Sample records for sequences encoding putative

  1. Identification and Characterization of Putative Integron-Like Elements of the Heavy-Metal-Hypertolerant Strains of Pseudomonas spp.

    PubMed

    Ciok, Anna; Adamczuk, Marcin; Bartosik, Dariusz; Dziewit, Lukasz

    2016-11-28

    Pseudomonas strains isolated from the heavily contaminated Lubin copper mine and Zelazny Most post-flotation waste reservoir in Poland were screened for the presence of integrons. This analysis revealed that two strains carried homologous DNA regions composed of a gene encoding a DNA_BRE_C domain-containing tyrosine recombinase (with no significant sequence similarity to other integrases of integrons) plus a three-component array of putative integron gene cassettes. The predicted gene cassettes encode three putative polypeptides with homology to (i) transmembrane proteins, (ii) GCN5 family acetyltransferases, and (iii) hypothetical proteins of unknown function (homologous proteins are encoded by the gene cassettes of several class 1 integrons). Comparative sequence analyses identified three structural variants of these novel integron-like elements within the sequenced bacterial genomes. Analysis of their distribution revealed that they are found exclusively in strains of the genus Pseudomonas .

  2. The complete nucleotide sequence and genome organization of a novel betaflexivirus infecting Citrullus lanatus.

    PubMed

    Xin, Min; Zhang, Peipei; Liu, Wenwen; Ren, Yingdang; Cao, Mengji; Wang, Xifeng

    2017-10-01

    The complete nucleotide sequence of a novel positive single-stranded (+ss) RNA virus, tentatively named watermelon virus A (WVA), was determined using a combination of three methods: RNA sequencing, small RNA sequencing, and Sanger sequencing. The full genome of WVA is comprised of 8,372 nucleotides (nt), excluding the poly (A) tail, and contains four open reading frames (ORFs). The largest ORF, ORF1 encodes a putative replication-associated polyprotein (RP) with three conserved domains. ORF2 and ORF4 encode a movement protein (MP) and coat protein (CP), respectively. The putative product encoded by ORF3, of an estimated molecular mass of 25 kDa, has no significant similarity with other proteins. Identity and phylogenetic analysis indicate that WVA is a new virus, closely related to members of the family Betaflexiviridae. However, the final taxonomic allocation of WVA within the family is yet to be determined.

  3. Extreme Sensory Complexity Encoded in the 10-Megabase Draft Genome Sequence of the Chromatically Acclimating Cyanobacterium Tolypothrix sp. PCC 7601

    PubMed Central

    Yerrapragada, Shaila; Shukla, Animesh; Hallsworth-Pepin, Kymberlie; Choi, Kwangmin; Wollam, Aye; Clifton, Sandra; Qin, Xiang; Muzny, Donna; Raghuraman, Sriram; Ashki, Haleh; Uzman, Akif; Highlander, Sarah K.; Fryszczyn, Bartlomiej G.; Fox, George E.; Tirumalai, Madhan R.; Liu, Yamei; Kim, Sun

    2015-01-01

    Tolypothrix sp. PCC 7601 is a freshwater filamentous cyanobacterium with complex responses to environmental conditions. Here, we present its 9.96-Mbp draft genome sequence, containing 10,065 putative protein-coding sequences, including 305 predicted two-component system proteins and 27 putative phytochrome-class photoreceptors, the most such proteins in any sequenced genome. PMID:25953173

  4. Extreme Sensory Complexity Encoded in the 10-Megabase Draft Genome Sequence of the Chromatically Acclimating Cyanobacterium Tolypothrix sp. PCC 7601.

    PubMed

    Yerrapragada, Shaila; Shukla, Animesh; Hallsworth-Pepin, Kymberlie; Choi, Kwangmin; Wollam, Aye; Clifton, Sandra; Qin, Xiang; Muzny, Donna; Raghuraman, Sriram; Ashki, Haleh; Uzman, Akif; Highlander, Sarah K; Fryszczyn, Bartlomiej G; Fox, George E; Tirumalai, Madhan R; Liu, Yamei; Kim, Sun; Kehoe, David M; Weinstock, George M

    2015-05-07

    Tolypothrix sp. PCC 7601 is a freshwater filamentous cyanobacterium with complex responses to environmental conditions. Here, we present its 9.96-Mbp draft genome sequence, containing 10,065 putative protein-coding sequences, including 305 predicted two-component system proteins and 27 putative phytochrome-class photoreceptors, the most such proteins in any sequenced genome. Copyright © 2015 Yerrapragada et al.

  5. Isolation and characterization of two cDNA clones encoding for glutamate dehydrogenase in Nicotiana plumbaginifolia.

    PubMed

    Ficarelli, A; Tassi, F; Restivo, F M

    1999-03-01

    We have isolated two full length cDNA clones encoding Nicotiana plumbaginifolia NADH-glutamate dehydrogenase. Both clones share amino acid boxes of homology corresponding to conserved GDH catalytic domains and putative mitochondrial targeting sequence. One clone shows a putative EF-hand loop. The level of the two transcripts is affected differently by carbon source.

  6. A comparative genomics perspective on the genetic content of the alkaliphilic haloarchaeon Natrialba magadii ATCC 43099T

    PubMed Central

    2012-01-01

    Background Natrialba magadii is an aerobic chemoorganotrophic member of the Euryarchaeota and is a dual extremophile requiring alkaline conditions and hypersalinity for optimal growth. The genome sequence of Nab. magadii type strain ATCC 43099 was deciphered to obtain a comprehensive insight into the genetic content of this haloarchaeon and to understand the basis of some of the cellular functions necessary for its survival. Results The genome of Nab. magadii consists of four replicons with a total sequence of 4,443,643 bp and encodes 4,212 putative proteins, some of which contain peptide repeats of various lengths. Comparative genome analyses facilitated the identification of genes encoding putative proteins involved in adaptation to hypersalinity, stress response, glycosylation, and polysaccharide biosynthesis. A proton-driven ATP synthase and a variety of putative cytochromes and other proteins supporting aerobic respiration and electron transfer were encoded by one or more of Nab. magadii replicons. The genome encodes a number of putative proteases/peptidases as well as protein secretion functions. Genes encoding putative transcriptional regulators, basal transcription factors, signal perception/transduction proteins, and chemotaxis/phototaxis proteins were abundant in the genome. Pathways for the biosynthesis of thiamine, riboflavin, heme, cobalamin, coenzyme F420 and other essential co-factors were deduced by in depth sequence analyses. However, approximately 36% of Nab. magadii protein coding genes could not be assigned a function based on Blast analysis and have been annotated as encoding hypothetical or conserved hypothetical proteins. Furthermore, despite extensive comparative genomic analyses, genes necessary for survival in alkaline conditions could not be identified in Nab. magadii. Conclusions Based on genomic analyses, Nab. magadii is predicted to be metabolically versatile and it could use different carbon and energy sources to sustain growth. Nab. magadii has the genetic potential to adapt to its milieu by intracellular accumulation of inorganic cations and/or neutral organic compounds. The identification of Nab. magadii genes involved in coenzyme biosynthesis is a necessary step toward further reconstruction of the metabolic pathways in halophilic archaea and other extremophiles. The knowledge gained from the genome sequence of this haloalkaliphilic archaeon is highly valuable in advancing the applications of extremophiles and their enzymes. PMID:22559199

  7. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family

    PubMed Central

    Niskanen, Einari A; Hytönen, Vesa P; Grapputo, Alessandro; Nordlund, Henri R; Kulomaa, Markku S; Laitinen, Olli H

    2005-01-01

    Background A chicken egg contains several biotin-binding proteins (BBPs), whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins. PMID:15777476

  8. Influence of Molecular Resolution on Sequence-Based Discovery of Ecological Diversity among Synechococcus Populations in an Alkaline Siliceous Hot Spring Microbial Mat ▿ †

    PubMed Central

    Melendrez, Melanie C.; Lange, Rachel K.; Cohan, Frederick M.; Ward, David M.

    2011-01-01

    Previous research has shown that sequences of 16S rRNA genes and 16S-23S rRNA internal transcribed spacer regions may not have enough genetic resolution to define all ecologically distinct Synechococcus populations (ecotypes) inhabiting alkaline, siliceous hot spring microbial mats. To achieve higher molecular resolution, we studied sequence variation in three protein-encoding loci sampled by PCR from 60°C and 65°C sites in the Mushroom Spring mat (Yellowstone National Park, WY). Sequences were analyzed using the ecotype simulation (ES) and AdaptML algorithms to identify putative ecotypes. Between 4 and 14 times more putative ecotypes were predicted from variation in protein-encoding locus sequences than from variation in 16S rRNA and 16S-23S rRNA internal transcribed spacer sequences. The number of putative ecotypes predicted depended on the number of sequences sampled and the molecular resolution of the locus. Chao estimates of diversity indicated that few rare ecotypes were missed. Many ecotypes hypothesized by sequence analyses were different in their habitat specificities, suggesting different adaptations to temperature or other parameters that vary along the flow channel. PMID:21169433

  9. Characterization and mapping of cDNA encoding aspartate aminotransferase in rice, Oryza sativa L.

    PubMed

    Song, J; Yamamoto, K; Shomura, A; Yano, M; Minobe, Y; Sasaki, T

    1996-10-31

    Fifteen cDNA clones, putatively identified as encoding aspartate aminotransferase (AST, EC 2.6.1.1.), were isolated and partially sequenced. Together with six previously isolated clones putatively identified to encode ASTs (Sasaki, et al. 1994, Plant Journal 6, 615-624), their sequences were characterized and classified into 4 cDNA species. Two of the isolated clones, C60213 and C2079, were full-length cDNAs, and their complete nucleotide sequences were determined. C60213 was 1612 bp long and its deduced amino acid sequence showed 88% homology with that of Panicum miliaceum L. mitochondrial AST. The C60213-encoded protein had an N-terminal amino acid sequence that was characteristic of a mitochondrial transit peptide. On the other hand, C2079 was 1546 bp long and had 91% amino acid sequence homology with P. miliaceum L. cytosolic AST but lacked in the transit peptide sequence. The homologies of nucleotide sequences and deduced amino acid sequences of C2079 and C60213 were 54% and 52%, respectively. C2079 and C60213 were mapped on chromosomes 1 and 6, respectively, by restriction fragment length polymorphism linkage analysis. Northern blot analysis using C2079 as a probe revealed much higher transcript levels in callus and root than in green and etiolated shoots, suggesting tissue-specific variations of AST gene expression.

  10. Analysis of the DNA sequence of a 15,500 bp fragment near the left telomere of chromosome XV from Saccharomyces cerevisiae reveals a putative sugar transporter, a carboxypeptidase homologue and two new open reading frames.

    PubMed

    Gamo, F J; Lafuente, M J; Casamayor, A; Ariño, J; Aldea, M; Casas, C; Herrero, E; Gancedo, C

    1996-06-15

    We report the sequence of a 15.5 kb DNA segment located near the left telomere of chromosome XV of Saccharomyces cerevisiae. The sequence contains nine open reading frames (ORFs) longer than 300 bp. Three of them are internal to other ones. One corresponds to the gene LGT3 that encodes a putative sugar transporter. Three adjacent ORFs were separated by two stop codons in frame. These ORFs presented homology with the gene CPS1 that encodes carboxypeptidase S. The stop codons were not found in the same sequence derived from another yeast strain. Two other ORFs without significant homology in databases were also found. One of them, O0420, is very rich in serine and threonine and presents a series of repeated or similar amino acid stretches along the sequence.

  11. Open reading frames in a 4556 nucleotide sequence within MDV-1 BamHI-D DNA fragment: evidence for splicing of mRNA from a new viral glycoprotein gene.

    PubMed

    Becker, Y; Asher, Y; Tabor, E; Davidson, I; Malkinson, M

    1994-01-01

    A DNA segment of the MDV-1 BamHI-D fragment was sequenced, and the open reading frames (ORFs) present in the 4556 nucleotide fragment were analyzed by computer programs. Computer analysis identified 19 putative ORFs in the sequence ranging from a coding capacity of 37 amino acids (aa) (ORF-1a) to 684aa (ORF-1). The special properties of four ORFs (1a, 1, 2, and 3) were investigated. Two adjacent ORFs, ORF-1a and ORF-1, were found by computer analysis to have the properties of two introns encoding a glycoprotein: ORF-1a encodes an aa sequence with the properties of a signal peptide, and ORF-1 encodes a polypeptide with a membrane anchor domain and putative N-glycosylation sites in the aa sequence. ORF-1a and ORF-1 were found to be transcribed in MDV-1-infected cells. Two RNA transcripts were detected: a precursor RNA and its spliced form. Both are transcribed from a promoter located 5' to ORF-1a, and splice donor and acceptor sites are used to splice the mRNA after cleavage of a 71-nucleotide sequence. This finding suggest that ORF-1a and ORF-1 are two introns of a new MDV-1 glycoprotein gene. The DNA sequence containing ORF-1 was transiently expressed in COS-1 cells, and the viral protein produced in these cells was found to react with anti-MDV serotype-1 Antigen B-specific monoclonal antibodies. These studies indicate that the protein encoded by ORF-1 has antigenic properties resembling Antigen B of MDV-1. A gene homologous to ORF-1 was detected in the genome of both MDV-2(SB1) and MDV-3(HVT), which serve as commercial vaccine strains. Two additional ORFs were noted in the 4556 nucleotide sequence: ORF-2, which encodes a 333 aa polypeptide initiating in the UL and terminating in the TRL prior to the putative origin of replication, and ORF-3, which encodes a 155 aa polypeptide that is partly homologous to the phosphoprotein pp38 encoded by the BamHI-H sequence. The 65 N-terminal aa of the two gene products are identical, both being derived from the nucleotide sequences in the TRL and IRL, respectively. Additional homologous aa sequences are the hydrophobic aa domain in the middle of both proteins. The functions of ORF-2, ORF-3, and additional ORFs are under study.

  12. Identification of the cleavage sites of the RNA2-encoded polyproteins for two members of the genus Torradovirus by N-terminal sequencing of the virion capsid proteins.

    PubMed

    Ferriol, I; Silva Junior, D M; Nigg, J C; Zamora-Macorra, E J; Falk, B W

    2016-11-01

    Torradoviruses, family Secoviridae, are emergent bipartite RNA plant viruses. RNA1 is ca. 7kb and has one open reading frame (ORF) encoding for the protease, helicase and RNA-dependent RNA polymerase (RdRp). RNA2 is ca. 5kb and has two ORFs. RNA2-ORF1 encodes for a putative protein with unknown function(s). RNA2-ORF2 encodes for a putative movement protein and three capsid proteins. Little is known about the replication and polyprotein processing strategies of torradoviruses. Here, the cleavage sites in the RNA2-ORF2-encoded polyproteins of two torradoviruses, Tomato marchitez virus isolate M (ToMarV-M) and tomato chocolate spot virus, were determined by N-terminal sequencing, revealing that the amino acid (aa) at the -1 position of the cleavage sites is a glutamine. Multiple aa sequence comparison confirmed that this glutamine is conserved among other torradoviruses. Finally, site-directed mutagenesis of conserved aas in the ToMarV-M RdRp and protease prevented substantial accumulation of viral coat proteins or RNAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Molecular cloning of a putative gene encoding isopentenyltransferase from pingyitiancha (Malus hupehensis) and characterization of its response to nitrate.

    PubMed

    Peng, Jing; Peng, Futian; Zhu, Chunfu; Wei, Shaochong

    2008-06-01

    A putative isopentenyltransferase (IPT) encoding gene was identified from a pingyitiancha (Malus hupehensis Rehd.) expressed sequence tag database, and the full-length gene was cloned by RACE. Based on expression profile and sequence alignment, the nucleotide sequence of the clone, named MhIPT3, was most similar to AtIPT3, an IPT gene in Arabidopsis. The full-length cDNA contained a 963-bp open reading frame encoding a protein of 321 amino acids with a molecular mass of 37.3 kDa. Sequence analysis of genomic DNA revealed the absence of introns in the frame. Quantitative real-time PCR analysis demonstrated that the gene was expressed in roots, stems and leaves. Application of nitrate to roots of nitrogen-deprived seedlings strongly induced expression of MhIPT3 and was accompanied by the accumulation of cytokinins, whereas MhIPT3 expression was little affected by ammonium application to roots of nitrogen-deprived seedlings. Application of nitrate to leaves also up-regulated the expression of MhIPT3 and corresponded closely with the accumulation of isopentyladenine and isopentyladenosine in leaves.

  14. High-Molecular-Mass Multi-c-Heme Cytochromes from Methylococcus capsulatus Bath†

    PubMed Central

    Bergmann, David J.; Zahn, James A.; DiSpirito, Alan A.

    1999-01-01

    The polypeptide and structural gene for a high-molecular-mass c-type cytochrome, cytochrome c553O, was isolated from the methanotroph Methylococcus capsulatus Bath. Cytochrome c553O is a homodimer with a subunit molecular mass of 124,350 Da and an isoelectric point of 6.0. The heme c concentration was estimated to be 8.2 ± 0.4 mol of heme c per subunit. The electron paramagnetic resonance spectrum showed the presence of multiple low spin, S = 1/2, hemes. A degenerate oligonucleotide probe synthesized based on the N-terminal amino acid sequence of cytochrome c553O was used to identify a DNA fragment from M. capsulatus Bath that contains occ, the gene encoding cytochrome c553O. occ is part of a gene cluster which contains three other open reading frames (ORFs). ORF1 encodes a putative periplasmic c-type cytochrome with a molecular mass of 118,620 Da that shows approximately 40% amino acid sequence identity with occ and contains nine c-heme-binding motifs. ORF3 encodes a putative periplasmic c-type cytochrome with a molecular mass of 94,000 Da and contains seven c-heme-binding motifs but shows no sequence homology to occ or ORF1. ORF4 encodes a putative 11,100-Da protein. The four ORFs have no apparent similarity to any proteins in the GenBank database. The subunit molecular masses, arrangement and number of hemes, and amino acid sequences demonstrate that cytochrome c553O and the gene products of ORF1 and ORF3 constitute a new class of c-type cytochrome. PMID:9922265

  15. Envelope-like retrotransposons in the plant kingdom: evidence of their presence in gymnosperms (Pinus pinaster).

    PubMed

    Miguel, Célia; Simões, Marta; Oliveira, Maria Margarida; Rocheta, Margarida

    2008-11-01

    Retroviruses differ from retrotransposons due to their infective capacity, which depends critically on the encoded envelope. Some plant retroelements contain domains reminiscent of the env of animal retroviruses but the number of such elements described to date is restricted to angiosperms. We show here the first evidence of the presence of putative env-like gene sequences in a gymnosperm species, Pinus pinaster (maritime pine). Using a degenerate primer approach for conserved domains of RNaseH gene, three clones from putative envelope-like retrotransposons (PpRT2, PpRT3, and PpRT4) were identified. The env-like sequences of P. pinaster clones are predicted to encode proteins with transmembrane domains. These sequences showed identity scores of up to 30% with env-like sequences belonging to different organisms. A phylogenetic analysis based on protein alignment of deduced aminoacid sequences revealed that these clones clustered with env-containing plant retrotransposons, as well as with retrotransposons from invertebrate organisms. The differences found among the sequences of maritime pine clones isolated here suggest the existence of different putative classes of env-like retroelements. The identification for the first time of env-like genes in a gymnosperm species may support the ancestrality of retroviruses among plants shedding light on their role in plant evolution.

  16. Isolation of a polyphenol oxidase (PPO) cDNA from artichoke and expression analysis in wounded artichoke heads.

    PubMed

    Quarta, Angela; Mita, Giovanni; Durante, Miriana; Arlorio, Marco; De Paolis, Angelo

    2013-07-01

    The polyphenol oxidase (PPO) enzyme, which can catalyze the oxidation of phenolics to quinones, has been reported to be involved in undesirable browning in many plant foods. This phenomenon is particularly severe in artichoke heads wounded during the manufacturing process. A full-length cDNA encoding for a putative polyphenol oxidase (designated as CsPPO) along with a 1432 bp sequence upstream of the starting ATG codon was characterized for the first time from [Cynara cardunculus var. scolymus (L.) Fiori]. The 1764 bp CsPPO sequence encodes a putative protein of 587 amino acids with a calculated molecular mass of 65,327 Da and an isoelectric point of 5.50. Analysis of the promoter region revealed the presence of cis-acting elements, some of which are putatively involved in the response to light and wounds. Expression analysis of the gene in wounded capitula indicated that CsPPO was significantly induced after 48 h, even though the browning process had started earlier. This suggests that the early browning event observed in artichoke heads was not directly related to de novo mRNA synthesis. Finally, we provide the complete gene sequence encoding for polyphenol oxidase and the upstream regulative region in artichoke. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  17. Cloning and characterisation of cDNA sequences encoding for anti-lipopolysaccharide factors (ALFs) in Brazilian palaemonid and penaeid shrimps.

    PubMed

    Rosa, Rafael Diego; Stoco, Patricia Hermes; Barracco, Margherita Anna

    2008-11-01

    Anti-lipopolysaccharide factors (ALFs) are antimicrobial peptides found in limulids and crustaceans that have a potent and broad range of antimicrobial activity. We report here the identification and molecular characterisation of new sequences encoding for ALFs in the haemocytes of the freshwater prawn Macrobrachium olfersi and also in two Brazilian penaeid species, Farfantepenaeus paulensis and Litopenaeus schmitti. All obtained sequences encoded for highly cationic peptides containing two conserved cysteine residues flanking a putative LPS-binding domain. They exhibited a significant amino acid similarity with crustacean and limulid ALF sequences, especially with those of penaeid shrimps. This is the first identification of ALF in a freshwater prawn.

  18. Two pheromone precursor genes are transcriptionally expressed in the homothallic ascomycete Sordaria macrospora.

    PubMed

    Pöggeler, S

    2000-06-01

    In order to analyze the involvement of pheromones in cell recognition and mating in a homothallic fungus, two putative pheromone precursor genes, named ppg1 and ppg2, were isolated from a genomic library of Sordaria macrospora. The ppg1 gene is predicted to encode a precursor pheromone that is processed by a Kex2-like protease to yield a pheromone that is structurally similar to the alpha-factor of the yeast Saccharomyces cerevisiae. The ppg2 gene encodes a 24-amino-acid polypeptide that contains a putative farnesylated and carboxy methylated C-terminal cysteine residue. The sequences of the predicted pheromones display strong structural similarity to those encoded by putative pheromones of heterothallic filamentous ascomycetes. Both genes are expressed during the life cycle of S. macrospora. This is the first description of pheromone precursor genes encoded by a homothallic fungus. Southern-hybridization experiments indicated that ppg1 and ppg2 homologues are also present in other homothallic ascomycetes.

  19. The mitochondrial genome of Pocillopora (Cnidaria: Scleractinia) contains two variable regions: the putative D-loop and a novel ORF of unknown function.

    PubMed

    Flot, Jean-François; Tillier, Simon

    2007-10-15

    The complete mitochondrial genomes of two individuals attributed to different morphospecies of the scleractinian coral genus Pocillopora have been sequenced. Both genomes, respectively 17,415 and 17,422 nt long, share the presence of a previously undescribed ORF encoding a putative protein made up of 302 amino acids and of unknown function. Surprisingly, this ORF turns out to be the second most variable region of the mitochondrial genome (1% nucleotide sequence difference between the two individuals) after the putative control region (1.5% sequence difference). Except for the presence of this ORF and for the location of the putative control region, the mitochondrial genome of Pocillopora is organized in a fashion similar to the other scleractinian coral genomes published to date. For the first time in a cnidarian, a putative second origin of replication is described based on its secondary structure similar to the stem-loop structure of O(L), the origin of L-strand replication in vertebrates.

  20. Putative Porin of Bradyrhizobium sp. (Lupinus) Bacteroids Induced by Glyphosate▿

    PubMed Central

    de María, Nuria; Guevara, Ángeles; Serra, M. Teresa; García-Luque, Isabel; González-Sama, Alfonso; de Lacoba, Mario García; de Felipe, M. Rosario; Fernández-Pascual, Mercedes

    2007-01-01

    Application of glyphosate (N-[phosphonomethyl] glycine) to Bradyrhizobium sp. (Lupinus)-nodulated lupin plants caused modifications in the protein pattern of bacteroids. The most significant change was the presence of a 44-kDa polypeptide in bacteroids from plants treated with the higher doses of glyphosate employed (5 and 10 mM). The polypeptide has been characterized by the amino acid sequencing of its N terminus and the isolation and nucleic acid sequencing of its encoding gene. It is putatively encoded by a single gene, and the protein has been identified as a putative porin. Protein modeling revealed the existence of several domains sharing similarity to different porins, such as a transmembrane beta-barrel. The protein has been designated BLpp, for Bradyrhizobium sp. (Lupinus) putative porin, and would be the first porin described in Bradyrhizobium sp. (Lupinus). In addition, a putative conserved domain of porins has been identified which consists of 87 amino acids, located in the BLpp sequence 30 amino acids downstream of the N-terminal region. In bacteroids, mRNA of the BLpp gene shows a basal constitutive expression that increases under glyphosate treatment, and the expression of the gene is seemingly regulated at the transcriptional level. By contrast, in free-living bacteria glyphosate treatment leads to an inhibition of BLpp mRNA accumulation, indicating a different effect of glyphosate on BLpp gene expression in bacteroids and free-living bacteria. The possible role of BLpp in a metabolite interchange between Bradyrhizobium and lupin is discussed. PMID:17557843

  1. Molecular comparison of the structural proteins encoding gene clusters of two related Lactobacillus delbrueckii bacteriophages.

    PubMed Central

    Vasala, A; Dupont, L; Baumann, M; Ritzenthaler, P; Alatossava, T

    1993-01-01

    Virulent phage LL-H and temperate phage mv4 are two related bacteriophages of Lactobacillus delbrueckii. The gene clusters encoding structural proteins of these two phages have been sequenced and further analyzed. Six open reading frames (ORF-1 to ORF-6) were detected. Protein sequencing and Western immunoblotting experiments confirmed that ORF-3 (g34) encoded the main capsid protein Gp34. The presence of a putative late promoter in front of the phage LL-H g34 gene was suggested by primer extension experiments. Comparative sequence analysis between phage LL-H and phage mv4 revealed striking similarities in the structure and organization of this gene cluster, suggesting that the genes encoding phage structural proteins belong to a highly conservative module. Images PMID:8497043

  2. Nucleotide sequences of two genomic DNAs encoding peroxidase of Arabidopsis thaliana.

    PubMed

    Intapruk, C; Higashimura, N; Yamamoto, K; Okada, N; Shinmyo, A; Takano, M

    1991-02-15

    The peroxidase (EC 1.11.1.7)-encoding gene of Arabidopsis thaliana was screened from a genomic library using a cDNA encoding a neutral isozyme of horseradish, Armoracia rusticana, peroxidase (HRP) as a probe, and two positive clones were isolated. From the comparison with the sequences of the HRP-encoding genes, we concluded that two clones contained peroxidase-encoding genes, and they were named prxCa and prxEa. Both genes consisted of four exons and three introns; the introns had consensus nucleotides, GT and AG, at the 5' and 3' ends, respectively. The lengths of each putative exon of the prxEa gene were the same as those of the HRP-basic-isozyme-encoding gene, prxC3, and coded for 349 amino acids (aa) with a sequence homology of 89% to that encoded by prxC3. The prxCa gene was very close to the HRP-neutral-isozyme-encoding gene, prxC1b, and coded for 354 aa with 91% homology to that encoded by prxC1b. The aa sequence homology was 64% between the two peroxidases encoded by prxCa and prxEa.

  3. The genome sequence of Agrotis segetum granulovirus, isolate AgseGV-DA, reveals a new Betabaculovirus species of a slow killing granulovirus.

    PubMed

    Gueli Alletti, Gianpiero; Eigenbrod, Marina; Carstens, Eric B; Kleespies, Regina G; Jehle, Johannes A

    2017-06-01

    The European isolate Agrotis segetum granulovirus DA (AgseGV-DA) is a slow killing, type I granulovirus due to low dose-mortality responses within seven days post infection and a tissue tropism of infection restricted solely to the fat body of infected Agrotis segetum host larvae. The genome of AgseGV-DA was completely sequenced and compared to the whole genome sequences of the Chinese isolates AgseGV-XJ and AgseGV-L1. All three isolates share highly conserved genomes. The AgseGV-DA genome is 131,557bp in length and encodes for 149 putative open reading frames, including 37 baculovirus core genes and the per os infectivity factor ac110. Comprehensive investigations of repeat regions identified one putative non-hr like origin of replication in AgseGV-DA. Phylogenetic analysis based on concatenated amino acid alignments of 37 baculovirus core genes as well as pairwise distances based on the nucleotide alignments of partial granulin, lef-8 and lef-9 sequences with deposited betabaculoviruses confirmed AgseGV-DA, AgseGV-XJ and AgseGV-L1 as representative isolates of the same Betabaculovirus species. AgseGV encodes for a distinct putative enhancin, distantly related to enhancins from other granuloviruses. Copyright © 2017. Published by Elsevier Inc.

  4. Compositional profile of α/β-hydrolase fold proteins in mangrove soil metagenomes: prevalence of epoxide hydrolases and haloalkane dehalogenases in oil-contaminated sites

    PubMed Central

    Jiménez, Diego Javier; Dini-Andreote, Francisco; Ottoni, Júlia Ronzella; de Oliveira, Valéria Maia; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2015-01-01

    The occurrence of genes encoding biotechnologically relevant α/β-hydrolases in mangrove soil microbial communities was assessed using data obtained by whole-metagenome sequencing of four mangroves areas, denoted BrMgv01 to BrMgv04, in São Paulo, Brazil. The sequences (215 Mb in total) were filtered based on local amino acid alignments against the Lipase Engineering Database. In total, 5923 unassembled sequences were affiliated with 30 different α/β-hydrolase fold superfamilies. The most abundant predicted proteins encompassed cytosolic hydrolases (abH08; ∼ 23%), microsomal hydrolases (abH09; ∼ 12%) and Moraxella lipase-like proteins (abH04 and abH01; < 5%). Detailed analysis of the genes predicted to encode proteins of the abH08 superfamily revealed a high proportion related to epoxide hydrolases and haloalkane dehalogenases in polluted mangroves BrMgv01-02-03. This suggested selection and putative involvement in local degradation/detoxification of the pollutants. Seven sequences that were annotated as genes for putative epoxide hydrolases and five for putative haloalkane dehalogenases were found in a fosmid library generated from BrMgv02 DNA. The latter enzymes were predicted to belong to Actinobacteria, Deinococcus-Thermus, Planctomycetes and Proteobacteria. Our integrated approach thus identified 12 genes (complete and/or partial) that may encode hitherto undescribed enzymes. The low amino acid identity (< 60%) with already-described genes opens perspectives for both production in an expression host and genetic screening of metagenomes. PMID:25171437

  5. A putative peroxidase cDNA from turnip and analysis of the encoded protein sequence.

    PubMed

    Romero-Gómez, S; Duarte-Vázquez, M A; García-Almendárez, B E; Mayorga-Martínez, L; Cervantes-Avilés, O; Regalado, C

    2008-12-01

    A putative peroxidase cDNA was isolated from turnip roots (Brassica napus L. var. purple top white globe) by reverse transcriptase-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). Total RNA extracted from mature turnip roots was used as a template for RT-PCR, using a degenerated primer designed to amplify the highly conserved distal motif of plant peroxidases. The resulting partial sequence was used to design the rest of the specific primers for 5' and 3' RACE. Two cDNA fragments were purified, sequenced, and aligned with the partial sequence from RT-PCR, and a complete overlapping sequence was obtained and labeled as BbPA (Genbank Accession No. AY423440, named as podC). The full length cDNA is 1167bp long and contains a 1077bp open reading frame (ORF) encoding a 358 deduced amino acid peroxidase polypeptide. The putative peroxidase (BnPA) showed a calculated Mr of 34kDa, and isoelectric point (pI) of 4.5, with no significant identity with other reported turnip peroxidases. Sequence alignment showed that only three peroxidases have a significant identity with BnPA namely AtP29a (84%), and AtPA2 (81%) from Arabidopsis thaliana, and HRPA2 (82%) from horseradish (Armoracia rusticana). Work is in progress to clone this gene into an adequate host to study the specific role and possible biotechnological applications of this alternative peroxidase source.

  6. Characterization of cDNAs encoding serine proteases and their transcriptional responses to Cry1Ab protoxin in the gut of Ostrinia nubilalis larvae

    USDA-ARS?s Scientific Manuscript database

    Serine proteases, such as trypsin and chymotrypsin, are the primary digestive enzymes in lepidopteran larvae, and are also involved in Bacillus thuringiensis (Bt) protoxin activation and protoxin/toxin degradation. We isolated and sequenced 34 cDNAs putatively encoding trypsins, chymotrypsins and th...

  7. Burkholderia Mallei tssM Encodes a Secreted Deubiquitinase that is Expressed Inside Infected RAW 264.7 Murine Macrophages

    DTIC Science & Technology

    2008-10-13

    Furthermore, the encoded protein of this gene is only 30 kDa. A potential GTG start codon at position 625 also encodes a protein that is too small...horizontal bar and putative alternate translation initiation sites (ATG, GTG , and TTG) are indicated. The sizes and locations of the proteins encoded... gray line with rounded rectangles showing sequence features and motifs, including the Ala- and Pro-rich N-terminal region and the C-terminal Cys and

  8. Comparative and Evolutionary Analysis of Grass Pollen Allergens Using Brachypodium distachyon as a Model System.

    PubMed

    Sharma, Akanksha; Sharma, Niharika; Bhalla, Prem; Singh, Mohan

    2017-01-01

    Comparative genomics have facilitated the mining of biological information from a genome sequence, through the detection of similarities and differences with genomes of closely or more distantly related species. By using such comparative approaches, knowledge can be transferred from the model to non-model organisms and insights can be gained in the structural and evolutionary patterns of specific genes. In the absence of sequenced genomes for allergenic grasses, this study was aimed at understanding the structure, organisation and expression profiles of grass pollen allergens using the genomic data from Brachypodium distachyon as it is phylogenetically related to the allergenic grasses. Combining genomic data with the anther RNA-Seq dataset revealed 24 pollen allergen genes belonging to eight allergen groups mapping on the five chromosomes in B. distachyon. High levels of anther-specific expression profiles were observed for the 24 identified putative allergen-encoding genes in Brachypodium. The genomic evidence suggests that gene encoding the group 5 allergen, the most potent trigger of hay fever and allergic asthma originated as a pollen specific orphan gene in a common grass ancestor of Brachypodium and Triticiae clades. Gene structure analysis showed that the putative allergen-encoding genes in Brachypodium either lack or contain reduced number of introns. Promoter analysis of the identified Brachypodium genes revealed the presence of specific cis-regulatory sequences likely responsible for high anther/pollen-specific expression. With the identification of putative allergen-encoding genes in Brachypodium, this study has also described some important plant gene families (e.g. expansin superfamily, EF-Hand family, profilins etc) for the first time in the model plant Brachypodium. Altogether, the present study provides new insights into structural characterization and evolution of pollen allergens and will further serve as a base for their functional characterization in related grass species.

  9. Molecular and functional characterization of novel fructosyltransferases and invertases from Agave tequilana.

    PubMed

    Cortés-Romero, Celso; Martínez-Hernández, Aída; Mellado-Mojica, Erika; López, Mercedes G; Simpson, June

    2012-01-01

    Fructans are the main storage polysaccharides found in Agave species. The synthesis of these complex carbohydrates relies on the activities of specific fructosyltransferase enzymes closely related to the hydrolytic invertases. Analysis of Agave tequilana transcriptome data led to the identification of ESTs encoding putative fructosyltransferases and invertases. Based on sequence alignments and structure/function relationships, two different genes were predicted to encode 1-SST and 6G-FFT type fructosyltransferases, in addition, 4 genes encoding putative cell wall invertases and 4 genes encoding putative vacuolar invertases were also identified. Probable functions for each gene, were assigned based on conserved amino acid sequences and confirmed for 2 fructosyltransferases and one invertase by analyzing the enzymatic activity of recombinant Agave protein s expressed and purified from Pichia pastoris. The genome organization of the fructosyltransferase/invertase genes, for which the corresponding cDNA contained the complete open reading frame, was found to be well conserved since all genes were shown to carry a 9 bp mini-exon and all showed a similar structure of 8 exons/7 introns with the exception of a cell wall invertase gene which has 7 exons and 6 introns. Fructosyltransferase genes were strongly expressed in the storage organs of the plants, especially in vegetative stages of development and to lower levels in photosynthetic tissues, in contrast to the invertase genes where higher levels of expression were observed in leaf tissues and in mature plants.

  10. Molecular and Functional Characterization of Novel Fructosyltransferases and Invertases from Agave tequilana

    PubMed Central

    Cortés-Romero, Celso; Martínez-Hernández, Aída; Mellado-Mojica, Erika; López, Mercedes G.; Simpson, June

    2012-01-01

    Fructans are the main storage polysaccharides found in Agave species. The synthesis of these complex carbohydrates relies on the activities of specific fructosyltransferase enzymes closely related to the hydrolytic invertases. Analysis of Agave tequilana transcriptome data led to the identification of ESTs encoding putative fructosyltransferases and invertases. Based on sequence alignments and structure/function relationships, two different genes were predicted to encode 1-SST and 6G-FFT type fructosyltransferases, in addition, 4 genes encoding putative cell wall invertases and 4 genes encoding putative vacuolar invertases were also identified. Probable functions for each gene, were assigned based on conserved amino acid sequences and confirmed for 2 fructosyltransferases and one invertase by analyzing the enzymatic activity of recombinant Agave protein s expressed and purified from Pichia pastoris. The genome organization of the fructosyltransferase/invertase genes, for which the corresponding cDNA contained the complete open reading frame, was found to be well conserved since all genes were shown to carry a 9 bp mini-exon and all showed a similar structure of 8 exons/7 introns with the exception of a cell wall invertase gene which has 7 exons and 6 introns. Fructosyltransferase genes were strongly expressed in the storage organs of the plants, especially in vegetative stages of development and to lower levels in photosynthetic tissues, in contrast to the invertase genes where higher levels of expression were observed in leaf tissues and in mature plants. PMID:22558253

  11. Cloning and characterization of largemouth bass ( Micropterus salmoides) myostatin encoding gene and its promoter

    NASA Astrophysics Data System (ADS)

    Li, Shengjie; Bai, Junjie; Wang, Lin

    2008-08-01

    Myostatin or GDF-8, a member of the transforming growth factor-β (TGF-β) superfamily, has been demonstrated to be a negative regulator of skeletal muscle mass in mammals. In the present study, we obtained a 5.64 kb sequence of myostatin encoding gene and its promoter from largemouth bass ( Micropterus salmoides). The myostatin encoding gene consisted of three exons (488 bp, 371 bp and 1779 bp, respectively) and two introns (390 bp and 855 bp, respectively). The intron-exon boundaries were conservative in comparison with those of mammalian myostatin encoding genes, whereas the size of introns was smaller than that of mammals. Sequence analysis of 1.569 kb of the largemouth bass myostatin gene promoter region revealed that it contained two TATA boxes, one CAAT box and nine putative E-boxes. Putative muscle growth response elements for myocyte enhancer factor 2 (MEF2), serum response factor (SRF), activator protein 1 (AP1), etc., and muscle-specific Mt binding site (MTBF) were also detected. Some of the transcription factor binding sites were conserved among five teleost species. This information will be useful for studying the transcriptional regulation of myostatin in fish.

  12. Identification and Analysis of Putative Homologues of Mechanosensitive Channels in Pathogenic Protozoa

    PubMed Central

    Prole, David L.; Taylor, Colin W.

    2013-01-01

    Mechanosensitive channels play important roles in the physiology of many organisms, and their dysfunction can affect cell survival. This suggests that they might be therapeutic targets in pathogenic organisms. Pathogenic protozoa lead to diseases such as malaria, dysentery, leishmaniasis and trypanosomiasis that are responsible for millions of deaths each year worldwide. We analyzed the genomes of pathogenic protozoa and show the existence within them of genes encoding putative homologues of mechanosensitive channels. Entamoeba histolytica, Leishmania spp., Trypanosoma cruzi and Trichomonas vaginalis have genes encoding homologues of Piezo channels, while most pathogenic protozoa have genes encoding homologues of mechanosensitive small-conductance (MscS) and K+-dependent (MscK) channels. In contrast, all parasites examined lack genes encoding mechanosensitive large-conductance (MscL), mini-conductance (MscM) and degenerin/epithelial Na+ (DEG/ENaC) channels. Multiple sequence alignments of evolutionarily distant protozoan, amoeban, plant, insect and vertebrate Piezo channel subunits define an absolutely conserved motif that may be involved in channel conductance or gating. MscS channels are not present in humans, and the sequences of protozoan and human homologues of Piezo channels differ substantially. This suggests the possibility for specific targeting of mechanosensitive channels of pathogens by therapeutic drugs. PMID:23785469

  13. Compositional profile of α / β-hydrolase fold proteins in mangrove soil metagenomes: prevalence of epoxide hydrolases and haloalkane dehalogenases in oil-contaminated sites.

    PubMed

    Jiménez, Diego Javier; Dini-Andreote, Francisco; Ottoni, Júlia Ronzella; de Oliveira, Valéria Maia; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2015-05-01

    The occurrence of genes encoding biotechnologically relevant α/β-hydrolases in mangrove soil microbial communities was assessed using data obtained by whole-metagenome sequencing of four mangroves areas, denoted BrMgv01 to BrMgv04, in São Paulo, Brazil. The sequences (215 Mb in total) were filtered based on local amino acid alignments against the Lipase Engineering Database. In total, 5923 unassembled sequences were affiliated with 30 different α/β-hydrolase fold superfamilies. The most abundant predicted proteins encompassed cytosolic hydrolases (abH08; ∼ 23%), microsomal hydrolases (abH09; ∼ 12%) and Moraxella lipase-like proteins (abH04 and abH01; < 5%). Detailed analysis of the genes predicted to encode proteins of the abH08 superfamily revealed a high proportion related to epoxide hydrolases and haloalkane dehalogenases in polluted mangroves BrMgv01-02-03. This suggested selection and putative involvement in local degradation/detoxification of the pollutants. Seven sequences that were annotated as genes for putative epoxide hydrolases and five for putative haloalkane dehalogenases were found in a fosmid library generated from BrMgv02 DNA. The latter enzymes were predicted to belong to Actinobacteria, Deinococcus-Thermus, Planctomycetes and Proteobacteria. Our integrated approach thus identified 12 genes (complete and/or partial) that may encode hitherto undescribed enzymes. The low amino acid identity (< 60%) with already-described genes opens perspectives for both production in an expression host and genetic screening of metagenomes. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  14. A perchlorate sensitive iodide transporter in frogs

    PubMed Central

    Carr, Deborah L.; Carr, James A.; Willis, Ray E.; Pressley, Thomas A.

    2008-01-01

    Nucleotide sequence comparisons have identified a gene product in the genome database of African clawed frogs (Xenopus laevis) as a probable member of the solute carrier family of membrane transporters. To confirm its identity as a putative iodide transporter, we examined the function of this sequence after heterologous expression in mammalian cells. A green monkey kidney cell line transfected with the Xenopus nucleotide sequence had significantly greater 125I uptake than sham-transfected control cells. The uptake in carrier-transfected cells was significantly inhibited in the presence of perchlorate, a competitive inhibitor of mammalian Na+/iodide symporter. Tissue distributions of the sequence were also consistent with a role in iodide uptake. The mRNA encoding the carrier was found to be expressed in the thyroid gland, stomach, and kidney of tadpoles from X. laevis, as well as the bullfrog Rana catesbeiana. The ovaries of adult X. laevis also were found to express the carrier. Phylogenetic analysis suggested that the putative X. laevis iodide transporter is orthologous to vertebrate Na+-dependent iodide symporters. We conclude that the amphibian sequence encodes a protein that is indeed a functional Na+/iodide symporter in Xenopus laevis, as well as Rana catesbeiana. PMID:18275962

  15. DNA sequence of a ColV plasmid and prevalence of selected plasmid-encoded virulence genes among avian Escherichia coli strains.

    PubMed

    Johnson, Timothy J; Siek, Kylie E; Johnson, Sara J; Nolan, Lisa K

    2006-01-01

    ColV plasmids have long been associated with the virulence of Escherichia coli, despite the fact that their namesake trait, ColV production, does not appear to contribute to virulence. Such plasmids or their associated sequences appear to be quite common among avian pathogenic E. coli (APEC) and are strongly linked to the virulence of these organisms. In the present study, a 180-kb ColV plasmid was sequenced and analyzed. This plasmid, pAPEC-O2-ColV, possesses a 93-kb region containing several putative virulence traits, including iss, tsh, and four putative iron acquisition and transport systems. The iron acquisition and transport systems include those encoding aerobactin and salmochelin, the sit ABC iron transport system, and a putative iron transport system novel to APEC, eit. In order to determine the prevalence of the virulence-associated genes within this region among avian E. coli strains, 595 APEC and 199 avian commensal E. coli isolates were examined for genes of this region using PCR. Results indicate that genes contained within a portion of this putative virulence region are highly conserved among APEC and that the genes of this region occur significantly more often in APEC than in avian commensal E. coli. The region of pAPEC-O2-ColV containing genes that are highly prevalent among APEC appears to be a distinguishing trait of APEC strains.

  16. DNA Sequence of a ColV Plasmid and Prevalence of Selected Plasmid-Encoded Virulence Genes among Avian Escherichia coli Strains

    PubMed Central

    Johnson, Timothy J.; Siek, Kylie E.; Johnson, Sara J.; Nolan, Lisa K.

    2006-01-01

    ColV plasmids have long been associated with the virulence of Escherichia coli, despite the fact that their namesake trait, ColV production, does not appear to contribute to virulence. Such plasmids or their associated sequences appear to be quite common among avian pathogenic E. coli (APEC) and are strongly linked to the virulence of these organisms. In the present study, a 180-kb ColV plasmid was sequenced and analyzed. This plasmid, pAPEC-O2-ColV, possesses a 93-kb region containing several putative virulence traits, including iss, tsh, and four putative iron acquisition and transport systems. The iron acquisition and transport systems include those encoding aerobactin and salmochelin, the sit ABC iron transport system, and a putative iron transport system novel to APEC, eit. In order to determine the prevalence of the virulence-associated genes within this region among avian E. coli strains, 595 APEC and 199 avian commensal E. coli isolates were examined for genes of this region using PCR. Results indicate that genes contained within a portion of this putative virulence region are highly conserved among APEC and that the genes of this region occur significantly more often in APEC than in avian commensal E. coli. The region of pAPEC-O2-ColV containing genes that are highly prevalent among APEC appears to be a distinguishing trait of APEC strains. PMID:16385064

  17. Putative recombination events and evolutionary history of five economically important viruses of fruit trees based on coat protein-encoding gene sequence analysis.

    PubMed

    Boulila, Moncef

    2010-06-01

    To enhance the knowledge of recombination as an evolutionary process, 267 accessions retrieved from GenBank were investigated, all belonging to five economically important viruses infecting fruit crops (Plum pox, Apple chlorotic leaf spot, Apple mosaic, Prune dwarf, and Prunus necrotic ringspot viruses). Putative recombinational events were detected in the coat protein (CP)-encoding gene using RECCO and RDP version 3.31beta algorithms. Based on RECCO results, all five viruses were shown to contain potential recombination signals in the CP gene. Reconstructed trees with modified topologies were proposed. Furthermore, RECCO performed better than the RDP package in detecting recombination events and exhibiting their evolution rate along the sequences of the five viruses. RDP, however, provided the possible major and minor parents of the recombinants. Thus, the two methods should be considered complementary.

  18. Unusual varieties and duplication of Rig-I like receptors encoded in the marine mollusk, Crassostrea gigas

    NASA Astrophysics Data System (ADS)

    Tian, Z. H.; Jiao, C. Z.

    2017-07-01

    RIG-I like receptors (RLRs) play key roles in sensing non-self nucleic acids in cytoplasm and trigger antiviral innate immune response in vertebrates and human body. Here we carried out in silico analysis to identify and investigate the putative RLRs encoded in the genome of marine mollusk, Crassostrea gigas (cgRLRs), an invertebrate species. We found the unusual duplication and varieties on domain architecture of putative cgRLRs encoded in the genome of C. gigas. Three putative cgRLRs (accessions numbers are EKC24603, EKC31344.1 and EKC38304.1 on GenBank), have the similar domain architecture with that of human RIG-I or MDA5, and one protein (EKC34573.1) with that of human LGP2; The fifth putative cgRLRs (EKC38303.1) is somewhat similar with human RIG-I/MDA5 except that it has only one caspase activation and recruitment domain (CARD) in its N-terminal. Other nine proteins were identified to be partialy similar with RLRs while with the incomplete sequences, which maybe reflect the events of partial duplication of cgRLRs genes occurred in the oyster genome.

  19. Characterization of AFLAV, a Tf1/Sushi retrotransposon from Aspergillus flavus.

    PubMed

    Hua, Sui-Sheng T; Tarun, Alice S; Pandey, Sonal N; Chang, Leo; Chang, Perng-Kuang

    2007-02-01

    The plasmid, pAF28, a genomic clone from Aspergillus flavus NRRL 6541, has been used as a hybridization probe to fingerprint A. flavus strains isolated in corn and peanut fields. The insert of pAF28 contains a 4.5 kb region which encodes a truncated retrotransposon (AfRTL-1). In search for a full-length and intact copy of retrotransposon, we exploited a novel PCR cloning strategy by amplifying a 3.4 kb region from the genomic DNA of A. flavus NRRL 6541. The fragment was cloned into pCR 4-TOPO. Sequence analysis confirmed that this region encoded putative domains of partial reverse transcriptase, RNase H, and integrase of the predicted retrotransposon. The two flanking long terminal repeats (LTRs) and the sequence between them comprise a putative full-length LTR retrotransposon of 7799 bp in length. This intact retrotransposon sequence is named AFLAV (A. flavus Retrotransposon). The order of the predicted catalytic domains in the polyprotein (Pol) placed AFLAV in the Tf1/sushi subgroup of the Ty3/gypsy retrotransposon family. Primers derived from AFLAV sequence were used to screen this retrotransposon in other strains of A. flavus. More than fifty strains of A. flavus isolated from different geological origins were surveyed and the results show that many strains have extensive deletions in the regions encoding the capsid (Gag) and Pol.

  20. Distribution and Genetic Diversity of Bacteriocin Gene Clusters in Rumen Microbial Genomes.

    PubMed

    Azevedo, Analice C; Bento, Cláudia B P; Ruiz, Jeronimo C; Queiroz, Marisa V; Mantovani, Hilário C

    2015-10-01

    Some species of ruminal bacteria are known to produce antimicrobial peptides, but the screening procedures have mostly been based on in vitro assays using standardized methods. Recent sequencing efforts have made available the genome sequences of hundreds of ruminal microorganisms. In this work, we performed genome mining of the complete and partial genome sequences of 224 ruminal bacteria and 5 ruminal archaea to determine the distribution and diversity of bacteriocin gene clusters. A total of 46 bacteriocin gene clusters were identified in 33 strains of ruminal bacteria. Twenty gene clusters were related to lanthipeptide biosynthesis, while 11 gene clusters were associated with sactipeptide production, 7 gene clusters were associated with class II bacteriocin production, and 8 gene clusters were associated with class III bacteriocin production. The frequency of strains whose genomes encode putative antimicrobial peptide precursors was 14.4%. Clusters related to the production of sactipeptides were identified for the first time among ruminal bacteria. BLAST analysis indicated that the majority of the gene clusters (88%) encoding putative lanthipeptides contained all the essential genes required for lanthipeptide biosynthesis. Most strains of Streptococcus (66.6%) harbored complete lanthipeptide gene clusters, in addition to an open reading frame encoding a putative class II bacteriocin. Albusin B-like proteins were found in 100% of the Ruminococcus albus strains screened in this study. The in silico analysis provided evidence of novel biosynthetic gene clusters in bacterial species not previously related to bacteriocin production, suggesting that the rumen microbiota represents an underexplored source of antimicrobial peptides. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Cloning, characterization and sequence comparison of the gene coding for IMP dehydrogenase from Pyrococcus furiosus.

    PubMed

    Collart, F R; Osipiuk, J; Trent, J; Olsen, G J; Huberman, E

    1996-10-03

    We have cloned and characterized the gene encoding inosine monophosphate dehydrogenase (IMPDH) from Pyrococcus furiosus (Pf), a hyperthermophillic archeon. Sequence analysis of the Pf gene indicated an open reading frame specifying a protein of 485 amino acids (aa) with a calculated M(r) of 52900. Canonical Archaea promoter elements, Box A and Box B, are located -49 and -17 nucleotides (nt), respectively, upstream of the putative start codon. The sequence of the putative active-site region conforms to the IMPDH signature motif and contains a putative active-site cysteine. Phylogenetic relationships derived by using all available IMPDH sequences are consistent with trees developed for other molecules; they do not precisely resolve the history of Pf IMPDH but indicate a close similarity to bacterial IMPDH proteins. The phylogenetic analysis indicates that a gene duplication occurred prior to the division between rodents and humans, accounting for the Type I and II isoforms identified in mice and humans.

  2. Putative Nonribosomal Peptide Synthetase and Cytochrome P450 Genes Responsible for Tentoxin Biosynthesis in Alternaria alternata ZJ33.

    PubMed

    Li, You-Hai; Han, Wen-Jin; Gui, Xi-Wu; Wei, Tao; Tang, Shuang-Yan; Jin, Jian-Ming

    2016-08-02

    Tentoxin, a cyclic tetrapeptide produced by several Alternaria species, inhibits the F₁-ATPase activity of chloroplasts, resulting in chlorosis in sensitive plants. In this study, we report two clustered genes, encoding a putative non-ribosome peptide synthetase (NRPS) TES and a cytochrome P450 protein TES1, that are required for tentoxin biosynthesis in Alternaria alternata strain ZJ33, which was isolated from blighted leaves of Eupatorium adenophorum. Using a pair of primers designed according to the consensus sequences of the adenylation domain of NRPSs, two fragments containing putative adenylation domains were amplified from A. alternata ZJ33, and subsequent PCR analyses demonstrated that these fragments belonged to the same NRPS coding sequence. With no introns, TES consists of a single 15,486 base pair open reading frame encoding a predicted 5161 amino acid protein. Meanwhile, the TES1 gene is predicted to contain five introns and encode a 506 amino acid protein. The TES protein is predicted to be comprised of four peptide synthase modules with two additional N-methylation domains, and the number and arrangement of the modules in TES were consistent with the number and arrangement of the amino acid residues of tentoxin, respectively. Notably, both TES and TES1 null mutants generated via homologous recombination failed to produce tentoxin. This study provides the first evidence concerning the biosynthesis of tentoxin in A. alternata.

  3. Sequence analysis and expression of the M1 and M2 matrix protein genes of hirame rhabdovirus (HIRRV)

    USGS Publications Warehouse

    Nishizawa, T.; Kurath, G.; Winton, J.R.

    1997-01-01

    We have cloned and sequenced a 2318 nucleotide region of the genomic RNA of hirame rhabdovirus (HIRRV), an important viral pathogen of Japanese flounder Paralichthys olivaceus. This region comprises approximately two-thirds of the 3' end of the nucleocapsid protein (N) gene and the complete matrix protein (M1 and M2) genes with the associated intergenic regions. The partial N gene sequence was 812 nucleotides in length with an open reading frame (ORF) that encoded the carboxyl-terminal 250 amino acids of the N protein. The M1 and M2 genes were 771 and 700 nucleotides in length, respectively, with ORFs encoding proteins of 227 and 193 amino acids. The M1 gene sequence contained an additional small ORF that could encode a highly basic, arginine-rich protein of 25 amino acids. Comparisons of the N, M1, and M2 gene sequences of HIRRV with the corresponding sequences of the fish rhabdoviruses, infectious hematopoietic necrosis virus (IHNV) or viral hemorrhagic septicemia virus (VHSV) indicated that HIRRV was more closely related to IHNV than to VHSV, but was clearly distinct from either. The putative consensus gene termination sequence for IHNV and VHSV, AGAYAG(A)(7), was present in the N-M1, M1-M2, and M2-G intergenic regions of HIRRV as were the putative transcription initiation sequences YGGCAC and AACA. An Escherichia coli expression system was used to produce recombinant proteins from the M1 and M2 genes of HIRRV. These were the same size as the authentic M1 and M2 proteins and reacted with anti-HIRRV rabbit serum in western blots. These reagents can be used for further study of the fish immune response and to test novel control methods.

  4. PM19, a barley (Hordeum vulgare L.) gene encoding a putative plasma membrane protein, is expressed during embryo development and dormancy.

    PubMed

    Ranford, Julia C; Bryce, James H; Morris, Peter C

    2002-01-01

    A barley (Hordeum vulgare L.) cDNA, PM19, encoding a putative plasma membrane protein was isolated through differential screening of a dormant wild oat embryo library. PM19 is expressed in barley embryos from mid-embryogenesis up to maturity. PM19 mRNA levels decline upon germination, whereas dormant embryos retained high levels of message for up to 72 h of imbibition. PM19 mRNA levels also remained high or were reinduced in non-dormant embryos by treatments that prevented germination (250 mm NaCl, 10% sorbitol, or 50 microm ABA). The PM19 protein sequence is highly conserved in monocotyledonous and dicotyledonous plants.

  5. Genome Sequence of Lactobacillus sakei LK-145 Isolated from a Japanese Sake Cellar as a High Producer of d-Amino Acids

    PubMed Central

    Kato, Shiro

    2017-01-01

    ABSTRACT This announcement reports the complete genome sequence of strain LK-145 of Lactobacillus sakei isolated from a Japanese sake cellar as a potent strain for the production of large amounts of d-amino acids. Three putative genes encoding an amino acid racemase were identified. PMID:28818888

  6. Cloning and sequence analysis of a cDNA encoding the alpha-subunit of mouse beta-N-acetylhexosaminidase and comparison with the human enzyme.

    PubMed Central

    Beccari, T; Hoade, J; Orlacchio, A; Stirling, J L

    1992-01-01

    cDNAs encoding the mouse beta-N-acetylhexosaminidase alpha-subunit were isolated from a mouse testis library. The longest of these (1.7 kb) was sequenced and showed 83% similarity with the human alpha-subunit cDNA sequence. The 5' end of the coding sequence was obtained from a genomic DNA clone. Alignment of the human and mouse sequences showed that all three putative N-glycosylation sites are conserved, but that the mouse alpha-subunit has an additional site towards the C-terminus. All eight cysteines in the human sequence are conserved in the mouse. There are an additional two cysteines in the mouse alpha-subunit signal peptide. All amino acids affected in Tay-Sachs-disease mutations are conserved in the mouse. Images Fig. 1. PMID:1379046

  7. [Isolation of ABA-regulated genes in Oryza sativa through fluorescent differential display PCR (FDD-PCR)].

    PubMed

    Xu, Shou Ling; Shen, Si Shi; Xu, Zhi Hong; Xue, Hong Wei

    2002-12-01

    Abscisic acid (ABA) was critical in plant seed development and response to environmental factors such as stress situations. To study the possible ABA related signaling transduction pathways, we tried to isolate the ABA-regulated genes through fluorescent differential display PCR (FDD-PCR) technology using rice seedling as materials (treated with ABA for 2, 4, 8 and 12h). In the 17 fragments isolated, 14 and 3 clones were up-and down-regulated respectively. Sequence analyses revealed that the encoded proteins were involved in photosynthesis (7 fragments), signal transduction (1 fragments), transcription (2 fragments), metabolism and resistance (6 fragments), and unknown protein (1 fragments). 3 clones, encoding putative alpha/beta hydrolase fold, putative vacuolar H+ -ATPase B subunit, putative tyrosine phosphatase, were confirmed to be regulated under ABA treatment by RT-PCR and northern blot analysis. FDD-PCR and possible functional mechanisms of ABA were discussed.

  8. Characterization of Urtica dioica agglutinin isolectins and the encoding gene family.

    PubMed

    Does, M P; Ng, D K; Dekker, H L; Peumans, W J; Houterman, P M; Van Damme, E J; Cornelissen, B J

    1999-01-01

    Urtica dioica agglutinin (UDA) has previously been found in roots and rhizomes of stinging nettles as a mixture of UDA-isolectins. Protein and cDNA sequencing have shown that mature UDA is composed of two hevein domains and is processed from a precursor protein. The precursor contains a signal peptide, two in-tandem hevein domains, a hinge region and a carboxyl-terminal chitinase domain. Genomic fragments encoding precursors for UDA-isolectins have been amplified by five independent polymerase chain reactions on genomic DNA from stinging nettle ecotype Weerselo. One amplified gene was completely sequenced. As compared to the published cDNA sequence, the genomic sequence contains, besides two basepair substitutions, two introns located at the same positions as in other plant chitinases. By partial sequence analysis of 40 amplified genes, 16 different genes were identified which encode seven putative UDA-isolectins. The deduced amino acid sequences share 78.9-98.9% identity. In extracts of roots and rhizomes of stinging nettle ecotype Weerselo six out of these seven isolectins were detected by mass spectrometry. One of them is an acidic form, which has not been identified before. Our results demonstrate that UDA is encoded by a large gene family.

  9. Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea.

    PubMed Central

    Brown, D P; Idler, K B; Katz, L

    1990-01-01

    The 18.1-kilobase plasmid pSE211 integrates into the chromosome of Saccharopolyspora erythraea at a specific attB site. Restriction analysis of the integrated plasmid, pSE211int, and adjacent chromosomal sequences allowed identification of attP, the plasmid attachment site. Nucleotide sequencing of attP, attB, attL, and attR revealed a 57-base-pair sequence common to all sites with no duplications of adjacent plasmid or chromosomal sequences in the integrated state, indicating that integration takes place through conservative, reciprocal strand exchange. An analysis of the sequences indicated the presence of a putative gene for Phe-tRNA at attB which is preserved at attL after integration has occurred. A comparison of the attB site for a number of actinomycete plasmids is presented. Integration at attB was also observed when a 2.4-kilobase segment of pSE211 containing attP and the adjacent plasmid sequence was used to transform a pSE211- host. Nucleotide sequencing of this segment revealed the presence of two complete open reading frames (ORFs) and a segment of a third ORF. The ORF adjacent to attP encodes a putative polypeptide 437 amino acids in length that shows similarity, at its C-terminal domain, to sequences of site-specific recombinases of the integrase family. The adjacent ORF encodes a putative 98-amino-acid basic polypeptide that contains a helix-turn-helix motif at its N terminus which corresponds to domains in the Xis proteins of a number of bacteriophages. A proposal for the function of this polypeptide is presented. The deduced amino acid sequence of the third ORF did not reveal similarities to polypeptide sequences in the current data banks. Images FIG. 2 FIG. 3 PMID:2180909

  10. Sequencing of the amylopullulanase (apu) gene of Thermoanaerobacter ethanolicus 39E, and identification of the active site by site-directed mutagenesis.

    PubMed

    Mathupala, S P; Lowe, S E; Podkovyrov, S M; Zeikus, J G

    1993-08-05

    The complete nucleotide sequence of the gene encoding the dual active amylopullulanase of Thermoanaerobacter ethanolicus 39E (formerly Clostridium thermohydrosulfuricum) was determined. The structural gene (apu) contained a single open reading frame 4443 base pairs in length, corresponding to 1481 amino acids, with an estimated molecular weight of 162,780. Analysis of the deduced sequence of apu with sequences of alpha-amylases and alpha-1,6 debranching enzymes enabled the identification of four conserved regions putatively involved in substrate binding and in catalysis. The conserved regions were localized within a 2.9-kilobase pair gene fragment, which encoded a M(r) 100,000 protein that maintained the dual activities and thermostability of the native enzyme. The catalytic residues of amylopullulanase were tentatively identified by using hydrophobic cluster analysis for comparison of amino acid sequences of amylopullulanase and other amylolytic enzymes. Asp597, Glu626, and Asp703 were individually modified to their respective amide form, or the alternate acid form, and in all cases both alpha-amylase and pullulanase activities were lost, suggesting the possible involvement of 3 residues in a catalytic triad, and the presence of a putative single catalytic site within the enzyme. These findings substantiate amylopullulanase as a new type of amylosaccharidase.

  11. Genome sequence and analysis of a broad-host range lytic bacteriophage that infects the Bacillus cereus group

    PubMed Central

    2013-01-01

    Background Comparatively little information is available on members of the Myoviridae infecting low G+C content, Gram-positive host bacteria of the family Firmicutes. While numerous Bacillus phages have been isolated up till now only very few Bacillus cereus phages have been characterized in detail. Results Here we present data on the large, virulent, broad-host-range B. cereus phage vB_BceM_Bc431v3 (Bc431v3). Bc431v3 features a 158,618 bp dsDNA genome, encompassing 239 putative open reading frames (ORFs) and, 20 tRNA genes encoding 17 different amino acids. Since pulsed-field gel electrophoresis indicated that the genome of this phage has a mass of 155-158 kb Bc431v3 DNA appears not to contain long terminal repeats that are found in the genome of Bacillus phage SPO1. Conclusions Bc431v3 displays significant sequence similarity, at the protein level, to B. cereus phage BCP78, Listeria phage A511 and Enterococcus phage ØEF24C and other morphologically related phages infecting Firmicutes such as Staphylococcus phage K and Lactobacillus phage LP65. Based on these data we suggest that Bc431v3 should be included as a member of the Spounavirinae; however, because of all the diverse taxonomical information has been addressed recently, it is difficult to determine the genus. The Bc431v3 phage contains some highly unusual genes such as gp143 encoding putative tRNAHis guanylyltransferase. In addition, it carries some genes that appear to be related to the host sporulation regulators. These are: gp098, which encodes a putative segregation protein related to FstK/SpoIIIE DNA transporters; gp105, a putative segregation protein; gp108, RNA polymerase sigma factor F/B; and, gp109 encoding RNA polymerase sigma factor G. PMID:23388049

  12. Genome sequence analyses of two isolates from the recent Escherichia coli outbreak in Germany reveal the emergence of a new pathotype: Entero-Aggregative-Haemorrhagic Escherichia coli (EAHEC).

    PubMed

    Brzuszkiewicz, Elzbieta; Thürmer, Andrea; Schuldes, Jörg; Leimbach, Andreas; Liesegang, Heiko; Meyer, Frauke-Dorothee; Boelter, Jürgen; Petersen, Heiko; Gottschalk, Gerhard; Daniel, Rolf

    2011-12-01

    The genome sequences of two Escherichia coli O104:H4 strains derived from two different patients of the 2011 German E. coli outbreak were determined. The two analyzed strains were designated E. coli GOS1 and GOS2 (German outbreak strain). Both isolates comprise one chromosome of approximately 5.31 Mbp and two putative plasmids. Comparisons of the 5,217 (GOS1) and 5,224 (GOS2) predicted protein-encoding genes with various E. coli strains, and a multilocus sequence typing analysis revealed that the isolates were most similar to the entero-aggregative E. coli (EAEC) strain 55989. In addition, one of the putative plasmids of the outbreak strain is similar to pAA-type plasmids of EAEC strains, which contain aggregative adhesion fimbrial operons. The second putative plasmid harbors genes for extended-spectrum β-lactamases. This type of plasmid is widely distributed in pathogenic E. coli strains. A significant difference of the E. coli GOS1 and GOS2 genomes to those of EAEC strains is the presence of a prophage encoding the Shiga toxin, which is characteristic for enterohemorrhagic E. coli (EHEC) strains. The unique combination of genomic features of the German outbreak strain, containing characteristics from pathotypes EAEC and EHEC, suggested that it represents a new pathotype Entero-Aggregative-Haemorrhagic E scherichia c oli (EAHEC).

  13. NetF-producing Clostridium perfringens: Clonality and plasmid pathogenicity loci analysis.

    PubMed

    Mehdizadeh Gohari, Iman; Kropinski, Andrew M; Weese, Scott J; Whitehead, Ashley E; Parreira, Valeria R; Boerlin, Patrick; Prescott, John F

    2017-04-01

    Clostridium perfringens is an important cause of foal necrotizing enteritis and canine acute hemorrhagic diarrhea. A major virulence determinant of the strains associated with these diseases appears to be a beta-sheet pore-forming toxin, NetF, encoded within a pathogenicity locus (NetF locus) on a large tcp-conjugative plasmid. Strains producing NetF also produce the putative toxin NetE, encoded within the same pathogenicity locus, as well as CPE enterotoxin and CPB2 on a second plasmid, and sometimes the putative toxin NetG within a pathogenicity locus (NetG locus) on another separate large conjugative plasmid. Previous genome sequences of two netF-positive C. perfringens showed that they both shared three similar plasmids, including the NetF/NetE and CPE/CPB2 toxins-encoding plasmids mentioned above and a putative bacteriocin-encoding plasmid. The main purpose of this study was to determine whether all NetF-producing strains share this common plasmid profile and whether their distinct NetF and CPE pathogenicity loci are conserved. To answer this question, 15 equine and 15 canine netF-positive isolates of C. perfringens were sequenced using Illumina Hiseq2000 technology. In addition, the clonal relationships among the NetF-producing strains were evaluated by core genome multilocus sequence typing (cgMLST). The data obtained showed that all NetF-producing strains have a common plasmid profile and that the defined pathogenicity loci on the plasmids are conserved in all these strains. cgMLST analysis showed that the NetF-producing C. perfringens strains belong to two distinct clonal complexes. The pNetG plasmid was absent from isolates of one of the clonal complexes, and there were minor but consistent differences in the NetF/NetE and CPE/CPB2 plasmids between the two clonal complexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Comparative and Evolutionary Analysis of Grass Pollen Allergens Using Brachypodium distachyon as a Model System

    PubMed Central

    Sharma, Akanksha; Sharma, Niharika; Bhalla, Prem; Singh, Mohan

    2017-01-01

    Comparative genomics have facilitated the mining of biological information from a genome sequence, through the detection of similarities and differences with genomes of closely or more distantly related species. By using such comparative approaches, knowledge can be transferred from the model to non-model organisms and insights can be gained in the structural and evolutionary patterns of specific genes. In the absence of sequenced genomes for allergenic grasses, this study was aimed at understanding the structure, organisation and expression profiles of grass pollen allergens using the genomic data from Brachypodium distachyon as it is phylogenetically related to the allergenic grasses. Combining genomic data with the anther RNA-Seq dataset revealed 24 pollen allergen genes belonging to eight allergen groups mapping on the five chromosomes in B. distachyon. High levels of anther-specific expression profiles were observed for the 24 identified putative allergen-encoding genes in Brachypodium. The genomic evidence suggests that gene encoding the group 5 allergen, the most potent trigger of hay fever and allergic asthma originated as a pollen specific orphan gene in a common grass ancestor of Brachypodium and Triticiae clades. Gene structure analysis showed that the putative allergen-encoding genes in Brachypodium either lack or contain reduced number of introns. Promoter analysis of the identified Brachypodium genes revealed the presence of specific cis-regulatory sequences likely responsible for high anther/pollen-specific expression. With the identification of putative allergen-encoding genes in Brachypodium, this study has also described some important plant gene families (e.g. expansin superfamily, EF-Hand family, profilins etc) for the first time in the model plant Brachypodium. Altogether, the present study provides new insights into structural characterization and evolution of pollen allergens and will further serve as a base for their functional characterization in related grass species. PMID:28103252

  15. Molecular characterization and expression of the M6 gene of grass carp hemorrhage virus (GCHV), an aquareovirus.

    PubMed

    Qiu, T; Lu, R H; Zhang, J; Zhu, Z Y

    2001-07-01

    The complete nucleotide sequence of M6 gene of grass carp hemorrhage virus (GCHV) was determined. It is 2039 nucleotides in length and contains a single large open reading frame that could encode a protein of 648 amino acids with predicted molecular mass of 68.7 kDa. Amino acid sequence comparison revealed that the protein encoded by GCHV M6 is closely related to the protein mu1 of mammalian reovirus. The M6 gene, encoding the major outer-capsid protein, was expressed using the pET fusion protein vector in Escherichia coli and detected by Western blotting using chicken anti-GCHV immunoglobulin (IgY). The result indicates that the protein encoded by M6 may share a putative Asn-42-Pro-43 proteolytic cleavage site with mu1.

  16. Mapping of aldose reductase gene sequences to human chromosomes 1, 3, 7, 9, 11, and 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, J.B.; Kojis, T.; Heinzmann, C.

    1993-09-01

    Aldose reductase (alditol:NAD(P)+ 1-oxidoreductase; EC 1.1.1.21) (AR) catalyzes the reduction of several aldehydes, including that of glucose, to the corresponding sugar alcohol. Using a complementary DNA clone encoding human AR, the authors mapped the gene sequences to human chromosomes 1, 3, 7, 9, 11, 13, 14, and 18 by somatic cell hybridization. By in situ hybridization analysis, sequences were localized to human chromosomes 1q32-q43, 3p12, 7q31-q35, 9q22, 11p14-p15, and 13q14-q21. As a putative functional AR gene has been mapped to chromosome 7 and a putative pseudogene to chromosome 3, the sequences on the other seven chromosomes may represent other activemore » genes, non-aldose reductase homologous sequences, or pseudogenes. 24 refs., 3 figs., 2 tabs.« less

  17. Sequence of a cDNA and expression of the gene encoding a putative epidermal chitin synthase of Manduca sexta.

    PubMed

    Zhu, Yu-Cheng; Specht, Charles A; Dittmer, Neal T; Muthukrishnan, Subbaratnam; Kanost, Michael R; Kramer, Karl J

    2002-11-01

    Glycosyltransferases are enzymes that synthesize oligosaccharides, polysaccharides and glycoconjugates. One type of glycosyltransferase is chitin synthase, a very important enzyme in biology, which is utilized by insects, fungi, and other invertebrates to produce chitin, a polysaccharide of beta-1,4-linked N-acetylglucosamine. Chitin is an important component of the insect's exoskeletal cuticle and gut lining. To identify and characterize a chitin synthase gene of the tobacco hornworm, Manduca sexta, degenerate primers were designed from two highly conserved regions in fungal and nematode chitin synthase protein sequences and then used to amplify a similar region from Manduca cDNA. A full-length cDNA of 5152 nucleotides was assembled for the putative Manduca chitin synthase gene, MsCHS1, and sequencing of genomic DNA verified the contiguity of the sequence. The MsCHS1 cDNA has an ORF of 4692 nucleotides that encodes a transmembrane protein of 1564 amino acid residues with a mass of approximately 179 kDa (GenBank no. AY062175). It is most similar, over its entire length of protein sequence, to putative chitin synthases from other insects and nematodes, with 68% identity to enzymes from both the blow fly, Lucilia cuprina, and the fruit fly, Drosophila melanogaster. The similarity with fungal chitin synthases is restricted to the putative catalytic domain, and the MsCHS1 protein has, at equivalent positions, several amino acids that are essential for activity as revealed by mutagenesis of the fungal enzymes. A 5.3-kb transcript of MsCHS1 was identified by northern blot hybridization of RNA from larval epidermis, suggesting that the enzyme functions to make chitin deposited in the cuticle. Further examination by RT-PCR showed that MsCHS1 expression is regulated in the epidermis, with the amount of transcript increasing during phases of cuticle deposition.

  18. Cloning and characterization of the gene encoding IMP dehydrogenase from Arabidopsis thaliana.

    PubMed

    Collart, F R; Osipiuk, J; Trent, J; Olsen, G J; Huberman, E

    1996-10-03

    We have cloned and characterized the gene encoding inosine monophosphate dehydrogenase (IMPDH) from Arabidopsis thaliana (At). The transcription unit of the At gene spans approximately 1900 bp and specifies a protein of 503 amino acids with a calculated relative molecular mass (M(r)) of 54,190. The gene is comprised of a minimum of four introns and five exons with all donor and acceptor splice sequences conforming to previously proposed consensus sequences. The deduced IMPDH amino-acid sequence from At shows a remarkable similarity to other eukaryotic IMPDH sequences, with a 48% identity to human Type II enzyme. Allowing for conservative substitutions, the enzyme is 69% similar to human Type II IMPDH. The putative active-site sequence of At IMPDH conforms to the IMP dehydrogenase/guanosine monophosphate reductase motif and contains an essential active-site cysteine residue.

  19. TCOF1 gene encodes a putative nucleolar phosphoprotein that exhibits mutations in Treacher Collins Syndrome throughout its coding region.

    PubMed

    Wise, C A; Chiang, L C; Paznekas, W A; Sharma, M; Musy, M M; Ashley, J A; Lovett, M; Jabs, E W

    1997-04-01

    Treacher Collins Syndrome (TCS) is the most common of the human mandibulofacial dysostosis disorders. Recently, a partial TCOF1 cDNA was identified and shown to contain mutations in TCS families. Here we present the entire exon/intron genomic structure and the complete coding sequence of TCOF1. TCOF1 encodes a low complexity protein of 1,411 amino acids, whose predicted protein structure reveals repeated motifs that mirror the organization of its exons. These motifs are shared with nucleolar trafficking proteins in other species and are predicted to be highly phosphorylated by casein kinase. Consistent with this, the full-length TCOF1 protein sequence also contains putative nuclear and nucleolar localization signals. Throughout the open reading frame, we detected an additional eight mutations in TCS families and several polymorphisms. We postulate that TCS results from defects in a nucleolar trafficking protein that is critically required during human craniofacial development.

  20. TCOF1 gene encodes a putative nucleolar phosphoprotein that exhibits mutations in Treacher Collins Syndrome throughout its coding region

    PubMed Central

    Wise, Carol A.; Chiang, Lydia C.; Paznekas, William A.; Sharma, Mridula; Musy, Maurice M.; Ashley, Jennifer A.; Lovett, Michael; Jabs, Ethylin W.

    1997-01-01

    Treacher Collins Syndrome (TCS) is the most common of the human mandibulofacial dysostosis disorders. Recently, a partial TCOF1 cDNA was identified and shown to contain mutations in TCS families. Here we present the entire exon/intron genomic structure and the complete coding sequence of TCOF1. TCOF1 encodes a low complexity protein of 1,411 amino acids, whose predicted protein structure reveals repeated motifs that mirror the organization of its exons. These motifs are shared with nucleolar trafficking proteins in other species and are predicted to be highly phosphorylated by casein kinase. Consistent with this, the full-length TCOF1 protein sequence also contains putative nuclear and nucleolar localization signals. Throughout the open reading frame, we detected an additional eight mutations in TCS families and several polymorphisms. We postulate that TCS results from defects in a nucleolar trafficking protein that is critically required during human craniofacial development. PMID:9096354

  1. Molecular identification of aiiA homologous gene from endophytic Enterobacter species and in silico analysis of putative tertiary structure of AHL-lactonase.

    PubMed

    Rajesh, P S; Rai, V Ravishankar

    2014-01-03

    The aiiA homologous gene known to encode AHL- lactonase enzyme which hydrolyze the N-acylhomoserine lactone (AHL) quorum sensing signaling molecules produced by Gram negative bacteria. In this study, the degradation of AHL molecules was determined by cell-free lysate of endophytic Enterobacter species. The percentage of quorum quenching was confirmed and quantified by HPLC method (p<0.0001). Amplification and sequence BLAST analysis showed the presence of aiiA homologous gene in endophytic Enterobacter asburiae VT65, Enterobacter aerogenes VT66 and Enterobacter ludwigii VT70 strains. Sequence alignment analysis revealed the presence of two zinc binding sites, "HXHXDH" motif as well as tyrosine residue at the position 194. Based on known template available at Swiss-Model, putative tertiary structure of AHL-lactonase was constructed. The result showed that novel endophytic strains of Enterobacter genera encode the novel aiiA homologous gene and its structural importance for future study. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions

    PubMed Central

    Jiang, Yiwei

    2013-01-01

    Drought is a major environmental stress limiting growth of perennial grasses in temperate regions. Plant drought tolerance is a complex trait that is controlled by multiple genes. Candidate gene association mapping provides a powerful tool for dissection of complex traits. Candidate gene association mapping of drought tolerance traits was conducted in 192 diverse perennial ryegrass (Lolium perenne L.) accessions from 43 countries. The panel showed significant variations in leaf wilting, leaf water content, canopy and air temperature difference, and chlorophyll fluorescence under well-watered and drought conditions across six environments. Analysis of 109 simple sequence repeat markers revealed five population structures in the mapping panel. A total of 2520 expression-based sequence readings were obtained for a set of candidate genes involved in antioxidant metabolism, dehydration, water movement across membranes, and signal transduction, from which 346 single nucleotide polymorphisms were identified. Significant associations were identified between a putative LpLEA3 encoding late embryogenesis abundant group 3 protein and a putative LpFeSOD encoding iron superoxide dismutase and leaf water content, as well as between a putative LpCyt Cu-ZnSOD encoding cytosolic copper-zinc superoxide dismutase and chlorophyll fluorescence under drought conditions. Four of these identified significantly associated single nucleotide polymorphisms from these three genes were also translated to amino acid substitutions in different genotypes. These results indicate that allelic variation in these genes may affect whole-plant response to drought stress in perennial ryegrass. PMID:23386684

  3. Putative Nonribosomal Peptide Synthetase and Cytochrome P450 Genes Responsible for Tentoxin Biosynthesis in Alternaria alternata ZJ33

    PubMed Central

    Li, You-Hai; Han, Wen-Jin; Gui, Xi-Wu; Wei, Tao; Tang, Shuang-Yan; Jin, Jian-Ming

    2016-01-01

    Tentoxin, a cyclic tetrapeptide produced by several Alternaria species, inhibits the F1-ATPase activity of chloroplasts, resulting in chlorosis in sensitive plants. In this study, we report two clustered genes, encoding a putative non-ribosome peptide synthetase (NRPS) TES and a cytochrome P450 protein TES1, that are required for tentoxin biosynthesis in Alternaria alternata strain ZJ33, which was isolated from blighted leaves of Eupatorium adenophorum. Using a pair of primers designed according to the consensus sequences of the adenylation domain of NRPSs, two fragments containing putative adenylation domains were amplified from A. alternata ZJ33, and subsequent PCR analyses demonstrated that these fragments belonged to the same NRPS coding sequence. With no introns, TES consists of a single 15,486 base pair open reading frame encoding a predicted 5161 amino acid protein. Meanwhile, the TES1 gene is predicted to contain five introns and encode a 506 amino acid protein. The TES protein is predicted to be comprised of four peptide synthase modules with two additional N-methylation domains, and the number and arrangement of the modules in TES were consistent with the number and arrangement of the amino acid residues of tentoxin, respectively. Notably, both TES and TES1 null mutants generated via homologous recombination failed to produce tentoxin. This study provides the first evidence concerning the biosynthesis of tentoxin in A. alternata. PMID:27490569

  4. Molecular Cloning and Characterization of cDNA Encoding a Putative Stress-Induced Heat-Shock Protein from Camelus dromedarius

    PubMed Central

    Elrobh, Mohamed S.; Alanazi, Mohammad S.; Khan, Wajahatullah; Abduljaleel, Zainularifeen; Al-Amri, Abdullah; Bazzi, Mohammad D.

    2011-01-01

    Heat shock proteins are ubiquitous, induced under a number of environmental and metabolic stresses, with highly conserved DNA sequences among mammalian species. Camelus dromedaries (the Arabian camel) domesticated under semi-desert environments, is well adapted to tolerate and survive against severe drought and high temperatures for extended periods. This is the first report of molecular cloning and characterization of full length cDNA of encoding a putative stress-induced heat shock HSPA6 protein (also called HSP70B′) from Arabian camel. A full-length cDNA (2417 bp) was obtained by rapid amplification of cDNA ends (RACE) and cloned in pET-b expression vector. The sequence analysis of HSPA6 gene showed 1932 bp-long open reading frame encoding 643 amino acids. The complete cDNA sequence of the Arabian camel HSPA6 gene was submitted to NCBI GeneBank (accession number HQ214118.1). The BLAST analysis indicated that C. dromedaries HSPA6 gene nucleotides shared high similarity (77–91%) with heat shock gene nucleotide of other mammals. The deduced 643 amino acid sequences (accession number ADO12067.1) showed that the predicted protein has an estimated molecular weight of 70.5 kDa with a predicted isoelectric point (pI) of 6.0. The comparative analyses of camel HSPA6 protein sequences with other mammalian heat shock proteins (HSPs) showed high identity (80–94%). Predicted camel HSPA6 protein structure using Protein 3D structural analysis high similarities with human and mouse HSPs. Taken together, this study indicates that the cDNA sequences of HSPA6 gene and its amino acid and protein structure from the Arabian camel are highly conserved and have similarities with other mammalian species. PMID:21845074

  5. Characterization of Plasmids in a Human Clinical Strain of Lactococcus garvieae

    PubMed Central

    Blanco, M. Mar; López-Campos, Guillermo H.; Cutuli, M. Teresa; Fernández-Garayzábal, José F.

    2012-01-01

    The present work describes the molecular characterization of five circular plasmids found in the human clinical strain Lactococcus garvieae 21881. The plasmids were designated pGL1-pGL5, with molecular sizes of 4,536 bp, 4,572 bp, 12,948 bp, 14,006 bp and 68,798 bp, respectively. Based on detailed sequence analysis, some of these plasmids appear to be mosaics composed of DNA obtained by modular exchange between different species of lactic acid bacteria. Based on sequence data and the derived presence of certain genes and proteins, the plasmid pGL2 appears to replicate via a rolling-circle mechanism, while the other four plasmids appear to belong to the group of lactococcal theta-type replicons. The plasmids pGL1, pGL2 and pGL5 encode putative proteins related with bacteriocin synthesis and bacteriocin secretion and immunity. The plasmid pGL5 harbors genes (txn, orf5 and orf25) encoding proteins that could be considered putative virulence factors. The gene txn encodes a protein with an enzymatic domain corresponding to the family actin-ADP-ribosyltransferases toxins, which are known to play a key role in pathogenesis of a variety of bacterial pathogens. The genes orf5 and orf25 encode two putative surface proteins containing the cell wall-sorting motif LPXTG, with mucin-binding and collagen-binding protein domains, respectively. These proteins could be involved in the adherence of L. garvieae to mucus from the intestine, facilitating further interaction with intestinal epithelial cells and to collagenous tissues such as the collagen-rich heart valves. To our knowledge, this is the first report on the characterization of plasmids in a human clinical strain of this pathogen. PMID:22768237

  6. Genome-based insights into the resistome and mobilome of multidrug-resistant Aeromonas sp. ARM81 isolated from wastewater.

    PubMed

    Adamczuk, Marcin; Dziewit, Lukasz

    2017-01-01

    The draft genome of multidrug-resistant Aeromonas sp. ARM81 isolated from a wastewater treatment plant in Warsaw (Poland) was obtained. Sequence analysis revealed multiple genes conferring resistance to aminoglycosides, β-lactams or tetracycline. Three different β-lactamase genes were identified, including an extended-spectrum β-lactamase gene bla PER-1 . The antibiotic susceptibility was experimentally tested. Genome sequencing also allowed us to investigate the plasmidome and transposable mobilome of ARM81. Four plasmids, of which two carry phenotypic modules (i.e., genes encoding a zinc transporter ZitB and a putative glucosyltransferase), and 28 putative transposase genes were identified. The mobility of three insertion sequences (isoforms of previously identified elements ISAs12, ISKpn9 and ISAs26) was confirmed using trap plasmids.

  7. Plasmid Characterization and Chromosome Analysis of Two netF+ Clostridium perfringens Isolates Associated with Foal and Canine Necrotizing Enteritis.

    PubMed

    Mehdizadeh Gohari, Iman; Kropinski, Andrew M; Weese, Scott J; Parreira, Valeria R; Whitehead, Ashley E; Boerlin, Patrick; Prescott, John F

    2016-01-01

    The recent discovery of a novel beta-pore-forming toxin, NetF, which is strongly associated with canine and foal necrotizing enteritis should improve our understanding of the role of type A Clostridium perfringens associated disease in these animals. The current study presents the complete genome sequence of two netF-positive strains, JFP55 and JFP838, which were recovered from cases of foal necrotizing enteritis and canine hemorrhagic gastroenteritis, respectively. Genome sequencing was done using Single Molecule, Real-Time (SMRT) technology-PacBio and Illumina Hiseq2000. The JFP55 and JFP838 genomes include a single 3.34 Mb and 3.53 Mb chromosome, respectively, and both genomes include five circular plasmids. Plasmid annotation revealed that three plasmids were shared by the two newly sequenced genomes, including a NetF/NetE toxins-encoding tcp-conjugative plasmid, a CPE/CPB2 toxins-encoding tcp-conjugative plasmid and a putative bacteriocin-encoding plasmid. The putative beta-pore-forming toxin genes, netF, netE and netG, were located in unique pathogenicity loci on tcp-conjugative plasmids. The C. perfringens JFP55 chromosome carries 2,825 protein-coding genes whereas the chromosome of JFP838 contains 3,014 protein-encoding genes. Comparison of these two chromosomes with three available reference C. perfringens chromosome sequences identified 48 (~247 kb) and 81 (~430 kb) regions unique to JFP55 and JFP838, respectively. Some of these divergent genomic regions in both chromosomes are phage- and plasmid-related segments. Sixteen of these unique chromosomal regions (~69 kb) were shared between the two isolates. Five of these shared regions formed a mosaic of plasmid-integrated segments, suggesting that these elements were acquired early in a clonal lineage of netF-positive C. perfringens strains. These results provide significant insight into the basis of canine and foal necrotizing enteritis and are the first to demonstrate that netF resides on a large and unique plasmid-encoded locus.

  8. Cloning and characterization of an inulinase gene from the marine yeast Candida membranifaciens subsp. flavinogenie W14-3 and its expression in Saccharomyces sp. W0 for ethanol production.

    PubMed

    Zhang, Lin-Lin; Tan, Mei-Juan; Liu, Guang-Lei; Chi, Zhe; Wang, Guang-Yuan; Chi, Zhen-Ming

    2015-04-01

    The INU1 gene encoding an exo-inulinase from the marine-derived yeast Candida membranifaciens subsp. flavinogenie W14-3 was cloned and characterized. It had an open reading frame of 1,536 bp long encoding an inulinase. The coding region of it was not interrupted by any intron. The cloned gene encoded 512 amino acid residues of a protein with a putative signal peptide of 23 amino acids and a calculated molecular mass of 57.8 kDa. The protein sequence deduced from the inulinase gene contained the inulinase consensus sequences (WMNDPNGL), (RDP), ECP FS and Q. The protein also had six conserved putative N-glycosylation sites. The deduced inulinase from the yeast strain W14-3 was found to be closely related to that from Candida kutaonensis sp. nov. KRF1, Kluyveromyces marxianus, and Cryptococcus aureus G7a. The inulinase gene with its signal peptide encoding sequence was subcloned into the pMIRSC11 expression vector and expressed in Saccharomyces sp. W0. The recombinant yeast strain W14-3-INU-112 obtained could produce 16.8 U/ml of inulinase activity and 12.5 % (v/v) ethanol from 250 g/l of inulin within 168 h. The monosaccharides were detected after the hydrolysis of inulin with the crude inulinase (the yeast culture). All the results indicated that the cloned gene and the recombinant yeast strain W14-3-INU-112 had potential applications in biotechnology.

  9. Regulation of Sulfur Assimilation Pathways in Burkholderia cenocepacia through Control of Genes by the SsuR Transcription Factor▿

    PubMed Central

    Łochowska, Anna; Iwanicka-Nowicka, Roksana; Zielak, Agata; Modelewska, Anna; Thomas, Mark S.; Hryniewicz, Monika M.

    2011-01-01

    The genome of Burkholderia cenocepacia contains two genes encoding closely related LysR-type transcriptional regulators, CysB and SsuR, involved in control of sulfur assimilation processes. In this study we show that the function of SsuR is essential for the utilization of a number of organic sulfur sources of either environmental or human origin. Among the genes upregulated by SsuR identified here are the tauABC operon encoding a predicted taurine transporter, three tauD-type genes encoding putative taurine dioxygenases, and atsA encoding a putative arylsulfatase. The role of SsuR in expression of these genes/operons was characterized through (i) construction of transcriptional reporter fusions to candidate promoter regions and analysis of their expression in the presence/absence of SsuR and (ii) testing the ability of SsuR to bind SsuR-responsive promoter regions. We also demonstrate that expression of SsuR-activated genes is not repressed in the presence of inorganic sulfate. A more detailed analysis of four SsuR-responsive promoter regions indicated that ∼44 bp of the DNA sequence preceding and/or overlapping the predicted −35 element of such promoters is sufficient for SsuR binding. The DNA sequence homology among SsuR “recognition motifs” at different responsive promoters appears to be limited. PMID:21317335

  10. Genome sequence of Bradyrhizobium sp. LMTR 3, a diazotrophic symbiont of Lima bean (Phaseolus lunatus).

    PubMed

    Ormeño-Orrillo, Ernesto; Rey, Luis; Durán, David; Canchaya, Carlos A; Zúñiga-Dávila, Doris; Imperial, Juan; Martínez-Romero, Esperanza; Ruiz-Argüeso, Tomás

    2017-09-01

    Bradyrhizobium sp. LMTR 3 is a representative strain of one of the geno(species) of diazotrophic symbionts associated with Lima bean ( Phaseolus lunatus ) in Peru. Its 7.83 Mb genome was sequenced using the Illumina technology and found to encode a complete set of genes required for nodulation and nitrogen fixation, and additional genes putatively involved in root colonization. Its draft genome sequence and annotation have been deposited at GenBank under the accession number MAXC00000000.

  11. A new cryptic virus belonging to the family Partitiviridae was found in watermelon co-infected with Melon necrotic spot virus.

    PubMed

    Sela, Noa; Lachman, Oded; Reingold, Victoria; Dombrovsky, Aviv

    2013-10-01

    A novel virus was detected in watermelon plants (Citrullus lanatus Thunb.) infected with Melon necrotic spot virus (MNSV) using SOLiD next-generation sequence analysis. In addition to the expected MSNV genome, two double-stranded RNA (dsRNA) segments of 1,312 and 1,118 bp were also identified and sequenced from the purified virus preparations. These two dsRNA segments encode two putative partitivirus-related proteins, an RNA-dependent RNA polymerase (RdRP) and a capsid protein, which were sequenced. Genomic-sequence analysis and analysis of phylogenetic relationships indicate that these two dsRNAs together make up the genome of a novel Partitivirus. This virus was found to be closely related to the Pepper cryptic virus 1 and Raphanus sativus cryptic virus. It is suggested that this novel virus putatively named Citrullus lanatus cryptic virus be considered as a new member of the family Partitiviridae.

  12. Molecular characterization and genomic distribution of Isis: a new retrotransposon of Drosophila buzzatii.

    PubMed

    García Guerreiro, M P; Fontdevila, A

    2007-01-01

    A new transposable element, Isis, is identified as a LTR retrotransposon in Drosophila buzzatii. DNA sequence analysis shows that Isis contains three long ORFs similar to gag, pol and env genes of retroviruses. The ORF1 exhibits sequence homology to matrix, capsid and nucleocapsid gag proteins and ORF2 encodes a putative protease (PR), a reverse transcriptase (RT), an Rnase H (RH) and an integrase (IN) region. The analysis of a putative env product, encoded by the env ORF3, shows a degenerated protein containing several stop codons. The molecular study of the putative proteins coded by this new element shows striking similarities to both Ulysses and Osvaldo elements, two LTR retrotransposons, present in D. virilis and D. buzzatii, respectively. Comparisons of the predicted Isis RT to several known retrotransposons show strong phylogenetic relationships to gypsy-like elements, particulary to Ulysses retrotransposon. Studies of Isis chromosomal distribution show a strong hybridization signal in centromeric and pericentromeric regions, and a scattered distribution along all chromosomal arms. The existence of insertional polymorphisms between different strains and high molecular weight bands by Southern blot suggests the existence of full-sized copies that have been active recently. The presence of euchromatic insertion sites coincident between Isis and Osvaldo could indicate preferential insertion sites of Osvaldo element into Isis sequence or vice versa. Moreover, the presence of Isis in different species of the buzzatii complex indicates the ancient origin of this element.

  13. Transcriptional Profiles of Mating-Responsive Genes from Testes and Male Accessory Glands of the Mediterranean Fruit Fly, Ceratitis capitata

    PubMed Central

    Scolari, Francesca; Gomulski, Ludvik M.; Ribeiro, José M. C.; Siciliano, Paolo; Meraldi, Alice; Falchetto, Marco; Bonomi, Angelica; Manni, Mosè; Gabrieli, Paolo; Malovini, Alberto; Bellazzi, Riccardo; Aksoy, Serap; Gasperi, Giuliano; Malacrida, Anna R.

    2012-01-01

    Background Insect seminal fluid is a complex mixture of proteins, carbohydrates and lipids, produced in the male reproductive tract. This seminal fluid is transferred together with the spermatozoa during mating and induces post-mating changes in the female. Molecular characterization of seminal fluid proteins in the Mediterranean fruit fly, Ceratitis capitata, is limited, although studies suggest that some of these proteins are biologically active. Methodology/Principal Findings We report on the functional annotation of 5914 high quality expressed sequence tags (ESTs) from the testes and male accessory glands, to identify transcripts encoding putative secreted peptides that might elicit post-mating responses in females. The ESTs were assembled into 3344 contigs, of which over 33% produced no hits against the nr database, and thus may represent novel or rapidly evolving sequences. Extraction of the coding sequences resulted in a total of 3371 putative peptides. The annotated dataset is available as a hyperlinked spreadsheet. Four hundred peptides were identified with putative secretory activity, including odorant binding proteins, protease inhibitor domain-containing peptides, antigen 5 proteins, mucins, and immunity-related sequences. Quantitative RT-PCR-based analyses of a subset of putative secretory protein-encoding transcripts from accessory glands indicated changes in their abundance after one or more copulations when compared to virgin males of the same age. These changes in abundance, particularly evident after the third mating, may be related to the requirement to replenish proteins to be transferred to the female. Conclusions/Significance We have developed the first large-scale dataset for novel studies on functions and processes associated with the reproductive biology of Ceratitis capitata. The identified genes may help study genome evolution, in light of the high adaptive potential of the medfly. In addition, studies of male recovery dynamics in terms of accessory gland gene expression profiles and correlated remating inhibition mechanisms may permit the improvement of pest management approaches. PMID:23071645

  14. Nucleotide sequence of the gene encoding the nitrogenase iron protein of Thiobacillus ferrooxidans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pretorius, I.M.; Rawlings, D.E.; O'Neill, E.G.

    1987-01-01

    The DNA sequence was determined for the cloned Thiobacillus ferrooxidans nifH and part of the nifD genes. The DNA chains were radiolabeled with (..cap alpha..-/sup 32/P)dCTP (3000 Ci/mmol) or (..cap alpha..-/sup 35/S)dCTP (400 Ci/mmol). A putative T. ferrooxidans nifH promoter was identified whose sequences showed perfect consensus with those of the Klebsiella pneumoniae nif promoter. Two putative consensus upstream activator sequences were also identified. The amino acid sequence was deduced from the DNA sequence. In a comparison of nifH DNA sequences from T. ferrooxidans and eight other nitrogen-fixing microbes, a Rhizobium sp. isolated from Parasponia andersonii showed the greatest homologymore » (74%) and Clostridium pasteurianum (nifH1) showed the least homology (54%). In the comparison of the amino acid sequences of the Fe proteins, the Rhizobium sp. and Rhizobium japonicum showed the greatest homology (both 86%) and C. pasteurianum (nifH1 gene product) demonstrated the least homology (56%) to the T. ferrooxidans Fe protein.« less

  15. A cDNA from a mouse pancreatic beta cell encoding a putative transcription factor of the insulin gene.

    PubMed Central

    Walker, M D; Park, C W; Rosen, A; Aronheim, A

    1990-01-01

    Cell specific expression of the insulin gene is achieved through transcriptional mechanisms operating on multiple DNA sequence elements located in the 5' flanking region of the gene. Of particular importance in the rat insulin I gene are two closely similar 9 bp sequences (IEB1 and IEB2): mutation of either of these leads to 5-10 fold reduction in transcriptional activity. We have screened an expression cDNA library derived from mouse pancreatic endocrine beta cells with a radioactive DNA probe containing multiple copies of the IEB1 sequence. A cDNA clone (A1) isolated by this procedure encodes a protein which shows efficient binding to the IEB1 probe, but much weaker binding to either an unrelated DNA probe or to a probe bearing a single base pair insertion within the recognition sequence. DNA sequence analysis indicates a protein belonging to the helix-loop-helix family of DNA-binding proteins. The ability of the protein encoded by clone A1 to recognize a number of wild type and mutant DNA sequences correlates closely with the ability of each sequence element to support transcription in vivo in the context of the insulin 5' flanking DNA. We conclude that the isolated cDNA may encode a transcription factor that participates in control of insulin gene expression. Images PMID:2181401

  16. [Divergence of paralogous growth-hormone-encoding genes and their promoters in Salmonidae].

    PubMed

    Kamenskaya, D N; Pankova, M V; Atopkin, D M; Brykov, V A

    2017-01-01

    In many fish species, including salmonids, the growth-hormone is encoded by two duplicated paralogous genes, gh1 and gh2. Both genes were already in place at the time of divergence of species in this group. A comparison of the entire sequence of these genes of salmonids has shown that their conserved regions are associated with exons, while their most variable regions correspond to introns. Introns C and D include putative regulatory elements (sites Pit-1, CRE, and ERE), that are also conserved. In chars, the degree of polymorphism of gh2 gene is 2-3 times as large as that in gh1 gene. However, a comparison across all Salmonidae species would not extent this observation to other species. In both these chars' genes, the promoters are conserved mainly because they correspond to putative regulatory sequences (TATA box, binding sites for the pituitary transcription factor Pit-1 (F1-F4), CRE, GRE and RAR/RXR elements). The promoter of gh2 gene has a greater degree of polymorphism compared with gh1 gene promoter in all investigated species of salmonids. The observed differences in the rates of accumulation of changes in growth hormone encoding paralogs could be explained by differences in the intensity of selection.

  17. Transcriptome landscape of Lactococcus lactis reveals many novel RNAs including a small regulatory RNA involved in carbon uptake and metabolism.

    PubMed

    van der Meulen, Sjoerd B; de Jong, Anne; Kok, Jan

    2016-01-01

    RNA sequencing has revolutionized genome-wide transcriptome analyses, and the identification of non-coding regulatory RNAs in bacteria has thus increased concurrently. Here we reveal the transcriptome map of the lactic acid bacterial paradigm Lactococcus lactis MG1363 by employing differential RNA sequencing (dRNA-seq) and a combination of manual and automated transcriptome mining. This resulted in a high-resolution genome annotation of L. lactis and the identification of 60 cis-encoded antisense RNAs (asRNAs), 186 trans-encoded putative regulatory RNAs (sRNAs) and 134 novel small ORFs. Based on the putative targets of asRNAs, a novel classification is proposed. Several transcription factor DNA binding motifs were identified in the promoter sequences of (a)sRNAs, providing insight in the interplay between lactococcal regulatory RNAs and transcription factors. The presence and lengths of 14 putative sRNAs were experimentally confirmed by differential Northern hybridization, including the abundant RNA 6S that is differentially expressed depending on the available carbon source. For another sRNA, LLMGnc_147, functional analysis revealed that it is involved in carbon uptake and metabolism. L. lactis contains 13% leaderless mRNAs (lmRNAs) that, from an analysis of overrepresentation in GO classes, seem predominantly involved in nucleotide metabolism and DNA/RNA binding. Moreover, an A-rich sequence motif immediately following the start codon was uncovered, which could provide novel insight in the translation of lmRNAs. Altogether, this first experimental genome-wide assessment of the transcriptome landscape of L. lactis and subsequent sRNA studies provide an extensive basis for the investigation of regulatory RNAs in L. lactis and related lactococcal species.

  18. Negative regulation of P element excision by the somatic product and terminal sequences of P in drosophila melanogaster

    USDA-ARS?s Scientific Manuscript database

    A transient in vivo P element excision assay was used to test the regulatory properties of putative repressor-encoding plasmids in Drosophila melanogaster embryos. The somatic expression of an unmodified transposase transcription unit under the control of a heat shock gene promoter (phsn) effectivel...

  19. [Cloning and characterization of Caveolin-1 gene in pigeon, Columba livia domestica].

    PubMed

    Zhang, Ying; Yu, Jian-Feng; Yang, Li; Wang, Xing-Guo; Gu, Zhi-Liang

    2010-10-01

    Caveolins, a class of principal proteins forming the structure of caveolae in plasmalemma, were encoded by caveolins gene family. Caveolin-1 gene is a member of caveolins gene family. In the present study, a full-length of 2605 bp caveolin-1 cDNA sequence in Columba livia domestica, which included a 537 bp complete ORF encoding a 178 amino acids long putative peptide, were obtained by using RT-PCR and RACE technique. The Columba livia domestica caveolin-1 CDS shared 80.1% - 93.4% homology with Bos taurus, Canis lupus familiaris, Gallus gallus and Rattus norvegicus. Meanwhile, the putative amino acid sequence of Columba livia domestica caveolin-1 shared 85.4% - 97.2% homology with the above species. The semi-quantity RT-PCR revealed that Caveolin-1 expressions were detectable in all the Columba livia domestica tissues and the expressional level of caveolin-1 gene was high in adipose, medium in various muscles, low in liver. These results demonstrated that Caveolin-1 gene was potentially involved in some metabolic pathways in adipose and muscle.

  20. Phylogeny of fungal hemoglobins and expression analysis of the Aspergillus oryzae flavohemoglobin gene fhbA during hyphal growth.

    PubMed

    te Biesebeke, Rob; Levasseur, Anthony; Boussier, Amandine; Record, Eric; van den Hondel, Cees A M J J; Punt, Peter J

    2010-01-01

    The fhbA genes encoding putative flavohemoglobins (FHb) from Aspergillus niger and Aspergillus oryzae were isolated. Comparison of the deduced amino acid sequence of the A. niger fhbA gene and other putative filamentous fungal FHb-encoding genes to that of Ralstonia eutropha shows an overall conserved gene structure and completely conserved catalytic amino acids. Several yeasts and filamentous fungi, including both Aspergillus species have been found to contain a small FHb gene family mostly consisting of two family members. Based on these sequences the evolutionary history of the fungal FHb family was reconstructed. The isolated fhbA genes from A. oryzae and A. niger belong to a phylogenetic group, which exclusively contains Aspergillus genes. Different experimental approaches show that fhbA transcript levels appear during active hyphal growth. Moreover, in a pclA-disrupted strain with a hyperbranching growth phenotype, the transcript levels of the fhbA gene were 2–5 times higher compared to the wild-type. These results suggest that FHb from filamentous fungi have a function that is correlated to the hyphal growth phenotype.

  1. Whole-Genome Survey of the Putative ATP-Binding Cassette Transporter Family Genes in Vitis vinifera

    PubMed Central

    Çakır, Birsen; Kılıçkaya, Ozan

    2013-01-01

    The ATP-binding cassette (ABC) protein superfamily constitutes one of the largest protein families known in plants. In this report, we performed a complete inventory of ABC protein genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with ABC protein members of Arabidopsis thaliana, we identified 135 putative ABC proteins with 1 or 2 NBDs in V. vinifera. Of these, 120 encode intrinsic membrane proteins, and 15 encode proteins missing TMDs. V. vinifera ABC proteins can be divided into 13 subfamilies with 79 “full-size,” 41 “half-size,” and 15 “soluble” putative ABC proteins. The main feature of the Vitis ABC superfamily is the presence of 2 large subfamilies, ABCG (pleiotropic drug resistance and white-brown complex homolog) and ABCC (multidrug resistance-associated protein). We identified orthologs of V. vinifera putative ABC transporters in different species. This work represents the first complete inventory of ABC transporters in V. vinifera. The identification of Vitis ABC transporters and their comparative analysis with the Arabidopsis counterparts revealed a strong conservation between the 2 species. This inventory could help elucidate the biological and physiological functions of these transporters in V. vinifera. PMID:24244377

  2. Cloning and characterization of the nagA gene that encodes beta-n-acetylglucosaminidase from Aspergillus nidulans and its expression in Aspergillus oryzae.

    PubMed

    Kim, Sunhwa; Matsuo, Ichiro; Ajisaka, Katsumi; Nakajima, Harushi; Kitamoto, Katsuhiko

    2002-10-01

    We isolated a beta-N-acetylglucosaminidase encoding gene and its cDNA from the filamentous fungus Aspergillus nidulans, and designated it nagA. The nagA gene contained no intron and encoded a polypeptide of 603 amino acids with a putative 19-amino acid signal sequence. The deduced amino acid sequence was very similar to the sequence of Candida albicans Hex1 and Trichoderma harzianum Nag1. Yeast cells containing the nagA cDNA under the control of the GAL1 promoter expressed beta-N-acetylglucosaminidase activity. The chromosomal nagA gene of A. nidulans was disrupted by replacement with the argB marker gene. The disruptant strains expressed low levels of beta-N-acetylglucosaminidase activity and showed poor growth on a medium containing chitobiose as a carbon source. Aspergillus oryzae strain carrying the nagA gene under the control of the improved glaA promoter produced large amounts of beta-N-acetylglucosaminidase in a wheat bran solid culture.

  3. Isolation of Onchocerca lupi in Dogs and Black Flies, California, USA

    PubMed Central

    Hassan, Hassan K.; Bolcen, Shanna; Kubofcik, Joseph; Nutman, Thomas B.; Eberhard, Mark L.; Middleton, Kelly; Wekesa, Joseph Wakoli; Ruedas, Gimena; Nelson, Kimberly J.; Dubielzig, Richard; De Lombaert, Melissa; Silverman, Bruce; Schorling, Jamie J.; Adler, Peter H.; Beeler, Emily S.

    2015-01-01

    In southern California, ocular infections caused by Onchocerca lupi were diagnosed in 3 dogs (1 in 2006, 2 in 2012). The infectious agent was confirmed through morphologic analysis of fixed parasites in tissues and by PCR and sequencing of amplicons derived from 2 mitochondrially encoded genes and 1 nuclear-encoded gene. A nested PCR based on the sequence of the cytochrome oxidase subunit 1 gene of the parasite was developed and used to screen Simulium black flies collected from southern California for O. lupi DNA. Six (2.8%; 95% CI 0.6%–5.0%) of 213 black flies contained O. lupi DNA. Partial mitochondrial16S rRNA gene sequences from the infected flies matched sequences derived from black fly larvae cytotaxonomically identified as Simulium tribulatum. These data implicate S. tribulatum flies as a putative vector for O. lupi in southern California. PMID:25897954

  4. A novel begomovirus isolated from sida contains putative cis- and trans-acting replication specificity determinants that have evolved independently in several geographical lineages.

    PubMed

    Mauricio-Castillo, J A; Torres-Herrera, S I; Cárdenas-Conejo, Y; Pastor-Palacios, G; Méndez-Lozano, J; Argüello-Astorga, G R

    2014-09-01

    A novel begomovirus isolated from a Sida rhombifolia plant collected in Sinaloa, Mexico, was characterized. The genomic components of sida mosaic Sinaloa virus (SiMSinV) shared highest sequence identity with DNA-A and DNA-B components of chino del tomate virus (CdTV), suggesting a vertical evolutionary relationship between these viruses. However, recombination analysis indicated that a short segment of SiMSinV DNA-A encompassing the plus-strand replication origin and the 5´-proximal 43 codons of the Rep gene was derived from tomato mottle Taino virus (ToMoTV). Accordingly, the putative cis- and trans-acting replication specificity determinants of SiMSinV were identical to those of ToMoTV but differed from those of CdTV. Modeling of the SiMSinV and CdTV Rep proteins revealed significant differences in the region comprising the small β1/β5 sheet element, where five putative DNA-binding specificity determinants (SPDs) of Rep (i.e., amino acid residues 5, 8, 10, 69 and 71) were previously identified. Computer-assisted searches of public databases led to identification of 33 begomoviruses from three continents encoding proteins with SPDs identical to those of the Rep encoded by SiMSinV. Sequence analysis of the replication origins demonstrated that all 33 begomoviruses harbor potential Rep-binding sites identical to those of SiMSinV. These data support the hypothesis that the Rep β1/β5 sheet region determines specificity of this protein for DNA replication origin sequences.

  5. Evidence for positive selection and recombination hotspots in Deformed wing virus (DWV).

    PubMed

    Dalmon, A; Desbiez, C; Coulon, M; Thomasson, M; Le Conte, Y; Alaux, C; Vallon, J; Moury, B

    2017-01-25

    Deformed wing virus (DWV) is considered one of the most damaging pests in honey bees since the spread of its vector, Varroa destructor. In this study, we sequenced the whole genomes of two virus isolates and studied the evolutionary forces that act on DWV genomes. The isolate from a Varroa-tolerant bee colony was characterized by three recombination breakpoints between DWV and the closely related Varroa destructor virus-1 (VDV-1), whereas the variant from the colony using conventional Varroa management was similar to the originally described DWV. From the complete sequence dataset, nine independent DWV-VDV-1 recombination breakpoints were detected, and recombination hotspots were found in the 5' untranslated region (5' UTR) and the conserved region encoding the helicase. Partial sequencing of the 5' UTR and helicase-encoding region in 41 virus isolates suggested that most of the French isolates were recombinants. By applying different methods based on the ratio between non-synonymous (dN) and synonymous (dS) substitution rates, we identified four positions that showed evidence of positive selection. Three of these positions were in the putative leader protein (Lp), and one was in the polymerase. These findings raise the question of the putative role of the Lp in viral evolution.

  6. Cloning of cellobiose phosphoenolpyruvate-dependent phosphotransferase genes: Functional expression in recombinant Escherichia coli and identification of a putative binding region for disaccharides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Xiaokuang; Davis, F.C.; Ingram, L.O.

    1997-02-01

    Genomic libraries from nine cellobiose-metabolizing bacteria were screened for cellobiose utilization. Positive clones were recovered from six libraries, all of which encode phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) proteins. Clones from Bacillus subtilis, Butyrivibrio fibrisolvens, and Klebsiella oxytoca allowed the growth of recombinant Escherichia coli in cellobiose-M9 minimal medium. The K. oxytoca clone, pLOI1906, exhibited an unusually broad substrate range (cellobiose, arbutin, salicin, and methylumbelliferyl derivatives of glucose, cellobiose, mannose, and xylose) and was sequenced. The insert in this plasmid encoded the carboxy-terminal region of a putative regulatory protein, cellobiose permease (single polypeptide), and phospho-{beta}-glucosidase, which appear to form an operon (casRAB).more » Subclones allowed both casA and casB to be expressed independently, as evidenced by in vitro complementation. An analysis of the translated sequences from the EIIC domains of cellobiose, aryl-{beta}-glucoside, and other disaccharide permeases allowed the identification of a 50-amino-acid conserved region. A disaccharide consensus sequence is proposed for the most conserved segment (13 amino acids), which may represent part of the EIIC active site for binding and phosphorylation. 63 refs., 4 figs., 4 tabs.« less

  7. Nucleotide sequences and regulational analysis of genes involved in conversion of aniline to catechol in Pseudomonas putida UCC22(pTDN1).

    PubMed Central

    Fukumori, F; Saint, C P

    1997-01-01

    A 9,233-bp HindIII fragment of the aromatic amine catabolic plasmid pTDN1, isolated from a derivative of Pseudomonas putida mt-2 (UCC22), confers the ability to degrade aniline on P. putida KT2442. The fragment encodes six open reading frames which are arranged in the same direction. Their 5' upstream region is part of the direct-repeat sequence of pTDN1. Nucleotide sequence of 1.8 kb of the repeat sequence revealed only a single base pair change compared to the known sequence of IS1071 which is involved in the transposition of the chlorobenzoate genes (C. Nakatsu, J. Ng, R. Singh, N. Straus, and C. Wyndham, Proc. Natl. Acad. Sci. USA 88:8312-8316, 1991). Four open reading frames encode proteins with considerable homology to proteins found in other aromatic-compound degradation pathways. On the basis of sequence similarity, these genes are proposed to encode the large and small subunits of aniline oxygenase (tdnA1 and tdnA2, respectively), a reductase (tdnB), and a LysR-type regulatory gene (tdnR). The putative large subunit has a conserved [2Fe-2S]R Rieske-type ligand center. Two genes, tdnQ and tdnT, which may be involved in amino group transfer, are localized upstream of the putative oxygenase genes. The tdnQ gene product shares about 30% similarity with glutamine synthetases; however, a pUC-based plasmid carrying tdnQ did not support the growth of an Escherichia coli glnA strain in the absence of glutamine. TdnT possesses domains that are conserved among amidotransferases. The tdnQ, tdnA1, tdnA2, tdnB, and tdnR genes are essential for the conversion of aniline to catechol. PMID:8990291

  8. Two potato proteins, including a novel RING finger protein (HIP1), interact with the potyviral multifunctional protein HCpro.

    PubMed

    Guo, Deyin; Spetz, Carl; Saarma, Mart; Valkonen, Jari P T

    2003-05-01

    Potyviral helper-component proteinase (HCpro) is a multifunctional protein exerting its cellular functions in interaction with putative host proteins. In this study, cellular protein partners of the HCpro encoded by Potato virus A (PVA) (genus Potyvirus) were screened in a potato leaf cDNA library using a yeast two-hybrid system. Two cellular proteins were obtained that interact specifically with PVA HCpro in yeast and in the two in vitro binding assays used. Both proteins are encoded by single-copy genes in the potato genome. Analysis of the deduced amino acid sequences revealed that one (HIP1) of the two HCpro interactors is a novel RING finger protein. The sequence of the other protein (HIP2) showed no resemblance to the protein sequences available from databanks and has known biological functions.

  9. Complete genome sequence of Enterobacter sp. IIT-BT 08: A potential microbial strain for high rate hydrogen production.

    PubMed

    Khanna, Namita; Ghosh, Ananta Kumar; Huntemann, Marcel; Deshpande, Shweta; Han, James; Chen, Amy; Kyrpides, Nikos; Mavrommatis, Kostas; Szeto, Ernest; Markowitz, Victor; Ivanova, Natalia; Pagani, Ioanna; Pati, Amrita; Pitluck, Sam; Nolan, Matt; Woyke, Tanja; Teshima, Hazuki; Chertkov, Olga; Daligault, Hajnalka; Davenport, Karen; Gu, Wei; Munk, Christine; Zhang, Xiaojing; Bruce, David; Detter, Chris; Xu, Yan; Quintana, Beverly; Reitenga, Krista; Kunde, Yulia; Green, Lance; Erkkila, Tracy; Han, Cliff; Brambilla, Evelyne-Marie; Lang, Elke; Klenk, Hans-Peter; Goodwin, Lynne; Chain, Patrick; Das, Debabrata

    2013-12-20

    Enterobacter sp. IIT-BT 08 belongs to Phylum: Proteobacteria, Class: Gammaproteobacteria, Order: Enterobacteriales, Family: Enterobacteriaceae. The organism was isolated from the leaves of a local plant near the Kharagpur railway station, Kharagpur, West Bengal, India. It has been extensively studied for fermentative hydrogen production because of its high hydrogen yield. For further enhancement of hydrogen production by strain development, complete genome sequence analysis was carried out. Sequence analysis revealed that the genome was linear, 4.67 Mbp long and had a GC content of 56.01%. The genome properties encode 4,393 protein-coding and 179 RNA genes. Additionally, a putative pathway of hydrogen production was suggested based on the presence of formate hydrogen lyase complex and other related genes identified in the genome. Thus, in the present study we describe the specific properties of the organism and the generation, annotation and analysis of its genome sequence as well as discuss the putative pathway of hydrogen production by this organism.

  10. Plasmid Characterization and Chromosome Analysis of Two netF+ Clostridium perfringens Isolates Associated with Foal and Canine Necrotizing Enteritis

    PubMed Central

    Mehdizadeh Gohari, Iman; Kropinski, Andrew M.; Weese, Scott J.; Parreira, Valeria R.; Whitehead, Ashley E.; Boerlin, Patrick; Prescott, John F.

    2016-01-01

    The recent discovery of a novel beta-pore-forming toxin, NetF, which is strongly associated with canine and foal necrotizing enteritis should improve our understanding of the role of type A Clostridium perfringens associated disease in these animals. The current study presents the complete genome sequence of two netF-positive strains, JFP55 and JFP838, which were recovered from cases of foal necrotizing enteritis and canine hemorrhagic gastroenteritis, respectively. Genome sequencing was done using Single Molecule, Real-Time (SMRT) technology-PacBio and Illumina Hiseq2000. The JFP55 and JFP838 genomes include a single 3.34 Mb and 3.53 Mb chromosome, respectively, and both genomes include five circular plasmids. Plasmid annotation revealed that three plasmids were shared by the two newly sequenced genomes, including a NetF/NetE toxins-encoding tcp-conjugative plasmid, a CPE/CPB2 toxins-encoding tcp-conjugative plasmid and a putative bacteriocin-encoding plasmid. The putative beta-pore-forming toxin genes, netF, netE and netG, were located in unique pathogenicity loci on tcp-conjugative plasmids. The C. perfringens JFP55 chromosome carries 2,825 protein-coding genes whereas the chromosome of JFP838 contains 3,014 protein-encoding genes. Comparison of these two chromosomes with three available reference C. perfringens chromosome sequences identified 48 (~247 kb) and 81 (~430 kb) regions unique to JFP55 and JFP838, respectively. Some of these divergent genomic regions in both chromosomes are phage- and plasmid-related segments. Sixteen of these unique chromosomal regions (~69 kb) were shared between the two isolates. Five of these shared regions formed a mosaic of plasmid-integrated segments, suggesting that these elements were acquired early in a clonal lineage of netF-positive C. perfringens strains. These results provide significant insight into the basis of canine and foal necrotizing enteritis and are the first to demonstrate that netF resides on a large and unique plasmid-encoded locus. PMID:26859667

  11. Methyltransferases acquired by lactococcal 936-type phage provide protection against restriction endonuclease activity.

    PubMed

    Murphy, James; Klumpp, Jochen; Mahony, Jennifer; O'Connell-Motherway, Mary; Nauta, Arjen; van Sinderen, Douwe

    2014-10-01

    So-called 936-type phages are among the most frequently isolated phages in dairy facilities utilising Lactococcus lactis starter cultures. Despite extensive efforts to control phage proliferation and decades of research, these phages continue to negatively impact cheese production in terms of the final product quality and consequently, monetary return. Whole genome sequencing and in silico analysis of three 936-type phage genomes identified several putative (orphan) methyltransferase (MTase)-encoding genes located within the packaging and replication regions of the genome. Utilising SMRT sequencing, methylome analysis was performed on all three phages, allowing the identification of adenine modifications consistent with N-6 methyladenine sequence methylation, which in some cases could be attributed to these phage-encoded MTases. Heterologous gene expression revealed that M.Phi145I/M.Phi93I and M.Phi93DAM, encoded by genes located within the packaging module, provide protection against the restriction enzymes HphI and DpnII, respectively, representing the first functional MTases identified in members of 936-type phages. SMRT sequencing technology enabled the identification of the target motifs of MTases encoded by the genomes of three lytic 936-type phages and these MTases represent the first functional MTases identified in this species of phage. The presence of these MTase-encoding genes on 936-type phage genomes is assumed to represent an adaptive response to circumvent host encoded restriction-modification systems thereby increasing the fitness of the phages in a dynamic dairy environment.

  12. Expression and characterization of hyperthermostable exo-polygalacturonase TtGH28 from Thermotoga thermophilus

    USDA-ARS?s Scientific Manuscript database

    The gene TtGH28 encoding a putative GH28 polygalacturonase from Pseudothermotoga thermarum DSM 5069 (Theth_0397, NCBI# AEH50492.1) was synthesized, expressed in E. coli, and characterized. Alignment of the amino acid sequence of gene product TtGH28 with other GH28 proteins whose structures and detai...

  13. Expression of a Clostridium perfringens genome-encoded putative N-acetylmuramoyl-L-alanine amidase as a potential antimicrobial to control the bacterium

    USDA-ARS?s Scientific Manuscript database

    Clostridium perfringens is a Gram-positive, spore-forming anaerobic bacterium that plays a substantial role in non-foodborne human, animal and avian diseases as well as human foodborne disease. Previously discovered C. perfringens bacteriophage lytic enzyme amino acid sequences were utilized to iden...

  14. Complete nucleotide sequences and genome characterization of a novel double-stranded RNA virus infecting Rosa multiflora.

    PubMed

    Salem, Nidá M; Golino, Deborah A; Falk, Bryce W; Rowhani, Adib

    2008-01-01

    The three double-stranded (ds) RNAs were detected in Rosa multiflora plants showing rose spring dwarf (RSD) symptoms. Northern blot analysis revealed three dsRNAs in preparations of both dsRNA and total RNA from R. multiflora plants. The complete sequences of the dsRNAs (referred to as dsRNA 1, dsRNA 2 and dsRNA 3) were determined based on a combination of shotgun cloning of dsRNA cDNAs and reverse transcription-polymerase chain reaction (RT-PCR). The largest dsRNA (dsRNA 1) was 1,762 bp long with a single open reading frame (ORF) that encoded a putative polypeptide containing 479 amino acid residues with a molecular mass of 55.9 kDa. This polypeptide contains amino acid sequence motifs conserved in the RNA-dependent RNA polymerases (RdRp) of members of the family Partitiviridae. Both dsRNA 2 (1,475 bp) and dsRNA 3 (1,384 bp) contained single ORFs, encoding putative proteins of unknown function. The 5' untranslated regions (UTR) of all three segments shared regions of high sequence homology. Phylogenetic analysis using the RdRp sequences of the various partitiviruses revealed that the new sequences would constitute the genome of a virus in family Partitiviridae. This virus would cluster with Fragaria chiloensis cryptic virus and Raphanus sativus cryptic virus 2. We suggest that the three dsRNA segments constitute the genome of a novel cryptic virus infecting roses; we propose the name Rosa multiflora cryptic virus (RMCV). Detection primers were developed and used for RT-PCR detection of RMCV in rose plants.

  15. The draft genome sequence of the ascomycete fungus Penicillium subrubescens reveals a highly enriched content of plant biomass related CAZymes compared to related fungi.

    PubMed

    Peng, Mao; Dilokpimol, Adiphol; Mäkelä, Miia R; Hildén, Kristiina; Bervoets, Sander; Riley, Robert; Grigoriev, Igor V; Hainaut, Matthieu; Henrissat, Bernard; de Vries, Ronald P; Granchi, Zoraide

    2017-03-20

    Here we report the genome sequence of the ascomycete saprobic fungus Penicillium subrubescens FBCC1632/CBS132785 isolated from a Jerusalem artichoke field in Finland. The 39.75Mb genome containing 14,188 gene models is highly similar for that reported for other Penicillium species, but contains a significantly higher number of putative carbohydrate active enzyme (CAZyme) encoding genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Chromosomal insertion and excision of a 30 kb unstable genetic element is responsible for phase variation of lipopolysaccharide and other virulence determinants in Legionella pneumophila.

    PubMed

    Lüneberg, E; Mayer, B; Daryab, N; Kooistra, O; Zähringer, U; Rohde, M; Swanson, J; Frosch, M

    2001-03-01

    We recently described the phase-variable expression of a virulence-associated lipopolysaccharide (LPS) epitope in Legionella pneumophila. In this study, the molecular mechanism for phase variation was investigated. We identified a 30 kb unstable genetic element as the molecular origin for LPS phase variation. Thirty putative genes were encoded on the 30 kb sequence, organized in two putative opposite transcription units. Some of the open reading frames (ORFs) shared homologies with bacteriophage genes, suggesting that the 30 kb element was of phage origin. In the virulent wild-type strain, the 30 kb element was located on the chromosome, whereas excision from the chromosome and replication as a high-copy plasmid resulted in the mutant phenotype, which is characterized by alteration of an LPS epitope and loss of virulence. Mapping and sequencing of the insertion site in the genome revealed that the chromosomal attachment site was located in an intergenic region flanked by genes of unknown function. As phage release could not be induced by mitomycin C, it is conceivable that the 30 kb element is a non-functional phage remnant. The protein encoded by ORF T on the 30 kb plasmid could be isolated by an outer membrane preparation, indicating that the genes encoded on the 30 kb element are expressed in the mutant phenotype. Therefore, it is conceivable that the phenotypic alterations seen in the mutant depend on high-copy replication of the 30 kb element and expression of the encoded genes. Excision of the 30 kb element from the chromosome was found to occur in a RecA-independent pathway, presumably by the involvement of RecE, RecT and RusA homologues that are encoded on the 30 kb element.

  17. Genome-wide analysis of putative peroxiredoxin in unicellular and filamentous cyanobacteria.

    PubMed

    Cui, Hongli; Wang, Yipeng; Wang, Yinchu; Qin, Song

    2012-11-16

    Cyanobacteria are photoautotrophic prokaryotes with wide variations in genome sizes and ecological habitats. Peroxiredoxin (PRX) is an important protein that plays essential roles in protecting own cells against reactive oxygen species (ROS). PRXs have been identified from mammals, fungi and higher plants. However, knowledge on cyanobacterial PRXs still remains obscure. With the availability of 37 sequenced cyanobacterial genomes, we performed a comprehensive comparative analysis of PRXs and explored their diversity, distribution, domain structure and evolution. Overall 244 putative prx genes were identified, which were abundant in filamentous diazotrophic cyanobacteria, Acaryochloris marina MBIC 11017, and unicellular cyanobacteria inhabiting freshwater and hot-springs, while poor in all Prochlorococcus and marine Synechococcus strains. Among these putative genes, 25 open reading frames (ORFs) encoding hypothetical proteins were identified as prx gene family members and the others were already annotated as prx genes. All 244 putative PRXs were classified into five major subfamilies (1-Cys, 2-Cys, BCP, PRX5_like, and PRX-like) according to their domain structures. The catalytic motifs of the cyanobacterial PRXs were similar to those of eukaryotic PRXs and highly conserved in all but the PRX-like subfamily. Classical motif (CXXC) of thioredoxin was detected in protein sequences from the PRX-like subfamily. Phylogenetic tree constructed of catalytic domains coincided well with the domain structures of PRXs and the phylogenies based on 16s rRNA. The distribution of genes encoding PRXs in different unicellular and filamentous cyanobacteria especially those sub-families like PRX-like or 1-Cys PRX correlate with the genome size, eco-physiology, and physiological properties of the organisms. Cyanobacterial and eukaryotic PRXs share similar conserved motifs, indicating that cyanobacteria adopt similar catalytic mechanisms as eukaryotes. All cyanobacterial PRX proteins share highly similar structures, implying that these genes may originate from a common ancestor. In this study, a general framework of the sequence-structure-function connections of the PRXs was revealed, which may facilitate functional investigations of PRXs in various organisms.

  18. Genome-wide analysis of putative peroxiredoxin in unicellular and filamentous cyanobacteria

    PubMed Central

    2012-01-01

    Background Cyanobacteria are photoautotrophic prokaryotes with wide variations in genome sizes and ecological habitats. Peroxiredoxin (PRX) is an important protein that plays essential roles in protecting own cells against reactive oxygen species (ROS). PRXs have been identified from mammals, fungi and higher plants. However, knowledge on cyanobacterial PRXs still remains obscure. With the availability of 37 sequenced cyanobacterial genomes, we performed a comprehensive comparative analysis of PRXs and explored their diversity, distribution, domain structure and evolution. Results Overall 244 putative prx genes were identified, which were abundant in filamentous diazotrophic cyanobacteria, Acaryochloris marina MBIC 11017, and unicellular cyanobacteria inhabiting freshwater and hot-springs, while poor in all Prochlorococcus and marine Synechococcus strains. Among these putative genes, 25 open reading frames (ORFs) encoding hypothetical proteins were identified as prx gene family members and the others were already annotated as prx genes. All 244 putative PRXs were classified into five major subfamilies (1-Cys, 2-Cys, BCP, PRX5_like, and PRX-like) according to their domain structures. The catalytic motifs of the cyanobacterial PRXs were similar to those of eukaryotic PRXs and highly conserved in all but the PRX-like subfamily. Classical motif (CXXC) of thioredoxin was detected in protein sequences from the PRX-like subfamily. Phylogenetic tree constructed of catalytic domains coincided well with the domain structures of PRXs and the phylogenies based on 16s rRNA. Conclusions The distribution of genes encoding PRXs in different unicellular and filamentous cyanobacteria especially those sub-families like PRX-like or 1-Cys PRX correlate with the genome size, eco-physiology, and physiological properties of the organisms. Cyanobacterial and eukaryotic PRXs share similar conserved motifs, indicating that cyanobacteria adopt similar catalytic mechanisms as eukaryotes. All cyanobacterial PRX proteins share highly similar structures, implying that these genes may originate from a common ancestor. In this study, a general framework of the sequence-structure-function connections of the PRXs was revealed, which may facilitate functional investigations of PRXs in various organisms. PMID:23157370

  19. Donkey Orchid Symptomless Virus: A Viral ‘Platypus’ from Australian Terrestrial Orchids

    PubMed Central

    Wylie, Stephen J.; Li, Hua; Jones, Michael G. K.

    2013-01-01

    Complete and partial genome sequences of two isolates of an unusual new plant virus, designated Donkey orchid symptomless virus (DOSV) were identified using a high-throughput sequencing approach. The virus was identified from asymptomatic plants of Australian terrestrial orchid Diuris longifolia (Common donkey orchid) growing in a remnant forest patch near Perth, western Australia. DOSV was identified from two D. longifolia plants of 264 tested, and from at least one plant of 129 Caladenia latifolia (pink fairy orchid) plants tested. Phylogenetic analysis of the genome revealed open reading frames (ORF) encoding seven putative proteins of apparently disparate origins. A 69-kDa protein (ORF1) that overlapped the replicase shared low identity with MPs of plant tymoviruses (Tymoviridae). A 157-kDa replicase (ORF2) and 22-kDa coat protein (ORF4) shared 32% and 40% amino acid identity, respectively, with homologous proteins encoded by members of the plant virus family Alphaflexiviridae. A 44-kDa protein (ORF3) shared low identity with myosin and an autophagy protein from Squirrelpox virus. A 27-kDa protein (ORF5) shared no identity with described proteins. A 14-kDa protein (ORF6) shared limited sequence identity (26%) over a limited region of the envelope glycoprotein precursor of mammal-infecting Crimea-Congo hemorrhagic fever virus (Bunyaviridae). The putative 25-kDa movement protein (MP) (ORF7) shared limited (27%) identity with 3A-like MPs of members of the plant-infecting Tombusviridae and Virgaviridae. Transmissibility was shown when DOSV systemically infected Nicotiana benthamiana plants. Structure and organization of the domains within the putative replicase of DOSV suggests a common evolutionary origin with ‘potexvirus-like’ replicases of viruses within the Alphaflexiviridae and Tymoviridae, and the CP appears to be ancestral to CPs of allexiviruses (Alphaflexiviridae). The MP shares an evolutionary history with MPs of dianthoviruses, but the other putative proteins are distant from plant viruses. DOSV is not readily classified in current lower order virus taxa. PMID:24223974

  20. In Silico Pattern-Based Analysis of the Human Cytomegalovirus Genome

    PubMed Central

    Rigoutsos, Isidore; Novotny, Jiri; Huynh, Tien; Chin-Bow, Stephen T.; Parida, Laxmi; Platt, Daniel; Coleman, David; Shenk, Thomas

    2003-01-01

    More than 200 open reading frames (ORFs) from the human cytomegalovirus genome have been reported as potentially coding for proteins. We have used two pattern-based in silico approaches to analyze this set of putative viral genes. With the help of an objective annotation method that is based on the Bio-Dictionary, a comprehensive collection of amino acid patterns that describes the currently known natural sequence space of proteins, we have reannotated all of the previously reported putative genes of the human cytomegalovirus. Also, with the help of MUSCA, a pattern-based multiple sequence alignment algorithm, we have reexamined the original human cytomegalovirus gene family definitions. Our analysis of the genome shows that many of the coded proteins comprise amino acid combinations that are unique to either the human cytomegalovirus or the larger group of herpesviruses. We have confirmed that a surprisingly large portion of the analyzed ORFs encode membrane proteins, and we have discovered a significant number of previously uncharacterized proteins that are predicted to be G-protein-coupled receptor homologues. The analysis also indicates that many of the encoded proteins undergo posttranslational modifications such as hydroxylation, phosphorylation, and glycosylation. ORFs encoding proteins with similar functional behavior appear in neighboring regions of the human cytomegalovirus genome. All of the results of the present study can be found and interactively explored online (http://cbcsrv.watson.ibm.com/virus/). PMID:12634390

  1. In silico pattern-based analysis of the human cytomegalovirus genome.

    PubMed

    Rigoutsos, Isidore; Novotny, Jiri; Huynh, Tien; Chin-Bow, Stephen T; Parida, Laxmi; Platt, Daniel; Coleman, David; Shenk, Thomas

    2003-04-01

    More than 200 open reading frames (ORFs) from the human cytomegalovirus genome have been reported as potentially coding for proteins. We have used two pattern-based in silico approaches to analyze this set of putative viral genes. With the help of an objective annotation method that is based on the Bio-Dictionary, a comprehensive collection of amino acid patterns that describes the currently known natural sequence space of proteins, we have reannotated all of the previously reported putative genes of the human cytomegalovirus. Also, with the help of MUSCA, a pattern-based multiple sequence alignment algorithm, we have reexamined the original human cytomegalovirus gene family definitions. Our analysis of the genome shows that many of the coded proteins comprise amino acid combinations that are unique to either the human cytomegalovirus or the larger group of herpesviruses. We have confirmed that a surprisingly large portion of the analyzed ORFs encode membrane proteins, and we have discovered a significant number of previously uncharacterized proteins that are predicted to be G-protein-coupled receptor homologues. The analysis also indicates that many of the encoded proteins undergo posttranslational modifications such as hydroxylation, phosphorylation, and glycosylation. ORFs encoding proteins with similar functional behavior appear in neighboring regions of the human cytomegalovirus genome. All of the results of the present study can be found and interactively explored online (http://cbcsrv.watson.ibm.com/virus/).

  2. Sequence analysis and gene expression of putative exo- and endo-glucanases from oil palm (Elaeis guineensis) during fungal infection.

    PubMed

    Yeoh, Keat-Ai; Othman, Abrizah; Meon, Sariah; Abdullah, Faridah; Ho, Chai-Ling

    2012-10-15

    Glucanases are enzymes that hydrolyze a variety β-d-glucosidic linkages. Plant β-1,3-glucanases are able to degrade fungal cell walls; and promote the release of cell-wall derived fungal elicitors. In this study, three full-length cDNA sequences encoding oil palm (Elaeis guineensis) glucanases were analyzed. Sequence analyses of the cDNA sequences suggested that EgGlc1-1 is a putative β-d-glucan exohydolase belonging to glycosyl hydrolase (GH) family 3 while EgGlc5-1 and EgGlc5-2 are putative glucan endo-1,3-β-glucosidases belonging to GH family 17. The transcript abundance of these genes in the roots and leaves of oil palm seedlings treated with Ganoderma boninense and Trichoderma harzianum was profiled to investigate the involvement of these glucanases in oil palm during fungal infection. The gene expression of EgGlc1-1 in the root of oil palm seedlings was increased by T. harzianum but suppressed by G. boninense; while the gene expression of both EgGlc5-1 and EgGlc5-2 in the roots of oil palm seedlings was suppressed by G. boninense or/and T. harzianum. Copyright © 2012 Elsevier GmbH. All rights reserved.

  3. De novo sequencing analysis of the Rosa roxburghii fruit transcriptome reveals putative ascorbate biosynthetic genes and EST-SSR markers.

    PubMed

    Yan, Xiuqin; Zhang, Xue; Lu, Min; He, Yong; An, Huaming

    2015-04-25

    Rosa roxburghii Tratt. is a well-known ornamental rose species native to China. In addition, the fruits of this species are valued for their nutritional and medicinal characteristics, especially their high ascorbic acid (AsA) levels. Nevertheless, AsA biosynthesis in R. roxburghii fruit has not been explored in detail because of a lack of genomic resources for this species. High-throughput transcriptomic sequencing generating large volumes of transcript sequence data can aid in gene discovery and molecular marker development. In this study, we generated more than 53 million clean reads using Illumina paired-end sequencing technology. De novo assembly yielded 106,590 unigenes, with an average length of 343 bp. On the basis of sequence similarity to known proteins, 9301 and 2393 unigenes were classified into Gene Ontology and Clusters of Orthologous Group categories, respectively. There were 7480 unigenes assigned to 124 pathways in the Kyoto Encyclopedia of Gene and Genome pathway database. BLASTx searches identified 498 unique putative transcripts encoding various transcription factors, some known to regulate fruit development. qRT-PCR validated the expressions of most of the genes encoding the main enzymes involved in ascorbate biosynthesis. In addition, 9131 potential simple sequence repeat (SSR) loci were identified among the unigenes. One hundred and two primer pairs were synthesized and 71 pairs produced an amplification product during initial screening. Among the amplified products, 30 were polymorphic in the 16 R. roxburghii germplasms tested. Our study was the first to produce a large volume of transcriptome data from R. roxburghii. The resulting sequence collection is a valuable resource for gene discovery and marker-assisted selective breeding in this rose species. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The Stress-Responsive dgk Gene from Streptococcus mutans Encodes a Putative Undecaprenol Kinase Activity

    PubMed Central

    Lis, Maciej; Kuramitsu, Howard K.

    2003-01-01

    We analyzed a previously constructed stress-sensitive Streptococcus mutans mutant Tn-1 strain resulting from disruption by transposon Tn916 of a gene encoding a protein exhibiting amino acid sequence similarity to the Escherichia coli diacylglycerol kinase. It was confirmed that the mutation led to significantly reduced lipid kinase activity, while expression of the intact gene on a plasmid restored both kinase activity and the wild-type phenotype. Further analysis revealed that the product of the dgk gene in S. mutans predominantly recognizes a lipid substrate other than diacylglycerol, most likely undecaprenol, as demonstrated by its efficient phosphorylation and the resistance of the product of the reaction to saponification. The physiological role of the product of the dgk gene as a putative undecaprenol kinase was further supported by a significantly higher sensitivity of the mutant to bacitracin compared with that of the parental strain. PMID:12654811

  5. Mitochondrial-type hsp70 genes of the amitochondriate protists, Giardia intestinalis, Entamoeba histolytica and two microsporidians☆

    PubMed Central

    Arisue, Nobuko; Sánchez, Lidya B.; Weiss, Louis M.; Müller, Miklós; Hashimoto, Tetsuo

    2011-01-01

    Genes encoding putative mitochondrial-type heat shock protein 70 (mit-hsp70) were isolated and sequenced from amitochondriate protists, Giardia intestinalis, Entamoeba histolytica, and two microsporidians, Encephalitozoon hellem and Glugea plecoglossi. The deduced mit-hsp70 sequences were analyzed by sequence alignments and phylogenetic reconstructions. The mit-hsp70 sequence of these four amitochondriate protists were divergent from other mit-hsp70 sequences of mitochondriate eukaryotes. However, all of these sequences were clearly located within a eukaryotic mitochondrial clade in the tree including various type hsp70 sequences, supporting the emerging notion that none of these amitochondriate lineages are primitively amitochodrial, but lost their mitochondria secondarily in their evolutionary past. PMID:11880223

  6. Draft genome sequence of Xylaria sp., the causal agent of taproot decline of soybean in the southern United States.

    PubMed

    Sharma, Sandeep; Zaccaron, Alex Z; Ridenour, John B; Allen, Tom W; Conner, Kassie; Doyle, Vinson P; Price, Trey; Sikora, Edward; Singh, Raghuwinder; Spurlock, Terry; Tomaso-Peterson, Maria; Wilkerson, Tessie; Bluhm, Burton H

    2018-04-01

    The draft genome of Xylaria sp. isolate MSU_SB201401, causal agent of taproot decline of soybean in the southern U.S., is presented here. The genome assembly was 56.7 Mb in size with an L50 of 246. A total of 10,880 putative protein-encoding genes were predicted, including 647 genes encoding carbohydrate-active enzymes and 1053 genes encoding secreted proteins. This is the first draft genome of a plant-pathogenic Xylaria sp. associated with soybean. The draft genome of Xylaria sp. isolate MSU_SB201401 will provide an important resource for future experiments to determine the molecular basis of pathogenesis.

  7. Molecular characterization of two serine proteases expressed in gut tissue of the African trypanosome vector, Glossina morsitans morsitans.

    PubMed

    Yan, J; Cheng, Q; Li, C B; Aksoy, S

    2001-02-01

    Serine proteases are major insect gut enzymes involved in digestion of dietary proteins, and in addition they have been implicated in the process of pathogen establishment in several vector insects. The medically important vector, tsetse fly (Diptera:Glossinidiae), is involved in the transmission of African trypanosomes, which cause devastating diseases in animals and humans. Both the male and female tsetse can transmit trypanosomes and both are strict bloodfeeders throughout all stages of their development. Here, we describe the characterization of two putative serine protease-encoding genes, Glossina serine protease-1 (Gsp1) and Glossina serine protease-2 (Gsp2) from gut tissue. Both putative cDNA products represent prepro peptides with hydrophobic signal peptide sequences associated with their 5'-end terminus. The Gsp1 cDNA encodes a putative mature protein of 245 amino acids with a molecular mass of 26 428 Da, while the predicted size of the 228 amino acid mature peptide encoded by Gsp2 cDNA is 24 573 Da. Both deduced peptides contain the Asp/His/Ser catalytic triad and the conserved residues surrounding it which are characteristic of serine proteases. In addition, both proteins have the six-conserved cysteine residues to form the three-cysteine bonds typically present in invertebrate serine proteases. Based on the presence of substrate specific residues, the Gsp1 gene encodes a chymotrypsin-like protease while Gsp2 gene encodes for a protein with trypsin-like activity. Both proteins are encoded by few loci in tsetse genome, being present in one or two copies only. The mRNA expression levels for the genes do not vary extensively throughout the digestive cycle, and high levels of mRNAs can be readily detected in the gut tissue of newly emerged flies. The levels of trypsin and chymotrypsin activities in the gut lumen increase following blood feeding and change significantly in the gut cells throughout the digestion cycle. Hence, the regulation of expression for trypsin and chymotrypsin occurs at the post-transcriptional level in tsetse. Both the coding sequences and patterns of expression of Gsp1 and Gsp2 genes are similar to the serine proteases that have been reported from the bloodfeeding insect Stomoxys calcitrans.

  8. The putative drug efflux systems of the Bacillus cereus group

    PubMed Central

    Elbourne, Liam D. H.; Vörös, Aniko; Kroeger, Jasmin K.; Simm, Roger; Tourasse, Nicolas J.; Finke, Sarah; Henderson, Peter J. F.; Økstad, Ole Andreas; Paulsen, Ian T.; Kolstø, Anne-Brit

    2017-01-01

    The Bacillus cereus group of bacteria includes seven closely related species, three of which, B. anthracis, B. cereus and B. thuringiensis, are pathogens of humans, animals and/or insects. Preliminary investigations into the transport capabilities of different bacterial lineages suggested that genes encoding putative efflux systems were unusually abundant in the B. cereus group compared to other bacteria. To explore the drug efflux potential of the B. cereus group all putative efflux systems were identified in the genomes of prototypical strains of B. cereus, B. anthracis and B. thuringiensis using our Transporter Automated Annotation Pipeline. More than 90 putative drug efflux systems were found within each of these strains, accounting for up to 2.7% of their protein coding potential. Comparative analyses demonstrated that the efflux systems are highly conserved between these species; 70–80% of the putative efflux pumps were shared between all three strains studied. Furthermore, 82% of the putative efflux system proteins encoded by the prototypical B. cereus strain ATCC 14579 (type strain) were found to be conserved in at least 80% of 169 B. cereus group strains that have high quality genome sequences available. However, only a handful of these efflux pumps have been functionally characterized. Deletion of individual efflux pump genes from B. cereus typically had little impact to drug resistance phenotypes or the general fitness of the strains, possibly because of the large numbers of alternative efflux systems that may have overlapping substrate specificities. Therefore, to gain insight into the possible transport functions of efflux systems in B. cereus, we undertook large-scale qRT-PCR analyses of efflux pump gene expression following drug shocks and other stress treatments. Clustering of gene expression changes identified several groups of similarly regulated systems that may have overlapping drug resistance functions. In this article we review current knowledge of the small molecule efflux pumps encoded by the B. cereus group and suggest the likely functions of numerous uncharacterised pumps. PMID:28472044

  9. Complete Genomic Structure of the Bloom-forming Toxic Cyanobacterium Microcystis aeruginosa NIES-843

    PubMed Central

    Kaneko, Takakazu; Nakajima, Nobuyoshi; Okamoto, Shinobu; Suzuki, Iwane; Tanabe, Yuuhiko; Tamaoki, Masanori; Nakamura, Yasukazu; Kasai, Fumie; Watanabe, Akiko; Kawashima, Kumiko; Kishida, Yoshie; Ono, Akiko; Shimizu, Yoshimi; Takahashi, Chika; Minami, Chiharu; Fujishiro, Tsunakazu; Kohara, Mitsuyo; Katoh, Midori; Nakazaki, Naomi; Nakayama, Shinobu; Yamada, Manabu; Tabata, Satoshi; Watanabe, Makoto M.

    2007-01-01

    Abstract The nucleotide sequence of the complete genome of a cyanobacterium, Microcystis aeruginosa NIES-843, was determined. The genome of M. aeruginosa is a single, circular chromosome of 5 842 795 base pairs (bp) in length, with an average GC content of 42.3%. The chromosome comprises 6312 putative protein-encoding genes, two sets of rRNA genes, 42 tRNA genes representing 41 tRNA species, and genes for tmRNA, the B subunit of RNase P, SRP RNA, and 6Sa RNA. Forty-five percent of the putative protein-encoding sequences showed sequence similarity to genes of known function, 32% were similar to hypothetical genes, and the remaining 23% had no apparent similarity to reported genes. A total of 688 kb of the genome, equivalent to 11.8% of the entire genome, were composed of both insertion sequences and miniature inverted-repeat transposable elements. This is indicative of a plasticity of the M. aeruginosa genome, through a mechanism that involves homologous recombination mediated by repetitive DNA elements. In addition to known gene clusters related to the synthesis of microcystin and cyanopeptolin, novel gene clusters that may be involved in the synthesis and modification of toxic small polypeptides were identified. Compared with other cyanobacteria, a relatively small number of genes for two component systems and a large number of genes for restriction-modification systems were notable characteristics of the M. aeruginosa genome. PMID:18192279

  10. Genetic and molecular characterization of a gene encoding a wide specificity purine permease of Aspergillus nidulans reveals a novel family of transporters conserved in prokaryotes and eukaryotes.

    PubMed

    Diallinas, G; Gorfinkiel, L; Arst, H N; Cecchetto, G; Scazzocchio, C

    1995-04-14

    In Aspergillus nidulans, loss-of-function mutations in the uapA and azgA genes, encoding the major uric acid-xanthine and hypoxanthine-adenine-guanine permeases, respectively, result in impaired utilization of these purines as sole nitrogen sources. The residual growth of the mutant strains is due to the activity of a broad specificity purine permease. We have identified uapC, the gene coding for this third permease through the isolation of both gain-of-function and loss-of-function mutations. Uptake studies with wild-type and mutant strains confirmed the genetic analysis and showed that the UapC protein contributes 30% and 8-10% to uric acid and hypoxanthine transport rates, respectively. The uapC gene was cloned, its expression studied, its sequence and transcript map established, and the sequence of its putative product analyzed. uapC message accumulation is: (i) weakly induced by 2-thiouric acid; (ii) repressed by ammonium; (iii) dependent on functional uaY and areA regulatory gene products (mediating uric acid induction and nitrogen metabolite repression, respectively); (iv) increased by uapC gain-of-function mutations which specifically, but partially, suppress a leucine to valine mutation in the zinc finger of the protein coded by the areA gene. The putative uapC gene product is a highly hydrophobic protein of 580 amino acids (M(r) = 61,251) including 12-14 putative transmembrane segments. The UapC protein is highly similar (58% identity) to the UapA permease and significantly similar (23-34% identity) to a number of bacterial transporters. Comparisons of the sequences and hydropathy profiles of members of this novel family of transporters yield insights into their structure, functionally important residues, and possible evolutionary relationships.

  11. The Genome of the Obligately Intracellular Bacterium Ehrlichia canis Reveals Themes of Complex Membrane Structure and Immune Evasion Strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavromatis, K; Doyle, C Kuyler; Lykidis, A

    2006-01-01

    Ehrlichia canis, a small obligately intracellular, tick-transmitted, gram-negative, {alpha}-proteobacterium, is the primary etiologic agent of globally distributed canine monocytic ehrlichiosis. Complete genome sequencing revealed that the E. canis genome consists of a single circular chromosome of 1,315,030 bp predicted to encode 925 proteins, 40 stable RNA species, 17 putative pseudogenes, and a substantial proportion of noncoding sequence (27%). Interesting genome features include a large set of proteins with transmembrane helices and/or signal sequences and a unique serine-threonine bias associated with the potential for O glycosylation that was prominent in proteins associated with pathogen-host interactions. Furthermore, two paralogous protein families associatedmore » with immune evasion were identified, one of which contains poly(G-C) tracts, suggesting that they may play a role in phase variation and facilitation of persistent infections. Genes associated with pathogen-host interactions were identified, including a small group encoding proteins (n = 12) with tandem repeats and another group encoding proteins with eukaryote-like ankyrin domains (n = 7).« less

  12. Identification of InuR, a new Zn(II)2Cys6 transcriptional activator involved in the regulation of inulinolytic genes in Aspergillus niger.

    PubMed

    Yuan, Xiao-Lian; Roubos, Johannes A; van den Hondel, Cees A M J J; Ram, Arthur F J

    2008-01-01

    The expression of inulinolytic genes in Aspergillus niger is co-regulated and induced by inulin and sucrose. We have identified a positive acting transcription factor InuR, which is required for the induced expression of inulinolytic genes. InuR is a member of the fungal specific class of transcription factors of the Zn(II)2Cys6 type. Involvement of InuR in inulin and sucrose metabolism was suspected because of the clustering of inuR gene with sucB, which encodes an intracellular invertase with transfructosylation activity and a putative sugar transporter encoding gene (An15g00310). Deletion of the inuR gene resulted in a strain displaying a severe reduction in growth on inulin and sucrose medium. Northern analysis revealed that expression of inulinolytic and sucrolytic genes, e.g., inuE, inuA, sucA, as well as the putative sugar transporter gene (An15g00310) is dependent on InuR. Genome-wide expression analysis revealed, three additional putative sugar transporters encoding genes (An15g04060, An15g03940 and An17g01710), which were strongly induced by sucrose in an InuR dependent way. In silico analysis of the promoter sequences of strongly InuR regulated genes suggests that InuR might bind as dimer to two CGG triplets, which are separated by eight nucleotides.

  13. Genomic organization, sequence characterization and expression analysis of Tenebrio molitor apolipophorin-III in response to an intracellular pathogen, Listeria monocytogenes.

    PubMed

    Noh, Ju Young; Patnaik, Bharat Bhusan; Tindwa, Hamisi; Seo, Gi Won; Kim, Dong Hyun; Patnaik, Hongray Howrelia; Jo, Yong Hun; Lee, Yong Seok; Lee, Bok Luel; Kim, Nam Jung; Han, Yeon Soo

    2014-01-25

    Apolipophorin III (apoLp-III) is a well-known hemolymph protein having a functional role in lipid transport and immune response of insects. We cloned full-length cDNA encoding putative apoLp-III from larvae of the coleopteran beetle, Tenebrio molitor (TmapoLp-III), by identification of clones corresponding to the partial sequence of TmapoLp-III, subsequently followed with full length sequencing by a clone-by-clone primer walking method. The complete cDNA consists of 890 nucleotides, including an ORF encoding 196 amino acid residues. Excluding a putative signal peptide of the first 20 amino acid residues, the 176-residue mature apoLp-III has a calculated molecular mass of 19,146Da. Genomic sequence analysis with respect to its cDNA showed that TmapoLp-III was organized into four exons interrupted by three introns. Several immune-related transcription factor binding sites were discovered in the putative 5'-flanking region. BLAST and phylogenetic analyses reveal that TmapoLp-III has high sequence identity (88%) with Tribolium castaneum apoLp-III but shares little sequence homologies (<26%) with other apoLp-IIIs. Homology modeling of Tm apoLp-III shows a bundle of five amphipathic alpha helices, including a short helix 3'. The 'helix-short helix-helix' motif was predicted to be implicated in lipid binding interactions, through reversible conformational changes and accommodating the hydrophobic residues to the exterior for stability. Highest level of TmapoLp-III mRNA was detected at late pupal stages, albeit it is expressed in the larval and adult stages at lower levels. The tissue specific expression of the transcripts showed significantly higher numbers in larval fat body and adult integument. In addition, TmapoLp-III mRNA was found to be highly upregulated in late stages of L. monocytogenes or E. coli challenge. These results indicate that TmapoLp-III may play an important role in innate immune responses against bacterial pathogens in T. molitor. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Gene cloning and overexpression of two conjugated polyketone reductases, novel aldo-keto reductase family enzymes, of Candida parapsilosis.

    PubMed

    Kataoka, M; Delacruz-Hidalgo, A-R G; Akond, M A; Sakuradani, E; Kita, K; Shimizu, S

    2004-04-01

    The genes encoding two conjugated polyketone reductases (CPR-C1, CPR-C2) of Candida parapsilosis IFO 0708 were cloned and sequenced. The genes encoded a total of 304 and 307 amino acid residues for CPR-C1 and CPR-C2, respectively. The deduced amino acid sequences of the two enzymes showed high similarity to each other and to several proteins of the aldo-keto reductase (AKR) superfamily. However, several amino acid residues in putative active sites of AKRs were not conserved in CPR-C1 and CPR-C2. The two CPR genes were overexpressed in Escherichia coli. The E. coli transformant bearing the CPR-C2 gene almost stoichiometrically reduced 30 mg ketopantoyl lactone/ml to D-pantoyl lactone.

  15. Cloning and expression of a nuclear encoded plastid specific 33 kDa ribonucleoprotein gene (33RNP) from pea that is light stimulated.

    PubMed

    Reddy, M K; Nair, S; Singh, B N; Mudgil, Y; Tewari, K K; Sopory, S K

    2001-01-24

    We report the cloning and sequencing of both cDNA and genomic DNA of a 33 kDa chloroplast ribonucleoprotein (33RNP) from pea. The analysis of the predicted amino acid sequence of the cDNA clone revealed that the encoded protein contains two RNA binding domains, including the conserved consensus ribonucleoprotein sequences CS-RNP1 and CS-RNP2, on the C-terminus half and the presence of a putative transit peptide sequence in the N-terminus region. The phylogenetic and multiple sequence alignment analysis of pea chloroplast RNP along with RNPs reported from the other plant sources revealed that the pea 33RNP is very closely related to Nicotiana sylvestris 31RNP and 28RNP and also to 31RNP and 28RNP of Arabidopsis and spinach, respectively. The pea 33RNP was expressed in Escherichia coli and purified to homogeneity. The in vitro import of precursor protein into chloroplasts confirmed that the N-terminus putative transit peptide is a bona fide transit peptide and 33RNP is localized in the chloroplast. The nucleic acid-binding properties of the recombinant protein, as revealed by South-Western analysis, showed that 33RNP has higher binding affinity for poly (U) and oligo dT than for ssDNA and dsDNA. The steady state transcript level was higher in leaves than in roots and the expression of this gene is light stimulated. Sequence analysis of the genomic clone revealed that the gene contains four exons and three introns. We have also isolated and analyzed the 5' flanking region of the pea 33RNP gene.

  16. Molecular Characterization of a Novel Temperate Sinorhizobium Bacteriophage, ФLM21, Encoding DNA Methyltransferase with CcrM-Like Specificity

    PubMed Central

    Dziewit, Lukasz; Oscik, Karolina; Bartosik, Dariusz

    2014-01-01

    ABSTRACT ΦLM21 is a temperate phage isolated from Sinorhizobium sp. strain LM21 (Alphaproteobacteria). Genomic analysis and electron microscopy suggested that ΦLM21 is a member of the family Siphoviridae. The phage has an isometric head and a long noncontractile tail. The genome of ΦLM21 has 50,827 bp of linear double-stranded DNA encoding 72 putative proteins, including proteins responsible for the assembly of the phage particles, DNA packaging, transcription, replication, and lysis. Virion proteins were characterized using mass spectrometry, leading to the identification of the major capsid and tail components, tape measure, and a putative portal protein. We have confirmed the activity of two gene products, a lytic enzyme (a putative chitinase) and a DNA methyltransferase, sharing sequence specificity with the cell cycle-regulating methyltransferase (CcrM) of the bacterial host. Interestingly, the genome of Sinorhizobium phage ΦLM21 shows very limited similarity to other known phage genome sequences and is thus considered unique. IMPORTANCE Prophages are known to play an important role in the genomic diversification of bacteria via horizontal gene transfer. The influence of prophages on pathogenic bacteria is very well documented. However, our knowledge of the overall impact of prophages on the survival of their lysogenic, nonpathogenic bacterial hosts is still limited. In particular, information on prophages of the agronomically important Sinorhizobium species is scarce. In this study, we describe the isolation and molecular characterization of a novel temperate bacteriophage, ΦLM21, of Sinorhizobium sp. LM21. Since we have not found any similar sequences, we propose that this bacteriophage is a novel species. We conducted a functional analysis of selected proteins. We have demonstrated that the phage DNA methyltransferase has the same sequence specificity as the cell cycle-regulating methyltransferase CcrM of its host. We point out that this phenomenon of mimicking the host regulatory mechanisms by viruses is quite common in bacteriophages. PMID:25187538

  17. Mosaic genome of endobacteria in arbuscular mycorrhizal fungi: Transkingdom gene transfer in an ancient mycoplasma-fungus association.

    PubMed

    Torres-Cortés, Gloria; Ghignone, Stefano; Bonfante, Paola; Schüßler, Arthur

    2015-06-23

    For more than 450 million years, arbuscular mycorrhizal fungi (AMF) have formed intimate, mutualistic symbioses with the vast majority of land plants and are major drivers in almost all terrestrial ecosystems. The obligate plant-symbiotic AMF host additional symbionts, so-called Mollicutes-related endobacteria (MRE). To uncover putative functional roles of these widespread but yet enigmatic MRE, we sequenced the genome of DhMRE living in the AMF Dentiscutata heterogama. Multilocus phylogenetic analyses showed that MRE form a previously unidentified lineage sister to the hominis group of Mycoplasma species. DhMRE possesses a strongly reduced metabolic capacity with 55% of the proteins having unknown function, which reflects unique adaptations to an intracellular lifestyle. We found evidence for transkingdom gene transfer between MRE and their AMF host. At least 27 annotated DhMRE proteins show similarities to nuclear-encoded proteins of the AMF Rhizophagus irregularis, which itself lacks MRE. Nuclear-encoded homologs could moreover be identified for another AMF, Gigaspora margarita, and surprisingly, also the non-AMF Mortierella verticillata. Our data indicate a possible origin of the MRE-fungus association in ancestors of the Glomeromycota and Mucoromycotina. The DhMRE genome encodes an arsenal of putative regulatory proteins with eukaryotic-like domains, some of them encoded in putative genomic islands. MRE are highly interesting candidates to study the evolution and interactions between an ancient, obligate endosymbiotic prokaryote with its obligate plant-symbiotic fungal host. Our data moreover may be used for further targeted searches for ancient effector-like proteins that may be key components in the regulation of the arbuscular mycorrhiza symbiosis.

  18. Characterization of the variable-number tandem repeats in vrrA from different Bacillus anthracis isolates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, P.J.; Walthers, E.A.; Richmond, K.L.

    1997-04-01

    PCR analysis of 198 Bacillus anthracis isolates revealed a variable region of DNA sequence differing in length among the isolates. Five Polymorphisms differed by the presence Of two to six copies of the 12-bp tandem repeat 5{prime}-CAATATCAACAA-3{prime}. This variable-number tandem repeat (VNTR) region is located within a larger sequence containing one complete open reading frame that encodes a putative 30-kDa protein. Length variation did not change the reading frame of the encoded protein and only changed the copy number of a 4-amino-acid sequence (QYQQ) from 2 to 6. The structure of the VNTR region suggests that these multiple repeats aremore » generated by recombination or polymerase slippage. Protein structures predicted from the reverse-translated DNA sequence suggest that any structural changes in the encoded protein are confined to the region encoded by the VNTR sequence. Copy number differences in the VNTR region were used to define five different B. anthracis alleles. Characterization of 198 isolates revealed allele frequencies of 6.1, 17.7, 59.6, 5.6, and 11.1% sequentially from shorter to longer alleles. The high degree of polymorphism in the VNTR region provides a criterion for assigning isolates to five allelic categories. There is a correlation between categories and geographic distribution. Such molecular markers can be used to monitor the epidemiology of anthrax outbreaks in domestic and native herbivore populations. 22 refs., 4 figs., 3 tabs.« less

  19. A single active trehalose-6-P synthase (TPS) and a family of putative regulatory TPS-like proteins in Arabidopsis.

    PubMed

    Vandesteene, Lies; Ramon, Matthew; Le Roy, Katrien; Van Dijck, Patrick; Rolland, Filip

    2010-03-01

    Higher plants typically do not produce trehalose in large amounts, but their genome sequences reveal large families of putative trehalose metabolism enzymes. An important regulatory role in plant growth and development is also emerging for the metabolic intermediate trehalose-6-P (T6P). Here, we present an update on Arabidopsis trehalose metabolism and a resource for further detailed analyses. In addition, we provide evidence that Arabidopsis encodes a single trehalose-6-P synthase (TPS) next to a family of catalytically inactive TPS-like proteins that might fulfill specific regulatory functions in actively growing tissues.

  20. Tenebrio molitor antifreeze protein gene identification and regulation.

    PubMed

    Qin, Wensheng; Walker, Virginia K

    2006-02-15

    The yellow mealworm, Tenebrio molitor, is a freeze susceptible, stored product pest. Its winter survival is facilitated by the accumulation of antifreeze proteins (AFPs), encoded by a small gene family. We have now isolated 11 different AFP genomic clones from 3 genomic libraries. All the clones had a single coding sequence, with no evidence of intervening sequences. Three genomic clones were further characterized. All have putative TATA box sequences upstream of the coding regions and multiple potential poly(A) signal sequences downstream of the coding regions. A TmAFP regulatory region, B1037, conferred transcriptional activity when ligated to a luciferase reporter sequence and after transfection into an insect cell line. A 143 bp core promoter including a TATA box sequence was identified. Its promoter activity was increased 4.4 times by inserting an exotic 245 bp intron into the construct, similar to the enhancement of transgenic expression seen in several other systems. The addition of a duplication of the first 120 bp sequence from the 143 bp core promoter decreased promoter activity by half. Although putative hormonal response sequences were identified, none of the five hormones tested enhanced reporter activity. These studies on the mechanisms of AFP transcriptional control are important for the consideration of any transfer of freeze-resistance phenotypes to beneficial hosts.

  1. A cysteine protease encoded by the baculovirus Bombyx mori nuclear polyhedrosis virus.

    PubMed Central

    Ohkawa, T; Majima, K; Maeda, S

    1994-01-01

    Sequence analysis of the BamHI F fragment of the genome of Bombyx mori nuclear polyhedrosis virus (BmNPV) revealed an open reading frame whose deduced amino acid sequence had homology to those of cysteine proteases of the papain superfamily. The putative cysteine protease sequence (BmNPV-CP) was 323 amino acids long and showed 35% identity to a cysteine proteinase precursor from Trypanosoma brucei. Of 36 residues conserved among cathepsins B, H, L, and S and papain, 31 were identical in BmNPV-CP. In order to determine the activity and function of the putative cysteine protease, a BmNPV mutant (BmCysPD) was constructed by homologous recombination of the protease gene with a beta-galactosidase gene cassette. BmCysPD-infected BmN cell extracts were significantly reduced in acid protease activity compared with wild-type virus-infected cell extracts. The cysteine protease inhibitor E-64 [trans-epoxysuccinylleucylamido-(4-guanidino)butane] inhibited wild-type virus-expressed protease activity. Deletion of the cysteine protease gene had no significant effect on viral growth or polyhedron production in BmN cells, indicating that the cysteine protease was not essential for viral replication in vitro. However, B. mori larvae infected with BmCysPD showed symptoms different from those of wild-type BmNPV-infected larvae, e.g., less degradation of the body, including fat body cells, white body surface color due presumably to undegraded epidermal cells, and an increase in the number of polyhedra released into the hemolymph. This is the first report of (i) a virus-encoded protease with activity on general substrates and (ii) evidence that a virus-encoded protease may play a role in degradation of infected larvae to facilitate horizontal transmission of the virus. Images PMID:8083997

  2. Cloning and characterization of indole synthase (INS) and a putative tryptophan synthase α-subunit (TSA) genes from Polygonum tinctorium.

    PubMed

    Jin, Zhehao; Kim, Jin-Hee; Park, Sang Un; Kim, Soo-Un

    2016-12-01

    Two cDNAs for indole-3-glycerol phosphate lyase homolog were cloned from Polygonum tinctorium. One encoded cytosolic indole synthase possibly in indigoid synthesis, whereas the other encoded a putative tryptophan synthase α-subunit. Indigo is an old natural blue dye produced by plants such as Polygonum tinctorium. Key step in plant indigoid biosynthesis is production of indole by indole-3-glycerol phosphate lyase (IGL). Two tryptophan synthase α-subunit (TSA) homologs, PtIGL-short and -long, were isolated by RACE PCR from P. tinctorium. The genome of the plant contained two genes coding for IGL. The short and the long forms, respectively, encoded 273 and 316 amino acid residue-long proteins. The short form complemented E. coli ΔtnaA ΔtrpA mutant on tryptophan-depleted agar plate signifying production of free indole, and thus was named indole synthase gene (PtINS). The long form, either intact or without the transit peptide sequence, did not complement the mutant and was tentatively named PtTSA. PtTSA was delivered into chloroplast as predicted by 42-residue-long targeting sequence, whereas PtINS was localized in cytosol. Genomic structure analysis suggested that a TSA duplicate acquired splicing sites during the course of evolution toward PtINS so that the targeting sequence-containing pre-mRNA segment was deleted as an intron. PtINS had about two to fivefolds higher transcript level than that of PtTSA, and treatment of 2,1,3-benzothiadiazole caused the relative transcript level of PtINS over PtTSA was significantly enhanced in the plant. The results indicate participation of PtINS in indigoid production.

  3. Intrinsic and extrinsic approaches for detecting genes in a bacterial genome.

    PubMed Central

    Borodovsky, M; Rudd, K E; Koonin, E V

    1994-01-01

    The unannotated regions of the Escherichia coli genome DNA sequence from the EcoSeq6 database, totaling 1,278 'intergenic' sequences of the combined length of 359,279 basepairs, were analyzed using computer-assisted methods with the aim of identifying putative unknown genes. The proposed strategy for finding new genes includes two key elements: i) prediction of expressed open reading frames (ORFs) using the GeneMark method based on Markov chain models for coding and non-coding regions of Escherichia coli DNA, and ii) search for protein sequence similarities using programs based on the BLAST algorithm and programs for motif identification. A total of 354 putative expressed ORFs were predicted by GeneMark. Using the BLASTX and TBLASTN programs, it was shown that 208 ORFs located in the unannotated regions of the E. coli chromosome are significantly similar to other protein sequences. Identification of 182 ORFs as probable genes was supported by GeneMark and BLAST, comprising 51.4% of the GeneMark 'hits' and 87.5% of the BLAST 'hits'. 73 putative new genes, comprising 20.6% of the GeneMark predictions, belong to ancient conserved protein families that include both eubacterial and eukaryotic members. This value is close to the overall proportion of highly conserved sequences among eubacterial proteins, indicating that the majority of the putative expressed ORFs that are predicted by GeneMark, but have no significant BLAST hits, nevertheless are likely to be real genes. The majority of the putative genes identified by BLAST search have been described since the release of the EcoSeq6 database, but about 70 genes have not been detected so far. Among these new identifications are genes encoding proteins with a variety of predicted functions including dehydrogenases, kinases, several other metabolic enzymes, ATPases, rRNA methyltransferases, membrane proteins, and different types of regulatory proteins. Images PMID:7984428

  4. Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vavourakis, Charlotte D.; Ghai, Rohit; Rodriguez-Valera, Francisco

    Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still uncultured poly-extremophiles compared to neutral brines of similar salinities. We present the first "metagenomic snapshots" of microbial communities thriving in the brines of four shallow soda lakes from the Kulunda Steppe (Altai, Russia) covering a salinity range from 170 to 400 g/L. Both amplicon sequencing of 16S rRNA fragments and direct metagenomic sequencing showed that themore » top-level taxa abundance was linked to the ambient salinity: Bacteroidetes, Alpha-, and Gamma-proteobacteria were dominant below a salinity of 250 g/L, Euryarchaeota at higher salinities. Within these taxa, amplicon sequences related to Halorubrum, Natrinema, Gracilimonas, purple non-sulfur bacteria (Rhizobiales, Rhodobacter, and Rhodobaca) and chemolithotrophic sulfur oxidizers (Thioalkalivibrio) were highly abundant. Twenty-four draft population genomes from novel members and ecotypes within the Nanohaloarchaea, Halobacteria, and Bacteroidetes were reconstructed to explore their metabolic features, environmental abundance and strategies for osmotic adaptation. The Halobacteria- and Bacteroidetes-related draft genomes belong to putative aerobic heterotrophs, likely with the capacity to ferment sugars in the absence of oxygen. Members from both taxonomic groups are likely involved in primary organic carbon degradation, since some of the reconstructed genomes encode the ability to hydrolyze recalcitrant substrates, such as cellulose and chitin. Putative sodium-pumping rhodopsins were found in both a Flavobacteriaceae- and a Chitinophagaceae-related draft genome. The predicted proteomes of both the latter and a Rhodothermace ae-related draft genome were indicative of a "salt-in" strategy of osmotic adaptation. The primary catabolic and respiratory pathways shared among all available reference genomes of Nanohaloarchaea and our novel genome reconstructions remain incomplete, but point to a primarily fermentative lifestyle. Encoded xenorhodopsins found in most drafts suggest that light plays an important role in the ecology of Nanohaloarchaea. Putative encoded halolysins and laccase-like oxidases might indicate the potential for extracellular degradation of proteins and peptides, and phenolic or aromatic compounds.« less

  5. Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines

    PubMed Central

    Vavourakis, Charlotte D.; Ghai, Rohit; Rodriguez-Valera, Francisco; Sorokin, Dimitry Y.; Tringe, Susannah G.; Hugenholtz, Philip; Muyzer, Gerard

    2016-01-01

    Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still uncultured poly-extremophiles compared to neutral brines of similar salinities. We present the first “metagenomic snapshots” of microbial communities thriving in the brines of four shallow soda lakes from the Kulunda Steppe (Altai, Russia) covering a salinity range from 170 to 400 g/L. Both amplicon sequencing of 16S rRNA fragments and direct metagenomic sequencing showed that the top-level taxa abundance was linked to the ambient salinity: Bacteroidetes, Alpha-, and Gamma-proteobacteria were dominant below a salinity of 250 g/L, Euryarchaeota at higher salinities. Within these taxa, amplicon sequences related to Halorubrum, Natrinema, Gracilimonas, purple non-sulfur bacteria (Rhizobiales, Rhodobacter, and Rhodobaca) and chemolithotrophic sulfur oxidizers (Thioalkalivibrio) were highly abundant. Twenty-four draft population genomes from novel members and ecotypes within the Nanohaloarchaea, Halobacteria, and Bacteroidetes were reconstructed to explore their metabolic features, environmental abundance and strategies for osmotic adaptation. The Halobacteria- and Bacteroidetes-related draft genomes belong to putative aerobic heterotrophs, likely with the capacity to ferment sugars in the absence of oxygen. Members from both taxonomic groups are likely involved in primary organic carbon degradation, since some of the reconstructed genomes encode the ability to hydrolyze recalcitrant substrates, such as cellulose and chitin. Putative sodium-pumping rhodopsins were found in both a Flavobacteriaceae- and a Chitinophagaceae-related draft genome. The predicted proteomes of both the latter and a Rhodothermaceae-related draft genome were indicative of a “salt-in” strategy of osmotic adaptation. The primary catabolic and respiratory pathways shared among all available reference genomes of Nanohaloarchaea and our novel genome reconstructions remain incomplete, but point to a primarily fermentative lifestyle. Encoded xenorhodopsins found in most drafts suggest that light plays an important role in the ecology of Nanohaloarchaea. Putative encoded halolysins and laccase-like oxidases might indicate the potential for extracellular degradation of proteins and peptides, and phenolic or aromatic compounds. PMID:26941731

  6. Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines

    DOE PAGES

    Vavourakis, Charlotte D.; Ghai, Rohit; Rodriguez-Valera, Francisco; ...

    2016-02-25

    Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still uncultured poly-extremophiles compared to neutral brines of similar salinities. We present the first "metagenomic snapshots" of microbial communities thriving in the brines of four shallow soda lakes from the Kulunda Steppe (Altai, Russia) covering a salinity range from 170 to 400 g/L. Both amplicon sequencing of 16S rRNA fragments and direct metagenomic sequencing showed that themore » top-level taxa abundance was linked to the ambient salinity: Bacteroidetes, Alpha-, and Gamma-proteobacteria were dominant below a salinity of 250 g/L, Euryarchaeota at higher salinities. Within these taxa, amplicon sequences related to Halorubrum, Natrinema, Gracilimonas, purple non-sulfur bacteria (Rhizobiales, Rhodobacter, and Rhodobaca) and chemolithotrophic sulfur oxidizers (Thioalkalivibrio) were highly abundant. Twenty-four draft population genomes from novel members and ecotypes within the Nanohaloarchaea, Halobacteria, and Bacteroidetes were reconstructed to explore their metabolic features, environmental abundance and strategies for osmotic adaptation. The Halobacteria- and Bacteroidetes-related draft genomes belong to putative aerobic heterotrophs, likely with the capacity to ferment sugars in the absence of oxygen. Members from both taxonomic groups are likely involved in primary organic carbon degradation, since some of the reconstructed genomes encode the ability to hydrolyze recalcitrant substrates, such as cellulose and chitin. Putative sodium-pumping rhodopsins were found in both a Flavobacteriaceae- and a Chitinophagaceae-related draft genome. The predicted proteomes of both the latter and a Rhodothermace ae-related draft genome were indicative of a "salt-in" strategy of osmotic adaptation. The primary catabolic and respiratory pathways shared among all available reference genomes of Nanohaloarchaea and our novel genome reconstructions remain incomplete, but point to a primarily fermentative lifestyle. Encoded xenorhodopsins found in most drafts suggest that light plays an important role in the ecology of Nanohaloarchaea. Putative encoded halolysins and laccase-like oxidases might indicate the potential for extracellular degradation of proteins and peptides, and phenolic or aromatic compounds.« less

  7. Genome analysis of the foxtail millet pathogen Sclerospora graminicola reveals the complex effector repertoire of graminicolous downy mildews.

    PubMed

    Kobayashi, Michie; Hiraka, Yukie; Abe, Akira; Yaegashi, Hiroki; Natsume, Satoshi; Kikuchi, Hideko; Takagi, Hiroki; Saitoh, Hiromasa; Win, Joe; Kamoun, Sophien; Terauchi, Ryohei

    2017-11-22

    Downy mildew, caused by the oomycete pathogen Sclerospora graminicola, is an economically important disease of Gramineae crops including foxtail millet (Setaria italica). Plants infected with S. graminicola are generally stunted and often undergo a transformation of flower organs into leaves (phyllody or witches' broom), resulting in serious yield loss. To establish the molecular basis of downy mildew disease in foxtail millet, we carried out whole-genome sequencing and an RNA-seq analysis of S. graminicola. Sequence reads were generated from S. graminicola using an Illumina sequencing platform and assembled de novo into a draft genome sequence comprising approximately 360 Mbp. Of this sequence, 73% comprised repetitive elements, and a total of 16,736 genes were predicted from the RNA-seq data. The predicted genes included those encoding effector-like proteins with high sequence similarity to those previously identified in other oomycete pathogens. Genes encoding jacalin-like lectin-domain-containing secreted proteins were enriched in S. graminicola compared to other oomycetes. Of a total of 1220 genes encoding putative secreted proteins, 91 significantly changed their expression levels during the infection of plant tissues compared to the sporangia and zoospore stages of the S. graminicola lifecycle. We established the draft genome sequence of a downy mildew pathogen that infects Gramineae plants. Based on this sequence and our transcriptome analysis, we generated a catalog of in planta-induced candidate effector genes, providing a solid foundation from which to identify the effectors causing phyllody.

  8. Gene 2 of the sigma rhabdovirus genome encodes the P protein, and gene 3 encodes a protein related to the reverse transcriptase of retroelements.

    PubMed

    Landès-Devauchelle, C; Bras, F; Dezélée, S; Teninges, D

    1995-11-10

    The nucleotide sequence of the genes 2 and 3 of the Drosophila rhabdovirus sigma was determined from cDNAs to viral genome and poly(A)+ mRNAs. Gene 2 comprises 1032 nucleotides and contains a long ORF encoding a molecular weight 35,208 polypeptide present in infected cells and in virions which migrates in SDS-PAGE as a doublet of M(r) about 60 kDa. The distribution of acidic charges as well as the electrophoretic properties of the protein are characteristic of the rhabdovirus P proteins. Gene 3 comprises 923 nucleotides and contains a long ORF capable of coding a polypeptide of 298 amino acids of MW 33,790. The putative protein (PP3) is similar in size to a minor component of the virions. Computer analysis shows that the sequence of PP3 contains three motifs related to the conserved motifs of reverse transcriptases.

  9. Sequence of a cDNA encoding pancreatic preprosomatostatin-22.

    PubMed Central

    Magazin, M; Minth, C D; Funckes, C L; Deschenes, R; Tavianini, M A; Dixon, J E

    1982-01-01

    We report the nucleotide sequence of a precursor to somatostatin that upon proteolytic processing may give rise to a hormone of 22 amino acids. The nucleotide sequence of a cDNA from the channel catfish (Ictalurus punctatus) encodes a precursor to somatostatin that is 105 amino acids (Mr, 11,500). The cDNA coding for somatostatin-22 consists of 36 nucleotides in the 5' untranslated region, 315 nucleotides that code for the precursor to somatostatin-22, 269 nucleotides at the 3' untranslated region, and a variable length of poly(A). The putative preprohormone contains a sequence of hydrophobic amino acids at the amino terminus that has the properties of a "signal" peptide. A connecting sequence of approximately 57 amino acids is followed by a single Arg-Arg sequence, which immediately precedes the hormone. Somatostatin-22 is homologous to somatostatin-14 in 7 of the 14 amino acids, including the Phe-Trp-Lys sequence. Hybridization selection of mRNA, followed by its translation in a wheat germ cell-free system, resulted in the synthesis of a single polypeptide having a molecular weight of approximately 10,000 as estimated on Na-DodSO4/polyacrylamide gels. Images PMID:6127673

  10. Characterization of a sterol carrier protein 2/3-oxoacyl-CoA thiolase from the cotton leafworm (Spodoptera littoralis): a lepidopteran mechanism closer to that in mammals than that in dipterans

    PubMed Central

    2004-01-01

    Numerous invertebrate species belonging to several phyla cannot synthesize sterols de novo and rely on a dietary source of the compound. SCPx (sterol carrier protein 2/3-oxoacyl-CoA thiolase) is a protein involved in the trafficking of sterols and oxidation of branched-chain fatty acids. We have isolated SCPx protein from Spodoptera littoralis (cotton leafworm) and have subjected it to limited amino acid sequencing. A reverse-transcriptase PCR-based approach has been used to clone the cDNA (1.9 kb), which encodes a 57 kDa protein. Northern blotting detected two mRNA transcripts, one of 1.9 kb, encoding SCPx, and one of 0.95 kb, presumably encoding SCP2 (sterol carrier protein 2). The former mRNA was highly expressed in midgut and Malpighian tubules during the last larval instar. Furthermore, constitutive expression of the gene was detected in the prothoracic glands, which are the main tissue producing the insect moulting hormone. There was no significant change in the 1.9 kb mRNA in midgut throughout development, but slightly higher expression in the early stages. Conceptual translation of the cDNA and a database search revealed that the gene includes the SCP2 sequence and a putative peroxisomal targeting signal in the C-terminal region. Also a cysteine residue at the putative active site for the 3-oxoacyl-CoA thiolase is conserved. Southern blotting showed that SCPx is likely to be encoded by a single-copy gene. The mRNA expression pattern and the gene structure suggest that SCPx from S. littoralis (a lepidopteran) is evolutionarily closer to that of mammals than to that of dipterans. PMID:15149283

  11. Annotation of differentially expressed genes in the somatic embryogenesis of musa and their location in the banana genome.

    PubMed

    Maldonado-Borges, Josefina Ines; Ku-Cauich, José Roberto; Escobedo-Graciamedrano, Rosa Maria

    2013-01-01

    Analysis of cDNA-AFLP was used to study the genes expressed in zygotic and somatic embryogenesis of Musa acuminata Colla ssp. malaccensis, and a comparison was made between their differential transcribed fragments (TDFs) and the sequenced genome of the double haploid- (DH-) Pahang of the malaccensis subspecies that is available in the network. A total of 253 transcript-derived fragments (TDFs) were detected with apparent size of 100-4000 bp using 5 pairs of AFLP primers, of which 21 were differentially expressed during the different stages of banana embryogenesis; 15 of the sequences have matched DH-Pahang chromosomes, with 7 of them being homologous to gene sequences encoding either known or putative protein domains of higher plants. Four TDF sequences were located in all Musa chromosomes, while the rest were located in one or two chromosomes. Their putative individual function is briefly reviewed based on published information, and the potential roles of these genes in embryo development are discussed. Thus the availability of the genome of Musa and the information of TDFs sequences presented here opens new possibilities for an in-depth study of the molecular and biochemical research of zygotic and somatic embryogenesis of Musa.

  12. Complete genome sequence of “Enterobacter lignolyticus” SCF1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeAngelis, Kristen M.; D'Haeseleer, Patrik; Chivian, Dylan

    2011-09-23

    In an effort to discover anaerobic bacteria capable of lignin degradation, we isolated 'Ente-robacter lignolyticus' SCF1 on minimal media with alkali lignin as the sole source of carbon. This organism was isolated anaerobically from tropical forest soils collected from the Short Cloud Forest site in the El Yunque National Forest in Puerto Rico, USA, part of the Luquillo Long-Term Ecological Research Station. At this site, the soils experience strong fluctuations in redox potential and are net methane producers. Because of its ability to grow on lignin anae-robically, we sequenced the genome. The genome of 'E. lignolyticus' SCF1 is 4.81 Mbpmore » with no detected plasmids, and includes a relatively small arsenal of lignocellulolytic carbohy-drate active enzymes. Lignin degradation was observed in culture, and the genome revealed two putative laccases, a putative peroxidase, and a complete 4-hydroxyphenylacetate degra-dation pathway encoded in a single gene cluster.« less

  13. Genotyping microsatellite DNA markers at putative disease loci in inbred/multiplex families with respiratory chain complex I deficiency allows rapid identification of a novel nonsense mutation (IVS1nt -1) in the NDUFS4 gene in Leigh syndrome.

    PubMed

    Bénit, Paule; Steffann, Julie; Lebon, Sophie; Chretien, Dominique; Kadhom, Noman; de Lonlay, Pascale; Goldenberg, Alice; Dumez, Yves; Dommergues, Marc; Rustin, Pierre; Munnich, Arnold; Rötig, Agnès

    2003-05-01

    Complex I deficiency, the most common cause of mitochondrial disorders, accounts for a variety of clinical symptoms and its genetic heterogeneity makes identification of the disease genes particularly tedious. Indeed, most of the 43 complex I subunits are encoded by nuclear genes, only seven of them being mitochondrially encoded. In order to offer urgent prenatal diagnosis, we have studied an inbred/multiplex family with complex I deficiency by using microsatellite DNA markers flanking the putative disease loci. Microsatellite DNA markers have allowed us to exclude the NDUFS7, NDUFS8, NDUFV1 and NDUFS1 genes and to find homozygosity at the NDUFS4 locus. Direct sequencing has led to identification of a homozygous splice acceptor site mutation in intron 1 of the NDUFS4 gene (IVS1nt -1, G-->A); this was not found in chorion villi of the ongoing pregnancy. We suggest that genotyping microsatellite DNA markers at putative disease loci in inbred/multiplex families helps to identify the disease-causing mutation. More generally, we suggest giving consideration to a more systematic microsatellite analysis of putative disease loci for identification of disease genes in inbred/multiplex families affected with genetically heterogeneous conditions.

  14. Sequencing and phylogenetic analysis of tobacco virus 2, a polerovirus from Nicotiana tabacum.

    PubMed

    Zhou, Benguo; Wang, Fang; Zhang, Xuesong; Zhang, Lina; Lin, Huafeng

    2017-07-01

    The complete genome sequence of a new virus, provisionally named tobacco virus 2 (TV2), was determined and identified from leaves of tobacco (Nicotiana tabacum) exhibiting leaf mosaic, yellowing, and deformity, in Anhui Province, China. The genome sequence of TV2 comprises 5,979 nucleotides, with 87% nucleotide sequence identity to potato leafroll virus (PLRV). Its genome organization is similar to that of PLRV, containing six open reading frames (ORFs) that potentially encode proteins with putative functions in cell-to-cell movement and suppression of RNA silencing. Phylogenetic analysis of the nucleotide sequence placed TV2 alongside members of the genus Polerovirus in the family Luteoviridae. To the best our knowledge, this study is the first report of a complete genome sequence of a new polerovirus identified in tobacco.

  15. Analysis of gene expression provides insights into the mechanism of cadmium tolerance in Acidithiobacillus ferrooxidans.

    PubMed

    Chen, Minjie; Li, Yanjun; Zhang, Li; Wang, Jianying; Zheng, Chunli; Zhang, Xuefeng

    2015-02-01

    Acidithiobacillus ferrooxidans plays a critical role in metal solubilization in the biomining industry, and occupies an ecological niche characterized by high acidity and high concentrations of toxic heavy metal ions. In order to investigate the possible metal resistance mechanism, the cellular distribution of cadmium was tested. The result indicated that Cd(2+) entered the cells upon initial exposure resulting in increased intracellular concentrations, followed by its excretion from the cells during subsequent growth and adaptation. Sequence homology analyses were used to identify 10 genes predicted to participate in heavy metal homeostasis, and the expression of these genes was investigated in cells cultured in the presence of increasing concentrations of toxic divalent cadmium (Cd(2+)). The results suggested that one gene (cmtR A.f ) encoded a putative Cd(2+)/Pb(2+)-responsive transcriptional regulator; four genes (czcA1 A.f , czcA2 A.f , czcB1 A.f ; and czcC1 A.f ) encoded heavy metal efflux proteins for Cd(2+); two genes (cadA1 A.f and cadB1 A.f ) encoded putative cation channel proteins related to the transport of Cd(2+). No significant enhancement of gene expression was observed at low concentrations of Cd(2+) (5 mM) and most of the putative metal resistance genes were up-regulated except cmtR A.f , cadB3 A.f ; and czcB1 A.f at higher concentrations (15 and 30 mM) according to real-time polymerase chain reaction. A model was developed for the mechanism of resistance to cadmium ions based on homology analyses of the predicted genes, the transcription of putative Cd(2+) resistance genes, and previous work.

  16. The Complete Genomic Sequence of Pepper Yellow Leaf Curl Virus (PYLCV) and Its Implications for Our Understanding of Evolution Dynamics in the Genus Polerovirus

    PubMed Central

    Dombrovsky, Aviv; Glanz, Eyal; Lachman, Oded; Sela, Noa; Doron-Faigenboim, Adi; Antignus, Yehezkel

    2013-01-01

    We determined the complete sequence and organization of the genome of a putative member of the genus Polerovirus tentatively named Pepper yellow leaf curl virus (PYLCV). PYLCV has a wider host range than Tobacco vein-distorting virus (TVDV) and has a close serological relationship with Cucurbit aphid-borne yellows virus (CABYV) (both poleroviruses). The extracted viral RNA was subjected to SOLiD next-generation sequence analysis and used as a template for reverse transcription synthesis, which was followed by PCR amplification. The ssRNA genome of PYLCV includes 6,028 nucleotides encoding six open reading frames (ORFs), which is typical of the genus Polerovirus. Comparisons of the deduced amino acid sequences of the PYLCV ORFs 2-4 and ORF5, indicate that there are high levels of similarity between these sequences to ORFs 2-4 of TVDV (84-93%) and to ORF5 of CABYV (87%). Both PYLCV and Pepper vein yellowing virus (PeVYV) contain sequences that point to a common ancestral polerovirus. The recombination breakpoint which is located at CABYV ORF3, which encodes the viral coat protein (CP), may explain the CABYV-like sequences found in the genomes of the pepper infecting viruses PYLCV and PeVYV. Two additional regions unique to PYLCV (PY1 and PY2) were identified between nucleotides 4,962 and 5,061 (ORF 5) and between positions 5,866 and 6,028 in the 3' NCR. Sequence analysis of the pepper-infecting PeVYV revealed three unique regions (Pe1-Pe3) with no similarity to other members of the genus Polerovirus. Genomic analyses of PYLCV and PeVYV suggest that the speciation of these viruses occurred through putative recombination event(s) between poleroviruses co-infecting a common host(s), resulting in the emergence of PYLCV, a novel pathogen with a wider host range. PMID:23936244

  17. The complete genomic sequence of pepper yellow leaf curl virus (PYLCV) and its implications for our understanding of evolution dynamics in the genus polerovirus.

    PubMed

    Dombrovsky, Aviv; Glanz, Eyal; Lachman, Oded; Sela, Noa; Doron-Faigenboim, Adi; Antignus, Yehezkel

    2013-01-01

    We determined the complete sequence and organization of the genome of a putative member of the genus Polerovirus tentatively named Pepper yellow leaf curl virus (PYLCV). PYLCV has a wider host range than Tobacco vein-distorting virus (TVDV) and has a close serological relationship with Cucurbit aphid-borne yellows virus (CABYV) (both poleroviruses). The extracted viral RNA was subjected to SOLiD next-generation sequence analysis and used as a template for reverse transcription synthesis, which was followed by PCR amplification. The ssRNA genome of PYLCV includes 6,028 nucleotides encoding six open reading frames (ORFs), which is typical of the genus Polerovirus. Comparisons of the deduced amino acid sequences of the PYLCV ORFs 2-4 and ORF5, indicate that there are high levels of similarity between these sequences to ORFs 2-4 of TVDV (84-93%) and to ORF5 of CABYV (87%). Both PYLCV and Pepper vein yellowing virus (PeVYV) contain sequences that point to a common ancestral polerovirus. The recombination breakpoint which is located at CABYV ORF3, which encodes the viral coat protein (CP), may explain the CABYV-like sequences found in the genomes of the pepper infecting viruses PYLCV and PeVYV. Two additional regions unique to PYLCV (PY1 and PY2) were identified between nucleotides 4,962 and 5,061 (ORF 5) and between positions 5,866 and 6,028 in the 3' NCR. Sequence analysis of the pepper-infecting PeVYV revealed three unique regions (Pe1-Pe3) with no similarity to other members of the genus Polerovirus. Genomic analyses of PYLCV and PeVYV suggest that the speciation of these viruses occurred through putative recombination event(s) between poleroviruses co-infecting a common host(s), resulting in the emergence of PYLCV, a novel pathogen with a wider host range.

  18. Regulation of the alpha-glucuronidase-encoding gene ( aguA) from Aspergillus niger.

    PubMed

    de Vries, R P; van de Vondervoort, P J I; Hendriks, L; van de Belt, M; Visser, J

    2002-09-01

    The alpha-glucuronidase gene aguA from Aspergillus niger was cloned and characterised. Analysis of the promoter region of aguA revealed the presence of four putative binding sites for the major carbon catabolite repressor protein CREA and one putative binding site for the transcriptional activator XLNR. In addition, a sequence motif was detected which differed only in the last nucleotide from the XLNR consensus site. A construct in which part of the aguA coding region was deleted still resulted in production of a stable mRNA upon transformation of A. niger. The putative XLNR binding sites and two of the putative CREA binding sites were mutated individually in this construct and the effects on expression were examined in A. niger transformants. Northern analysis of the transformants revealed that the consensus XLNR site is not actually functional in the aguA promoter, whereas the sequence that diverges from the consensus at a single position is functional. This indicates that XLNR is also able to bind to the sequence GGCTAG, and the XLNR binding site consensus should therefore be changed to GGCTAR. Both CREA sites are functional, indicating that CREA has a strong influence on aguA expression. A detailed expression analysis of aguA in four genetic backgrounds revealed a second regulatory system involved in activation of aguA gene expression. This system responds to the presence of glucuronic and galacturonic acids, and is not dependent on XLNR.

  19. RNA Sequencing-Based Genome Reannotation of the Dermatophyte Arthroderma benhamiae and Characterization of Its Secretome and Whole Gene Expression Profile during Infection

    PubMed Central

    De Coi, Niccolò; Feuermann, Marc; Schmid-Siegert, Emanuel; Băguţ, Elena-Tatiana; Mignon, Bernard; Waridel, Patrice; Peter, Corinne; Pradervand, Sylvain

    2016-01-01

    ABSTRACT Dermatophytes are the most common agents of superficial mycoses in humans and animals. The aim of the present investigation was to systematically identify the extracellular, possibly secreted, proteins that are putative virulence factors and antigenic molecules of dermatophytes. A complete gene expression profile of Arthroderma benhamiae was obtained during infection of its natural host (guinea pig) using RNA sequencing (RNA-seq) technology. This profile was completed with those of the fungus cultivated in vitro in two media containing either keratin or soy meal protein as the sole source of nitrogen and in Sabouraud medium. More than 60% of transcripts deduced from RNA-seq data differ from those previously deposited for A. benhamiae. Using these RNA-seq data along with an automatic gene annotation procedure, followed by manual curation, we produced a new annotation of the A. benhamiae genome. This annotation comprised 7,405 coding sequences (CDSs), among which only 2,662 were identical to the currently available annotation, 383 were newly identified, and 15 secreted proteins were manually corrected. The expression profile of genes encoding proteins with a signal peptide in infected guinea pigs was found to be very different from that during in vitro growth when using keratin as the substrate. Especially, the sets of the 12 most highly expressed genes encoding proteases with a signal sequence had only the putative vacuolar aspartic protease gene PEP2 in common, during infection and in keratin medium. The most upregulated gene encoding a secreted protease during infection was that encoding subtilisin SUB6, which is a known major allergen in the related dermatophyte Trichophyton rubrum. IMPORTANCE Dermatophytoses (ringworm, jock itch, athlete’s foot, and nail infections) are the most common fungal infections, but their virulence mechanisms are poorly understood. Combining transcriptomic data obtained from growth under various culture conditions with data obtained during infection led to a significantly improved genome annotation. About 65% of the protein-encoding genes predicted with our protocol did not match the existing annotation for A. benhamiae. Comparing gene expression during infection on guinea pigs with keratin degradation in vitro, which is supposed to mimic the host environment, revealed the critical importance of using real in vivo conditions for investigating virulence mechanisms. The analysis of genes expressed in vivo, encoding cell surface and secreted proteins, particularly proteases, led to the identification of new allergen and virulence factor candidates. PMID:27822542

  20. Identification of a spliced gene from duck enteritis virus encoding a protein homologous to UL15 of herpes simplex virus 1.

    PubMed

    Zhu, Hongwei; Li, Huixin; Han, Zongxi; Shao, Yuhao; Wang, Yu; Kong, Xiangang

    2011-04-06

    In herpesviruses, UL15 homologue is a subunit of terminase complex responsible for cleavage and packaging of the viral genome into pre-assembled capsids. However, for duck enteritis virus (DEV), the causative agent of duck viral enteritis (DVE), the genomic sequence was not completely determined until most recently. There is limited information of this putative spliced gene and its encoding protein. DEV UL15 consists of two exons with a 3.5 kilobases (kb) inron and transcribes into two transcripts: the full-length UL15 and an N-terminally truncated UL15.5. The 2.9 kb UL15 transcript encodes a protein of 739 amino acids with an approximate molecular mass of 82 kiloDaltons (kDa), whereas the UL15.5 transcript is 1.3 kb in length, containing a putative 888 base pairs (bp) ORF that encodes a 32 kDa product. We also demonstrated that UL15 gene belonged to the late kinetic class as its expression was sensitive to cycloheximide and phosphonoacetic acid. UL15 is highly conserved within the Herpesviridae, and contains Walker A and B motifs homologous to the catalytic subunit of the bacteriophage terminase as revealed by sequence analysis. Phylogenetic tree constructed with the amino acid sequences of 23 herpesvirus UL15 homologues suggests a close relationship of DEV to the Mardivirus genus within the Alphaherpesvirinae. Further, the UL15 and UL15.5 proteins can be detected in the infected cell lysate but not in the sucrose density gradient-purified virion when reacting with the antiserum against UL15. Within the CEF cells, the UL15 and/or UL15.5 localize(s) in the cytoplasm at 6 h post infection (h p. i.) and mainly in the nucleus at 12 h p. i. and at 24 h p. i., while accumulate(s) in the cytoplasm in the absence of any other viral protein. DEV UL15 is a spliced gene that encodes two products encoded by 2.9 and 1.3 kb transcripts respectively. The UL15 is expressed late during infection. The coding sequences of DEV UL15 are very similar to those of alphaherpesviruses and most similar to the genus Mardivirus. The UL15 and/or UL15.5 accumulate(s) in the cytoplasm during early times post-infection and then are translocated to the nucleus at late times.

  1. RNA Sequencing-Based Genome Reannotation of the Dermatophyte Arthroderma benhamiae and Characterization of Its Secretome and Whole Gene Expression Profile during Infection.

    PubMed

    Tran, Van Du T; De Coi, Niccolò; Feuermann, Marc; Schmid-Siegert, Emanuel; Băguţ, Elena-Tatiana; Mignon, Bernard; Waridel, Patrice; Peter, Corinne; Pradervand, Sylvain; Pagni, Marco; Monod, Michel

    2016-01-01

    Dermatophytes are the most common agents of superficial mycoses in humans and animals. The aim of the present investigation was to systematically identify the extracellular, possibly secreted, proteins that are putative virulence factors and antigenic molecules of dermatophytes. A complete gene expression profile of Arthroderma benhamiae was obtained during infection of its natural host (guinea pig) using RNA sequencing (RNA-seq) technology. This profile was completed with those of the fungus cultivated in vitro in two media containing either keratin or soy meal protein as the sole source of nitrogen and in Sabouraud medium. More than 60% of transcripts deduced from RNA-seq data differ from those previously deposited for A. benhamiae . Using these RNA-seq data along with an automatic gene annotation procedure, followed by manual curation, we produced a new annotation of the A. benhamiae genome. This annotation comprised 7,405 coding sequences (CDSs), among which only 2,662 were identical to the currently available annotation, 383 were newly identified, and 15 secreted proteins were manually corrected. The expression profile of genes encoding proteins with a signal peptide in infected guinea pigs was found to be very different from that during in vitro growth when using keratin as the substrate. Especially, the sets of the 12 most highly expressed genes encoding proteases with a signal sequence had only the putative vacuolar aspartic protease gene PEP2 in common, during infection and in keratin medium. The most upregulated gene encoding a secreted protease during infection was that encoding subtilisin SUB6, which is a known major allergen in the related dermatophyte Trichophyton rubrum . IMPORTANCE Dermatophytoses (ringworm, jock itch, athlete's foot, and nail infections) are the most common fungal infections, but their virulence mechanisms are poorly understood. Combining transcriptomic data obtained from growth under various culture conditions with data obtained during infection led to a significantly improved genome annotation. About 65% of the protein-encoding genes predicted with our protocol did not match the existing annotation for A. benhamiae . Comparing gene expression during infection on guinea pigs with keratin degradation in vitro , which is supposed to mimic the host environment, revealed the critical importance of using real in vivo conditions for investigating virulence mechanisms. The analysis of genes expressed in vivo , encoding cell surface and secreted proteins, particularly proteases, led to the identification of new allergen and virulence factor candidates.

  2. Open chromatin encoded in DNA sequence is the signature of ‘master’ replication origins in human cells

    PubMed Central

    Audit, Benjamin; Zaghloul, Lamia; Vaillant, Cédric; Chevereau, Guillaume; d'Aubenton-Carafa, Yves; Thermes, Claude; Arneodo, Alain

    2009-01-01

    For years, progress in elucidating the mechanisms underlying replication initiation and its coupling to transcriptional activities and to local chromatin structure has been hampered by the small number (approximately 30) of well-established origins in the human genome and more generally in mammalian genomes. Recent in silico studies of compositional strand asymmetries revealed a high level of organization of human genes around 1000 putative replication origins. Here, by comparing with recently experimentally identified replication origins, we provide further support that these putative origins are active in vivo. We show that regions ∼300-kb wide surrounding most of these putative replication origins that replicate early in the S phase are hypersensitive to DNase I cleavage, hypomethylated and present a significant enrichment in genomic energy barriers that impair nucleosome formation (nucleosome-free regions). This suggests that these putative replication origins are specified by an open chromatin structure favored by the DNA sequence. We discuss how this distinctive attribute makes these origins, further qualified as ‘master’ replication origins, priviledged loci for future research to decipher the human spatio-temporal replication program. Finally, we argue that these ‘master’ origins are likely to play a key role in genome dynamics during evolution and in pathological situations. PMID:19671527

  3. Sequences of two related multiple antibiotic resistance virulence plasmids sharing a unique IS26-related molecular signature isolated from different Escherichia coli pathotypes from different hosts.

    PubMed

    Venturini, Carola; Hassan, Karl A; Roy Chowdhury, Piklu; Paulsen, Ian T; Walker, Mark J; Djordjevic, Steven P

    2013-01-01

    Enterohemorrhagic Escherichia coli (EHEC) and atypical enteropathogenic E. coli (aEPEC) are important zoonotic pathogens that increasingly are becoming resistant to multiple antibiotics. Here we describe two plasmids, pO26-CRL125 (125 kb) from a human O26:H- EHEC, and pO111-CRL115 (115kb) from a bovine O111 aEPEC, that impart resistance to ampicillin, kanamycin, neomycin, streptomycin, sulfathiazole, trimethoprim and tetracycline and both contain atypical class 1 integrons with an identical IS26-mediated deletion in their 3´-conserved segment. Complete sequence analysis showed that pO26-CRL125 and pO111-CRL115 are essentially identical except for a 9.7 kb fragment, present in the backbone of pO26-CRL125 but absent in pO111-CRL115, and several indels. The 9.7 kb fragment encodes IncI-associated genes involved in plasmid stability during conjugation, a putative transposase gene and three imperfect repeats. Contiguous sequence identical to regions within these pO26-CRL125 imperfect repeats was identified in pO111-CRL115 precisely where the 9.7 kb fragment is missing, suggesting it may be mobile. Sequences shared between the plasmids include a complete IncZ replicon, a unique toxin/antitoxin system, IncI stability and maintenance genes, a novel putative serine protease autotransporter, and an IncI1 transfer system including a unique shufflon. Both plasmids carry a derivate Tn21 transposon with an atypical class 1 integron comprising a dfrA5 gene cassette encoding resistance to trimethoprim, and 24 bp of the 3´-conserved segment followed by Tn6026, which encodes resistance to ampicillin, kanymycin, neomycin, streptomycin and sulfathiazole. The Tn21-derivative transposon is linked to a truncated Tn1721, encoding resistance to tetracycline, via a region containing the IncP-1α oriV. Absence of the 5 bp direct repeats flanking Tn3-family transposons, indicates that homologous recombination events played a key role in the formation of this complex antibiotic resistance gene locus. Comparative sequence analysis of these closely related plasmids reveals aspects of plasmid evolution in pathogenic E. coli from different hosts.

  4. Characterization of the 101-Kilobase-Pair Megaplasmid pKB1, Isolated from the Rubber-Degrading Bacterium Gordonia westfalica Kb1

    PubMed Central

    Bröker, Daniel; Arenskötter, Matthias; Legatzki, Antje; Nies, Dietrich H.; Steinbüchel, Alexander

    2004-01-01

    The complete sequence of the circular 101,016-bp megaplasmid pKB1 from the cis-1,4-polyisoprene-degrading bacterium Gordonia westfalica Kb1, which represents the first described extrachromosomal DNA of a member of this genus, was determined. Plasmid pKB1 harbors 105 open reading frames. The predicted products of 46 of these are significantly related to proteins of known function. Plasmid pKB1 is organized into three functional regions that are flanked by insertion sequence (IS) elements: (i) a replication and putative partitioning region, (ii) a putative metabolic region, and (iii) a large putative conjugative transfer region, which is interrupted by an additional IS element. Southern hybridization experiments revealed the presence of another copy of this conjugational transfer region on the bacterial chromosome. The origin of replication (oriV) of pKB1 was identified and used for construction of Escherichia coli-Gordonia shuttle vectors, which was also suitable for several other Gordonia species and related genera. The metabolic region included the heavy-metal resistance gene cadA, encoding a P-type ATPase. Expression of cadA in E. coli mediated resistance to cadmium, but not to zinc, and decreased the cellular content of cadmium in this host. When G. westfalica strain Kb1 was cured of plasmid pKB1, the resulting derivative strains exhibited slightly decreased cadmium resistance. Furthermore, they had lost the ability to use isoprene rubber as a sole source of carbon and energy, suggesting that genes essential for rubber degradation are encoded by pKB1. PMID:14679241

  5. Identification and analysis of putative polyhydroxyalkanoate synthase (PhaC) in Pseudomonas fluorescens.

    PubMed

    Lim, Ju Hyoung; Rhie, Ho-Gun; Kim, Jeong Nam

    2018-05-11

    Pseudomonas fluorescens KLR101 was found to be capable of producing polyhydroxyalkanoate (PHA) using various sugars and fatty acids with carbon numbers ranging from 2 to 6. PHA granules mainly consisted of poly(3-hydroxybutyrate) homopolymer and/or poly(3-hydroxybutyrate- co -3-hydroxyvalerate) copolymer. Genomic DNA of P. fluorescens was fractionated and cloned into a lambda library, in which a 5.8-kb fragment hybridized to a heterologous phaC probe from Ralstonia eutropha was identified. In vivo expression in Klebsiella aerogenes KC2671 (pUMS), restriction mapping, Southern hybridization experiments, and sequencing data revealed that PHA biosynthesis by P. fluorescens relied upon a polypeptide encoded by a 1,683-bp non-operonal ORF, which was preceded by a possible -24/-12 promoter and highly similar to DNA sequences of a gene encoding PHA synthase in the genus Pseudomonas . In vivo expression of the putative PHA synthase gene ( phaC Pf ) in a recombinant Escherichia coli strain was investigated by using glucose and decanoate as substrates. E. coli ( phaC Pf + , pUMS) grown in medium containing glucose accumulated PHA granules mainly consisting of 3-hydroxybutyrate, whereas only a trace amount of 3-hydroxydecanoate was detected from E. coli fadR mutant ( phaC Pf + ) grown in medium containing decanoate. In vitro enzymatic assessment experiments showed that 3-hydroxybutyryl-CoA was efficiently used as a substrate of purified PhaC Pf , suggesting that the putative PHA synthase of P. fluorescens mainly utilizes short-chain-length PHA precursors as a substrate.

  6. Identification of the polypeptides encoded in the unassigned reading frames 2, 4, 4L, and 5 of human mitochondrial DNA.

    PubMed Central

    Mariottini, P; Chomyn, A; Riley, M; Cottrell, B; Doolittle, R F; Attardi, G

    1986-01-01

    In previous work, antibodies prepared against chemically synthesized peptides predicted from the DNA sequence were used to identify the polypeptides encoded in three of the eight unassigned reading frames (URFs) of human mitochondrial DNA (mtDNA). In the present study, this approach has been extended to other human mtDNA URFs. In particular, antibodies directed against the NH2-terminal octapeptide of the putative URF2 product specifically precipitated component 11 of the HeLa cell mitochondrial translation products, the reaction being inhibited by the specific peptide. Similarly, antibodies directed against the COOH-terminal nonapeptide of the putative URF4 product reacted specifically with components 4 and 5, and antibodies against a COOH-terminal heptapeptide of the presumptive URF4L product reacted specifically with component 26. Antibodies against the NH2-terminal heptapeptide of the putative product of URF5 reacted with component 1, but only to a marginal extent; however, the results of a trypsin fingerprinting analysis of component 1 point strongly to this component as being the authentic product of URF5. The polypeptide assignments to the mtDNA URFs analyzed here are supported by the relative electrophoretic mobilities of proteins 11, 4-5, 26, and 1, which are those expected for the molecular weights predicted from the DNA sequence for the products of URF2, URF4, URF4L, and URF5, respectively. With the present assignment, seven of the eight human mtDNA URFs have been shown to be expressed in HeLa cells. Images PMID:3456601

  7. Identification of an Na(+)-dependent transporter associated with saxitoxin-producing strains of the cyanobacterium Anabaena circinalis.

    PubMed

    Pomati, Francesco; Burns, Brendan P; Neilan, Brett A

    2004-08-01

    Blooms of the freshwater cyanobacterium Anabaena circinalis are recognized as an important health risk worldwide due to the production of a range of toxins such as saxitoxin (STX) and its derivatives. In this study we used HIP1 octameric-palindrome repeated-sequence PCR to compare the genomic structure of phylogenetically similar Australian isolates of A. circinalis. STX-producing and nontoxic cyanobacterial strains showed different HIP1 (highly iterated octameric palindrome 1) DNA patterns, and characteristic interrepeat amplicons for each group were identified. Suppression subtractive hybridization (SSH) was performed using HIP1 PCR-generated libraries to further identify toxic-strain-specific genes. An STX-producing strain and a nontoxic strain of A. circinalis were chosen as testers in two distinct experiments. The two categories of SSH putative tester-specific sequences were characterized by different families of encoded proteins that may be representative of the differences in metabolism between STX-producing and nontoxic A. circinalis strains. DNA-microarray hybridization and genomic screening revealed a toxic-strain-specific HIP1 fragment coding for a putative Na(+)-dependent transporter. Analysis of this gene demonstrated analogy to the mrpF gene of Bacillus subtilis, whose encoded protein is involved in Na(+)-specific pH homeostasis. The application of this gene as a molecular probe in laboratory and environmental screening for STX-producing A. circinalis strains was demonstrated. The possible role of this putative Na(+)-dependent transporter in the toxic cyanobacterial phenotype is also discussed, in light of recent physiological studies of STX-producing cyanobacteria.

  8. Chimeras taking shape: Potential functions of proteins encoded by chimeric RNA transcripts

    PubMed Central

    Frenkel-Morgenstern, Milana; Lacroix, Vincent; Ezkurdia, Iakes; Levin, Yishai; Gabashvili, Alexandra; Prilusky, Jaime; del Pozo, Angela; Tress, Michael; Johnson, Rory; Guigo, Roderic; Valencia, Alfonso

    2012-01-01

    Chimeric RNAs comprise exons from two or more different genes and have the potential to encode novel proteins that alter cellular phenotypes. To date, numerous putative chimeric transcripts have been identified among the ESTs isolated from several organisms and using high throughput RNA sequencing. The few corresponding protein products that have been characterized mostly result from chromosomal translocations and are associated with cancer. Here, we systematically establish that some of the putative chimeric transcripts are genuinely expressed in human cells. Using high throughput RNA sequencing, mass spectrometry experimental data, and functional annotation, we studied 7424 putative human chimeric RNAs. We confirmed the expression of 175 chimeric RNAs in 16 human tissues, with an abundance varying from 0.06 to 17 RPKM (Reads Per Kilobase per Million mapped reads). We show that these chimeric RNAs are significantly more tissue-specific than non-chimeric transcripts. Moreover, we present evidence that chimeras tend to incorporate highly expressed genes. Despite the low expression level of most chimeric RNAs, we show that 12 novel chimeras are translated into proteins detectable in multiple shotgun mass spectrometry experiments. Furthermore, we confirm the expression of three novel chimeric proteins using targeted mass spectrometry. Finally, based on our functional annotation of exon organization and preserved domains, we discuss the potential features of chimeric proteins with illustrative examples and suggest that chimeras significantly exploit signal peptides and transmembrane domains, which can alter the cellular localization of cognate proteins. Taken together, these findings establish that some chimeric RNAs are translated into potentially functional proteins in humans. PMID:22588898

  9. Plasmid-Encoded MCP Is Involved in Virulence, Motility, and Biofilm Formation of Cronobacter sakazakii ATCC 29544

    PubMed Central

    Choi, Younho; Kim, Seongok; Hwang, Hyelyeon; Kim, Kwang-Pyo; Kang, Dong-Hyun

    2014-01-01

    The aim of this study was to elucidate the function of the plasmid-borne mcp (methyl-accepting chemotaxis protein) gene, which plays pleiotropic roles in Cronobacter sakazakii ATCC 29544. By searching for virulence factors using a random transposon insertion mutant library, we identified and sequenced a new plasmid, pCSA2, in C. sakazakii ATCC 29544. An in silico analysis of pCSA2 revealed that it included six putative open reading frames, and one of them was mcp. The mcp mutant was defective for invasion into and adhesion to epithelial cells, and the virulence of the mcp mutant was attenuated in rat pups. In addition, we demonstrated that putative MCP regulates the motility of C. sakazakii, and the expression of the flagellar genes was enhanced in the absence of a functional mcp gene. Furthermore, a lack of the mcp gene also impaired the ability of C. sakazakii to form a biofilm. Our results demonstrate a regulatory role for MCP in diverse biological processes, including the virulence of C. sakazakii ATCC 29544. To the best of our knowledge, this study is the first to elucidate a potential function of a plasmid-encoded MCP homolog in the C. sakazakii sequence type 8 (ST8) lineage. PMID:25332122

  10. Plasmid-encoded MCP is involved in virulence, motility, and biofilm formation of Cronobacter sakazakii ATCC 29544.

    PubMed

    Choi, Younho; Kim, Seongok; Hwang, Hyelyeon; Kim, Kwang-Pyo; Kang, Dong-Hyun; Ryu, Sangryeol

    2015-01-01

    The aim of this study was to elucidate the function of the plasmid-borne mcp (methyl-accepting chemotaxis protein) gene, which plays pleiotropic roles in Cronobacter sakazakii ATCC 29544. By searching for virulence factors using a random transposon insertion mutant library, we identified and sequenced a new plasmid, pCSA2, in C. sakazakii ATCC 29544. An in silico analysis of pCSA2 revealed that it included six putative open reading frames, and one of them was mcp. The mcp mutant was defective for invasion into and adhesion to epithelial cells, and the virulence of the mcp mutant was attenuated in rat pups. In addition, we demonstrated that putative MCP regulates the motility of C. sakazakii, and the expression of the flagellar genes was enhanced in the absence of a functional mcp gene. Furthermore, a lack of the mcp gene also impaired the ability of C. sakazakii to form a biofilm. Our results demonstrate a regulatory role for MCP in diverse biological processes, including the virulence of C. sakazakii ATCC 29544. To the best of our knowledge, this study is the first to elucidate a potential function of a plasmid-encoded MCP homolog in the C. sakazakii sequence type 8 (ST8) lineage. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Evolutionary profiles from the QR factorization of multiple sequence alignments

    PubMed Central

    Sethi, Anurag; O'Donoghue, Patrick; Luthey-Schulten, Zaida

    2005-01-01

    We present an algorithm to generate complete evolutionary profiles that represent the topology of the molecular phylogenetic tree of the homologous group. The method, based on the multidimensional QR factorization of numerically encoded multiple sequence alignments, removes redundancy from the alignments and orders the protein sequences by increasing linear dependence, resulting in the identification of a minimal basis set of sequences that spans the evolutionary space of the homologous group of proteins. We observe a general trend that these smaller, more evolutionarily balanced profiles have comparable and, in many cases, better performance in database searches than conventional profiles containing hundreds of sequences, constructed in an iterative and computationally intensive procedure. For more diverse families or superfamilies, with sequence identity <30%, structural alignments, based purely on the geometry of the protein structures, provide better alignments than pure sequence-based methods. Merging the structure and sequence information allows the construction of accurate profiles for distantly related groups. These structure-based profiles outperformed other sequence-based methods for finding distant homologs and were used to identify a putative class II cysteinyl-tRNA synthetase (CysRS) in several archaea that eluded previous annotation studies. Phylogenetic analysis showed the putative class II CysRSs to be a monophyletic group and homology modeling revealed a constellation of active site residues similar to that in the known class I CysRS. PMID:15741270

  12. A bacterial Argonaute with noncanonical guide RNA specificity

    PubMed Central

    Kaya, Emine; Doxzen, Kevin W.; Knoll, Kilian R.; Wilson, Ross C.; Strutt, Steven C.; Kranzusch, Philip J.; Doudna, Jennifer A.

    2016-01-01

    Eukaryotic Argonaute proteins induce gene silencing by small RNA-guided recognition and cleavage of mRNA targets. Although structural similarities between human and prokaryotic Argonautes are consistent with shared mechanistic properties, sequence and structure-based alignments suggested that Argonautes encoded within CRISPR-cas [clustered regularly interspaced short palindromic repeats (CRISPR)-associated] bacterial immunity operons have divergent activities. We show here that the CRISPR-associated Marinitoga piezophila Argonaute (MpAgo) protein cleaves single-stranded target sequences using 5′-hydroxylated guide RNAs rather than the 5′-phosphorylated guides used by all known Argonautes. The 2.0-Å resolution crystal structure of an MpAgo–RNA complex reveals a guide strand binding site comprising residues that block 5′ phosphate interactions. Using structure-based sequence alignment, we were able to identify other putative MpAgo-like proteins, all of which are encoded within CRISPR-cas loci. Taken together, our data suggest the evolution of an Argonaute subclass with noncanonical specificity for a 5′-hydroxylated guide. PMID:27035975

  13. Identification of the WBSCR9 gene, encoding a novel transcriptional regulator, in the Williams-Beuren syndrome deletion at 7q11.23.

    PubMed

    Peoples, R J; Cisco, M J; Kaplan, P; Francke, U

    1998-01-01

    We have identified a novel gene (WBSCR9) within the common Williams-Beuren syndrome (WBS) deletion by interspecies sequence conservation. The WBSCR9 gene encodes a roughly 7-kb transcript with an open reading frame of 1483 amino acids and a predicted protein product size of 170.8 kDa. WBSCR9 is comprised of at least 20 exons extending over 60 kb. The transcript is expressed ubiquitously throughout development and is subject to alternative splicing. Functional motifs identified by sequence homology searches include a bromodomain; a PHD, or C4HC3, finger; several putative nuclear localization signals; four nuclear receptor binding motifs; a polyglutamate stretch and two PEST sequences. Bromodomains, PHD motifs and nuclear receptor binding motifs are cardinal features of proteins that are involved in chromatin remodeling and modulation of transcription. Haploinsufficiency for WBSCR9 gene products may contribute to the complex phenotype of WBS by interacting with tissue-specific regulatory factors during development.

  14. New generic primer system targeting mucosal/genital and cutaneous human papillomaviruses leads to the characterization of HPV 115, a novel Beta-papillomavirus species 3

    PubMed Central

    Chouhy, Diego; Gorosito, Mario; Sánchez, Adriana; Serra, Esteban C; Bergero, Adriana; Bussy, Ramón Fernandez; Giri, Adriana A

    2009-01-01

    We explored the cutaneotropic HPV genetic diversity in 71 subjects from Argentina. New generic primers (CUT) targeting 88 mucosal/cutaneous HPV were designed and compared to FAP primers. Overall, 69 different HPV types/putative types were identified, being 17 of them novel putative types. Phylogenetic analysis of partial L1 sequences grouped 2 novel putative types in the Beta-PV, 14 in the Gamma-PV and 1 in the Mu-PV genera. CUT primers showed broader capacity than FAP primers in detecting different genera/species and novel putative types (p<0.01). Using overlapping PCR, the full-length genome of a Beta-PV putative type was amplified and cloned. The new virus, designated HPV 115, encodes 5 early genes and 2 late genes. Phylogenetic analysis indicated HPV 115 as the most divergent type within the genus Beta-PV species 3. This report is the first providing data on cutaneous HPVs circulating in South America and expands our knowledge of the Papillomaviridae family. PMID:19948351

  15. Genomic sequences of murine gamma B- and gamma C-crystallin-encoding genes: promoter analysis and complete evolutionary pattern of mouse, rat and human gamma-crystallins.

    PubMed

    Graw, J; Liebstein, A; Pietrowski, D; Schmitt-John, T; Werner, T

    1993-12-22

    The murine genes, gamma B-cry and gamma C-cry, encoding the gamma B- and gamma C-crystallins, were isolated from a genomic DNA library. The complete nucleotide (nt) sequences of both genes were determined from 661 and 711 bp, respectively, upstream from the first exon to the corresponding polyadenylation sites, comprising more than 2650 and 2890 bp, respectively. The new sequences were compared to the partial cDNA sequences available for the murine gamma B-cry and gamma C-cry, as well as to the corresponding genomic sequences from rat and man, at both the nt and predicted amino acid (aa) sequence levels. In the gamma B-cry promoter region, a canonical CCAAT-box, a TATA-box, putative NF-I and C/EBP sites were detected. An R-repeat is inserted 366 bp upstream from the transcription start point. In contrast, the gamma C-cry promoter does not contain a CCAAT-box, but some other putative binding sites for transcription factors (AP-2, UBP-1, LBP-1) were located by computer analysis. The promoter regions of all six gamma-cry from mouse, rat and human, except human psi gamma F-cry, were analyzed for common sequence elements. A complex sequence element of about 70-80 bp was found in the proximal promoter, which contains a gamma-cry-specific and almost invariant sequence (crygpel) of 14 nt, and ends with the also invariant TATA-box. Within the complex sequence element, a minimum of three further features specific for the gamma A-, gamma B- and gamma D/E/F-cry genes can be defined, at least two of which were recently shown to be functional. In addition to these four sequence elements, a subtype-specific structure of inverted repeats with different-sized spacers can be deduced from the multiple sequence alignment. A phylogenetic analysis based on the promoter region, as well as the complete exon 3 of all gamma-cry from mouse, rat and man, suggests separation of only five gamma-cry subtypes (gamma A-, gamma B-, gamma C-, gamma D- and gamma E/F-cry) prior to species separation.

  16. Characterization of the gene encoding component C3 of the complement system from the spider Loxosceles laeta venom glands: Phylogenetic implications.

    PubMed

    Myamoto, D T; Pidde-Queiroz, G; Pedroso, A; Gonçalves-de-Andrade, R M; van den Berg, C W; Tambourgi, D V

    2016-09-01

    A transcriptome analysis of the venom glands of the spider Loxosceles laeta, performed by our group, in a previous study (Fernandes-Pedrosa et al., 2008), revealed a transcript with a sequence similar to the human complement component C3. Here we present the analysis of this transcript. cDNA fragments encoding the C3 homologue (Lox-C3) were amplified from total RNA isolated from the venom glands of L. laeta by RACE-PCR. Lox-C3 is a 5178 bps cDNA sequence encoding a 190kDa protein, with a domain configuration similar to human C3. Multiple alignments of C3-like proteins revealed two processing sites, suggesting that Lox-C3 is composed of three chains. Furthermore, the amino acids consensus sequences for the thioester was found, in addition to putative sequences responsible for FB binding. The phylogenetic analysis showed that Lox-C3 belongs to the same group as two C3 isoforms from the spider Hasarius adansoni (Family Salcitidae), showing 53% homology with these. This is the first characterization of a Loxosceles cDNA sequence encoding a human C3 homologue, and this finding, together with our previous finding of the expression of a FB-like molecule, suggests that this spider species also has a complement system. This work will help to improve our understanding of the innate immune system in these spiders and the ancestral structure of C3. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. The Nostoc punctiforme Genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John C. Meeks

    2001-12-31

    Nostoc punctiforme is a filamentous cyanobacterium with extensive phenotypic characteristics and a relatively large genome, approaching 10 Mb. The phenotypic characteristics include a photoautotrophic, diazotrophic mode of growth, but N. punctiforme is also facultatively heterotrophic; its vegetative cells have multiple development alternatives, including terminal differentiation into nitrogen-fixing heterocysts and transient differentiation into spore-like akinetes or motile filaments called hormogonia; and N. punctiforme has broad symbiotic competence with fungi and terrestrial plants, including bryophytes, gymnosperms and an angiosperm. The shotgun-sequencing phase of the N. punctiforme strain ATCC 29133 genome has been completed by the Joint Genome Institute. Annotation of an 8.9more » Mb database yielded 7432 open reading frames, 45% of which encode proteins with known or probable known function and 29% of which are unique to N. punctiforme. Comparative analysis of the sequence indicates a genome that is highly plastic and in a state of flux, with numerous insertion sequences and multilocus repeats, as well as genes encoding transposases and DNA modification enzymes. The sequence also reveals the presence of genes encoding putative proteins that collectively define almost all characteristics of cyanobacteria as a group. N. punctiforme has an extensive potential to sense and respond to environmental signals as reflected by the presence of more than 400 genes encoding sensor protein kinases, response regulators and other transcriptional factors. The signal transduction systems and any of the large number of unique genes may play essential roles in the cell differentiation and symbiotic interaction properties of N. punctiforme.« less

  18. Porcine parvovirus: DNA sequence and genome organization.

    PubMed

    Ranz, A I; Manclús, J J; Díaz-Aroca, E; Casal, J I

    1989-10-01

    We have determined the nucleotide sequence of an almost full-length clone of porcine parvovirus (PPV). The sequence is 4973 nucleotides (nt) long. The 3' end of virion DNA shows a Y-shaped configuration homologous to rodent parvoviruses. The 5' end of virion DNA shows a repetition of 127 nt at the carboxy terminus of the capsid proteins. The overall organization of the PPV genome is similar to those of other autonomous parvoviruses. There are two large open reading frames (ORFs) that almost entirely cover the genome, both located in the same frame of the complementary strand. The left ORF encodes the non-structural protein NS1 and the right ORF encodes the capsid proteins (VP1, VP2 and VP3). Promoter analysis, location of splicing sites and putative amino acid sequences for the viral proteins show a high homology of PPV with feline panleukopenia virus and canine parvoviruses (FPV and CPV) and rodent parvovirus. Therefore we conclude that PPV is related to the Kilham rat virus (KRV) group of autonomous parvoviruses formed by KRV, minute virus of mice, Lu III, H-1, FPV and CPV.

  19. Molecular cloning of chitinase 33 (chit33) gene from Trichoderma atroviride

    PubMed Central

    Matroudi, S.; Zamani, M.R.; Motallebi, M.

    2008-01-01

    In this study Trichoderma atroviride was selected as over producer of chitinase enzyme among 30 different isolates of Trichoderma sp. on the basis of chitinase specific activity. From this isolate the genomic and cDNA clones encoding chit33 have been isolated and sequenced. Comparison of genomic and cDNA sequences for defining gene structure indicates that this gene contains three short introns and also an open reading frame coding for a protein of 321 amino acids. The deduced amino acid sequence includes a 19 aa putative signal peptide. Homology between this sequence and other reported Trichoderma Chit33 proteins are discussed. The coding sequence of chit33 gene was cloned in pEt26b(+) expression vector and expressed in E. coli. PMID:24031242

  20. Previously unknown and highly divergent ssDNA viruses populate the oceans.

    PubMed

    Labonté, Jessica M; Suttle, Curtis A

    2013-11-01

    Single-stranded DNA (ssDNA) viruses are economically important pathogens of plants and animals, and are widespread in oceans; yet, the diversity and evolutionary relationships among marine ssDNA viruses remain largely unknown. Here we present the results from a metagenomic study of composite samples from temperate (Saanich Inlet, 11 samples; Strait of Georgia, 85 samples) and subtropical (46 samples, Gulf of Mexico) seawater. Most sequences (84%) had no evident similarity to sequenced viruses. In total, 608 putative complete genomes of ssDNA viruses were assembled, almost doubling the number of ssDNA viral genomes in databases. These comprised 129 genetically distinct groups, each represented by at least one complete genome that had no recognizable similarity to each other or to other virus sequences. Given that the seven recognized families of ssDNA viruses have considerable sequence homology within them, this suggests that many of these genetic groups may represent new viral families. Moreover, nearly 70% of the sequences were similar to one of these genomes, indicating that most of the sequences could be assigned to a genetically distinct group. Most sequences fell within 11 well-defined gene groups, each sharing a common gene. Some of these encoded putative replication and coat proteins that had similarity to sequences from viruses infecting eukaryotes, suggesting that these were likely from viruses infecting eukaryotic phytoplankton and zooplankton.

  1. Detection of hepatitis B virus X product using an open reading frame Escherichia coli expression vector.

    PubMed Central

    Elfassi, E; Haseltine, W A; Dienstag, J L

    1986-01-01

    The genome of the hepatitis B virus (HBV) contains a sequence, designated X, capable of encoding a protein of 154 amino acids. To determine whether the putative protein synthesized from this region is antigenic, we examined the sera of HBV-infected patients for the ability to react with a hybrid protein that contained 133 amino acids encoded by the X region and portions of the bacterial ompF and beta-galactosidase genes. Some HBV-positive sera tested contained antibodies that specifically recognized the hybrid protein. All sera were from patients diagnosed as suffering from chronic active hepatitis. We conclude that the X region of HBV encodes a protein and that this protein is antigenic in some patients. Images PMID:3515347

  2. Characterisation of IS153, an IS3-family insertion sequence isolated from Lactobacillus sanfranciscensis and its use for strain differentiation.

    PubMed

    Ehrmann, M A; Vogel, R E

    2001-11-01

    An insertion sequence has been identified in the genome of Lactobacillus sanfranciscensis DSM 20451T as segment of 1351 nucleotides containing 37-bp imperfect terminal inverted repeats. The sequence of this element encodes two out of phase, overlapping open reading frames, orfA and orfB, from which three putative proteins are produced. OrfAB is a transframe protein produced by -1 translational frame shifting between orf A and orf B that is presumed to be the transposase. The large orfAB of this element encodes a 342 amino acid protein that displays similarities with transposases encoded by bacterial insertion sequences belonging to the IS3 family. In L. sanfranciscensis type strain DSM 20451T multiple truncated IS elements were identified. Inverse PCR was used to analyze target sites of four of these elements, but except of their highly AT rich character not any sequence specificity was identified so far. Moreover, no flanking direct repeats were identified. Multiple copies of IS153 were detected by hybridization in other strains of L. sanfranciscensis. Resulting hybridization patterns were shown to differentiate between organisms at strain level rather than a probe targeted against the 16S rDNA. With a PCR based approach IS153 or highly similar sequences were detected in L. acidophilus, L. casei, L. malefermentans, L. plantarum, L. hilgardii, L. collinoides L. farciminis L. sakei and L. salivarius, L. reuteri as well as in Enterococcus faecium, Pediococcus acidilactici and P. pentosaceus.

  3. The Draft Genome Sequence of Actinokineospora bangkokensis 44EHWT Reveals the Biosynthetic Pathway of the Antifungal Thailandin Compounds with Unusual Butylmalonyl-CoA Extender Units.

    PubMed

    Greule, Anja; Intra, Bungonsiri; Flemming, Stephan; Rommel, Marcel G E; Panbangred, Watanalai; Bechthold, Andreas

    2016-11-23

    We report the draft genome sequence of Actinokineospora bangkokensis 44EHW T , the producer of the antifungal polyene compounds, thailandins A and B. The sequence contains 7.45 Mb, 74.1% GC content and 35 putative gene clusters for the biosynthesis of secondary metabolites. There are three gene clusters encoding large polyketide synthases of type I. Annotation of the ORF functions and targeted gene disruption enabled us to identify the cluster for thailandin biosynthesis. We propose a plausible biosynthetic pathway for thailandin, where the unusual butylmalonyl-CoA extender unit is incorporated and results in an untypical side chain.

  4. Evolutionary appearance of genes encoding proteins associated with box H/ACA snoRNAs: Cbf5p in Euglena gracilis, an early diverging eukaryote, and candidate Gar1p and Nop10p homologs in archaebacteria

    PubMed Central

    Watanabe, Yoh-ichi; Gray, Michael W.

    2000-01-01

    A reverse transcription–polymerase chain reaction (RT–PCR) approach was used to clone a cDNA encoding the Euglena gracilis homolog of yeast Cbf5p, a protein component of the box H/ACA class of snoRNPs that mediate pseudouridine formation in eukaryotic rRNA. Cbf5p is a putative pseudouridine synthase, and the Euglena homolog is the first full-length Cbf5p sequence to be reported for an early diverging unicellular eukaryote (protist). Phylogenetic analysis of putative pseudouridine synthase sequences confirms that archaebacterial and eukaryotic (including Euglena) Cbf5p proteins are specifically related and are distinct from the TruB/Pus4p clade that is responsible for formation of pseudouridine at position 55 in eubacterial (TruB) and eukaryotic (Pus4p) tRNAs. Using a bioinformatics approach, we also identified archaebacterial genes encoding candidate homologs of yeast Gar1p and Nop10p, two additional proteins known to be associated with eukaryotic box H/ACA snoRNPs. These observations raise the possibility that pseudouridine formation in archaebacterial rRNA may be dependent on analogs of the eukaryotic box H/ACA snoRNPs, whose evolutionary origin may therefore predate the split between Archaea (archaebacteria) and Eucarya (eukaryotes). Database searches further revealed, in archaebacterial and some eukaryotic genomes, two previously unrecognized groups of genes (here designated ‘PsuX’ and ‘PsuY’) distantly related to the Cbf5p/TruB gene family. PMID:10871366

  5. Cloning and expression of a cDNA coding for a human monocyte-derived plasminogen activator inhibitor.

    PubMed

    Antalis, T M; Clark, M A; Barnes, T; Lehrbach, P R; Devine, P L; Schevzov, G; Goss, N H; Stephens, R W; Tolstoshev, P

    1988-02-01

    Human monocyte-derived plasminogen activator inhibitor (mPAI-2) was purified to homogeneity from the U937 cell line and partially sequenced. Oligonucleotide probes derived from this sequence were used to screen a cDNA library prepared from U937 cells. One positive clone was sequenced and contained most of the coding sequence as well as a long incomplete 3' untranslated region (1112 base pairs). This cDNA sequence was shown to encode mPAI-2 by hybrid-select translation. A cDNA clone encoding the remainder of the mPAI-2 mRNA was obtained by primer extension of U937 poly(A)+ RNA using a probe complementary to the mPAI-2 coding region. The coding sequence for mPAI-2 was placed under the control of the lambda PL promoter, and the protein expressed in Escherichia coli formed a complex with urokinase that could be detected immunologically. By nucleotide sequence analysis, mPAI-2 cDNA encodes a protein containing 415 amino acids with a predicted unglycosylated Mr of 46,543. The predicted amino acid sequence of mPAI-2 is very similar to placental PAI-2 (3 amino acid differences) and shows extensive homology with members of the serine protease inhibitor (serpin) superfamily. mPAI-2 was found to be more homologous to ovalbumin (37%) than the endothelial plasminogen activator inhibitor, PAI-1 (26%). Like ovalbumin, mPAI-2 appears to have no typical amino-terminal signal sequence. The 3' untranslated region of the mPAI-2 cDNA contains a putative regulatory sequence that has been associated with the inflammatory mediators.

  6. Cloning and expression of a cDNA coding for a human monocyte-derived plasminogen activator inhibitor.

    PubMed Central

    Antalis, T M; Clark, M A; Barnes, T; Lehrbach, P R; Devine, P L; Schevzov, G; Goss, N H; Stephens, R W; Tolstoshev, P

    1988-01-01

    Human monocyte-derived plasminogen activator inhibitor (mPAI-2) was purified to homogeneity from the U937 cell line and partially sequenced. Oligonucleotide probes derived from this sequence were used to screen a cDNA library prepared from U937 cells. One positive clone was sequenced and contained most of the coding sequence as well as a long incomplete 3' untranslated region (1112 base pairs). This cDNA sequence was shown to encode mPAI-2 by hybrid-select translation. A cDNA clone encoding the remainder of the mPAI-2 mRNA was obtained by primer extension of U937 poly(A)+ RNA using a probe complementary to the mPAI-2 coding region. The coding sequence for mPAI-2 was placed under the control of the lambda PL promoter, and the protein expressed in Escherichia coli formed a complex with urokinase that could be detected immunologically. By nucleotide sequence analysis, mPAI-2 cDNA encodes a protein containing 415 amino acids with a predicted unglycosylated Mr of 46,543. The predicted amino acid sequence of mPAI-2 is very similar to placental PAI-2 (3 amino acid differences) and shows extensive homology with members of the serine protease inhibitor (serpin) superfamily. mPAI-2 was found to be more homologous to ovalbumin (37%) than the endothelial plasminogen activator inhibitor, PAI-1 (26%). Like ovalbumin, mPAI-2 appears to have no typical amino-terminal signal sequence. The 3' untranslated region of the mPAI-2 cDNA contains a putative regulatory sequence that has been associated with the inflammatory mediators. Images PMID:3257578

  7. Molecular and Mutational Analysis of a Gelsolin-Family Member Encoded by the Flightless I Gene of Drosophila Melanogaster

    PubMed Central

    de-Couet, H. G.; Fong, KSK.; Weeds, A. G.; McLaughlin, P. J.; Miklos, GLG.

    1995-01-01

    The flightless locus of Drosophila melanogaster has been analyzed at the genetic, molecular, ultrastructural and comparative crystallographic levels. The gene encodes a single transcript encoding a protein consisting of a leucine-rich amino terminal half and a carboxyterminal half with high sequence similarity to gelsolin. We determined the genomic sequence of the flightless landscape, the breakpoints of four chromosomal rearrangements, and the molecular lesions in two lethal and two viable alleles of the gene. The two alleles that lead to flight muscle abnormalities encode mutant proteins exhibiting amino acid replacements within the S1-like domain of their gelsolin-like region. Furthermore, the deduced intronexon structure of the D. melanogaster gene has been compared with that of the Caenorhabditis elegans homologue. Furthermore, the sequence similarities of the flightless protein with gelsolin allow it to be evaluated in the context of the published crystallographic structure of the S1 domain of gelsolin. Amino acids considered essential for the structural integrity of the core are found to be highly conserved in the predicted flightless protein. Some of the residues considered essential for actin and calcium binding in gelsolin S1 and villin V1 are also well conserved. These data are discussed in light of the phenotypic characteristics of the mutants and the putative functions of the protein. PMID:8582612

  8. Molecular evolution and diversification of snake toxin genes, revealed by analysis of intron sequences.

    PubMed

    Fujimi, T J; Nakajyo, T; Nishimura, E; Ogura, E; Tsuchiya, T; Tamiya, T

    2003-08-14

    The genes encoding erabutoxin (short chain neurotoxin) isoforms (Ea, Eb, and Ec), LsIII (long chain neurotoxin) and a novel long chain neurotoxin pseudogene were cloned from a Laticauda semifasciata genomic library. Short and long chain neurotoxin genes were also cloned from the genome of Laticauda laticaudata, a closely related species of L. semifasciata, by PCR. A putative matrix attached region (MAR) sequence was found in the intron I of the LsIII gene. Comparative analysis of 11 structurally relevant snake toxin genes (three-finger-structure toxins) revealed the molecular evolution of these toxins. Three-finger-structure toxin genes diverged from a common ancestor through two types of evolutionary pathways (long and short types), early in the course of evolution. At a later stage of evolution in each gene, the accumulation of mutations in the exons, especially exon II, by accelerated evolution may have caused the increased diversification in their functions. It was also revealed that the putative MAR sequence found in the LsIII gene was integrated into the gene after the species-level divergence.

  9. ORF157 from the Archaeal Virus Acidianus Filamentous Virus 1 Defines a New Class of Nuclease▿

    PubMed Central

    Goulet, Adeline; Pina, Mery; Redder, Peter; Prangishvili, David; Vera, Laura; Lichière, Julie; Leulliot, Nicolas; van Tilbeurgh, Herman; Ortiz-Lombardia, Miguel; Campanacci, Valérie; Cambillau, Christian

    2010-01-01

    Acidianus filamentous virus 1 (AFV1) (Lipothrixviridae) is an enveloped filamentous virus that was characterized from a crenarchaeal host. It infects Acidianus species that thrive in the acidic hot springs (>85°C and pH <3) of Yellowstone National Park, WY. The AFV1 20.8-kb, linear, double-stranded DNA genome encodes 40 putative open reading frames whose sequences generally show little similarity to other genes in the sequence databases. Because three-dimensional structures are more conserved than sequences and hence are more effective at revealing function, we set out to determine protein structures from putative AFV1 open reading frames (ORF). The crystal structure of ORF157 reveals an α+β protein with a novel fold that remotely resembles the nucleotidyltransferase topology. In vitro, AFV1-157 displays a nuclease activity on linear double-stranded DNA. Alanine substitution mutations demonstrated that E86 is essential to catalysis. AFV1-157 represents a novel class of nuclease, but its exact role in vivo remains to be determined. PMID:20200253

  10. Molecular cloning and characterization of a gene encoding glutaminase from Aspergillus oryzae.

    PubMed

    Koibuchi, K; Nagasaki, H; Yuasa, A; Kataoka, J; Kitamoto, K

    2000-07-01

    A glutaminase from Aspergillus oryzae was purified and its molecular weight was determined to be 82,091 by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Purified glutaminase catalysed the hydrolysis not only of L-glutamine but also of D-glutamine. Both the molecular weight and the substrate specificity of this glutaminase were different from those reported previously [Yano et al. (1998) J Ferment Technol 66: 137-143]. On the basis of its internal amino acid sequences, we have isolated and characterized the glutaminase gene (gtaA) from A. oryzae. The gtaA gene had an open reading frame coding for 690 amino acid residues, including a signal peptide of 20 amino acid residues and a mature protein of 670 amino acid residues. In the 5'-flanking region of the gene, there were three putative CreAp binding sequences and one putative AreAp binding sequence. The gtaA structural gene was introduced into A. oryzae NS4 and a marked increase in activity was detected in comparison with the control strain. The gtaA gene was also isolated from Aspergillus nidulans on the basis of the determined nucleotide sequence of the gtaA gene from A. oryzae.

  11. Putative Monofunctional Type I Polyketide Synthase Units: A Dinoflagellate-Specific Feature?

    PubMed Central

    Eichholz, Karsten; Beszteri, Bánk; John, Uwe

    2012-01-01

    Marine dinoflagellates (alveolata) are microalgae of which some cause harmful algal blooms and produce a broad variety of most likely polyketide synthesis derived phycotoxins. Recently, novel polyketide synthesase (PKS) transcripts have been described from the Florida red tide dinoflagellate Karenia brevis (gymnodiniales) which are evolutionarily related to Type I PKS but were apparently expressed as monofunctional proteins, a feature typical of Type II PKS. Here, we investigated expression units of PKS I-like sequences in Alexandrium ostenfeldii (gonyaulacales) and Heterocapsa triquetra (peridiniales) at the transcript and protein level. The five full length transcripts we obtained were all characterized by polyadenylation, a 3′ UTR and the dinoflagellate specific spliced leader sequence at the 5′end. Each of the five transcripts encoded a single ketoacylsynthase (KS) domain showing high similarity to K. brevis KS sequences. The monofunctional structure was also confirmed using dinoflagellate specific KS antibodies in Western Blots. In a maximum likelihood phylogenetic analysis of KS domains from diverse PKSs, dinoflagellate KSs formed a clade placed well within the protist Type I PKS clade between apicomplexa, haptophytes and chlorophytes. These findings indicate that the atypical PKS I structure, i.e., expression as putative monofunctional units, might be a dinoflagellate specific feature. In addition, the sequenced transcripts harbored a previously unknown, apparently dinoflagellate specific conserved N-terminal domain. We discuss the implications of this novel region with regard to the putative monofunctional organization of Type I PKS in dinoflagellates. PMID:23139807

  12. Draft Genome Sequence of Janthinobacterium sp. Strain ROICE36, a Putative Secondary Metabolite-Synthesizing Bacterium Isolated from Antarctic Snow

    PubMed Central

    Chiriac, Cecilia; Baricz, Andreea

    2018-01-01

    ABSTRACT The draft genome assembly of Janthinobacterium sp. strain ROICE36 has 207 contigs, with a total genome size of 5,977,006 bp and a G+C content of 62%. Preliminary genome analysis identified 5,363 protein-coding genes and a total of 7 secondary metabolic gene clusters (encoding bacteriocins, nonribosomal peptide-synthetase [NRPS], terpene, hserlactone, and other ketide synthases). PMID:29650588

  13. Cloning and characterization of a novel zinc finger gene in Xp11.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derry, J.M.J.; Jess, U.; Francke, U.

    1995-11-20

    During a systematic search for open reading frames in chromosome band Xp11.2, a novel gene (ZNF157) that encodes a putative 506-amino-acid protein with the sequence characteristics of a zinc-finger-containing transcription factor was isolated. ZNF157 is encoded by four exons distributed over >20 kb of genomic DNA. The second and third exons contain sequences similar to those of the previously described KRAB-A and KRAB-B domains, motifs that have been shown to mediate transcriptional repression in other members of the protein family. A fourth exon contains 12 zinc finger DNA binding motifs and finger linking regions characteristic of ZNF proteins of themore » Krueppel family. ZNF157 maps to the telomeric end of a cluster of ZNF genes that includes ZNF21, ZNF41, and ZNF81. 19 refs., 2 figs.« less

  14. Large-Scale Phylogenetic Classification of Fungal Chitin Synthases and Identification of a Putative Cell-Wall Metabolism Gene Cluster in Aspergillus Genomes

    PubMed Central

    Pacheco-Arjona, Jose Ramon; Ramirez-Prado, Jorge Humberto

    2014-01-01

    The cell wall is a protective and versatile structure distributed in all fungi. The component responsible for its rigidity is chitin, a product of chitin synthase (Chsp) enzymes. There are seven classes of chitin synthase genes (CHS) and the amount and type encoded in fungal genomes varies considerably from one species to another. Previous Chsp sequence analyses focused on their study as individual units, regardless of genomic context. The identification of blocks of conserved genes between genomes can provide important clues about the interactions and localization of chitin synthases. On the present study, we carried out an in silico search of all putative Chsp encoded in 54 full fungal genomes, encompassing 21 orders from five phyla. Phylogenetic studies of these Chsp were able to confidently classify 347 out of the 369 Chsp identified (94%). Patterns in the distribution of Chsp related to taxonomy were identified, the most prominent being related to the type of fungal growth. More importantly, a synteny analysis for genomic blocks centered on class IV Chsp (the most abundant and widely distributed Chsp class) identified a putative cell wall metabolism gene cluster in members of the genus Aspergillus, the first such association reported for any fungal genome. PMID:25148134

  15. Characterization of a Spontaneous Nonmagnetic Mutant of Magnetospirillum gryphiswaldense Reveals a Large Deletion Comprising a Putative Magnetosome Island

    PubMed Central

    Schübbe, Sabrina; Kube, Michael; Scheffel, André; Wawer, Cathrin; Heyen, Udo; Meyerdierks, Anke; Madkour, Mohamed H.; Mayer, Frank; Reinhardt, Richard; Schüler, Dirk

    2003-01-01

    Frequent spontaneous loss of the magnetic phenotype was observed in stationary-phase cultures of the magnetotactic bacterium Magnetospirillum gryphiswaldense MSR-1. A nonmagnetic mutant, designated strain MSR-1B, was isolated and characterized. The mutant lacked any structures resembling magnetosome crystals as well as internal membrane vesicles. The growth of strain MSR-1B was impaired under all growth conditions tested, and the uptake and accumulation of iron were drastically reduced under iron-replete conditions. A large chromosomal deletion of approximately 80 kb was identified in strain MSR-1B, which comprised both the entire mamAB and mamDC clusters as well as further putative operons encoding a number of magnetosome-associated proteins. A bacterial artificial chromosome clone partially covering the deleted region was isolated from the genomic library of wild-type M. gryphiswaldense. Sequence analysis of this fragment revealed that all previously identified mam genes were closely linked with genes encoding other magnetosome-associated proteins within less than 35 kb. In addition, this region was remarkably rich in insertion elements and harbored a considerable number of unknown gene families which appeared to be specific for magnetotactic bacteria. Overall, these findings suggest the existence of a putative large magnetosome island in M. gryphiswaldense and other magnetotactic bacteria. PMID:13129949

  16. Ti plasmid-encoded genes responsible for catabolism of the crown gall opine mannopine by Agrobacterium tumefaciens are homologs of the T-region genes responsible for synthesis of this opine by the plant tumor.

    PubMed

    Kim, K S; Farrand, S K

    1996-06-01

    Agrobacterium tumefaciens NT1 harboring pSaB4, which contains the 14-kb BamHI fragment 4 from the octopine/mannityl opine-type Ti plasmid pTi15955, grew well with agropine (AGR) but slowly with mannopine (MOP) as the sole carbon source. When a second plasmid encoding a dedicated transport system for MOP was introduced, these cells grew well with both AGR and MOP. Transposon insertion mutagenesis and subcloning identified a 5.7-kb region of BamHI fragment 4 that encodes functions required for the degradation of MOP. DNA sequence analysis revealed seven putative genes in this region: mocD (moc for mannityl opine catabolism) and mocE, oriented from right to left, and mocRCBAS, oriented from left to right. Significant identities exist at the nucleotide and derived amino acid sequence levels between these moc genes and the mas genes that are responsible for opine biosynthesis in crown gall tumors. MocD is a homolog of Mas2, the anabolic conjugase encoded by mas2'. MocE and MocC are related to the amino half and the carboxyl half, respectively, of Mas1 (MOP reductase), the second enzyme for MOP biosynthesis. These results indicate that the moc and mas genes evolved from a common origin. MocR and MocS are related to each other and to a putative repressor for the AGR degradation system encoded by the rhizogenic plasmid pRiA4. MocB and MocA are homologs of 6-phosphogluconate dehydratase and glucose-6-phosphate dehydrogenase, respectively. Mutations in mocD and mocE, but not mocC, are suppressed by functions encoded by the chromosome or the 450-kb megaplasmid present in many Agrobacterium isolates. We propose that moc genes derived from genes located elsewhere in the bacterial genome and that the tumor-expressed mas genes evolved from the bacterial moc genes.

  17. Ti plasmid-encoded genes responsible for catabolism of the crown gall opine mannopine by Agrobacterium tumefaciens are homologs of the T-region genes responsible for synthesis of this opine by the plant tumor.

    PubMed Central

    Kim, K S; Farrand, S K

    1996-01-01

    Agrobacterium tumefaciens NT1 harboring pSaB4, which contains the 14-kb BamHI fragment 4 from the octopine/mannityl opine-type Ti plasmid pTi15955, grew well with agropine (AGR) but slowly with mannopine (MOP) as the sole carbon source. When a second plasmid encoding a dedicated transport system for MOP was introduced, these cells grew well with both AGR and MOP. Transposon insertion mutagenesis and subcloning identified a 5.7-kb region of BamHI fragment 4 that encodes functions required for the degradation of MOP. DNA sequence analysis revealed seven putative genes in this region: mocD (moc for mannityl opine catabolism) and mocE, oriented from right to left, and mocRCBAS, oriented from left to right. Significant identities exist at the nucleotide and derived amino acid sequence levels between these moc genes and the mas genes that are responsible for opine biosynthesis in crown gall tumors. MocD is a homolog of Mas2, the anabolic conjugase encoded by mas2'. MocE and MocC are related to the amino half and the carboxyl half, respectively, of Mas1 (MOP reductase), the second enzyme for MOP biosynthesis. These results indicate that the moc and mas genes evolved from a common origin. MocR and MocS are related to each other and to a putative repressor for the AGR degradation system encoded by the rhizogenic plasmid pRiA4. MocB and MocA are homologs of 6-phosphogluconate dehydratase and glucose-6-phosphate dehydrogenase, respectively. Mutations in mocD and mocE, but not mocC, are suppressed by functions encoded by the chromosome or the 450-kb megaplasmid present in many Agrobacterium isolates. We propose that moc genes derived from genes located elsewhere in the bacterial genome and that the tumor-expressed mas genes evolved from the bacterial moc genes. PMID:8655509

  18. Identification of Delta5-fatty acid desaturase from the cellular slime mold dictyostelium discoideum.

    PubMed

    Saito, T; Ochiai, H

    1999-10-01

    cDNA fragments putatively encoding amino acid sequences characteristic of the fatty acid desaturase were obtained using expressed sequence tag (EST) information of the Dictyostelium cDNA project. Using this sequence, we have determined the cDNA sequence and genomic sequence of a desaturase. The cloned cDNA is 1489 nucleotides long and the deduced amino acid sequence comprised 464 amino acid residues containing an N-terminal cytochrome b5 domain. The whole sequence was 38.6% identical to the initially identified Delta5-desaturase of Mortierella alpina. We have confirmed its function as Delta5-desaturase by over expression mutation in D. discoideum and also the gain of function mutation in the yeast Saccharomyces cerevisiae. Analysis of the lipids from transformed D. discoideum and yeast demonstrated the accumulation of Delta5-desaturated products. This is the first report concering fatty acid desaturase in cellular slime molds.

  19. Molecular diversity of Rice grassy stunt virus in Vietnam.

    PubMed

    Ta, Hoang-Anh; Nguyen, Doan-Phuong; Causse, Sandrine; Nguyen, Thanh-Duc; Ngo, Vinh-Vien; Hébrard, Eugénie

    2013-04-01

    Rice grassy stunt virus (RGSV, Tenuivirus) recently emerged on rice in Vietnam, causing high yield losses during 2006-2009. The genetic diversity of RGSV is poorly documented. In this study, the two genes encoded by each ambisense segment RNA3 and RNA5 of RGSV isolates from six provinces of South Vietnam were sequenced. P3 and Pc3 (RNA3) have unknown function, P5 (RNA5) encodes the putative silencing suppressor, and Pc5 (RNA5) encodes the nucleocapsid protein (N). The sequences of 17 Vietnamese isolates were compared with reference isolates from North and South Philippines. The average nucleotide diversity among the isolates was low. We confirmed a higher variability of RNA3 than RNA5 and Pc3 than P3. No relationships between the genetic diversity and the geographic distribution of RGSV isolates could be ascertained, likely because of the long-distance migration of the insect vector. This data will contribute to a better understanding on the RGSV epidemiology in South Vietnam, a prerequisite for further management of the disease and rice breeding for resistance.

  20. Annotation of Differentially Expressed Genes in the Somatic Embryogenesis of Musa and Their Location in the Banana Genome

    PubMed Central

    Maldonado-Borges, Josefina Ines; Ku-Cauich, José Roberto; Escobedo-GraciaMedrano, Rosa Maria

    2013-01-01

    Analysis of cDNA-AFLP was used to study the genes expressed in zygotic and somatic embryogenesis of Musa acuminata Colla ssp. malaccensis, and a comparison was made between their differential transcribed fragments (TDFs) and the sequenced genome of the double haploid- (DH-) Pahang of the malaccensis subspecies that is available in the network. A total of 253 transcript-derived fragments (TDFs) were detected with apparent size of 100–4000 bp using 5 pairs of AFLP primers, of which 21 were differentially expressed during the different stages of banana embryogenesis; 15 of the sequences have matched DH-Pahang chromosomes, with 7 of them being homologous to gene sequences encoding either known or putative protein domains of higher plants. Four TDF sequences were located in all Musa chromosomes, while the rest were located in one or two chromosomes. Their putative individual function is briefly reviewed based on published information, and the potential roles of these genes in embryo development are discussed. Thus the availability of the genome of Musa and the information of TDFs sequences presented here opens new possibilities for an in-depth study of the molecular and biochemical research of zygotic and somatic embryogenesis of Musa. PMID:24027442

  1. Prospecting Biotechnologically-Relevant Monooxygenases from Cold Sediment Metagenomes: An In Silico Approach.

    PubMed

    Musumeci, Matías A; Lozada, Mariana; Rial, Daniela V; Mac Cormack, Walter P; Jansson, Janet K; Sjöling, Sara; Carroll, JoLynn; Dionisi, Hebe M

    2017-04-09

    The goal of this work was to identify sequences encoding monooxygenase biocatalysts with novel features by in silico mining an assembled metagenomic dataset of polar and subpolar marine sediments. The targeted enzyme sequences were Baeyer-Villiger and bacterial cytochrome P450 monooxygenases (CYP153). These enzymes have wide-ranging applications, from the synthesis of steroids, antibiotics, mycotoxins and pheromones to the synthesis of monomers for polymerization and anticancer precursors, due to their extraordinary enantio-, regio-, and chemo- selectivity that are valuable features for organic synthesis. Phylogenetic analyses were used to select the most divergent sequences affiliated to these enzyme families among the 264 putative monooxygenases recovered from the ~14 million protein-coding sequences in the assembled metagenome dataset. Three-dimensional structure modeling and docking analysis suggested features useful in biotechnological applications in five metagenomic sequences, such as wide substrate range, novel substrate specificity or regioselectivity. Further analysis revealed structural features associated with psychrophilic enzymes, such as broader substrate accessibility, larger catalytic pockets or low domain interactions, suggesting that they could be applied in biooxidations at room or low temperatures, saving costs inherent to energy consumption. This work allowed the identification of putative enzyme candidates with promising features from metagenomes, providing a suitable starting point for further developments.

  2. Prospecting Biotechnologically-Relevant Monooxygenases from Cold Sediment Metagenomes: An In Silico Approach

    PubMed Central

    Musumeci, Matías A.; Lozada, Mariana; Rial, Daniela V.; Mac Cormack, Walter P.; Jansson, Janet K.; Sjöling, Sara; Carroll, JoLynn; Dionisi, Hebe M.

    2017-01-01

    The goal of this work was to identify sequences encoding monooxygenase biocatalysts with novel features by in silico mining an assembled metagenomic dataset of polar and subpolar marine sediments. The targeted enzyme sequences were Baeyer–Villiger and bacterial cytochrome P450 monooxygenases (CYP153). These enzymes have wide-ranging applications, from the synthesis of steroids, antibiotics, mycotoxins and pheromones to the synthesis of monomers for polymerization and anticancer precursors, due to their extraordinary enantio-, regio-, and chemo- selectivity that are valuable features for organic synthesis. Phylogenetic analyses were used to select the most divergent sequences affiliated to these enzyme families among the 264 putative monooxygenases recovered from the ~14 million protein-coding sequences in the assembled metagenome dataset. Three-dimensional structure modeling and docking analysis suggested features useful in biotechnological applications in five metagenomic sequences, such as wide substrate range, novel substrate specificity or regioselectivity. Further analysis revealed structural features associated with psychrophilic enzymes, such as broader substrate accessibility, larger catalytic pockets or low domain interactions, suggesting that they could be applied in biooxidations at room or low temperatures, saving costs inherent to energy consumption. This work allowed the identification of putative enzyme candidates with promising features from metagenomes, providing a suitable starting point for further developments. PMID:28397770

  3. Genomics of an emerging clone of Salmonella serovar Typhimurium ST313 from Nigeria and the Democratic Republic of Congo.

    PubMed

    Leekitcharoenphon, Pimlapas; Friis, Carsten; Zankari, Ea; Svendsen, Christina Aaby; Price, Lance B; Rahmani, Maral; Herrero-Fresno, Ana; Fashae, Kayode; Vandenberg, Olivier; Aarestrup, Frank M; Hendriksen, Rene S

    2013-10-15

    Salmonella enterica serovar Typhimurium ST313 is an invasive and phylogenetically distinct lineage present in sub-Saharan Africa. We report the presence of S. Typhimurium ST313 from patients in the Democratic Republic of Congo and Nigeria. Eighteen S. Typhimurium ST313 isolates were characterized by antimicrobial susceptibility testing, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST). Additionally, six of the isolates were characterized by whole genome sequence typing (WGST). The presence of a putative virulence determinant was examined in 177 Salmonella isolates belonging to 57 different serovars. All S. Typhimurium ST313 isolates harbored resistant genes encoded by blaTEM1b, catA1, strA/B, sul1, and dfrA1. Additionally, aac(6')1aa gene was detected. Phylogenetic analyses revealed close genetic relationships among Congolese and Nigerian isolates from both blood and stool. Comparative genomic analyses identified a putative virulence fragment (ST313-TD) unique to S. Typhimurium ST313 and S. Dublin. We showed in a limited number of isolates that S. Typhimurium ST313 is a prevalent sequence-type causing gastrointestinal diseases and septicemia in patients from Nigeria and DRC. We found three distinct phylogenetic clusters based on the origin of isolation suggesting some spatial evolution. Comparative genomics showed an interesting putative virulence fragment (ST313-TD) unique to S. Typhimurium ST313 and invasive S. Dublin.

  4. De Novo Assembly, Gene Annotation, and Marker Discovery in Stored-Product Pest Liposcelis entomophila (Enderlein) Using Transcriptome Sequences

    PubMed Central

    Wei, Dan-Dan; Chen, Er-Hu; Ding, Tian-Bo; Chen, Shi-Chun; Dou, Wei; Wang, Jin-Jun

    2013-01-01

    Background As a major stored-product pest insect, Liposcelis entomophila has developed high levels of resistance to various insecticides in grain storage systems. However, the molecular mechanisms underlying resistance and environmental stress have not been characterized. To date, there is a lack of genomic information for this species. Therefore, studies aimed at profiling the L. entomophila transcriptome would provide a better understanding of the biological functions at the molecular levels. Methodology/Principal Findings We applied Illumina sequencing technology to sequence the transcriptome of L. entomophila. A total of 54,406,328 clean reads were obtained and that de novo assembled into 54,220 unigenes, with an average length of 571 bp. Through a similarity search, 33,404 (61.61%) unigenes were matched to known proteins in the NCBI non-redundant (Nr) protein database. These unigenes were further functionally annotated with gene ontology (GO), cluster of orthologous groups of proteins (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A large number of genes potentially involved in insecticide resistance were manually curated, including 68 putative cytochrome P450 genes, 37 putative glutathione S-transferase (GST) genes, 19 putative carboxyl/cholinesterase (CCE) genes, and other 126 transcripts to contain target site sequences or encoding detoxification genes representing eight types of resistance enzymes. Furthermore, to gain insight into the molecular basis of the L. entomophila toward thermal stresses, 25 heat shock protein (Hsp) genes were identified. In addition, 1,100 SSRs and 57,757 SNPs were detected and 231 pairs of SSR primes were designed for investigating the genetic diversity in future. Conclusions/Significance We developed a comprehensive transcriptomic database for L. entomophila. These sequences and putative molecular markers would further promote our understanding of the molecular mechanisms underlying insecticide resistance or environmental stress, and will facilitate studies on population genetics for psocids, as well as providing useful information for functional genomic research in the future. PMID:24244605

  5. Identification of a putative triacylglycerol lipase from papaya latex by functional proteomics.

    PubMed

    Dhouib, R; Laroche-Traineau, J; Shaha, R; Lapaillerie, D; Solier, E; Rualès, J; Pina, M; Villeneuve, P; Carrière, F; Bonneu, M; Arondel, V

    2011-01-01

    Latex from Caricaceae has been known since 1925 to contain strong lipase activity. However, attempts to purify and identify the enzyme were not successful, mainly because of the lack of solubility of the enzyme. Here, we describe the characterization of lipase activity of the latex of Vasconcellea heilbornii and the identification of a putative homologous lipase from Carica papaya. Triacylglycerol lipase activity was enriched 74-fold from crude latex of Vasconcellea heilbornii to a specific activity (SA) of 57 μmol·min(-1)·mg(-1) on long-chain triacylglycerol (olive oil). The extract was also active on trioctanoin (SA = 655 μmol·min(-1)·mg(-1) ), tributyrin (SA = 1107 μmol·min(-1)·mg(-1) ) and phosphatidylcholine (SA = 923 μmol·min(-1)·mg(-1) ). The optimum pH ranged from 8.0 to 9.0. The protein content of the insoluble fraction of latex was analyzed by electrophoresis followed by mass spectrometry, and 28 different proteins were identified. The protein fraction was incubated with the lipase inhibitor [(14) C]tetrahydrolipstatin, and a 45 kDa protein radiolabeled by the inhibitor was identified as being a putative lipase. A C. papaya cDNA encoding a 55 kDa protein was further cloned, and its deduced sequence had 83.7% similarity with peptides from the 45 kDa protein, with a coverage of 25.6%. The protein encoded by this cDNA had 35% sequence identity and 51% similarity to castor bean acid lipase, suggesting that it is the lipase responsible for the important lipolytic activities detected in papaya latex. © 2010 The Authors Journal compilation © 2010 FEBS.

  6. Complete genome sequence of Streptococcus troglodytae TKU31 isolated from the oral cavity of a chimpanzee (Pan troglodytes).

    PubMed

    Okamoto, Masaaki; Naito, Mariko; Miyanohara, Mayu; Imai, Susumu; Nomura, Yoshiaki; Saito, Wataru; Momoi, Yasuko; Takada, Kazuko; Miyabe-Nishiwaki, Takako; Tomonaga, Masaki; Hanada, Nobuhiro

    2016-12-01

    Streptococcus troglodytae TKU31 was isolated from the oral cavity of a chimpanzee (Pan troglodytes) and was found to be the most closely related species of the mutans group streptococci to Streptococcus mutans. The complete sequence of TKU31 genome consists of a single circular chromosome that is 2,097,874 base pairs long and has a G + C content of 37.18%. It possesses 2082 coding sequences (CDSs), 65 tRNAs and five rRNA operons (15 rRNAs). Two clustered regularly interspaced short palindromic repeats, six insertion sequences and two predicted prophage elements were identified. The genome of TKU31 harbors some putative virulence associated genes, including gtfB, gtfC and gtfD genes encoding glucosyltransferase and gbpA, gbpB, gbpC and gbpD genes encoding glucan-binding cell wall-anchored protein. The deduced amino acid identity of the rhamnose-glucose polysaccharide F gene (rgpF), which is one of the serotype determinants, is 91% identical with that of S. mutans LJ23 (serotype k) strain. However, two other virulence-associated genes cnm and cbm, which encode the collagen-binding proteins, were not found in the TKU31 genome. The complete genome sequence of S. troglodytae TKU31 has been deposited at DDBJ/European Nucleotide Archive/GenBank under the accession no. AP014612. © 2016 The Societies and John Wiley & Sons Australia, Ltd.

  7. Prediction of the protein components of a putative Calanus finmarchicus (Crustacea, Copepoda) circadian signaling system using a de novo assembled transcriptome

    PubMed Central

    Christie, Andrew E.; Fontanilla, Tiana M.; Nesbit, Katherine T.; Lenz, Petra H.

    2013-01-01

    Diel vertical migration and seasonal diapause are critical life history events for the copepod Calanus finmarchicus. While much is known about these behaviors phenomenologically, little is known about their molecular underpinnings. Recent studies in insects suggest that some circadian genes/proteins also contribute to the establishment of seasonal diapause. Thus, it is possible that in Calanus these distinct timing regimes share some genetic components. To begin to address this possibility, we used the well-established Drosophila melanogaster circadian system as a reference for mining clock transcripts from a 200,000+ sequence Calanus transcriptome; the proteins encoded by the identified transcripts were also deduced and characterized. Sequences encoding homologs of the Drosophila core clock proteins CLOCK, CYCLE, PERIOD and TIMELESS were identified, as was one encoding CRYPTOCHROME 2, a core clock protein in ancestral insect systems, but absent in Drosophila. Calanus transcripts encoding proteins known to modulate the Drosophila core clock were also identified and characterized, e.g. CLOCKWORK ORANGE, DOUBLETIME, SHAGGY and VRILLE. Alignment and structural analyses of the deduced Calanus proteins with their Drosophila counterparts revealed extensive sequence conservation, particularly in functional domains. Interestingly, reverse BLAST analyses of these sequences against all arthropod proteins typically revealed non-Drosophila isoforms to be most similar to the Calanus queries. This, in combination with the presence of both CRYPTOCHROME 1 (a clock input pathway protein) and CRYPTOCHROME 2 in Calanus, suggests that the organization of the copepod circadian system is an ancestral one, more similar to that of insects like Danaus plexippus than to that of Drosophila. PMID:23727418

  8. Trichoderma reesei xylanase 5 is defective in the reference strain QM6a but functional alleles are present in other wild-type strains.

    PubMed

    Ramoni, Jonas; Marchetti-Deschmann, Martina; Seidl-Seiboth, Verena; Seiboth, Bernhard

    2017-05-01

    Trichoderma reesei is a paradigm for the regulation and industrial production of plant cell wall-degrading enzymes. Among these, five xylanases, including the glycoside hydrolase (GH) family 11 XYN1 and XYN2, the GH10 XYN3, and the GH30 XYN4 and XYN6, were described. By genome mining and transcriptome analysis, a further putative xylanase, encoded by xyn5, was identified. Analysis of xyn5 from the genome-sequenced reference strain T. reesei QM6a shows that it encodes a non-functional, truncated form of XYN5. However, non-truncated orthologues are present in other genome sequenced Trichoderma spp., and sequencing of xyn5 in other T. reesei wild-type isolates shows that they harbor a putative functional xyn5 allele. In silico analysis and 3D modeling revealed that the encoded XYN5 has significant structural similarities to xylanases of the GH11 family, including a GH-typical substrate binding groove and a carboxylate pair in the active site. The xyn5 of wild-type strain TUCIM1282 was recombinantly expressed in a T. reesei strain with a (hemi)cellulase-free background and the corresponding protein purified to apparent homogeneity. The pH and temperature optima and the kinetic parameters of the purified XYN5 were pH 4, 50 °C, and V max  = 2646 nkat/mg with a K m of 9.68 mg/ml. This functional xyn5 allele was used to replace the mutated version which led to an overall increase of the xylanolytic activity. These findings are of particular importance as GH11 xylanases are of high biotechnological relevance, and T. reesei is one of the main industrial producers of such lignocellulose-degrading enzymes.

  9. The Arabidopsis SOS5 Locus Encodes a Putative Cell Surface Adhesion Protein and Is Required for Normal Cell Expansion

    PubMed Central

    Shi, Huazhong; Kim, YongSig; Guo, Yan; Stevenson, Becky; Zhu, Jian-Kang

    2003-01-01

    Cell surface proteoglycans have been implicated in many aspects of plant growth and development, but genetic evidence supporting their function has been lacking. Here, we report that the Salt Overly Sensitive5 (SOS5) gene encodes a putative cell surface adhesion protein and is required for normal cell expansion. The sos5 mutant was isolated in a screen for Arabidopsis salt-hypersensitive mutants. Under salt stress, the root tips of sos5 mutant plants swell and root growth is arrested. The root-swelling phenotype is caused by abnormal expansion of epidermal, cortical, and endodermal cells. The SOS5 gene was isolated through map-based cloning. The predicted SOS5 protein contains an N-terminal signal sequence for plasma membrane localization, two arabinogalactan protein–like domains, two fasciclin-like domains, and a C-terminal glycosylphosphatidylinositol lipid anchor signal sequence. The presence of fasciclin-like domains, which typically are found in animal cell adhesion proteins, suggests a role for SOS5 in cell-to-cell adhesion in plants. The SOS5 protein was present at the outer surface of the plasma membrane. The cell walls are thinner in the sos5 mutant, and those between neighboring epidermal and cortical cells in sos5 roots appear less organized. SOS5 is expressed ubiquitously in all plant organs and tissues, including guard cells in the leaf. PMID:12509519

  10. Structural analysis, plastid localization, and expression of the biotin carboxylase subunit of acetyl-coenzyme A carboxylase from tobacco.

    PubMed

    Shorrosh, B S; Roesler, K R; Shintani, D; van de Loo, F J; Ohlrogge, J B

    1995-06-01

    Acetyl-coenzyme A carboxylase (ACCase, EC 6.4.1.2) catalyzes the synthesis of malonyl-coenzyme A, which is utilized in the plastid for de novo fatty acid synthesis and outside the plastid for a variety of reactions, including the synthesis of very long chain fatty acids and flavonoids. Recent evidence for both multifunctional and multisubunit ACCase isozymes in dicot plants has been obtained. We describe here the isolation of a tobacco (Nicotiana tabacum L. cv bright yellow 2 [NT1]) cDNA clone (E3) that encodes a 58.4-kD protein that shares 80% sequence similarity and 65% identity with the Anabaena biotin carboxylase subunit of ACCase. Similar to other biotin carboxylase subunits of acetyl-CoA carboxylase, the E3-encoded protein contains a putative ATP-binding motif but lacks a biotin-binding site (methionine-lysine-methionine or methionine-lysine-leucine). The deduced protein sequence contains a putative transit peptide whose function was confirmed by its ability to direct in vitro chloroplast uptake. The subcellular localization of this biotin carboxylase has also been confirmed to be plastidial by western blot analysis of pea (Pisum sativum), alfalfa (Medicago sativa L.), and castor (Ricinus communis L.) plastid preparations. Northern blot analysis indicates that the plastid biotin carboxylase transcripts are expressed at severalfold higher levels in castor seeds than in leaves.

  11. Structural analysis, plastid localization, and expression of the biotin carboxylase subunit of acetyl-coenzyme A carboxylase from tobacco.

    PubMed Central

    Shorrosh, B S; Roesler, K R; Shintani, D; van de Loo, F J; Ohlrogge, J B

    1995-01-01

    Acetyl-coenzyme A carboxylase (ACCase, EC 6.4.1.2) catalyzes the synthesis of malonyl-coenzyme A, which is utilized in the plastid for de novo fatty acid synthesis and outside the plastid for a variety of reactions, including the synthesis of very long chain fatty acids and flavonoids. Recent evidence for both multifunctional and multisubunit ACCase isozymes in dicot plants has been obtained. We describe here the isolation of a tobacco (Nicotiana tabacum L. cv bright yellow 2 [NT1]) cDNA clone (E3) that encodes a 58.4-kD protein that shares 80% sequence similarity and 65% identity with the Anabaena biotin carboxylase subunit of ACCase. Similar to other biotin carboxylase subunits of acetyl-CoA carboxylase, the E3-encoded protein contains a putative ATP-binding motif but lacks a biotin-binding site (methionine-lysine-methionine or methionine-lysine-leucine). The deduced protein sequence contains a putative transit peptide whose function was confirmed by its ability to direct in vitro chloroplast uptake. The subcellular localization of this biotin carboxylase has also been confirmed to be plastidial by western blot analysis of pea (Pisum sativum), alfalfa (Medicago sativa L.), and castor (Ricinus communis L.) plastid preparations. Northern blot analysis indicates that the plastid biotin carboxylase transcripts are expressed at severalfold higher levels in castor seeds than in leaves. PMID:7610168

  12. Fruitlet abscission: A cDNA-AFLP approach to study genes differentially expressed during shedding of immature fruits reveals the involvement of a putative auxin hydrogen symporter in apple (Malus domestica L. Borkh).

    PubMed

    Dal Cin, Valeriano; Barbaro, Enrico; Danesin, Marcello; Murayama, Hideki; Velasco, Riccardo; Ramina, Angelo

    2009-08-01

    Apple Malus X domestica fruitlet abscission is preceded by a stimulation of ethylene biosynthesis and a gain in sensitivity to the hormone. This phase was studied by a differential screening carried out by cDNA-AFLP in abscising (AF) and non-abscising (NAF) fruitlet populations. Fifty-three primer combinations allowed for the isolation of 131, 66 and 30 differentially expressed bands from cortex, peduncle and seed, respectively. All sequences were then classified as up- or down-regulated by comparing the profile in AFs and NAFs. Almost all of these sequences showed significant homology to genes encoding proteins with known or putative function. The gene ontology analysis of the TDFs isolated indicated a deep change in metabolism, plastid and hormonal status, especially auxin. Furthermore, some common elements between abscission and senescence were identified. The isolation of the full length of one of these TDFs allowed for the identification of a gene encoding an auxin hydrogen symporter (MdAHS). Bioinformatic analysis indicated that the deduced protein shares some features with other auxin efflux carriers, which include PINs. Nevertheless the 3D structure pointed out substantial differences and a conformation largely dissimilar from canonical ion transporters. The expression analysis demonstrated that this gene is regulated by light and development but not affected by ethylene or auxin.

  13. Analysis of the site-specific integration system of the Streptomyces aureofaciens phage μ1/6.

    PubMed

    Farkašovská, Jarmila; Godány, Andrej

    2012-03-01

    The bacteriophage μ1/6 integrates its DNA into the chromosome of tetracycline producing strains of Streptomyces aureofaciens by a site-specific recombination process. A bioinformatic analysis of the μ1/6 genome revealed that orf5 encodes a putative integrase, a basic protein of 416 amino acids. The μ1/6 integrase was found to belong to the integrase family of site-specific tyrosine recombinases. The phage attachment site (attP) was localized downstream of the int gene. The attachment junctions (attL and attR) were determined, allowing identification of the bacterial attachment site (attB). All attachment sites shared a 46-bp common core sequence within which a site-specific recombination occurs. This core sequence comprises the 3' end of a putative tRNA(Thr) gene (anticodon TGT) which is completely restored in attL after integration of the phage into the host genome. An integration vector containing μ1/6 int-attP region was inserted stably into the S. aureofaciens B96, S. lividans TK24, and S. coelicolor A3. The μ1/6 integrase was shown to be functional in vivo in heterologous Escherichia coli without any other factors encoded by Streptomyces. In vitro recombination assay using purified μ1/6 integrase demonstrated its ability to catalyze integrative recombination in the presence of a crude extract of E. coli cells.

  14. Molecular cloning and characterization of a new basic peroxidase cDNA from soybean hypocotyls infected with Phytophthora sojae f.sp. glycines.

    PubMed

    Yi, S Y; Hwang, B K

    1998-10-31

    Differential display techniques were used to isolate cDNA clones corresponding to genes which were expressed in soybean hypocotyls by Phytophthora sojae f.sp. glycines infection. With a partial cDNA clone C20CI4 from the differential display PCR as a probe, a new basic peroxidase cDNA clone, designated GMIPER1, was isolated from a cDNA library of soybean hypocotyls infected with P. sojae f.sp. glycines. Sequence analysis revealed that the peroxidase clone encodes a mature protein of 35,813 Da with a putative signal peptide of 27 amino acids in its N-terminus. The amino acid sequence of the soybean peroxidase GMIPER1 is between 54-75% identical to other plant peroxidases including a soybean seed coat peroxidase. Southern blot analysis indicated that multiple copies of sequences related to GMIPER1 exist in the soybean genome. The mRNAs corresponding to the GMIPER1 cDNA accumulated predominantly in the soybean hypocotyls infected with the incompatible race of P. sojae f.sp. glycines, but were expressed at low levels in the compatible interaction. Soybean GMIPER1 mRNAs were not expressed in hypocotyls, leaves, stems, and roots of soybean seedlings. However, treatments with ethephon, salicylic acid or methyl jasmonate induced the accumulation of the GMIPER1 mRNAs in the different organs of soybean. These results suggest that the GMIPER1 gene encoding a putative pathogen-induced peroxidase may play an important role in induced resistance of soybean to P. sojae f.sp. glycines and in response to various external stresses.

  15. Molecular cloning of an inducible serine esterase gene from human cytotoxic lymphocytes.

    PubMed Central

    Trapani, J A; Klein, J L; White, P C; Dupont, B

    1988-01-01

    A cDNA clone encoding a human serine esterase gene was isolated from a library constructed from poly(A)+ RNA of allogeneically stimulated, interleukin 2-expanded peripheral blood mononuclear cells. The clone, designated HSE26.1, represents a full-length copy of a 0.9-kilobase mRNA present in human cytotoxic cells but absent from a wide variety of noncytotoxic cell lines. Clone HSE26.1 contains an 892-base-pair sequence, including a single 741-base-pair open reading frame encoding a putative 247-residue polypeptide. The first 20 amino acids of the polypeptide form a leader sequence. The mature protein is predicted to have an unglycosylated Mr of approximately equal to 26,000 and contains a single potential site for N-linked glycosylation. The nucleotide and predicted amino acid sequences of clone HSE26.1 are homologous with all murine and human serine esterases cloned thus far but are most similar to mouse granzyme B (70% nucleotide and 68% amino acid identity). HSE26.1 protein is expressed weakly in unstimulated peripheral blood mononuclear cells but is strongly induced within 6-hr incubation in medium containing phytohemagglutinin. The data suggest that the protein encoded by HSE26.1 plays a role in cell-mediated cytotoxicity. Images PMID:3261871

  16. Cloning and sequencing of a laccase gene from the lignin-degrading basidiomycete Pleurotus ostreatus.

    PubMed Central

    Giardina, P; Cannio, R; Martirani, L; Marzullo, L; Palmieri, G; Sannia, G

    1995-01-01

    The gene (pox1) encoding a phenol oxidase from Pleurotus ostreatus, a lignin-degrading basidiomycete, was cloned and sequenced, and the corresponding pox1 cDNA was also synthesized and sequenced. The isolated gene consists of 2,592 bp, with the coding sequence being interrupted by 19 introns and flanked by an upstream region in which putative CAAT and TATA consensus sequences could be identified at positions -174 and -84, respectively. The isolation of a second cDNA (pox2 cDNA), showing 84% similarity, and of the corresponding truncated genomic clones demonstrated the existence of a multigene family coding for isoforms of laccase in P. ostreatus. PCR amplifications of specific regions on the DNA of isolated monokaryons proved that the two genes are not allelic forms. The POX1 amino acid sequence deduced was compared with those of other known laccases from different fungi. PMID:7793961

  17. Molecular and biochemical characterization of two tungsten- and selenium-containing formate dehydrogenases from Eubacterium acidaminophilum that are associated with components of an iron-only hydrogenase.

    PubMed

    Graentzdoerffer, Andrea; Rauh, David; Pich, Andreas; Andreesen, Jan R

    2003-01-01

    Two gene clusters encoding similar formate dehydrogenases (FDH) were identified in Eubacterium acidaminophilum. Each cluster is composed of one gene coding for a catalytic subunit ( fdhA-I, fdhA-II) and one for an electron-transferring subunit ( fdhB-I, fdhB-II). Both fdhA genes contain a TGA codon for selenocysteine incorporation and the encoded proteins harbor five putative iron-sulfur clusters in their N-terminal region. Both FdhB subunits resemble the N-terminal region of FdhA on the amino acid level and contain five putative iron-sulfur clusters. Four genes thought to encode the subunits of an iron-only hydrogenase are located upstream of the FDH gene cluster I. By sequence comparison, HymA and HymB are predicted to contain one and four iron-sulfur clusters, respectively, the latter protein also binding sites for FMN and NAD(P). Thus, HymA and HymB seem to represent electron-transferring subunits, and HymC the putative catalytic subunit containing motifs for four iron-sulfur clusters and one H-cluster specific for Fe-only hydrogenases. HymD has six predicted transmembrane helices and might be an integral membrane protein. Viologen-dependent FDH activity was purified from serine-grown cells of E. acidaminophilum and the purified protein complex contained four subunits, FdhA and FdhB, encoded by FDH gene cluster II, and HymA and HymB, identified after determination of their N-terminal sequences. Thus, this complex might represent the most simple type of a formate hydrogen lyase. The purified formate dehydrogenase fraction contained iron, tungsten, a pterin cofactor, and zinc, but no molybdenum. FDH-II had a two-fold higher K(m) for formate (0.37 mM) than FDH-I and also catalyzed CO(2) reduction to formate. Reverse transcription (RT)-PCR pointed to increased expression of FDH-II in serine-grown cells, supporting the isolation of this FDH isoform. The fdhA-I gene was expressed as inactive protein in Escherichia coli. The in-frame UGA codon for selenocysteine incorporation was read in the heterologous system only as stop codon, although its potential SECIS element exhibited a quite high similarity to that of E. coli FDH.

  18. Ovule development: identification of stage-specific and tissue-specific cDNAs.

    PubMed Central

    Nadeau, J A; Zhang, X S; Li, J; O'Neill, S D

    1996-01-01

    A differential screening approach was used to identify seven ovule-specific cDNAs representing genes that are expressed in a stage-specific manner during ovule development. The Phalaenopsis orchid takes 80 days to complete the sequence of ovule developmental events, making it a good system to isolate stage-specific ovule genes. We constructed cDNA libraries from orchid ovule tissue during archesporial cell differentiation, megasporocyte formation, and the transition to meiosis, as well as during the final mitotic divisions of female gametophyte development. RNA gel blot hybridization analysis revealed that four clones were stage specific and expressed solely in ovule tissue, whereas one clone was specific to pollen tubes. Two other clones were not ovule specific. Sequence analysis and in situ hybridization revealed the identities and domain of expression of several of the cDNAs. O39 encodes a putative homeobox transcription factor that is expressed early in the differentiation of the ovule primordium; O40 encodes a cytochrome P450 monooxygenase (CYP78A2) that is pollen tube specific. O108 encodes a protein of unknown function that is expressed exclusively in the outer layer of the outer integument and in the female gametophyte of mature ovules. O126 encodes a glycine-rich protein that is expressed in mature ovules, and O141 encodes a cysteine proteinase that is expressed in the outer integument of ovules during seed formation. Sequences homologous to these ovule clones can now be isolated from other organisms, and this should facilitate their functional characterization. PMID:8742709

  19. Nucleotide sequence and transcriptional start site of the Methylobacterium organophilum XX methanol dehydrogenase structural gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machlin, S.M.; Hanson, R.S.

    The nucleotide sequence of a cloned 2.5-kilobase-pair SmaI fragment containing the methanol dehydrogenase (MDH) structural gene from Methylobacterium organophilum XX was determined. A single open reading frame with a coding capacity of 626 amino acids (molecular weight, 66,000) was identified on one stand, and N-terminal sequencing of purified MDH revealed that 27 of these residues constituted a putative signal peptide. Primer extension mapping of in vivo transcripts indicated that the start of mRNA synthesis was 160 to 170 base pairs upstream of the ATG codon. Northern (RNA) blot analysis further demonstrated that the transcript was 2.1 kilobase pairs in lengthmore » and therefore appeared to encode only MDH.« less

  20. Complete genome sequence of a novel flavivirus, duck tembusu virus, isolated from ducks and geese in china.

    PubMed

    Yun, Tao; Zhang, Dabing; Ma, Xuejun; Cao, Zhenzhen; Chen, Liu; Ni, Zheng; Ye, Weicheng; Yu, Bin; Hua, Jionggang; Zhang, Yan; Zhang, Cun

    2012-03-01

    Duck tembusu virus (DTMUV) is an emerging agent that causes a severe disease in ducks. We report herein the first complete genome sequences of duck tembusu virus strains YY5, ZJ-407, and GH-2, isolated from Shaoxing ducks, breeder ducks, and geese, respectively, in China. The genomes of YY5, ZJ-407, and GH-2 are all 10,990 nucleotides (nt) in length and encode a putative polyprotein of 3,426 amino acids. It is flanked by a 5' and a 3' noncoding region (NCR) of 94 and 618 nt, respectively. Knowledge of the whole sequence of DTMUV will be useful for further studies of the mechanisms of virus replication and pathogenesis.

  1. Purification and Molecular Characterization of the Tungsten-Containing Formaldehyde Ferredoxin Oxidoreductase from the Hyperthermophilic Archaeon Pyrococcus furiosus: the Third of a Putative Five-Member Tungstoenzyme Family

    PubMed Central

    Roy, Roopali; Mukund, Swarnalatha; Schut, Gerrit J.; Dunn, Dianne M.; Weiss, Robert; Adams, Michael W. W.

    1999-01-01

    Pyrococcus furiosus is a hyperthermophilic archaeon which grows optimally near 100°C by fermenting peptides and sugars to produce organic acids, CO2, and H2. Its growth requires tungsten, and two different tungsten-containing enzymes, aldehyde ferredoxin oxidoreductase (AOR) and glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR), have been previously purified from P. furiosus. These two enzymes are thought to function in the metabolism of peptides and carbohydrates, respectively. A third type of tungsten-containing enzyme, formaldehyde ferredoxin oxidoreductase (FOR), has now been characterized. FOR is a homotetramer with a mass of 280 kDa and contains approximately 1 W atom, 4 Fe atoms, and 1 Ca atom per subunit, together with a pterin cofactor. The low recovery of FOR activity during purification was attributed to loss of sulfide, since the purified enzyme was activated up to fivefold by treatment with sulfide (HS−) under reducing conditions. FOR uses P. furiosus ferredoxin as an electron acceptor (Km = 100 μM) and oxidizes a range of aldehydes. Formaldehyde (Km = 15 mM for the sulfide-activated enzyme) was used in routine assays, but the physiological substrate is thought to be an aliphatic C5 semi- or dialdehyde, e.g., glutaric dialdehyde (Km = 1 mM). Based on its amino-terminal sequence, the gene encoding FOR (for) was identified in the genomic database, together with those encoding AOR and GAPOR. The amino acid sequence of FOR corresponded to a mass of 68.7 kDa and is highly similar to those of the subunits of AOR (61% similarity and 40% identity) and GAPOR (50% similarity and 23% identity). The three genes are not linked on the P. furiosus chromosome. Two additional (and nonlinked) genes (termed wor4 and wor5) that encode putative tungstoenzymes with 57% (WOR4) and 56% (WOR5) sequence similarity to FOR were also identified. Based on sequence motif similarities with FOR, both WOR4 and WOR5 are also proposed to contain a tungstobispterin site and one [4Fe-4S] cluster per subunit. PMID:9973343

  2. The spectrum of low molecular weight alpha-amylase/protease inhibitor genes expressed in the US bread wheat cultivar Butte 86

    PubMed Central

    2011-01-01

    Background Wheat grains accumulate a variety of low molecular weight proteins that are inhibitors of alpha-amylases and proteases and play an important protective role in the grain. These proteins have more balanced amino acid compositions than the major wheat gluten proteins and contribute important reserves for both seedling growth and human nutrition. The alpha-amylase/protease inhibitors also are of interest because they cause IgE-mediated occupational and food allergies and thereby impact human health. Results The complement of genes encoding alpha-amylase/protease inhibitors expressed in the US bread wheat Butte 86 was characterized by analysis of expressed sequence tags (ESTs). Coding sequences for 19 distinct proteins were identified. These included two monomeric (WMAI), four dimeric (WDAI), and six tetrameric (WTAI) inhibitors of exogenous alpha-amylases, two inhibitors of endogenous alpha-amylases (WASI), four putative trypsin inhibitors (CMx and WTI), and one putative chymotrypsin inhibitor (WCI). A number of the encoded proteins were identical or very similar to proteins in the NCBI database. Sequences not reported previously included variants of WTAI-CM3, three CMx inhibitors and WTI. Within the WDAI group, two different genes encoded the same mature protein. Based on numbers of ESTs, transcripts for WTAI-CM3 Bu-1, WMAI Bu-1 and WTAI-CM16 Bu-1 were most abundant in Butte 86 developing grain. Coding sequences for 16 of the inhibitors were unequivocally associated with specific proteins identified by tandem mass spectrometry (MS/MS) in a previous proteomic analysis of milled white flour from Butte 86. Proteins corresponding to WDAI Bu-1/Bu-2, WMAI Bu-1 and the WTAI subunits CM2 Bu-1, CM3 Bu-1 and CM16 Bu-1 were accumulated to the highest levels in flour. Conclusions Information on the spectrum of alpha-amylase/protease inhibitor genes and proteins expressed in a single wheat cultivar is central to understanding the importance of these proteins in both plant defense mechanisms and human allergies and facilitates both breeding and biotechnology approaches for manipulating the composition of these proteins in plants. PMID:21774824

  3. Molecular cloning of a cDNA encoding the precursor of adenoregulin from frog skin. Relationships with the vertebrate defensive peptides, dermaseptins.

    PubMed

    Amiche, M; Ducancel, F; Lajeunesse, E; Boulain, J C; Ménez, A; Nicolas, P

    1993-03-31

    Adenoregulin has recently been isolated from Phyllomedusa skin as a 33 amino acid residues peptide which enhanced binding of agonists to the A1 adenosine receptor. In order to study the structure of the precursor of adenoregulin we constructed a cDNA library from mRNAs extracted from the skin of Phyllomedusa bicolor. We detected the complete nucleotide sequence of a cDNA encoding the adenoregulin biosynthetic precursor. The deduced sequence of the precursor is 81 amino acids long, exhibits a putative signal sequence at the NH2 terminus and contains a single copy of the biologically active peptide at the COOH terminus. Structural and conformational homologies that are observed between adenoregulin and the dermaseptins, antimicrobial peptides exhibiting strong membranolytic activities against various pathogenic agents, suggest that adenoregulin is an additional member of the growing family of cytotropic antimicrobial peptides that allow vertebrate animals to defend themselves against microorganisms. As such, the adenosine receptor regulating activity of adenoregulin could be due to its ability to interact with and disrupt membranes lipid bilayers.

  4. The complete genome sequence and genetic analysis of ΦCA82 a novel uncultured microphage from the turkey gastrointestinal system

    PubMed Central

    2011-01-01

    The genomic DNA sequence of a novel enteric uncultured microphage, ΦCA82 from a turkey gastrointestinal system was determined utilizing metagenomics techniques. The entire circular, single-stranded nucleotide sequence of the genome was 5,514 nucleotides. The ΦCA82 genome is quite different from other microviruses as indicated by comparisons of nucleotide similarity, predicted protein similarity, and functional classifications. Only three genes showed significant similarity to microviral proteins as determined by local alignments using BLAST analysis. ORF1 encoded a predicted phage F capsid protein that was phylogenetically most similar to the Microviridae ΦMH2K member's major coat protein. The ΦCA82 genome also encoded a predicted minor capsid protein (ORF2) and putative replication initiation protein (ORF3) most similar to the microviral bacteriophage SpV4. The distant evolutionary relationship of ΦCA82 suggests that the divergence of this novel turkey microvirus from other microviruses may reflect unique evolutionary pressures encountered within the turkey gastrointestinal system. PMID:21714899

  5. Purification, characterization, and cDNA cloning of a novel acidic endoglycoceramidase from the jellyfish, Cyanea nozakii.

    PubMed

    Horibata, Y; Okino, N; Ichinose, S; Omori, A; Ito, M

    2000-10-06

    Endoglycoceramidase (EC ) is an enzyme capable of cleaving the glycosidic linkage between oligosaccharides and ceramides in various glycosphingolipids. We report here the purification, characterization, and cDNA cloning of a novel endoglycoceramidase from the jellyfish, Cyanea nozakii. The purified enzyme showed a single protein band estimated to be 51 kDa on SDS-polyacrylamide gel electrophoresis. The enzyme showed a pH optimum of 3.0 and was activated by Triton X-100 and Lubrol PX but not by sodium taurodeoxycholate. This enzyme preferentially hydrolyzed gangliosides, especially GT1b and GQ1b, whereas neutral glycosphingolipids were somewhat resistant to hydrolysis by the enzyme. A full-length cDNA encoding the enzyme was cloned by 5'- and 3'-rapid amplification of cDNA ends using a partial amino acid sequence of the purified enzyme. The open reading frame of 1509 nucleotides encoded a polypeptide of 503 amino acids including a signal sequence of 25 residues and six potential N-glycosylation sites. Interestingly, the Asn-Glu-Pro sequence, which is the putative active site of Rhodococcus endoglycoceramidase, was conserved in the deduced amino acid sequences. This is the first report of the cloning of an endoglycoceramidase from a eukaryote.

  6. Polypeptide p41 of a Norwalk-Like Virus Is a Nucleic Acid-Independent Nucleoside Triphosphatase

    PubMed Central

    Pfister, Thomas; Wimmer, Eckard

    2001-01-01

    Southampton virus (SHV) is a member of the Norwalk-like viruses (NLVs), one of four genera of the family Caliciviridae. The genome of SHV contains three open reading frames (ORFs). ORF 1 encodes a polyprotein that is autocatalytically processed into six proteins, one of which is p41. p41 shares sequence motifs with protein 2C of picornaviruses and superfamily 3 helicases. We have expressed p41 of SHV in bacteria. Purified p41 exhibited nucleoside triphosphate (NTP)-binding and NTP hydrolysis activities. The NTPase activity was not stimulated by single-stranded nucleic acids. SHV p41 had no detectable helicase activity. Protein sequence comparison between the consensus sequences of NLV p41 and enterovirus protein 2C revealed regions of high similarity. According to secondary structure prediction, the conserved regions were located within a putative central domain of alpha helices and beta strands. This study reveals for the first time an NTPase activity associated with a calicivirus-encoded protein. Based on enzymatic properties and sequence information, a functional relationship between NLV p41 and enterovirus 2C is discussed in regard to the role of 2C-like proteins in virus replication. PMID:11160659

  7. A deep learning method for lincRNA detection using auto-encoder algorithm.

    PubMed

    Yu, Ning; Yu, Zeng; Pan, Yi

    2017-12-06

    RNA sequencing technique (RNA-seq) enables scientists to develop novel data-driven methods for discovering more unidentified lincRNAs. Meantime, knowledge-based technologies are experiencing a potential revolution ignited by the new deep learning methods. By scanning the newly found data set from RNA-seq, scientists have found that: (1) the expression of lincRNAs appears to be regulated, that is, the relevance exists along the DNA sequences; (2) lincRNAs contain some conversed patterns/motifs tethered together by non-conserved regions. The two evidences give the reasoning for adopting knowledge-based deep learning methods in lincRNA detection. Similar to coding region transcription, non-coding regions are split at transcriptional sites. However, regulatory RNAs rather than message RNAs are generated. That is, the transcribed RNAs participate the biological process as regulatory units instead of generating proteins. Identifying these transcriptional regions from non-coding regions is the first step towards lincRNA recognition. The auto-encoder method achieves 100% and 92.4% prediction accuracy on transcription sites over the putative data sets. The experimental results also show the excellent performance of predictive deep neural network on the lincRNA data sets compared with support vector machine and traditional neural network. In addition, it is validated through the newly discovered lincRNA data set and one unreported transcription site is found by feeding the whole annotated sequences through the deep learning machine, which indicates that deep learning method has the extensive ability for lincRNA prediction. The transcriptional sequences of lincRNAs are collected from the annotated human DNA genome data. Subsequently, a two-layer deep neural network is developed for the lincRNA detection, which adopts the auto-encoder algorithm and utilizes different encoding schemes to obtain the best performance over intergenic DNA sequence data. Driven by those newly annotated lincRNA data, deep learning methods based on auto-encoder algorithm can exert their capability in knowledge learning in order to capture the useful features and the information correlation along DNA genome sequences for lincRNA detection. As our knowledge, this is the first application to adopt the deep learning techniques for identifying lincRNA transcription sequences.

  8. Integrating metagenomic and amplicon databases to resolve the phylogenetic and ecological diversity of the Chlamydiae

    PubMed Central

    Lagkouvardos, Ilias; Weinmaier, Thomas; Lauro, Federico M; Cavicchioli, Ricardo; Rattei, Thomas; Horn, Matthias

    2014-01-01

    In the era of metagenomics and amplicon sequencing, comprehensive analyses of available sequence data remain a challenge. Here we describe an approach exploiting metagenomic and amplicon data sets from public databases to elucidate phylogenetic diversity of defined microbial taxa. We investigated the phylum Chlamydiae whose known members are obligate intracellular bacteria that represent important pathogens of humans and animals, as well as symbionts of protists. Despite their medical relevance, our knowledge about chlamydial diversity is still scarce. Most of the nine known families are represented by only a few isolates, while previous clone library-based surveys suggested the existence of yet uncharacterized members of this phylum. Here we identified more than 22 000 high quality, non-redundant chlamydial 16S rRNA gene sequences in diverse databases, as well as 1900 putative chlamydial protein-encoding genes. Even when applying the most conservative approach, clustering of chlamydial 16S rRNA gene sequences into operational taxonomic units revealed an unexpectedly high species, genus and family-level diversity within the Chlamydiae, including 181 putative families. These in silico findings were verified experimentally in one Antarctic sample, which contained a high diversity of novel Chlamydiae. In our analysis, the Rhabdochlamydiaceae, whose known members infect arthropods, represents the most diverse and species-rich chlamydial family, followed by the protist-associated Parachlamydiaceae, and a putative new family (PCF8) with unknown host specificity. Available information on the origin of metagenomic samples indicated that marine environments contain the majority of the newly discovered chlamydial lineages, highlighting this environment as an important chlamydial reservoir. PMID:23949660

  9. Genetic and functional properties of uncultivated thermophilic crenarchaeotes from a subsurface gold mine as revealed by analysis of genome fragments.

    PubMed

    Nunoura, Takuro; Hirayama, Hisako; Takami, Hideto; Oida, Hanako; Nishi, Shinro; Shimamura, Shigeru; Suzuki, Yohey; Inagaki, Fumio; Takai, Ken; Nealson, Kenneth H; Horikoshi, Koki

    2005-12-01

    Within a phylum Crenarchaeota, only some members of the hyperthermophilic class Thermoprotei, have been cultivated and characterized. In this study, we have constructed a metagenomic library from a microbial mat formation in a subsurface hot water stream of the Hishikari gold mine, Japan, and sequenced genome fragments of two different phylogroups of uncultivated thermophilic Crenarchaeota: (i) hot water crenarchaeotic group (HWCG) I (41.2 kb), and (ii) HWCG III (49.3 kb). The genome fragment of HWCG I contained a 16S rRNA gene, two tRNA genes and 35 genes encoding proteins but no 23S rRNA gene. Among the genes encoding proteins, several genes for putative aerobic-type carbon monoxide dehydrogenase represented a potential clue with regard to the yet unknown metabolism of HWCG I Archaea. The genome fragment of HWCG III contained a 16S/23S rRNA operon and 44 genes encoding proteins. In the 23S rRNA gene, we detected a homing-endonuclease encoding a group I intron similar to those detected in hyperthermophilic Crenarchaeota and Bacteria, as well as eukaryotic organelles. The reconstructed phylogenetic tree based on the 23S rRNA gene sequence reinforced the intermediate phylogenetic affiliation of HWCG III bridging the hyperthermophilic and non-thermophilic uncultivated Crenarchaeota.

  10. Deep sequencing and genome-wide analysis reveals the expansion of MicroRNA genes in the gall midge Mayetiola destructor

    PubMed Central

    2013-01-01

    Background MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in regulating post transcriptional gene expression. Gall midges encompass a large group of insects that are of economic importance and also possess fascinating biological traits. The gall midge Mayetiola destructor, commonly known as the Hessian fly, is a destructive pest of wheat and model organism for studying gall midge biology and insect – host plant interactions. Results In this study, we systematically analyzed miRNAs from the Hessian fly. Deep-sequencing a Hessian fly larval transcriptome led to the identification of 89 miRNA species that are either identical or very similar to known miRNAs from other insects, and 184 novel miRNAs that have not been reported from other species. A genome-wide search through a draft Hessian fly genome sequence identified a total of 611 putative miRNA-encoding genes based on sequence similarity and the existence of a stem-loop structure for miRNA precursors. Analysis of the 611 putative genes revealed a striking feature: the dramatic expansion of several miRNA gene families. The largest family contained 91 genes that encoded 20 different miRNAs. Microarray analyses revealed the expression of miRNA genes was strictly regulated during Hessian fly larval development and abundance of many miRNA genes were affected by host genotypes. Conclusion The identification of a large number of miRNAs for the first time from a gall midge provides a foundation for further studies of miRNA functions in gall midge biology and behavior. The dramatic expansion of identical or similar miRNAs provides a unique system to study functional relations among miRNA iso-genes as well as changes in sequence specificity due to small changes in miRNAs and in their mRNA targets. These results may also facilitate the identification of miRNA genes for potential pest control through transgenic approaches. PMID:23496979

  11. Characterization and Heterologous Expression of the Genes Encoding Enterocin A Production, Immunity, and Regulation in Enterococcus faecium DPC1146

    PubMed Central

    O’Keeffe, Triona; Hill, Colin; Ross, R. Paul

    1999-01-01

    Enterocin A is a small, heat-stable, antilisterial bacteriocin produced by Enterococcus faecium DPC1146. The sequence of a 10,879-bp chromosomal region containing at least 12 open reading frames (ORFs), 7 of which are predicted to play a role in enterocin biosynthesis, is presented. The genes entA, entI, and entF encode the enterocin A prepeptide, the putative immunity protein, and the induction factor prepeptide, respectively. The deduced proteins EntK and EntR resemble the histidine kinase and response regulator proteins of two-component signal transducing systems of the AgrC-AgrA type. The predicted proteins EntT and EntD are homologous to ABC (ATP-binding cassette) transporters and accessory factors, respectively, of several other bacteriocin systems and to proteins implicated in the signal-sequence-independent export of Escherichia coli hemolysin A. Immediately downstream of the entT and entD genes are two ORFs, the product of one of which, ORF4, is very similar to the product of the yteI gene of Bacillus subtilis and to E. coli protease IV, a signal peptide peptidase known to be involved in outer membrane lipoprotein export. Another potential bacteriocin is encoded in the opposite direction to the other genes in the enterocin cluster. This putative bacteriocin-like peptide is similar to LafX, one of the components of the lactacin F complex. A deletion which included one of two direct repeats upstream of the entA gene abolished enterocin A activity, immunity, and ability to induce bacteriocin production. Transposon insertion upstream of the entF gene also had the same effect, but this mutant could be complemented by exogenously supplied induction factor. The putative EntI peptide was shown to be involved in the immunity to enterocin A. Cloning of a 10.5-kb amplicon comprising all predicted ORFs and regulatory regions resulted in heterologous production of enterocin A and induction factor in Enterococcus faecalis, while a four-gene construct (entAITD) under the control of a constitutive promoter resulted in heterologous enterocin A production in both E. faecalis and Lactococcus lactis. PMID:10103244

  12. Genome and Proteome Analysis of Rhodococcus erythropolis MI2: Elucidation of the 4,4´-Dithiodibutyric Acid Catabolism

    PubMed Central

    Khairy, Heba; Meinert, Christina; Wübbeler, Jan Hendrik; Poehlein, Anja; Daniel, Rolf; Voigt, Birgit; Riedel, Katharina; Steinbüchel, Alexander

    2016-01-01

    Rhodococcus erythropolis MI2 has the extraordinary ability to utilize the xenobiotic 4,4´-dithiodibutyric acid (DTDB). Cleavage of DTDB by the disulfide-reductase Nox, which is the only verified enzyme involved in DTDB-degradation, raised 4-mercaptobutyric acid (4MB). 4MB could act as building block of a novel polythioester with unknown properties. To completely unravel the catabolism of DTDB, the genome of R. erythropolis MI2 was sequenced, and subsequently the proteome was analyzed. The draft genome sequence consists of approximately 7.2 Mbp with an overall G+C content of 62.25% and 6,859 predicted protein-encoding genes. The genome of strain MI2 is composed of three replicons: one chromosome and two megaplasmids with sizes of 6.45, 0.4 and 0.35 Mbp, respectively. When cells of strain MI2 were cultivated with DTDB as sole carbon source and compared to cells grown with succinate, several interesting proteins with significantly higher expression levels were identified using 2D-PAGE and MALDI-TOF mass spectrometry. A putative luciferase-like monooxygenase-class F420-dependent oxidoreductase (RERY_05640), which is encoded by one of the 126 monooxygenase-encoding genes of the MI2-genome, showed a 3-fold increased expression level. This monooxygenase could oxidize the intermediate 4MB into 4-oxo-4-sulfanylbutyric acid. Next, a desulfurization step, which forms succinic acid and volatile hydrogen sulfide, is proposed. One gene coding for a putative desulfhydrase (RERY_06500) was identified in the genome of strain MI2. However, the gene product was not recognized in the proteome analyses. But, a significant expression level with a ratio of up to 7.3 was determined for a putative sulfide:quinone oxidoreductase (RERY_02710), which could also be involved in the abstraction of the sulfur group. As response to the toxicity of the intermediates, several stress response proteins were strongly expressed, including a superoxide dismutase (RERY_05600) and an osmotically induced protein (RERY_02670). Accordingly, novel insights in the catabolic pathway of DTDB were gained. PMID:27977722

  13. Genome and Proteome Analysis of Rhodococcus erythropolis MI2: Elucidation of the 4,4´-Dithiodibutyric Acid Catabolism.

    PubMed

    Khairy, Heba; Meinert, Christina; Wübbeler, Jan Hendrik; Poehlein, Anja; Daniel, Rolf; Voigt, Birgit; Riedel, Katharina; Steinbüchel, Alexander

    2016-01-01

    Rhodococcus erythropolis MI2 has the extraordinary ability to utilize the xenobiotic 4,4´-dithiodibutyric acid (DTDB). Cleavage of DTDB by the disulfide-reductase Nox, which is the only verified enzyme involved in DTDB-degradation, raised 4-mercaptobutyric acid (4MB). 4MB could act as building block of a novel polythioester with unknown properties. To completely unravel the catabolism of DTDB, the genome of R. erythropolis MI2 was sequenced, and subsequently the proteome was analyzed. The draft genome sequence consists of approximately 7.2 Mbp with an overall G+C content of 62.25% and 6,859 predicted protein-encoding genes. The genome of strain MI2 is composed of three replicons: one chromosome and two megaplasmids with sizes of 6.45, 0.4 and 0.35 Mbp, respectively. When cells of strain MI2 were cultivated with DTDB as sole carbon source and compared to cells grown with succinate, several interesting proteins with significantly higher expression levels were identified using 2D-PAGE and MALDI-TOF mass spectrometry. A putative luciferase-like monooxygenase-class F420-dependent oxidoreductase (RERY_05640), which is encoded by one of the 126 monooxygenase-encoding genes of the MI2-genome, showed a 3-fold increased expression level. This monooxygenase could oxidize the intermediate 4MB into 4-oxo-4-sulfanylbutyric acid. Next, a desulfurization step, which forms succinic acid and volatile hydrogen sulfide, is proposed. One gene coding for a putative desulfhydrase (RERY_06500) was identified in the genome of strain MI2. However, the gene product was not recognized in the proteome analyses. But, a significant expression level with a ratio of up to 7.3 was determined for a putative sulfide:quinone oxidoreductase (RERY_02710), which could also be involved in the abstraction of the sulfur group. As response to the toxicity of the intermediates, several stress response proteins were strongly expressed, including a superoxide dismutase (RERY_05600) and an osmotically induced protein (RERY_02670). Accordingly, novel insights in the catabolic pathway of DTDB were gained.

  14. Differential splicing of human androgen receptor pre-mRNA in X-linked reifenstein syndrome, because of a deletion involving a putative branch site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ris-Stalpers, C.; Verleun-Mooijman, M.C.T.; Blaeij, T.J.P. de

    1994-04-01

    The analysis of the androgen receptor (AR) gene, mRNA, and protein in a subject with X-linked Reifenstein syndrome (partial androgen insensitivity) is reported. The presence of two mature AR transcripts in genital skin fibroblasts of the patient is established, and, by reverse transcriptase-PCR and RNase transcription analysis, the wild-type transcript and a transcript in which exon 3 sequences are absent without disruption of the translational reading frame are identified. Sequencing and hybridization analysis show a deletion of >6 kb in intron 2 of the human AR gene, starting 18 bp upstream of exon 3. The deletion includes the putative branch-pointmore » sequence (BPS) but not the acceptor splice site on the intron 2/exon 3 boundary. The deletion of the putative intron 2 BPS results in 90% inhibition of wild-type splicing. The mutant transcript encodes an AR protein lacking the second zinc finger of the DNA-binding domain. Western/immunoblotting analysis is used to show that the mutant AR protein is expressed in genital skin fibroblasts of the patient. The residual 10% wild-type transcript can be the result of the use of a cryptic BPS located 63 bp upstream of the intron 2/exon 3 boundary of the mutant AR gene. The mutated AR protein has no transcription-activating potential and does not influence the transactivating properties of the wild-type AR, as tested in cotransfection studies. It is concluded that the partial androgen-insensitivity syndrome of this patient is the consequence of the limited amount of wild-type AR protein expressed in androgen target cells, resulting from the deletion of the intron 2 putative BPS. 42 refs., 6 figs., 1 tab.« less

  15. Identification, Purification and Characterization of Laterosporulin, a Novel Bacteriocin Produced by Brevibacillus sp. Strain GI-9

    PubMed Central

    Singh, Pradip Kumar; Chittpurna; Ashish; Sharma, Vikas; Patil, Prabhu B.; Korpole, Suresh

    2012-01-01

    Background Bacteriocins are antimicrobial peptides that are produced by bacteria as a defense mechanism in complex environments. Identification and characterization of novel bacteriocins in novel strains of bacteria is one of the important fields in bacteriology. Methodology/Findings The strain GI-9 was identified as Brevibacillus sp. by 16 S rRNA gene sequence analysis. The bacteriocin produced by strain GI-9, namely, laterosporulin was purified from supernatant of the culture grown under optimal conditions using hydrophobic interaction chromatography and reverse-phase HPLC. The bacteriocin was active against a wide range of Gram-positive and Gram-negative bacteria. MALDI-TOF experiments determined the precise molecular mass of the peptide to be of 5.6 kDa and N-terminal sequencing of the thermo-stable peptide revealed low similarity with existing antimicrobial peptides. The putative open reading frame (ORF) encoding laterosporulin and its surrounding genomic region was fished out from the draft genome sequence of GI-9. Sequence analysis of the putative bacteriocin gene did not show significant similarity to any reported bacteriocin producing genes in database. Conclusions We have identified a bacteriocin producing strain GI-9, belonging to the genus Brevibacillus sp. Biochemical and genomic characterization of laterosporulin suggests it as a novel bacteriocin with broad spectrum antibacterial activity. PMID:22403615

  16. Identification, purification and characterization of laterosporulin, a novel bacteriocin produced by Brevibacillus sp. strain GI-9.

    PubMed

    Singh, Pradip Kumar; Chittpurna; Ashish; Sharma, Vikas; Patil, Prabhu B; Korpole, Suresh

    2012-01-01

    Bacteriocins are antimicrobial peptides that are produced by bacteria as a defense mechanism in complex environments. Identification and characterization of novel bacteriocins in novel strains of bacteria is one of the important fields in bacteriology. The strain GI-9 was identified as Brevibacillus sp. by 16 S rRNA gene sequence analysis. The bacteriocin produced by strain GI-9, namely, laterosporulin was purified from supernatant of the culture grown under optimal conditions using hydrophobic interaction chromatography and reverse-phase HPLC. The bacteriocin was active against a wide range of Gram-positive and Gram-negative bacteria. MALDI-TOF experiments determined the precise molecular mass of the peptide to be of 5.6 kDa and N-terminal sequencing of the thermo-stable peptide revealed low similarity with existing antimicrobial peptides. The putative open reading frame (ORF) encoding laterosporulin and its surrounding genomic region was fished out from the draft genome sequence of GI-9. Sequence analysis of the putative bacteriocin gene did not show significant similarity to any reported bacteriocin producing genes in database. We have identified a bacteriocin producing strain GI-9, belonging to the genus Brevibacillus sp. Biochemical and genomic characterization of laterosporulin suggests it as a novel bacteriocin with broad spectrum antibacterial activity.

  17. The 'permeome' of the malaria parasite: an overview of the membrane transport proteins of Plasmodium falciparum

    PubMed Central

    Martin, Rowena E; Henry, Roselani I; Abbey, Janice L; Clements, John D; Kirk, Kiaran

    2005-01-01

    Background The uptake of nutrients, expulsion of metabolic wastes and maintenance of ion homeostasis by the intraerythrocytic malaria parasite is mediated by membrane transport proteins. Proteins of this type are also implicated in the phenomenon of antimalarial drug resistance. However, the initial annotation of the genome of the human malaria parasite Plasmodium falciparum identified only a limited number of transporters, and no channels. In this study we have used a combination of bioinformatic approaches to identify and attribute putative functions to transporters and channels encoded by the malaria parasite, as well as comparing expression patterns for a subset of these. Results A computer program that searches a genome database on the basis of the hydropathy plots of the corresponding proteins was used to identify more than 100 transport proteins encoded by P. falciparum. These include all the transporters previously annotated as such, as well as a similar number of candidate transport proteins that had escaped detection. Detailed sequence analysis enabled the assignment of putative substrate specificities and/or transport mechanisms to all those putative transport proteins previously without. The newly-identified transport proteins include candidate transporters for a range of organic and inorganic nutrients (including sugars, amino acids, nucleosides and vitamins), and several putative ion channels. The stage-dependent expression of RNAs for 34 candidate transport proteins of particular interest are compared. Conclusion The malaria parasite possesses substantially more membrane transport proteins than was originally thought, and the analyses presented here provide a range of novel insights into the physiology of this important human pathogen. PMID:15774027

  18. Predicted secondary structure similarity in the absence of primary amino acid sequence homology: hepatitis B virus open reading frames.

    PubMed Central

    Schaeffer, E; Sninsky, J J

    1984-01-01

    Proteins that are related evolutionarily may have diverged at the level of primary amino acid sequence while maintaining similar secondary structures. Computer analysis has been used to compare the open reading frames of the hepatitis B virus to those of the woodchuck hepatitis virus at the level of amino acid sequence, and to predict the relative hydrophilic character and the secondary structure of putative polypeptides. Similarity is seen at the levels of relative hydrophilicity and secondary structure, in the absence of sequence homology. These data reinforce the proposal that these open reading frames encode viral proteins. Computer analysis of this type can be more generally used to establish structural similarities between proteins that do not share obvious sequence homology as well as to assess whether an open reading frame is fortuitous or codes for a protein. PMID:6585835

  19. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana.

    PubMed

    Mayer, K; Schüller, C; Wambutt, R; Murphy, G; Volckaert, G; Pohl, T; Düsterhöft, A; Stiekema, W; Entian, K D; Terryn, N; Harris, B; Ansorge, W; Brandt, P; Grivell, L; Rieger, M; Weichselgartner, M; de Simone, V; Obermaier, B; Mache, R; Müller, M; Kreis, M; Delseny, M; Puigdomenech, P; Watson, M; Schmidtheini, T; Reichert, B; Portatelle, D; Perez-Alonso, M; Boutry, M; Bancroft, I; Vos, P; Hoheisel, J; Zimmermann, W; Wedler, H; Ridley, P; Langham, S A; McCullagh, B; Bilham, L; Robben, J; Van der Schueren, J; Grymonprez, B; Chuang, Y J; Vandenbussche, F; Braeken, M; Weltjens, I; Voet, M; Bastiaens, I; Aert, R; Defoor, E; Weitzenegger, T; Bothe, G; Ramsperger, U; Hilbert, H; Braun, M; Holzer, E; Brandt, A; Peters, S; van Staveren, M; Dirske, W; Mooijman, P; Klein Lankhorst, R; Rose, M; Hauf, J; Kötter, P; Berneiser, S; Hempel, S; Feldpausch, M; Lamberth, S; Van den Daele, H; De Keyser, A; Buysshaert, C; Gielen, J; Villarroel, R; De Clercq, R; Van Montagu, M; Rogers, J; Cronin, A; Quail, M; Bray-Allen, S; Clark, L; Doggett, J; Hall, S; Kay, M; Lennard, N; McLay, K; Mayes, R; Pettett, A; Rajandream, M A; Lyne, M; Benes, V; Rechmann, S; Borkova, D; Blöcker, H; Scharfe, M; Grimm, M; Löhnert, T H; Dose, S; de Haan, M; Maarse, A; Schäfer, M; Müller-Auer, S; Gabel, C; Fuchs, M; Fartmann, B; Granderath, K; Dauner, D; Herzl, A; Neumann, S; Argiriou, A; Vitale, D; Liguori, R; Piravandi, E; Massenet, O; Quigley, F; Clabauld, G; Mündlein, A; Felber, R; Schnabl, S; Hiller, R; Schmidt, W; Lecharny, A; Aubourg, S; Chefdor, F; Cooke, R; Berger, C; Montfort, A; Casacuberta, E; Gibbons, T; Weber, N; Vandenbol, M; Bargues, M; Terol, J; Torres, A; Perez-Perez, A; Purnelle, B; Bent, E; Johnson, S; Tacon, D; Jesse, T; Heijnen, L; Schwarz, S; Scholler, P; Heber, S; Francs, P; Bielke, C; Frishman, D; Haase, D; Lemcke, K; Mewes, H W; Stocker, S; Zaccaria, P; Bevan, M; Wilson, R K; de la Bastide, M; Habermann, K; Parnell, L; Dedhia, N; Gnoj, L; Schutz, K; Huang, E; Spiegel, L; Sehkon, M; Murray, J; Sheet, P; Cordes, M; Abu-Threideh, J; Stoneking, T; Kalicki, J; Graves, T; Harmon, G; Edwards, J; Latreille, P; Courtney, L; Cloud, J; Abbott, A; Scott, K; Johnson, D; Minx, P; Bentley, D; Fulton, B; Miller, N; Greco, T; Kemp, K; Kramer, J; Fulton, L; Mardis, E; Dante, M; Pepin, K; Hillier, L; Nelson, J; Spieth, J; Ryan, E; Andrews, S; Geisel, C; Layman, D; Du, H; Ali, J; Berghoff, A; Jones, K; Drone, K; Cotton, M; Joshu, C; Antonoiu, B; Zidanic, M; Strong, C; Sun, H; Lamar, B; Yordan, C; Ma, P; Zhong, J; Preston, R; Vil, D; Shekher, M; Matero, A; Shah, R; Swaby, I K; O'Shaughnessy, A; Rodriguez, M; Hoffmann, J; Till, S; Granat, S; Shohdy, N; Hasegawa, A; Hameed, A; Lodhi, M; Johnson, A; Chen, E; Marra, M; Martienssen, R; McCombie, W R

    1999-12-16

    The higher plant Arabidopsis thaliana (Arabidopsis) is an important model for identifying plant genes and determining their function. To assist biological investigations and to define chromosome structure, a coordinated effort to sequence the Arabidopsis genome was initiated in late 1996. Here we report one of the first milestones of this project, the sequence of chromosome 4. Analysis of 17.38 megabases of unique sequence, representing about 17% of the genome, reveals 3,744 protein coding genes, 81 transfer RNAs and numerous repeat elements. Heterochromatic regions surrounding the putative centromere, which has not yet been completely sequenced, are characterized by an increased frequency of a variety of repeats, new repeats, reduced recombination, lowered gene density and lowered gene expression. Roughly 60% of the predicted protein-coding genes have been functionally characterized on the basis of their homology to known genes. Many genes encode predicted proteins that are homologous to human and Caenorhabditis elegans proteins.

  20. Populus trichocarpa encodes small, effector-like secreted proteins that are highly induced during mutualistic symbiosis

    DOE PAGES

    Plett, Jonathan M.; Yin, Hengfu; Mewalal, Ritesh; ...

    2017-03-23

    During symbiosis, organisms use a range of metabolic and protein-based signals to communicate. Of these protein signals, one class is defined as ‘effectors’, i.e., small secreted proteins (SSPs) that cause phenotypical and physiological changes in another organism. To date, protein-based effectors have been described in aphids, nematodes, fungi and bacteria. Using RNA sequencing of Populus trichocarpa roots in mutualistic symbiosis with the ectomycorrhizal fungus Laccaria bicolor, we sought to determine if host plants also contain genes encoding effector-like proteins. We identified 417 plant-encoded putative SSPs that were significantly regulated during this interaction, including 161 SSPs specific to P. trichocarpa andmore » 15 SSPs exhibiting expansion in Populus and closely related lineages. We demonstrate that a subset of these SSPs can enter L. bicolor hyphae, localize to the nucleus and affect hyphal growth and morphology. Finally, we conclude that plants encode proteins that appear to function as effector proteins that may regulate symbiotic associations.« less

  1. Populus trichocarpa encodes small, effector-like secreted proteins that are highly induced during mutualistic symbiosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plett, Jonathan M.; Yin, Hengfu; Mewalal, Ritesh

    During symbiosis, organisms use a range of metabolic and protein-based signals to communicate. Of these protein signals, one class is defined as ‘effectors’, i.e., small secreted proteins (SSPs) that cause phenotypical and physiological changes in another organism. To date, protein-based effectors have been described in aphids, nematodes, fungi and bacteria. Using RNA sequencing of Populus trichocarpa roots in mutualistic symbiosis with the ectomycorrhizal fungus Laccaria bicolor, we sought to determine if host plants also contain genes encoding effector-like proteins. We identified 417 plant-encoded putative SSPs that were significantly regulated during this interaction, including 161 SSPs specific to P. trichocarpa andmore » 15 SSPs exhibiting expansion in Populus and closely related lineages. We demonstrate that a subset of these SSPs can enter L. bicolor hyphae, localize to the nucleus and affect hyphal growth and morphology. Finally, we conclude that plants encode proteins that appear to function as effector proteins that may regulate symbiotic associations.« less

  2. Isolation of pheromone precursor genes of Magnaporthe grisea.

    PubMed

    Shen, W C; Bobrowicz, P; Ebbole, D J

    1999-01-01

    In heterothallic ascomycetes one mating partner serves as the source of female tissue and is fertilized with spermatia from a partner of the opposite mating type. The role of pheromone signaling in mating is thought to involve recognition of cells of the opposite mating type. We have isolated two putative pheromone precursor genes of Magnaporthe grisea. The genes are present in both mating types of the fungus but they are expressed in a mating type-specific manner. The MF1-1 gene, expressed in Mat1-1 strains, is predicted to encode a 26-amino-acid polypeptide that is processed to produce a lipopeptide pheromone. The MF2-1 gene, expressed in Mat1-2 strains, is predicted to encode a precursor polypeptide that is processed by a Kex2-like protease to yield a pheromone with striking similarity to the predicted pheromone sequence of a close relative, Cryphonectria parasitica. Expression of the M. grisea putative pheromone precursor genes was observed under defined nutritional conditions and in field isolates. This suggests that the requirement for complex media for mating and the poor fertility of field isolates may not be due to limitation of pheromone precursor gene expression. Detection of putative pheromone precursor gene mRNA in conidia suggests that pheromones may be important for the fertility of conidia acting as spermatia. Copyright 1999 Academic Press.

  3. Molecular cloning and characterization of a cDNA encoding the gibberellin biosynthetic enzyme ent-kaurene synthase B from pumpkin (Cucurbita maxima L.).

    PubMed

    Yamaguchi, S; Saito, T; Abe, H; Yamane, H; Murofushi, N; Kamiya, Y

    1996-08-01

    The first committed step in the formation of diterpenoids leading to gibberellin (GA) biosynthesis is the conversion of geranylgeranyl diphosphate (GGDP) to ent-kaurene. ent-Kaurene synthase A (KSA) catalyzes the conversion of GGDP to copalyl diphosphate (CDP), which is subsequently converted to ent-kaurene by ent-kaurene synthase B (KSB). A full-length KSB cDNA was isolated from developing cotyledons in immature seeds of pumpkin (Cucurbita maxima L.). Degenerate oligonucleotide primers were designed from the amino acid sequences obtained from the purified protein to amplify a cDNA fragment, which was used for library screening. The isolated full-length cDNA was expressed in Escherichia coli as a fusion protein, which demonstrated the KSB activity to cyclize [3H]CDP to [3H]ent-kaurene. The KSB transcript was most abundant in growing tissues, but was detected in every organ in pumpkin seedlings. The deduced amino acid sequence shares significant homology with other terpene cyclases, including the conserved DDXXD motif, a putative divalent metal ion-diphosphate complex binding site. A putative transit peptide sequence that may target the translated product into the plastids is present in the N-terminal region.

  4. Tissue-specific expression of the gene for a putative plasma membrane H(+)-ATPase in a seagrass.

    PubMed Central

    Fukuhara, T; Pak, J Y; Ohwaki, Y; Tsujimura, H; Nitta, T

    1996-01-01

    A cDNA clone corresponding to the gene (ZHA1) for a putative plasma membrane H(+)-ATPase of a seagrass (Zostera marina L.) was isolated and sequenced. Comparison of the amino acid predicted sequence from the nucleotide sequence of ZHA1 with those encoded by known genes for plasma membrane H(+)-ATPases from other plants indicated that ZHA1 is most similar to the gene (PMA4) for a plasma membrane H(+)-ATPase in a tobacco (84.4%). Northern hybridization indicated that ZHA1 was strongly expressed in mature leaves, which are exposed to seawater and have the ability of tolerate salinity; ZHA1 was weakly expressed in immature leaves, which are protected from seawater by tightly enveloping sheaths and are sensitive to salinity. In mature leaves, in situ hybridization revealed that ZHA1 was expressed specifically in epidermal cells, the plasma membranes of which were highly invaginated and morphologically similar to those of typical transfer cells. Therefore, the differentiation of the transfer cell-like structures, accompanied by the high-level expression of ZHA1, in the epidermal cells of mature leaves in particular may be important for the excretion of salt by these cells. PMID:8587992

  5. Transcriptome and gene expression analysis during flower blooming in Rosa chinensis 'Pallida'.

    PubMed

    Yan, Huijun; Zhang, Hao; Chen, Min; Jian, Hongying; Baudino, Sylvie; Caissard, Jean-Claude; Bendahmane, Mohammed; Li, Shubin; Zhang, Ting; Zhou, Ningning; Qiu, Xianqin; Wang, Qigang; Tang, Kaixue

    2014-04-25

    Rosa chinensis 'Pallida' (Rosa L.) is one of the most important ancient rose cultivars originating from China. It contributed the 'tea scent' trait to modern roses. However, little information is available on the gene regulatory networks involved in scent biosynthesis and metabolism in Rosa. In this study, the transcriptome of R. chinensis 'Pallida' petals at different developmental stages, from flower buds to senescent flowers, was investigated using Illumina sequencing technology. De novo assembly generated 89,614 clusters with an average length of 428bp. Based on sequence similarity search with known proteins, 62.9% of total clusters were annotated. Out of these annotated transcripts, 25,705 and 37,159 sequences were assigned to gene ontology and clusters of orthologous groups, respectively. The dataset provides information on transcripts putatively associated with known scent metabolic pathways. Digital gene expression (DGE) was obtained using RNA samples from flower bud, open flower and senescent flower stages. Comparative DGE and quantitative real time PCR permitted the identification of five transcripts encoding proteins putatively associated with scent biosynthesis in roses. The study provides a foundation for scent-related gene discovery in roses. Copyright © 2014. Published by Elsevier B.V.

  6. Genome sequence of an enhancin gene-rich nucleopolyhedrovirus (NPV) from Agrotis segetum: collinearity with Spodoptera exigua multiple NPV.

    PubMed

    Jakubowska, Agata K; Peters, Sander A; Ziemnicka, Jadwiga; Vlak, Just M; van Oers, Monique M

    2006-03-01

    The genome sequence of a Polish isolate of Agrotis segetum nucleopolyhedrovirus (AgseNPV-A) was determined and analysed. The circular genome is composed of 147,544 bp and has a G+C content of 45.7 mol%. It contains 153 putative, non-overlapping open reading frames (ORFs) encoding predicted proteins of more than 50 aa, together making up 89.8 % of the genome. The remaining 10.2 % of the DNA constitutes non-coding regions and homologous-repeat regions. One hundred and forty-three AgseNPV-A ORFs are homologues of previously reported baculovirus gene sequences. There are ten unique ORFs and they account for 3 % of the genome in total. All 62 lepidopteran baculovirus genes, including the 29 core baculovirus genes, were found in the AgseNPV-A genome. The gene content and gene order of AgseNPV-A are most similar to those of Spodoptera exigua (Se) multiple NPV and their shared homologous genes are 100 % collinear. Three putative enhancin genes were identified in the AgseNPV-A genome. In phylogenetic analysis, the AgseNPV-A enhancins form a cluster separated from enhancins of the Mamestra species NPVs.

  7. Applying functional metagenomics to search for novel lignocellulosic enzymes in a microbial consortium derived from a thermophilic composting phase of sugarcane bagasse and cow manure.

    PubMed

    Colombo, Lívia Tavares; de Oliveira, Marcelo Nagem Valério; Carneiro, Deisy Guimarães; de Souza, Robson Assis; Alvim, Mariana Caroline Tocantins; Dos Santos, Josenilda Carlos; da Silva, Cynthia Canêdo; Vidigal, Pedro Marcus Pereira; da Silveira, Wendel Batista; Passos, Flávia Maria Lopes

    2016-09-01

    Environments where lignocellulosic biomass is naturally decomposed are sources for discovery of new hydrolytic enzymes that can reduce the high cost of enzymatic cocktails for second-generation ethanol production. Metagenomic analysis was applied to discover genes coding carbohydrate-depleting enzymes from a microbial laboratory subculture using a mix of sugarcane bagasse and cow manure in the thermophilic composting phase. From a fosmid library, 182 clones had the ability to hydrolyse carbohydrate. Sequencing of 30 fosmids resulted in 12 contigs encoding 34 putative carbohydrate-active enzymes belonging to 17 glycosyl hydrolase (GH) families. One third of the putative proteins belong to the GH3 family, which includes β-glucosidase enzymes known to be important in the cellulose-deconstruction process but present with low activity in commercial enzyme preparations. Phylogenetic analysis of the amino acid sequences of seven selected proteins, including three β-glucosidases, showed low relatedness with protein sequences deposited in databases. These findings highlight microbial consortia obtained from a mixture of decomposing biomass residues, such as sugar cane bagasse and cow manure, as a rich resource of novel enzymes potentially useful in biotechnology for saccharification of lignocellulosic substrate.

  8. First comparative insight into the architecture of COI mitochondrial minicircle molecules of dicyemids reveals marked inter-species variation.

    PubMed

    Catalano, Sarah R; Whittington, Ian D; Donnellan, Stephen C; Bertozzi, Terry; Gillanders, Bronwyn M

    2015-07-01

    Dicyemids, poorly known parasites of benthic cephalopods, are one of the few phyla in which mitochondrial (mt) genome architecture departs from the typical ~16 kb circular metazoan genome. In addition to a putative circular genome, a series of mt minicircles that each comprises the mt encoded units (I-III) of the cytochrome c oxidase complex have been reported. Whether the structure of the mt minicircles is a consistent feature among dicyemid species is unknown. Here we analyse the complete cytochrome c oxidase subunit I (COI) minicircle molecule, containing the COI gene and an associated non-coding region (NCR), for ten dicyemid species, allowing for first time comparisons between species of minicircle architecture, NCR function and inferences of minicircle replication. Divergence in COI nucleotide sequences between dicyemid species was high (average net divergence = 31.6%) while within species diversity was lower (average net divergence = 0.2%). The NCR and putative 5' section of the COI gene were highly divergent between dicyemid species (average net nucleotide divergence of putative 5' COI section = 61.1%). No tRNA genes were found in the NCR, although palindrome sequences with the potential to form stem-loop structures were identified in some species, which may play a role in transcription or other biological processes.

  9. Cloning and expression of phosphoglycerate mutase from the psychrophilic yeast, Glaciozyma antarctica PI12

    NASA Astrophysics Data System (ADS)

    Jaafar, Nardiah Rizwana; Bakar, Farah Diba Abu; Murad, Abdul Munir Abdul; Mahadi, Nor Muhammad

    2015-09-01

    The conversion of 3-phosphoglycerate to 2-phosphoglycerate during glycolysis and gluconeogenesis is catalyzed by phosphoglycerate mutase (PGM). Better understanding of metabolic reactions performed by this enzyme has been studied extensively in prokaryotes and eukaryotes. Here, we report a phosphoglycerate mutase from the psychrophilic yeast, Glaciozyma antarctica. cDNA encoding for PGM from G. antarctica PI12, a psychrophilic yeast isolated from sea ice at Casey Station, Antarctica was amplified. The gene was then cloned into a cloning vector and sequenced, which verified its identity as the gene putatively encoding for PGM. The recombinant protein was expressed in Escherichia coli BL21 (DE3) as inclusion bodies and this was confirmed by SDS-PAGE and Western blot.

  10. Mutations in C4orf26, Encoding a Peptide with In Vitro Hydroxyapatite Crystal Nucleation and Growth Activity, Cause Amelogenesis Imperfecta

    PubMed Central

    Parry, David A.; Brookes, Steven J.; Logan, Clare V.; Poulter, James A.; El-Sayed, Walid; Al-Bahlani, Suhaila; Al Harasi, Sharifa; Sayed, Jihad; Raïf, El Mostafa; Shore, Roger C.; Dashash, Mayssoon; Barron, Martin; Morgan, Joanne E.; Carr, Ian M.; Taylor, Graham R.; Johnson, Colin A.; Aldred, Michael J.; Dixon, Michael J.; Wright, J. Tim; Kirkham, Jennifer; Inglehearn, Chris F.; Mighell, Alan J.

    2012-01-01

    Autozygosity mapping and clonal sequencing of an Omani family identified mutations in the uncharacterized gene, C4orf26, as a cause of recessive hypomineralized amelogenesis imperfecta (AI), a disease in which the formation of tooth enamel fails. Screening of a panel of 57 autosomal-recessive AI-affected families identified eight further families with loss-of-function mutations in C4orf26. C4orf26 encodes a putative extracellular matrix acidic phosphoprotein expressed in the enamel organ. A mineral nucleation assay showed that the protein’s phosphorylated C terminus has the capacity to promote nucleation of hydroxyapatite, suggesting a possible function in enamel mineralization during amelogenesis. PMID:22901946

  11. Genetic basis for mycophenolic acid production and strain-dependent production variability in Penicillium roqueforti.

    PubMed

    Gillot, Guillaume; Jany, Jean-Luc; Dominguez-Santos, Rebeca; Poirier, Elisabeth; Debaets, Stella; Hidalgo, Pedro I; Ullán, Ricardo V; Coton, Emmanuel; Coton, Monika

    2017-04-01

    Mycophenolic acid (MPA) is a secondary metabolite produced by various Penicillium species including Penicillium roqueforti. The MPA biosynthetic pathway was recently described in Penicillium brevicompactum. In this study, an in silico analysis of the P. roqueforti FM164 genome sequence localized a 23.5-kb putative MPA gene cluster. The cluster contains seven genes putatively coding seven proteins (MpaA, MpaB, MpaC, MpaDE, MpaF, MpaG, MpaH) and is highly similar (i.e. gene synteny, sequence homology) to the P. brevicompactum cluster. To confirm the involvement of this gene cluster in MPA biosynthesis, gene silencing using RNA interference targeting mpaC, encoding a putative polyketide synthase, was performed in a high MPA-producing P. roqueforti strain (F43-1). In the obtained transformants, decreased MPA production (measured by LC-Q-TOF/MS) was correlated to reduced mpaC gene expression by Q-RT-PCR. In parallel, mycotoxin quantification on multiple P. roqueforti strains suggested strain-dependent MPA-production. Thus, the entire MPA cluster was sequenced for P. roqueforti strains with contrasted MPA production and a 174bp deletion in mpaC was observed in low MPA-producers. PCRs directed towards the deleted region among 55 strains showed an excellent correlation with MPA quantification. Our results indicated the clear involvement of mpaC gene as well as surrounding cluster in P. roqueforti MPA biosynthesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Identification of Streptococcus mitis321A vaccine antigens based on reverse vaccinology

    PubMed Central

    Zhang, Qiao; Lin, Kexiong; Wang, Changzheng; Xu, Zhi; Yang, Li; Ma, Qianli

    2018-01-01

    Streptococcus mitis (S. mitis) may transform into highly pathogenic bacteria. The aim of the present study was to identify potential antigen targets for designing an effective vaccine against the pathogenic S. mitis321A. The genome of S. mitis321A was sequenced using an Illumina Hiseq2000 instrument. Subsequently, Glimmer 3.02 and Tandem Repeat Finder (TRF) 4.04 were used to predict genes and tandem repeats, respectively, with DNA sequence function analysis using the Basic Local Alignment Search Tool (BLAST) in the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cluster of Orthologous Groups of proteins (COG) databases. Putative gene antigen candidates were screened with BLAST ahead of phylogenetic tree analysis. The DNA sequence assembly size was 2,110,680 bp with 40.12% GC, 6 scaffolds and 9 contig. Consequently, 1,944 genes were predicted, and 119 TRF, 56 microsatellite DNA, 10 minisatellite DNA and 154 transposons were acquired. The predicted genes were associated with various pathways and functions concerning membrane transport and energy metabolism. Multiple putative genes encoding surface proteins, secreted proteins and virulence factors, as well as essential genes were determined. The majority of essential genes belonged to a phylogenetic lineage, while 321AGL000129 and 321AGL000299 were on the same branch. The current study provided useful information regarding the biological function of the S. mitis321A genome and recommends putative antigen candidates for developing a potent vaccine against S. mitis. PMID:29620181

  13. Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria.

    PubMed

    Rot, Chagai; Goldfarb, Itay; Ilan, Micha; Huchon, Dorothée

    2006-09-14

    The mitochondrial genome of Metazoa is usually a compact molecule without introns. Exceptions to this rule have been reported only in corals and sea anemones (Cnidaria), in which group I introns have been discovered in the cox1 and nad5 genes. Here we show several lines of evidence demonstrating that introns can also be found in the mitochondria of sponges (Porifera). A 2,349 bp fragment of the mitochondrial cox1 gene was sequenced from the sponge Tetilla sp. (Spirophorida). This fragment suggests the presence of a 1143 bp intron. Similar to all the cnidarian mitochondrial introns, the putative intron has group I intron characteristics. The intron is present in the cox1 gene and encodes a putative homing endonuclease. In order to establish the distribution of this intron in sponges, the cox1 gene was sequenced from several representatives of the demosponge diversity. The intron was found only in the sponge order Spirophorida. A phylogenetic analysis of the COI protein sequence and of the intron open reading frame suggests that the intron may have been transmitted horizontally from a fungus donor. Little is known about sponge-associated fungi, although in the last few years the latter have been frequently isolated from sponges. We suggest that the horizontal gene transfer of a mitochondrial intron was facilitated by a symbiotic relationship between fungus and sponge. Ecological relationships are known to have implications at the genomic level. Here, an ecological relationship between sponge and fungus is suggested based on the genomic analysis.

  14. Ebola virus encodes a miR-155 analog to regulate importin-α5 expression.

    PubMed

    Liu, Yuanwu; Sun, Jing; Zhang, Hongwen; Wang, Mingming; Gao, George Fu; Li, Xiangdong

    2016-10-01

    The 2014 outbreak of Ebola virus caused more than 10,000 human deaths. Current knowledge of suitable drugs, clinical diagnostic biomarkers and molecular mechanisms of Ebola virus infection is either absent or insufficient. By screening stem-loop structures from the viral genomes of four virulence species, we identified a novel, putative viral microRNA precursor that is specifically expressed by the Ebola virus. The sequence of the microRNA precursor was further confirmed by mining the existing RNA-Seq database. Two putative mature microRNAs were predicted and subsequently validated in human cell lines. Combined with this prediction of the microRNA target, we identified importin-α5, which is a key regulator of interferon signaling following Ebola virus infection, as one putative target. We speculate that this microRNA could facilitate the evasion of the host immune system by the virus. Moreover, this microRNA might be a potential clinical therapeutic target or a diagnostic biomarker for Ebola virus.

  15. Molecular cloning and characterization of RGA1 encoding a G protein alpha subunit from rice (Oryza sativa L. IR-36).

    PubMed

    Seo, H S; Kim, H Y; Jeong, J Y; Lee, S Y; Cho, M J; Bahk, J D

    1995-03-01

    A cDNA clone, RGA1, was isolated by using a GPA1 cDNA clone of Arabidopsis thaliana G protein alpha subunit as a probe from a rice (Oryza sativa L. IR-36) seedling cDNA library from roots and leaves. Sequence analysis of genomic clone reveals that the RGA1 gene has 14 exons and 13 introns, and encodes a polypeptide of 380 amino acid residues with a calculated molecular weight of 44.5 kDa. The encoded protein exhibits a considerable degree of amino acid sequence similarity to all the other known G protein alpha subunits. A putative TATA sequence (ATATGA), a potential CAAT box sequence (AGCAATAC), and a cis-acting element, CCACGTGG (ABRE), known to be involved in ABA induction are found in the promoter region. The RGA1 protein contains all the consensus regions of G protein alpha subunits except the cysteine residue near the C-terminus for ADP-ribosylation by pertussis toxin. The RGA1 polypeptide expressed in Escherichia coli was, however, ADP-ribosylated by 10 microM [adenylate-32P] NAD and activated cholera toxin. Southern analysis indicates that there are no other genes similar to the RGA1 gene in the rice genome. Northern analysis reveals that the RGA1 mRNA is 1.85 kb long and expressed in vegetative tissues, including leaves and roots, and that its expression is regulated by light.

  16. Regulation of Lactobacillus casei Sorbitol Utilization Genes Requires DNA-Binding Transcriptional Activator GutR and the Conserved Protein GutM▿

    PubMed Central

    Alcántara, Cristina; Sarmiento-Rubiano, Luz Adriana; Monedero, Vicente; Deutscher, Josef; Pérez-Martínez, Gaspar; Yebra, María J.

    2008-01-01

    Sequence analysis of the five genes (gutRMCBA) downstream from the previously described sorbitol-6-phosphate dehydrogenase-encoding Lactobacillus casei gutF gene revealed that they constitute a sorbitol (glucitol) utilization operon. The gutRM genes encode putative regulators, while the gutCBA genes encode the EIIC, EIIBC, and EIIA proteins of a phosphoenolpyruvate-dependent sorbitol phosphotransferase system (PTSGut). The gut operon is transcribed as a polycistronic gutFRMCBA messenger, the expression of which is induced by sorbitol and repressed by glucose. gutR encodes a transcriptional regulator with two PTS-regulated domains, a galactitol-specific EIIB-like domain (EIIBGat domain) and a mannitol/fructose-specific EIIA-like domain (EIIAMtl domain). Its inactivation abolished gut operon transcription and sorbitol uptake, indicating that it acts as a transcriptional activator. In contrast, cells carrying a gutB mutation expressed the gut operon constitutively, but they failed to transport sorbitol, indicating that EIIBCGut negatively regulates GutR. A footprint analysis showed that GutR binds to a 35-bp sequence upstream from the gut promoter. A sequence comparison with the presumed promoter region of gut operons from various firmicutes revealed a GutR consensus motif that includes an inverted repeat. The regulation mechanism of the L. casei gut operon is therefore likely to be operative in other firmicutes. Finally, gutM codes for a conserved protein of unknown function present in all sequenced gut operons. A gutM mutant, the first constructed in a firmicute, showed drastically reduced gut operon expression and sorbitol uptake, indicating a regulatory role also for GutM. PMID:18676710

  17. Differential gene expression profiles in the venom gland/sac of Eumenes pomiformis (Hymenoptera: Eumenidae).

    PubMed

    Baek, Ji Hyeong; Lee, Si Hyeock

    2010-06-01

    To search for novel transcripts encoding biologically active venom components, a subtractive cDNA library specific to the venom gland and sac (gland/sac) of a solitary hunting wasp species, Eumenes pomiformis Fabricius (1781), was constructed by suppression subtractive hybridization. A total of 541 expressed sequence tags (ESTs) were clustered and assembled into 102 contigs (31 multiple sequences and 71 singletons). In total, 37 cDNAs were found in the library via BLASTx searching and manual annotation. Eight contigs (337 ESTs) encoding short venom peptides (10 to 16 amino acids) occupied 62% of the library. The deduced amino acid sequence (78 amino acids) of a novel venom peptide transcript shared sequence similarity with trypsin inhibitors and dendrotoxin-like venom peptides known to be K(+) channel blockers, implying that this novel peptide may play a role in the paralysis of prey. In addition to phospholipase A2 and hyaluronidase, which are known to be the main components of wasp venoms, several transcripts encoding enzymes, including three metallopeptidases and a decarboxylase likely involved in the processing and activation of venomous proteins, peptides, amines, and neurotransmitters, were also isolated from the library. The presence of a transcript encoding a putative insulin/insulin-like peptide binding protein suggests that solitary hunting wasps use their venom to control their prey, leading to larval growth cessation. The abundance of these venom components in the venom gland/sac and in the alimentary canal was confirmed by quantitative real-time PCR. Discovery of venom gland/sac-specific transcripts should promote further studies on biologically active components in the venom of solitary hunting wasps. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Newly identified allatostatin Bs and their receptor in the two-spotted cricket, Gryllus bimaculatus.

    PubMed

    Tsukamoto, Yusuke; Nagata, Shinji

    2016-06-01

    A cDNA encoding allatostatin Bs (ASTBs) containing the W(X)6W motif was identified using a database generated by a next generation sequencer (NGS) in the two-spotted cricket, Gryllus bimaculatus. The contig sequence revealed the presence of five novel putative ASTBs (GbASTBs) in addition to GbASTBs previously identified in G. bimaculatus. MALDI-TOF MS analyses revealed the presence of these novel and previously identified GbASTBs with three missing GbASTBs. We also identified a cDNA encoding G. bimaculatus GbASTB receptor (GbASTBR) in the NGS data. Phylogenetic analysis demonstrated that this receptor was highly conserved with other insect ASTBRs, including the sex peptide receptor of Drosophila melanogaster. Calcium imaging analyses indicated that the GbASTBR heterologously expressed in HEK293 cells exhibited responses to all identified GbASTBs at a concentration range of 10(-10)-10(-5)M. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Precursors of vertebrate peptide antibiotics dermaseptin b and adenoregulin have extensive sequence identities with precursors of opioid peptides dermorphin, dermenkephalin, and deltorphins.

    PubMed

    Amiche, M; Ducancel, F; Mor, A; Boulain, J C; Menez, A; Nicolas, P

    1994-07-08

    The dermaseptins are a family of broad spectrum antimicrobial peptides, 27-34 amino acids long, involved in the defense of the naked skin of frogs against microbial invasion. They are the first vertebrate peptides to show lethal effects against the filamentous fungi responsible for severe opportunistic infections accompanying immunodeficiency syndrome and the use of immunosuppressive agents. A cDNA library was constructed from skin poly(A+) RNA of the arboreal frog Phyllomedusa bicolor and screened with an oligonucleotide probe complementary to the COOH terminus of dermaseptin b. Several clones contained a full-length DNA copy of a 443-nucleotide mRNA that encoded a 78-residue dermaseptin b precursor protein. The deduced precursor contained a putative signal sequence at the NH2 terminus, a 20-residue spacer sequence extremely rich (60%) in glutamic and aspartic acids, and a single copy of a dermaseptin b progenitor sequence at the COOH terminus. One clone contained a complete copy of adenoregulin, a 33-residue peptide reported to enhance the binding of agonists to the A1 adenosine receptor. The mRNAs encoding adenoregulin and dermaseptin b were very similar: 70 and 75% nucleotide identities between the 5'- and 3'-untranslated regions, respectively; 91% amino acid identity between the signal peptides; 82% identity between the acidic spacer sequences; and 38% identity between adenoregulin and dermaseptin b. Because adenoregulin and dermaseptin b have similar precursor designs and antimicrobial spectra, adenoregulin should be considered as a new member of the dermaseptin family and alternatively named dermaseptin b II. Preprodermaseptin b and preproadenoregulin have considerable sequence identities to the precursors encoding the opioid heptapeptides dermorphin, dermenkephalin, and deltorphins. This similarity extended into the 5'-untranslated regions of the mRNAs. These findings suggest that the genes encoding the four preproproteins are all members of the same family despite the fact that they encode end products having very different biological activities. These genes might contain a homologous export exon comprising the 5'-untranslated region, the 22-residue signal peptide, the 20-24-residue acidic spacer, and the basic pair Lys-Arg.

  20. Identification and cloning of a gene encoding tannase (tannin acylhydrolase) from Lactobacillus plantarum ATCC 14917(T).

    PubMed

    Iwamoto, Kazuaki; Tsuruta, Hiroki; Nishitaini, Yosuke; Osawa, Ro

    2008-09-01

    The gene tanLpl, encoding a novel tannase enzyme (TanLpl), has been cloned from Lactobacillus plantarum ATCC 14917(T). This is the first report of a tannase gene cloned from a bacterial source other than from Staphylococcus lugdunensis, which has been reported elsewhere. The open reading frame of tanLpl, spanning 1410 bp, encoded a 469-amino-acid protein that showed 28.8% identity to the tannase of S. lugdunensis with several commonly conserved sequences. These sequences could not be found in putative tannases reported for other bacteria and fungi. TanLpl was expressed in Escherichia coli DH5alpha from a pGEM-T expression system and purified. SDS-PAGE analysis indicated that purified TanLpl was a monomer polypeptide of approximately 50 kDa in size. Subsequent enzymatic characterization revealed that TanLpl was most active in an alkaline pH range at 40 degrees C, which was quite different from that observed for a fungal tannase of Aspergillus oryzae. In addition, the Michaelis-Menten constant of TanLpl was markedly lower than that of A. oryzae tannase. The evidence suggests that TanLpl should be classified into a novel family of tannases.

  1. Characterization of a prototype strain of hepatitis E virus.

    PubMed

    Tsarev, S A; Emerson, S U; Reyes, G R; Tsareva, T S; Legters, L J; Malik, I A; Iqbal, M; Purcell, R H

    1992-01-15

    A strain of hepatitis E virus (SAR-55) implicated in an epidemic of enterically transmitted non-A, non-B hepatitis, now called hepatitis E, was characterized extensively. Six cynomolgus monkeys (Macaca fascicularis) were infected with a strain of hepatitis E virus from Pakistan. Reverse transcription-polymerase chain reaction was used to determine the pattern of virus shedding in feces, bile, and serum relative to hepatitis and induction of specific antibodies. Virtually the entire genome of SAR-55 (7195 nucleotides) was sequenced. Comparison of the sequence of SAR-55 with that of a Burmese strain revealed a high level of homology except for one region encoding 100 amino acids of a putative nonstructural polyprotein. Identification of this region as hypervariable was obtained by partial sequencing of a third isolate of hepatitis E virus from Kirgizia.

  2. Expression of putative pathogenicity-related genes in Xylella fastidiosa grown at low and high cell density conditions in vitro.

    PubMed

    Scarpari, Leandra M; Lambais, Marcio R; Silva, Denise S; Carraro, Dirce M; Carrer, Helaine

    2003-05-16

    Xylella fastidiosa is the causal agent of economically important plant diseases, including citrus variegated chlorosis and Pierce's disease. Hitherto, there has been no information on the molecular mechanisms controlling X. fastidiosa-plant interactions. To determine whether predicted open reading frames (ORFs) encoding putative pathogenicity-related factors were expressed by X. fastidiosa 9a5c cells grown at low (LCD) and high cell density (HCD) conditions in liquid modified PW medium, reverse Northern blot hybridization and reverse transcription-polymerase chain reaction (RT-PCR) experiments were performed. Our results indicated that ORFs XF2344, XF2369, XF1851 and XF0125, encoding putative Fur, GumC, a serine-protease and RsmA, respectively, were significantly suppressed at HCD conditions. In contrast, ORF XF1115, encoding putative RpfF, was significantly induced at HCD conditions. Expressions of ORFs XF2367, XF2362 and XF0290, encoding putative GumD, GumJ and RpfA, respectively, were detected only at HCD conditions, whereas expression of ORF XF0287, encoding putative RpfB was detected only at LCD conditions. Bioassays with an Agrobacterium traG::lacZ reporter system indicated that X. fastidiosa does not synthesize N-acyl-homoserine lactones, whereas bioassays with a diffusible signal factor (DSF)-responsive Xanthomonas campestris pv. campestris mutant indicate that X. fastidiosa synthesizes a molecule similar to DSF in modified PW medium. Our data also suggest that the synthesis of the DSF-like molecule and fastidian gum by X. fastidiosa is affected by cell density in vitro.

  3. How to kill the honey bee larva: genomic potential and virulence mechanisms of Paenibacillus larvae.

    PubMed

    Djukic, Marvin; Brzuszkiewicz, Elzbieta; Fünfhaus, Anne; Voss, Jörn; Gollnow, Kathleen; Poppinga, Lena; Liesegang, Heiko; Garcia-Gonzalez, Eva; Genersch, Elke; Daniel, Rolf

    2014-01-01

    Paenibacillus larvae, a Gram positive bacterial pathogen, causes American Foulbrood (AFB), which is the most serious infectious disease of honey bees. In order to investigate the genomic potential of P. larvae, two strains belonging to two different genotypes were sequenced and used for comparative genome analysis. The complete genome sequence of P. larvae strain DSM 25430 (genotype ERIC II) consisted of 4,056,006 bp and harbored 3,928 predicted protein-encoding genes. The draft genome sequence of P. larvae strain DSM 25719 (genotype ERIC I) comprised 4,579,589 bp and contained 4,868 protein-encoding genes. Both strains harbored a 9.7 kb plasmid and encoded a large number of virulence-associated proteins such as toxins and collagenases. In addition, genes encoding large multimodular enzymes producing nonribosomally peptides or polyketides were identified. In the genome of strain DSM 25719 seven toxin associated loci were identified and analyzed. Five of them encoded putatively functional toxins. The genome of strain DSM 25430 harbored several toxin loci that showed similarity to corresponding loci in the genome of strain DSM 25719, but were non-functional due to point mutations or disruption by transposases. Although both strains cause AFB, significant differences between the genomes were observed including genome size, number and composition of transposases, insertion elements, predicted phage regions, and strain-specific island-like regions. Transposases, integrases and recombinases are important drivers for genome plasticity. A total of 390 and 273 mobile elements were found in strain DSM 25430 and strain DSM 25719, respectively. Comparative genomics of both strains revealed acquisition of virulence factors by horizontal gene transfer and provided insights into evolution and pathogenicity.

  4. The organisation and interviral homologies of genes at the 3' end of tobacco rattle virus RNA1

    PubMed Central

    Boccara, Martine; Hamilton, William D. O.; Baulcombe, David C.

    1986-01-01

    The RNA1 of tobacco rattle virus (TRV) has been cloned as cDNA and the nucleotide sequence determined of 2 kb from the 3'-terminal region. The sequence contains three long open reading frames. One of these starts 5' of the cDNA and probably corresponds to the carboxy-terminal sequence of a 170-K protein encoded on RNA1. The deduced protein sequence from this reading frame shows homology with the putative replicases of tobacco mosaic virus (TMV) and tricornaviruses. The location of the second open reading frame, which encodes a 29-K polypeptide, was shown by Northern blot analysis to coincide with a 1.6-kb subgenomic RNA. The validity of this reading frame was confirmed by showing that the cDNA extending over this region could be transcribed and translated in vitro to produce a polypeptide of the predicted size which co-migrates in electrophoresis with a translation product of authentic viral RNA. The sequence of this 29-K polypeptide showed homology with two regions in the 30-K protein of TMV. This homology includes positions in the TMV 30-K protein where mutations have been identified which affect the transport of virus between cells. The third open reading frame encodes a potential 16-K protein and was shown by Northern blot hybridisation to be contained within the region of a 0.7-kb subgenomic RNA which is found in cellular RNA of infected cells but not virus particles. The many similarities between TRV and TMV in viral morphology, gene organisation and sequence suggest that these two viral groups may share a common viral ancestor. ImagesFig. 2.Fig. 3. PMID:16453668

  5. Two Functional Copies of the DGCR6 Gene Are Present on Human Chromosome 22q11 Due to a Duplication of an Ancestral Locus

    PubMed Central

    Edelmann, Lisa; Stankiewicz, Pavel; Spiteri, Elizabeth; Pandita, Raj K.; Shaffer, Lisa; Lupski, James; Morrow, Bernice E.

    2001-01-01

    The DGCR6 (DiGeorge critical region) gene encodes a putative protein with sequence similarity to gonadal (gdl), a Drosophila melanogaster gene of unknown function. We mapped the DGCR6 gene to chromosome 22q11 within a low copy repeat, termed sc11.1a, and identified a second copy of the gene, DGCR6L, within the duplicate locus, termed sc11.1b. Both sc11.1 repeats are deleted in most persons with velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS), and they map immediately adjacent and internal to the low copy repeats, termed LCR22, that mediate the deletions associated with VCFS/DGS. We sequenced genomic clones from both loci and determined that the putative initiator methionine is located further upstream than originally described, but in a position similar to the mouse and chicken orthologs. DGCR6L encodes a highly homologous, functional copy of DGCR6, with some base changes rendering amino acid differences. Expression studies of the two genes indicate that both genes are widely expressed in fetal and adult tissues. Evolutionary studies using FISH mapping in several different species of ape combined with sequence analysis of DGCR6 in a number of different primate species indicate that the duplication is at least 12 million years old and may date back to before the divergence of Catarrhines from Platyrrhines, 35 mya. These data suggest that there has been selective evolutionary pressure toward the functional maintenance of both paralogs. Interestingly, a full-length HERV-K provirus integrated into the sc11.1a locus after the divergence of chimpanzees and humans. PMID:11157784

  6. A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution

    PubMed Central

    Andersson, Jan O; Sjögren, Åsa M; Horner, David S; Murphy, Colleen A; Dyal, Patricia L; Svärd, Staffan G; Logsdon, John M; Ragan, Mark A; Hirt, Robert P; Roger, Andrew J

    2007-01-01

    Background Comparative genomic studies of the mitochondrion-lacking protist group Diplomonadida (diplomonads) has been lacking, although Giardia lamblia has been intensively studied. We have performed a sequence survey project resulting in 2341 expressed sequence tags (EST) corresponding to 853 unique clones, 5275 genome survey sequences (GSS), and eleven finished contigs from the diplomonad fish parasite Spironucleus salmonicida (previously described as S. barkhanus). Results The analyses revealed a compact genome with few, if any, introns and very short 3' untranslated regions. Strikingly different patterns of codon usage were observed in genes corresponding to frequently sampled ESTs versus genes poorly sampled, indicating that translational selection is influencing the codon usage of highly expressed genes. Rigorous phylogenomic analyses identified 84 genes – mostly encoding metabolic proteins – that have been acquired by diplomonads or their relatively close ancestors via lateral gene transfer (LGT). Although most acquisitions were from prokaryotes, more than a dozen represent likely transfers of genes between eukaryotic lineages. Many genes that provide novel insights into the genetic basis of the biology and pathogenicity of this parasitic protist were identified including 149 that putatively encode variant-surface cysteine-rich proteins which are candidate virulence factors. A number of genomic properties that distinguish S. salmonicida from its human parasitic relative G. lamblia were identified such as nineteen putative lineage-specific gene acquisitions, distinct mutational biases and codon usage and distinct polyadenylation signals. Conclusion Our results highlight the power of comparative genomic studies to yield insights into the biology of parasitic protists and the evolution of their genomes, and suggest that genetic exchange between distantly-related protist lineages may be occurring at an appreciable rate in eukaryote genome evolution. PMID:17298675

  7. Identification of candidate transmission-blocking antigen genes in Theileria annulata and related vector-borne apicomplexan parasites.

    PubMed

    Lempereur, Laetitia; Larcombe, Stephen D; Durrani, Zeeshan; Karagenc, Tulin; Bilgic, Huseyin Bilgin; Bakirci, Serkan; Hacilarlioglu, Selin; Kinnaird, Jane; Thompson, Joanne; Weir, William; Shiels, Brian

    2017-06-05

    Vector-borne apicomplexan parasites are a major cause of mortality and morbidity to humans and livestock globally. The most important disease syndromes caused by these parasites are malaria, babesiosis and theileriosis. Strategies for control often target parasite stages in the mammalian host that cause disease, but this can result in reservoir infections that promote pathogen transmission and generate economic loss. Optimal control strategies should protect against clinical disease, block transmission and be applicable across related genera of parasites. We have used bioinformatics and transcriptomics to screen for transmission-blocking candidate antigens in the tick-borne apicomplexan parasite, Theileria annulata. A number of candidate antigen genes were identified which encoded amino acid domains that are conserved across vector-borne Apicomplexa (Babesia, Plasmodium and Theileria), including the Pfs48/45 6-cys domain and a novel cysteine-rich domain. Expression profiling confirmed that selected candidate genes are expressed by life cycle stages within infected ticks. Additionally, putative B cell epitopes were identified in the T. annulata gene sequences encoding the 6-cys and cysteine rich domains, in a gene encoding a putative papain-family cysteine peptidase, with similarity to the Plasmodium SERA family, and the gene encoding the T. annulata major merozoite/piroplasm surface antigen, Tams1. Candidate genes were identified that encode proteins with similarity to known transmission blocking candidates in related parasites, while one is a novel candidate conserved across vector-borne apicomplexans and has a potential role in the sexual phase of the life cycle. The results indicate that a 'One Health' approach could be utilised to develop a transmission-blocking strategy effective against vector-borne apicomplexan parasites of animals and humans.

  8. Identification of a Novel Dioxygenase Involved in Metabolism of o-Xylene, Toluene, and Ethylbenzene by Rhodococcus sp. Strain DK17

    PubMed Central

    Kim, Dockyu; Chae, Jong-Chan; Zylstra, Gerben J.; Kim, Young-Soo; Kim, Seong-Ki; Nam, Myung Hee; Kim, Young Min; Kim, Eungbin

    2004-01-01

    Rhodococcus sp. strain DK17 is able to grow on o-xylene, benzene, toluene, and ethylbenzene. DK17 harbors at least two megaplasmids, and the genes encoding the initial steps in alkylbenzene metabolism are present on the 330-kb pDK2. The genes encoding alkylbenzene degradation were cloned in a cosmid clone and sequenced completely to reveal 35 open reading frames (ORFs). Among the ORFs, we identified two nearly exact copies (one base difference) of genes encoding large and small subunits of an iron sulfur protein terminal oxygenase that are 6 kb apart from each other. Immediately downstream of one copy of the dioxygenase genes (akbA1a and akbA2a) is a gene encoding a dioxygenase ferredoxin component (akbA3), and downstream of the other copy (akbA1b and akbA2b) are genes putatively encoding a meta-cleavage pathway. RT-PCR experiments show that the two copies of the dioxygenase genes are operonic with the downstream putative catabolic genes and that both operons are induced by o-xylene. When expressed in Escherichia coli, AkbA1a-AkbA2a-AkbA3 transformed o-xylene into 2,3- and 3,4-dimethylphenol. These were apparently derived from an unstable o-xylene cis-3,4-dihydrodiol, which readily dehydrates. This indicates a single point of attack of the dioxygenase on the aromatic ring. In contrast, attack of AkbA1a-AkbA2a-AkbA3 on ethylbenzene resulted in the formation of two different cis-dihydrodiols resulting from an oxidation at the 2,3 and the 3,4 positions on the aromatic ring, respectively. PMID:15574904

  9. Comparative genomic sequence analysis of novel Helicoverpa armigera nucleopolyhedrovirus (NPV) isolated from Kenya and three other previously sequenced Helicoverpa spp. NPVs.

    PubMed

    Ogembo, Javier Gordon; Caoili, Barbara L; Shikata, Masamitsu; Chaeychomsri, Sudawan; Kobayashi, Michihiro; Ikeda, Motoko

    2009-10-01

    A newly cloned Helicoverpa armigera nucleopolyhedrovirus (HearNPV) from Kenya, HearNPV-NNg1, has a higher insecticidal activity than HearNPV-G4, which also exhibits lower insecticidal activity than HearNPV-C1. In the search for genes and/or nucleotide sequences that might be involved in the observed virulence differences among Helicoverpa spp. NPVs, the entire genome of NNg1 was sequenced and compared with previously sequenced genomes of G4, C1 and Helicoverpa zea single-nucleocapsid NPV (Hz). The NNg1 genome was 132,425 bp in length, with a total of 143 putative open reading frames (ORFs), and shared high levels of overall amino acid and nucleotide sequence identities with G4, C1 and Hz. Three NNg1 ORFs, ORF5, ORF100 and ORF124, which were shared with C1, were absent in G4 and Hz, while NNg1 and C1 were missing a homologue of G4/Hz ORF5. Another three ORFs, ORF60 (bro-b), ORF119 and ORF120, and one direct repeat sequence (dr) were unique to NNg1. Relative to the overall nucleotide sequence identity, lower sequence identities were observed between NNg1 hrs and the homologous hrs in the other three Helicoverpa spp. NPVs, despite containing the same number of hrs located at essentially the same positions on the genomes. Differences were also observed between NNg1 and each of the other three Helicoverpa spp. NPVs in the diversity of bro genes encoded on the genomes. These results indicate several putative genes and nucleotide sequences that may be responsible for the virulence differences observed among Helicoverpa spp., yet the specific genes and/or nucleotide sequences responsible have not been identified.

  10. Merida virus, a putative novel rhabdovirus discovered in Culex and Ochlerotatus spp. mosquitoes in the Yucatan Peninsula of Mexico.

    PubMed

    Charles, Jermilia; Firth, Andrew E; Loroño-Pino, Maria A; Garcia-Rejon, Julian E; Farfan-Ale, Jose A; Lipkin, W Ian; Blitvich, Bradley J; Briese, Thomas

    2016-04-01

    Sequences corresponding to a putative, novel rhabdovirus [designated Merida virus (MERDV)] were initially detected in a pool of Culex quinquefasciatus collected in the Yucatan Peninsula of Mexico. The entire genome was sequenced, revealing 11 798 nt and five major ORFs, which encode the nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G) and RNA-dependent RNA polymerase (L). The deduced amino acid sequences of the N, G and L proteins have no more than 24, 38 and 43 % identity, respectively, to the corresponding sequences of all other known rhabdoviruses, whereas those of the P and M proteins have no significant identity with any sequences in GenBank and their identity is only suggested based on their genome position. Using specific reverse transcription-PCR assays established from the genome sequence, 27 571 C. quinquefasciatus which had been sorted in 728 pools were screened to assess the prevalence of MERDV in nature and 25 pools were found positive. The minimal infection rate (calculated as the number of positive mosquito pools per 1000 mosquitoes tested) was 0.9, and similar for both females and males. Screening another 140 pools of 5484 mosquitoes belonging to four other genera identified positive pools of Ochlerotatus spp. mosquitoes, indicating that the host range is not restricted to C. quinquefasciatus. Attempts to isolate MERDV in C6/36 and Vero cells were unsuccessful. In summary, we provide evidence that a previously undescribed rhabdovirus occurs in mosquitoes in Mexico.

  11. Type IV Pili in Francisella tularensis: Roles of pilF and pilT in Fiber Assembly, Host Cell Adherence, and Virulence ▿

    PubMed Central

    Chakraborty, Subhra; Monfett, Michael; Maier, Tamara M.; Benach, Jorge L.; Frank, Dara W.; Thanassi, David G.

    2008-01-01

    Francisella tularensis, a highly virulent facultative intracellular bacterium, is the causative agent of tularemia. Genome sequencing of all F. tularensis subspecies revealed the presence of genes that could encode type IV pili (Tfp). The live vaccine strain (LVS) expresses surface fibers resembling Tfp, but it was not established whether these fibers were indeed Tfp encoded by the pil genes. We show here that deletion of the pilF putative Tfp assembly ATPase in the LVS resulted in a complete loss of surface fibers. Disruption of the pilT putative disassembly ATPase also caused a complete loss of pili, indicating that pilT functions differently in F. tularensis than in model Tfp systems such as those found in Pseudomonas aeruginosa and Neisseria spp. The LVS pilF and pilT mutants were attenuated for virulence in a mouse model of tularemia by the intradermal route. Furthermore, although absence of pili had no effect on the ability of the LVS to replicate intracellularly, the pilF and pilT mutants were defective for adherence to macrophages, pneumocytes, and hepatocytes. This work confirms that the surface fibers expressed by the LVS are encoded by the pil genes and provides evidence that the Francisella pili contribute to host cell adhesion and virulence. PMID:18426883

  12. The Bordetella bhu Locus Is Required for Heme Iron Utilization

    PubMed Central

    Vanderpool, Carin K.; Armstrong, Sandra K.

    2001-01-01

    Bordetella pertussis and Bordetella bronchiseptica are capable of obtaining iron from hemin and hemoglobin. Genes encoding a putative bacterial heme iron acquisition system (bhu, for Bordetella heme utilization) were identified in a B. pertussis genomic sequence database, and the corresponding DNA was isolated from a virulent strain of B. pertussis. A B. pertussis bhuR mutant, predicted to lack the heme outer membrane receptor, was generated by allelic exchange. In contrast to the wild-type strain, bhuR mutant PM5 was incapable of acquiring iron from hemin and hemoglobin; genetic complementation of PM5 with the cloned bhuRSTUV genes restored heme utilization to wild-type levels. In parallel studies, B. bronchiseptica bhu sequences were also identified and a B. bronchiseptica bhuR mutant was constructed and confirmed to be defective in heme iron acquisition. The wild-type B. bronchiseptica parent strain grown under low-iron conditions produced the presumptive BhuR protein, which was absent in the bhuR mutant. Furthermore, production of BhuR by iron-starved B. bronchiseptica was markedly enhanced by culture in hemin-supplemented medium, suggesting that these organisms sense and respond to heme in the environment. Analysis of the genetic region upstream of the bhu cluster identified open reading frames predicted to encode homologs of the Escherichia coli ferric citrate uptake regulators FecI and FecR. These putative Bordetella regulators may mediate heme-responsive positive transcriptional control of the bhu genes. PMID:11418569

  13. Genome of Epinotia aporema granulovirus (EpapGV), a polyorganotropic fast killing betabaculovirus with a novel thymidylate kinase gene

    PubMed Central

    2012-01-01

    Background Epinotia aporema (Lepidoptera: Tortricidae) is an important pest of legume crops in South America. Epinotia aporema granulovirus (EpapGV) is a baculovirus that causes a polyorganotropic infection in the host larva. Its high pathogenicity and host specificity make EpapGV an excellent candidate to be used as a biological control agent. Results The genome of Epinotia aporema granulovirus (EpapGV) was sequenced and analyzed. Its circular double-stranded DNA genome is 119,082 bp in length and codes for 133 putative genes. It contains the 31 baculovirus core genes and a set of 19 genes that are GV exclusive. Seventeen ORFs were unique to EpapGV in comparison with other baculoviruses. Of these, 16 found no homologues in GenBank, and one encoded a thymidylate kinase. Analysis of nucleotide sequence repeats revealed the presence of 16 homologous regions (hrs) interspersed throughout the genome. Each hr was characterized by the presence of 1 to 3 clustered imperfect palindromes which are similar to previously described palindromes of tortricid-specific GVs. Also, one of the hrs (hr4) has flanking sequences suggestive of a putative non-hr ori. Interestingly, two more complex hrs were found in opposite loci, dividing the circular dsDNA genome in two halves. Gene synteny maps showed the great colinearity of sequenced GVs, being EpapGV the most dissimilar as it has a 20 kb-long gene block inversion. Phylogenetic study performed with 31 core genes of 58 baculoviral genomes suggests that EpapGV is the baculovirus isolate closest to the putative common ancestor of tortricid specific betabaculoviruses. Conclusions This study, along with previous characterization of EpapGV infection, is useful for the better understanding of the pathology caused by this virus and its potential utilization as a bioinsecticide. PMID:23051685

  14. Detailed analysis of metagenome datasets obtained from biogas-producing microbial communities residing in biogas reactors does not indicate the presence of putative pathogenic microorganisms

    PubMed Central

    2013-01-01

    Background In recent years biogas plants in Germany have been supposed to be involved in amplification and dissemination of pathogenic bacteria causing severe infections in humans and animals. In particular, biogas plants are discussed to contribute to the spreading of Escherichia coli infections in humans or chronic botulism in cattle caused by Clostridium botulinum. Metagenome datasets of microbial communities from an agricultural biogas plant as well as from anaerobic lab-scale digesters operating at different temperatures and conditions were analyzed for the presence of putative pathogenic bacteria and virulence determinants by various bioinformatic approaches. Results All datasets featured a low abundance of reads that were taxonomically assigned to the genus Escherichia or further selected genera comprising pathogenic species. Higher numbers of reads were taxonomically assigned to the genus Clostridium. However, only very few sequences were predicted to originate from pathogenic clostridial species. Moreover, mapping of metagenome reads to complete genome sequences of selected pathogenic bacteria revealed that not the pathogenic species itself, but only species that are more or less related to pathogenic ones are present in the fermentation samples analyzed. Likewise, known virulence determinants could hardly be detected. Only a marginal number of reads showed similarity to sequences described in the Microbial Virulence Database MvirDB such as those encoding protein toxins, virulence proteins or antibiotic resistance determinants. Conclusions Findings of this first study of metagenomic sequence reads of biogas producing microbial communities suggest that the risk of dissemination of pathogenic bacteria by application of digestates from biogas fermentations as fertilizers is low, because obtained results do not indicate the presence of putative pathogenic microorganisms in the samples analyzed. PMID:23557021

  15. Complete genome sequence of Nitrosospira multiformis, an ammonia-oxidizing bacterium from the soil environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norton, Jeanette M.; Klotz, Martin G; Stein, Lisa Y

    2008-01-01

    The complete genome of the ammonia-oxidizing bacterium, Nitrosospira multiformis (ATCC 25196T), consists of a circular chromosome and three small plasmids totaling 3,234,309 bp and encoding 2827 putative proteins. Of these, 2026 proteins have predicted functions and 801 are without conserved functional domains, yet 747 of these have similarity to other predicted proteins in databases. Gene homologs from Nitrosomonas europaea and N. eutropha were the best match for 42% of the predicted genes in N. multiformis. The genome contains three nearly identical copies of amo and hao gene clusters as large repeats. Distinguishing features compared to N. europaea include: the presencemore » of gene clusters encoding urease and hydrogenase, a RuBisCO-encoding operon of distinctive structure and phylogeny, and a relatively small complement of genes related to Fe acquisition. Systems for synthesis of a pyoverdine-like siderophore and for acyl-homoserine lactone were unique to N. multiformis among the sequenced AOB genomes. Gene clusters encoding proteins associated with outer membrane and cell envelope functions including transporters, porins, exopolysaccharide synthesis, capsule formation and protein sorting/export were abundant. Numerous sensory transduction and response regulator gene systems directed towards sensing of the extracellular environment are described. Gene clusters for glycogen, polyphosphate and cyanophycin storage and utilization were identified providing mechanisms for meeting energy requirements under substrate-limited conditions. The genome of N. multiformis encodes the core pathways for chemolithoautotrophy along with adaptations for surface growth and survival in soil environments.« less

  16. Horizontal gene transfer in Histophilus somni and its role in the evolution of pathogenic strain 2336, as determined by comparative genomic analyses

    PubMed Central

    2011-01-01

    Background Pneumonia and myocarditis are the most commonly reported diseases due to Histophilus somni, an opportunistic pathogen of the reproductive and respiratory tracts of cattle. Thus far only a few genes involved in metabolic and virulence functions have been identified and characterized in H. somni using traditional methods. Analyses of the genome sequences of several Pasteurellaceae species have provided insights into their biology and evolution. In view of the economic and ecological importance of H. somni, the genome sequence of pneumonia strain 2336 has been determined and compared to that of commensal strain 129Pt and other members of the Pasteurellaceae. Results The chromosome of strain 2336 (2,263,857 bp) contained 1,980 protein coding genes, whereas the chromosome of strain 129Pt (2,007,700 bp) contained only 1,792 protein coding genes. Although the chromosomes of the two strains differ in size, their average GC content, gene density (total number of genes predicted on the chromosome), and percentage of sequence (number of genes) that encodes proteins were similar. The chromosomes of these strains also contained a number of discrete prophage regions and genomic islands. One of the genomic islands in strain 2336 contained genes putatively involved in copper, zinc, and tetracycline resistance. Using the genome sequence data and comparative analyses with other members of the Pasteurellaceae, several H. somni genes that may encode proteins involved in virulence (e.g., filamentous haemaggutinins, adhesins, and polysaccharide biosynthesis/modification enzymes) were identified. The two strains contained a total of 17 ORFs that encode putative glycosyltransferases and some of these ORFs had characteristic simple sequence repeats within them. Most of the genes/loci common to both the strains were located in different regions of the two chromosomes and occurred in opposite orientations, indicating genome rearrangement since their divergence from a common ancestor. Conclusions Since the genome of strain 129Pt was ~256,000 bp smaller than that of strain 2336, these genomes provide yet another paradigm for studying evolutionary gene loss and/or gain in regard to virulence repertoire and pathogenic ability. Analyses of the complete genome sequences revealed that bacteriophage- and transposon-mediated horizontal gene transfer had occurred at several loci in the chromosomes of strains 2336 and 129Pt. It appears that these mobile genetic elements have played a major role in creating genomic diversity and phenotypic variability among the two H. somni strains. PMID:22111657

  17. Horizontal gene transfer in Histophilus somni and its role in the evolution of pathogenic strain 2336, as determined by comparative genomic analyses.

    PubMed

    Siddaramappa, Shivakumara; Challacombe, Jean F; Duncan, Alison J; Gillaspy, Allison F; Carson, Matthew; Gipson, Jenny; Orvis, Joshua; Zaitshik, Jeremy; Barnes, Gentry; Bruce, David; Chertkov, Olga; Detter, J Chris; Han, Cliff S; Tapia, Roxanne; Thompson, Linda S; Dyer, David W; Inzana, Thomas J

    2011-11-23

    Pneumonia and myocarditis are the most commonly reported diseases due to Histophilus somni, an opportunistic pathogen of the reproductive and respiratory tracts of cattle. Thus far only a few genes involved in metabolic and virulence functions have been identified and characterized in H. somni using traditional methods. Analyses of the genome sequences of several Pasteurellaceae species have provided insights into their biology and evolution. In view of the economic and ecological importance of H. somni, the genome sequence of pneumonia strain 2336 has been determined and compared to that of commensal strain 129Pt and other members of the Pasteurellaceae. The chromosome of strain 2336 (2,263,857 bp) contained 1,980 protein coding genes, whereas the chromosome of strain 129Pt (2,007,700 bp) contained only 1,792 protein coding genes. Although the chromosomes of the two strains differ in size, their average GC content, gene density (total number of genes predicted on the chromosome), and percentage of sequence (number of genes) that encodes proteins were similar. The chromosomes of these strains also contained a number of discrete prophage regions and genomic islands. One of the genomic islands in strain 2336 contained genes putatively involved in copper, zinc, and tetracycline resistance. Using the genome sequence data and comparative analyses with other members of the Pasteurellaceae, several H. somni genes that may encode proteins involved in virulence (e.g., filamentous haemaggutinins, adhesins, and polysaccharide biosynthesis/modification enzymes) were identified. The two strains contained a total of 17 ORFs that encode putative glycosyltransferases and some of these ORFs had characteristic simple sequence repeats within them. Most of the genes/loci common to both the strains were located in different regions of the two chromosomes and occurred in opposite orientations, indicating genome rearrangement since their divergence from a common ancestor. Since the genome of strain 129Pt was ~256,000 bp smaller than that of strain 2336, these genomes provide yet another paradigm for studying evolutionary gene loss and/or gain in regard to virulence repertoire and pathogenic ability. Analyses of the complete genome sequences revealed that bacteriophage- and transposon-mediated horizontal gene transfer had occurred at several loci in the chromosomes of strains 2336 and 129Pt. It appears that these mobile genetic elements have played a major role in creating genomic diversity and phenotypic variability among the two H. somni strains.

  18. Generation of the heterodimeric precursor GP3 of the Chlamydomonas cell wall.

    PubMed

    Voigt, Jürgen; Kiess, Michael; Getzlaff, Rita; Wöstemeyer, Johannes; Frank, Ronald

    2010-09-01

    The cell wall of the unicellular green alga Chlamydomonas reinhardtii exclusively consists of hydroxyproline-containing glycoproteins. Protein chemical analysis of its polypeptide constituents was hindered by their cross-linking via peroxidase-catalysed intermolecular isodityrosine formation and transaminase-dependent processes. To overcome this problem, we have identified putative soluble precursors using polyclonal antibodies raised against deglycosylation products of the highly purified insoluble wall fraction and analysed their amino acid sequence. The occurrence of the corresponding polypeptide in the insoluble glycoprotein framework was finally probed by epitope mapping of the polyclonal antibodies using overlapping scan peptides which, together, cover the whole amino acid sequence of the putative precursor. As a control, peptide fragments released from the insoluble wall fraction by trypsin treatment were analysed by mass spectroscopy. By this approach, the heterodimeric, chaotrope-soluble glycoprotein GP3 proved to be a constituent of the insoluble extracellular matrix of Chlamydomonas reinhardtii. Furthermore, we have shown that the polypeptide backbones of both GP3 subunits are encoded by the same gene and differ by a C-terminal truncation in the case of GP3A. © 2010 Blackwell Publishing Ltd.

  19. Eucalypt NADP-Dependent Isocitrate Dehydrogenase1

    PubMed Central

    Boiffin, Vincent; Hodges, Michael; Gálvez, Susana; Balestrini, Raffaella; Bonfante, Paola; Gadal, Pierre; Martin, Francis

    1998-01-01

    NADP-dependent isocitrate dehydrogenase (NADP-ICDH) activity is increased in roots of Eucalyptus globulus subsp. bicostata ex Maiden Kirkp. during colonization by the ectomycorrhizal fungus Pisolithus tinctorius Coker and Couch. To investigate the regulation of the enzyme expression, a cDNA (EgIcdh) encoding the NADP-ICDH was isolated from a cDNA library of E. globulus-P. tinctorius ectomycorrhizae. The putative polypeptide sequence of EgIcdh showed a high amino acid similarity with plant NADP-ICDHs. Because the deduced EgICDH protein lacks an amino-terminal targeting sequence and shows highest similarity to plant cytosolic ICDHs, it probably represents a cytoplasmic isoform. RNA analysis showed that the steady-state level of EgIcdh transcripts was enhanced nearly 2-fold in ectomycorrhizal roots compared with nonmycorrhizal roots. Increased accumulation of NADP-ICDH transcripts occurred as early as 2 d after contact and likely led to the observed increased enzyme activity. Indirect immunofluorescence microscopy indicated that NADP-ICDH was preferentially accumulated in the epidermis and stele parenchyma of nonmycorrhizal and ectomycorrhizal lateral roots. The putative role of cytosolic NADP-ICDH in ectomycorrhizae is discussed. PMID:9662536

  20. Identification and Cloning of gusA, Encoding a New β-Glucuronidase from Lactobacillus gasseri ADH†

    PubMed Central

    Russell, W. M.; Klaenhammer, T. R.

    2001-01-01

    The gusA gene, encoding a new β-glucuronidase enzyme, has been cloned from Lactobacillus gasseri ADH. This is the first report of a β-glucuronidase gene cloned from a bacterial source other than Escherichia coli. A plasmid library of L. gasseri chromosomal DNA was screened for complementation of an E. coli gus mutant. Two overlapping clones that restored β-glucuronidase activity in the mutant strain were sequenced and revealed three complete and two partial open reading frames. The largest open reading frame, spanning 1,797 bp, encodes a 597-amino-acid protein that shows 39% identity to β-glucuronidase (GusA) of E. coli K-12 (EC 3.2.1.31). The other two complete open reading frames, which are arranged to be separately transcribed, encode a putative bile salt hydrolase and a putative protein of unknown function with similarities to MerR-type regulatory proteins. Overexpression of GusA was achieved in a β-glucuronidase-negative L. gasseri strain by expressing the gusA gene, subcloned onto a low-copy-number shuttle vector, from the strong Lactobacillus P6 promoter. GusA was also expressed in E. coli from a pET expression system. Preliminary characterization of the GusA protein from crude cell extracts revealed that the enzyme was active across an acidic pH range and a broad temperature range. An analysis of other lactobacilli identified β-glucuronidase activity and gusA homologs in other L. gasseri isolates but not in other Lactobacillus species tested. PMID:11229918

  1. The immunoglobulin heavy chain locus of the duck. Genomic organization and expression of D, J, and C region genes.

    PubMed

    Lundqvist, M L; Middleton, D L; Hazard, S; Warr, G W

    2001-12-14

    The region of the duck IgH locus extending from upstream of the proximal diversity (D) segment to downstream of the constant gene cluster has been cloned and mapped. A sequence contig of 48,796 base pairs established that the organization of the genes is D-J(H)-mu-alpha-upsilon. No evidence for a functional homologue (or remnant) of a delta gene was found. The alpha gene is in inverted transcriptional orientation; class switch to IgA expression thus requires inversion of the approximately 27-kilobase pair region that includes both mu and alpha genes. The secreted forms of duck alpha and mu are each encoded by 4 constant region exons, and the hydrophobic C-terminal regions of the membrane receptor forms of alpha and mu are encoded by one and two transmembrane exons, respectively. Putative switch (S) regions were identified for duck mu and upsilon by comparison with chicken Smu and Supsilon sequences and for duck alpha by comparison with mouse Salpha. The duck IgH locus is rich in complex variable number tandem repeats, which occupy approximately 60% of the sequenced region, and occur at a much higher frequency in the IgH locus than in other sequenced regions of the duck genome.

  2. Non-contiguous genome sequence of Mycobacterium simiae strain DSM 44165(T.).

    PubMed

    Sassi, Mohamed; Robert, Catherine; Raoult, Didier; Drancourt, Michel

    2013-01-01

    Mycobacterium simiae is a non-tuberculosis mycobacterium causing pulmonary infections in both immunocompetent and imunocompromized patients. We announce the draft genome sequence of M. simiae DSM 44165(T). The 5,782,968-bp long genome with 65.15% GC content (one chromosome, no plasmid) contains 5,727 open reading frames (33% with unknown function and 11 ORFs sizing more than 5000 -bp), three rRNA operons, 52 tRNA, one 66-bp tmRNA matching with tmRNA tags from Mycobacterium avium, Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium microti, Mycobacterium marinum, and Mycobacterium africanum and 389 DNA repetitive sequences. Comparing ORFs and size distribution between M. simiae and five other Mycobacterium species M. simiae clustered with M. abscessus and M. smegmatis. A 40-kb prophage was predicted in addition to two prophage-like elements, 7-kb and 18-kb in size, but no mycobacteriophage was seen after the observation of 10(6) M. simiae cells. Fifteen putative CRISPRs were found. Three genes were predicted to encode resistance to aminoglycosides, betalactams and macrolide-lincosamide-streptogramin B. A total of 163 CAZYmes were annotated. M. simiae contains ESX-1 to ESX-5 genes encoding for a type-VII secretion system. Availability of the genome sequence may help depict the unique properties of this environmental, opportunistic pathogen.

  3. Cloning of a coconut endosperm cDNA encoding a 1-acyl-sn-glycerol-3-phosphate acyltransferase that accepts medium-chain-length substrates.

    PubMed Central

    Knutzon, D S; Lardizabal, K D; Nelsen, J S; Bleibaum, J L; Davies, H M; Metz, J G

    1995-01-01

    Immature coconut (Cocos nucifera) endosperm contains a 1-acyl-sn-glycerol-3-phosphate acyltransferase (LPAAT) activity that shows a preference for medium-chain-length fatty acyl-coenzyme A substrates (H.M. Davies, D.J. Hawkins, J.S. Nelsen [1995] Phytochemistry 39:989-996). Beginning with solubilized membrane preparations, we have used chromatographic separations to identify a polypeptide with an apparent molecular mass of 29 kD, whose presence in various column fractions correlates with the acyltransferase activity detected in those same fractions. Amino acid sequence data obtained from several peptides generated from this protein were used to isolate a full-length clone from a coconut endosperm cDNA library. Clone pCGN5503 contains a 1325-bp cDNA insert with an open reading frame encoding a 308-amino acid protein with a calculated molecular mass of 34.8 kD. Comparison of the deduced amino acid sequence of pCGN5503 to sequences in the data banks revealed significant homology to other putative LPAAT sequences. Expression of the coconut cDNA in Escherichia coli conferred upon those cells a novel LPAAT activity whose substrate activity profile matched that of the coconut enzyme. PMID:8552723

  4. Identification and Characterization of Novel Surface Proteins in Lactobacillus johnsonii and Lactobacillus gasseri

    PubMed Central

    Ventura, Marco; Jankovic, Ivana; Walker, D. Carey; Pridmore, R. David; Zink, Ralf

    2002-01-01

    We have identified and sequenced the genes encoding the aggregation-promoting factor (APF) protein from six different strains of Lactobacillus johnsonii and Lactobacillus gasseri. Both species harbor two apf genes, apf1 and apf2, which are in the same orientation and encode proteins of 257 to 326 amino acids. Multiple alignments of the deduced amino acid sequences of these apf genes demonstrate a very strong sequence conservation of all of the genes with the exception of their central regions. Northern blot analysis showed that both genes are transcribed, reaching their maximum expression during the exponential phase. Primer extension analysis revealed that apf1 and apf2 harbor a putative promoter sequence that is conserved in all of the genes. Western blot analysis of the LiCl cell extracts showed that APF proteins are located on the cell surface. Intact cells of L. johnsonii revealed the typical cell wall architecture of S-layer-carrying gram-positive eubacteria, which could be selectively removed with LiCl treatment. In addition, the amino acid composition, physical properties, and genetic organization were found to be quite similar to those of S-layer proteins. These results suggest that APF is a novel surface protein of the Lactobacillus acidophilus B-homology group which might belong to an S-layer-like family. PMID:12450842

  5. The genome of the amoeba symbiont "Candidatus Amoebophilus asiaticus" encodes an afp-like prophage possibly used for protein secretion.

    PubMed

    Penz, Thomas; Horn, Matthias; Schmitz-Esser, Stephan

    2010-01-01

    The recently sequenced genome of the obligate intracellular amoeba symbiont 'Candidatus Amoebophilus asiaticus' is unique among prokaryotic genomes due to its extremely large fraction of genes encoding proteins harboring eukaryotic domains such as ankyrin-repeats, TPR/SEL1 repeats, leucine-rich repeats, as well as F- and U-box domains, most of which likely serve in the interaction with the amoeba host. Here we provide evidence for the presence of additional proteins which are presumably presented extracellularly and should thus also be important for host cell interaction. Surprisingly, we did not find homologues of any of the well-known protein secretion systems required to translocate effector proteins into the host cell in the A. asiaticus genome, and the type six secretion systems seems to be incomplete. Here we describe the presence of a putative prophage in the A. asiaticus genome, which shows similarity to the antifeeding prophage from the insect pathogen Serratia entomophila. In S. entomophila this system is used to deliver toxins into insect hosts. This putative antifeeding-like prophage might thus represent the missing protein secretion apparatus in A. asiaticus.

  6. The adnAB Locus, Encoding a Putative Helicase-Nuclease Activity, Is Essential in Streptomyces

    PubMed Central

    Zhang, Lingli; Nguyen, Hoang Chuong; Chipot, Ludovic; Piotrowski, Emilie; Bertrand, Claire

    2014-01-01

    Homologous recombination is a crucial mechanism that repairs a wide range of DNA lesions, including the most deleterious ones, double-strand breaks (DSBs). This multistep process is initiated by the resection of the broken DNA ends by a multisubunit helicase-nuclease complex exemplified by Escherichia coli RecBCD, Bacillus subtilis AddAB, and newly discovered Mycobacterium tuberculosis AdnAB. Here we show that in Streptomyces, neither recBCD nor addAB homologues could be detected. The only putative helicase-nuclease-encoding genes identified were homologous to M. tuberculosis adnAB genes. These genes are conserved as a single copy in all sequenced genomes of Streptomyces. The disruption of adnAB in Streptomyces ambofaciens and Streptomyces coelicolor could not be achieved unless an ectopic copy was provided, indicating that adnAB is essential for growth. Both adnA and adnB genes were shown to be inducible in response to DNA damage (mitomycin C) and to be independently transcribed. Introduction of S. ambofaciens adnAB genes in an E. coli recB mutant restored viability and resistance to UV light, suggesting that Streptomyces AdnAB could be a functional homologue of RecBCD and be involved in DNA damage resistance. PMID:24837284

  7. The Janthinobacterium sp. HH01 Genome Encodes a Homologue of the V. cholerae CqsA and L. pneumophila LqsA Autoinducer Synthases

    PubMed Central

    Hornung, Claudia; Poehlein, Anja; Haack, Frederike S.; Schmidt, Martina; Dierking, Katja; Pohlen, Andrea; Schulenburg, Hinrich; Blokesch, Melanie; Plener, Laure; Jung, Kirsten; Bonge, Andreas; Krohn-Molt, Ines; Utpatel, Christian; Timmermann, Gabriele; Spieck, Eva; Pommerening-Röser, Andreas; Bode, Edna; Bode, Helge B.; Daniel, Rolf; Schmeisser, Christel; Streit, Wolfgang R.

    2013-01-01

    Janthinobacteria commonly form biofilms on eukaryotic hosts and are known to synthesize antibacterial and antifungal compounds. Janthinobacterium sp. HH01 was recently isolated from an aquatic environment and its genome sequence was established. The genome consists of a single chromosome and reveals a size of 7.10 Mb, being the largest janthinobacterial genome so far known. Approximately 80% of the 5,980 coding sequences (CDSs) present in the HH01 genome could be assigned putative functions. The genome encodes a wealth of secretory functions and several large clusters for polyketide biosynthesis. HH01 also encodes a remarkable number of proteins involved in resistance to drugs or heavy metals. Interestingly, the genome of HH01 apparently lacks the N-acylhomoserine lactone (AHL)-dependent signaling system and the AI-2-dependent quorum sensing regulatory circuit. Instead it encodes a homologue of the Legionella- and Vibrio-like autoinducer (lqsA/cqsA) synthase gene which we designated jqsA. The jqsA gene is linked to a cognate sensor kinase (jqsS) which is flanked by the response regulator jqsR. Here we show that a jqsA deletion has strong impact on the violacein biosynthesis in Janthinobacterium sp. HH01 and that a jqsA deletion mutant can be functionally complemented with the V. cholerae cqsA and the L. pneumophila lqsA genes. PMID:23405110

  8. cDNA encoding a polypeptide including a hevein sequence

    DOEpatents

    Raikhel, Natasha V.; Broekaert, Willem F.; Chua, Nam-Hai; Kush, Anil

    1999-05-04

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

  9. cDNA encoding a polypeptide including a hev ein sequence

    DOEpatents

    Raikhel, Natasha V.; Broekaert, Willem F.; Chua, Nam-Hai; Kush, Anil

    2000-07-04

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

  10. cDNA encoding a polypeptide including a hevein sequence

    DOEpatents

    Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.

    1999-05-04

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli. 12 figs.

  11. CDNA encoding a polypeptide including a hevein sequence

    DOEpatents

    Raikhel, Natasha V.; Broekaert, Willem F.; Chua, Nam-Hai; Kush, Anil

    1995-03-21

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74-79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli.

  12. cDNA encoding a polypeptide including a hevein sequence

    DOEpatents

    Raikhel, N.V.; Broekaert, W.F.; Chua, N.H.; Kush, A.

    1995-03-21

    A cDNA clone (HEV1) encoding hevein was isolated via polymerase chain reaction (PCR) using mixed oligonucleotides corresponding to two regions of hevein as primers and a Hevea brasiliensis latex cDNA library as a template. HEV1 is 1,018 nucleotides long and includes an open reading frame of 204 amino acids. The deduced amino acid sequence contains a putative signal sequence of 17 amino acid residues followed by a 187 amino acid polypeptide. The amino-terminal region (43 amino acids) is identical to hevein and shows homology to several chitin-binding proteins and to the amino-termini of wound-induced genes in potato and poplar. The carboxyl-terminal portion of the polypeptide (144 amino acids) is 74--79% homologous to the carboxyl-terminal region of wound-inducible genes of potato. Wounding, as well as application of the plant hormones abscisic acid and ethylene, resulted in accumulation of hevein transcripts in leaves, stems and latex, but not in roots, as shown by using the cDNA as a probe. A fusion protein was produced in E. coli from the protein of the present invention and maltose binding protein produced by the E. coli. 11 figures.

  13. Nitrogen metabolism and nitrogen control in corynebacteria: variations of a common theme.

    PubMed

    Walter, Britta; Hänssler, Eva; Kalinowski, Jörn; Burkovski, Andreas

    2007-01-01

    The published genome sequences of Corynebacterium diphtheriae, Corynebacterium efficiens, Corynebacterium glutamicum and Corynebacterium jeikeium were screened for genes encoding central components of nitrogen source uptake, nitrogen assimilation and nitrogen control systems. Interestingly, the soil-living species C. efficiens and C. glutamicum exhibit a broader spectrum of genes for nitrogen transport and metabolism than the pathogenic species C. diphtheriae and C. jeikeium. The latter are characterized by gene decay and loss of functions like urea metabolism and nitrogen-dependent transcription control. The global regulator of nitrogen regulation AmtR and its DNA-binding motif are conserved in C. diphtheriae, C. efficiens and C. glutamicum, while in C. jeikeium, an AmtR-encoding gene as well as putative AmtR-binding motifs are missing. Copyright (c) 2007 S. Karger AG, Basel.

  14. The cDNA sequence of mouse Pgp-1 and homology to human CD44 cell surface antigen and proteoglycan core/link proteins.

    PubMed

    Wolffe, E J; Gause, W C; Pelfrey, C M; Holland, S M; Steinberg, A D; August, J T

    1990-01-05

    We describe the isolation and sequencing of a cDNA encoding mouse Pgp-1. An oligonucleotide probe corresponding to the NH2-terminal sequence of the purified protein was synthesized by the polymerase chain reaction and used to screen a mouse macrophage lambda gt11 library. A cDNA clone with an insert of 1.2 kilobases was selected and sequenced. In Northern blot analysis, only cells expressing Pgp-1 contained mRNA species that hybridized with this Pgp-1 cDNA. The nucleotide sequence of the cDNA has a single open reading frame that yields a protein-coding sequence of 1076 base pairs followed by a 132-base pair 3'-untranslated sequence that includes a putative polyadenylation signal but no poly(A) tail. The translated sequence comprises a 13-amino acid signal peptide followed by a polypeptide core of 345 residues corresponding to an Mr of 37,800. Portions of the deduced amino acid sequence were identical to those obtained by amino acid sequence analysis from the purified glycoprotein, confirming that the cDNA encodes Pgp-1. The predicted structure of Pgp-1 includes an NH2-terminal extracellular domain (residues 14-265), a transmembrane domain (residues 266-286), and a cytoplasmic tail (residues 287-358). Portions of the mouse Pgp-1 sequence are highly similar to that of the human CD44 cell surface glycoprotein implicated in cell adhesion. The protein also shows sequence similarity to the proteoglycan tandem repeat sequences found in cartilage link protein and cartilage proteoglycan core protein which are thought to be involved in binding to hyaluronic acid.

  15. Molecular Cloning, Characterization, and Differential Expression of a Glucoamylase Gene from the Basidiomycetous Fungus Lentinula edodes

    PubMed Central

    Zhao, J.; Chen, Y. H.; Kwan, H. S.

    2000-01-01

    The complete nucleotide sequence of putative glucoamylase gene gla1 from the basidiomycetous fungus Lentinula edodes strain L54 is reported. The coding region of the genomic glucoamylase sequence, which is preceded by eukaryotic promoter elements CAAT and TATA, spans 2,076 bp. The gla1 gene sequence codes for a putative polypeptide of 571 amino acids and is interrupted by seven introns. The open reading frame sequence of the gla1 gene shows strong homology with those of other fungal glucoamylase genes and encodes a protein with an N-terminal catalytic domain and a C-terminal starch-binding domain. The similarity between the Gla1 protein and other fungal glucoamylases is from 45 to 61%, with the region of highest conservation found in catalytic domains and starch-binding domains. We compared the kinetics of glucoamylase activity and levels of gene expression in L. edodes strain L54 grown on different carbon sources (glucose, starch, cellulose, and potato extract) and in various developmental stages (mycelium growth, primordium appearance, and fruiting body formation). Quantitative reverse transcription PCR utilizing pairs of primers specific for gla1 gene expression shows that expression of gla1 was induced by starch and increased during the process of fruiting body formation, which indicates that glucoamylases may play an important role in the morphogenesis of the basidiomycetous fungus. PMID:10831434

  16. Genomic and transcriptomic analysis of the endophytic fungus Pestalotiopsis fici reveals its lifestyle and high potential for synthesis of natural products.

    PubMed

    Wang, Xiuna; Zhang, Xiaoling; Liu, Ling; Xiang, Meichun; Wang, Wenzhao; Sun, Xiang; Che, Yongsheng; Guo, Liangdong; Liu, Gang; Guo, Liyun; Wang, Chengshu; Yin, Wen-Bing; Stadler, Marc; Zhang, Xinyu; Liu, Xingzhong

    2015-01-27

    In recent years, the genus Pestalotiopsis is receiving increasing attention, not only because of its economic impact as a plant pathogen but also as a commonly isolated endophyte which is an important source of bioactive natural products. Pestalotiopsis fici Steyaert W106-1/CGMCC3.15140 as an endophyte of tea produces numerous novel secondary metabolites, including chloropupukeananin, a derivative of chlorinated pupukeanane that is first discovered in fungi. Some of them might be important as the drug leads for future pharmaceutics. Here, we report the genome sequence of the endophytic fungus of tea Pestalotiopsis fici W106-1/CGMCC3.15140. The abundant carbohydrate-active enzymes especially significantly expanding pectinases allow the fungus to utilize the limited intercellular nutrients within the host plants, suggesting adaptation of the fungus to endophytic lifestyle. The P. fici genome encodes a rich set of secondary metabolite synthesis genes, including 27 polyketide synthases (PKSs), 12 non-ribosomal peptide synthases (NRPSs), five dimethylallyl tryptophan synthases, four putative PKS-like enzymes, 15 putative NRPS-like enzymes, 15 terpenoid synthases, seven terpenoid cyclases, seven fatty-acid synthases, and five hybrids of PKS-NRPS. The majority of these core enzymes distributed into 74 secondary metabolite clusters. The putative Diels-Alderase genes have undergone expansion. The significant expansion of pectinase encoding genes provides essential insight in the life strategy of endophytes, and richness of gene clusters for secondary metabolites reveals high potential of natural products of endophytic fungi.

  17. Molecular Epidemiology of Vancomycin-Resistant Enterococcus faecium: a Prospective, Multicenter Study in South American Hospitals▿

    PubMed Central

    Panesso, Diana; Reyes, Jinnethe; Rincón, Sandra; Díaz, Lorena; Galloway-Peña, Jessica; Zurita, Jeannete; Carrillo, Carlos; Merentes, Altagracia; Guzmán, Manuel; Adachi, Javier A.; Murray, Barbara E.; Arias, Cesar A.

    2010-01-01

    Enterococcus faecium has emerged as an important nosocomial pathogen worldwide, and this trend has been associated with the dissemination of a genetic lineage designated clonal cluster 17 (CC17). Enterococcal isolates were collected prospectively (2006 to 2008) from 32 hospitals in Colombia, Ecuador, Perú, and Venezuela and subjected to antimicrobial susceptibility testing. Genotyping was performed with all vancomycin-resistant E. faecium (VREfm) isolates by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing. All VREfm isolates were evaluated for the presence of 16 putative virulence genes (14 fms genes, the esp gene of E. faecium [espEfm], and the hyl gene of E. faecium [hylEfm]) and plasmids carrying the fms20-fms21 (pilA), hylEfm, and vanA genes. Of 723 enterococcal isolates recovered, E. faecalis was the most common (78%). Vancomycin resistance was detected in 6% of the isolates (74% of which were E. faecium). Eleven distinct PFGE types were found among the VREfm isolates, with most belonging to sequence types 412 and 18. The ebpAEfm-ebpBEfm-ebpCEfm (pilB) and fms11-fms19-fms16 clusters were detected in all VREfm isolates from the region, whereas espEfm and hylEfm were detected in 69% and 23% of the isolates, respectively. The fms20-fms21 (pilA) cluster, which encodes a putative pilus-like protein, was found on plasmids from almost all VREfm isolates and was sometimes found to coexist with hylEfm and the vanA gene cluster. The population genetics of VREfm in South America appear to resemble those of such strains in the United States in the early years of the CC17 epidemic. The overwhelming presence of plasmids encoding putative virulence factors and vanA genes suggests that E. faecium from the CC17 genogroup may disseminate in the region in the coming years. PMID:20220167

  18. Characterization of a prototype strain of hepatitis E virus.

    PubMed Central

    Tsarev, S A; Emerson, S U; Reyes, G R; Tsareva, T S; Legters, L J; Malik, I A; Iqbal, M; Purcell, R H

    1992-01-01

    A strain of hepatitis E virus (SAR-55) implicated in an epidemic of enterically transmitted non-A, non-B hepatitis, now called hepatitis E, was characterized extensively. Six cynomolgus monkeys (Macaca fascicularis) were infected with a strain of hepatitis E virus from Pakistan. Reverse transcription-polymerase chain reaction was used to determine the pattern of virus shedding in feces, bile, and serum relative to hepatitis and induction of specific antibodies. Virtually the entire genome of SAR-55 (7195 nucleotides) was sequenced. Comparison of the sequence of SAR-55 with that of a Burmese strain revealed a high level of homology except for one region encoding 100 amino acids of a putative nonstructural polyprotein. Identification of this region as hypervariable was obtained by partial sequencing of a third isolate of hepatitis E virus from Kirgizia. Images PMID:1731327

  19. Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli.

    PubMed Central

    Allen, S P; Polazzi, J O; Gierse, J K; Easton, A M

    1992-01-01

    In Escherichia coli high-level production of some heterologous proteins (specifically, human prorenin, renin, and bovine insulin-like growth factor 2) resulted in the induction of two new E. coli heat shock proteins, both of which have molecular masses of 16 kDa and are tightly associated with inclusion bodies formed during heterologous protein production. We named these inclusion body-associated proteins IbpA and IbpB. The coding sequences for IbpA and IbpB were identified and isolated from the Kohara E. coli gene bank. The genes for these proteins (ibpA and ibpB) are located at 82.5 min on the chromosome. Nucleotide sequencing of the two genes revealed that they are transcribed in the same direction and are separated by 110 bp. Putative Shine-Dalgarno sequences are located upstream from the initiation codons of both genes. A putative heat shock promoter is located upstream from ibpA, and a putative transcription terminator is located downstream from ibpB. A temperature upshift experiment in which we used a wild-type E. coli strain and an isogenic rpoH mutant strain indicated that a sigma 32-containing RNA polymerase is involved in the regulation of expression of these genes. There is 57.5% identity between the genes at the nucleotide level and 52.2% identity at the amino acid level. A search of the protein data bases showed that both of these 16-kDa proteins exhibit low levels of homology to low-molecular-weight heat shock proteins from eukaryotic species. Images PMID:1356969

  20. Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria

    PubMed Central

    Rot, Chagai; Goldfarb, Itay; Ilan, Micha; Huchon, Dorothée

    2006-01-01

    Background The mitochondrial genome of Metazoa is usually a compact molecule without introns. Exceptions to this rule have been reported only in corals and sea anemones (Cnidaria), in which group I introns have been discovered in the cox1 and nad5 genes. Here we show several lines of evidence demonstrating that introns can also be found in the mitochondria of sponges (Porifera). Results A 2,349 bp fragment of the mitochondrial cox1 gene was sequenced from the sponge Tetilla sp. (Spirophorida). This fragment suggests the presence of a 1143 bp intron. Similar to all the cnidarian mitochondrial introns, the putative intron has group I intron characteristics. The intron is present in the cox1 gene and encodes a putative homing endonuclease. In order to establish the distribution of this intron in sponges, the cox1 gene was sequenced from several representatives of the demosponge diversity. The intron was found only in the sponge order Spirophorida. A phylogenetic analysis of the COI protein sequence and of the intron open reading frame suggests that the intron may have been transmitted horizontally from a fungus donor. Conclusion Little is known about sponge-associated fungi, although in the last few years the latter have been frequently isolated from sponges. We suggest that the horizontal gene transfer of a mitochondrial intron was facilitated by a symbiotic relationship between fungus and sponge. Ecological relationships are known to have implications at the genomic level. Here, an ecological relationship between sponge and fungus is suggested based on the genomic analysis. PMID:16972986

  1. Mobile genetic elements and antibiotic resistance in mine soil amended with organic wastes.

    PubMed

    Garbisu, Carlos; Garaiyurrebaso, Olatz; Lanzén, Anders; Álvarez-Rodríguez, Itxaso; Arana, Lide; Blanco, Fernando; Smalla, Kornelia; Grohmann, Elisabeth; Alkorta, Itziar

    2018-04-15

    Metal resistance has been associated with antibiotic resistance due to co- or cross-resistance mechanisms. Here, metal contaminated mine soil treated with organic wastes was screened for the presence of mobile genetic elements (MGEs). The occurrence of conjugative IncP-1 and mobilizable IncQ plasmids, as well as of class 1 integrons, was confirmed by PCR and Southern blot hybridization, suggesting that bacteria from these soils have gene-mobilizing capacity with implications for the dissemination of resistance factors. Moreover, exogenous isolation of MGEs from the soil bacterial community was attempted under antibiotic selection pressure by using Escherichia coli as recipient. Seventeen putative transconjugants were identified based on increased antibiotic resistance. Metabolic traits and metal resistance of putative transconjugants were investigated, and whole genome sequencing was carried out for two of them. Most putative transconjugants displayed a multi-resistant phenotype for a broad spectrum of antibiotics. They also displayed changes regarding the ability to metabolise different carbon sources, RNA: DNA ratio, growth rate and biofilm formation. Genome sequencing of putative transconjugants failed to detect genes acquired by horizontal gene transfer, but instead revealed a number of nonsense mutations, including in ubiH, whose inactivation was linked to the observed resistance to aminoglycosides. Our results confirm that mine soils contain MGEs encoding antibiotic resistance. Moreover, they point out the role of spontaneous mutations in achieving low-level antibiotic resistance in a short time, which was associated with a trade-off in the capability to metabolise specific carbon sources. Copyright © 2017. Published by Elsevier B.V.

  2. The gene for stinging nettle lectin (Urtica dioica agglutinin) encodes both a lectin and a chitinase.

    PubMed

    Lerner, D R; Raikhel, N V

    1992-06-05

    Chitin-binding proteins are present in a wide range of plant species, including both monocots and dicots, even though these plants contain no chitin. To investigate the relationship between in vitro antifungal and insecticidal activities of chitin-binding proteins and their unknown endogenous functions, the stinging nettle lectin (Urtica dioica agglutinin, UDA) cDNA was cloned using a synthetic gene as the probe. The nettle lectin cDNA clone contained an open reading frame encoding 374 amino acids. Analysis of the deduced amino acid sequence revealed a 21-amino acid putative signal sequence and the 86 amino acids encoding the two chitin-binding domains of nettle lectin. These domains were fused to a 19-amino acid "spacer" domain and a 244-amino acid carboxyl extension with partial identity to a chitinase catalytic domain. The authenticity of the cDNA clone was confirmed by deduced amino acid sequence identity with sequence data obtained from tryptic digests, RNA gel blot, and polymerase chain reaction analyses. RNA gel blot analysis also showed the nettle lectin message was present primarily in rhizomes and inflorescence (with immature seeds) but not in leaves or stems. Chitinase enzymatic activity was found when the chitinase-like domain alone or the chitinase-like domain with the chitin-binding domains were expressed in Escherichia coli. This is the first example of a chitin-binding protein with both a duplication of the 43-amino acid chitin-binding domain and a fusion of the chitin-binding domains to a structurally unrelated domain, the chitinase domain.

  3. Geranylgeranyl diphosphate synthase from Scoparia dulcis and Croton sublyratus. Plastid localization and conversion to a farnesyl diphosphate synthase by mutagenesis.

    PubMed

    Sitthithaworn, W; Kojima, N; Viroonchatapan, E; Suh, D Y; Iwanami, N; Hayashi, T; Noji, M; Saito, K; Niwa, Y; Sankawa, U

    2001-02-01

    cDNAs encoding geranylgeranyl diphosphate synthase (GGPPS) of two diterpene-producing plants, Scoparia dulcis and Croton sublyratus, have been isolated using the homology-based polymerase chain reaction (PCR) method. Both clones contained highly conserved aspartate-rich motifs (DDXX(XX)D) and their N-terminal residues exhibited the characteristics of chloroplast targeting sequence. When expressed in Escherichia coli, both the full-length and truncated proteins in which the putative targeting sequence was deleted catalyzed the condensation of farnesyl diphosphate and isopentenyl diphosphate to produce geranylgeranyl diphosphate (GGPP). The structural factors determining the product length in plant GGPPSs were investigated by constructing S. dulcis GGPPS mutants on the basis of sequence comparison with the first aspartate-rich motif (FARM) of plant farnesyl diphosphate synthase. The result indicated that in plant GGPPSs small amino acids, Met and Ser, at the fourth and fifth positions before FARM and Pro and Cys insertion in FARM play essential roles in determination of product length. Further, when a chimeric gene comprised of the putative transit peptide of the S. dulcis GGPPS gene and a green fluorescent protein was introduced into Arabidopsis leaves by particle gun bombardment, the chimeric protein was localized in chloroplasts, indicating that the cloned S. dulcis GGPPS is a chloroplast protein.

  4. Identification and expression analysis of a novel R-type lectin from the coleopteran beetle, Tenebrio molitor.

    PubMed

    Kim, Dong Hyun; Patnaik, Bharat Bhusan; Seo, Gi Won; Kang, Seong Min; Lee, Yong Seok; Lee, Bok Luel; Han, Yeon Soo

    2013-11-01

    We have identified novel ricin-type (R-type) lectin by sequencing of random clones from cDNA library of the coleopteran beetle, Tenebrio molitor. The cDNA sequence is comprised of 495 bp encoding a protein of 164 amino acid residues and shows 49% identity with galectin of Tribolium castaneum. Bioinformatics analysis shows that the amino acid residues from 35 to 162 belong to ricin-type beta-trefoil structure. The transcript was significantly upregulated after early hours of injection with peptidoglycans derived from Gram (+) and Gram (-) bacteria, beta-1, 3 glucan from fungi and an intracellular pathogen, Listeria monocytogenes suggesting putative function in innate immunity. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Amplicon Sequencing of the slpH Locus Permits Culture-Independent Strain Typing of Lactobacillus helveticus in Dairy Products

    PubMed Central

    Moser, Aline; Wüthrich, Daniel; Bruggmann, Rémy; Eugster-Meier, Elisabeth; Meile, Leo; Irmler, Stefan

    2017-01-01

    The advent of massive parallel sequencing technologies has opened up possibilities for the study of the bacterial diversity of ecosystems without the need for enrichment or single strain isolation. By exploiting 78 genome data-sets from Lactobacillus helveticus strains, we found that the slpH locus that encodes a putative surface layer protein displays sufficient genetic heterogeneity to be a suitable target for strain typing. Based on high-throughput slpH gene sequencing and the detection of single-base DNA sequence variations, we established a culture-independent method to assess the biodiversity of the L. helveticus strains present in fermented dairy food. When we applied the method to study the L. helveticus strain composition in 15 natural whey cultures (NWCs) that were collected at different Gruyère, a protected designation of origin (PDO) production facilities, we detected a total of 10 sequence types (STs). In addition, we monitored the development of a three-strain mix in raclette cheese for 17 weeks. PMID:28775722

  6. Origin-of-transfer sequences facilitate mobilisation of non-conjugative antimicrobial-resistance plasmids in Staphylococcus aureus

    PubMed Central

    O'Brien, Frances G.; Yui Eto, Karina; Murphy, Riley J. T.; Fairhurst, Heather M.; Coombs, Geoffrey W.; Grubb, Warren B.; Ramsay, Joshua P.

    2015-01-01

    Staphylococcus aureus is a common cause of hospital, community and livestock-associated infections and is increasingly resistant to multiple antimicrobials. A significant proportion of antimicrobial-resistance genes are plasmid-borne, but only a minority of S. aureus plasmids encode proteins required for conjugative transfer or Mob relaxase proteins required for mobilisation. The pWBG749 family of S. aureus conjugative plasmids can facilitate the horizontal transfer of diverse antimicrobial-resistance plasmids that lack Mob genes. Here we reveal that these mobilisable plasmids carry copies of the pWBG749 origin-of-transfer (oriT) sequence and that these oriT sequences facilitate mobilisation by pWBG749. Sequences resembling the pWBG749 oriT were identified on half of all sequenced S. aureus plasmids, including the most prevalent large antimicrobial-resistance/virulence-gene plasmids, pIB485, pMW2 and pUSA300HOUMR. oriT sequences formed five subfamilies with distinct inverted-repeat-2 (IR2) sequences. pWBG749-family plasmids encoding each IR2 were identified and pWBG749 mobilisation was found to be specific for plasmids carrying matching IR2 sequences. Specificity of mobilisation was conferred by a putative ribbon-helix-helix-protein gene smpO. Several plasmids carried 2–3 oriT variants and pWBG749-mediated recombination occurred between distinct oriT sites during mobilisation. These observations suggest this relaxase-in trans mechanism of mobilisation by pWBG749-family plasmids is a common mechanism of plasmid dissemination in S. aureus. PMID:26243776

  7. Draft Genome Sequences of Two Bacillus thuringiensis Strains and Characterization of a Putative 41.9-kDa Insecticidal Toxin

    PubMed Central

    Palma, Leopoldo; Muñoz, Delia; Berry, Colin; Murillo, Jesús; Caballero, Primitivo

    2014-01-01

    In this work, we report the genome sequencing of two Bacillus thuringiensis strains using Illumina next-generation sequencing technology (NGS). Strain Hu4-2, toxic to many lepidopteran pest species and to some mosquitoes, encoded genes for two insecticidal crystal (Cry) proteins, cry1Ia and cry9Ea, and a vegetative insecticidal protein (Vip) gene, vip3Ca2. Strain Leapi01 contained genes coding for seven Cry proteins (cry1Aa, cry1Ca, cry1Da, cry2Ab, cry9Ea and two cry1Ia gene variants) and a vip3 gene (vip3Aa10). A putative novel insecticidal protein gene 1143 bp long was found in both strains, whose sequences exhibited 100% nucleotide identity. The predicted protein showed 57 and 100% pairwise identity to protein sequence 72 from a patented Bt strain (US8318900) and to a putative 41.9-kDa insecticidal toxin from Bacillus cereus, respectively. The 41.9-kDa protein, containing a C-terminal 6× HisTag fusion, was expressed in Escherichia coli and tested for the first time against four lepidopteran species (Mamestra brassicae, Ostrinia nubilalis, Spodoptera frugiperda and S. littoralis) and the green-peach aphid Myzus persicae at doses as high as 4.8 µg/cm2 and 1.5 mg/mL, respectively. At these protein concentrations, the recombinant 41.9-kDa protein caused no mortality or symptoms of impaired growth against any of the insects tested, suggesting that these species are outside the protein’s target range or that the protein may not, in fact, be toxic. While the use of the polymerase chain reaction has allowed a significant increase in the number of Bt insecticidal genes characterized to date, novel NGS technologies promise a much faster, cheaper and efficient screening of Bt pesticidal proteins. PMID:24784323

  8. Merida virus, a putative novel rhabdovirus discovered in Culex and Ochlerotatus spp. mosquitoes in the Yucatan Peninsula of Mexico

    PubMed Central

    Charles, Jermilia; Firth, Andrew E.; Loroño-Pino, Maria A.; Garcia-Rejon, Julian E.; Farfan-Ale, Jose A.; Lipkin, W. Ian; Briese, Thomas

    2016-01-01

    Sequences corresponding to a putative, novel rhabdovirus [designated Merida virus (MERDV)] were initially detected in a pool of Culex quinquefasciatus collected in the Yucatan Peninsula of Mexico. The entire genome was sequenced, revealing 11 798 nt and five major ORFs, which encode the nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G) and RNA-dependent RNA polymerase (L). The deduced amino acid sequences of the N, G and L proteins have no more than 24, 38 and 43 % identity, respectively, to the corresponding sequences of all other known rhabdoviruses, whereas those of the P and M proteins have no significant identity with any sequences in GenBank and their identity is only suggested based on their genome position. Using specific reverse transcription-PCR assays established from the genome sequence, 27 571 C. quinquefasciatus which had been sorted in 728 pools were screened to assess the prevalence of MERDV in nature and 25 pools were found positive. The minimal infection rate (calculated as the number of positive mosquito pools per 1000 mosquitoes tested) was 0.9, and similar for both females and males. Screening another 140 pools of 5484 mosquitoes belonging to four other genera identified positive pools of Ochlerotatus spp. mosquitoes, indicating that the host range is not restricted to C. quinquefasciatus. Attempts to isolate MERDV in C6/36 and Vero cells were unsuccessful. In summary, we provide evidence that a previously undescribed rhabdovirus occurs in mosquitoes in Mexico. PMID:26868915

  9. Subcellular distribution of serine acetyltransferase from Pisum sativum and characterization of an Arabidopsis thaliana putative cytosolic isoform.

    PubMed

    Ruffet, M L; Lebrun, M; Droux, M; Douce, R

    1995-01-15

    The intracellular compartmentation of serine acetyltransferase, a key enzyme in the L-cysteine biosynthesis pathway, has been investigated in pea (Pisum sativum) leaves, by isolation of organelles and fractionation of protoplasts. Enzyme activity was mainly located in mitochondria (approximately 76% of total cellular activity). Significant activity was also identified in both the cytosol (14% of total activity) and chloroplasts (10% of total activity). Three enzyme forms were separated by anion-exchange chromatography, and each form was found to be specific for a given intracellular compartment. To obtain cDNA encoding the isoforms, functional complementation experiments were performed using an Arabidopsis thaliana expression library and an Escherichia coli mutant devoid of serine acetyltransferase activity. This strategy allowed isolation of three distinct cDNAs encoding serine acetyltransferase isoforms, as confirmed by enzyme activity measurements, genomic hybridizations, and nucleotide sequencing. The cDNA and related gene for one of the three isoforms have been characterized. The predicted amino acid sequence shows that it encodes a polypeptide of M(r) 34,330 exhibiting 41% amino acid identity with the E. coli serine acetyltransferase. Since none of the general features of transit peptides could be observed in the N-terminal region of this isoform, we assume that it is a cytosolic form.

  10. Tobacco plants transformed with the bean. alpha. ai gene express an inhibitor of insect. alpha. -amylase in their seeds. [Nicotiana tabacum; Tenebrio molitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altabella, T.; Chrispeels, M.J.

    Bean (Phaseolus vulgaris L.) seeds contain a putative plant defense protein that inhibits insect and mammalian but not plant {alpha}-amylases. We recently presented strong circumstantial evidence that this {alpha}-amylase inhibitor ({alpha}Al) is encoded by an already-identified lectin gene whose product is referred to as lectin-like-protein (LLP). We have now made a chimeric gene consisting of the coding sequence of the lectin gene that encodes LLP and the 5{prime} and 3{prime} flanking sequences of the lectin gene that encodes phytohemagglutinin-L. When this chimeric gene was expressed in transgenic tobacco (Nicotiana tabacum), we observed in the seeds a series of polypeptides (M{submore » r} 10,000-18,000) that cross-react with antibodies to the bean {alpha}-amylase inhibitor. Most of these polypeptides bind to a pig pancreas {alpha}-amylase affinity column. An extract of the seeds of the transformed tobacco plants inhibits pig pancreas {alpha}-amylase activity as well as the {alpha}-amylase present in the midgut of Tenebrio molitor. We suggest that introduction of this lectin gene (to be called {alpha}ai) into other leguminous plants may be a strategy to protect the seeds from the seed-eating larvae of Coleoptera.« less

  11. Genome mining of the sordarin biosynthetic gene cluster from Sordaria araneosa Cain ATCC 36386: characterization of cycloaraneosene synthase and GDP-6-deoxyaltrose transferase.

    PubMed

    Kudo, Fumitaka; Matsuura, Yasunori; Hayashi, Takaaki; Fukushima, Masayuki; Eguchi, Tadashi

    2016-07-01

    Sordarin is a glycoside antibiotic with a unique tetracyclic diterpene aglycone structure called sordaricin. To understand its intriguing biosynthetic pathway that may include a Diels-Alder-type [4+2]cycloaddition, genome mining of the gene cluster from the draft genome sequence of the producer strain, Sordaria araneosa Cain ATCC 36386, was carried out. A contiguous 67 kb gene cluster consisting of 20 open reading frames encoding a putative diterpene cyclase, a glycosyltransferase, a type I polyketide synthase, and six cytochrome P450 monooxygenases were identified. In vitro enzymatic analysis of the putative diterpene cyclase SdnA showed that it catalyzes the transformation of geranylgeranyl diphosphate to cycloaraneosene, a known biosynthetic intermediate of sordarin. Furthermore, a putative glycosyltransferase SdnJ was found to catalyze the glycosylation of sordaricin in the presence of GDP-6-deoxy-d-altrose to give 4'-O-demethylsordarin. These results suggest that the identified sdn gene cluster is responsible for the biosynthesis of sordarin. Based on the isolated potential biosynthetic intermediates and bioinformatics analysis, a plausible biosynthetic pathway for sordarin is proposed.

  12. Role of sequence encoded κB DNA geometry in gene regulation by Dorsal

    PubMed Central

    Mrinal, Nirotpal; Tomar, Archana; Nagaraju, Javaregowda

    2011-01-01

    Many proteins of the Rel family can act as both transcriptional activators and repressors. However, mechanism that discerns the ‘activator/repressor’ functions of Rel-proteins such as Dorsal (Drosophila homologue of mammalian NFκB) is not understood. Using genomic, biophysical and biochemical approaches, we demonstrate that the underlying principle of this functional specificity lies in the ‘sequence-encoded structure’ of the κB-DNA. We show that Dorsal-binding motifs exist in distinct activator and repressor conformations. Molecular dynamics of DNA-Dorsal complexes revealed that repressor κB-motifs typically have A-tract and flexible conformation that facilitates interaction with co-repressors. Deformable structure of repressor motifs, is due to changes in the hydrogen bonding in A:T pair in the ‘A-tract’ core. The sixth nucleotide in the nonameric κB-motif, ‘A’ (A6) in the repressor motifs and ‘T’ (T6) in the activator motifs, is critical to confer this functional specificity as A6 → T6 mutation transformed flexible repressor conformation into a rigid activator conformation. These results highlight that ‘sequence encoded κB DNA-geometry’ regulates gene expression by exerting allosteric effect on binding of Rel proteins which in turn regulates interaction with co-regulators. Further, we identified and characterized putative repressor motifs in Dl-target genes, which can potentially aid in functional annotation of Dorsal gene regulatory network. PMID:21890896

  13. The fixABCX genes in Rhodospirillum rubrum encode a putative membrane complex participating in electron transfer to nitrogenase.

    PubMed

    Edgren, Tomas; Nordlund, Stefan

    2004-04-01

    In our efforts to identify the components participating in electron transport to nitrogenase in Rhodospirillum rubrum, we used mini-Tn5 mutagenesis followed by metronidazole selection. One of the mutants isolated, SNT-1, exhibited a decreased growth rate and about 25% of the in vivo nitrogenase activity compared to the wild-type values. The in vitro nitrogenase activity was essentially wild type, indicating that the mutation affects electron transport to nitrogenase. Sequencing showed that the Tn5 insertion is located in a region with a high level of similarity to fixC, and extended sequencing revealed additional putative fix genes, in the order fixABCX. Complementation of SNT-1 with the whole fix gene cluster in trans restored wild-type nitrogenase activity and growth. Using Western blotting, we demonstrated that expression of fixA and fixB occurs only under conditions under which nitrogenase also is expressed. SNT-1 was further shown to produce larger amounts of both ribulose 1,5-bisphosphate carboxylase/oxygenase and polyhydroxy alkanoates than the wild type, indicating that the redox status is affected in this mutant. Using Western blotting, we found that FixA and FixB are soluble proteins, whereas FixC most likely is a transmembrane protein. We propose that the fixABCX genes encode a membrane protein complex that plays a central role in electron transfer to nitrogenase in R. rubrum. Furthermore, we suggest that FixC is the link between nitrogen fixation and the proton motive force generated in the photosynthetic reactions.

  14. Multilocus analysis of extracellular putative virulence proteins made by group A Streptococcus: population genetics, human serologic response, and gene transcription.

    PubMed

    Reid, S D; Green, N M; Buss, J K; Lei, B; Musser, J M

    2001-06-19

    Species of pathogenic microbes are composed of an array of evolutionarily distinct chromosomal genotypes characterized by diversity in gene content and sequence (allelic variation). The occurrence of substantial genetic diversity has hindered progress in developing a comprehensive understanding of the molecular basis of virulence and new therapeutics such as vaccines. To provide new information that bears on these issues, 11 genes encoding extracellular proteins in the human bacterial pathogen group A Streptococcus identified by analysis of four genomes were studied. Eight of the 11 genes encode proteins with a LPXTG(L) motif that covalently links Gram-positive virulence factors to the bacterial cell surface. Sequence analysis of the 11 genes in 37 geographically and phylogenetically diverse group A Streptococcus strains cultured from patients with different infection types found that recent horizontal gene transfer has contributed substantially to chromosomal diversity. Regions of the inferred proteins likely to interact with the host were identified by molecular population genetic analysis, and Western immunoblot analysis with sera from infected patients confirmed that they were antigenic. Real-time reverse transcriptase-PCR (TaqMan) assays found that transcription of six of the 11 genes was substantially up-regulated in the stationary phase. In addition, transcription of many genes was influenced by the covR and mga trans-acting gene regulatory loci. Multilocus investigation of putative virulence genes by the integrated approach described herein provides an important strategy to aid microbial pathogenesis research and rapidly identify new targets for therapeutics research.

  15. Characterization of the response to zinc deficiency in the cyanobacterium Anabaena sp. strain PCC 7120.

    PubMed

    Napolitano, Mauro; Rubio, Miguel Ángel; Santamaría-Gómez, Javier; Olmedo-Verd, Elvira; Robinson, Nigel J; Luque, Ignacio

    2012-05-01

    Zur regulators control zinc homeostasis by repressing target genes under zinc-sufficient conditions in a wide variety of bacteria. This paper describes how part of a survey of duplicated genes led to the identification of the open reading frame all2473 as the gene encoding the Zur regulator of the cyanobacterium Anabaena sp. strain PCC 7120. All2473 binds to DNA in a zinc-dependent manner, and its DNA-binding sequence was characterized, which allowed us to determine the relative contribution of particular nucleotides to Zur binding. A zur mutant was found to be impaired in the regulation of zinc homeostasis, showing sensitivity to elevated concentrations of zinc but not other metals. In an effort to characterize the Zur regulon in Anabaena, 23 genes containing upstream putative Zur-binding sequences were identified and found to be regulated by Zur. These genes are organized in six single transcriptional units and six operons, some of them containing multiple Zur-regulated promoters. The identities of genes of the Zur regulon indicate that Anabaena adapts to conditions of zinc deficiency by replacing zinc metalloproteins with paralogues that fulfill the same function but presumably with a lower zinc demand, and with inducing putative metallochaperones and membrane transport systems likely being involved in the scavenging of extracellular zinc, including plasma membrane ABC transport systems and outer membrane TonB-dependent receptors. Among the Zur-regulated genes, the ones showing the highest induction level encode proteins of the outer membrane, suggesting a primary role for components of this cell compartment in the capture of zinc cations from the extracellular medium.

  16. Molecular cloning and characterization of a novel salt-inducible gene encoding an acidic isoform of PR-5 protein in soybean (Glycine max [L.] Merr.).

    PubMed

    Onishi, M; Tachi, H; Kojima, T; Shiraiwa, M; Takahara, H

    2006-10-01

    We identified a novel salt-inducible soybean gene encoding an acidic-isoform of pathogenesis-related protein group 5 (PR-5 protein). The soybean PR-5-homologous gene, designated as Glycine max osmotin-like protein, acidic isoform (GmOLPa)), encodes a putative polypeptide having an N-terminal signal peptide. The mature GmOLPa protein without the signal peptide has a calculated molecular mass of 21.5 kDa and a pI value of 4.4, and was distinguishable from a known PR-5-homologous gene of soybean (namely P21 protein) through examination of the structural features. A comparison with two intracellular salt-inducible PR-5 proteins, tobacco osmotin and tomato NP24, revealed that GmOLPa did not have a C-terminal extension sequence functioning as a vacuole-targeting motif. The GmOLPa gene was transcribed constitutively in the soybean root and was induced almost exclusively in the root during 24 h of high-salt stress (300 mM NaCl). Interestingly, GmOLPa gene expression in the stem and leaf, not observed until 24 h, was markedly induced at 48 and 72 h after commencement of the high-salt stress. Abscisic acid (ABA) and dehydration also induced expression of the GmOLPa gene in the root; additionally, dehydration slightly induced expression in the stem and leaf. In fact, the 5'-upstream sequence of the GmOLPa gene contained several putative cis-elements known to be involved in responsiveness to ABA and dehydration, e.g. ABA-responsive element (ABRE), MYB/MYC, and low temperature-responsive element (LTRE). These results suggested that GmOLPa may function as a protective PR-5 protein in the extracellular space of the soybean root in response to high-salt stress and dehydration.

  17. Structural and transcriptional characterization of a novel member of the soybean urease gene family.

    PubMed

    Wiebke-Strohm, Beatriz; Ligabue-Braun, Rodrigo; Rechenmacher, Ciliana; De Oliveira-Busatto, Luisa Abruzzi; Carlini, Célia Regina; Bodanese-Zanettini, Maria Helena

    2016-04-01

    In plants, ureases have been related to urea degradation, to defense against pathogenic fungi and phytophagous insects, and to the soybean-Bradyrhizobium japonicum symbiosis. Two urease isoforms have been described for soybean: the embryo-specific, encoded by Eu1 gene, and the ubiquitous urease, encoded by Eu4. A third urease-encoding locus exists in the completed soybean genome. The gene was designated Eu5 and the putative product of its ORF as SBU-III. Phylogenetic analysis shows that 41 plant, moss and algal ureases have diverged from a common ancestor protein, but ureases from monocots, eudicots and ancient species have evolved independently. Genomes of ancient organisms present a single urease-encoding gene and urease-encoding gene duplication has occurred independently along the evolution of some eudicot species. SBU-III has a shorter amino acid sequence, since many gaps are found when compared to other sequences. A mutation in a highly conserved amino acid residue suggests absence of ureolytic activity, but the overall protein architecture remains very similar to the other ureases. The expression profile of urease-encoding genes in different organs and developmental stages was determined by RT-qPCR. Eu5 transcripts were detected in seeds one day after dormancy break, roots of young plants and embryos of developing seeds. Eu1 and Eu4 transcripts were found in all analyzed organs, but Eu4 expression was more prominent in seeds one day after dormancy break whereas Eu1 predominated in developing seeds. The evidence suggests that SBU-III may not be involved in nitrogen availability to plants, but it could be involved in other biological role(s). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Chromosome-based survey sequencing reveals the genome organization of wild wheat progenitor Triticum dicoccoides.

    PubMed

    Akpinar, Bala Ani; Biyiklioglu, Sezgi; Alptekin, Burcu; Havránková, Miroslava; Vrána, Jan; Doležel, Jaroslav; Distelfeld, Assaf; Hernandez, Pilar; Budak, Hikmet

    2018-05-04

    Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is the progenitor of wheat. We performed chromosome-based survey sequencing of the 14 chromosomes, examining repetitive sequences, protein-coding genes, miRNA/target pairs and tRNA genes, as well as syntenic relationships with related grasses. We found considerable differences in the content and distribution of repetitive sequences between the A and B subgenomes. The gene contents of individual chromosomes varied widely, not necessarily correlating with chromosome size. We catalogued candidate agronomically important loci, along with new alleles and flanking sequences that can be used to design exome sequencing. Syntenic relationships and virtual gene orders revealed several small-scale evolutionary rearrangements, in addition to providing evidence for the 4AL-5AL-7BS translocation in wild emmer wheat. Chromosome-based sequence assemblies contained five novel miRNA families, among 59 families putatively encoded in the entire genome which provide insight into the domestication of wheat and an overview of the genome content and organization. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. funRNA: a fungi-centered genomics platform for genes encoding key components of RNAi.

    PubMed

    Choi, Jaeyoung; Kim, Ki-Tae; Jeon, Jongbum; Wu, Jiayao; Song, Hyeunjeong; Asiegbu, Fred O; Lee, Yong-Hwan

    2014-01-01

    RNA interference (RNAi) is involved in genome defense as well as diverse cellular, developmental, and physiological processes. Key components of RNAi are Argonaute, Dicer, and RNA-dependent RNA polymerase (RdRP), which have been functionally characterized mainly in model organisms. The key components are believed to exist throughout eukaryotes; however, there is no systematic platform for archiving and dissecting these important gene families. In addition, few fungi have been studied to date, limiting our understanding of RNAi in fungi. Here we present funRNA http://funrna.riceblast.snu.ac.kr/, a fungal kingdom-wide comparative genomics platform for putative genes encoding Argonaute, Dicer, and RdRP. To identify and archive genes encoding the abovementioned key components, protein domain profiles were determined from reference sequences obtained from UniProtKB/SwissProt. The domain profiles were searched using fungal, metazoan, and plant genomes, as well as bacterial and archaeal genomes. 1,163, 442, and 678 genes encoding Argonaute, Dicer, and RdRP, respectively, were predicted. Based on the identification results, active site variation of Argonaute, diversification of Dicer, and sequence analysis of RdRP were discussed in a fungus-oriented manner. funRNA provides results from diverse bioinformatics programs and job submission forms for BLAST, BLASTMatrix, and ClustalW. Furthermore, sequence collections created in funRNA are synced with several gene family analysis portals and databases, offering further analysis opportunities. funRNA provides identification results from a broad taxonomic range and diverse analysis functions, and could be used in diverse comparative and evolutionary studies. It could serve as a versatile genomics workbench for key components of RNAi.

  20. Characterization and complete genome sequences of L. rhamnosus DSM 14870 and L. gasseri DSM 14869 contained in the EcoVag® probiotic vaginal capsules.

    PubMed

    Marcotte, Harold; Krogh Andersen, Kasper; Lin, Yin; Zuo, Fanglei; Zeng, Zhu; Larsson, Per Göran; Brandsborg, Erik; Brønstad, Gunnar; Hammarström, Lennart

    2017-12-01

    Lactobacillus rhamnosus DSM 14870 and Lactobacillus gasseri DSM 14869 were previously isolated from the vaginal epithelial cells (VEC) of healthy women and selected for the development of the vaginal EcoVag ® probiotic capsules. EcoVag ® was subsequently shown to provide long-term cure and reduce relapse of bacterial vaginosis (BV) as an adjunct to antibiotic therapy. To identify genes potentially involved in probiotic activity, we performed genome sequencing and characterization of the two strains. The complete genome analysis of both strains revealed the presence of genes encoding functions related to adhesion, exopolysaccharide (EPS) biosynthesis, antimicrobial activity, and CRISPR adaptive immunity but absence of antibiotic resistance genes. Interesting features of L. rhamnosus DSM 14870 genome include the presence of the spaCBA-srtC gene encoding spaCBA pili and interruption of the gene cluster encoding long galactose-rich EPS by integrases. Unique to L. gasseri DSM 14869 genome was the presence of a gene encoding a putative (1456 amino acid) new adhesin containing two rib/alpha-like repeats. L. rhamnosus DSM 14870 and L. gasseri DSM 14869 showed acidification of the culture medium (to pH 3.8) and a strong adhesion capability to the Caco-2 cell line and VEC. L. gasseri DSM 14869 could produce a thick (40nm) EPS layer and hydrogen peroxide. L. rhamnosus DSM 14870 was shown to produce SpaCBA pili and a 20nm EPS layer, and could inhibit the growth of Gardnerella vaginalis, a bacterium commonly associated with BV. The genome sequences provide a basis for further elucidation of the molecular basis for their probiotic functions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Differential Expression of Three α-Galactosidase Genes and a Single β-Galactosidase Gene from Aspergillus niger

    PubMed Central

    de Vries, Ronald P.; van den Broeck, Hetty C.; Dekkers, Ester; Manzanares, Paloma; de Graaff, Leo H.; Visser, Jaap

    1999-01-01

    A gene encoding a third α-galactosidase (AglB) from Aspergillus niger has been cloned and sequenced. The gene consists of an open reading frame of 1,750 bp containing six introns. The gene encodes a protein of 443 amino acids which contains a eukaryotic signal sequence of 16 amino acids and seven putative N-glycosylation sites. The mature protein has a calculated molecular mass of 48,835 Da and a predicted pI of 4.6. An alignment of the AglB amino acid sequence with those of other α-galactosidases revealed that it belongs to a subfamily of α-galactosidases that also includes A. niger AglA. A. niger AglC belongs to a different subfamily that consists mainly of prokaryotic α-galactosidases. The expression of aglA, aglB, aglC, and lacA, the latter of which encodes an A. niger β-galactosidase, has been studied by using a number of monomeric, oligomeric, and polymeric compounds as growth substrates. Expression of aglA is only detected on galactose and galactose-containing oligomers and polymers. The aglB gene is expressed on all of the carbon sources tested, including glucose. Elevated expression was observed on xylan, which could be assigned to regulation via XlnR, the xylanolytic transcriptional activator. Expression of aglC was only observed on glucose, fructose, and combinations of glucose with xylose and galactose. High expression of lacA was detected on arabinose, xylose, xylan, and pectin. Similar to aglB, the expression on xylose and xylan can be assigned to regulation via XlnR. All four genes have distinct expression patterns which seem to mirror the natural substrates of the encoded proteins. PMID:10347026

  2. New endo-beta-1,4-glucanases from the parabasalian symbionts, Pseudotrichonympha grassii and Holomastigotoides mirabile of Coptotermes termites.

    PubMed

    Watanabe, H; Nakashima, K; Saito, H; Slaytor, M

    2002-11-01

    Abstract. An endo-beta-1,4-glucanase (EG) was purified from the hindgut of an Australian mound-building termite, Coptotermes lacteus. The hindgut extract had a peak separate from those for extracts obtained from the salivary glands and the midgut based on sephacryl S-200 gel chromatography, and also demonstrated an origin different from the endogenous EGs of the termite itself. The recovery was further purified by SDS-PAGE, and its N-terminal amino acid sequence analyzed. This showed high homology to EGs from glycoside hydrolase family (GHF) 7. PCR-based cloning methods were applied to the hindgut contents of C. lacteus and individual protozoan symbionts from C formosanus. cDNAs encoding putative EGs homologous to GHF7 members were then identified. The functionality of one of the putative proteins was confirmed by its expression in Escherichia coli.

  3. Functional Analysis of the Lactobacillus casei BL23 Sortases

    PubMed Central

    Muñoz-Provencio, Diego; Rodríguez-Díaz, Jesús; Collado, María Carmen; Langella, Philippe; Bermúdez-Humarán, Luis G.

    2012-01-01

    Sortases are a class of enzymes that anchor surface proteins to the cell wall of Gram-positive bacteria. Lactobacillus casei BL23 harbors four sortase genes, two belonging to class A (srtA1 and srtA2) and two belonging to class C (srtC1 and srtC2). Class C sortases were clustered with genes encoding their putative substrates that were homologous to the SpaEFG and SpaCBA proteins that encode mucus adhesive pili in Lactobacillus rhamnosus GG. Twenty-three genes encoding putative sortase substrates were identified in the L. casei BL23 genome with unknown (35%), enzymatic (30%), or adhesion-related (35%) functions. Strains disrupted in srtA1, srtA2, srtC1, and srtC2 and an srtA1 srtA2 double mutant were constructed. The transcription of all four sortase encoding genes was detected, but only the mutation of srtA1 resulted in a decrease in bacterial surface hydrophobicity. The β-N-acetyl-glucosaminidase and cell wall proteinase activities of whole cells diminished in the srtA1 mutant and, to a greater extent, in the srtA1 srtA2 double mutant. Cell wall anchoring of the staphylococcal NucA reporter protein fused to a cell wall sorting sequence was also affected in the srtA mutants, and the percentages of adhesion to Caco-2 and HT-29 intestinal epithelial cells were reduced for the srtA1 srtA2 strain. Mutations in srtC1 or srtC2 result in an undetectable phenotype. Together, these results suggest that SrtA1 is the housekeeping sortase in L. casei BL23 and SrtA2 would carry out redundant or complementary functions that become evident when SrtA1 activity is absent. PMID:23042174

  4. Mutations in C4orf26, encoding a peptide with in vitro hydroxyapatite crystal nucleation and growth activity, cause amelogenesis imperfecta.

    PubMed

    Parry, David A; Brookes, Steven J; Logan, Clare V; Poulter, James A; El-Sayed, Walid; Al-Bahlani, Suhaila; Al Harasi, Sharifa; Sayed, Jihad; Raïf, El Mostafa; Shore, Roger C; Dashash, Mayssoon; Barron, Martin; Morgan, Joanne E; Carr, Ian M; Taylor, Graham R; Johnson, Colin A; Aldred, Michael J; Dixon, Michael J; Wright, J Tim; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2012-09-07

    Autozygosity mapping and clonal sequencing of an Omani family identified mutations in the uncharacterized gene, C4orf26, as a cause of recessive hypomineralized amelogenesis imperfecta (AI), a disease in which the formation of tooth enamel fails. Screening of a panel of 57 autosomal-recessive AI-affected families identified eight further families with loss-of-function mutations in C4orf26. C4orf26 encodes a putative extracellular matrix acidic phosphoprotein expressed in the enamel organ. A mineral nucleation assay showed that the protein's phosphorylated C terminus has the capacity to promote nucleation of hydroxyapatite, suggesting a possible function in enamel mineralization during amelogenesis. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. A Putative Gene Cluster from a Lyngbya wollei Bloom that Encodes Paralytic Shellfish Toxin Biosynthesis

    PubMed Central

    Mihali, Troco K.; Carmichael, Wayne W.; Neilan, Brett A.

    2011-01-01

    Saxitoxin and its analogs cause the paralytic shellfish-poisoning syndrome, adversely affecting human health and coastal shellfish industries worldwide. Here we report the isolation, sequencing, annotation, and predicted pathway of the saxitoxin biosynthetic gene cluster in the cyanobacterium Lyngbya wollei. The gene cluster spans 36 kb and encodes enzymes for the biosynthesis and export of the toxins. The Lyngbya wollei saxitoxin gene cluster differs from previously identified saxitoxin clusters as it contains genes that are unique to this cluster, whereby the carbamoyltransferase is truncated and replaced by an acyltransferase, explaining the unique toxin profile presented by Lyngbya wollei. These findings will enable the creation of toxin probes, for water monitoring purposes, as well as proof-of-concept for the combinatorial biosynthesis of these natural occurring alkaloids for the production of novel, biologically active compounds. PMID:21347365

  6. Sequence analyses and evolutionary relationships among the energy-coupling proteins Enzyme I and HPr of the bacterial phosphoenolpyruvate: sugar phosphotransferase system.

    PubMed Central

    Reizer, J.; Hoischen, C.; Reizer, A.; Pham, T. N.; Saier, M. H.

    1993-01-01

    We have previously reported the overexpression, purification, and biochemical properties of the Bacillus subtilis Enzyme I of the phosphoenolpyruvate: sugar phosphotransferase system (PTS) (Reizer, J., et al., 1992, J. Biol. Chem. 267, 9158-9169). We now report the sequencing of the ptsI gene of B. subtilis encoding Enzyme I (570 amino acids and 63,076 Da). Putative transcriptional regulatory signals are identified, and the pts operon is shown to be subject to carbon source-dependent regulation. Multiple alignments of the B. subtilis Enzyme I with (1) six other sequenced Enzymes I of the PTS from various bacterial species, (2) phosphoenolpyruvate synthase of Escherichia coli, and (3) bacterial and plant pyruvate: phosphate dikinases (PPDKs) revealed regions of sequence similarity as well as divergence. Statistical analyses revealed that these three types of proteins comprise a homologous family, and the phylogenetic tree of the 11 sequenced protein members of this family was constructed. This tree was compared with that of the 12 sequence HPr proteins or protein domains. Antibodies raised against the B. subtilis and E. coli Enzymes I exhibited immunological cross-reactivity with each other as well as with PPDK of Bacteroides symbiosus, providing support for the evolutionary relationships of these proteins suggested from the sequence comparisons. Putative flexible linkers tethering the N-terminal and the C-terminal domains of protein members of the Enzyme I family were identified, and their potential significance with regard to Enzyme I function is discussed. The codon choice pattern of the B. subtilis and E. coli ptsI and ptsH genes was found to exhibit a bias toward optimal codons in these organisms.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7686067

  7. The Caenorhabditis elegans gene unc-89, required fpr muscle M-line assembly, encodes a giant modular protein composed of Ig and signal transduction domains

    PubMed Central

    1996-01-01

    Mutations in the Caenorhabditis elegans gene unc-89 result in nematodes having disorganized muscle structure in which thick filaments are not organized into A-bands, and there are no M-lines. Beginning with a partial cDNA from the C. elegans sequencing project, we have cloned and sequenced the unc-89 gene. An unc-89 allele, st515, was found to contain an 84-bp deletion and a 10-bp duplication, resulting in an in- frame stop codon within predicted unc-89 coding sequence. Analysis of the complete coding sequence for unc-89 predicts a novel 6,632 amino acid polypeptide consisting of sequence motifs which have been implicated in protein-protein interactions. UNC-89 begins with 67 residues of unique sequences, SH3, dbl/CDC24, and PH domains, 7 immunoglobulins (Ig) domains, a putative KSP-containing multiphosphorylation domain, and ends with 46 Ig domains. A polyclonal antiserum raised to a portion of unc-89 encoded sequence reacts to a twitchin-sized polypeptide from wild type, but truncated polypeptides from st515 and from the amber allele e2338. By immunofluorescent microscopy, this antiserum localizes to the middle of A-bands, consistent with UNC-89 being a structural component of the M-line. Previous studies indicate that myofilament lattice assembly begins with positional cues laid down in the basement membrane and muscle cell membrane. We propose that the intracellular protein UNC-89 responds to these signals, localizes, and then participates in assembling an M-line. PMID:8603916

  8. The Aquaporin Channel Repertoire of the Tardigrade Milnesium tardigradum

    PubMed Central

    Grohme, Markus A.; Mali, Brahim; Wełnicz, Weronika; Michel, Stephanie; Schill, Ralph O.; Frohme, Marcus

    2013-01-01

    Limno-terrestrial tardigrades are small invertebrates that are subjected to periodic drought of their micro-environment. They have evolved to cope with these unfavorable conditions by anhydrobiosis, an ametabolic state of low cellular water. During drying and rehydration, tardigrades go through drastic changes in cellular water content. By our transcriptome sequencing effort of the limno-terrestrial tardigrade Milnesium tardigradum and by a combination of cloning and targeted sequence assembly, we identified transcripts encoding eleven putative aquaporins. Analysis of these sequences proposed 2 classical aquaporins, 8 aquaglyceroporins and a single potentially intracellular unorthodox aquaporin. Using quantitative real-time PCR we analyzed aquaporin transcript expression in the anhydrobiotic context. We have identified additional unorthodox aquaporins in various insect genomes and have identified a novel common conserved structural feature in these proteins. Analysis of the genomic organization of insect aquaporin genes revealed several conserved gene clusters. PMID:23761966

  9. [Inverse PCR amplification of the complete major capsid protein gene of lymphocystis disease virus isolated from Rachycentron canadum and the phylogenetic analysis of the virus].

    PubMed

    Fu, Xiao-Zhe; Shi, Cun-Bin; Li, Ning-Qiu; Pan, Hou-Jun; Chang, Ou-Qin; Wu, Shu-Qin

    2007-09-01

    The major capsid protein of lymphocystis disease virus isolated from Rachycentron canadum (LCDV-rc) was amplified and analysed. The 457bp DNA core fragment was amplified with the degenerate primers designed according to the conserved sequences of MCP gene of iridoviruses, then the flaking sequences adjacent to the core region were amplified by inverse PCR, and the complete sequence was obtained by combining all of them. The open reading frame of the gene is 1380bp in length, encoding a putative protein of 459 aa with molecular weight 51.12 kD and pI 6.87. Constructing the phylogenetic tree for comparing the MCP amino acid of iridoviruses, the results indicated that LCDV-rc is most homologous to the other Lymphocystis viruses and all of them constitute a branch. Accordingly LCDV-rc is identified as Lymphocystivirus.

  10. Characterization of the Tupaia rhabdovirus genome reveals a long open reading frame overlapping with P and a novel gene encoding a small hydrophobic protein.

    PubMed

    Springfeld, Christoph; Darai, Gholamreza; Cattaneo, Roberto

    2005-06-01

    Rhabdoviruses are negative-stranded RNA viruses of the order Mononegavirales and have been isolated from vertebrates, insects, and plants. Members of the genus Lyssavirus cause the invariably fatal disease rabies, and a member of the genus Vesiculovirus, Chandipura virus, has recently been associated with acute encephalitis in children. We present here the complete genome sequence and transcription map of a rhabdovirus isolated from cultivated cells of hepatocellular carcinoma tissue from a moribund tree shrew. The negative-strand genome of tupaia rhabdovirus is composed of 11,440 nucleotides and encodes six genes that are separated by one or two intergenic nucleotides. In addition to the typical rhabdovirus genes in the order N-P-M-G-L, a gene encoding a small hydrophobic putative type I transmembrane protein of approximately 11 kDa was identified between the M and G genes, and the corresponding transcript was detected in infected cells. Similar to some Vesiculoviruses and many Paramyxovirinae, the P gene has a second overlapping reading frame that can be accessed by ribosomal choice and encodes a protein of 26 kDa, predicted to be the largest C protein of these virus families. Phylogenetic analyses of the tupaia rhabdovirus N and L genes show that the virus is distantly related to the Vesiculoviruses, Ephemeroviruses, and the recently characterized Flanders virus and Oita virus and further extends the sequence territory occupied by animal rhabdoviruses.

  11. Characterization of the Tupaia Rhabdovirus Genome Reveals a Long Open Reading Frame Overlapping with P and a Novel Gene Encoding a Small Hydrophobic Protein

    PubMed Central

    Springfeld, Christoph; Darai, Gholamreza; Cattaneo, Roberto

    2005-01-01

    Rhabdoviruses are negative-stranded RNA viruses of the order Mononegavirales and have been isolated from vertebrates, insects, and plants. Members of the genus Lyssavirus cause the invariably fatal disease rabies, and a member of the genus Vesiculovirus, Chandipura virus, has recently been associated with acute encephalitis in children. We present here the complete genome sequence and transcription map of a rhabdovirus isolated from cultivated cells of hepatocellular carcinoma tissue from a moribund tree shrew. The negative-strand genome of tupaia rhabdovirus is composed of 11,440 nucleotides and encodes six genes that are separated by one or two intergenic nucleotides. In addition to the typical rhabdovirus genes in the order N-P-M-G-L, a gene encoding a small hydrophobic putative type I transmembrane protein of approximately 11 kDa was identified between the M and G genes, and the corresponding transcript was detected in infected cells. Similar to some Vesiculoviruses and many Paramyxovirinae, the P gene has a second overlapping reading frame that can be accessed by ribosomal choice and encodes a protein of 26 kDa, predicted to be the largest C protein of these virus families. Phylogenetic analyses of the tupaia rhabdovirus N and L genes show that the virus is distantly related to the Vesiculoviruses, Ephemeroviruses, and the recently characterized Flanders virus and Oita virus and further extends the sequence territory occupied by animal rhabdoviruses. PMID:15890917

  12. Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prody, C.A.; Zevin-Sonkin, D.; Gnatt, A.

    1987-06-01

    To study the primary structure and regulation of human cholinesterases, oligodeoxynucleotide probes were prepared according to a consensus peptide sequence present in the active site of both human serum pseudocholinesterase and Torpedo electric organ true acetylcholinesterase. Using these probes, the authors isolated several cDNA clones from lambdagt10 libraries of fetal brain and liver origins. These include 2.4-kilobase cDNA clones that code for a polypeptide containing a putative signal peptide and the N-terminal, active site, and C-terminal peptides of human BtChoEase, suggesting that they code either for BtChoEase itself or for a very similar but distinct fetal form of cholinesterase. Inmore » RNA blots of poly(A)/sup +/ RNA from the cholinesterase-producing fetal brain and liver, these cDNAs hybridized with a single 2.5-kilobase band. Blot hybridization to human genomic DNA revealed that these fetal BtChoEase cDNA clones hybridize with DNA fragments of the total length of 17.5 kilobases, and signal intensities indicated that these sequences are not present in many copies. Both the cDNA-encoded protein and its nucleotide sequence display striking homology to parallel sequences published for Torpedo AcChoEase. These finding demonstrate extensive homologies between the fetal BtChoEase encoded by these clones and other cholinesterases of various forms and species.« less

  13. The master regulator PhoP coordinates phosphate and nitrogen metabolism, respiration, cell differentiation and antibiotic biosynthesis: comparison in Streptomyces coelicolor and Streptomyces avermitilis.

    PubMed

    Martín, Juan F; Rodríguez-García, Antonio; Liras, Paloma

    2017-05-01

    Phosphate limitation is important for production of antibiotics and other secondary metabolites in Streptomyces. Phosphate control is mediated by the two-component system PhoR-PhoP. Following phosphate depletion, PhoP stimulates expression of genes involved in scavenging, transport and mobilization of phosphate, and represses the utilization of nitrogen sources. PhoP reduces expression of genes for aerobic respiration and activates nitrate respiration genes. PhoP activates genes for teichuronic acid formation and reduces expression of genes for phosphate-rich teichoic acid biosynthesis. In Streptomyces coelicolor, PhoP repressed several differentiation and pleiotropic regulatory genes, which affects development and indirectly antibiotic biosynthesis. A new bioinformatics analysis of the putative PhoP-binding sequences in Streptomyces avermitilis was made. Many sequences in S. avermitilis genome showed high weight values and were classified according to the available genetic information. These genes encode phosphate scavenging proteins, phosphate transporters and nitrogen metabolism genes. Among of the genes highlighted in the new studies was aveR, located in the avermectin gene cluster, encoding a LAL-type regulator, and afsS, which is regulated by PhoP and AfsR. The sequence logo for S. avermitilis PHO boxes is similar to that of S. coelicolor, with differences in the weight value for specific nucleotides in the sequence.

  14. Cloning and Molecular Analysis of a Mannitol Operon of Phosphoenolpyruvate-dependent Phosphotransferase (PTS) type From Vibrio cholerae O395

    PubMed Central

    Kumar, Sanath; Smith, Kenneth P.; Floyd, Jody L.; Varela, Manuel F.

    2010-01-01

    A putative mannitol operon of the phosphoenolpyruvate phosphotransferase (PTS) type was cloned from Vibrio cholerae O395 and its activity studied in Escherichia coli. The 3.9 kb operon comprising of three genes is organized as mtlADR. Based on the sequence analysis, these were identified as genes encoding a putative mannitol-specific enzyme IICBA (EIIMtl) component (MtlA), a mannitol-1-phosphate dehydrogenase (MtlD) and a mannitol operon repressor (MtlR). The transport of [3H]mannitol by the cloned mannitol operon in E. coli was 13.8±1.4 nmol/min/mg protein. The insertional inactivation of EIIMtl abolished mannitol and sorbitol transport in V. cholerae O395. Comparison of the mannitol utilization apparatus of V. cholerae with those of Gram-negative and Gram positive bacteria suggests highly conserved nature of the system. MtlA and MtlD exhibit 75% similarity with corresponding sequences of E. coli mannitol operon genes, while MtlR has 63% similarity with MtlR of E. coli. The cloning of V. cholerae mannitol utilization system in an E. coli background will help in elucidating the functional properties of this operon. PMID:21184218

  15. Molecular Characterization of a Novel Species of Capillovirus from Japanese Apricot (Prunus mume)

    PubMed Central

    Faure, Chantal; Theil, Sébastien; Candresse, Thierry

    2018-01-01

    With the increased use of high-throughput sequencing methods, new viruses infecting Prunus spp. are being discovered and characterized, especially in the family Betaflexiviridae. Double-stranded RNAs from symptomatic leaves of a Japanese apricot (Prunus mume) tree from Japan were purified and analyzed by Illumina sequencing. Blast comparisons of reconstructed contigs showed that the P. mume sample was infected by a putative novel virus with homologies to Cherry virus A (CVA) and to the newly described Currant virus A (CuVA), both members of genus Capillovirus. Completion of the genome showed the new agent to have a genomic organization typical of capilloviruses, with two overlapping open reading frames encoding a large replication-associated protein fused to the coat protein (CP), and a putative movement protein (MP). This virus shares only, respectively, 63.2% and 62.7% CP amino acid identity with the most closely related viruses, CVA and CuVA. Considering the species demarcation criteria in the family and phylogenetic analyses, this virus should be considered as representing a new viral species in the genus Capillovirus, for which the name of Mume virus A is proposed. PMID:29570605

  16. RADH, a gene of Saccharomyces cerevisiae encoding a putative DNA helicase involved in DNA repair. Characteristics of radH mutants and sequence of the gene.

    PubMed

    Aboussekhra, A; Chanet, R; Zgaga, Z; Cassier-Chauvat, C; Heude, M; Fabre, F

    1989-09-25

    A new type of radiation-sensitive mutant of S. cerevisiae is described. The recessive radH mutation sensitizes to the lethal effect of UV radiations haploids in the G1 but not in the G2 mitotic phase. Homozygous diploids are as sensitive as G1 haploids. The UV-induced mutagenesis is depressed, while the induction of gene conversion is increased. The mutation is believed to channel the repair of lesions engaged in the mutagenic pathway into a recombination process, successful if the events involve sister-chromatids but lethal if they involve homologous chromosomes. The sequence of the RADH gene reveals that it may code for a DNA helicase, with a Mr of 134 kDa. All the consensus domains of known DNA helicases are present. Besides these consensus regions, strong homologies with the Rep and UvrD helicases of E. coli were found. The RadH putative helicase appears to belong to the set of proteins involved in the error-prone repair mechanism, at least for UV-induced lesions, and could act in coordination with the Rev3 error-prone DNA polymerase.

  17. Cloning and purification of alpha-neurotoxins from king cobra (Ophiophagus hannah).

    PubMed

    He, Ying-Ying; Lee, Wei-Hui; Zhang, Yun

    2004-09-01

    Thirteen complete and three partial cDNA sequences were cloned from the constructed king cobra (Ophiophagus hannah) venom gland cDNA library. Phylogenetic analysis of nucleotide sequences of king cobra with those from other snake venoms revealed that obtained cDNAs are highly homologous to snake venom alpha-neurotoxins. Alignment of deduced mature peptide sequences of the obtained clones with those of other reported alpha-neurotoxins from the king cobra venom indicates that our obtained 16 clones belong to long-chain neurotoxins (seven), short-chain neurotoxins (seven), weak toxin (one) and variant (one), respectively. Up to now, two out of 16 newly cloned king cobra alpha-neurotoxins have identical amino acid sequences with CM-11 and Oh-6A/6B, which have been characterized from the same venom. Furthermore, five long-chain alpha-neurotoxins and two short-chain alpha-neurotoxins were purified from crude venom and their N-terminal amino acid sequences were determined. The cDNAs encoding the putative precursors of the purified native peptide were also determined based on the N-terminal amino acid sequencing. The purified alpha-neurotoxins showed different lethal activities on mice.

  18. Identification of a novel plant amalgavirus (Amalgavirus, Amalgaviridae) genome sequence in Cistus incanus.

    PubMed

    Goh, C J; Park, D; Lee, J S; Sebastiani, F; Hahn, Y

    2018-01-01

    Amalgaviridae is a family of double-stranded, monosegmented RNA viruses that are associated with plants, fungi, microsporidians, and animals. A sequence contig derived from the transcriptome of a eudicot, Cistus incanus (the family Cistaceae; commonly known as hoary rockrose), was identified as the genome sequence of a novel plant RNA virus and named Cistus incanus RNA virus 1 (CiRV1). Sequence comparison and phylogenetic analysis indicated that CiRV1 is a novel species of the genus Amalgavirus in the family Amalgaviridae. The CiRV1 genome contig has two overlapping open reading frames (ORFs). ORF1 encodes a putative replication factory matrix-like protein, while ORF2 encodes a RNA-dependent RNA polymerase (RdRp) domain. An ORF1+2 fusion protein, which functions in viral RNA replication, is produced by a +1 programmed ribosomal frameshifting (PRF) mechanism. A +1 PRF motif UUU_CGU, which matches the conserved amalgavirus +1 PRF consensus sequence UUU_CGN, was found at the boundary of CiRV1 ORF1 and ORF2. Comparison of 25 amalgavirus ORF1+2 fusion proteins revealed that only three different positions within a 13-amino acid segment were recurrently used at the boundary, possibly being selected so as not to interfere with correct folding and function of the fusion protein. CiRV1 is the first virus found to be associated with the Cistus species and may be useful for studying amalgaviruses.

  19. Identification of Two Novel Amalgaviruses in the Common Eelgrass (Zostera marina) and in Silico Analysis of the Amalgavirus +1 Programmed Ribosomal Frameshifting Sites.

    PubMed

    Park, Dongbin; Goh, Chul Jun; Kim, Hyein; Hahn, Yoonsoo

    2018-04-01

    The genome sequences of two novel monopartite RNA viruses were identified in a common eelgrass ( Zostera marina ) transcriptome dataset. Sequence comparison and phylogenetic analyses revealed that these two novel viruses belong to the genus Amalgavirus in the family Amalgaviridae . They were named Zostera marina amalgavirus 1 (ZmAV1) and Zostera marina amalgavirus 2 (ZmAV2). Genomes of both ZmAV1 and ZmAV2 contain two overlapping open reading frames (ORFs). ORF1 encodes a putative replication factory matrix-like protein, while ORF2 encodes a RNA-dependent RNA polymerase (RdRp) domain. The fusion protein (ORF1+2) of ORF1 and ORF2, which mediates RNA replication, was produced using the +1 programmed ribosomal frameshifting (PRF) mechanism. The +1 PRF motif sequence, UUU_CGN, which is highly conserved among known amalgaviruses, was also found in ZmAV1 and ZmAV2. Multiple sequence alignment of the ORF1+2 fusion proteins from 24 amalgaviruses revealed that +1 PRF occurred only at three different positions within the 13-amino acid-long segment, which was surrounded by highly conserved regions on both sides. This suggested that the +1 PRF may be constrained by the structure of fusion proteins. Genome sequences of ZmAV1 and ZmAV2, which are the first viruses to be identified in common eelgrass, will serve as useful resources for studying evolution and diversity of amalgaviruses.

  20. Identification of Two Novel Amalgaviruses in the Common Eelgrass (Zostera marina) and in Silico Analysis of the Amalgavirus +1 Programmed Ribosomal Frameshifting Sites

    PubMed Central

    Park, Dongbin; Goh, Chul Jun; Kim, Hyein; Hahn, Yoonsoo

    2018-01-01

    The genome sequences of two novel monopartite RNA viruses were identified in a common eelgrass (Zostera marina) transcriptome dataset. Sequence comparison and phylogenetic analyses revealed that these two novel viruses belong to the genus Amalgavirus in the family Amalgaviridae. They were named Zostera marina amalgavirus 1 (ZmAV1) and Zostera marina amalgavirus 2 (ZmAV2). Genomes of both ZmAV1 and ZmAV2 contain two overlapping open reading frames (ORFs). ORF1 encodes a putative replication factory matrix-like protein, while ORF2 encodes a RNA-dependent RNA polymerase (RdRp) domain. The fusion protein (ORF1+2) of ORF1 and ORF2, which mediates RNA replication, was produced using the +1 programmed ribosomal frameshifting (PRF) mechanism. The +1 PRF motif sequence, UUU_CGN, which is highly conserved among known amalgaviruses, was also found in ZmAV1 and ZmAV2. Multiple sequence alignment of the ORF1+2 fusion proteins from 24 amalgaviruses revealed that +1 PRF occurred only at three different positions within the 13-amino acid-long segment, which was surrounded by highly conserved regions on both sides. This suggested that the +1 PRF may be constrained by the structure of fusion proteins. Genome sequences of ZmAV1 and ZmAV2, which are the first viruses to be identified in common eelgrass, will serve as useful resources for studying evolution and diversity of amalgaviruses. PMID:29628822

  1. New genes and new biological roles for expansins

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    2000-01-01

    Expansins are extracellular proteins that loosen plant cell walls in novel ways. They are thought to function in cell enlargement, pollen tube invasion of the stigma (in grasses), wall disassembly during fruit ripening, abscission and other cell separation events. Expansins are encoded by two multigene families and each gene is often expressed in highly specific locations and cell types. Structural analysis indicates that one expansin region resembles the catalytic domain of family-45 endoglucanases but glucanase activity has not been detected. The genome projects have revealed numerous expansin-related sequences but their putative wall-loosening functions remain to be assessed.

  2. Cloning and Expression of the Erwinia carotovora subsp. carotovora Gene Encoding the Low-Molecular-Weight Bacteriocin Carocin S1▿

    PubMed Central

    Chuang, Duen-yau; Chien, Yung-chei; Wu, Huang-Pin

    2007-01-01

    The purpose of this study was to clone the carocin S1 gene and express it in a non-carocin-producing strain of Erwinia carotovora. A mutant, TH22-10, which produced a high-molecular-weight bacteriocin but not a low-molecular-weight bacteriocin, was obtained by Tn5 insertional mutagenesis using H-rif-8-2 (a spontaneous rifampin-resistant mutant of Erwinia carotovora subsp. carotovora 89-H-4). Using thermal asymmetric interlaced PCR, the DNA sequence from the Tn5 insertion site and the DNA sequence of the contiguous 2,280-bp region were determined. Two complete open reading frames (ORF), designated ORF2 and ORF3, were identified within the sequence fragment. ORF2 and ORF3 were identified with the carocin S1 genes, caroS1K (ORF2) and caroS1I (ORF3), which, respectively, encode a killing protein (CaroS1K) and an immunity protein (CaroS1I). These genes were homologous to the pyocin S3 gene and the pyocin AP41 gene. Carocin S1 was expressed in E. carotovora subsp. carotovora Ea1068 and replicated in TH22-10 but could not be expressed in Escherichia coli (JM101) because a consensus sequence resembling an SOS box was absent. A putative sequence similar to the consensus sequence for the E. coli cyclic AMP receptor protein binding site (−312 bp) was found upstream of the start codon. Production of this bacteriocin was also induced by glucose and lactose. The homology search results indicated that the carocin S1 gene (between bp 1078 and bp 1704) was homologous to the pyocin S3 and pyocin AP41 genes in Pseudomonas aeruginosa. These genes encode proteins with nuclease activity (domain 4). This study found that carocin S1 also has nuclease activity. PMID:17071754

  3. Cloning and sequence analysis of a full-length cDNA of SmPP1cb encoding turbot protein phosphatase 1 beta catalytic subunit

    NASA Astrophysics Data System (ADS)

    Qi, Fei; Guo, Huarong; Wang, Jian

    2008-02-01

    Reversible protein phosphorylation, catalyzed by protein kinases and phosphatases, is an important and versatile mechanism by which eukaryotic cells regulate almost all the signaling processes. Protein phosphatase 1 (PP1) is the first and well-characterized member of the protein serine/threonine phosphatase family. In the present study, a full-length cDNA encoding the beta isoform of the catalytic subunit of protein phosphatase 1(PP1cb), was for the first time isolated and sequenced from the skin tissue of flatfish turbot Scophthalmus maximus, designated SmPP1cb, by the rapid amplification of cDNA ends (RACE) technique. The cDNA sequence of SmPP1cb we obtained contains a 984 bp open reading frame (ORF), flanked by a complete 39 bp 5' untranslated region and 462 bp 3' untranslated region. The ORF encodes a putative 327 amino acid protein, and the N-terminal section of this protein is highly acidic, Met-Ala-Glu-Gly-Glu-Leu-Asp-Val-Asp, a common feature for PP1 catalytic subunit but absent in protein phosphatase 2B (PP2B). And its calculated molecular mass is 37 193 Da and pI 5.8. Sequence analysis indicated that, SmPP1cb is extremely conserved in both amino acid and nucleotide acid levels compared with the PP1cb of other vertebrates and invertebrates, and its Kozak motif contained in the 5'UTR around ATG start codon is GXXAXXGXX ATGG, which is different from mammalian in two positions A-6 and G-3, indicating the possibility of different initiation of translation in turbot, and also the 3'UTR of SmPP1cb is highly diverse in the sequence similarity and length compared with other animals, especially zebrafish. The cloning and sequencing of SmPP1cb gene lays a good foundation for the future work on the biological functions of PP1 in the flatfish turbot.

  4. A putative siderophore-interacting protein from the marine bacterium Shewanella frigidimarina NCIMB 400: cloning, expression, purification, crystallization and X-ray diffraction analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trindade, Inês B.; Fonseca, Bruno M.; Matias, Pedro M.

    The gene encoding a putative siderophore-interacting protein from the marine bacterium S. frigidimarina was successfully cloned, followed by expression and purification of the gene product. Optimized crystals diffracted to 1.35 Å resolution and preliminary crystallographic analysis is promising with respect to structure determination and increased insight into the poorly understood molecular mechanisms underlying iron acquisition. Siderophore-binding proteins (SIPs) perform a key role in iron acquisition in multiple organisms. In the genome of the marine bacterium Shewanella frigidimarina NCIMB 400, the gene tagged as SFRI-RS12295 encodes a protein from this family. Here, the cloning, expression, purification and crystallization of this proteinmore » are reported, together with its preliminary X-ray crystallographic analysis to 1.35 Å resolution. The SIP crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 48.04, b = 78.31, c = 67.71 Å, α = 90, β = 99.94, γ = 90°, and are predicted to contain two molecules per asymmetric unit. Structure determination by molecular replacement and the use of previously determined ∼2 Å resolution SIP structures with ∼30% sequence identity as templates are ongoing.« less

  5. Localization of the lysine epsilon-aminotransferase (lat) and delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (pcbAB) genes from Streptomyces clavuligerus and production of lysine epsilon-aminotransferase activity in Escherichia coli.

    PubMed Central

    Tobin, M B; Kovacevic, S; Madduri, K; Hoskins, J A; Skatrud, P L; Vining, L C; Stuttard, C; Miller, J R

    1991-01-01

    Lysine epsilon-aminotransferase (LAT) in the beta-lactam-producing actinomycetes is considered to be the first step in the antibiotic biosynthetic pathway. Cloning of restriction fragments from Streptomyces clavuligerus, a beta-lactam producer, into Streptomyces lividans, a nonproducer that lacks LAT activity, led to the production of LAT in the host. DNA sequencing of restriction fragments containing the putative lat gene revealed a single open reading frame encoding a polypeptide with an approximately Mr 49,000. Expression of this coding sequence in Escherichia coli led to the production of LAT activity. Hence, LAT activity in S. clavuligerus is derived from a single polypeptide. A second open reading frame began immediately downstream from lat. Comparison of this partial sequence with the sequences of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D valine (ACV) synthetases from Penicillium chrysogenum and Cephalosporium acremonium and with nonribosomal peptide synthetases (gramicidin S and tyrocidine synthetases) found similarities among the open reading frames. Since mapping of the putative N and C termini of S. clavuligerus pcbAB suggests that the coding region occupies approximately 12 kbp and codes for a polypeptide related in size to the fungal ACV synthetases, the molecular characterization of the beta-lactam biosynthetic cluster between pcbC and cefE (approximately 25 kbp) is nearly complete. Images PMID:1917855

  6. Analysis of the Transcriptome of Erigeron breviscapus Uncovers Putative Scutellarin and Chlorogenic Acids Biosynthetic Genes and Genetic Markers

    PubMed Central

    Zhang, Jia-Jin; Shu, Li-Ping; Zhang, Wei; Long, Guang-Qiang; Liu, Tao; Meng, Zheng-Gui; Chen, Jun-Wen; Yang, Sheng-Chao

    2014-01-01

    Background Erigeron breviscapus (Vant.) Hand-Mazz. is a famous medicinal plant. Scutellarin and chlorogenic acids are the primary active components in this herb. However, the mechanisms of biosynthesis and regulation for scutellarin and chlorogenic acids in E. breviscapus are considerably unknown. In addition, genomic information of this herb is also unavailable. Principal Findings Using Illumina sequencing on GAIIx platform, a total of 64,605,972 raw sequencing reads were generated and assembled into 73,092 non-redundant unigenes. Among them, 44,855 unigenes (61.37%) were annotated in the public databases Nr, Swiss-Prot, KEGG, and COG. The transcripts encoding the known enzymes involved in flavonoids and in chlorogenic acids biosynthesis were discovered in the Illumina dataset. Three candidate cytochrome P450 genes were discovered which might encode flavone 6-hydroase converting apigenin to scutellarein. Furthermore, 4 unigenes encoding the homologues of maize P1 (R2R3-MYB transcription factors) were defined, which might regulate the biosynthesis of scutellarin. Additionally, a total of 11,077 simple sequence repeat (SSR) were identified from 9,255 unigenes. Of SSRs, tri-nucleotide motifs were the most abundant motif. Thirty-six primer pairs for SSRs were randomly selected for validation of the amplification and polymorphism. The result revealed that 34 (94.40%) primer pairs were successfully amplified and 19 (52.78%) primer pairs exhibited polymorphisms. Conclusion Using next generation sequencing (NGS) technology, this study firstly provides abundant genomic data for E. breviscapus. The candidate genes involved in the biosynthesis and transcriptional regulation of scutellarin and chlorogenic acids were obtained in this study. Additionally, a plenty of genetic makers were generated by identification of SSRs, which is a powerful tool for molecular breeding and genetics applications in this herb. PMID:24956277

  7. Endo-beta-N-acetylglucosaminidase, an enzyme involved in processing of free oligosaccharides in the cytosol.

    PubMed

    Suzuki, Tadashi; Yano, Keiichi; Sugimoto, Seiji; Kitajima, Ken; Lennarz, William J; Inoue, Sadako; Inoue, Yasuo; Emori, Yasufumi

    2002-07-23

    Formation of oligosaccharides occurs both in the cytosol and in the lumen of the endoplasmic reticulum (ER). Luminal oligosaccharides are transported into the cytosol to ensure that they do not interfere with proper functioning of the glycan-dependent quality control machinery in the lumen of the ER for newly synthesized glycoproteins. Once in the cytosol, free oligosaccharides are catabolized, possibly to maximize the reutilization of the component sugars. An endo-beta-N-acetylglucosaminidase (ENGase) is a key enzyme involved in the processing of free oligosaccharides in the cytosol. This enzyme activity has been widely described in animal cells, but the gene encoding this enzyme activity has not been reported. Here, we report the identification of the gene encoding human cytosolic ENGase. After 11 steps, the enzyme was purified 150,000-fold to homogeneity from hen oviduct, and several internal amino acid sequences were analyzed. Based on the internal sequence and examination of expressed sequence tag (EST) databases, we identified the human orthologue of the purified protein. The human protein consists of 743 aa and has no apparent signal sequence, supporting the idea that this enzyme is localized in the cytosol. By expressing the cDNA of the putative human ENGase in COS-7 cells, the enzyme activity in the soluble fraction was enhanced 100-fold over the basal level, confirming that the human gene identified indeed encodes for ENGase. Careful gene database surveys revealed the occurrence of ENGase homologues in Drosophila melanogaster, Caenorhabditis elegans, and Arabidopsis thaliana, indicating the broad occurrence of ENGase in higher eukaryotes. This gene was expressed in a variety of human tissues, suggesting that this enzyme is involved in basic biological processes in eukaryotic cells.

  8. Mitochondrial tRNA 5'-editing in Dictyostelium discoideum and Polysphondylium pallidum.

    PubMed

    Abad, Maria G; Long, Yicheng; Kinchen, R Dimitri; Schindel, Elinor T; Gray, Michael W; Jackman, Jane E

    2014-05-30

    Mitochondrial tRNA (mt-tRNA) 5'-editing was first described more than 20 years ago; however, the first candidates for 5'-editing enzymes were only recently identified in a eukaryotic microbe (protist), the slime mold Dictyostelium discoideum. In this organism, eight of 18 mt-tRNAs are predicted to be edited based on the presence of genomically encoded mismatched nucleotides in their aminoacyl-acceptor stem sequences. Here, we demonstrate that mt-tRNA 5'-editing occurs at all predicted sites in D. discoideum as evidenced by changes in the sequences of isolated mt-tRNAs compared with the expected sequences encoded by the mitochondrial genome. We also identify two previously unpredicted editing events in which G-U base pairs are edited in the absence of any other genomically encoded mismatches. A comparison of 5'-editing in D. discoideum with 5'-editing in another slime mold, Polysphondylium pallidum, suggests organism-specific idiosyncrasies in the treatment of U-G/G-U pairs. In vitro activities of putative D. discoideum editing enzymes are consistent with the observed editing reactions and suggest an overall lack of tRNA substrate specificity exhibited by the repair component of the editing enzyme. Although the presence of terminal mismatches in mt-tRNA sequences is highly predictive of the occurrence of mt-tRNA 5'-editing, the variability in treatment of U-G/G-U base pairs observed here indicates that direct experimental evidence of 5'-editing must be obtained to understand the complete spectrum of mt-tRNA editing events in any species. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Analysis of the transcriptome of Erigeron breviscapus uncovers putative scutellarin and chlorogenic acids biosynthetic genes and genetic markers.

    PubMed

    Jiang, Ni-Hao; Zhang, Guang-Hui; Zhang, Jia-Jin; Shu, Li-Ping; Zhang, Wei; Long, Guang-Qiang; Liu, Tao; Meng, Zheng-Gui; Chen, Jun-Wen; Yang, Sheng-Chao

    2014-01-01

    Erigeron breviscapus (Vant.) Hand-Mazz. is a famous medicinal plant. Scutellarin and chlorogenic acids are the primary active components in this herb. However, the mechanisms of biosynthesis and regulation for scutellarin and chlorogenic acids in E. breviscapus are considerably unknown. In addition, genomic information of this herb is also unavailable. Using Illumina sequencing on GAIIx platform, a total of 64,605,972 raw sequencing reads were generated and assembled into 73,092 non-redundant unigenes. Among them, 44,855 unigenes (61.37%) were annotated in the public databases Nr, Swiss-Prot, KEGG, and COG. The transcripts encoding the known enzymes involved in flavonoids and in chlorogenic acids biosynthesis were discovered in the Illumina dataset. Three candidate cytochrome P450 genes were discovered which might encode flavone 6-hydroase converting apigenin to scutellarein. Furthermore, 4 unigenes encoding the homologues of maize P1 (R2R3-MYB transcription factors) were defined, which might regulate the biosynthesis of scutellarin. Additionally, a total of 11,077 simple sequence repeat (SSR) were identified from 9,255 unigenes. Of SSRs, tri-nucleotide motifs were the most abundant motif. Thirty-six primer pairs for SSRs were randomly selected for validation of the amplification and polymorphism. The result revealed that 34 (94.40%) primer pairs were successfully amplified and 19 (52.78%) primer pairs exhibited polymorphisms. Using next generation sequencing (NGS) technology, this study firstly provides abundant genomic data for E. breviscapus. The candidate genes involved in the biosynthesis and transcriptional regulation of scutellarin and chlorogenic acids were obtained in this study. Additionally, a plenty of genetic makers were generated by identification of SSRs, which is a powerful tool for molecular breeding and genetics applications in this herb.

  10. Cloning and Genomic Organization of a Rhamnogalacturonase Gene from Locally Isolated Strain of Aspergillus niger.

    PubMed

    Damak, Naourez; Abdeljalil, Salma; Taeib, Noomen Hadj; Gargouri, Ali

    2015-08-01

    The rhg gene encoding a rhamnogalacturonase was isolated from the novel strain A1 of Aspergillus niger. It consists of an ORF of 1.505 kb encoding a putative protein of 446 amino acids with a predicted molecular mass of 47 kDa, belonging to the family 28 of glycosyl hydrolases. The nature and position of amino acids comprising the active site as well as the three-dimensional structure were well conserved between the A. niger CTM10548 and fungal rhamnogalacturonases. The coding region of the rhg gene is interrupted by three short introns of 56 (introns 1 and 3) and 52 (intron 2) bp in length. The comparison of the peptide sequence with A. niger rhg sequences revealed that the A1 rhg should be an endo-rhamnogalacturonases, more homologous to rhg A than rhg B A. niger known enzymes. The comparison of rhg nucleotide sequence from A. niger A1 with rhg A from A. niger shows several base changes. Most of these changes (59 %) are located at the third base of codons suggesting maintaining the same enzyme function. We used the rhamnogalacturonase A from Aspergillus aculeatus as a template to build a structural model of rhg A1 that adopted a right-handed parallel β-helix.

  11. PCR amplification and sequences of cDNA clones for the small and large subunits of ADP-glucose pyrophosphorylase from barley tissues.

    PubMed

    Villand, P; Aalen, R; Olsen, O A; Lüthi, E; Lönneborg, A; Kleczkowski, L A

    1992-06-01

    Several cDNAs encoding the small and large subunit of ADP-glucose pyrophosphorylase (AGP) were isolated from total RNA of the starchy endosperm, roots and leaves of barley by polymerase chain reaction (PCR). Sets of degenerate oligonucleotide primers, based on previously published conserved amino acid sequences of plant AGP, were used for synthesis and amplification of the cDNAs. For either the endosperm, roots and leaves, the restriction analysis of PCR products (ca. 550 nucleotides each) has revealed heterogeneity, suggesting presence of three transcripts for AGP in the endosperm and roots, and up to two AGP transcripts in the leaf tissue. Based on the derived amino acid sequences, two clones from the endosperm, beps and bepl, were identified as coding for the small and large subunit of AGP, respectively, while a leaf transcript (blpl) encoded the putative large subunit of AGP. There was about 50% identity between the endosperm clones, and both of them were about 60% identical to the leaf cDNA. Northern blot analysis has indicated that beps and bepl are expressed in both the endosperm and roots, while blpl is detectable only in leaves. Application of the PCR technique in studies on gene structure and gene expression of plant AGP is discussed.

  12. The Complete Sequence of the First Spodoptera frugiperda Betabaculovirus Genome: A Natural Multiple Recombinant Virus

    PubMed Central

    Cuartas, Paola E.; Barrera, Gloria P.; Belaich, Mariano N.; Barreto, Emiliano; Ghiringhelli, Pablo D.; Villamizar, Laura F.

    2015-01-01

    Spodoptera frugiperda (Lepidoptera: Noctuidae) is a major pest in maize crops in Colombia, and affects several regions in America. A granulovirus isolated from S. frugiperda (SfGV VG008) has potential as an enhancer of insecticidal activity of previously described nucleopolyhedrovirus from the same insect species (SfMNPV). The SfGV VG008 genome was sequenced and analyzed showing circular double stranded DNA of 140,913 bp encoding 146 putative ORFs that include 37 Baculoviridae core genes, 88 shared with betabaculoviruses, two shared only with betabaculoviruses from Noctuide insects, two shared with alphabaculoviruses, three copies of own genes (paralogs) and the other 14 corresponding to unique genes without representation in the other baculovirus species. Particularly, the genome encodes for important virulence factors such as 4 chitinases and 2 enhancins. The sequence analysis revealed the existence of eight homologous regions (hrs) and also suggests processes of gene acquisition by horizontal transfer including the SfGV VG008 ORFs 046/047 (paralogs), 059, 089 and 099. The bioinformatics evidence indicates that the genome donors of mentioned genes could be alpha- and/or betabaculovirus species. The previous reported ability of SfGV VG008 to naturally co-infect the same host with other virus show a possible mechanism to capture genes and thus improve its fitness. PMID:25609309

  13. The complete sequence of the first Spodoptera frugiperda Betabaculovirus genome: a natural multiple recombinant virus.

    PubMed

    Cuartas, Paola E; Barrera, Gloria P; Belaich, Mariano N; Barreto, Emiliano; Ghiringhelli, Pablo D; Villamizar, Laura F

    2015-01-20

    Spodoptera frugiperda (Lepidoptera: Noctuidae) is a major pest in maize crops in Colombia, and affects several regions in America. A granulovirus isolated from S. frugiperda (SfGV VG008) has potential as an enhancer of insecticidal activity of previously described nucleopolyhedrovirus from the same insect species (SfMNPV). The SfGV VG008 genome was sequenced and analyzed showing circular double stranded DNA of 140,913 bp encoding 146 putative ORFs that include 37 Baculoviridae core genes, 88 shared with betabaculoviruses, two shared only with betabaculoviruses from Noctuide insects, two shared with alphabaculoviruses, three copies of own genes (paralogs) and the other 14 corresponding to unique genes without representation in the other baculovirus species. Particularly, the genome encodes for important virulence factors such as 4 chitinases and 2 enhancins. The sequence analysis revealed the existence of eight homologous regions (hrs) and also suggests processes of gene acquisition by horizontal transfer including the SfGV VG008 ORFs 046/047 (paralogs), 059, 089 and 099. The bioinformatics evidence indicates that the genome donors of mentioned genes could be alpha- and/or betabaculovirus species. The previous reported ability of SfGV VG008 to naturally co-infect the same host with other virus show a possible mechanism to capture genes and thus improve its fitness.

  14. Comparative genomic analysis of three Leishmania species that cause diverse human disease

    PubMed Central

    Peacock, Christopher S; Seeger, Kathy; Harris, David; Murphy, Lee; Ruiz, Jeronimo C; Quail, Michael A; Peters, Nick; Adlem, Ellen; Tivey, Adrian; Aslett, Martin; Kerhornou, Arnaud; Ivens, Alasdair; Fraser, Audrey; Rajandream, Marie-Adele; Carver, Tim; Norbertczak, Halina; Chillingworth, Tracey; Hance, Zahra; Jagels, Kay; Moule, Sharon; Ormond, Doug; Rutter, Simon; Squares, Rob; Whitehead, Sally; Rabbinowitsch, Ester; Arrowsmith, Claire; White, Brian; Thurston, Scott; Bringaud, Frédéric; Baldauf, Sandra L; Faulconbridge, Adam; Jeffares, Daniel; Depledge, Daniel P; Oyola, Samuel O; Hilley, James D; Brito, Loislene O; Tosi, Luiz R O; Barrell, Barclay; Cruz, Angela K; Mottram, Jeremy C; Smith, Deborah F; Berriman, Matthew

    2008-01-01

    Leishmania parasites cause a broad spectrum of clinical disease. Here we report the sequencing of the genomes of two species of Leishmania: Leishmania infantum and Leishmania braziliensis. The comparison of these sequences with the published genome of Leishmania major reveals marked conservation of synteny and identifies only ∼200 genes with a differential distribution between the three species. L. braziliensis, contrary to Leishmania species examined so far, possesses components of a putative RNA-mediated interference pathway, telomere-associated transposable elements and spliced leader–associated SLACS retrotransposons. We show that pseudogene formation and gene loss are the principal forces shaping the different genomes. Genes that are differentially distributed between the species encode proteins implicated in host-pathogen interactions and parasite survival in the macrophage. PMID:17572675

  15. The LINE-1 DNA sequences in four mammalian orders predict proteins that conserve homologies to retrovirus proteins.

    PubMed Central

    Fanning, T; Singer, M

    1987-01-01

    Recent work suggests that one or more members of the highly repeated LINE-1 (L1) DNA family found in all mammals may encode one or more proteins. Here we report the sequence of a portion of an L1 cloned from the domestic cat (Felis catus). These data permit comparison of the L1 sequences in four mammalian orders (Carnivore, Lagomorph, Rodent and Primate) and the comparison supports the suggested coding potential. In two separate, noncontiguous regions in the carboxy terminal half of the proteins predicted from the DNA sequences, there are several strongly conserved segments. In one region, these share homology with known or suspected reverse transcriptases, as described by others in rodents and primates. In the second region, closer to the carboxy terminus, the strongly conserved segments are over 90% homologous among the four orders. One of the latter segments is cysteine rich and resembles the putative metal binding domains of nucleic acid binding proteins, including those of TFIIIA and retroviruses. PMID:3562227

  16. Draft genome sequence of marine-derived Streptomyces sp. TP-A0598, a producer of anti-MRSA antibiotic lydicamycins.

    PubMed

    Komaki, Hisayuki; Ichikawa, Natsuko; Hosoyama, Akira; Fujita, Nobuyuki; Igarashi, Yasuhiro

    2015-01-01

    Streptomyces sp. TP-A0598, isolated from seawater, produces lydicamycin, structurally unique type I polyketide bearing two nitrogen-containing five-membered rings, and four congeners TPU-0037-A, -B, -C, and -D. We herein report the 8 Mb draft genome sequence of this strain, together with classification and features of the organism and generation, annotation and analysis of the genome sequence. The genome encodes 7,240 putative ORFs, of which 4,450 ORFs were assigned with COG categories. Also, 66 tRNA genes and one rRNA operon were identified. The genome contains eight gene clusters involved in the production of polyketides and nonribosomal peptides. Among them, a PKS/NRPS gene cluster was assigned to be responsible for lydicamycin biosynthesis and a plausible biosynthetic pathway was proposed on the basis of gene function prediction. This genome sequence data will facilitate to probe the potential of secondary metabolism in marine-derived Streptomyces.

  17. A third genotype of the human parvovirus PARV4 in sub-Saharan Africa.

    PubMed

    Simmonds, Peter; Douglas, Jill; Bestetti, Giovanna; Longhi, Erika; Antinori, Spinello; Parravicini, Carlo; Corbellino, Mario

    2008-09-01

    PARV4 is a recently discovered human parvovirus widely distributed in injecting drug users in the USA and Europe, particularly in those co-infected with human immunodeficiency virus (HIV). Like parvovirus B19, PARV4 persists in previously exposed individuals. In bone marrow and lymphoid tissue, PARV4 sequences were detected in two sub-Saharan African study subjects with AIDS but without a reported history of parenteral exposure and who were uninfected with hepatitis C virus. PARV4 variants infecting these subjects were phylogenetically distinct from genotypes 1 and 2 (formerly PARV5) that were reported previously. Analysis of near-complete genome sequences demonstrated that they should be classified as a third (equidistant) PARV4 genotype. The availability of a further near-complete genome sequence of this novel genotype facilitated identification of conserved novel open reading frames embedded in the ORF2 coding sequence; one encoded a putative protein with identifiable homology to SAT proteins of members of the genus Parvovirus.

  18. Identification and Characterization of Cyprinid Herpesvirus-3 (CyHV-3) Encoded MicroRNAs

    PubMed Central

    Donohoe, Owen H.; Henshilwood, Kathy; Way, Keith; Hakimjavadi, Roya; Stone, David M.; Walls, Dermot

    2015-01-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs involved in post-transcriptional gene regulation. Some viruses encode their own miRNAs and these are increasingly being recognized as important modulators of viral and host gene expression. Cyprinid herpesvirus 3 (CyHV-3) is a highly pathogenic agent that causes acute mass mortalities in carp (Cyprinus carpio carpio) and koi (Cyprinus carpio koi) worldwide. Here, bioinformatic analyses of the CyHV-3 genome suggested the presence of non-conserved precursor miRNA (pre-miRNA) genes. Deep sequencing of small RNA fractions prepared from in vitro CyHV-3 infections led to the identification of potential miRNAs and miRNA–offset RNAs (moRNAs) derived from some bioinformatically predicted pre-miRNAs. DNA microarray hybridization analysis, Northern blotting and stem-loop RT-qPCR were then used to definitively confirm that CyHV-3 expresses two pre-miRNAs during infection in vitro. The evidence also suggested the presence of an additional four high-probability and two putative viral pre-miRNAs. MiRNAs from the two confirmed pre-miRNAs were also detected in gill tissue from CyHV-3-infected carp. We also present evidence that one confirmed miRNA can regulate the expression of a putative CyHV-3-encoded dUTPase. Candidate homologues of some CyHV-3 pre-miRNAs were identified in CyHV-1 and CyHV-2. This is the first report of miRNA and moRNA genes encoded by members of the Alloherpesviridae family, a group distantly related to the Herpesviridae family. The discovery of these novel CyHV-3 genes may help further our understanding of the biology of this economically important virus and their encoded miRNAs may have potential as biomarkers for the diagnosis of latent CyHV-3. PMID:25928140

  19. Complete genome sequence of lymphocystis disease virus isolated from China.

    PubMed

    Zhang, Qi-Ya; Xiao, Feng; Xie, Jian; Li, Zheng-Qiu; Gui, Jian-Fang

    2004-07-01

    Lymphocystis diseases in fish throughout the world have been extensively described. Here we report the complete genome sequence of lymphocystis disease virus isolated in China (LCDV-C), an LCDV isolated from cultured flounder (Paralichthys olivaceus) with lymphocystis disease in China. The LCDV-C genome is 186,250 bp, with a base composition of 27.25% G+C. Computer-assisted analysis revealed 240 potential open reading frames (ORFs) and 176 nonoverlapping putative viral genes, which encode polypeptides ranging from 40 to 1,193 amino acids. The percent coding density is 67%, and the average length of each ORF is 702 bp. A search of the GenBank database using the 176 individual putative genes revealed 103 homologues to the corresponding ORFs of LCDV-1 and 73 potential genes that were not found in LCDV-1 and other iridoviruses. Among the 73 genes, there are 8 genes that contain conserved domains of cellular genes and 65 novel genes that do not show any significant homology with the sequences in public databases. Although a certain extent of similarity between putative gene products of LCDV-C and corresponding proteins of LCDV-1 was revealed, no colinearity was detected when their ORF arrangements and coding strategies were compared to each other, suggesting that a high degree of genetic rearrangements between them has occurred. And a large number of tandem and overlapping repeated sequences were observed in the LCDV-C genome. The deduced amino acid sequence of the major capsid protein (MCP) presents the highest identity to those of LCDV-1 and other iridoviruses among the LCDV-C gene products. Furthermore, a phylogenetic tree was constructed based on the multiple alignments of nine MCP amino acid sequences. Interestingly, LCDV-C and LCDV-1 were clustered together, but their amino acid identity is much less than that in other clusters. The unexpected levels of divergence between their genomes in size, gene organization, and gene product identity suggest that LCDV-C and LCDV-1 shouldn't belong to a same species and that LCDV-C should be considered a species different from LCDV-1.

  20. Complete Genome Sequence of Lymphocystis Disease Virus Isolated from China

    PubMed Central

    Zhang, Qi-Ya; Xiao, Feng; Xie, Jian; Li, Zheng-Qiu; Gui, Jian-Fang

    2004-01-01

    Lymphocystis diseases in fish throughout the world have been extensively described. Here we report the complete genome sequence of lymphocystis disease virus isolated in China (LCDV-C), an LCDV isolated from cultured flounder (Paralichthys olivaceus) with lymphocystis disease in China. The LCDV-C genome is 186,250 bp, with a base composition of 27.25% G+C. Computer-assisted analysis revealed 240 potential open reading frames (ORFs) and 176 nonoverlapping putative viral genes, which encode polypeptides ranging from 40 to 1,193 amino acids. The percent coding density is 67%, and the average length of each ORF is 702 bp. A search of the GenBank database using the 176 individual putative genes revealed 103 homologues to the corresponding ORFs of LCDV-1 and 73 potential genes that were not found in LCDV-1 and other iridoviruses. Among the 73 genes, there are 8 genes that contain conserved domains of cellular genes and 65 novel genes that do not show any significant homology with the sequences in public databases. Although a certain extent of similarity between putative gene products of LCDV-C and corresponding proteins of LCDV-1 was revealed, no colinearity was detected when their ORF arrangements and coding strategies were compared to each other, suggesting that a high degree of genetic rearrangements between them has occurred. And a large number of tandem and overlapping repeated sequences were observed in the LCDV-C genome. The deduced amino acid sequence of the major capsid protein (MCP) presents the highest identity to those of LCDV-1 and other iridoviruses among the LCDV-C gene products. Furthermore, a phylogenetic tree was constructed based on the multiple alignments of nine MCP amino acid sequences. Interestingly, LCDV-C and LCDV-1 were clustered together, but their amino acid identity is much less than that in other clusters. The unexpected levels of divergence between their genomes in size, gene organization, and gene product identity suggest that LCDV-C and LCDV-1 shouldn't belong to a same species and that LCDV-C should be considered a species different from LCDV-1. PMID:15194775

  1. A molecular analysis of desiccation tolerance mechanisms in the anhydrobiotic nematode Panagrolaimus superbus using expressed sequenced tags

    PubMed Central

    2012-01-01

    Background Some organisms can survive extreme desiccation by entering into a state of suspended animation known as anhydrobiosis. Panagrolaimus superbus is a free-living anhydrobiotic nematode that can survive rapid environmental desiccation. The mechanisms that P. superbus uses to combat the potentially lethal effects of cellular dehydration may include the constitutive and inducible expression of protective molecules, along with behavioural and/or morphological adaptations that slow the rate of cellular water loss. In addition, inducible repair and revival programmes may also be required for successful rehydration and recovery from anhydrobiosis. Results To identify constitutively expressed candidate anhydrobiotic genes we obtained 9,216 ESTs from an unstressed mixed stage population of P. superbus. We derived 4,009 unigenes from these ESTs. These unigene annotations and sequences can be accessed at http://www.nematodes.org/nembase4/species_info.php?species=PSC. We manually annotated a set of 187 constitutively expressed candidate anhydrobiotic genes from P. superbus. Notable among those is a putative lineage expansion of the lea (late embryogenesis abundant) gene family. The most abundantly expressed sequence was a member of the nematode specific sxp/ral-2 family that is highly expressed in parasitic nematodes and secreted onto the surface of the nematodes' cuticles. There were 2,059 novel unigenes (51.7% of the total), 149 of which are predicted to encode intrinsically disordered proteins lacking a fixed tertiary structure. One unigene may encode an exo-β-1,3-glucanase (GHF5 family), most similar to a sequence from Phytophthora infestans. GHF5 enzymes have been reported from several species of plant parasitic nematodes, with horizontal gene transfer (HGT) from bacteria proposed to explain their evolutionary origin. This P. superbus sequence represents another possible HGT event within the Nematoda. The expression of five of the 19 putative stress response genes tested was upregulated in response to desiccation. These were the antioxidants glutathione peroxidase, dj-1 and 1-Cys peroxiredoxin, an shsp sequence and an lea gene. Conclusions P. superbus appears to utilise a strategy of combined constitutive and inducible gene expression in preparation for entry into anhydrobiosis. The apparent lineage expansion of lea genes, together with their constitutive and inducible expression, suggests that LEA3 proteins are important components of the anhydrobiotic protection repertoire of P. superbus. PMID:22281184

  2. In silico Prediction, in vitro Antibacterial Spectrum, and Physicochemical Properties of a Putative Bacteriocin Produced by Lactobacillus rhamnosus Strain L156.4

    PubMed Central

    Oliveira, Letícia de C.; Silveira, Aline M. M.; Monteiro, Andréa de S.; dos Santos, Vera L.; Nicoli, Jacques R.; Azevedo, Vasco A. de C.; Soares, Siomar de C.; Dias-Souza, Marcus V.; Nardi, Regina M. D.

    2017-01-01

    A bacteriocinogenic Lactobacillus rhamnosus L156.4 strain isolated from the feces of NIH mice was identified by 16S rRNA gene sequencing and MALDI-TOF mass spectrometry. The entire genome was sequenced using Illumina, annotated in the PGAAP, and RAST servers, and deposited. Conserved genes associated with bacteriocin synthesis were predicted using BAGEL3, leading to the identification of an open reading frame (ORF) that shows homology with the L. rhamnosus GG (ATCC 53103) prebacteriocin gene. The encoded protein contains a conserved protein motif associated a structural gene of the Enterocin A superfamily. We found ORFs related to the prebacteriocin, immunity protein, ABC transporter proteins, and regulatory genes with 100% identity to those of L. rhamnosus HN001. In this study, we provide evidence of a putative bacteriocin produced by L. rhamnosus L156.4 that was further confirmed by in vitro assays. The antibacterial activity of the substances produced by this strain was evaluated using the deferred agar-spot and spot-on-the lawn assays, and a wide antimicrobial activity spectrum against human and foodborne pathogens was observed. The physicochemical characterization of the putative bacteriocin indicated that it was sensitive to proteolytic enzymes, heat stable and maintained its antibacterial activity in a pH ranging from 3 to 9. The activity against Lactobacillus fermentum, which was used as an indicator strain, was detected during bacterial logarithmic growth phase, and a positive correlation was confirmed between bacterial growth and production of the putative bacteriocin. After a partial purification from cell-free supernatant by salt precipitation, the putative bacteriocin migrated as a diffuse band of approximately 1.0–3.0 kDa by SDS-PAGE. Additional studies are being conducted to explore its use in the food industry for controlling bacterial growth and for probiotic applications. PMID:28579977

  3. Genomic Organization and Molecular Analysis of Virulent Bacteriophage 2972 Infecting an Exopolysaccharide-Producing Streptococcus thermophilus Strain

    PubMed Central

    Lévesque, Céline; Duplessis, Martin; Labonté, Jessica; Labrie, Steve; Fremaux, Christophe; Tremblay, Denise; Moineau, Sylvain

    2005-01-01

    The Streptococcus thermophilus virulent pac-type phage 2972 was isolated from a yogurt made in France in 1999. It is a representative of several phages that have emerged with the industrial use of the exopolysaccharide-producing S. thermophilus strain RD534. The genome of phage 2972 has 34,704 bp with an overall G+C content of 40.15%, making it the shortest S. thermophilus phage genome analyzed so far. Forty-four open reading frames (ORFs) encoding putative proteins of 40 or more amino acids were identified, and bioinformatic analyses led to the assignment of putative functions to 23 ORFs. Comparative genomic analysis of phage 2972 with the six other sequenced S. thermophilus phage genomes confirmed that the replication module is conserved and that cos- and pac-type phages have distinct structural and packaging genes. Two group I introns were identified in the genome of 2972. They interrupted the genes coding for the putative endolysin and the terminase large subunit. Phage mRNA splicing was demonstrated for both introns, and the secondary structures were predicted. Eight structural proteins were also identified by N-terminal sequencing and/or matrix-assisted laser desorption ionization—time-of-flight mass spectrometry. Detailed analysis of the putative minor tail proteins ORF19 and ORF21 as well as the putative receptor-binding protein ORF20 showed the following interesting features: (i) ORF19 is a hybrid protein, because it displays significant identity with both pac- and cos-type phages; (ii) ORF20 is unique; and (iii) a protein similar to ORF21 of 2972 was also found in the structure of the cos-type phage DT1, indicating that this structural protein is present in both S. thermophilus phage groups. The implications of these findings for phage classification are discussed. PMID:16000821

  4. Identification and molecular characterization of five putative toxins from the venom gland of the snake Philodryas chamissonis (Serpentes: Dipsadidae).

    PubMed

    Urra, Félix A; Pulgar, Rodrigo; Gutiérrez, Ricardo; Hodar, Christian; Cambiazo, Verónica; Labra, Antonieta

    2015-12-15

    Philodryas chamissonis is a rear-fanged snake endemic to Chile. Its bite produces mild to moderate symptoms with proteolytic and anti-coagulant effects. Presently, the composition of the venom, as well as, the biochemical and structural characteristics of its toxins, remains unknown. In this study, we cloned and reported the first full-length sequences of five toxin-encoding genes from the venom gland of this species: Type III snake venom metalloprotease (SVMP), snake venom serine protease (SVSP), Cysteine-rich secretory protein (CRISP), α and β subunits of C-type lectin-like protein (CLP) and C-type natriuretic peptide (NP). These genes are highly expressed in the venom gland and their sequences exhibited a putative signal peptide, suggesting that these are components of the venom. These putative toxins had different evolutionary relationships with those reported for some front-fanged snakes, being SVMP, SVSP and CRISP of P. chamissonis closely related to the toxins present in Elapidae species, while NP was more related to those of Viperidae species. In addition, analyses suggest that the α and β subunits of CLP of P. chamissonis might have a α-subunit scaffold in common with Viperidae species, whose highly variable C-terminal region might have allowed the diversification in α and β subunits. Our results provide the first molecular description of the toxins possibly implicated in the envenomation of prey and humans by the bite of P. chamissonis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Sequencing and characterizing the genome of Estrella lausannensis as an undergraduate project: training students and biological insights.

    PubMed

    Bertelli, Claire; Aeby, Sébastien; Chassot, Bérénice; Clulow, James; Hilfiker, Olivier; Rappo, Samuel; Ritzmann, Sébastien; Schumacher, Paolo; Terrettaz, Céline; Benaglio, Paola; Falquet, Laurent; Farinelli, Laurent; Gharib, Walid H; Goesmann, Alexander; Harshman, Keith; Linke, Burkhard; Miyazaki, Ryo; Rivolta, Carlo; Robinson-Rechavi, Marc; van der Meer, Jan Roelof; Greub, Gilbert

    2015-01-01

    With the widespread availability of high-throughput sequencing technologies, sequencing projects have become pervasive in the molecular life sciences. The huge bulk of data generated daily must be analyzed further by biologists with skills in bioinformatics and by "embedded bioinformaticians," i.e., bioinformaticians integrated in wet lab research groups. Thus, students interested in molecular life sciences must be trained in the main steps of genomics: sequencing, assembly, annotation and analysis. To reach that goal, a practical course has been set up for master students at the University of Lausanne: the "Sequence a genome" class. At the beginning of the academic year, a few bacterial species whose genome is unknown are provided to the students, who sequence and assemble the genome(s) and perform manual annotation. Here, we report the progress of the first class from September 2010 to June 2011 and the results obtained by seven master students who specifically assembled and annotated the genome of Estrella lausannensis, an obligate intracellular bacterium related to Chlamydia. The draft genome of Estrella is composed of 29 scaffolds encompassing 2,819,825 bp that encode for 2233 putative proteins. Estrella also possesses a 9136 bp plasmid that encodes for 14 genes, among which we found an integrase and a toxin/antitoxin module. Like all other members of the Chlamydiales order, Estrella possesses a highly conserved type III secretion system, considered as a key virulence factor. The annotation of the Estrella genome also allowed the characterization of the metabolic abilities of this strictly intracellular bacterium. Altogether, the students provided the scientific community with the Estrella genome sequence and a preliminary understanding of the biology of this recently-discovered bacterial genus, while learning to use cutting-edge technologies for sequencing and to perform bioinformatics analyses.

  6. Complete genomic characterisation of two novel poxviruses (WKPV and EKPV) from western and eastern grey kangaroos.

    PubMed

    Bennett, Mark; Tu, Shin-Lin; Upton, Chris; McArtor, Cassie; Gillett, Amber; Laird, Tanya; O'Dea, Mark

    2017-10-15

    Poxviruses have previously been detected in macropods with cutaneous papillomatous lesions, however to date, no comprehensive analysis of a poxvirus from kangaroos has been performed. Here we report the genome sequences of a western grey kangaroo poxvirus (WKPV) and an eastern grey kangaroo poxvirus (EKPV), named for the host species from which they were isolated, western grey (Macropus fuliginosus) and eastern grey (Macropus giganteus) kangaroos. Poxvirus DNA from WKPV and EKPV was isolated and entire coding genome regions determined through Roche GS Junior and Illumina Miseq sequencing, respectively. Viral genomes were assembled using MIRA and SPAdes, and annotations performed using tools available from the Viral Bioinformatics Resource Centre. Histopathology and transmission electron microscopy analysis was also performed on WKPV and its associated lesions. The WKPV and EKPV genomes show 96% identity (nucleotide) to each other and phylogenetic analysis places them on a distinct branch between the established Molluscipoxvirus and Avipoxvirus genera. WKPV and EKPV are 170 kbp and 167 kbp long, containing 165 and 162 putative genes, respectively. Together, their genomes encode up to 47 novel unique hypothetical proteins, and possess virulence proteins including a major histocompatibility complex class II inhibitor, a semaphorin-like protein, a serpin, a 3-β-hydroxysteroid dehydrogenase/δ 5→4 isomerase, and a CD200-like protein. These viruses also encode a large putative protein (WKPV-WA-039 and EKPV-SC-038) with a C-terminal domain that is structurally similar to the C-terminal domain of a cullin, suggestive of a role in the control of host ubiquitination. The relationship of these viruses to members of the Molluscipoxvirus and Avipoxvirus genera is discussed in terms of sequence similarity, gene content and nucleotide composition. A novel genus within subfamily Chordopoxvirinae is proposed to accommodate these two poxvirus species from kangaroos; we suggest the name, Thylacopoxvirus (thylaco-: [Gr.] thylakos meaning sac or pouch). Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Regulation of Bacteriocin Production in Streptococcus mutans by the Quorum-Sensing System Required for Development of Genetic Competence

    PubMed Central

    van der Ploeg, Jan R.

    2005-01-01

    In Streptococcus mutans, competence for genetic transformation and biofilm formation are dependent on the two-component signal transduction system ComDE together with the inducer peptide pheromone competence-stimulating peptide (CSP) (encoded by comC). Here, it is shown that the same system is also required for expression of the nlmAB genes, which encode a two-peptide nonlantibiotic bacteriocin. Expression from a transcriptional nlmAB′-lacZ fusion was highest at high cell density and was increased up to 60-fold following addition of CSP, but it was abolished when the comDE genes were interrupted. Two more genes, encoding another putative bacteriocin and a putative bacteriocin immunity protein, were also regulated by this system. The regions upstream of these genes and of two further putative bacteriocin-encoding genes and a gene encoding a putative bacteriocin immunity protein contained a conserved 9-bp repeat element just upstream of the transcription start, which suggests that expression of these genes is also dependent on the ComCDE regulatory system. Mutations in the repeat element of the nlmAB promoter region led to a decrease in CSP-dependent expression of nlmAB′-lacZ. In agreement with these results, a comDE mutant and mutants unable to synthesize or export CSP did not produce bacteriocins. It is speculated that, at high cell density, bacteriocin production is induced to liberate DNA from competing streptococci. PMID:15937160

  8. Analysis of BAC end sequences in oak, a keystone forest tree species, providing insight into the composition of its genome

    PubMed Central

    2011-01-01

    Background One of the key goals of oak genomics research is to identify genes of adaptive significance. This information may help to improve the conservation of adaptive genetic variation and the management of forests to increase their health and productivity. Deep-coverage large-insert genomic libraries are a crucial tool for attaining this objective. We report herein the construction of a BAC library for Quercus robur, its characterization and an analysis of BAC end sequences. Results The EcoRI library generated consisted of 92,160 clones, 7% of which had no insert. Levels of chloroplast and mitochondrial contamination were below 3% and 1%, respectively. Mean clone insert size was estimated at 135 kb. The library represents 12 haploid genome equivalents and, the likelihood of finding a particular oak sequence of interest is greater than 99%. Genome coverage was confirmed by PCR screening of the library with 60 unique genetic loci sampled from the genetic linkage map. In total, about 20,000 high-quality BAC end sequences (BESs) were generated by sequencing 15,000 clones. Roughly 5.88% of the combined BAC end sequence length corresponded to known retroelements while ab initio repeat detection methods identified 41 additional repeats. Collectively, characterized and novel repeats account for roughly 8.94% of the genome. Further analysis of the BESs revealed 1,823 putative genes suggesting at least 29,340 genes in the oak genome. BESs were aligned with the genome sequences of Arabidopsis thaliana, Vitis vinifera and Populus trichocarpa. One putative collinear microsyntenic region encoding an alcohol acyl transferase protein was observed between oak and chromosome 2 of V. vinifera. Conclusions This BAC library provides a new resource for genomic studies, including SSR marker development, physical mapping, comparative genomics and genome sequencing. BES analysis provided insight into the structure of the oak genome. These sequences will be used in the assembly of a future genome sequence for oak. PMID:21645357

  9. Identification of a novel prophage-like gene cluster actively expressed in both virulent and avirulent strains of Leptospira interrogans serovar Lai.

    PubMed

    Qin, Jin-Hong; Zhang, Qing; Zhang, Zhi-Ming; Zhong, Yi; Yang, Yang; Hu, Bao-Yu; Zhao, Guo-Ping; Guo, Xiao-Kui

    2008-06-01

    DNA microarray analysis was used to compare the differential gene expression profiles between Leptospira interrogans serovar Lai type strain 56601 and its corresponding attenuated strain IPAV. A 22-kb genomic island covering a cluster of 34 genes (i.e., genes LA0186 to LA0219) was actively expressed in both strains but concomitantly upregulated in strain 56601 in contrast to that of IPAV. Reverse transcription-PCR assays proved that the gene cluster comprised five transcripts. Gene annotation of this cluster revealed characteristics of a putative prophage-like remnant with at least 8 of 34 sequences encoding prophage-like proteins, of which the LA0195 protein is probably a putative prophage CI-like regulator. The transcription initiation activities of putative promoter-regulatory sequences of transcripts I, II, and III, all proximal to the LA0195 gene, were further analyzed in the Escherichia coli promoter probe vector pKK232-8 by assaying the reporter chloramphenicol acetyltransferase (CAT) activities. The strong promoter activities of both transcripts I and II indicated by the E. coli CAT assay were well correlated with the in vitro sequence-specific binding of the recombinant LA0195 protein to the corresponding promoter probes detected by the electrophoresis mobility shift assay. On the other hand, the promoter activity of transcript III was very low in E. coli and failed to show active binding to the LA0195 protein in vitro. These results suggested that the LA0195 protein is likely involved in the transcription of transcripts I and II. However, the identical complete DNA sequences of this prophage remnant from these two strains strongly suggests that possible regulatory factors or signal transduction systems residing outside of this region within the genome may be responsible for the differential expression profiling in these two strains.

  10. Isolation and characterization of cDNA clones for carrot extensin and a proline-rich 33-kDa protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, J.; Varner, J.E.

    1985-07-01

    Extensins are hydroxyproline-rich glycoproteins associated with most dicotyledonous plant cell walls. To isolate cDNA clones encoding extensin, the authors started by isolating poly(A) RNA from carrot root tissue, and then translating the RNA in vitro, in the presence of tritiated leucine or proline. A 33-kDa peptide was identified in the translation products as a putative extensin precursor. From a cDNA library constructed with poly(A) RNA from wounded carrots, one cDNA clone (pDC5) was identified that specifically hybridized to poly(A) RNA encoding this 33-kDa peptide. They isolated three cDNA clones (pDC11, pDC12, and pDC16) from another cDNA library using pCD5 asmore » a probe. DNA sequence data, RNA hybridization analysis, and hybrid released in vitro translation indicate that the cDNA clones pDC11 encodes extensin and that cDNA clones pDC12 and pDC16 encode the 33-kDa peptide, which as yet has an unknown identity and function. The assumption that the 33-kDa peptide was an extensin precursor was invalid. RNA hybridization analysis showed that RNA encoded by both clone types is accumulated upon wounding.« less

  11. Biochemical and Genetic Evidence that Enterococcus faecium L50 Produces Enterocins L50A and L50B, the sec-Dependent Enterocin P, and a Novel Bacteriocin Secreted without an N-Terminal Extension Termed Enterocin Q

    PubMed Central

    Cintas, Luis M.; Casaus, Pilar; Herranz, Carmen; Håvarstein, Leiv Sigve; Holo, Helge; Hernández, Pablo E.; Nes, Ingolf F.

    2000-01-01

    Enterococcus faecium L50 grown at 16 to 32°C produces enterocin L50 (EntL50), consisting of EntL50A and EntL50B, two unmodified non-pediocin-like peptides synthesized without an N-terminal leader sequence or signal peptide. However, the bacteriocin activity found in the cell-free culture supernatants following growth at higher temperatures (37 to 47°C) is not due to EntL50. A purification procedure including cation-exchange, hydrophobic interaction, and reverse-phase liquid chromatography has shown that the antimicrobial activity is due to two different bacteriocins. Amino acid sequences obtained by Edman degradation and DNA sequencing analyses revealed that one is identical to the sec-dependent pediocin-like enterocin P produced by E. faecium P13 (L. M. Cintas, P. Casaus, L. S. Håvarstein, P. E. Hernández, and I. F. Nes, Appl. Environ. Microbiol. 63:4321–4330, 1997) and the other is a novel unmodified non-pediocin-like bacteriocin termed enterocin Q (EntQ), with a molecular mass of 3,980. DNA sequencing analysis of a 963-bp region of E. faecium L50 containing the enterocin P structural gene (entP) and the putative immunity protein gene (entiP) reveals a genetic organization identical to that previously found in E. faecium P13. DNA sequencing analysis of a 1,448-bp region identified two consecutive but diverging open reading frames (ORFs) of which one, termed entQ, encodes a 34-amino-acid protein whose deduced amino acid sequence was identical to that obtained for EntQ by amino acid sequencing, showing that EntQ, similarly to EntL50A and EntL50B, is synthesized without an N-terminal leader sequence or signal peptide. The second ORF, termed orf2, was located immediately upstream of and in opposite orientation to entQ and encodes a putative immunity protein composed of 221 amino acids. Bacteriocin production by E. faecium L50 showed that EntP and EntQ are produced in the temperature range from 16 to 47°C and maximally detected at 47 and 37 to 47°C, respectively, while EntL50A and EntL50B are maximally synthesized at 16 to 25°C and are not detected at 37°C or above. PMID:11073927

  12. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers

    PubMed Central

    2011-01-01

    Background Panax notoginseng (Burk) F.H. Chen is important medicinal plant of the Araliacease family. Triterpene saponins are the bioactive constituents in P. notoginseng. However, available genomic information regarding this plant is limited. Moreover, details of triterpene saponin biosynthesis in the Panax species are largely unknown. Results Using the 454 pyrosequencing technology, a one-quarter GS FLX titanium run resulted in 188,185 reads with an average length of 410 bases for P. notoginseng root. These reads were processed and assembled by 454 GS De Novo Assembler software into 30,852 unique sequences. A total of 70.2% of unique sequences were annotated by Basic Local Alignment Search Tool (BLAST) similarity searches against public sequence databases. The Kyoto Encyclopedia of Genes and Genomes (KEGG) assignment discovered 41 unique sequences representing 11 genes involved in triterpene saponin backbone biosynthesis in the 454-EST dataset. In particular, the transcript encoding dammarenediol synthase (DS), which is the first committed enzyme in the biosynthetic pathway of major triterpene saponins, is highly expressed in the root of four-year-old P. notoginseng. It is worth emphasizing that the candidate cytochrome P450 (Pn02132 and Pn00158) and UDP-glycosyltransferase (Pn00082) gene most likely to be involved in hydroxylation or glycosylation of aglycones for triterpene saponin biosynthesis were discovered from 174 cytochrome P450s and 242 glycosyltransferases by phylogenetic analysis, respectively. Putative transcription factors were detected in 906 unique sequences, including Myb, homeobox, WRKY, basic helix-loop-helix (bHLH), and other family proteins. Additionally, a total of 2,772 simple sequence repeat (SSR) were identified from 2,361 unique sequences, of which, di-nucleotide motifs were the most abundant motif. Conclusion This study is the first to present a large-scale EST dataset for P. notoginseng root acquired by next-generation sequencing (NGS) technology. The candidate genes involved in triterpene saponin biosynthesis, including the putative CYP450s and UGTs, were obtained in this study. Additionally, the identification of SSRs provided plenty of genetic makers for molecular breeding and genetics applications in this species. These data will provide information on gene discovery, transcriptional regulation and marker-assisted selection for P. notoginseng. The dataset establishes an important foundation for the study with the purpose of ensuring adequate drug resources for this species. PMID:22369100

  13. Expressed sequence tags (ESTs) from immune tissues of turbot (Scophthalmus maximus) challenged with pathogens

    PubMed Central

    Pardo, Belén G; Fernández, Carlos; Millán, Adrián; Bouza, Carmen; Vázquez-López, Araceli; Vera, Manuel; Alvarez-Dios, José A; Calaza, Manuel; Gómez-Tato, Antonio; Vázquez, María; Cabaleiro, Santiago; Magariños, Beatriz; Lemos, Manuel L; Leiro, José M; Martínez, Paulino

    2008-01-01

    Background The turbot (Scophthalmus maximus; Scophthalmidae; Pleuronectiformes) is a flatfish species of great relevance for marine aquaculture in Europe. In contrast to other cultured flatfish, very few genomic resources are available in this species. Aeromonas salmonicida and Philasterides dicentrarchi are two pathogens that affect turbot culture causing serious economic losses to the turbot industry. Little is known about the molecular mechanisms for disease resistance and host-pathogen interactions in this species. In this work, thousands of ESTs for functional genomic studies and potential markers linked to ESTs for mapping (microsatellites and single nucleotide polymorphisms (SNPs)) are provided. This information enabled us to obtain a preliminary view of regulated genes in response to these pathogens and it constitutes the basis for subsequent and more accurate microarray analysis. Results A total of 12584 cDNAs partially sequenced from three different cDNA libraries of turbot (Scophthalmus maximus) infected with Aeromonas salmonicida, Philasterides dicentrarchi and from healthy fish were analyzed. Three immune-relevant tissues (liver, spleen and head kidney) were sampled at several time points in the infection process for library construction. The sequences were processed into 9256 high-quality sequences, which constituted the source for the turbot EST database. Clustering and assembly of these sequences, revealed 3482 different putative transcripts, 1073 contigs and 2409 singletons. BLAST searches with public databases detected significant similarity (e-value ≤ 1e-5) in 1766 (50.7%) sequences and 816 of them (23.4%) could be functionally annotated. Two hundred three of these genes (24.9%), encoding for defence/immune-related proteins, were mostly identified for the first time in turbot. Some ESTs showed significant differences in the number of transcripts when comparing the three libraries, suggesting regulation in response to these pathogens. A total of 191 microsatellites, with 104 having sufficient flanking sequences for primer design, and 1158 putative SNPs were identified from these EST resources in turbot. Conclusion A collection of 9256 high-quality ESTs was generated representing 3482 unique turbot sequences. A large proportion of defence/immune-related genes were identified, many of them regulated in response to specific pathogens. Putative microsatellites and SNPs were identified. These genome resources constitute the basis to develop a microarray for functional genomics studies and marker validation for genetic linkage and QTL analysis in turbot. PMID:18817567

  14. Purification and Genetic Characterization of Enterocin I from Enterococcus faecium 6T1a, a Novel Antilisterial Plasmid-Encoded Bacteriocin Which Does Not Belong to the Pediocin Family of Bacteriocins

    PubMed Central

    Floriano, Belén; Ruiz-Barba, José L.; Jiménez-Díaz, Rufino

    1998-01-01

    Enterocin I (ENTI) is a novel bacteriocin produced by Enterococcus faecium 6T1a, a strain originally isolated from a Spanish-style green olive fermentation. The bacteriocin is active against many olive spoilage and food-borne gram-positive pathogenic bacteria, including clostridia, propionibacteria, and Listeria monocytogenes. ENTI was purified to homogeneity by ammonium sulfate precipitation, binding to an SP-Sepharose fast-flow column, and phenyl-Sepharose CL-4B and C2/C18 reverse-phase chromatography. The purification procedure resulted in a final yield of 954% and a 170,000-fold increase in specific activity. The primary structure of ENTI was determined by amino acid and nucleotide sequencing. ENTI consists of 44 amino acids and does not show significant sequence similarity with any other previously described bacteriocin. Sequencing of the entI structural gene, which is located on the 23-kb plasmid pEF1 of E. faecium 6T1a, revealed the absence of a leader peptide at the N-terminal region of the gene product. A second open reading frame, ORF2, located downstream of entI, encodes a putative protein that is 72.7% identical to ENTI. entI and ORF2 appear to be cotranscribed, yielding an mRNA of ca. 0.35 kb. A gene encoding immunity to ENTI was not identified. However, curing experiments demonstrated that both enterocin production and immunity are conferred by pEF1. PMID:9835578

  15. Identification, Characterization, and Expression of a Novel P450 Gene Encoding CYP6AE25 from the Asian Corn Borer, Ostrinia furnacalis

    PubMed Central

    Zhang, Yu-liang; Kulye, Mahesh; Yang, Feng-shan; Xiao, Luo; Zhang, Yi-tong; Zeng, Hongmei; Wang, Jian-hua; Liu, Zhi-xin

    2011-01-01

    An allele of the cytochrome P450 gene, CYP6AE14, named CYP6AE25 (GenBank accession no. EU807990) was isolated from the Asian com borer, Ostrinia fumacalis (Guenée) (Lepidoptera: Pyralidae) by RT-PCR. The cDNA sequence of CYP6AE25 is 2315 bp in length and contains a 1569 nucleotides open reading frame encoding a putative protein with 523 amino acid residues and a predicted molecular weight of 59.95 kDa and a theoretical pI of 8.31. The putative protein contains the classic heme-binding sequence motif F××G×××C×G (residues 451–460) conserved among all P450 enzymes as well as other characteristic motifs of all cytochrome P450s. It shares 52% identity with the previously published sequence of CYP6AE14 (GenBank accession no. DQ986461) from Helicoverpa armigera. Phylogenetic analysis of amino acid sequences from members of various P450 families indicated that CYP6AE25 has a closer phylogenetic relationship with CYP6AE14 and CYP6B1 that are related to metabolism of plant allelochemicals, CYP6D1 which is related to pyrethroid resistance and has a more distant relationship to CYP302A1 and CYP307A1 which are related to synthesis of the insect molting hormones. The expression level of the gene in the adults and immature stages of O. furnacalis by quantitative real-time PCR revealed that CYP6AE25 was expressed in all life stages investigated. The mRNA expression level in 3rd instar larvae was 12.8- and 2.97-fold higher than those in pupae and adults, respectively. The tissue specific expression level of CYP6AE25 was in the order of midgut, malpighian tube and fatty body from high to low but was absent in ovary and brain. The analysis of the CYP6AB25 gene using bioinformatic software is discussed. PMID:21529257

  16. Structure of a putative acetyltransferase (PA1377) from Pseudomonas aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davies, Anna M.; Tata, Renée; Chauviac, François-Xavier

    2008-05-01

    The crystal structure of an acetyltransferase encoded by the gene PA1377 from Pseudomonas aeruginosa has been determined at 2.25 Å resolution. Comparison with a related acetyltransferase revealed a structural difference in the active site that was taken to reflect a difference in substrate binding and/or specificity between the two enzymes. Gene PA1377 from Pseudomonas aeruginosa encodes a 177-amino-acid conserved hypothetical protein of unknown function. The structure of this protein (termed pitax) has been solved in space group I222 to 2.25 Å resolution. Pitax belongs to the GCN5-related N-acetyltransferase family and contains all four sequence motifs conserved among family members. Themore » β-strand structure in one of these motifs (motif A) is disrupted, which is believed to affect binding of the substrate that accepts the acetyl group from acetyl-CoA.« less

  17. Investigating sesquiterpene biosynthesis in Ginkgo biloba: molecular cloning and functional characterization of (E,E)-farnesol and α-bisabolene synthases.

    PubMed

    Parveen, Iffat; Wang, Mei; Zhao, Jianping; Chittiboyina, Amar G; Tabanca, Nurhayat; Ali, Abbas; Baerson, Scott R; Techen, Natascha; Chappell, Joe; Khan, Ikhlas A; Pan, Zhiqiang

    2015-11-01

    Ginkgo biloba is one of the oldest living tree species and has been extensively investigated as a source of bioactive natural compounds, including bioactive flavonoids, diterpene lactones, terpenoids and polysaccharides which accumulate in foliar tissues. Despite this chemical diversity, relatively few enzymes associated with any biosynthetic pathway from ginkgo have been characterized to date. In the present work, predicted transcripts potentially encoding enzymes associated with the biosynthesis of diterpenoid and terpenoid compounds, including putative terpene synthases, were first identified by mining publicly-available G. biloba RNA-seq data sets. Recombinant enzyme studies with two of the TPS-like sequences led to the identification of GbTPS1 and GbTPS2, encoding farnesol and bisabolene synthases, respectively. Additionally, the phylogenetic analysis revealed the two terpene synthase genes as primitive genes that might have evolved from an ancestral diterpene synthase.

  18. Genome of the opportunistic pathogen Streptococcus sanguinis.

    PubMed

    Xu, Ping; Alves, Joao M; Kitten, Todd; Brown, Arunsri; Chen, Zhenming; Ozaki, Luiz S; Manque, Patricio; Ge, Xiuchun; Serrano, Myrna G; Puiu, Daniela; Hendricks, Stephanie; Wang, Yingping; Chaplin, Michael D; Akan, Doruk; Paik, Sehmi; Peterson, Darrell L; Macrina, Francis L; Buck, Gregory A

    2007-04-01

    The genome of Streptococcus sanguinis is a circular DNA molecule consisting of 2,388,435 bp and is 177 to 590 kb larger than the other 21 streptococcal genomes that have been sequenced. The G+C content of the S. sanguinis genome is 43.4%, which is considerably higher than the G+C contents of other streptococci. The genome encodes 2,274 predicted proteins, 61 tRNAs, and four rRNA operons. A 70-kb region encoding pathways for vitamin B(12) biosynthesis and degradation of ethanolamine and propanediol was apparently acquired by horizontal gene transfer. The gene complement suggests new hypotheses for the pathogenesis and virulence of S. sanguinis and differs from the gene complements of other pathogenic and nonpathogenic streptococci. In particular, S. sanguinis possesses a remarkable abundance of putative surface proteins, which may permit it to be a primary colonizer of the oral cavity and agent of streptococcal endocarditis and infection in neutropenic patients.

  19. Defense Against Cannibalism: The SdpI Family of Bacterial Immunity/Signal Transduction Proteins

    PubMed Central

    Povolotsky, Tatyana Leonidovna; Orlova, Ekaterina; Tamang, Dorjee G.

    2010-01-01

    The SdpI family consists of putative bacterial toxin immunity and signal transduction proteins. One member of the family in Bacillus subtilis, SdpI, provides immunity to cells from cannibalism in times of nutrient limitation. SdpI family members are transmembrane proteins with 3, 4, 5, 6, 7, 8, or 12 putative transmembrane α-helical segments (TMSs). These varied topologies appear to be genuine rather than artifacts due to sequencing or annotation errors. The basic and most frequently occurring element of the SdpI family has 6 TMSs. Homologues of all topological types were aligned to determine the homologous TMSs and loop regions, and the positive-inside rule was used to determine sidedness. The two most conserved motifs were identified between TMSs 1 and 2 and TMSs 4 and 5 of the 6 TMS proteins. These showed significant sequence similarity, leading us to suggest that the primordial precursor of these proteins was a 3 TMS–encoding genetic element that underwent intragenic duplication. Various deletional and fusional events, as well as intragenic duplications and inversions, may have yielded SdpI homologues with topologies of varying numbers and positions of TMSs. We propose a specific evolutionary pathway that could have given rise to these distantly related bacterial immunity proteins. We further show that genes encoding SdpI homologues often appear in operons with genes for homologues of SdpR, SdpI’s autorepressor. Our analyses allow us to propose structure–function relationships that may be applicable to most family members. Electronic supplementary material The online version of this article (doi:10.1007/s00232-010-9260-7) contains supplementary material, which is available to authorized users. PMID:20563570

  20. Diverse circular replication-associated protein encoding viruses circulating in invertebrates within a lake ecosystem.

    PubMed

    Dayaram, Anisha; Galatowitsch, Mark L; Argüello-Astorga, Gerardo R; van Bysterveldt, Katherine; Kraberger, Simona; Stainton, Daisy; Harding, Jon S; Roumagnac, Philippe; Martin, Darren P; Lefeuvre, Pierre; Varsani, Arvind

    2016-04-01

    Over the last five years next-generation sequencing has become a cost effective and efficient method for identifying known and unknown microorganisms. Access to this technique has dramatically changed the field of virology, enabling a wide range of environmental viral metagenome studies to be undertaken of organisms and environmental samples from polar to tropical regions. These studies have led to the discovery of hundreds of highly divergent single stranded DNA (ssDNA) virus-like sequences encoding replication-associated proteins. Yet, few studies have explored how viruses might be shared in an ecosystem through feeding relationships. Here we identify 169 circular molecules (160 CRESS DNA molecules, nine circular molecules) recovered from a New Zealand freshwater lake, that we have tentatively classified into 51 putatively novel species and five previously described species (DflaCV-3, -5, -6, -8, -10). The CRESS DNA viruses identified in this study were recovered from molluscs (Echyridella menzeisii, Musculium novaezelandiae, Potamopyrgus antipodarum and Physella acuta) and insect larvae (Procordulia grayi, Xanthocnemis zealandica, and Chironomus zealandicus) collected from Lake Sarah, as well as from the lake water and benthic sediments. Extensive diversity was observed across most CRESS DNA molecules recovered. The putative capsid protein of one viral species was found to be most similar to those of members of the Tombusviridae family, thus expanding the number of known RNA-DNA hybrid viruses in nature. We noted a strong association between the CRESS DNA viruses and circular molecules identified in the water and browser organisms (C. zealandicus, P. antipodarum and P. acuta), and between water sediments and undefended prey species (C. zealandicus). However, we were unable to find any significant correlation of viral assemblages to the potential feeding relationships of the host aquatic invertebrates. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Molecular cloning and characterization of an acetylcholinesterase cDNA in the brown planthopper, Nilaparvata lugens.

    PubMed

    Yang, Zhifan; Chen, Jun; Chen, Yongqin; Jiang, Sijing

    2010-01-01

    A full cDNA encoding an acetylcholinesterase (AChE, EC 3.1.1.7) was cloned and characterized from the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). The complete cDNA (2467 bp) contains a 1938-bp open reading frame encoding 646 amino acid residues. The amino acid sequence of the AChE deduced from the cDNA consists of 30 residues for a putative signal peptide and 616 residues for the mature protein with a predicted molecular weight of 69,418. The three residues (Ser242, Glu371, and His485) that putatively form the catalytic triad and the six Cys that form intra-subunit disulfide bonds are completely conserved, and 10 out of the 14 aromatic residues lining the active site gorge of the AChE are also conserved. Northern blot analysis of poly(A)+ RNA showed an approximately 2.6-kb transcript, and Southern blot analysis revealed there likely was just a single copy of this gene in N. lugens. The deduced protein sequence is most similar to AChE of Nephotettix cincticeps with 83% amino acid identity. Phylogenetic analysis constructed with 45 AChEs from 30 species showed that the deduced N. lugens AChE formed a cluster with the other 8 insect AChE2s. Additionally, the hypervariable region and amino acids specific to insect AChE2 also existed in the AChE of N. lugens. The results revealed that the AChE cDNA cloned in this work belongs to insect AChE2 subgroup, which is orthologous to Drosophila AChE. Comparison of the AChEs between the susceptible and resistant strains revealed a point mutation, Gly185Ser, is likely responsible for the insensitivity of the AChE to methamidopho in the resistant strain.

  2. Metagenomic insights into the carbohydrate-active enzymes carried by the microorganisms adhering to solid digesta in the rumen of cows.

    PubMed

    Wang, Lingling; Hatem, Ayat; Catalyurek, Umit V; Morrison, Mark; Yu, Zhongtang

    2013-01-01

    The ruminal microbial community is a unique source of enzymes that underpin the conversion of cellulosic biomass. In this study, the microbial consortia adherent on solid digesta in the rumen of Jersey cattle were subjected to an activity-based metagenomic study to explore the genetic diversity of carbohydrolytic enzymes in Jersey cows, with a particular focus on cellulases and xylanases. Pyrosequencing and bioinformatic analyses of 120 carbohydrate-active fosmids identified genes encoding 575 putative Carbohydrate-Active Enzymes (CAZymes) and proteins putatively related to transcriptional regulation, transporters, and signal transduction coupled with polysaccharide degradation and metabolism. Most of these genes shared little similarity to sequences archived in databases. Genes that were predicted to encode glycoside hydrolases (GH) involved in xylan and cellulose hydrolysis (e.g., GH3, 5, 9, 10, 39 and 43) were well represented. A new subfamily (S-8) of GH5 was identified from contigs assigned to Firmicutes. These subfamilies of GH5 proteins also showed significant phylum-dependent distribution. A number of polysaccharide utilization loci (PULs) were found, and two of them contained genes encoding Sus-like proteins and cellulases that have not been reported in previous metagenomic studies of samples from the rumens of cows or other herbivores. Comparison with the large metagenomic datasets previously reported of other ruminant species (or cattle breeds) and wallabies showed that the rumen microbiome of Jersey cows might contain differing CAZymes. Future studies are needed to further explore how host genetics and diets affect the diversity and distribution of CAZymes and utilization of plant cell wall materials.

  3. Cag3 Is a Novel Essential Component of the Helicobacter pylori Cag Type IV Secretion System Outer Membrane Subcomplex ▿ †

    PubMed Central

    Pinto-Santini, Delia M.; Salama, Nina R.

    2009-01-01

    Helicobacter pylori strains harboring the cag pathogenicity island (PAI) have been associated with more severe gastric disease in infected humans. The cag PAI encodes a type IV secretion (T4S) system required for CagA translocation into host cells as well as induction of proinflammatory cytokines, such as interleukin-8 (IL-8). cag PAI genes sharing sequence similarity with T4S components from other bacteria are essential for Cag T4S function. Other cag PAI-encoded genes are also essential for Cag T4S, but lack of sequence-based or structural similarity with genes in existing databases has precluded a functional assignment for the encoded proteins. We have studied the role of one such protein, Cag3 (HP0522), in Cag T4S and determined Cag3 subcellular localization and protein interactions. Cag3 is membrane associated and copurifies with predicted inner and outer membrane Cag T4S components that are essential for Cag T4S as well as putative accessory factors. Coimmunoprecipitation and cross-linking experiments revealed specific interactions with HpVirB7 and CagM, suggesting Cag3 is a new component of the Cag T4S outer membrane subcomplex. Finally, lack of Cag3 lowers HpVirB7 steady-state levels, further indicating Cag3 makes a subcomplex with this protein. PMID:19801411

  4. Mycobacterium ahvazicum sp. nov., the nineteenth species of the Mycobacterium simiae complex.

    PubMed

    Bouam, Amar; Heidarieh, Parvin; Shahraki, Abodolrazagh Hashemi; Pourahmad, Fazel; Mirsaeidi, Mehdi; Hashemzadeh, Mohamad; Baptiste, Emeline; Armstrong, Nicholas; Levasseur, Anthony; Robert, Catherine; Drancourt, Michel

    2018-03-07

    Four slowly growing mycobacteria isolates were isolated from the respiratory tract and soft tissue biopsies collected in four unrelated patients in Iran. Conventional phenotypic tests indicated that these four isolates were identical to Mycobacterium lentiflavum while 16S rRNA gene sequencing yielded a unique sequence separated from that of M. lentiflavum. One representative strain AFP-003 T was characterized as comprising a 6,121,237-bp chromosome (66.24% guanosine-cytosine content) encoding for 5,758 protein-coding genes, 50 tRNA and one complete rRNA operon. A total of 2,876 proteins were found to be associated with the mobilome, including 195 phage proteins. A total of 1,235 proteins were found to be associated with virulence and 96 with toxin/antitoxin systems. The genome of AFP-003 T has the genetic potential to produce secondary metabolites, with 39 genes found to be associated with polyketide synthases and non-ribosomal peptide syntases and 11 genes encoding for bacteriocins. Two regions encoding putative prophages and three OriC regions separated by the dnaA gene were predicted. Strain AFP-003 T genome exhibits 86% average nucleotide identity with Mycobacterium genavense genome. Genetic and genomic data indicate that strain AFP-003 T is representative of a novel Mycobacterium species that we named Mycobacterium ahvazicum, the nineteenth species of the expanding Mycobacterium simiae complex.

  5. Characterization of the cryptic plasmid pOfk55 from Legionella pneumophila and construction of a pOfk55-derived shuttle vector.

    PubMed

    Nishida, Takashi; Watanabe, Kenta; Tachibana, Masato; Shimizu, Takashi; Watarai, Masahisa

    2017-03-01

    In this study, a cryptic plasmid pOfk55 from Legionella pneumophila was isolated and characterized. pOfk55 comprised 2584bp with a GC content of 37.3% and contained three putative open reading frames (ORFs). orf1 encoded a protein of 195 amino acids and the putative protein shared 39% sequence identity with a putative plasmid replication protein RepL. ORF1 was needed for replication in L. pneumophila but pOfk55 did not replicate in Escherichia coli. orf2 and orf3 encoded putative hypothetical proteins of 114 amino acids and 78 amino acids, respectively, but the functions of the putative proteins ORF2 and OFR3 are not clear. The transfer mechanism for pOfk55 was independent on the type IVB secretion system in the original host. A L. pneumophila-E. coli shuttle vector, pNT562 (5058bp, Km R ), was constructed by In-Fusion Cloning of pOfk55 with a kanamycin-resistance gene from pUTmini-Tn5Km and the origin of replication from pBluescript SK(+) (pNT561). Multiple cloning sites from pBluescript SK(+) as well as the tac promoter region and lacI gene from pAM239-GFP were inserted into pNT561 to construct pNT562. The transformation efficiency of pNT562 in L. pneumophila strains ranged from 1.6×10 1 to 1.0×10 5 CFU/ng. The relative number of pNT562 was estimated at 5.7±1.0 copies and 73.6% of cells maintained the plasmid after 1week in liquid culture without kanamycin. A green fluorescent protein (GFP) expression vector, pNT563, was constructed by ligating pNT562 with the gfpmut3 gene from pAM239-GFP. pNT563 was introduced into L. pneumophila Lp02 and E. coli DH5α, and both strains expressed GFP successfully. These results suggest that the shuttle vector is useful for genetic studies in L. pneumophila. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Analysis of the vhoGAC and vhtGAC operons from Methanosarcina mazei strain Gö1, both encoding a membrane-bound hydrogenase and a cytochrome b.

    PubMed

    Deppenmeier, U; Blaut, M; Lentes, S; Herzberg, C; Gottschalk, G

    1995-01-15

    DNA encompassing the structural genes of two membrane-bound hydrogenases from Methanosarcina mazei Gö1 was cloned and sequenced. The genes, arranged in the order vhoG and vhoA as well as vhtG and vhtA, were identified as those encoding the small and the large subunits of the NiFe hydrogenases [Deppenmeier, U., Blaut, M., Schmidt, B. & Gottschalk, G. (1992) Arch. Microbiol. 157, 505-511]. Northern-blot analysis revealed that the structural genes formed part of two operons, both containing one additional open reading frame (vhoC and vhtC) which codes for a cytochrome b. This conclusion was drawn from the homology of the deduced N-terminal amino acid sequences of vhoC and vhtC and the N-terminus of a 27-kDa cytochrome isolated from Ms. mazei C16. VhoC and VhtC contain four tentative hydrophobic segments which might span the cytoplasmic membrane. Hydropathy plots suggest that His23 and His50 are involved in heme coordination. The comparison of the sequencing data of vhoG and vhtG with the experimentally determined N-terminus of the small subunit indicate the presence of a 48-amino-acid leader peptide in front of the polypeptides. VhoA and VhtA contained the conserved sequence DPCXXC in the C-terminal region, which excludes the presence of a selenocysteine residue in these hydrogenases. Promoter sequences were found upstream of vhoG and vhtG, respectively. Downstream of vhoC, a putative terminator sequence was identified. Alignments of the deduced amino acid sequences of the gene clusters vhoGAC and vhtGAC showed 92-97% identity. Only the C-termini of VhoC and VhtC were not similar.

  7. Analysis of xylem formation in pine by cDNA sequencing

    NASA Technical Reports Server (NTRS)

    Allona, I.; Quinn, M.; Shoop, E.; Swope, K.; St Cyr, S.; Carlis, J.; Riedl, J.; Retzel, E.; Campbell, M. M.; Sederoff, R.; hide

    1998-01-01

    Secondary xylem (wood) formation is likely to involve some genes expressed rarely or not at all in herbaceous plants. Moreover, environmental and developmental stimuli influence secondary xylem differentiation, producing morphological and chemical changes in wood. To increase our understanding of xylem formation, and to provide material for comparative analysis of gymnosperm and angiosperm sequences, ESTs were obtained from immature xylem of loblolly pine (Pinus taeda L.). A total of 1,097 single-pass sequences were obtained from 5' ends of cDNAs made from gravistimulated tissue from bent trees. Cluster analysis detected 107 groups of similar sequences, ranging in size from 2 to 20 sequences. A total of 361 sequences fell into these groups, whereas 736 sequences were unique. About 55% of the pine EST sequences show similarity to previously described sequences in public databases. About 10% of the recognized genes encode factors involved in cell wall formation. Sequences similar to cell wall proteins, most known lignin biosynthetic enzymes, and several enzymes of carbohydrate metabolism were found. A number of putative regulatory proteins also are represented. Expression patterns of several of these genes were studied in various tissues and organs of pine. Sequencing novel genes expressed during xylem formation will provide a powerful means of identifying mechanisms controlling this important differentiation pathway.

  8. Genomic polymorphism, recombination, and linkage disequilibrium in human major histocompatibility complex-encoded antigen-processing genes.

    PubMed Central

    van Endert, P M; Lopez, M T; Patel, S D; Monaco, J J; McDevitt, H O

    1992-01-01

    Recently, two subunits of a large cytosolic protease and two putative peptide transporter proteins were found to be encoded by genes within the class II region of the major histocompatibility complex (MHC). These genes have been suggested to be involved in the processing of antigenic proteins for presentation by MHC class I molecules. Because of the high degree of polymorphism in MHC genes, and previous evidence for both functional and polypeptide sequence polymorphism in the proteins encoded by the antigen-processing genes, we tested DNA from 27 consanguineous human cell lines for genomic polymorphism by restriction fragment length polymorphism (RFLP) analysis. These studies demonstrate a strong linkage disequilibrium between TAP1 and LMP2 RFLPs. Moreover, RFLPs, as well as a polymorphic stop codon in the telomeric TAP2 gene, appear to be in linkage disequilibrium with HLA-DR alleles and RFLPs in the HLA-DO gene. A high rate of recombination, however, seems to occur in the center of the complex, between the TAP1 and TAP2 genes. Images PMID:1360671

  9. Putative and unique gene sequence utilization for the design of species specific probes as modeled by Lactobacillus plantarum

    USDA-ARS?s Scientific Manuscript database

    The concept of utilizing putative and unique gene sequences for the design of species specific probes was tested. The abundance profile of assigned functions within the Lactobacillus plantarum genome was used for the identification of the putative and unique gene sequence, csh. The targeted gene (cs...

  10. Complete genome sequence of the chromate-reducing bacterium Thermoanaerobacter thermohydrosulfuricus strain BSB-33

    DOE PAGES

    Bhattacharya, Pamela; Barnebey, Adam; Zemla, Marcin; ...

    2015-10-05

    Thermoanaerobacter thermohydrosulfuricus BSB-33 is a thermophilic gram positive obligate anaerobe isolated from a hot spring in West Bengal, India. Unlike other T. thermohydrosulfuricus strains, BSB-33 is able to anaerobically reduce Fe(III) and Cr(VI) optimally at 60 °C. BSB-33 is the first Cr(VI) reducing T. thermohydrosulfuricus genome sequenced and of particular interest for bioremediation of environmental chromium contaminations. Here we discuss features of T. thermohydrosulfuricus BSB-33 and the unique genetic elements that may account for the peculiar metal reducing properties of this organism. The T. thermohydrosulfuricus BSB-33 genome comprises 2597606 bp encoding 2581 protein genes, 12 rRNA, 193 pseudogenes and hasmore » a G + C content of 34.20 %. Lastly, putative chromate reductases were identified by comparative analyses with other Thermoanaerobacter and chromate-reducing bacteria.« less

  11. Tetrahymena thermophila acidic ribosomal protein L37 contains an archaebacterial type of C-terminus.

    PubMed

    Hansen, T S; Andreasen, P H; Dreisig, H; Højrup, P; Nielsen, H; Engberg, J; Kristiansen, K

    1991-09-15

    We have cloned and characterized a Tetrahymena thermophila macronuclear gene (L37) encoding the acidic ribosomal protein (A-protein) L37. The gene contains a single intron located in the 3'-part of the coding region. Two major and three minor transcription start points (tsp) were mapped 39 to 63 nucleotides upstream from the translational start codon. The uppermost tsp mapped to the first T in a putative T. thermophila RNA polymerase II initiator element, TATAA. The coding region of L37 predicts a protein of 109 amino acid (aa) residues. A substantial part of the deduced aa sequence was verified by protein sequencing. The T. thermophila L37 clearly belongs to the P1-type family of eukaryotic A-proteins, but the C-terminal region has the hallmarks of archaebacterial A-proteins.

  12. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people

    PubMed Central

    Nelson, Matthew R.; Wegmann, Daniel; Ehm, Margaret G.; Kessner, Darren; St. Jean, Pamela; Verzilli, Claudio; Shen, Judong; Tang, Zhengzheng; Bacanu, Silviu-Alin; Fraser, Dana; Warren, Liling; Aponte, Jennifer; Zawistowski, Matthew; Liu, Xiao; Zhang, Hao; Zhang, Yong; Li, Jun; Li, Yun; Li, Li; Woollard, Peter; Topp, Simon; Hall, Matthew D.; Nangle, Keith; Wang, Jun; Abecasis, Gonçalo; Cardon, Lon R.; Zöllner, Sebastian; Whittaker, John C.; Chissoe, Stephanie L.; Novembre, John; Mooser, Vincent

    2015-01-01

    Rare genetic variants contribute to complex disease risk; however, the abundance of rare variants in human populations remains unknown. We explored this spectrum of variation by sequencing 202 genes encoding drug targets in 14,002 individuals. We find rare variants are abundant (one every 17 bases) and geographically localized, such that even with large sample sizes, rare variant catalogs will be largely incomplete. We used the observed patterns of variation to estimate population growth parameters, the proportion of variants in a given frequency class that are putatively deleterious, and mutation rates for each gene. Overall we conclude that, due to rapid population growth and weak purifying selection, human populations harbor an abundance of rare variants, many of which are deleterious and have relevance to understanding disease risk. PMID:22604722

  13. Identification and localization of gonadotropin-inhibitory hormone (GnIH) orthologs in the hypothalamus of the red-eared slider turtle, Trachemys scripta elegans.

    PubMed

    Ukena, Kazuyoshi; Iwakoshi-Ukena, Eiko; Osugi, Tomohiro; Tsutsui, Kazuyoshi

    2016-02-01

    Gonadotropin-inhibitory hormone (GnIH) was discovered in 2000 as a novel hypothalamic neuropeptide that inhibited gonadotropin release in the Japanese quail. GnIH and its orthologs have a common C-terminal LPXRFamide (X=L or Q) motif, and have been identified in vertebrates from agnathans to humans, apart from reptiles. In the present study, we characterized a cDNA encoding GnIH orthologs in the brain of the red-eared slider turtle. The deduced precursor protein consisted of 205 amino-acid residues, encoding three putative peptide sequences that included the LPXRFamide motif at their C-termini. In addition, the precursor sequence was most similar to those of avian species. Immunoaffinity purification combined with mass spectrometry confirmed that three mature peptides were produced in the brain. In situ hybridization and immunohistochemistry showed that turtle GnIH-containing cells were restricted to the periventricular hypothalamic nucleus. Immunoreactive fibers were densely distributed in the median eminence. Thus, GnIH and related peptides may act on the pituitary to regulate pituitary hormone release in turtles as well as other vertebrates. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Cloning, expression and N-terminal myristoylation of CpCPK1, a calcium-dependent protein kinase from zucchini (Cucurbita pepo L.).

    PubMed

    Ellard-Ivey, M; Hopkins, R B; White, T J; Lomax, T L

    1999-01-01

    We have isolated a full-length cDNA clone (CpCDPK1) encoding a calcium-dependent protein kinase (CDPK) gene from zucchini (Cucurbita pepo L.). The predicted amino acid sequence of the cDNA shows a remarkably high degree of similarity to members of the CDPK gene family from Arabidopsis thaliana, especially AtCPK1 and AtCPK2. Northern analysis of steady-state mRNA levels for CpCPK1 in etiolated and light-grown zucchini seedlings shows that the transcript is most abundant in etiolated hypocotyls and overall expression is suppressed by light. As described for other members of the CDPK gene family from different species, the CpCPK1 clone has a putative N-terminal myristoylation sequence. In this study, site-directed mutagenesis and an in vitro coupled transcription/translation system were used to demonstrate that the protein encoded by this cDNA is specifically myristoylated by a plant N-myristoyl transferase. This is the first demonstration of myristoylation of a CDPK protein which may contribute to the mechanism by which this protein is localized to the plasma membrane.

  15. A Family of at Least Seven β-Galactosidase Genes Is Expressed during Tomato Fruit Development

    PubMed Central

    Smith, David L.; Gross, Kenneth C.

    2000-01-01

    During our search for a cDNA encoding β-galactosidase II, a β-galactosidase/exogalactanase (EC 3.2.1.23) present during tomato (Lycopersicon esculentum Mill.) fruit ripening, a family of seven tomato β-galactosidase (TBG) cDNAs was identified. The shared amino acid sequence identity among the seven TBG clones ranged from 33% to 79%. All contained the putative active site-containing consensus sequence pattern G-G-P-[LIVM]-x-Q-x-E-N-E-[FY] belonging to glycosyl hydrolase family 35. Six of the seven single-copy genes were mapped using restriction fragment length polymorphisms of recombinant inbred lines. RNA gel-blot analysis was used to evaluate TBG mRNA levels throughout fruit development, in different fruit tissues, and in various plant tissues. RNA gel-blot analysis was also used to reveal TBG mRNA levels in fruit of the rin, nor, and Nr tomato mutants. The TBG4-encoded protein, known to correspond to β-galactosidase II, was expressed in yeast and exo-galactanase activity was confirmed via a quantified release of galactosyl residues from cell wall fractions containing β(1→4)-d-galactan purified from tomato fruit. PMID:10889266

  16. Identification of avian wax synthases

    PubMed Central

    2012-01-01

    Background Bird species show a high degree of variation in the composition of their preen gland waxes. For instance, galliform birds like chicken contain fatty acid esters of 2,3-alkanediols, while Anseriformes like goose or Strigiformes like barn owl contain wax monoesters in their preen gland secretions. The final biosynthetic step is catalyzed by wax synthases (WS) which have been identified in pro- and eukaryotic organisms. Results Sequence similarities enabled us to identify six cDNAs encoding putative wax synthesizing proteins in chicken and two from barn owl and goose. Expression studies in yeast under in vivo and in vitro conditions showed that three proteins from chicken performed WS activity while a sequence from chicken, goose and barn owl encoded a bifunctional enzyme catalyzing both wax ester and triacylglycerol synthesis. Mono- and bifunctional WS were found to differ in their substrate specificities especially with regard to branched-chain alcohols and acyl-CoA thioesters. According to the expression patterns of their transcripts and the properties of the enzymes, avian WS proteins might not be confined to preen glands. Conclusions We provide direct evidence that avian preen glands possess both monofunctional and bifunctional WS proteins which have different expression patterns and WS activities with different substrate specificities. PMID:22305293

  17. Citrus psorosis virus RNA 1 is of negative polarity and potentially encodes in its complementary strand a 24K protein of unknown function and 280K putative RNA dependent RNA polymerase.

    PubMed

    Naum-Onganía, Gabriela; Gago-Zachert, Selma; Peña, Eduardo; Grau, Oscar; Garcia, Maria Laura

    2003-10-01

    Citrus psorosis virus (CPsV), the type member of genus Ophiovirus, has three genomic RNAs. Complete sequencing of CPsV RNA 1 revealed a size of 8184 nucleotides and Northern blot hybridization with chain specific probes showed that its non-coding strand is preferentially encapsidated. The complementary strand of RNA 1 contains two open reading frames (ORFs) separated by a 109-nt intergenic region, one located near the 5'-end potentially encoding a 24K protein of unknown function, and another of 280K containing the core polymerase motifs characteristic of viral RNA-dependent RNA polymerases (RdRp). Comparison of the core RdRp motifs of negative-stranded RNA viruses, supports grouping CPsV, Ranunculus white mottle virus (RWMV) and Mirafiori lettuce virus (MiLV) within the same genus (Ophiovirus), constituting a monophyletic group separated from all other negative-stranded RNA viruses. Furthermore, RNAs 1 of MiLV, CPsV and RWMV are similar in size and those of MiLV and CPsV also in genomic organization and sequence.

  18. A novel monopartite dsRNA virus isolated from the phytopathogenic fungus Ustilaginoidea virens and ancestrally related to a mitochondria-associated dsRNA in the green alga Bryopsis.

    PubMed

    Zhang, Tingting; Jiang, Yinhui; Dong, Wubei

    2014-08-01

    In this study, we describe a novel mycovirus isolated from Ustilaginoidea virens, which was designated Ustilaginoidea virens nonsegmented virus 1 (UvNV-1). The sequence analysis revealed that UvNV-1 has two open reading frames (ORFs). ORF1 encodes an unknown protein, which is similar to the hypothetical protein BN7_5177 of Wickerhamomyces ciferrii. ORF2 encodes a putative RNA-dependent RNA polymerase (RdRp), which is most closely related to Bryopsis mitochondria-associated dsRNA (BDRM) and is likely expressed by a +1 ribosomal frameshift within the sequence CCC_UUU_CGA. The phylogenetic analysis of the RdRp of UvNV-1 showed that UvNV-1 represents a new virus taxon of mycoviruses with a partitivirus-like lineage that is classified into the family of picorna-like viruses. Based on northern hybridization, UvNV-1 was found to be common to U. virens from different geographic locations in China. The biological comparison of virus-free and infected fungal strains revealed that UvNV-1 is likely to be cryptic to its host. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Phylogenetic distribution and evolutionary pattern of an α-proteobacterial small RNA gene that controls polyhydroxybutyrate accumulation in Sinorhizobium meliloti.

    PubMed

    Lagares, Antonio; Roux, Indra; Valverde, Claudio

    2016-06-01

    It has become clear that sRNAs play relevant regulatory functions in bacteria. However, a comprehensive understanding of their biological roles considering evolutionary aspects has not been achieved for most of them. Thus, we have characterized the evolutionary and phylogenetic aspects of the Sinorhizobium meliloti mmgR gene encoding the small RNA MmgR, which has been recently reported to be involved in the regulation of polyhydroxybutyrate accumulation in this bacterium. We constructed a covariance model from a multiple sequence and structure alignment of mmgR close homologs that allowed us to extend the search and to detect further remote homologs of the sRNA gene. From our results, mmgR seemed to evolve from a common ancestor of the α-proteobacteria that diverged from the order of Rickettsiales. We have found mmgR homologs in most current species of α-proteobacteria, with a few exceptions in which genomic reduction events or gene rearrangements seem to explain its absence. Furthermore, a strong microsyntenic relationship was found between a large set of mmgR homologs and homologs of a gene encoding a putative N-formyl glutamate amidohydrolase (NFGAH) that allowed us to trace back the evolutionary path of this group of mmgR orthologs. Among them, structure and sequence traits have been completely conserved throughout evolution, namely a Rho-independent terminator and a 10-mer (5'-UUUCCUCCCU-3') that is predicted to remain in a single-stranded region of the sRNA. We thus propose the definition of the new family of α-proteobacterial sRNAs αr8, as well as the subfamily αr8s1 which encompass S. meliloti mmgR orthologs physically linked with the downstream open reading frame encoding a putative NFGAH. So far, mmgR is the trans-encoded small RNA with the widest phylogenetic distribution of well recognized orthologs among α-proteobacteria. Expression of the expected MmgR transcript in rhizobiales other than S. meliloti (Sinorhizobium fredii, Rhizobium leguminosarum and Rhizobium etli) was confirmed by Northern blot. These findings will contribute to the understanding of the biological role(s) of mmgR in the α-proteobacteria. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Genome of turbot rhabdovirus exhibits unusual non-coding regions and an additional ORF that could be expressed in fish cell.

    PubMed

    Zhu, Ruo-Lin; Lei, Xiao-Ying; Ke, Fei; Yuan, Xiu-Ping; Zhang, Qi-Ya

    2011-02-01

    Genomic sequence of Scophthalmus maximus rhabdovirus (SMRV) isolated from diseased turbot has been characterized. The complete genome of SMRV comprises 11,492 nucleotides and encodes five typical rhabdovirus genes N, P, M, G and L. In addition, two open reading frames (ORF) are predicted overlapping with P gene, one upstream of P and smaller than P (temporarily called Ps), and another in P gene which may encodes a protein similar to the vesicular stomatitis virus C protein. The C ORF is contained within the P ORF. The five typical proteins share the highest sequence identities (48.9%) with the corresponding proteins of rhabdoviruses in genus Vesiculovirus. Phylogenetic analysis of partial L protein sequence indicates that SMRV is close to genus Vesiculovirus. The first 13 nucleotides at the ends of the SMRV genome are absolutely inverse complementarity. The gene junctions between the five genes show conserved polyadenylation signal (CATGA(7)) and intergenic dinucleotide (CT) followed by putative transcription initiation sequence A(A/G)(C/G)A(A/G/T), which are different from known rhabdoviruses. The entire Ps ORF was cloned and expressed, and used to generate polyclonal antibody in mice. One obvious band could be detected in SMRV-infected carp leucocyte cells (CLCs) by anti-Ps/C serum via Western blot, and the subcellular localization of Ps-GFP fusion protein exhibited cytoplasm distribution as multiple punctuate or doughnut shaped foci of uneven size. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues.

    PubMed Central

    Prody, C A; Zevin-Sonkin, D; Gnatt, A; Goldberg, O; Soreq, H

    1987-01-01

    To study the primary structure and regulation of human cholinesterases, oligodeoxynucleotide probes were prepared according to a consensus peptide sequence present in the active site of both human serum pseudocholinesterase (BtChoEase; EC 3.1.1.8) and Torpedo electric organ "true" acetylcholinesterase (AcChoEase; EC 3.1.1.7). Using these probes, we isolated several cDNA clones from lambda gt10 libraries of fetal brain and liver origins. These include 2.4-kilobase cDNA clones that code for a polypeptide containing a putative signal peptide and the N-terminal, active site, and C-terminal peptides of human BtChoEase, suggesting that they code either for BtChoEase itself or for a very similar but distinct fetal form of cholinesterase. In RNA blots of poly(A)+ RNA from the cholinesterase-producing fetal brain and liver, these cDNAs hybridized with a single 2.5-kilobase band. Blot hybridization to human genomic DNA revealed that these fetal BtChoEase cDNA clones hybridize with DNA fragments of the total length of 17.5 kilobases, and signal intensities indicated that these sequences are not present in many copies. Both the cDNA-encoded protein and its nucleotide sequence display striking homology to parallel sequences published for Torpedo AcChoEase. These findings demonstrate extensive homologies between the fetal BtChoEase encoded by these clones and other cholinesterases of various forms and species. Images PMID:3035536

  2. Genome sequence and comparative analysis of a putative entomopathogenic Serratia isolated from Caenorhabditis briggsae.

    PubMed

    Abebe-Akele, Feseha; Tisa, Louis S; Cooper, Vaughn S; Hatcher, Philip J; Abebe, Eyualem; Thomas, W Kelley

    2015-07-18

    Entomopathogenic associations between nematodes in the genera Steinernema and Heterorhabdus with their cognate bacteria from the bacterial genera Xenorhabdus and Photorhabdus, respectively, are extensively studied for their potential as biological control agents against invasive insect species. These two highly coevolved associations were results of convergent evolution. Given the natural abundance of bacteria, nematodes and insects, it is surprising that only these two associations with no intermediate forms are widely studied in the entomopathogenic context. Discovering analogous systems involving novel bacterial and nematode species would shed light on the evolutionary processes involved in the transition from free living organisms to obligatory partners in entomopathogenicity. We report the complete genome sequence of a new member of the enterobacterial genus Serratia that forms a putative entomopathogenic complex with Caenorhabditis briggsae. Analysis of the 5.04 MB chromosomal genome predicts 4599 protein coding genes, seven sets of ribosomal RNA genes, 84 tRNA genes and a 64.8 KB plasmid encoding 74 genes. Comparative genomic analysis with three of the previously sequenced Serratia species, S. marcescens DB11 and S. proteamaculans 568, and Serratia sp. AS12, revealed that these four representatives of the genus share a core set of ~3100 genes and extensive structural conservation. The newly identified species shares a more recent common ancestor with S. marcescens with 99% sequence identity in rDNA sequence and orthology across 85.6% of predicted genes. Of the 39 genes/operons implicated in the virulence, symbiosis, recolonization, immune evasion and bioconversion, 21 (53.8%) were present in Serratia while 33 (84.6%) and 35 (89%) were present in Xenorhabdus and Photorhabdus EPN bacteria respectively. The majority of unique sequences in Serratia sp. SCBI (South African Caenorhabditis briggsae Isolate) are found in ~29 genomic islands of 5 to 65 genes and are enriched in putative functions that are biologically relevant to an entomopathogenic lifestyle, including non-ribosomal peptide synthetases, bacteriocins, fimbrial biogenesis, ushering proteins, toxins, secondary metabolite secretion and multiple drug resistance/efflux systems. By revealing the early stages of adaptation to this lifestyle, the Serratia sp. SCBI genome underscores the fact that in EPN formation the composite end result - killing, bioconversion, cadaver protection and recolonization- can be achieved by dissimilar mechanisms. This genome sequence will enable further study of the evolution of entomopathogenic nematode-bacteria complexes.

  3. Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins.

    PubMed Central

    Aymerich, T; Holo, H; Håvarstein, L S; Hugas, M; Garriga, M; Nes, I F

    1996-01-01

    A new bacteriocin has been isolated from an Enterococcus faecium strain. The bacteriocin, termed enterocin A, was purified to homogeneity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, N-terminal amino acid sequencing, and mass spectrometry analysis. By combining the data obtained from amino acid and DNA sequencing, the primary structure of enterocin A was determined. It consists of 47 amino acid residues, and the molecular weight was calculated to be 4,829, assuming that the four cysteine residues form intramolecular disulfide bridges. This molecular weight was confirmed by mass spectrometry analysis. The amino acid sequence of enterocin A shared significant homology with a group of bacteriocins (now termed pediocin-like bacteriocins) isolated from a variety of lactic acid-producing bacteria, which include members of the genera Lactobacillus, Pediococcus, Leuconostoc, and Carnobacterium. Sequencing of the structural gene of enterocin A, which is located on the bacterial chromosome, revealed an N-terminal leader sequence of 18 amino acid residues, which was removed during the maturation process. The enterocin A leader belongs to the double-glycine leaders which are found among most other small nonlantibiotic bacteriocins, some lantibiotics, and colicin V. Downstream of the enterocin A gene was located a second open reading frame, encoding a putative protein of 103 amino acid residues. This gene may encode the immunity factor of enterocin A, and it shares 40% identity with a similar open reading frame in the operon of leucocin AUL 187, another pediocin-like bacteriocin. PMID:8633865

  4. Comparative analysis of the mating-type loci from Neurospora crassa and Sordaria macrospora: identification of novel transcribed ORFs.

    PubMed

    Pöggeler, S; Kück, U

    2000-03-01

    The mating-type locus controls mating and sexual development in filamentous ascomycetes. In the heterothallic ascomycete Neurospora crassa, the genes that confer mating behavior comprise dissimilar DNA sequences (idiomorphs) in the mat a and mat A mating partners. In the homothallic fungus Sordaria macrospora, sequences corresponding to both idiomorphs are located contiguously in the mating-type locus, which contains one chimeric gene, Smt A-3, that includes sequences which are similar to sequences found at the mat A and mat a mating-type idiomorphs in N. crassa. In this study, we describe the comparative transcriptional analysis of the chimeric mating-type region of S. macrospora and the corresponding region of the N. crassa mat a idiomorph. By means of RT-PCR experiments, we identified novel intervening sequences in the mating-type loci of both ascomycetes and, hence, concluded that an additional ORF, encoding a putative polypeptide of 79 amino acids, is present in the N. crassa mat a idiomorph. Furthermore, our analysis revealed co-transcription of the novel gene with the mat a-1 gene in N. crassa. The same mode of transcription was found in the corresponding mating-type region of S. macrospora, where the chimeric Smt A-3 gene is co-transcribed with the mat a-specific Smt a-1 gene. Analysis of a Smt A-3 cDNA revealed optional splicing of two introns. We believe that this is the first report of co-transcription of protein-encoding nuclear genes in filamentous fungi. Possible functions of the novel ORFs in regulating mating-type gene expression are discussed.

  5. Genetic Screening Strategy for Rapid Access to Polyether Ionophore Producers and Products in Actinomycetes ▿ †

    PubMed Central

    Wang, Hao; Liu, Ning; Xi, Lijun; Rong, Xiaoying; Ruan, Jisheng; Huang, Ying

    2011-01-01

    Polyether ionophores are a unique class of polyketides with broad-spectrum activity and outstanding potency for the control of drug-resistant bacteria and parasites, and they are produced exclusively by actinomycetes. A special epoxidase gene encoding a critical tailoring enzyme involved in the biosynthesis of these compounds has been found in all five of the complete gene clusters of polyether ionophores published so far. To detect potential producer strains of these antibiotics, a pair of degenerate primers was designed according to the conserved regions of the five known polyether epoxidases. A total of 44 putative polyether epoxidase gene-positive strains were obtained by the PCR-based screening of 1,068 actinomycetes isolated from eight different habitats and 236 reference strains encompassing eight major families of Actinomycetales. The isolates spanned a wide taxonomic diversity based on 16S rRNA gene analysis, and actinomycetes isolated from acidic soils seemed to be a promising source of polyether ionophores. Four genera were detected to contain putative polyether epoxidases, including Micromonospora, which has not previously been reported to produce polyether ionophores. The designed primers also detected putative epoxidase genes from diverse known producer strains that produce polyether ionophores unrelated to the five published gene clusters. Moreover, phylogenetic and chemical analyses showed a strong correlation between the sequence of polyether epoxidases and the structure of encoded polyethers. Thirteen positive isolates were proven to be polyether ionophore producers as expected, and two new analogues were found. These results demonstrate the feasibility of using this epoxidase gene screening strategy to aid the rapid identification of known products and the discovery of unknown polyethers in actinomycetes. PMID:21421776

  6. Genetic screening strategy for rapid access to polyether ionophore producers and products in actinomycetes.

    PubMed

    Wang, Hao; Liu, Ning; Xi, Lijun; Rong, Xiaoying; Ruan, Jisheng; Huang, Ying

    2011-05-01

    Polyether ionophores are a unique class of polyketides with broad-spectrum activity and outstanding potency for the control of drug-resistant bacteria and parasites, and they are produced exclusively by actinomycetes. A special epoxidase gene encoding a critical tailoring enzyme involved in the biosynthesis of these compounds has been found in all five of the complete gene clusters of polyether ionophores published so far. To detect potential producer strains of these antibiotics, a pair of degenerate primers was designed according to the conserved regions of the five known polyether epoxidases. A total of 44 putative polyether epoxidase gene-positive strains were obtained by the PCR-based screening of 1,068 actinomycetes isolated from eight different habitats and 236 reference strains encompassing eight major families of Actinomycetales. The isolates spanned a wide taxonomic diversity based on 16S rRNA gene analysis, and actinomycetes isolated from acidic soils seemed to be a promising source of polyether ionophores. Four genera were detected to contain putative polyether epoxidases, including Micromonospora, which has not previously been reported to produce polyether ionophores. The designed primers also detected putative epoxidase genes from diverse known producer strains that produce polyether ionophores unrelated to the five published gene clusters. Moreover, phylogenetic and chemical analyses showed a strong correlation between the sequence of polyether epoxidases and the structure of encoded polyethers. Thirteen positive isolates were proven to be polyether ionophore producers as expected, and two new analogues were found. These results demonstrate the feasibility of using this epoxidase gene screening strategy to aid the rapid identification of known products and the discovery of unknown polyethers in actinomycetes.

  7. Metagenomics of rumen bacteriophage from thirteen lactating dairy cattle

    PubMed Central

    2013-01-01

    Background The bovine rumen hosts a diverse and complex community of Eukarya, Bacteria, Archea and viruses (including bacteriophage). The rumen viral population (the rumen virome) has received little attention compared to the rumen microbial population (the rumen microbiome). We used massively parallel sequencing of virus like particles to investigate the diversity of the rumen virome in thirteen lactating Australian Holstein dairy cattle all housed in the same location, 12 of which were sampled on the same day. Results Fourteen putative viral sequence fragments over 30 Kbp in length were assembled and annotated. Many of the putative genes in the assembled contigs showed no homology to previously annotated genes, highlighting the large amount of work still required to fully annotate the functions encoded in viral genomes. The abundance of the contig sequences varied widely between animals, even though the cattle were of the same age, stage of lactation and fed the same diets. Additionally the twelve animals which were co-habited shared a number of their dominant viral contigs. We compared the functional characteristics of our bovine viromes with that of other viromes, as well as rumen microbiomes. At the functional level, we found strong similarities between all of the viral samples, which were highly distinct from the rumen microbiome samples. Conclusions Our findings suggest a large amount of between animal variation in the bovine rumen virome and that co-habiting animals may have more similar viromes than non co-habited animals. We report the deepest sequencing to date of the rumen virome. This work highlights the enormous amount of novelty and variation present in the rumen virome. PMID:24180266

  8. A germin-like protein with superoxide dismutase activity in pea nodules with high protein sequence identity to a putative rhicadhesin receptor.

    PubMed

    Gucciardo, Sébastian; Wisniewski, Jean-Pierre; Brewin, Nicholas J; Bornemann, Stephen

    2007-01-01

    The cDNAs encoding three germin-like proteins (PsGER1, PsGER2a, and PsGER2b) were isolated from Pisum sativum. The coding sequence of PsGER1 transiently expressed in tobacco leaves gave a protein with superoxide dismutase activity but no detectable oxalate oxidase activity according to in-gel activity stains. The transient expression of wheat germin gf-2.8 oxalate oxidase showed oxalate oxidase but no superoxide dismutase activity under the same conditions. The superoxide dismutase activity of PsGER1 was resistant to high temperature, denaturation by detergent, and high concentrations of hydrogen peroxide. In salt-stressed pea roots, a heat-resistant superoxide dismutase activity was observed with an electrophoretic mobility similar to that of the PsGER1 protein, but this activity was below the detection limit in non-stressed or H(2)O(2)-stressed pea roots. Oxalate oxidase activity was not detected in either pea roots or nodules. Following in situ hybridization in developing pea nodules, PsGER1 transcript was detected in expanding cells just proximal to the meristematic zone and also in the epidermis, but to a lesser extent. PsGER1 is the first known germin-like protein with superoxide dismutase activity to be associated with nodules. It shared protein sequence identity with the N-terminal sequence of a putative plant receptor for rhicadhesin, a bacterial attachment protein. However, its primary location in nodules suggests functional roles other than as a rhicadhesin receptor required for the first stage of bacterial attachment to root hairs.

  9. DLEU2 encodes an antisense RNA for the putative bicistronic RFP2/LEU5 gene in humans and mouse.

    PubMed

    Corcoran, Martin M; Hammarsund, Marianne; Zhu, Chaoyong; Lerner, Mikael; Kapanadze, Bagrat; Wilson, Bill; Larsson, Catharina; Forsberg, Lars; Ibbotson, Rachel E; Einhorn, Stefan; Oscier, David G; Grandér, Dan; Sangfelt, Olle

    2004-08-01

    Our group previously identified two novel genes, RFP2/LEU5 and DLEU2, within a 13q14.3 genomic region of loss seen in various malignancies. However, no specific inactivating mutations were found in these or other genes in the vicinity of the deletion, suggesting that a nonclassical tumor-suppressor mechanism may be involved. Here, we present data showing that the DLEU2 gene encodes a putative noncoding antisense RNA, with one exon directly overlapping the first exon of the RFP2/LEU5 gene in the opposite orientation. In addition, the RFP2/LEU5 transcript can be alternatively spliced to produce either several monocistronic transcripts or a putative bicistronic transcript encoding two separate open-reading frames, adding to the complexity of the locus. The finding that these gene structures are conserved in the mouse, including the putative bicistronic RFP2/LEU5 transcript as well as the antisense relationship with DLEU2, further underlines the significance of this unusual organization and suggests a biological function for DLEU2 in the regulation of RFP2/LEU5. Copyright 2004 Wiley-Liss, Inc.

  10. De novo Genome Assembly of the Fungal Plant Pathogen Pyrenophora semeniperda

    PubMed Central

    Soliai, Marcus M.; Meyer, Susan E.; Udall, Joshua A.; Elzinga, David E.; Hermansen, Russell A.; Bodily, Paul M.; Hart, Aaron A.; Coleman, Craig E.

    2014-01-01

    Pyrenophora semeniperda (anamorph Drechslera campulata) is a necrotrophic fungal seed pathogen that has a wide host range within the Poaceae. One of its hosts is cheatgrass (Bromus tectorum), a species exotic to the United States that has invaded natural ecosystems of the Intermountain West. As a natural pathogen of cheatgrass, P. semeniperda has potential as a biocontrol agent due to its effectiveness at killing seeds within the seed bank; however, few genetic resources exist for the fungus. Here, the genome of P. semeniperda isolate assembled from sequence reads of 454 pyrosequencing is presented. The total assembly is 32.5 Mb and includes 11,453 gene models encoding putative proteins larger than 24 amino acids. The models represent a variety of putative genes that are involved in pathogenic pathways typically found in necrotrophic fungi. In addition, extensive rearrangements, including inter- and intrachromosomal rearrangements, were found when the P. semeniperda genome was compared to P. tritici-repentis, a related fungal species. PMID:24475219

  11. A transferrin gene associated with development and 2-tridecanone tolerance in Helicoverpa armigera

    PubMed Central

    Zhang, L; Shang, Q; Lu, Y; Zhao, Q; Gao, X

    2015-01-01

    The full-length cDNA (2320 bp) encoding a putative iron-binding transferrin protein from Helicoverpa armigera was cloned and named HaTrf. The putative HaTrf sequence included 670 amino acids with a molecular mass of approximately 76 kDa. Quantitative PCR results demonstrated that the transcriptional level of HaTrf was significantly higher in the sixth instar and pupa stages as compared with other developmental stages. HaTrf transcripts were more abundant in fat bodies and in the epidermis than in malpighian tubules. Compared with the control, the expression of HaTrf increased dramatically 24 h after treatment with 2-tridecanone. Apparent growth inhibition with a dramatic body weight decrease was observed in larvae fed with HaTrf double-stranded RNA (dsRNA), as compared with those fed with green fluorescent protein dsRNA. RNA interference of HaTrf also significantly increased the susceptibility of larvae to 2-tridecanone. These results indicate the possible involvement of HaTrf in tolerance to plant secondary chemicals. PMID:25430818

  12. Vru (Sub0144) controls expression of proven and putative virulence determinants and alters the ability of Streptococcus uberis to cause disease in dairy cattle

    PubMed Central

    Egan, Sharon A.; Ward, Philip N.; Watson, Michael; Field, Terence R.

    2012-01-01

    The regulation and control of gene expression in response to differing environmental stimuli is crucial for successful pathogen adaptation and persistence. The regulatory gene vru of Streptococcus uberis encodes a stand-alone response regulator with similarity to the Mga of group A Streptococcus. Mga controls expression of a number of important virulence determinants. Experimental intramammary challenge of dairy cattle with a mutant of S. uberis carrying an inactivating lesion in vru showed reduced ability to colonize the mammary gland and an inability to induce clinical signs of mastitis compared with the wild-type strain. Analysis of transcriptional differences of gene expression in the mutant, determined by microarray analysis, identified a number of coding sequences with altered expression in the absence of Vru. These consisted of known and putative virulence determinants, including Lbp (Sub0145), SclB (Sub1095), PauA (Sub1785) and hasA (Sub1696). PMID:22383474

  13. Horizontal gene transfer of acetyltransferases, invertases and chorismate mutases from different bacteria to diverse recipients.

    PubMed

    Noon, Jason B; Baum, Thomas J

    2016-04-12

    Hoplolaimina plant-parasitic nematodes (PPN) are a lineage of animals with many documented cases of horizontal gene transfer (HGT). In a recent study, we reported on three likely HGT candidate genes in the soybean cyst nematode Heterodera glycines, all of which encode secreted candidate effectors with putative functions in the host plant. Hg-GLAND1 is a putative GCN5-related N-acetyltransferase (GNAT), Hg-GLAND13 is a putative invertase (INV), and Hg-GLAND16 is a putative chorismate mutase (CM), and blastp searches of the non-redundant database resulted in highest similarity to bacterial sequences. Here, we searched nematode and non-nematode sequence databases to identify all the nematodes possible that contain these three genes, and to formulate hypotheses about when they most likely appeared in the phylum Nematoda. We then performed phylogenetic analyses combined with model selection tests of alternative models of sequence evolution to determine whether these genes were horizontally acquired from bacteria. Mining of nematode sequence databases determined that GNATs appeared in Hoplolaimina PPN late in evolution, while both INVs and CMs appeared before the radiation of the Hoplolaimina suborder. Also, Hoplolaimina GNATs, INVs and CMs formed well-supported clusters with different rhizosphere bacteria in the phylogenetic trees, and the model selection tests greatly supported models of HGT over descent via common ancestry. Surprisingly, the phylogenetic trees also revealed additional, well-supported clusters of bacterial GNATs, INVs and CMs with diverse eukaryotes and archaea. There were at least eleven and eight well-supported clusters of GNATs and INVs, respectively, from different bacteria with diverse eukaryotes and archaea. Though less frequent, CMs from different bacteria formed supported clusters with multiple different eukaryotes. Moreover, almost all individual clusters containing bacteria and eukaryotes or archaea contained species that inhabit very similar niches. GNATs were horizontally acquired late in Hoplolaimina PPN evolution from bacteria most similar to the saprophytic and plant-pathogenic actinomycetes. INVs and CMs were horizontally acquired from bacteria most similar to rhizobacteria and Burkholderia soil bacteria, respectively, before the radiation of Hoplolaimina. Also, these three gene groups appear to have been frequent subjects of HGT from different bacteria to numerous, diverse lineages of eukaryotes and archaea, which suggests that these genes may confer important evolutionary advantages to many taxa. In the case of Hoplolaimina PPN, this advantage likely was an improved ability to parasitize plants.

  14. Overexpression of a cotton gene that encodes a putative transcription factor of AP2/EREBP family in Arabidopsis affects growth and development of transgenic plants.

    PubMed

    Zhou, Ying; Xia, Hui; Li, Xiao-Jie; Hu, Rong; Chen, Yun; Li, Xue-Bao

    2013-01-01

    In the study, a gene encoding a putative ethylene response factor of AP2/EREBP family was isolated from cotton (Gossypium hirsutum) and designated as GhERF12. Sequence alignment showed that GhERF12 protein contains a central AP2/ERF domain (58 amino acids) with two functional conserved amino acid residues (ala14 and asp19). Transactivation assay indicated that GhERF12 displayed strong transcription activation activity in yeast cells, suggesting that this protein may be a transcriptional activator in cotton. Quantitative RT-PCR analysis showed that GhERF12 expression in cotton was induced by ACC and IAA. Overexpression of GhERF12 in Arabidopsis affected seedling growth and development. The GhERF12 transgenic plants grew slowly, and displayed a dwarf phenotype. The mean bolting time of the transgenic plants was delayed for about 10 days, compared with that of wild type. Further study revealed that some ethylene-related and auxin-related genes were dramatically up-regulated in the transgenic plants, compared with those of wild type. Collectively, we speculated that GhERF12, as a transcription factor, may be involved in regulation of plant growth and development by activating the constitutive ethylene response likely related to auxin biosynthesis and/or signaling.

  15. Transcriptional analysis of the bglP gene from Streptococcus mutans.

    PubMed

    Cote, Christopher K; Honeyman, Allen L

    2006-04-21

    An open reading frame encoding a putative antiterminator protein, LicT, was identified in the genomic sequence of Streptococcus mutans. A potential ribonucleic antitermination (RAT) site to which the LicT protein would potentially bind has been identified immediately adjacent to this open reading frame. The licT gene and RAT site are both located 5' to a beta-glucoside PTS regulon previously described in S. mutans that is responsible for esculin utilization in the presence of glucose. It was hypothesized that antitermination is the regulatory mechanism that is responsible for the control of the bglP gene expression, which encodes an esculin-specific PTS enzyme II. To localize the promoter activity associated with the bglP locus, a series of transcriptional lacZ gene fusions was formed on a reporter shuttle vector using various DNA fragments from the bglP promoter region. Subsequent beta-galactosidase assays in S. mutans localized the bglP promoter region and identified putative -35 and -10 promoter elements. Primer extension analysis identified the bglP transcriptional start site. In addition, a terminated bglP transcript formed by transcriptional termination was identified via transcript mapping experiments. The physical location of these genetic elements, the RAT site and the promoter regions, and the identification of a short terminated mRNA support the hypothesis that antitermination regulates the bglP transcript.

  16. Transcriptional analysis of the bglP gene from Streptococcus mutans

    PubMed Central

    Cote, Christopher K; Honeyman, Allen L

    2006-01-01

    Background An open reading frame encoding a putative antiterminator protein, LicT, was identified in the genomic sequence of Streptococcus mutans. A potential ribonucleic antitermination (RAT) site to which the LicT protein would potentially bind has been identified immediately adjacent to this open reading frame. The licT gene and RAT site are both located 5' to a beta-glucoside PTS regulon previously described in S. mutans that is responsible for esculin utilization in the presence of glucose. It was hypothesized that antitermination is the regulatory mechanism that is responsible for the control of the bglP gene expression, which encodes an esculin-specific PTS enzyme II. Results To localize the promoter activity associated with the bglP locus, a series of transcriptional lacZ gene fusions was formed on a reporter shuttle vector using various DNA fragments from the bglP promoter region. Subsequent beta-galactosidase assays in S. mutans localized the bglP promoter region and identified putative -35 and -10 promoter elements. Primer extension analysis identified the bglP transcriptional start site. In addition, a terminated bglP transcript formed by transcriptional termination was identified via transcript mapping experiments. Conclusion The physical location of these genetic elements, the RAT site and the promoter regions, and the identification of a short terminated mRNA support the hypothesis that antitermination regulates the bglP transcript. PMID:16630357

  17. The SUD1 gene encodes a putative E3 ubiquitin ligase and is a positive regulator of 3-hydroxy-3-methylglutaryl coenzyme a reductase activity in Arabidopsis.

    PubMed

    Doblas, Verónica G; Amorim-Silva, Vítor; Posé, David; Rosado, Abel; Esteban, Alicia; Arró, Montserrat; Azevedo, Herlander; Bombarely, Aureliano; Borsani, Omar; Valpuesta, Victoriano; Ferrer, Albert; Tavares, Rui M; Botella, Miguel A

    2013-02-01

    The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme catalyzes the major rate-limiting step of the mevalonic acid (MVA) pathway from which sterols and other isoprenoids are synthesized. In contrast with our extensive knowledge of the regulation of HMGR in yeast and animals, little is known about this process in plants. To identify regulatory components of the MVA pathway in plants, we performed a genetic screen for second-site suppressor mutations of the Arabidopsis thaliana highly drought-sensitive drought hypersensitive2 (dry2) mutant that shows decreased squalene epoxidase activity. We show that mutations in SUPPRESSOR OF DRY2 DEFECTS1 (SUD1) gene recover most developmental defects in dry2 through changes in HMGR activity. SUD1 encodes a putative E3 ubiquitin ligase that shows sequence and structural similarity to yeast Degradation of α factor (Doα10) and human TEB4, components of the endoplasmic reticulum-associated degradation C (ERAD-C) pathway. While in yeast and animals, the alternative ERAD-L/ERAD-M pathway regulates HMGR activity by controlling protein stability, SUD1 regulates HMGR activity without apparent changes in protein content. These results highlight similarities, as well as important mechanistic differences, among the components involved in HMGR regulation in plants, yeast, and animals.

  18. The BOS1 gene encodes an essential 27-kD putative membrane protein that is required for vesicular transport from the ER to the Golgi complex in yeast

    PubMed Central

    1991-01-01

    We recently described the identification of BOS1 (Newman, A., J. Shim, and S. Ferro-Novick. 1990. Mol. Cell. Biol. 10:3405-3414.). BOS1 is a gene that in multiple copy suppresses the growth and secretion defect of bet1 and sec22, two mutants that disrupt transport from the ER to the Golgi complex in yeast. The ability of BOS1 to specifically suppress mutants blocked at a particular stage of the secretory pathway suggested that this gene encodes a protein that functions in this process. The experiments presented in this study support this hypothesis. Specifically, the BOS1 gene was found to be essential for cellular growth. Furthermore, cells depleted of the Bos1 protein fail to transport pro-alpha-factor and carboxypeptidase Y (CPY) to the Golgi apparatus. This defect in export leads to the accumulation of an extensive network of ER and small vesicles. DNA sequence analysis predicts that Bos1 is a 27-kD protein containing a putative membrane- spanning domain. This prediction is supported by differential centrifugation experiments. Thus, Bos1 appears to be a membrane protein that functions in conjunction with Bet1 and Sec22 to facilitate the transport of proteins at a step subsequent to translocation into the ER but before entry into the Golgi apparatus. PMID:2007627

  19. The SUD1 Gene Encodes a Putative E3 Ubiquitin Ligase and Is a Positive Regulator of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Activity in Arabidopsis[C][W

    PubMed Central

    Doblas, Verónica G.; Amorim-Silva, Vítor; Posé, David; Rosado, Abel; Esteban, Alicia; Arró, Montserrat; Azevedo, Herlander; Bombarely, Aureliano; Borsani, Omar; Valpuesta, Victoriano; Ferrer, Albert; Tavares, Rui M.; Botella, Miguel A.

    2013-01-01

    The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme catalyzes the major rate-limiting step of the mevalonic acid (MVA) pathway from which sterols and other isoprenoids are synthesized. In contrast with our extensive knowledge of the regulation of HMGR in yeast and animals, little is known about this process in plants. To identify regulatory components of the MVA pathway in plants, we performed a genetic screen for second-site suppressor mutations of the Arabidopsis thaliana highly drought-sensitive drought hypersensitive2 (dry2) mutant that shows decreased squalene epoxidase activity. We show that mutations in SUPPRESSOR OF DRY2 DEFECTS1 (SUD1) gene recover most developmental defects in dry2 through changes in HMGR activity. SUD1 encodes a putative E3 ubiquitin ligase that shows sequence and structural similarity to yeast Degradation of α factor (Doα10) and human TEB4, components of the endoplasmic reticulum–associated degradation C (ERAD-C) pathway. While in yeast and animals, the alternative ERAD-L/ERAD-M pathway regulates HMGR activity by controlling protein stability, SUD1 regulates HMGR activity without apparent changes in protein content. These results highlight similarities, as well as important mechanistic differences, among the components involved in HMGR regulation in plants, yeast, and animals. PMID:23404890

  20. Overexpression of a Cotton Gene That Encodes a Putative Transcription Factor of AP2/EREBP Family in Arabidopsis Affects Growth and Development of Transgenic Plants

    PubMed Central

    Li, Xiao-Jie; Hu, Rong; Chen, Yun; Li, Xue-Bao

    2013-01-01

    In the study, a gene encoding a putative ethylene response factor of AP2/EREBP family was isolated from cotton (Gossypium hirsutum) and designated as GhERF12. Sequence alignment showed that GhERF12 protein contains a central AP2/ERF domain (58 amino acids) with two functional conserved amino acid residues (ala14 and asp19). Transactivation assay indicated that GhERF12 displayed strong transcription activation activity in yeast cells, suggesting that this protein may be a transcriptional activator in cotton. Quantitative RT-PCR analysis showed that GhERF12 expression in cotton was induced by ACC and IAA. Overexpression of GhERF12 in Arabidopsis affected seedling growth and development. The GhERF12 transgenic plants grew slowly, and displayed a dwarf phenotype. The mean bolting time of the transgenic plants was delayed for about 10 days, compared with that of wild type. Further study revealed that some ethylene-related and auxin-related genes were dramatically up-regulated in the transgenic plants, compared with those of wild type. Collectively, we speculated that GhERF12, as a transcription factor, may be involved in regulation of plant growth and development by activating the constitutive ethylene response likely related to auxin biosynthesis and/or signaling. PMID:24194949

  1. Intracellular Localization Map of Human Herpesvirus 8 Proteins▿

    PubMed Central

    Sander, Gaby; Konrad, Andreas; Thurau, Mathias; Wies, Effi; Leubert, Rene; Kremmer, Elisabeth; Dinkel, Holger; Schulz, Thomas; Neipel, Frank; Stürzl, Michael

    2008-01-01

    Human herpesvirus 8 (HHV-8) is the etiological agent of Kaposi's sarcoma. We present a localization map of 85 HHV-8-encoded proteins in mammalian cells. Viral open reading frames were cloned with a Myc tag in expression plasmids, confirmed by full-length sequencing, and expressed in HeLa cells. Protein localizations were analyzed by immunofluorescence microscopy. Fifty-one percent of all proteins were localized in the cytoplasm, 22% were in the nucleus, and 27% were found in both compartments. Surprisingly, we detected viral FLIP (v-FLIP) in the nucleus and in the cytoplasm, whereas cellular FLIPs are generally localized exclusively in the cytoplasm. This suggested that v-FLIP may exert additional or alternative functions compared to cellular FLIPs. In addition, it has been shown recently that the K10 protein can bind to at least 15 different HHV-8 proteins. We noticed that K10 and only five of its 15 putative binding factors were localized in the nucleus when the proteins were expressed in HeLa cells individually. Interestingly, in coexpression experiments K10 colocalized with 87% (13 of 15) of its putative binding partners. Colocalization was induced by translocation of either K10 alone or both proteins. These results indicate active intracellular translocation processes in virus-infected cells. Specifically in this framework, the localization map may provide a useful reference to further elucidate the function of HHV-8-encoded genes in human diseases. PMID:18077714

  2. Two host cytoplasmic effectors are required for pathogenesis of Phytophthora sojae by suppression of host defenses.

    PubMed

    Liu, Tingli; Ye, Wenwu; Ru, Yanyan; Yang, Xinyu; Gu, Biao; Tao, Kai; Lu, Shan; Dong, Suomeng; Zheng, Xiaobo; Shan, Weixing; Wang, Yuanchao; Dou, Daolong

    2011-01-01

    Phytophthora sojae encodes hundreds of putative host cytoplasmic effectors with conserved FLAK motifs following signal peptides, termed crinkling- and necrosis-inducing proteins (CRN) or Crinkler. Their functions and mechanisms in pathogenesis are mostly unknown. Here, we identify a group of five P. sojae-specific CRN-like genes with high levels of sequence similarity, of which three are putative pseudogenes. Functional analysis shows that the two functional genes encode proteins with predicted nuclear localization signals that induce contrasting responses when expressed in Nicotiana benthamiana and soybean (Glycine max). PsCRN63 induces cell death, while PsCRN115 suppresses cell death elicited by the P. sojae necrosis-inducing protein (PsojNIP) or PsCRN63. Expression of CRN fragments with deleted signal peptides and FLAK motifs demonstrates that the carboxyl-terminal portions of PsCRN63 or PsCRN115 are sufficient for their activities. However, the predicted nuclear localization signal is required for PsCRN63 to induce cell death but not for PsCRN115 to suppress cell death. Furthermore, silencing of the PsCRN63 and PsCRN115 genes in P. sojae stable transformants leads to a reduction of virulence on soybean. Intriguingly, the silenced transformants lose the ability to suppress host cell death and callose deposition on inoculated plants. These results suggest a role for CRN effectors in the suppression of host defense responses.

  3. Molecular characterization of a novel luteovirus infecting apple by next-generation sequencing.

    PubMed

    Shen, Pan; Tian, Xin; Zhang, Song; Ren, Fang; Li, Ping; Yu, Yun-Qi; Li, Ruhui; Zhou, Changyong; Cao, Mengji

    2018-03-01

    A new single-stranded positive-sense RNA virus, which shares the highest nucleotide (nt) sequence identity of 53.4% with the genome sequence of cherry-associated luteovirus South Korean isolate (ChALV-SK, genus Luteovirus), was discovered in this work. It is provisionally named apple-associated luteovirus (AaLV). The complete genome sequence of AaLV comprises 5,890 nt and contains eight open reading frames (ORFs), in a very similar arrangement that is typical of members of the genus Luteovirus. When compared with other members of the family Luteoviridae, ORF1 of AaLV was found to encompass another ORF, ORF1a, which encodes a putative 32.9-kDa protein. The ORF1-ORF2 region (RNA-dependent RNA polymerase, RdRP) showed the greatest amino acid (aa) sequence identity (59.7%) to that of cherry-associated luteovirus Czech Republic isolate (ChALV-CZ, genus Luteovirus). The results of genome sequence comparisons and phylogenetic analysis, suggest that AaLV should be a member of a novel species in the genus Luteovirus. To our knowledge, it is the sixth member of the genus Luteovirus reported to naturally infect rosaceous plants.

  4. Simultaneous human platelet antigen genotyping and detection of novel single nucleotide polymorphisms by targeted next-generation sequencing.

    PubMed

    Davey, Sue; Navarrete, Cristina; Brown, Colin

    2017-06-01

    Twenty-nine human platelet antigen systems have been described to date, but the majority of current genotyping methods are restricted to the identification of those most commonly associated with alloantibody production in a clinical context. This can result in a protracted investigation if causative human platelet antigens are rare or novel. A targeted next-generation sequencing approach was designed to detect all known human platelet antigens with the additional capability of identifying novel mutations in the encoding genes. A targeted enrichment, high-sensitivity HaloPlex assay was designed to sequence all exons and flanking regions of the six genes known to encode human platelet antigens. Indexed DNA libraries were prepared from 47 previously human platelet antigen-genotyped samples and subsequently combined into one of three pools for sequencing on an Illumina MiSeq platform. The generated FASTQ files were aligned and scrutinized for each human platelet antigen polymorphism using SureCall data analysis software. Forty-six samples were successfully genotyped for human platelet antigens 1 through 29bw, with an average per base coverage depth of 1144. Concordance with historical human platelet antigen genotypes was 100%. A putative novel mutation in Exon 10 of the integrin β-3 (ITGB3) gene from an unsolved case of fetal neonatal alloimmune thrombocytopenia was also detected. A next-generation sequencing-based method that can accurately define all known human platelet antigen polymorphisms was developed. With the ability to sequence up to 96 samples simultaneously, our HaloPlex design could be used for high-throughput human platelet antigen genotyping. This method is also applicable for investigating fetal neonatal alloimmune thrombocytopenia when rare or novel human platelet antigens are suspected. © 2017 AABB.

  5. The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60.

    PubMed

    Gadkar, Vijay; Rillig, Matthias C

    2006-10-01

    Work on glomalin-related soil protein produced by arbuscular mycorrhizal (AM) fungi (AMF) has been limited because of the unknown identity of the protein. A protein band cross-reactive with the glomalin-specific antibody MAb32B11 from the AM fungus Glomus intraradices was partially sequenced using tandem liquid chromatography-mass spectrometry. A 17 amino acid sequence showing similarity to heat shock protein 60 (hsp 60) was obtained. Based on degenerate PCR, a full-length cDNA of 1773 bp length encoding the hsp 60 gene was isolated from a G. intraradices cDNA library. The ORF was predicted to encode a protein of 590 amino acids. The protein sequence had three N-terminal glycosylation sites and a string of GGM motifs at the C-terminal end. The GiHsp 60 ORF had three introns of 67, 76 and 131 bp length. The GiHsp 60 was expressed using an in vitro translation system, and the protein was purified using the 6xHis-tag system. A dot-blot assay on the purified protein showed that it was highly cross-reactive with the glomalin-specific antibody MAb32B11. The present work provides the first evidence for the identity of the glomalin protein in the model AMF G. intraradices, thus facilitating further characterization of this protein, which is of great interest in soil ecology.

  6. Characterization of two novel cold-inducible K3 dehydrin genes from alfalfa (Medicago sativa spp. sativa L.).

    PubMed

    Dubé, Marie-Pier; Castonguay, Yves; Cloutier, Jean; Michaud, Josée; Bertrand, Annick

    2013-03-01

    Dehydrin defines a complex family of intrinsically disordered proteins with potential adaptive value with regard to freeze-induced cell dehydration. Search within an expressed sequence tags library from cDNAs of cold-acclimated crowns of alfalfa (Medicago sativa spp. sativa L.) identified transcripts putatively encoding K(3)-type dehydrins. Analysis of full-length coding sequences unveiled two highly homologous sequence variants, K(3)-A and K(3)-B. An increase in the frequency of genotypes yielding positive genomic amplification of the K(3)-dehydrin variants in response to selection for superior tolerance to freezing and the induction of their expression at low temperature strongly support a link with cold adaptation. The presence of multiple allelic forms within single genotypes and independent segregation indicate that the two K(3) dehydrin variants are encoded by distinct genes located at unlinked loci. The co-inheritance of the K(3)-A dehydrin with a Y(2)K(4) dehydrin restriction fragment length polymorphism with a demonstrated impact on freezing tolerance suggests the presence of a genome domain where these functionally related genes are located. These results provide additional evidence that dehydrin play important roles with regard to tolerance to subfreezing temperatures. They also underscore the value of recurrent selection to help identify variants within a large multigene family in allopolyploid species like alfalfa.

  7. Structure prediction of Fe(II) 2-oxoglutarate dioxygenase from a psychrophilic yeast Glaciozyma antarctica PI12

    NASA Astrophysics Data System (ADS)

    Yusof, Nik Yusnoraini; Bakar, Farah Diba Abu; Mahadi, Nor Muhammad; Raih, Mohd Firdaus; Murad, Abdul Munir Abdul

    2015-09-01

    A cDNA encoding Fe(II) 2-oxoglutarate (2OG) dependent dioxygenases was isolated from psychrophilic yeast, Glaciozyma antarctica PI12. We have successfully amplified 1,029 bp cDNA sequence that encodes 342 amino acid with predicted molecular weight 38 kDa. The prediction protein was analysed using various bioinformatics tools to explore the properties of the protein. Based on a BLAST search analysis, the Fe2OX amino acid sequence showed 61% identity to the sequence of oxoglutarate/iron-dependent oxygenase from Rhodosporidium toruloides NP11. SignalP prediction showed that the Fe2OX protein contains no putative signal peptide, which suggests that this enzyme most probably localised intracellularly.The structure of Fe2OX was predicted by homology modelling using MODELLER9v11. The model with the lowest objective function was selected from hundred models generated using MODELLER9v11. Analysis of the structure revealed the longer loop at Fe2OX from G.antarctica that might be responsible for the flexibility of the structure, which contributes to its adaptation to low temperatures. Fe2OX hold a highly conserved Fe(II) binding HXD/E…H triad motif. The binding site for 2-oxoglutarate was found conserved for Arg280 among reported studies, however the Phe268 was found to be different in Fe2OX.

  8. Analysis of new isolates reveals new genome organization and a hypervariable region in infectious myonecrosis virus (IMNV).

    PubMed

    Dantas, Márcia Danielle A; Chavante, Suely F; Teixeira, Dárlio Inácio A; Lima, João Paulo M S; Lanza, Daniel C F

    2015-05-04

    Infectious myonecrosis virus (IMNV) has been the cause of many losses in shrimp farming since 2002, when the first myonecrosis outbreak was reported at Brazilian's northeast coast. Two additional genomes of Brazilian IMNV isolates collected in 2009 and 2013 were sequenced and analyzed in the present study. The sequencing revealed extra 643 bp and 22 bp, at 5' and 3' ends of IMNV genome respectively, confirming that its actual size is at least 8226 bp long. Considering these additional sequences in genome extremities, ORF1 can starts at nt 470, encoding a 1708 aa polyprotein. Computational predictions reveal two stem loops and two pseudoknots in the 5' end and a putative stem loop and a slippery motif located at 3' end, indicating that these regions can be involved in the start and termination of translation. Through a careful phylogenetic analysis, a higher genetic variability among Brazilian isolates could be observed, comparing with Indonesian IMNV isolates. It was also observed that the most variable region of IMNV genome is located in the first half of ORF1, coinciding with a region which probably encodes the capsid protrusions. The results presented here are a starting point to elucidate the viral's translational regulation and the mechanisms involved in virulence. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Quantitative Analysis of Focused A-To-I RNA Editing Sites by Ultra-High-Throughput Sequencing in Psychiatric Disorders

    PubMed Central

    Zhu, Hu; Urban, Daniel J.; Blashka, Jared; McPheeters, Matthew T.; Kroeze, Wesley K.; Mieczkowski, Piotr; Overholser, James C.; Jurjus, George J.; Dieter, Lesa; Mahajan, Gouri J.; Rajkowska, Grazyna; Wang, Zefeng; Sullivan, Patrick F.; Stockmeier, Craig A.; Roth, Bryan L.

    2012-01-01

    A-to-I RNA editing is a post-transcriptional modification of single nucleotides in RNA by adenosine deamination, which thereby diversifies the gene products encoded in the genome. Thousands of potential RNA editing sites have been identified by recent studies (e.g. see Li et al, Science 2009); however, only a handful of these sites have been independently confirmed. Here, we systematically and quantitatively examined 109 putative coding region A-to-I RNA editing sites in three sets of normal human brain samples by ultra-high-throughput sequencing (uHTS). Forty of 109 putative sites, including 25 previously confirmed sites, were validated as truly edited in our brain samples, suggesting an overestimation of A-to-I RNA editing in these putative sites by Li et al (2009). To evaluate RNA editing in human disease, we analyzed 29 of the confirmed sites in subjects with major depressive disorder and schizophrenia using uHTS. In striking contrast to many prior studies, we did not find significant alterations in the frequency of RNA editing at any of the editing sites in samples from these patients, including within the 5HT2C serotonin receptor (HTR2C). Our results indicate that uHTS is a fast, quantitative and high-throughput method to assess RNA editing in human physiology and disease and that many prior studies of RNA editing may overestimate both the extent and disease-related variability of RNA editing at the sites we examined in the human brain. PMID:22912834

  10. Infection of capilloviruses requires subgenomic RNAs whose transcription is controlled by promoter-like sequences conserved among flexiviruses.

    PubMed

    Komatsu, Ken; Hirata, Hisae; Fukagawa, Takako; Yamaji, Yasuyuki; Okano, Yukari; Ishikawa, Kazuya; Adachi, Tatsushi; Maejima, Kensaku; Hashimoto, Masayoshi; Namba, Shigetou

    2012-07-01

    The first open-reading frame (ORF) of apple stem grooving virus (ASGV), of the genus Capillovirus, encodes an apparently chimeric polyprotein containing conserved regions for replicase (Rep) and coat protein (CP). However, our previous study revealed that ASGV mutants with distinct and discontinuous Rep- and CP-coding regions successfully infect plants, indicating that CP expressed via a subgenomic RNA (sgRNA) is sufficient for viability of the virus. Here we identified a transcription start site of the CP sgRNA and revealed that CP translated from the sgRNA is essential for ASGV infection. We mapped the transcription start sites of both the CP and the movement protein (MP) sgRNAs of ASGV and found a hexanucleotide motif, UUAGGU, conserved upstream from both sgRNA transcription start sites. Mutational analysis of the putative CP initiation codon and of the UUAGGU sequence upstream from the transcription start site of CP sgRNA demonstrated their importance for ASGV accumulation. Our results also demonstrated that potato virus T (PVT), an unassigned species closely related to ASGV, produces two sgRNAs putatively deployed for the CP and MP expression and that the same hexanucleotide motif as found in ASGV is located upstream from the transcription start sites of both sgRNAs. This motif, which constituted putative core elements of the sgRNA promoter, is broadly conserved among viruses in the families Alphaflexiviridae and Betaflexiviridae, suggesting that the gene expression strategy of the viruses in both families has been conserved throughout evolution. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Elucidating the Small Regulatory RNA Repertoire of the Sea Anemone Anemonia viridis Based on Whole Genome and Small RNA Sequencing

    PubMed Central

    Patel, Hardip; Forêt, Sylvain; Karlsen, Bård Ove; Jørgensen, Tor Erik; Hall-Spencer, Jason M

    2018-01-01

    Abstract Cnidarians harbor a variety of small regulatory RNAs that include microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs), but detailed information is limited. Here, we report the identification and expression of novel miRNAs and putative piRNAs, as well as their genomic loci, in the symbiotic sea anemone Anemonia viridis. We generated a draft assembly of the A. viridis genome with putative size of 313 Mb that appeared to be composed of about 36% repeats, including known transposable elements. We detected approximately equal fractions of DNA transposons and retrotransposons. Deep sequencing of small RNA libraries constructed from A. viridis adults sampled at a natural CO2 gradient off Vulcano Island, Italy, identified 70 distinct miRNAs. Eight were homologous to previously reported miRNAs in cnidarians, whereas 62 appeared novel. Nine miRNAs were recognized as differentially expressed along the natural seawater pH gradient. We found a highly abundant and diverse population of piRNAs, with a substantial fraction showing ping–pong signatures. We identified nearly 22% putative piRNAs potentially targeting transposable elements within the A. viridis genome. The A. viridis genome appeared similar in size to that of other hexacorals with a very high divergence of transposable elements resembling that of the sea anemone genus Exaiptasia. The genome encodes and expresses a high number of small regulatory RNAs, which include novel miRNAs and piRNAs. Differentially expressed small RNAs along the seawater pH gradient indicated regulatory gene responses to environmental stressors. PMID:29385567

  12. A Deeper Examination of Thorellius atrox Scorpion Venom Components with Omic Techonologies.

    PubMed

    Romero-Gutierrez, Teresa; Peguero-Sanchez, Esteban; Cevallos, Miguel A; Batista, Cesar V F; Ortiz, Ernesto; Possani, Lourival D

    2017-12-12

    This communication reports a further examination of venom gland transcripts and venom composition of the Mexican scorpion Thorellius atrox using RNA-seq and tandem mass spectrometry. The RNA-seq, which was performed with the Illumina protocol, yielded more than 20,000 assembled transcripts. Following a database search and annotation strategy, 160 transcripts were identified, potentially coding for venom components. A novel sequence was identified that potentially codes for a peptide with similarity to spider ω-agatoxins, which act on voltage-gated calcium channels, not known before to exist in scorpion venoms. Analogous transcripts were found in other scorpion species. They could represent members of a new scorpion toxin family, here named omegascorpins. The mass fingerprint by LC-MS identified 135 individual venom components, five of which matched with the theoretical masses of putative peptides translated from the transcriptome. The LC-MS/MS de novo sequencing allowed to reconstruct and identify 42 proteins encoded by assembled transcripts, thus validating the transcriptome analysis. Earlier studies conducted with this scorpion venom permitted the identification of only twenty putative venom components. The present work performed with more powerful and modern omic technologies demonstrates the capacity of accomplishing a deeper characterization of scorpion venom components and the identification of novel molecules with potential applications in biomedicine and the study of ion channel physiology.

  13. Probing Protein Sequences as Sources for Encrypted Antimicrobial Peptides

    PubMed Central

    Brand, Guilherme D.; Magalhães, Mariana T. Q.; Tinoco, Maria L. P.; Aragão, Francisco J. L.; Nicoli, Jacques; Kelly, Sharon M.; Cooper, Alan; Bloch, Carlos

    2012-01-01

    Starting from the premise that a wealth of potentially biologically active peptides may lurk within proteins, we describe here a methodology to identify putative antimicrobial peptides encrypted in protein sequences. Candidate peptides were identified using a new screening procedure based on physicochemical criteria to reveal matching peptides within protein databases. Fifteen such peptides, along with a range of natural antimicrobial peptides, were examined using DSC and CD to characterize their interaction with phospholipid membranes. Principal component analysis of DSC data shows that the investigated peptides group according to their effects on the main phase transition of phospholipid vesicles, and that these effects correlate both to antimicrobial activity and to the changes in peptide secondary structure. Consequently, we have been able to identify novel antimicrobial peptides from larger proteins not hitherto associated with such activity, mimicking endogenous and/or exogenous microorganism enzymatic processing of parent proteins to smaller bioactive molecules. A biotechnological application for this methodology is explored. Soybean (Glycine max) plants, transformed to include a putative antimicrobial protein fragment encoded in its own genome were tested for tolerance against Phakopsora pachyrhizi, the causative agent of the Asian soybean rust. This procedure may represent an inventive alternative to the transgenic technology, since the genetic material to be used belongs to the host organism and not to exogenous sources. PMID:23029273

  14. Complete genomic sequence and taxonomic position of eel virus European X (EVEX), a rhabdovirus of European eel.

    PubMed

    Galinier, Richard; van Beurden, Steven; Amilhat, Elsa; Castric, Jeannette; Schoehn, Guy; Verneau, Olivier; Fazio, Géraldine; Allienne, Jean-François; Engelsma, Marc; Sasal, Pierre; Faliex, Elisabeth

    2012-06-01

    Eel virus European X (EVEX) was first isolated from diseased European eel Anguilla anguilla in Japan at the end of seventies. The virus was tentatively classified into the Rhabdoviridae family on the basis of morphology and serological cross reactivity. This family of viruses is organized into six genera and currently comprises approximately 200 members, many of which are still unassigned because of the lack of molecular data. This work presents the morphological, biochemical and genetic characterizations of EVEX, and proposes a taxonomic classification for this virus. We provide its complete genome sequence, plus a comprehensive sequence comparison between isolates from different geographical origins. The genome encodes the five classical structural proteins plus an overlapping open reading frame in the phosphoprotein gene, coding for a putative C protein. Phylogenic relationship with other rhabdoviruses indicates that EVEX is most closely related to the Vesiculovirus genus and shares the highest identity with trout rhabdovirus 903/87. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Genome sequencing reveals complex secondary metabolome in themarine actinomycete Salinispora tropica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Udwary, Daniel W.; Zeigler, Lisa; Asolkar, Ratnakar

    2007-05-01

    Recent fermentation studies have identified actinomycetes ofthe marine-dwelling genus Salinispora as prolific natural productproducers. To further evaluate their biosynthetic potential, we analyzedall identifiable secondary natural product gene clusters from therecently sequenced 5,184,724 bp S. tropica CNB-440 circular genome. Ouranalysis shows that biosynthetic potential meets or exceeds that shown byprevious Streptomyces genome sequences as well as other naturalproduct-producing actinomycetes. The S. tropica genome features ninepolyketide synthase systems of every known formally classified family,non-ribosomal peptide synthetases and several hybrid clusters. While afew clusters appear to encode molecules previously identified inStreptomyces species,the majority of the 15 biosynthetic loci are novel.Specific chemical information aboutmore » putative and observed natural productmolecules is presented and discussed. In addition, our bioinformaticanalysis was critical for the structure elucidation of the novelpolyenemacrolactam salinilactam A. This study demonstrates the potentialfor genomic analysis to complement and strengthen traditional naturalproduct isolation studies and firmly establishes the genus Salinispora asa rich source of novel drug-like molecules.« less

  16. Functional domains of the poliovirus receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koike, Satoshi; Ise, Iku; Nomoto, Akio

    1991-05-15

    A number of mutant cDNAs of the human poliovirus receptor were constructed to identify essential regions of the molecule as the receptor. All mutant cDNAs carrying the sequence coding for the entire N-terminal immunoglobulin-like domain (domain I) confer permissiveness for poliovirus to mouse L cells, but a mutant cDNA lacking the sequence for domain I does not. The transformants permissive for poliovirus were able to bind the virus and were also recognized by monoclonal antibody D171, which competes with poliovirus for the cellular receptor. These results strongly suggest that the poliovirus binding site resides in domain I of the receptor.more » Mutant cDNAs for the sequence encoding the intracellular peptide were also constructed and expressed in mouse L cells. Susceptibility of these cells to poliovirus revealed that the entire putative cytoplasmic domain is not essential for virus infection. Thus, the cytoplasmic domain of the molecule appears not to play a role in the penetration of poliovirus.« less

  17. The complete mitochondrial genome of Sika deer Cervus nippon hortulorum (Artiodactyla: Cervidae) and phylogenetic studies.

    PubMed

    Liu, Yan-Hua; Liu, Xin-Xin; Zhang, Ming-Hai

    2016-07-01

    Sika deer (Cervus nippon Temminck 1836) are classified in the order Artiodactyla, family Cervidae, subfamily Cervinae. At present, the phylogenetic studies of C. nippon are problematic. In this study, we first determined and described the complete mitochondrial sequence of the wild C. nippon hortulorum. The complete mitogenome sequence is 16 566 bp in length, including 13 protein-coding genes, two rRNA genes, 22 tRNA genes, a putative control region (CR) and a light-strand replication origin (OL). The overall base composition was 33.4% A, 28.6% T, 24.5% C, 13.5% G, with a 62.0% AT bias. The 13 protein-coding genes encode 3782 amino acids in total. To further validate the new determined sequences and phylogeny of Sika deer, phylogenetic trees involving 15 most closely related species available in GenBank database were constructed. These results are expected to provide useful molecular data for deer species identification and further phylogenetic studies of Artiodactyla.

  18. The genome of the Lactobacillus sanfranciscensis temperate phage EV3

    PubMed Central

    2013-01-01

    Background Bacteriophages infection modulates microbial consortia and transduction is one of the most important mechanism involved in the bacterial evolution. However, phage contamination brings food fermentations to a halt causing economic setbacks. The number of phage genome sequences of lactic acid bacteria especially of lactobacilli is still limited. We analysed the genome of a temperate phage active on Lactobacillus sanfranciscensis, the predominant strain in type I sourdough fermentations. Results Sequencing of the DNA of EV3 phage revealed a genome of 34,834 bp and a G + C content of 36.45%. Of the 43 open reading frames (ORFs) identified, all but eight shared homology with other phages of lactobacilli. A similar genomic organization and mosaic pattern of identities align EV3 with the closely related Lactobacillus vaginalis ATCC 49540 prophage. Four unknown ORFs that had no homologies in the databases or predicted functions were identified. Notably, EV3 encodes a putative dextranase. Conclusions EV3 is the first L. sanfranciscensis phage that has been completely sequenced so far. PMID:24308641

  19. Molecular Cloning and Expression of Three Polygalacturonase cDNAs from the Tarnished Plant Bug, Lygus lineolaris

    PubMed Central

    Allen, Margaret L.; Mertens, Jeffrey A.

    2008-01-01

    Three unique cDNAs encoding putative polygalacturonase enzymes were isolated from the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois) (Hemiptera: Miridae). The three nucleotide sequences were dissimilar to one another, but the deduced amino acid sequences were similar to each other and to other polygalacturonases from insects, fungi, plants, and bacteria. Four conserved segments characteristic of polygalacturonases were present, but with some notable semiconservative substitutions. Two of four expected disulfide bridge—forming cysteine pairs were present. All three inferred protein translations included predicted signal sequences of 17 to 20 amino acids. Amplification of genomic DNA identified an intron in one of the genes, Llpg1, in the 5′ untranslated region. Semiquantitative RT-PCR revealed expression in all stages of the insect except the eggs. Expression in adults, male and female, was highly variable, indicating a family of highly inducible and diverse enzymes adapted to the generalist polyphagous nature of this important pest. PMID:20233096

  20. Differentiation of mycoplasmalike organisms (MLOs) in European fruit trees by PCR using specific primers derived from the sequence of a chromosomal fragment of the apple proliferation MLO.

    PubMed Central

    Jarausch, W; Saillard, C; Dosba, F; Bové, J M

    1994-01-01

    A 1.8-kb chromosomal DNA fragment of the mycoplasmalike organism (MLO) associated with apple proliferation was sequenced. Three putative open reading frames were observed on this fragment. The protein encoded by open reading frame 2 shows significant homologies with bacterial nitroreductases. From the nucleotide sequence four primer pairs for PCR were chosen to specifically amplify DNA from MLOs associated with European diseases of fruit trees. Primer pairs specific for (i) Malus-affecting MLOs, (ii) Malus- and Prunus-affecting MLOs, and (iii) Malus-, Prunus-, and Pyrus-affecting MLOs were obtained. Restriction enzyme analysis of the amplification products revealed restriction fragment length polymorphisms between Malus-, Prunus, and Pyrus-affecting MLOs as well as between different isolates of the apple proliferation MLO. No amplification with either primer pair could be obtained with DNA from 12 different MLOs experimentally maintained in periwinkle. Images PMID:7916180

  1. [Cloning and identification of the priming glycosyltransferase gene involved in exopolysaccharide 139A biosynthesis in Streptomyces].

    PubMed

    Wang, Ling-Yan; Li, Shi-Tao; Guo, Lian-Hong; Jiang, Rong; Li, Yuan

    2003-08-01

    Recently in our laboratory, Streptomyces sp. 139 has been identified to produce a new exopolysaccharide designated EPS 139A that shows anti-rheumatic arthritis activity. The strategy of studying EPS 139A biosynthesis is to clone the key gene in the EPS biosynthesis pathway, i.e. the priming glycosyltransferase gene catalyzing the first step of nucleotide sugar transfer. Degenerate primers-based PCR approach was adopted to isolate the putative priming glycosyltransferase gene in Streptomyces sp. 139. According to the genes encoding the priming glycosyltransferases that have been identified in several microorganisms, a multiple alignment of the amino acid sequences of these genes was used to identify regions conserved between all genes. To clone the priming glycosyltransferase gene in Streptomyces sp. 139, degenerate primers were designed from these conserved regions taking into account information on Streptomyces codon usage to amplify an internal DNA fragment of this gene. A distinctive PCR product with the expected size of 0.3 kb was amplified from Streptomyces sp. 139 total genomic DNA. Sequence analysis showed that it is part of a putative priming glycosyltransferase gene and contains the predicted conserved domain B. To isolate the complete priming glycosyltransferase gene, a Streptomyces sp. 139 genomic library was constructed in the E. coli--Streptomyces shuttle vector pOJ446. Using the 0.3 kb PCR product of priming glycosyltransferase gene as a probe, 17 positive colonies were isolated by colony hybridization. A 4.0 kb BamHI fragment from all positive cosmids that hybridized to this probe was sequenced, which revealed the complete priming glycosyltransferase gene. The priming glycosyltransferase gene ste5 (GenBank under accession number AY131229) most likely begins with GTG, preceded by a probable ribosome binding site (RBS), GGGGA. It encodes a 492-amino-acid protein with molecular weight of 54 kDa and isoelectric point of 10.6. The G + C content of ste5 is 73%, close to the average of G + C content (74%) for Streptomyces. Moreover, the preference usage of G or C as third base of codons are found in the ste5, which is in accordance with the Streptomyces codon usage. A BlastP search showed that the C-terminal region of Ste5 shows highly homology with a number of priming glycosyltransferases from many different organisms. Ste5 contains two putative catalytic residues, Glu and Asp (residues 423 and 474) with a spacing of approximately 50 amino acids that conserved in various beta-glycosyltransferases. Moreover, the C-terminal one third of Ste5 contains three domains, A, B and C that is reported to be common to glycosyltransferases. By hydrophilicity plot prediction, the N-terminal two thirds of Ste5 exhibits 5 putative transmembrane domains. To investigate the involvement of the identified polysaccharide gene cluster in EPS 139A biosynthesis, the gene ste5 encoding priming glycosyltransferase was insertionally disrupted by a single-crossover homologous recombination event. A 0.85 kb internal fragment of ste5 was cloned into vector pKC1139 to yield pLY5015 that was transduced into Streptomyces sp. 139. Correct integration in Streptomyces LY1001 ste5- mutant strain was confirmed by Southern hybridization. After fermentation, no EPS 139A could be detected in the cultures of ste5- mutant strain Streptomyces LY1001. Therefore, the gene ste5 identified in this work is involved in the synthesis of the Streptomyces sp. 139 EPS.

  2. Genome Sequencing of Listeria monocytogenes “Quargel” Listeriosis Outbreak Strains Reveals Two Different Strains with Distinct In Vitro Virulence Potential

    PubMed Central

    Rychli, Kathrin; Müller, Anneliese; Zaiser, Andreas; Schoder, Dagmar; Allerberger, Franz; Wagner, Martin; Schmitz-Esser, Stephan

    2014-01-01

    A large listeriosis outbreak occurred in Austria, Germany and the Czech Republic in 2009 and 2010. The outbreak was traced back to a traditional Austrian curd cheese called “Quargel” which was contaminated with two distinct serovar 1/2a Listeria monocytogenes strains (QOC1 and QOC2). In this study we sequenced and analysed the genomes of both outbreak strains in order to investigate the extent of genetic diversity between the two strains belonging to MLST sequence types 398 (QOC2) and 403 (QOC1). Both genomes are highly similar, but also display distinct properties: The QOC1 genome is approximately 74 kbp larger than the QOC2 genome. In addition, the strains harbour 93 (QOC1) and 45 (QOC2) genes encoding strain-specific proteins. A 21 kbp region showing highest similarity to plasmid pLMIV encoding three putative internalins is integrated in the QOC1 genome. In contrast to QOC1, strain QOC2 harbours a vip homologue, which encodes a LPXTG surface protein involved in cell invasion. In accordance, in vitro virulence assays revealed distinct differences in invasion efficiency and intracellular proliferation within different cell types. The higher virulence potential of QOC1 in non-phagocytic cells may be explained by the presence of additional internalins in the pLMIV-like region, whereas the higher invasion capability of QOC2 into phagocytic cells may be due to the presence of a vip homologue. In addition, both strains show differences in stress-related gene content. Strain QOC1 encodes a so-called stress survival islet 1, whereas strain QOC2 harbours a homologue of the uncharacterized LMOf2365_0481 gene. Consistently, QOC1 shows higher resistance to acidic, alkaline and gastric stress. In conclusion, our results show that strain QOC1 and QOC2 are distinct and did not recently evolve from a common ancestor. PMID:24587155

  3. Characterization and complete genome sequence of a novel N4-like bacteriophage, pSb-1 infecting Shigella boydii.

    PubMed

    Jun, Jin Woo; Yun, Sae Kil; Kim, Hyoun Joong; Chai, Ji Young; Park, Se Chang

    2014-10-01

    Shigellosis is one of major foodborne pathogens in both developed and developing countries. Although antibiotic therapy is considered an effective treatment for shigellosis, the imprudent use of antibiotics has led to the increase of multiple-antibiotic-resistant Shigella species globally. In this study, we isolated a virulent Podoviridae bacteriophage (phage), pSb-1, that infects Shigella boydii. One-step growth analysis revealed that this phage has a short latent period (15 min) and a large burst size (152.63 PFU/cell), indicating that pSb-1 has good host infectivity and effective lytic activity. The double-stranded DNA genome of pSb-1 is composed of 71,629 bp with a G + C content of 42.74%. The genome encodes 103 putative ORFs, 9 putative promoters, 21 transcriptional terminators, and one tRNA region. Genome sequence analysis of pSb-1 and comparative analysis with the homologous phage EC1-UPM, N4-like phage revealed that there is a high degree of similarity (94%, nucleotide sequence identity) between pSb-1 and EC1-UPM in 73 of the 103 ORFs of pSb-1. The results of this investigation indicate that pSb-1 is a novel virulent N4-like phage infecting S. boydii and that this phage might have potential uses against shigellosis. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  4. Comprehensive analysis of single molecule sequencing-derived complete genome and whole transcriptome of Hyposidra talaca nuclear polyhedrosis virus.

    PubMed

    Nguyen, Thong T; Suryamohan, Kushal; Kuriakose, Boney; Janakiraman, Vasantharajan; Reichelt, Mike; Chaudhuri, Subhra; Guillory, Joseph; Divakaran, Neethu; Rabins, P E; Goel, Ridhi; Deka, Bhabesh; Sarkar, Suman; Ekka, Preety; Tsai, Yu-Chih; Vargas, Derek; Santhosh, Sam; Mohan, Sangeetha; Chin, Chen-Shan; Korlach, Jonas; Thomas, George; Babu, Azariah; Seshagiri, Somasekar

    2018-06-12

    We sequenced the Hyposidra talaca NPV (HytaNPV) double stranded circular DNA genome using PacBio single molecule sequencing technology. We found that the HytaNPV genome is 139,089 bp long with a GC content of 39.6%. It encodes 141 open reading frames (ORFs) including the 37 baculovirus core genes, 25 genes conserved among lepidopteran baculoviruses, 72 genes known in baculovirus, and 7 genes unique to the HytaNPV genome. It is a group II alphabaculovirus that codes for the F protein and lacks the gp64 gene found in group I alphabaculovirus viruses. Using RNA-seq, we confirmed the expression of the ORFs identified in the HytaNPV genome. Phylogenetic analysis showed HytaNPV to be closest to BusuNPV, SujuNPV and EcobNPV that infect other tea pests, Buzura suppressaria, Sucra jujuba, and Ectropis oblique, respectively. We identified repeat elements and a conserved non-coding baculovirus element in the genome. Analysis of the putative promoter sequences identified motif consistent with the temporal expression of the genes observed in the RNA-seq data.

  5. Molecular Cloning and Expression Analysis of Eight PgWRKY Genes in Panax ginseng Responsive to Salt and Hormones.

    PubMed

    Xiu, Hao; Nuruzzaman, Mohammed; Guo, Xiangqian; Cao, Hongzhe; Huang, Jingjia; Chen, Xianghui; Wu, Kunlu; Zhang, Ru; Huang, Yuzhao; Luo, Junli; Luo, Zhiyong

    2016-03-04

    Despite the importance of WRKY genes in plant physiological processes, little is known about their roles in Panax ginseng C.A. Meyer. Forty-eight unigenes on this species were previously reported as WRKY transcripts using the next-generation sequencing (NGS) technology. Subsequently, one gene that encodes PgWRKY1 protein belonging to subgroup II-d was cloned and functionally characterized. In this study, eight WRKY genes from the NGS-based transcriptome sequencing dataset designated as PgWRKY2-9 have been cloned and characterized. The genes encoding WRKY proteins were assigned to WRKY Group II (one subgroup II-c, four subgroup II-d, and three subgroup II-e) based on phylogenetic analysis. The cDNAs of the cloned PgWRKYs encode putative proteins ranging from 194 to 358 amino acid residues, each of which includes one WRKYGQK sequence motif and one C₂H₂-type zinc-finger motif. Quantitative real-time PCR (qRT-PCR) analysis demonstrated that the eight analyzed PgWRKY genes were expressed at different levels in various organs including leaves, roots, adventitious roots, stems, and seeds. Importantly, the transcription responses of these PgWRKYs to methyl jasmonate (MeJA) showed that PgWRKY2, PgWRKY3, PgWRKY4, PgWRKY5, PgWRKY6, and PgWRKY7 were downregulated by MeJA treatment, while PgWRKY8 and PgWRKY9 were upregulated to varying degrees. Moreover, the PgWRKY genes increased or decreased by salicylic acid (SA), abscisic acid (ABA), and NaCl treatments. The results suggest that the PgWRKYs may be multiple stress-inducible genes responding to both salt and hormones.

  6. The Genome Sequence of the Tomato-Pathogenic Actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382 Reveals a Large Island Involved in Pathogenicity▿ †

    PubMed Central

    Gartemann, Karl-Heinz; Abt, Birte; Bekel, Thomas; Burger, Annette; Engemann, Jutta; Flügel, Monika; Gaigalat, Lars; Goesmann, Alexander; Gräfen, Ines; Kalinowski, Jörn; Kaup, Olaf; Kirchner, Oliver; Krause, Lutz; Linke, Burkhard; McHardy, Alice; Meyer, Folker; Pohle, Sandra; Rückert, Christian; Schneiker, Susanne; Zellermann, Eva-Maria; Pühler, Alfred; Eichenlaub, Rudolf; Kaiser, Olaf; Bartels, Daniela

    2008-01-01

    Clavibacter michiganensis subsp. michiganensis is a plant-pathogenic actinomycete that causes bacterial wilt and canker of tomato. The nucleotide sequence of the genome of strain NCPPB382 was determined. The chromosome is circular, consists of 3.298 Mb, and has a high G+C content (72.6%). Annotation revealed 3,080 putative protein-encoding sequences; only 26 pseudogenes were detected. Two rrn operons, 45 tRNAs, and three small stable RNA genes were found. The two circular plasmids, pCM1 (27.4 kbp) and pCM2 (70.0 kbp), which carry pathogenicity genes and thus are essential for virulence, have lower G+C contents (66.5 and 67.6%, respectively). In contrast to the genome of the closely related organism Clavibacter michiganensis subsp. sepedonicus, the genome of C. michiganensis subsp. michiganensis lacks complete insertion elements and transposons. The 129-kb chp/tomA region with a low G+C content near the chromosomal origin of replication was shown to be necessary for pathogenicity. This region contains numerous genes encoding proteins involved in uptake and metabolism of sugars and several serine proteases. There is evidence that single genes located in this region, especially genes encoding serine proteases, are required for efficient colonization of the host. Although C. michiganensis subsp. michiganensis grows mainly in the xylem of tomato plants, no evidence for pronounced genome reduction was found. C. michiganensis subsp. michiganensis seems to have as many transporters and regulators as typical soil-inhabiting bacteria. However, the apparent lack of a sulfate reduction pathway, which makes C. michiganensis subsp. michiganensis dependent on reduced sulfur compounds for growth, is probably the reason for the poor survival of C. michiganensis subsp. michiganensis in soil. PMID:18192381

  7. Characterization of two chitin synthase genes of the red flour beetle, Tribolium castaneum, and alternate exon usage in one of the genes during development.

    PubMed

    Arakane, Yasuyuki; Hogenkamp, David G; Zhu, Yu Cheng; Kramer, Karl J; Specht, Charles A; Beeman, Richard W; Kanost, Michael R; Muthukrishnan, Subbaratnam

    2004-03-01

    Two chitin synthase (CHS) genes of the red flour beetle, Tribolium castaneum, were sequenced and their transcription patterns during development examined. By screening a BAC library of genomic DNA from T. castaneum (Tc) with a DNA probe encoding the catalytic domain of a putative Tribolium CHS, several clones that contained CHS genes were identified. Two distinct PCR products were amplified from these BAC clones and confirmed to be highly similar to CHS genes from other insects, nematodes and fungi. The DNA sequences of these genes, TcCHS1 and TcCHS2, were determined by amplification of overlapping PCR fragments from two of the BAC DNAs and mapped to different linkage groups. Each ORF was identified and full-length cDNAs were also amplified, cloned and sequenced. TcCHS1 and TcCHS2 encode transmembrane proteins of 1558 and 1464 amino acids, respectively. The TcCHS1 gene was found to use alternate exons, each encoding 59 amino acids, a feature not found in the TcCHS2 gene. During development, Tribolium expressed TcCHS1 predominantly in the embryonic and pupal stages, whereas TcCHS2 was prevalent in the late larval and adult stages. The alternate exon 8a of TcCHS1 was utilized over a much broader range of development than exon 8b. We propose that the two isoforms of the TcCHS1 enzyme are used predominantly for the formation of chitin in embryonic and pupal cuticles, whereas TcCHS2 is utilized primarily for the synthesis of peritrophic membrane-associated chitin in the midgut.

  8. Cloning of the Gene Encoding a 22-Kilodalton Cell Surface Antigen of Mycobacterium bovis BCG and Analysis of Its Potential for DNA Vaccination against Tuberculosis

    PubMed Central

    Lefèvre, Philippe; Denis, Olivier; De Wit, Lucas; Tanghe, Audrey; Vandenbussche, Paul; Content, Jean; Huygen, Kris

    2000-01-01

    Using spleen cells from mice vaccinated with live Mycobacterium bovis BCG, we previously generated three monoclonal antibodies reactive against a 22-kDa protein present in mycobacterial culture filtrate (CF) (K. Huygen et al., Infect. Immun. 61:2687–2693, 1993). These monoclonal antibodies were used to screen an M. bovis BCG genomic library made in phage λgt11. The gene encoding a 233-amino-acid (aa) protein, including a putative 26-aa signal sequence, was isolated, and sequence analysis indicated that the protein was 98% identical with the M. tuberculosis Lppx protein and that it contained a sequence 94% identical with the M. leprae 38-mer polypeptide 13B3 recognized by T cells from killed M. leprae-immunized subjects. Flow cytometry and cell fractionation demonstrated that the 22-kDa CF protein is also highly expressed in the bacterial cell wall and membrane compartment but not in the cytosol. C57BL/6, C3H, and BALB/c mice were vaccinated with plasmid DNA encoding the 22-kDa protein and analyzed for immune response and protection against intravenous M. tuberculosis challenge. Whereas DNA vaccination induced elevated antibody responses in C57BL/6 and particularly in C3H mice, Th1-type cytokine response, as measured by interleukin-2 and gamma interferon secretion, was only modest, and no protection against intravenous M. tuberculosis challenge was observed in any of the three mouse strains tested. Therefore, the 22-kDa antigen seems to have little potential for a DNA vaccine against tuberculosis, but it may be a good candidate for a mycobacterial antigen detection test. PMID:10678905

  9. Two T7-like Bacteriophages, K5-2 and K5-4, Each Encodes Two Capsule Depolymerases: Isolation and Functional Characterization.

    PubMed

    Hsieh, Pei-Fang; Lin, Hsiao-Hsuan; Lin, Tzu-Lung; Chen, Yi-Yin; Wang, Jin-Town

    2017-07-04

    Two Klebsiella bacteriophages K5-2 and K5-4, which are able to infect and grow on either capsular types K30/K69 and K5 or K8 and K5 of Klebsiella strains, were isolated and characterized. Each phage contained two open reading frames (ORFs), which encoded two putative capsule depolymerases, respectively. The first ORF encoded tail fiber proteins, which have K30/K69 depolymerase and K8 depolymerase activities. The second ORF encoded hypothetical proteins, which are almost identical in amino acid sequences, and have K5 depolymerase activity. Alcian blue staining of enzyme-treated capsular polysaccharides (CPS) showed that purified depolymerases can cleave purified Klebsiella CPS in vitro and liberate monosaccharaides. Capsule K5 deletion mutants were not lysed by either phage, suggesting that the capsule was essential for phage infection. Bacterial killing was observed when incubated Klebsiella strains with phages but not with purified depolymerases. Treatment with the K5-4 phage significantly increased the survival of mice infected with a K. pneumoniae K5 strain. In conclusion, two dual host-specific Klebsiella phages and their tailspikes exhibit capsule depolymerase activity were characterized. Each phage and phage-encoded depolymerase has specificity for capsular type K30/K69, K8 or K5, and could be used for the typing and treatment of K. pneumoniae infection.

  10. Cloning and sequence analysis demonstrate the chromate reduction ability of a novel chromate reductase gene from Serratia sp.

    PubMed

    Deng, Peng; Tan, Xiaoqing; Wu, Ying; Bai, Qunhua; Jia, Yan; Xiao, Hong

    2015-03-01

    The ChrT gene encodes a chromate reductase enzyme which catalyzes the reduction of Cr(VI). The chromate reductase is also known as flavin mononucleotide (FMN) reductase (FMN_red). The aim of the present study was to clone the full-length ChrT DNA from Serratia sp. CQMUS2 and analyze the deduced amino acid sequence and three-dimensional structure. The putative ChrT gene fragment of Serratia sp. CQMUS2 was isolated by polymerase chain reaction (PCR), according to the known FMN_red gene sequence from Serratia sp. AS13. The flanking sequences of the ChrT gene were obtained by high efficiency TAIL-PCR, while the full-length gene of ChrT was cloned in Escherichia coli for subsequent sequencing. The nucleotide sequence of ChrT was submitted onto GenBank under the accession number, KF211434. Sequence analysis of the gene and amino acids was conducted using the Basic Local Alignment Search Tool, and open reading frame (ORF) analysis was performed using ORF Finder software. The ChrT gene was found to be an ORF of 567 bp that encodes a 188-amino acid enzyme with a calculated molecular weight of 20.4 kDa. In addition, the ChrT protein was hypothesized to be an NADPH-dependent FMN_red and a member of the flavodoxin-2 superfamily. The amino acid sequence of ChrT showed high sequence similarity to the FMN reductase genes of Klebsiella pneumonia and Raoultella ornithinolytica , which belong to the flavodoxin-2 superfamily. Furthermore, ChrT was shown to have a 85.6% similarity to the three-dimensional structure of Escherichia coli ChrR, sharing four common enzyme active sites for chromate reduction. Therefore, ChrT gene cloning and protein structure determination demonstrated the ability of the gene for chromate reduction. The results of the present study provide a basis for further studies on ChrT gene expression and protein function.

  11. Cloning and sequence analysis demonstrate the chromate reduction ability of a novel chromate reductase gene from Serratia sp

    PubMed Central

    DENG, PENG; TAN, XIAOQING; WU, YING; BAI, QUNHUA; JIA, YAN; XIAO, HONG

    2015-01-01

    The ChrT gene encodes a chromate reductase enzyme which catalyzes the reduction of Cr(VI). The chromate reductase is also known as flavin mononucleotide (FMN) reductase (FMN_red). The aim of the present study was to clone the full-length ChrT DNA from Serratia sp. CQMUS2 and analyze the deduced amino acid sequence and three-dimensional structure. The putative ChrT gene fragment of Serratia sp. CQMUS2 was isolated by polymerase chain reaction (PCR), according to the known FMN_red gene sequence from Serratia sp. AS13. The flanking sequences of the ChrT gene were obtained by high efficiency TAIL-PCR, while the full-length gene of ChrT was cloned in Escherichia coli for subsequent sequencing. The nucleotide sequence of ChrT was submitted onto GenBank under the accession number, KF211434. Sequence analysis of the gene and amino acids was conducted using the Basic Local Alignment Search Tool, and open reading frame (ORF) analysis was performed using ORF Finder software. The ChrT gene was found to be an ORF of 567 bp that encodes a 188-amino acid enzyme with a calculated molecular weight of 20.4 kDa. In addition, the ChrT protein was hypothesized to be an NADPH-dependent FMN_red and a member of the flavodoxin-2 superfamily. The amino acid sequence of ChrT showed high sequence similarity to the FMN reductase genes of Klebsiella pneumonia and Raoultella ornithinolytica, which belong to the flavodoxin-2 superfamily. Furthermore, ChrT was shown to have a 85.6% similarity to the three-dimensional structure of Escherichia coli ChrR, sharing four common enzyme active sites for chromate reduction. Therefore, ChrT gene cloning and protein structure determination demonstrated the ability of the gene for chromate reduction. The results of the present study provide a basis for further studies on ChrT gene expression and protein function. PMID:25667630

  12. Differential gene expression in ripening banana fruit.

    PubMed Central

    Clendennen, S K; May, G D

    1997-01-01

    During banana (Musa acuminata L.) fruit ripening ethylene production triggers a developmental cascade that is accompanied by a massive conversion of starch to sugars, an associated burst of respiratory activity, and an increase in protein synthesis. Differential screening of cDNA libraries representing banana pulp at ripening stages 1 and 3 has led to the isolation of 11 nonredundant groups of differentially expressed mRNAs. Identification of these transcripts by partial sequence analysis indicates that two of the mRNAs encode proteins involved in carbohydrate metabolism, whereas others encode proteins thought to be associated with pathogenesis, senescence, or stress responses in plants. Their relative abundance in the pulp and tissue-specific distribution in greenhouse-grown banana plants were determined by northern-blot analyses. The relative abundance of transcripts encoding starch synthase, granule-bound starch synthase, chitinase, lectin, and a type-2 metallothionein decreased in pulp during ripening. Transcripts encoding endochitinase, beta-1,3-glucanase, a thaumatin-like protein, ascorbate peroxidase, metallothionein, and a putative senescence-related protein increased early in ripening. The elucidation of the molecular events associated with banana ripening will facilitate a better understanding and control of these processes, and will allow us to attain our long-term goal of producing candidate oral vaccines in transgenic banana plants. PMID:9342866

  13. Multiple Metabolic Roles for the Nonphotosynthetic Plastid of the Green Alga Prototheca wickerhamii†

    PubMed Central

    Borza, Tudor; Popescu, Cristina E.; Lee, Robert W.

    2005-01-01

    The presence of plastids in diverse eukaryotic lineages that have lost the capacity for photosynthesis is well documented. The metabolic functions of such organelles, however, are poorly understood except in the case of the apicoplast in the Apicomplexa, a group of intracellular parasites including Plasmodium falciparum, and the plastid of the green alga Helicosporidium sp., a parasite for which the only host-free stage identified in nature so far is represented by cysts. As a first step in the reconstruction of plastid functions in a nonphotosynthetic, predominantly free-living organism, we searched for expressed sequence tags (ESTs) that correspond to nucleus-encoded plastid-targeted polypeptides in the green alga Prototheca wickerhamii. From 3,856 ESTs, we found that 71 unique sequences (235 ESTs) correspond to different nucleus-encoded putatively plastid-targeted polypeptides. The identified proteins predict that carbohydrate, amino acid, lipid, tetrapyrrole, and isoprenoid metabolism as well as de novo purine biosynthesis and oxidoreductive processes take place in the plastid of P. wickerhamii. Mg-protoporphyrin accumulation and, therefore, plastid-to-nucleus signaling might also occur in this nonphotosynthetic organism, as we identified a transcript which encodes subunit I of Mg-chelatase, the enzyme which catalyzes the first committed step in chlorophyll synthesis. Our data indicate a far more complex metabolism in P. wickerhamii's plastid compared with the metabolic pathways predicted to be located in the apicoplast of P. falciparum and the plastid of Helicosporidium sp. PMID:15701787

  14. Nectinepsin: a new extracellular matrix protein of the pexin family. Characterization of a novel cDNA encoding a protein with an RGD cell binding motif.

    PubMed

    Blancher, C; Omri, B; Bidou, L; Pessac, B; Crisanti, P

    1996-10-18

    We report the isolation and characterization of a novel cDNA from quail neuroretina encoding a putative protein named nectinepsin. The nectinepsin cDNA identifies a major 2.2-kilobase mRNA that is detected from ED 5 in neuroretina and is increasingly abundant during embryonic development. A nectinepsin mRNA is also found in quail liver, brain, and intestine and in mouse retina. The deduced nectinepsin amino acid sequence contains the RGD cell binding motif of integrin ligands. Furthermore, nectinepsin shares substantial homologies with vitronectin and structural protein similarities with most of the matricial metalloproteases. However, the presence of a specific sequence and the lack of heparin and collagen binding domains of the vitronectin indicate that nectinepsin is a new extracellular matrix protein. Furthermore, genomic Southern blot studies suggest that nectinepsin and vitronectin are encoded by different genes. Western blot analysis with an anti-human vitronectin antiserum revealed, in addition to the 65- and 70-kDa vitronectin bands, an immunoreactive protein of about 54 kDa in all tissues containing nectinepsin mRNA. It seems likely that the form of vitronectin found in chick egg yolk plasma by Nagano et al. ((1992) J. Biol. Chem. 267, 24863-24870) is the protein that corresponds to the nectinepsin cDNA. This new protein could be an important molecule involved in the early steps of the development.

  15. Molecular cloning of Kazal-type proteinase inhibitor of the shrimp Fenneropenaeus chinensis.

    PubMed

    Kong, Hee Jeong; Cho, Hyun Kook; Park, Eun-Mi; Hong, Gyeong-Eun; Kim, Young-Ok; Nam, Bo-Hye; Kim, Woo-Jin; Lee, Sang-Jun; Han, Hyon Sob; Jang, In-Kwon; Lee, Chang Hoon; Cheong, Jaehun; Choi, Tae-Jin

    2009-01-01

    Proteinase inhibitors play important roles in host defence systems involving blood coagulation and pathogen digestion. We isolated and characterized a cDNA clone for a Kazal-type proteinase inhibitor (KPI) from a hemocyte cDNA library of the oriental white shrimp Fenneropenaeus chinensis. The KPI gene consists of three exons and two introns. KPI cDNA contains an open reading frame of 396 bp, a polyadenylation signal sequence AATAAA, and a poly (A) tail. KPI cDNA encodes a polypeptide of 131 amino acids with a putative signal peptide of 21 amino acids. The deduced amino acid sequence of KPI contains two homologous Kazal domains, each with six conserved cysteine residues. The mRNA of KPI is expressed in the hemocytes of healthy shrimp, and the higher expression of KPI transcript is observed in shrimp infected with the white spot syndrome virus (WSSV), suggesting a potential role for KPI in host defence mechanisms.

  16. How disordered is my protein and what is its disorder for? A guide through the “dark side” of the protein universe

    PubMed Central

    Lieutaud, Philippe; Uversky, Alexey V.; Uversky, Vladimir N.; Longhi, Sonia

    2016-01-01

    ABSTRACT In the last 2 decades it has become increasingly evident that a large number of proteins are either fully or partially disordered. Intrinsically disordered proteins lack a stable 3D structure, are ubiquitous and fulfill essential biological functions. Their conformational heterogeneity is encoded in their amino acid sequences, thereby allowing intrinsically disordered proteins or regions to be recognized based on properties of these sequences. The identification of disordered regions facilitates the functional annotation of proteins and is instrumental for delineating boundaries of protein domains amenable to structural determination with X-ray crystallization. This article discusses a comprehensive selection of databases and methods currently employed to disseminate experimental and putative annotations of disorder, predict disorder and identify regions involved in induced folding. It also provides a set of detailed instructions that should be followed to perform computational analysis of disorder. PMID:28232901

  17. Cloning and sequencing of the Thermoanaerobacterium saccharolyticum B6A-RI apu gene and purification and characterization of the amylopullulanase from Escherichia coli.

    PubMed

    Ramesh, M V; Podkovyrov, S M; Lowe, S E; Zeikus, J G

    1994-01-01

    The amylopullulanase gene (apu) of the thermophilic anaerobic bacterium Thermoanaerobacterium saccharolyticum B6A-RI was cloned into Escherichia coli. The complete nucleotide sequence of the gene was determined. It encoded a protein consisting of 1,288 amino acids with a signal peptide of 35 amino acids. The enzyme purified from E. coli was a monomer with an M(r) of 142,000 +/- 2,000 and had same the catalytic and thermal characteristics as the native glycoprotein from T. saccharolyticum B6A. Linear alignment and the hydrophobic cluster analysis were used to compare this amylopullulanase with other amylolytic enzymes. Both methods revealed strictly conserved amino acid residues among these enzymes, and it is proposed that Asp-594, Asp-700, and Glu-623 are a putative catalytic triad of the T. saccharolyticum B6A-RI amylopullulanase.

  18. Cloning and sequencing of the Thermoanaerobacterium saccharolyticum B6A-RI apu gene and purification and characterization of the amylopullulanase from Escherichia coli.

    PubMed Central

    Ramesh, M V; Podkovyrov, S M; Lowe, S E; Zeikus, J G

    1994-01-01

    The amylopullulanase gene (apu) of the thermophilic anaerobic bacterium Thermoanaerobacterium saccharolyticum B6A-RI was cloned into Escherichia coli. The complete nucleotide sequence of the gene was determined. It encoded a protein consisting of 1,288 amino acids with a signal peptide of 35 amino acids. The enzyme purified from E. coli was a monomer with an M(r) of 142,000 +/- 2,000 and had same the catalytic and thermal characteristics as the native glycoprotein from T. saccharolyticum B6A. Linear alignment and the hydrophobic cluster analysis were used to compare this amylopullulanase with other amylolytic enzymes. Both methods revealed strictly conserved amino acid residues among these enzymes, and it is proposed that Asp-594, Asp-700, and Glu-623 are a putative catalytic triad of the T. saccharolyticum B6A-RI amylopullulanase. Images PMID:8117096

  19. Molecular analysis of microflora associated with dentoalveolar abscesses.

    PubMed Central

    Dymock, D; Weightman, A J; Scully, C; Wade, W G

    1996-01-01

    The microflora associated with three dentoalveolar abscesses was determined by cultural and molecular methods. 16S rRNA genes were randomly amplified by means of conserved eubacterial primers and cloned. Restriction fragment length polymorphism analysis of the clones and amplified genes encoding 16S rRNA from the cultured bacteria was used to detect putative unculturable bacteria. Clones representative of five predominant groups of uncultured organisms were sequenced. Two were identified as Porphyromonas gingivalis and Prevotella oris, and one was found to be closely related to Peptostreptococcus micros. The remaining two clones did not correspond to known, previously sequenced organisms. One was related to Zoogloea ramigera, a species of aerobic waterborne organisms, while the other was distantly related to the genus Prevotella. This study has demonstrated the possibility of the characterization of microflora associated with human infection by molecular methods without the inherent biases of culture. PMID:8904410

  20. Xylella fastidiosa esterase rather than hydroxynitrile lyase.

    PubMed

    Torrelo, Guzman; Ribeiro de Souza, Fayene Zeferino; Carrilho, Emanuel; Hanefeld, Ulf

    2015-03-02

    In 2009, we reported that the product of the gene SCJ21.16 (XFa0032) from Xylella fastidiosa, a xylem-restricted plant pathogen that causes a range of diseases in several important crops, encodes a protein (XfHNL) with putative hydroxynitrile lyase activity. Sequence analysis and activity tests indicated that XfHNL exhibits an α/β-hydrolase fold and could be classified as a member of the family of FAD-independent HNLs. Here we provide a more detailed sequence analysis and new experimental data. Using pure heterologously expressed XfHNL we show that this enzyme cannot catalyse the cleavage/synthesis of mandelonitrile and that this protein is in fact a non-enantioselective esterase. Homology modelling and ligand docking simulations were used to study the active site and support these results. This finding could help elucidate the common ancestor of esterases and hydroxynitrile lyases with an α/β -hydrolase fold. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Transcriptome-wide profiling and expression analysis of transcription factor families in a liverwort, Marchantia polymorpha

    PubMed Central

    2013-01-01

    Background Transcription factors (TFs) are vital elements that regulate transcription and the spatio-temporal expression of genes, thereby ensuring the accurate development and functioning of an organism. The identification of TF-encoding genes in a liverwort, Marchantia polymorpha, offers insights into TF organization in the members of the most basal lineages of land plants (embryophytes). Therefore, a comparison of Marchantia TF genes with other land plants (monocots, dicots, bryophytes) and algae (chlorophytes, rhodophytes) provides the most comprehensive view of the rates of expansion or contraction of TF genes in plant evolution. Results In this study, we report the identification of TF-encoding transcripts in M. polymorpha for the first time, as evidenced by deep RNA sequencing data. In total, 3,471 putative TF encoding transcripts, distributed in 80 families, were identified, representing 7.4% of the generated Marchantia gametophytic transcriptome dataset. Overall, TF basic functions and distribution across families appear to be conserved when compared to other plant species. However, it is of interest to observe the genesis of novel sequences in 24 TF families and the apparent termination of 2 TF families with the emergence of Marchantia. Out of 24 TF families, 6 are known to be associated with plant reproductive development processes. We also examined the expression pattern of these TF-encoding transcripts in six male and female developmental stages in vegetative and reproductive gametophytic tissues of Marchantia. Conclusions The analysis highlighted the importance of Marchantia, a model plant system, in an evolutionary context. The dataset generated here provides a scientific resource for TF gene discovery and other comparative evolutionary studies of land plants. PMID:24365221

  2. Genetic differentiation and hybrid identification using microsatellite markers in closely related wild species

    PubMed Central

    Turchetto, Caroline; Segatto, Ana Lúcia A.; Beduschi, Júlia; Bonatto, Sandro L.; Freitas, Loreta B.

    2015-01-01

    Identifying the genetic basis of speciation is critical for understanding the evolutionary history of closely related wild species. Recently diverged species facilitate the study of speciation because many genetic and morphological characteristics are still shared by the organisms under study. The Petunia genus grows in South American grasslands and comprises both recently diverged wild species and commercial species. In this work, we analysed two closely related species: Petunia exserta, which has a narrow endemic range and grows exclusively in rocky shelters, and Petunia axillaris, which is widely distributed and comprises three allopatric subspecies. Petunia axillaris ssp. axillaris and P. exserta occur in sympatry, and putative hybrids between them have been identified. Here, we analysed 14 expressed sequence tag-simple sequence repeats (EST-SSRs) in 126 wild individuals and 13 putative morphological hybrids with the goals of identifying differentially encoded alleles to characterize their natural genetic diversity, establishing a genetic profile for each taxon and to verify the presence of hybridization signal. Overall, 143 alleles were identified and all taxa contained private alleles. Four major groups were identified in clustering analyses, which indicated that there are genetic distinctions among the groups. The markers evaluated here will be useful in evolutionary studies involving these species and may help categorize individuals by species, thus enabling the identification of hybrids between both their putative taxa. The individuals with intermediate morphology presented private alleles of their both putative parental species, although they showed a level of genetic mixing that was comparable with some of the individuals with typical P. exserta morphology. The EST-SSR markers scattered throughout the Petunia genome are very efficient tools for characterizing the genetic diversity in wild taxa of this genus and aid in identifying interspecific hybrids based on the presence of private alleles. These properties indicate that these markers will be helpful tools in evolutionary studies. PMID:26187606

  3. Analysis of the Pantoea ananatis pan-genome reveals factors underlying its ability to colonize and interact with plant, insect and vertebrate hosts.

    PubMed

    De Maayer, Pieter; Chan, Wai Yin; Rubagotti, Enrico; Venter, Stephanus N; Toth, Ian K; Birch, Paul R J; Coutinho, Teresa A

    2014-05-27

    Pantoea ananatis is found in a wide range of natural environments, including water, soil, as part of the epi- and endophytic flora of various plant hosts, and in the insect gut. Some strains have proven effective as biological control agents and plant-growth promoters, while other strains have been implicated in diseases of a broad range of plant hosts and humans. By analysing the pan-genome of eight sequenced P. ananatis strains isolated from different sources we identified factors potentially underlying its ability to colonize and interact with hosts in both the plant and animal Kingdoms. The pan-genome of the eight compared P. ananatis strains consisted of a core genome comprised of 3,876 protein coding sequences (CDSs) and a sizeable accessory genome consisting of 1,690 CDSs. We estimate that ~106 unique CDSs would be added to the pan-genome with each additional P. ananatis genome sequenced in the future. The accessory fraction is derived mainly from integrated prophages and codes mostly for proteins of unknown function. Comparison of the translated CDSs on the P. ananatis pan-genome with the proteins encoded on all sequenced bacterial genomes currently available revealed that P. ananatis carries a number of CDSs with orthologs restricted to bacteria associated with distinct hosts, namely plant-, animal- and insect-associated bacteria. These CDSs encode proteins with putative roles in transport and metabolism of carbohydrate and amino acid substrates, adherence to host tissues, protection against plant and animal defense mechanisms and the biosynthesis of potential pathogenicity determinants including insecticidal peptides, phytotoxins and type VI secretion system effectors. P. ananatis has an 'open' pan-genome typical of bacterial species that colonize several different environments. The pan-genome incorporates a large number of genes encoding proteins that may enable P. ananatis to colonize, persist in and potentially cause disease symptoms in a wide range of plant and animal hosts.

  4. Heat-shock response in a molluscan cell line: characterization of the response and cloning of an inducible HSP70 cDNA.

    PubMed

    Laursen, J R; di Liu, H; Wu, X J; Yoshino, T P

    1997-11-01

    Sublethal heat-shock of cells of the Bge (Biomphalaria glabrata embryonic) snail cell line resulted in increased or new expression of metabolically labeled polypeptides of approximately 21.5, 41, 70, and 74 kDa molecular mass. Regulation of this response appeared to be at the transcriptional level since a similar protein banding pattern was seen upon SDS-PAGE/fluorographic analysis of polypeptides produced by in vitro translation of total RNA from cells subjected to heat shock. Using a yeast (Saccharomyces cerevisiae) 70-kDa heat-shock protein (HSP70) probe to screen a cDNA library from heat-treated Bge cells, we isolated a full-length cDNA clone encoding a putative Bge HSP70. The cDNA was 2453 bp in length and contained an open reading frame of 1908 bp encoding a 636-amino-acid polypeptide with calculated molecular mass of 70,740 Da. Comparison of a conserved region of 209 amino acid residues revealed > 80% identity between the deduced amino acid sequence of Bge HSP70 and that of yeast (81%), the human blood fluke Schistosoma mansoni (for which B. glabrata serves as intermediate host) (81%), Drosophila (81%), human (84%), and the marine gastropod Aplysia californica (88%, 90%). In addition to the extensive sharing of sequence homology, the identification of several eukaryotic HSP70 signature sequences and an N-linked glycosylation site characteristic of cytoplasmic HSPs strongly support the identity of the Bge cDNA as encoding an authentic HSP70. Results of a Northern blot analysis, using Bge HSP70 clone-specific probes, indicated that gene expression was heat inducible and not constitutively expressed. This is the first reported sequence of an inducible HSP70 from cells originating from a freshwater gastropod and provides a first step in the development of a genetic transformation system for molluscs of medical importance.

  5. Phenotypic and molecular characterization of conjugative antibiotic resistance plasmids isolated from bacterial communities of activated sludge.

    PubMed

    Dröge, M; Pühler, A; Selbitschka, W

    2000-04-01

    In order to isolate antibiotic resistance plasmids from bacterial communities found in activated sludge, derivatives of the 3-chlorobenzoate-degrading strain Pseudomonas sp. B13, tagged with the green fluorescent protein as an identification marker, were used as recipients in filter crosses. Transconjugants were selected on agar plates containing 3-chlorobenzoate as the sole carbon source and the antibiotic tetracycline, streptomycin or spectinomycin, and were recovered at frequencies in the range of 10(-5) to 10(-8) per recipient. A total of 12 distinct plasmids, designated pB1-pB12, was identified. Their sizes ranged between 41 to 69 kb and they conferred various patterns of antibiotic resistance on their hosts. Two of the plasmids, pB10 and pB11, also mediated resistance to inorganic mercury. Seven of the 12 plasmids were identified as broad-host-range plasmids, displaying extremely high transfer frequencies in filter crosses, ranging from 10(-1) to 10(-2) per recipient cell. Ten of the 12 plasmids belonged to the IncP incompatibility group, based on replicon typing using IncP group-specific PCR primers. DNA sequencing of PCR amplification products further revealed that eight of the 12 plasmids belonged to the IncPbeta subgroup, whereas two plasmids were identified as IncPalpha plasmids. Analysis of the IncP-specific PCR products revealed considerable differences among the IncPbeta plasmids at the DNA sequence level. In order to characterize the gene "load" of the IncP plasmids, restriction fragments were cloned and their DNA sequences established. A remarkable diversity of putative proteins encoded by these fragments was identified. Besides transposases and proteins involved in antibiotic resistance, two putative DNA invertases belonging to the Din family, a methyltransferase of a type I restriction/modification system, a superoxide dismutase, parts of a putative efflux system belonging to the RND family, and proteins of unknown function were identified.

  6. The La-related protein 1-specific domain repurposes HEAT-like repeats to directly bind a 5'TOP sequence.

    PubMed

    Lahr, Roni M; Mack, Seshat M; Héroux, Annie; Blagden, Sarah P; Bousquet-Antonelli, Cécile; Deragon, Jean-Marc; Berman, Andrea J

    2015-09-18

    La-related protein 1 (LARP1) regulates the stability of many mRNAs. These include 5'TOPs, mTOR-kinase responsive mRNAs with pyrimidine-rich 5' UTRs, which encode ribosomal proteins and translation factors. We determined that the highly conserved LARP1-specific C-terminal DM15 region of human LARP1 directly binds a 5'TOP sequence. The crystal structure of this DM15 region refined to 1.86 Å resolution has three structurally related and evolutionarily conserved helix-turn-helix modules within each monomer. These motifs resemble HEAT repeats, ubiquitous helical protein-binding structures, but their sequences are inconsistent with consensus sequences of known HEAT modules, suggesting this structure has been repurposed for RNA interactions. A putative mTORC1-recognition sequence sits within a flexible loop C-terminal to these repeats. We also present modelling of pyrimidine-rich single-stranded RNA onto the highly conserved surface of the DM15 region. These studies lay the foundation necessary for proceeding toward a structural mechanism by which LARP1 links mTOR signalling to ribosome biogenesis. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. The La-related protein 1-specific domain repurposes HEAT-like repeats to directly bind a 5'TOP sequence

    DOE PAGES

    Lahr, Roni M.; Mack, Seshat M.; Heroux, Annie; ...

    2015-07-22

    La-related protein 1 (LARP1) regulates the stability of many mRNAs. These include 5'TOPs, mTOR-kinase responsive mRNAs with pyrimidine-rich 5' UTRs, which encode ribosomal proteins and translation factors. We determined that the highly conserved LARP1-specific C-terminal DM15 region of human LARP1 directly binds a 5'TOP sequence. The crystal structure of this DM15 region refined to 1.86 Å resolution has three structurally related and evolutionarily conserved helix-turn-helix modules within each monomer. These motifs resemble HEAT repeats, ubiquitous helical protein-binding structures, but their sequences are inconsistent with consensus sequences of known HEAT modules, suggesting this structure has been repurposed for RNA interactions. Amore » putative mTORC1-recognition sequence sits within a flexible loop C-terminal to these repeats. We also present modelling of pyrimidine-rich single-stranded RNA onto the highly conserved surface of the DM15 region. Ultimately, these studies lay the foundation necessary for proceeding toward a structural mechanism by which LARP1 links mTOR signalling to ribosome biogenesis.« less

  8. Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus.

    PubMed Central

    Golemboski, D B; Lomonossoff, G P; Zaitlin, M

    1990-01-01

    Nicotiana tabacum cv. Xanthi nn plants were transformed with nucleotides 3472-4916 of tobacco mosaic virus (TMV) strain U1. This sequence contains all but the three 3 terminal nucleotides of the TMV 54-kDa gene, which encodes a putative component of the replicase complex. These plants were resistant to infection when challenged with either TMV U1 virions or TMV U1 RNA at concentrations of up to 500 micrograms/ml or 300 micrograms/ml, respectively, the highest concentrations tested. Resistance was also exhibited when plants were inoculated at 100 micrograms/ml with the closely related TMV mutant YSI/1 but was not shown in plants challenged at the same concentrations with the more distantly related TMV strains U2 or L or cucumber mosaic virus. Although the copy number of the 54-kDa gene sequence varied in individual transformants from 1 to approximately 5, the level of resistance in plants was not dependent on the number of copies of the 54-kDa gene sequence integrated. The transformed plants accumulated a 54-kDa gene sequence-specific RNA transcript of the expected size, but no protein product was detected. Images PMID:2385595

  9. Investigation of DNA sequence recognition by a streptomycete MarR family transcriptional regulator through surface plasmon resonance and X-ray crystallography

    PubMed Central

    Stevenson, Clare E. M.; Assaad, Aoun; Chandra, Govind; Le, Tung B. K.; Greive, Sandra J.; Bibb, Mervyn J.; Lawson, David M.

    2013-01-01

    Consistent with their complex lifestyles and rich secondary metabolite profiles, the genomes of streptomycetes encode a plethora of transcription factors, the vast majority of which are uncharacterized. Herein, we use Surface Plasmon Resonance (SPR) to identify and delineate putative operator sites for SCO3205, a MarR family transcriptional regulator from Streptomyces coelicolor that is well represented in sequenced actinomycete genomes. In particular, we use a novel SPR footprinting approach that exploits indirect ligand capture to vastly extend the lifetime of a standard streptavidin SPR chip. We define two operator sites upstream of sco3205 and a pseudopalindromic consensus sequence derived from these enables further potential operator sites to be identified in the S. coelicolor genome. We evaluate each of these through SPR and test the importance of the conserved bases within the consensus sequence. Informed by these results, we determine the crystal structure of a SCO3205-DNA complex at 2.8 Å resolution, enabling molecular level rationalization of the SPR data. Taken together, our observations support a DNA recognition mechanism involving both direct and indirect sequence readout. PMID:23748564

  10. Mitochondrial genome of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa): A linear DNA molecule encoding a putative DNA-dependent DNA polymerase.

    PubMed

    Shao, Zhiyong; Graf, Shannon; Chaga, Oleg Y; Lavrov, Dennis V

    2006-10-15

    The 16,937-nuceotide sequence of the linear mitochondrial DNA (mt-DNA) molecule of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa) - the first mtDNA sequence from the class Scypozoa and the first sequence of a linear mtDNA from Metazoa - has been determined. This sequence contains genes for 13 energy pathway proteins, small and large subunit rRNAs, and methionine and tryptophan tRNAs. In addition, two open reading frames of 324 and 969 base pairs in length have been found. The deduced amino-acid sequence of one of them, ORF969, displays extensive sequence similarity with the polymerase [but not the exonuclease] domain of family B DNA polymerases, and this ORF has been tentatively identified as dnab. This is the first report of dnab in animal mtDNA. The genes in A. aurita mtDNA are arranged in two clusters with opposite transcriptional polarities; transcription proceeding toward the ends of the molecule. The determined sequences at the ends of the molecule are nearly identical but inverted and lack any obvious potential secondary structures or telomere-like repeat elements. The acquisition of mitochondrial genomic data for the second class of Cnidaria allows us to reconstruct characteristic features of mitochondrial evolution in this animal phylum.

  11. Evidence for Horizontal Gene Transfer in Evolution of Elongation Factor Tu in Enterococci

    PubMed Central

    Ke, Danbing; Boissinot, Maurice; Huletsky, Ann; Picard, François J.; Frenette, Johanne; Ouellette, Marc; Roy, Paul H.; Bergeron, Michel G.

    2000-01-01

    The elongation factor Tu, encoded by tuf genes, is a GTP binding protein that plays a central role in protein synthesis. One to three tuf genes per genome are present, depending on the bacterial species. Most low-G+C-content gram-positive bacteria carry only one tuf gene. We have designed degenerate PCR primers derived from consensus sequences of the tuf gene to amplify partial tuf sequences from 17 enterococcal species and other phylogenetically related species. The amplified DNA fragments were sequenced either by direct sequencing or by sequencing cloned inserts containing putative amplicons. Two different tuf genes (tufA and tufB) were found in 11 enterococcal species, including Enterococcus avium, Enterococcus casseliflavus, Enterococcus dispar, Enterococcus durans, Enterococcus faecium, Enterococcus gallinarum, Enterococcus hirae, Enterococcus malodoratus, Enterococcus mundtii, Enterococcus pseudoavium, and Enterococcus raffinosus. For the other six enterococcal species (Enterococcus cecorum, Enterococcus columbae, Enterococcus faecalis, Enterococcus sulfureus, Enterococcus saccharolyticus, and Enterococcus solitarius), only the tufA gene was present. Based on 16S rRNA gene sequence analysis, the 11 species having two tuf genes all have a common ancestor, while the six species having only one copy diverged from the enterococcal lineage before that common ancestor. The presence of one or two copies of the tuf gene in enterococci was confirmed by Southern hybridization. Phylogenetic analysis of tuf sequences demonstrated that the enterococcal tufA gene branches with the Bacillus, Listeria, and Staphylococcus genera, while the enterococcal tufB gene clusters with the genera Streptococcus and Lactococcus. Primary structure analysis showed that four amino acid residues encoded within the sequenced regions are conserved and unique to the enterococcal tufB genes and the tuf genes of streptococci and Lactococcus lactis. The data suggest that an ancestral streptococcus or a streptococcus-related species may have horizontally transferred a tuf gene to the common ancestor of the 11 enterococcal species which now carry two tuf genes. PMID:11092850

  12. Strigolactone-Induced Putative Secreted Protein 1 Is Required for the Establishment of Symbiosis by the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis.

    PubMed

    Tsuzuki, Syusaku; Handa, Yoshihiro; Takeda, Naoya; Kawaguchi, Masayoshi

    2016-04-01

    Arbuscular mycorrhizal (AM) symbiosis is the most widespread association between plants and fungi. To provide novel insights into the molecular mechanisms of AM symbiosis, we screened and investigated genes of the AM fungus Rhizophagus irregularis that contribute to the infection of host plants. R. irregularis genes involved in the infection were explored by RNA-sequencing (RNA-seq) analysis. One of the identified genes was then characterized by a reverse genetic approach using host-induced gene silencing (HIGS), which causes RNA interference in the fungus via the host plant. The RNA-seq analysis revealed that 19 genes are up-regulated by both treatment with strigolactone (SL) (a plant symbiotic signal) and symbiosis. Eleven of the 19 genes were predicted to encode secreted proteins and, of these, SL-induced putative secreted protein 1 (SIS1) showed the largest induction under both conditions. In hairy roots of Medicago truncatula, SIS1 expression is knocked down by HIGS, resulting in significant suppression of colonization and formation of stunted arbuscules. These results suggest that SIS1 is a putative secreted protein that is induced in a wide spatiotemporal range including both the presymbiotic and symbiotic stages and that SIS1 positively regulates colonization of host plants by R. irregularis.

  13. Random Amplification and Pyrosequencing for Identification of Novel Viral Genome Sequences

    PubMed Central

    Hang, Jun; Forshey, Brett M.; Kochel, Tadeusz J.; Li, Tao; Solórzano, Víctor Fiestas; Halsey, Eric S.; Kuschner, Robert A.

    2012-01-01

    ssRNA viruses have high levels of genomic divergence, which can lead to difficulty in genomic characterization of new viruses using traditional PCR amplification and sequencing methods. In this study, random reverse transcription, anchored random PCR amplification, and high-throughput pyrosequencing were used to identify orthobunyavirus sequences from total RNA extracted from viral cultures of acute febrile illness specimens. Draft genome sequence for the orthobunyavirus L segment was assembled and sequentially extended using de novo assembly contigs from pyrosequencing reads and orthobunyavirus sequences in GenBank as guidance. Accuracy and continuous coverage were achieved by mapping all reads to the L segment draft sequence. Subsequently, RT-PCR and Sanger sequencing were used to complete the genome sequence. The complete L segment was found to be 6936 bases in length, encoding a 2248-aa putative RNA polymerase. The identified L segment was distinct from previously published South American orthobunyaviruses, sharing 63% and 54% identity at the nucleotide and amino acid level, respectively, with the complete Oropouche virus L segment and 73% and 81% identity at the nucleotide and amino acid level, respectively, with a partial Caraparu virus L segment. The result demonstrated the effectiveness of a sequence-independent amplification and next-generation sequencing approach for obtaining complete viral genomes from total nucleic acid extracts and its use in pathogen discovery. PMID:22468136

  14. Variation in a surface-exposed region of the Mycoplasma pneumoniae P40 protein as a consequence of homologous DNA recombination between RepMP5 elements.

    PubMed

    Spuesens, Emiel B M; van de Kreeke, Nick; Estevão, Silvia; Hoogenboezem, Theo; Sluijter, Marcel; Hartwig, Nico G; van Rossum, Annemarie M C; Vink, Cornelis

    2011-02-01

    Mycoplasma pneumoniae is a human pathogen that causes a range of respiratory tract infections. The first step in infection is adherence of the bacteria to the respiratory epithelium. This step is mediated by a specialized organelle, which contains several proteins (cytadhesins) that have an important function in adherence. Two of these cytadhesins, P40 and P90, represent the proteolytic products from a single 130 kDa protein precursor, which is encoded by the MPN142 gene. Interestingly, MPN142 contains a repetitive DNA element, termed RepMP5, of which homologues are found at seven other loci within the M. pneumoniae genome. It has been hypothesized that these RepMP5 elements, which are similar but not identical in sequence, recombine with their counterpart within MPN142 and thereby provide a source of sequence variation for this gene. As this variation may give rise to amino acid changes within P40 and P90, the recombination between RepMP5 elements may constitute the basis of antigenic variation and, possibly, immune evasion by M. pneumoniae. To investigate the sequence variation of MPN142 in relation to inter-RepMP5 recombination, we determined the sequences of all RepMP5 elements in a collection of 25 strains. The results indicate that: (i) inter-RepMP5 recombination events have occurred in seven of the strains, and (ii) putative RepMP5 recombination events involving MPN142 have induced amino acid changes in a surface-exposed part of the P40 protein in two of the strains. We conclude that recombination between RepMP5 elements is a common phenomenon that may lead to sequence variation of MPN142-encoded proteins.

  15. Identification and functional activity of a staphylocoagulase type XI variant originating from staphylococcal food poisoning isolates.

    PubMed

    Suzuki, Y; Matsushita, S; Kubota, H; Kobayashi, M; Murauchi, K; Higuchi, Y; Kato, R; Hirai, A; Sadamasu, K

    2016-09-01

    Staphylocoagulase, an extracellular protein secreted by Staphylococcus aureus, has been used as an epidemiological marker. At least 12 serotypes and 24 genotypes subdivided on the basis of nucleotide sequence have been reported to date. In this study, we identified a novel staphylocoagulase nucleotide sequence, coa310, from staphylococcal food poisoning isolates that had the ability to coagulate plasma, but could not be typed using the conventional method. The protein encoded by coa310 contained the six fundamental conserved domains of staphylocoagulase. The full-length nucleotide sequence of coa310 shared the highest similarity (77·5%) with that of staphylocoagulase-type (SCT) XIa. The sequence of the D1 region, which would be responsible for the determination of SCT, shared the highest similarity (91·8%) with that of SCT XIa. These results suggest that coa310 is a novel variant of SCT XI. Moreover, we demonstrated that coa310 encodes a functioning coagulase, by confirming the coagulating activity of the recombinant protein expressed from coa310. This is the first study to directly demonstrate that Coa310, a putative SCT XI, has coagulating activity. These findings may be useful for the improvement of the staphylocoagulase-typing method, including serotyping and genotyping. This is the first study to identify a novel variant of staphylocoagulase type XI based on its nucleotide sequence and to demonstrate coagulating activity in the variant using a recombinant protein. Elucidation of the variety of staphylocoagulases will provide suggestions for further improvement of the staphylocoagulase-typing method and contribute to our understanding of the epidemiologic characterization of Staphylococcus aureus. © 2016 The Society for Applied Microbiology.

  16. Host-Associated Genomic Features of the Novel Uncultured Intracellular Pathogen Ca. Ichthyocystis Revealed by Direct Sequencing of Epitheliocysts

    PubMed Central

    Qi, Weihong; Vaughan, Lloyd; Katharios, Pantelis; Schlapbach, Ralph; Seth-Smith, Helena M.B.

    2016-01-01

    Advances in single-cell and mini-metagenome sequencing have enabled important investigations into uncultured bacteria. In this study, we applied the mini-metagenome sequencing method to assemble genome drafts of the uncultured causative agents of epitheliocystis, an emerging infectious disease in the Mediterranean aquaculture species gilthead seabream. We sequenced multiple cyst samples and constructed 11 genome drafts from a novel beta-proteobacterial lineage, Candidatus Ichthyocystis. The draft genomes demonstrate features typical of pathogenic bacteria with an obligate intracellular lifestyle: a reduced genome of up to 2.6 Mb, reduced G + C content, and reduced metabolic capacity. Reconstruction of metabolic pathways reveals that Ca. Ichthyocystis genomes lack all amino acid synthesis pathways, compelling them to scavenge from the fish host. All genomes encode type II, III, and IV secretion systems, a large repertoire of predicted effectors, and a type IV pilus. These are all considered to be virulence factors, required for adherence, invasion, and host manipulation. However, no evidence of lipopolysaccharide synthesis could be found. Beyond the core functions shared within the genus, alignments showed distinction into different species, characterized by alternative large gene families. These comprise up to a third of each genome, appear to have arisen through duplication and diversification, encode many effector proteins, and are seemingly critical for virulence. Thus, Ca. Ichthyocystis represents a novel obligatory intracellular pathogenic beta-proteobacterial lineage. The methods used: mini-metagenome analysis and manual annotation, have generated important insights into the lifestyle and evolution of the novel, uncultured pathogens, elucidating many putative virulence factors including an unprecedented array of novel gene families. PMID:27190004

  17. Draft genome sequence of Trametes villosa (Sw.) Kreisel CCMB561, a tropical white-rot Basidiomycota from the semiarid region of Brazil.

    PubMed

    Ferreira, Dalila Souza Santos; Kato, Rodrigo Bentes; Miranda, Fábio Malcher; da Costa Pinheiro, Kenny; Fonseca, Paula Luize Camargos; Tomé, Luiz Marcelo Ribeiro; Vaz, Aline Bruna Martins; Badotti, Fernanda; Ramos, Rommel Thiago Jucá; Brenig, Bertram; Azevedo, Vasco Ariston de Carvalho; Benevides, Raquel Guimarães; Góes-Neto, Aristóteles

    2018-06-01

    Herein, we present the draft genome of Trametes villosa isolate CCMB561, a wood-decaying Basidiomycota commonly found in tropical semiarid climate. The genome assembly was 57.98 Mb in size with an L50 of 691. A total of 16,711 putative protein-encoding genes was predicted, including 590 genes coding for carbohydrate-active enzymes (CAZy), directly involved in the decomposition of lignocellulosic materials. This is the first genome of this species of high interest in bioenergy research. The draft genome of Trametes villosa isolate CCMB561 will provide an important resource for future investigations in biofuel production, bioremediation and other green technologies.

  18. Structure and chromosomal localization of the human PD-1 gene (PDCD1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinohara, T.; Ishida, Y.; Kawaichi, M.

    1994-10-01

    A cDNA encoding mouse PD-1, a member of the immunoglobulin superfamily, was previously isolated from apoptosis-induced cells by subtractive hybridization. To determine the structure and chromosomal location of the human PD-1 gene, we screened a human T cell cDNA library by mouse PD-1 probe and isolated a cDNA coding for the human PD-1 protein. The deduced amino acid sequence of human PD-1 was 60% identical to the mouse counterpart, and a putative tyrosine kinase-association motif was well conserved. The human PD-1 gene was mapped to 2q37.3 by chromosomal in situ hybridization. 7 refs., 3 figs.

  19. Mapping of the Tuple1 gene to mouse chromosome 16A-B1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattei, M.G.; Halford, S.; Scambler, P.J.

    The human TUPLE1 gene encodes a putative transcriptional regulator and maps to chromosome 22, and therefore may play a role in Di-George syndrome (DGS), relo-cardio-facial syndrome (VCFS), or a related pathology. The murine TUPLE1 gene has also been cloned and shows strong sequence similarity to TUPLE1. Comparative mapping is useful in the study of chromosome evolution and is sometimes able to indicate possible mouse mutations that are potential models of human genetic disorders. As TIPLE1 is a candidate gene for the haploinsufficient phenotype in DGS, we mapped TUPLE1 to mouse chromosome 16A-B1. 6 refs., 1 fig.

  20. Analysis of the Function of a Putative 2,3-Diphosphoglyceric Acid-Dependent Phosphoglycerate Mutase from Bacillus subtilis

    PubMed Central

    Pearson, Claire L.; Loshon, Charles A.; Pedersen, Lotte B.; Setlow, Barbara; Setlow, Peter

    2000-01-01

    A Bacillus subtilis gene termed yhfR encodes the only B. subtilis protein with significant sequence similarity to 2,3-diphosphoglycerate-dependent phosphoglycerate mutases (dPGM). This gene is expressed at a low level during growth and sporulation, but deletion of yhfR had no effect on growth, sporulation, or spore germination and outgrowth. YhfR was expressed in and partially purified from Escherichia coli but had little if any PGM activity and gave no detectable PGM activity in B. subtilis. These data indicate that B. subtilis does not require YhfR and most likely does not require a dPGM. PMID:10869096

  1. [Detection of putative polysaccharide biosynthesis genes in Azospirillum brasilense strains from serogroups I and II].

    PubMed

    Petrova, L P; Prilipov, A G; Katsy, E I

    2017-01-01

    It is known that in Azospirillum brasilense strains Sp245 and SR75 included in serogroup I, the repeat units of their O-polysaccharides consist of five residues of D-rhamnose, and in strain SR15, of four; and the heteropolymeric O-polysaccharide of A. brasilense type strain Sp7 from serogroup II contains not less than five types of repeat units. In the present work, a complex of nondegenerate primers to the genes of A. brasilense Sp245 plasmids AZOBR_p6, AZOBR_p3, and AZOBR_p2, which encode putative enzymes for the biosynthesis of core oligosaccharide and O-polysaccharide of lipopolysaccharide, capsular polysaccharides, and exopolysaccharides, was proposed. By using the designed primers, products of the expected sizes were synthesized in polymerase chain reactions on genomic DNA of A. brasilense Sp245, SR75, SR15, and Sp7 in 36, 29, 23, and 12 cases, respectively. As a result of sequencing of a number of amplicons, a high (86–99%) level of identity of the corresponding putative polysaccharide biosynthesis genes in three A. brasilense strains from serogroup I was detected. In a blotting-hybridization reaction with the biotin-labeled DNA of the A. brasilense gene AZOBR_p60122 coding for putative permease of the ABC transporter of polysaccharides, localization of the homologous gene in ~120-MDa plasmids of the bacteria A. brasilense SR15 and SR75 was revealed.

  2. Unusual genome complexity in Lactobacillus salivarius JCM1046.

    PubMed

    Raftis, Emma J; Forde, Brian M; Claesson, Marcus J; O'Toole, Paul W

    2014-09-08

    Lactobacillus salivarius strains are increasingly being exploited for their probiotic properties in humans and animals. Dissemination of antibiotic resistance genes among species with food or probiotic-association is undesirable and is often mediated by plasmids or integrative and conjugative elements. L. salivarius strains typically have multireplicon genomes including circular megaplasmids that encode strain-specific traits for intestinal survival and probiotic activity. Linear plasmids are less common in lactobacilli and show a very limited distribution in L. salivarius. Here we present experimental evidence that supports an unusually complex multireplicon genome structure in the porcine isolate L. salivarius JCM1046. JCM1046 harbours a 1.83 Mb chromosome, and four plasmids which constitute 20% of the genome. In addition to the known 219 kb repA-type megaplasmid pMP1046A, we identified and experimentally validated the topology of three additional replicons, the circular pMP1046B (129 kb), a linear plasmid pLMP1046 (101 kb) and pCTN1046 (33 kb) harbouring a conjugative transposon. pMP1046B harbours both plasmid-associated replication genes and paralogues of chromosomally encoded housekeeping and information-processing related genes, thus qualifying it as a putative chromid. pLMP1046 shares limited sequence homology or gene synteny with other L. salivarius plasmids, and its putative replication-associated protein is homologous to the RepA/E proteins found in the large circular megaplasmids of L. salivarius. Plasmid pCTN1046 harbours a single copy of an integrated conjugative transposon (Tn6224) which appears to be functionally intact and includes the tetracycline resistance gene tetM. Experimental validation of sequence assemblies and plasmid topology resolved the complex genome architecture of L. salivarius JCM1046. A high-coverage draft genome sequence would not have elucidated the genome complexity in this strain. Given the expanding use of L. salivarius as a probiotic, it is important to determine the genotypic and phenotypic organization of L. salivarius strains. The identification of Tn6224-like elements in this species has implications for strain selection for probiotic applications.

  3. Cloning and Expression of a Phloretin Hydrolase Gene from Eubacterium ramulus and Characterization of the Recombinant Enzyme

    PubMed Central

    Schoefer, Lilian; Braune, Annett; Blaut, Michael

    2004-01-01

    Phloretin hydrolase catalyzes the hydrolytic C-C cleavage of phloretin to phloroglucinol and 3-(4-hydroxyphenyl)propionic acid during flavonoid degradation in Eubacterium ramulus. The gene encoding the enzyme was cloned by screening a gene library for hydrolase activity. The insert of a clone conferring phloretin hydrolase activity was sequenced. Sequence analysis revealed an open reading frame of 822 bp (phy), a putative promoter region, and a terminating stem-loop structure. The deduced amino acid sequence of phy showed similarities to a putative protein of the 2,4-diacetylphloroglucinol biosynthetic operon from Pseudomonas fluorescens. The phloretin hydrolase was heterologously expressed in Escherichia coli and purified. The molecular mass of the native enzyme was approximately 55 kDa as determined by gel filtration. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the deduced amino acid sequence of phy indicated molecular masses of 30 and 30.8 kDa, respectively, suggesting that the enzyme is a homodimer. The recombinant phloretin hydrolase catalyzed the hydrolysis of phloretin to equimolar amounts of phloroglucinol and 3-(4-hydroxyphenyl)propionic acid. The optimal temperature and pH of the catalyzed reaction mixture were 37°C and 7.0, respectively. The Km for phloretin was 13 ± 3 μM and the kcat was 10 ± 2 s−1. The enzyme did not transform phloretin-2′-glucoside (phloridzin), neohesperidin dihydrochalcone, 1,3-diphenyl-1,3-propandione, or trans-1,3-diphenyl-2,3-epoxy-propan-1-one. The catalytic activity of the phloretin hydrolase was reduced by N-bromosuccinimide, o-phenanthroline, N-ethylmaleimide, and CuCl2 to 3, 20, 35, and 85%, respectively. Phloroglucinol and 3-(4-hydroxyphenyl)propionic acid reduced the activity to 54 and 70%, respectively. PMID:15466559

  4. Sequencing of GJB2 in Cameroonians and Black South Africans and comparison to 1000 Genomes Project Data Support Need to Revise Strategy for Discovery of Nonsyndromic Deafness Genes in Africans.

    PubMed

    Bosch, Jason; Noubiap, Jean Jacques N; Dandara, Collet; Makubalo, Nomlindo; Wright, Galen; Entfellner, Jean-Baka Domelevo; Tiffin, Nicki; Wonkam, Ambroise

    2014-11-01

    Mutations in the GJB2 gene, encoding connexin 26, could account for 50% of congenital, nonsyndromic, recessive deafness cases in some Caucasian/Asian populations. There is a scarcity of published data in sub-Saharan Africans. We Sanger sequenced the coding region of the GJB2 gene in 205 Cameroonian and Xhosa South Africans with congenital, nonsyndromic deafness; and performed bioinformatic analysis of variations in the GJB2 gene, incorporating data from the 1000 Genomes Project. Amongst Cameroonian patients, 26.1% were familial. The majority of patients (70%) suffered from sensorineural hearing loss. Ten GJB2 genetic variants were detected by sequencing. A previously reported pathogenic mutation, g.3741_3743delTTC (p.F142del), and a putative pathogenic mutation, g.3816G>A (p.V167M), were identified in single heterozygous samples. Amongst eight the remaining variants, two novel variants, g.3318-41G>A and g.3332G>A, were reported. There were no statistically significant differences in allele frequencies between cases and controls. Principal Components Analyses differentiated between Africans, Asians, and Europeans, but only explained 40% of the variation. The present study is the first to compare African GJB2 sequences with the data from the 1000 Genomes Project and have revealed the low variation between population groups. This finding has emphasized the hypothesis that the prevalence of mutations in GJB2 in nonsyndromic deafness amongst European and Asian populations is due to founder effects arising after these individuals migrated out of Africa, and not to a putative "protective" variant in the genomic structure of GJB2 in Africans. Our results confirm that mutations in GJB2 are not associated with nonsyndromic deafness in Africans.

  5. Centrocins: isolation and characterization of novel dimeric antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis.

    PubMed

    Li, Chun; Haug, Tor; Moe, Morten K; Styrvold, Olaf B; Stensvåg, Klara

    2010-09-01

    As immune effector molecules, antimicrobial peptides (AMPs) play an important role in the invertebrate immune system. Here, we present two novel AMPs, named centrocins 1 (4.5kDa) and 2 (4.4kDa), purified from coelomocyte extracts of the green sea urchin, Strongylocentrotus droebachiensis. The native peptides are cationic and show potent activities against Gram-positive and Gram-negative bacteria. The centrocins have an intramolecular heterodimeric structure, containing a heavy chain (30 amino acids) and a light chain (12 amino acids). The cDNA encoding the peptides and genomic sequences were cloned and sequenced. One putative isoform (centrocin 1b) was identified and one intron was found in the genes coding for the centrocins. The full length protein sequence of centrocin 1 consists of 119 amino acids, whereas centrocin 2 consists of 118 amino acids which both include a preprosequence of 51 or 50 amino acids for centrocins 1 and 2, respectively, and an interchain of 24 amino acids between the heavy and light chain. The difference of molecular mass between the native centrocins and the deduced sequences from cDNA indicates that the native centrocins contain a post-translational brominated tryptophan. In addition, two amino acids at the C-terminal, Gly-Arg, were removed from the light chains during the post-translational processing. The separate peptide chains of centrocin 1 were synthesized and the heavy chain alone was shown to be sufficient for antimicrobial activity. The genome of the closely related species, the purple sea urchin (S. purpuratus), was shown to contain two putative proteins with high similarity to the centrocins. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Transcription activation mediated by a cyclic AMP receptor protein from Thermus thermophilus HB8.

    PubMed

    Shinkai, Akeo; Kira, Satoshi; Nakagawa, Noriko; Kashihara, Aiko; Kuramitsu, Seiki; Yokoyama, Shigeyuki

    2007-05-01

    The extremely thermophilic bacterium Thermus thermophilus HB8, which belongs to the phylum Deinococcus-Thermus, has an open reading frame encoding a protein belonging to the cyclic AMP (cAMP) receptor protein (CRP) family present in many bacteria. The protein named T. thermophilus CRP is highly homologous to the CRP family proteins from the phyla Firmicutes, Actinobacteria, and Cyanobacteria, and it forms a homodimer and interacts with cAMP. CRP mRNA and intracellular cAMP were detected in this strain, which did not drastically fluctuate during cultivation in a rich medium. The expression of several genes was altered upon disruption of the T. thermophilus CRP gene. We found six CRP-cAMP-dependent promoters in in vitro transcription assays involving DNA fragments containing the upstream regions of the genes exhibiting decreased expression in the CRP disruptant, indicating that the CRP is a transcriptional activator. The consensus T. thermophilus CRP-binding site predicted upon nucleotide sequence alignment is 5'-(C/T)NNG(G/T)(G/T)C(A/C)N(A/T)NNTCACAN(G/C)(G/C)-3'. This sequence is unique compared with the known consensus binding sequences of CRP family proteins. A putative -10 hexamer sequence resides at 18 to 19 bp downstream of the predicted T. thermophilus CRP-binding site. The CRP-regulated genes found in this study comprise clustered regularly interspaced short palindromic repeat (CRISPR)-associated (cas) ones, and the genes of a putative transcriptional regulator, a protein containing the exonuclease III-like domain of DNA polymerase, a GCN5-related acetyltransferase homolog, and T. thermophilus-specific proteins of unknown function. These results suggest a role for cAMP signal transduction in T. thermophilus and imply the T. thermophilus CRP is a cAMP-responsive regulator.

  7. Cloning and expression of a CYP720B orthologue involved in the biosynthesis of diterpene resin acids in Pinus brutia.

    PubMed

    Semiz, Asli; Sen, Alaattin

    2015-03-01

    Cytochrome P450 monooxygenases mediate a broad range of oxidative reactions involved in the biosynthesis of both primary and secondary metabolites in plants. Until now, only two P450 genes, CYP720B1 from Pinus taeda and CYP720B4 from Picea sitchensis, have been functionally characterised and described in the literature. The purpose of this study was to describe the cloning and expression of CYP720B from Pinus brutia due to its suggested role in the synthesis of bioactive compounds used for chemical defence against insects. A PCR product of the P. brutia CYP720B gene was cloned into the pCR8/GW/TOPO cloning vector. After optimising the sequence for codon usage in yeast, it was transferred into the inducible expression vector pYES-DEST52 and transfected into the S. cerevisiae INVSc1 strain. Sequence analysis showed that the P. brutia CYP720B gene contains an open reading frame of 1,464 nucleotides, which encodes a 53,570 Da putative protein of 487 amino acid residues. The putative protein contains the classic heme-binding sequence motif that is conserved in all P450 enzymes. It shares 99 and 61% identity with the deduced amino acid sequences of CYP720B1 from Pinus taeda and CYP720B4 from Picea sitchensis, respectively. Recombinant CYP720B protein expression was confirmed using western blot analysis. Furthermore, recombinant CYP720B was functionally active, showing a Soret peak at approximately 448 nm in the reduced CO difference spectra. These data suggest that the cloned gene is an orthologue of CYP720B in P. brutia and might be involved in DRA biosynthesis.

  8. Gapless genome assembly of Colletotrichum higginsianum reveals chromosome structure and association of transposable elements with secondary metabolite gene clusters.

    PubMed

    Dallery, Jean-Félix; Lapalu, Nicolas; Zampounis, Antonios; Pigné, Sandrine; Luyten, Isabelle; Amselem, Joëlle; Wittenberg, Alexander H J; Zhou, Shiguo; de Queiroz, Marisa V; Robin, Guillaume P; Auger, Annie; Hainaut, Matthieu; Henrissat, Bernard; Kim, Ki-Tae; Lee, Yong-Hwan; Lespinet, Olivier; Schwartz, David C; Thon, Michael R; O'Connell, Richard J

    2017-08-29

    The ascomycete fungus Colletotrichum higginsianum causes anthracnose disease of brassica crops and the model plant Arabidopsis thaliana. Previous versions of the genome sequence were highly fragmented, causing errors in the prediction of protein-coding genes and preventing the analysis of repetitive sequences and genome architecture. Here, we re-sequenced the genome using single-molecule real-time (SMRT) sequencing technology and, in combination with optical map data, this provided a gapless assembly of all twelve chromosomes except for the ribosomal DNA repeat cluster on chromosome 7. The more accurate gene annotation made possible by this new assembly revealed a large repertoire of secondary metabolism (SM) key genes (89) and putative biosynthetic pathways (77 SM gene clusters). The two mini-chromosomes differed from the ten core chromosomes in being repeat- and AT-rich and gene-poor but were significantly enriched with genes encoding putative secreted effector proteins. Transposable elements (TEs) were found to occupy 7% of the genome by length. Certain TE families showed a statistically significant association with effector genes and SM cluster genes and were transcriptionally active at particular stages of fungal development. All 24 subtelomeres were found to contain one of three highly-conserved repeat elements which, by providing sites for homologous recombination, were probably instrumental in four segmental duplications. The gapless genome of C. higginsianum provides access to repeat-rich regions that were previously poorly assembled, notably the mini-chromosomes and subtelomeres, and allowed prediction of the complete SM gene repertoire. It also provides insights into the potential role of TEs in gene and genome evolution and host adaptation in this asexual pathogen.

  9. Deep transcriptome annotation enables the discovery and functional characterization of cryptic small proteins

    PubMed Central

    Delcourt, Vivian; Lucier, Jean-François; Gagnon, Jules; Beaudoin, Maxime C; Vanderperre, Benoît; Breton, Marc-André; Motard, Julie; Jacques, Jean-François; Brunelle, Mylène; Gagnon-Arsenault, Isabelle; Fournier, Isabelle; Ouangraoua, Aida; Hunting, Darel J; Cohen, Alan A; Landry, Christian R; Scott, Michelle S

    2017-01-01

    Recent functional, proteomic and ribosome profiling studies in eukaryotes have concurrently demonstrated the translation of alternative open-reading frames (altORFs) in addition to annotated protein coding sequences (CDSs). We show that a large number of small proteins could in fact be coded by these altORFs. The putative alternative proteins translated from altORFs have orthologs in many species and contain functional domains. Evolutionary analyses indicate that altORFs often show more extreme conservation patterns than their CDSs. Thousands of alternative proteins are detected in proteomic datasets by reanalysis using a database containing predicted alternative proteins. This is illustrated with specific examples, including altMiD51, a 70 amino acid mitochondrial fission-promoting protein encoded in MiD51/Mief1/SMCR7L, a gene encoding an annotated protein promoting mitochondrial fission. Our results suggest that many genes are multicoding genes and code for a large protein and one or several small proteins. PMID:29083303

  10. Gene amplification at a locus encoding a putative Na+/H+ antiporter confers sodium and lithium tolerance in fission yeast.

    PubMed Central

    Jia, Z P; McCullough, N; Martel, R; Hemmingsen, S; Young, P G

    1992-01-01

    We have identified a new locus, sodium 2 (sod2) based on selection for increased LiCl tolerance in fission yeast, Schizosaccharomyces pombe. Tolerant strains have enhanced pH-dependent Na+ export capacity and sodium transport experiments suggest that the gene encodes an Na+/H+ antiport. The predicted sod2 gene product can be placed in the broad class of transporters which possess 12 hydrophobic transmembrane domains. The protein shows some sequence similarity to the human and bacterial Na+/H+ antiporters. Overexpression of sod2 increased Na+ export capacity and conferred sodium tolerance. Osmotolerance was not affected and sod2 cells were unaffected for growth in K+. In a sod2 disruption strain cells were incapable of exporting sodium. They were hypersensitive to Na+ or Li+ and could not grow under conditions that approximate pH7. The sod2 gene amplification could be selected stepwise and the degree of such amplification correlated with the level of Na+ or Li+ tolerance. Images PMID:1314171

  11. Splicing of a group II intron involved in the conjugative transfer of pRS01 in lactococci.

    PubMed

    Mills, D A; McKay, L L; Dunny, G M

    1996-06-01

    Analysis of a region involved in the conjugative transfer of the lactococcal conjugative element pRS01 has revealed a bacteria] group II intron. Splicing of this lactococcal intron (designated Ll.ltrB) in vivo resulted in the ligation of two exon messages (ltrBE1 and ltrBE2) which encoded a putative conjugative relaxase essential for the transfer of pRS01. Like many group II introns, the Ll.ltrB intron possessed an open reading frame (ltrA) with homology to reverse transcriptases. Remarkably, sequence analysis of ltrA suggested a greater similarity to open reading frames encoded by eukaryotic mitochondrial group II introns than to those identified to date from other bacteria. Several insertional mutations within ltrA resulted in plasmids exhibiting a conjugative transfer-deficient phenotype. These results provide the first direct evidence for splicing of a prokaryotic group II intron in vivo and suggest that conjugative transfer is a mechanism for group II intron dissemination in bacteria.

  12. Essential role of the HMG domain in the function of yeast mitochondrial histone HM: functional complementation of HM by the nuclear nonhistone protein NHP6A.

    PubMed

    Kao, L R; Megraw, T L; Chae, C B

    1993-06-15

    The yeast mitochondrial histone protein HM is required for maintenance of the mitochondrial genome, and disruption of the gene encoding HM (HIM1/ABF2) results in formation of a respiration-deficient petite mutant phenotype. HM contains two homologous regions, which share sequence similarity with the eukaryotic nuclear nonhistone protein, HMG-1. Experiments with various deletion mutants of HM show that a single HMG domain of HM is functional and can restore respiration competency to cells that lack HM protein (him1 mutant cells). The gene encoding the putative yeast nuclear HMG-1 homolog, the NHP6A protein, can functionally complement the him1 mutation. These results suggest that the HMG domain is the basic unit for the function of HM in mitochondria and that the function of HMG-1 proteins in the nucleus and HM in the mitochondrion may be equivalent.

  13. Bioinformatics analysis and characteristics of VP23 encoded by the newly identified UL18 gene of duck enteritis virus

    NASA Astrophysics Data System (ADS)

    Chen, Xiwen; Cheng, Anchun; Wang, Mingshu; Xiang, Jun

    2011-10-01

    In this study, the predicted information about structures and functions of VP23 encoded by the newly identified DEV UL18 gene through bioinformatics softwares and tools. The DEV UL18 was predicted to encode a polypeptide with 322 amino acids, termed VP23, with a putative molecular mass of 35.250 kDa and a predicted isoelectric point (PI) of 8.37, no signal peptide and transmembrane domain in the polypeptide. The prediction of subcellular localization showed that the DEV-VP23 located at endoplasmic reticulum with 33.3%, mitochondrial with 22.2%, extracellular, including cell wall with 11.1%, vesicles of secretory system with 11.1%, Golgi with 11.1%, and plasma membrane with 11.1%. The acid sequence of analysis showed that the potential antigenic epitopes are situated in 45-47, 53-60, 102-105, 173-180, 185-189, 260-265, 267-271, and 292-299 amino acids. All the consequences inevitably provide some insights for further research about the DEV-VP23 and also provide a fundament for further study on the the new type clinical diagnosis of DEV and can be used for the development of new DEV vaccine.

  14. Characterization of the SPI-1 and Rsp type three secretion systems in Pseudomonas fluorescens F113.

    PubMed

    Barret, Matthieu; Egan, Frank; Moynihan, Jennifer; Morrissey, John P; Lesouhaitier, Olivier; O'Gara, Fergal

    2013-06-01

    Pseudomonas fluorescens F113 is a plant growth-promoting rhizobacterium (PGPR) isolated from the sugar beet rhizosphere. The recent annotation of the F113 genome sequence has revealed that this strain encodes a wide array of secretion systems, including two complete type three secretion systems (T3SSs) belonging to the Hrp1 and SPI-1 families. While Hrp1 T3SSs are frequently encoded in other P. fluorescens strains, the presence of a SPI-1 T3SS in a plant-beneficial bacterial strain was unexpected. In this work, the genetic organization and expression of these two T3SS loci have been analysed by a combination of transcriptional reporter fusions and transcriptome analyses. Overexpression of two transcriptional activators has shown a number of genes encoding putative T3 effectors. In addition, the influence of these two T3SSs during the interaction of P. fluorescens F113 with some bacterial predators was also assessed. Our data revealed that the transcriptional activator hilA is induced by amoeba and that the SPI-1 T3SS could potentially be involved in resistance to amoeboid grazing. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  15. A putative regulatory genetic locus modulates virulence in the pathogen Leptospira interrogans.

    PubMed

    Eshghi, Azad; Becam, Jérôme; Lambert, Ambroise; Sismeiro, Odile; Dillies, Marie-Agnès; Jagla, Bernd; Wunder, Elsio A; Ko, Albert I; Coppee, Jean-Yves; Goarant, Cyrille; Picardeau, Mathieu

    2014-06-01

    Limited research has been conducted on the role of transcriptional regulators in relation to virulence in Leptospira interrogans, the etiological agent of leptospirosis. Here, we identify an L. interrogans locus that encodes a sensor protein, an anti-sigma factor antagonist, and two genes encoding proteins of unknown function. Transposon insertion into the gene encoding the sensor protein led to dampened transcription of the other 3 genes in this locus. This lb139 insertion mutant (the lb139(-) mutant) displayed attenuated virulence in the hamster model of infection and reduced motility in vitro. Whole-transcriptome analyses using RNA sequencing revealed the downregulation of 115 genes and the upregulation of 28 genes, with an overrepresentation of gene products functioning in motility and signal transduction and numerous gene products with unknown functions, predicted to be localized to the extracellular space. Another significant finding encompassed suppressed expression of the majority of the genes previously demonstrated to be upregulated at physiological osmolarity, including the sphingomyelinase C precursor Sph2 and LigB. We provide insight into a possible requirement for transcriptional regulation as it relates to leptospiral virulence and suggest various biological processes that are affected due to the loss of native expression of this genetic locus.

  16. Identification and Analysis of the Biosynthetic Gene Cluster Encoding the Thiopeptide Antibiotic Cyclothiazomycin in Streptomyces hygroscopicus 10-22▿ †

    PubMed Central

    Wang, Jiang; Yu, Yi; Tang, Kexuan; Liu, Wen; He, Xinyi; Huang, Xi; Deng, Zixin

    2010-01-01

    Thiopeptide antibiotics are an important class of natural products resulting from posttranslational modifications of ribosomally synthesized peptides. Cyclothiazomycin is a typical thiopeptide antibiotic that has a unique bridged macrocyclic structure derived from an 18-amino-acid structural peptide. Here we reported cloning, sequencing, and heterologous expression of the cyclothiazomycin biosynthetic gene cluster from Streptomyces hygroscopicus 10-22. Remarkably, successful heterologous expression of a 22.7-kb gene cluster in Streptomyces lividans 1326 suggested that there is a minimum set of 15 open reading frames that includes all of the functional genes required for cyclothiazomycin production. Six genes of these genes, cltBCDEFG flanking the structural gene cltA, were predicted to encode the enzymes required for the main framework of cyclothiazomycin, and two enzymes encoded by a putative operon, cltMN, were hypothesized to participate in the tailoring step to generate the tertiary thioether, leading to the final cyclization of the bridged macrocyclic structure. This rigorous bioinformatics analysis based on heterologous expression of cyclothiazomycin resulted in an ideal biosynthetic model for us to understand the biosynthesis of thiopeptides. PMID:20154110

  17. The mapping of the human 52-kD Ro/SSA autoantigen gene to human chromosome II, and its polymorphisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank, M.B.; Itoh, Kazuko; Fujisaku, Atsushi

    1993-01-01

    Autoantibodies to the ribonucleoprotein Ro/SSA occur in nearly half of the patients with systemic lupus erythematosus and are associated with lymphopenia, photosensitive dermatitis, and pulmonary and renal disease, which suggests that they have an immunopathologic role. The majority of Ro/SSA precipitin-positive patients produce serum antibodies that bind to the 60-kD and 52-kD Ro/SSA proteins. The authors previously isolated and determined the nucleotide sequence of a cDNA clone that encodes the 52-kD form of the human Ro/SSA protein. In the present study, they have determined the chromosomal location of the gene by in situ hybridization to the end of the shortmore » arm of chromosome 11. Hybridization of portions of the cDNA probe to restriction enzyme-digested DNA indicated the gene is composed of at least three exons. The exon encoding the putative zinc fingers of this protein was found to be distinct from that which encodes the leucine zipper. An RFLP of this gene was identified and is associated with the presence of lupus, primarily in black Americans. 60 refs., 3 figs., 3 tabs.« less

  18. Characterization of cDNA encoding molt-inhibiting hormone of the crab, Cancer pagurus; expression of MIH in non-X-organ tissues.

    PubMed

    Lu, W; Wainwright, G; Olohan, L A; Webster, S G; Rees, H H; Turner, P C

    2001-10-31

    Synthesis of ecdysteroids (molting hormones) by crustacean Y-organs is regulated by a neuropeptide, molt-inhibiting hormone (MIH), produced in eyestalk neural ganglia. We report here the molecular cloning of a cDNA encoding MIH of the edible crab, Cancer pagurus. Full-length MIH cDNA was obtained by using reverse transcription-polymerase chain reaction (RT-PCR) with degenerate oligonucleotides based upon the amino acid sequence of MIH, in conjunction with 5'- and 3'-RACE. Full-length clones of MIH cDNA were obtained that encoded a 35 amino acid putative signal peptide and the mature 78 amino acid peptide. Of various tissues examined by Northern blot analysis, the X-organ was the sole major site of expression of the MIH gene. However, a nested-PCR approach using non-degenerate MIH-specific primers indicated the presence of MIH transcripts in other tissues. Southern blot analysis indicated a simple gene arrangement with at least two copies of the MIH gene in the genome of C. pagurus. Additional Southern blotting experiments detected MIH-hybridizing bands in another Cancer species, Cancer antennarius and another crab species, Carcinus maenas.

  19. Histoplasma capsulatum encodes a dipeptidyl peptidase active against the mammalian immunoregulatory peptide, substance P.

    PubMed

    Cooper, Kendal G; Zarnowski, Robert; Woods, Jon P

    2009-01-01

    The pathogenic fungus Histoplasma capsulatum secretes dipeptidyl peptidase (Dpp) IV enzyme activity and has two putative DPPIV homologs (HcDPPIVA and HcDPPIVB). We previously showed that HcDPPIVB is the gene responsible for the majority of secreted DppIV activity in H. capsulatum culture supernatant, while we could not detect any functional contribution from HcDPPIVA. In order to determine whether HcDPPIVA encodes a functional DppIV enzyme, we expressed HcDPPIVA in Pichia pastoris and purified the recombinant protein. The recombinant enzyme cleaved synthetic DppIV substrates and had similar biochemical properties to other described DppIV enzymes, with temperature and pH optima of 42 degrees C and 8, respectively. Recombinant HcDppIVA cleaved the host immunoregulatory peptide substance P, indicating the enzyme has the potential to affect the immune response during infection. Expression of HcDPPIVA under heterologous regulatory sequences in H. capsulatum resulted in increased secreted DppIV activity, indicating that the encoded protein can be expressed and secreted by its native organism. However, HcDPPIVA was not required for virulence in a murine model of histoplasmosis. This work reports a fungal enzyme that can function to cleave the immunomodulatory host peptide substance P.

  20. Molecular Cloning and Characteristic Features of a Novel Extracellular Tyrosinase from Aspergillus niger PA2.

    PubMed

    Agarwal, Pragati; Singh, Jyoti; Singh, R P

    2017-05-01

    Aspergillus niger PA2, a novel strain isolated from waste effluents of food industry, is a potential extracellular tyrosinase producer. Enzyme activity and L-DOPA production were maximum when glucose and peptone were employed as C source and nitrogen source respectively in the medium and enhanced notably when the copper was supplemented, thus depicting the significance of copper in tyrosinase activity. Tyrosinase-encoding gene from the fungus was cloned, and amplification of the tyrosinase gene yielded a 1127-bp DNA fragment and 374 amino acid residue long product that encoded for a predicted protein of 42.3 kDa with an isoelectric point of 4.8. Primary sequence analysis of A. niger PA2 tyrosinase had shown that it had approximately 99% identity with that of A. niger CBS 513.88, which was further confirmed by phylogenetic analysis. The inferred amino acid sequence of A. niger tyrosinase contained two putative copper-binding sites comprising of six histidines, a characteristic feature for type-3 copper proteins, which were highly conserved in all tyrosinases throughout the Aspergillus species. When superimposed onto the tertiary structure of A. oryzae tyrosinase, the conserved residues from both the organisms occupied same spatial positions to provide a di-copper-binding peptide groove.

  1. Molecular Characterization and Expression of a Phytase Gene from the Thermophilic Fungus Thermomyces lanuginosus

    PubMed Central

    Berka, Randy M.; Rey, Michael W.; Brown, Kimberly M.; Byun, Tony; Klotz, Alan V.

    1998-01-01

    The phyA gene encoding an extracellular phytase from the thermophilic fungus Thermomyces lanuginosus was cloned and heterologously expressed, and the recombinant gene product was biochemically characterized. The phyA gene encodes a primary translation product (PhyA) of 475 amino acids (aa) which includes a putative signal peptide (23 aa) and propeptide (10 aa). The deduced amino acid sequence of PhyA has limited sequence identity (ca. 47%) with Aspergillus niger phytase. The phyA gene was inserted into an expression vector under transcriptional control of the Fusarium oxysporum trypsin gene promoter and used to transform a Fusarium venenatum recipient strain. The secreted recombinant phytase protein was enzymatically active between pHs 3 and 7.5, with a specific activity of 110 μmol of inorganic phosphate released per min per mg of protein at pH 6 and 37°C. The Thermomyces phytase retained activity at assay temperatures up to 75°C and demonstrated superior catalytic efficiency to any known fungal phytase at 65°C (the temperature optimum). Comparison of this new Thermomyces catalyst with the well-known Aspergillus niger phytase reveals other favorable properties for the enzyme derived from the thermophilic gene donor, including catalytic activity over an expanded pH range. PMID:9797301

  2. Characterization, Molecular Cloning, and Differential Expression Analysis of Laccase Genes from the Edible Mushroom Lentinula edodes

    PubMed Central

    Zhao, J.; Kwan, H. S.

    1999-01-01

    The effect of different substrates and various developmental stages (mycelium growth, primordium appearance, and fruiting-body formation) on laccase production in the edible mushroom Lentinula edodes was studied. The cap of the mature mushroom showed the highest laccase activity, and laccase activity was not stimulated by some well-known laccase inducers or sawdust. For our molecular studies, two genomic DNA sequences, representing allelic variants of the L. edodes lac1 gene, were isolated, and DNA sequence analysis demonstrated that lac1 encodes a putative polypeptide of 526 amino acids which is interrupted by 13 introns. The two allelic genes differ at 95 nucleotides, which results in seven amino acid differences in the encoded protein. The copper-binding domains found in other laccase enzymes are conserved in the L. edodes Lac1 proteins. A fragment of a second laccase gene (lac2) was also isolated, and competitive PCR showed that expression of lac1 and lac2 genes was different under various conditions. Our results suggest that laccases may play a role in the morphogenesis of the mushroom. To our knowledge, this is the first report on the cloning of genes involved in lignocellulose degradation in this economically important edible fungus. PMID:10543802

  3. A Genetic Locus Necessary for Rhamnose Uptake and Catabolism in Rhizobium leguminosarum bv. trifolii

    PubMed Central

    Richardson, Jason S.; Hynes, Michael F.; Oresnik, Ivan J.

    2004-01-01

    Rhizobium leguminosarum bv. trifolii mutants unable to catabolize the methyl-pentose rhamnose are unable to compete effectively for nodule occupancy. In this work we show that the locus responsible for the transport and catabolism of rhamnose spans 10,959 bp. Mutations in this region were generated by transposon mutagenesis, and representative mutants were characterized. The locus contains genes coding for an ABC-type transporter, a putative dehydrogenase, a probable isomerase, and a sugar kinase necessary for the transport and subsequent catabolism of rhamnose. The regulation of these genes, which are inducible by rhamnose, is carried out in part by a DeoR-type negative regulator (RhaR) that is encoded within the same transcript as the ABC-type transporter but is separated from the structural genes encoding the transporter by a terminator-like sequence. RNA dot blot analysis demonstrated that this terminator-like sequence is correlated with transcript attenuation only under noninducing conditions. Transport assays utilizing tritiated rhamnose demonstrated that uptake of rhamnose was inducible and dependent upon the presence of the ABC transporter at this locus. Phenotypic analyses of representative mutants from this locus provide genetic evidence that the catabolism of rhamnose differs from previously described methyl-pentose catabolic pathways. PMID:15576793

  4. Lipoxygenase in Caragana jubata responds to low temperature, abscisic acid, methyl jasmonate and salicylic acid.

    PubMed

    Bhardwaj, Pardeep Kumar; Kaur, Jagdeep; Sobti, Ranbir Chander; Ahuja, Paramvir Singh; Kumar, Sanjay

    2011-09-01

    Lipoxygenase (LOX) catalyses oxygenation of free polyunsaturated fatty acids into oxylipins, and is a critical enzyme of the jasmonate signaling pathway. LOX has been shown to be associated with biotic and abiotic stress responses in diverse plant species, though limited data is available with respect to low temperature and the associated cues. Using rapid amplification of cDNA ends, a full-length cDNA (CjLOX) encoding lipoxygenase was cloned from apical buds of Caragana jubata, a temperate plant species that grows under extreme cold. The cDNA obtained was 2952bp long consisting of an open reading frame of 2610bp encoding 869 amino acids protein. Multiple alignment of the deduced amino acid sequence with those of other plants demonstrated putative LH2/ PLAT domain, lipoxygenase iron binding catalytic domain and lipoxygenase_2 signature sequences. CjLOX exhibited up- and down-regulation of gene expression pattern in response to low temperature (LT), abscisic acid (ABA), methyl jasmonate (MJ) and salicylic acid (SA). Among all the treatments, a strong up-regulation was observed in response to MJ. Data suggests an important role of jasmonate signaling pathway in response to LT in C. jubata. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Solute carriers (SLCs) identified and characterized from kidney transcriptome of golden mahseer (Tor putitora) (Fam: Cyprinidae).

    PubMed

    Barat, Ashoktaru; Sahoo, Prabhati Kumari; Kumar, Rohit; Pande, Veena

    2016-10-01

    The solute carriers (SLC) are trans-membrane proteins, those regulate the transport of various substances (sugars, amino acids, nucleotides, inorganic cations/anions, metals, drugs etc.) across the cell membrane. There are more than 338 solute carriers (slc) reported in fishes that play crucial role in cellular influx and efflux. The study of solute carrier families may reveal many answers regarding the function of transporter genes in the species and their effect in the existing environment. Therefore, we performed RNA sequencing of kidney tissue of the golden mahseer (Tor putitora) using Illumina platform to identify the solute carrier families and characterized 24 putative functional genes under 15 solute carrier families. Out of 24 putative functional genes, 11 genes were differentially expressed in different tissues (head kidney, trunk kidney, spleen, liver, gill, muscle, intestine and brain) using qRT-PCR assay. The slc5a1, slc5a12, slc12a3, slc13a3, slc22a13 and slc26a6 were highly expressed in kidney. The slc15a2, slc25a47, slc33a1 and slc38a2 were highly expressed in brain and slc30a5 was over-expressed in gill. The unrooted phylogenetic trees of slc2, slc5, slc13 and slc33 were constructed using amino acid sequences of Homo sapiens, Salmo salar, Danio rerio, Cyprinus carpio and Tor putitora. It appears that all the putative solute carrier families are very much conserved in human and fish species including the present fish, golden mahseer. This study provides the first hand database of solute carrier families particularly transporter encoding proteins in the species. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Antennal Transcriptome Analysis of Odorant Reception Genes in the Red Turpentine Beetle (RTB), Dendroctonus valens.

    PubMed

    Gu, Xiao-Cui; Zhang, Ya-Nan; Kang, Ke; Dong, Shuang-Lin; Zhang, Long-Wa

    2015-01-01

    The red turpentine beetle (RTB), Dendroctonus valens LeConte (Coleoptera: Curculionidae, Scolytinae), is a destructive invasive pest of conifers which has become the second most important forest pest nationwide in China. Dendroctonus valens is known to use host odors and aggregation pheromones, as well as non-host volatiles, in host location and mass-attack modulation, and thus antennal olfaction is of the utmost importance for the beetles' survival and fitness. However, information on the genes underlying olfaction has been lacking in D. valens. Here, we report the antennal transcriptome of D. valens from next-generation sequencing, with the goal of identifying the olfaction gene repertoire that is involved in D. valens odor-processing. We obtained 51 million reads that were assembled into 61,889 genes, including 39,831 contigs and 22,058 unigenes. In total, we identified 68 novel putative odorant reception genes, including 21 transcripts encoding for putative odorant binding proteins (OBP), six chemosensory proteins (CSP), four sensory neuron membrane proteins (SNMP), 22 odorant receptors (OR), four gustatory receptors (GR), three ionotropic receptors (IR), and eight ionotropic glutamate receptors. We also identified 155 odorant/xenobiotic degradation enzymes from the antennal transcriptome, putatively identified to be involved in olfaction processes including cytochrome P450s, glutathione-S-transferases, and aldehyde dehydrogenase. Predicted protein sequences were compared with counterparts in Tribolium castaneum, Megacyllene caryae, Ips typographus, Dendroctonus ponderosae, and Agrilus planipennis. The antennal transcriptome described here represents the first study of the repertoire of odor processing genes in D. valens. The genes reported here provide a significant addition to the pool of identified olfactory genes in Coleoptera, which might represent novel targets for insect management. The results from our study also will assist with evolutionary analyses of coleopteran olfaction.

  7. Antennal Transcriptome Analysis of Odorant Reception Genes in the Red Turpentine Beetle (RTB), Dendroctonus valens

    PubMed Central

    Dong, Shuang-Lin; Zhang, Long-Wa

    2015-01-01

    Background The red turpentine beetle (RTB), Dendroctonus valens LeConte (Coleoptera: Curculionidae, Scolytinae), is a destructive invasive pest of conifers which has become the second most important forest pest nationwide in China. Dendroctonus valens is known to use host odors and aggregation pheromones, as well as non-host volatiles, in host location and mass-attack modulation, and thus antennal olfaction is of the utmost importance for the beetles’ survival and fitness. However, information on the genes underlying olfaction has been lacking in D. valens. Here, we report the antennal transcriptome of D. valens from next-generation sequencing, with the goal of identifying the olfaction gene repertoire that is involved in D. valens odor-processing. Results We obtained 51 million reads that were assembled into 61,889 genes, including 39,831 contigs and 22,058 unigenes. In total, we identified 68 novel putative odorant reception genes, including 21 transcripts encoding for putative odorant binding proteins (OBP), six chemosensory proteins (CSP), four sensory neuron membrane proteins (SNMP), 22 odorant receptors (OR), four gustatory receptors (GR), three ionotropic receptors (IR), and eight ionotropic glutamate receptors. We also identified 155 odorant/xenobiotic degradation enzymes from the antennal transcriptome, putatively identified to be involved in olfaction processes including cytochrome P450s, glutathione-S-transferases, and aldehyde dehydrogenase. Predicted protein sequences were compared with counterparts in Tribolium castaneum, Megacyllene caryae, Ips typographus, Dendroctonus ponderosae, and Agrilus planipennis. Conclusion The antennal transcriptome described here represents the first study of the repertoire of odor processing genes in D. valens. The genes reported here provide a significant addition to the pool of identified olfactory genes in Coleoptera, which might represent novel targets for insect management. The results from our study also will assist with evolutionary analyses of coleopteran olfaction. PMID:25938508

  8. Identification of Putative Precursor Genes for the Biosynthesis of Cannabinoid-Like Compound in Radula marginata

    PubMed Central

    Hussain, Tajammul; Plunkett, Blue; Ejaz, Mahwish; Espley, Richard V.; Kayser, Oliver

    2018-01-01

    The liverwort Radula marginata belongs to the bryophyte division of land plants and is a prospective alternate source of cannabinoid-like compounds. However, mechanistic insights into the molecular pathways directing the synthesis of these cannabinoid-like compounds have been hindered due to the lack of genetic information. This prompted us to do deep sequencing, de novo assembly and annotation of R. marginata transcriptome, which resulted in the identification and validation of the genes for cannabinoid biosynthetic pathway. In total, we have identified 11,421 putative genes encoding 1,554 enzymes from 145 biosynthetic pathways. Interestingly, we have identified all the upstream genes of the central precursor of cannabinoid biosynthesis, cannabigerolic acid (CBGA), including its two first intermediates, stilbene acid (SA) and geranyl diphosphate (GPP). Expression of all these genes was validated using quantitative real-time PCR. We have characterized the protein structure of stilbene synthase (STS), which is considered as a homolog of olivetolic acid in R. marginata. Moreover, the metabolomics approach enabled us to identify CBGA-analogous compounds using electrospray ionization mass spectrometry (ESI-MS/MS) and gas chromatography mass spectrometry (GC-MS). Transcriptomic analysis revealed 1085 transcription factors (TF) from 39 families. Comparative analysis showed that six TF families have been uniquely predicted in R. marginata. In addition, the bioinformatics analysis predicted a large number of simple sequence repeats (SSRs) and non-coding RNAs (ncRNAs). Our results collectively provide mechanistic insights into the putative precursor genes for the biosynthesis of cannabinoid-like compounds and a novel transcriptomic resource for R. marginata. The large-scale transcriptomic resource generated in this study would further serve as a reference transcriptome to explore the Radulaceae family.

  9. Identification and Characterization of Two Temperature-Induced Surface-Associated Proteins of Streptococcus suis with High Homologies to Members of the Arginine Deiminase System of Streptococcus pyogenes

    PubMed Central

    Winterhoff, Nora; Goethe, Ralph; Gruening, Petra; Rohde, Manfred; Kalisz, Henryk; Smith, Hilde E.; Valentin-Weigand, Peter

    2002-01-01

    The present study was performed to identify stress-induced putative virulence proteins of Streptococcus suis. For this, protein expression patterns of streptococci grown at 32, 37, and 42°C were compared by one- and two-dimensional gel electrophoresis. Temperature shifts from 32 and 37 to 42°C induced expression of two cell wall-associated proteins with apparent molecular masses of approximately 47 and 53 kDa. Amino-terminal sequence analysis of the two proteins indicated homologies of the 47-kDa protein with an ornithine carbamoyltransferase (OCT) from Streptococcus pyogenes and of the 53-kDa protein with the streptococcal acid glycoprotein (SAGP) from S. pyogenes, an arginine deiminase (AD) recently proposed as a putative virulence factor. Cloning and sequencing the genes encoding the putative OCT and AD of S. suis, octS and adiS, respectively, revealed that they had 81.2 (octS) and 80.2% (adiS) identity with the respective genes of S. pyogenes. Both genes belong to the AD system, also found in other bacteria. Southern hybridization analysis demonstrated the presence of the adiS gene in all 42 serotype 2 and 9 S. suis strains tested. In 9 of these 42 strains, selected randomly, we confirmed expression of the AdiS protein, homologous to SAGP, by immunoblot analysis using a specific antiserum against the SAGP of S. pyogenes. In all strains AD activity was detected. Furthermore, by immunoelectron microscopy using the anti-S. pyogenes SAGP antiserum we were able to demonstrate that the AdiS protein is expressed on the streptococcal surface in association with the capsular polysaccharides but is not coexpressed with them. PMID:12446626

  10. Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses.

    PubMed

    Pritham, Ellen J; Putliwala, Tasneem; Feschotte, Cédric

    2007-04-01

    We previously identified a group of atypical mobile elements designated Mavericks from the nematodes Caenorhabditis elegans and C. briggsae and the zebrafish Danio rerio. Here we present the results of comprehensive database searches of the genome sequences available, which reveal that Mavericks are widespread in invertebrates and non-mammalian vertebrates but show a patchy distribution in non-animal species, being present in the fungi Glomus intraradices and Phakopsora pachyrhizi and in several single-celled eukaryotes such as the ciliate Tetrahymena thermophila, the stramenopile Phytophthora infestans and the trichomonad Trichomonas vaginalis, but not detectable in plants. This distribution, together with comparative and phylogenetic analyses of Maverick-encoded proteins, is suggestive of an ancient origin of these elements in eukaryotes followed by lineage-specific losses and/or recurrent episodes of horizontal transmission. In addition, we report that Maverick elements have amplified recently to high copy numbers in T. vaginalis where they now occupy as much as 30% of the genome. Sequence analysis confirms that most Mavericks encode a retroviral-like integrase, but lack other open reading frames typically found in retroelements. Nevertheless, the length and conservation of the target site duplication created upon Maverick insertion (5- or 6-bp) is consistent with a role of the integrase-like protein in the integration of a double-stranded DNA transposition intermediate. Mavericks also display long terminal-inverted repeats but do not contain ORFs similar to proteins encoded by DNA transposons. Instead, Mavericks encode a conserved set of 5 to 9 genes (in addition to the integrase) that are predicted to encode proteins with homology to replication and packaging proteins of some bacteriophages and diverse eukaryotic double-stranded DNA viruses, including a DNA polymerase B homolog and putative capsid proteins. Based on these and other structural similarities, we speculate that Mavericks represent an evolutionary missing link between seemingly disparate invasive DNA elements that include bacteriophages, adenoviruses and eukaryotic linear plasmids.

  11. Primary structure of the 175K Plasmodium falciparum erythrocyte binding antigen and identification of a peptide which elicits antibodies that inhibit malaria merozoite invasion.

    PubMed

    Sim, B K; Orlandi, P A; Haynes, J D; Klotz, F W; Carter, J M; Camus, D; Zegans, M E; Chulay, J D

    1990-11-01

    The Plasmodium falciparum gene encoding erythrocyte binding antigen-175 (EBA-175), a putative receptor for red cell invasion (Camus, D., and T. J. Hadley. 1985. Science (Wash. DC). 230:553-556.), has been isolated and characterized. DNA sequencing demonstrated a single open reading frame encoding a translation product of 1,435 amino acid residues. Peptides corresponding to regions on the deduced amino acid sequence predicted to be B cell epitopes were assessed for immunogenicity. Immunization of mice and rabbits with EBA-peptide 4, a synthetic peptide encompassing amino acid residues 1,062-1,103, produced antibodies that recognized P. falciparum merozoites in an indirect fluorescent antibody assay. When compared to sera from rabbits immunized with the same adjuvant and carrier protein, sera from rabbits immunized with EBA-peptide 4 inhibited merozoite invasion of erythrocytes in vitro by 80% at a 1:5 dilution. Furthermore, these sera inhibited the binding of purified, authentic EBA-175 to erythrocytes, suggesting that their activity in inhibiting merozoite invasion of erythrocytes is mediated by blocking the binding of EBA-175 to erythrocytes. Since the nucleotide sequence of EBA-peptide 4 is conserved among seven strains of P. falciparum from throughout the world (Sim, B. K. L. 1990. Mol. Biochem. Parasitol. 41:293-296.), these data identify a region of the protein that should be a focus of vaccine development efforts.

  12. Localized Plasticity in the Streamlined Genomes of Vinyl Chloride Respiring Dehalococcoides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMurdie, Paul J.; Behrens, Sebastien F.; Muller, Jochen A.

    2009-06-30

    Vinyl chloride (VC) is a human carcinogen and widespread priority pollutant. Here we report the first, to our knowledge, complete genome sequences of microorganisms able to respire VC, Dehalococcoides sp. strains VS and BAV1. Notably, the respective VC reductase encoding genes, vcrAB and bvcAB, were found embedded in distinct genomic islands (GEIs) with different predicted integration sites, suggesting that these genes were acquired horizontally and independently by distinct mechanisms. A comparative analysis that included two previously sequenced Dehalococcoides genomes revealed a contextually conserved core that is interrupted by two high plasticity regions (HPRs) near the Ori. These HPRs contain themore » majority of GEIs and strain-specific genes identified in the four Dehalococcoides genomes, an elevated number of repeated elements including insertion sequences (IS), as well as 91 of 96 rdhAB, genes that putatively encode terminal reductases in organohalide respiration. Only three core rdhA orthologous groups were identified, and only one of these groups is supported by synteny. The low number of core rdhAB, contrasted with the high rdhAB numbers per genome (up to 36 in strain VS), as well as their colocalization with GEIs and other signatures for horizontal transfer, suggests that niche adaptation via organohalide respiration is a fundamental ecological strategy in Dehalococccoides. This adaptation has been exacted through multiple mechanisms of recombination that are mainly confined within HPRs of an otherwise remarkably stable, syntenic, streamlined genome among the smallest of any free-living microorganism.« less

  13. Localization, cloning, and sequence determination of the conjugative plasmid ColB2 pilin gene.

    PubMed Central

    Finlay, B B; Frost, L S; Paranchych, W

    1984-01-01

    ColB2 is a colicin-producing, 96-kilobase plasmid which encodes a conjugative system that is similar, but not identical, to F. A restriction map of this plasmid was generated, and DNA homology studies between F and ColB2 plasmids revealed homology only between their transfer operons. The locations of the ColB2 transfer operon and ColB2 pilin gene were localized on this restriction map. The gene encoding ColB2 pilin, traA, was cloned and sequenced. The pilin protein of ColB2 is identical to F, except at the amino terminus, where ala-gln of ColB2 pilin corresponds to Ala-Gly-Ser-Ser of F pilin. This is due to a 6-base-pair deletion in the ColB2 pilin gene. Biochemical studies on tryptic peptides derived from ColB2 pilin demonstrate the location of this gene to be correct. There is a putative signal peptidase cleavage site after the sequence Ala-Met-Ala, giving a signal peptide of 51 amino acids and a mature pilin protein of 68 amino acids (7,000 daltons). The amino terminus is blocked, probably with an acetyl group. A chimera containing the ColB2 pilin gene was able to complement an F traA mutant, demonstrating that the pilus assembly proteins of F can utilize the ColB2 pilin protein to form a pilus. Images PMID:6090427

  14. Streptococcus iniae SF1: Complete Genome Sequence, Proteomic Profile, and Immunoprotective Antigens

    PubMed Central

    Zhang, Bao-cun; Zhang, Jian; Sun, Li

    2014-01-01

    Streptococcus iniae is a Gram-positive bacterium that is reckoned one of the most severe aquaculture pathogens. It has a broad host range among farmed marine and freshwater fish and can also cause zoonotic infection in humans. Here we report for the first time the complete genome sequence as well as the host factor-induced proteomic profile of a pathogenic S. iniae strain, SF1, a serotype I isolate from diseased fish. SF1 possesses a single chromosome of 2,149,844 base pairs, which contains 2,125 predicted protein coding sequences (CDS), 12 rRNA genes, and 45 tRNA genes. Among the protein-encoding CDS are genes involved in resource acquisition and utilization, signal sensing and transduction, carbohydrate metabolism, and defense against host immune response. Potential virulence genes include those encoding adhesins, autolysins, toxins, exoenzymes, and proteases. In addition, two putative prophages and a CRISPR-Cas system were found in the genome, the latter containing a CRISPR locus and four cas genes. Proteomic analysis detected 21 secreted proteins whose expressions were induced by host serum. Five of the serum-responsive proteins were subjected to immunoprotective analysis, which revealed that two of the proteins were highly protective against lethal S. iniae challenge when used as purified recombinant subunit vaccines. Taken together, these results provide an important molecular basis for future study of S. iniae in various aspects, in particular those related to pathogenesis and disease control. PMID:24621602

  15. Heterogeneous RNA-binding protein M4 is a receptor for carcinoembryonic antigen in Kupffer cells.

    PubMed

    Bajenova, O V; Zimmer, R; Stolper, E; Salisbury-Rowswell, J; Nanji, A; Thomas, P

    2001-08-17

    Here we report the isolation of the recombinant cDNA clone from rat macrophages, Kupffer cells (KC) that encodes a protein interacting with carcinoembryonic antigen (CEA). To isolate and identify the CEA receptor gene we used two approaches: screening of a KC cDNA library with a specific antibody and the yeast two-hybrid system for protein interaction using as a bait the N-terminal part of the CEA encoding the binding site. Both techniques resulted in the identification of the rat heterogeneous RNA-binding protein (hnRNP) M4 gene. The rat ortholog cDNA sequence has not been previously described. The open reading frame for this gene contains a 2351-base pair sequence with the polyadenylation signal AATAAA and a termination poly(A) tail. The mRNA shows ubiquitous tissue expression as a 2.4-kilobase transcript. The deduced amino acid sequence comprised a 78-kDa membrane protein with 3 putative RNA-binding domains, arginine/methionine/glutamine-rich C terminus and 3 potential membrane spanning regions. When hnRNP M4 protein is expressed in pGEX4T-3 vector system in Escherichia coli it binds (125)I-labeled CEA in a Ca(2+)-dependent fashion. Transfection of rat hnRNP M4 cDNA into a non-CEA binding mouse macrophage cell line p388D1 resulted in CEA binding. These data provide evidence for a new function of hnRNP M4 protein as a CEA-binding protein in Kupffer cells.

  16. Chloroplast-encoded serotonin N-acetyltransferase in the red alga Pyropia yezoensis: gene transition to the nucleus from chloroplasts.

    PubMed

    Byeon, Yeong; Yool Lee, Hyoung; Choi, Dong-Woog; Back, Kyoungwhan

    2015-02-01

    Melatonin biosynthesis involves the N-acetylation of arylalkylamines such as serotonin, which is catalysed by serotonin N-acetyltransferase (SNAT), the penultimate enzyme of melatonin biosynthesis in both animals and plants. Here, we report the functional characterization of a putative N-acetyltransferase gene in the chloroplast genome of the alga laver (Pyropia yezoensis, formerly known as Porphyra yezoensis) with homology to the rice SNAT gene. To confirm that the putative Pyropia yezoensis SNAT (PySNAT) gene encodes an SNAT, we cloned the full-length chloroplastidic PySNAT gene by PCR and purified the recombinant PySNAT protein from Escherichia coli. PySNAT was 174 aa and had 50% amino acid identity with cyanobacteria SNAT. Purified recombinant PySNAT showed a peak activity at 55 °C with a K m of 467 µM and V max of 28 nmol min-1 mg(-1) of protein. Unlike other plant SNATs, PySNAT localized to the cytoplasm due to a lack of N-terminal chloroplast transit peptides. Melatonin was present at 0.16ng g(-1) of fresh mass but increased during heat stress. Phylogenetic analysis of the sequence suggested that PySNAT has evolved from the cyanobacteria SNAT gene via endosymbiotic gene transfer. Additionally, the chloroplast transit peptides of plant SNATs were acquired 1500 million years ago, concurrent with the appearance of green algae. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Molecular cloning, sequence characterization and expression analysis of a CD63 homologue from the coleopteran beetle, Tenebrio molitor.

    PubMed

    Patnaik, Bharat Bhusan; Kang, Seong Min; Seo, Gi Won; Lee, Hyo Jeong; Patnaik, Hongray Howrelia; Jo, Yong Hun; Tindwa, Hamisi; Lee, Yong Seok; Lee, Bok Luel; Kim, Nam Jung; Bang, In Seok; Han, Yeon Soo

    2013-10-15

    CD63, a member of the tetraspanin membrane protein family, plays a pivotal role in cell growth, motility, signal transduction, host-pathogen interactions and cancer. In this work, the cDNA encoding CD63 homologue (TmCD63) was cloned from larvae of a coleopteran beetle, Tenebrio molitor. The cDNA is comprised of an open reading frame of 705 bp, encoding putative protein of 235 amino acid residues. In silico analysis shows that the protein has four putative transmembrane domains and one large extracellular loop. The characteristic "Cys-Cys-Gly" motif and "Cys188" residues are highly conserved in the large extracellular loop. Phylogenetic analysis of TmCD63 revealed that they belong to the insect cluster with 50%-56% identity. Analysis of spatial expression patterns demonstrated that TmCD63 mRNA is mainly expressed in gut and Malphigian tubules of larvae and the testis of the adult. Developmental expression patterns of CD63 mRNA showed that TmCD63 transcripts are detected in late larval, pupal and adult stages. Interestingly, TmCD63 transcripts are upregulated to the maximum level of 4.5 fold, in response to DAP-type peptidoglycan during the first 6 h, although other immune elicitors also caused significant increase to the transcript level at later time-points. These results suggest that CD63 might contribute to T. molitor immune response against various microbial pathogens.

  18. Molecular Cloning, Sequence Characterization and Expression Analysis of a CD63 Homologue from the Coleopteran Beetle, Tenebrio molitor

    PubMed Central

    Patnaik, Bharat Bhusan; Kang, Seong Min; Seo, Gi Won; Lee, Hyo Jeong; Patnaik, Hongray Howrelia; Jo, Yong Hun; Tindwa, Hamisi; Lee, Yong Seok; Lee, Bok Luel; Kim, Nam Jung; Bang, In Seok; Han, Yeon Soo

    2013-01-01

    CD63, a member of the tetraspanin membrane protein family, plays a pivotal role in cell growth, motility, signal transduction, host-pathogen interactions and cancer. In this work, the cDNA encoding CD63 homologue (TmCD63) was cloned from larvae of a coleopteran beetle, Tenebrio molitor. The cDNA is comprised of an open reading frame of 705 bp, encoding putative protein of 235 amino acid residues. In silico analysis shows that the protein has four putative transmembrane domains and one large extracellular loop. The characteristic “Cys-Cys-Gly” motif and “Cys188” residues are highly conserved in the large extracellular loop. Phylogenetic analysis of TmCD63 revealed that they belong to the insect cluster with 50%–56% identity. Analysis of spatial expression patterns demonstrated that TmCD63 mRNA is mainly expressed in gut and Malphigian tubules of larvae and the testis of the adult. Developmental expression patterns of CD63 mRNA showed that TmCD63 transcripts are detected in late larval, pupal and adult stages. Interestingly, TmCD63 transcripts are upregulated to the maximum level of 4.5 fold, in response to DAP-type peptidoglycan during the first 6 h, although other immune elicitors also caused significant increase to the transcript level at later time-points. These results suggest that CD63 might contribute to T. molitor immune response against various microbial pathogens. PMID:24132157

  19. The complete genome sequence of a south Indian isolate of Rice tungro spherical virus reveals evidence of genetic recombination between distinct isolates.

    PubMed

    Sailaja, B; Anjum, Najreen; Patil, Yogesh K; Agarwal, Surekha; Malathi, P; Krishnaveni, D; Balachandran, S M; Viraktamath, B C; Mangrauthia, Satendra K

    2013-12-01

    In this study, complete genome of a south Indian isolate of Rice tungro spherical virus (RTSV) from Andhra Pradesh (AP) was sequenced, and the predicted amino acid sequence was analysed. The RTSV RNA genome consists of 12,171 nt without the poly(A) tail, encoding a putative typical polyprotein of 3,470 amino acids. Furthermore, cleavage sites and sequence motifs of the polyprotein were predicted. Multiple alignment with other RTSV isolates showed a nucleotide sequence identity of 95% to east Indian isolates and 90% to Philippines isolates. A phylogenetic tree based on complete genome sequence showed that Indian isolates clustered together, while Vt6 and PhilA isolates of Philippines formed two separate clusters. Twelve recombination events were detected in RNA genome of RTSV using the Recombination Detection Program version 3. Recombination analysis suggested significant role of 5' end and central region of genome in virus evolution. Further, AP and Odisha isolates appeared as important RTSV isolates involved in diversification of this virus in India through recombination phenomenon. The new addition of complete genome of first south Indian isolate provided an opportunity to establish the molecular evolution of RTSV through recombination analysis and phylogenetic relationship.

  20. Strain-Level Diversity of Secondary Metabolism in Streptomyces albus

    PubMed Central

    Seipke, Ryan F.

    2015-01-01

    Streptomyces spp. are robust producers of medicinally-, industrially- and agriculturally-important small molecules. Increased resistance to antibacterial agents and the lack of new antibiotics in the pipeline have led to a renaissance in natural product discovery. This endeavor has benefited from inexpensive high quality DNA sequencing technology, which has generated more than 140 genome sequences for taxonomic type strains and environmental Streptomyces spp. isolates. Many of the sequenced streptomycetes belong to the same species. For instance, Streptomyces albus has been isolated from diverse environmental niches and seven strains have been sequenced, consequently this species has been sequenced more than any other streptomycete, allowing valuable analyses of strain-level diversity in secondary metabolism. Bioinformatics analyses identified a total of 48 unique biosynthetic gene clusters harboured by Streptomyces albus strains. Eighteen of these gene clusters specify the core secondary metabolome of the species. Fourteen of the gene clusters are contained by one or more strain and are considered auxiliary, while 16 of the gene clusters encode the production of putative strain-specific secondary metabolites. Analysis of Streptomyces albus strains suggests that each strain of a Streptomyces species likely harbours at least one strain-specific biosynthetic gene cluster. Importantly, this implies that deep sequencing of a species will not exhaust gene cluster diversity and will continue to yield novelty. PMID:25635820

Top