disease Meets Orphan Worm: Phylogenomic Analyses Firmly Place Myxozoa in Cnidaria

    PubMed Central

    Nesnidal, Maximilian P.; Helmkampf, Martin; Bruchhaus, Iris; El-Matbouli, Mansour; Hausdorf, Bernhard

    2013-01-01

    Myxozoa are microscopic obligate endoparasites with complex live cycles. Representatives are Myxobolus cerebralis, the causative agent of whirling disease in salmonids, and the enigmatic “orphan worm” Buddenbrockia plumatellae parasitizing in Bryozoa. Originally, Myxozoa were classified as protists, but later several metazoan characteristics were reported. However, their phylogenetic relationships remained doubtful. Some molecular phylogenetic analyses placed them as sister group to or even within Bilateria, whereas the possession of polar capsules that are similar to nematocysts of Cnidaria and of minicollagen genes suggest a close relationship between Myxozoa and Cnidaria. EST data of Buddenbrockia also indicated a cnidarian origin of Myxozoa, but were not sufficient to reject a closer relationship to bilaterians. Phylogenomic analyses of new genomic sequences of Myxobolus cerebralis firmly place Myxozoa as sister group to Medusozoa within Cnidaria. Based on the new dataset, the alternative hypothesis that Myxozoa form a clade with Bilateria can be rejected using topology tests. Sensitivity analyses indicate that this result is not affected by long branch attraction artifacts or compositional bias. PMID:23382916

  19. Bioinformatic Analysis of Strawberry GSTF12 Gene

    NASA Astrophysics Data System (ADS)

    Wang, Xiran; Jiang, Leiyu; Tang, Haoru

    2018-01-01

    GSTF12 has always been known as a key factor of proanthocyanins accumulate in plant testa. Through bioinformatics analysis of the nucleotide and encoded protein sequence of GSTF12, it is more advantageous to the study of genes related to anthocyanin biosynthesis accumulation pathway. Therefore, we chosen GSTF12 gene of 11 kinds species, downloaded their nucleotide and protein sequence from NCBI as the research object, found strawberry GSTF12 gene via bioinformation analyse, constructed phylogenetic tree. At the same time, we analysed the strawberry GSTF12 gene of physical and chemical properties and its protein structure and so on. The phylogenetic tree showed that Strawberry and petunia were closest relative. By the protein prediction, we found that the protein owed one proper signal peptide without obvious transmembrane regions.

  20. Phylogenetic Relationships and Species Delimitation in Pinus Section Trifoliae Inferrred from Plastid DNA

    PubMed Central

    Hernández-León, Sergio; Gernandt, David S.; Pérez de la Rosa, Jorge A.; Jardón-Barbolla, Lev

    2013-01-01

    Recent diversification followed by secondary contact and hybridization may explain complex patterns of intra- and interspecific morphological and genetic variation in the North American hard pines (Pinus section Trifoliae), a group of approximately 49 tree species distributed in North and Central America and the Caribbean islands. We concatenated five plastid DNA markers for an average of 3.9 individuals per putative species and assessed the suitability of the five regions as DNA bar codes for species identification, species delimitation, and phylogenetic reconstruction. The ycf1 gene accounted for the greatest proportion of the alignment (46.9%), the greatest proportion of variable sites (74.9%), and the most unique sequences (75 haplotypes). Phylogenetic analysis recovered clades corresponding to subsections Australes, Contortae, and Ponderosae. Sequences for 23 of the 49 species were monophyletic and sequences for another 9 species were paraphyletic. Morphologically similar species within subsections usually grouped together, but there were exceptions consistent with incomplete lineage sorting or introgression. Bayesian relaxed molecular clock analyses indicated that all three subsections diversified relatively recently during the Miocene. The general mixed Yule-coalescent method gave a mixed model estimate of only 22 or 23 evolutionary entities for the plastid sequences, which corresponds to less than half the 49 species recognized based on morphological species assignments. Including more unique haplotypes per species may result in higher estimates, but low mutation rates, recent diversification, and large effective population sizes may limit the effectiveness of this method to detect evolutionary entities. PMID:23936218

  1. Phylogenetic relationships and species delimitation in pinus section trifoliae inferrred from plastid DNA.

    PubMed

    Hernández-León, Sergio; Gernandt, David S; Pérez de la Rosa, Jorge A; Jardón-Barbolla, Lev

    2013-01-01

    Recent diversification followed by secondary contact and hybridization may explain complex patterns of intra- and interspecific morphological and genetic variation in the North American hard pines (Pinus section Trifoliae), a group of approximately 49 tree species distributed in North and Central America and the Caribbean islands. We concatenated five plastid DNA markers for an average of 3.9 individuals per putative species and assessed the suitability of the five regions as DNA bar codes for species identification, species delimitation, and phylogenetic reconstruction. The ycf1 gene accounted for the greatest proportion of the alignment (46.9%), the greatest proportion of variable sites (74.9%), and the most unique sequences (75 haplotypes). Phylogenetic analysis recovered clades corresponding to subsections Australes, Contortae, and Ponderosae. Sequences for 23 of the 49 species were monophyletic and sequences for another 9 species were paraphyletic. Morphologically similar species within subsections usually grouped together, but there were exceptions consistent with incomplete lineage sorting or introgression. Bayesian relaxed molecular clock analyses indicated that all three subsections diversified relatively recently during the Miocene. The general mixed Yule-coalescent method gave a mixed model estimate of only 22 or 23 evolutionary entities for the plastid sequences, which corresponds to less than half the 49 species recognized based on morphological species assignments. Including more unique haplotypes per species may result in higher estimates, but low mutation rates, recent diversification, and large effective population sizes may limit the effectiveness of this method to detect evolutionary entities.

  2. Description of Candidatus Bartonella fadhilae n. sp. and Candidatus Bartonella sanaae n. sp. (Bartonellaceae) from Dipodillus dasyurus and Sekeetamys calurus (Gerbillinae) from the Sinai Massif (Egypt)

    PubMed Central

    Alsarraf, Mohammed; Mohallal, Eman M.E.; Mierzejewska, Ewa J.; Behnke-Borowczyk, Jolanta; Welc-Falęciak, Renata; Bednarska, Małgorzata; Dziewit, Lukasz; Zalat, Samy; Gilbert, Francis; Behnke, Jerzy M.

    2017-01-01

    Abstract Bartonella spp. are parasites of mammalian erythrocytes and endothelial cells, transmitted by blood-feeding arthropod ectoparasites. Different species of rodents may constitute the main hosts of Bartonella, including several zoonotic species of Bartonella. The aim of this study was to identify and compare Bartonella species and genotypes isolated from rodent hosts from the South Sinai, Egypt. Prevalence of Bartonella infection was assessed in rodents (837 Acomys dimidiatus, 73 Acomys russatus, 111 Dipodillus dasyurus, and 65 Sekeetamys calurus) trapped in 2000, 2004, 2008, and 2012 in four dry montane wadis around St. Katherine town in the Sinai Mountains. Total DNA was extracted from blood samples, and PCR amplification and sequencing of the Bartonella-specific 860-bp gene fragment of rpoB and the 810-bp gene fragment of gltA were used for molecular and phylogenetic analyses. The overall prevalence of Bartonella in rodents was 7.2%. Prevalence differed between host species, being 30.6%, 10.8%, 9.6%, and 3.6% in D. dasyurus, S. calurus, A. russatus, and A. dimidiatus, respectively. The phylogenetic analyses of six samples of Bartonella (five from D. dasyurus and one from S. calurus) based on a fragment of the rpoB gene, revealed the existence of two distinct genetic groups (with 95–96% reciprocal sequence identity), clustering with several unidentified isolates obtained earlier from the same rodent species, and distant from species that have already been described (90–92% of sequence identity to the closest match from the GenBank reference database). Thus, molecular and phylogenetic analyses led to the description of two species: Candidatus Bartonella fadhilae n. sp. and Candidatus Bartonella sanaae n. sp. The identification of their vectors and the medical significance of these species need further investigation. PMID:28541836

  3. A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers

    PubMed Central

    Moretzsohn, Márcio C.; Gouvea, Ediene G.; Inglis, Peter W.; Leal-Bertioli, Soraya C. M.; Valls, José F. M.; Bertioli, David J.

    2013-01-01

    Background and Aims The genus Arachis contains 80 described species. Section Arachis is of particular interest because it includes cultivated peanut, an allotetraploid, and closely related wild species, most of which are diploids. This study aimed to analyse the genetic relationships of multiple accessions of section Arachis species using two complementary methods. Microsatellites allowed the analysis of inter- and intraspecific variability. Intron sequences from single-copy genes allowed phylogenetic analysis including the separation of the allotetraploid genome components. Methods Intron sequences and microsatellite markers were used to reconstruct phylogenetic relationships in section Arachis through maximum parsimony and genetic distance analyses. Key Results Although high intraspecific variability was evident, there was good support for most species. However, some problems were revealed, notably a probable polyphyletic origin for A. kuhlmannii. The validity of the genome groups was well supported. The F, K and D genomes grouped close to the A genome group. The 2n = 18 species grouped closer to the B genome group. The phylogenetic tree based on the intron data strongly indicated that A. duranensis and A. ipaënsis are the ancestors of A. hypogaea and A. monticola. Intron nucleotide substitutions allowed the ages of divergences of the main genome groups to be estimated at a relatively recent 2·3–2·9 million years ago. This age and the number of species described indicate a much higher speciation rate for section Arachis than for legumes in general. Conclusions The analyses revealed relationships between the species and genome groups and showed a generally high level of intraspecific genetic diversity. The improved knowledge of species relationships should facilitate the utilization of wild species for peanut improvement. The estimates of speciation rates in section Arachis are high, but not unprecedented. We suggest these high rates may be linked to the peculiar reproductive biology of Arachis. PMID:23131301

  4. Symptom development in response to combined infection of in vitro grown Lilium longiflorum with the root lesion nematode Pratylenchus penetrans and soilborne fungi collected from diseased roots of field-grown lilies

    USDA-ARS?s Scientific Manuscript database

    Eight fungal isolates (ELRF 1-8) were isolated from necrotic roots of Lilium longiflorum cv. Nellie White (Easter lily) grown in a field in the U.S. Pacific Northwest. The eight fungal isolates were identified by sequencing and molecular phylogenetic analyses based on their ITS rDNA region. Five iso...

  5. Colonization and diversification of aquatic insects on three Macaronesian archipelagos using 59 nuclear loci derived from a draft genome.

    PubMed

    Rutschmann, Sereina; Detering, Harald; Simon, Sabrina; Funk, David H; Gattolliat, Jean-Luc; Hughes, Samantha J; Raposeiro, Pedro M; DeSalle, Rob; Sartori, Michel; Monaghan, Michael T

    2017-02-01

    The study of processes driving diversification requires a fully sampled and well resolved phylogeny, although a lack of phylogenetic markers remains a limitation for many non-model groups. Multilocus approaches to the study of recent diversification provide a powerful means to study the evolutionary process, but their application remains restricted because multiple unlinked loci with suitable variation for phylogenetic or coalescent analysis are not available for most non-model taxa. Here we identify novel, putative single-copy nuclear DNA (nDNA) phylogenetic markers to study the colonization and diversification of an aquatic insect species complex, Cloeon dipterum L. 1761 (Ephemeroptera: Baetidae), in Macaronesia. Whole-genome sequencing data from one member of the species complex were used to identify 59 nDNA loci (32,213 base pairs), followed by Sanger sequencing of 29 individuals sampled from 13 islands of three Macaronesian archipelagos. Multispecies coalescent analyses established six putative species. Three island species formed a monophyletic clade, with one species occurring on the Azores, Europe and North America. Ancestral state reconstruction indicated at least two colonization events from the mainland (to the Canaries, respectively Azores) and one within the archipelago (between Madeira and the Canaries). Random subsets of the 59 loci showed a positive linear relationship between number of loci and node support. In contrast, node support in the multispecies coalescent tree was negatively correlated with mean number of phylogenetically informative sites per locus, suggesting a complex relationship between tree resolution and marker variability. Our approach highlights the value of combining genomics, coalescent-based phylogeography, species delimitation, and phylogenetic reconstruction to resolve recent diversification events in an archipelago species complex. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Phylogenetic relationships in Demodex mites (Acari: Demodicidae) based on mitochondrial 16S rDNA partial sequences.

    PubMed

    Zhao, Ya-E; Wu, Li-Ping

    2012-09-01

    To confirm phylogenetic relationships in Demodex mites based on mitochondrial 16S rDNA partial sequences, mtDNA 16S partial sequences of ten isolates of three Demodex species from China were amplified, recombined, and sequenced and then analyzed with two Demodex folliculorum isolates from Spain. Lastly, genetic distance was computed, and phylogenetic tree was reconstructed. MEGA 4.0 analysis showed high sequence identity among 16S rDNA partial sequences of three Demodex species, which were 95.85 % in D. folliculorum, 98.53 % in Demodex canis, and 99.71 % in Demodex brevis. The divergence, genetic distance, and transition/transversions of the three Demodex species reached interspecies level, whereas there was no significant difference of the divergence (1.1 %), genetic distance (0.011), and transition/transversions (3/1) of the two geographic D. folliculorum isolates (Spain and China). Phylogenetic trees reveal that the three Demodex species formed three separate branches of one clade, where D. folliculorum and D. canis gathered first, and then gathered with D. brevis. The two Spain and five China D. folliculorum isolates did not form sister clades. In conclusion, 16S mtDNA are suitable for phylogenetic relationship analysis in low taxa (genus or species), but not for intraspecies determination of Demodex. The differentiation among the three Demodex species has reached interspecies level.

  7. Assessing the diversity of AM fungi in arid gypsophilous plant communities.

    PubMed

    Alguacil, M M; Roldán, A; Torres, M P

    2009-10-01

    In the present study, we used PCR-Single-Stranded Conformation Polymorphism (SSCP) techniques to analyse arbuscular mycorrhizal fungi (AMF) communities in four sites within a 10 km(2) gypsum area in Southern Spain. Four common plant species from these ecosystems were selected. The AM fungal small-subunit (SSU) rRNA genes were subjected to PCR, cloning, SSCP analysis, sequencing and phylogenetic analyses. A total of 1443 SSU rRNA sequences were analysed, for 21 AM fungal types: 19 belonged to the genus Glomus, 1 to the genus Diversispora and 1 to the Scutellospora. Four sequence groups were identified, which showed high similarity to sequences of known glomalean species or isolates: Glo G18 to Glomus constrictum, Glo G1 to Glomus intraradices, Glo G16 to Glomus clarum, Scut to Scutellospora dipurpurescens and Div to one new genus in the family Diversisporaceae identified recently as Otospora bareai. There were three sequence groups that received strong support in the phylogenetic analysis, and did not seem to be related to any sequences of AM fungi in culture or previously found in the database; thus, they could be novel taxa within the genus Glomus: Glo G4, Glo G2 and Glo G14. We have detected the presence of both generalist and potential specialist AMF in gypsum ecosystems. The AMF communities were different in the plant studied suggesting some degree of preference in the interactions between these symbionts.

  8. Mitochondrial gene sequences alone or combined with ITS region sequences provide firm molecular criteria for the classification of Lecanicillium species.

    PubMed

    Kouvelis, Vassili N; Sialakouma, Aphrodite; Typas, Milton A

    2008-07-01

    The recent revision of Verticillium sect. Prostrata led to the introduction of the genus Lecanicillium, which comprises the majority of the entomopathogenic strains. Sixty-five strains previously classified as Verticillium lecanii or Verticillium sp. from different geographical regions and hosts were examined and their phylogenetic relationships were determined using sequences from three mitochondrial (mt) genes [the small rRNA subunit (rns), the NADH dehydrogenase subunits 1 (nad1) and 3 (nad3)] and the ITS region. In general, single gene phylogenetic trees differentiated and placed the strains examined in well-supported (by BS analysis) groups of L. lecanii, L. longisporum, L. muscarium, and L. nodulosum, although in some cases a few uncertainties still remained. nad1 was the most informative single gene in phylogenetic analyses and was also found to contain group I introns with putative open reading frames (ORFs) encoding for GIY-YIG endonucleases. The combined use of mt gene sequences resolved taxonomic uncertainties arisen from ITS analysis and, alone or in combination with ITS sequences, helped in placing uncharacterised Verticillium lecanii and Verticillium sp. firmly into Lecanicillium species. Combined gene data from all the mt genes and all the mt genes and the ITS region together, were very similar. Furthermore, a relaxed correlation with host specificity -- at least for Homoptera -- was indicated for the rns and the combined mt gene sequences. Thus, the usefulness of mt gene sequences as a convenient molecular tool in phylogenetic studies of entomopathogenic fungi was demonstrated.

  9. Genealogical analyses of multiple loci of litostomatean ciliates (Protista, Ciliophora, Litostomatea)

    PubMed Central

    Vd’ačný, Peter; Bourland, William A.; Orsi, William; Epstein, Slava S.; Foissner, Wilhelm

    2012-01-01

    The class Litostomatea is a highly diverse ciliate taxon comprising hundreds of free-living and endocommensal species. However, their traditional morphology-based classification conflicts with 18S rRNA gene phylogenies indicating (1) a deep bifurcation of the Litostomatea into Rhynchostomatia and Haptoria + Trichostomatia, and (2) body polarization and simplification of the oral apparatus as main evolutionary trends in the Litostomatea. To test whether 18S rRNA molecules provide a suitable proxy for litostomatean evolutionary history, we used eighteen new ITS1-5.8S rRNA-ITS2 region sequences from various free-living litostomatean orders. These single- and multiple-locus analyses are in agreement with previous 18S rRNA gene phylogenies, supporting that both 18S rRNA gene and ITS region sequences are effective tools for resolving phylogenetic relationships among the litostomateans. Despite insertions, deletions and mutational saturations in the ITS region, the present study shows that ITS1 and ITS2 molecules can be used to infer phylogenetic relationships not only at species level but also at higher taxonomic ranks when their secondary structure information is utilized to aid alignment. PMID:22789763

  10. Genealogical analyses of multiple loci of litostomatean ciliates (Protista, Ciliophora, Litostomatea).

    PubMed

    Vd'ačný, Peter; Bourland, William A; Orsi, William; Epstein, Slava S; Foissner, Wilhelm

    2012-11-01

    The class Litostomatea is a highly diverse ciliate taxon comprising hundreds of free-living and endocommensal species. However, their traditional morphology-based classification conflicts with 18S rRNA gene phylogenies indicating (1) a deep bifurcation of the Litostomatea into Rhynchostomatia and Haptoria+Trichostomatia, and (2) body polarization and simplification of the oral apparatus as main evolutionary trends in the Litostomatea. To test whether 18S rRNA molecules provide a suitable proxy for litostomatean evolutionary history, we used eighteen new ITS1-5.8S rRNA-ITS2 region sequences from various free-living litostomatean orders. These single- and multiple-locus analyses are in agreement with previous 18S rRNA gene phylogenies, supporting that both 18S rRNA gene and ITS region sequences are effective tools for resolving phylogenetic relationships among the litostomateans. Despite insertions, deletions and mutational saturations in the ITS region, the present study shows that ITS1 and ITS2 molecules can be used to infer phylogenetic relationships not only at species level but also at higher taxonomic ranks when their secondary structure information is utilized to aid alignment. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Unraveling Haplotype Diversity of the Apical Membrane Antigen-1 Gene in Plasmodium falciparum Populations in Thailand

    PubMed Central

    Lumkul, Lalita; Sawaswong, Vorthon; Simpalipan, Phumin; Kaewthamasorn, Morakot; Harnyuttanakorn, Pongchai; Pattaradilokrat, Sittiporn

    2018-01-01

    Development of an effective vaccine is critically needed for the prevention of malaria. One of the key antigens for malaria vaccines is the apical membrane antigen 1 (AMA-1) of the human malaria parasite Plasmodium falciparum, the surface protein for erythrocyte invasion of the parasite. The gene encoding AMA-1 has been sequenced from populations of P. falciparum worldwide, but the haplotype diversity of the gene in P. falciparum populations in the Greater Mekong Subregion (GMS), including Thailand, remains to be characterized. In the present study, the AMA-1 gene was PCR amplified and sequenced from the genomic DNA of 65 P. falciparum isolates from 5 endemic areas in Thailand. The nearly full-length 1,848 nucleotide sequence of AMA-1 was subjected to molecular analyses, including nucleotide sequence diversity, haplotype diversity and deduced amino acid sequence diversity and neutrality tests. Phylogenetic analysis and pairwise population differentiation (Fst indices) were performed to infer the population structure. The analyses identified 60 single nucleotide polymorphic loci, predominately located in domain I of AMA-1. A total of 31 unique AMA-1 haplotypes were identified, which included 11 novel ones. The phylogenetic tree of the AMA-1 haplotypes revealed multiple clades of AMA-1, each of which contained parasites of multiple geographical origins, consistent with the Fst indices indicating genetic homogeneity or gene flow among geographically distinct populations of P. falciparum in Thailand’s borders with Myanmar, Laos and Cambodia. In summary, the study revealed novel haplotypes and population structure needed for the further advancement of AMA-1-based malaria vaccines in the GMS. PMID:29742870

  12. Phylogenetic Reconstruction and DNA Barcoding for Closely Related Pine Moth Species (Dendrolimus) in China with Multiple Gene Markers

    PubMed Central

    Dai, Qing-Yan; Gao, Qiang; Wu, Chun-Sheng; Chesters, Douglas; Zhu, Chao-Dong; Zhang, Ai-Bing

    2012-01-01

    Unlike distinct species, closely related species offer a great challenge for phylogeny reconstruction and species identification with DNA barcoding due to their often overlapping genetic variation. We tested a sibling species group of pine moth pests in China with a standard cytochrome c oxidase subunit I (COI) gene and two alternative internal transcribed spacer (ITS) genes (ITS1 and ITS2). Five different phylogenetic/DNA barcoding analysis methods (Maximum likelihood (ML)/Neighbor-joining (NJ), “best close match” (BCM), Minimum distance (MD), and BP-based method (BP)), representing commonly used methodology (tree-based and non-tree based) in the field, were applied to both single-gene and multiple-gene analyses. Our results demonstrated clear reciprocal species monophyly for three relatively distant related species, Dendrolimus superans, D. houi, D. kikuchii, as recovered by both single and multiple genes while the phylogenetic relationship of three closely related species, D. punctatus, D. tabulaeformis, D. spectabilis, could not be resolved with the traditional tree-building methods. Additionally, we find the standard COI barcode outperforms two nuclear ITS genes, whatever the methods used. On average, the COI barcode achieved a success rate of 94.10–97.40%, while ITS1 and ITS2 obtained a success rate of 64.70–81.60%, indicating ITS genes are less suitable for species identification in this case. We propose the use of an overall success rate of species identification that takes both sequencing success and assignation success into account, since species identification success rates with multiple-gene barcoding system were generally overestimated, especially by tree-based methods, where only successfully sequenced DNA sequences were used to construct a phylogenetic tree. Non-tree based methods, such as MD, BCM, and BP approaches, presented advantages over tree-based methods by reporting the overall success rates with statistical significance. In addition, our results indicate that the most closely related species D. punctatus, D. tabulaeformis, and D. spectabilis, may be still in the process of incomplete lineage sorting, with occasional hybridizations occurring among them. PMID:22509245

  13. Resolving Evolutionary Relationships in Closely Related Species with Whole-Genome Sequencing Data

    PubMed Central

    Nater, Alexander; Burri, Reto; Kawakami, Takeshi; Smeds, Linnéa; Ellegren, Hans

    2015-01-01

    Using genetic data to resolve the evolutionary relationships of species is of major interest in evolutionary and systematic biology. However, reconstructing the sequence of speciation events, the so-called species tree, in closely related and potentially hybridizing species is very challenging. Processes such as incomplete lineage sorting and interspecific gene flow result in local gene genealogies that differ in their topology from the species tree, and analyses of few loci with a single sequence per species are likely to produce conflicting or even misleading results. To study these phenomena on a full phylogenomic scale, we use whole-genome sequence data from 200 individuals of four black-and-white flycatcher species with so far unresolved phylogenetic relationships to infer gene tree topologies and visualize genome-wide patterns of gene tree incongruence. Using phylogenetic analysis in nonoverlapping 10-kb windows, we show that gene tree topologies are extremely diverse and change on a very small physical scale. Moreover, we find strong evidence for gene flow among flycatcher species, with distinct patterns of reduced introgression on the Z chromosome. To resolve species relationships on the background of widespread gene tree incongruence, we used four complementary coalescent-based methods for species tree reconstruction, including complex modeling approaches that incorporate post-divergence gene flow among species. This allowed us to infer the most likely species tree with high confidence. Based on this finding, we show that regions of reduced effective population size, which have been suggested as particularly useful for species tree inference, can produce positively misleading species tree topologies. Our findings disclose the pitfalls of using loci potentially under selection as phylogenetic markers and highlight the potential of modeling approaches to disentangle species relationships in systems with large effective population sizes and post-divergence gene flow. PMID:26187295

  14. The paradox of HBV evolution as revealed from a 16th century mummy

    PubMed Central

    Duggan, Ana T.; Poinar, Debi; Poinar, Hendrik N.

    2018-01-01

    Hepatitis B virus (HBV) is a ubiquitous viral pathogen associated with large-scale morbidity and mortality in humans. However, there is considerable uncertainty over the time-scale of its origin and evolution. Initial shotgun data from a mid-16th century Italian child mummy, that was previously paleopathologically identified as having been infected with Variola virus (VARV, the agent of smallpox), showed no DNA reads for VARV yet did for hepatitis B virus (HBV). Previously, electron microscopy provided evidence for the presence of VARV in this sample, although similar analyses conducted here did not reveal any VARV particles. We attempted to enrich and sequence for both VARV and HBV DNA. Although we did not recover any reads identified as VARV, we were successful in reconstructing an HBV genome at 163.8X coverage. Strikingly, both the HBV sequence and that of the associated host mitochondrial DNA displayed a nearly identical cytosine deamination pattern near the termini of DNA fragments, characteristic of an ancient origin. In contrast, phylogenetic analyses revealed a close relationship between the putative ancient virus and contemporary HBV strains (of genotype D), at first suggesting contamination. In addressing this paradox we demonstrate that HBV evolution is characterized by a marked lack of temporal structure. This confounds attempts to use molecular clock-based methods to date the origin of this virus over the time-frame sampled so far, and means that phylogenetic measures alone cannot yet be used to determine HBV sequence authenticity. If genuine, this phylogenetic pattern indicates that the genotypes of HBV diversified long before the 16th century, and enables comparison of potential pathogenic similarities between modern and ancient HBV. These results have important implications for our understanding of the emergence and evolution of this common viral pathogen. PMID:29300782

  15. Examination into the taxonomic position of Bacillus thermotolerans Yang et al., 2013, proposal for its reclassification into a new genus and species Quasibacillus thermotolerans gen. nov., comb. nov. and reclassification of B. encimensis Dastager et al., 2015 as a later heterotypic synonym of B. badius.

    PubMed

    Verma, Ashish; Pal, Yash; Khatri, Indu; Ojha, Anup Kumar; Gruber-Vodicka, Harald; Schumann, Peter; Dastager, Syed; Subramanian, Srikrishna; Mayilraj, Shanmugam; Krishnamurthi, Srinivasan

    2017-10-01

    Two novel Gram-staining positive, rod-shaped, moderately halotolerant, endospore forming bacterial strains 5.5LF 38TD and 5.5LF 48TD were isolated and taxonomically characterized from a landfill in Chandigarh, India. The analysis of 16S rRNA gene sequences of the strains confirmed their closest identity to Bacillus thermotolerans SgZ-8T with 99.9% sequence similarity. A comparative phylogenetic analysis of strains 5.5LF 38TD, 5.5LF 48TD and B. thermotolerans SgZ-8 T confirmed their separation into a novel genus with B. badius and genus Domibacillus as the closest phylogenetic relatives. The major fatty acids of the strains are iso-C 15:0 and iso-C 16:0 and MK-7 is the only quinone. The major polar lipids are diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The digital DNA-DNA hybridization (DDH) and ortho average nucleotide identity (ANI) values calculated through whole genome sequences indicated that the three strains showed low relatedness with their phylogenetic neighbours. Based on evidences from phylogenomic analyses and polyphasic taxonomic characterization we propose reclassification of the species B. thermotolerans into a novel genus named Quasibacillus thermotolerans gen. nov., comb. nov with the type strain SgZ-8 T (=CCTCC AB2012108 T =KACC 16706 T ). Further our analyses also revealed that B. encimensis SGD-V-25 T is a later heterotypic synonym of Bacillus badius DSM 23 T . Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. NAC transcription factor genes: genome-wide identification, phylogenetic, motif and cis-regulatory element analysis in pigeonpea (Cajanus cajan (L.) Millsp.).

    PubMed

    Satheesh, Viswanathan; Jagannadham, P Tej Kumar; Chidambaranathan, Parameswaran; Jain, P K; Srinivasan, R

    2014-12-01

    The NAC (NAM, ATAF and CUC) proteins are plant-specific transcription factors implicated in development and stress responses. In the present study 88 pigeonpea NAC genes were identified from the recently published draft genome of pigeonpea by using homology based and de novo prediction programmes. These sequences were further subjected to phylogenetic, motif and promoter analyses. In motif analysis, highly conserved motifs were identified in the NAC domain and also in the C-terminal region of the NAC proteins. A phylogenetic reconstruction using pigeonpea, Arabidopsis and soybean NAC genes revealed 33 putative stress-responsive pigeonpea NAC genes. Several stress-responsive cis-elements were identified through in silico analysis of the promoters of these putative stress-responsive genes. This analysis is the first report of NAC gene family in pigeonpea and will be useful for the identification and selection of candidate genes associated with stress tolerance.

  17. Multiplex PCR-Based Next-Generation Sequencing and Global Diversity of Seoul Virus in Humans and Rats.

    PubMed

    Kim, Won-Keun; No, Jin Sun; Lee, Seung-Ho; Song, Dong Hyun; Lee, Daesang; Kim, Jeong-Ah; Gu, Se Hun; Park, Sunhye; Jeong, Seong Tae; Kim, Heung-Chul; Klein, Terry A; Wiley, Michael R; Palacios, Gustavo; Song, Jin-Won

    2018-02-01

    Seoul virus (SEOV) poses a worldwide public health threat. This virus, which is harbored by Rattus norvegicus and R. rattus rats, is the causative agent of hemorrhagic fever with renal syndrome (HFRS) in humans, which has been reported in Asia, Europe, the Americas, and Africa. Defining SEOV genome sequences plays a critical role in development of preventive and therapeutic strategies against the unique worldwide hantavirus. We applied multiplex PCR-based next-generation sequencing to obtain SEOV genome sequences from clinical and reservoir host specimens. Epidemiologic surveillance of R. norvegicus rats in South Korea during 2000-2016 demonstrated that the serologic prevalence of enzootic SEOV infections was not significant on the basis of sex, weight (age), and season. Viral loads of SEOV in rats showed wide dissemination in tissues and dynamic circulation among populations. Phylogenetic analyses showed the global diversity of SEOV and possible genomic configuration of genetic exchanges.

  18. Beringian origins and cryptic speciation events in the fly agaric (Amanita muscaria).

    PubMed

    Geml, J; Laursen, G A; O'neill, K; Nusbaum, H C; Taylor, D L

    2006-01-01

    Amanita muscaria sensu lato has a wide geographic distribution, occurring in Europe, Asia, Africa, Australia, New Zealand, and North, Central and South America. Previous phylogenetic work by others indicates three geographic clades (i.e. 'Eurasian', 'Eurasian-alpine' and 'North American' groups) within A. muscaria. However, the historical dispersal patterns of A. muscaria remained unclear. In our project, we collected specimens from arctic, boreal and humid temperate regions in Alaska, and generated DNA sequence data from the protein-coding beta-tubulin gene and the internal transcribed spacer (ITS) and large subunit (LSU) regions of the ribosomal DNA repeat. Homologous sequences from additional A. muscaria isolates were downloaded from GenBank. We conducted phylogenetic and nested clade analyses (NCA) to reveal the phylogeographic history of the species complex. Although phylogenetic analyses confirmed the existence of the three above-mentioned clades, representatives of all three groups were found to occur sympatrically in Alaska, suggesting that they represent cryptic phylogenetic species with partially overlapping geographic distributions rather than being allopatric populations. All phylogenetic species share at least two morphological varieties with other species, suggesting ancestral polymorphism in pileus and wart colour pre-dating their speciations. The ancestral population of A. muscaria likely evolved in the Siberian-Beringian region and underwent fragmentation as inferred from NCA and the coalescent analyses. The data suggest that these populations later evolved into species, expanded their range in North America and Eurasia. In addition to range expansions, populations of all three species remained in Beringia and adapted to the cooling climate.

  19. Software for optimization of SNP and PCR-RFLP genotyping to discriminate many genomes with the fewest assays

    PubMed Central

    Gardner, Shea N; Wagner, Mark C

    2005-01-01

    Background Microbial forensics is important in tracking the source of a pathogen, whether the disease is a naturally occurring outbreak or part of a criminal investigation. Results A method and SPR Opt (SNP and PCR-RFLP Optimization) software to perform a comprehensive, whole-genome analysis to forensically discriminate multiple sequences is presented. Tools for the optimization of forensic typing using Single Nucleotide Polymorphism (SNP) and PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) analyses across multiple isolate sequences of a species are described. The PCR-RFLP analysis includes prediction and selection of optimal primers and restriction enzymes to enable maximum isolate discrimination based on sequence information. SPR Opt calculates all SNP or PCR-RFLP variations present in the sequences, groups them into haplotypes according to their co-segregation across those sequences, and performs combinatoric analyses to determine which sets of haplotypes provide maximal discrimination among all the input sequences. Those set combinations requiring that membership in the fewest haplotypes be queried (i.e. the fewest assays be performed) are found. These analyses highlight variable regions based on existing sequence data. These markers may be heterogeneous among unsequenced isolates as well, and thus may be useful for characterizing the relationships among unsequenced as well as sequenced isolates. The predictions are multi-locus. Analyses of mumps and SARS viruses are summarized. Phylogenetic trees created based on SNPs, PCR-RFLPs, and full genomes are compared for SARS virus, illustrating that purported phylogenies based only on SNP or PCR-RFLP variations do not match those based on multiple sequence alignment of the full genomes. Conclusion This is the first software to optimize the selection of forensic markers to maximize information gained from the fewest assays, accepting whole or partial genome sequence data as input. As more sequence data becomes available for multiple strains and isolates of a species, automated, computational approaches such as those described here will be essential to make sense of large amounts of information, and to guide and optimize efforts in the laboratory. The software and source code for SPR Opt is publicly available and free for non-profit use at . PMID:15904493

  20. Environmental DNA sequencing primers for eutardigrades and bdelloid rotifers

    PubMed Central

    2009-01-01

    Background The time it takes to isolate individuals from environmental samples and then extract DNA from each individual is one of the problems with generating molecular data from meiofauna such as eutardigrades and bdelloid rotifers. The lack of consistent morphological information and the extreme abundance of these classes makes morphological identification of rare, or even common cryptic taxa a large and unwieldy task. This limits the ability to perform large-scale surveys of the diversity of these organisms. Here we demonstrate a culture-independent molecular survey approach that enables the generation of large amounts of eutardigrade and bdelloid rotifer sequence data directly from soil. Our PCR primers, specific to the 18s small-subunit rRNA gene, were developed for both eutardigrades and bdelloid rotifers. Results The developed primers successfully amplified DNA of their target organism from various soil DNA extracts. This was confirmed by both the BLAST similarity searches and phylogenetic analyses. Tardigrades showed much better phylogenetic resolution than bdelloids. Both groups of organisms exhibited varying levels of endemism. Conclusion The development of clade-specific primers for characterizing eutardigrades and bdelloid rotifers from environmental samples should greatly increase our ability to characterize the composition of these taxa in environmental samples. Environmental sequencing as shown here differs from other molecular survey methods in that there is no need to pre-isolate the organisms of interest from soil in order to amplify their DNA. The DNA sequences obtained from methods that do not require culturing can be identified post-hoc and placed phylogenetically as additional closely related sequences are obtained from morphologically identified conspecifics. Our non-cultured environmental sequence based approach will be able to provide a rapid and large-scale screening of the presence, absence and diversity of Bdelloidea and Eutardigrada in a variety of soils. PMID:20003362

  1. Polynucleobacter meluiroseus sp. nov., a bacterium isolated from a lake located in the mountains of the Mediterranean island of Corsica.

    PubMed

    Pitt, Alexandra; Schmidt, Johanna; Lang, Elke; Whitman, William B; Woyke, Tanja; Hahn, Martin W

    2018-06-01

    Strain AP-Melu-1000-B4 was isolated from a lake located in the mountains of the Mediterranean island of Corsica (France). Phenotypic, chemotaxonomic and genomic traits were investigated. Phylogenetic analyses based on 16S rRNA gene sequencing referred the strain to the cryptic species complex PnecC within the genus Polynucleobacter. The strain encoded genes for biosynthesis of proteorhodopsin and retinal. When pelleted by centrifugation the strain showed an intense rose colouring. Major fatty acids were C16 : 1ω7c, C16 : 0, C18 : 1ω7c and summed feature 2 (C16 : 1 isoI and C14 : 0-3OH). The sequence of the 16S rRNA gene contained an indel which was not present in any previously described Polynucleobacter species. Genome sequencing revealed a genome size of 1.89 Mbp and a G+C content of 46.6 mol%. In order to resolve the phylogenetic position of the new strain within subcluster PnecC, its phylogeny was reconstructed from sequences of 319 shared genes. To represent all currently described Polynucleobacter species by whole genome sequences, three type strains were additionally sequenced. Our phylogenetic analysis revealed that strain AP-Melu-100-B4 occupied a basal position compared with previously described PnecC strains. Pairwise determined whole genome average nucleotide identity (gANI) values suggested that strain AP-Melu-1000-B4 represents a new species, for which we propose the name Polynucleobacter meluiroseus sp. nov. with the type strain AP-Melu-1000-B4 T (=DSM 103591 T =CIP 111329 T ).

  2. The First Complete Mitochondrial Genome Sequences for Stomatopod Crustaceans: Implications for Phylogeny

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swinstrom, Kirsten; Caldwell, Roy; Fourcade, H. Matthew

    2005-09-07

    We report the first complete mitochondrial genome sequences of stomatopods and compare their features to each other and to those of other crustaceans. Phylogenetic analyses of the concatenated mitochondrial protein-coding sequences were used to explore relationships within the Stomatopoda, within the malacostracan crustaceans, and among crustaceans and insects. Although these analyses support the monophyly of both Malacostraca and, within it, Stomatopoda, it also confirms the view of a paraphyletic Crustacea, with Malacostraca being more closely related to insects than to the branchiopod crustaceans.

  3. Taxonomic revision of the Chinese Limnonectes (Anura, Dicroglossidae) with the description of a new species from China and Myanmar.

    PubMed

    Suwannapoom, Chatmongkon; Yuan, Zhi-Yong; Chen, Jin-Min; Hou, Mian; Zhao, Hai-Peng; Wang, Li-Jun; Nguyen, Truong Son; Nguyen, Truong Q; Murphy, Robert W; Sullivan, Jaqueline; Mcleod, David S; Che, Jing

    2016-03-21

    Phylogenetic reconstructions derived from DNA sequence data play a central role in documenting the number of species in a complex. Such analyses are pointing to the existence of many cryptic species, especially in poorly understood groups such as the genus Limnonectes, and the L. kuhlii species complex in particular. To understand the Limnonectes frogs of China, we reconstruct the major matrilineal genealogy of Limnonectes from China and Southeast Asia based on 12S rRNA, tRNAVal and 16S rRNA gene sequences. Based on new data we recognize five species of Limnonectes in China including L. bannaensis, L. fujianensis, L. fragilis, L. taylori (new record), and a new species from southern China and Myanmar. Phylogenetically, the new species is more closely related to the clade comprising L. taylori, L. megastomias, L. isanensis, L. nguyenorum, and L. jarujini from Thailand than to other Chinese species. This study supports previous findings of sympatric members of a species complex that are not each other's closest relatives.

  4. Analysis of the nucleoprotein gene identifies three distinct lineages of viral haemorrhagic septicemia virus (VHSV) within the European marine environment

    USGS Publications Warehouse

    Snow, M.; Cunningham, C.O.; Melvin, W.T.; Kurath, G.

    1999-01-01

    A ribonuclease (RNase) protection assay (RPA) has been used to detect nucleotide sequence variation within the nucleoprotein gene of 39 viral haemorrhagic septicaemia virus (VHSV) isolates of European marine origin. The classification of VHSV isolates based on RPA cleavage patterns permitted the identification of ten distinct groups of viruses based on differences at the molecular level. The nucleotide sequence of representatives of each of these groupings was determined and subjected to phylogenetic analysis. This revealed grouping of the European marine isolates of VHSV into three genotypes circulating within distinct geographic areas. A fourth genotype was identified comprising isolates originating from North America. Phylogenetic analyses indicated that VHSV isolates recovered from wild caught fish around the British Isles were genetically related to isolates responsible for losses in farmed turbot. Furthermore, a relationship between naturally occurring marine isolates and VHSV isolates causing mortality among rainbow trout in continental Europe was demonstrated. Analysis of the nucleoprotein gene identifies distinct lineages of viral haemorrhagic septicaemia virus within the European marine environment. Virus Res. 63, 35-44. Available from: 

  5. Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes

    PubMed Central

    Germot, Agnès; Philippe, Hervé; Le Guyader, Hervé

    1996-01-01

    Molecular phylogenetic analyses, based mainly on ribosomal RNA, show that three amitochondriate protist lineages, diplomonads, microsporidia, and trichomonads, emerge consistently at the base of the eukaryotic tree before groups having mitochondria. This suggests that these groups could have diverged before the mitochondrial endosymbiosis. Nevertheless, since all these organisms live in anaerobic environments, the absence of mitochondria might be due to secondary loss, as demonstrated for the later emerging eukaryote Entamoeba histolytica. We have now isolated from Trichomonas vaginalis a gene encoding a chaperone protein (HSP70) that in other lineages is addressed to the mitochondrial compartment. The phylogenetic reconstruction unambiguously located this HSP70 within a large set of mitochondrial sequences, itself a sister-group of α-purple bacteria. In addition, the T. vaginalis protein exhibits the GDAWV sequence signature, so far exclusively found in mitochondrial HSP70 and in proteobacterial dnaK. Thus mitochondrial endosymbiosis could have occurred earlier than previously assumed. The trichomonad double membrane-bounded organelles, the hydrogenosomes, could have evolved from mitochondria. PMID:8962101

  6. Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes.

    PubMed

    Germot, A; Philippe, H; Le Guyader, H

    1996-12-10

    Molecular phylogenetic analyses, based mainly on ribosomal RNA, show that three amitochondriate protist lineages, diplomonads, microsporidia, and trichomonads, emerge consistently at the base of the eukaryotic tree before groups having mitochondria. This suggests that these groups could have diverged before the mitochondrial endosymbiosis. Nevertheless, since all these organisms live in anaerobic environments, the absence of mitochondria might be due to secondary loss, as demonstrated for the later emerging eukaryote Entamoeba histolytica. We have now isolated from Trichomonas vaginalis a gene encoding a chaperone protein (HSP70) that in other lineages is addressed to the mitochondrial compartment. The phylogenetic reconstruction unambiguously located this HSP70 within a large set of mitochondrial sequences, itself a sister-group of alpha-purple bacteria. In addition, the T. vaginalis protein exhibits the GDAWV sequence signature, so far exclusively found in mitochondrial HSP70 and in proteobacterial dnaK. Thus mitochondrial endosymbiosis could have occurred earlier than previously assumed. The trichomonad double membrane-bounded organelles, the hydrogenosomes, could have evolved from mitochondria.

  7. Phylogenetic analyses indicate little variation among reticuloendotheliosis viruses infecting avian species, including the endangered Attwater's prairie chicken.

    PubMed

    Bohls, Ryan L; Linares, Jose A; Gross, Shannon L; Ferro, Pam J; Silvy, Nova J; Collisson, Ellen W

    2006-08-01

    Reticuloendotheliosis virus infection, which typically causes systemic lymphomas and high mortality in the endangered Attwater's prairie chicken, has been described as a major obstacle in repopulation efforts of captive breeding facilities in Texas. Although antigenic relationships among reticuloendotheliosis virus (REV) strains have been previously determined, phylogenetic relationships have not been reported. The pol and env of REV proviral DNA from prairie chickens (PC-R92 and PC-2404), from poxvirus lesions in domestic chickens, the prototype poultry derived REV-A and chick syncytial virus (CSV), and duck derived spleen necrosis virus (SNV) were PCR amplified and sequenced. The 5032bp, that included the pol and most of env genes, of the PC-R92 and REV-A were 98% identical, and nucleotide sequence identities of smaller regions within the pol and env from REV strains examined ranged from 95 to 99% and 93 to 99%, respectively. The putative amino acid sequences were 97-99% identical in the polymerase and 90-98% in the envelope. Phylogenetic analyses of the nucleotide and amino acid sequences indicated the closest relationship among the recent fowl pox-associated chicken isolates, the prairie chicken isolates and the prototype CSV while only the SNV appeared to be distinctly divergent. While the origin of the naturally occurring viruses is not known, the avian poxvirus may be a critical component of transmission of these ubiquitous oncogenic viruses.

  8. Analyses of RNA Polymerase II genes from free-living protists: phylogeny, long branch attraction, and the eukaryotic big bang.

    PubMed

    Dacks, Joel B; Marinets, Alexandra; Ford Doolittle, W; Cavalier-Smith, Thomas; Logsdon, John M

    2002-06-01

    The phylogenetic relationships among major eukaryotic protist lineages are largely uncertain. Two significant obstacles in reconstructing eukaryotic phylogeny are long-branch attraction (LBA) effects and poor taxon sampling of free-living protists. We have obtained and analyzed gene sequences encoding the largest subunit of RNA Polymerase II (RPB1) from Naegleria gruberi (a heterolobosean), Cercomonas ATCC 50319 (a cercozoan), and Ochromonas danica (a heterokont); we have also analyzed the RPB1 gene from the nucleomorph (nm) genome of Guillardia theta (a cryptomonad). Using a variety of phylogenetic methods our analysis shows that RPB1s from Giardia intestinalis and Trichomonas vaginalis are probably subject to intense LBA effects. Thus, the deep branching of these taxa on RPB1 trees is questionable and should not be interpreted as evidence favoring their early divergence. Similar effects are discernable, to a lesser extent, with the Mastigamoeba invertens RPB1 sequence. Upon removal of the outgroup and these problematic sequences, analyses of the remaining RPB1s indicate some resolution among major eukaryotic groups. The most robustly supported higher-level clades are the opisthokonts (animals plus fungi) and the red algae plus the cryptomonad nm-the latter result gives added support to the red algal origin of cryptomonad chloroplasts. Clades comprising Dictyostelium discoideum plus Acanthamoeba castellanii (Amoebozoa) and Ochromonas plus Plasmodium falciparum (chromalveolates) are consistently observed and moderately supported. The clades supported by our RPB1 analyses are congruent with other data, suggesting that bona fide phylogenetic relationships are being resolved. Thus, the RPB1 gene has apparently retained some phylogenetically meaningful signal, making it worthwhile to obtain sequences from more diverse protist taxa. Additional RPB1 data, especially in combination with other genes, should provide further resolution of branching orders among protist groups within the apparently rapid early divergence of eukaryotes.

  9. Phylogenomic analyses data of the avian phylogenomics project.

    PubMed

    Jarvis, Erich D; Mirarab, Siavash; Aberer, Andre J; Li, Bo; Houde, Peter; Li, Cai; Ho, Simon Y W; Faircloth, Brant C; Nabholz, Benoit; Howard, Jason T; Suh, Alexander; Weber, Claudia C; da Fonseca, Rute R; Alfaro-Núñez, Alonzo; Narula, Nitish; Liu, Liang; Burt, Dave; Ellegren, Hans; Edwards, Scott V; Stamatakis, Alexandros; Mindell, David P; Cracraft, Joel; Braun, Edward L; Warnow, Tandy; Jun, Wang; Gilbert, M Thomas Pius; Zhang, Guojie

    2015-01-01

    Determining the evolutionary relationships among the major lineages of extant birds has been one of the biggest challenges in systematic biology. To address this challenge, we assembled or collected the genomes of 48 avian species spanning most orders of birds, including all Neognathae and two of the five Palaeognathae orders. We used these genomes to construct a genome-scale avian phylogenetic tree and perform comparative genomic analyses. Here we present the datasets associated with the phylogenomic analyses, which include sequence alignment files consisting of nucleotides, amino acids, indels, and transposable elements, as well as tree files containing gene trees and species trees. Inferring an accurate phylogeny required generating: 1) A well annotated data set across species based on genome synteny; 2) Alignments with unaligned or incorrectly overaligned sequences filtered out; and 3) Diverse data sets, including genes and their inferred trees, indels, and transposable elements. Our total evidence nucleotide tree (TENT) data set (consisting of exons, introns, and UCEs) gave what we consider our most reliable species tree when using the concatenation-based ExaML algorithm or when using statistical binning with the coalescence-based MP-EST algorithm (which we refer to as MP-EST*). Other data sets, such as the coding sequence of some exons, revealed other properties of genome evolution, namely convergence. The Avian Phylogenomics Project is the largest vertebrate phylogenomics project to date that we are aware of. The sequence, alignment, and tree data are expected to accelerate analyses in phylogenomics and other related areas.

  10. Phylogenomic and Molecular Demarcation of the Core Members of the Polyphyletic Pasteurellaceae Genera Actinobacillus, Haemophilus, and Pasteurella

    PubMed Central

    Naushad, Sohail; Adeolu, Mobolaji; Goel, Nisha; Khadka, Bijendra; Al-Dahwi, Aqeel; Gupta, Radhey S.

    2015-01-01

    The genera Actinobacillus, Haemophilus, and Pasteurella exhibit extensive polyphyletic branching in phylogenetic trees and do not represent coherent clusters of species. In this study, we have utilized molecular signatures identified through comparative genomic analyses in conjunction with genome based and multilocus sequence based phylogenetic analyses to clarify the phylogenetic and taxonomic boundary of these genera. We have identified large clusters of Actinobacillus, Haemophilus, and Pasteurella species which represent the “sensu stricto” members of these genera. We have identified 3, 7, and 6 conserved signature indels (CSIs), which are specifically shared by sensu stricto members of Actinobacillus, Haemophilus, and Pasteurella, respectively. We have also identified two different sets of CSIs that are unique characteristics of the pathogen containing genera Aggregatibacter and Mannheimia, respectively. It is now possible to demarcate the genera Actinobacillus sensu stricto, Haemophilus sensu stricto, and Pasteurella sensu stricto on the basis of discrete molecular signatures. The other members of the genera Actinobacillus, Haemophilus, and Pasteurella that do not fall within the “sensu stricto” clades and do not contain these molecular signatures should be reclassified as other genera. The CSIs identified here also provide useful diagnostic targets for the identification of current and novel members of the indicated genera. PMID:25821780

  11. First Record of Raillietina celebensis (Cestoda: Cyclophyllidea) in South America: Redescription and Phylogeny.

    PubMed

    de Oliveira Simões, Raquel; Simões, Susana Balmant Enrique; Luque, José Luis; Iñiguez, Alena Mayo; Júnior, Arnaldo Maldonado

    2017-08-01

    Raillietina celebensis is a cestode that parasitizes the small intestine of rats and humans. Here, we detail the morphology and morphometry of R. celebensis based on specimens collected from Rattus norvegicus in the municipality of São Gonçalo, state of Rio de Janeiro, Brazil, by light and confocal scanning laser microscopies and also report the results of molecular phylogenetic analyses to determine its relationships within the family Davaineidae. Analysis of the number and size of testes, number and shape of rostellar hooks, cirrus sac length, capsules and eggs per capsule, and morphology of the mature proglottid allowed concluding that the present specimens constitute a new record of R. celebensis in South America. Our genetic and phylogenetic analyses, based on the partial small subunit 18S rRNA gene, revealed R. celebensis to be in the family Davaineidae within the genus Raillietina, in agreement with the morphological taxonomy. Phylogenetic trees obtained by neighbor-joining and maximum likelihood methods demonstrated R. celebensis as a unique taxonomic unit, and also demonstrated some taxonomic inconsistences. The incorporation of Brazilian R. celebensis sequences derived from mammals in the phylogeny of davaineids is consistent with the assertion that neither Raillietina nor Fuhrmannetta can be supported as distinct genera.

  12. Coxiella Detection in Ticks from Wildlife and Livestock in Malaysia

    PubMed Central

    Khoo, Jing-Jing; Lim, Fang-Shiang; Chen, Fezshin; Phoon, Wai-Hong; Khor, Chee-Sieng; Pike, Brian L.; Chang, Li-Yen

    2016-01-01

    Abstract Recent studies have shown that ticks harbor Coxiella-like bacteria, which are potentially tick-specific endosymbionts. We recently described the detection of Coxiella-like bacteria and possibly Coxiella burnetii in ticks found from rural areas in Malaysia. In the present study, we collected ticks, including Haemaphysalis bispinosa, Haemaphysalis hystricis, Dermacentor compactus, Dermacentor steini, and Amblyomma sp. from wildlife and domesticated goats from four different locations in Malaysia. Coxiella 16s rRNA genomic sequences were detected by PCR in 89% of ticks tested. Similarity analysis and phylogenetic analyses of the 16s rRNA and rpoB partial sequences were performed for 10 representative samples selected based on the tick species, sex, and location. The findings here suggested the presence of C. burnetii in two samples, each from D. steini and H. hystricis. The sequences of both samples clustered with published C. burnetii sequences. The remaining eight tick samples were shown to harbor 16s rRNA sequences of Coxiella-like bacteria, which clustered phylogenetically according to the respective tick host species. The findings presented here added to the growing evidence of the association between Coxiella-like bacteria and ticks across species and geographical boundaries. The importance of C. burnetii found in ticks in Malaysia warrants further investigation. PMID:27763821

  13. Phylogenetic analysis of Fusobacterium prausnitzii based upon the 16S rRNA gene sequence and PCR confirmation.

    PubMed

    Wang, R F; Cao, W W; Cerniglia, C E

    1996-01-01

    In order to develop a PCR method to detect Fusobacterium prausnitzii in human feces and to clarify the phylogenetic position of this species, its 16S rRNA gene sequence was determined. The sequence described in this paper is different from the 16S rRNA gene sequence is specific for F. prausnitzii, and the results of this assay confirmed that F. prausnitzii is the most common species in human feces. However, a PCR assay based on the original GenBank sequence was negative when it was performed with two strains of F. prausnitzii obtained from the American Type Culture Collection. A phylogenetic tree based on the new 16S rRNA gene sequence was constructed. On this tree F. prausnitzii was not a member of the Fusobacterium group but was closer to some Eubacterium spp. and located between Clostridium "clusters III and IV" (M.D. Collins, P.A. Lawson, A. Willems, J.J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe, and J.A.E. Farrow, Int. J. Syst. Bacteriol. 44:812-826, 1994).

  14. [Phylogenetic analysis of closely related Leuconostoc citreum species based on partial housekeeping genes].

    PubMed

    Lv, Qiang; Chen, Ming; Xu, Haiyan; Song, Yuqin; Sun, Zhihong; Dan, Tong; Sun, Tiansong

    2013-07-04

    Using the 16S rRNA, dnaA, murC and pyrG gene sequences, we identified the phylogenetic relationship among closely related Leuconostoc citreum species. Seven Leu. citreum strains originally isolated from sourdough were characterized by PCR methods to amplify the dnaA, murC and pyrG gene sequences, which were determined to assess the suitability as phylogenetic markers. Then, we estimated the genetic distance and constructed the phylogenetic trees including 16S rRNA and above mentioned three housekeeping genes combining with published corresponding sequences. By comparing the phylogenetic trees, the topology of three housekeeping genes trees were consistent with that of 16S rRNA gene. The homology of closely related Leu. citreum species among dnaA, murC, pyrG and 16S rRNA gene sequences were different, ranged from75.5% to 97.2%, 50.2% to 99.7%, 65.0% to 99.8% and 98.5% 100%, respectively. The phylogenetic relationship of three housekeeping genes sequences were highly consistent with the results of 16S rRNA gene sequence, while the genetic distance of these housekeeping genes were extremely high than 16S rRNA gene. Consequently, the dnaA, murC and pyrG gene are suitable for classification and identification closely related Leu. citreum species.

  15. Ignoring heterozygous sites biases phylogenomic estimates of divergence times: implications for the evolutionary history of microtus voles.

    PubMed

    Lischer, Heidi E L; Excoffier, Laurent; Heckel, Gerald

    2014-04-01

    Phylogenetic reconstruction of the evolutionary history of closely related organisms may be difficult because of the presence of unsorted lineages and of a relatively high proportion of heterozygous sites that are usually not handled well by phylogenetic programs. Genomic data may provide enough fixed polymorphisms to resolve phylogenetic trees, but the diploid nature of sequence data remains analytically challenging. Here, we performed a phylogenomic reconstruction of the evolutionary history of the common vole (Microtus arvalis) with a focus on the influence of heterozygosity on the estimation of intraspecific divergence times. We used genome-wide sequence information from 15 voles distributed across the European range. We provide a novel approach to integrate heterozygous information in existing phylogenetic programs by repeated random haplotype sampling from sequences with multiple unphased heterozygous sites. We evaluated the impact of the use of full, partial, or no heterozygous information for tree reconstructions on divergence time estimates. All results consistently showed four deep and strongly supported evolutionary lineages in the vole data. These lineages undergoing divergence processes split only at the end or after the last glacial maximum based on calibration with radiocarbon-dated paleontological material. However, the incorporation of information from heterozygous sites had a significant impact on absolute and relative branch length estimations. Ignoring heterozygous information led to an overestimation of divergence times between the evolutionary lineages of M. arvalis. We conclude that the exclusion of heterozygous sites from evolutionary analyses may cause biased and misleading divergence time estimates in closely related taxa.

  16. Selection and Trans-Species Polymorphism of Major Histocompatibility Complex Class II Genes in the Order Crocodylia

    PubMed Central

    Jaratlerdsiri, Weerachai; Isberg, Sally R.; Higgins, Damien P.; Miles, Lee G.; Gongora, Jaime

    2014-01-01

    Major Histocompatibility Complex (MHC) class II genes encode for molecules that aid in the presentation of antigens to helper T cells. MHC characterisation within and between major vertebrate taxa has shed light on the evolutionary mechanisms shaping the diversity within this genomic region, though little characterisation has been performed within the Order Crocodylia. Here we investigate the extent and effect of selective pressures and trans-species polymorphism on MHC class II α and β evolution among 20 extant species of Crocodylia. Selection detection analyses showed that diversifying selection influenced MHC class II β diversity, whilst diversity within MHC class II α is the result of strong purifying selection. Comparison of translated sequences between species revealed the presence of twelve trans-species polymorphisms, some of which appear to be specific to the genera Crocodylus and Caiman. Phylogenetic reconstruction clustered MHC class II α sequences into two major clades representing the families Crocodilidae and Alligatoridae. However, no further subdivision within these clades was evident and, based on the observation that most MHC class II α sequences shared the same trans-species polymorphisms, it is possible that they correspond to the same gene lineage across species. In contrast, phylogenetic analyses of MHC class II β sequences showed a mixture of subclades containing sequences from Crocodilidae and/or Alligatoridae, illustrating orthologous relationships among those genes. Interestingly, two of the subclades containing sequences from both Crocodilidae and Alligatoridae shared specific trans-species polymorphisms, suggesting that they may belong to ancient lineages pre-dating the divergence of these two families from the common ancestor 85–90 million years ago. The results presented herein provide an immunogenetic resource that may be used to further assess MHC diversity and functionality in Crocodylia. PMID:24503938

  17. Phylogenetic analysis of Haemaphysalis erinacei Pavesi, 1884 (Acari: Ixodidae) from China, Turkey, Italy and Romania.

    PubMed

    Hornok, Sándor; Wang, Yuanzhi; Otranto, Domenico; Keskin, Adem; Lia, Riccardo Paolo; Kontschán, Jenő; Takács, Nóra; Farkas, Róbert; Sándor, Attila D

    2016-12-15

    Haemaphysalis erinacei is one of the few ixodid tick species for which valid names of subspecies exist. Despite their disputed taxonomic status in the literature, these subspecies have not yet been compared with molecular methods. The aim of the present study was to investigate the phylogenetic relationships of H. erinacei subspecies, in the context of the first finding of this tick species in Romania. After morphological identification, DNA was extracted from five adults of H. e. taurica (from Romania and Turkey), four adults of H. e. erinacei (from Italy) and 17 adults of H. e. turanica (from China). From these samples fragments of the cytochrome c oxidase subunit 1 (cox1) and 16S rRNA genes were amplified via PCR and sequenced. Results showed that cox1 and 16S rRNA gene sequence divergences between H. e. taurica from Romania and H. e. erinacei from Italy were below 2%. However, the sequence divergences between H. e. taurica from Romania and H. e. turanica from China were high (up to 7.3% difference for the 16S rRNA gene), exceeding the reported level of sequence divergence between closely related tick species. At the same time, two adults of H. e. taurica from Turkey had higher 16S rRNA gene similarity to H. e. turanica from China (up to 97.5%) than to H. e. taurica from Romania (96.3%), but phylogenetically clustered more closely to H. e. taurica than to H. e. turanica. This is the first finding of H. erinacei in Romania, and the first (although preliminary) phylogenetic comparison of H. erinacei subspecies. Phylogenetic analyses did not support that the three H. erinacei subspecies evaluated here are of equal taxonomic rank, because the genetic divergence between H. e. turanica from China and H. e. taurica from Romania exceeded the usual level of sequence divergence between closely related tick species, suggesting that they might represent different species. Therefore, the taxonomic status of the subspecies of H. erinacei needs to be revised based on a larger number of specimens collected throughout its geographical range.

  18. The First Mitogenome of the Cyprus Mouflon (Ovis gmelini ophion): New Insights into the Phylogeny of the Genus Ovis

    PubMed Central

    Sanna, Daria; Barbato, Mario; Hadjisterkotis, Eleftherios; Cossu, Piero; Decandia, Luca; Trova, Sandro; Pirastru, Monica; Leoni, Giovanni Giuseppe; Naitana, Salvatore; Francalacci, Paolo; Masala, Bruno; Manca, Laura; Mereu, Paolo

    2015-01-01

    Sheep are thought to have been one of the first livestock to be domesticated in the Near East, thus playing an important role in human history. The current whole mitochondrial genome phylogeny for the genus Ovis is based on: the five main domestic haplogroups occurring among sheep (O. aries), along with molecular data from two wild European mouflons, three urials, and one argali. With the aim to shed some further light on the phylogenetic relationship within this genus, the first complete mitochondrial genome sequence of a Cypriot mouflon (O. gmelini ophion) is here reported. Phylogenetic analyses were performed using a dataset of whole Ovis mitogenomes as well as D-loop sequences. The concatenated sequence of 28 mitochondrial genes of one Cypriot mouflon, and the D-loop sequence of three Cypriot mouflons were compared to sequences obtained from samples representatives of the five domestic sheep haplogroups along with samples of the extant wild and feral sheep. The sample included also individuals from the Mediterranean islands of Sardinia and Corsica hosting remnants of the first wave of domestication that likely went then back to feral life. The divergence time between branches in the phylogenetic tree has been calculated using seven different calibration points by means of Bayesian and Maximum Likelihood inferences. Results suggest that urial (O. vignei) and argali (O. ammon) diverged from domestic sheep about 0.89 and 1.11 million years ago (MYA), respectively; and dates the earliest radiation of domestic sheep common ancestor at around 0.3 MYA. Additionally, our data suggest that the rise of the modern sheep haplogroups happened in the span of time between six and 32 thousand years ago (KYA). A close phylogenetic relationship between the Cypriot and the Anatolian mouflon carrying the X haplotype was detected. The genetic distance between this group and the other ovine haplogroups supports the hypothesis that it may be a new haplogroup never described before. Furthermore, the updated phylogenetic tree presented in this study determines a finer classification of ovine species and may help to classify more accurately new mitogenomes within the established haplogroups so far identified. PMID:26636977

  19. The State of Phylogenetic Analysis: Narrow Visions and Simple Answers-Examples from the Diptera (flies).

    PubMed

    Borkent, Art

    2018-01-17

    The order Diptera is remarkably diverse, not only in species but in morphological variation in every life stage, making them excellent candidates for phylogenetic analysis. Such analysis has been hampered by methods that have severely restricted character state interpretation. Morphological-based phylogenies should be based on a deep understanding of the morphology, development and function of character states, and have extensive outgroup comparisons made to determine their polarity. Character states clearly vary in their value for determining phylogenetic relationships and this needs to be studied and utilized. Characters themselves need more explicit discussion, including how some may be developmentally or functionally related to other characters (and potentially not independent indicators of genealogical relationship). The current practice by many, of filling a matrix with poorly understood character states and highly limited outgroup comparisons, is unacceptable if the results are to be a valid reflection of the actual history of the group.Parsimony analysis is not an objective interpretation of phylogenetic relationships when all characters are treated as equal in value. Exact mathematical values applied to characters are entirely arbitrary and are generally used to produce a phylogeny that the author considers as reasonable. Mathematical appraisal of a given node is similarly inconsequential because characters do not have an intrinsic mathematical value. Bremer support, for example, provides values that have no biological reality but provide the pretence of objectivity. Cladists need to focus their attention on testing the validity of each synapomorphy proposed, as the basis for all further phylogenetic interpretation, rather than the testing of differing phylogenies through various comparative programs.Current phylogenetic analyses have come to increasingly depend on DNA sequence-based characters, in spite of their tumultuous history of inconsistent results. Until such time as sequences can be shown to produce predictive phylogenies (i.e., using Hennigian logic), independent of morphological analysis, they should be viewed with caution and certainly not as a panacea as they are commonly portrayed.The purported comprehensive analyses of phylogenetic relationships between families of Diptera by Wiegmann et al. (2011) and Lambkin et al. (2013) have serious flaws and cannot be considered as the "Periodic Table" of such relationships as originally heralded.Systematists working on Diptera have a plethora of complex and informative morphological synapomorphies in every life stage, either described or awaiting study. Many lineages have the potential of providing a wealth of evolutionary stories to share with other biologists if we produce stable phylogenies based on weighted synapomorphies and interpreted to elucidate the zoogeographic and bionomic divergence of the group. Some lineages are devoid of convincing synapomorphies and, in spite of our desires, should be recognized as being largely uninterpretable.

  20. Redescription and phylogenetic position of Myxobolus aeglefini and Myxobolus platessae n. comb. (Myxosporea), parasites in the cartilage of some North Atlantic marine fishes, with notes on the phylogeny and classification of the Platysporina.

    PubMed

    Karlsbakk, Egil; Kristmundsson, Árni; Albano, Marco; Brown, Paul; Freeman, Mark A

    2017-02-01

    Myxobolus 'aeglefini' Auerbach, 1906 was originally described from cranial cartilage of North sea haddock (Melanogrammus aeglefinus), but has subsequently been recorded from cartilaginous tissues of a range of other gadoid hosts, from pleuronectids and from lumpsucker (Cyclopterus lumpus) in the North Atlantic and from a zoarcid fish in the Japan Sea (Pacific). We obtained partial small-subunit rDNA sequences of Myxobolus 'aeglefini' from gadoids and pleuronectids from Norway and Iceland. The sequences from gadoids and pleuronectids represented two different genotypes, showing 98.2% identity. Morphometric studies on the spores from selected gadids and pleuronectids revealed slight but statistically significant differences in spore dimensions associated with the genotypes, the spores from pleuronectids were thicker and with larger polar capsules. We identify the morpho- and genotype from gadoids with Myxobolus 'aeglefini' sensu Auerbach, and the one from pleuronectids with Sphaerospora platessae Woodcock, 1904 as Myxobolus platessae n. comb. The latter species was originally described from Irish Sea plaice (Pleuronectes platessa). Myxobolus albi Picon et al., 2009 described from the common goby Pomatoschistus microps in Scotland is a synonym of M. 'aeglefini'. The Pacific Myxobolus 'aeglefini' represents a separate species, showing only 97.4-97.6% identity to the Atlantic species. In phylogenetic analyses based on SSU rDNA sequences, these and some related marine chondrotropic Myxobolus spp. form a distinct well supported group. This clusters with freshwater and marine myxobolids and Triangula and Cardimyxobolus species, in a basal clade in the phylogeny of the Platysporina. Members of family Myxobilatidae, Ortholinea spp. (currently Ortholineidae) and sequences of some other urinary system infecting myxosporeans form a well supported clade among members of the suborder Platysporina. Based on phylogenetic analyses, we propose the following changes to the classification of Myxosporea: i) Ortholineidae is dismantled and Ortholinea spp. transferred to Myxobilatidae, and ii) Myxobilatidae is transferred from suborder Variisporina to Platysporina. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  1. New endophytic Toxicocladosporium species from cacti in Brazil, and description of Neocladosporium gen. nov.

    PubMed

    Bezerra, Jadson D P; Sandoval-Denis, Marcelo; Paiva, Laura M; Silva, Gladstone A; Groenewald, Johannes Z; Souza-Motta, Cristina M; Crous, Pedro W

    2017-06-01

    Brazil harbours a unique ecosystem, the Caatinga, which belongs to the tropical dry forest biome. This region has an important diversity of organisms, and recently several new fungal species have been described from different hosts and substrates within it. During a survey of fungal endophyte diversity from cacti in this forest, we isolated cladosporium-like fungi that were subjected to morphological and multigene phylogenetic analyses including actA , ITS, LSU, rpb2 and tub2 gene sequences. Based on these analyses we identified two new species belonging to the genus Toxicocladosporium , described here as T. cacti and T. immaculatum spp. nov., isolated from Pilosocereus gounellei subsp. gounellei and Melocactus zehntneri , respectively. To improve the species recognition and assess species diversity in Toxicocladosporium we studied all ex-type strains of the genus, for which actA , rpb2 and tub2 barcodes were also generated. After phylogenetic reconstruction using five loci, we differentiated 13 species in the genus. Toxicocladosporium velox and T. chlamydosporum are synonymized based on their phylogenetic position and limited number of unique nucleotide differences. Six strains previously assigned to T. leucadendri , including the ex-type strain (CBS 131317) of that species, were found to belong to an undescribed genus here named as Neocladosporium gen. nov., with N. leucadendri comb. nov. as type species. Furthermore, this study proposes the actA , ITS, rpb2 and tub2 as main phylogenetic loci to recognise Toxicocladosporium species.

  2. Mitochondrial DNA analyses reveal low genetic diversity in Culex quinquefasciatus from residential areas in Malaysia.

    PubMed

    Low, V L; Lim, P E; Chen, C D; Lim, Y A L; Tan, T K; Norma-Rashid, Y; Lee, H L; Sofian-Azirun, M

    2014-06-01

    The present study explored the intraspecific genetic diversity, dispersal patterns and phylogeographic relationships of Culex quinquefasciatus Say (Diptera: Culicidae) in Malaysia using reference data available in GenBank in order to reveal this species' phylogenetic relationships. A statistical parsimony network of 70 taxa aligned as 624 characters of the cytochrome c oxidase subunit I (COI) gene and 685 characters of the cytochrome c oxidase subunit II (COII) gene revealed three haplotypes (A1-A3) and four haplotypes (B1-B4), respectively. The concatenated sequences of both COI and COII genes with a total of 1309 characters revealed seven haplotypes (AB1-AB7). Analysis using tcs indicated that haplotype AB1 was the common ancestor and the most widespread haplotype in Malaysia. The genetic distance based on concatenated sequences of both COI and COII genes ranged from 0.00076 to 0.00229. Sequence alignment of Cx. quinquefasciatus from Malaysia and other countries revealed four haplotypes (AA1-AA4) by the COI gene and nine haplotypes (BB1-BB9) by the COII gene. Phylogenetic analyses demonstrated that Malaysian Cx. quinquefasciatus share the same genetic lineage as East African and Asian Cx. quinquefasciatus. This study has inferred the genetic lineages, dispersal patterns and hypothetical ancestral genotypes of Cx. quinquefasciatus. © 2013 The Royal Entomological Society.

  3. Evolutionary Descent of Prion Genes from the ZIP Family of Metal Ion Transporters

    PubMed Central

    Schmitt-Ulms, Gerold; Ehsani, Sepehr; Watts, Joel C.; Westaway, David; Wille, Holger

    2009-01-01

    In the more than twenty years since its discovery, both the phylogenetic origin and cellular function of the prion protein (PrP) have remained enigmatic. Insights into a possible function of PrP may be obtained through the characterization of its molecular neighborhood in cells. Quantitative interactome data demonstrated the spatial proximity of two metal ion transporters of the ZIP family, ZIP6 and ZIP10, to mammalian prion proteins in vivo. A subsequent bioinformatic analysis revealed the unexpected presence of a PrP-like amino acid sequence within the N-terminal, extracellular domain of a distinct sub-branch of the ZIP protein family that includes ZIP5, ZIP6 and ZIP10. Additional structural threading and orthologous sequence alignment analyses argued that the prion gene family is phylogenetically derived from a ZIP-like ancestral molecule. The level of sequence homology and the presence of prion protein genes in most chordate species place the split from the ZIP-like ancestor gene at the base of the chordate lineage. This relationship explains structural and functional features found within mammalian prion proteins as elements of an ancient involvement in the transmembrane transport of divalent cations. The phylogenetic and spatial connection to ZIP proteins is expected to open new avenues of research to elucidate the biology of the prion protein in health and disease. PMID:19784368

  4. Phylogenetic analyses of the genus Aeromonas based on housekeeping gene sequencing and its influence on systematics.

    PubMed

    Navarro, Aaron; Martínez-Murcia, Antonio

    2018-04-19

    The phylogenies derived from housekeeping gene sequence alignments, although mere evolutionary hypotheses, have increased our knowledge about the Aeromonas genetic diversity, providing a robust species delineation framework invaluable for reliable, easy and fast species identification. Previous classifications of Aeromonas, have been fully surpassed by recently developed phylogenetic (natural) classification obtained from the analysis of so-called "molecular chronometers". Despite ribosomal RNAs cannot split all known Aeromonas species, the conserved nature of 16S rRNA offers reliable alignments containing mosaics of sequence signatures which may serve as targets of genus-specific oligonucleotides for subsequent identification/detection tests in samples without culturing. On the contrary, some housekeeping genes coding for proteins show a much better chronometric capacity to discriminate highly related strains. Although both, species and loci, do not all evolve at exactly the same rate, published Aeromonas phylogenies were congruent to each other, indicating that, phylogenetic markers are synchronized and a concatenated multi-gene phylogeny, may be "the mirror" of the entire genomic relationships. Thanks to MLPA approaches, the discovery of new Aeromonas species and strains of rarely isolated species is today more frequent and, consequently, should be extensively promoted for isolate screening and species identification. Although, accumulated data still should be carefully catalogued to inherit a reliable database. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. A large-scale chloroplast phylogeny of the Lamiaceae sheds new light on its subfamilial classification

    PubMed Central

    Li, Bo; Cantino, Philip D.; Olmstead, Richard G.; Bramley, Gemma L. C.; Xiang, Chun-Lei; Ma, Zhong-Hui; Tan, Yun-Hong; Zhang, Dian-Xiang

    2016-01-01

    Lamiaceae, the sixth largest angiosperm family, contains more than 7000 species distributed all over the world. However, although considerable progress has been made in the last two decades, its phylogenetic backbone has never been well resolved. In the present study, a large-scale phylogenetic reconstruction of Lamiaceae using chloroplast sequences was carried out with the most comprehensive sampling of the family to date (288 species in 191 genera, representing approximately 78% of the genera of Lamiaceae). Twelve strongly supported primary clades were inferred, which form the phylogenetic backbone of Lamiaceae. Six of the primary clades correspond to the current recognized subfamilies Ajugoideae, Lamioideae, Nepetoideae, Prostantheroideae, Scutellarioideae, and Symphorematoideae, and one corresponds to a portion of Viticoideae. The other five clades comprise: 1) Acrymia and Cymaria; 2) Hymenopyramis, Petraeovitex, Peronema, and Garrettia; 3) Premna, Gmelina, and Cornutia; 4) Callicarpa; and 5) Tectona. Based on these results, three new subfamilies—Cymarioideae, Peronematoideae, and Premnoideae—are described, and the compositions of other subfamilies are updated based on new findings from the last decade. Furthermore, our analyses revealed five strongly supported, more inclusive clades that contain subfamilies, and we give them phylogenetically defined, unranked names: Cymalamiina, Scutelamiina, Perolamiina, Viticisymphorina, and Calliprostantherina. PMID:27748362

  6. Successful Recovery of Nuclear Protein-Coding Genes from Small Insects in Museums Using Illumina Sequencing.

    PubMed

    Kanda, Kojun; Pflug, James M; Sproul, John S; Dasenko, Mark A; Maddison, David R

    2015-01-01

    In this paper we explore high-throughput Illumina sequencing of nuclear protein-coding, ribosomal, and mitochondrial genes in small, dried insects stored in natural history collections. We sequenced one tenebrionid beetle and 12 carabid beetles ranging in size from 3.7 to 9.7 mm in length that have been stored in various museums for 4 to 84 years. Although we chose a number of old, small specimens for which we expected low sequence recovery, we successfully recovered at least some low-copy nuclear protein-coding genes from all specimens. For example, in one 56-year-old beetle, 4.4 mm in length, our de novo assembly recovered about 63% of approximately 41,900 nucleotides in a target suite of 67 nuclear protein-coding gene fragments, and 70% using a reference-based assembly. Even in the least successfully sequenced carabid specimen, reference-based assembly yielded fragments that were at least 50% of the target length for 34 of 67 nuclear protein-coding gene fragments. Exploration of alternative references for reference-based assembly revealed few signs of bias created by the reference. For all specimens we recovered almost complete copies of ribosomal and mitochondrial genes. We verified the general accuracy of the sequences through comparisons with sequences obtained from PCR and Sanger sequencing, including of conspecific, fresh specimens, and through phylogenetic analysis that tested the placement of sequences in predicted regions. A few possible inaccuracies in the sequences were detected, but these rarely affected the phylogenetic placement of the samples. Although our sample sizes are low, an exploratory regression study suggests that the dominant factor in predicting success at recovering nuclear protein-coding genes is a high number of Illumina reads, with success at PCR of COI and killing by immersion in ethanol being secondary factors; in analyses of only high-read samples, the primary significant explanatory variable was body length, with small beetles being more successfully sequenced.

  7. Successful Recovery of Nuclear Protein-Coding Genes from Small Insects in Museums Using Illumina Sequencing

    PubMed Central

    Dasenko, Mark A.

    2015-01-01

    In this paper we explore high-throughput Illumina sequencing of nuclear protein-coding, ribosomal, and mitochondrial genes in small, dried insects stored in natural history collections. We sequenced one tenebrionid beetle and 12 carabid beetles ranging in size from 3.7 to 9.7 mm in length that have been stored in various museums for 4 to 84 years. Although we chose a number of old, small specimens for which we expected low sequence recovery, we successfully recovered at least some low-copy nuclear protein-coding genes from all specimens. For example, in one 56-year-old beetle, 4.4 mm in length, our de novo assembly recovered about 63% of approximately 41,900 nucleotides in a target suite of 67 nuclear protein-coding gene fragments, and 70% using a reference-based assembly. Even in the least successfully sequenced carabid specimen, reference-based assembly yielded fragments that were at least 50% of the target length for 34 of 67 nuclear protein-coding gene fragments. Exploration of alternative references for reference-based assembly revealed few signs of bias created by the reference. For all specimens we recovered almost complete copies of ribosomal and mitochondrial genes. We verified the general accuracy of the sequences through comparisons with sequences obtained from PCR and Sanger sequencing, including of conspecific, fresh specimens, and through phylogenetic analysis that tested the placement of sequences in predicted regions. A few possible inaccuracies in the sequences were detected, but these rarely affected the phylogenetic placement of the samples. Although our sample sizes are low, an exploratory regression study suggests that the dominant factor in predicting success at recovering nuclear protein-coding genes is a high number of Illumina reads, with success at PCR of COI and killing by immersion in ethanol being secondary factors; in analyses of only high-read samples, the primary significant explanatory variable was body length, with small beetles being more successfully sequenced. PMID:26716693

  8. BIOCHEMICAL AND PHYLOGENETIC CHARACTERIZATION OF TWO NOVEL DEEP-SEA THERMOCOCCUS ISOLATES WITH POTENTIALLY BIOTECHNOLOGICAL APPLICATIONS

    EPA Science Inventory

    The partial 16S rDNA gene sequences of two thermophilic archaeal strains, TY and TYS, previously isolated from the Guaymas Basin hydrothermal vent site were determined. Lipid analyses and a comparative analysis performed with 16S rDNA sequences of similar thermophilic species sho...

  9. Phylogenetic Diversity of Lactic Acid Bacteria Associated with Paddy Rice Silage as Determined by 16S Ribosomal DNA Analysis

    PubMed Central

    Ennahar, Saïd; Cai, Yimin; Fujita, Yasuhito

    2003-01-01

    A total of 161 low-G+C-content gram-positive bacteria isolated from whole-crop paddy rice silage were classified and subjected to phenotypic and genetic analyses. Based on morphological and biochemical characters, these presumptive lactic acid bacterium (LAB) isolates were divided into 10 groups that included members of the genera Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, and Weissella. Analysis of the 16S ribosomal DNA (rDNA) was used to confirm the presence of the predominant groups indicated by phenotypic analysis and to determine the phylogenetic affiliation of representative strains. The virtually complete 16S rRNA gene was PCR amplified and sequenced. The sequences from the various LAB isolates showed high degrees of similarity to those of the GenBank reference strains (between 98.7 and 99.8%). Phylogenetic trees based on the 16S rDNA sequence displayed high consistency, with nodes supported by high bootstrap values. With the exception of one species, the genetic data was in agreement with the phenotypic identification. The prevalent LAB, predominantly homofermentative (66%), consisted of Lactobacillus plantarum (24%), Lactococcus lactis (22%), Leuconostoc pseudomesenteroides (20%), Pediococcus acidilactici (11%), Lactobacillus brevis (11%), Enterococcus faecalis (7%), Weissella kimchii (3%), and Pediococcus pentosaceus (2%). The present study, the first to fully document rice-associated LAB, showed a very diverse community of LAB with a relatively high number of species involved in the fermentation process of paddy rice silage. The comprehensive 16S rDNA-based approach to describing LAB community structure was valuable in revealing the large diversity of bacteria inhabiting paddy rice silage and enabling the future design of appropriate inoculants aimed at improving its fermentation quality. PMID:12514026

  10. Phylogenetic diversity of lactic acid bacteria associated with paddy rice silage as determined by 16S ribosomal DNA analysis.

    PubMed

    Ennahar, Saïd; Cai, Yimin; Fujita, Yasuhito

    2003-01-01

    A total of 161 low-G+C-content gram-positive bacteria isolated from whole-crop paddy rice silage were classified and subjected to phenotypic and genetic analyses. Based on morphological and biochemical characters, these presumptive lactic acid bacterium (LAB) isolates were divided into 10 groups that included members of the genera Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, and WEISSELLA: Analysis of the 16S ribosomal DNA (rDNA) was used to confirm the presence of the predominant groups indicated by phenotypic analysis and to determine the phylogenetic affiliation of representative strains. The virtually complete 16S rRNA gene was PCR amplified and sequenced. The sequences from the various LAB isolates showed high degrees of similarity to those of the GenBank reference strains (between 98.7 and 99.8%). Phylogenetic trees based on the 16S rDNA sequence displayed high consistency, with nodes supported by high bootstrap values. With the exception of one species, the genetic data was in agreement with the phenotypic identification. The prevalent LAB, predominantly homofermentative (66%), consisted of Lactobacillus plantarum (24%), Lactococcus lactis (22%), Leuconostoc pseudomesenteroides (20%), Pediococcus acidilactici (11%), Lactobacillus brevis (11%), Enterococcus faecalis (7%), Weissella kimchii (3%), and Pediococcus pentosaceus (2%). The present study, the first to fully document rice-associated LAB, showed a very diverse community of LAB with a relatively high number of species involved in the fermentation process of paddy rice silage. The comprehensive 16S rDNA-based approach to describing LAB community structure was valuable in revealing the large diversity of bacteria inhabiting paddy rice silage and enabling the future design of appropriate inoculants aimed at improving its fermentation quality.

  11. Rooting the domain archaea by phylogenomic analysis supports the foundation of the new kingdom Proteoarchaeota.

    PubMed

    Petitjean, Céline; Deschamps, Philippe; López-García, Purificación; Moreira, David

    2014-12-19

    The first 16S rRNA-based phylogenies of the Archaea showed a deep division between two groups, the kingdoms Euryarchaeota and Crenarchaeota. This bipartite classification has been challenged by the recent discovery of new deeply branching lineages (e.g., Thaumarchaeota, Aigarchaeota, Nanoarchaeota, Korarchaeota, Parvarchaeota, Aenigmarchaeota, Diapherotrites, and Nanohaloarchaeota) which have also been given the same taxonomic status of kingdoms. However, the phylogenetic position of some of these lineages is controversial. In addition, phylogenetic analyses of the Archaea have often been carried out without outgroup sequences, making it difficult to determine if these taxa actually define lineages at the same level as the Euryarchaeota and Crenarchaeota. We have addressed the question of the position of the root of the Archaea by reconstructing rooted archaeal phylogenetic trees using bacterial sequences as outgroup. These trees were based on commonly used conserved protein markers (32 ribosomal proteins) as well as on 38 new markers identified through phylogenomic analysis. We thus gathered a total of 70 conserved markers that we analyzed as a concatenated data set. In contrast with previous analyses, our trees consistently placed the root of the archaeal tree between the Euryarchaeota (including the Nanoarchaeota and other fast-evolving lineages) and the rest of archaeal species, which we propose to class within the new kingdom Proteoarchaeota. This implies the relegation of several groups previously classified as kingdoms (e.g., Crenarchaeota, Thaumarchaeota, Aigarchaeota, and Korarchaeota) to a lower taxonomic rank. In addition to taxonomic implications, this profound reorganization of the archaeal phylogeny has also consequences on our appraisal of the nature of the last archaeal ancestor, which most likely was a complex organism with a gene-rich genome. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Rooting the Domain Archaea by Phylogenomic Analysis Supports the Foundation of the New Kingdom Proteoarchaeota

    PubMed Central

    Petitjean, Céline; Deschamps, Philippe; López-García, Purificación; Moreira, David

    2015-01-01

    The first 16S rRNA-based phylogenies of the Archaea showed a deep division between two groups, the kingdoms Euryarchaeota and Crenarchaeota. This bipartite classification has been challenged by the recent discovery of new deeply branching lineages (e.g., Thaumarchaeota, Aigarchaeota, Nanoarchaeota, Korarchaeota, Parvarchaeota, Aenigmarchaeota, Diapherotrites, and Nanohaloarchaeota) which have also been given the same taxonomic status of kingdoms. However, the phylogenetic position of some of these lineages is controversial. In addition, phylogenetic analyses of the Archaea have often been carried out without outgroup sequences, making it difficult to determine if these taxa actually define lineages at the same level as the Euryarchaeota and Crenarchaeota. We have addressed the question of the position of the root of the Archaea by reconstructing rooted archaeal phylogenetic trees using bacterial sequences as outgroup. These trees were based on commonly used conserved protein markers (32 ribosomal proteins) as well as on 38 new markers identified through phylogenomic analysis. We thus gathered a total of 70 conserved markers that we analyzed as a concatenated data set. In contrast with previous analyses, our trees consistently placed the root of the archaeal tree between the Euryarchaeota (including the Nanoarchaeota and other fast-evolving lineages) and the rest of archaeal species, which we propose to class within the new kingdom Proteoarchaeota. This implies the relegation of several groups previously classified as kingdoms (e.g., Crenarchaeota, Thaumarchaeota, Aigarchaeota, and Korarchaeota) to a lower taxonomic rank. In addition to taxonomic implications, this profound reorganization of the archaeal phylogeny has also consequences on our appraisal of the nature of the last archaeal ancestor, which most likely was a complex organism with a gene-rich genome. PMID:25527841

  13. Phylogeny reconstruction in the Caesalpinieae grade (Leguminosae) based on duplicated copies of the sucrose synthase gene and plastid markers.

    PubMed

    Manzanilla, Vincent; Bruneau, Anne

    2012-10-01

    The Caesalpinieae grade (Leguminosae) forms a morphologically and ecologically diverse group of mostly tropical tree species with a complex evolutionary history. This grade comprises several distinct lineages, but the exact delimitation of the group relative to subfamily Mimosoideae and other members of subfamily Caesalpinioideae, as well as phylogenetic relationships among the lineages are uncertain. With the aim of better resolving phylogenetic relationships within the Caesalpinieae grade, we investigated the utility of several nuclear markers developed from genomic studies in the Papilionoideae. We cloned and sequenced the low copy nuclear gene sucrose synthase (SUSY) and combined the data with plastid trnL and matK sequences. SUSY has two paralogs in the Caesalpinieae grade and in the Mimosoideae, but occurs as a single copy in all other legumes tested. Bayesian and maximum likelihood phylogenetic analyses suggest the two nuclear markers are congruent with plastid DNA data. The Caesalpinieae grade is divided into four well-supported clades (Cassia, Caesalpinia, Tachigali and Peltophorum clades), a poorly supported clade of Dimorphandra Group genera, and two paraphyletic groups, one with other Dimorphandra Group genera and the other comprising genera previously recognized as the Umtiza clade. A selection analysis of the paralogs, using selection models from PAML, suggests that SUSY genes are subjected to a purifying selection. One of the SUSY paralogs, under slightly stronger positive selection, may be undergoing subfunctionalization. The low copy SUSY gene is useful for phylogeny reconstruction in the Caesalpinieae despite the presence of duplicate copies. This study confirms that the Caesalpinieae grade is an artificial group, and highlights the need for further analyses of lineages at the base of the Mimosoideae. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Re-Evaluation of Phylogenetic Relationships among Species of the Mangrove Genus Avicennia from Indo-West Pacific Based on Multilocus Analyses.

    PubMed

    Li, Xinnian; Duke, Norman C; Yang, Yuchen; Huang, Lishi; Zhu, Yuxiang; Zhang, Zhang; Zhou, Renchao; Zhong, Cairong; Huang, Yelin; Shi, Suhua

    2016-01-01

    Avicennia L. (Avicenniaceae), one of the most diverse mangrove genera, is distributed widely in tropical and subtropical intertidal zones worldwide. Five species of Avicennia in the Indo-West Pacific region have been previously described. However, their phylogenetic relationships were determined based on morphological and allozyme data. To enhance our understanding of evolutionary patterns in the clade, we carried out a molecular phylogenetic study using wide sampling and multiple loci. Our results support two monophyletic clades across all species worldwide in Avicennia: an Atlantic-East Pacific (AEP) lineage and an Indo-West Pacific (IWP) lineage. This split is in line with biogeographic distribution of the clade. Focusing on the IWP branch, we reconstructed a detailed phylogenetic tree based on sequences from 25 nuclear genes. The results identified three distinct subclades, (1) A. rumphiana and A. alba, (2) A. officinalis and A. integra, and (3) the A. marina complex, with high bootstrap support. The results strongly corresponded to two morphological traits in floral structure: stigma position in relation to the anthers and style length. Using Bayesian dating methods we estimated diversification of the IWP lineage was dated to late Miocene (c. 6.0 million years ago) and may have been driven largely by the fluctuating sea levels since that time.

  15. Re-Evaluation of Phylogenetic Relationships among Species of the Mangrove Genus Avicennia from Indo-West Pacific Based on Multilocus Analyses

    PubMed Central

    Li, Xinnian; Duke, Norman C.; Yang, Yuchen; Huang, Lishi; Zhu, Yuxiang; Zhang, Zhang; Zhou, Renchao; Zhong, Cairong; Huang, Yelin; Shi, Suhua

    2016-01-01

    Avicennia L. (Avicenniaceae), one of the most diverse mangrove genera, is distributed widely in tropical and subtropical intertidal zones worldwide. Five species of Avicennia in the Indo-West Pacific region have been previously described. However, their phylogenetic relationships were determined based on morphological and allozyme data. To enhance our understanding of evolutionary patterns in the clade, we carried out a molecular phylogenetic study using wide sampling and multiple loci. Our results support two monophyletic clades across all species worldwide in Avicennia: an Atlantic-East Pacific (AEP) lineage and an Indo-West Pacific (IWP) lineage. This split is in line with biogeographic distribution of the clade. Focusing on the IWP branch, we reconstructed a detailed phylogenetic tree based on sequences from 25 nuclear genes. The results identified three distinct subclades, (1) A. rumphiana and A. alba, (2) A. officinalis and A. integra, and (3) the A. marina complex, with high bootstrap support. The results strongly corresponded to two morphological traits in floral structure: stigma position in relation to the anthers and style length. Using Bayesian dating methods we estimated diversification of the IWP lineage was dated to late Miocene (c. 6.0 million years ago) and may have been driven largely by the fluctuating sea levels since that time. PMID:27716800

  16. Negative correlation between rates of molecular evolution and flowering cycles in temperate woody bamboos revealed by plastid phylogenomics.

    PubMed

    Ma, Peng-Fei; Vorontsova, Maria S; Nanjarisoa, Olinirina Prisca; Razanatsoa, Jacqueline; Guo, Zhen-Hua; Haevermans, Thomas; Li, De-Zhu

    2017-12-21

    Heterogeneous rates of molecular evolution are universal across the tree of life, posing challenges for phylogenetic inference. The temperate woody bamboos (tribe Arundinarieae, Poaceae) are noted for their extremely slow molecular evolutionary rates, supposedly caused by their mysterious monocarpic reproduction. However, the correlation between substitution rates and flowering cycles has not been formally tested. Here we present 15 newly sequenced plastid genomes of temperate woody bamboos, including the first genomes ever sequenced from Madagascar representatives. A data matrix of 46 plastid genomes representing all 12 lineages of Arundinarieae was assembled for phylogenetic and molecular evolutionary analyses. We conducted phylogenetic analyses using different sequences (e.g., coding and noncoding) combined with different data partitioning schemes, revealing conflicting relationships involving internodes among several lineages. A great difference in branch lengths were observed among the major lineages, and topological inconsistency could be attributed to long-branch attraction (LBA). Using clock model-fitting by maximum likelihood and Bayesian approaches, we furthermore demonstrated extensive rate variation among these major lineages. Rate accelerations mainly occurred for the isolated lineages with limited species diversification, totaling 11 rate shifts during the tribe's evolution. Using linear regression analysis, we found a negative correlation between rates of molecular evolution and flowering cycles for Arundinarieae, notwithstanding that the correlation maybe insignificant when taking the phylogenetic structure into account. Using the temperate woody bamboos as an example, we found further evidence that rate heterogeneity is universal in plants, suggesting that this will pose a challenge for phylogenetic reconstruction of bamboos. The bamboos with longer flowering cycles tend to evolve more slowly than those with shorter flowering cycles, in accordance with a putative generation time effect.

  17. Phylogenomic Resolution of the Phylogeny of Laurasiatherian Mammals: Exploring Phylogenetic Signals within Coding and Noncoding Sequences.

    PubMed

    Chen, Meng-Yun; Liang, Dan; Zhang, Peng

    2017-08-01

    The interordinal relationships of Laurasiatherian mammals are currently one of the most controversial questions in mammalian phylogenetics. Previous studies mainly relied on coding sequences (CDS) and seldom used noncoding sequences. Here, by data mining public genome data, we compiled an intron data set of 3,638 genes (all introns from a protein-coding gene are considered as a gene) (19,055,073 bp) and a CDS data set of 10,259 genes (20,994,285 bp), covering all major lineages of Laurasiatheria (except Pholidota). We found that the intron data contained stronger and more congruent phylogenetic signals than the CDS data. In agreement with this observation, concatenation and species-tree analyses of the intron data set yielded well-resolved and identical phylogenies, whereas the CDS data set produced weakly supported and incongruent results. Further analyses showed that the phylogeny inferred from the intron data is highly robust to data subsampling and change in outgroup, but the CDS data produced unstable results under the same conditions. Interestingly, gene tree statistical results showed that the most frequently observed gene tree topologies for the CDS and intron data are identical, suggesting that the major phylogenetic signal within the CDS data is actually congruent with that within the intron data. Our final result of Laurasiatheria phylogeny is (Eulipotyphla,((Chiroptera, Perissodactyla),(Carnivora, Cetartiodactyla))), favoring a close relationship between Chiroptera and Perissodactyla. Our study 1) provides a well-supported phylogenetic framework for Laurasiatheria, representing a step towards ending the long-standing "hard" polytomy and 2) argues that intron within genome data is a promising data resource for resolving rapid radiation events across the tree of life. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Resolving Relationships among the Megadiverse Butterflies and Moths with a Novel Pipeline for Anchored Phylogenomics.

    PubMed

    Breinholt, Jesse W; Earl, Chandra; Lemmon, Alan R; Lemmon, Emily Moriarty; Xiao, Lei; Kawahara, Akito Y

    2018-01-01

    The advent of next-generation sequencing technology has allowed for thecollection of large portions of the genome for phylogenetic analysis. Hybrid enrichment and transcriptomics are two techniques that leverage next-generation sequencing and have shown much promise. However, methods for processing hybrid enrichment data are still limited. We developed a pipeline for anchored hybrid enrichment (AHE) read assembly, orthology determination, contamination screening, and data processing for sequences flanking the target "probe" region. We apply this approach to study the phylogeny of butterflies and moths (Lepidoptera), a megadiverse group of more than 157,000 described species with poorly understood deep-level phylogenetic relationships. We introduce a new, 855 locus AHE kit for Lepidoptera phylogenetics and compare resulting trees to those from transcriptomes. The enrichment kit was designed from existing genomes, transcriptomes, and expressed sequence tags and was used to capture sequence data from 54 species from 23 lepidopteran families. Phylogenies estimated from AHE data were largely congruent with trees generated from transcriptomes, with strong support for relationships at all but the deepest taxonomic levels. We combine AHE and transcriptomic data to generate a new Lepidoptera phylogeny, representing 76 exemplar species in 42 families. The tree provides robust support for many relationships, including those among the seven butterfly families. The addition of AHE data to an existing transcriptomic dataset lowers node support along the Lepidoptera backbone, but firmly places taxa with AHE data on the phylogeny. Combining taxa sequenced for AHE with existing transcriptomes and genomes resulted in a tree with strong support for (Calliduloidea $+$ Gelechioidea $+$ Thyridoidea) $+$ (Papilionoidea $+$ Pyraloidea $+$ Macroheterocera). To examine the efficacy of AHE at a shallow taxonomic level, phylogenetic analyses were also conducted on a sister group representing a more recent divergence, the Saturniidae and Sphingidae. These analyses utilized sequences from the probe region and data flanking it, nearly doubled the size of the dataset; resulting trees supported new phylogenetics relationships, especially within the Saturniidae and Sphingidae (e.g., Hemarina derived in the latter). We hope that our data processing pipeline, hybrid enrichment gene set, and approach of combining AHE data with transcriptomes will be useful for the broader systematics community. © The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Cyber infrastructure for Fusarium: three integrated platforms supporting strain identification, phylogenetics, comparative genomics and knowledge sharing.

    PubMed

    Park, Bongsoo; Park, Jongsun; Cheong, Kyeong-Chae; Choi, Jaeyoung; Jung, Kyongyong; Kim, Donghan; Lee, Yong-Hwan; Ward, Todd J; O'Donnell, Kerry; Geiser, David M; Kang, Seogchan

    2011-01-01

    The fungal genus Fusarium includes many plant and/or animal pathogenic species and produces diverse toxins. Although accurate species identification is critical for managing such threats, it is difficult to identify Fusarium morphologically. Fortunately, extensive molecular phylogenetic studies, founded on well-preserved culture collections, have established a robust foundation for Fusarium classification. Genomes of four Fusarium species have been published with more being currently sequenced. The Cyber infrastructure for Fusarium (CiF; http://www.fusariumdb.org/) was built to support archiving and utilization of rapidly increasing data and knowledge and consists of Fusarium-ID, Fusarium Comparative Genomics Platform (FCGP) and Fusarium Community Platform (FCP). The Fusarium-ID archives phylogenetic marker sequences from most known species along with information associated with characterized isolates and supports strain identification and phylogenetic analyses. The FCGP currently archives five genomes from four species. Besides supporting genome browsing and analysis, the FCGP presents computed characteristics of multiple gene families and functional groups. The Cart/Favorite function allows users to collect sequences from Fusarium-ID and the FCGP and analyze them later using multiple tools without requiring repeated copying-and-pasting of sequences. The FCP is designed to serve as an online community forum for sharing and preserving accumulated experience and knowledge to support future research and education.

  20. Cyber infrastructure for Fusarium: three integrated platforms supporting strain identification, phylogenetics, comparative genomics and knowledge sharing

    PubMed Central

    Park, Bongsoo; Park, Jongsun; Cheong, Kyeong-Chae; Choi, Jaeyoung; Jung, Kyongyong; Kim, Donghan; Lee, Yong-Hwan; Ward, Todd J.; O'Donnell, Kerry; Geiser, David M.; Kang, Seogchan

    2011-01-01

    The fungal genus Fusarium includes many plant and/or animal pathogenic species and produces diverse toxins. Although accurate species identification is critical for managing such threats, it is difficult to identify Fusarium morphologically. Fortunately, extensive molecular phylogenetic studies, founded on well-preserved culture collections, have established a robust foundation for Fusarium classification. Genomes of four Fusarium species have been published with more being currently sequenced. The Cyber infrastructure for Fusarium (CiF; http://www.fusariumdb.org/) was built to support archiving and utilization of rapidly increasing data and knowledge and consists of Fusarium-ID, Fusarium Comparative Genomics Platform (FCGP) and Fusarium Community Platform (FCP). The Fusarium-ID archives phylogenetic marker sequences from most known species along with information associated with characterized isolates and supports strain identification and phylogenetic analyses. The FCGP currently archives five genomes from four species. Besides supporting genome browsing and analysis, the FCGP presents computed characteristics of multiple gene families and functional groups. The Cart/Favorite function allows users to collect sequences from Fusarium-ID and the FCGP and analyze them later using multiple tools without requiring repeated copying-and-pasting of sequences. The FCP is designed to serve as an online community forum for sharing and preserving accumulated experience and knowledge to support future research and education. PMID:21087991

  1. Filling phylogenetic gaps and the biogeographic relationships of the Octodontidae (Mammalia: Hystricognathi).

    PubMed

    Suárez-Villota, Elkin Y; González-Wevar, Claudio A; Gallardo, Milton H; Vásquez, Rodrigo A; Poulin, Elie

    2016-12-01

    Endemic to South America, octodontid rodents are remarkable by being the only mammal taxa where allotetraploidy has been documented. The taxon's extensive morpho-physiological radiation associated to niche shifts has allowed testing phylogeographic hypotheses. Using maximum likelihood and Bayesian inference analyses, applied to all nominal species of octodontids, phylogenetic reconstructions based on sequences of 12S rRNA and growth hormone receptor gene are presented. Species boundaries were determined by coalescent analyses and divergence times among taxa were estimated based on mutation rates. Two main clades associated to the Andean orogenesis were recognized. The essentially western clade comprises genera Aconaemys, Octodon, Spalacopus, and Octodontomys whereas the eastern one included genera Octomys, Pipanacoctomys, Salinoctomys, and Tympanoctomys. Genetic relationships, coalescent analyses, and genetic distance supported the specific status given to Octodon pacificus and that given to Pipanacoctomys aureus as a species of Tympanoctomys. However, these analyses failed to recognize Salinoctomys loschalchalerosorum as a valid taxon considering its position within the diversity of Tympanoctomys barrerae. Although the origin of genome duplication remains contentious, the coincidence of the basal clade split with distinctive modes of karyotypic evolution across the Andes emphasizes the role of physiographic barriers and westerlies in shaping different edaphological conditions, selective grounds, and concomitantly distinct adaptations within the octodontids. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Phylogenetic Relationship of Necoclí Virus to Other South American Hantaviruses (Bunyaviridae: Hantavirus).

    PubMed

    Montoya-Ruiz, Carolina; Cajimat, Maria N B; Milazzo, Mary Louise; Diaz, Francisco J; Rodas, Juan David; Valbuena, Gustavo; Fulhorst, Charles F

    2015-07-01

    The results of a previous study suggested that Cherrie's cane rat (Zygodontomys cherriei) is the principal host of Necoclí virus (family Bunyaviridae, genus Hantavirus) in Colombia. Bayesian analyses of complete nucleocapsid protein gene sequences and complete glycoprotein precursor gene sequences in this study confirmed that Necoclí virus is phylogenetically closely related to Maporal virus, which is principally associated with the delicate pygmy rice rat (Oligoryzomys delicatus) in western Venezuela. In pairwise comparisons, nonidentities between the complete amino acid sequence of the nucleocapsid protein of Necoclí virus and the complete amino acid sequences of the nucleocapsid proteins of other hantaviruses were ≥8.7%. Likewise, nonidentities between the complete amino acid sequence of the glycoprotein precursor of Necoclí virus and the complete amino acid sequences of the glycoprotein precursors of other hantaviruses were ≥11.7%. Collectively, the unique association of Necoclí virus with Z. cherriei in Colombia, results of the Bayesian analyses of complete nucleocapsid protein gene sequences and complete glycoprotein precursor gene sequences, and results of the pairwise comparisons of amino acid sequences strongly support the notion that Necoclí virus represents a novel species in the genus Hantavirus. Further work is needed to determine whether Calabazo virus (a hantavirus associated with Z. brevicauda cherriei in Panama) and Necoclí virus are conspecific.

  3. From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes

    PubMed Central

    2014-01-01

    Background Next-generation sequencing has provided a wealth of plastid genome sequence data from an increasingly diverse set of green plants (Viridiplantae). Although these data have helped resolve the phylogeny of numerous clades (e.g., green algae, angiosperms, and gymnosperms), their utility for inferring relationships across all green plants is uncertain. Viridiplantae originated 700-1500 million years ago and may comprise as many as 500,000 species. This clade represents a major source of photosynthetic carbon and contains an immense diversity of life forms, including some of the smallest and largest eukaryotes. Here we explore the limits and challenges of inferring a comprehensive green plant phylogeny from available complete or nearly complete plastid genome sequence data. Results We assembled protein-coding sequence data for 78 genes from 360 diverse green plant taxa with complete or nearly complete plastid genome sequences available from GenBank. Phylogenetic analyses of the plastid data recovered well-supported backbone relationships and strong support for relationships that were not observed in previous analyses of major subclades within Viridiplantae. However, there also is evidence of systematic error in some analyses. In several instances we obtained strongly supported but conflicting topologies from analyses of nucleotides versus amino acid characters, and the considerable variation in GC content among lineages and within single genomes affected the phylogenetic placement of several taxa. Conclusions Analyses of the plastid sequence data recovered a strongly supported framework of relationships for green plants. This framework includes: i) the placement of Zygnematophyceace as sister to land plants (Embryophyta), ii) a clade of extant gymnosperms (Acrogymnospermae) with cycads + Ginkgo sister to remaining extant gymnosperms and with gnetophytes (Gnetophyta) sister to non-Pinaceae conifers (Gnecup trees), and iii) within the monilophyte clade (Monilophyta), Equisetales + Psilotales are sister to Marattiales + leptosporangiate ferns. Our analyses also highlight the challenges of using plastid genome sequences in deep-level phylogenomic analyses, and we provide suggestions for future analyses that will likely incorporate plastid genome sequence data for thousands of species. We particularly emphasize the importance of exploring the effects of different partitioning and character coding strategies. PMID:24533922

  4. Systematic Error in Seed Plant Phylogenomics

    PubMed Central

    Zhong, Bojian; Deusch, Oliver; Goremykin, Vadim V.; Penny, David; Biggs, Patrick J.; Atherton, Robin A.; Nikiforova, Svetlana V.; Lockhart, Peter James

    2011-01-01

    Resolving the closest relatives of Gnetales has been an enigmatic problem in seed plant phylogeny. The problem is known to be difficult because of the extent of divergence between this diverse group of gymnosperms and their closest phylogenetic relatives. Here, we investigate the evolutionary properties of conifer chloroplast DNA sequences. To improve taxon sampling of Cupressophyta (non-Pinaceae conifers), we report sequences from three new chloroplast (cp) genomes of Southern Hemisphere conifers. We have applied a site pattern sorting criterion to study compositional heterogeneity, heterotachy, and the fit of conifer chloroplast genome sequences to a general time reversible + G substitution model. We show that non-time reversible properties of aligned sequence positions in the chloroplast genomes of Gnetales mislead phylogenetic reconstruction of these seed plants. When 2,250 of the most varied sites in our concatenated alignment are excluded, phylogenetic analyses favor a close evolutionary relationship between the Gnetales and Pinaceae—the Gnepine hypothesis. Our analytical protocol provides a useful approach for evaluating the robustness of phylogenomic inferences. Our findings highlight the importance of goodness of fit between substitution model and data for understanding seed plant phylogeny. PMID:22016337

  5. Comparative sequence analyses of sixteen reptilian paramyxoviruses

    USGS Publications Warehouse

    Ahne, W.; Batts, W.N.; Kurath, G.; Winton, J.R.

    1999-01-01

    Viral genomic RNA of Fer-de-Lance virus (FDLV), a paramyxovirus highly pathogenic for reptiles, was reverse transcribed and cloned. Plasmids with significant sequence similarities to the hemagglutinin-neuraminidase (HN) and polymerase (L) genes of mammalian paramyxoviruses were identified by BLAST search. Partial sequences of the FDLV genes were used to design primers for amplification by nested polymerase chain reaction (PCR) and sequencing of 518-bp L gene and 352-bp HN gene fragments from a collection of 15 previously uncharacterized reptilian paramyxoviruses. Phylogenetic analyses of the partial L and HN sequences produced similar trees in which there were two distinct subgroups of isolates that were supported with maximum bootstrap values, and several intermediate isolates. Within each subgroup the nucleotide divergence values were less than 2.5%, while the divergence between the two subgroups was 20-22%. This indicated that the two subgroups represent distinct virus species containing multiple virus strains. The five intermediate isolates had nucleotide divergence values of 11-20% and may represent additional distinct species. In addition to establishing diversity among reptilian paramyxoviruses, the phylogenetic groupings showed some correlation with geographic location, and clearly demonstrated a low level of host species-specificity within these viruses. Copyright (C) 1999 Elsevier Science B.V.

  6. The complete mitochondrial genome of rabbit pinworm Passalurus ambiguus: genome characterization and phylogenetic analysis.

    PubMed

    Liu, Guo-Hua; Li, Sheng; Zou, Feng-Cai; Wang, Chun-Ren; Zhu, Xing-Quan

    2016-01-01

    Passalurus ambiguus (Nematda: Oxyuridae) is a common pinworm which parasitizes in the caecum and colon of rabbits. Despite its significance as a pathogen, the epidemiology, genetics, systematics, and biology of this pinworm remain poorly understood. In the present study, we sequenced the complete mitochondrial (mt) genome of P. ambiguus. The circular mt genome is 14,023 bp in size and encodes of 36 genes, including 12 protein-coding, two ribosomal RNA, and 22 transfer RNA genes. The mt gene order of P. ambiguus is the same as that of Wellcomia siamensis, but distinct from that of Enterobius vermicularis. Phylogenetic analyses based on concatenated amino acid sequences of 12 protein-coding genes by Bayesian inference (BI) showed that P. ambiguus was more closely related to W. siamensis than to E. vermicularis. This mt genome provides novel genetic markers for studying the molecular epidemiology, population genetics, systematics of pinworm of animals and humans, and should have implications for the diagnosis, prevention, and control of passaluriasis in rabbits and other animals.

  7. Two new hyaline-ascospored species of Trichoderma and their phylogenetic positions.

    PubMed

    Qin, W T; Zhuang, W Y

    2016-01-01

    Collections of hypocrealean fungi found on decaying wood in subtropical regions of China were examined. Two new species, Trichoderma confluens and T. hubeiense, were discovered and are described. Trichoderma confluens is characterized by its widely effuse to rarely pulvinate, yellow stromata with densely disposed yellowish brown ostioles, simple acremonium- to verticillium-like conidiophores, hyaline conidia and multiform chlamydospores. Trichoderma hubeiense has pulvinate, grayish yellow stromata with brownish ostioles, trichoderma- to verticillium-like conidiophores and hyaline conidia. The phylogenetic positions of the two fungi were investigated based on sequence analyses of RNA polymerase II subunit b and translation elongation factor 1-α genes. The results indicate that T. confluens belongs to the Hypocreanum clade and is associated with but clearly separated from T. applanatum and T. decipiens. Trichoderma hubeiense belongs to the Polysporum clade and related to T. bavaricum but obviously differs from other members of the clade in sequence data. Morphological distinctions between the new species and their close relatives are noted and discussed. © 2016 by The Mycological Society of America.

  8. Actinomyces gaoshouyii sp. nov., isolated from plateau pika (Ochotona curzoniae).

    PubMed

    Meng, Xiangli; Wang, Yiting; Lu, Shan; Lai, Xin-He; Jin, Dong; Yang, Jing; Xu, Jianguo

    2017-09-01

    Two strains (pika_113T and pika_114) of a previously undescribed Actinomyces-like bacterium were recovered from the intestinal contents of plateau pika (Ochotona curzoniae) on the Tibet-Qinghai Plateau, China. Results from biochemical characterization indicated that the two strains were phenotypically homogeneous and distinct from other previously described species of the genus Actinomyces. Based on the comparison of 16S rRNA gene sequences and genome analysis, the bacteria were determined to be a hitherto unknown subline within the genus Actinomyces, being most closely related to type strains of Actinomyces denticolens and Actinomyces timonensis with a respective 97.2 and 97.1 % similarity in their 16S rRNA gene sequences. Phylogenetic analyses confirmed that pika_113T was well separated from any other recognized species of the genus Actinomyces and within the cluster with A. denticolens and A. timonensis. The genome of strain pika_113T displayed less than 42 % relatedness in DNA-DNA hybridization with all the available genomes of existing species of the genus Actinomyces in the NCBI database. Collectively, based on the phenotypic characteristics and phylogenetic analyses results, we propose the novel isolates as representatives of Actinomyces gaoshouyii sp. nov. The type strain of Actinomyces gaoshouyii is pika_113T (=CGMCC 4.7372T=DSM 104049T), with a genomic DNA G+C content of 71 mol%.

  9. Structure-Based Phylogenetic Analysis of the Lipocalin Superfamily.

    PubMed

    Lakshmi, Balasubramanian; Mishra, Madhulika; Srinivasan, Narayanaswamy; Archunan, Govindaraju

    2015-01-01

    Lipocalins constitute a superfamily of extracellular proteins that are found in all three kingdoms of life. Although very divergent in their sequences and functions, they show remarkable similarity in 3-D structures. Lipocalins bind and transport small hydrophobic molecules. Earlier sequence-based phylogenetic studies of lipocalins highlighted that they have a long evolutionary history. However the molecular and structural basis of their functional diversity is not completely understood. The main objective of the present study is to understand functional diversity of the lipocalins using a structure-based phylogenetic approach. The present study with 39 protein domains from the lipocalin superfamily suggests that the clusters of lipocalins obtained by structure-based phylogeny correspond well with the functional diversity. The detailed analysis on each of the clusters and sub-clusters reveals that the 39 lipocalin domains cluster based on their mode of ligand binding though the clustering was performed on the basis of gross domain structure. The outliers in the phylogenetic tree are often from single member families. Also structure-based phylogenetic approach has provided pointers to assign putative function for the domains of unknown function in lipocalin family. The approach employed in the present study can be used in the future for the functional identification of new lipocalin proteins and may be extended to other protein families where members show poor sequence similarity but high structural similarity.

  10. A review of bioinformatics platforms for comparative genomics. Recent developments of the EDGAR 2.0 platform and its utility for taxonomic and phylogenetic studies.

    PubMed

    Yu, J; Blom, J; Glaeser, S P; Jaenicke, S; Juhre, T; Rupp, O; Schwengers, O; Spänig, S; Goesmann, A

    2017-11-10

    The rapid development of next generation sequencing technology has greatly increased the amount of available microbial genomes. As a result of this development, there is a rising demand for fast and automated approaches in analyzing these genomes in a comparative way. Whole genome sequencing also bears a huge potential for obtaining a higher resolution in phylogenetic and taxonomic classification. During the last decade, several software tools and platforms have been developed in the field of comparative genomics. In this manuscript, we review the most commonly used platforms and approaches for ortholog group analyses with a focus on their potential for phylogenetic and taxonomic research. Furthermore, we describe the latest improvements of the EDGAR platform for comparative genome analyses and present recent examples of its application for the phylogenomic analysis of different taxa. Finally, we illustrate the role of the EDGAR platform as part of the BiGi Center for Microbial Bioinformatics within the German network on Bioinformatics Infrastructure (de.NBI). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Morphology and Molecular Phylogeny of Raillietina spp. (Cestoda: Cyclophyllidea: Davaineidae) from Domestic Chickens in Thailand.

    PubMed

    Butboonchoo, Preeyaporn; Wongsawad, Chalobol; Rojanapaibul, Amnat; Chai, Jong-Yil

    2016-12-01

    Raillietina species are prevalent in domestic chickens ( Gallus gallus domesticus ) in Phayao province, northern Thailand. Their infection may cause disease and death, which affects the public health and economic situation in chicken farms. The identification of Raillietina has been based on morphology and molecular analysis. In this study, morphological observations using light (LM) and scanning electron microscopies (SEM) coupled with molecular analysis of the internal transcribed spacer 2 (ITS2) region and the nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) gene were employed for precise identification and phylogenetic relationship studies of Raillietina spp. Four Raillietina species, including R. echinobothrida, R. tetragona, R. cesticillus , and Raillietina sp., were recovered in domestic chickens from 4 districts in Phayao province, Thailand. LM and SEM observations revealed differences in the morphology of the scolex, position of the genital pore, number of eggs per egg capsule, and rostellar opening surface structures in all 4 species. Phylogenetic relationships were found among the phylogenetic trees obtained by the maximum likelihood and distance-based neighbor-joining methods. ITS2 and ND1 sequence data recorded from Raillietina sp. appeared to be monophyletic. The query sequences of R. echinobothrida, R. tetragona, R. cesticillus , and Raillietina sp. were separated according to the different morphological characters. This study confirmed that morphological studies combined with molecular analyses can differentiate related species within the genus Raillietina in Thailand.

  12. Morphology and Molecular Phylogeny of Raillietina spp. (Cestoda: Cyclophyllidea: Davaineidae) from Domestic Chickens in Thailand

    PubMed Central

    Butboonchoo, Preeyaporn; Wongsawad, Chalobol; Rojanapaibul, Amnat; Chai, Jong-Yil

    2016-01-01

    Raillietina species are prevalent in domestic chickens (Gallus gallus domesticus) in Phayao province, northern Thailand. Their infection may cause disease and death, which affects the public health and economic situation in chicken farms. The identification of Raillietina has been based on morphology and molecular analysis. In this study, morphological observations using light (LM) and scanning electron microscopies (SEM) coupled with molecular analysis of the internal transcribed spacer 2 (ITS2) region and the nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) gene were employed for precise identification and phylogenetic relationship studies of Raillietina spp. Four Raillietina species, including R. echinobothrida, R. tetragona, R. cesticillus, and Raillietina sp., were recovered in domestic chickens from 4 districts in Phayao province, Thailand. LM and SEM observations revealed differences in the morphology of the scolex, position of the genital pore, number of eggs per egg capsule, and rostellar opening surface structures in all 4 species. Phylogenetic relationships were found among the phylogenetic trees obtained by the maximum likelihood and distance-based neighbor-joining methods. ITS2 and ND1 sequence data recorded from Raillietina sp. appeared to be monophyletic. The query sequences of R. echinobothrida, R. tetragona, R. cesticillus, and Raillietina sp. were separated according to the different morphological characters. This study confirmed that morphological studies combined with molecular analyses can differentiate related species within the genus Raillietina in Thailand. PMID:28095663

  13. A novel gammaherpesvirus in a large flying fox (Pteropus vampyrus) with blepharitis.

    PubMed

    Paige Brock, A; Cortés-Hinojosa, Galaxia; Plummer, Caryn E; Conway, Julia A; Roff, Shannon R; Childress, April L; Wellehan, James F X

    2013-05-01

    A novel gammaherpesvirus was identified in a large flying fox (Pteropus vampyrus) with conjunctivitis, blepharitis, and meibomianitis by nested polymerase chain reaction and sequencing. Polymerase chain reaction amplification and sequencing of 472 base pairs of the DNA-dependent DNA polymerase gene were used to identify a novel herpesvirus. Bayesian and maximum likelihood phylogenetic analyses indicated that the virus is a member of the genus Percavirus in the subfamily Gammaherpesvirinae. Additional research is needed regarding the association of this virus with conjunctivitis and other ocular pathology. This virus may be useful as a biomarker of stress and may be a useful model of virus recrudescence in Pteropus spp.

  14. Novel Hepatozoon in vertebrates from the southern United States.

    PubMed

    Allen, Kelly E; Yabsley, Michael J; Johnson, Eileen M; Reichard, Mason V; Panciera, Roger J; Ewing, Sidney A; Little, Susan E

    2011-08-01

    Novel Hepatozoon spp. sequences collected from previously unrecognized vertebrate hosts in North America were compared with documented Hepatozoon 18S rRNA sequences in an effort to examine phylogenetic relationships between the different Hepatozoon organisms found cycling in nature. An approximately 500-base pair fragment of 18S rDNA common to Hepatozoon spp. and some other apicomplexans was amplified and sequenced from the tissues or blood of 16 vertebrate host species from the southern United States, including 1 opossum (Didelphis virginiana), 2 bobcats (Lynx rufus), 1 domestic cat (Felis catus), 3 coyotes (Canis latrans), 1 gray fox (Urocyon cinereoargenteus), 4 raccoons (Procyon lotor), 1 pet boa constrictor (Boa constrictor imperator), 1 swamp rabbit (Sylvilagus aquaticus), 1 cottontail rabbit (Sylvilagus floridanus), 4 woodrats (Neotoma fuscipes and Neotoma micropus), 3 white-footed mice (Peromyscus leucopus), 8 cotton rats (Sigmodon hispidus), 1 cotton mouse (Peromyscus gossypinus), 1 eastern grey squirrel (Sciurus carolinensis), and 1 woodchuck (Marmota monax). Phylogenetic analyses and comparison with sequences in the existing database revealed distinct groups of Hepatozoon spp., with clusters formed by sequences obtained from scavengers and carnivores (opossum, raccoons, canids, and felids) and those obtained from rodents. Surprisingly, Hepatozoon spp. sequences from wild rabbits were most closely related to sequences obtained from carnivores (97.2% identical), and the sequence from the boa constrictor was most closely related to the rodent cluster (97.4% identical). These data are consistent with recent work identifying prey-predator transmission cycles in Hepatozoon spp. and suggest this pattern may be more common than previously recognized.

  15. Phylogenetic perspective and the search for life on earth and elsewhere

    NASA Technical Reports Server (NTRS)

    Pace, Norman R.

    1989-01-01

    Any search for microbial life on Mars cannot rely upon cultivation of indigenous organisms. Only a minority of even terrestrial organisms that are observed in mixed, naturally-occurring microbial populations can be cultivated in the laboratory. Consequently, methods are being developed for analyzing the phylogenetic affiliations of the constituents of natural microbial populations without the need for their cultivation. This is more than an exercise in taxonomy, for the extent of phylogenetic relatedness between unknown and known organisms is some measure of the extent of their biochemical commonalities. In one approach, total DNA is isolated from natural microbial populations and 16S rRNA genes are shotgun cloned for rapid sequence determinations and phylogenetic analyses. A second approach employs oligodeoxynucleotide hybridization probes that bind to phylogenetic group-specific sequences in 16S rRNA. Since each actively growing cell contains about 104 ribosomes, the binding of the diagnostic probes to single cells can be visualized by radioactivity or fluorescence. The application of these methods and the use of in situ cultivation techniques is illustrated using submarine hydrothermal vent communities. Recommendations are made regarding planning toward future Mars missions.

  16. Genetic Identification of Orientobilharzia turkestanicum from Sheep Isolates in Iran.

    PubMed

    Tabaripour, Reza; Youssefi, Mohammad Reza; Tabaripour, Rabeeh

    2015-01-01

    Adult worms of Orientobilharzia turkestanicum live in the portal veins, or intestinal veins of cattle, sheep, goat and many other mammals causing orientobilharziasis. Orientobilharziasis causes significant economic losses to livestock industry of Iran. However, there is limited information about genotypes of O. turkestanicum in Iran. In this study, 30 isolates of O. turkestanicum obtained from sheep were characterized by sequencing mitochondrial cytochrome c oxidase subunit 1 (cox1) and nicotinamide adenine dinucleotide dehydrogenase subunit 1 (nad1) gene. The mitochondrial cox1 and nad1 DNA were amplified by polymerase chain reaction (PCR) and then sequenced and compared with O. turkestanicum and that of other members of the Schistosomatidae available in Gen-Bank(™). Phylogenetic relationships between them were re-constructed using the maximum parsimony method. Phylogenetic analyses done in present study placed O. turkestanicum within the Schistosoma genus, and indicates that O. turkestanicum was phylogenetically closer to the African schistosome group than to the Asian schistosome group. Comparison of nad1 and cox1 sequences of O. turkestanicum obtained in this study with corresponding sequences available in Genbank(™) revealed some sequence variations and provided evidence for presence of microvarients in Iran.

  17. DendroBLAST: approximate phylogenetic trees in the absence of multiple sequence alignments.

    PubMed

    Kelly, Steven; Maini, Philip K

    2013-01-01

    The rapidly growing availability of genome information has created considerable demand for both fast and accurate phylogenetic inference algorithms. We present a novel method called DendroBLAST for reconstructing phylogenetic dendrograms/trees from protein sequences using BLAST. This method differs from other methods by incorporating a simple model of sequence evolution to test the effect of introducing sequence changes on the reliability of the bipartitions in the inferred tree. Using realistic simulated sequence data we demonstrate that this method produces phylogenetic trees that are more accurate than other commonly-used distance based methods though not as accurate as maximum likelihood methods from good quality multiple sequence alignments. In addition to tests on simulated data, we use DendroBLAST to generate input trees for a supertree reconstruction of the phylogeny of the Archaea. This independent analysis produces an approximate phylogeny of the Archaea that has both high precision and recall when compared to previously published analysis of the same dataset using conventional methods. Taken together these results demonstrate that approximate phylogenetic trees can be produced in the absence of multiple sequence alignments, and we propose that these trees will provide a platform for improving and informing downstream bioinformatic analysis. A web implementation of the DendroBLAST method is freely available for use at http://www.dendroblast.com/.

  18. Complete mitochondrial genome sequences of three bats species and whole genome mitochondrial analyses reveal patterns of codon bias and lend support to a basal split in Chiroptera.

    PubMed

    Meganathan, P R; Pagan, Heidi J T; McCulloch, Eve S; Stevens, Richard D; Ray, David A

    2012-01-15

    Order Chiroptera is a unique group of mammals whose members have attained self-powered flight as their main mode of locomotion. Much speculation persists regarding bat evolution; however, lack of sufficient molecular data hampers evolutionary and conservation studies. Of ~1200 species, complete mitochondrial genome sequences are available for only eleven. Additional sequences should be generated if we are to resolve many questions concerning these fascinating mammals. Herein, we describe the complete mitochondrial genomes of three bats: Corynorhinus rafinesquii, Lasiurus borealis and Artibeus lituratus. We also compare the currently available mitochondrial genomes and analyze codon usage in Chiroptera. C. rafinesquii, L. borealis and A. lituratus mitochondrial genomes are 16438 bp, 17048 bp and 16709 bp, respectively. Genome organization and gene arrangements are similar to other bats. Phylogenetic analyses using complete mitochondrial genome sequences support previously established phylogenetic relationships and suggest utility in future studies focusing on the evolutionary aspects of these species. Comprehensive analyses of available bat mitochondrial genomes reveal distinct nucleotide patterns and synonymous codon preferences corresponding to different chiropteran families. These patterns suggest that mutational and selection forces are acting to different extents within Chiroptera and shape their mitochondrial genomes. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. PHYLOGENETIC ANALYSIS OF 16S RRNA GENE SEQUENCES REVEALS THE PREVALENCE OF MYCOBACTERIA SP., ALPHA-PROTEOBACTERIA, AND UNCULTURED BACTERIA IN DRINKING WATER MICROBIAL COMMUNITIES

    EPA Science Inventory

    Previous studies have shown that culture-based methods tend to underestimate the densities and diversity of bacterial populations inhabiting water distribution systems (WDS). In this study, the phylogenetic diversity of drinking water bacteria was assessed using sequence analysis...

  20. Phylogenetic Analysis of Aedes aegypti Based on Mitochondrial ND4 Gene Sequences in Almadinah, Saudi Arabia.

    PubMed

    Ali, Khalil H Al; El-Badry, Ayman A; Ali, Mouhanad Al; El-Sayed, Wael S M; El-Beshbishy, Hesham A

    2016-06-01

    Aedes aegypti is the main vector of the yellow fever and dengue virus. This mosquito has become the major indirect cause of morbidity and mortality of the human worldwide. Dengue virus activity has been reported recently in the western areas of Saudi Arabia. There is no vaccine for dengue virus until now, and the control of the disease depends on the control of the vector. The present study has aimed to perform phylogenetic analysis of Aedes aegypti based on mitochondrial NADH dehydrogenase subunit 4 ( ND4 ) gene at Almadinah, Saudi Arabia in order to get further insight into the epidemiology and transmission of this vector. Mitochondrial ND4 gene was sequenced in the eight isolated Aedes aegypti mosquitoes from Almadinah, Saudi Arabia, sequences were aligned, and phylogenetic analysis were performed and compared with 54 sequences of Aedes reported in the previous studies from Mexico, Thailand, Brazil, and Africa. Our results suggest that increased gene flow among Aedes aegypti populations occurs between Africa and Saudi Arabia. Phylogenetic relationship analysis showed two genetically distinct Aedes aegypti in Saudi Arabia derived from dual African ancestor.

  1. Phylogenomic evidence for a recent and rapid radiation of lizards in the Patagonian Liolaemus fitzingerii species group.

    PubMed

    Grummer, Jared A; Morando, Mariana M; Avila, Luciano J; Sites, Jack W; Leaché, Adam D

    2018-08-01

    Rapid evolutionary radiations are difficult to resolve because divergence events are nearly synchronous and gene flow among nascent species can be high, resulting in a phylogenetic "bush". Large datasets composed of sequence loci from across the genome can potentially help resolve some of these difficult phylogenetic problems. A suitable test case is the Liolaemus fitzingerii species group of lizards, which includes twelve species that are broadly distributed in Argentinean Patagonia. The species in the group have had a complex evolutionary history that has led to high morphological variation and unstable taxonomy. We generated a sequence capture dataset for 28 ingroup individuals of 580 nuclear loci, alongside a mitogenomic dataset, to infer phylogenetic relationships among species in this group. Relationships among species were generally weakly supported with the nuclear data, and along with an inferred age of ∼2.6 million years old, indicate either rapid evolution, hybridization, incomplete lineage sorting, non-informative data, or a combination thereof. We inferred a signal of mito-nuclear discordance, indicating potential hybridization between L. melanops and L. martorii, and phylogenetic network analyses provided support for 5 reticulation events among species. Phasing the nuclear loci did not provide additional insight into relationships or suspected patterns of hybridization. Only one clade, composed of L. camarones, L. fitzingerii, and L. xanthoviridis was recovered across all analyses. Genomic datasets provide molecular systematists with new opportunities to resolve difficult phylogenetic problems, yet the lack of phylogenetic resolution in Patagonian Liolaemus is biologically meaningful and indicative of a recent and rapid evolutionary radiation. The phylogenetic relationships of the Liolaemus fitzingerii group may be best modeled as a reticulated network instead of a bifurcating phylogeny. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Phylo-VISTA: Interactive visualization of multiple DNA sequence alignments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Nameeta; Couronne, Olivier; Pennacchio, Len A.

    The power of multi-sequence comparison for biological discovery is well established. The need for new capabilities to visualize and compare cross-species alignment data is intensified by the growing number of genomic sequence datasets being generated for an ever-increasing number of organisms. To be efficient these visualization algorithms must support the ability to accommodate consistently a wide range of evolutionary distances in a comparison framework based upon phylogenetic relationships. Results: We have developed Phylo-VISTA, an interactive tool for analyzing multiple alignments by visualizing a similarity measure for multiple DNA sequences. The complexity of visual presentation is effectively organized using a frameworkmore » based upon interspecies phylogenetic relationships. The phylogenetic organization supports rapid, user-guided interspecies comparison. To aid in navigation through large sequence datasets, Phylo-VISTA leverages concepts from VISTA that provide a user with the ability to select and view data at varying resolutions. The combination of multiresolution data visualization and analysis, combined with the phylogenetic framework for interspecies comparison, produces a highly flexible and powerful tool for visual data analysis of multiple sequence alignments. Availability: Phylo-VISTA is available at http://www-gsd.lbl. gov/phylovista. It requires an Internet browser with Java Plugin 1.4.2 and it is integrated into the global alignment program LAGAN at http://lagan.stanford.edu« less

  3. Molecular phylogeny of Babesia poelea from brown boobies (Sula leucogaster) from Johnston Atoll, Central Pacific

    USGS Publications Warehouse

    Yabsley, Michael J.; Work, Thierry M.; Rameyer, Robert A.

    2006-01-01

    The phylogenetic relationship of avian Babesia with other piroplasms remains unclear, mainly because of a lack of objective criteria such as molecular phylogenetics. In this study, our objective was to sequence the entire 18S, ITS-1, 5.8S, and ITS-2 regions of the rRNA gene and partial ß-tubulin gene of B. poelea, first described from brown boobies (Sula leucogaster) from the central Pacific, and compare them to those of other piroplasms. Phylogenetic analyses of the entire 18S rRNA gene sequence revealed that B. poelea belonged to the clade of piroplasms previously detected in humans, domestic dogs, and wild ungulates in the western United States. The entire ITS-1, 5.8S, ITS-2, and partial ß-tubulin gene sequence shared conserved regions with previously described Babesia and Theileria species. The intron of the ß-tubulin gene was 45 bp. This is the first molecular characterization of an avian piroplasm.

  4. Molecular phylogeny of Babesia poelea from brown boobies (Sula leucogaster) from Johnston Atoll, central Pacific.

    PubMed

    Yabsley, Michael J; Work, Thierry M; Rameyer, Robert A

    2006-04-01

    The phylogenetic relationship of avian Babesia with other piroplasms remains unclear, mainly because of a lack of objective criteria such as molecular phylogenetics. In this study, our objective was to sequence the entire 18S, ITS-1, 5.8S, and ITS-2 regions of the rRNA gene and partial beta-tubulin gene of B. poelea, first described from brown boobies (Sula leucogaster) from the central Pacific, and compare them to those of other piroplasms. Phylogenetic analyses of the entire 18S rRNA gene sequence revealed that B. poelea belonged to the clade of piroplasms previously detected in humans, domestic dogs, and wild ungulates in the western United States. The entire ITS-1, 5.8S, ITS-2, and partial beta-tubulin gene sequence shared conserved regions with previously described Babesia and Theileria species. The intron of the beta-tubulin gene was 45 bp. This is the first molecular characterization of an avian piroplasm.

  5. The complete mitochondrial genome of the green lizard Lacerta viridis viridis (Reptilia: Lacertidae) and its phylogenetic position within squamate reptiles.

    PubMed

    Böhme, M U; Fritzsch, G; Tippmann, A; Schlegel, M; Berendonk, T U

    2007-06-01

    For the first time the complete mitochondrial genome was sequenced for a member of Lacertidae. Lacerta viridis viridis was sequenced in order to compare the phylogenetic relationships of this family to other reptilian lineages. Using the long-polymerase chain reaction (long PCR) we characterized a mitochondrial genome, 17,156 bp long showing a typical vertebrate pattern with 13 protein coding genes, 22 transfer RNAs (tRNA), two ribosomal RNAs (rRNA) and one major noncoding region. The noncoding region of L. v. viridis was characterized by a conspicuous 35 bp tandem repeat at its 5' terminus. A phylogenetic study including all currently available squamate mitochondrial sequences demonstrates the position of Lacertidae within a monophyletic squamate group. We obtained a narrow relationship of Lacertidae to Scincidae, Iguanidae, Varanidae, Anguidae, and Cordylidae. Although, the internal relationships within this group yielded only a weak resolution and low bootstrap support, the revealed relationships were more congruent with morphological studies than with recent molecular analyses.

  6. Phylogenetic Analysis of Prevalent Tuberculosis and Non-Tuberculosis Mycobacteria in Isfahan, Iran, Based on a 360 bp Sequence of the rpoB Gene

    PubMed Central

    Nasr Esfahani, Bahram; Moghim, Sharareh; Ghasemian Safaei, Hajieh; Moghoofei, Mohsen; Sedighi, Mansour; Hadifar, Shima

    2016-01-01

    Background Taxonomic and phylogenetic studies of Mycobacterium species have been based around the 16sRNA gene for many years. However, due to the high strain similarity between species in the Mycobacterium genus (94.3% - 100%), defining a valid phylogenetic tree is difficult; consequently, its use in estimating the boundaries between species is limited. The sequence of the rpoB gene makes it an appropriate gene for phylogenetic analysis, especially in bacteria with limited variation. Objectives In the present study, a 360bp sequence of rpoB was used for precise classification of Mycobacterium strains isolated in Isfahan, Iran. Materials and Methods From February to October 2013, 57 clinical and environmental isolates were collected, subcultured, and identified by phenotypic methods. After DNA extraction, a 360bp fragment was PCR-amplified and sequenced. The phylogenetic tree was constructed based on consensus sequence data, using MEGA5 software. Results Slow and fast-growing groups of the Mycobacterium strains were clearly differentiated based on the constructed tree of 56 common Mycobacterium isolates. Each species with a unique title in the tree was identified; in total, 13 nods with a bootstrap value of over 50% were supported. Among the slow-growing group was Mycobacterium kansasii, with M. tuberculosis in a cluster with a bootstrap value of 98% and M. gordonae in another cluster with a bootstrap value of 90%. In the fast-growing group, one cluster with a bootstrap value of 89% was defined, including all fast-growing members present in this study. Conclusions The results suggest that only the application of the rpoB gene sequence is sufficient for taxonomic categorization and definition of a new Mycobacterium species, due to its high resolution power and proper variation in its sequence (85% - 100%); the resulting tree has high validity. PMID:27284397

  7. Phylogenetic tree construction based on 2D graphical representation

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa

    2006-04-01

    A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.

  8. Comparative mitogenomic analysis of mirid bugs (Hemiptera: Miridae) and evaluation of potential DNA barcoding markers.

    PubMed

    Wang, Juan; Zhang, Li; Zhang, Qi-Lin; Zhou, Min-Qiang; Wang, Xiao-Tong; Yang, Xing-Zhuo; Yuan, Ming-Long

    2017-01-01

    The family Miridae is one of the most species-rich families of insects. To better understand the diversity and evolution of mirids, we determined the mitogenome of Lygus pratenszs and re-sequenced the mitogenomes of four mirids (i.e., Apolygus lucorum , Adelphocoris suturalis , Ade. fasciaticollis and Ade. lineolatus ). We performed a comparative analysis for 15 mitogenomic sequences representing 11 species of five genera within Miridae and evaluated the potential of these mitochondrial genes as molecular markers. Our results showed that the general mitogenomic features (gene content, gene arrangement, base composition and codon usage) were well conserved among these mirids. Four protein-coding genes (PCGs) ( cox1 , cox3 , nad1 and nad3 ) had no length variability, where nad5 showed the largest size variation; no intraspecific length variation was found in PCGs. Two PCGs ( nad4 and nad5 ) showed relatively high substitution rates at the nucleotide and amino acid levels, where cox1 had the lowest substitution rate. The Ka/Ks values for all PCGs were far lower than 1 (<0.59), but the Ka/Ks values of cox1 -barcode sequences were always larger than 1 (1.34 -15.20), indicating that the 658 bp sequences of cox1 may be not the appropriate marker due to positive selection or selection relaxation. Phylogenetic analyses based on two concatenated mitogenomic datasets consistently supported the relationship of Nesidiocoris + ( Trigonotylus + ( Adelphocoris + ( Apolygus + Lygus ))), as revealed by nad4 , nad5 , rrnL and the combined 22 transfer RNA genes (tRNAs), respectively. Taken sequence length, substitution rate and phylogenetic signal together, the individual genes ( nad4 , nad5 and rrnL ) and the combined 22 tRNAs could been used as potential molecular markers for Miridae at various taxonomic levels. Our results suggest that it is essential to evaluate and select suitable markers for different taxa groups when performing phylogenetic, population genetic and species identification studies.

  9. Complete genome sequence of 285P, a novel T7-like polyvalent E. coli bacteriophage.

    PubMed

    Xu, Bin; Ma, Xiangyu; Xiong, Hongyan; Li, Yafei

    2014-06-01

    Bacteriophages are considered potential biological agents for the control of infectious diseases and environmental disinfection. Here, we describe a novel T7-like polyvalent Escherichia coli bacteriophage, designated "285P," which can lyse several strains of E. coli. The genome, which consists of 39,270 base pairs with a G+C content of 48.73 %, was sequenced and annotated. Forty-three potential open reading frames were identified using bioinformatics tools. Based on whole-genome sequence comparison, phage 285P was identified as a novel strain of subgroup T7. It showed strongest sequence similarity to Kluyvera phage Kvp1. The phylogenetic analyses of both non-structural proteins (endonuclease gp3, amidase gp3.5, DNA primase/helicase gp4, DNA polymerase gp5, and exonuclease gp6) and structural protein (tail fiber protein gp17) led to the identification of 285P as T7-like phage. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analyses verified the annotation of the structural proteins (major capsid protein gp10a, tail protein gp12, and tail fiber protein gp17).

  10. Differentiation and classification of phytoplasmas in the pigeon pea witches'-broom group (16SrIX): an update based on multiple gene sequence analysis.

    PubMed

    Lee, I-M; Bottner-Parker, K D; Zhao, Y; Bertaccini, A; Davis, R E

    2012-09-01

    The pigeon pea witches'-broom phytoplasma group (16SrIX) comprises diverse strains that cause numerous diseases in leguminous trees and herbaceous crops, vegetables, a fruit, a nut tree and a forest tree. At least 14 strains have been reported worldwide. Comparative phylogenetic analyses of the highly conserved 16S rRNA gene and the moderately conserved rplV (rpl22)-rpsC (rps3) and secY genes indicated that the 16SrIX group consists of at least six distinct genetic lineages. Some of these lineages cannot be readily differentiated based on analysis of 16S rRNA gene sequences alone. The relative genetic distances among these closely related lineages were better assessed by including more variable genes [e.g. ribosomal protein (rp) and secY genes]. The present study demonstrated that virtual RFLP analyses using rp and secY gene sequences allowed unambiguous identification of such lineages. A coding system is proposed to designate each distinct rp and secY subgroup in the 16SrIX group.

  11. Targeted amplicon sequencing (TAS): a scalable next-gen approach to multilocus, multitaxa phylogenetics.

    PubMed

    Bybee, Seth M; Bracken-Grissom, Heather; Haynes, Benjamin D; Hermansen, Russell A; Byers, Robert L; Clement, Mark J; Udall, Joshua A; Wilcox, Edward R; Crandall, Keith A

    2011-01-01

    Next-gen sequencing technologies have revolutionized data collection in genetic studies and advanced genome biology to novel frontiers. However, to date, next-gen technologies have been used principally for whole genome sequencing and transcriptome sequencing. Yet many questions in population genetics and systematics rely on sequencing specific genes of known function or diversity levels. Here, we describe a targeted amplicon sequencing (TAS) approach capitalizing on next-gen capacity to sequence large numbers of targeted gene regions from a large number of samples. Our TAS approach is easily scalable, simple in execution, neither time-nor labor-intensive, relatively inexpensive, and can be applied to a broad diversity of organisms and/or genes. Our TAS approach includes a bioinformatic application, BarcodeCrucher, to take raw next-gen sequence reads and perform quality control checks and convert the data into FASTA format organized by gene and sample, ready for phylogenetic analyses. We demonstrate our approach by sequencing targeted genes of known phylogenetic utility to estimate a phylogeny for the Pancrustacea. We generated data from 44 taxa using 68 different 10-bp multiplexing identifiers. The overall quality of data produced was robust and was informative for phylogeny estimation. The potential for this method to produce copious amounts of data from a single 454 plate (e.g., 325 taxa for 24 loci) significantly reduces sequencing expenses incurred from traditional Sanger sequencing. We further discuss the advantages and disadvantages of this method, while offering suggestions to enhance the approach.

  12. Targeted Amplicon Sequencing (TAS): A Scalable Next-Gen Approach to Multilocus, Multitaxa Phylogenetics

    PubMed Central

    Bybee, Seth M.; Bracken-Grissom, Heather; Haynes, Benjamin D.; Hermansen, Russell A.; Byers, Robert L.; Clement, Mark J.; Udall, Joshua A.; Wilcox, Edward R.; Crandall, Keith A.

    2011-01-01

    Next-gen sequencing technologies have revolutionized data collection in genetic studies and advanced genome biology to novel frontiers. However, to date, next-gen technologies have been used principally for whole genome sequencing and transcriptome sequencing. Yet many questions in population genetics and systematics rely on sequencing specific genes of known function or diversity levels. Here, we describe a targeted amplicon sequencing (TAS) approach capitalizing on next-gen capacity to sequence large numbers of targeted gene regions from a large number of samples. Our TAS approach is easily scalable, simple in execution, neither time-nor labor-intensive, relatively inexpensive, and can be applied to a broad diversity of organisms and/or genes. Our TAS approach includes a bioinformatic application, BarcodeCrucher, to take raw next-gen sequence reads and perform quality control checks and convert the data into FASTA format organized by gene and sample, ready for phylogenetic analyses. We demonstrate our approach by sequencing targeted genes of known phylogenetic utility to estimate a phylogeny for the Pancrustacea. We generated data from 44 taxa using 68 different 10-bp multiplexing identifiers. The overall quality of data produced was robust and was informative for phylogeny estimation. The potential for this method to produce copious amounts of data from a single 454 plate (e.g., 325 taxa for 24 loci) significantly reduces sequencing expenses incurred from traditional Sanger sequencing. We further discuss the advantages and disadvantages of this method, while offering suggestions to enhance the approach. PMID:22002916

  13. Genomic Characterization of Travel-Associated Dengue Viruses Isolated from the Entry-Exit Ports in Fujian Province, China, 2013-2015.

    PubMed

    Gao, Bo; Zhang, Jianming; Wang, Yuping; Chen, Fan; Zheng, Chaohui; Xie, Lianhui

    2017-09-25

    Over the past decade, indigenous dengue outbreaks have occurred occasionally in Fujian province in southeastern China because of sporadic imported dengue viruses (DENV). In this study, 3 DENV-2 and 2 DENV-4 strains were isolated from suspected febrile travelers at 2 ports of entry in Fujian between 2013-2015. Complete viral genome sequences of these new isolates were obtained with Sanger chemistry. Genomic sequence analyses revealed that these strains belonged to genotypes of 2-Cosmopolitan and 4-II. Consistent with the patients' travel information, phylogenetic analyses of the complete coding regions also indicated that most of the new isolates were genetically similar to the circulating strains in Southeast Asia rather than previous Chinese strains that were available. Therefore, phylogenetic analyses of the imported DENV demonstrated that multiple introductions of DENV emerged continuously in Fujian, and highlighted the importance of dengue surveillance at entry-exit ports in the subtropical regions of southern China.

  14. Evaluation of nearest-neighbor methods for detection of chimeric small-subunit rRNA sequences

    NASA Technical Reports Server (NTRS)

    Robison-Cox, J. F.; Bateson, M. M.; Ward, D. M.

    1995-01-01

    Detection of chimeric artifacts formed when PCR is used to retrieve naturally occurring small-subunit (SSU) rRNA sequences may rely on demonstrating that different sequence domains have different phylogenetic affiliations. We evaluated the CHECK_CHIMERA method of the Ribosomal Database Project and another method which we developed, both based on determining nearest neighbors of different sequence domains, for their ability to discern artificially generated SSU rRNA chimeras from authentic Ribosomal Database Project sequences. The reliability of both methods decreases when the parental sequences which contribute to chimera formation are more than 82 to 84% similar. Detection is also complicated by the occurrence of authentic SSU rRNA sequences that behave like chimeras. We developed a naive statistical test based on CHECK_CHIMERA output and used it to evaluate previously reported SSU rRNA chimeras. Application of this test also suggests that chimeras might be formed by retrieving SSU rRNAs as cDNA. The amount of uncertainty associated with nearest-neighbor analyses indicates that such tests alone are insufficient and that better methods are needed.

  15. Application of the major capsid protein as a marker of the phylogenetic diversity of Emiliania huxleyi viruses.

    PubMed

    Rowe, Janet M; Fabre, Marie-Françoise; Gobena, Daniel; Wilson, William H; Wilhelm, Steven W

    2011-05-01

    Studies of the Phycodnaviridae have traditionally relied on the DNA polymerase (pol) gene as a biomarker. However, recent investigations have suggested that the major capsid protein (MCP) gene may be a reliable phylogenetic biomarker. We used MCP gene amplicons gathered across the North Atlantic to assess the diversity of Emiliania huxleyi-infecting Phycodnaviridae. Nucleotide sequences were examined across >6000 km of open ocean, with comparisons between concentrates of the virus-size fraction of seawater and of lysates generated by exposing host strains to these same virus concentrates. Analyses revealed that many sequences were only sampled once, while several were over-represented. Analyses also revealed nucleotide sequences distinct from previous coastal isolates. Examination of lysed cultures revealed a new richness in phylogeny, as MCP sequences previously unrepresented within the existing collection of E. huxleyi viruses (EhV) were associated with viruses lysing cultures. Sequences were compared with previously described EhV MCP sequences from the North Sea and a Norwegian Fjord, as well as from the Gulf of Maine. Principal component analysis indicates that location-specific distinctions exist despite the presence of sequences common across these environments. Overall, this investigation provides new sequence data and an assessment on the use of the MCP gene. © 2011 Federation of European Microbiological Societies Published by Blackwell Publishing Ltd. All rights reserved.

  16. Taxonomic evaluation of Streptomyces albus and related species using multilocus sequence analysis and proposals to emend the description of Streptomyces albus and describe Streptomyces pathocidini sp. nov

    USDA-ARS?s Scientific Manuscript database

    In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp. albus NRRL B-1811T forms a cluster with 5 other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these oth...

  17. Phylogeny and character evolution of the coprinoid mushroom genus Parasola as inferred from LSU and ITS nrDNA sequence data.

    PubMed

    Nagy, L G; Kocsubé, S; Papp, T; Vágvölgyi, C

    2009-06-01

    Phylogenetic relationships, species concepts and morphological evolution of the coprinoid mushroom genus Parasola were studied. A combined dataset of nuclear ribosomal ITS and LSU sequences was used to infer phylogenetic relationships of Parasola species and several outgroup taxa. Clades recovered in the phylogenetic analyses corresponded well to morphologically discernable species, although in the case of P. leiocephala, P. lilatincta and P. plicatilis amended concepts proved necessary. Parasola galericuliformis and P. hemerobia are shown to be synonymous with P. leiocephala and P. plicatilis, respectively. By mapping morphological characters on the phylogeny, it is shown that the emergence of deliquescent Parasola taxa was accompanied by the development of pleurocystidia, brachybasidia and a plicate pileus. Spore shape and the position of the germ pore on the spores showed definite evolutionary trends within the group: from ellipsoid the former becomes more voluminous and heart-shaped, the latter evolves from central to eccentric in taxa referred to as 'crown' Parasola species. The results are discussed and compared to other Coprinus s.l. and Psathyrella taxa. Homoplasy and phylogenetic significance of various morphological characters, as well as indels in ITS and LSU sequences, are also evaluated.

  18. A Phylogenetic and Phenotypic Analysis of Salmonella enterica Serovar Weltevreden, an Emerging Agent of Diarrheal Disease in Tropical Regions

    PubMed Central

    Makendi, Carine; Page, Andrew J.; Wren, Brendan W.; Le Thi Phuong, Tu; Clare, Simon; Hale, Christine; Goulding, David; Klemm, Elizabeth J.; Pickard, Derek; Okoro, Chinyere; Hunt, Martin; Thompson, Corinne N.; Phu Huong Lan, Nguyen; Tran Do Hoang, Nhu; Thwaites, Guy E.; Le Hello, Simon; Brisabois, Anne; Weill, François-Xavier; Baker, Stephen; Dougan, Gordon

    2016-01-01

    Salmonella enterica serovar Weltevreden (S. Weltevreden) is an emerging cause of diarrheal and invasive disease in humans residing in tropical regions. Despite the regional and international emergence of this Salmonella serovar, relatively little is known about its genetic diversity, genomics or virulence potential in model systems. Here we used whole genome sequencing and bioinformatics analyses to define the phylogenetic structure of a diverse global selection of S. Weltevreden. Phylogenetic analysis of more than 100 isolates demonstrated that the population of S. Weltevreden can be segregated into two main phylogenetic clusters, one associated predominantly with continental Southeast Asia and the other more internationally dispersed. Subcluster analysis suggested the local evolution of S. Weltevreden within specific geographical regions. Four of the isolates were sequenced using long read sequencing to produce high quality reference genomes. Phenotypic analysis in Hep-2 cells and in a murine infection model indicated that S. Weltevreden were significantly attenuated in these models compared to the classical S. Typhimurium reference strain SL1344. Our work outlines novel insights into this important emerging pathogen and provides a baseline understanding for future research studies. PMID:26867150

  19. Complete genomic sequence of a Tobacco rattle virus isolate from Michigan-grown potatoes.

    PubMed

    Crosslin, James M; Hamm, Philip B; Kirk, William W; Hammond, Rosemarie W

    2010-04-01

    Tobacco rattle virus (TRV) causes stem mottle on potato leaves and necrotic arcs and rings in potato tubers, known as corky ringspot disease. Recently, TRV was reported in Michigan potato tubers cv. FL1879 exhibiting corky ringspot disease. Sequence analysis of the RNA-1-encoded 16-kDa gene of the Michigan isolate, designated MI-1, revealed homology to TRV isolates from Florida and Washington. Here, we report the complete genomic sequence of RNA-1 (6,791 nt) and RNA-2 (3,685 nt) of TRV MI-1. RNA-1 is predicted to contain four open reading frames, and the genome structure and phylogenetic analyses of the RNA-1 nucleotide sequence revealed significant homologies to the known sequences of other TRV-1 isolates. The relationships based on the full-length nucleotide sequence were different from than those based on the 16-kDa gene encoded on genomic RNA-1 and reflect sequence variation within a 20-25-aa residue region of the 16-kDa protein. MI-1 RNA-2 is predicted to contain three ORFs, encoding the coat protein (CP), a 37.6-kDa protein (ORF 2b), and a 33.6-kDa protein (ORF 2c). In addition, it contains a region of similarity to the 3' terminus of RNA-1, including a truncated portion of the 16-kDa cistron. Phylogenetic analysis of RNA-2, based on a comparison of nucleotide sequences with other members of the genus Tobravirus, indicates that TRV MI-1 and other North American isolates cluster as a distinct group. TRV M1-1 is only the second North American isolate for which there is a complete sequence of the genome, and it is distinct from the North American isolate TRV ORY. The relationship of the TRV MI-1 isolate to other tobravirus isolates is discussed.

  20. New record of Steinernema arenarium (Artyukhovsky) (Rhabditida: Steinernematidae) from Ukraine and a note on its distribution.

    PubMed

    Yakovlev, Yegor; Nermut, Jiří; Půža, Vladimír; Kharchenko, Vitaliy A; Mráček, Zdeněk

    2017-06-01

    During a survey of the biodiversity of entomopathogenic nematodes in Ukraine, a population of Steinernema arenarium, strain Ch, was recovered in the sensitive Chornobyl Exclusion Zone. In the present work, this strain was morphologically and molecularly characterised using light microscopy and the sequences of the ITS and D2-D3 region of the 28S rDNA. In addition, we sequenced the ITS and D2-D3 regions of four populations of S. arenarium from a laboratory collection. Phylogenetic analyses were performed and the phylogenetic structure and geographic distribution of S. arenarium are discussed.

Top