The Neural Basis of Cognitive Control: Response Selection and Inhibition
ERIC Educational Resources Information Center
Goghari, Vina M.; MacDonald, Angus W., III
2009-01-01
The functional neuroanatomy of tasks that recruit different forms of response selection and inhibition has to our knowledge, never been directly addressed in a single fMRI study using similar stimulus-response paradigms where differences between scanning time and sequence, stimuli, and experimenter instructions were minimized. Twelve right-handed…
Effective DNA Inhibitors of Cathepsin G by In Vitro Selection
Gatto, Barbara; Vianini, Elena; Lucatello, Lorena; Sissi, Claudia; Moltrasio, Danilo; Pescador, Rodolfo; Porta, Roberto; Palumbo, Manlio
2008-01-01
Cathepsin G (CatG) is a chymotrypsin-like protease released upon degranulation of neutrophils. In several inflammatory and ischaemic diseases the impaired balance between CatG and its physiological inhibitors leads to tissue destruction and platelet aggregation. Inhibitors of CatG are suitable for the treatment of inflammatory diseases and procoagulant conditions. DNA released upon the death of neutrophils at injury sites binds CatG. Moreover, short DNA fragments are more inhibitory than genomic DNA. Defibrotide, a single stranded polydeoxyribonucleotide with antithrombotic effect is also a potent CatG inhibitor. Given the above experimental evidences we employed a selection protocol to assess whether DNA inhibition of CatG may be ascribed to specific sequences present in defibrotide DNA. A Selex protocol was applied to identify the single-stranded DNA sequences exhibiting the highest affinity for CatG, the diversity of a combinatorial pool of oligodeoxyribonucleotides being a good representation of the complexity found in defibrotide. Biophysical and biochemical studies confirmed that the selected sequences bind tightly to the target enzyme and also efficiently inhibit its catalytic activity. Sequence analysis carried out to unveil a motif responsible for CatG recognition showed a recurrence of alternating TG repeats in the selected CatG binders, adopting an extended conformation that grants maximal interaction with the highly charged protein surface. This unprecedented finding is validated by our results showing high affinity and inhibition of CatG by specific DNA sequences of variable length designed to maximally reduce pairing/folding interactions. PMID:19325843
Sequence-based design of bioactive small molecules that target precursor microRNAs.
Velagapudi, Sai Pradeep; Gallo, Steven M; Disney, Matthew D
2014-04-01
Oligonucleotides are designed to target RNA using base pairing rules, but they can be hampered by poor cellular delivery and nonspecific stimulation of the immune system. Small molecules are preferred as lead drugs or probes but cannot be designed from sequence. Herein, we describe an approach termed Inforna that designs lead small molecules for RNA from solely sequence. Inforna was applied to all human microRNA hairpin precursors, and it identified bioactive small molecules that inhibit biogenesis by binding nuclease-processing sites (44% hit rate). Among 27 lead interactions, the most avid interaction is between a benzimidazole (1) and precursor microRNA-96. Compound 1 selectively inhibits biogenesis of microRNA-96, upregulating a protein target (FOXO1) and inducing apoptosis in cancer cells. Apoptosis is ablated when FOXO1 mRNA expression is knocked down by an siRNA, validating compound selectivity. Markedly, microRNA profiling shows that 1 only affects microRNA-96 biogenesis and is at least as selective as an oligonucleotide.
Sequence-based design of bioactive small molecules that target precursor microRNAs
Velagapudi, Sai Pradeep; Gallo, Steven M.; Disney, Matthew D.
2014-01-01
Oligonucleotides are designed to target RNA using base pairing rules, however, they are hampered by poor cellular delivery and non-specific stimulation of the immune system. Small molecules are preferred as lead drugs or probes, but cannot be designed from sequence. Herein, we describe an approach termed Inforna that designs lead small molecules for RNA from solely sequence. Inforna was applied to all human microRNA precursors and identified bioactive small molecules that inhibit biogenesis by binding to nuclease processing sites (41% hit rate). Amongst 29 lead interactions, the most avid interaction is between a benzimidazole (1) and precursor microRNA-96. Compound 1 selectively inhibits biogenesis of microRNA-96, upregulating a protein target (FOXO1) and inducing apoptosis in cancer cells. Apoptosis is ablated when FOXO1 mRNA expression is knocked down by an siRNA, validating compound selectivity. Importantly, microRNA profiling shows that 1 only significantly effects microRNA-96 biogenesis and is more selective than an oligonucleotide. PMID:24509821
In silico identification of novel ligands for G-quadruplex in the c- MYC promoter
NASA Astrophysics Data System (ADS)
Kang, Hyun-Jin; Park, Hyun-Ju
2015-04-01
G-quadruplex DNA formed in NHEIII1 region of oncogene promoter inhibits transcription of the genes. In this study, virtual screening combining pharmacophore-based search and structure-based docking screening was conducted to discover ligands binding to G-quadruplex in promoter region of c- MYC. Several hit ligands showed the selective PCR-arresting effects for oligonucleotide containing c- MYC G-quadruplex forming sequence. Among them, three hits selectively inhibited cell proliferation and decreased c- MYC mRNA level in Ramos cells, where NHEIII1 is included in translocated c- MYC gene for overexpression. Promoter assay using two kinds of constructs with wild-type and mutant sequences showed that interaction of these ligands with the G-quadruplex resulted in turning-off of the reporter gene. In conclusion, combined virtual screening methods were successfully used for discovery of selective c- MYC promoter G-quadruplex binders with anticancer activity.
Wang, Jing; McCord, Bruce
2011-06-01
A common problem in the analysis of forensic DNA evidence is the presence of environmentally degraded and inhibited DNA. Such samples produce a variety of interpretational problems such as allele imbalance, allele dropout and sequence specific inhibition. In an attempt to develop methods to enhance the recovery of this type of evidence, magnetic bead hybridization has been applied to extract and preconcentrate DNA sequences containing short tandem repeat (STR) alleles of interest. In this work, genomic DNA was fragmented by heating, and sequences associated with STR alleles were selectively hybridized to allele-specific biotinylated probes. Each particular biotinylated probe-DNA complex was bound to streptavidin-coated magnetic beads using enabling enrichment of target DNA sequences. Experiments conducted using degraded DNA samples, as well as samples containing a large concentration of inhibitory substances, showed good specificity and recovery of missing alleles. Based on the favorable results obtained with these specific probes, this method should prove useful as a tool to improve the recovery of alleles from degraded and inhibited DNA samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Baker, Christa A.
2014-01-01
A variety of synaptic mechanisms can contribute to single-neuron selectivity for temporal intervals in sensory stimuli. However, it remains unknown how these mechanisms interact to establish single-neuron sensitivity to temporal patterns of sensory stimulation in vivo. Here we address this question in a circuit that allows us to control the precise temporal patterns of synaptic input to interval-tuned neurons in behaviorally relevant ways. We obtained in vivo intracellular recordings under multiple levels of current clamp from midbrain neurons in the mormyrid weakly electric fish Brienomyrus brachyistius during stimulation with electrosensory pulse trains. To reveal the excitatory and inhibitory inputs onto interval-tuned neurons, we then estimated the synaptic conductances underlying responses. We found short-term depression in excitatory and inhibitory pathways onto all interval-tuned neurons. Short-interval selectivity was associated with excitation that depressed less than inhibition at short intervals, as well as temporally summating excitation. Long-interval selectivity was associated with long-lasting onset inhibition. We investigated tuning after separately nullifying the contributions of temporal summation and depression, and found the greatest diversity of interval selectivity among neurons when both mechanisms were at play. Furthermore, eliminating the effects of depression decreased sensitivity to directional changes in interval. These findings demonstrate that variation in depression and summation of excitation and inhibition helps to establish tuning to behaviorally relevant intervals in communication signals, and that depression contributes to neural coding of interval sequences. This work reveals for the first time how the interplay between short-term plasticity and temporal summation mediates the decoding of temporal sequences in awake, behaving animals. PMID:25339741
USDA-ARS?s Scientific Manuscript database
We present phylogenetic analyses of 37 taxa of Amaryllidaceae, tribe Haemantheae and Amaryllis belladonna L. as an outgroup, in order to provide a phylogenetic framework for the selection of candidate plants for lead discoveries in relation to Alzheimer´s disease and depression. DNA sequences from t...
Single helically folded aromatic oligoamides that mimic the charge surface of double-stranded B-DNA
NASA Astrophysics Data System (ADS)
Ziach, Krzysztof; Chollet, Céline; Parissi, Vincent; Prabhakaran, Panchami; Marchivie, Mathieu; Corvaglia, Valentina; Bose, Partha Pratim; Laxmi-Reddy, Katta; Godde, Frédéric; Schmitter, Jean-Marie; Chaignepain, Stéphane; Pourquier, Philippe; Huc, Ivan
2018-05-01
Numerous essential biomolecular processes require the recognition of DNA surface features by proteins. Molecules mimicking these features could potentially act as decoys and interfere with pharmacologically or therapeutically relevant protein-DNA interactions. Although naturally occurring DNA-mimicking proteins have been described, synthetic tunable molecules that mimic the charge surface of double-stranded DNA are not known. Here, we report the design, synthesis and structural characterization of aromatic oligoamides that fold into single helical conformations and display a double helical array of negatively charged residues in positions that match the phosphate moieties in B-DNA. These molecules were able to inhibit several enzymes possessing non-sequence-selective DNA-binding properties, including topoisomerase 1 and HIV-1 integrase, presumably through specific foldamer-protein interactions, whereas sequence-selective enzymes were not inhibited. Such modular and synthetically accessible DNA mimics provide a versatile platform to design novel inhibitors of protein-DNA interactions.
2015-06-01
Love, and S. Gupta at the Whitehead Genome Core for assistance with genome sequencing . This research was supported by NIH K08 HL105678, The Wat...efficient alignment of short DNA sequences to the human genome . Genome Bioi. 10, R25. LeRoy, G., Rickards, B., and Flint, S.J. (2008). The double...of the beginning. Nature reviews. Cancer 12, 818-834, doi:10.1038/nrc3410 (2012). 12 Kool, M. et al. Genome sequencing of SHH medulloblastoma
Inhibition of Human Immunodeficiency Virus Replication by Antisense Oligodeoxynucleotides
NASA Astrophysics Data System (ADS)
Goodchild, John; Agrawal, Sudhir; Civeira, Maria P.; Sarin, Prem S.; Sun, Daisy; Zamecnik, Paul C.
1988-08-01
Twenty different target sites within human immunodeficiency virus (HIV) RNA were selected for studies of inhibition of HIV replication by antisense oligonucleotides. Target sites were selected based on their potential capacity to block recognition functions during viral replication. Antisense oligomers complementary to sites within or near the sequence repeated at the ends of retrovirus RNA (R region) and to certain splice sites were most effective. The effect of antisense oligomer length on inhibiting virus replication was also investigated, and preliminary toxicity studies in mice show that these compounds are toxic only at high levels. The results indicate potential usefulness for these oligomers in the treatment of patients with acquired immunodeficiency syndrome (AIDS) and AIDS-related complex either alone or in combination with other drugs.
Tang, Danming; Lam, Cynthia; Louie, Salina; Hoi, Kam Hon; Shaw, David; Yim, Mandy; Snedecor, Brad; Misaghi, Shahram
2018-01-01
In the process of generating stable monoclonal antibody (mAb) producing cell lines, reagents such as methotrexate (MTX) or methionine sulfoximine (MSX) are often used. However, using such selection reagent(s) increases the possibility of having higher occurrence of sequence variants in the expressed antibody molecules due to the effects of MTX or MSX on de novo nucleotide synthesis. Since MSX inhibits glutamine synthase (GS) and results in both amino acid and nucleoside starvation, it is questioned whether supplementing nucleosides into the media could lower sequence variant levels without affecting titer. The results show that the supplementation of nucleosides to the media during MSX selection decreased genomic DNA mutagenesis rates in the selected cells, probably by reducing nucleotide mis-incorporation into the DNA. Furthermore, addition of nucleosides enhance clone recovery post selection and does not affect antibody expression. It is further observed that nucleoside supplements lowered DNA mutagenesis rates only at the initial stage of the clone selection and do not have any effect on DNA mutagenesis rates after stable cell lines are established. Therefore, the data suggests that addition of nucleosides during early stages of MSX selection can lower sequence variant levels without affecting titer or clone stability in antibody expression. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ujike, Makoto; Ejima, Miho; Anraku, Akane; Shimabukuro, Kozue; Obuchi, Masatsugu; Kishida, Noriko; Hong, Xu; Takashita, Emi; Fujisaki, Seiichiro; Yamashita, Kazuyo; Horikawa, Hiroshi; Kato, Yumiko; Oguchi, Akio; Fujita, Nobuyuki; Tashiro, Masato
2011-01-01
To monitor and characterize oseltamivir-resistant (OR) pandemic (H1N1) 2009 virus with the H275Y mutation, we analyzed 4,307 clinical specimens from Japan by neuraminidase (NA) sequencing or inhibition assay; 61 OR pandemic (H1N1) 2009 viruses were detected. NA inhibition assay and M2 sequencing indicated that OR pandemic (H1N1) 2009 virus was resistant to M2 inhibitors, but sensitive to zanamivir. Full-genome sequencing showed OR and oseltamivir-sensitive (OS) viruses had high sequence similarity, indicating that domestic OR virus was derived from OS pandemic (H1N1) 2009 virus. Hemagglutination inhibition test demonstrated that OR and OS pandemic (H1N1) 2009 viruses were antigenically similar to the A/California/7/2009 vaccine strain. Of 61 case-patients with OR viruses, 45 received oseltamivir as treatment, and 10 received it as prophylaxis, which suggests that most cases emerged sporadically from OS pandemic (H1N1) 2009, due to selective pressure. No evidence of sustained spread of OR pandemic (H1N1) 2009 was found in Japan; however, 2 suspected incidents of human-to-human transmission were reported. PMID:21392439
Structural basis of GSK-3 inhibition by N-terminal phosphorylation and by the Wnt receptor LRP6.
Stamos, Jennifer L; Chu, Matthew Ling-Hon; Enos, Michael D; Shah, Niket; Weis, William I
2014-03-18
Glycogen synthase kinase-3 (GSK-3) is a key regulator of many cellular signaling pathways. Unlike most kinases, GSK-3 is controlled by inhibition rather than by specific activation. In the insulin and several other signaling pathways, phosphorylation of a serine present in a conserved sequence near the amino terminus of GSK-3 generates an auto-inhibitory peptide. In contrast, Wnt/β-catenin signal transduction requires phosphorylation of Ser/Pro rich sequences present in the Wnt co-receptors LRP5/6, and these motifs inhibit GSK-3 activity. We present crystal structures of GSK-3 bound to its phosphorylated N-terminus and to two of the phosphorylated LRP6 motifs. A conserved loop unique to GSK-3 undergoes a dramatic conformational change that clamps the bound pseudo-substrate peptides, and reveals the mechanism of primed substrate recognition. The structures rationalize target sequence preferences and suggest avenues for the design of inhibitors selective for a subset of pathways regulated by GSK-3. DOI: http://dx.doi.org/10.7554/eLife.01998.001.
Sánchez-Luque, Francisco J.; Stich, Michael; Manrubia, Susanna; Briones, Carlos; Berzal-Herranz, Alfredo
2014-01-01
The human immunodeficiency virus type-1 (HIV-1) genome contains multiple, highly conserved structural RNA domains that play key roles in essential viral processes. Interference with the function of these RNA domains either by disrupting their structures or by blocking their interaction with viral or cellular factors may seriously compromise HIV-1 viability. RNA aptamers are amongst the most promising synthetic molecules able to interact with structural domains of viral genomes. However, aptamer shortening up to their minimal active domain is usually necessary for scaling up production, what requires very time-consuming, trial-and-error approaches. Here we report on the in vitro selection of 64 nt-long specific aptamers against the complete 5′-untranslated region of HIV-1 genome, which inhibit more than 75% of HIV-1 production in a human cell line. The analysis of the selected sequences and structures allowed for the identification of a highly conserved 16 nt-long stem-loop motif containing a common 8 nt-long apical loop. Based on this result, an in silico designed 16 nt-long RNA aptamer, termed RNApt16, was synthesized, with sequence 5′-CCCCGGCAAGGAGGGG-3′. The HIV-1 inhibition efficiency of such an aptamer was close to 85%, thus constituting the shortest RNA molecule so far described that efficiently interferes with HIV-1 replication. PMID:25175101
Márquez, Gonzalo; Keller, Martin; Lundbye-Jensen, Jesper; Taube, Wolfgang
2018-03-01
Research has indicated that at the onset of a finger movement, unwanted contractions of adjacent muscles are prevented by inhibiting the cortical areas representing these muscles. This so-called surround inhibition (SI) seems relevant for the performance of selective finger movements but may not be necessary for tasks involving functional coupling between different finger muscles. Therefore, the present study compared SI between isolated finger movement and complex selective finger movements while playing a three-finger sequence on the piano in nine non-professional musicians and 10 untrained control participants. Transcranial magnetic stimulation (TMS) was applied to the contralateral motor cortex to assess SI in the first dorsal interosseous (FDI), abductor pollicis brevis (APB) and abductor digiti minimi (ADM) during the movement preparation and the late phasic phases. The results reveal stronger SI during the preparation phase than during the phasic phase (30.6% vs. 10.7%; P < 0.05) in the isolated-finger condition in both musicians and controls. Results also show higher SI in musicians during the preparation phase of the isolated finger condition compared to the preparation phase of the three-finger sequence (40% vs. 15%; P < 0.05). However, the control group did not show this task-specific modulation of SI (isolated: 25% vs. sequence: 25%; P > 0.05). Thus, musicians were able to modulate SI between conditions whereas control participants revealed constant levels of SI. Therefore, it may be assumed that long-term training as observed in skilled musicians is accompanied by task-specific effects on SI modulation potentially relating to the ability to perform selective and complex finger movements. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Sakamoto, Kotaro; Ishibashi, Yoshihiro; Adachi, Ryutaro; Matsumoto, Shin-Ichi; Oki, Hideyuki; Kamada, Yusuke; Sogabe, Satoshi; Zama, Yumi; Sakamoto, Jun-Ichi; Tani, Akiyoshi
2017-08-01
Cytidine triphosphate synthase 1 (CTPS1) is an enzyme expressed in activated lymphocytes that catalyzes the conversion of uridine triphosphate (UTP) to cytidine triphosphate (CTP) with ATP-dependent amination, using either L-glutamine or ammonia as the nitrogen source. Since CTP plays an important role in DNA/RNA synthesis, phospholipid synthesis, and protein sialyation, CTPS1-inhibition is expected to control lymphocyte proliferation and size expansion in inflammatory diseases. In contrast, CTPS2, an isozyme of CTPS1 possessing 74% amino acid sequence homology, is expressed in normal lymphocytes. Thus, CTPS1-selective inhibition is important to avoid undesirable side effects. Here, we report the discovery of CTpep-3: Ac-FRLGLLKAFRRLF-OH from random peptide libraries displayed on T7 phage, which exhibited CTPS1-selective binding with a K D value of 210nM in SPR analysis and CTPS1-selective inhibition with an IC 50 value of 110nM in the enzyme assay. Furthermore, two fundamentally different approaches, enzyme inhibition assay and HDX-MS, provided the same conclusion that CTpep-3 acts by binding to the amidoligase (ALase) domain on CTPS1. To our knowledge, CTpep-3 is the first CTPS1-selective inhibitor. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mulyani, Happy; Budianto, Gregorius Prima Indra; Margono, Kaavessina, Mujtahid
2018-02-01
The present investigation deals with the aerobic sequencing batch reactor system of tapioca wastewater treatment with varying pH influent conditions. This project was carried out to evaluate the effect of pH on kinetics parameters of system. It was done by operating aerobic sequencing batch reactor system during 8 hours in many tapioca wastewater conditions (pH 4.91, pH 7, pH 8). The Chemical Oxygen Demand (COD) and Mixed Liquor Volatile Suspended Solids (MLVSS) of the aerobic sequencing batch reactor system effluent at steady state condition were determined at interval time of two hours to generate data for substrate inhibition kinetics parameters. Values of the kinetics constants were determined using Monod and Andrews models. There was no inhibition constant (Ki) detected in all process variation of aerobic sequencing batch reactor system for tapioca wastewater treatment in this study. Furthermore, pH 8 was selected as the preferred aerobic sequencing batch reactor system condition in those ranging pH investigated due to its achievement of values of kinetics parameters such µmax = 0.010457/hour and Ks = 255.0664 mg/L COD.
Hubálek, Frantisek; Binda, Claudia; Khalil, Ashraf; Li, Min; Mattevi, Andrea; Castagnoli, Neal; Edmondson, Dale E
2005-04-22
Several reversible inhibitors selective for human monoamine oxidase B (MAO B) that do not inhibit MAO A have been described in the literature. The following compounds: 8-(3-chlorostyryl)caffeine, 1,4-diphenyl-2-butene, and trans,trans-farnesol are shown to inhibit competitively human, horse, rat, and mouse MAO B with K(i) values in the low micromolar range but are without effect on either bovine or sheep MAO B or human MAO A. In contrast, the reversible competitive inhibitor isatin binds to all known MAO B and MAO A with similar affinities. Sequence alignments and the crystal structures of human MAO B in complex with 1,4-diphenyl-2-butene or with trans,trans-farnesol provide molecular insights into these specificities. These inhibitors span the substrate and entrance cavities with the side chain of Ile-199 rotated out of its normal conformation suggesting that Ile-199 is gating the substrate cavity. Ile-199 is conserved in all known MAO B sequences except bovine MAO B, which has Phe in this position (the sequence of sheep MAO B is unknown). Phe is conserved in the analogous position in MAO A sequences. The human MAO B I199F mutant protein of MAO B binds to isatin (K(i) = 3 microM) but not to the three inhibitors listed above. The crystal structure of this mutant demonstrates that the side chain of Phe-199 interferes with the binding of those compounds. This suggests that the Ile-199 "gate" is a determinant for the specificity of these MAO B inhibitors and provides a molecular basis for the development of MAO B-specific reversible inhibitors without interference with MAO A function in neurotransmitter metabolism.
Pulliam Holoman, Tracey R.; Elberson, Margaret A.; Cutter, Leah A.; May, Harold D.; Sowers, Kevin R.
1998-01-01
Defined microbial communities were developed by combining selective enrichment with molecular monitoring of total community genes coding for 16S rRNAs (16S rDNAs) to identify potential polychlorinated biphenyl (PCB)-dechlorinating anaerobes that ortho dechlorinate 2,3,5,6-tetrachlorobiphenyl. In enrichment cultures that contained a defined estuarine medium, three fatty acids, and sterile sediment, a Clostridium sp. was predominant in the absence of added PCB, but undescribed species in the δ subgroup of the class Proteobacteria, the low-G+C gram-positive subgroup, the Thermotogales subgroup, and a single species with sequence similarity to the deeply branching species Dehalococcoides ethenogenes were more predominant during active dechlorination of the PCB. Species with high sequence similarities to Methanomicrobiales and Methanosarcinales archaeal subgroups were predominant in both dechlorinating and nondechlorinating enrichment cultures. Deletion of sediment from PCB-dechlorinating enrichment cultures reduced the rate of dechlorination and the diversity of the community. Substitution of sodium acetate for the mixture of three fatty acids increased the rate of dechlorination, further reduced the community diversity, and caused a shift in the predominant species that included restriction fragment length polymorphism patterns not previously detected. Although PCB-dechlorinating cultures were methanogenic, inhibition of methanogenesis and elimination of the archaeal community by addition of bromoethanesulfonic acid only slightly inhibited dechlorination, indicating that the archaea were not required for ortho dechlorination of the congener. Deletion of Clostridium spp. from the community profile by addition of vancomycin only slightly reduced dechlorination. However, addition of sodium molybdate, an inhibitor of sulfate reduction, inhibited dechlorination and deleted selected species from the community profiles of the class Bacteria. With the exception of one 16S rDNA sequence that had the highest sequence similarity to the obligate perchloroethylene-dechlorinating Dehalococcoides, the 16S rDNA sequences associated with PCB ortho dechlorination had high sequence similarities to the δ, low-G+C gram-positive, and Thermotogales subgroups, which all include sulfur-, sulfate-, and/or iron(III)-respiring bacterial species. PMID:9726883
Koch, Maximilian F; Harteis, Sabrina; Blank, Iris D; Pestel, Galina; Tietze, Lutz F; Ochsenfeld, Christian; Schneider, Sabine; Sieber, Stephan A
2015-11-09
Analogues of the natural product duocarmycin bearing an indole moiety were shown to bind aldehyde dehydrogenase 1A1 (ALDH1A1) in addition to DNA, while derivatives without the indole solely addressed the ALDH1A1 protein. The molecular mechanism of selective ALDH1A1 inhibition by duocarmycin analogues was unraveled through cocrystallization, mutational studies, and molecular dynamics simulations. The structure of the complex shows the compound embedded in a hydrophobic pocket, where it is stabilized by several crucial π-stacking and van der Waals interactions. This binding mode positions the cyclopropyl electrophile for nucleophilic attack by the noncatalytic residue Cys302, thereby resulting in covalent attachment, steric occlusion of the active site, and inhibition of catalysis. The selectivity of duocarmycin analogues for ALDH1A1 is unique, since only minor alterations in the sequence of closely related protein isoforms restrict compound accessibility. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hydroxyapatite-binding peptides for bone growth and inhibition
Bertozzi, Carolyn R [Berkeley, CA; Song, Jie [Shrewsbury, MA; Lee, Seung-Wuk [Walnut Creek, CA
2011-09-20
Hydroxyapatite (HA)-binding peptides are selected using combinatorial phage library display. Pseudo-repetitive consensus amino acid sequences possessing periodic hydroxyl side chains in every two or three amino acid sequences are obtained. These sequences resemble the (Gly-Pro-Hyp).sub.x repeat of human type I collagen, a major component of extracellular matrices of natural bone. A consistent presence of basic amino acid residues is also observed. The peptides are synthesized by the solid-phase synthetic method and then used for template-driven HA-mineralization. Microscopy reveal that the peptides template the growth of polycrystalline HA crystals .about.40 nm in size.
Brown, Andrew; Shi, Qi; Moore, Terry W.; Yoon, Younghyoun; Prussia, Andrew; Maddox, Clinton; Liotta, Dennis C.; Shim*, Hyunsuk; Snyder*, James P.
2014-01-01
Curcumin is a biologically active component of curry powder. A structurally-related class of mimetics possesses similar anti-inflammatory and anticancer properties. Mechanism has been examined by exploring kinase inhibition trends. In a screen of 50 kinases relevant to many forms of cancer, one member of the series (4, EF31) showed ≥85% inhibition for ten of the enzymes at 5 μM, while twenty-two of the proteins were blocked at ≥40%. IC50’s for an expanded set of curcumin analogs established a rank order of potencies, and analyses of IKKβ and AKT2 enzyme kinetics for 4 revealed a mixed inhibition model, ATP competition dominating. Our curcumin mimetics are generally selective for Ser/Thr kinases. Both selectivity and potency trends are compatible with protein sequence comparisons, while modeled kinase binding site geometries deliver a reasonable correlation with mixed inhibition. Overall, these analogs are shown to be pleiotropic inhibitors that operate at multiple points along cell signaling pathways. PMID:23550937
Brown, Andrew; Shi, Qi; Moore, Terry W; Yoon, Younghyoun; Prussia, Andrew; Maddox, Clinton; Liotta, Dennis C; Shim, Hyunsuk; Snyder, James P
2013-05-09
Curcumin is a biologically active component of curry powder. A structurally related class of mimetics possesses similar anti-inflammatory and anticancer properties. Mechanism has been examined by exploring kinase inhibition trends. In a screen of 50 kinases relevant to many forms of cancer, one member of the series (4, EF31) showed ≥85% inhibition for 10 of the enzymes at 5 μM, while 22 of the proteins were blocked at ≥40%. IC50 values for an expanded set of curcumin analogues established a rank order of potencies, and analyses of IKKβ and AKT2 enzyme kinetics for 4 revealed a mixed inhibition model, ATP competition dominating. Our curcumin mimetics are generally selective for Ser/Thr kinases. Both selectivity and potency trends are compatible with protein sequence comparisons, while modeled kinase binding site geometries deliver a reasonable correlation with mixed inhibition. Overall, these analogues are shown to be pleiotropic inhibitors that operate at multiple points along cell signaling pathways.
PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing.
Malina, Abba; Cameron, Christopher J F; Robert, Francis; Blanchette, Mathieu; Dostie, Josée; Pelletier, Jerry
2015-12-08
In CRISPR-Cas9 genome editing, the underlying principles for selecting guide RNA (gRNA) sequences that would ensure for efficient target site modification remain poorly understood. Here we show that target sites harbouring multiple protospacer adjacent motifs (PAMs) are refractory to Cas9-mediated repair in situ. Thus we refine which substrates should be avoided in gRNA design, implicating PAM density as a novel sequence-specific feature that inhibits in vivo Cas9-driven DNA modification.
PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing
Malina, Abba; Cameron, Christopher J. F.; Robert, Francis; Blanchette, Mathieu; Dostie, Josée; Pelletier, Jerry
2015-01-01
In CRISPR-Cas9 genome editing, the underlying principles for selecting guide RNA (gRNA) sequences that would ensure for efficient target site modification remain poorly understood. Here we show that target sites harbouring multiple protospacer adjacent motifs (PAMs) are refractory to Cas9-mediated repair in situ. Thus we refine which substrates should be avoided in gRNA design, implicating PAM density as a novel sequence-specific feature that inhibits in vivo Cas9-driven DNA modification. PMID:26644285
Harper, Jeremy; Malone, Stephen M.; Bachman, Matthew D.; Bernat, Edward M.
2015-01-01
Recent work suggests that dissociable activity in theta and delta frequency bands underlies several common event-related potential (ERP) components, including the nogo N2/P3 complex, which can better index separable functional processes than traditional time-domain measures. Reports have also demonstrated that neural activity can be affected by stimulus sequence context information (i.e., the number and type of preceding stimuli). Stemming from prior work demonstrating that theta and delta index separable processes during response inhibition, the current study assessed sequence context in a Go/Nogo paradigm in which the number of go stimuli preceding each nogo was selectively manipulated. Principal component analysis (PCA) of time-frequency representations revealed differential modulation of evoked theta and delta related to sequence context, where delta increased robustly with additional preceding go stimuli, while theta did not. Findings are consistent with the view that theta indexes simpler initial salience-related processes, while delta indexes more varied and complex processes related to a variety of task parameters. PMID:26751830
The neural dynamics of song syntax in songbirds
NASA Astrophysics Data System (ADS)
Jin, Dezhe
2010-03-01
Songbird is ``the hydrogen atom'' of the neuroscience of complex, learned vocalizations such as human speech. Songs of Bengalese finch consist of sequences of syllables. While syllables are temporally stereotypical, syllable sequences can vary and follow complex, probabilistic syntactic rules, which are rudimentarily similar to grammars in human language. Songbird brain is accessible to experimental probes, and is understood well enough to construct biologically constrained, predictive computational models. In this talk, I will discuss the structure and dynamics of neural networks underlying the stereotypy of the birdsong syllables and the flexibility of syllable sequences. Recent experiments and computational models suggest that a syllable is encoded in a chain network of projection neurons in premotor nucleus HVC (proper name). Precisely timed spikes propagate along the chain, driving vocalization of the syllable through downstream nuclei. Through a computational model, I show that that variable syllable sequences can be generated through spike propagations in a network in HVC in which the syllable-encoding chain networks are connected into a branching chain pattern. The neurons mutually inhibit each other through the inhibitory HVC interneurons, and are driven by external inputs from nuclei upstream of HVC. At a branching point that connects the final group of a chain to the first groups of several chains, the spike activity selects one branch to continue the propagation. The selection is probabilistic, and is due to the winner-take-all mechanism mediated by the inhibition and noise. The model predicts that the syllable sequences statistically follow partially observable Markov models. Experimental results supporting this and other predictions of the model will be presented. We suggest that the syntax of birdsong syllable sequences is embedded in the connection patterns of HVC projection neurons.
Mojica, Luis; Chen, Karen; de Mejía, Elvira González
2015-01-01
The objective of this research was to determine the bioactive properties of the released peptides from commercially available precook common beans (Phaseolus vulgaris). Bioactive properties and peptide profiles were evaluated in protein hydrolysates of raw and commercially precooked common beans. Five varieties (Black, Pinto, Red, Navy, and Great Northern) were selected for protein extraction, protein and peptide molecular mass profiles, and peptide sequences. Potential bioactivities of hydrolysates, including antioxidant capacity and inhibition of α-amylase, α-glucosidase, dipeptidyl peptidase-IV (DPP-IV), and angiotensin converting enzyme I (ACE) were analyzed after digestion with pepsin/pancreatin. Hydrolysates from Navy beans were the most potent inhibitors of DPP-IV with no statistical differences between precooked and raw (IC50 = 0.093 and 0.095 mg protein/mL, respectively). α-Amylase inhibition was higher for raw Red, Navy and Great Northern beans (36%, 31%, 27% relative to acarbose (rel ac)/mg protein, respectively). α-Glucosidase inhibition among all bean hydrolysates did not show significant differences; however, inhibition values were above 40% rel ac/mg protein. IC50 values for ACE were not significantly different among all bean hydrolysates (range 0.20 to 0.34 mg protein/mL), except for Red bean that presented higher IC50 values. Peptide molecular mass profile ranged from 500 to 3000 Da. A total of 11 and 17 biologically active peptide sequences were identified in raw and precooked beans, respectively. Peptide sequences YAGGS and YAAGS from raw Great Northern and precooked Pinto showed similar amino acid sequences and same potential ACE inhibition activity. Processing did not affect the bioactive properties of released peptides from precooked beans. Commercially precooked beans could contribute to the intake of bioactive peptides and promote health. © 2014 Institute of Food Technologists®
Peixoto, Paul; Liu, Yang; Depauw, Sabine; Hildebrand, Marie-Paule; Boykin, David W; Bailly, Christian; Wilson, W David; David-Cordonnier, Marie-Hélène
2008-06-01
The development of small molecules to control gene expression could be the spearhead of future-targeted therapeutic approaches in multiple pathologies. Among heterocyclic dications developed with this aim, a phenyl-furan-benzimidazole dication DB293 binds AT-rich sites as a monomer and 5'-ATGA sequence as a stacked dimer, both in the minor groove. Here, we used a protein/DNA array approach to evaluate the ability of DB293 to specifically inhibit transcription factors DNA-binding in a single-step, competitive mode. DB293 inhibits two POU-domain transcription factors Pit-1 and Brn-3 but not IRF-1, despite the presence of an ATGA and AT-rich sites within all three consensus sequences. EMSA, DNase I footprinting and surface-plasmon-resonance experiments determined the precise binding site, affinity and stoichiometry of DB293 interaction to the consensus targets. Binding of DB293 occurred as a cooperative dimer on the ATGA part of Brn-3 site but as two monomers on AT-rich sites of IRF-1 sequence. For Pit-1 site, ATGA or AT-rich mutated sequences identified the contribution of both sites for DB293 recognition. In conclusion, DB293 is a strong inhibitor of two POU-domain transcription factors through a cooperative binding to ATGA. These findings are the first to show that heterocyclic dications can inhibit major groove transcription factors and they open the door to the control of transcription factors activity by those compounds.
Liu, Jin; Shao, Luyao; Trang, Phong; Yang, Zhu; Reeves, Michael; Sun, Xu; Vu, Gia-Phong; Wang, Yu; Li, Hongjian; Zheng, Congyi; Lu, Sangwei; Liu, Fenyong
2016-06-09
An external guide sequence (EGS) is a RNA sequence which can interact with a target mRNA to form a tertiary structure like a pre-tRNA and recruit intracellular ribonuclease P (RNase P), a tRNA processing enzyme, to degrade target mRNA. Previously, an in vitro selection procedure has been used by us to engineer new EGSs that are more robust in inducing human RNase P to cleave their targeted mRNAs. In this study, we constructed EGSs from a variant to target the mRNA encoding herpes simplex virus 1 (HSV-1) major transcription regulator ICP4, which is essential for the expression of viral early and late genes and viral growth. The EGS variant induced human RNase P cleavage of ICP4 mRNA sequence 60 times better than the EGS generated from a natural pre-tRNA. A decrease of about 97% and 75% in the level of ICP4 gene expression and an inhibition of about 7,000- and 500-fold in viral growth were observed in HSV infected cells expressing the variant and the pre-tRNA-derived EGS, respectively. This study shows that engineered EGSs can inhibit HSV-1 gene expression and viral growth. Furthermore, these results demonstrate the potential for engineered EGS RNAs to be developed and used as anti-HSV therapeutics.
Liu, Jin; Shao, Luyao; Trang, Phong; Yang, Zhu; Reeves, Michael; Sun, Xu; Vu, Gia-Phong; Wang, Yu; Li, Hongjian; Zheng, Congyi; Lu, Sangwei; Liu, Fenyong
2016-01-01
An external guide sequence (EGS) is a RNA sequence which can interact with a target mRNA to form a tertiary structure like a pre-tRNA and recruit intracellular ribonuclease P (RNase P), a tRNA processing enzyme, to degrade target mRNA. Previously, an in vitro selection procedure has been used by us to engineer new EGSs that are more robust in inducing human RNase P to cleave their targeted mRNAs. In this study, we constructed EGSs from a variant to target the mRNA encoding herpes simplex virus 1 (HSV-1) major transcription regulator ICP4, which is essential for the expression of viral early and late genes and viral growth. The EGS variant induced human RNase P cleavage of ICP4 mRNA sequence 60 times better than the EGS generated from a natural pre-tRNA. A decrease of about 97% and 75% in the level of ICP4 gene expression and an inhibition of about 7,000- and 500-fold in viral growth were observed in HSV infected cells expressing the variant and the pre-tRNA-derived EGS, respectively. This study shows that engineered EGSs can inhibit HSV-1 gene expression and viral growth. Furthermore, these results demonstrate the potential for engineered EGS RNAs to be developed and used as anti-HSV therapeutics. PMID:27279482
Petrassi, Mike; Barber, Rob; Be, Celine; Beach, Sarah; Cox, Brian; D’Souza, Anne-Marie; Duggan, Nick; Hussey, Martin; Fox, Roy; Hunt, Peter; Jarai, Gabor; Kosaka, Takatoshi; Oakley, Paul; Patel, Viral; Press, Neil; Rowlands, David; Scheufler, Clemens; Schmidt, Oliver; Srinivas, Honnappa; Turner, Mary; Turner, Rob; Westwick, John; Wolfreys, Alison; Pathan, Nuzhat; Watson, Simon; Thomas, Matthew
2017-01-01
Pulmonary arterial hypertension (PAH) has demonstrated multi-serotonin receptor dependent pathologies, characterized by increased tone (5-HT1B receptor) and complex lesions (SERT, 5-HT1B, 5-HT2B receptors) of the pulmonary vasculature together with right ventricular hypertrophy, ischemia and fibrosis (5-HT2B receptor). Selective inhibitors of individual signaling elements – SERT, 5-HT2A, 5HT2B, and combined 5-HT2A/B receptors, have all been tested clinically and failed. Thus, inhibition of tryptophan hydroxylase 1 (TPH1), the rate limiting step in 5-HT synthesis, has been suggested as a more broad, and thereby more effective, mode of 5-HT inhibition. However, selectivity over non-pathogenic enzyme family members, TPH2, phenylalanine hydroxylase, and tyrosine hydroxylase has hampered therapeutic development. Here we describe the site/sequence, biochemical, and biophysical characterization of a novel allosteric site on TPH1 through which selectivity over TPH2 and related aromatic amino acid hydroxylases is achieved. We demonstrate the mechanism of action by which novel compounds selectively inhibit TPH1 using surface plasma resonance and enzyme competition assays with both tryptophan ligand and BH4 co-factor. We demonstrate 15-fold greater potency within a human carcinoid cell line versus the most potent known TPH1/2 non-specific inhibitor. Lastly, we detail a novel canine in vivo system utilized to determine effective biologic inhibition of newly synthesized 5-HT. These findings are the first to demonstrate TPH1-selective inhibition and may pave the way to a truly effective means to reduce pathologic 5-HT and thereby treat complex remodeling diseases such as PAH. PMID:28529483
Inhibition in motor imagery: a novel action mode switching paradigm.
Rieger, Martina; Dahm, Stephan F; Koch, Iring
2017-04-01
Motor imagery requires that actual movements are prevented (i.e., inhibited) from execution. To investigate at what level inhibition takes place in motor imagery, we developed a novel action mode switching paradigm. Participants imagined (indicating only start and end) and executed movements from start buttons to target buttons, and we analyzed trial sequence effects. Trial sequences depended on current action mode (imagination or execution), previous action mode (pure blocks/same mode, mixed blocks/same mode, or mixed blocks/other mode), and movement sequence (action repetition, hand repetition, or hand alternation). Results provided evidence for global inhibition (indicated by switch benefits in execution-imagination (E-I)-sequences in comparison to I-I-sequences), effector-specific inhibition (indicated by hand repetition costs after an imagination trial), and target inhibition (indicated by target repetition benefits in I-I-sequences). No evidence for subthreshold motor activation or action-specific inhibition (inhibition of the movement of an effector to a specific target) was obtained. Two (global inhibition and effector-specific inhibition) of the three observed mechanisms are active inhibition mechanisms. In conclusion, motor imagery is not simply a weaker form of execution, which often is implied in views focusing on similarities between imagination and execution.
Investigating task inhibition in children versus adults: A diffusion model analysis.
Schuch, Stefanie; Konrad, Kerstin
2017-04-01
One can take n-2 task repetition costs as a measure of inhibition on the level of task sets. When switching back to a Task A after only one intermediate trial (ABA task sequence), Task A is thought to still be inhibited, leading to performance costs relative to task sequences where switching back to Task A is preceded by at least two intermediary trials (CBA). The current study investigated differences in inhibitory ability between children and adults by comparing n-2 task repetition costs in children (9-11years of age, N=32) and young adults (21-30years of age, N=32). The mean reaction times and error rate differences between ABA and CBA sequences did not differ between the two age groups. However, diffusion model analysis revealed that different cognitive processes contribute to the inhibition effect in the two age groups: The adults, but not the children, showed a smaller drift rate in ABA than in CBA, suggesting that persisting task inhibition is associated with slower response selection in adults. In children, non-decision time was longer in ABA than in CBA, possibly reflecting longer task preparation in ABA than in CBA. In addition, Ex-Gaussian functions were fitted to the distributions of correct reaction times. In adults, the ABA-CBA difference was reflected in the exponential parameter of the distribution; in children, the ABA-CBA difference was found in the Gaussian mu parameter. Hence, Ex-Gaussian analysis, although noisier, was generally in line with diffusion model analysis. Taken together, the data suggest that the task inhibition effect found in mean performance is mediated by different cognitive processes in children versus adults. Copyright © 2016 Elsevier Inc. All rights reserved.
On the inhibition of muscle membrane chloride conductance by aromatic carboxylic acids
Palade, PT; Barchi, RL
1977-01-01
25 aromatic carboxylic acids which are analogs of benzoic acid were tested in the rat diaphragm preparation for effects on chloride conductance (G(Cl)). Of the 25, 19 were shown to reduce membrane G(Cl) with little effect on other membrane parameters, although their apparent K(i) varied widely. This inhibition was reversible if exposure times were not prolonged. The most effective analog studied was anthracene-9-COOH (9-AC; K(i) = 1.1 x 10(-5) M). Active analogs produced concentration-dependent inhibition of a type consistent with interaction at a single site or group of sites having similar binding affinities, although a correlation could also be shown between lipophilicity and K(i). Structure-activity analysis indicated that hydrophobic ring substitution usually increased inhibitory activity while para polar substitutions reduced effectiveness. These compounds do not appear to inhibit G(Cl) by altering membrane surface charge and the inhibition produced is not voltage dependent. Qualitative characteristics of the I-V relationship for Cl(-) current are not altered. Conductance to all anions is not uniformly altered by these acids as would be expected from steric occlusion of a common channel. Concentrations of 9-AC reducing G(Cl) by more than 90 percent resulted in slight augmentation of G(I). The complete conductance sequence obtained at high levels of 9-AC was the reverse of that obtained under control conditions. Permeability sequences underwent progressive changes with increasing 9-AC concentration and ultimately inverted at high levels of the analog. Aromatic carboxylic acids appear to inhibit G(Cl) by binding to a specific intramembrane site and altering the selectivity sequence of the membrane anion channel. PMID:894246
Tatay-Dualde, Juan; Prats-van der Ham, Miranda; Paterna, Ana; Sánchez, Antonio; Corrales, Juan Carlos; Contreras, Antonio; Tola, Sebastiana; Gómez-Martin, Ángel
2017-01-01
Mycoplasma capricolum subsp. capricolum is one of the causative agents of contagious agalactia (CA). Nevertheless, there is still a lack of information about its antimicrobial susceptibility and genetic characteristics. Therefore, the aim of this work was to study the antimicrobial and genetic variability of different Mycoplasma capricolum subsp. capricolum field isolates. For this purpose, the growth inhibition effect of 18 antimicrobials and a multilocus sequence typing (MLST) scheme based on five housekeeping genes (fusA, glpQ, gyrB, lepA and rpoB) were performed on 32 selected field isolates from Italy and Spain.The results showed a wide range of growth inhibitory effects for almost all the antimicrobials studied. Macrolides presented lower efficacy inhibiting Mcc growth than in previous works performed on other CA-causative mycoplasmas. Erythromycin was not able to inhibit the growth of any of the studied strains, contrary to doxycycline, which inhibited the growth of all of them from low concentrations. On the other hand, the study of the concatenated genes revealed a high genetic variability among the different Mcc isolates. Hence, these genetic variations were greater than the ones reported in prior works on other mycoplasma species. PMID:28346546
Cattaneo, Carlo; Caccia, Carla; Marzo, Antonio; Maj, Roberto; Fariello, Ruggero G
2003-01-01
Safinamide is a novel neuroprotectant combining sodium and calcium channel blocking properties with selective, reversible monoamine oxidase type B (MAO B) inhibition. Phase 1 studies have demonstrated that in healthy volunteers, the ED50 (a dose that inhibits enzyme activity by 50% in 50% of treated subjects) for MAO B inhibition is 87.5 microg/kg/day orally, and that no MAO A inhibition occurs after 10-mg/kg oral dosing. To assess the risk of inducing the "cheese effect," the effect of safinamide and placebo on the pressor response to tyramine was investigated in a group of healthy male volunteers. The study was an open, single-dose placebo-controlled trial with the 2 treatments in sequence. An increase of 30 mm Hg systolic blood pressure was obtained by intravenous tyramine administered by 0.5-mg incremental boluses injected at 15-minute intervals. The amount of tyramine necessary to achieve such a blood pressure increase was the same after the safinamide 2-mg/kg oral load compared with placebo. These results suggest that dietary restrictions for food with high tyramine content should not be required under safinamide treatment.
Community-Level Analysis of psbA Gene Sequences and Irgarol Tolerance in Marine Periphyton▿
Eriksson, K. M.; Clarke, A. K.; Franzen, L.-G.; Kuylenstierna, M.; Martinez, K.; Blanck, H.
2009-01-01
This study analyzes psbA gene sequences, predicted D1 protein sequences, species relative abundance, and pollution-induced community tolerance in marine periphyton communities exposed to the antifouling compound Irgarol 1051. The mechanism of action of Irgarol is the inhibition of photosynthetic electron transport at photosystem II by binding to the D1 protein. The metagenome of the communities was used to produce clone libraries containing fragments of the psbA gene encoding the D1 protein. Community tolerance was quantified with a short-term test for the inhibition of photosynthesis. The communities were established in a continuous flow of natural seawater through microcosms with or without added Irgarol. The selection pressure from Irgarol resulted in an altered species composition and an inducted community tolerance to Irgarol. Moreover, there was a very high diversity in the psbA gene sequences in the periphyton, and the composition of psbA and D1 fragments within the communities was dramatically altered by increased Irgarol exposure. Even though tolerance to this type of compound in land plants often depends on a single amino acid substitution (Ser264→Gly) in the D1 protein, this was not the case for marine periphyton species. Instead, the tolerance mechanism likely involves increased degradation of D1. When we compared sequences from low and high Irgarol exposure, differences in nonconserved amino acids were found only in the so-called PEST region of D1, which is involved in regulating its degradation. Our results suggest that environmental contamination with Irgarol has led to selection for high-turnover D1 proteins in marine periphyton communities at the west coast of Sweden. PMID:19088321
ERIC Educational Resources Information Center
Leiva, Alicia; Andrés, Pilar; Servera, Mateu; Verbruggen, Frederick; Parmentier, Fabrice B. R.
2016-01-01
Sounds deviating from an otherwise repeated or structured sequence capture attention and affect performance in an ongoing visual task negatively, testament to the balance between selective attention and change detection. Although deviance distraction has been the object of much research, its modulation across the life span has been more scarcely…
Tubular Recovery after Acute Kidney Injury.
Fattah, Hadi; Vallon, Volker
2018-05-31
A significant portion of patients who are affected by acute kidney injury (AKI) do not fully recover due to largely unclear reasons. Restoration of tubular function has been proposed to be a prerequisite for glomerular filtration rate (GFR) recovery. Proximal tubular cells dedifferentiate during the tubular injury phase, which is required for subsequent cell proliferation and replacement of lost epithelial cells. Experimental studies indicate that some cells fail to redifferentiate and continue to produce growth factors (e.g., transforming growth factor β) that can induce fibrosis. Preclinical studies provide first evidence for beneficial effects of inhibiting glucose transport in the proximal tubule in models of ischemia-reperfusion injury. Comparing renal RNA sequencing data with kidney function during recovery from varying levels of AKI may provide new cues with regard to the sequence of events and help identify key determinants of recovery from AKI. Key Messages: Tubular recovery after AKI is vital for recovery of kidney function including improvement of GFR, and likely determines which patients fully recover from AKI or progress to chronic kidney disease. There is a need to better understand the sequence of events and the processes of tubular cell proliferation and repair, including safe strategies to intervene. The temporary inhibition of selected tubular transport processes, possibly in selected nephron regions, may provide an opportunity to improve tubular cell energetics and facilitate tubular cell recovery with consequences for kidney outcome. © 2018 S. Karger AG, Basel.
Lintner, Nathanael G.; McClure, Kim F.; Petersen, Donna; Londregan, Allyn T.; Piotrowski, David W.; Wei, Liuqing; Xiao, Jun; Bolt, Michael; Loria, Paula M.; Maguire, Bruce; Geoghegan, Kieran F.; Huang, Austin; Rolph, Tim; Liras, Spiros; Doudna, Jennifer A.; Dullea, Robert G.
2017-01-01
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a key role in regulating the levels of plasma low-density lipoprotein cholesterol (LDL-C). Here, we demonstrate that the compound PF-06446846 inhibits translation of PCSK9 by inducing the ribosome to stall around codon 34, mediated by the sequence of the nascent chain within the exit tunnel. We further show that PF-06446846 reduces plasma PCSK9 and total cholesterol levels in rats following oral dosing. Using ribosome profiling, we demonstrate that PF-06446846 is highly selective for the inhibition of PCSK9 translation. The mechanism of action employed by PF-06446846 reveals a previously unexpected tunability of the human ribosome that allows small molecules to specifically block translation of individual transcripts. PMID:28323820
Yu, Bing; Ni, Ming; Li, Wen-Han; Lei, Ping; Xing, Wei; Xiao, Dai-Wen; Huang, Yu; Tang, Zhen-Jie; Zhu, Hui-Fen; Shen, Guan-Xin
2005-07-14
To identify the scFv antibody fragments specific for hepatocellular carcinoma by biopanning from a large human naive scFv phage display library. A large human naive scFv phage library was used to search for the specific targets by biopanning with the hepatocellular carcinoma cell line HepG2 for the positive-selecting and the normal liver cell line L02 for the counter-selecting. After three rounds of biopanning, individual scFv phages binding selectively to HepG2 cells were picked out. PCR was carried out for identification of the clones containing scFv gene sequence. The specific scFv phages were selected by ELISA and flow cytometry. DNA sequences of positive clones were analyzed by using Applied Biosystem Automated DNA sequencers 3 730. The expression proteins of the specific scFv antibody fragments in E.coli HB2151 were purified by the affinity chromatography and detected by SDS-PAGE, Western blot and ELISA. The biological effect of the soluble antibody fragments on the HepG2 cells was investigated by observing the cell proliferation. Two different positive clones were obtained and the functional variable sequences were identified. Their DNA sequences of the scFv antibody fragments were submitted to GenBank (accession nos: AY686498 and AY686499). The soluble scFv antibody fragments were successfully expressed in E.coli HB2151. The relative molecular mass of the expression products was about 36 ku, according to its predicted M(r) value. The two soluble scFv antibody fragments also had specific binding activity and obvious growth inhibition properties to HepG2 cells. The phage library biopanning permits identification of specific antibody fragments for hepatocellular carcinoma and affords experiment evidence for its immunotherapy study.
Forgetting motor programmes: retrieval dynamics in procedural memory.
Tempel, Tobias; Frings, Christian
2014-01-01
When motor sequences are stored in memory in a categorised manner, selective retrieval of some sequences can induce forgetting of the non-retrieved sequences. We show that such retrieval-induced forgetting (RIF) occurs not only in cued recall but also in a test assessing memory indirectly by providing novel test cues without involving recall of items. Participants learned several sequential finger movements (SFMs), each consisting of the movement of two fingers of either the left or the right hand. Subsequently, they performed retrieval practice on half of the sequences of one hand. A final task then required participants to enter letter dyads. A subset of these dyads corresponded to the previously learned sequences. RIF was present in the response times during the entering of the dyads. The finding of RIF in the slowed-down execution of motor programmes overlapping with initially trained motor sequences suggests that inhibition resolved interference between procedural representations of the acquired motor sequences of one hand during retrieval practice.
K-Ras(G12D)-selective inhibitory peptides generated by random peptide T7 phage display technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakamoto, Kotaro; Kamada, Yusuke; Sameshima, Tomoya
Amino-acid mutations of Gly{sup 12} (e.g. G12D, G12V, G12C) of V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (K-Ras), the most promising drug target in cancer therapy, are major growth drivers in various cancers. Although over 30 years have passed since the discovery of these mutations in most cancer patients, effective mutated K-Ras inhibitors have not been marketed. Here, we report novel and selective inhibitory peptides to K-Ras(G12D). We screened random peptide libraries displayed on T7 phage against purified recombinant K-Ras(G12D), with thorough subtraction of phages bound to wild-type K-Ras, and obtained KRpep-2 (Ac-RRCPLYISYDPVCRR-NH{sub 2}) as a consensus sequence. KRpep-2 showedmore » more than 10-fold binding- and inhibition-selectivity to K-Ras(G12D), both in SPR analysis and GDP/GTP exchange enzyme assay. K{sub D} and IC{sub 50} values were 51 and 8.9 nM, respectively. After subsequent sequence optimization, we successfully generated KRpep-2d (Ac-RRRRCPLYISYDPVCRRRR-NH{sub 2}) that inhibited enzyme activity of K-Ras(G12D) with IC{sub 50} = 1.6 nM and significantly suppressed ERK-phosphorylation, downstream of K-Ras(G12D), along with A427 cancer cell proliferation at 30 μM peptide concentration. To our knowledge, this is the first report of a K-Ras(G12D)-selective inhibitor, contributing to the development and study of K-Ras(G12D)-targeting drugs. - Highlights: • The first K-Ras(G12D)-selective inhibitory peptides were generated. • These peptides showed more than 10-fold binding- and inhibition-selectivity to K-Ras(G12D) in compared to wild type K-Ras. • The peptide KRpep-2d suppressed downstream signal of K-Ras(G12D) and cell proliferations of cancer cell line A427.« less
Huo, Wenying; Zhao, Guannan; Yin, Jinggang; Ouyang, Xuan; Wang, Yinan; Yang, Chuanhe; Wang, Baojing; Dong, Peixin; Wang, Zhixiang; Watari, Hidemichi; Chaum, Edward; Pfeffer, Lawrence M; Yue, Junming
2017-01-01
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) mediated genome editing is a powerful approach for loss of function studies. Here we report that lentiviral CRISPR/Cas9 vectors are highly efficient in introducing mutations in the precursor miRNA sequence, thus leading to the loss of miRNA expression and function. We constructed four different lentiviral CRISPR/Cas9 vectors that target different regions of the precursor miR-21 sequence and found that these lentiviral CRISPR/Cas9 miR-21 gRNA vectors induced mutations in the precursor sequences as shown by DNA surveyor mutation assay and Sanger sequencing. Two miR-21 lentiviral CRISPR/Cas9 gRNA vectors were selected to probe miR-21 function in ovarian cancer SKOV3 and OVCAR3 cell lines. Our data demonstrate that disruption of pre-miR-21 sequences leads to reduced cell proliferation, migration and invasion. Moreover, CRISPR/Cas9-mediated miR-21 gene editing sensitizes both SKOV3 and OVCAR3 cells to chemotherapeutic drug treatment. Disruption of miR-21 leads to the inhibition of epithelial to mesenchymal transition (EMT) in both SKOV3 and OVCAR3 cells as evidenced by the upregulation of epithelial cell marker E-cadherin and downregulation of mesenchymal marker genes, vimentin and Snai2. The miR-21 target genes PDCD4 and SPRY2 were upregulated in cells transduced with miR-21gRNAs compared to controls. Our study indicates that lentiviral CRISPR/Cas9-mediated miRNA gene editing is an effective approach to address miRNA function, and disruption of miR-21 inhibits EMT in ovarian cancer cells.
Huo, Wenying; Zhao, Guannan; Yin, Jinggang; Ouyang, Xuan; Wang, Yinan; Yang, Chuanhe; Wang, Baojing; Dong, Peixin; Wang, Zhixiang; Watari, Hidemichi; Chaum, Edward; Pfeffer, Lawrence M.; Yue, Junming
2017-01-01
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) mediated genome editing is a powerful approach for loss of function studies. Here we report that lentiviral CRISPR/Cas9 vectors are highly efficient in introducing mutations in the precursor miRNA sequence, thus leading to the loss of miRNA expression and function. We constructed four different lentiviral CRISPR/Cas9 vectors that target different regions of the precursor miR-21 sequence and found that these lentiviral CRISPR/Cas9 miR-21 gRNA vectors induced mutations in the precursor sequences as shown by DNA surveyor mutation assay and Sanger sequencing. Two miR-21 lentiviral CRISPR/Cas9 gRNA vectors were selected to probe miR-21 function in ovarian cancer SKOV3 and OVCAR3 cell lines. Our data demonstrate that disruption of pre-miR-21 sequences leads to reduced cell proliferation, migration and invasion. Moreover, CRISPR/Cas9-mediated miR-21 gene editing sensitizes both SKOV3 and OVCAR3 cells to chemotherapeutic drug treatment. Disruption of miR-21 leads to the inhibition of epithelial to mesenchymal transition (EMT) in both SKOV3 and OVCAR3 cells as evidenced by the upregulation of epithelial cell marker E-cadherin and downregulation of mesenchymal marker genes, vimentin and Snai2. The miR-21 target genes PDCD4 and SPRY2 were upregulated in cells transduced with miR-21gRNAs compared to controls. Our study indicates that lentiviral CRISPR/Cas9-mediated miRNA gene editing is an effective approach to address miRNA function, and disruption of miR-21 inhibits EMT in ovarian cancer cells. PMID:28123598
HIPdb: a database of experimentally validated HIV inhibiting peptides.
Qureshi, Abid; Thakur, Nishant; Kumar, Manoj
2013-01-01
Besides antiretroviral drugs, peptides have also demonstrated potential to inhibit the Human immunodeficiency virus (HIV). For example, T20 has been discovered to effectively block the HIV entry and was approved by the FDA as a novel anti-HIV peptide (AHP). We have collated all experimental information on AHPs at a single platform. HIPdb is a manually curated database of experimentally verified HIV inhibiting peptides targeting various steps or proteins involved in the life cycle of HIV e.g. fusion, integration, reverse transcription etc. This database provides experimental information of 981 peptides. These are of varying length obtained from natural as well as synthetic sources and tested on different cell lines. Important fields included are peptide sequence, length, source, target, cell line, inhibition/IC(50), assay and reference. The database provides user friendly browse, search, sort and filter options. It also contains useful services like BLAST and 'Map' for alignment with user provided sequences. In addition, predicted structure and physicochemical properties of the peptides are also included. HIPdb database is freely available at http://crdd.osdd.net/servers/hipdb. Comprehensive information of this database will be helpful in selecting/designing effective anti-HIV peptides. Thus it may prove a useful resource to researchers for peptide based therapeutics development.
Rodríguez, Diana Marcela; Ocampo, Marisol; Curtidor, Hernando; Vanegas, Magnolia; Patarroyo, Manuel Elkin; Patarroyo, Manuel Alfonso
2012-12-01
Mycobacterium tuberculosis surface proteins involved in target cell invasion may be identified as a strategy for developing subunit-based, chemically-synthesized vaccines. The Rv0227c protein was thus selected to assess its role in the invasion and infection of Mycobacterium tuberculosis target cells. Results revealed Rv0227c localization on mycobacterial surface by immunoelectron microscopy and Western blot. Receptor-ligand assays using 20-mer, non-overlapping peptides covering the complete Rv0227c protein sequence revealed three high activity binding peptides for U937 phagocytic cells and seven for A549 cells. Peptide 16944 significantly inhibited mycobacterial entry to both cell lines while 16943 and 16949 only managed to inhibit entrance to U937 cells and 16951 to A549 cells. The Jnet bioinformatics tool predicted secondary structure elements for the complete protein, agreeing with elements determined for such chemically-synthesized peptides. It was thus concluded that high activity binding peptides which were able to inhibit mycobacterial entry to target cells are of great importance when selecting peptide candidates for inclusion in an anti-tuberculosis vaccine. Copyright © 2012 Elsevier Inc. All rights reserved.
Van Nieuwenhuijzen, M; Van Rest, M M; Embregts, P J C M; Vriens, A; Oostermeijer, S; Van Bokhoven, I; Matthys, W
2017-02-01
One tradition in research for explaining aggression and antisocial behavior has focused on social information processing (SIP). Aggression and antisocial behavior have also been studied from the perspective of executive functions (EFs), the higher-order cognitive abilities that affect other cognitive processes, such as social cognitive processes. The main goal of the present study is to provide insight into the relation between EFs and SIP in adolescents with severe behavior problems. Because of the hierarchical relation between EFs and SIP, we examined EFs as predictors of SIP. We hypothesized that, first, focused attention predicts encoding and interpretation, second, inhibition predicts interpretation, response generation, evaluation, and selection, and third, working memory predicts response generation and selection. The participants consisted of 94 respondents living in residential facilities aged 12-20 years, all showing behavior problems in the clinical range according to care staff. EFs were assessed using subtests from the Amsterdam Neuropsychological Test battery. Focused attention was measured by the Flanker task, inhibition by the GoNoGo task, and working memory by the Visual Spatial Sequencing task. SIP was measured by video vignettes and a structured interview. The results indicate that positive evaluation of aggressive responses is predicted by impaired inhibition and selection of aggressive responses by a combination of impaired focused attention and inhibition. It is concluded that different components of EFs as higher-order cognitive abilities affect SIP.
Moroco, Jamie A; Baumgartner, Matthew P; Rust, Heather L; Choi, Hwan Geun; Hur, Wooyoung; Gray, Nathanael S; Camacho, Carlos J; Smithgall, Thomas E
2015-08-01
The c-Src tyrosine kinase co-operates with the focal adhesion kinase to regulate cell adhesion and motility. Focal adhesion kinase engages the regulatory SH3 and SH2 domains of c-Src, resulting in localized kinase activation that contributes to tumor cell metastasis. Using assay conditions where c-Src kinase activity required binding to a tyrosine phosphopeptide based on the focal adhesion kinase SH3-SH2 docking sequence, we screened a kinase-biased library for selective inhibitors of the Src/focal adhesion kinase peptide complex versus c-Src alone. This approach identified an aminopyrimidinyl carbamate compound, WH-4-124-2, with nanomolar inhibitory potency and fivefold selectivity for c-Src when bound to the phospho-focal adhesion kinase peptide. Molecular docking studies indicate that WH-4-124-2 may preferentially inhibit the 'DFG-out' conformation of the kinase active site. These findings suggest that interaction of c-Src with focal adhesion kinase induces a unique kinase domain conformation amenable to selective inhibition. © 2014 John Wiley & Sons A/S.
Novel phage display-derived H5N1-specific scFvs with potential use in rapid avian flu diagnosis.
Wu, Jie; Zeng, Xian-Qiao; Zhang, Hong-Bin; Ni, Han-Zhong; Pei, Lei; Zou, Li-Rong; Liang, Li-Jun; Zhang, Xin; Lin, Jin-Yan; Ke, Chang-Wen
2014-05-01
The highly pathogenic avian influenza A (HPAI) viruses of the H5N1 subtype infect poultry and have also been spreading to humans. Although new antiviral drugs and vaccinations can be effective, rapid detection would be more efficient to control the outbreak of infections. In this study, a phage-display library was applied to select antibody fragments for HPAI strain A/Hubei/1/2010. As a result, three clones were selected and sequenced. A hemagglutinin inhibition assay of the three scFvs revealed that none exhibited hemagglutination inhibition activity towards the H5N1 virus, yet they showed a higher binding affinity for several HPAI H5N1 strains compared with other influenza viruses. An ELISA confirmed that the HA protein was the target of the scFvs, and the results of a protein structure simulation showed that all the selected scFvs bound to the HA2 subunit of the HA protein. In conclusion, the three selected scFVs could be useful for developing a specific detection tool for the surveillance of HPAI epidemic strains.
Morita, Kenji; Jitsev, Jenia; Morrison, Abigail
2016-09-15
Value-based action selection has been suggested to be realized in the corticostriatal local circuits through competition among neural populations. In this article, we review theoretical and experimental studies that have constructed and verified this notion, and provide new perspectives on how the local-circuit selection mechanisms implement reinforcement learning (RL) algorithms and computations beyond them. The striatal neurons are mostly inhibitory, and lateral inhibition among them has been classically proposed to realize "Winner-Take-All (WTA)" selection of the maximum-valued action (i.e., 'max' operation). Although this view has been challenged by the revealed weakness, sparseness, and asymmetry of lateral inhibition, which suggest more complex dynamics, WTA-like competition could still occur on short time scales. Unlike the striatal circuit, the cortical circuit contains recurrent excitation, which may enable retention or temporal integration of information and probabilistic "soft-max" selection. The striatal "max" circuit and the cortical "soft-max" circuit might co-implement an RL algorithm called Q-learning; the cortical circuit might also similarly serve for other algorithms such as SARSA. In these implementations, the cortical circuit presumably sustains activity representing the executed action, which negatively impacts dopamine neurons so that they can calculate reward-prediction-error. Regarding the suggested more complex dynamics of striatal, as well as cortical, circuits on long time scales, which could be viewed as a sequence of short WTA fragments, computational roles remain open: such a sequence might represent (1) sequential state-action-state transitions, constituting replay or simulation of the internal model, (2) a single state/action by the whole trajectory, or (3) probabilistic sampling of state/action. Copyright © 2016. Published by Elsevier B.V.
Scannevin, Robert H; Alexander, Richard; Haarlander, Tara Mezzasalma; Burke, Sharon L; Singer, Monica; Huo, Cuifen; Zhang, Yue-Mei; Maguire, Diane; Spurlino, John; Deckman, Ingrid; Carroll, Karen I; Lewandowski, Frank; Devine, Eric; Dzordzorme, Keli; Tounge, Brett; Milligan, Cindy; Bayoumy, Shariff; Williams, Robyn; Schalk-Hihi, Celine; Leonard, Kristi; Jackson, Paul; Todd, Matthew; Kuo, Lawrence C; Rhodes, Kenneth J
2017-10-27
Aberrant activation of matrix metalloproteinases (MMPs) is a common feature of pathological cascades observed in diverse disorders, such as cancer, fibrosis, immune dysregulation, and neurodegenerative diseases. MMP-9, in particular, is highly dynamically regulated in several pathological processes. Development of MMP inhibitors has therefore been an attractive strategy for therapeutic intervention. However, a long history of failed clinical trials has demonstrated that broad-spectrum MMP inhibitors have limited clinical utility, which has spurred the development of inhibitors selective for individual MMPs. Attaining selectivity has been technically challenging because of sequence and structural conservation across the various MMPs. Here, through a biochemical and structural screening paradigm, we have identified JNJ0966, a highly selective compound that inhibited activation of MMP-9 zymogen and subsequent generation of catalytically active enzyme. JNJ0966 had no effect on MMP-1, MMP-2, MMP-3, MMP-9, or MMP-14 catalytic activity and did not inhibit activation of the highly related MMP-2 zymogen. The molecular basis for this activity was characterized as an interaction of JNJ0966 with a structural pocket in proximity to the MMP-9 zymogen cleavage site near Arg-106, which is distinct from the catalytic domain. JNJ0966 was efficacious in reducing disease severity in a mouse experimental autoimmune encephalomyelitis model, demonstrating the viability of this therapeutic approach. This discovery reveals an unprecedented pharmacological approach to MMP inhibition, providing an opportunity to improve selectivity of future clinical drug candidates. Targeting zymogen activation in this manner may also allow for pharmaceutical exploration of other enzymes previously viewed as intractable drug targets. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Lepidopteran HMG-CoA reductase is a potential selective target for pest control
Li, Yuan-mei; Huang, Juan; Tobe, Stephen S.
2017-01-01
As a consequence of the negative impacts on the environment of some insecticides, discovery of eco-friendly insecticides and target has received global attention in recent years. Sequence alignment and structural comparison of the rate-limiting enzyme HMG-CoA reductase (HMGR) revealed differences between lepidopteran pests and other organisms, which suggested insect HMGR could be a selective insecticide target candidate. Inhibition of JH biosynthesis in vitro confirmed that HMGR inhibitors showed a potent lethal effect on the lepidopteran pest Manduca sexta, whereas there was little effect on JH biosynthesis in Apis mellifera and Diploptera punctata. The pest control application of these inhibitors demonstrated that they can be insecticide candidates with potent ovicidal activity, larvicidal activity and insect growth regulatory effects. The present study has validated that Lepidopteran HMGR can be a potent selective insecticide target, and the HMGR inhibitors (especially type II statins) could be selective insecticide candidates and lead compounds. Furthermore, we demonstrated that sequence alignment, homology modeling and structural comparison may be useful for determining potential enzymes or receptors which can be eco-friendly pesticide targets. PMID:28133568
Lepidopteran HMG-CoA reductase is a potential selective target for pest control.
Li, Yuan-Mei; Kai, Zhen-Peng; Huang, Juan; Tobe, Stephen S
2017-01-01
As a consequence of the negative impacts on the environment of some insecticides, discovery of eco-friendly insecticides and target has received global attention in recent years. Sequence alignment and structural comparison of the rate-limiting enzyme HMG-CoA reductase (HMGR) revealed differences between lepidopteran pests and other organisms, which suggested insect HMGR could be a selective insecticide target candidate. Inhibition of JH biosynthesis in vitro confirmed that HMGR inhibitors showed a potent lethal effect on the lepidopteran pest Manduca sexta , whereas there was little effect on JH biosynthesis in Apis mellifera and Diploptera punctata . The pest control application of these inhibitors demonstrated that they can be insecticide candidates with potent ovicidal activity, larvicidal activity and insect growth regulatory effects. The present study has validated that Lepidopteran HMGR can be a potent selective insecticide target, and the HMGR inhibitors (especially type II statins) could be selective insecticide candidates and lead compounds. Furthermore, we demonstrated that sequence alignment, homology modeling and structural comparison may be useful for determining potential enzymes or receptors which can be eco-friendly pesticide targets.
Tissue-selective restriction of RNA editing of CaV1.3 by splicing factor SRSF9.
Huang, Hua; Kapeli, Katannya; Jin, Wenhao; Wong, Yuk Peng; Arumugam, Thiruma Valavan; Koh, Joanne Huifen; Srimasorn, Sumitra; Mallilankaraman, Karthik; Chua, John Jia En; Yeo, Gene W; Soong, Tuck Wah
2018-05-04
Adenosine DeAminases acting on RNA (ADAR) catalyzes adenosine-to-inosine (A-to-I) conversion within RNA duplex structures. While A-to-I editing is often dynamically regulated in a spatial-temporal manner, the mechanisms underlying its tissue-selective restriction remain elusive. We have previously reported that transcripts of voltage-gated calcium channel CaV1.3 are subject to brain-selective A-to-I RNA editing by ADAR2. Here, we show that editing of CaV1.3 mRNA is dependent on a 40 bp RNA duplex formed between exon 41 and an evolutionarily conserved editing site complementary sequence (ECS) located within the preceding intron. Heterologous expression of a mouse minigene that contained the ECS, intermediate intronic sequence and exon 41 with ADAR2 yielded robust editing. Interestingly, editing of CaV1.3 was potently inhibited by serine/arginine-rich splicing factor 9 (SRSF9). Mechanistically, the inhibitory effect of SRSF9 required direct RNA interaction. Selective down-regulation of SRSF9 in neurons provides a basis for the neuron-specific editing of CaV1.3 transcripts.
Gálvez-Peralta, Marina; Dai, Nga T.; Loegering, David A.; Flatten, Karen; Safgren, Stephanie; Wagner, Jill; Ames, Matthew M.; Karnitz, Larry M.; Kaufmann, Scott H.
2008-01-01
Although agents that inhibit DNA synthesis are widely used in the treatment of cancer, the optimal method for combining such agents and the mechanism of their synergy is poorly understood. The present study examined the effects of combining gemcitabine and SN-38 (the active metabolite of irinotecan), two S phase-selective agents that individually have broad antitumor activity, in human cancer cells in vitro. Colony forming assays revealed that simultaneous treatment of Ovcar-5 ovarian cancer cells or BxPC-3 pancreatic cancer cells with gemcitabine and SN-38 resulted in antagonistic effects. In contrast, sequential treatment with the two agents in either order resulted in synergistic antiproliferative effects, although the mechanism of synergy varied with the sequence. In particular, SN-38 arrested cells in S phase, enhanced the accumulation of gemcitabine metabolites and diminished checkpoint kinase 1, thereby sensitizing cells in the SN-38 → gemcitabine sequence. Gemcitabine treatment followed by removal allowed prolonged progression through S phase, contributing to synergy of the gemcitabine → SN-38 sequence. Collectively, these results suggest that S phase selective agents might exhibit more cytotoxicity when administered sequentially rather than simultaneously. PMID:18509065
Foglieni, Chiara; Pagano, Katiuscia; Lessi, Marco; Bugatti, Antonella; Moroni, Elisabetta; Pinessi, Denise; Resovi, Andrea; Ribatti, Domenico; Bertini, Sabrina; Ragona, Laura; Bellina, Fabio; Rusnati, Marco; Colombo, Giorgio; Taraboletti, Giulia
2016-01-01
The FGFs/FGFRs system is a recognized actionable target for therapeutic approaches aimed at inhibiting tumor growth, angiogenesis, metastasis, and resistance to therapy. We previously identified a non-peptidic compound (SM27) that retains the structural and functional properties of the FGF2-binding sequence of thrombospondin-1 (TSP-1), a major endogenous inhibitor of angiogenesis. Here we identified new small molecule inhibitors of FGF2 based on the initial lead. A similarity-based screening of small molecule libraries, followed by docking calculations and experimental studies, allowed selecting 7 bi-naphthalenic compounds that bound FGF2 inhibiting its binding to both heparan sulfate proteoglycans and FGFR-1. The compounds inhibit FGF2 activity in in vitro and ex vivo models of angiogenesis, with improved potency over SM27. Comparative analysis of the selected hits, complemented by NMR and biochemical analysis of 4 newly synthesized functionalized phenylamino-substituted naphthalenes, allowed identifying the minimal stereochemical requirements to improve the design of naphthalene sulfonates as FGF2 inhibitors. PMID:27000667
Scalable gastroscopic video summarization via similar-inhibition dictionary selection.
Wang, Shuai; Cong, Yang; Cao, Jun; Yang, Yunsheng; Tang, Yandong; Zhao, Huaici; Yu, Haibin
2016-01-01
This paper aims at developing an automated gastroscopic video summarization algorithm to assist clinicians to more effectively go through the abnormal contents of the video. To select the most representative frames from the original video sequence, we formulate the problem of gastroscopic video summarization as a dictionary selection issue. Different from the traditional dictionary selection methods, which take into account only the number and reconstruction ability of selected key frames, our model introduces the similar-inhibition constraint to reinforce the diversity of selected key frames. We calculate the attention cost by merging both gaze and content change into a prior cue to help select the frames with more high-level semantic information. Moreover, we adopt an image quality evaluation process to eliminate the interference of the poor quality images and a segmentation process to reduce the computational complexity. For experiments, we build a new gastroscopic video dataset captured from 30 volunteers with more than 400k images and compare our method with the state-of-the-arts using the content consistency, index consistency and content-index consistency with the ground truth. Compared with all competitors, our method obtains the best results in 23 of 30 videos evaluated based on content consistency, 24 of 30 videos evaluated based on index consistency and all videos evaluated based on content-index consistency. For gastroscopic video summarization, we propose an automated annotation method via similar-inhibition dictionary selection. Our model can achieve better performance compared with other state-of-the-art models and supplies more suitable key frames for diagnosis. The developed algorithm can be automatically adapted to various real applications, such as the training of young clinicians, computer-aided diagnosis or medical report generation. Copyright © 2015 Elsevier B.V. All rights reserved.
Surface control of blastospore attachment and ligand-mediated hyphae adhesion of Candida albicans.
Varghese, Nisha; Yang, Sijie; Sejwal, Preeti; Luk, Yan-Yeung
2013-11-14
Adhesion on a surface via nonspecific attachment or multiple ligand-receptor interactions is a critical event for fungal infection by Candida albicans. Here, we find that the tri(ethylene glycol)- and d-mannitol-terminated monolayers do not resist the blastospore attachment, but prevent the hyphae adhesion of C. albicans. The hyphae adhesion can be facilitated by tripeptide sequences of arginine-glycine-aspartic acid (RGD) covalently decorated on a background of tri(ethylene glycol)-terminated monolayers. This adhesion mediated by selected ligands is sensitive to the scrambling of peptide sequences, and is inhibited by the presence of cyclic RGD peptides in the solution.
Inducible Transgenic Models of BRCA1 Function
2000-10-01
four different hammerhead ribozymes designed to specifically cleave the Brcal transcript. Hammerhead ribozymes are catalytic RNAs that efficiently...cleave RNA and thereby down- regulate gene expression. Hammerhead ribozymes can cleave any RNA containing a 5’-UH-3’ consensus sequence where U can be...replaced by C, and H=C, U or A. Hammerhead ribozymes have been shown to effectively and selectively inhibit gene expression in bacteria, plants, cell
Beetz, M Jerome; Hechavarría, Julio C; Kössl, Manfred
2016-06-30
Precise temporal coding is necessary for proper acoustic analysis. However, at cortical level, forward suppression appears to limit the ability of neurons to extract temporal information from natural sound sequences. Here we studied how temporal processing can be maintained in the bats' cortex in the presence of suppression evoked by natural echolocation streams that are relevant to the bats' behavior. We show that cortical neurons tuned to target-distance actually profit from forward suppression induced by natural echolocation sequences. These neurons can more precisely extract target distance information when they are stimulated with natural echolocation sequences than during stimulation with isolated call-echo pairs. We conclude that forward suppression does for time domain tuning what lateral inhibition does for selectivity forms such as auditory frequency tuning and visual orientation tuning. When talking about cortical processing, suppression should be seen as a mechanistic tool rather than a limiting element.
Soler Bistué, Alfonso J. C.; Martín, Fernando A.; Vozza, Nicolás; Ha, Hongphuc; Joaquín, Jonathan C.; Zorreguieta, Angeles; Tolmasky, Marcelo E.
2009-01-01
Inhibition of bacterial gene expression by RNase P-directed cleavage is a promising strategy for the development of antibiotics and pharmacological agents that prevent expression of antibiotic resistance. The rise in multiresistant bacteria harboring AAC(6′)-Ib has seriously limited the effectiveness of amikacin and other aminoglycosides. We have recently shown that recombinant plasmids coding for external guide sequences (EGS), short antisense oligoribonucleotides (ORN) that elicit RNase P-mediated cleavage of a target mRNA, induce inhibition of expression of aac(6′)-Ib and concomitantly induce a significant decrease in the levels of resistance to amikacin. However, since ORN are rapidly degraded by nucleases, development of a viable RNase P-based antisense technology requires the design of nuclease-resistant RNA analog EGSs. We have assayed a variety of ORN analogs of which selected LNA/DNA co-oligomers elicited RNase P-mediated cleavage of mRNA in vitro. Although we found an ideal configuration of LNA/DNA residues, there seems not to be a correlation between number of LNA substitutions and level of activity. Exogenous administration of as low as 50 nM of an LNA/DNA co-oligomer to the hyperpermeable E. coli AS19 harboring the aac(6′)-Ib inhibited growth in the presence of amikacin. Our experiments strongly suggest an RNase P-mediated mechanism in the observed antisense effect. PMID:19666539
Rubin, H; Salem, J S; Li, L S; Yang, F D; Mama, S; Wang, Z M; Fisher, A; Hamann, C S; Cooperman, B S
1993-01-01
Malaria remains a leading cause of morbidity and mortality worldwide, accounting for more than one million deaths annually. We have focused on the reduction of ribonucleotides to 2'-deoxyribonucleotides, catalyzed by ribonucleotide reductase, which represents the rate-determining step in DNA replication as a target for antimalarial agents. We report the full-length DNA sequence corresponding to the large (PfR1) and small (PfR2) subunits of Plasmodium falciparum ribonucleotide reductase. The small subunit (PfR2) contains the major catalytic motif consisting of a tyrosyl radical and a dinuclear Fe site. Whereas PfR2 shares 59% amino acid identity with human R2, a striking sequence divergence between human R2 and PfR2 at the C terminus may provide a selective target for inhibition of the malarial enzyme. A synthetic oligopeptide corresponding to the C-terminal 7 residues of PfR2 inhibits mammalian ribonucleotide reductase at concentrations approximately 10-fold higher than that predicted to inhibit malarial R2. The gene encoding the large subunit (PfR1) contains a single intron. The cysteines thought to be involved in the reduction mechanism are conserved. In contrast to mammalian ribonucleotide reductase, the genes for PfR1 and PfR2 are located on the same chromosome and the accumulation of mRNAs for the two subunits follow different temporal patterns during the cell cycle. Images Fig. 2 Fig. 4 Fig. 5 PMID:8415692
[Knockdown of STAT3 inhibits proliferation and migration of HepG2 hepatoma cells induced by IFN1].
Li, Xiaofang; Wang, Yuqi; Yan, Ben; Fang, Peipei; Ma, Chao; Xu, Ning; Fu, Xiaoyan; Liang, Shujuan
2018-02-01
Objective To prepare lentiviruses expressing shRNA sequences targeting human signal transducer and activator of transcription 3 (STAT3) and detect the effect of STAT3 knockdown on type I interferon (IFN1)-induced proliferation and migration in HepG2 cells. Methods Four STAT3-targeting shRNA sequences (shRNA1-shRNA4) and one control sequence (Ctrl shRNA) were selected and cloned respectively into pLKO.1-sp6-pgk-GFP to construct shRNA-expressing vectors. Along with backbone psPAX2 and pMD2.G vectors, they were separately transfected into HEK293T cells to prepare lentiviruses. HepG2 cells were infected with the lentiviruses. Cytoplastic STAT3 level was detected by Western blotting to screen effective shRNA sequence(s) targeting STAT3. Proliferation and migration of HepG2 cells were analyzed by CCK-8 assay and Transwell TM migration and scratching assay, respectively. To detect the effect of IFN1 on cell proliferation and migration of HepG2 cells, the cells were treated with 2000 U/mL IFNα2b for indicated time and the activation of IFN-triggered STAT1 signal transduction was assayed by Western blotting. Results Two most effective STAT3-targeting shRNA sequences shRNA1 and shRNA2 were selected, and the expression of both STAT3 shRNA significantly decreased proliferation and migration of HepG2 cells. When treated with IFNα2b, 2000 U/mL of IFN1 showed more competent in attenuating growth and migration of HepG2 cells. Our data further proved that knockdown of STAT3 increased the phosphorylation of STAT1, and IFNα2b further enhanced the activation of STAT1 signaling in HepG2 cells. Conclusion Knockdown of STAT3 inhibits cell migration and growth, and rescues IFN response through up-regulating STAT1 signal transduction in HepG2 hepatoma cells.
Structural prediction and analysis of VIH-related peptides from selected crustacean species.
Nagaraju, Ganji Purna Chandra; Kumari, Nunna Siva; Prasad, Ganji Lakshmi Vara; Rajitha, Balney; Meenu, Madan; Rao, Manam Sreenivasa; Naik, Bannoth Reddya
2009-08-17
The tentative elucidation of the 3D-structure of vitellogenesis inhibiting hormone (VIH) peptides is conversely underprivileged by difficulties in gaining enough peptide or protein, diffracting crystals, and numerous extra technical aspects. As a result, no structural information is available for VIH peptide sequences registered in the Genbank. In this situation, it is not surprising that predictive methods have achieved great interest. Here, in this study the molt-inhibiting hormone (MIH) of the kuruma prawn (Marsupenaeus japonicus) is used, to predict the structure of four VIHrelated peptides in the crustacean species. The high similarity of the 3D-structures and the calculated physiochemical characteristics of these peptides suggest a common fold for the entire family.
2013-10-01
thrombin inhibition, leading to coagulopathy. Using intravital microscopy, we have obtained direct in vivo data showing glycocalyx thickness reduction...collected in 3.2% citrate for coagulation assays (ROTEM, TEM Innovations GmbH, Munich, Germany). Intravital Microscopy The system described in detail...microscopic fields containing venules were randomly selected. The first dye (TR-Dx70) was injected 5 min before baseline. Image sequences of
Hassan, Mohamed M
2014-11-02
Biological control plays a crucial role in grapevine pathogens disease management. The cell-wall degrading enzymes chitinase, cellulase and β-glucanase have been suggested to be essential for the mycoparasitism activity of Trichoderma species against grapevine fungal pathogens. In order to develop a useful strain as a single source of these vital enzymes, it was intended to incorporate the characteristics of two parental fungicides tolerant mutants of Trichoderma belonging to the high chitinase producing species T. harzianum and the high cellulase producing species T. viride , by fusing their protoplasts. The phylogeny of the parental strains was carried out using a sequence of the 5.8S-ITS region. The BLAST of the obtained sequence identified these isolates as T. harzianum and T. viride . Protoplasts were isolated using lysing enzymes and were fused using polyethylene glycol. The fused protoplasts have been regenerated on protoplast regeneration minimal medium supplemented with two selective fungicides. Among the 40 fast growing fusants, 17 fusants were selected based on their enhanced growth on selective media for further studies. The fusant strains were growing 60%-70% faster than the parents up to third generation. All the 17 selected fusants exhibited morphological variations. Some fusant strains displayed threefold increased chitinase enzyme activity and twofold increase in β-glucanase enzyme activity compared to the parent strains. Most fusants showed powerful antagonistic activity against Macrophomin aphaseolina , Pythium ultimum and Sclerotium rolfsii pathogens. Fusant number 15 showed the highest inhibition percentage (92.8%) against M. phaseolina and P. ultimum, while fusant number 9 showed the highest inhibition percentage (98.2%) against the growth of S. rolfsii. A hyphal intertwining and degradation phenomenon was observed by scanning electron microscope. The Trichoderma antagonistic effect against pathogenic fungal mycelia was due to the mycoparasitism effect of the extracellular enzymes.
K-Ras(G12D)-selective inhibitory peptides generated by random peptide T7 phage display technology.
Sakamoto, Kotaro; Kamada, Yusuke; Sameshima, Tomoya; Yaguchi, Masahiro; Niida, Ayumu; Sasaki, Shigekazu; Miwa, Masanori; Ohkubo, Shoichi; Sakamoto, Jun-Ichi; Kamaura, Masahiro; Cho, Nobuo; Tani, Akiyoshi
2017-03-11
Amino-acid mutations of Gly 12 (e.g. G12D, G12V, G12C) of V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (K-Ras), the most promising drug target in cancer therapy, are major growth drivers in various cancers. Although over 30 years have passed since the discovery of these mutations in most cancer patients, effective mutated K-Ras inhibitors have not been marketed. Here, we report novel and selective inhibitory peptides to K-Ras(G12D). We screened random peptide libraries displayed on T7 phage against purified recombinant K-Ras(G12D), with thorough subtraction of phages bound to wild-type K-Ras, and obtained KRpep-2 (Ac-RRCPLYISYDPVCRR-NH 2 ) as a consensus sequence. KRpep-2 showed more than 10-fold binding- and inhibition-selectivity to K-Ras(G12D), both in SPR analysis and GDP/GTP exchange enzyme assay. K D and IC 50 values were 51 and 8.9 nM, respectively. After subsequent sequence optimization, we successfully generated KRpep-2d (Ac-RRRRCPLYISYDPVCRRRR-NH 2 ) that inhibited enzyme activity of K-Ras(G12D) with IC 50 = 1.6 nM and significantly suppressed ERK-phosphorylation, downstream of K-Ras(G12D), along with A427 cancer cell proliferation at 30 μM peptide concentration. To our knowledge, this is the first report of a K-Ras(G12D)-selective inhibitor, contributing to the development and study of K-Ras(G12D)-targeting drugs. Copyright © 2017 Elsevier Inc. All rights reserved.
D'Souza, Alicia D; Belotserkovskii, Boris P; Hanawalt, Philip C
2018-02-01
The selective inhibition of transcription of a chosen gene by an artificial agent has numerous applications. Usually, these agents are designed to bind a specific nucleotide sequence in the promoter or within the transcribed region of the chosen gene. However, since optimal binding sites might not exist within the gene, it is of interest to explore the possibility of transcription inhibition when the agent is designed to bind at other locations. One of these possibilities arises when an additional transcription initiation site (e.g. secondary promoter) is present upstream from the primary promoter of the target gene. In this case, transcription inhibition might be achieved by inducing the formation of an RNA-DNA hybrid (R-loop) upon transcription from the secondary promoter. The R-loop could extend into the region of the primary promoter, to interfere with promoter recognition by RNA polymerase and thereby inhibit transcription. As a sequence-specific R-loop-inducing agent, a peptide nucleic acid (PNA) could be designed to facilitate R-loop formation by sequestering the non-template DNA strand. To investigate this mode for transcription inhibition, we have employed a model system in which a PNA binding site is localized between the T3 and T7 phage RNA polymerase promoters, which respectively assume the roles of primary and secondary promoters. In accord with our model, we have demonstrated that with PNA-bound DNA substrates, transcription from the T7 promoter reduces transcription from the T3 promoter by 30-fold, while in the absence of PNA binding there is no significant effect of T7 transcription upon T3 transcription. Copyright © 2018 Elsevier B.V. All rights reserved.
Deficient saccadic inhibition in Asperger's disorder and the social-emotional processing disorder
Manoach, D; Lindgren, K; Barton, J
2004-01-01
Background: Both Asperger's disorder and the social-emotional processing disorder (SEPD), a form of non-verbal learning disability, are associated with executive function deficits. SEPD has been shown to be associated with deficient saccadic inhibition. Objective: To study two executive functions in Asperger's disorder and SEPD, inhibition and task switching, using a single saccadic paradigm. Methods: 22 control subjects and 27 subjects with developmental social processing disorders—SEPD, Asperger's disorder, or both syndromes—performed random sequences of prosaccades and antisaccades. This design resulted in four trial types, prosaccades and antisaccades, that were either repeated or switched. The design allowed the performance costs of inhibition and task switching to be isolated. Results: Subjects with both Asperger's disorder and SEPD showed deficient inhibition, as indicated by increased antisaccade errors and a disproportionate increase in latency for antisaccades relative to prosaccades. In contrast, task switching error and latency costs were normal and unrelated to the costs of inhibition. Conclusions: This study replicates the finding of deficient saccadic inhibition in SEPD, extends it to Asperger's disorder, and implicates prefrontal cortex dysfunction in these syndromes. The finding of intact task switching shows that executive function deficits in Asperger's disorder and SEPD are selective and suggests that inhibition and task switching are mediated by distinct neural networks. PMID:15548490
Sticky Plans: Inhibition and Binding during Serial-Task Control
ERIC Educational Resources Information Center
Mayr, Ulrich
2009-01-01
Recent evidence suggests substantial response-time costs associated with lag-2 repetitions of tasks within explicitly controlled task sequences [Koch, I., Philipp, A. M., Gade, M. (2006). Chunking in task sequences modulates task inhibition. "Psychological Science," 17, 346-350; Schneider, D. W. (2007). Task-set inhibition in chunked task…
Design, Synthesis, and Evaluation of New Tripeptides as COX-2 Inhibitors.
Vernieri, Ermelinda; Gomez-Monterrey, Isabel; Milite, Ciro; Grieco, Paolo; Musella, Simona; Bertamino, Alessia; Scognamiglio, Ilaria; Alcaro, Stefano; Artese, Anna; Ortuso, Francesco; Novellino, Ettore; Sala, Marina; Campiglia, Pietro
2013-01-01
Cyclooxygenase (COX) is a key enzyme in the biosynthetic pathway leading to the formation of prostaglandins, which are mediators of inflammation. It exists mainly in two isoforms COX-1 and COX-2. The conventional nonsteroidal anti-inflammatory drugs (NSAIDs) have gastrointestinal side effects because they inhibit both isoforms. Recent data demonstrate that the overexpression of these enzymes, and in particular of cyclooxygenases-2, promotes multiple events involved in tumorigenesis; in addition, numerous studies show that the inhibition of cyclooxygenases-2 can delay or prevent certain forms of cancer. Agents that inhibit COX-2 while sparing COX-1 represent a new attractive therapeutic development and offer a new perspective for a further use of COX-2 inhibitors. The present study extends the evaluation of the COX activity to all 20(3) possible natural tripeptide sequences following a rational approach consisting in molecular modeling, synthesis, and biological tests. Based on data obtained from virtual screening, only those peptides with better profile of affinity have been selected and classified into two groups called S and E. Our results suggest that these novel compounds may have potential as structural templates for the design and subsequent development of the new selective COX-2 inhibitors drugs.
Rapid synthesis of VX-745: p38 MAP kinase inhibition in Werner syndrome cells.
Bagley, Mark C; Davis, Terence; Dix, Matthew C; Rokicki, Michal J; Kipling, David
2007-09-15
The p38 mitogen-activated protein kinase inhibitor VX-745 is prepared rapidly and efficiently in a four-step sequence using a combination of conductive heating and microwave-mediated steps. Its inhibitory activity was confirmed in hTERT immortalized HCA2 and WS dermal fibroblasts at 0.5-1.0 microM concentration by ELISA and immunoblot assay, and displays excellent kinase selectivity over the related stress-activated kinase JNK.
Sun, Jiakang; Aluvila, Sreevidya; Kotaria, Rusudan; Mayor, June A.; Walters, D. Eric; Kaplan, Ronald S.
2010-01-01
Cytoplasmic citrate is the prime carbon source for fatty acid, triacylglycerol, and cholesterol biosyntheses, and also regulates glucose metabolism via its allosteric inhibition of phosphofructokinase. It originates either via the efflux of citrate from the mitochondrial matrix on the inner membrane citrate transport protein (CTP) or via the influx of extracellular citrate on the plasma membrane citrate transporter (PMCT). Despite their common substrate, the two transport proteins share little sequence similarity and they transport citrate via fundamentally different mechanisms. We tested the ability of a set of previously identified CTP inhibitors, to inhibit the PMCT. We found that of the top 10 CTP inhibitors only one substantially inhibited the PMCT. Conversely, we identified two other inhibitors that inhibited the PMCT but had little effect on the CTP. All three identified PMCT inhibitors displayed a noncompetitive mechanism. Furthermore, models to explain inhibitor interactions with the CTP are proposed. As part of the present studies a PMCT homology model has been developed based on the crystal structure of the leucine transporter, and a possible citrate binding site has been identified and its composition compared with the two known citrate binding sites present within the CTP. The ability to selectively inhibit the PMCT may prove key to the pharmacologic amelioration of metabolic disorders resulting from the synthesis of excess lipid, cholesterol, and glucose, including human obesity, hyperlipidemia, hyper-cholesterolemia, and Type 2 diabetes. PMID:20686672
Stockbauer, K E; Grigsby, D; Pan, X; Fu, Y X; Mejia, L M; Cravioto, A; Musser, J M
1998-03-17
In many countries, M1 strains of the human pathogenic bacterium group A Streptococcus are the most common serotype recovered from patients with invasive disease episodes. Strains of this serotype express an extracellular protein that inhibits complement [streptococcal inhibitor of complement (Sic)] and is therefore believed to be a virulence factor. Comparative sequence analysis of the 915-bp sic gene in 165 M1 organisms recovered from diverse localities and infection types identified 62 alleles. Inasmuch as multilocus enzyme electrophoresis and pulsed-field gel electrophoresis previously showed that most M1 organisms represent a distinct streptococcal clone, the extent of sic gene polymorphism was unexpected. The level of polymorphism greatly exceeds that recorded for all other genes examined in serotype M1 strains. All insertions and deletions are in frame, and virtually all nucleotide substitutions alter the amino acid sequence of the Sic protein. These molecular features indicate that structural change in Sic is mediated by natural selection. Study of 70 strains recovered from two temporally distinct epidemics of streptococcal infections in the former East Germany found little sharing of Sic variants among strains recovered in the different time periods. Taken together, the data indicate that sic is a uniquely variable gene and provide insight into a potential molecular mechanism contributing to fluctuations in streptococcal disease frequency and severity.
Rasti, Behnam; Namazi, Mohsen; Karimi-Jafari, M H; Ghasemi, Jahan B
2017-04-01
Due to its physiological and clinical roles, carbonic anhydrase (CA) is one of the most interesting case studies. There are different classes of CAinhibitors including sulfonamides, polyamines, coumarins and dithiocarbamates (DTCs). However, many of them hardly act as a selective inhibitor against a specific isoform. Therefore, finding highly selective inhibitors for different isoforms of CA is still an ongoing project. Proteochemometrics modeling (PCM) is able to model the bioactivity of multiple compounds against different isoforms of a protein. Therefore, it would be extremely applicable when investigating the selectivity of different ligands towards different receptors. Given the facts, we applied PCM to investigate the interaction space and structural properties that lead to the selective inhibition of CA isoforms by some dithiocarbamates. Our models have provided interesting structural information that can be considered to design compounds capable of inhibiting different isoforms of CA in an improved selective manner. Validity and predictivity of the models were confirmed by both internal and external validation methods; while Y-scrambling approach was applied to assess the robustness of the models. To prove the reliability and the applicability of our findings, we showed how ligands-receptors selectivity can be affected by removing any of these critical findings from the modeling process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Trebbien, Ramona; Christiansen, Claus Bohn; Fischer, Thea Kølsen
2018-05-01
Antiviral treatment of influenza virus infections can lead to drug resistance of virus. This study investigates a selection of mutations in the full genome of H3N2 influenza A virus isolated from a patient in treatment with oseltamivir. Respiratory samples from a patient were collected before, during, and after antiviral treatment. Whole genome sequencing of the influenza virus by next generation sequencing, and low-frequency-variant analysis was performed. Neuraminidase-inhibition tests were performed with oseltamivir and zanamivir, and viruses were propagated in sial-transferase gene transfected Madin-Darby Canine Kidney cells. A deletion at amino acid position 245-248 in the neuraminidase gene occurred after initiation of treatment with oseltamivir. The deleted virus had highly reduced inhibition against oseltamivir but was sensitive to zanamivir. Nine days after discontinuation of oseltamivir treatment the deleted H3N2 virus was still present in the patient. After three passages of the deleted virus in cell culture, the deletion was retained. Several variant mutations appeared in the other genes of the H3N2 virus, where most striking were two major out-of-frame deletions in the polymerase basic 2 (PB2) gene, indicating defective interfering-like viral RNA. The viruses harboring the 245-248 deletion in the neuraminidase gene were still present after discontinuation of oseltamivir treatment and passages in cell cultures, indicating a potential risk for transmission of the deleted virus. Full genome deep sequencing was useful to reveal variant mutations that might be selected due to antiviral treatment, and defective interfering-like viral PB2 RNA in the respiratory samples was detected. Copyright © 2018 Elsevier B.V. All rights reserved.
Structural prediction and analysis of VIH-related peptides from selected crustacean species
Nagaraju, Ganji Purna Chandra; Kumari, Nunna Siva; Prasad, Ganji Lakshmi Vara; Rajitha, Balney; Meenu, Madan; Rao, Manam Sreenivasa; Naik, Bannoth Reddya
2009-01-01
The tentative elucidation of the 3D-structure of vitellogenesis inhibiting hormone (VIH) peptides is conversely underprivileged by difficulties in gaining enough peptide or protein, diffracting crystals, and numerous extra technical aspects. As a result, no structural information is available for VIH peptide sequences registered in the Genbank. In this situation, it is not surprising that predictive methods have achieved great interest. Here, in this study the molt-inhibiting hormone (MIH) of the kuruma prawn (Marsupenaeus japonicus) is used, to predict the structure of four VIHrelated peptides in the crustacean species. The high similarity of the 3D-structures and the calculated physiochemical characteristics of these peptides suggest a common fold for the entire family. PMID:20011146
Neural Sequence Generation Using Spatiotemporal Patterns of Inhibition.
Cannon, Jonathan; Kopell, Nancy; Gardner, Timothy; Markowitz, Jeffrey
2015-11-01
Stereotyped sequences of neural activity are thought to underlie reproducible behaviors and cognitive processes ranging from memory recall to arm movement. One of the most prominent theoretical models of neural sequence generation is the synfire chain, in which pulses of synchronized spiking activity propagate robustly along a chain of cells connected by highly redundant feedforward excitation. But recent experimental observations in the avian song production pathway during song generation have shown excitatory activity interacting strongly with the firing patterns of inhibitory neurons, suggesting a process of sequence generation more complex than feedforward excitation. Here we propose a model of sequence generation inspired by these observations in which a pulse travels along a spatially recurrent excitatory chain, passing repeatedly through zones of local feedback inhibition. In this model, synchrony and robust timing are maintained not through redundant excitatory connections, but rather through the interaction between the pulse and the spatiotemporal pattern of inhibition that it creates as it circulates the network. These results suggest that spatially and temporally structured inhibition may play a key role in sequence generation.
Agresti, Jeremy J.; Kelly, Bernard T.; Jäschke, Andres; Griffiths, Andrew D.
2005-01-01
In vitro compartmentalization (IVC) has previously been used to evolve protein enzymes. Here, we demonstrate how IVC can be applied to select RNA enzymes (ribozymes) for a property that has previously been unselectable: true intermolecular catalysis. Libraries containing 1011 ribozyme genes are compartmentalized in the aqueous droplets of a water-in-oil emulsion, such that most droplets contain no more than one gene, and transcribed in situ. By coencapsulating the gene, RNA, and the substrates/products of the catalyzed reaction, ribozymes can be selected for all enzymatic properties: substrate recognition, product formation, rate acceleration, and turnover. Here we exploit the complementarity of IVC with systematic evolution of ligands by exponential enrichment (SELEX), which allows selection of larger libraries (≥1015) and for very small rate accelerations (kcat/kuncat) but only selects for intramolecular single-turnover reactions. We selected ≈1014 random RNAs for Diels–Alderase activity with five rounds of SELEX, then six to nine rounds with IVC. All selected ribozymes catalyzed the Diels–Alder reaction in a truly bimolecular fashion and with multiple turnover. Nearly all ribozymes selected by using eleven rounds of SELEX alone contain a common catalytic motif. Selecting with SELEX then IVC gave ribozymes with significant sequence variations in this catalytic motif and ribozymes with completely novel motifs. Interestingly, the catalytic properties of all of the selected ribozymes were quite similar. The ribozymes are strongly product inhibited, consistent with the Diels–Alder transition state closely resembling the product. More efficient Diels–Alderases may need to catalyze a second reaction that transforms the product and prevents product inhibition. PMID:16260754
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kacham, R.; Karanth, S.; Baireddy, P.
2006-01-15
We previously reported that sequence of exposure to chlorpyrifos and parathion in adult rats can markedly influence toxic outcome. In the present study, we evaluated the interactive toxicity of chlorpyrifos (8 mg/kg, po) and parathion (0.5 mg/kg, po) in neonatal (7 days old) rats. Rats were exposed to the insecticides either concurrently or sequentially (separated by 4 h) and sacrificed at 4, 8, and 24 h after the first exposure for biochemical measurements (cholinesterase activity in brain, plasma, and diaphragm and carboxylesterase activity in plasma and liver). The concurrently-exposed group showed more cumulative lethality (15/24) than either of the sequentialmore » dosing groups. With sequential dosing, rats treated initially with chlorpyrifos prior to parathion (C/P) exhibited higher lethality (7/23) compared to those treated with parathion before chlorpyrifos (P/C; 1/24). At 8 h after initial dosing, brain cholinesterase inhibition was significantly greater in the C/P group (59%) compared to the P/C group (28%). Diaphragm and plasma cholinesterase activity also followed a relatively similar pattern of inhibition. Carboxylesterase inhibition in plasma and liver was relatively similar among the treatment groups across time-points. Similar sequence-dependent differences in brain cholinesterase inhibition were also noted with lower binary exposures to chlorpyrifos (2 mg/kg) and parathion (0.35 mg/kg). In vitro and ex vivo studies compared relative oxon detoxification of carboxylesterases (calcium-insensitive) and A-esterases (calcium-sensitive) in liver homogenates from untreated and insecticide pretreated rats. Using tissues from untreated rats, carboxylesterases detoxified both chlorpyrifos oxon and paraoxon, while A-esterases only detoxified chlorpyrifos oxon. With parathion pretreatment, A-esterases still detoxified chlorpyrifos oxon while liver from chlorpyrifos pretreated rats had little apparent effect on paraoxon. We conclude that while neonatal rats are less capable than adults at detoxifying many organophosphorus insecticides including chlorpyrifos and parathion, toxicant-selective differences in detoxification play a role in sequence-dependent toxicity in both neonatal and adult rats with these two insecticides.« less
Selective amplification and sequencing of cyclic phosphate-containing RNAs by the cP-RNA-seq method.
Honda, Shozo; Morichika, Keisuke; Kirino, Yohei
2016-03-01
RNA digestions catalyzed by many ribonucleases generate RNA fragments that contain a 2',3'-cyclic phosphate (cP) at their 3' termini. However, standard RNA-seq methods are unable to accurately capture cP-containing RNAs because the cP inhibits the adapter ligation reaction. We recently developed a method named cP-RNA-seq that is able to selectively amplify and sequence cP-containing RNAs. Here we describe the cP-RNA-seq protocol in which the 3' termini of all RNAs, except those containing a cP, are cleaved through a periodate treatment after phosphatase treatment; hence, subsequent adapter ligation and cDNA amplification steps are exclusively applied to cP-containing RNAs. cP-RNA-seq takes ∼6 d, excluding the time required for sequencing and bioinformatics analyses, which are not covered in detail in this protocol. Biochemical validation of the existence of cP in the identified RNAs takes ∼3 d. Even though the cP-RNA-seq method was developed to identify angiogenin-generating 5'-tRNA halves as a proof of principle, the method should be applicable to global identification of cP-containing RNA repertoires in various transcriptomes.
Inhibition of trypanosomal cysteine proteinases by their propeptides.
Lalmanach, G; Lecaille, F; Chagas, J R; Authié, E; Scharfstein, J; Juliano, M A; Gauthier, F
1998-09-25
The ability of the prodomains of trypanosomal cysteine proteinases to inhibit their active form was studied using a set of 23 overlapping 15-mer peptides covering the whole prosequence of congopain, the major cysteine proteinase of Trypanosoma congolense. Three consecutive peptides with a common 5-mer sequence YHNGA were competitive inhibitors of congopain. A shorter synthetic peptide consisting of this 5-mer sequence flanked by two Ala residues (AYHNGAA) also inhibited purified congopain. No residue critical for inhibition was identified in this sequence, but a significant improvement in Ki value was obtained upon N-terminal elongation. Procongopain-derived peptides did not inhibit lysosomal cathepsins B and L but did inhibit native cruzipain (from Dm28c clone epimastigotes), the major cysteine proteinase of Trypanosoma cruzi, the proregion of which also contains the sequence YHNGA. The positioning of the YHNGA inhibitory sequence within the prosegment of trypanosomal proteinases is similar to that covering the active site in the prosegment of cysteine proteinases, the three-dimensional structure of which has been resolved. This strongly suggests that trypanosomal proteinases, despite their long C-terminal extension, have a prosegment that folds similarly to that in related mammal and plant cysteine proteinases, resulting in reverse binding within the active site. Such reverse binding could also occur for short procongopain-derived inhibitory peptides, based on their resistance to proteolysis and their ability to retain inhibitory activity after prolonged incubation. In contrast, homologous peptides in related cysteine proteinases did not inhibit trypanosomal proteinases and were rapidly cleaved by these enzymes.
DNA methylation inhibits expression and transposition of the Neurospora Tad retrotransposon.
Zhou, Y; Cambareri, E B; Kinsey, J A
2001-06-01
Tad is a LINE-like retrotransposon of the filamentous fungus Neurospora crassa. We have analyzed both expression and transposition of this element using strains with a single copy of Tad located in the 5' noncoding sequences of the am (glutamate dehydrogenase) gene. Tad in this position has been shown to carry a de novo cytosine methylation signal which causes reversible methylation of both Tad and am upstream sequences. Here we find that methylation of the Tad sequences inhibits both Tad expression and transposition. This inhibition can be relieved by the use of 5-azacytidine, a drug which reduces cytosine methylation, or by placing the Tad/am sequences in a dim-2 genetic background.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hancock, Stephen P.; Stella, Stefano; Cascio, Duilio
The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequencesmore » in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. Lastly, the affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.« less
Hancock, Stephen P.; Stella, Stefano; Cascio, Duilio; ...
2016-03-09
The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequencesmore » in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. Lastly, the affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.« less
Wu, Nicholas C.; Young, Arthur P.; Al-Mawsawi, Laith Q.; Olson, C. Anders; Feng, Jun; Qi, Hangfei; Luan, Harding H.; Li, Xinmin; Wu, Ting-Ting
2014-01-01
ABSTRACT Viral proteins often display several functions which require multiple assays to dissect their genetic basis. Here, we describe a systematic approach to screen for loss-of-function mutations that confer a fitness disadvantage under a specified growth condition. Our methodology was achieved by genetically monitoring a mutant library under two growth conditions, with and without interferon, by deep sequencing. We employed a molecular tagging technique to distinguish true mutations from sequencing error. This approach enabled us to identify mutations that were negatively selected against, in addition to those that were positively selected for. Using this technique, we identified loss-of-function mutations in the influenza A virus NS segment that were sensitive to type I interferon in a high-throughput fashion. Mechanistic characterization further showed that a single substitution, D92Y, resulted in the inability of NS to inhibit RIG-I ubiquitination. The approach described in this study can be applied under any specified condition for any virus that can be genetically manipulated. IMPORTANCE Traditional genetics focuses on a single genotype-phenotype relationship, whereas high-throughput genetics permits phenotypic characterization of numerous mutants in parallel. High-throughput genetics often involves monitoring of a mutant library with deep sequencing. However, deep sequencing suffers from a high error rate (∼0.1 to 1%), which is usually higher than the occurrence frequency for individual point mutations within a mutant library. Therefore, only mutations that confer a fitness advantage can be identified with confidence due to an enrichment in the occurrence frequency. In contrast, it is impossible to identify deleterious mutations using most next-generation sequencing techniques. In this study, we have applied a molecular tagging technique to distinguish true mutations from sequencing errors. It enabled us to identify mutations that underwent negative selection, in addition to mutations that experienced positive selection. This study provides a proof of concept by screening for loss-of-function mutations on the influenza A virus NS segment that are involved in its anti-interferon activity. PMID:24965464
Sasaki, S
2001-04-01
A number of cross-linking (alkylating) agents have been developed and incorporated into the oligonulceotides for sequence selective control of gene expression. Recently, potential application of such active oligonucleotides has been expanding from use for improvement of inhibition efficiency to new biotechnology that may enable chemical alteration of genetic information. These interests in active oligonucleotides have encouraged the generation of new cross-linking agents that exhibit high efficiency for application of either in vitro or in vivo. This mini review summarizes structures of alkylating agents, in particular, a new basic skeleton for cross-linking, a 2'-deoxyribose derivative of 2-amino-6-vinylpurine that has been recently developed by the author's group. The 2-amino-6-vinylpurine has been shown to form a complex with cytidine under acidic conditions, and brings the vinyl and the amino reactive groups into proximity to achieve efficient alkylation. A new strategy was designed so that the reactivity of 2-amino-6-vinylpurine can be induced from the corresponding phenylsulfoxide derivative within a duplex with the complementary strand. The validity of the new strategy has been proven by achievement of cytidine-selective cross-linking with remarkably efficiency.
Bonham, Andrew J.; Wenta, Nikola; Osslund, Leah M.; Prussin, Aaron J.; Vinkemeier, Uwe; Reich, Norbert O.
2013-01-01
The DNA-binding specificity and affinity of the dimeric human transcription factor (TF) STAT1, were assessed by total internal reflectance fluorescence protein-binding microarrays (TIRF-PBM) to evaluate the effects of protein phosphorylation, higher-order polymerization and small-molecule inhibition. Active, phosphorylated STAT1 showed binding preferences consistent with prior characterization, whereas unphosphorylated STAT1 showed a weak-binding preference for one-half of the GAS consensus site, consistent with recent models of STAT1 structure and function in response to phosphorylation. This altered-binding preference was further tested by use of the inhibitor LLL3, which we show to disrupt STAT1 binding in a sequence-dependent fashion. To determine if this sequence-dependence is specific to STAT1 and not a general feature of human TF biology, the TF Myc/Max was analysed and tested with the inhibitor Mycro3. Myc/Max inhibition by Mycro3 is sequence independent, suggesting that the sequence-dependent inhibition of STAT1 may be specific to this system and a useful target for future inhibitor design. PMID:23180800
Tran, Thao D; Huynh, Steven; Parker, Craig T; Hnasko, Robert; Gorski, Lisa; McGarvey, Jeffery A
2018-06-21
Here, we report the complete genome sequences of three Bacillus amyloliquefaciens strains isolated from alfalfa, almond drupes, and grapes that inhibited the growth of Listeria monocytogenes strain 2011L-2857 in vitro We also report multiple gene clusters encoding secondary metabolites that may be responsible for the growth inhibition of L. monocytogenes . Copyright © 2018 Tran et al.
Scala, Maria Carmina; Sala, Marina; Pietrantoni, Agostina; Spensiero, Antonia; Di Micco, Simone; Agamennone, Mariangela; Bertamino, Alessia; Novellino, Ettore; Bifulco, Giuseppe; Gomez-Monterrey, Isabel M; Superti, Fabiana; Campiglia, Pietro
2017-09-06
Bovine lactoferrin is a biglobular multifunctional iron binding glycoprotein that plays an important role in innate immunity against infections. We have previously demonstrated that selected peptides from bovine lactoferrin C-lobe are able to prevent both Influenza virus hemagglutination and cell infection. To deeper investigate the ability of lactoferrin derived peptides to inhibit Influenza virus infection, in this study we identified new bovine lactoferrin C-lobe derived sequences and corresponding synthetic peptides were synthesized and assayed to check their ability to prevent viral hemagglutination and infection. We identified three tetrapeptides endowed with broad anti-Influenza activity and able to inhibit viral infection in a concentration range femto- to picomolar. Our data indicate that these peptides may constitute a non-toxic tool for potential applications as anti-Influenza therapeutics.
McLelland, Douglas; VanRullen, Rufin
2016-10-01
Several theories have been advanced to explain how cross-frequency coupling, the interaction of neuronal oscillations at different frequencies, could enable item multiplexing in neural systems. The communication-through-coherence theory proposes that phase-matching of gamma oscillations between areas enables selective processing of a single item at a time, and a later refinement of the theory includes a theta-frequency oscillation that provides a periodic reset of the system. Alternatively, the theta-gamma neural code theory proposes that a sequence of items is processed, one per gamma cycle, and that this sequence is repeated or updated across theta cycles. In short, both theories serve to segregate representations via the temporal domain, but differ on the number of objects concurrently represented. In this study, we set out to test whether each of these theories is actually physiologically plausible, by implementing them within a single model inspired by physiological data. Using a spiking network model of visual processing, we show that each of these theories is physiologically plausible and computationally useful. Both theories were implemented within a single network architecture, with two areas connected in a feedforward manner, and gamma oscillations generated by feedback inhibition within areas. Simply increasing the amplitude of global inhibition in the lower area, equivalent to an increase in the spatial scope of the gamma oscillation, yielded a switch from one mode to the other. Thus, these different processing modes may co-exist in the brain, enabling dynamic switching between exploratory and selective modes of attention.
Passari, Ajit K; Mishra, Vineet K; Gupta, Vijai K; Saikia, Ratul; Singh, Bhim P
2016-08-26
The prospective of endophytic microorganisms allied with medicinal plants is disproportionally large compared to those in other biomes. The use of antagonistic microorganisms to control devastating fungal pathogens is an attractive and eco-friendly substitute for chemical pesticides. Many species of actinomycetes, especially the genus Streptomyces, are well known as biocontrol agents. We investigated the culturable community composition and biological control ability of endophytic Streptomyces sp. associated with an ethanobotanical plant Schima wallichi. A total of 22 actinobacterial strains were isolated from different organs of selected medicinal plants and screened for their biocontrol ability against seven fungal phytopathogens. Seven isolates showed significant inhibition activity against most of the selected pathogens. Their identification based on 16S rRNA gene sequence analysis, strongly indicated that all strains belonged to the genus Streptomyces. An endophytic strain BPSAC70 isolated from root tissues showed highest percentage of inhibition (98.3 %) against Fusarium culmorum with significant activity against other tested fungal pathogens. Phylogenetic analysis based on 16S rRNA gene sequences revealed that all seven strains shared 100 % similarity with the genus Streptomyces. In addition, the isolates were subjected to the amplification of antimicrobial genes encoding polyketide synthase type I (PKS-I) and nonribosomal peptide synthetase (NRPS) and found to be present in most of the potent strains. Our results identified some potential endophytic Streptomyces species having antagonistic activity against multiple fungal phytopathogens that could be used as an effective biocontrol agent against pathogenic fungi.
Intraglomerular inhibition shapes the strength and temporal structure of glomerular output
Shao, Zuoyi; Puche, Adam C.; Liu, Shaolin
2012-01-01
Odor signals are transmitted to the olfactory bulb by olfactory nerve (ON) synapses onto mitral/tufted cells (MCs) and external tufted cells (ETCs). ETCs, in turn, provide feedforward excitatory input to MCs. MC and ETCs are also regulated by inhibition: intraglomerular and interglomerular inhibitory circuits act at MC and ETC apical dendrites; granule cells (GCs) inhibit MC lateral dendrites via the MC→GC→MC circuit. We investigated the contribution of intraglomerular inhibition to MC and ETCs responses to ON input. ON input evokes initial excitation followed by early, strongly summating inhibitory postsynaptic currents (IPSCs) in MCs; this is followed by prolonged, intermittent IPSCs. The N-methyl-d-aspartate receptor antagonist dl-amino-5-phosphovaleric acid, known to suppress GABA release by GCs, reduced late IPSCs but had no effect on early IPSCs. In contrast, selective intraglomerular block of GABAA receptors eliminated all early IPSCs and caused a 5-fold increase in ON-evoked MC spiking and a 10-fold increase in response duration. ETCs also receive intraglomerular inhibition; blockade of inhibition doubled ETC spike responses. By reducing ETC excitatory drive and directly inhibiting MCs, intraglomerular inhibition is a key factor shaping the strength and temporal structure of MC responses to sensory input. Sensory input generates an intraglomerular excitation-inhibition sequence that limits MC spike output to a brief temporal window. Glomerular circuits may dynamically regulate this input-output window to optimize MC encoding across sniff-sampled inputs. PMID:22592311
Intraglomerular inhibition shapes the strength and temporal structure of glomerular output.
Shao, Zuoyi; Puche, Adam C; Liu, Shaolin; Shipley, Michael T
2012-08-01
Odor signals are transmitted to the olfactory bulb by olfactory nerve (ON) synapses onto mitral/tufted cells (MCs) and external tufted cells (ETCs). ETCs, in turn, provide feedforward excitatory input to MCs. MC and ETCs are also regulated by inhibition: intraglomerular and interglomerular inhibitory circuits act at MC and ETC apical dendrites; granule cells (GCs) inhibit MC lateral dendrites via the MC→GC→MC circuit. We investigated the contribution of intraglomerular inhibition to MC and ETCs responses to ON input. ON input evokes initial excitation followed by early, strongly summating inhibitory postsynaptic currents (IPSCs) in MCs; this is followed by prolonged, intermittent IPSCs. The N-methyl-d-aspartate receptor antagonist dl-amino-5-phosphovaleric acid, known to suppress GABA release by GCs, reduced late IPSCs but had no effect on early IPSCs. In contrast, selective intraglomerular block of GABA(A) receptors eliminated all early IPSCs and caused a 5-fold increase in ON-evoked MC spiking and a 10-fold increase in response duration. ETCs also receive intraglomerular inhibition; blockade of inhibition doubled ETC spike responses. By reducing ETC excitatory drive and directly inhibiting MCs, intraglomerular inhibition is a key factor shaping the strength and temporal structure of MC responses to sensory input. Sensory input generates an intraglomerular excitation-inhibition sequence that limits MC spike output to a brief temporal window. Glomerular circuits may dynamically regulate this input-output window to optimize MC encoding across sniff-sampled inputs.
Hassan, Mohamed M.
2014-01-01
Biological control plays a crucial role in grapevine pathogens disease management. The cell-wall degrading enzymes chitinase, cellulase and β-glucanase have been suggested to be essential for the mycoparasitism activity of Trichoderma species against grapevine fungal pathogens. In order to develop a useful strain as a single source of these vital enzymes, it was intended to incorporate the characteristics of two parental fungicides tolerant mutants of Trichoderma belonging to the high chitinase producing species T. harzianum and the high cellulase producing species T. viride, by fusing their protoplasts. The phylogeny of the parental strains was carried out using a sequence of the 5.8S-ITS region. The BLAST of the obtained sequence identified these isolates as T. harzianum and T. viride. Protoplasts were isolated using lysing enzymes and were fused using polyethylene glycol. The fused protoplasts have been regenerated on protoplast regeneration minimal medium supplemented with two selective fungicides. Among the 40 fast growing fusants, 17 fusants were selected based on their enhanced growth on selective media for further studies. The fusant strains were growing 60%–70% faster than the parents up to third generation. All the 17 selected fusants exhibited morphological variations. Some fusant strains displayed threefold increased chitinase enzyme activity and twofold increase in β-glucanase enzyme activity compared to the parent strains. Most fusants showed powerful antagonistic activity against Macrophomin aphaseolina, Pythium ultimum and Sclerotium rolfsii pathogens. Fusant number 15 showed the highest inhibition percentage (92.8%) against M. phaseolina and P. ultimum, while fusant number 9 showed the highest inhibition percentage (98.2%) against the growth of S. rolfsii. A hyphal intertwining and degradation phenomenon was observed by scanning electron microscope. The Trichoderma antagonistic effect against pathogenic fungal mycelia was due to the mycoparasitism effect of the extracellular enzymes. PMID:26019588
1995-01-01
Acetylcholine-evoked currents mediated by activation of nicotinic receptors in rat parasympathetic neurons were examined using whole-cell voltage clamp. The relative permeability of the neuronal nicotinic acetylcholine (nACh) receptor channel to monovalent and divalent inorganic and organic cations was determined from reversal potential measurements. The channel exhibited weak selectivity among the alkali metals with a selectivity sequence of Cs+ > K+ > Rb+ > Na+ > Li+, and permeability ratios relative to Na+ (Px/PNa) ranging from 1.27 to 0.75. The selectivity of the alkaline earths was also weak, with the sequence of Mg2+ > Sr2+ > Ba2+ > Ca2+, and relative permeabilities of 1.10 to 0.65. The relative Ca2+ permeability (PCa/PNa) of the neuronal nACh receptor channel is approximately fivefold higher than that of the motor endplate channel (Adams, D. J., T. M. Dwyer, and B. Hille. 1980. Journal of General Physiology. 75:493-510). The transition metal cation, Mn2+ was permeant (Px/PNa = 0.67), whereas Ni2+, Zn2+, and Cd2+ blocked ACh-evoked currents with half-maximal inhibition (IC50) occurring at approximately 500 microM, 5 microM and 1 mM, respectively. In contrast to the muscle endplate AChR channel, that at least 56 organic cations which are permeable to (Dwyer et al., 1980), the majority of organic cations tested were found to completely inhibit ACh- evoked currents in rat parasympathetic neurons. Concentration-response curves for guanidinium, ethylammonium, diethanolammonium and arginine inhibition of ACh-evoked currents yielded IC50's of approximately 2.5- 6.0 mM. The organic cations, hydrazinium, methylammonium, ethanolammonium and Tris, were measureably permeant, and permeability ratios varied inversely with the molecular size of the cation. Modeling suggests that the pore has a minimum diameter of 7.6 A. Thus, there are substantial differences in ion permeation and block between the nACh receptor channels of mammalian parasympathetic neurons and amphibian skeletal muscle which represent functional consequences of differences in the primary structure of the subunits of the ACh receptor channel. PMID:7561740
Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness.
Khare, Shilpi; Nagle, Advait S; Biggart, Agnes; Lai, Yin H; Liang, Fang; Davis, Lauren C; Barnes, S Whitney; Mathison, Casey J N; Myburgh, Elmarie; Gao, Mu-Yun; Gillespie, J Robert; Liu, Xianzhong; Tan, Jocelyn L; Stinson, Monique; Rivera, Ianne C; Ballard, Jaime; Yeh, Vince; Groessl, Todd; Federe, Glenn; Koh, Hazel X Y; Venable, John D; Bursulaya, Badry; Shapiro, Michael; Mishra, Pranab K; Spraggon, Glen; Brock, Ansgar; Mottram, Jeremy C; Buckner, Frederick S; Rao, Srinivasa P S; Wen, Ben G; Walker, John R; Tuntland, Tove; Molteni, Valentina; Glynne, Richard J; Supek, Frantisek
2016-09-08
Chagas disease, leishmaniasis and sleeping sickness affect 20 million people worldwide and lead to more than 50,000 deaths annually. The diseases are caused by infection with the kinetoplastid parasites Trypanosoma cruzi, Leishmania spp. and Trypanosoma brucei spp., respectively. These parasites have similar biology and genomic sequence, suggesting that all three diseases could be cured with drugs that modulate the activity of a conserved parasite target. However, no such molecular targets or broad spectrum drugs have been identified to date. Here we describe a selective inhibitor of the kinetoplastid proteasome (GNF6702) with unprecedented in vivo efficacy, which cleared parasites from mice in all three models of infection. GNF6702 inhibits the kinetoplastid proteasome through a non-competitive mechanism, does not inhibit the mammalian proteasome or growth of mammalian cells, and is well-tolerated in mice. Our data provide genetic and chemical validation of the parasite proteasome as a promising therapeutic target for treatment of kinetoplastid infections, and underscore the possibility of developing a single class of drugs for these neglected diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kükenshöner, Tim; Schmit, Nadine Eliane; Bouda, Emilie
The binding of Src-homology 2 (SH2) domains to phosphotyrosine (pY) sites is critical for the autoinhibition and substrate recognition of the eight Src family kinases (SFKs). The high sequence conservation of the 120 human SH2 domains poses a significant challenge to selectively perturb the interactions of even the SFK SH2 family against the rest of the SH2 domains. We have developed synthetic binding proteins, termed monobodies, for six of the SFK SH2 domains with nanomolar affinity. Most of these monobodies competed with pY ligand binding and showed strong selectivity for either the SrcA (Yes, Src, Fyn, Fgr) or SrcB subgroupmore » (Lck, Lyn, Blk, Hck). Interactome analysis of intracellularly expressed monobodies revealed that they bind SFKs but no other SH2-containing proteins. Three crystal structures of monobody–SH2 complexes unveiled different and only partly overlapping binding modes, which rationalized the observed selectivity and enabled structure-based mutagenesis to modulate inhibition mode and selectivity. In line with the critical roles of SFK SH2 domains in kinase autoinhibition and T-cell receptor signaling, monobodies binding the Src and Hck SH2 domains selectively activated respective recombinant kinases, whereas an Lck SH2-binding monobody inhibited proximal signaling events downstream of the T-cell receptor complex. Our results show that SFK SH2 domains can be targeted with unprecedented potency and selectivity using monobodies. They are excellent tools for dissecting SFK functions in normal development and signaling and to interfere with aberrant SFK signaling networks in cancer cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Li; Xu, Xun; Zhao, Hui
A synthetic deca-peptide corresponding to the amino acid sequence Arg{sup 54}-Trp{sup 63} of human tissue-type plasminogen activator (t-PA) kringle 2 domain, named TKII-10, is produced and tested for its ability to inhibit endothelial cell proliferation, migration, tube formation in vitro, and angiogenesis in vivo. At the same time, another peptide TKII-10S composed of the same 10 amino acids as TKII-10, but in a different sequence, is also produced and tested. The results show that TKII-10 potently inhibits VEGF-stimulated endothelial cell migration and tube formation in a dose-dependent, as well as sequence-dependent, manner in vitro while it is inactive in inhibitingmore » endothelial cell proliferation. Furthermore, TKII-10 potently inhibits angiogenesis in chick chorioallantoic membrane and mouse cornea. The middle four amino acids DGDA in their sequence play an important role in TKII-10 angiogenesis inhibition{sub .} These results suggest that TKII-10 is a novel angiogenesis inhibitor that may serve as a prototype for antiangiogenic drug development.« less
Miceli, Elisangela; Presta, Luana; Maggini, Valentina; Fondi, Marco; Bosi, Emanuele; Chiellini, Carolina; Fagorzi, Camilla; Bogani, Patrizia; Di Pilato, Vincenzo; Rossolini, Gian Maria; Mengoni, Alessio; Firenzuoli, Fabio; Perrin, Elena
2017-01-01
ABSTRACT We announce here the draft genome sequence of Arthrobacter sp. strain EpSL27, isolated from the stem and leaves of the medicinal plant Echinacea purpurea and able to inhibit human-pathogenic bacterial strains. The genome sequencing of this strain may lead to the identification of genes involved in the production of antimicrobial molecules. PMID:28642378
Miceli, Elisangela; Presta, Luana; Maggini, Valentina; Fondi, Marco; Bosi, Emanuele; Chiellini, Carolina; Fagorzi, Camilla; Bogani, Patrizia; Di Pilato, Vincenzo; Rossolini, Gian Maria; Mengoni, Alessio; Firenzuoli, Fabio; Perrin, Elena; Fani, Renato
2017-06-22
We announce here the draft genome sequence of Arthrobacter sp. strain EpSL27, isolated from the stem and leaves of the medicinal plant Echinacea purpurea and able to inhibit human-pathogenic bacterial strains. The genome sequencing of this strain may lead to the identification of genes involved in the production of antimicrobial molecules. Copyright © 2017 Miceli et al.
G-Quadruplex Induction by the Hairpin Pyrrole-Imidazole Polyamide Dimer.
Obata, Shunsuke; Asamitsu, Sefan; Hashiya, Kaori; Bando, Toshikazu; Sugiyama, Hiroshi
2018-02-06
The G-quadruplex (G4) is one type of higher-order structure of nucleic acids and is thought to play important roles in various biological events such as regulation of transcription and inhibition of DNA replication. Pyrrole-imidazole polyamides (PIPs) are programmable small molecules that can sequence-specifically bind with high affinity to the minor groove of double-stranded DNA (dsDNA). Herein, we designed head-to-head hairpin PIP dimers and their target dsDNA in a model G4-forming sequence. Using an electrophoresis mobility shift assay and transcription arrest assay, we found that PIP dimers could induce the structural change to G4 DNA from dsDNA through the recognition by one PIP dimer molecule of two duplex-binding sites flanking both ends of the G4-forming sequence. This induction ability was dependent on linker length. This is the first study to induce G4 formation using PIPs, which are known to be dsDNA binders. The results reported here suggest that selective G4 induction in native sequences may be achieved with PIP dimers by applying the same design strategy.
Backman, Samuel; Norlén, Olov; Eriksson, Barbro; Skogseid, Britt; Stålberg, Peter; Crona, Joakim
2017-02-01
Mutations affecting the mechanistic target of rapamycin (MTOR) signalling pathway are frequent in human cancer and have been identified in up to 15% of pancreatic neuroendocrine tumours (NETs). Grade A evidence supports the efficacy of MTOR inhibition with everolimus in pancreatic NETs. Although a significant proportion of patients experience disease stabilization, only a minority will show objective tumour responses. It has been proposed that genomic mutations resulting in activation of MTOR signalling could be used to predict sensitivity to everolimus. Patients with NETs that underwent treatment with everolimus at our Institution were identified and those with available tumour tissue were selected for further analysis. Targeted next-generation sequencing (NGS) was used to re-sequence 22 genes that were selected on the basis of documented involvement in the MTOR signalling pathway or in the tumourigenesis of gastroenterpancreatic NETs. Radiological responses were documented using Response Evaluation Criteria in Solid Tumours. Six patients were identified, one had a partial response and four had stable disease. Sequencing of tumour tissue resulted in a median sequence depth of 667.1 (range=404-1301) with 1-fold coverage of 95.9-96.5% and 10-fold coverage of 87.6-92.2%. A total of 494 genetic variants were discovered, four of which were identified as pathogenic. All pathogenic variants were validated using Sanger sequencing and were found exclusively in menin 1 (MEN1) and death domain associated protein (DAXX) genes. No mutations in the MTOR pathway-related genes were observed. Targeted NGS is a feasible method with high diagnostic yield for genetic characterization of pancreatic NETs. A potential association between mutations in NETs and response to everolimus should be investigated by future studies. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Klein, Wolfgang; Westendorf, Carolin; Schmidt, Antje; Conill-Cortés, Mercè; Rutz, Claudia; Blohs, Marcus; Beyermann, Michael; Protze, Jonas; Krause, Gerd; Krause, Eberhard; Schülein, Ralf
2015-01-01
The cyclodepsipeptide cotransin was described to inhibit the biosynthesis of a small subset of proteins by a signal sequence-discriminatory mechanism at the Sec61 protein-conducting channel. However, it was not clear how selective cotransin is, i.e. how many proteins are sensitive. Moreover, a consensus motif in signal sequences mediating cotransin sensitivity has yet not been described. To address these questions, we performed a proteomic study using cotransin-treated human hepatocellular carcinoma cells and the stable isotope labelling by amino acids in cell culture technique in combination with quantitative mass spectrometry. We used a saturating concentration of cotransin (30 micromolar) to identify also less-sensitive proteins and to discriminate the latter from completely resistant proteins. We found that the biosynthesis of almost all secreted proteins was cotransin-sensitive under these conditions. In contrast, biosynthesis of the majority of the integral membrane proteins was cotransin-resistant. Cotransin sensitivity of signal sequences was neither related to their length nor to their hydrophobicity. Instead, in the case of signal anchor sequences, we identified for the first time a conformational consensus motif mediating cotransin sensitivity. PMID:25806945
Velagapudi, Sai Pradeep; Luo, Yiling; Tran, Tuan; Haniff, Hafeez S; Nakai, Yoshio; Fallahi, Mohammad; Martinez, Gustavo J; Childs-Disney, Jessica L; Disney, Matthew D
2017-03-22
RNA drug targets are pervasive in cells, but methods to design small molecules that target them are sparse. Herein, we report a general approach to score the affinity and selectivity of RNA motif-small molecule interactions identified via selection. Named High Throughput Structure-Activity Relationships Through Sequencing (HiT-StARTS), HiT-StARTS is statistical in nature and compares input nucleic acid sequences to selected library members that bind a ligand via high throughput sequencing. The approach allowed facile definition of the fitness landscape of hundreds of thousands of RNA motif-small molecule binding partners. These results were mined against folded RNAs in the human transcriptome and identified an avid interaction between a small molecule and the Dicer nuclease-processing site in the oncogenic microRNA (miR)-18a hairpin precursor, which is a member of the miR-17-92 cluster. Application of the small molecule, Targapremir-18a, to prostate cancer cells inhibited production of miR-18a from the cluster, de-repressed serine/threonine protein kinase 4 protein (STK4), and triggered apoptosis. Profiling the cellular targets of Targapremir-18a via Chemical Cross-Linking and Isolation by Pull Down (Chem-CLIP), a covalent small molecule-RNA cellular profiling approach, and other studies showed specific binding of the compound to the miR-18a precursor, revealing broadly applicable factors that govern small molecule drugging of noncoding RNAs.
2017-01-01
RNA drug targets are pervasive in cells, but methods to design small molecules that target them are sparse. Herein, we report a general approach to score the affinity and selectivity of RNA motif–small molecule interactions identified via selection. Named High Throughput Structure–Activity Relationships Through Sequencing (HiT-StARTS), HiT-StARTS is statistical in nature and compares input nucleic acid sequences to selected library members that bind a ligand via high throughput sequencing. The approach allowed facile definition of the fitness landscape of hundreds of thousands of RNA motif–small molecule binding partners. These results were mined against folded RNAs in the human transcriptome and identified an avid interaction between a small molecule and the Dicer nuclease-processing site in the oncogenic microRNA (miR)-18a hairpin precursor, which is a member of the miR-17-92 cluster. Application of the small molecule, Targapremir-18a, to prostate cancer cells inhibited production of miR-18a from the cluster, de-repressed serine/threonine protein kinase 4 protein (STK4), and triggered apoptosis. Profiling the cellular targets of Targapremir-18a via Chemical Cross-Linking and Isolation by Pull Down (Chem-CLIP), a covalent small molecule–RNA cellular profiling approach, and other studies showed specific binding of the compound to the miR-18a precursor, revealing broadly applicable factors that govern small molecule drugging of noncoding RNAs. PMID:28386598
Targeting kinase signaling pathways with constrained peptide scaffolds
Hanold, Laura E.; Fulton, Melody D.; Kennedy, Eileen J.
2017-01-01
Kinases are amongst the largest families in the human proteome and serve as critical mediators of a myriad of cell signaling pathways. Since altered kinase activity is implicated in a variety of pathological diseases, kinases have become a prominent class of proteins for targeted inhibition. Although numerous small molecule and antibody-based inhibitors have already received clinical approval, several challenges may still exist with these strategies including resistance, target selection, inhibitor potency and in vivo activity profiles. Constrained peptide inhibitors have emerged as an alternative strategy for kinase inhibition. Distinct from small molecule inhibitors, peptides can provide a large binding surface area that allows them to bind shallow protein surfaces rather than defined pockets within the target protein structure. By including chemical constraints within the peptide sequence, additional benefits can be bestowed onto the peptide scaffold such as improved target affinity and target selectivity, cell permeability and proteolytic resistance. In this review, we highlight examples of diverse chemistries that are being employed to constrain kinase-targeting peptide scaffolds and highlight their application to modulate kinase signaling as well as their potential clinical implications. PMID:28185915
Mitochondrial ADCK3 employs an atypical protein kinase-like fold to enable coenzyme Q biosynthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefely, Jonathan A.; Reidenbach, Andrew G.; Ulbrich, Arne
The ancient UbiB protein kinase-like family is involved in isoprenoid lipid biosynthesis and is implicated in human diseases, but demonstration of UbiB kinase activity has remained elusive for unknown reasons. In this paper, we quantitatively define UbiB-specific sequence motifs and reveal their positions within the crystal structure of a UbiB protein, ADCK3. We find that multiple UbiB-specific features are poised to inhibit protein kinase activity, including an N-terminal domain that occupies the typical substrate binding pocket and a unique A-rich loop that limits ATP binding by establishing an unusual selectivity for ADP. A single alanine-to-glycine mutation of this loop flipsmore » this coenzyme selectivity and enables autophosphorylation but inhibits coenzyme Q biosynthesis in vivo, demonstrating functional relevance for this unique feature. Finally, our work provides mechanistic insight into UbiB enzyme activity and establishes a molecular foundation for further investigation of how UbiB family proteins affect diseases and diverse biological pathways.« less
Flachbartova, Z; Pulzova, L; Bencurova, E; Potocnakova, L; Comor, L; Bednarikova, Z; Bhide, M
2016-01-01
The aim of the study was to isolate and characterize novel antimicrobial peptides from peptide phage library with antimicrobial activity against multidrug resistant Listeria monocytogenes. Combinatorial phage-display library was used to affinity select peptides binding to the cell surface of multidrug resistant L. monocytogenes. After several rounds of affinity selection followed by sequencing, three peptides were revealed as the most promising candidates. Peptide L2 exhibited features common to antimicrobial peptides (AMPs), and was rich in Asp, His and Lys residues. Peptide L3 (NSWIQAPDTKSI), like peptide L2, inhibited bacterial growth in vitro, without any hemolytic or cytotoxic effects on eukaryotic cells. L1 peptide showed no inhibitory effect on Listeria. Structurally, peptides L2 and L3 formed random coils composed of α-helix and β-sheet units. Peptides L2 and L3 exhibited antimicrobial activity against multidrug resistant isolates of L. monocytogenes with no haemolytic or toxic effects. Both peptides identified in this study have the potential to be beneficial in human and veterinary medicine. Copyright © 2016 Elsevier GmbH. All rights reserved.
Mitochondrial ADCK3 employs an atypical protein kinase-like fold to enable coenzyme Q biosynthesis
Stefely, Jonathan A.; Reidenbach, Andrew G.; Ulbrich, Arne; ...
2014-12-11
The ancient UbiB protein kinase-like family is involved in isoprenoid lipid biosynthesis and is implicated in human diseases, but demonstration of UbiB kinase activity has remained elusive for unknown reasons. In this paper, we quantitatively define UbiB-specific sequence motifs and reveal their positions within the crystal structure of a UbiB protein, ADCK3. We find that multiple UbiB-specific features are poised to inhibit protein kinase activity, including an N-terminal domain that occupies the typical substrate binding pocket and a unique A-rich loop that limits ATP binding by establishing an unusual selectivity for ADP. A single alanine-to-glycine mutation of this loop flipsmore » this coenzyme selectivity and enables autophosphorylation but inhibits coenzyme Q biosynthesis in vivo, demonstrating functional relevance for this unique feature. Finally, our work provides mechanistic insight into UbiB enzyme activity and establishes a molecular foundation for further investigation of how UbiB family proteins affect diseases and diverse biological pathways.« less
Selective amplification and sequencing of cyclic phosphate-containing RNAs by the cP-RNA-seq method
Honda, Shozo; Morichika, Keisuke; Kirino, Yohei
2016-01-01
RNA digestions catalyzed by many ribonucleases generate RNA fragments containing a 2′,3′-cyclic phosphate (cP) at their 3′-termini. However, standard RNA-seq methods are unable to accurately capture cP-containing RNAs because the cP inhibits the adapter ligation reaction. We recently developed a method named “cP-RNA-seq” that is able to selectively amplify and sequence cP-containing RNAs. Here we describe the cP-RNA-seq protocol in which the 3′-termini of all RNAs, except those containing a cP, are cleaved through a periodate treatment after phosphatase treatment, hence subsequent adapter ligation and cDNA amplification steps are exclusively applied to cP-containing RNAs. cP-RNA-seq takes ~6 d, excluding the time required for sequencing and bioinformatics analyses, such downstream assays are not covered in detail in this protocol. Biochemical validation of the existence of cP in the identified RNAs takes ~3 d. Even though the cP-RNA-seq method was developed to identify angiogenin-generating 5′-tRNA halves as a proof of principle, the method should be applicable to global identification of cP-containing RNA repertoires in various transcriptomes. PMID:26866791
Titus, James K; Kay, Matthew K; Glaser, CDR Jacob J
2017-01-01
Snakebite envenomation is an important global health concern. The current standard treatment approach for snakebite envenomation relies on antibody-based antisera, which are expensive, not universally available, and can lead to adverse physiological effects. Phage display techniques offer a powerful tool for the selection of phage-expressed peptides, which can bind with high specificity and affinity towards venom components. In this research, the amino acid sequences of Phospholipase A2 (PLA2) from multiple cottonmouth species were analyzed, and a consensus peptide synthesized. Three phage display libraries were panned against this consensus peptide, crosslinked to capillary tubes, followed by a modified surface panning procedure. This high throughput selection method identified four phage clones with anti-PLA2 activity against Western cottonmouth venom, and the amino acid sequences of the displayed peptides were identified. This is the first report identifying short peptide sequences capable of inhibiting PLA2 activity of Western cottonmouth venom in vitro, using a phage display technique. Additionally, this report utilizes synthetic panning targets, designed using venom proteomic data, to mimic epitope regions. M13 phages displaying circular 7-mer or linear 12-mer peptides with antivenom activity may offer a novel alternative to traditional antibody-based therapy. PMID:29285351
Titus, James K; Kay, Matthew K; Glaser, Cdr Jacob J
2017-01-01
Snakebite envenomation is an important global health concern. The current standard treatment approach for snakebite envenomation relies on antibody-based antisera, which are expensive, not universally available, and can lead to adverse physiological effects. Phage display techniques offer a powerful tool for the selection of phage-expressed peptides, which can bind with high specificity and affinity towards venom components. In this research, the amino acid sequences of Phospholipase A 2 (PLA 2 ) from multiple cottonmouth species were analyzed, and a consensus peptide synthesized. Three phage display libraries were panned against this consensus peptide, crosslinked to capillary tubes, followed by a modified surface panning procedure. This high throughput selection method identified four phage clones with anti-PLA 2 activity against Western cottonmouth venom, and the amino acid sequences of the displayed peptides were identified. This is the first report identifying short peptide sequences capable of inhibiting PLA 2 activity of Western cottonmouth venom in vitro , using a phage display technique. Additionally, this report utilizes synthetic panning targets, designed using venom proteomic data, to mimic epitope regions. M13 phages displaying circular 7-mer or linear 12-mer peptides with antivenom activity may offer a novel alternative to traditional antibody-based therapy.
Pham, Jenny H; Will, Catherine M; Mack, Vance L; Halbert, Matthew; Conner, Edward Alexander; Bucholtz, Kevin M; Thomas, James L
2017-11-01
3β-Hydroxysteroid dehydrogenase type 1 (3β-HSD1) is selectively expressed in human placenta, mammary glands and breast tumors in women. Human 3β-HSD2 is selectively expressed in adrenal glands and ovaries. Based on AutoDock 3 and 4 results, we have exploited key differences in the amino acid sequences of 3β-HSD1 (Ser194, Arg195) and 3β-HSD2 (Gly194, Pro195) by designing a selective inhibitor of 3β-HSD1. 2,16-Dicyano-4,5-epoxy-androstane-3,17-dione (16-cyano-17-keto-trilostane or DiCN-AND) was synthesized in a 4-step procedure from androstenedione. In purified 3β-HSD inhibition studies, DiCN-AND competitively inhibited 3β- HSD1 with K i =4.7μM and noncompetitively inhibited 3β-HSD2 with a 6.5-fold higher K i =30.7μM. We previously reported similar isoenzyme-specific inhibition profiles for trilostane. Based on our docking results, we created, expressed and purified the chimeric S194G-1 mutant of 3β-HSD1. Trilostane inhibited S194G-1 (K i =0.67μM) with a noncompetitive mode compared to its 6.7-fold higher affinity, competitive inhibition of 3β-HSD1 (K i =0.10μM). DiCN-AND inhibited S194G-1 with a 6.3-fold higher K i (29.5μM) than measured for 3β-HSD1 (K i =4.7μM) but with the same competitive mode for both enzyme species. Since DiCN-AND noncompetitively inhibits 3β-HSD2, which has the Gly194 and Pro195 of 3β-HSD2 in place of the Ser194 and Arg195 in 3β-HSD1, this suggests that Arg195 alone in 3β-HSD1 or S194G-1 is required to bind DiCN-AND in the substrate binding site (competitive inhibition). However, both Ser194 and Arg195 are required to bind trilostane in the 3β-HSD1 substrate site based on its noncompetitive inhibition of S194G-1 and 3β-HSD2. In support of this hypothesis, DiCN-AND inhibited our chimeric R195P-1 mutant noncompetitively with a K i =41.3μM (similar to the 3β-HSD2 inhibition profile). Since DiCN-AND competitively inhibited S194G-1 that still contains R195 but noncompetitively inhibited R195P-1 that still contains S194, our data provides strong evidence that the Arg195 being mutated to Pro195 (as present in 3β-HSD2) shifts the inhibition mode from competitive to noncompetitive in 3β-HSD1. This supports the key role of Arg195 in 3β-HSD1 for the high affinity, competitive binding of the trilostane analogs. Our new structure/function information for the design of targeted 3β-HSD1 inhibitors may lead to important new treatments for the prevention of spontaneous premature birth. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Cannone, Jaime J.; Barnes, Cindy L.; Achari, Aniruddha; Kundrot, Craig E.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The Sparse Matrix approach for obtaining lead crystallization conditions has proven to be very fruitful for the crystallization of proteins and nucleic acids. Here we report a Sparse Matrix developed specifically for the crystallization of protein-DNA complexes. This method is rapid and economical, typically requiring 2.5 mg of complex to test 48 conditions. The method was originally developed to crystallize basic fibroblast growth factor (bFGF) complexed with DNA sequences identified through in vitro selection, or SELEX, methods. Two DNA aptamers that bind with approximately nanomolar affinity and inhibit the angiogenic properties of bFGF were selected for co-crystallization. The Sparse Matrix produced lead crystallization conditions for both bFGF-DNA complexes.
External Guide Sequences Targeting the aac(6′)-Ib mRNA Induce Inhibition of Amikacin Resistance▿
Bistué, Alfonso J. C. Soler; Ha, Hongphuc; Sarno, Renee; Don, Michelle; Zorreguieta, Angeles; Tolmasky, Marcelo E.
2007-01-01
The dissemination of AAC(6′)-I-type acetyltransferases have rendered amikacin and other aminoglycosides all but useless in some parts of the world. Antisense technologies could be an alternative to extend the life of these antibiotics. External guide sequences are short antisense oligoribonucleotides that induce RNase P-mediated cleavage of a target RNA by forming a precursor tRNA-like complex. Thirteen-nucleotide external guide sequences complementary to locations within five regions accessible for interaction with antisense oligonucleotides in the mRNA that encodes AAC(6′)-Ib were analyzed. While small variations in the location targeted by different external guide sequences resulted in big changes in efficiency of binding to native aac(6′)-Ib mRNA, most of them induced high levels of RNase P-mediated cleavage in vitro. Recombinant plasmids coding for selected external guide sequences were introduced into Escherichia coli harboring aac(6′)-Ib, and the transformant strains were tested to determine their resistance to amikacin. The two external guide sequences that showed the strongest binding efficiency to the mRNA in vitro, EGSC3 and EGSA2, interfered with expression of the resistance phenotype at different degrees. Growth curve experiments showed that E. coli cells harboring a plasmid coding for EGSC3, the external guide sequence with the highest mRNA binding affinity in vitro, did not grow for at least 300 min in the presence of 15 μg of amikacin/ml. EGSA2, which had a lower mRNA-binding affinity in vitro than EGSC3, inhibited the expression of amikacin resistance at a lesser level; growth of E. coli harboring a plasmid coding for EGSA2, in the presence of 15 μg of amikacin/ml was undetectable for 200 min but reached an optical density at 600 nm of 0.5 after 5 h of incubation. Our results indicate that the use of external guide sequences could be a viable strategy to preserve the efficacy of amikacin. PMID:17387154
Sequence features of viral and human Internal Ribosome Entry Sites predictive of their activity
Elias-Kirma, Shani; Nir, Ronit; Segal, Eran
2017-01-01
Translation of mRNAs through Internal Ribosome Entry Sites (IRESs) has emerged as a prominent mechanism of cellular and viral initiation. It supports cap-independent translation of select cellular genes under normal conditions, and in conditions when cap-dependent translation is inhibited. IRES structure and sequence are believed to be involved in this process. However due to the small number of IRESs known, there have been no systematic investigations of the determinants of IRES activity. With the recent discovery of thousands of novel IRESs in human and viruses, the next challenge is to decipher the sequence determinants of IRES activity. We present the first in-depth computational analysis of a large body of IRESs, exploring RNA sequence features predictive of IRES activity. We identified predictive k-mer features resembling IRES trans-acting factor (ITAF) binding motifs across human and viral IRESs, and found that their effect on expression depends on their sequence, number and position. Our results also suggest that the architecture of retroviral IRESs differs from that of other viruses, presumably due to their exposure to the nuclear environment. Finally, we measured IRES activity of synthetically designed sequences to confirm our prediction of increasing activity as a function of the number of short IRES elements. PMID:28922394
Mashiyama, Susan T.; Koupparis, Kyriacos; Caffrey, Conor R.; McKerrow, James H.; Babbitt, Patricia C.
2012-01-01
We performed a genome-level computational study of sequence and structure similarity, the latter using crystal structures and models, of the proteases of Homo sapiens and the human parasite Trypanosoma brucei. Using sequence and structure similarity networks to summarize the results, we constructed global views that show visually the relative abundance and variety of proteases in the degradome landscapes of these two species, and provide insights into evolutionary relationships between proteases. The results also indicate how broadly these sequence sets are covered by three-dimensional structures. These views facilitate cross-species comparisons and offer clues for drug design from knowledge about the sequences and structures of potential drug targets and their homologs. Two protease groups (“M32” and “C51”) that are very different in sequence from human proteases are examined in structural detail, illustrating the application of this global approach in mining new pathogen genomes for potential drug targets. Based on our analyses, a human ACE2 inhibitor was selected for experimental testing on one of these parasite proteases, TbM32, and was shown to inhibit it. These sequence and structure data, along with interactive versions of the protein similarity networks generated in this study, are available at http://babbittlab.ucsf.edu/resources.html. PMID:23236535
In vivo therapeutic potential of Dicer-hunting siRNAs targeting infectious hepatitis C virus.
Watanabe, Tsunamasa; Hatakeyama, Hiroto; Matsuda-Yasui, Chiho; Sato, Yusuke; Sudoh, Masayuki; Takagi, Asako; Hirata, Yuichi; Ohtsuki, Takahiro; Arai, Masaaki; Inoue, Kazuaki; Harashima, Hideyoshi; Kohara, Michinori
2014-04-23
The development of RNA interference (RNAi)-based therapy faces two major obstacles: selecting small interfering RNA (siRNA) sequences with strong activity, and identifying a carrier that allows efficient delivery to target organs. Additionally, conservative region at nucleotide level must be targeted for RNAi in applying to virus because hepatitis C virus (HCV) could escape from therapeutic pressure with genome mutations. In vitro preparation of Dicer-generated siRNAs targeting a conserved, highly ordered HCV 5' untranslated region are capable of inducing strong RNAi activity. By dissecting the 5'-end of an RNAi-mediated cleavage site in the HCV genome, we identified potent siRNA sequences, which we designate as Dicer-hunting siRNAs (dh-siRNAs). Furthermore, formulation of the dh-siRNAs in an optimized multifunctional envelope-type nano device inhibited ongoing infectious HCV replication in human hepatocytes in vivo. Our efforts using both identification of optimal siRNA sequences and delivery to human hepatocytes suggest therapeutic potential of siRNA for a virus.
1994-01-01
The apparatus that permits protein translocation across the internal thylakoid membranes of chloroplasts is completely unknown, even though these membranes have been the subject of extensive biochemical analysis. We have used a genetic approach to characterize the translocation of Chlamydomonas cytochrome f, a chloroplast-encoded protein that spans the thylakoid once. Mutations in the hydrophobic core of the cytochrome f signal sequence inhibit the accumulation of cytochrome f, lead to an accumulation of precursor, and impair the ability of Chlamydomonas cells to grow photosynthetically. One hydrophobic core mutant also reduces the accumulation of other thylakoid membrane proteins, but not those that translocate completely across the membrane. These results suggest that the signal sequence of cytochrome f is required and is involved in one of multiple insertion pathways. Suppressors of two signal peptide mutations describe at least two nuclear genes whose products likely describe the translocation apparatus, and selected second-site chloroplast suppressors further define regions of the cytochrome f signal peptide. PMID:8034740
Borisenko, A S; Kotus, E V; Kaloshin, A A
2008-01-01
Significant number of scientific publications devoted to inhibition of viral replication by antisense RNA (asRNA) genes shows that this approach is useful for gene therapy of viral infections. To investigate the possibility of suppression of HTLV-1 virus reproduction by asRNA we constructed recombinant plasmids containing asRNA genes against U3 long terminal repeats region and X gene under the control of promoter of myeloproliferative sarcoma virus (MPSV) or without such promoter. Using stable calcium-phosphate transfection method with subsequent selection in the presence of G-418, RaHOS line-based cell clones carrying both asRNA genes and sequences able to bind HTLV-1 transactivator proteins (i.e. "traps" of viral transactivators, TVT) were obtained. Data from dot-hybridization analysis of viral RNA extracted from RaHOS cell clones showed that TVT sequences are able to suppress the viral RNA synthesis on 90% and asRNA against X gene synthesis--on 50%.
USDA-ARS?s Scientific Manuscript database
Vinylglycines are non-proteinogenic amino acids that inhibit amino acid metabolism and ethylene production. In this report, we describe the draft genome sequences of seven isolates of Pseudomonas that produce 4-formylaminooxyvinylglycine, a compound known to inhibit the germination of grasses and t...
Evolution of sequence-defined highly functionalized nucleic acid polymers
NASA Astrophysics Data System (ADS)
Chen, Zhen; Lichtor, Phillip A.; Berliner, Adrian P.; Chen, Jonathan C.; Liu, David R.
2018-03-01
The evolution of sequence-defined synthetic polymers made of building blocks beyond those compatible with polymerase enzymes or the ribosome has the potential to generate new classes of receptors, catalysts and materials. Here we describe a ligase-mediated DNA-templated polymerization and in vitro selection system to evolve highly functionalized nucleic acid polymers (HFNAPs) made from 32 building blocks that contain eight chemically diverse side chains on a DNA backbone. Through iterated cycles of polymer translation, selection and reverse translation, we discovered HFNAPs that bind proprotein convertase subtilisin/kexin type 9 (PCSK9) and interleukin-6, two protein targets implicated in human diseases. Mutation and reselection of an active PCSK9-binding polymer yielded evolved polymers with high affinity (KD = 3 nM). This evolved polymer potently inhibited the binding between PCSK9 and the low-density lipoprotein receptor. Structure-activity relationship studies revealed that specific side chains at defined positions in the polymers are required for binding to their respective targets. Our findings expand the chemical space of evolvable polymers to include densely functionalized nucleic acids with diverse, researcher-defined chemical repertoires.
Chimeras of human complement C9 reveal the site recognized by complement regulatory protein CD59.
Hüsler, T; Lockert, D H; Kaufman, K M; Sodetz, J M; Sims, P J
1995-02-24
CD59 antigen is a membrane glycoprotein that inhibits the activity of the C9 component of the C5b-9 membrane attack complex, thereby protecting human cells from lysis by human complement. The complement-inhibitory activity of CD59 is species-selective and is most effective toward C9 derived from human or other primate plasma. By contrast, rabbit C9, which can substitute for human C9 in the membrane attack complex, mediates unrestricted lysis of human cells. To identify the peptide segment of human C9 that is recognized by CD59, rabbit C9 cDNA clones were isolated, characterized, and used to construct hybrid cDNAs for expression of full-length human/rabbit C9 chimeras in COS-7 cells. All resulting chimeras were hemolytically active, when tested against chicken erythrocytes bearing C5b-8 complexes. Assays performed in the presence or absence of CD59 revealed that this inhibitor reduced the hemolytic activity of those chimeras containing human C9 sequence between residues 334-415, irrespective of whether the remainder of the protein contained human or rabbit sequence. By contrast, when this segment of C9 contained rabbit sequence, lytic activity was unaffected by CD59. These data establish that human C9 residues 334-415 contain the site recognized by CD59, and they suggest that sequence variability within this segment of C9 is responsible for the observed species-selective inhibitory activity of CD59.
Grosch, Rita; Scherwinski, Katja; Lottmann, Jana; Berg, Gabriele
2006-12-01
A broad spectrum of fungal antagonists was evaluated as potential biocontrol agents (BCAs) against the soil-borne pathogen Rhizoctonia solani using a new combination of in vitro and in vivo assays. The in vitro characterisation of diverse parameters including the ability to parasitise mycelium and to inhibit the germination of Rhizoctonia sclerotia at different temperatures resulted in the selection of six potential fungal antagonists. These were genotypically characterised by their BOX-PCR fingerprints, and identified as Trichoderma reesei and T. viride by partial 18S rDNA sequencing. When potato sprouts were treated with Trichoderma, all isolates significantly reduced the incidence of Rhizoctonia symptoms. Evaluated under growth chamber conditions, the selected Trichoderma isolates either partly or completely controlled the dry mass loss of lettuce caused by R. solani. Furthermore, the antagonistic Trichoderma strains were active under field conditions. To analyse the effect of Trichoderma treatment on indigenous root-associated microbial communities, we performed a DNA-dependent SSCP (Single-Strand Conformation Polymorphism) analysis of 16S rDNA/ITS sequences. In this first assessment study for Trichoderma it was shown that the pathogen and the vegetation time had much more influence on the composition of the microbiota than the BCA treatment. After evaluation of all results, three Trichoderma strains originally isolated from Rhizoctonia sclerotia were selected as promising BCAs.
Su, Zhao-Zhong; Sarkar, Devanand; Emdad, Luni; Duigou, Gregory J; Young, Charles S H; Ware, Joy; Randolph, Aaron; Valerie, Kristoffer; Fisher, Paul B
2005-01-25
One impediment to effective cancer-specific gene therapy is the rarity of regulatory sequences targeting gene expression selectively in tumor cells. Although many tissue-specific promoters are recognized, few cancer-selective gene promoters are available. Progression-elevated gene-3 (PEG-3) is a rodent gene identified by subtraction hybridization that displays elevated expression as a function of transformation by diversely acting oncogenes, DNA damage, and cancer cell progression. The promoter of PEG-3, PEG-Prom, displays robust expression in a broad spectrum of human cancer cell lines with marginal expression in normal cellular counterparts. Whereas GFP expression, when under the control of a CMV promoter, is detected in both normal and cancer cells, when GFP is expressed under the control of the PEG-Prom, cancer-selective expression is evident. Mutational analysis identifies the AP-1 and PEA-3 transcription factors as primary mediators of selective, cancer-specific expression of the PEG-Prom. Synthesis of apoptosis-inducing genes, under the control of the CMV promoter, inhibits the growth of both normal and cancer cells, whereas PEG-Prom-mediated expression of these genes kills only cancer cells and spares normal cells. The efficacy of the PEG-Prom as part of a cancer gene therapeutic regimen is further documented by in vivo experiments in which PEG-Prom-controlled expression of an apoptosis-inducing gene completely inhibited prostate cancer xenograft growth in nude mice. These compelling observations indicate that the PEG-Prom, with its cancer-specific expression, provides a means of selectively delivering genes to cancer cells, thereby providing a crucial component in developing effective cancer gene therapies.
Bobeck, Elizabeth A; Hellestad, Erica M; Helvig, Christian F; Petkovich, P Martin; Cook, Mark E
2016-03-01
While it is well established that active vitamin D treatment increases dietary phytate phosphate utilization, the mechanism by which intestinal alkaline phosphatase (IAP) participates in phytate phosphate use is less clear. The ability of human IAP (hIAP) oral antibodies to prevent dietary phytate phosphate utilization in the presence of 1α-hydroxycholecalciferol (1α-(OH) D3) in a chick model was investigated. hIAP specific chicken immunoglobulin Y (IgY) antibodies were generated by inoculating laying hens with 17 synthetic peptides derived from the human IAP amino acid sequence and harvesting egg yolk. Western blot analysis showed all antibodies recognized hIAP and 6 of the 8 antibodies selected showed modest inhibition of hIAP activity in vitro (6 to 33% inhibition). In chicks where dietary phosphate was primarily in the form of phytate, 4 selected hIAP antibodies inhibited 1α-(OH) D3-induced increases in blood phosphate, one of which, generated against selected peptide (MFPMGTPD), was as effective as sevelamer hydrochloride in preventing the 1α-(OH) D3-induced increase in blood phosphate, but ineffective in preventing an increase in body weight gain and bone ash induced by 1α-(OH) D3. These studies demonstrated that orally-delivered antibodies to IAP limit dietary phytate-phosphate utilization in chicks treated with 1α-(OH) D3, and implicate IAP as an important host enzyme in increasing phytate phosphate bioavailability in 1α-(OH) D3 fed chicks. © 2015 Poultry Science Association Inc.
Wilkinson, Robert W; Odedra, Rajesh; Heaton, Simon P; Wedge, Stephen R; Keen, Nicholas J; Crafter, Claire; Foster, John R; Brady, Madeleine C; Bigley, Alison; Brown, Elaine; Byth, Kate F; Barrass, Nigel C; Mundt, Kirsten E; Foote, Kevin M; Heron, Nicola M; Jung, Frederic H; Mortlock, Andrew A; Boyle, F Thomas; Green, Stephen
2007-06-15
In the current study, we examined the in vivo effects of AZD1152, a novel and specific inhibitor of Aurora kinase activity (with selectivity for Aurora B). The pharmacodynamic effects and efficacy of AZD1152 were determined in a panel of human tumor xenograft models. AZD1152 was dosed via several parenteral (s.c. osmotic mini-pump, i.p., and i.v.) routes. AZD1152 potently inhibited the growth of human colon, lung, and hematologic tumor xenografts (mean tumor growth inhibition range, 55% to > or =100%; P < 0.05) in immunodeficient mice. Detailed pharmacodynamic analysis in colorectal SW620 tumor-bearing athymic rats treated i.v. with AZD1152 revealed a temporal sequence of phenotypic events in tumors: transient suppression of histone H3 phosphorylation followed by accumulation of 4N DNA in cells (2.4-fold higher compared with controls) and then an increased proportion of polyploid cells (>4N DNA, 2.3-fold higher compared with controls). Histologic analysis showed aberrant cell division that was concurrent with an increase in apoptosis in AZD1152-treated tumors. Bone marrow analyses revealed transient myelosuppression with the drug that was fully reversible following cessation of AZD1152 treatment. These data suggest that selective targeting of Aurora B kinase may be a promising therapeutic approach for the treatment of a range of malignancies. In addition to the suppression of histone H3 phosphorylation, determination of tumor cell polyploidy and apoptosis may be useful biomarkers for this class of therapeutic agent. AZD1152 is currently in phase I trials.
Tyramine-induced noradrenaline release from rat brain slices: prevention by (-)-deprenyl.
Glover, V.; Pycock, C. J.; Sandler, M.
1983-01-01
Clorgyline (1 and 10 microM) and (+)-deprenyl (10 microM) both significantly potentiated the tyramine (100 microM)-induced release of [3H]-noradrenaline from rat cerebral cortex slices. (-)-Deprenyl (50 microM) significantly reduced it, while lower concentrations had no effect on noradrenaline release. However, in combination, 1 microM (-)-deprenyl blocked the release-facilitating action of 1 microM clorgyline, and 10 microM (-)-deprenyl that of 10 microM (+)-deprenyl. Low concentrations of (+)- and (-)-deprenyl (1 and 10 microM), both selectively inhibited phenylethylamine oxidation by monoamine oxidase B. Higher concentrations of (-)-deprenyl (20 and 50 microM) also inhibited 5-hydroxytryptamine oxidation by monoamine oxidase A. Clorgyline (1 and 10 microM) inhibited both enzymes. Thus, the effects of these drugs on noradrenaline-release cannot be explained solely in terms of irreversible inhibition of monoamine oxidase A and B, and other possible mechanisms are discussed. If the brain-slice model faithfully mirrors the sequence of events manifesting peripherally as the tyramine hypertensive response ('cheese effect'), then it is possible that low doses of (-)-deprenyl, administered with antidepressant monoamine oxidase inhibitors, can prevent this adverse reaction. PMID:6418254
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adámik, Matej; Bažantová, Pavla; Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 701 03 Ostrava
Highlights: • DNA binding of p53 family core domains is inhibited by cadmium, cobalt and nickel. • Binding to DNA protects p53 family core domains from metal induced inhibition. • Cadmium, cobalt and nickel induced inhibition was reverted by EDTA in vitro. - Abstract: Site-specific DNA recognition and binding activity belong to common attributes of all three members of tumor suppressor p53 family proteins: p53, p63 and p73. It was previously shown that heavy metals can affect p53 conformation, sequence-specific binding and suppress p53 response to DNA damage. Here we report for the first time that cadmium, nickel and cobalt,more » which have already been shown to disturb various DNA repair mechanisms, can also influence p63 and p73 sequence-specific DNA binding activity and transactivation of p53 family target genes. Based on results of electrophoretic mobility shift assay and luciferase reporter assay, we conclude that cadmium inhibits sequence-specific binding of all three core domains to p53 consensus sequences and abolishes transactivation of several promoters (e.g. BAX and MDM2) by 50 μM concentrations. In the presence of specific DNA, all p53 family core domains were partially protected against loss of DNA binding activity due to cadmium treatment. Effective cadmium concentration to abolish DNA–protein interactions was about two times higher for p63 and p73 proteins than for p53. Furthermore, we detected partial reversibility of cadmium inhibition for all p53 family members by EDTA. DTT was able to reverse cadmium inhibition only for p53 and p73. Nickel and cobalt abolished DNA–p53 interaction at sub-millimolar concentrations while inhibition of p63 and p73 DNA binding was observed at millimolar concentrations. In summary, cadmium strongly inhibits p53, p63 and p73 DNA binding in vitro and in cells in comparison to nickel and cobalt. The role of cadmium inhibition of p53 tumor suppressor family in carcinogenesis is discussed.« less
2010-01-01
Background Various enzyme inhibitors act on key insect gut digestive hydrolases, including alpha-amylases and proteinases. Alpha-amylase inhibitors have been widely investigated for their possible use in strengthening a plant's defense against insects that are highly dependent on starch as an energy source. We attempted to unravel the diversity of monomeric alpha-amylase inhibitor genes of Israeli and Golan Heights' wild emmer wheat with different ecological factors (e.g., geography, water, and temperature). Population methods that analyze the nature and frequency of allele diversity within a species and the codon analysis method (comparing patterns of synonymous and non-synonymous changes in protein coding sequences) were used to detect natural selection. Results Three hundred and forty-eight sequences encoding monomeric alpha-amylase inhibitors (WMAI) were obtained from 14 populations of wild emmer wheat. The frequency of SNPs in WMAI genes was 1 out of 16.3 bases, where 28 SNPs were detected in the coding sequence. The results of purifying and the positive selection hypothesis (p < 0.05) showed that the sequences of WMAI were contributed by both natural selection and co-evolution, which ensured conservation of protein function and inhibition against diverse insect amylases. The majority of amino acid substitutions occurred at the C-terminal (positive selection domain), which ensured the stability of WMAI. SNPs in this gene could be classified into several categories associated with water, temperature, and geographic factors, respectively. Conclusions Great diversity at the WMAI locus, both between and within populations, was detected in the populations of wild emmer wheat. It was revealed that WMAI were naturally selected for across populations by a ratio of dN/dS as expected. Ecological factors, singly or in combination, explained a significant proportion of the variations in the SNPs. A sharp genetic divergence over very short geographic distances compared to a small genetic divergence between large geographic distances also suggested that the SNPs were subjected to natural selection, and ecological factors had an important evolutionary role in polymorphisms at this locus. According to population and codon analysis, these results suggested that monomeric alpha-amylase inhibitors are adaptively selected under different environmental conditions. PMID:20534122
Thwaites, D T; Ford, D; Glanville, M; Simmons, N L
1999-09-01
The intestinal absorption of many nutrients and drug molecules is mediated by ion-driven transport mechanisms in the intestinal enterocyte plasma membrane. Clearly, the establishment and maintenance of the driving forces - transepithelial ion gradients - are vital for maximum nutrient absorption. The purpose of this study was to determine the nature of intracellular pH (pH(i)) regulation in response to H(+)-coupled transport at the apical membrane of human intestinal epithelial Caco-2 cells. Using isoform-specific primers, mRNA transcripts of the Na(+)/H(+) exchangers NHE1, NHE2, and NHE3 were detected by RT-PCR, and identities were confirmed by sequencing. The functional profile of Na(+)/H(+) exchange was determined by a combination of pH(i), (22)Na(+) influx, and EIPA inhibition experiments. Functional NHE1 and NHE3 activities were identified at the basolateral and apical membranes, respectively. H(+)/solute-induced acidification (using glycylsarcosine or beta-alanine) led to Na(+)-dependent, EIPA-inhibitable pH(i) recovery or EIPA-inhibitable (22)Na(+) influx at the apical membrane only. Selective activation of apical (but not basolateral) Na(+)/H(+) exchange by H(+)/solute cotransport demonstrates that coordinated activity of H(+)/solute symport with apical Na(+)/H(+) exchange optimizes the efficient absorption of nutrients and Na(+), while maintaining pH(i) and the ion gradients involved in driving transport.
Scott, Benjamin M; Matochko, Wadim L; Gierczak, Richard F; Bhakta, Varsha; Derda, Ratmir; Sheffield, William P
2014-01-01
In spite of the power of phage display technology to identify variant proteins with novel properties in large libraries, it has only been previously applied to one member of the serpin superfamily. Here we describe phage display of human alpha-1 proteinase inhibitor (API) in a T7 bacteriophage system. API M358R fused to the C-terminus of T7 capsid protein 10B was directly shown to form denaturation-resistant complexes with thrombin by electrophoresis and immunoblotting following exposure of intact phages to thrombin. We therefore developed a biopanning protocol in which thrombin-reactive phages were selected using biotinylated anti-thrombin antibodies and streptavidin-coated magnetic beads. A library consisting of displayed API randomized at residues 357 and 358 (P2-P1) yielded predominantly Pro-Arg at these positions after five rounds of thrombin selection; in contrast the same degree of mock selection yielded only non-functional variants. A more diverse library of API M358R randomized at residues 352-356 (P7-P3) was also probed, yielding numerous variants fitting a loose consensus of DLTVS as judged by sequencing of the inserts of plaque-purified phages. The thrombin-selected sequences were transferred en masse into bacterial expression plasmids, and lysates from individual colonies were screening for API-thrombin complexing. The most active candidates from this sixth round of screening contained DITMA and AAFVS at P7-P3 and inhibited thrombin 2.1-fold more rapidly than API M358R with no change in reaction stoichiometry. Deep sequencing using the Ion Torrent platform confirmed that over 800 sequences were significantly enriched in the thrombin-panned versus naïve phage display library, including some detected using the combined phage display/bacterial lysate screening approach. Our results show that API joins Plasminogen Activator Inhibitor-1 (PAI-1) as a serpin amenable to phage display and suggest the utility of this approach for the selection of "designer serpins" with novel reactivity and/or specificity.
Scott, Benjamin M.; Matochko, Wadim L.; Gierczak, Richard F.; Bhakta, Varsha; Derda, Ratmir; Sheffield, William P.
2014-01-01
In spite of the power of phage display technology to identify variant proteins with novel properties in large libraries, it has only been previously applied to one member of the serpin superfamily. Here we describe phage display of human alpha-1 proteinase inhibitor (API) in a T7 bacteriophage system. API M358R fused to the C-terminus of T7 capsid protein 10B was directly shown to form denaturation-resistant complexes with thrombin by electrophoresis and immunoblotting following exposure of intact phages to thrombin. We therefore developed a biopanning protocol in which thrombin-reactive phages were selected using biotinylated anti-thrombin antibodies and streptavidin-coated magnetic beads. A library consisting of displayed API randomized at residues 357 and 358 (P2–P1) yielded predominantly Pro-Arg at these positions after five rounds of thrombin selection; in contrast the same degree of mock selection yielded only non-functional variants. A more diverse library of API M358R randomized at residues 352–356 (P7–P3) was also probed, yielding numerous variants fitting a loose consensus of DLTVS as judged by sequencing of the inserts of plaque-purified phages. The thrombin-selected sequences were transferred en masse into bacterial expression plasmids, and lysates from individual colonies were screening for API-thrombin complexing. The most active candidates from this sixth round of screening contained DITMA and AAFVS at P7–P3 and inhibited thrombin 2.1-fold more rapidly than API M358R with no change in reaction stoichiometry. Deep sequencing using the Ion Torrent platform confirmed that over 800 sequences were significantly enriched in the thrombin-panned versus naïve phage display library, including some detected using the combined phage display/bacterial lysate screening approach. Our results show that API joins Plasminogen Activator Inhibitor-1 (PAI-1) as a serpin amenable to phage display and suggest the utility of this approach for the selection of “designer serpins” with novel reactivity and/or specificity. PMID:24427287
Selective mutism and temperament: the silence and behavioral inhibition to the unfamiliar.
Gensthaler, Angelika; Khalaf, Sally; Ligges, Marc; Kaess, Michael; Freitag, Christine M; Schwenck, Christina
2016-10-01
Behavioral inhibition (BI) is a suspected precursor of selective mutism. However, investigations on early behavioral inhibition of children with selective mutism are lacking. Children aged 3-18 with lifetime selective mutism (n = 109), social phobia (n = 61), internalizing behavior (n = 46) and healthy controls (n = 118) were assessed using the parent-rated Retrospective Infant Behavioral Inhibition (RIBI) questionnaire. Analyses showed that children with lifetime selective mutism and social phobia were more inhibited as infants and toddlers than children of the internalizing and healthy control groups, who displayed similar low levels of behavioral inhibition. Moreover, behavioral inhibition was higher in infants with lifetime selective mutism than in participants with social phobia according to the Total BI score (p = 0.012) and the Shyness subscale (p < 0.001). Infant behavioral inhibition, particularly towards social stimuli, is a temperamental feature associated with a lifetime diagnosis of selective mutism. Results yield first evidence of the recently hypothesized temperamental origin of selective mutism. Children at risk should be screened for this debilitating child psychiatric condition.
Ellenbecker, Mary; St Goddard, Jeremy; Sundet, Alec; Lanchy, Jean-Marc; Raiford, Douglas; Lodmell, J Stephen
2015-10-01
Rift Valley fever virus (RVFV) is a potent human and livestock pathogen endemic to sub-Saharan Africa and the Arabian Peninsula that has potential to spread to other parts of the world. Although there is no proven effective and safe treatment for RVFV infections, a potential therapeutic target is the virally encoded nucleocapsid protein (N). During the course of infection, N binds to viral RNA, and perturbation of this interaction can inhibit viral replication. To gain insight into how N recognizes viral RNA specifically, we designed an algorithm that uses a distance matrix and multidimensional scaling to compare the predicted secondary structures of known N-binding RNAs, or aptamers, that were isolated and characterized in previous in vitro evolution experiment. These aptamers did not exhibit overt sequence or predicted structure similarity, so we employed bioinformatic methods to propose novel aptamers based on analysis and clustering of secondary structures. We screened and scored the predicted secondary structures of novel randomly generated RNA sequences in silico and selected several of these putative N-binding RNAs whose secondary structures were similar to those of known N-binding RNAs. We found that overall the in silico generated RNA sequences bound well to N in vitro. Furthermore, introduction of these RNAs into cells prior to infection with RVFV inhibited viral replication in cell culture. This proof of concept study demonstrates how the predictive power of bioinformatics and the empirical power of biochemistry can be jointly harnessed to discover, synthesize, and test new RNA sequences that bind tightly to RVFV N protein. The approach would be easily generalizable to other applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kükenshöner, Tim; Schmit, Nadine Eliane; Bouda, Emilie; Sha, Fern; Pojer, Florence; Koide, Akiko; Seeliger, Markus; Koide, Shohei; Hantschel, Oliver
2017-05-05
The binding of Src-homology 2 (SH2) domains to phosphotyrosine (pY) sites is critical for the autoinhibition and substrate recognition of the eight Src family kinases (SFKs). The high sequence conservation of the 120 human SH2 domains poses a significant challenge to selectively perturb the interactions of even the SFK SH2 family against the rest of the SH2 domains. We have developed synthetic binding proteins, termed monobodies, for six of the SFK SH2 domains with nanomolar affinity. Most of these monobodies competed with pY ligand binding and showed strong selectivity for either the SrcA (Yes, Src, Fyn, Fgr) or SrcB subgroup (Lck, Lyn, Blk, Hck). Interactome analysis of intracellularly expressed monobodies revealed that they bind SFKs but no other SH2-containing proteins. Three crystal structures of monobody-SH2 complexes unveiled different and only partly overlapping binding modes, which rationalized the observed selectivity and enabled structure-based mutagenesis to modulate inhibition mode and selectivity. In line with the critical roles of SFK SH2 domains in kinase autoinhibition and T-cell receptor signaling, monobodies binding the Src and Hck SH2 domains selectively activated respective recombinant kinases, whereas an Lck SH2-binding monobody inhibited proximal signaling events downstream of the T-cell receptor complex. Our results show that SFK SH2 domains can be targeted with unprecedented potency and selectivity using monobodies. They are excellent tools for dissecting SFK functions in normal development and signaling and to interfere with aberrant SFK signaling networks in cancer cells. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Chemical Proteomics and Structural Biology Define EPHA2 Inhibition by Clinical Kinase Drugs.
Heinzlmeir, Stephanie; Kudlinzki, Denis; Sreeramulu, Sridhar; Klaeger, Susan; Gande, Santosh Lakshmi; Linhard, Verena; Wilhelm, Mathias; Qiao, Huichao; Helm, Dominic; Ruprecht, Benjamin; Saxena, Krishna; Médard, Guillaume; Schwalbe, Harald; Kuster, Bernhard
2016-12-16
The receptor tyrosine kinase EPHA2 (Ephrin type-A receptor 2) plays important roles in oncogenesis, metastasis, and treatment resistance, yet therapeutic targeting, drug discovery, or investigation of EPHA2 biology is hampered by the lack of appropriate inhibitors and structural information. Here, we used chemical proteomics to survey 235 clinical kinase inhibitors for their kinase selectivity and identified 24 drugs with submicromolar affinities for EPHA2. NMR-based conformational dynamics together with nine new cocrystal structures delineated drug-EPHA2 interactions in full detail. The combination of selectivity profiling, structure determination, and kinome wide sequence alignment allowed the development of a classification system in which amino acids in the drug binding site of EPHA2 are categorized into key, scaffold, potency, and selectivity residues. This scheme should be generally applicable in kinase drug discovery, and we anticipate that the provided information will greatly facilitate the development of selective EPHA2 inhibitors in particular and the repurposing of clinical kinase inhibitors in general.
Chu, Uyen B; Vorperian, Sevahn K; Satyshur, Kenneth; Eickstaedt, Kelsey; Cozzi, Nicholas V; Mavlyutov, Timur; Hajipour, Abdol R; Ruoho, Arnold E
2014-05-13
Indolethylamine-N-methyltransferase (INMT) is a Class 1 transmethylation enzyme known for its production of N,N-dimethyltryptamine (DMT), a hallucinogen with affinity for various serotonergic, adrenergic, histaminergic, dopaminergic, and sigma-1 receptors. DMT is produced via the action of INMT on the endogenous substrates tryptamine and S-adenosyl-l-methionine (SAM). The biological, biochemical, and selective small molecule regulation of INMT enzyme activity remain largely unknown. Kinetic mechanisms for inhibition of rabbit lung INMT (rabINMT) by the product, DMT, and by a new novel tryptamine derivative were determined. After Michaelis-Menten and Lineweaver-Burk analyses had been applied to study inhibition, DMT was found to be a mixed competitive and noncompetitive inhibitor when measured against tryptamine. The novel tryptamine derivative, N-[2-(1H-indol-3-yl)ethyl]-N',N'-dimethylpropane-1,3-diamine (propyl dimethyl amino tryptamine or PDAT), was shown to inhibit rabINMT by a pure noncompetitive mechanism when measured against tryptamine with a Ki of 84 μM. No inhibition by PDAT was observed at 2 mM when it was tested against structurally similar Class 1 methyltransferases, such as human phenylethanolamine-N-methyltransferase (hPNMT) and human nicotinamide-N-methyltransferase (hNNMT), indicating selectivity for INMT. The demonstration of noncompetitive mechanisms for INMT inhibition implies the presence of an inhibitory allosteric site. In silico analyses using the computer modeling software Autodock and the rabINMT sequence threaded onto the human INMT (hINMT) structure (Protein Data Bank entry 2A14 ) identified an N-terminal helix-loop-helix non-active site binding region of the enzyme. The energies for binding of DMT and PDAT to this region of rabINMT, as determined by Autodock, were -6.34 and -7.58 kcal/mol, respectively. Assessment of the allosteric control of INMT may illuminate new biochemical pathway(s) underlying the biology of INMT.
2015-01-01
Indolethylamine-N-methyltransferase (INMT) is a Class 1 transmethylation enzyme known for its production of N,N-dimethyltryptamine (DMT), a hallucinogen with affinity for various serotonergic, adrenergic, histaminergic, dopaminergic, and sigma-1 receptors. DMT is produced via the action of INMT on the endogenous substrates tryptamine and S-adenosyl-l-methionine (SAM). The biological, biochemical, and selective small molecule regulation of INMT enzyme activity remain largely unknown. Kinetic mechanisms for inhibition of rabbit lung INMT (rabINMT) by the product, DMT, and by a new novel tryptamine derivative were determined. After Michaelis–Menten and Lineweaver–Burk analyses had been applied to study inhibition, DMT was found to be a mixed competitive and noncompetitive inhibitor when measured against tryptamine. The novel tryptamine derivative, N-[2-(1H-indol-3-yl)ethyl]-N′,N′-dimethylpropane-1,3-diamine (propyl dimethyl amino tryptamine or PDAT), was shown to inhibit rabINMT by a pure noncompetitive mechanism when measured against tryptamine with a Ki of 84 μM. No inhibition by PDAT was observed at 2 mM when it was tested against structurally similar Class 1 methyltransferases, such as human phenylethanolamine-N-methyltransferase (hPNMT) and human nicotinamide-N-methyltransferase (hNNMT), indicating selectivity for INMT. The demonstration of noncompetitive mechanisms for INMT inhibition implies the presence of an inhibitory allosteric site. In silico analyses using the computer modeling software Autodock and the rabINMT sequence threaded onto the human INMT (hINMT) structure (Protein Data Bank entry 2A14) identified an N-terminal helix–loop–helix non-active site binding region of the enzyme. The energies for binding of DMT and PDAT to this region of rabINMT, as determined by Autodock, were −6.34 and −7.58 kcal/mol, respectively. Assessment of the allosteric control of INMT may illuminate new biochemical pathway(s) underlying the biology of INMT. PMID:24730580
Ye, Zhixiong; MacNeil, Tanya; Weinberg, David H; Kalyani, Rubana N; Tang, Rui; Strack, Alison M; Murphy, Beth A; Mosley, Ralph T; Euan MacIntyre, D; Van der Ploeg, Lex H T; Patchett, Arthur A; Wyvratt, Matthew J; Nargund, Ravi P
2005-10-01
The melanocortin subtype-4 receptor (MC4R) has been implicated in the control of feeding behavior and body weight regulation. A series of tetrapeptides, based on Tic-DPhe-Arg-Trp-NH2-a mimic of the putative message sequence "His-Phe-Arg-Trp" and modified at the DPhe position, were prepared and pharmacologically characterized for potency and selectivity. Substitution of His with Tic gave peptides with significant increases in selectivity. The effects of the substitution pattern of DPhe were investigated and it has significant influences on potency and the level of the maximum cAMP accumulation. Intracerebroventricular administration of peptide 10 induced significant inhibition of cumulative overnight food intake and feeding duration in rats.
Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness
Khare, Shilpi; Nagle, Advait S.; Biggart, Agnes; Lai, Yin H.; Liang, Fang; Davis, Lauren C.; Barnes, S. Whitney; Mathison, Casey J. N.; Myburgh, Elmarie; Gao, Mu-Yun; Gillespie, J. Robert; Liu, Xianzhong; Tan, Jocelyn L.; Stinson, Monique; Rivera, Ianne C.; Ballard, Jaime; Yeh, Vince; Groessl, Todd; Federe, Glenn; Koh, Hazel X. Y.; Venable, John D.; Bursulaya, Badry; Shapiro, Michael; Mishra, Pranab K.; Spraggon, Glen; Brock, Ansgar; Mottram, Jeremy C.; Buckner, Frederick S.; Rao, Srinivasa P. S.; Wen, Ben G.; Walker, John R.; Tuntland, Tove; Molteni, Valentina; Glynne, Richard J.; Supek, Frantisek
2016-01-01
Chagas disease, leishmaniasis, and sleeping sickness affect 20 million people worldwide and lead to more than 50,000 deaths annually1. The diseases are caused by infection with the kinetoplastid parasites Trypanosoma cruzi, Leishmania spp. and Trypanosoma brucei spp., respectively. These parasites have similar biology and genomic sequence, suggesting that all three diseases could be cured with drug(s) modulating the activity of a conserved parasite target2. However, no such molecular targets or broad spectrum drugs have been identified to date. Here we describe a selective inhibitor of the kinetoplastid proteasome (GNF6702) with unprecedented in vivo efficacy, which cleared parasites from mice in all three models of infection. GNF6702 inhibits the kinetoplastid proteasome through a non-competitive mechanism, does not inhibit the mammalian proteasome or growth of mammalian cells, and is well-tolerated in mice. Our data provide genetic and chemical validation of the parasite proteasome as a promising therapeutic target for treatment of kinetoplastid infections, and underscore the possibility of developing a single class of drugs for these neglected diseases. PMID:27501246
Garg, Aprajita; Wesolowski, Donna; Alonso, Dulce; Deitsch, Kirk W; Ben Mamoun, Choukri; Altman, Sidney
2015-09-22
Identification and genetic validation of new targets from available genome sequences are critical steps toward the development of new potent and selective antimalarials. However, no methods are currently available for large-scale functional analysis of the Plasmodium falciparum genome. Here we present evidence for successful use of morpholino oligomers (MO) to mediate degradation of target mRNAs or to inhibit RNA splicing or translation of several genes of P. falciparum involved in chloroquine transport, apicoplast biogenesis, and phospholipid biosynthesis. Consistent with their role in the parasite life cycle, down-regulation of these essential genes resulted in inhibition of parasite development. We show that a MO conjugate that targets the chloroquine-resistant transporter PfCRT is effective against chloroquine-sensitive and -resistant parasites, causes enlarged digestive vacuoles, and renders chloroquine-resistant strains more sensitive to chloroquine. Similarly, we show that a MO conjugate that targets the PfDXR involved in apicoplast biogenesis inhibits parasite growth and that this defect can be rescued by addition of isopentenyl pyrophosphate. MO-based gene regulation is a viable alternative approach to functional analysis of the P. falciparum genome.
A phage display-selected peptide inhibitor of Agrobacterium vitis polygalacturonase.
Warren, Jeremy G; Kasun, George W; Leonard, Takara; Kirkpatrick, Bruce C
2016-05-01
Agrobacterium vitis, the causal agent of crown gall of grapevine, is a threat to viticulture worldwide. A major virulence factor of this pathogen is polygalacturonase, an enzyme that degrades pectin components of the xylem cell wall. A single gene encodes for the polygalacturonase gene. Disruption of the polygalacturonase gene results in a mutant that is less pathogenic and produces significantly fewer root lesions on grapevines. Thus, the identification of peptides or proteins that could inhibit the activity of polygalacturonase could be part of a strategy for the protection of plants against this pathogen. A phage-displayed combinatorial peptide library was used to isolate peptides with a high binding affinity to A. vitis polygalacturonase. These peptides showed sequence similarity to regions of Oryza sativa (EMS66324, Japonica) and Triticum urartu (NP_001054402, wild wheat) polygalacturonase-inhibiting proteins (PGIPs). Furthermore, these panning experiments identified a peptide, SVTIHHLGGGS, which was able to reduce A. vitis polygalacturonase activity by 35% in vitro. Truncation studies showed that the IHHL motif alone is sufficient to inhibit A. vitis polygalacturonase activity. © 2015 BSPP AND JOHN WILEY & SONS LTD.
Sequence determinants of improved CRISPR sgRNA design.
Xu, Han; Xiao, Tengfei; Chen, Chen-Hao; Li, Wei; Meyer, Clifford A; Wu, Qiu; Wu, Di; Cong, Le; Zhang, Feng; Liu, Jun S; Brown, Myles; Liu, X Shirley
2015-08-01
The CRISPR/Cas9 system has revolutionized mammalian somatic cell genetics. Genome-wide functional screens using CRISPR/Cas9-mediated knockout or dCas9 fusion-mediated inhibition/activation (CRISPRi/a) are powerful techniques for discovering phenotype-associated gene function. We systematically assessed the DNA sequence features that contribute to single guide RNA (sgRNA) efficiency in CRISPR-based screens. Leveraging the information from multiple designs, we derived a new sequence model for predicting sgRNA efficiency in CRISPR/Cas9 knockout experiments. Our model confirmed known features and suggested new features including a preference for cytosine at the cleavage site. The model was experimentally validated for sgRNA-mediated mutation rate and protein knockout efficiency. Tested on independent data sets, the model achieved significant results in both positive and negative selection conditions and outperformed existing models. We also found that the sequence preference for CRISPRi/a is substantially different from that for CRISPR/Cas9 knockout and propose a new model for predicting sgRNA efficiency in CRISPRi/a experiments. These results facilitate the genome-wide design of improved sgRNA for both knockout and CRISPRi/a studies. © 2015 Xu et al.; Published by Cold Spring Harbor Laboratory Press.
Arias, Hugo R; Jin, Xiaotao; Feuerbach, Dominik; Drenan, Ryan M
2017-11-01
The inhibitory activity of coronaridine congeners on human (h) α4β2 and α7 nicotinic acetylcholine receptors (AChRs) is determined by Ca 2+ influx assays, whereas their effects on neurons in the ventral inferior (VI) aspect of the mouse medial habenula (MHb) are determined by patch-clamp recordings. The Ca 2+ influx results clearly establish that coronaridine congeners inhibit hα3β4 AChRs with higher selectivity compared to hα4β2 and hα7 subtypes, and with the following potency sequence, for hα4β2: (±)-18-methoxycoronaridine [(±)-18-MC]>(+)-catharanthine>(±)-18-methylaminocoronaridine [(±)-18-MAC] ∼ (±)-18-hydroxycoronaridine [(±)-18-HC]; and for hα7: (+)-catharanthine>(±)-18-MC>(±)-18-HC>(±)-18-MAC. Interestingly, the inhibitory potency of (+)-catharanthine (27±4μM) and (±)-18-MC (28±6μM) on MHb (VI) neurons was lower than that observed on hα3β4 AChRs, suggesting that these compounds inhibit a variety of endogenous α3β4* AChRs. In addition, the interaction of bupropion with (-)-ibogaine sites on hα3β4 AChRs is tested by [ 3 H]ibogaine competition binding experiments. The results indicate that bupropion binds to ibogaine sites at desensitized hα3β4 AChRs with 2-fold higher affinity than at resting receptors, suggesting that these compounds share the same binding sites. In conclusion, coronaridine congeners inhibit hα3β4 AChRs with higher selectivity compared to other AChRs, by interacting with the bupropion (luminal) site. Coronaridine congeners also inhibit α3β4*AChRs expressed in MHb (VI) neurons, supporting the notion that these receptors are important endogenous targets for their anti-addictive activities. Copyright © 2017 Elsevier Ltd. All rights reserved.
Arias, Hugo R.; Jin, Xiaotao; Feuerbach, Dominik; Drenan, Ryan M.
2018-01-01
The inhibitory activity of coronaridine congeners on human (h) α4β2 and α7 nicotinic acetylcholine receptors (AChRs) is determined by Ca2+ influx assays, whereas their effects on neurons in the ventral inferior (VI) aspect of the mouse medial habenula (MHb) are determined by patch-clamp recordings. The Ca2+ influx results clearly establish that coronaridine congeners inhibit hα3β4 AChRs with higher selectivity compared to hα4β2 and hα7 subtypes, and with the following potency sequence, for hα4β2: (±)-18-methoxycoronaridine [(±)-18-MC] > (+)-catharanthine > (±)-18-methylaminocoronaridine [(±)-18-MAC] ∼ (±)-18-hydroxycoronaridine [(±)-18-HC]; and for hα7: (+)-catharanthine > (±)-18-MC > (±)-18-HC > (±)-18-MAC. Interestingly, the inhibitory potency of (+)-catharanthine (27 ± 4 μM) and (±)-18-MC (28 ± 6 μM) on MHb (VI) neurons was lower than that observed on hα3β4 AChRs, suggesting that these compounds inhibit a variety of endogenous α3β4* AChRs. In addition, the interaction of bupropion with (−)-ibogaine sites on hα3β4 AChRs is tested by [3H]ibogaine competition binding experiments. The results indicate that bupropion binds to ibogaine sites at desensitized hα3β4 AChRs with 2-fold higher affinity than at resting receptors, suggesting that these compounds share the same binding sites. In conclusion, coronaridine congeners inhibit hα3β4 AChRs with higher selectivity compared to other AChRs, by interacting with the bupropion (luminal) site. Coronaridine congeners also inhibit α3β4*AChRs expressed in MHb (VI) neurons, supporting the notion that these receptors are important endogenous targets for their anti-addictive activities. PMID:29042244
An electrophysiological insight into visual attention mechanisms underlying schizotypy.
Fuggetta, Giorgio; Bennett, Matthew A; Duke, Philip A
2015-07-01
A theoretical framework has been put forward to understand attention deficits in schizophrenia (Luck SJ & Gold JM. Biological Psychiatry. 2008; 64:34-39). We adopted this framework to evaluate any deficits in attentional processes in schizotypy. Sixteen low schizotypal (LoS) and 16 high schizotypal (HiS) individuals performed a novel paradigm combining a match-to-sample task, with inhibition of return (using spatially uninformative cues) and memory-guided efficient visual-search within one trial sequence. Behavioural measures and event-related potentials (ERPs) were recorded. Behaviourally, HiS individuals exhibited a spatial cueing effect while LoS individuals showed the more typical inhibition of return effect. These results suggest HiS individuals have a relative deficit in rule selection - the endogenous control process involved in disengaging attention from the uninformative location cue. ERP results showed that the late-phase of N2pc evoked by the target stimulus had greater peak latency and amplitude in HiS individuals. This suggests a relative deficit in the implementation of selection - the process of focusing attention onto target features that enhances relevant/suppresses irrelevant inputs. This is a different conclusion than when the same theoretical framework has been applied to schizophrenia, which argues little or no deficit in implementation of selection amongst patients. Also, HiS individuals exhibited earlier onset and greater amplitude of the mismatch-triggered negativity component. In summary, our results indicate deficits of both control and implementation of selection in HiS individuals. Copyright © 2015 Elsevier B.V. All rights reserved.
Swedberg, Joakim E; Harris, Jonathan M
2011-10-04
Perioperative bleeding is a cause of major blood loss and is associated with increased rates of postoperative morbidity and mortality. To combat this, antifibrinolytic inhibitors of the serine protease plasmin are commonly used to reduce bleeding during surgery. The most effective and previously widely used of these is the broad range serine protease inhibitor aprotinin. However, adverse clinical outcomes have led to use of alternative serine lysine analogues to inhibit plasmin. These compounds suffer from low selectivity and binding affinity. Consequently, a concerted effort to discover potent and selective plasmin inhibitors has developed. This study used a noncombinatorial peptide library to define plasmin's extended substrate specificity and guide the design of potent transition state analogue inhibitors. The various substrate binding sites of plasmin were found to exhibit a higher degree of cooperativity than had previously been appreciated. Peptide sequences capitalizing on these features produced high-affinity inhibitors of plasmin. The most potent of these, Lys-Met(sulfone)-Tyr-Arg-H [KM(O(2))YR-H], inhibited plasmin with a K(i) of 3.1 nM while maintaining 25-fold selectivity over plasma kallikrein. Furthermore, 125 nM (0.16 μg/mL) KM(O(2))YR-H attenuated fibrinolysis in vitro with an efficacy similar to that of 15 nM (0.20 μg/mL) aprotinin. To date, this is the most potent peptide inhibitor of plasmin that exhibits selectivity against plasma kallikrein, making this compound an attractive candidate for further therapeutic development.
Cotranslational Coat Protein-Mediated Inhibition of Potyviral RNA Translation
Besong-Ndika, Jane; Ivanov, Konstantin I.; Hafrèn, Anders; Michon, Thierry
2015-01-01
ABSTRACT Potato virus A (PVA) is a single-stranded positive-sense RNA virus and a member of the family Potyviridae. The PVA coat protein (CP) has an intrinsic capacity to self-assemble into filamentous virus-like particles, but the mechanism responsible for the initiation of viral RNA encapsidation in vivo remains unclear. Apart from virion assembly, PVA CP is also involved in the inhibition of viral RNA translation. In this study, we show that CP inhibits PVA RNA translation in a dose-dependent manner, through a mechanism involving the CP-encoding region. Analysis of this region, however, failed to identify any RNA secondary structure(s) preferentially recognized by CP, suggesting that the inhibition depends on CP-CP rather than CP-RNA interactions. In agreement with this possibility, insertion of an in-frame stop codon upstream of the CP sequence led to a marked decrease in the inhibition of viral RNA translation. Based on these results, we propose a model in which the cotranslational interactions between excess CP accumulating in trans and CP translated from viral RNA in cis are required to initiate the translational repression. This model suggests a mechanism for how viral RNA can be sequestered from translation and specifically selected for encapsidation at the late stages of viral infection. IMPORTANCE The main functions of the CP during potyvirus infection are to protect viral RNA from degradation and to transport it locally, systemically, and from host to host. Although virion assembly is a key step in the potyviral infectious cycle, little is known about how it is initiated and how viral RNA is selected for encapsidation. The results presented here suggest that CP-CP rather than CP-RNA interactions are predominantly involved in the sequestration of viral RNA away from translation. We propose that the cotranslational nature of these interactions may represent a mechanism for the selection of viral RNA for encapsidation. A better understanding of the mechanism of virion assembly may lead to development of crops resistant to potyviruses at the level of viral RNA encapsidation, thereby reducing the detrimental effects of potyvirus infections on food production. PMID:25631087
Gan, Zhen; Wang, Bei; Zhou, Wei; Lu, Yishan; Zhu, Weiwei; Tang, Jufen; Jian, JiChang; Wu, Zaohe
2015-05-01
CD59, the major inhibitor of membrane attack complex, plays a crucial role in regulation of complement activation. In this paper, a CD59 gene of Nile tilapia, Oreochromis niloticus (designated as On-CD59) was cloned and its expression pattern under the stimulation of Streptococcus agalactiae was investigated. Sequence analysis showed main structural features required for complement-inhibitory activity were detected in the deduced amino acid sequence of On-CD59. In healthy Nile tilapia, the On-CD59 transcripts could be detected in all the examined tissues, with the most abundant expression in the brain. When immunized with inactivated S. agalactiae, there was a clear time-dependent expression pattern of On-CD59 in the skin, brain, head kidney, thymus and spleen, with quite different kinetic expressions. The assays for the complement-inhibitory activity suggested that recombinant On-CD59 protein had a species-selective inhibition of complement. Moreover, our works showed that recombinant On-CD59 protein may possess both binding activities to PGN and LTA and inhibiting activity of S. agalactiae. These findings indicated that On-CD59 may play important roles in the immune response to S. agalactiae in Nile tilapia. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ravva, Subbarao V.; Sarreal, Chester Z.; Mandrell, Robert E.
2013-01-01
Surviving predation is a fitness trait of Escherichia coli O157:H7 (EcO157) that provides ample time for the pathogen to be transported from reservoirs (e.g. dairies and feedlots) to farm produce grown in proximity. Ionophore dietary supplements that inhibit rumen protozoa may provide such a selective advantage for EcO157 to proliferate in lagoons as the pathogen is released along with the undigested supplement as manure washings. This study evaluated the fate of an outbreak strain of EcO157, protozoan and bacterial communities in wastewater treated with monensin. Although total protozoa and native bacteria were unaffected by monensin, the time for 90% decrease in EcO157 increased from 0.8 to 5.1 days. 18S and 16S rRNA gene sequencing of wastewater samples revealed that monensin eliminated almost all colpodean and oligohymenophorean ciliates, probably facilitating the extended survival of EcO157. Total protozoan numbers remained high in treated wastewater as monensin enriched 94% of protozoan sequences undetected with untreated wastewater. Monensin stimulated 30-fold increases in Cyrtohymena citrina, a spirotrichean ciliate, and also biflagellate bicosoecids and cercozoans. Sequences of gram-negative Proteobacteria increased from 1% to 46% with monensin, but gram-positive Firmicutes decreased from 93% to 46%. It is noteworthy that EcO157 numbers increased significantly (P<0.01) in Sonneborn medium containing monensin, probably due to monensin-inhibited growth of Vorticella microstoma (P<0.05), a ciliate isolated from wastewater. We conclude that dietary monensin inhibits ciliate protozoa that feed on EcO157. Feed supplements or other methods that enrich these protozoa in cattle manure could be a novel strategy to control the environmental dissemination of EcO157 from dairies to produce production environments. PMID:23349969
Neural substrates of cognitive switching and inhibition in a face processing task.
Piguet, Camille; Sterpenich, Virginie; Desseilles, Martin; Cojan, Yann; Bertschy, Gilles; Vuilleumier, Patrik
2013-11-15
We frequently need to change our current occupation, an operation requiring additional effortful cognitive demands. Switching from one task to another may involve two distinct processes: inhibition of the previously relevant task-set, and initiation of a new one. Here we tested whether these two processes are underpinned by separate neural substrates, and whether they differ depending on the nature of the task and the emotional content of stimuli. We used functional magnetic resonance imaging in healthy human volunteers who categorize emotional faces according to three different judgment rules (color, gender, or emotional expression). Our paradigm allowed us to separate neural activity associated with inhibition and switching based on the sequence of the tasks required on successive trials. We found that the bilateral medial superior parietal lobule and left intraparietal sulcus showed consistent activation during switching regardless of the task. On the other hand, no common region was activated (or suppressed) as a consequence of inhibition across all tasks. Rather, task-specific effects were observed in brain regions that were more activated when switching to a particular task but less activated after inhibition of the same task. In addition, compared to other conditions, the emotional task elicited a similar switching cost but lower inhibition cost, accompanied by selective decrease in the anterior cingulate cortex when returning to this task shortly after inhibiting it. These results demonstrate that switching relies on domain-general processes mediated by postero-medial parietal areas, engaged across all tasks, but also provide novel evidence that task inhibition produces domain-specific decreases as a function of particular task demands, with only the latter inhibition component being modulated by emotional information. Copyright © 2013 Elsevier Inc. All rights reserved.
Hamm, Jorg; Alessi, Dario R; Biondi, Ricardo M
2002-11-29
The design of specific inhibitors for protein kinases is an important step toward elucidation of intracellular signal transduction pathways and to guide drug discovery programs. We devised a model approach to generate specific, competitive kinase inhibitors by isolating substrate mimics containing two independent binding sites with an anti-idiotype strategy from combinatorial RNA libraries. As a general test for the ability to generate highly specific kinase inhibitors, we selected the transcription factor cAMP-response element-binding protein (CREB) that is phosphorylated on the same serine residue by the protein kinase MSK1 as well as by RSK1. The sequences and structures of these kinases are very similar, about 60% of their amino acids are identical. Nevertheless, we can demonstrate that the selected RNA inhibitors inhibit specifically CREB phosphorylation by MSK1 but do not affect CREB phosphorylation by RSK1. The inhibitors interact preferentially with the inactive form of MSK1. Furthermore, we demonstrate that RNA ligands can be conformation-specific probes, and this feature allowed us to describe magnesium ion-dependent conformational changes of MSK1 upon activation.
Fractals and self-organized criticality in anti-inflammatory drugs
NASA Astrophysics Data System (ADS)
Phillips, J. C.
2014-12-01
Nonsteroidal anti-inflammatory drugs (NSAIDs) act through inhibiting prostaglandin synthesis, a catalytic activity possessed by two distinct cyclooxygenase (COX-1 and COX-2) isozymes encoded by separate genes. The discovery of COX-2 launched a new era in NSAID pharmacology, resulting in the synthesis, marketing, and widespread use of COX-2 selective inhibitors. Extensive structural studies of the biology of prostaglandin synthesis and inhibition have explained some of the differences between COX-1 and COX-2 functionality, but others are still unexplained. Notably these include molecular differences that cause COX-1 inhibitors to produce a slight decrease, and COX-2 inhibitors to induce a significant increase, in heart attacks and strokes. These differences were unexpected because of the 60% overall COX-1 and COX-2 sequence similarity and the 1-2 conservation of catalytic sites. Hydropathic analysis shows important bicyclic differences between COX-1 and COX-2 on a large scale outside the catalytic pocket. These differences involve much stronger amphiphilic interactions in COX-2 than in COX-1, and may explain the selective antiplatelet effectiveness of COX-2. Success of the non-Euclidean structural analysis is the result of using the new Brazilian hydropathicity scale based on self-organized criticality (SOC) of universal protein modules.
Chatterjee, Arindam; Doerksen, Robert J.; Khan, Ikhlas A.
2014-01-01
Calpain mediated cleavage of CDK5 natural precursor p35 causes a stable complex formation of CDK5/p25, which leads to hyperphosphorylation of tau. Thus inhibition of this complex is a viable target for numerous acute and chronic neurodegenerative diseases involving tau protein, including Alzheimer’s disease. Since CDK5 has the highest sequence homology with its mitotic counterpart CDK2, our primary goal was to design selective CDK5/p25 inhibitors targeting neurodegeneration. A novel structure-based virtual screening protocol comprised of e-pharmacophore models and virtual screening work-flow was used to identify nine compounds from a commercial database containing 2.84 million compounds. An ATP non-competitive and selective thieno[3,2-c]quinolin-4(5H)-one inhibitor (10) with ligand efficiency (LE) of 0.3 was identified as the lead molecule. Further SAR optimization led to the discovery of several low micromolar inhibitors with good selectivity. The research represents a new class of potent ATP non-competitive CDK5/p25 inhibitors with good CDK2/E selectivity. PMID:25438765
Tan, Tingting; Wu, Di; Li, Weizhong; Zheng, Xin; Li, Weifen; Shan, Anshan
2017-01-01
Hybrid peptides integrating different functional domains of peptides have many advantages, such as remarkable antimicrobial activity, lower hemolysis and ideal cell selectivity, compared with natural antimicrobial peptides. FV7 (FRIRVRV-NH2), a consensus amphiphilic sequence was identified as being analogous to host defense peptides. In this study, we designed a series of hybrid peptides FV7-LL-37 (17–29) (FV-LL), FV7-magainin 2 (9–21) (FV-MA) and FV7-cecropin A (1–8) (FV-CE) by combining the FV7 sequence with the small functional sequences LL-37 (17–29) (LL), magainin 2 (9–21) (MA) and cecropin A (1–8) (CE) which all come from well-described natural peptides. The results demonstrated that the synthetic hybrid peptides, in particular FV-LL, had potent antibacterial activities over a wide range of Gram-negative and Gram-positive bacteria with lower hemolytic activity than other peptides. Furthermore, fluorescent spectroscopy indicated that the hybrid peptide FV-LL exhibited marked membrane destruction by inducing outer and inner bacterial membrane permeabilization, while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated that FV-LL damaged membrane integrity by disrupting the bacterial membrane. Inhibiting biofilm formation assays also showed that FV-LL had similar anti-biofilm activity compared with the functional peptide sequence FV7. Synthetic cationic hybrid peptides based on FV7 could provide new models for combining different functional domains and demonstrate effective avenues to screen for novel antimicrobial agents. PMID:28178190
Babinska, A; Clement, C C; Swiatkowska, M; Szymanski, J; Shon, A; Ehrlich, Y H; Kornecki, E; Salifu, M O
2014-07-01
Peptides with enhanced resistance to proteolysis, based on the amino acid sequence of the F11 receptor molecule (F11R, aka JAM-A/Junctional adhesion molecule-A), were designed, prepared, and examined as potential candidates for the development of anti-atherosclerotic and anti-thrombotic therapeutic drugs. A sequence at the N-terminal of F11R together with another sequence located in the first Ig-loop of this protein, were identified to form a steric active-site operating in the F11R-dependent adhesion between cells that express F11R molecules on their external surface. In silico modeling of the complex between two polypeptide chains with the sequences positioned in the active-site was used to generate peptide-candidates designed to inhibit homophilic interactions between surface-located F11R molecules. The two lead F11R peptides were modified with D-Arg and D-Lys at selective sites, for attaining higher stability to proteolysis in vivo. Using molecular docking experiments we tested different conformational states and the putative binding affinity between two selected D-Arg and D-Lys-modified F11R peptides and the proposed binding pocket. The inhibitory effects of the F11R peptide 2HN-(dK)-SVT-(dR)-EDTGTYTC-CONH2 on antibody-induced platelet aggregation and on the adhesion of platelets to cytokine-inflammed endothelial cells are reported in detail, and the results point out the significant potential utilization of F11R peptides for the prevention and treatment of atherosclerotic plaques and associated thrombotic events. © 2014 Wiley Periodicals, Inc.
Merotto, Aldo; Jasieniuk, Marie; Osuna, Maria D; Vidotto, Francesco; Ferrero, Aldo; Fischer, Albert J
2009-02-25
Resistance to ALS-inhibiting herbicides in Cyperus difformis has evolved rapidly in many rice areas worldwide. This study identified the mechanism of resistance, assessed cross-resistance patterns to all five chemical groups of ALS-inhibiting herbicides in four C. difformis biotypes, and attempted to sequence the ALS gene. Whole-plant and ALS enzyme activity dose-response assays indicated that the WA biotype was resistant to all ALS-inhibiting herbicides evaluated. The IR biotype was resistant to bensulfuron-methyl, orthosulfamuron, imazethapyr, and propoxycarbazone-sodium and less resistant to bispyribac-sodium and halosulfuron-methyl, and susceptible to penoxsulam. ALS enzyme activity assays indicated that resistance is due to an altered target site yet mutations previously found to endow target-site resistance in weeds were not detected in the sequences obtained. The inability to detect resistance mutations in C. difformis may result from the presence of additional ALS genes, which were not amplified by the primers used. This study reports the first ALS gene sequence from Cyperus difformis. Certain ALS-inhibiting herbicides can still be used to control some resistant C. difformis biotypes. However, because cross-resistance to all five classes of ALS-inhibitors was detected in other resistant biotypes, these herbicides should only be used within an integrated weed management program designed to delay the evolution of herbicide resistance.
Color- and motion-specific units in the tectum opticum of goldfish.
Gruber, Morna; Behrend, Konstantin; Neumeyer, Christa
2016-01-05
Extracellular recordings were performed from 69 units at different depths between 50 and [Formula: see text]m below the surface of tectum opticum in goldfish. Using large field stimuli (86[Formula: see text] visual angle) of 21 colored HKS-papers we were able to record from 54 color-sensitive units. The colored papers were presented for 5[Formula: see text]s each. They were arranged in the sequence of the color circle in humans separated by gray of medium brightness. We found 22 units with best responses between orange, red and pink. About 12 of these red-sensitive units were of the opponent "red-ON/blue-green-OFF" type as found in retinal bipolar- and ganglion cells as well. Most of them were also activated or inhibited by black and/or white. Some units responded specifically to red either with activation or inhibition. 18 units were sensitive to blue and/or green, 10 of them to both colors and most of them to black as well. They were inhibited by red, and belonged to the opponent "blue-green-ON/red-OFF" type. Other units responded more selectively either to blue, to green or to purple. Two units were selectively sensitive to yellow. A total of 15 units were sensitive to motion, stimulated by an excentrically rotating black and white random dot pattern. Activity of these units was also large when a red-green random dot pattern of high L-cone contrast was used. Activity dropped to zero when the red-green pattern did not modulate the L-cones. Neither of these motion selective units responded to any color. The results directly show color-blindness of motion vision, and confirm the hypothesis of separate and parallel processing of "color" and "motion".
Chien, Yung-Ching; Masica, David L; Gray, Jeffrey J; Nguyen, Sarah; Vali, Hojatollah; McKee, Marc D
2009-08-28
Calcium oxalate dihydrate (COD) mineral and the urinary protein osteopontin/uropontin (OPN) are commonly found in kidney stones. To investigate the effects of OPN on COD growth, COD crystals were grown with phosphorylated OPN or a polyaspartic acid-rich peptide of OPN (DDLDDDDD, poly-Asp(86-93)). Crystals grown with OPN showed increased dimensions of the {110} prismatic faces attributable to selective inhibition at this crystallographic face. At high concentrations of OPN, elongated crystals with dominant {110} faces were produced, often with intergrown, interpenetrating twin crystals. Poly-Asp(86-93) dose-dependently elongated crystal morphology along the {110} faces in a manner similar to OPN. In crystal growth studies using fluorescently tagged poly-Asp(86-93) followed by imaging of crystal interiors using confocal microscopy, sectoral (compositional) zoning in COD was observed resulting from selective binding and incorporation (occlusion) of peptide exclusively into {110} crystal sectors. Computational modeling of poly-Asp(86-93) adsorption to COD {110} and {101} surfaces also suggests increased stabilization of the COD {110} surface and negligible change to the natively stable {101} surface. Ultrastructural, colloidal-gold immunolocalization of OPN by transmission electron microscopy in human stones confirmed an intracrystalline distribution of OPN. In summary, OPN and its poly-Asp(86-93) sequence similarly affect COD mineral growth; the {110} crystallographic faces become enhanced and dominant attributable to {110} face inhibition by the protein/peptide, and peptides can incorporate into the mineral phase. We, thus, conclude that the poly-Asp(86-93) domain is central to the OPN ability to interact with the {110} faces of COD, where it binds to inhibit crystal growth with subsequent intracrystalline incorporation (occlusion).
Fernandez y Mostajo, Mercedes; van der Reijden, Wil A; Buijs, Mark J; Beertsen, Wouter; Van der Weijden, Fridus; Crielaard, Wim; Zaura, Egija
2014-01-01
Oral bacteria live in symbiosis with the host. Therefore, when mouthwashes are indicated, selective inhibition of taxa contributing to disease is preferred instead of broad-spectrum antimicrobials. The potential selectivity of an oxygenating mouthwash, Ardox-X® (AX), has not been assessed. The aim of this study was to determine the antimicrobial potential of AX and the effects of a twice-daily oral rinse on dental plaque composition. In vitro, 16 oral bacterial strains were tested using agar diffusion susceptibility, minimum inhibitory and minimum bactericidal concentration tests. A pilot clinical study was performed with 25 healthy volunteers. Clinical assessments and microbiological sampling of supragingival plaque were performed at 1 month before the experiment (Pre-exp), at the start of the experiment (Baseline) and after the one-week experimental period (Post-exp). During the experiment individuals used AX mouthwash twice daily in absence of other oral hygiene measures. The microbiological composition of plaque was assessed by 16S rRNA gene amplicon sequencing. AX showed high inter-species variation in microbial growth inhibition. The tested Prevotella strains and Fusobacterium nucleatum showed the highest sensitivity, while streptococci and Lactobacillus acidophilus were most resistant to AX. Plaque scores at Pre-exp and Baseline visits did not differ significantly (p = 0.193), nor did the microbial composition of plaque. During a period of 7-days non-brushing but twice daily rinsing plaque scores increased from 2.21 (0.31) at Baseline to 2.43 (0.39) Post-exp. A significant microbial shift in composition was observed: genus Streptococcus and Veillonella increased while Corynebacterium, Haemophilus, Leptotrichia, Cardiobacterium and Capnocytophaga decreased (p ≤ 0.001). AX has the potential for selective inhibition of oral bacteria. The shift in oral microbiome after 1 week of rinsing deserves further research.
Chen, Zhen; Meyer, Weiqian; Rappert, Sugima; Sun, Jibin; Zeng, An-Ping
2011-07-01
Product feedback inhibition of allosteric enzymes is an essential issue for the development of highly efficient microbial strains for bioproduction. Here we used aspartokinase from Corynebacterium glutamicum (CgAK), a key enzyme controlling the biosynthesis of industrially important aspartate family amino acids, as a model to demonstrate a fast and efficient approach to the deregulation of allostery. In the last 50 years many researchers and companies have made considerable efforts to deregulate this enzyme from allosteric inhibition by lysine and threonine. However, only a limited number of positive mutants have been identified so far, almost exclusively by random mutation and selection. In this study, we used statistical coupling analysis of protein sequences, a method based on coevolutionary analysis, to systematically clarify the interaction network within the regulatory domain of CgAK that is essential for allosteric inhibition. A cluster of interconnected residues linking different inhibitors' binding sites as well as other regions of the protein have been identified, including most of the previously reported positions of successful mutations. Beyond these mutation positions, we have created another 14 mutants that can partially or completely desensitize CgAK from allosteric inhibition, as shown by enzyme activity assays. The introduction of only one of the inhibition-insensitive CgAK mutations (here Q298G) into a wild-type C. glutamicum strain by homologous recombination resulted in an accumulation of 58 g/liter L-lysine within 30 h of fed-batch fermentation in a bioreactor.
Chen, Zhen; Meyer, Weiqian; Rappert, Sugima; Sun, Jibin; Zeng, An-Ping
2011-01-01
Product feedback inhibition of allosteric enzymes is an essential issue for the development of highly efficient microbial strains for bioproduction. Here we used aspartokinase from Corynebacterium glutamicum (CgAK), a key enzyme controlling the biosynthesis of industrially important aspartate family amino acids, as a model to demonstrate a fast and efficient approach to the deregulation of allostery. In the last 50 years many researchers and companies have made considerable efforts to deregulate this enzyme from allosteric inhibition by lysine and threonine. However, only a limited number of positive mutants have been identified so far, almost exclusively by random mutation and selection. In this study, we used statistical coupling analysis of protein sequences, a method based on coevolutionary analysis, to systematically clarify the interaction network within the regulatory domain of CgAK that is essential for allosteric inhibition. A cluster of interconnected residues linking different inhibitors' binding sites as well as other regions of the protein have been identified, including most of the previously reported positions of successful mutations. Beyond these mutation positions, we have created another 14 mutants that can partially or completely desensitize CgAK from allosteric inhibition, as shown by enzyme activity assays. The introduction of only one of the inhibition-insensitive CgAK mutations (here Q298G) into a wild-type C. glutamicum strain by homologous recombination resulted in an accumulation of 58 g/liter l-lysine within 30 h of fed-batch fermentation in a bioreactor. PMID:21531824
Leiva, Alicia; Andrés, Pilar; Servera, Mateu; Verbruggen, Frederick; Parmentier, Fabrice B R
2016-09-01
Sounds deviating from an otherwise repeated or structured sequence capture attention and affect performance in an ongoing visual task negatively, testament to the balance between selective attention and change detection. Although deviance distraction has been the object of much research, its modulation across the life span has been more scarcely addressed. Recent findings suggest possible connections with working memory and response inhibition. In this study we measured the performance of children and young and older adults in a cross-modal oddball task (deviance distraction), a working memory task (working memory capacity), and a response inhibition task (ability to voluntarily inhibit an already planned action) with the aim to establish the contribution of the latter 2 to the first. Older adults exhibited significantly more deviance distraction than children and young adults (who did not differ from each other). Working memory capacity mediated deviance distraction in children and older adults (though in opposite directions) but not in young adults. Response inhibition capacities did not mediate deviance distraction in any of the age groups. Altogether the results suggest that although the increase in deviance distraction observed in old age may partly reflect the relative impairment of working memory mechanisms, there is no straightforward and stable relation between working memory capacity and deviance distraction across the life span. Furthermore, our results indicate that deviance distraction is unlikely to reflect the temporary inhibition of responses. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Dean, Kimberly M; Grayhack, Elizabeth J
2012-12-01
We have developed a robust and sensitive method, called RNA-ID, to screen for cis-regulatory sequences in RNA using fluorescence-activated cell sorting (FACS) of yeast cells bearing a reporter in which expression of both superfolder green fluorescent protein (GFP) and yeast codon-optimized mCherry red fluorescent protein (RFP) is driven by the bidirectional GAL1,10 promoter. This method recapitulates previously reported progressive inhibition of translation mediated by increasing numbers of CGA codon pairs, and restoration of expression by introduction of a tRNA with an anticodon that base pairs exactly with the CGA codon. This method also reproduces effects of paromomycin and context on stop codon read-through. Five key features of this method contribute to its effectiveness as a selection for regulatory sequences: The system exhibits greater than a 250-fold dynamic range, a quantitative and dose-dependent response to known inhibitory sequences, exquisite resolution that allows nearly complete physical separation of distinct populations, and a reproducible signal between different cells transformed with the identical reporter, all of which are coupled with simple methods involving ligation-independent cloning, to create large libraries. Moreover, we provide evidence that there are sequences within a 9-nt library that cause reduced GFP fluorescence, suggesting that there are novel cis-regulatory sequences to be found even in this short sequence space. This method is widely applicable to the study of both RNA-mediated and codon-mediated effects on expression.
Rebollar, Eria A; Antwis, Rachael E; Becker, Matthew H; Belden, Lisa K; Bletz, Molly C; Brucker, Robert M; Harrison, Xavier A; Hughey, Myra C; Kueneman, Jordan G; Loudon, Andrew H; McKenzie, Valerie; Medina, Daniel; Minbiole, Kevin P C; Rollins-Smith, Louise A; Walke, Jenifer B; Weiss, Sophie; Woodhams, Douglas C; Harris, Reid N
2016-01-01
Emerging infectious diseases in wildlife are responsible for massive population declines. In amphibians, chytridiomycosis caused by Batrachochytrium dendrobatidis, Bd, has severely affected many amphibian populations and species around the world. One promising management strategy is probiotic bioaugmentation of antifungal bacteria on amphibian skin. In vivo experimental trials using bioaugmentation strategies have had mixed results, and therefore a more informed strategy is needed to select successful probiotic candidates. Metagenomic, transcriptomic, and metabolomic methods, colloquially called "omics," are approaches that can better inform probiotic selection and optimize selection protocols. The integration of multiple omic data using bioinformatic and statistical tools and in silico models that link bacterial community structure with bacterial defensive function can allow the identification of species involved in pathogen inhibition. We recommend using 16S rRNA gene amplicon sequencing and methods such as indicator species analysis, the Kolmogorov-Smirnov Measure, and co-occurrence networks to identify bacteria that are associated with pathogen resistance in field surveys and experimental trials. In addition to 16S amplicon sequencing, we recommend approaches that give insight into symbiont function such as shotgun metagenomics, metatranscriptomics, or metabolomics to maximize the probability of finding effective probiotic candidates, which can then be isolated in culture and tested in persistence and clinical trials. An effective mitigation strategy to ameliorate chytridiomycosis and other emerging infectious diseases is necessary; the advancement of omic methods and the integration of multiple omic data provide a promising avenue toward conservation of imperiled species.
Morecroft, Ian; White, Katie; Caruso, Paola; Nilsen, Margaret; Loughlin, Lynn; Alba, Raul; Reynolds, Paul N; Danilov, Sergei M; Baker, Andrew H; MacLean, Margaret R
2012-01-01
Serotonin is produced by pulmonary arterial endothelial cells (PAEC) via tryptophan hydroxylase-1 (Tph1). Pathologically, serotonin acts on underlying pulmonary arterial cells, contributing to vascular remodeling associated with pulmonary arterial hypertension (PAH). The effects of hypoxia on PAEC-Tph1 activity are unknown. We investigated the potential of a gene therapy approach to PAH using selective inhibition of PAEC-Tph1 in vivo in a hypoxic model of PAH. We exposed cultured bovine pulmonary arterial smooth muscle cells (bPASMCs) to conditioned media from human PAECs (hPAECs) before and after hypoxic exposure. Serotonin levels were increased in hypoxic PAEC media. Conditioned media evoked bPASMC proliferation, which was greater with hypoxic PAEC media, via a serotonin-dependent mechanism. In vivo, adenoviral vectors targeted to PAECs (utilizing bispecific antibody to angiotensin-converting enzyme (ACE) as the selective targeting system) were used to deliver small hairpin Tph1 RNA sequences in rats. Hypoxic rats developed PAH and increased lung Tph1. PAEC-Tph1 expression and development of PAH were attenuated by our PAEC-Tph1 gene knockdown strategy. These results demonstrate that hypoxia induces Tph1 activity and selective knockdown of PAEC-Tph1 attenuates hypoxia-induced PAH in rats. Further investigation of pulmonary endothelial-specific Tph1 inhibition via gene interventions is warranted. PMID:22525513
Phosphorothioate oligonucleotides inhibit the intrinsic tenase complex.
Sheehan, J P; Lan, H C
1998-09-01
Systemic administration of ISIS 2302, a 20-mer antisense phosphorothioate oligonucleotide targeting human intercellular adhesion molecule-1 mRNA, causes prolongation of plasma clotting times in both monkey and human studies. The anticoagulant effects of ISIS 2302 were investigated with both in vitro coagulation assays in human plasma and purified enzyme systems. At high oligonucleotide plasma concentrations (>100 microgram/mL), prolongation of the prothrombin and thrombin times was observed. In a thrombin time assay using purified components, high concentrations of ISIS 2302 inhibited thrombin clotting activity both by stimulating inhibition by heparin cofactor II and directly competing with fibrinogen for binding to anion binding exosite I. In contrast, low concentrations of ISIS 2302 (<100 microgram/mL) showed a selective, linear prolongation of the activated partial thromboplastin time (PTT). The rate limiting effect of 50 microgram/mL ISIS 2302, which prolonged the PTT to 1.5 times control, was identified by sequential modification of the clotting assay. Delaying addition of oligonucleotide until after contact activation failed to correct prolongation of the PTT. The calcium-dependent steps of the intrinsic pathway were individually assessed by adding sufficient activated coagulation factor to correct the PTT in plasma deficient in that specific factor. Addition of factor XIa, IXa, VIIIa, or Va failed to correct the PTT in the presence of ISIS 2302. In contrast, 0.2 nmol/L factor Xa corrected prolongation of the PTT in factor X-deficient plasma with or without oligonucleotide present. ISIS 2302 (50 microgram/mL) did not prolong a modified Russel viper venom time, suggesting no significant inhibition of prothrombinase. Thus, 50 microgram/mL ISIS 2302 prolonged the PTT by selectively inhibiting intrinsic tenase activity. ISIS 2302 showed partial inhibition of intrinsic tenase activity (to approximately 35% of control) at clinically relevant oligonucleotide concentrations in a chromogenic assay. This activity was oligonucleotide sequence-independent but required the phosphorothioate backbone, suggesting that inhibition of intrinsic tenase is a general property of this class of oligonucleotides. These results are relevant to both the therapeutic use of phosphorothioate oligonucleotides and the potential design of inhibitors of the intrinsic tenase complex, a novel target for anticoagulation. Copyright 1998 by The American Society of Hematology.
ERIC Educational Resources Information Center
Pompon, Rebecca Hunting; McNeil, Malcolm R.; Spencer, Kristie A.; Kendall, Diane L.
2015-01-01
Purpose: The integrity of selective attention in people with aphasia (PWA) is currently unknown. Selective attention is essential for everyday communication, and inhibition is an important part of selective attention. This study explored components of inhibition--both intentional and reactive inhibition--during spoken-word production in PWA and in…
Mourier, Pierre A J; Guichard, Olivier Y; Herman, Fréderic; Sizun, Philippe; Viskov, Christian
2017-03-08
Low Molecular Weight Heparins (LMWH) are complex anticoagulant drugs that mainly inhibit the blood coagulation cascade through indirect interaction with antithrombin. While inhibition of the factor Xa is well described, little is known about the polysaccharide structure inhibiting thrombin. In fact, a minimal chain length of 18 saccharides units, including an antithrombin (AT) binding pentasaccharide, is mandatory to form the active ternary complex for LMWH obtained by alkaline β-elimination (e.g., enoxaparin). However, the relationship between structure of octadecasaccharides and their thrombin inhibition has not been yet assessed on natural compounds due to technical hurdles to isolate sufficiently pure material. We report the preparation of five octadecasaccharides by using orthogonal separation methods including size exclusion, AT affinity, ion pairing and strong anion exchange chromatography. Each of these octadecasaccharides possesses two AT binding pentasaccharide sequences located at various positions. After structural elucidation using enzymatic sequencing and NMR, in vitro aFXa and aFIIa were determined. The biological activities reveal the critical role of each pentasaccharide sequence position within the octadecasaccharides and structural requirements to inhibit thrombin. Significant differences in potency, such as the twenty-fold magnitude difference observed between two regioisomers, further highlights the importance of depolymerisation process conditions on LMWH biological activity.
Dallas, David C.; Guerrero, Andres; Khaldi, Nora; Castillo, Patricia A.; Martin, William F.; Smilowitz, Jennifer T.; Bevins, Charles L.; Barile, Daniela; German, J. Bruce; Lebrilla, Carlito B.
2013-01-01
Milk is traditionally considered an ideal source of the basic elemental nutrients required by infants. More detailed examination is revealing that milk represents a more functional ensemble of components with benefits to both infants and mothers. A comprehensive peptidomics method was developed and used to analyze human milk yielding an extensive array of protein products present in the fluid. Over 300 milk peptides were identified originating from major and many minor protein components of milk. As expected, the majority of peptides derived from β-casein, however no peptide fragments from the major milk proteins lactoferrin, α-lactalbumin and secretory immunoglobulin A were identified. Proteolysis in the mammary gland is selective—released peptides were drawn only from specific proteins and typically from only select parts of the parent sequence. A large number of the peptides showed significant sequence overlap with peptides with known antimicrobial or immunomodulatory functions. Antibacterial assays showed the milk peptide mixtures inhibited the growth of Escherichia coli and Staphylococcus aureus. The pre-digestion of milk proteins and the consequent release antibacterial peptides may provide a selective advantage through evolution by protecting both the mother's mammary gland and her nursing offspring from infection. PMID:23586814
Inhibition of duck hepatitis B virus replication by mimic peptides in vitro
JIA, HONGYU; LIU, CHANGHONG; YANG, YING; ZHU, HAIHONG; CHEN, FENG; LIU, JIHONG; ZHOU, LINFU
2015-01-01
The aim of the present study was to investigate the inhibitory effect of specific mimic peptides targeting duck hepatitis B virus polymerase (DHBVP) on duck hepatitis B virus (DHBV) replication in primary duck hepatocytes. Phage display technology (PDT) was used to screen for mimic peptides specifically targeting DHBVP and the associated coding sequences were determined using DNA sequencing. The selected mimic peptides were then used to treat primary duck hepatocytes infected with DHBV in vitro. Infected hepatocytes expressing the mimic peptides intracellularly were also prepared. The cells were divided into mimic peptide groups (EXP groups), an entecavir-treated group (positive control) and a negative control group. The medium was changed every 48 h. Following a 10-day incubation, the cell supernatants were collected. DHBV-DNA in the cellular nucleus, cytoplasm and culture supernatant was analyzed by quantitative polymerase chain reaction (qPCR). Eight mimic peptides were selected following three PDT screening rounds for investigation in the DHBV-infected primary duck hepatocytes. The qPCR results showed that following direct treatment with mimic peptide 2 or 7, intracellular expression of mimic peptide 2 or 7, or treatment with entecavir, the DHBV-DNA levels in the culture supernatant and cytoplasm of duck hepatocytes were significantly lower than those in the negative control (P<0.05). The cytoplasmic DHBV-DNA content of the cells treated with mimic peptide 7 was lower than that in the other groups (P<0.05). In addition, the DHBV-DNA content of the nuclear fractions following the intracellular expression of mimic peptide 7 was significantly lower than that in the other groups (P<0.05). Mimic peptides specifically targeting DHBVP, administered directly or expressed intracellularly, can significantly inhibit DHBV replication in vitro. PMID:26640539
Inhibition of duck hepatitis B virus replication by mimic peptides in vitro.
Jia, Hongyu; Liu, Changhong; Yang, Ying; Zhu, Haihong; Chen, Feng; Liu, Jihong; Zhou, Linfu
2015-11-01
The aim of the present study was to investigate the inhibitory effect of specific mimic peptides targeting duck hepatitis B virus polymerase (DHBVP) on duck hepatitis B virus (DHBV) replication in primary duck hepatocytes. Phage display technology (PDT) was used to screen for mimic peptides specifically targeting DHBVP and the associated coding sequences were determined using DNA sequencing. The selected mimic peptides were then used to treat primary duck hepatocytes infected with DHBV in vitro. Infected hepatocytes expressing the mimic peptides intracellularly were also prepared. The cells were divided into mimic peptide groups (EXP groups), an entecavir-treated group (positive control) and a negative control group. The medium was changed every 48 h. Following a 10-day incubation, the cell supernatants were collected. DHBV-DNA in the cellular nucleus, cytoplasm and culture supernatant was analyzed by quantitative polymerase chain reaction (qPCR). Eight mimic peptides were selected following three PDT screening rounds for investigation in the DHBV-infected primary duck hepatocytes. The qPCR results showed that following direct treatment with mimic peptide 2 or 7, intracellular expression of mimic peptide 2 or 7, or treatment with entecavir, the DHBV-DNA levels in the culture supernatant and cytoplasm of duck hepatocytes were significantly lower than those in the negative control (P<0.05). The cytoplasmic DHBV-DNA content of the cells treated with mimic peptide 7 was lower than that in the other groups (P<0.05). In addition, the DHBV-DNA content of the nuclear fractions following the intracellular expression of mimic peptide 7 was significantly lower than that in the other groups (P<0.05). Mimic peptides specifically targeting DHBVP, administered directly or expressed intracellularly, can significantly inhibit DHBV replication in vitro .
Semantic processing and response inhibition.
Chiang, Hsueh-Sheng; Motes, Michael A; Mudar, Raksha A; Rao, Neena K; Mansinghani, Sethesh; Brier, Matthew R; Maguire, Mandy J; Kraut, Michael A; Hart, John
2013-11-13
The present study examined functional MRI (fMRI) BOLD signal changes in response to object categorization during response selection and inhibition. Young adults (N=16) completed a Go/NoGo task with varying object categorization requirements while fMRI data were recorded. Response inhibition elicited increased signal change in various brain regions, including medial frontal areas, compared with response selection. BOLD signal in an area within the right angular gyrus was increased when higher-order categorization was mandated. In addition, signal change during response inhibition varied with categorization requirements in the left inferior temporal gyrus (lIT). lIT-mediated response inhibition when inhibiting the response only required lower-order categorization, but lIT mediated both response selection and inhibition when selecting and inhibiting the response required higher-order categorization. The findings characterized mechanisms mediating response inhibition associated with semantic object categorization in the 'what' visual object memory system.
Inhibition of a cathepsin L-like cysteine protease by a chimeric propeptide-derived inhibitor.
Godat, Emmanuel; Chowdhury, Shafinaz; Lecaille, Fabien; Belghazi, Maya; Purisima, Enrico O; Lalmanach, Gilles
2005-08-09
Like other papain-related cathepsins, congopain from Trypanosoma congolense is synthesized as a zymogen. We have previously identified a proregion-derived peptide (Pcp27), acting as a weak and reversible inhibitor of congopain. Pcp27 contains a 5-mer YHNGA motif, which is essential for selectivity in the inhibition of its mature form [Lalmanach, G., Lecaille, F., Chagas, J. R., Authié, E., Scharfstein, J., Juliano, M. A., and Gauthier, F. (1998) J. Biol. Chem. 273, 25112-25116]. In the work presented here, a homology model of procongopain was generated and subsequently used to model a chimeric 50-mer peptide (called H3-Pcp27) corresponding to the covalent linkage of an unrelated peptide (H3 helix from Antennapedia) to Pcp27. Molecular simulations suggested that H3-Pcp27 (pI = 9.99) maintains an N-terminal helical conformation, and establishes more complementary electrostatic interactions (E(coul) = -25.77 kcal/mol) than 16N-Pcp27, the 34-mer Pcp27 sequence plus the 16 native residues upstream from the proregion (E(coul) = 0.20 kcal/mol), with the acid catalytic domain (pI = 5.2) of the mature enzyme. In silico results correlated with the significant improvement of congopain inhibition by H3-Pcp27 (K(i) = 24 nM), compared to 16N-Pcp27 (K(i) = 1 microM). In addition, virtual alanine scanning of H3 and 16N identified the residues contributing most to binding affinity. Both peptides did not inhibit human cathepsins B and L. In conclusion, these data support the notion that the positively charged H3 helix favors binding, without modifying the selectivity of Pcp27 for congopain.
Hewett, Peter W; Daft, Emma L; Laughton, Charles A; Ahmad, Shakil; Ahmed, Asif; Murray, J Clifford
2006-01-01
The Tie receptors (Tie-1 and Tie-2/Tek) are essential for angiogenesis and vascular remodeling/integrity. Tie receptors are up-regulated in tumor-associated endothelium, and their inhibition disrupts angiogenesis and can prevent tumor growth as a consequence. To investigate the potential of anti-gene approaches to inhibit tie gene expression for anti-angiogenic therapy, we have examined triple-helical (triplex) DNA formation at 2 tandem Ets transcription factor binding motifs (designated E-1 and E-2) in the human tie-1 promoter. Various tie-1 promoter deletion/mutation luciferase reporter constructs were generated and transfected into endothelial cells to examine the relative activities of E-1 and E-2. The binding of antiparallel and parallel (control) purine motif oligonucleotides (21–22 bp) targeted to E-1 and E-2 was assessed by plasmid DNA fragment binding and electrophoretic mobility shift assays. Triplex-forming oligonucleotides were incubated with tie-1 reporter constructs and transfected into endothelial cells to determine their activity. The Ets binding motifs in the E-1 sequence were essential for human tie-1 promoter activity in endothelial cells, whereas the deletion of E-2 had no effect. Antiparallel purine motif oligonucleotides targeted at E-1 or E-2 selectively formed strong triplex DNA (Kd ~10−7 M) at 37 °C. Transfection of tie-1 reporter constructs with triplex DNA at E-1, but not E-2, specifically inhibited tie-1 promoter activity by up to 75% compared with control oligonucleotides in endothelial cells. As similar multiple Ets binding sites are important for the regulation of several endothelial-restricted genes, this approach may have broad therapeutic potential for cancer and other pathologies involving endothelial proliferation/dysfunction. PMID:16838069
Hewett, Peter W; Daft, Emma L; Laughton, Charles A; Ahmad, Shakil; Ahmed, Asif; Murray, J Clifford
2006-01-01
The Tie receptors (Tie-1 and Tie-2/Tek) are essential for angiogenesis and vascular remodeling/integrity. Tie receptors are up-regulated in tumor-associated endothelium, and their inhibition disrupts angiogenesis and can prevent tumor growth as a consequence. To investigate the potential of anti-gene approaches to inhibit tie gene expression for anti-angiogenic therapy, we have examined triple-helical (triplex) DNA formation at 2 tandem Ets transcription factor binding motifs (designated E-1 and E-2) in the human tie-1 promoter. Various tie-1 promoter deletion/mutation luciferase reporter constructs were generated and transfected into endothelial cells to examine the relative activities of E-1 and E-2. The binding of antiparallel and parallel (control) purine motif oligonucleotides (21-22 bp) targeted to E-1 and E-2 was assessed by plasmid DNA fragment binding and electrophoretic mobility shift assays. Triplex-forming oligonucleotides were incubated with tie-1 reporter constructs and transfected into endothelial cells to determine their activity. The Ets binding motifs in the E-1 sequence were essential for human tie-1 promoter activity in endothelial cells, whereas the deletion of E-2 had no effect. Antiparallel purine motif oligonucleotides targeted at E-1 or E-2 selectively formed strong triplex DNA (K(d) approximately 10(-7) M) at 37 degrees C. Transfection of tie-1 reporter constructs with triplex DNA at E-1, but not E-2, specifically inhibited tie-1 promoter activity by up to 75% compared with control oligonucleotides in endothelial cells. As similar multiple Ets binding sites are important for the regulation of several endothelial-restricted genes, this approach may have broad therapeutic potential for cancer and other pathologies involving endothelial proliferation/dysfunction.
Bardelli, A; Longati, P; Williams, T A; Benvenuti, S; Comoglio, P M
1999-10-08
Interaction of the hepatocyte growth factor (HGF) with its receptor, the Met tyrosine kinase, results in invasive growth, a genetic program essential to embryonic development and implicated in tumor metastasis. Met-mediated invasive growth requires autophosphorylation of the receptor on tyrosines located in the kinase activation loop (Tyr(1234)-Tyr(1235)) and in the carboxyl-terminal tail (Tyr(1349)-Tyr(1356)). We report that peptides derived from the Met receptor tail, but not from the activation loop, bind the receptor and inhibit the kinase activity in vitro. Cell delivery of the tail receptor peptide impairs HGF-dependent Met phosphorylation and downstream signaling. In normal and transformed epithelial cells, the tail receptor peptide inhibits HGF-mediated invasive growth, as measured by cell migration, invasiveness, and branched morphogenesis. The Met tail peptide inhibits the closely related Ron receptor but does not significantly affect the epidermal growth factor, platelet-derived growth factor, or vascular endothelial growth factor receptor activities. These experiments show that carboxyl-terminal sequences impair the catalytic properties of the Met receptor, thus suggesting that in the resting state the nonphosphorylated tail acts as an intramolecular modulator. Furthermore, they provide a strategy to selectively target the MET proto-oncogene by using small, cell-permeable, peptide derivatives.
PARP Inhibitors in Reproductive System Cancers: Current Use and Developments.
O'Sullivan Coyne, Geraldine; Chen, Alice P; Meehan, Robert; Doroshow, James H
2017-02-01
The repair of DNA damage is a critical cellular process governed by multiple biochemical pathways that are often found to be defective in cancer cells. The poly(ADP-ribose) polymerase (PARP) family of proteins controls response to single-strand DNA breaks by detecting these damaged sites and recruiting the proper factors for repair. Blocking this pathway forces cells to utilize complementary mechanisms to repair DNA damage. While PARP inhibition may not, in itself, be sufficient to cause tumor cell death, inhibition of DNA repair with PARP inhibitors is an effective cytotoxic strategy when it is used in patients who carry other defective DNA-repair mechanisms, such as mutations in the genes BRCA 1 and 2. This discovery has supported the development of PARP inhibitors (PARPi), agents that have proven effective against various types of tumors that carry BRCA mutations. With the application of next-generation sequencing of tumors, there is increased interest in looking beyond BRCA mutations to identify genetic and epigenetic aberrations that might lead to similar defects in DNA repair, conferring susceptibility to PARP inhibition. Identification of these genetic lesions and the development of screening assays for their detection may allow for the selection of patients most likely to respond to this class of anticancer agents. This article provides an overview of clinical trial results obtained with PARPi and describes the companion diagnostic assays being established for patient selection. In addition, we review known mechanisms for resistance to PARPi and potential strategies for combining these agents with other types of therapy.
Skottrup, Peter Durand; Sørensen, Grete; Ksiazek, Miroslaw; Potempa, Jan; Riise, Erik
2012-01-01
Tannerella forsythia is a gram-negative bacteria, which is strongly associated with the development of periodontal disease. Karilysin is a newly identified metalloprotease-like enzyme, that is secreted from T. forsythia. Karilysin modulates the host immune response and is therefore considered a likely drug target. In this study peptides were selected towards the catalytic domain from Karilysin (Kly18) by phage display. The peptides were linear with low micromolar binding affinities. The two best binders (peptide14 and peptide15), shared the consensus sequence XWFPXXXGGG. A peptide15 fusion with Maltose Binding protein (MBP) was produced with peptide15 fused to the N-terminus of MBP. The peptide15-MBP was expressed in E. coli and the purified fusion-protein was used to verify Kly18 specific binding. Chemically synthesised peptide15 (SWFPLRSGGG) could inhibit the enzymatic activity of both Kly18 and intact Karilysin (Kly48). Furthermore, peptide15 could slow down the autoprocessing of intact Kly48 to Kly18. The WFP motif was important for inhibition and a truncation study further demonstrated that the N-terminal serine was also essential for Kly18 inhibition. The SWFP peptide had a Ki value in the low micromolar range, which was similar to the intact peptide15. In conclusion SWFP is the first reported inhibitor of Karilysin and can be used as a valuable tool in structure-function studies of Karilysin.
Khajeh, Shirin; Tohidkia, Mohammad Reza; Aghanejad, Ayuob; Mehdipour, Tayebeh; Fathi, Farzaneh; Omidi, Yadollah
2018-06-09
Glycine-extended gastrin 17 (G17-Gly), a dominant processing intermediate of gastrin gene, has been implicated in the development or maintenance of colorectal cancers (CRCs). Hence, neutralizing G17-Gly activity by antibody entities can provide a potential therapeutic strategy in the patients with CRCs. To this end, we isolated fully human antibody fragments from a phage antibody library through biopanning against different epitopes of G17-Gly in order to obtain the highest possible antibody diversity. ELISA screening and sequence analysis identified 2 scFvs and 4 V L antibody fragments. Kinetic analysis of the antibody fragments by SPR revealed K D values to be in the nanomolar range (87.9-334 nM). The selected anti-G17-Gly antibody fragments were analyzed for growth inhibition and apoptotic assays in a CRC cell line, HCT-116, which is well-characterized for expressing gastrin intermediate species but not amidated gastrin. The antibody fragments exhibited significant inhibition of HCT-116 cells proliferation ranging from 36.5 to 73% of controls. Further, Annexin V/PI staining indicated that apoptosis rates of scFv H8 and V L G8 treated cells were 45.8 and 63%, respectively. Based on these results, we for the first time, demonstrated the isolation of anti-G17-Gly human scFv and V L antibodies with potential therapeutic applications in G17-Gly-responsive tumors.
Morcos, Peter N; Cleary, Yumi; Guerini, Elena; Dall, Georgina; Bogman, Katrijn; De Petris, Luigi; Viteri, Santiago; Bordogna, Walter; Yu, Li; Martin-Facklam, Meret; Phipps, Alex
2017-05-01
The efficacy and safety of alectinib, a central nervous system-active and selective anaplastic lymphoma kinase (ALK) inhibitor, has been demonstrated in patients with ALK-positive (ALK+) non-small cell lung cancer (NSCLC) progressing on crizotinib. Alectinib is mainly metabolized by cytochrome P450 3A (CYP3A) to a major similarly active metabolite, M4. Alectinib and M4 show evidence of weak time-dependent inhibition and small induction of CYP3A in vitro. We present results from 3 fixed-sequence studies evaluating drug-drug interactions for alectinib through CYP3A. Studies NP28990 and NP29042 enrolled 17 and 24 healthy subjects, respectively, and investigated potent CYP3A inhibition with posaconazole and potent CYP3A induction through rifampin, respectively, on the single oral dose pharmacokinetics (PK) of alectinib. A substudy of the global phase 2 NP28673 study enrolled 15 patients with ALK+ NSCLC to determine the effect of multiple doses of alectinib on the single oral dose PK of midazolam, a sensitive substrate of CYP3A. Potent CYP3A inhibition or induction resulted in only minor effects on the combined exposure of alectinib and M4. Multiple doses of alectinib did not influence midazolam exposure. These results suggest that dose adjustments may not be needed when alectinib is coadministered with CYP3A inhibitors or inducers or for coadministered CYP3A substrates. © 2016, The American College of Clinical Pharmacology.
Dissecting protein:protein interactions between transcription factors with an RNA aptamer.
Tian, Y; Adya, N; Wagner, S; Giam, C Z; Green, M R; Ellington, A D
1995-01-01
Nucleic acid aptamers isolated from random sequence pools have generally proven useful at inhibiting the interactions of nucleic acid binding proteins with their cognate nucleic acids. In order to develop reagents that could also be used to study protein:protein interactions, we have used in vitro selection to search for RNA aptamers that could interact with the transactivating protein Tax from human T-cell leukemia virus. Tax does not normally bind to nucleic acids, but instead stimulates transcription by interacting with a variety of cellular transcription factors, including the cyclic AMP-response element binding protein (CREB), NF-kappa B, and the serum response factor (SRF). Starting from a pool of greater than 10(13) different RNAs with a core of 120 random sequence positions, RNAs were selected for their ability to be co-retained on nitrocellulose filters with Tax. After five cycles of selection and amplification, a single nucleic acid species remained. This aptamer was found to bind Tax with high affinity and specificity, and could disrupt complex formation between Tax and NF-kappa B, but not with SRF. The differential effects of our aptamer probe on protein:protein interactions suggest a model for how the transcription factor binding sites on the surface of the Tax protein are organized. This model is consistent with data from a variety of other studies. PMID:7489503
New RNAi strategy for selective suppression of a mutant allele in polyglutamine disease.
Kubodera, Takayuki; Yokota, Takanori; Ishikawa, Kinya; Mizusawa, Hidehiro
2005-12-01
In gene therapy of dominantly inherited diseases with small interfering RNA (siRNA), mutant allele specific suppression may be necessary for diseases in which the defective gene normally has an important role. It is difficult, however, to design a mutant allele-specific siRNA for trinucleotide repeat diseases in which the difference of sequences is only repeat length. To overcome this problem, we use a new RNA interference (RNAi) strategy for selective suppression of mutant alleles. Both mutant and wild-type alleles are inhibited by the most effective siRNA, and wild-type protein is restored using the wild-type mRNA modified to be resistant to the siRNA. Here, we applied this method to spinocerebellar ataxia type 6 (SCA6). We discuss its feasibility and problems for future gene therapy.
Marshall, Pamela A; Jurutka, Peter W; Wagner, Carl E; van der Vaart, Arjan; Kaneko, Ichiro; Chavez, Pedro I; Ma, Ning; Bhogal, Jaskaran S; Shahani, Pritika; Swierski, Johnathon C; MacNeill, Mairi
2015-01-01
In order to determine the feasibility of utilizing novel rexinoids for chemotherapeutics and as potential treatments for neurological conditions, we undertook an assessment of the side effect profile of select rexinoid X receptor (RXR) analogs that we reported previously. We assessed pharmacokinetic profiles, lipid and thyroid-stimulating hormone (TSH) levels in rats, and cell culture activity of rexinoids in sterol regulatory element-binding protein (SREBP) induction and thyroid hormone inhibition assays. We also performed RNA sequencing of the brain tissues of rats that had been dosed with the compounds. We show here for the first time that potent rexinoid activity can be uncoupled from drastic lipid changes and thyroid axis variations, and we propose that rexinoids can be developed with improved side effect profiles than the parent compound, bexarotene (1). PMID:26038698
Nie, Hui; Evans, Alison A.; London, W. Thomas; Block, Timothy M.; Ren, Xiangdong David
2011-01-01
Hepatitis B virus (HBV) carrying the A1762T/G1764A double mutation in the basal core promoter (BCP) region is associated with HBe antigen seroconversion and increased risk of liver cirrhosis and hepatocellular carcinoma (HCC). Quantification of the mutant viruses may help in predicting the risk of HCC. However, the viral genome tends to have nucleotide polymorphism, which makes it difficult to design hybridization-based assays including real-time PCR. Ultrasensitive quantification of the mutant viruses at the early developmental stage is even more challenging, as the mutant is masked by excessive amounts of the wild-type (WT) viruses. In this study, we developed a selective inhibitory PCR (siPCR) using a locked nucleic acid-based PCR blocker to selectively inhibit the amplification of the WT viral DNA but not the mutant DNA. At the end of siPCR, the proportion of the mutant could be increased by about 10,000-fold, making the mutant more readily detectable by downstream applications such as real-time PCR and DNA sequencing. We also describe a primer-probe partial overlap approach which significantly simplified the melting curve patterns and minimized the influence of viral genome polymorphism on assay accuracy. Analysis of 62 patient samples showed a complete match of the melting curve patterns with the sequencing results. More than 97% of HBV BCP sequences in the GenBank database can be correctly identified by the melting curve analysis. The combination of siPCR and the SimpleProbe real-time PCR enabled mutant quantification in the presence of a 100,000-fold excess of the WT DNA. PMID:21562108
Unexpected substrate specificity of T4 DNA ligase revealed by in vitro selection
NASA Technical Reports Server (NTRS)
Harada, Kazuo; Orgel, Leslie E.
1993-01-01
We have used in vitro selection techniques to characterize DNA sequences that are ligated efficiently by T4 DNA ligase. We find that the ensemble of selected sequences ligates about 50 times as efficiently as the random mixture of sequences used as the input for selection. Surprisingly many of the selected sequences failed to produce a match at or close to the ligation junction. None of the 20 selected oligomers that we sequenced produced a match two bases upstream from the ligation junction.
Nandi, Ankita; Dan, Suhas Kumar; Banerjee, Goutam; Ghosh, Pinki; Ghosh, Koushik; Ringø, Einar; Ray, Arun Kumar
2017-03-01
In this study, a total of 121 bacterial strains were isolated from the gastrointestinal tract of four teleostean species, namely striped snakehead (Channa striatus), striped dwarf catfish (Mystus vittatus), orangefin labeo (Labeo calbasu) and mrigal carp (Cirrhinus mrigala), among which 8 isolates showed promising antibacterial activity against four potential fish pathogens, Aeromonas hydrophila, Aeromonas salmonicida, Aeromonas sobria and Pseudomonas fluorescens and were non-hemolytic. The isolates were further screened in response to fish bile tolerance and extracellular digestive enzyme activity. Two bacterial strains MVF1 and MVH7 showed highest tolerance and extracellular enzymes activities, and selected for further studies. Antagonistic activity of these two isolates was further confirmed by in vitro growth inhibition assay against four selected fish pathogens in liquid medium. Finally, these two bacterial strains MVF1 and MVH7 were selected as potential probiotic candidates and thus identification by partial 16S rRNA gene sequence analysis. The bacterial isolates MVF1 and MVH7 were identified as two strains of Bacillus sp.
2010-01-01
Background Plasmodium vivax malaria is a major public health challenge in Latin America, Asia and Oceania, with 130-435 million clinical cases per year worldwide. Invasion of host blood cells by P. vivax mainly depends on a type I membrane protein called Duffy binding protein (PvDBP). The erythrocyte-binding motif of PvDBP is a 170 amino-acid stretch located in its cysteine-rich region II (PvDBPII), which is the most variable segment of the protein. Methods To test whether diversifying natural selection has shaped the nucleotide diversity of PvDBPII in Brazilian populations, this region was sequenced in 122 isolates from six different geographic areas. A Bayesian method was applied to test for the action of natural selection under a population genetic model that incorporates recombination. The analysis was integrated with a structural model of PvDBPII, and T- and B-cell epitopes were localized on the 3-D structure. Results The results suggest that: (i) recombination plays an important role in determining the haplotype structure of PvDBPII, and (ii) PvDBPII appears to contain neutrally evolving codons as well as codons evolving under natural selection. Diversifying selection preferentially acts on sites identified as epitopes, particularly on amino acid residues 417, 419, and 424, which show strong linkage disequilibrium. Conclusions This study shows that some polymorphisms of PvDBPII are present near the erythrocyte-binding domain and might serve to elude antibodies that inhibit cell invasion. Therefore, these polymorphisms should be taken into account when designing vaccines aimed at eliciting antibodies to inhibit erythrocyte invasion. PMID:21092207
A chemogenomic analysis of the human proteome: application to enzyme families.
Bernasconi, Paul; Chen, Min; Galasinski, Scott; Popa-Burke, Ioana; Bobasheva, Anna; Coudurier, Louis; Birkos, Steve; Hallam, Rhonda; Janzen, William P
2007-10-01
Sequence-based phylogenies (SBP) are well-established tools for describing relationships between proteins. They have been used extensively to predict the behavior and sensitivity toward inhibitors of enzymes within a family. The utility of this approach diminishes when comparing proteins with little sequence homology. Even within an enzyme family, SBPs must be complemented by an orthogonal method that is independent of sequence to better predict enzymatic behavior. A chemogenomic approach is demonstrated here that uses the inhibition profile of a 130,000 diverse molecule library to uncover relationships within a set of enzymes. The profile is used to construct a semimetric additive distance matrix. This matrix, in turn, defines a sequence-independent phylogeny (SIP). The method was applied to 97 enzymes (kinases, proteases, and phosphatases). SIP does not use structural information from the molecules used for establishing the profile, thus providing a more heuristic method than the current approaches, which require knowledge of the specific inhibitor's structure. Within enzyme families, SIP shows a good overall correlation with SBP. More interestingly, SIP uncovers distances within families that are not recognizable by sequence-based methods. In addition, SIP allows the determination of distance between enzymes with no sequence homology, thus uncovering novel relationships not predicted by SBP. This chemogenomic approach, used in conjunction with SBP, should prove to be a powerful tool for choosing target combinations for drug discovery programs as well as for guiding the selection of profiling and liability targets.
Suebsuwong, Chalada; Pinkas, Daniel M; Ray, Soumya S; Bufton, Joshua C; Dai, Bing; Bullock, Alex N; Degterev, Alexei; Cuny, Gregory D
2018-02-15
Development of selective kinase inhibitors remains a challenge due to considerable amino acid sequence similarity among family members particularly in the ATP binding site. Targeting the activation loop might offer improved inhibitor selectivity since this region of kinases is less conserved. However, the strategy presents difficulties due to activation loop flexibility. Herein, we report the design of receptor-interacting protein kinase 2 (RIPK2) inhibitors based on pan-kinase inhibitor regorafenib that aim to engage basic activation loop residues Lys169 or Arg171. We report development of CSR35 that displayed >10-fold selective inhibition of RIPK2 versus VEGFR2, the target of regorafenib. A co-crystal structure of CSR35 with RIPK2 revealed a resolved activation loop with an ionic interaction between the carboxylic acid installed in the inhibitor and the side-chain of Lys169. Our data provides principle feasibility of developing activation loop targeting type II inhibitors as a complementary strategy for achieving improved selectivity. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Yuan, Xiaoqiu; Yin, Ping; Hao, Qi; Yan, Chuangye; Wang, Jiawei; Yan, Nieng
2010-01-01
Abscisic acid (ABA) is one of the most important phytohormones in plant. PYL proteins were identified to be ABA receptors in Arabidopsis thaliana. Despite the remarkably high degree of sequence similarity, PYL1 and PYL2 exhibit distinct responses toward pyrabactin, an ABA agonist. PYL1 inhibits protein phosphatase type 2C upon binding of pyrabactin. In contrast, PYL2 appears relatively insensitive to this compound. The crystal structure of pyrabactin-bound PYL1 revealed that most of the PYL1 residues involved in pyrabactin binding are conserved, hence failing to explain the selectivity of pyrabactin for PYL1 over PYL2. To understand the molecular basis of pyrabactin selectivity, we determined the crystal structure of PYL2 in complex with pyrabactin at 1.64 Å resolution. Structural comparison and biochemical analyses demonstrated that one single amino acid alteration between a corresponding valine and isoleucine determines the distinct pyrabactin selectivity by PYL1 and PYL2. These characterizations provide an important clue to dissecting the redundancy of PYL proteins. PMID:20630864
Aging effects in response inhibition: general slowing without decline in inhibitory functioning.
Yano, Madoka
2011-12-01
Previous research has examined aging effects on response inhibition using cognitive interference paradigms such as the Stroop task and the Simon task. Performance in these tasks requires participants to inhibit predominant responses. Reduced response inhibition is reflected by poorer performance in incongruent trials where prepotent responses can interfere with other correct responses, than in congruent trials without such interference (i.e., Stroop or Simon congruency effects). It is unclear whether such effects increase with normal aging. Balota et al. (2010) reported that the Stroop effect can be a useful predictor of conversion to Alzheimer's disease in a healthy control sample. Congruency effects are also subject to trial sequencing: They are smaller following an incongruent trial than following a congruent one. The present study determined whether response inhibition was affected by normal aging using the Simon task, with focus on the influence of normal aging on sequence effects. Forty-three young participants and 14 healthy elderly adults performed the Simon task individually. Results indicated that both age groups showed the same magnitude of Simon effects and sequence effects, although overall response latencies were longer in elderly participants than in young participants. Furthermore, the elderly adults tended to make fewer errors than the younger adults. These findings suggest that normal aging may produce reduced processing speed but it does not affect response inhibition itself.
Liu, Dong-Mei; Adams, David J
2001-01-01
The relative permeability of the native P2X receptor channel to monovalent and divalent inorganic and organic cations was determined from reversal potential measurements of ATP-evoked currents in parasympathetic neurones dissociated from rat submandibular ganglia using the dialysed whole-cell patch clamp technique. The P2X receptor-channel exhibited weak selectivity among the alkali metals with a selectivity sequence of Na+ > Li+ > Cs+ > Rb+ > K+, and permeability ratios relative to Cs+ (PX/PCs) ranging from 1.11 to 0.86. The selectivity for the divalent alkaline earth cations was also weak with the sequence Ca2+ > Sr2+ > Ba2+ > Mn2+ > Mg2+. ATP-evoked currents were strongly inhibited when the extracellular divalent cation concentration was increased. The calculated permeability ratios of different ammonium cations are higher than those of the alkali metal cations. The permeability sequence obtained for the saturated organic cations is inversely correlated with the size of the cation. The unsaturated organic cations have a higher permeability than that predicted by molecular size. Acidification to pH 6.2 increased the ATP-induced current amplitude twofold, whereas alkalization to 8.2 and 9.2 markedly reduced current amplitude. Cell dialysis with either anti-P2X2 and/or anti-P2X4 but not anti-P2X1 antibodies attenuated the ATP-evoked current amplitude. Taken together, these data are consistent with homomeric and/or heteromeric P2X2 and P2X4 receptor subtypes expressed in rat submandibular neurones. The permeability ratios for the series of monovalent organic cations, with the exception of unsaturated cations, were approximately related to the ionic size. The relative permeabilities of the monovalent inoganic and organic cations tested are similar to those reported previously for cloned rat P2X2 receptors expressed in mammalian cells. PMID:11454961
Bender, Angela D; Filmer, Hannah L; Garner, K G; Naughtin, Claire K; Dux, Paul E
2016-11-01
The abilities to select appropriate responses and suppress unwanted actions are key executive functions that enable flexible and goal-directed behavior. However, to date it has been unclear whether these two cognitive operations tap a common action control resource or reflect two distinct processes. In the present study, we used an individual differences approach to examine the underlying relationships across seven paradigms that varied in their response selection and response inhibition requirements: stop-signal, go-no-go, Stroop, flanker, single-response selection, psychological refractory period, and attentional blink tasks. A confirmatory factor analysis suggested that response inhibition and response selection are separable, with stop-signal and go-no-go task performance being related to response inhibition, and performance in the psychological refractory period, Stroop, single-response selection, and attentional blink tasks being related to response selection. These findings provide evidence in support of the hypothesis that response selection and response inhibition reflect two distinct cognitive operations.
Fibronectin regulates calvarial osteoblast differentiation
NASA Technical Reports Server (NTRS)
Moursi, A. M.; Damsky, C. H.; Lull, J.; Zimmerman, D.; Doty, S. B.; Aota, S.; Globus, R. K.
1996-01-01
The secretion of fibronectin by differentiating osteoblasts and its accumulation at sites of osteogenesis suggest that fibronectin participates in bone formation. To test this directly, we determined whether fibronectin-cell interactions regulate progressive differentiation of cultured fetal rat calvarial osteoblasts. Spatial distributions of alpha 5 integrin subunit, fibronectin, osteopontin (bone sialoprotein I) and osteocalcin (bone Gla-protein) were similar in fetal rat calvaria and mineralized, bone-like nodules formed by cultured osteoblasts. Addition of anti-fibronectin antibodies to cultures at confluence reduced subsequent formation of nodules to less than 10% of control values, showing that fibronectin is required for normal nodule morphogenesis. Anti-fibronectin antibodies selectively inhibited steady-state expression of mRNA for genes associated with osteoblast differentiation; mRNA levels for alkaline phosphatase and osteocalcin were suppressed, whereas fibronectin, type I collagen and osteopontin were unaffected. To identify functionally relevant domains of fibronectin, we treated cells with soluble fibronectin fragments and peptides. Cell-binding fibronectin fragments (type III repeats 6-10) containing the Arg-Gly-Asp (RGD) sequence blocked both nodule initiation and maturation, whether or not they contained a functional synergy site. In contrast, addition of the RGD-containing peptide GRGDSPK alone did not inhibit nodule initiation, although it did block nodule maturation. Thus, in addition to the RGD sequence, other features of the large cell-binding fragments contribute to the full osteogenic effects of fibronectin. Nodule formation and osteoblast differentiation resumed after anti-fibronectin antibodies or GRGDSPK peptides were omitted from the media, showing that the inhibition was reversible and the treatments were not cytotoxic. Outside the central cell-binding domain, peptides from the IIICS region and antibodies to the N terminus did not inhibit nodule formation. We conclude that osteoblasts interact with the central cell-binding domain of endogenously produced fibronectin during early stages of differentiation, and that these interactions regulate both normal morphogenesis and gene expression.
Morandini, R; Süli-Vargha, H; Libert, A; Loir, B; Botyánszki, J; Medzihradszky, K; Ghanem, G
1994-01-02
Four alpha-MSH drug conjugates have been synthesized, 2 C-terminal (Pep 3 and 4) and 2 central fragments (Pep 1 and 2), the latter being the 4-10 sequence known to be the main alpha-MSH-receptor-recognition site. Melphalan was introduced into each sequence at different locations. Their ability to recognize alpha-MSH receptors as well as their cytotoxic effects were compared in 3 cell lines: melanoma, carcinoma and fibroblast cells. Pep 1 and 2 were able to specifically bind to MSH receptors on melanoma cells by displacing labelled alpha-MSH from its binding sites at concentrations similar to the 4-10 heptapeptide sequence known to contain the main receptor-recognition site. They subsequently penetrate the cell, most probably by a receptor internalization mechanism, since about half of their effect could be inhibited by competition at the receptor level. Significant and selective cytotoxic effects to melanoma cells could be observed after only 2 hr exposure to the drug conjugates. Interestingly, these 2 conjugates, differing only in melphalan position, showed completely different cytotoxicity in terms of IC50 values, Pep 1 being 24 times more toxic to all cells; but the 2 were equally specific to melanoma cells. However, they both were less toxic to all cells than melphalan itself. Furthermore, Pep 1 and 2 were able to block the receptor and, unlike Pep 3 and 4, their cytotoxic effect could be significantly inhibited by an alpha-MSH agonist. Pep 3 and 4 were 5 to 10 times less toxic than melphalan to melanoma and carcinoma cells and 50 times less to fibroblast cells, and did not show any cell-type selectivity. They were less toxic than Pep 1 to melanoma and carcinoma cells by a factor of 2, but equally toxic to fibroblasts. In contrast, they were more toxic than Pep 2 to fibroblasts, melanoma and carcinoma by a factor of 3, 10 and 24 respectively. Our data strongly suggest a receptor-mediated cytotoxicity mechanism occurring with alpha-MSH central fragments in human melanoma cells due to the presence of alpha-MSH-specific receptors. This mechanism appeared to be both peptide- and cell-type-specific.
Nikolova, Ivanka; Galabov, Angel S; Petkova, Rumena; Chakarov, Stoyan; Atanasov, Boris
2011-01-01
Disoxaril inhibits enterovirus replication by binding to the hydrophobic pocket within the VP1 coat protein, thus stabilizing the virion and blocking its uncoating. Disoxaril-resistant (RES) mutants of the Coxsackievirus B1 (CVB1/RES) were derived from the wild disoxaril-sensitive (SOF) strain (CVB1/SOF) using a selection approach. A disoxaril-dependent (DEP) mutant (CVB1/DEP) was obtained following nine consecutive passages of the disoxaril-resistant mutant in the presence of disoxaril. Phenotypic characteristics of the disoxaril mutants were investigated. A timing-of-addition study of the CVB1/DEP replication demonstrated that in the absence of disoxaril the virus particle assembly stopped. VP1 RNA sequences of disoxaril mutants were compared with the existing Gen Bank CVB1 reference structure. The amino acid sequence of a large VP1 196-258 peptide (disoxaril-binding region) of CVB1/RES was significantly different from that of the CVB1/SOF. Crucially important changes in CVB1/RES were two point mutations, M213H and F237L, both in the ligand-binding pocket. The sequence analysis of the CVB1/DEP showed some reversion to CVB1/SOF. The amino acid sequences of the three VP1 proteins are presented.
Decoy Oligonucleotide Rescues IGF1R Expression from MicroRNA-223 Suppression
Wang, Rong; He, Bao Mei; Qi, Bing; Xu, Chang Jun; Wu, Xing Zhong
2013-01-01
A mature miRNA generally suppresses hundreds of mRNA targets. To evaluate the selective effect of synthetic oligonucleotide decoys on hsa-miR-223 activity, reporters containing 3’ untranslated regions (UTR) of IGF1R, FOXO1, POLR3G, FOXO3, CDC27, FBXW7 and PAXIP1 mRNAs were constructed for the luciferase assay. The oligonucleotide decoys were designed and synthesized according to mature miR-223 sequence and its target mRNA sequence. Quantitative RT-PCR & western analysis were used to measure miR-223-targeted mRNA expression, Interestingly, apart from the antisense oligonucleotide, decoy nucleotides which were complementary to the 5’, central or 3’ region of mature miR-223 suppressed miR-223 targeting the 3’UTR of IGF1R, FOXO1, FOXO3, CDC27, POLR3G, and FBXW7 mRNAs and rescued the expression of these genes to varying degrees from miR-223 suppression at both mRNA and protein levels. All decoys had no effect on PAXIP1 which was not targeted by miR-223. The decoy 1 that was based on the sequence of IGF1R 3’UTR rescued the expression of IGF1R more significantly than other decoy nucleotides except the antisense decoy 4. Decoy 1 also rescued the expression of FOXO3 and POLR3G of which their 3’UTRs have similar binding sites for miR-223 with IGF1R 3’UTR. However decoy 1 failed to recover Sp1, CDC27 and FBXW7 expression. These data support that the sequence-specific decoy oligonucleotides might represent exogenous competing RNA which selectively inhibits microRNA targeting. PMID:24324762
Decoy oligonucleotide rescues IGF1R expression from MicroRNA-223 suppression.
Wu, Li Hui; Cai, Qian Qian; Dong, Yi Wei; Wang, Rong; He, Bao Mei; Qi, Bing; Xu, Chang Jun; Wu, Xing Zhong
2013-01-01
A mature miRNA generally suppresses hundreds of mRNA targets. To evaluate the selective effect of synthetic oligonucleotide decoys on hsa-miR-223 activity, reporters containing 3' untranslated regions (UTR) of IGF1R, FOXO1, POLR3G, FOXO3, CDC27, FBXW7 and PAXIP1 mRNAs were constructed for the luciferase assay. The oligonucleotide decoys were designed and synthesized according to mature miR-223 sequence and its target mRNA sequence. Quantitative RT-PCR & western analysis were used to measure miR-223-targeted mRNA expression, Interestingly, apart from the antisense oligonucleotide, decoy nucleotides which were complementary to the 5', central or 3' region of mature miR-223 suppressed miR-223 targeting the 3'UTR of IGF1R, FOXO1, FOXO3, CDC27, POLR3G, and FBXW7 mRNAs and rescued the expression of these genes to varying degrees from miR-223 suppression at both mRNA and protein levels. All decoys had no effect on PAXIP1 which was not targeted by miR-223. The decoy 1 that was based on the sequence of IGF1R 3'UTR rescued the expression of IGF1R more significantly than other decoy nucleotides except the antisense decoy 4. Decoy 1 also rescued the expression of FOXO3 and POLR3G of which their 3'UTRs have similar binding sites for miR-223 with IGF1R 3'UTR. However decoy 1 failed to recover Sp1, CDC27 and FBXW7 expression. These data support that the sequence-specific decoy oligonucleotides might represent exogenous competing RNA which selectively inhibits microRNA targeting.
Taylor, Emily J. A.; Pantazaka, Evangelia; Shelley, Kathryn L.
2017-01-01
In human aortic smooth muscle cells, prostaglandin E2 (PGE2) stimulates adenylyl cyclase (AC) and attenuates the increase in intracellular free Ca2+ concentration evoked by activation of histamine H1 receptors. The mechanisms are not resolved. We show that cAMP mediates inhibition of histamine-evoked Ca2+ signals by PGE2. Exchange proteins activated by cAMP were not required, but the effects were attenuated by inhibition of cAMP-dependent protein kinase (PKA). PGE2 had no effect on the Ca2+ signals evoked by protease-activated receptors, heterologously expressed muscarinic M3 receptors, or by direct activation of inositol 1,4,5-trisphosphate (IP3) receptors by photolysis of caged IP3. The rate of Ca2+ removal from the cytosol was unaffected by PGE2, but PGE2 attenuated histamine-evoked IP3 accumulation. Substantial inhibition of AC had no effect on the concentration-dependent inhibition of Ca2+ signals by PGE2 or butaprost (to activate EP2 receptors selectively), but it modestly attenuated responses to EP4 receptors, activation of which generated less cAMP than EP2 receptors. We conclude that inhibition of histamine-evoked Ca2+ signals by PGE2 occurs through “hyperactive signaling junctions,” wherein cAMP is locally delivered to PKA at supersaturating concentrations to cause uncoupling of H1 receptors from phospholipase C. This sequence allows digital signaling from PGE2 receptors, through cAMP and PKA, to histamine-evoked Ca2+ signals. PMID:28877931
The role of inhibition for working memory processes: ERP evidence from a short-term storage task.
Getzmann, Stephan; Wascher, Edmund; Schneider, Daniel
2018-05-01
Human working memory is the central unit for short-term storage of information. In addition to the selection and adequate storage of relevant information, the suppression of irrelevant stimuli from the environment seems to be of importance for working memory processes. To learn more about the interplay of information uptake and inhibition of irrelevant information, the present study used ERP measures and a short-term storage and retrieval task, in which pairs of either numbers or letters had to be compared. Random sequences of four stimuli (two numbers and two letters) were presented, with either the numbers or the letters being relevant for comparison. The analysis of ERPs to each of the four stimuli indicated more pronounced P2 and P3b amplitudes for relevant than irrelevant stimuli. In contrast, the N2 (reflecting inhibitory control) was only elicited by irrelevant stimuli. Moreover, the N2 amplitude of the second irrelevant stimulus was associated with behavioral performance, indicating the importance of inhibition of task-irrelevant stimuli for working memory processes. In sum, the findings demonstrate the role of cognitive control mechanisms for protecting relevant contents in working memory against irrelevant information. © 2017 Society for Psychophysiological Research.
Nucleic acid aptamers as stabilizers of proteins: the stability of tetanus toxoid.
Jain, Nishant Kumar; Jetani, Hardik C; Roy, Ipsita
2013-07-01
Exposure of tetanus toxoid to moisture leads to its aggregation and reduction of potency. The aim of this work was to use SELEX (systematic evolution of ligands by exponential enrichment) protocol and select aptamers which recognize tetanus toxoid (Mr ~150 kDa) with high affinity. Colyophilized preparations of tetanus toxoid and specific aptamers were encapsulated in PLGA microspheres and sustained release of the antigen was observed up to 55 days using different techniques. The total protein released was between 40-55% (24-45% residual antigenicity) in the presence of the aptamers as compared to 25% (11% residual antigenicity) for the antigen alone. We show that instead of inhibiting absorption of moisture, the aptamers blocked the protein unfolding upon absorption of moisture, inhibiting the initiation of aggregation. When exposed to accelerated storage conditions, some of the RNA sequences were able to inhibit moisture-induced aggregation in vitro and retain antigenicity of tetanus toxoid. Nucleic acid aptamers represent a novel class of protein stabilizers which stabilize the protein by interacting directly with it. This mechanism is unlike that of small molecules which alter the medium properties and hence depend on the stress condition a protein is exposed to.
Tmem100 is a regulator of TRPA1-TRPV1 complex and contributes to persistent pain
Weng, Hao-Jui; Patel, Kush N.; Jeske, Nathaniel A.; Bierbower, Sonya M.; Zou, Wangyuan; Tiwari, Vinod; Zheng, Qin; Tang, Zongxiang; Mo, Gary C.H.; Wang, Yan; Geng, Yixun; Zhang, Jin; Guan, Yun; Akopian, Armen; Dong, Xinzhong
2014-01-01
SUMMARY TRPA1 and TRPV1 are crucial pain mediators, but how their interaction contributes to persistent pain is unknown. Here, we identify Tmem100 as a potentiating modulator of TRPA1-V1 complexes. Tmem100 is co-expressed and forms a complex with TRPA1 and TRPV1 in DRG neurons. Tmem100-deficient mice show a reduction in inflammatory mechanical hyperalgesia and TRPA1- but not TRPV1-mediated pain. Single-channel recording in a heterologous system reveals that Tmem100 selectively potentiates TRPA1 activity in a TRPV1-dependent manner. Mechanistically, Tmem100 weakens the association of TRPA1 and TRPV1, thereby releasing the inhibition of TRPA1 by TRPV1. A Tmem100 mutant, Tmem100-3Q, exerts the opposite effect, i.e., it enhances the association of TRPA1 and TRPV1 and strongly inhibits TRPA1. Strikingly, a cell-permeable peptide (CPP) containing the C-terminal sequence of Tmem100-3Q mimics its effect and inhibits persistent pain. Our study unveils a context-dependent modulation of the TRPA1-V1 complex, and Tmem100-3Q CPP is a promising pain therapy. PMID:25640077
Schmidt, R; Brysch, W; Rother, S; Schlingensiepen, K H
1995-10-01
A rapid increase in ependymin mRNA expression demonstrated by semiquantitative in situ hybridization after avoidance conditioning on goldfish suggested a molecular demand for newly synthesized ependymin translation product. To inhibit de novo synthesis of ependymin molecules without interference with preexisting ones, 18 mer anti-ependymin mRNA-phosphorothioate oligodeoxynucleotides (S-ODNs) were injected into the perimeningeal brain fluid before active avoidance training. S-ODN-injected animals learned the avoidance response; however, they were amnesic in the test. When injected into overtrained animals, S-ODNs did not interfere with retrieval or performance of the avoidance response. Fish treated with randomized S-ODN sequences served as further controls. Incorporation of S-ODNs was analyzed by injection of fluorescein isothiocyanate (FITC)-conjugated oligodeoxynucleotide probes. Microscopic observation revealed strong FITC-S-ODN fluorescence in reticular-shaped fibroblasts, the only known site of ependymin synthesis. Results demonstrate that selective inhibition of ependymin gene expression in vivo can specifically prevent memory formation. We conclude that in particular the newly synthesized ependymin molecules are involved in memory consolidation, possibly because they have not yet undergone irreversible molecular changes, which have been reported of this glycoprotein in a low-calcium microenvironment.
Decoy Plasminogen Receptor Containing a Selective Kunitz-Inhibitory Domain
2015-01-01
Kunitz domain 1 (KD1) of tissue factor pathway inhibitor-2 in which P2′ residue Leu17 (bovine pancreatic trypsin inhibitor numbering) is mutated to Arg selectively inhibits the active site of plasmin with ∼5-fold improved affinity. Thrombin cleavage (24 h extended incubation at a 1:50 enzyme-to-substrate ratio) of the KD1 mutant (Leu17Arg) yielded a smaller molecule containing the intact Kunitz domain with no detectable change in the active-site inhibitory function. The N-terminal sequencing and MALDI-TOF/ESI data revealed that the starting molecule has a C-terminal valine (KD1L17R-VT), whereas the smaller molecule has a C-terminal lysine (KD1L17R-KT). Because KD1L17R-KT has C-terminal lysine, we examined whether it could serve as a decoy receptor for plasminogen/plasmin. Such a molecule might inhibit plasminogen activation as well as the active site of generated plasmin. In surface plasmon resonance experiments, tissue plasminogen activator (tPA) and Glu-plasminogen bound to KD1L17R-KT (Kd ∼ 0.2 to 0.3 μM) but not to KD1L17R-VT. Furthermore, KD1L17R-KT inhibited tPA-induced plasma clot fibrinolysis more efficiently than KD1L17R-VT. Additionally, compared to ε-aminocaproic acid KD1L17R-KT was more effective in reducing blood loss in a mouse liver-laceration injury model, where the fibrinolytic system is activated. In further experiments, the micro(μ)-plasmin–KD1L17R-KT complex inhibited urokinase-induced plasminogen activation on phorbol-12-myristate-13-acetate-stimulated U937 monocyte-like cells, whereas the μ-plasmin–KD1L17R-VT complex failed to inhibit this process. In conclusion, KD1L17R-KT inhibits the active site of plasmin as well as acts as a decoy receptor for the kringle domain(s) of plasminogen/plasmin; hence, it limits both plasmin generation and activity. With its dual function, KD1L17R-KT could serve as a preferred agent for controlling plasminogen activation in pathological processes. PMID:24383758
Decoy plasminogen receptor containing a selective Kunitz-inhibitory domain.
Kumar, Yogesh; Vadivel, Kanagasabai; Schmidt, Amy E; Ogueli, Godwin I; Ponnuraj, Sathya M; Rannulu, Nalaka; Loo, Joseph A; Bajaj, Madhu S; Bajaj, S Paul
2014-01-28
Kunitz domain 1 (KD1) of tissue factor pathway inhibitor-2 in which P2' residue Leu17 (bovine pancreatic trypsin inhibitor numbering) is mutated to Arg selectively inhibits the active site of plasmin with ∼5-fold improved affinity. Thrombin cleavage (24 h extended incubation at a 1:50 enzyme-to-substrate ratio) of the KD1 mutant (Leu17Arg) yielded a smaller molecule containing the intact Kunitz domain with no detectable change in the active-site inhibitory function. The N-terminal sequencing and MALDI-TOF/ESI data revealed that the starting molecule has a C-terminal valine (KD1L17R-VT), whereas the smaller molecule has a C-terminal lysine (KD1L17R-KT). Because KD1L17R-KT has C-terminal lysine, we examined whether it could serve as a decoy receptor for plasminogen/plasmin. Such a molecule might inhibit plasminogen activation as well as the active site of generated plasmin. In surface plasmon resonance experiments, tissue plasminogen activator (tPA) and Glu-plasminogen bound to KD1L17R-KT (Kd ∼ 0.2 to 0.3 μM) but not to KD1L17R-VT. Furthermore, KD1L17R-KT inhibited tPA-induced plasma clot fibrinolysis more efficiently than KD1L17R-VT. Additionally, compared to ε-aminocaproic acid KD1L17R-KT was more effective in reducing blood loss in a mouse liver-laceration injury model, where the fibrinolytic system is activated. In further experiments, the micro(μ)-plasmin-KD1L17R-KT complex inhibited urokinase-induced plasminogen activation on phorbol-12-myristate-13-acetate-stimulated U937 monocyte-like cells, whereas the μ-plasmin-KD1L17R-VT complex failed to inhibit this process. In conclusion, KD1L17R-KT inhibits the active site of plasmin as well as acts as a decoy receptor for the kringle domain(s) of plasminogen/plasmin; hence, it limits both plasmin generation and activity. With its dual function, KD1L17R-KT could serve as a preferred agent for controlling plasminogen activation in pathological processes.
Distractor Inhibition: Principles of Operation during Selective Attention
ERIC Educational Resources Information Center
Wyatt, Natalie; Machado, Liana
2013-01-01
Research suggests that although target amplification acts as the main determinant of the efficacy of selective attention, distractor inhibition contributes under some circumstances. Here we aimed to gain insight into the operating principles that regulate the use of distractor inhibition during selective attention. The results suggest that, in…
Yang, Kai-Fu; Li, Chao-Yi; Li, Yong-Jie
2015-01-01
Both the neurons with orientation-selective and with non-selective surround inhibition have been observed in the primary visual cortex (V1) of primates and cats. Though the inhibition coming from the surround region (named as non-classical receptive field, nCRF) has been considered playing critical role in visual perception, the specific role of orientation-selective and non-selective inhibition in the task of contour detection is less known. To clarify above question, we first carried out computational analysis of the contour detection performance of V1 neurons with different types of surround inhibition, on the basis of which we then proposed two integrated models to evaluate their role in this specific perceptual task by combining the two types of surround inhibition with two different ways. The two models were evaluated with synthetic images and a set of challenging natural images, and the results show that both of the integrated models outperform the typical models with orientation-selective or non-selective inhibition alone. The findings of this study suggest that V1 neurons with different types of center–surround interaction work in cooperative and adaptive ways at least when extracting organized structures from cluttered natural scenes. This work is expected to inspire efficient phenomenological models for engineering applications in field of computational machine-vision. PMID:26136664
Yang, Kai-Fu; Li, Chao-Yi; Li, Yong-Jie
2015-01-01
Both the neurons with orientation-selective and with non-selective surround inhibition have been observed in the primary visual cortex (V1) of primates and cats. Though the inhibition coming from the surround region (named as non-classical receptive field, nCRF) has been considered playing critical role in visual perception, the specific role of orientation-selective and non-selective inhibition in the task of contour detection is less known. To clarify above question, we first carried out computational analysis of the contour detection performance of V1 neurons with different types of surround inhibition, on the basis of which we then proposed two integrated models to evaluate their role in this specific perceptual task by combining the two types of surround inhibition with two different ways. The two models were evaluated with synthetic images and a set of challenging natural images, and the results show that both of the integrated models outperform the typical models with orientation-selective or non-selective inhibition alone. The findings of this study suggest that V1 neurons with different types of center-surround interaction work in cooperative and adaptive ways at least when extracting organized structures from cluttered natural scenes. This work is expected to inspire efficient phenomenological models for engineering applications in field of computational machine-vision.
Chin, Lee-Fang; Kong, Siew-Ming; Seng, Hoi-Ling; Tiong, Yee-Lian; Neo, Kian-Eang; Maah, Mohd Jamil; Khoo, Alan Soo-Beng; Ahmad, Munirah; Hor, Tzi-Sum Andy; Lee, Hong-Boon; San, Swee-Lan; Chye, Soi-Moi; Ng, Chew-Hee
2012-10-01
Two ternary Zn(II) complexes, with 1,10-phenanthroline (phen) as the main ligand and a carboxylate-containing ligand [dipicolinate (dipico) or L-threoninate (L-Thr)] as the subsidiary ligand, were prepared and characterized by elemental analysis, Fourier transform IR, UV, and fluorescence spectroscopy, X-ray diffraction, molar conductivity, and electrospray ionization mass spectrometry. X-ray structure analysis shows that both [Zn(phen)(dipico)(H(2)O)]·H(2)O (1) and [Zn(phen)(L-Thr)(H(2)O)Cl]·2H(2)O (2) have octahedral geometry about the Zn(II) atom. Both complexes can inhibit topoisomerase I, and have better anticancer activity than cisplatin against nasopharyngeal cancer cell lines, HK1 and HONE-1, with concentrations causing 50 % inhibition of cell proliferation (IC(50)) in the low micromolar range. Complex 2 has the highest therapeutic index for HK1. Both Zn(II) complexes can induce cell death by apoptosis. Changing the subsidiary ligand in the Zn(II) complexes affects the UV-fluorescence spectral properties of the coordinated phen ligand, the binding affinity for some DNA sequences, nucleobase sequence-selective binding, the phase at which cell cycle progression was arrested for treated cancer cells, and their therapeutic index.
MARINE LEECH ANTICOAGULANT DIVERSITY AND EVOLUTION.
Tessler, Michael; Marancik, David; Champagne, Donald; Dove, Alistair; Camus, Alvin; Siddall, Mark E; Kvist, Sebastian
2018-03-16
Leeches (Annelida: Hirudinea) possess powerful salivary anticoagulants and, accordingly, are frequently employed in modern, authoritative medicine. Members of the almost exclusively marine family Piscicolidae account for 20% of leech species diversity, and feed on host groups (e.g., sharks) not encountered by their freshwater and terrestrial counterparts. Moreover, some species of Ozobranchidae feed on endangered marine turtles and have been implicated as potential vectors for the tumor-associated turtle herpesvirus. In spite of their ecological importance and unique host associations, there is a distinct paucity of data regarding the salivary transcriptomes of either of these families. Using next generation sequencing, we profiled transcribed, putative anticoagulants and other salivary bioactive compounds that have previously been linked to bloodfeeding from 7 piscicolid species (3 elasmobranch-feeders; 4 non-cartilaginous fish-feeders) and 1 ozobranchid species (2 samples). In total, 149 putative anticoagulants and bioactive loci were discovered in varying constellations throughout the different samples. The putative anticoagulants showed a broad spectrum of described antagonistic pathways, such as inhibition of factor Xa and platelet aggregation, that likely have similar bioactive roles in marine fish and turtles. A transcript with homology to ohanin, originally isolated from king cobras, was found in Cystobranchus vividus but is otherwise unknown from leeches. Estimation of selection pressures for the putative anticoagulants recovered evidence for both positive and purifying selection along several isolated branches in the gene trees and positive selection was also estimated for a few select codons in a variety of marine species. Similarly, phylogenetic analyses of the amino acid sequences for several anticoagulants indicated divergent evolution.
Bartley, Kathryn; Wright, Harry W; Bull, Robert S; Huntley, John F; Nisbet, Alasdair J
2015-06-26
Glutathione S-transferases (GSTs) facilitate detoxification of drugs by catalysing the conjugation of the reduced glutathione (GSH) to electrophilic xenobiotic substrates and therefore have a function in multi-drug resistance. As a result, knowledge of GSTs can inform both drug resistance in, and novel interventions for, the control of endo- and ectoparasite species. Acaricide resistance and the need for novel control methods are both pressing needs for Dermanyssus gallinae, a highly economically important haematophagous ectoparasite of poultry. A transcriptomic database representing D. gallinae was examined and 11 contig sequences were identified with GST BlastX identities. The transcripts represented by 3 contigs, designated Deg-GST-1, -2 and -3, were fully sequenced and further characterized by phylogenetic analysis. Recombinant versions of Deg-GST-1, -2 and -3 (rDeg-GST) were enzymically active and acaricide-binding properties of the rDeg-GSTs were established by evaluating the ability of selected acaricides to inhibit the enzymatic activity of rDeg-GSTs. 6 of the identified GSTs belonged to the mu class, followed by 3 kappa, 1 omega and 1 delta class molecules. Deg-GST-1 and -3 clearly partitioned with orthologous mu class GSTs and Deg-GST-2 partitioned with delta class GSTs. Phoxim, permethrin and abamectin significantly inhibited rDeg-GST-1 activity by 56, 35 and 17% respectively. Phoxim also inhibited rDeg-2-GST (14.8%) and rDeg-GST-3 (20.6%) activities. Deg-GSTs may have important roles in the detoxification of pesticides and, with the increased occurrence of acaricide resistance in this species worldwide, Deg-GSTs are attractive targets for novel interventions.
Persson, K; Aslund, L; Grahn, B; Hanke, J; Heby, O
1998-01-01
All attempts to identify ornithine decarboxylase in the human pathogen Trypanosoma cruzi have failed. The parasites have instead been assumed to depend on putrescine uptake and S-adenosylmethionine decarboxylase (AdoMetDC) for their synthesis of the polyamines spermidine and spermine. We have now identified the gene encoding AdoMetDC in T. cruzi by PCR cloning, with degenerate primers corresponding to conserved amino acid sequences in AdoMetDC proteins of other trypanosomatids. The amplified DNA fragment was used as a probe to isolate the complete AdoMetDC gene from a T. cruzi genomic library. The AdoMetDC gene was located on chromosomes with a size of approx. 1.4 Mbp, and contained a coding region of 1110 bp, specifying a sequence of 370 amino acid residues. The protein showed a sequence identity of only 25% with human AdoMetDC, the major differences being additional amino acids present in the terminal regions of the T. cruzi enzyme. As expected, a higher sequence identity (68-72%) was found in comparison with trypanosomatid AdoMetDCs. When the coding region was expressed in Escherichia coli, the recombinant protein underwent autocatalytic cleavage, generating a 33-34 kDa alpha subunit and a 9 kDa beta subunit. The encoded protein catalysed the decarboxylation of AdoMet (Km 0.21 mM) and was stimulated by putrescine but inhibited by the polyamines, weakly by spermidine and strongly by spermine. Methylglyoxal-bis(guanylhydrazone) (MGBG), a potent inhibitor of human AdoMetDC, was a poor inhibitor of the T. cruzi enzyme. This differential sensitivity to MGBG suggests that the two enzymes are sufficiently different to warrant the search for compounds that might interfere with the progression of Chagas' disease by selectively inhibiting T. cruzi AdoMetDC. PMID:9677309
Grove, J R; Deutsch, P J; Price, D J; Habener, J F; Avruch, J
1989-11-25
Plasmids that encode a bioactive amino-terminal fragment of the heat-stable inhibitor of the cAMP-dependent protein kinase, PKI(1-31), were employed to characterize the role of this protein kinase in the control of transcriptional activity mediated by three DNA regulatory elements in the JEG-3 human placental cell line. The 5'-flanking sequence of the human collagenase gene contains the heptameric sequence, 5'-TGAGTCA-3', previously identified as a "phorbol ester" response element. Reporter genes containing either the intact 1.2-kilobase 5'-flanking sequence from the human collagenase gene or just the 7-base pair (bp) response element, when coupled to an enhancerless promoter, each exhibit both cAMP and phorbol ester-stimulated expression in JEG-3 cells. Cotransfection of either construct with plasmids encoding PKI(1-31) inhibits cAMP-stimulated but not basal- or phorbol ester-stimulated expression. Pretreatment of cells with phorbol ester for 1 or 2 days abrogates completely the response to rechallenge with phorbol ester but does not alter the basal expression of either construct; cAMP-stimulated expression, while modestly inhibited, remains vigorous. The 5'-flanking sequence of the human chorionic gonadotropin-alpha subunit (HCG alpha) gene has two copies of the sequence, 5'-TGACGTCA-3', contained in directly adjacent identical 18-bp segments, previously identified as a cAMP-response element. Reporter genes containing either the intact 1.5 kilobase of 5'-flanking sequence from the HCG alpha gene, or just the 36-bp tandem repeat cAMP response element, when coupled to an enhancerless promoter, both exhibit a vigorous cAMP stimulation of expression but no response to phorbol ester in JEG-3 cells. Cotransfection with plasmids encoding PKI(1-31) inhibits both basal and cAMP-stimulated expression in a parallel fashion. The 5'-flanking sequence of the human enkephalin gene mediates cAMP-stimulated expression of reporter genes in both JEG-3 and CV-1 cells. Plasmids encoding PKI(1-31) inhibit the expression that is stimulated by the addition of cAMP analogs in both cell lines; basal expression, however, is inhibited by PKI(1-31) only in the JEG-3 cell line and not in the CV-1 cells. These observations indicate that, in JEG-3 cells, PKI(1-31) is a specific inhibitor of kinase A-mediated gene transcription, but it does not modify kinase C-directed transcription.(ABSTRACT TRUNCATED AT 400 WORDS)
Computational analysis of molt-inhibiting hormone from selected crustaceans.
C, Kumaraswamy Naidu; Y, Suneetha; P, Sreenivasula Reddy
2013-12-01
Molt-inhibiting hormone (MIH) is a principal endocrine hormone regulating the growth in crustaceans. In total, nine MIH peptide sequences representing members of the family Penaeidae (Penaeus monodon, Litopenaeus vannamei, Marsupenaeus japonicus), Portunidae (Portunus trituberculatus, Charybdis japonica, Charybdis feriata), Cambaridae (Procambarus bouvieri), Parastacidae (Cherax quadricarinatus) and Varunidae (Eriocheir sinensis) were selected for our study. In order to develop a structure based phylogeny, predict functionally important regions and to define stability changes upon single site mutations, the 3D structure of MIH for the crustaceans were built by using homology modeling based on the known structure of MIH from M. japonicus (1J0T). Structure based phylogeny showed a close relationship between P. bouvieri and C. japonica. ConSurf server analysis showed that the residues Cys(8), Arg(15), Cys(25), Asp(27), Cys(28), Asn(30), Arg(33), Cys(41), Cys(45), Phe(51), and Cys(54) may be functionally significant among the MIH of crustaceans. Single amino acid substitutions 'Y' and 'G' at the positions 71 and 72 of the MIH C-terminal region showed an alteration in the stability indicating that a change in this region may alter the function of MIH. In conclusion, we proposed a computational approach to analyze the structure, phylogeny and stability of MIH from crustaceans. © 2013.
Selective inhibition of miR-92 in hippocampal neurons alters contextual fear memory.
Vetere, Gisella; Barbato, Christian; Pezzola, Silvia; Frisone, Paola; Aceti, Massimiliano; Ciotti, MariaTeresa; Cogoni, Carlo; Ammassari-Teule, Martine; Ruberti, Francesca
2014-12-01
Post-transcriptional gene regulation mediated by microRNAs (miRNAs) is implicated in memory formation; however, the function of miR-92 in this regulation is uncharacterized. The present study shows that training mice in contextual fear conditioning produces a transient increase in miR-92 levels in the hippocampus and decreases several miR-92 gene targets, including: (i) the neuronal Cl(-) extruding K(+) Cl(-) co-transporter 2 (KCC2) protein; (ii) the cytoplasmic polyadenylation protein (CPEB3), an RNA-binding protein regulator of protein synthesis in neurons; and (iii) the transcription factor myocyte enhancer factor 2D (MEF2D), one of the MEF2 genes which negatively regulates memory-induced structural plasticity. Selective inhibition of endogenous miR-92 in CA1 hippocampal neurons, by a sponge lentiviral vector expressing multiple sequences imperfectly complementary to mature miR-92 under the control of the neuronal specific synapsin promoter, leads to up-regulation of KCC2, CPEB3 and MEF2D, impairs contextual fear conditioning, and prevents a memory-induced increase in the spine density. Taken together, the results indicate that neuronal-expressed miR-92 is an endogenous fine regulator of contextual fear memory in mice. © 2014 Wiley Periodicals, Inc.
Malina, Jaroslav; Scott, Peter; Brabec, Viktor
2015-01-01
Loss of a base in DNA leading to creation of an abasic (AP) site leaving a deoxyribose residue in the strand, is a frequent lesion that may occur spontaneously or under the action of various physical and chemical agents. Progress in the understanding of the chemistry and enzymology of abasic DNA largely relies upon the study of AP sites in synthetic duplexes. We report here on interactions of diastereomerically pure metallo–helical ‘flexicate’ complexes, bimetallic triple-stranded ferro-helicates [Fe2(NN-NN)3]4+ incorporating the common NN–NN bis(bidentate) helicand, with short DNA duplexes containing AP sites in different sequence contexts. The results show that the flexicates bind to AP sites in DNA duplexes in a shape-selective manner. They preferentially bind to AP sites flanked by purines on both sides and their binding is enhanced when a pyrimidine is placed in opposite orientation to the lesion. Notably, the Λ-enantiomer binds to all tested AP sites with higher affinity than the Δ-enantiomer. In addition, the binding of the flexicates to AP sites inhibits the activity of human AP endonuclease 1, which is as a valid anticancer drug target. Hence, this finding indicates the potential of utilizing well-defined metallo–helical complexes for cancer chemotherapy. PMID:25940617
A Method to Find Longevity-Selected Positions in the Mammalian Proteome
Semeiks, Jeremy; Grishin, Nick V.
2012-01-01
Evolutionary theory suggests that the force of natural selection decreases with age. To explore the extent to which this prediction directly affects protein structure and function, we used multiple regression to find longevity-selected positions, defined as the columns of a sequence alignment conserved in long-lived but not short-lived mammal species. We analyzed 7,590 orthologous protein families in 33 mammalian species, accounting for body mass, phylogeny, and species-specific mutation rate. Overall, we found that the number of longevity-selected positions in the mammalian proteome is much higher than would be expected by chance. Further, these positions are enriched in domains of several proteins that interact with one another in inflammation and other aging-related processes, as well as in organismal development. We present as an example the kinase domain of anti-Müllerian hormone type-2 receptor (AMHR2). AMHR2 inhibits ovarian follicle recruitment and growth, and a homology model of the kinase domain shows that its longevity-selected positions cluster near a SNP associated with delayed human menopause. Distinct from its canonical role in development, this region of AMHR2 may function to regulate the protein’s activity in a lifespan-specific manner. PMID:22701678
Silva, Amanda Perse da; Lopes, Juliana Freitas; Paula, Vanessa Salete de
2014-01-01
The aim of this study was to evaluate the use of RNA interference to inhibit herpes simplex virus type-1 replication in vitro. For herpes simplex virus type-1 gene silencing, three different small interfering RNAs (siRNAs) targeting the herpes simplex virus type-1 UL39 gene (sequence si-UL 39-1, si-UL 39-2, and si-UL 39-3) were used, which encode the large subunit of ribonucleotide reductase, an essential enzyme for DNA synthesis. Herpes simplex virus type-1 was isolated from saliva samples and mucocutaneous lesions from infected patients. All mucocutaneous lesions' samples were positive for herpes simplex virus type-1 by real-time PCR and by virus isolation; all herpes simplex virus type-1 from saliva samples were positive by real-time PCR and 50% were positive by virus isolation. The levels of herpes simplex virus type-1 DNA remaining after siRNA treatment were assessed by real-time PCR, whose results demonstrated that the effect of siRNAs on gene expression depends on siRNA concentration. The three siRNA sequences used were able to inhibit viral replication, assessed by real-time PCR and plaque assays and among them, the sequence si-UL 39-1 was the most effective. This sequence inhibited 99% of herpes simplex virus type-1 replication. The results demonstrate that silencing herpes simplex virus type-1 UL39 expression by siRNAs effectively inhibits herpes simplex virus type-1 replication, suggesting that siRNA based antiviral strategy may be a potential therapeutic alternative. Copyright © 2014. Published by Elsevier Editora Ltda.
Quinazoline derivative from indigenous isolate, Nocardiopsis alba inhibits human telomerase enzyme.
Kiran, K G; Thandeeswaran, M; Ayub Nawaz, K A; Easwaran, M; Jayagopi, K K; Ebrahimi, L; Palaniswamy, M; Mahendran, R; Angayarkanni, J
2016-12-01
Aim of this study was isolation and screening of various secondary metabolites produced by indigenous isolates of soil Actinomycetes for human telomerase inhibitory activity. Extracellular extract from culture suspension of various soil Actinomycetes species were tested for telomerase inhibitory activity. The organism which produced telomerase inhibitor was identified by 16S rRNA gene sequencing. The active fraction was purified by HPLC and analysed by GC-MS to identify the compound. In GC-MS analysis, the active principle was identified as 3-[4'-(2″-chlorophenyl)-2'-thiazolyl]-2,4-dioxo-1,2,3,4-tetrahydro quinazoline. The G-quadruplex stabilizing ability of the compound was checked by molecular docking and simulation experiments with G-quadruplex model (PDB ID-1L1H). The selective binding ability of the compound with G-quadruplex over Dickerson-Drew dodecamer DNA structures showed that the compound possess high selectivity towards G-quadruplex. Quinazoline derivative isolated from an indigenous strain of Nocardiopsis alba inhibited telomerase. Molecular docking and simulation studies predicted that this compound is a strong stabilizer of G-quadruplex conformation. It also showed a preferable binding to G-quadruplex DNA over normal DNA duplex. This particular compound can be suggested as a suitable compound for developing a future anticancer drug. The selectivity towards G-quadruplex over normal DNA duplex gives a clue that it is likely to show lower cytotoxicity in normal cells. © 2016 The Society for Applied Microbiology.
Mohr, Peter G; Deng, Yi-Mo; McKimm-Breschkin, Jennifer L
2015-04-22
The neuraminidases (NAs) of MDCK passaged human influenza A(H3N2) strains isolated since 2005 are reported to have dual functions of cleavage of sialic acid and receptor binding. NA agglutination of red blood cells (RBCs) can be inhibited by neuraminidase inhibitors (NAIs), thus distinguishing it from haemagglutinin (HA) binding. We wanted to know if viruses prior to 2005 can demonstrate this property. Pairs of influenza A(H3N2) isolates ranging from 1993-2008 passaged in parallel only in eggs or in MDCK cells were tested for inhibition of haemagglutination by various NAIs. Only viruses isolated since 1994 and cultured in MDCK cells bound chicken RBCs solely through their NA. NAI inhibition of agglutination of turkey RBCs was seen for some, but not all of these same MDCK grown viruses. Efficacy of inhibition of enzyme activity and haemagglutination differed between NAIs. For many viruses lower concentrations of oseltamivir could inhibit agglutination compared to zanamivir, although they could both inhibit enzyme activity at comparable concentrations. An E119V mutation reduced sensitivity to oseltamivir and 4-aminoDANA for both the enzyme assay and inhibition of agglutination. Sequence analysis of the NAs and HAs of some paired viruses revealed mutations in the haemagglutinin of all egg passaged viruses. For many of the paired egg and MDCK cultured viruses we found no differences in their NA sequences by Sanger sequencing. However, deep sequencing of MDCK grown isolates revealed low levels of variant populations with mutations at either D151 or T148 in the NA, suggesting mutations at either site may be able to confer this property. The NA active site of MDCK cultured human influenza A(H3N2) viruses isolated since 1994 can express dual enzyme and receptor binding functions. Binding correlated with either D151 or T148 mutations. The catalytic and receptor binding sites do not appear to be structurally identical since relative concentrations of the NAIs to inhibit enzyme activity and agglutination differ.
Anion channels in the sea urchin sperm plasma membrane.
Morales, E; de la Torre, L; Moy, G W; Vacquier, V D; Darszon, A
1993-10-01
Ionic fluxes in sea urchin sperm plasma membrane regulate cell motility and the acrosome reaction (AR). Although cationic channels mediate some of the ionic movements, little is known about anion channels in these cells. The fusion of sperm plasma membranes into lipid bilayers allowed identification of a 150 pS anion channel. This anion channel was enriched from detergent-solubilized sperm plasma membranes using a wheat germ agglutinin Sepharose column. Vesicles formed from this preparation were fused into black lipid membranes (BLM), yielding single channel anion-selective activity with the properties of those found in the sperm membranes. The following anion selectivity sequence was found: NO3- > CNS- > Br- > Cl-. This anion channel has a high open probability at the holding potentials tested, it is partially blocked by 4,4'-diisothiocyano-2,2'-stilbendisulfonic acid (DIDS), and it often displays substates. The sperm AR was also inhibited by DIDS.
Keohane, Colleen E; Steele, Andrew D; Fetzer, Christian; Khowsathit, Jittasak; Van Tyne, Daria; Moynié, Lucile; Gilmore, Michael S; Karanicolas, John; Sieber, Stephan A; Wuest, William M
2018-02-07
Natural products have served as an inspiration to scientists both for their complex three-dimensional architecture and exquisite biological activity. Promysalin is one such Pseudomonad secondary metabolite that exhibits narrow-spectrum antibacterial activity, originally isolated from the rhizosphere. We herein utilize affinity-based protein profiling (AfBPP) to identify succinate dehydrogenase (Sdh) as the biological target of the natural product. The target was further validated in silico, in vitro, in vivo, and through the selection, and sequencing, of a resistant mutant. Succinate dehydrogenase plays an essential role in primary metabolism of Pseudomonas aeruginosa as the only enzyme that is involved both in the tricarboxylic acid cycle (TCA) and in respiration via the electron transport chain. These findings add credence to other studies that suggest that the TCA cycle is an understudied target in the development of novel therapeutics to combat P. aeruginosa, a significant pathogen in clinical settings.
Kuzmenkov, Alexey I; Peigneur, Steve; Chugunov, Anton O; Tabakmakher, Valentin M; Efremov, Roman G; Tytgat, Jan; Grishin, Eugene V; Vassilevski, Alexander A
2017-05-01
We report isolation, sequencing, and electrophysiological characterization of OSK3 (α-KTx 8.8 in Kalium and Uniprot databases), a potassium channel blocker from the scorpion Orthochirus scrobiculosus venom. Using the voltage clamp technique, OSK3 was tested on a wide panel of 11 voltage-gated potassium channels expressed in Xenopus oocytes, and was found to potently inhibit Kv1.2 and Kv1.3 with IC 50 values of ~331nM and ~503nM, respectively. OdK1 produced by the scorpion Odontobuthus doriae differs by just two C-terminal residues from OSK3, but shows marked preference to Kv1.2. Based on the charybdotoxin-potassium channel complex crystal structure, a model was built to explain the role of the variable residues in OdK1 and OSK3 selectivity. Copyright © 2017 Elsevier B.V. All rights reserved.
Hégarat, Nadia; Novopashina, Darya; Fokina, Alesya A; Boutorine, Alexandre S; Venyaminova, Alya G; Praseuth, Danièle; François, Jean-Christophe
2014-03-01
Inhibition of insulin-like growth factor I (IGF-I) signaling is a promising antitumor strategy and nucleic acid-based approaches have been investigated to target genes in the pathway. Here, we sought to modulate IGF-I transcriptional activity using triple helix formation. The IGF-I P1 promoter contains a purine/pyrimidine (R/Y) sequence that is pivotal for transcription as determined by deletion analysis and can be targeted with a triplex-forming oligonucleotide (TFO). We designed modified purine- and pyrimidine-rich TFOs to bind to the R/Y sequence. To monitor TFO binding, we developed a fluorescence-based gel-retardation assay that allowed independent detection of each strand in three-stranded complexes using end-labeling with Alexa 488, cyanine (Cy)3 and Cy5 fluorochromes. We characterized TFOs for their ability to inhibit restriction enzyme activity, compete with DNA-binding proteins and inhibit IGF-I transcription in reporter assays. TFOs containing modified nucleobases, 5-methyl-2'-deoxycytidine and 5-propynyl-2'-deoxyuridine, specifically inhibited restriction enzyme cleavage and formed triplexes on the P1 promoter fragment. In cells, deletion of the R/Y-rich sequence led to 48% transcriptional inhibition of a reporter gene. Transfection with TFOs inhibited reporter gene activity to a similar extent, whereas transcription from a mutant construct with an interrupted R/Y region was unaffected, strongly suggesting the involvement of triplex formation in the inhibitory mechanisms. Our results indicate that nuclease-resistant TFOs will likely inhibit endogenous IGF-I gene function in cells. © 2014 FEBS.
Ana o 2, a major cashew (Anacardium occidentale L.) nut allergen of the legumin family.
Wang, Fang; Robotham, Jason M; Teuber, Suzanne S; Sathe, Shridhar K; Roux, Kenneth H
2003-09-01
We recently cloned and described a vicilin and showed it to be a major cashew allergen. Additional IgE-reactive cashew peptides of the legumin group and 2S albumin families have also been reported. Here, we attempt to clone, express and characterize a second major cashew allergen. A cashew cDNA library was screened with human IgE and rabbit IgG anti-cashew extract antisera, and a reactive nonvicilin clone was sequenced and expressed as a fusion protein in Escherichia coli. Immunoblotting was used to screen for reactivity with patients' sera, and inhibition of immunoblotting was used to identify the corresponding native peptides in cashew nut extract. The identified allergen was subjected to linear epitope mapping using SPOTs solid-phase synthetic peptide technology. Sequence analysis showed the selected clone, designated Ana o 2, to encode for a member of the legumin family (an 11S globulin) of seed storage proteins. By IgE immunoblotting, 13 of 21 sera (62%) from cashew-allergic patients were reactive. Immunoblot inhibition data showed that the native Ana o 2 constitutes a major band at approximately 33 kD and a minor band at approximately 53 kD. Probing of overlapping synthetic peptides with pooled human cashew-allergic sera identified 22 reactive peptides, 7 of which gave strong signals. Several Ana o 2 epitopes were shown to overlap those of the peanut legumin group allergen, Ara h 3, in position but with little sequence similarity. Greater positional overlap and identity was observed between Ana o 2 and soybean glycinin epitopes. We conclude that this legumin-like protein is a major allergen in cashew nut. Copyright 2003 S. Karger AG, Basel
Zhang, Zhigang; Vu, Gia-Phong; Gong, Hao; Xia, Chuan; Chen, Yuan-Chuan; Liu, Fenyong; Wu, Jianguo; Lu, Sangwei
2013-01-01
External guide sequences (EGSs) are RNA molecules that consist of a sequence complementary to a target mRNA and recruit intracellular ribonuclease P (RNase P), a tRNA processing enzyme, for specific degradation of the target mRNA. We have previously used an in vitro selection procedure to generate EGS variants that efficiently induce human RNase P to cleave a target mRNA in vitro. In this study, we constructed EGSs from a variant to target the overlapping region of the S mRNA, pre-S/L mRNA, and pregenomic RNA (pgRNA) of hepatitis B virus (HBV), which are essential for viral replication and infection. The EGS variant was about 50-fold more efficient in inducing human RNase P to cleave the mRNA in vitro than the EGS derived from a natural tRNA. Following Salmonella-mediated gene delivery, the EGSs were expressed in cultured HBV-carrying cells. A reduction of about 97% and 75% in the level of HBV RNAs and proteins and an inhibition of about 6,000- and 130-fold in the levels of capsid-associated HBV DNA were observed in cells treated with Salmonella vectors carrying the expression cassette for the variant and the tRNA-derived EGS, respectively. Our study provides direct evidence that the EGS variant is more effective in blocking HBV gene expression and DNA replication than the tRNA-derived EGS. Furthermore, these results demonstrate the feasibility of developing Salmonella-mediated gene delivery of highly active EGS RNA variants as a novel approach for gene-targeting applications such as anti-HBV therapy.
Ugras, Stacy; Brill, Elliott; Jacobsen, Anders; Hafner, Markus; Socci, Nicholas D.; DeCarolis, Penelope L.; Khanin, Raya; O'Connor, Rachael; Mihailovic, Aleksandra; Taylor, Barry S.; Sheridan, Robert; Gimble, Jeffrey M.; Viale, Agnes; Crago, Aimee; Antonescu, Cristina R.; Sander, Chris; Tuschl, Thomas; Singer, Samuel
2011-01-01
Liposarcoma remains the most common mesenchymal cancer, with a mortality rate of 60% among patients with this disease. To address the present lack of therapeutic options, we embarked upon a study of microRNA (miRNA) expression alterations associated with liposarcomagenesis with the goal of exploiting differentially expressed miRNAs and the gene products they regulate as potential therapeutic targets. MicroRNA expression was profiled in samples of normal adipose tissue, well-differentiated liposarcoma, and dedifferentiated liposarcoma by both deep sequencing of small RNA libraries and hybridization-based Agilent microarrays. The expression profiles discriminated liposarcoma from normal adipose tissue and well-differentiated from dedifferentiated disease. We defined over 40 miRNAs that were dysregulated in dedifferentiated liposarcomas in both the sequencing and the microarray analysis. The upregulated miRNAs included two cancer-associated species (miR-21, miR-26a), and the downregulated miRNAs included two species that were highly abundant in adipose tissue (miR-143, miR-145). Restoring miR-143 expression in dedifferentiated liposarcoma cells inhibited proliferation, induced apoptosis, and decreased expression of BCL2, TOP2A, PRC1, and PLK1. The downregulation of PRC1 and its docking partner PLK1 suggests that miR-143 inhibits cytokinesis in these cells. In support of this idea, treatment with a PLK1 inhibitor potently induced G2/M growth arrest and apoptosis in liposarcoma cells. Taken together, our findings suggest that miR-143 re-expression vectors or selective agents directed at miR-143 or its targets may have therapeutic value in dedifferentiated liposarcoma. PMID:21693658
Specific Inhibition of the transcription factor Ci by a Cobalt(III)-Schiff base-DNA conjugate
Hurtado, Ryan R.; Harney, Allison S.; Heffern, Marie C.; Holbrook, Robert J.; Holmgren, Robert A.; Meade, Thomas J.
2012-01-01
We describe the use of Co(III) Schiff base-DNA conjugates, a versatile class of research tools that target C2H2 transcription factors, to inhibit the Hedgehog (Hh) pathway. In developing mammalian embryos, Hh signaling is critical for the formation and development of many tissues and organs. Inappropriate activation of the Hedgehog (Hh) pathway has been implicated in a variety of cancers including medulloblastomas and basal cell carcinomas. It is well known that Hh regulates the activity of the Gli family of C2H2 zinc finger transcription factors in mammals. In Drosophila the function of the Gli proteins is performed by a single transcription factor with an identical DNA binding consensus sequence, Cubitus Interruptus (Ci). We have demonstrated previously that conjugation of a specific 17 base-pair oligonucleotide to a Co(III) Schiff base complex results in a targeted inhibitor of the Snail family C2H2 zinc finger transcription factors. Modification of the oligonucleotide sequence in the Co(III) Schiff base-DNA conjugate to that of Ci’s consensus sequence (Co(III)-Ci) generates an equally selective inhibitor of Ci. Co(III)-Ci irreversibly binds the Ci zinc finger domain and prevents it from binding DNA in vitro. In a Ci responsive tissue culture reporter gene assay, Co(III)-Ci reduces the transcriptional activity of Ci in a concentration dependent manner. In addition, injection of wild-type Drosophila embryos with Co(III)-Ci phenocopies a Ci loss of function phenotype, demonstrating effectiveness in vivo. This study provides evidence that Co(III) Schiff base-DNA conjugates are a versatile class of specific and potent tools for studying zinc finger domain proteins and have potential applications as customizable anti-cancer therapeutics. PMID:22214326
Khalid, Saira; Hashmi, Imran; Jamal Khan, Sher; Qazi, Ishtiaq A; Nasir, Habib
2016-10-01
Application of chlorpyrifos (CP) has increased its environmental concentration. Increasing CP concentration has increased chances of adverse health effects. Its removal from environment has attained researcher's attention. CP degrading bacterial strains were isolated from wastewater and agricultural soil. Finally, selected five bacterial strains were identified using 16S rRNA nucleotide sequence analysis as Pseudomonas kilonensis SRK1, Serratia marcescens SRK2, Bacillus pumilus SRK4, Achromobacter xylosoxidans SRK5, and Klebsiella sp. T13. Interaction studies among bacterial strains demonstrated possibility for development of five membered bacterial consortium. Biodegradation potential of bacterial consortium was investigated in the presence of petrochemicals and trace metals. About 98 % CP removal was observed in sequencing batch reactors at inoculum level, 10 %; pH, 7; CP concentration, 400 mgL -1 , and HRT, 48 h. Experimental data has shown an excellent fit to first order growth model. Among all petrochemicals only toluene (in low concentration) has stimulatory effect on biodegradation of CP. Addition of petrochemicals (benzene, toluene, and xylene) in high concentration (100 mg L -1 ) inhibited bacterial activity and decreased CP removal. At low concentration i.e., 1 mg L -1 of inorganic contaminants (Cu, Hg, and Zn) >96 % degradation was observed. Addition of Cu(II) in low concentration has stimulated CP removal efficiency. Hg(II) in all concentrations has strongly inhibited biodegradation rate except at 1 mgL -1 . In simulated pesticide, wastewater CP removal efficiency decreased to 77.5 %. Outcomes of study showed that both type and concentration of petrochemicals and trace metals influenced biodegradation of CP.
Maddalo, Danilo; Neeb, Antje; Jehle, Katja; Schmitz, Katja; Muhle-Goll, Claudia; Shatkina, Liubov; Walther, Tamara Vanessa; Bruchmann, Anja; Gopal, Srinivasa M.; Wenzel, Wolfgang; Ulrich, Anne S.; Cato, Andrew C. B.
2012-01-01
The molecular chaperone GRP78/BiP is a key regulator of protein folding in the endoplasmic reticulum, and it plays a pivotal role in cancer cell survival and chemoresistance. Inhibition of its function has therefore been an important strategy for inhibiting tumor cell growth in cancer therapy. Previous efforts to achieve this goal have used peptides that bind to GRP78/BiP conjugated to pro-drugs or cell-death-inducing sequences. Here, we describe a peptide that induces prostate tumor cell death without the need of any conjugating sequences. This peptide is a sequence derived from the cochaperone Bag-1. We have shown that this sequence interacts with and inhibits the refolding activity of GRP78/BiP. Furthermore, we have demonstrated that it modulates the unfolded protein response in ER stress resulting in PARP and caspase-4 cleavage. Prostate cancer cells stably expressing this peptide showed reduced growth and increased apoptosis in in vivo xenograft tumor models. Amino acid substitutions that destroyed binding of the Bag-1 peptide to GRP78/BiP or downregulation of the expression of GRP78 compromised the inhibitory effect of this peptide. This sequence therefore represents a candidate lead peptide for anti-tumor therapy. PMID:23049684
Tackett, Alan J.; Corey, David R.; Raney, Kevin D.
2002-01-01
Peptide nucleic acid (PNA) is a DNA mimic in which the nucleobases are linked by an N-(2-aminoethyl) glycine backbone. Here we report that PNA can interact with single-stranded DNA (ssDNA) in a non-sequence-specific fashion. We observed that a 15mer PNA inhibited the ssDNA-stimulated ATPase activity of a bacteriophage T4 helicase, Dda. Surprisingly, when a fluorescein-labeled 15mer PNA was used in binding studies no interaction was observed between PNA and Dda. However, fluorescence polarization did reveal non-sequence-specific interactions between PNA and ssDNA. Thus, the inhibition of ATPase activity of Dda appears to result from depletion of the available ssDNA due to non-Watson–Crick binding of PNA to ssDNA. Inhibition of the ssDNA-stimulated ATPase activity was observed for several PNAs of varying length and sequence. To study the basis for this phenomenon, we examined self-aggregation by PNAs. The 15mer PNA readily self-aggregates to the point of precipitation. Since PNAs are hydrophobic, they aggregate more than DNA or RNA, making the study of this phenomenon essential for understanding the properties of PNA. Non-sequence-specific interactions between PNA and ssDNA were observed at moderate concentrations of PNA, suggesting that such interactions should be considered for antisense and antigene applications. PMID:11842106
Cannabidiolic acid as a selective cyclooxygenase-2 inhibitory component in cannabis.
Takeda, Shuso; Misawa, Koichiro; Yamamoto, Ikuo; Watanabe, Kazuhito
2008-09-01
In the present study it was revealed that cannabidiolic acid (CBDA) selectively inhibited cyclooxygenase (COX)-2 activity with an IC(50) value (50% inhibition concentration) around 2 microM, having 9-fold higher selectivity than COX-1 inhibition. In contrast, Delta(9)-tetrahydrocannabinolic acid (Delta(9)-THCA) was a much less potent inhibitor of COX-2 (IC(50) > 100 microM). Nonsteroidal anti-inflammatory drugs containing a carboxyl group in their chemical structures such as salicylic acid are known to inhibit nonselectively both COX-1 and COX-2. CBDA and Delta(9)-THCA have a salicylic acid moiety in their structures. Thus, the structural requirements for the CBDA-mediated COX-2 inhibition were next studied. There is a structural difference between CBDA and Delta(9)-THCA; phenolic hydroxyl groups of CBDA are freed from the ring formation with the terpene moiety, although Delta(9)-THCA has dibenzopyran ring structure. It was assumed that the whole structure of CBDA is important for COX-2 selective inhibition because beta-resorcylic acid itself did not inhibit COX-2 activity. Methylation of the carboxylic acid moiety of CBDA led to disappearance of COX-2 selectivity. Thus, it was suggested that the carboxylic acid moiety in CBDA is a key determinant for the inhibition. Furthermore, the crude extract of cannabis containing mainly CBDA was shown to have a selective inhibitory effect on COX-2. Taken together, these lines of evidence in this study suggest that naturally occurring CBDA in cannabis is a selective inhibitor for COX-2.
Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40.
Yang, Haijuan; Jiang, Xiaolu; Li, Buren; Yang, Hyo J; Miller, Meredith; Yang, Angela; Dhar, Ankita; Pavletich, Nikola P
2017-12-21
The mechanistic target of rapamycin complex 1 (mTORC1) controls cell growth and metabolism in response to nutrients, energy levels, and growth factors. It contains the atypical kinase mTOR and the RAPTOR subunit that binds to the Tor signalling sequence (TOS) motif of substrates and regulators. mTORC1 is activated by the small GTPase RHEB (Ras homologue enriched in brain) and inhibited by PRAS40. Here we present the 3.0 ångström cryo-electron microscopy structure of mTORC1 and the 3.4 ångström structure of activated RHEB-mTORC1. RHEB binds to mTOR distally from the kinase active site, yet causes a global conformational change that allosterically realigns active-site residues, accelerating catalysis. Cancer-associated hyperactivating mutations map to structural elements that maintain the inactive state, and we provide biochemical evidence that they mimic RHEB relieving auto-inhibition. We also present crystal structures of RAPTOR-TOS motif complexes that define the determinants of TOS recognition, of an mTOR FKBP12-rapamycin-binding (FRB) domain-substrate complex that establishes a second substrate-recruitment mechanism, and of a truncated mTOR-PRAS40 complex that reveals PRAS40 inhibits both substrate-recruitment sites. These findings help explain how mTORC1 selects its substrates, how its kinase activity is controlled, and how it is activated by cancer-associated mutations.
Process of labeling specific chromosomes using recombinant repetitive DNA
Moyzis, R.K.; Meyne, J.
1988-02-12
Chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family members and consensus sequences of the repetitive DNA families for the chromosome preferential sequences. The selected low homology regions are then hybridized with chromosomes to determine those low homology regions hybridized with a specific chromosome under normal stringency conditions.
Yang, Yue; Wang, Haicheng; Xu, Shuyu; Peng, Jing; Jiang, Jiuhui; Li, Cuiying
2015-08-01
To investigate the effect of the fibronectin extra domain A on the aggressiveness of salivary adenoid cystic carcinoma (SACC) cells, via the clustered regularly interspaced short palindromic repeats (CRISPR)/ associated proteins (Cas) system. One sgRNA was designed to target the upstream of the genome sequences of extra domain A(EDA) exon and the downstream. Then the sgRNA was linked into plasmid PX-330 and transfected into SACC-83 cells. PCR and DNA sequence were used to testify the knockout cells, and the monoclones of EDA absent SACC cells were selected (A+C-2, A+C-6, B+C-10). CCK-8 cell proliferation and invasion was then tested in control group and the experimental group. The sgRNA was successfully linked into PX-330 plasmid. Part of adenoid cystic carcinoma cells' SACC-83 genomic EDA exon was knocked out, and the knockdown efficiency was above 70%, but the total amount of fibronectin did not change significantly. Three monoclones of EDA absent SACC- 83 cells were successfully selected with diminished migration and proliferation. The CRISPR/Cas9 system was a simplified system with relatively high knockout efficiency and EDA knockout could inhibiting SACC cell's mobility and invasiveness.
Razak, K A
2012-04-01
Frequency-modulated (FM) sweeps are common components of species-specific vocalizations. The intensity of FM sweeps can cover a wide range in the natural environment, but whether intensity affects neural selectivity for FM sweeps is unclear. Bats, such as the pallid bat, which use FM sweeps for echolocation, are suited to address this issue, because the intensity of echoes will vary with target distance. In this study, FM sweep rate selectivity of pallid bat auditory cortex neurons was measured using downward sweeps at different intensities. Neurons became more selective for FM sweep rates present in the bat's echolocation calls as intensity increased. Increased selectivity resulted from stronger inhibition of responses to slower sweep rates. The timing and bandwidth of inhibition generated by frequencies on the high side of the excitatory tuning curve [sideband high-frequency inhibition (HFI)] shape rate selectivity in cortical neurons in the pallid bat. To determine whether intensity-dependent changes in FM rate selectivity were due to altered inhibition, the timing and bandwidth of HFI were quantified at multiple intensities using the two-tone inhibition paradigm. HFI arrived faster relative to excitation as sound intensity increased. The bandwidth of HFI also increased with intensity. The changes in HFI predicted intensity-dependent changes in FM rate selectivity. These data suggest that neural selectivity for a sweep parameter is not static but shifts with intensity due to changes in properties of sideband inhibition.
Short intronic repeat sequences facilitate circular RNA production
Liang, Dongming
2014-01-01
Recent deep sequencing studies have revealed thousands of circular noncoding RNAs generated from protein-coding genes. These RNAs are produced when the precursor messenger RNA (pre-mRNA) splicing machinery “backsplices” and covalently joins, for example, the two ends of a single exon. However, the mechanism by which the spliceosome selects only certain exons to circularize is largely unknown. Using extensive mutagenesis of expression plasmids, we show that miniature introns containing the splice sites along with short (∼30- to 40-nucleotide) inverted repeats, such as Alu elements, are sufficient to allow the intervening exons to circularize in cells. The intronic repeats must base-pair to one another, thereby bringing the splice sites into close proximity to each other. More than simple thermodynamics is clearly at play, however, as not all repeats support circularization, and increasing the stability of the hairpin between the repeats can sometimes inhibit circular RNA biogenesis. The intronic repeats and exonic sequences must collaborate with one another, and a functional 3′ end processing signal is required, suggesting that circularization may occur post-transcriptionally. These results suggest detailed and generalizable models that explain how the splicing machinery determines whether to produce a circular noncoding RNA or a linear mRNA. PMID:25281217
Trippe, Kristin; McPhail, Kerry; Armstrong, Donald; Azevedo, Mark; Banowetz, Gary
2013-05-20
Pseudomonas fluorescens SBW25 has been extensively studied because of its plant growth promoting properties and potential as a biocontrol agent. The genome of SBW25 has been sequenced, and among sequenced strains of pseudomonads, SBW25 appears to be most closely related to P. fluorescens WH6. In the authors' laboratories, WH6 was previously shown to produce and secrete 4-formylaminooxyvinylglycine (FVG), a non-proteinogenic amino acid with selective herbicidal and antimicrobial activity. Although SBW25 does not have the genetic capacity to produce FVG, we were interested in determining whether this pseudomonad might produce some other type of non-proteinogenic amino acid. P. fluorescens SBW25 was found to produce and secrete a ninhydrin-reactive compound with selective antimicrobial properties. This compound was purified from SBW25 culture filtrate and identified as the non-proteinogenic amino acid L-furanomycin [2S,2'R,5'S)-2-amino-2-(5'methyl-2',5'-dihydrofuran-2'-yl)acetic acid]. The identification of furanomycin as a secondary metabolite of SBW25 is the first report of the production of furanomycin by a pseudomonad. This compound was known previously only as a natural product produced by a strain of Streptomyces. This report adds furanomycin to the small list of non-proteinogenic amino acids that have been identified as secondary products of pseudomonads. This study also extends the list of bacteria that are inhibited by furanomycin to include several plant pathogenic bacteria.
Chen, Eddy J; Sowalsky, Adam G; Gao, Shuai; Cai, Changmeng; Voznesensky, Olga; Schaefer, Rachel; Loda, Massimo; True, Lawrence D; Ye, Huihui; Troncoso, Patricia; Lis, Rosina L; Kantoff, Philip W; Montgomery, Robert B; Nelson, Peter S; Bubley, Glenn J; Balk, Steven P; Taplin, Mary-Ellen
2015-03-15
The CYP17A1 inhibitor abiraterone markedly reduces androgen precursors and is thereby effective in castration-resistant prostate cancer (CRPC). However, abiraterone increases progesterone, which can activate certain mutant androgen receptors (AR) identified previously in flutamide-resistant tumors. Therefore, we sought to determine if CYP17A1 inhibitor treatment selects for progesterone-activated mutant ARs. AR was examined by targeted sequencing in metastatic tumor biopsies from 18 patients with CRPC who were progressing on a CYP17A1 inhibitor (17 on abiraterone, 1 on ketoconazole), alone or in combination with dutasteride, and by whole-exome sequencing in residual tumor in one patient treated with neoadjuvant leuprolide plus abiraterone. The progesterone-activated T878A-mutant AR was present at high allele frequency in 3 of the 18 CRPC cases. It was also present in one focus of resistant tumor in the neoadjuvant-treated patient, but not in a second clonally related resistant focus that instead had lost one copy of PTEN and both copies of CHD1. The T878A mutation appeared to be less common in the subset of patients with CRPC treated with abiraterone plus dutasteride, and transfection studies showed that dutasteride was a more potent direct antagonist of the T878A versus the wild-type AR. These findings indicate that selection for tumor cells expressing progesterone-activated mutant ARs is a mechanism of resistance to CYP17A1 inhibition. ©2014 American Association for Cancer Research.
Valente, Pierluigi; Fernández-Carvajal, Asia; Camprubí-Robles, María; Gomis, Ana; Quirce, Susana; Viana, Félix; Fernández-Ballester, Gregorio; González-Ros, José M; Belmonte, Carlos; Planells-Cases, Rosa; Ferrer-Montiel, Antonio
2011-05-01
The transient receptor potential vanilloid 1 (TRPV1) channel is a thermosensory receptor implicated in diverse physiological and pathological processes. The TRP domain, a highly conserved region in the C terminus adjacent to the internal channel gate, is critical for subunit tetramerization and channel gating. Here, we show that cell-penetrating, membrane-anchored peptides patterned after this protein domain are moderate and selective TRPV1 antagonists both in vitro and in vivo, blocking receptor activity in intact rat primary sensory neurons and their peripheral axons with mean decline time of 30 min. The most potent lipopeptide, TRP-p5, blocked all modes of TRPV1 gating with micromolar efficacy (IC(50)<10 μM), without significantly affecting other thermoTRP channels. In contrast, its retrosequence or the corresponding sequences of other TRPV channels did not alter TRPV1 channel activity (IC(50)>100 μM). TRP-p5 did not affect the capsaicin sensitivity of the vanilloid receptor. Our data suggest that TRP-p5 interferes with protein-protein interactions at the level of the TRP domain that are essential for the "conformational" change that leads to gate opening. Therefore, these palmitoylated peptides, which we termed TRPducins, are noncompetitive, voltage-independent, sequence-specific TRPV1 blockers. Our findings indicate that TRPducin-like peptides may embody a novel molecular strategy that can be exploited to generate a selective pharmacological arsenal for the TRP superfamily of ion channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kielmas, Martyna; Szewczuk, Zbigniew; Stefanowicz, Piotr, E-mail: Piotr.stefanowicz@chem.uni.wroc.pl
Highlights: •The glycation of fibrinogen was investigated by isotopic labeling method. •The potential glycation sites in fibrinogen were identified. •Human serum albumin (HSA) inhibits the glycation of fibrinogen. •The effect of HSA on fibrinogen glycation is sequence-dependent. -- Abstract: Although in vivo glycation proceeds in complex mixture of proteins, previous studies did not take in consideration the influence of protein–protein interaction on Maillard reaction. The aim of our study was to test the influence of human serum albumin (HSA) on glycation of fibrinogen. The isotopic labeling using [{sup 13}C{sub 6}] glucose combined with LC-MS were applied as tool for identificationmore » possible glycation sites in fibrinogen and for evaluation the effect of HSA on the glycation level of selected amino acids in fibrinogen. The obtained data indicate that the addition of HSA protects the fibrinogen from glycation. The level of glycation in presence of HSA is reduced by 30–60% and depends on the location of glycated residue in sequence of protein.« less
The C-terminal sequence of several human serine proteases encodes host defense functions.
Kasetty, Gopinath; Papareddy, Praveen; Kalle, Martina; Rydengård, Victoria; Walse, Björn; Svensson, Bo; Mörgelin, Matthias; Malmsten, Martin; Schmidtchen, Artur
2011-01-01
Serine proteases of the S1 family have maintained a common structure over an evolutionary span of more than one billion years, and evolved a variety of substrate specificities and diverse biological roles, involving digestion and degradation, blood clotting, fibrinolysis and epithelial homeostasis. We here show that a wide range of C-terminal peptide sequences of serine proteases, particularly from the coagulation and kallikrein systems, share characteristics common with classical antimicrobial peptides of innate immunity. Under physiological conditions, these peptides exert antimicrobial effects as well as immunomodulatory functions by inhibiting macrophage responses to bacterial lipopolysaccharide. In mice, selected peptides are protective against lipopolysaccharide-induced shock. Moreover, these S1-derived host defense peptides exhibit helical structures upon binding to lipopolysaccharide and also permeabilize liposomes. The results uncover new and fundamental aspects on host defense functions of serine proteases present particularly in blood and epithelia, and provide tools for the identification of host defense molecules of therapeutic interest. Copyright © 2011 S. Karger AG, Basel.
Church, Sheri A; Livingstone, Kevin; Lai, Zhao; Kozik, Alexander; Knapp, Steven J; Michelmore, Richard W; Rieseberg, Loren H
2007-02-01
Using likelihood-based variable selection models, we determined if positive selection was acting on 523 EST sequence pairs from two lineages of sunflower and lettuce. Variable rate models are generally not used for comparisons of sequence pairs due to the limited information and the inaccuracy of estimates of specific substitution rates. However, previous studies have shown that the likelihood ratio test (LRT) is reliable for detecting positive selection, even with low numbers of sequences. These analyses identified 56 genes that show a signature of selection, of which 75% were not identified by simpler models that average selection across codons. Subsequent mapping studies in sunflower show four of five of the positively selected genes identified by these methods mapped to domestication QTLs. We discuss the validity and limitations of using variable rate models for comparisons of sequence pairs, as well as the limitations of using ESTs for identification of positively selected genes.
2012-01-01
Background The detection of conserved residue clusters on a protein structure is one of the effective strategies for the prediction of functional protein regions. Various methods, such as Evolutionary Trace, have been developed based on this strategy. In such approaches, the conserved residues are identified through comparisons of homologous amino acid sequences. Therefore, the selection of homologous sequences is a critical step. It is empirically known that a certain degree of sequence divergence in the set of homologous sequences is required for the identification of conserved residues. However, the development of a method to select homologous sequences appropriate for the identification of conserved residues has not been sufficiently addressed. An objective and general method to select appropriate homologous sequences is desired for the efficient prediction of functional regions. Results We have developed a novel index to select the sequences appropriate for the identification of conserved residues, and implemented the index within our method to predict the functional regions of a protein. The implementation of the index improved the performance of the functional region prediction. The index represents the degree of conserved residue clustering on the tertiary structure of the protein. For this purpose, the structure and sequence information were integrated within the index by the application of spatial statistics. Spatial statistics is a field of statistics in which not only the attributes but also the geometrical coordinates of the data are considered simultaneously. Higher degrees of clustering generate larger index scores. We adopted the set of homologous sequences with the highest index score, under the assumption that the best prediction accuracy is obtained when the degree of clustering is the maximum. The set of sequences selected by the index led to higher functional region prediction performance than the sets of sequences selected by other sequence-based methods. Conclusions Appropriate homologous sequences are selected automatically and objectively by the index. Such sequence selection improved the performance of functional region prediction. As far as we know, this is the first approach in which spatial statistics have been applied to protein analyses. Such integration of structure and sequence information would be useful for other bioinformatics problems. PMID:22643026
van der Kwast, Reginald V C T; van Ingen, Eva; Parma, Laura; Peters, Hendrika A B; Quax, Paul H A; Nossent, A Yaël
2018-02-02
Adenosine-to-inosine editing of microRNAs has the potential to cause a shift in target site selection. 2'-O-ribose-methylation of adenosine residues, however, has been shown to inhibit adenosine-to-inosine editing. To investigate whether angiomiR miR487b is subject to adenosine-to-inosine editing or 2'-O-ribose-methylation during neovascularization. Complementary DNA was prepared from C57BL/6-mice subjected to hindlimb ischemia. Using Sanger sequencing and endonuclease digestion, we identified and validated adenosine-to-inosine editing of the miR487b seed sequence. In the gastrocnemius muscle, pri-miR487b editing increased from 6.7±0.4% before to 11.7±1.6% ( P =0.02) 1 day after ischemia. Edited pri-miR487b is processed into a novel microRNA, edited miR487b, which is also upregulated after ischemia. We confirmed editing of miR487b in multiple human primary vascular cell types. Short interfering RNA-mediated knockdown demonstrated that editing is adenosine deaminase acting on RNA 1 and 2 dependent. Using reverse-transcription at low dNTP concentrations followed by quantitative-PCR, we found that the same adenosine residue is methylated in mice and human primary cells. In the murine gastrocnemius, the estimated methylation fraction increased from 32.8±14% before to 53.6±12% 1 day after ischemia. Short interfering RNA knockdown confirmed that methylation is fibrillarin dependent. Although we could not confirm that methylation directly inhibits editing, we do show that adenosine deaminase acting on RNA 1 and 2 and fibrillarin negatively influence each other's expression. Using multiple luciferase reporter gene assays, we could demonstrate that editing results in a complete switch of target site selection. In human primary cells, we confirmed the shift in miR487b targeting after editing, resulting in a edited miR487b targetome that is enriched for multiple proangiogenic pathways. Furthermore, overexpression of edited miR487b, but not wild-type miR487b, stimulates angiogenesis in both in vitro and ex vivo assays. MiR487b is edited in the seed sequence in mice and humans, resulting in a novel, proangiogenic microRNA with a unique targetome. The rate of miR487b editing, as well as 2'-O-ribose-methylation, is increased in murine muscle tissue during postischemic neovascularization. Our findings suggest miR487b editing plays an intricate role in postischemic neovascularization. © 2017 American Heart Association, Inc.
Computational analysis of sequence selection mechanisms.
Meyerguz, Leonid; Grasso, Catherine; Kleinberg, Jon; Elber, Ron
2004-04-01
Mechanisms leading to gene variations are responsible for the diversity of species and are important components of the theory of evolution. One constraint on gene evolution is that of protein foldability; the three-dimensional shapes of proteins must be thermodynamically stable. We explore the impact of this constraint and calculate properties of foldable sequences using 3660 structures from the Protein Data Bank. We seek a selection function that receives sequences as input, and outputs survival probability based on sequence fitness to structure. We compute the number of sequences that match a particular protein structure with energy lower than the native sequence, the density of the number of sequences, the entropy, and the "selection" temperature. The mechanism of structure selection for sequences longer than 200 amino acids is approximately universal. For shorter sequences, it is not. We speculate on concrete evolutionary mechanisms that show this behavior.
The pig CYP2E1 promoter is activated by COUP-TF1 and HNF-1 and is inhibited by androstenone.
Tambyrajah, Winston S; Doran, Elena; Wood, Jeffrey D; McGivan, John D
2004-11-15
Functional analysis of the pig cytochrome P4502E1 (CYP2E1) promoter identified two major activating elements. One corresponded to the hepatic nuclear factor 1 (HNF-1) consensus binding sequence at nucleotides -128/-98 and the other was located in the region -292/-266. The binding of proteins in pig liver nuclear extracts to a synthetic double-stranded oligonucleotide corresponding to this more distal activating sequence was studied by electrophoretic mobility shift assay. The minimum protein binding sequence was identified as TGTTCTGACCTCTGGG. Gel super-shift assays identified the protein binding to this site as chick ovalbumin upstream promoter transcription factor 1 (COUP-TF1). Androstenone inhibited promoter activity in transfection experiments only with constructs which included the COUP-TF1 binding site. Androstenone inhibited COUP-TF1 binding to synthetic oligonucleotides but did not affect HNF-1 binding. The results offer an explanation for the inhibition of CYP2E1 protein expression by androstenone in isolated pig hepatocytes and may be relevant to the low expression of hepatic CYP2E1 in those pigs which accumulate high levels of androstenone in vivo.
Naveilhan, P; Baudet, C; Jabbour, W; Wion, D
1994-09-01
A model that may explain the limited division potential of certain cells such as human fibroblasts in culture is presented. The central postulate of this theory is that there exists, prior to certain key exons that code for materials needed for cell division, a unique sequence of specific repeating segments of DNA. One copy of such repeating segments is deleted during each cell cycle in cells that are not protected from such deletion through methylation of their cytosine residues. According to this theory, the means through which such repeated sequences are removed, one per cycle, is through the sequential action of enzymes that act much as bacterial restriction enzymes do--namely to produce scissions in both strands of DNA in areas that correspond to the DNA base sequence recognition specificities of such enzymes. After the first scission early in a replicative cycle, that enzyme becomes inhibited, but the cleavage of the first site exposes the closest site in the repetitive element to the action of a second restriction enzyme after which that enzyme also becomes inhibited. Then repair occurs, regenerating the original first site. Through this sequential activation and inhibition of two different restriction enzymes, only one copy of the repeating sequence is deleted during each cell cycle. In effect, the repeating sequence operates as a precise counter of the numbers of cell doubling that have occurred since the cells involved differentiated during development.
Latorre, Juan D.; Hernandez-Velasco, Xochitl; Wolfenden, Ross E.; Vicente, Jose L.; Wolfenden, Amanda D.; Menconi, Anita; Bielke, Lisa R.; Hargis, Billy M.; Tellez, Guillermo
2016-01-01
Social concern about misuse of antibiotics as growth promoters (AGP) and generation of multidrug-resistant bacteria have restricted the dietary inclusion of antibiotics in livestock feed in several countries. Direct-fed microbials (DFM) are one of the multiple alternatives commonly evaluated as substitutes of AGP. Sporeformer bacteria from the genus Bacillus have been extensively investigated because of their extraordinary properties to form highly resistant endospores, produce antimicrobial compounds, and synthesize different exogenous enzymes. The purpose of the present study was to evaluate and select Bacillus spp. from environmental and poultry sources as DFM candidates, considering their enzyme production profile, biofilm synthesis capacity, and pathogen-inhibition activity. Thirty-one Bacillus isolates were screened for in vitro relative enzyme activity of amylase, protease, lipase, and phytase using a selective media for each enzyme, with 3/31 strains selected as superior enzyme producers. These three isolates were identified as Bacillus subtilis (1/3), and Bacillus amyloliquefaciens (2/3), based on biochemical tests and 16S rRNA sequence analysis. For evaluation of biofilm synthesis, the generation of an adherent crystal violet-stained ring was determined in polypropylene tubes, resulting in 11/31 strains showing a strong biofilm formation. Moreover, all Bacillus strains were evaluated for growth inhibition activity against Salmonella enterica serovar Enteritidis (26/31), Escherichia coli (28/31), and Clostridioides difficile (29/31). Additionally, in previous in vitro and in vivo studies, these selected Bacillus strains have shown to be resistant to different biochemical conditions of the gastrointestinal tract of poultry. Results of the present study suggest that the selection and consumption of Bacillus-DFM, producing a variable set of enzymes and antimicrobial compounds, may contribute to enhanced performance through improving nutrient digestibility, reducing intestinal viscosity, maintaining a beneficial gut microbiota, and promoting healthy intestinal integrity in poultry. PMID:27812526
Hraber, Peter; Korber, Bette; Wagh, Kshitij; ...
2015-10-21
Within-host genetic sequencing from samples collected over time provides a dynamic view of how viruses evade host immunity. Immune-driven mutations might stimulate neutralization breadth by selecting antibodies adapted to cycles of immune escape that generate within-subject epitope diversity. Comprehensive identification of immune-escape mutations is experimentally and computationally challenging. With current technology, many more viral sequences can readily be obtained than can be tested for binding and neutralization, making down-selection necessary. Typically, this is done manually, by picking variants that represent different time-points and branches on a phylogenetic tree. Such strategies are likely to miss many relevant mutations and combinations ofmore » mutations, and to be redundant for other mutations. Longitudinal Antigenic Sequences and Sites from Intrahost Evolution (LASSIE) uses transmitted founder loss to identify virus “hot-spots” under putative immune selection and chooses sequences that represent recurrent mutations in selected sites. LASSIE favors earliest sequences in which mutations arise. Here, with well-characterized longitudinal Env sequences, we confirmed selected sites were concentrated in antibody contacts and selected sequences represented diverse antigenic phenotypes. Finally, practical applications include rapidly identifying immune targets under selective pressure within a subject, selecting minimal sets of reagents for immunological assays that characterize evolving antibody responses, and for immunogens in polyvalent “cocktail” vaccines.« less
Henry, Brian L; Connell, Justin; Liang, Aiye; Krishnasamy, Chandravel; Desai, Umesh R
2009-07-31
Antithrombin, a major regulator of coagulation and angiogenesis, is known to interact with several natural sulfated polysaccharides. Previously, we prepared sulfated low molecular weight variants of natural lignins, called sulfated dehydrogenation polymers (DHPs) (Henry, B. L., Monien, B. H., Bock, P. E., and Desai, U. R. (2007) J. Biol. Chem. 282, 31891-31899), which have now been found to exhibit interesting antithrombin binding properties. Sulfated DHPs represent a library of diverse noncarbohydrate aromatic scaffolds that possess structures completely different from heparin and heparan sulfate. Fluorescence binding studies indicate that sulfated DHPs bind to antithrombin with micromolar affinity under physiological conditions. Salt dependence of binding affinity indicates that the antithrombin-sulfated DHP interaction involves a massive 80-87% non-ionic component to the free energy of binding. Competitive binding studies with heparin pentasaccharide, epicatechin sulfate, and full-length heparin indicate that sulfated DHPs bind to both the pentasaccharide-binding site and extended heparin-binding site of antithrombin. Affinity capillary electrophoresis resolves a limited number of peaks of antithrombin co-complexes suggesting preferential binding of selected DHP structures to the serpin. Computational genetic algorithm-based virtual screening study shows that only one sulfated DHP structure, out of the 11 present in a library of plausible sequences, bound in the heparin-binding site with a high calculated score supporting selectivity of recognition. Enzyme inhibition studies indicate that only one of the three sulfated DHPs studied is a potent inhibitor of free factor VIIa in the presence of antithrombin. Overall, the chemo-enzymatic origin and antithrombin binding properties of sulfated DHPs present novel opportunities for potent and selective modulation of the serpin function, especially for inhibiting the initiation phase of hemostasis.
Oelze, I; Rittner, K; Sczakiel, G
1994-01-01
Adeno-associated virus type 2 (AAV-2), a human parvovirus which is apathogenic in adults, inhibits replication and gene expression of human immunodeficiency virus type 1 (HIV-1) in human cells. The rep gene of AAV-2, which was shown earlier to be sufficient for this negative interference, also down-regulated the expression of heterologous sequences driven by the long terminal repeat (LTR) of HIV-1. This effect was observed in the absence of the HIV-1 transactivator Tat, i.e., at basal levels of LTR-driven transcription. In this work, we studied the involvement of functional subsequences of the HIV-1 LTR in rep-mediated inhibition in the absence of Tat. Mutated LTRs driving an indicator gene (cat) were cointroduced into human SW480 cells together with rep alone or with double-stranded DNA fragments or RNA containing sequences of the HIV-1 LTR. The results indicate that rep strongly enhances the function of negative regulatory elements of the LTR. In addition, the experiments revealed a transcribed sequence element located within the TAR-coding sequence termed AHHH (AAV-HIV homology element derived from HIV-1) which is involved in rep-mediated inhibition. The AHHH element is also involved in down-regulation of basal expression levels in the absence of rep, suggesting that AHHH also contributes to negative regulatory functions of the LTR of HIV-1. In contrast, positive regulatory elements of the HIV-1 LTR such as the NF kappa B and SP1 binding sites have no significant influence on the rep-mediated inhibition. Images PMID:8289357
Shapley, Robert M.; Xing, Dajun
2012-01-01
Theoretical considerations have led to the concept that the cerebral cortex is operating in a balanced state in which synaptic excitation is approximately balanced by synaptic inhibition from the local cortical circuit. This paper is about the functional consequences of the balanced state in sensory cortex. One consequence is gain control: there is experimental evidence and theoretical support for the idea that local circuit inhibition acts as a local automatic gain control throughout the cortex. Second, inhibition increases cortical feature selectivity: many studies of different sensory cortical areas have reported that suppressive mechanisms contribute to feature selectivity. Synaptic inhibition from the local microcircuit should be untuned (or broadly tuned) for stimulus features because of the microarchitecture of the cortical microcircuit. Untuned inhibition probably is the source of Untuned Suppression that enhances feature selectivity. We studied inhibition’s function in our experiments, guided by a neuronal network model, on orientation selectivity in the primary visual cortex, V1, of the Macaque monkey. Our results revealed that Untuned Suppression, generated by local circuit inhibition, is crucial for the generation of highly orientation-selective cells in V1 cortex. PMID:23036513
ERIC Educational Resources Information Center
Shao, Zeshu; Roelofs, Ardi; Martin, Randi C.; Meyer, Antje S.
2015-01-01
In 2 studies, we examined whether explicit distractors are necessary and sufficient to evoke selective inhibition in 3 naming tasks: the semantic blocking, picture-word interference, and color-word Stroop task. Delta plots were used to quantify the size of the interference effects as a function of reaction time (RT). Selective inhibition was…
Kit for detecting nucleic acid sequences using competitive hybridization probes
Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.
2001-01-01
A kit is provided for detecting a target nucleic acid sequence in a sample, the kit comprising: a first hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a first portion of the target sequence, the first hybridization probe including a first complexing agent for forming a binding pair with a second complexing agent; and a second hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a second portion of the target sequence to which the first hybridization probe does not selectively hybridize, the second hybridization probe including a detectable marker; a third hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a first portion of the target sequence, the third hybridization probe including the same detectable marker as the second hybridization probe; and a fourth hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a second portion of the target sequence to which the third hybridization probe does not selectively hybridize, the fourth hybridization probe including the first complexing agent for forming a binding pair with the second complexing agent; wherein the first and second hybridization probes are capable of simultaneously hybridizing to the target sequence and the third and fourth hybridization probes are capable of simultaneously hybridizing to the target sequence, the detectable marker is not present on the first or fourth hybridization probes and the first, second, third, and fourth hybridization probes each include a competitive nucleic acid sequence which is sufficiently complementary to a third portion of the target sequence that the competitive sequences of the first, second, third, and fourth hybridization probes compete with each other to hybridize to the third portion of the target sequence.
Highlander, S K; Wickersham, E A; Garza, O; Weinstock, G M
1993-01-01
Multicopy and single-copy chromosomal fusions between the Pasteurella haemolytica leukotoxin regulatory region and the Escherichia coli beta-galactosidase gene have been constructed. These fusions were used as reporters to identify and isolate regulators of leukotoxin expression from a P. haemolytica cosmid library. A cosmid clone, which inhibited leukotoxin expression from multicopy and single-copy protein fusions, was isolated and found to contain the complete leukotoxin gene cluster plus additional upstream sequences. The locus responsible for inhibition of expression from leukotoxin-beta-galactosidase fusions was mapped within these upstream sequences, by transposon mutagenesis with Tn5, and its DNA sequence was determined. The inhibitory activity was found to be associated with a predicted 440-amino-acid reading frame (lapA) that lies within a four-gene arginine transport locus. LapA is predicted to be the nucleotide-binding component of this transport system and shares homology with the Clp family of proteases. Images PMID:8359916
Prediction of siRNA potency using sparse logistic regression.
Hu, Wei; Hu, John
2014-06-01
RNA interference (RNAi) can modulate gene expression at post-transcriptional as well as transcriptional levels. Short interfering RNA (siRNA) serves as a trigger for the RNAi gene inhibition mechanism, and therefore is a crucial intermediate step in RNAi. There have been extensive studies to identify the sequence characteristics of potent siRNAs. One such study built a linear model using LASSO (Least Absolute Shrinkage and Selection Operator) to measure the contribution of each siRNA sequence feature. This model is simple and interpretable, but it requires a large number of nonzero weights. We have introduced a novel technique, sparse logistic regression, to build a linear model using single-position specific nucleotide compositions which has the same prediction accuracy of the linear model based on LASSO. The weights in our new model share the same general trend as those in the previous model, but have only 25 nonzero weights out of a total 84 weights, a 54% reduction compared to the previous model. Contrary to the linear model based on LASSO, our model suggests that only a few positions are influential on the efficacy of the siRNA, which are the 5' and 3' ends and the seed region of siRNA sequences. We also employed sparse logistic regression to build a linear model using dual-position specific nucleotide compositions, a task LASSO is not able to accomplish well due to its high dimensional nature. Our results demonstrate the superiority of sparse logistic regression as a technique for both feature selection and regression over LASSO in the context of siRNA design.
Fernandez y Mostajo, Mercedes; van der Reijden, Wil A.; Buijs, Mark J.; Beertsen, Wouter; van der Weijden, Fridus; Crielaard, Wim; Zaura, Egija
2014-01-01
Oral bacteria live in symbiosis with the host. Therefore, when mouthwashes are indicated, selective inhibition of taxa contributing to disease is preferred instead of broad-spectrum antimicrobials. The potential selectivity of an oxygenating mouthwash, Ardox-X® (AX), has not been assessed. The aim of this study was to determine the antimicrobial potential of AX and the effects of a twice-daily oral rinse on dental plaque composition. Material and methods: In vitro, 16 oral bacterial strains were tested using agar diffusion susceptibility, minimum inhibitory and minimum bactericidal concentration tests. A pilot clinical study was performed with 25 healthy volunteers. Clinical assessments and microbiological sampling of supragingival plaque were performed at 1 month before the experiment (Pre-exp), at the start of the experiment (Baseline) and after the one-week experimental period (Post-exp). During the experiment individuals used AX mouthwash twice daily in absence of other oral hygiene measures. The microbiological composition of plaque was assessed by 16S rRNA gene amplicon sequencing. Results: AX showed high inter-species variation in microbial growth inhibition. The tested Prevotella strains and Fusobacterium nucleatum showed the highest sensitivity, while streptococci and Lactobacillus acidophilus were most resistant to AX. Plaque scores at Pre-exp and Baseline visits did not differ significantly (p = 0.193), nor did the microbial composition of plaque. During a period of 7-days non-brushing but twice daily rinsing plaque scores increased from 2.21 (0.31) at Baseline to 2.43 (0.39) Post-exp. A significant microbial shift in composition was observed: genus Streptococcus and Veillonella increased while Corynebacterium, Haemophilus, Leptotrichia, Cardiobacterium and Capnocytophaga decreased (p ≤ 0.001). Conclusion: AX has the potential for selective inhibition of oral bacteria. The shift in oral microbiome after 1 week of rinsing deserves further research. PMID:25101249
Therapeutic antibody targeting of individual Notch receptors.
Wu, Yan; Cain-Hom, Carol; Choy, Lisa; Hagenbeek, Thijs J; de Leon, Gladys P; Chen, Yongmei; Finkle, David; Venook, Rayna; Wu, Xiumin; Ridgway, John; Schahin-Reed, Dorreyah; Dow, Graham J; Shelton, Amy; Stawicki, Scott; Watts, Ryan J; Zhang, Jeff; Choy, Robert; Howard, Peter; Kadyk, Lisa; Yan, Minhong; Zha, Jiping; Callahan, Christopher A; Hymowitz, Sarah G; Siebel, Christian W
2010-04-15
The four receptors of the Notch family are widely expressed transmembrane proteins that function as key conduits through which mammalian cells communicate to regulate cell fate and growth. Ligand binding triggers a conformational change in the receptor negative regulatory region (NRR) that enables ADAM protease cleavage at a juxtamembrane site that otherwise lies buried within the quiescent NRR. Subsequent intramembrane proteolysis catalysed by the gamma-secretase complex liberates the intracellular domain (ICD) to initiate the downstream Notch transcriptional program. Aberrant signalling through each receptor has been linked to numerous diseases, particularly cancer, making the Notch pathway a compelling target for new drugs. Although gamma-secretase inhibitors (GSIs) have progressed into the clinic, GSIs fail to distinguish individual Notch receptors, inhibit other signalling pathways and cause intestinal toxicity, attributed to dual inhibition of Notch1 and 2 (ref. 11). To elucidate the discrete functions of Notch1 and Notch2 and develop clinically relevant inhibitors that reduce intestinal toxicity, we used phage display technology to generate highly specialized antibodies that specifically antagonize each receptor paralogue and yet cross-react with the human and mouse sequences, enabling the discrimination of Notch1 versus Notch2 function in human patients and rodent models. Our co-crystal structure shows that the inhibitory mechanism relies on stabilizing NRR quiescence. Selective blocking of Notch1 inhibits tumour growth in pre-clinical models through two mechanisms: inhibition of cancer cell growth and deregulation of angiogenesis. Whereas inhibition of Notch1 plus Notch2 causes severe intestinal toxicity, inhibition of either receptor alone reduces or avoids this effect, demonstrating a clear advantage over pan-Notch inhibitors. Our studies emphasize the value of paralogue-specific antagonists in dissecting the contributions of distinct Notch receptors to differentiation and disease and reveal the therapeutic promise in targeting Notch1 and Notch2 independently.
Modelling inhibition of avian aromatase by azole pesticides.
Saxena, A K; Devillers, J; Bhunia, S S; Bro, E
2015-01-01
The potential effects of pesticides and their metabolites on the endocrine system are of major concern to wildlife and human health. In this context, the azole pesticides have earned special attention due to their cytochrome P450 aromatase inhibition potential. Cytochrome P450 aromatase (CYP19) catalyses the conversion of androstenedione and testosterone into oestrone and oestradiol, respectively. Thus, aromatase modulates the oestrogenic balance essential not only for females, but also for male physiology, including gonadal function. Its inhibition affects reproductive organs, fertility and sexual behaviour in humans and wildlife species. Several studies have shown that azole pesticides are able to inhibit human and fish aromatases but the information on birds is lacking. Consequently, it appeared to be of interest to estimate the aromatase inhibition of azoles in three different avian species, namely Gallus gallus, Coturnix coturnix japonica and Taeniopygia guttata. In the absence of the crystal structure of the aromatase enzyme in these bird species, homology models for the individual avian species were constructed using the crystal structure of human aromatase (hAr) (pdb: 3EQM) that showed high sequence similarity for G. gallus (82.0%), T. guttata (81.9%) and C. japonica (81.2%). A homology model with Oncorhynchus mykiss (81.9%) was also designed for comparison purpose. The homology-modelled aromatase for each avian and fish species and crystal structure of human aromatase were selected for docking 46 structurally diverse azoles and related compounds. We showed that the docking behaviour of the chemicals on the different aromatases was broadly the same. We also demonstrated that there was an acceptable level of correlation between the binding score values and the available aromatase inhibition data. This means that the homology models derived on bird and fish species can be used to approximate the potential inhibitory effects of azoles on their aromatase.
Brabant, Magali; Baux, Ludwig; Casimir, Richard; Briand, Jean Paul; Chaloin, Olivier; Porceddu, Mathieu; Buron, Nelly; Chauvier, David; Lassalle, Myriam; Lecoeur, Hervé; Langonné, Alain; Dupont, Sylvie; Déas, Olivier; Brenner, Catherine; Rebouillat, Dominique; Muller, Sylviane; Borgne-Sanchez, Annie; Jacotot, Etienne
2009-10-01
Dengue viruses belong to the Flavivirus family and are responsible for hemorrhagic fever in Human. Dengue virus infection triggers apoptosis especially through the expression of the small membrane (M) protein. Using isolated mitochondria, we found that synthetic peptides containing the C-terminus part of the M ectodomain caused apoptosis-related mitochondrial membrane permeabilization (MMP) events. These events include matrix swelling and the dissipation of the mitochondrial transmembrane potential (DeltaPsi(m)). Protein M Flavivirus sequence alignments and helical wheel projections reveal a conserved distribution of charged residues. Moreover, when combined to the cell penetrating HIV-1 Tat peptide transduction domain (Tat-PTD), this sequence triggers a caspase-dependent cell death associated with DeltaPsi(m) loss and cytochrome c release. Mutational approaches coupled to functional screening on isolated mitochondria resulted in the selection of a protein M derived sequence containing nine residues with potent MMP-inducing properties on isolated mitochondria. A chimeric peptide composed of a Tat-PTD linked to the 9-mer entity triggers MMP and cell death. Finally, local administration of this chimeric peptide induces growth inhibition of xenograft prostate PC3 tumors in immuno-compromised mice, and significantly enhances animal survival. Together, these findings support the notion of using viral genomes as valuable sources to discover mitochondria-targeted sequences that may lead to the development of new anticancer compounds.
p21-activated kinase inhibitors.
Rudolph, Joachim; Crawford, James J; Hoeflich, Klaus P; Chernoff, Jonathan
2013-01-01
The p21-activated kinases (PAKs) are Ser/Thr kinases in the STE20 kinase family with important roles in regulating cytoskeletal organization, cell migration, and signaling. The PAK enzyme family comprises six members subdivided into two groups: Group I, represented by PAK1, 2, and 3, and Group II, represented by PAK 4, 5, and 6, based on sequence and structural homology. Individual PAK isoforms were found to be overexpressed and amplified in a variety of human cancers, and in vitro and in vivo studies using genetically engineered systems as well as small-molecule tool compounds have suggested therapeutic utility of PAKs as oncology targets. The identification of potent and kinome-selective ATP-competitive PAK inhibitors has proven challenging, likely caused by the openness and unique plasticity of the ATP-binding site of PAK enzymes. Progress in achieving increased kinase selectivity has been achieved with certain inhibitors but at the expense of increased molecular weight. Allosteric inhibitors, such as IPA-3, leverage the unique Group I PAK autoregulatory domain for selective inhibition, and this approach might provide an outlet to evade the kinase selectivity challenges observed with ATP-competitive PAK inhibitors. © 2013 Elsevier Inc. All rights reserved.
Encrypted Antimicrobial Peptides from Plant Proteins.
Ramada, M H S; Brand, G D; Abrão, F Y; Oliveira, M; Filho, J L Cardozo; Galbieri, R; Gramacho, K P; Prates, M V; Bloch, C
2017-10-16
Examples of bioactive peptides derived from internal sequences of proteins are known for decades. The great majority of these findings appear to be fortuitous rather than the result of a deliberate and methodological-based enterprise. In the present work, we describe the identification and the biological activities of novel antimicrobial peptides unveiled as internal fragments of various plant proteins founded on our hypothesis-driven search strategy. All putative encrypted antimicrobial peptides were selected based upon their physicochemical properties that were iteratively selected by an in-house computer program named Kamal. The selected peptides were chemically synthesized and evaluated for their interaction with model membranes. Sixteen of these peptides showed antimicrobial activity against human and/or plant pathogens, some with a wide spectrum of activity presenting similar or superior inhibition efficacy when compared to classical antimicrobial peptides (AMPs). These original and previously unforeseen molecules constitute a broader and undisputable set of evidences produced by our group that illustrate how the intragenic concept is a workable reality and should be carefully explored not only for microbicidal agents but also for many other biological functions.
Medlin, H K; Zhu, Y Q; Remington, K M; Phillips, T R; North, T W
1996-01-01
We have selected and plaque purified a mutant of feline immunodeficiency virus (FIV) that is resistant to 2',3'-dideoxycytidine (ddC). This mutant was selected in cultured cells in the continuous presence of 25 microM ddC. The mutant, designated DCR-5c, was fourfold resistant to ddC, threefold resistant to 2',3'-dideoxyinosine, and more than fourfold resistant to phosphonoformic acid. DCR-5c displayed little or no resistance to (-)-beta-2',3'-dideoxy-3'-thiacytidine, 3'-azido-3'-deoxythymidine, or 9-(2-phosphonylmethoxyethyl) adenine. Reverse transcriptase purified from DCR-5c was less susceptible to inhibition by ddCTP, phosphonoformic acid, ddATP, or azido-dTTP than the wild-type FIV reverse transcriptase. Sequence analysis of DCR-5c revealed a single base change (G to C at nucleotide 2342) in the reverse transcriptase-encoding region of FIV. This mutation results in substitution of His for Asp at codon 3 of FIV reverse transcriptase. The role of this mutation in ddC resistance was confirmed by site-directed mutagenesis. PMID:8849258
Effects of sound intensity on temporal properties of inhibition in the pallid bat auditory cortex.
Razak, Khaleel A
2013-01-01
Auditory neurons in bats that use frequency modulated (FM) sweeps for echolocation are selective for the behaviorally-relevant rates and direction of frequency change. Such selectivity arises through spectrotemporal interactions between excitatory and inhibitory components of the receptive field. In the pallid bat auditory system, the relationship between FM sweep direction/rate selectivity and spectral and temporal properties of sideband inhibition have been characterized. Of note is the temporal asymmetry in sideband inhibition, with low-frequency inhibition (LFI) exhibiting faster arrival times compared to high-frequency inhibition (HFI). Using the two-tone inhibition over time (TTI) stimulus paradigm, this study investigated the interactions between two sound parameters in shaping sideband inhibition: intensity and time. Specifically, the impact of changing relative intensities of the excitatory and inhibitory tones on arrival time of inhibition was studied. Using this stimulation paradigm, single unit data from the auditory cortex of pentobarbital-anesthetized cortex show that the threshold for LFI is on average ~8 dB lower than HFI. For equal intensity tones near threshold, LFI is stronger than HFI. When the inhibitory tone intensity is increased further from threshold, the strength asymmetry decreased. The temporal asymmetry in LFI vs. HFI arrival time is strongest when the excitatory and inhibitory tones are of equal intensities or if excitatory tone is louder. As inhibitory tone intensity is increased, temporal asymmetry decreased suggesting that the relative magnitude of excitatory and inhibitory inputs shape arrival time of inhibition and FM sweep rate and direction selectivity. Given that most FM bats use downward sweeps as echolocation calls, a similar asymmetry in threshold and strength of LFI vs. HFI may be a general adaptation to enhance direction selectivity while maintaining sweep-rate selective responses to downward sweeps.
A complicated complex: Ion channels, voltage sensing, cell membranes and peptide inhibitors.
Zhang, Alan H; Sharma, Gagan; Undheim, Eivind A B; Jia, Xinying; Mobli, Mehdi
2018-04-21
Voltage-gated ion channels (VGICs) are specialised ion channels that have a voltage dependent mode of action, where ion conduction, or gating, is controlled by a voltage-sensing mechanism. VGICs are critical for electrical signalling and are therefore important pharmacological targets. Among these, voltage-gated sodium channels (Na V s) have attracted particular attention as potential analgesic targets. Na V s, however, comprise several structurally similar subtypes with unique localisations and distinct functions, ranging from amplification of action potentials in nociception (e.g. Na V 1.7) to controlling electrical signalling in cardiac function (Na V 1.5). Understanding the structural basis of Na V function is therefore of great significance, both to our knowledge of electrical signalling and in development of subtype and state selective drugs. An important tool in this pursuit has been the use of peptides from animal venoms as selective Na V modulators. In this review, we look at peptides, particularly from spider venoms, that inhibit Na V s by binding to the voltage sensing domain (VSD) of this channel, known as gating modifier toxins (GMT). In the first part of the review, we look at the structural determinants of voltage sensing in VGICs, the gating cycle and the conformational changes that accompany VSD movement. Next, the modulation of the analgesic target Na V 1.7 by GMTs is reviewed to develop bioinformatic tools that, based on sequence information alone, can identify toxins that are likely to inhibit this channel. The same approach is also used to define VSD sequences, other than that from Na V 1.7, which are likely to be sensitive to this class of toxins. The final section of the review focuses on the important role of the cellular membrane in channel modulation and also how the lipid composition affects measurements of peptide-channel interactions both in binding kinetics measurements in solution and in cell-based functional assays. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hraber, Peter; Korber, Bette; Wagh, Kshitij
Within-host genetic sequencing from samples collected over time provides a dynamic view of how viruses evade host immunity. Immune-driven mutations might stimulate neutralization breadth by selecting antibodies adapted to cycles of immune escape that generate within-subject epitope diversity. Comprehensive identification of immune-escape mutations is experimentally and computationally challenging. With current technology, many more viral sequences can readily be obtained than can be tested for binding and neutralization, making down-selection necessary. Typically, this is done manually, by picking variants that represent different time-points and branches on a phylogenetic tree. Such strategies are likely to miss many relevant mutations and combinations ofmore » mutations, and to be redundant for other mutations. Longitudinal Antigenic Sequences and Sites from Intrahost Evolution (LASSIE) uses transmitted founder loss to identify virus “hot-spots” under putative immune selection and chooses sequences that represent recurrent mutations in selected sites. LASSIE favors earliest sequences in which mutations arise. Here, with well-characterized longitudinal Env sequences, we confirmed selected sites were concentrated in antibody contacts and selected sequences represented diverse antigenic phenotypes. Finally, practical applications include rapidly identifying immune targets under selective pressure within a subject, selecting minimal sets of reagents for immunological assays that characterize evolving antibody responses, and for immunogens in polyvalent “cocktail” vaccines.« less
Diaz, MA; Bik, EM; Carlin, KP; Venn-Watson, SK; Jensen, ED; Jones, SE; Gaston, EP; Relman, DA; Versalovic, J
2013-01-01
Aims In order to develop complementary health management strategies for marine mammals, we used culture-based and culture-independent approaches to identify gastrointestinal lactobacilli of the common bottlenose dolphin, Tursiops truncatus. Methods and Results We screened 307 bacterial isolates from oral and rectal swabs, milk and gastric fluid, collected from 38 dolphins in the U.S. Navy Marine Mammal Program, for potentially beneficial features. We focused our search on lactobacilli and evaluated their ability to modulate TNF secretion by host cells and inhibit growth of pathogens. We recovered Lactobacillus salivarius strains which secreted factors that stimulated TNF production by human monocytoid cells. These Lact. salivarius isolates inhibited growth of selected marine mammal and human bacterial pathogens. In addition, we identified a novel Lactobacillus species by culture and direct sequencing with 96·3% 16S rDNA sequence similarity to Lactobacillus ceti. Conclusions Dolphin-derived Lact. salivarius isolates possess features making them candidate probiotics for clinical studies in marine mammals. Significance and Impact of the Study This is the first study to isolate lactobacilli from dolphins, including a novel Lactobacillus species and a new strain of Lact. salivarius, with potential for veterinary probiotic applications. The isolation and identification of novel Lactobacillus spp. and other indigenous microbes from bottlenose dolphins will enable the study of the biology of symbiotic members of the dolphin microbiota and facilitate the understanding of the microbiomes of these unique animals. PMID:23855505
A Dynamical Model of Pitch Memory Provides an Improved Basis for Implied Harmony Estimation.
Kim, Ji Chul
2017-01-01
Tonal melody can imply vertical harmony through a sequence of tones. Current methods for automatic chord estimation commonly use chroma-based features extracted from audio signals. However, the implied harmony of unaccompanied melodies can be difficult to estimate on the basis of chroma content in the presence of frequent nonchord tones. Here we present a novel approach to automatic chord estimation based on the human perception of pitch sequences. We use cohesion and inhibition between pitches in auditory short-term memory to differentiate chord tones and nonchord tones in tonal melodies. We model short-term pitch memory as a gradient frequency neural network, which is a biologically realistic model of auditory neural processing. The model is a dynamical system consisting of a network of tonotopically tuned nonlinear oscillators driven by audio signals. The oscillators interact with each other through nonlinear resonance and lateral inhibition, and the pattern of oscillatory traces emerging from the interactions is taken as a measure of pitch salience. We test the model with a collection of unaccompanied tonal melodies to evaluate it as a feature extractor for chord estimation. We show that chord tones are selectively enhanced in the response of the model, thereby increasing the accuracy of implied harmony estimation. We also find that, like other existing features for chord estimation, the performance of the model can be improved by using segmented input signals. We discuss possible ways to expand the present model into a full chord estimation system within the dynamical systems framework.
Ammonia oxidation-dependent growth of group I.1b Thaumarchaeota in acidic red soil microcosms.
Wu, Yucheng; Conrad, Ralf
2014-07-01
Accumulating evidence suggests that Thaumarchaeota may control nitrification in acidic soils. However, the composition of the thaumarchaeotal communities and their functioning is not well known. Therefore, we studied nitrification activity in relation to abundance and composition of Thaumarchaeota in an acidic red soil from China, using microcosms incubated with and without cellulose amendment. Cellulose was selected to simulate the input of crop residues used to increase soil fertility by local farming. Accumulation of NO3-(-N) was correlated with the growth of Thaumarchaeota as determined by qPCR of 16S rRNA and ammonia monooxygenase (amoA) genes. Both nitrification activity and thaumarchaeotal growth were inhibited by acetylene. They were also inhibited by cellulose amendment, possibly due to the depletion of ammonium by enhanced heterotrophic assimilation. These results indicated that growth of Thaumarchaeota was dependent on ammonia oxidation. The thaumarchaeotal 16S rRNA gene sequences in the red soil were dominated by a clade related to soil fosmid clone 29i4 within the group I.1b, which is widely distributed but so far uncultured. The archaeal amoA sequences were mainly related to the Nitrososphaera sister cluster. These observations suggest that fosmid clone 29i4 and Nitrososphaera sister cluster represent the same group of Thaumarchaeota and dominate ammonia oxidation in acidic red soil. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Gibson, Gary E; Chen, Huan-Lian; Xu, Hui; Qiu, Linghua; Xu, Zuoshang; Denton, Travis T; Shi, Qingli
2012-06-01
Understanding the molecular sequence of events that culminate in multiple abnormalities in brains from patients that died with Alzheimer's disease (AD) will help to reveal the mechanisms of the disease and identify upstream events as therapeutic targets. The activity of the mitochondrial α-ketoglutarate dehydrogenase complex (KGDHC) in homogenates from autopsy brain declines with AD. Experimental reductions in KGDHC in mouse models of AD promote plaque and tangle formation, the hallmark pathologies of AD. We hypothesize that deficits in KGDHC also lead to the abnormalities in endoplasmic reticulum (ER) calcium stores and cytosolic calcium following K(+) depolarization that occurs in cells from AD patients and transgenic models of AD. The activity of the mitochondrial enzyme KGDHC was diminished acutely (minutes), long-term (days), or chronically (weeks). Acute inhibition of KGDHC produced effects on calcium opposite to those in AD, while the chronic or long-term inhibition of KGDHC mimicked the AD-related changes in calcium. Divergent changes in proteins released from the mitochondria that affect endoplasmic reticulum calcium channels may underlie the selective cellular consequences of acute versus longer term inhibition of KGDHC. The results suggest that the mitochondrial abnormalities in AD can be upstream of those in calcium. Copyright © 2012 Elsevier Inc. All rights reserved.
Gibson, Gary E.; Chen, Huan-Lian; Xu, Hui; Qiu, Linghua; Xu, Zuoshang; Denton, Travis T.; Shi, Qingli
2011-01-01
Understanding the molecular sequence of events that culminate in multiple abnormalities in brains from patients that died with Alzheimer’s Disease (AD) will help to reveal the mechanisms of the disease and identify upstream events as therapeutic targets. The activity of the mitochondrial α-ketoglutarate dehydrogenase complex (KGDHC) in homogenates from autopsy brain declines with AD. Experimental reductions in KGDHC in mouse models of AD promote plaque and tangle formation, the hallmark pathologies of AD. We hypothesize that deficits in KGDHC also lead to the abnormalities in endoplasmic reticulum (ER) calcium stores and cytosolic calcium following K+ -depolarization that occur in cells from AD patients and transgenic models of AD. The activity of the mitochondrial enzyme KGDHC was diminished acutely (minutes), long term (days) or chronically (weeks). Acute inhibition of KGDHC produced effects on calcium opposite to those in AD, while the chronic or long term inhibition of KGDHC mimicked the AD-related changes in calcium. Divergent changes in proteins released from the mitochondria that effect ER calcium channels may underlie the selective cellular consequences of acute versus longer term inhibition of KGDHC. The results suggest that the mitochondrial abnormalities in AD can be upstream of those in calcium. PMID:22169199
Emerging therapeutic targets in the short QT syndrome.
Hancox, Jules C; Whittaker, Dominic G; Du, Chunyun; Stuart, A Graham; Zhang, Henggui
2018-05-01
Short QT Syndrome (SQTS) is a rare but dangerous condition characterised by abbreviated repolarisation, atrial and ventricular arrhythmias and risk of sudden death. Implantable cardioverter defibrillators (ICDs) are a first line protection against sudden death, but adjunct pharmacology is beneficial and desirable. Areas covered: The genetic basis for genotyped SQTS variants (SQT1-SQT8) and evidence for arrhythmia substrates from experimental and simulation studies are discussed. The main ion channel/transporter targets for antiarrhythmic pharmacology are considered in respect of potential genotype-specific and non-specific treatments for the syndrome. Expert opinion: Potassium channel blockade is valuable for restoring repolarisation and QT interval, though genotype-specific limitations exist in the use of some K + channel inhibitors. A combination of K + current inhibition during the action potential plateau, with sodium channel inhibition that collectively result in delaying repolarisation and post-repolarisation refractoriness is likely to be valuable in prolonging effective refractory period and wavelength for re-entry. Genotype-specific K + channel inhibition is limited by a lack of targeted inhibitors in clinical use, though experimentally available selective inhibitors now exist. The relatively low proportion of successfully genotyped cases justifies an exome or genome sequencing approach, to reveal new mediators and targets, as demonstrated recently for SLC4A3 in SQT8.
New leads for selective GSK-3 inhibition: pharmacophore mapping and virtual screening studies.
Patel, Dhilon S; Bharatam, Prasad V
2006-01-01
Glycogen Synthase Kinase-3 is a regulatory serine/threonine kinase, which is being targeted for the treatment of a number of human diseases including type-2 diabetes mellitus, neurodegenerative diseases, cancer and chronic inflammation. Selective GSK-3 inhibition is an important requirement owing to the possibility of side effects arising from other kinases. A pharmacophore mapping strategy is employed in this work to identify new leads for selective GSK-3 inhibition. Ligands known to show selective GSK-3 inhibition were employed in generating a pharmacophore map using distance comparison method (DISCO). The derived pharmacophore map was validated using (i) important interactions involved in selective GSK-3 inhibitions, and (ii) an in-house database containing different classes of GSK-3 selective, non-selective and inactive molecules. New Lead identification was carried out by performing virtual screening using validated pharmacophoric query and three chemical databases namely NCI, Maybridge and Leadquest. Further data reduction was carried out by employing virtual filters based on (i) Lipinski's rule of 5 (ii) van der Waals bumps and (iii) restricting the number of rotatable bonds to seven. Final screening was carried out using FlexX based molecular docking study.
New leads for selective GSK-3 inhibition: pharmacophore mapping and virtual screening studies
NASA Astrophysics Data System (ADS)
Patel, Dhilon S.; Bharatam, Prasad V.
2006-01-01
Glycogen Synthase Kinase-3 is a regulatory serine/threonine kinase, which is being targeted for the treatment of a number of human diseases including type-2 diabetes mellitus, neurodegenerative diseases, cancer and chronic inflammation. Selective GSK-3 inhibition is an important requirement owing to the possibility of side effects arising from other kinases. A pharmacophore mapping strategy is employed in this work to identify new leads for selective GSK-3 inhibition. Ligands known to show selective GSK-3 inhibition were employed in generating a pharmacophore map using distance comparison method (DISCO). The derived pharmacophore map was validated using (i) important interactions involved in selective GSK-3 inhibitions, and (ii) an in-house database containing different classes of GSK-3 selective, non-selective and inactive molecules. New Lead identification was carried out by performing virtual screening using validated pharmacophoric query and three chemical databases namely NCI, Maybridge and Leadquest. Further data reduction was carried out by employing virtual filters based on (i) Lipinski's rule of 5 (ii) van der Waals bumps and (iii) restricting the number of rotatable bonds to seven. Final screening was carried out using FlexX based molecular docking study.
Genomic aberrations in the FGFR pathway: opportunities for targeted therapies in solid tumors
Dienstmann, R.; Rodon, J.; Prat, A.; Perez-Garcia, J.; Adamo, B.; Felip, E.; Cortes, J.; Iafrate, A. J.; Nuciforo, P.; Tabernero, J.
2014-01-01
The fibroblast growth factor receptor (FGFR) cascade plays crucial roles in tumor cell proliferation, angiogenesis, migration and survival. Accumulating evidence suggests that in some tumor types, FGFRs are bona fide oncogenes to which cancer cells are addicted. Because FGFR inhibition can reduce proliferation and induce cell death in a variety of in vitro and in vivo tumor models harboring FGFR aberrations, a growing number of research groups have selected FGFRs as targets for anticancer drug development. Multikinase FGFR/vascular endothelial growth factor receptor (VEGFR) inhibitors have shown promising activity in breast cancer patients with FGFR1 and/or FGF3 amplification. Early clinical trials with selective FGFR inhibitors, which may overcome the toxicity constraints raised by multitarget kinase inhibition, are recruiting patients with known FGFR(1–4) status based on genomic screens. Preliminary signs of antitumor activity have been demonstrated in some tumor types, including squamous cell lung carcinomas. Rational combination of targeted therapies is expected to further increase the efficacy of selective FGFR inhibitors. Herein, we discuss unsolved questions in the clinical development of these agents and suggest guidelines for management of hyperphosphatemia, a class-specific mechanism-based toxicity. In addition, we propose standardized definitions for FGFR1 and FGFR2 gene amplification based on in situ hybridization methods. Extended access to next-generation sequencing platforms will facilitate the identification of diseases in which somatic FGFR(1–4) mutations, amplifications and fusions are potentially driving cancer cell viability, further strengthening the role of FGFR signaling in cancer biology and providing more possibilities for the therapeutic application of FGFR inhibitors. PMID:24265351
Bulau, Patrick; Okuno, Atsuro; Thome, Elke; Schmitz, Tina; Peter-Katalinic, Jasna; Keller, Rainer
2005-11-01
The structure of the precursor of a molt-inhibiting hormone (MIH) of the American crayfish, Orconectes limosus was determined by cloning of a cDNA based on RNA from the neurosecretory perikarya of the X-organ in the eyestalk ganglia. The open reading frame includes the complete precursor sequence, consisting of a signal peptide of 29, and the MIH sequence of 77 amino acids. In addition, the mature peptide was isolated by HPLC from the neurohemal sinus gland and analyzed by ESI-MS and MALDI-TOF-MS peptide mapping. This showed that the mature peptide (Mass 8664.29 Da) consists of only 75 amino acids, having Ala75-NH2 as C-terminus. Thus, C-terminal Arg77 of the precursor is removed during processing, and Gly76 serves as an amide donor. Sequence comparison confirms this peptide as a novel member of the large family, which includes crustacean hyperglycaemic hormone (CHH), MIH and gonad (vitellogenesis)-inhibiting hormone (GIH/VIH). The lack of a CPRP (CHH-precursor related peptide) in the hormone precursor, the size and specific sequence characteristics show that Orl MIH belongs to the MIH/GIH(VIH) subgroup of this larger family. Comparison with the MIH of Procambarus clarkii, the only other MIH that has thus far been identified in freshwater crayfish, shows extremely high sequence conservation. Both MIHs differ in only one amino acid residue ( approximately 99% identity), whereas the sequence identity to several other known MIHs is between 40 and 46%.
Chiu, Yi-Yuan; Lin, Chih-Ta; Huang, Jhang-Wei; Hsu, Kai-Cheng; Tseng, Jen-Hu; You, Syuan-Ren; Yang, Jinn-Moon
2013-01-01
Kinases play central roles in signaling pathways and are promising therapeutic targets for many diseases. Designing selective kinase inhibitors is an emergent and challenging task, because kinases share an evolutionary conserved ATP-binding site. KIDFamMap (http://gemdock.life.nctu.edu.tw/KIDFamMap/) is the first database to explore kinase-inhibitor families (KIFs) and kinase-inhibitor-disease (KID) relationships for kinase inhibitor selectivity and mechanisms. This database includes 1208 KIFs, 962 KIDs, 55 603 kinase-inhibitor interactions (KIIs), 35 788 kinase inhibitors, 399 human protein kinases, 339 diseases and 638 disease allelic variants. Here, a KIF can be defined as follows: (i) the kinases in the KIF with significant sequence similarity, (ii) the inhibitors in the KIF with significant topology similarity and (iii) the KIIs in the KIF with significant interaction similarity. The KIIs within a KIF are often conserved on some consensus KIDFamMap anchors, which represent conserved interactions between the kinase subsites and consensus moieties of their inhibitors. Our experimental results reveal that the members of a KIF often possess similar inhibition profiles. The KIDFamMap anchors can reflect kinase conformations types, kinase functions and kinase inhibitor selectivity. We believe that KIDFamMap provides biological insights into kinase inhibitor selectivity and binding mechanisms. PMID:23193279
Zhang, Li; Zhang, Yanyu; Tai, Lingyu; Jiang, Kuan; Xie, Cao; Li, Zhuoquan; Lin, Yao-Zhong; Wei, Gang; Lu, Weiyue; Pan, Weisan
2016-09-15
Clinical application of cell-penetrating peptides (CPPs) in cancer therapy is greatly restricted due to lack of tissue selectivity and tumor-targeting ability. CB5005, a rationally designed CPP that targets and inhibits intracellular NF-κB activation, is constituted by a unique membrane-permeable sequence (CB5005M) cascading to a NF-κB nuclear localization sequence (CB5005N). In vitro cellular evaluation confirmed that CB5005 was effectively taken up by brain capillary endothelial cell bEnd.3 and glioma cells U87. The intracellular localization analysis further demonstrated that CB5005 could not only penetrate into the cells but also enter into their nuclei. More interestingly, CB5005 permeated deeply into the tumor spheroids of U87 cell. In vivo imaging illustrated that the fluorescence-labeled CB5005 distributed itself into the brain and accumulated at the tumor site after intravenous injection. Given the important role of over expressed NF-κB in tumor growth and development, we further investigated CB5005 for its potential in treatment of glioma. When combined administration in vitro with doxorubicin (DOX), CB5005 exhibited a synergistic effect in killing U87 cells. In a nude mice xenograft model, CB5005 inhibited the growth of tumor when applied alone, and displayed a synergistic anti-tumor effect with DOX. In conclusion, CB5005 functioned simultaneously as a cell penetrating peptide and a tumor growth inhibitor, therefore can work as a potential synergist for chemotherapy of human tumor. Clinical application of cell-penetrating peptides in cancer therapy is restricted due to lack of tissue selectivity and tumor-targeting ability. In this manuscript, we reported a rationally designed peptide, named CB5005, which had an attractive capability of translocation into the cell nucleus and blocking nuclear translocation of endogenous NF-κB protein. CB5005 had unique affinity with brain and glioma, and could rapidly accumulate in these tissues after intravenous injection. Furthermore, CB5005 showed a synergistic effect on inhibiting gliomas when administrated with doxorubicin. This is the first literature report on this multi-functionalized peptide, which can work as a potential synergist for chemotherapy of tumor. This work should be of general interest to scientists in the fields of biomaterials, biology, pharmacy, and oncology. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Li, Zheng; Ryu, Seung-Wook; Lee, Jungsul; Choi, Kyungsun; Kim, Sunchang; Choi, Chulhee
2016-02-19
Ginsenosides, the major bio-active ingredients included in Panax ginseng, have been known for the hair growth activity and used to treat patients who suffer from hair loss; however, the detailed mechanisms of this action are still largely unknown. This study was conducted to investigate the molecular and cellular mechanisms responsible for hair growth promoting effect of ginsenoside Re (GRe) in vitro and in vivo. Different doses of minoxidil and GRe were administered topically to the back regions of nude mice for up to 45 days, and hair shaft length and hair cycles were determined for hair promoting activities. Topical treatment of GRe significantly increased the hair shaft length and hair existent time, which was comparable to the action of minoxidil. We also demonstrated that GRe stimulated hair shaft elongation in the ex vivo cultures of vibrissa hair follicles isolated from C57BL/6 mouse. Systemic transcriptome analysis by next generation sequencing demonstrated that TGF-β-pathway related genes were selectively down-regulated by treatment of GRe in vivo, and the same treatment suppressed TGF-β-induced phosphorylation of ERK in HeLa cells. The results clearly indicated that GRe is the effective constituent in the ginseng on hair promotion via selective inhibition of the hair growth phase transition related signaling pathways, TGF-β signaling cascades. Copyright © 2016. Published by Elsevier Inc.
Malina, Jaroslav; Scott, Peter; Brabec, Viktor
2015-06-23
Loss of a base in DNA leading to creation of an abasic (AP) site leaving a deoxyribose residue in the strand, is a frequent lesion that may occur spontaneously or under the action of various physical and chemical agents. Progress in the understanding of the chemistry and enzymology of abasic DNA largely relies upon the study of AP sites in synthetic duplexes. We report here on interactions of diastereomerically pure metallo-helical 'flexicate' complexes, bimetallic triple-stranded ferro-helicates [Fe2(NN-NN)3](4+) incorporating the common NN-NN bis(bidentate) helicand, with short DNA duplexes containing AP sites in different sequence contexts. The results show that the flexicates bind to AP sites in DNA duplexes in a shape-selective manner. They preferentially bind to AP sites flanked by purines on both sides and their binding is enhanced when a pyrimidine is placed in opposite orientation to the lesion. Notably, the Λ-enantiomer binds to all tested AP sites with higher affinity than the Δ-enantiomer. In addition, the binding of the flexicates to AP sites inhibits the activity of human AP endonuclease 1, which is as a valid anticancer drug target. Hence, this finding indicates the potential of utilizing well-defined metallo-helical complexes for cancer chemotherapy. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Nutlin‐3a selects for cells harbouring TP 53 mutations
Hollstein, Monica; Arlt, Volker M.; Phillips, David H.
2016-01-01
TP53 mutations occur in half of all human tumours. Mutagen‐induced or spontaneous TP53 mutagenesis can be studied in vitro using the human TP53 knock‐in (Hupki) mouse embryo fibroblast (HUF) immortalisation assay (HIMA). TP53 mutations arise in up to 30% of mutagen‐treated, immortalised HUFs; however, mutants are not identified until TP53 sequence analysis following immortalisation (2–5 months) and much effort is expended maintaining TP53‐WT cultures. In order to improve the selectivity of the HIMA for HUFs harbouring TP53 mutations, we explored the use of Nutlin‐3a, an MDM2 inhibitor that leads to stabilisation and activation of wild‐type (WT) p53. First, we treated previously established immortal HUF lines carrying WT or mutated TP53 with Nutlin‐3a to examine the effect on cell growth and p53 activation. Nutlin‐3a induced the p53 pathway in TP53‐WT HUFs and inhibited cell growth, whereas most TP53‐mutated HUFs were resistant to Nutlin‐3a. We then assessed whether Nutlin‐3a treatment could discriminate between TP53‐WT and TP53‐mutated cells during the HIMA (n = 72 cultures). As immortal clones emerged from senescent cultures, each was treated with 10 µM Nutlin‐3a for 5 days and observed for sensitivity or resistance. TP53 was subsequently sequenced from all immortalised clones. We found that all Nutlin‐3a‐resistant clones harboured TP53 mutations, which were diverse in position and functional impact, while all but one of the Nutlin‐3a‐sensitive clones were TP53‐WT. These data suggest that including a Nutlin‐3a counter‐screen significantly improves the specificity and efficiency of the HIMA, whereby TP53‐mutated clones are selected prior to sequencing and TP53‐WT clones can be discarded. PMID:27813088
Spickler, Catherine; Lippens, Julie; Laberge, Marie-Kristine; Desmeules, Sophie; Bellavance, Édith; Garneau, Michel; Guo, Tim; Hucke, Oliver; Leyssen, Pieter; Neyts, Johan; Vaillancourt, Fréderic H.; Décor, Anne; O'Meara, Jeff; Franti, Michael
2013-01-01
Human rhinovirus (HRV) is the predominant cause of the common cold, but more importantly, infection may have serious repercussions in asthmatics and chronic obstructive pulmonary disorder (COPD) patients. A cell-based antiviral screen against HRV was performed with a subset of our proprietary compound collection, and an aminothiazole series with pan-HRV species and enteroviral activity was identified. The series was found to act at the level of replication in the HRV infectious cycle. In vitro selection and sequencing of aminothiazole series-resistant HRV variants revealed a single-nucleotide mutation leading to the amino acid change I42V in the essential HRV 3A protein. This same mutation has been previously implicated in resistance to enviroxime, a former clinical-stage antipicornavirus agent. Enviroxime-like compounds have recently been shown to target the lipid kinase phosphatidylinositol 4-kinase III beta (PI4KIIIβ). A good correlation between PI4KIIIβ activity and HRV antiviral potency was found when analyzing the data over 80 compounds of the aminothiazole series, covering a 750-fold potency range. The mechanism of action through PI4KIIIβ inhibition was further demonstrated by small interfering RNA (siRNA) knockdown of PI4KB, which reduced HRV replication and also increased the potency of the PI4KIIIβ inhibitors. Inhibitors from two different structural classes with promising pharmacokinetic profiles and with very good selectivity for PI4KIIIβ were used to dissociate compound-related toxicity from target-related toxicity. Mortality was seen in all dosing groups of mice treated with either compound, therefore suggesting that short-term inhibition of PI4KIIIβ is deleterious. PMID:23650168
Shoji, Masaki; Arakaki, Yumie; Esumi, Tomoyuki; Kohnomi, Shuntaro; Yamamoto, Chihiro; Suzuki, Yutaka; Takahashi, Etsuhisa; Konishi, Shiro; Kido, Hiroshi; Kuzuhara, Takashi
2015-01-01
Influenza represents a substantial threat to human health and requires novel therapeutic approaches. Bakuchiol is a phenolic isoprenoid compound present in Babchi (Psoralea corylifolia L.) seeds. We examined the anti-influenza viral activity of synthetic bakuchiol using Madin-Darby canine kidney cells. We found that the naturally occurring form, (+)-(S)-bakuchiol, and its enantiomer, (−)-(R)-bakuchiol, inhibited influenza A viral infection and growth and reduced the expression of viral mRNAs and proteins in these cells. Furthermore, these compounds markedly reduced the mRNA expression of the host cell influenza A virus-induced immune response genes, interferon-β and myxovirus-resistant protein 1. Interestingly, (+)-(S)-bakuchiol had greater efficacy than (−)-(R)-bakuchiol, indicating that chirality influenced anti-influenza virus activity. In vitro studies indicated that bakuchiol did not strongly inhibit the activities of influenza surface proteins or the M2 ion channel, expressed in Chinese hamster ovary cells. Analysis of luciferase reporter assay data unexpectedly indicated that bakuchiol may induce some host cell factor(s) that inhibited firefly and Renilla luciferases. Next generation sequencing and KeyMolnet analysis of influenza A virus-infected and non-infected cells exposed to bakuchiol revealed activation of transcriptional regulation by nuclear factor erythroid 2-related factor (Nrf), and an Nrf2 reporter assay showed that (+)-(S)-bakuchiol activated Nrf2. Additionally, (+)-(S)-bakuchiol up-regulated the mRNA levels of two Nrf2-induced genes, NAD(P)H quinone oxidoreductase 1 and glutathione S-transferase A3. These findings demonstrated that bakuchiol had enantiomer-selective anti-influenza viral activity involving a novel effect on the host cell oxidative stress response. PMID:26446794
Makiguchi, Wataru; Tanabe, Junki; Yamada, Hidekazu; Iida, Hiroki; Taura, Daisuke; Ousaka, Naoki; Yashima, Eiji
2015-01-01
Self-recognition and self-discrimination within complex mixtures are of fundamental importance in biological systems, which entirely rely on the preprogrammed monomer sequences and homochirality of biological macromolecules. Here we report artificial chirality- and sequence-selective successive self-sorting of chiral dimeric strands bearing carboxylic acid or amidine groups joined by chiral amide linkers with different sequences through homo- and complementary-duplex formations. A mixture of carboxylic acid dimers linked by racemic-1,2-cyclohexane bis-amides with different amide sequences (NHCO or CONH) self-associate to form homoduplexes in a completely sequence-selective way, the structures of which are different from each other depending on the linker amide sequences. The further addition of an enantiopure amide-linked amidine dimer to a mixture of the racemic carboxylic acid dimers resulted in the formation of a single optically pure complementary duplex with a 100% diastereoselectivity and complete sequence specificity stabilized by the amidinium–carboxylate salt bridges, leading to the perfect chirality- and sequence-selective duplex formation. PMID:26051291
Bate-Eya, Laurel T.; den Hartog, Ilona J.M.; van der Ploeg, Ida; Schild, Linda; Koster, Jan; Santo, Evan E.; Westerhout, Ellen M.; Versteeg, Rogier; Caron, Huib N.; Molenaar, Jan J.; Dolman, M. Emmy M.
2016-01-01
The anti-apoptotic protein B cell lymphoma/leukaemia 2 (BCL-2) is highly expressed in neuroblastoma and plays an important role in oncogenesis. In this study, the selective BCL-2 inhibitor ABT199 was tested in a panel of neuroblastoma cell lines with diverse expression levels of BCL-2 and other BCL-2 family proteins. ABT199 caused apoptosis more potently in neuroblastoma cell lines expressing high BCL-2 and BIM/BCL-2 complex levels than low expressing cell lines. Effects on cell viability correlated with effects on BIM displacement from BCL-2 and cytochrome c release from the mitochondria. ABT199 treatment of mice with neuroblastoma tumors expressing high BCL-2 levels only resulted in growth inhibition, despite maximum BIM displacement from BCL-2 and the induction of a strong apoptotic response. We showed that neuroblastoma cells might survive ABT199 treatment due to its acute upregulation of the anti-apoptotic BCL-2 family protein myeloid cell leukaemia sequence 1 (MCL-1) and BIM sequestration by MCL-1. In vitro inhibition of MCL-1 sensitized neuroblastoma cell lines to ABT199, confirming the pivotal role of MCL-1 in ABT199 resistance. Our findings suggest that neuroblastoma patients with high BCL-2 and BIM/BCL-2 complex levels might benefit from combination treatment with ABT199 and compounds that inhibit MCL-1 expression. PMID:27056887
Park, Tae-Ho; Park, Beom-Seok; Kim, Jin-A; Hong, Joon Ki; Jin, Mina; Seol, Young-Joo; Mun, Jeong-Hwan
2011-01-01
As a part of the Multinational Genome Sequencing Project of Brassica rapa, linkage group R9 and R3 were sequenced using a bacterial artificial chromosome (BAC) by BAC strategy. The current physical contigs are expected to cover approximately 90% euchromatins of both chromosomes. As the project progresses, BAC selection for sequence extension becomes more limited because BAC libraries are restriction enzyme-specific. To support the project, a random sheared fosmid library was constructed. The library consists of 97536 clones with average insert size of approximately 40 kb corresponding to seven genome equivalents, assuming a Chinese cabbage genome size of 550 Mb. The library was screened with primers designed at the end of sequences of nine points of scaffold gaps where BAC clones cannot be selected to extend the physical contigs. The selected positive clones were end-sequenced to check the overlap between the fosmid clones and the adjacent BAC clones. Nine fosmid clones were selected and fully sequenced. The sequences revealed two completed gap filling and seven sequence extensions, which can be used for further selection of BAC clones confirming that the fosmid library will facilitate the sequence completion of B. rapa. Copyright © 2011. Published by Elsevier Ltd.
OrthoSelect: a protocol for selecting orthologous groups in phylogenomics.
Schreiber, Fabian; Pick, Kerstin; Erpenbeck, Dirk; Wörheide, Gert; Morgenstern, Burkhard
2009-07-16
Phylogenetic studies using expressed sequence tags (EST) are becoming a standard approach to answer evolutionary questions. Such studies are usually based on large sets of newly generated, unannotated, and error-prone EST sequences from different species. A first crucial step in EST-based phylogeny reconstruction is to identify groups of orthologous sequences. From these data sets, appropriate target genes are selected, and redundant sequences are eliminated to obtain suitable sequence sets as input data for tree-reconstruction software. Generating such data sets manually can be very time consuming. Thus, software tools are needed that carry out these steps automatically. We developed a flexible and user-friendly software pipeline, running on desktop machines or computer clusters, that constructs data sets for phylogenomic analyses. It automatically searches assembled EST sequences against databases of orthologous groups (OG), assigns ESTs to these predefined OGs, translates the sequences into proteins, eliminates redundant sequences assigned to the same OG, creates multiple sequence alignments of identified orthologous sequences and offers the possibility to further process this alignment in a last step by excluding potentially homoplastic sites and selecting sufficiently conserved parts. Our software pipeline can be used as it is, but it can also be adapted by integrating additional external programs. This makes the pipeline useful for non-bioinformaticians as well as to bioinformatic experts. The software pipeline is especially designed for ESTs, but it can also handle protein sequences. OrthoSelect is a tool that produces orthologous gene alignments from assembled ESTs. Our tests show that OrthoSelect detects orthologs in EST libraries with high accuracy. In the absence of a gold standard for orthology prediction, we compared predictions by OrthoSelect to a manually created and published phylogenomic data set. Our tool was not only able to rebuild the data set with a specificity of 98%, but it detected four percent more orthologous sequences. Furthermore, the results OrthoSelect produces are in absolut agreement with the results of other programs, but our tool offers a significant speedup and additional functionality, e.g. handling of ESTs, computing sequence alignments, and refining them. To our knowledge, there is currently no fully automated and freely available tool for this purpose. Thus, OrthoSelect is a valuable tool for researchers in the field of phylogenomics who deal with large quantities of EST sequences. OrthoSelect is written in Perl and runs on Linux/Mac OS X. The tool can be downloaded at (http://gobics.de/fabian/orthoselect.php).
Yu, Qiang; Wei, Dingbang; Huo, Hongwei
2018-06-18
Given a set of t n-length DNA sequences, q satisfying 0 < q ≤ 1, and l and d satisfying 0 ≤ d < l < n, the quorum planted motif search (qPMS) finds l-length strings that occur in at least qt input sequences with up to d mismatches and is mainly used to locate transcription factor binding sites in DNA sequences. Existing qPMS algorithms have been able to efficiently process small standard datasets (e.g., t = 20 and n = 600), but they are too time consuming to process large DNA datasets, such as ChIP-seq datasets that contain thousands of sequences or more. We analyze the effects of t and q on the time performance of qPMS algorithms and find that a large t or a small q causes a longer computation time. Based on this information, we improve the time performance of existing qPMS algorithms by selecting a sample sequence set D' with a small t and a large q from the large input dataset D and then executing qPMS algorithms on D'. A sample sequence selection algorithm named SamSelect is proposed. The experimental results on both simulated and real data show (1) that SamSelect can select D' efficiently and (2) that the qPMS algorithms executed on D' can find implanted or real motifs in a significantly shorter time than when executed on D. We improve the ability of existing qPMS algorithms to process large DNA datasets from the perspective of selecting high-quality sample sequence sets so that the qPMS algorithms can find motifs in a short time in the selected sample sequence set D', rather than take an unfeasibly long time to search the original sequence set D. Our motif discovery method is an approximate algorithm.
Suzuki, Takayoshi; Kasuya, Yuki; Itoh, Yukihiro; Ota, Yosuke; Zhan, Peng; Asamitsu, Kaori; Nakagawa, Hidehiko; Okamoto, Takashi; Miyata, Naoki
2013-01-01
To find histone deacetylase 3 (HDAC3)-selective inhibitors, a series of 504 candidates was assembled using "click chemistry", by reacting nine alkynes bearing a zinc-binding group with 56 azide building blocks in the presence of Cu(I) catalyst. Screening of the 504-member triazole library against HDAC3 and other HDAC isozymes led to the identification of potent and selective HDAC3 inhibitors T247 and T326. These compounds showed potent HDAC3 inhibition with submicromolar IC50s, whereas they did not strongly inhibit other isozymes. Compounds T247 and T326 also induced a dose-dependent selective increase of NF-κB acetylation in human colon cancer HCT116 cells, indicating selective inhibition of HDAC3 in the cells. In addition, these HDAC3-selective inhibitors induced growth inhibition of cancer cells, and activated HIV gene expression in latent HIV-infected cells. These findings indicate that HDAC3-selective inhibitors are promising candidates for anticancer drugs and antiviral agents. This work also suggests the usefulness of the click chemistry approach to find isozyme-selective HDAC inhibitors.
Zuber, T; Holm, D; Byrne, P; Ducreux, L; Taylor, M; Kaiser, M; Stushnoff, C
2015-01-01
Secondary metabolites in potato have been reported to possess bioactive properties, including growth inhibition of cancer cells. Because potatoes are widely consumed globally, potential health benefits may have broad application. Thus we investigated growth inhibition of HT-29 colon cancer cell cultures by extracts from 13 diverse genetic breeding clones. Extracts from three pigmented selections (CO97226-2R/R, CO97216-1P/P, CO04058-3RW/RW) inhibited growth of in vitro HT-29 cell cultures more effectively than other clones tested. While inhibition was highest from pigmented selections and pigmented tuber tissue sectors, not all pigmented breeding lines tested had appreciable inhibitory properties. Thus, inhibition was not uniquely linked to pigmentation. Immature tubers had the highest inhibitory properties, and in most cases mature tubers retained very low inhibition properties. Flowers and skins inhibited strongly at lower extract concentrations. An extract consisting of 7.2 mg mL⁻¹ cell culture medium was the lowest effective concentration. While raw tuber extracts inhibited most effectively, a few clones at higher concentrations retained inhibition after cooking. Heated whole tubers retained higher inhibition than heated aqueous extracts. While all aqueous extracts from the two tuber selections (CO97216-1P/P and CO97226-2R/R) inhibited HT-29 cell cultures, inhibition was significantly enhanced in purple pigmented tubers of CO97216-1P/P prepared cryogenically as liquid nitrogen powders compared to extracts from freeze dried samples. Upregulation of caspase-3 protease activity, indicative of apoptosis, was highest among the most inhibitory clone samples. The unique sectorial red pigment expressing selection (CO04058-3RW/RW) provided a model system that isolated expression in pigmented sectors, and thus eliminated developmental, environmental and genetic confounding.
Sequence Learning and Selection Difficulty
ERIC Educational Resources Information Center
Rowland, Lee A.; Shanks, David R.
2006-01-01
The authors studied the role of attention as a selection mechanism in implicit learning by examining the effect on primary sequence learning of performing a demanding target-selection task. Participants were trained on probabilistic sequences in a novel version of the serial reaction time (SRT) task, with dual- and triple-stimulus participants…
Phosphorylation-dependent mineral-type specificity for apatite-binding peptide sequences.
Addison, William N; Miller, Sharon J; Ramaswamy, Janani; Mansouri, Ahmad; Kohn, David H; McKee, Marc D
2010-12-01
Apatite-binding peptides discovered by phage display provide an alternative design method for creating functional biomaterials for bone and tooth tissue repair. A limitation of this approach is the absence of display peptide phosphorylation--a post-translational modification important to mineral-binding proteins. To refine the material specificity of a recently identified apatite-binding peptide, and to determine critical design parameters (net charge, charge distribution, amino acid sequence and composition) controlling peptide affinity for mineral, we investigated the effects of phosphorylation and sequence scrambling on peptide adsorption to four different apatites (bone-like mineral, and three types of apatite containing initially 0, 5.6 and 10.5% carbonate). Phosphorylation of the VTKHLNQISQSY peptide (VTK peptide) led to a 10-fold increase in peptide adsorption (compared to nonphosphorylated peptide) to bone-like mineral, and a 2-fold increase in adsorption to the carbonated apatite, but there was no effect of phosphorylation on peptide affinity to pure hydroxyapatite (without carbonate). Sequence scrambling of the nonphosphorylated VTK peptide enhanced its specificity for the bone-like mineral, but scrambled phosphorylated VTK peptide (pVTK) did not significantly alter mineral-binding suggesting that despite the importance of sequence order and/or charge distribution to mineral-binding, the enhanced binding after phosphorylation exceeds any further enhancement by altered sequence order. Osteoblast culture mineralization was dose-dependently inhibited by pVTK and to a significantly lesser extent by scrambled pVTK, while the nonphosphorylated and scrambled forms had no effect, indicating that inhibition of osteoblast mineralization is dependent on both peptide sequence and charge. Computational modeling of peptide-mineral interactions indicated a favorable change in binding energy upon phosphorylation that was unaffected by scrambling. In conclusion, phosphorylation of serine residues increases peptide specificity for bone-like mineral, whose adsorption is determined primarily by sequence composition and net charge as opposed to sequence order. However, sequence order in addition to net charge modulates the mineralization of osteoblast cultures. The ability of such peptides to inhibit mineralization has potential utility in the management of pathologic calcification. Copyright © 2010 Elsevier Ltd. All rights reserved.
Pusch, Carsten M; Bachmann, Lutz
2004-05-01
Proof of authenticity is the greatest challenge in palaeogenetic research, and many safeguards have become standard routine in laboratories specialized on ancient DNA research. Here we describe an as-yet unknown source of artifacts that will require special attention in the future. We show that ancient DNA extracts on their own can have an inhibitory and mutagenic effect under PCR. We have spiked PCR reactions including known human test DNA with 14 selected ancient DNA extracts from human and nonhuman sources. We find that the ancient DNA extracts inhibit the amplification of large fragments to different degrees, suggesting that the usual control against contaminations, i.e., the absence of long amplifiable fragments, is not sufficient. But even more important, we find that the extracts induce mutations in a nonrandom fashion. We have amplified a 148-bp stretch of the mitochondrial HVRI from contemporary human template DNA in spiked PCR reactions. Subsequent analysis of 547 sequences from cloned amplicons revealed that the vast majority (76.97%) differed from the correct sequence by single nucleotide substitutions and/or indels. In total, 34 positions of a 103-bp alignment are affected, and most mutations occur repeatedly in independent PCR amplifications. Several of the induced mutations occur at positions that have previously been detected in studies of ancient hominid sequences, including the Neandertal sequences. Our data imply that PCR-induced mutations are likely to be an intrinsic and general problem of PCR amplifications of ancient templates. Therefore, ancient DNA sequences should be considered with caution, at least as long as the molecular basis for the extract-induced mutations is not understood.
Wiersma, Andrew T; Gaines, Todd A; Preston, Christopher; Hamilton, John P; Giacomini, Darci; Robin Buell, C; Leach, Jan E; Westra, Philip
2015-02-01
Field-evolved resistance to the herbicide glyphosate is due to amplification of one of two EPSPS alleles, increasing transcription and protein with no splice variants or effects on other pathway genes. The widely used herbicide glyphosate inhibits the shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Globally, the intensive use of glyphosate for weed control has selected for glyphosate resistance in 31 weed species. Populations of suspected glyphosate-resistant Kochia scoparia were collected from fields located in the US central Great Plains. Glyphosate dose response verified glyphosate resistance in nine populations. The mechanism of resistance to glyphosate was investigated using targeted sequencing, quantitative PCR, immunoblotting, and whole transcriptome de novo sequencing to characterize the sequence and expression of EPSPS. Sequence analysis showed no mutation of the EPSPS Pro106 codon in glyphosate-resistant K. scoparia, whereas EPSPS genomic copy number and transcript abundance were elevated three- to ten-fold in resistant individuals relative to susceptible individuals. Glyphosate-resistant individuals with increased relative EPSPS copy numbers had consistently lower shikimate accumulation in leaf disks treated with 100 μM glyphosate and EPSPS protein levels were higher in glyphosate-resistant individuals with increased gene copy number compared to glyphosate-susceptible individuals. RNA sequence analysis revealed seven nucleotide positions with two different expressed alleles in glyphosate-susceptible reads. However, one nucleotide at the seven positions was predominant in glyphosate-resistant sequences, suggesting that only one of two EPSPS alleles was amplified in glyphosate-resistant individuals. No alternatively spliced EPSPS transcripts were detected. Expression of five other genes in the chorismate pathway was unaffected in glyphosate-resistant individuals with increased EPSPS expression. These results indicate increased EPSPS expression is a mechanism for glyphosate resistance in these K. scoparia populations.
Kim, Kwondo; Jung, Jaehoon; Caetano-Anollés, Kelsey; Sung, Samsun; Yoo, DongAhn; Choi, Bong-Hwan; Kim, Hyung-Chul; Jeong, Jin-Young; Cho, Yong-Min; Park, Eung-Woo; Choi, Tae-Jeong; Park, Byoungho; Lim, Dajeong
2018-01-01
Artificial selection has been demonstrated to have a rapid and significant effect on the phenotype and genome of an organism. However, most previous studies on artificial selection have focused solely on genomic sequences modified by artificial selection or genomic sequences associated with a specific trait. In this study, we generated whole genome sequencing data of 126 cattle under artificial selection, and 24,973,862 single nucleotide variants to investigate the relationship among artificial selection, genomic sequences and trait. Using runs of homozygosity detected by the variants, we showed increase of inbreeding for decades, and at the same time demonstrated a little influence of recent inbreeding on body weight. Also, we could identify ~0.2 Mb runs of homozygosity segment which may be created by recent artificial selection. This approach may aid in development of genetic markers directly influenced by artificial selection, and provide insight into the process of artificial selection. PMID:29561881
Distractor inhibition: principles of operation during selective attention.
Wyatt, Natalie; Machado, Liana
2013-02-01
Research suggests that although target amplification acts as the main determinant of the efficacy of selective attention, distractor inhibition contributes under some circumstances. Here we aimed to gain insight into the operating principles that regulate the use of distractor inhibition during selective attention. The results suggest that, in contrast to target amplification, distractor inhibition does not onset earlier or strengthen in response to advance location information. Instead, when the location of the impending distractor was predictable, evidence of inhibitory processing weakened. Furthermore, the results suggest that distractor inhibition does not operate as a compensatory mechanism for target amplification, as evidenced by the lack of an increase in inhibitory effects when reliance on target amplification was disrupted. Unexpected emergence of inhibitory effects for improbable targets provided evidence that distractor inhibition was at work even when no inhibitory effects manifested. Overall, the pattern of inhibitory effects is interpreted as indicating that, although distractor inhibition mounts primarily reactively rather than preemptively, advance information can help prevent overreaction to the distractor. Of course, less overreaction reduces the chances of behavioral inhibitory effects manifesting even when distractor inhibition has contributed to selective attention; thus, interpreting an absence of inhibitory effects should be done cautiously. PsycINFO Database Record (c) 2013 APA, all rights reserved.
First-in-class inhibitor of the T cell receptor for the treatment of autoimmune diseases.
Borroto, Aldo; Reyes-Garau, Diana; Jiménez, M Angeles; Carrasco, Esther; Moreno, Beatriz; Martínez-Pasamar, Sara; Cortés, José R; Perona, Almudena; Abia, David; Blanco, Soledad; Fuentes, Manuel; Arellano, Irene; Lobo, Juan; Heidarieh, Haleh; Rueda, Javier; Esteve, Pilar; Cibrián, Danay; Martinez-Riaño, Ana; Mendoza, Pilar; Prieto, Cristina; Calleja, Enrique; Oeste, Clara L; Orfao, Alberto; Fresno, Manuel; Sánchez-Madrid, Francisco; Alcamí, Antonio; Bovolenta, Paola; Martín, Pilar; Villoslada, Pablo; Morreale, Antonio; Messeguer, Angel; Alarcon, Balbino
2016-12-21
Modulating T cell activation is critical for treating autoimmune diseases but requires avoiding concomitant opportunistic infections. Antigen binding to the T cell receptor (TCR) triggers the recruitment of the cytosolic adaptor protein Nck to a proline-rich sequence in the cytoplasmic tail of the TCR's CD3ε subunit. Through virtual screening and using combinatorial chemistry, we have generated an orally available, low-molecular weight inhibitor of the TCR-Nck interaction that selectively inhibits TCR-triggered T cell activation with an IC 50 (median inhibitory concentration) ~1 nM. By modulating TCR signaling, the inhibitor prevented the development of psoriasis and asthma and, furthermore, exerted a long-lasting therapeutic effect in a model of autoimmune encephalomyelitis. However, it did not prevent the generation of a protective memory response against a mouse pathogen, suggesting that the compound might not exert its effects through immunosuppression. These results suggest that inhibiting an immediate TCR signal has promise for treating a broad spectrum of human T cell-mediated autoimmune and inflammatory diseases. Copyright © 2016, American Association for the Advancement of Science.
Zn2+ selectively stabilizes FdU-substituted DNA through a unique major groove binding motif
Ghosh, Supratim; Salsbury, Freddie R.; Horita, David A.; Gmeiner, William H.
2011-01-01
We report, based on semi-empirical calculations, that Zn2+ binds duplex DNA containing consecutive FdU–dA base pairs in the major groove with distorted trigonal bipyramidal geometry. In this previously uncharacterized binding motif, O4 and F5 on consecutive FdU are axial ligands while three water molecules complete the coordination sphere. NMR spectroscopy confirmed Zn2+ complexation occurred with maintenance of base pairing while a slight hypsochromic shift in circular dichroism (CD) spectra indicated moderate structural distortion relative to B-form DNA. Zn2+ complexation inhibited ethidium bromide (EtBr) intercalation and stabilized FdU-substituted duplex DNA (ΔTm > 15°C). Mg2+ neither inhibited EtBr complexation nor had as strong of a stabilizing effect. DNA sequences that did not contain consecutive FdU were not stabilized by Zn2+. A lipofectamine preparation of the Zn2+–DNA complex displayed enhanced cytotoxicity toward prostate cancer cells relative to the individual components prepared as lipofectamine complexes indicating the potential utility of Zn2+–DNA complexes for cancer treatment. PMID:21296761
Délye, Christophe; Deulvot, Chrystel; Chauvel, Bruno
2013-01-01
Acetyl-CoA carboxylase (ACCase) alleles carrying one point mutation that confers resistance to herbicides have been identified in arable grass weed populations where resistance has evolved under the selective pressure of herbicides. In an effort to determine whether herbicide resistance evolves from newly arisen mutations or from standing genetic variation in weed populations, we used herbarium specimens of the grass weed Alopecurus myosuroides to seek mutant ACCase alleles carrying an isoleucine-to-leucine substitution at codon 1781 that endows herbicide resistance. These specimens had been collected between 1788 and 1975, i.e., prior to the commercial release of herbicides inhibiting ACCase. Among the 734 specimens investigated, 685 yielded DNA suitable for PCR. Genotyping the ACCase locus using the derived Cleaved Amplified Polymorphic Sequence (dCAPS) technique identified one heterozygous mutant specimen that had been collected in 1888. Occurrence of a mutant codon encoding a leucine residue at codon 1781 at the heterozygous state was confirmed in this specimen by sequencing, clearly demonstrating that resistance to herbicides can pre-date herbicides in weeds. We conclude that point mutations endowing resistance to herbicides without having associated deleterious pleiotropic effects can be present in weed populations as part of their standing genetic variation, in frequencies higher than the mutation frequency, thereby facilitating their subsequent selection by herbicide applications.
Zhao, Ke; Penttinen, Petri; Chen, Qiang; Guan, Tongwei; Lindström, Kristina; Ao, Xiaoling; Zhang, Lili; Zhang, Xiaoping
2012-06-01
Actinobacteria are a prolific source of antibiotics. Since the rate of discovery of novel antibiotics is decreasing, actinobacteria from unique environments need to be explored. In particular, actinobacterial biocontrol strains from medicinal plants need to be studied as they can be a source of potent antibiotics. We combined culture-dependent and culture-independent methods in analyzing the actinobacterial diversity in the rhizosphere of seven traditional medicinal plant species from Panxi, China, and assessed the antimicrobial activity of the isolates. Each of the plant species hosted a unique set of actinobacterial strains. Out of the 64 morphologically distinct isolates, half were Streptomyces sp., eight were Micromonospora sp., and the rest were members of 18 actinobacterial genera. In particular, Ainsliaea henryi Diels. hosted a diverse selection of actinobacteria, although the 16S ribosomal RNA (rRNA) sequence identity ranges of the isolates and of the 16S rRNA gene clone library were not congruent. In the clone library, 40% of the sequences were related to uncultured actinobacteria, emphasizing the need to develop isolation methods to assess the full potential of the actinobacteria. All Streptomyces isolates showed antimicrobial activity. While the antimicrobial activities of the rare actinobacteria were limited, the growth of Escherichia coli, Verticillium dahliae, and Fusarium oxysporum were inhibited only by rare actinobacteria, and strains related to Saccharopolyspora shandongensis and Streptosporangium roseum showed broad antimicrobial activity.
USDA-ARS?s Scientific Manuscript database
Polygalacturonase-inhibiting proteins (PGIPs) are leucine-rich repeat (LRR) proteins involved in plant defense. Sugar beet (Beta vulgaris L.) PGIP genes, BvPGIP1, BvPGIP2 and BvPGIP3, were isolated from two breeding lines, F1016 and F1010. Full-length cDNA sequences of the three BvPGIP genes encod...
Short intronic repeat sequences facilitate circular RNA production.
Liang, Dongming; Wilusz, Jeremy E
2014-10-15
Recent deep sequencing studies have revealed thousands of circular noncoding RNAs generated from protein-coding genes. These RNAs are produced when the precursor messenger RNA (pre-mRNA) splicing machinery "backsplices" and covalently joins, for example, the two ends of a single exon. However, the mechanism by which the spliceosome selects only certain exons to circularize is largely unknown. Using extensive mutagenesis of expression plasmids, we show that miniature introns containing the splice sites along with short (∼ 30- to 40-nucleotide) inverted repeats, such as Alu elements, are sufficient to allow the intervening exons to circularize in cells. The intronic repeats must base-pair to one another, thereby bringing the splice sites into close proximity to each other. More than simple thermodynamics is clearly at play, however, as not all repeats support circularization, and increasing the stability of the hairpin between the repeats can sometimes inhibit circular RNA biogenesis. The intronic repeats and exonic sequences must collaborate with one another, and a functional 3' end processing signal is required, suggesting that circularization may occur post-transcriptionally. These results suggest detailed and generalizable models that explain how the splicing machinery determines whether to produce a circular noncoding RNA or a linear mRNA. © 2014 Liang and Wilusz; Published by Cold Spring Harbor Laboratory Press.
Exploring monovalent and multivalent peptides for the inhibition of FBP21-tWW.
Henning, Lisa Maria; Bhatia, Sumati; Bertazzon, Miriam; Marczynke, Michaela; Seitz, Oliver; Volkmer, Rudolf; Haag, Rainer; Freund, Christian
2015-01-01
The coupling of peptides to polyglycerol carriers represents an important route towards the multivalent display of protein ligands. In particular, the inhibition of low affinity intracellular protein-protein interactions can be addressed by this design. We have applied this strategy to develop binding partners for FBP21, a protein which is important for the splicing of pre-mRNA in the nucleus of eukaryotic cells. Firstly, by using phage display the optimized sequence WPPPPRVPR was derived which binds with K Ds of 80 μM and 150 µM to the individual WW domains and with a K D of 150 μM to the tandem-WW1-WW2 construct. Secondly, this sequence was coupled to a hyperbranched polyglycerol (hPG) that allowed for the multivalent display on the surface of the dendritic polymer. This novel multifunctional hPG-peptide conjugate displayed a K D of 17.6 µM which demonstrates that the new carrier provides a venue for the future inhibition of proline-rich sequence recognition by FBP21 during assembly of the spliceosome.
Exploring monovalent and multivalent peptides for the inhibition of FBP21-tWW
Bertazzon, Miriam; Marczynke, Michaela; Seitz, Oliver; Volkmer, Rudolf; Haag, Rainer
2015-01-01
Summary The coupling of peptides to polyglycerol carriers represents an important route towards the multivalent display of protein ligands. In particular, the inhibition of low affinity intracellular protein–protein interactions can be addressed by this design. We have applied this strategy to develop binding partners for FBP21, a protein which is important for the splicing of pre-mRNA in the nucleus of eukaryotic cells. Firstly, by using phage display the optimized sequence WPPPPRVPR was derived which binds with K Ds of 80 μM and 150 µM to the individual WW domains and with a K D of 150 μM to the tandem-WW1–WW2 construct. Secondly, this sequence was coupled to a hyperbranched polyglycerol (hPG) that allowed for the multivalent display on the surface of the dendritic polymer. This novel multifunctional hPG-peptide conjugate displayed a K D of 17.6 µM which demonstrates that the new carrier provides a venue for the future inhibition of proline-rich sequence recognition by FBP21 during assembly of the spliceosome. PMID:26124874
Prescott, Natalie J.; Lehne, Benjamin; Stone, Kristina; Lee, James C.; Taylor, Kirstin; Knight, Jo; Papouli, Efterpi; Mirza, Muddassar M.; Simpson, Michael A.; Spain, Sarah L.; Lu, Grace; Fraternali, Franca; Bumpstead, Suzannah J.; Gray, Emma; Amar, Ariella; Bye, Hannah; Green, Peter; Chung-Faye, Guy; Hayee, Bu’Hussain; Pollok, Richard; Satsangi, Jack; Parkes, Miles; Barrett, Jeffrey C.; Mansfield, John C.; Sanderson, Jeremy; Lewis, Cathryn M.; Weale, Michael E.; Schlitt, Thomas; Mathew, Christopher G.
2015-01-01
The contribution of rare coding sequence variants to genetic susceptibility in complex disorders is an important but unresolved question. Most studies thus far have investigated a limited number of genes from regions which contain common disease associated variants. Here we investigate this in inflammatory bowel disease by sequencing the exons and proximal promoters of 531 genes selected from both genome-wide association studies and pathway analysis in pooled DNA panels from 474 cases of Crohn’s disease and 480 controls. 80 variants with evidence of association in the sequencing experiment or with potential functional significance were selected for follow up genotyping in 6,507 IBD cases and 3,064 population controls. The top 5 disease associated variants were genotyped in an extension panel of 3,662 IBD cases and 3,639 controls, and tested for association in a combined analysis of 10,147 IBD cases and 7,008 controls. A rare coding variant p.G454C in the BTNL2 gene within the major histocompatibility complex was significantly associated with increased risk for IBD (p = 9.65x10−10, OR = 2.3[95% CI = 1.75–3.04]), but was independent of the known common associated CD and UC variants at this locus. Rare (<1%) and low frequency (1–5%) variants in 3 additional genes showed suggestive association (p<0.005) with either an increased risk (ARIH2 c.338-6C>T) or decreased risk (IL12B p.V298F, and NICN p.H191R) of IBD. These results provide additional insights into the involvement of the inhibition of T cell activation in the development of both sub-phenotypes of inflammatory bowel disease. We suggest that although rare coding variants may make a modest overall contribution to complex disease susceptibility, they can inform our understanding of the molecular pathways that contribute to pathogenesis. PMID:25671699
Glaberman, Scott; Du Pasquier, Louis; Caccone, Adalgisa
2008-01-01
Squamates are a diverse order of vertebrates, representing more than 7,000 species. Yet, descriptions of full-length major histocompatibility complex (MHC) genes in this group are nearly absent from the literature, while the number of MHC studies continues to rise in other vertebrate taxa. The lack of basic information about MHC organization in squamates inhibits investigation into the relationship between MHC polymorphism and disease, and leaves a large taxonomic gap in our understanding of amniote MHC evolution. Here, we use both cDNA and genomic sequence data to characterize a class I MHC gene (Amcr-UA) from the Galápagos marine iguana, a member of the squamate subfamily Iguaninae. Amcr-UA appears to be functional since it is expressed in the blood and contains many of the conserved peptide-binding residues that are found in classical class I genes of other vertebrates. In addition, comparison of Amcr-UA to homologous sequences from other iguanine species shows that the antigen-binding portion of this gene is under purifying selection, rather than balancing selection, and therefore may have a conserved function. A striking feature of Amcr-UA is that both the cDNA and genomic sequences lack the transmembrane and cytoplasmic domains that are necessary to anchor the class I receptor molecule into the cell membrane, suggesting that the product of this gene is secreted and consequently not involved in classical class I antigen-presentation. The truncated and conserved character of Amcr-UA lead us to define it as a nonclassical gene that is related to the few available squamate class I sequences. However, phylogenetic analysis placed Amcr-UA in a basal position relative to other published classical MHC genes from squamates, suggesting that this gene diverged near the beginning of squamate diversification. PMID:18682845
[Tonoplast transport and salt tolerance in plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taiz, L.
1993-01-01
We have showed that the tonoplast V-ATPase could be specifically inhibited by antisense DNA to the catalytic (A) subunit; that cell expansion was inhibited in carrot transformants deficient in the enzyme and have provided evidence for at least two different isoforms of the A subunit which are Golgi- and tonoplast-specific. These findings prompted a search for sequences of the isoforms of the A subunit in carrot. We have cloned and sequenced 1.0--1.5 kb fragments of three different genes for the catalytic subunit, the fragments differ greatly in their introns, but have nearly identical exons. We are using PCR to amplifymore » and subclone carrot seedling cDNA. Thus far two bands have been amplified and are currently being subcloned for sequencing.« less
[Tonoplast transport and salt tolerance in plants]. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taiz, L.
1993-04-01
We have showed that the tonoplast V-ATPase could be specifically inhibited by antisense DNA to the catalytic (A) subunit; that cell expansion was inhibited in carrot transformants deficient in the enzyme and have provided evidence for at least two different isoforms of the A subunit which are Golgi- and tonoplast-specific. These findings prompted a search for sequences of the isoforms of the A subunit in carrot. We have cloned and sequenced 1.0--1.5 kb fragments of three different genes for the catalytic subunit, the fragments differ greatly in their introns, but have nearly identical exons. We are using PCR to amplifymore » and subclone carrot seedling cDNA. Thus far two bands have been amplified and are currently being subcloned for sequencing.« less
Shao, Zeshu; Roelofs, Ardi; Martin, Randi C; Meyer, Antje S
2015-11-01
In 2 studies, we examined whether explicit distractors are necessary and sufficient to evoke selective inhibition in 3 naming tasks: the semantic blocking, picture-word interference, and color-word Stroop task. Delta plots were used to quantify the size of the interference effects as a function of reaction time (RT). Selective inhibition was operationalized as the decrease in the size of the interference effect as a function of naming RT. For all naming tasks, mean naming RTs were significantly longer in the interference condition than in the control condition. The slopes of the interference effects for the longest naming RTs correlated with the magnitude of the mean interference effect in both the semantic blocking task and the picture-word interference task, suggesting that selective inhibition was involved to reduce the interference from strong semantic competitors either invoked by a single explicit competitor or strong implicit competitors in picture naming. However, there was no correlation between the slopes and the mean interference effect in the Stroop task, suggesting less importance of selective inhibition in this task despite explicit distractors. Whereas the results of the semantic blocking task suggest that an explicit distractor is not necessary for triggering inhibition, the results of the Stroop task suggest that such a distractor is not sufficient for evoking inhibition either. (c) 2015 APA, all rights reserved).
Selecting sequence variants to improve genomic predictions for dairy cattle
USDA-ARS?s Scientific Manuscript database
Millions of genetic variants have been identified by population-scale sequencing projects, but subsets are needed for routine genomic predictions or to include on genotyping arrays. Methods of selecting sequence variants were compared using both simulated sequence genotypes and actual data from run ...
Locating Sequence on FPC Maps and Selecting a Minimal Tiling Path
Engler, Friedrich W.; Hatfield, James; Nelson, William; Soderlund, Carol A.
2003-01-01
This study discusses three software tools, the first two aid in integrating sequence with an FPC physical map and the third automatically selects a minimal tiling path given genomic draft sequence and BAC end sequences. The first tool, FSD (FPC Simulated Digest), takes a sequenced clone and adds it back to the map based on a fingerprint generated by an in silico digest of the clone. This allows verification of sequenced clone positions and the integration of sequenced clones that were not originally part of the FPC map. The second tool, BSS (Blast Some Sequence), takes a query sequence and positions it on the map based on sequence associated with the clones in the map. BSS has multiple uses as follows: (1) When the query is a file of marker sequences, they can be added as electronic markers. (2) When the query is draft sequence, the results of BSS can be used to close gaps in a sequenced clone or the physical map. (3) When the query is a sequenced clone and the target is BAC end sequences, one may select the next clone for sequencing using both sequence comparison results and map location. (4) When the query is whole-genome draft sequence and the target is BAC end sequences, the results can be used to select many clones for a minimal tiling path at once. The third tool, pickMTP, automates the majority of this last usage of BSS. Results are presented using the rice FPC map, BAC end sequences, and whole-genome shotgun from Syngenta. PMID:12915486
A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics
Rapicavoli, Nicole A; Qu, Kun; Zhang, Jiajing; Mikhail, Megan; Laberge, Remi-Martin; Chang, Howard Y
2013-01-01
Pseudogenes are thought to be inactive gene sequences, but recent evidence of extensive pseudogene transcription raised the question of potential function. Here we discover and characterize the sets of mouse lncRNAs induced by inflammatory signaling via TNFα. TNFα regulates hundreds of lncRNAs, including 54 pseudogene lncRNAs, several of which show exquisitely selective expression in response to specific cytokines and microbial components in a NF-κB-dependent manner. Lethe, a pseudogene lncRNA, is selectively induced by proinflammatory cytokines via NF-κB or glucocorticoid receptor agonist, and functions in negative feedback signaling to NF-κB. Lethe interacts with NF-κB subunit RelA to inhibit RelA DNA binding and target gene activation. Lethe level decreases with organismal age, a physiological state associated with increased NF-κB activity. These findings suggest that expression of pseudogenes lncRNAs are actively regulated and constitute functional regulators of inflammatory signaling. DOI: http://dx.doi.org/10.7554/eLife.00762.001 PMID:23898399
Complementary mechanisms create direction selectivity in the fly
Haag, Juergen; Arenz, Alexander; Serbe, Etienne; Gabbiani, Fabrizio; Borst, Alexander
2016-01-01
How neurons become sensitive to the direction of visual motion represents a classic example of neural computation. Two alternative mechanisms have been discussed in the literature so far: preferred direction enhancement, by which responses are amplified when stimuli move along the preferred direction of the cell, and null direction suppression, where one signal inhibits the response to the subsequent one when stimuli move along the opposite, i.e. null direction. Along the processing chain in the Drosophila optic lobe, directional responses first appear in T4 and T5 cells. Visually stimulating sequences of individual columns in the optic lobe with a telescope while recording from single T4 neurons, we find both mechanisms at work implemented in different sub-regions of the receptive field. This finding explains the high degree of directional selectivity found already in the fly’s primary motion-sensing neurons and marks an important step in our understanding of elementary motion detection. DOI: http://dx.doi.org/10.7554/eLife.17421.001 PMID:27502554
Molecular basis of cyclooxygenase enzymes (COXs) selective inhibition
Limongelli, Vittorio; Bonomi, Massimiliano; Marinelli, Luciana; Gervasio, Francesco Luigi; Cavalli, Andrea; Novellino, Ettore; Parrinello, Michele
2010-01-01
The widely used nonsteroidal anti-inflammatory drugs block the cyclooxygenase enzymes (COXs) and are clinically used for the treatment of inflammation, pain, and cancers. A selective inhibition of the different isoforms, particularly COX-2, is desirable, and consequently a deeper understanding of the molecular basis of selective inhibition is of great demand. Using an advanced computational technique we have simulated the full dissociation process of a highly potent and selective inhibitor, SC-558, in both COX-1 and COX-2. We have found a previously unreported alternative binding mode in COX-2 explaining the time-dependent inhibition exhibited by this class of inhibitors and consequently their long residence time inside this isoform. Our metadynamics-based approach allows us to illuminate the highly dynamical character of the ligand/protein recognition process, thus explaining a wealth of experimental data and paving the way to an innovative strategy for designing new COX inhibitors with tuned selectivity. PMID:20215464
A small molecule inhibitor of Rheb selectively targets mTORC1 signaling.
Mahoney, Sarah J; Narayan, Sridhar; Molz, Lisa; Berstler, Lauren A; Kang, Seong A; Vlasuk, George P; Saiah, Eddine
2018-02-07
The small G-protein Rheb activates the mechanistic target of rapamycin complex 1 (mTORC1) in response to growth factor signals. mTORC1 is a master regulator of cellular growth and metabolism; aberrant mTORC1 signaling is associated with fibrotic, metabolic, and neurodegenerative diseases, cancers, and rare disorders. Point mutations in the Rheb switch II domain impair its ability to activate mTORC1. Here, we report the discovery of a small molecule (NR1) that binds Rheb in the switch II domain and selectively blocks mTORC1 signaling. NR1 potently inhibits mTORC1 driven phosphorylation of ribosomal protein S6 kinase beta-1 (S6K1) but does not inhibit phosphorylation of AKT or ERK. In contrast to rapamycin, NR1 does not cause inhibition of mTORC2 upon prolonged treatment. Furthermore, NR1 potently and selectively inhibits mTORC1 in mouse kidney and muscle in vivo. The data presented herein suggest that pharmacological inhibition of Rheb is an effective approach for selective inhibition of mTORC1 with therapeutic potential.
Sequence Dependent Interactions Between DNA and Single-Walled Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Roxbury, Daniel
It is known that single-stranded DNA adopts a helical wrap around a single-walled carbon nanotube (SWCNT), forming a water-dispersible hybrid molecule. The ability to sort mixtures of SWCNTs based on chirality (electronic species) has recently been demonstrated using special short DNA sequences that recognize certain matching SWCNTs of specific chirality. This thesis investigates the intricacies of DNA-SWCNT sequence-specific interactions through both experimental and molecular simulation studies. The DNA-SWCNT binding strengths were experimentally quantified by studying the kinetics of DNA replacement by a surfactant on the surface of particular SWCNTs. Recognition ability was found to correlate strongly with measured binding strength, e.g. DNA sequence (TAT)4 was found to bind 20 times stronger to the (6,5)-SWCNT than sequence (TAT)4T. Next, using replica exchange molecular dynamics (REMD) simulations, equilibrium structures formed by (a) single-strands and (b) multiple-strands of 12-mer oligonucleotides adsorbed on various SWCNTs were explored. A number of structural motifs were discovered in which the DNA strand wraps around the SWCNT and 'stitches' to itself via hydrogen bonding. Great variability among equilibrium structures was observed and shown to be directly influenced by DNA sequence and SWCNT type. For example, the (6,5)-SWCNT DNA recognition sequence, (TAT)4, was found to wrap in a tight single-stranded right-handed helical conformation. In contrast, DNA sequence T12 forms a beta-barrel left-handed structure on the same SWCNT. These are the first theoretical indications that DNA-based SWCNT selectivity can arise on a molecular level. In a biomedical collaboration with the Mayo Clinic, pathways for DNA-SWCNT internalization into healthy human endothelial cells were explored. Through absorbance spectroscopy, TEM imaging, and confocal fluorescence microscopy, we showed that intracellular concentrations of SWCNTs far exceeded those of the incubation solution, which suggested an energy-dependent pathway. Additionally, by means of pharmacological inhibition and vector-induced gene knockout studies, the DNA-SWCNTs were shown to enter the cells via Rac1-mediated macropinocytosis.
Prospective identification of parasitic sequences in phage display screens
Matochko, Wadim L.; Cory Li, S.; Tang, Sindy K.Y.; Derda, Ratmir
2014-01-01
Phage display empowered the development of proteins with new function and ligands for clinically relevant targets. In this report, we use next-generation sequencing to analyze phage-displayed libraries and uncover a strong bias induced by amplification preferences of phage in bacteria. This bias favors fast-growing sequences that collectively constitute <0.01% of the available diversity. Specifically, a library of 109 random 7-mer peptides (Ph.D.-7) includes a few thousand sequences that grow quickly (the ‘parasites’), which are the sequences that are typically identified in phage display screens published to date. A similar collapse was observed in other libraries. Using Illumina and Ion Torrent sequencing and multiple biological replicates of amplification of Ph.D.-7 library, we identified a focused population of 770 ‘parasites’. In all, 197 sequences from this population have been identified in literature reports that used Ph.D.-7 library. Many of these enriched sequences have confirmed function (e.g. target binding capacity). The bias in the literature, thus, can be viewed as a selection with two different selection pressures: (i) target-binding selection, and (ii) amplification-induced selection. Enrichment of parasitic sequences could be minimized if amplification bias is removed. Here, we demonstrate that emulsion amplification in libraries of ∼106 diverse clones prevents the biased selection of parasitic clones. PMID:24217917
Evaluating Mismatch Repair Deficiency in Pancreatic Adenocarcinoma: Challenges and Recommendations.
Hu, Zishuo I; Shia, Jinru; Stadler, Zsofia K; Varghese, Anna M; Capanu, Marinela; Salo-Mullen, Erin; Lowery, Maeve A; Diaz, Luis A; Mandelker, Diana; Yu, Kenneth H; Zervoudakis, Alice; Kelsen, David P; Iacobuzio-Donahue, Christine A; Klimstra, David S; Saltz, Leonard B; Sahin, Ibrahim H; O'Reilly, Eileen M
2018-03-15
Purpose: Immune checkpoint inhibition has been shown to generate profound and durable responses in mismatch repair deficient (MMR-D) solid tumors and has elicited interest in detection tools and strategies to guide therapeutic decision-making. Herein we address questions on the appropriate screening, detection methods, patient selection, and initiation of therapy for MMR-D pancreatic ductal adenocarcinoma (PDAC) and assess the utility of next-generation sequencing (NGS) in providing additional prognostic and predictive information for MMR-D PDAC. Experimental Design: Archival and prospectively acquired samples and matched normal DNA from N = 833 PDAC cases were analyzed using a hybridization capture-based, NGS assay designed to perform targeted deep sequencing of all exons and selected introns of 341 to 468 cancer-associated genes. A computational program using NGS data derived the MSI status from the tumor-normal paired genome sequencing data. Available germline testing, IHC, and microsatellite instability (MSI) PCR results were reviewed to assess and confirm MMR-D and MSI status. Results: MMR-D in PDAC is a rare event among PDAC patients (7/833), occurring at a frequency of 0.8%. Loss of MMR protein expression by IHC, high mutational load, and elevated MSIsensor scores were correlated with MMR-D PDAC. All 7 MMR-D PDAC patients in the study were found to have Lynch syndrome. Four (57%) of the MMR-D patients treated with immune checkpoint blockade had treatment benefit (1 complete response, 2 partial responses, 1 stable disease). Conclusions: An integrated approach of germline testing and somatic analyses of tumor tissues in advanced PDAC using NGS may help guide future development of immune and molecularly directed therapies in PDAC patients. Clin Cancer Res; 24(6); 1326-36. ©2018 AACR . ©2018 American Association for Cancer Research.
El Zoeiby, Ahmed; Sanschagrin, François; Darveau, André; Brisson, Jean-Robert; Levesque, Roger C
2003-03-01
The machinery of peptidoglycan biosynthesis is an ideal site at which to look for novel antimicrobial targets. Phage display was used to develop novel peptide inhibitors for MurC, an essential enzyme involved in the early steps of biosynthesis of peptidoglycan monomer. We cloned and overexpressed the murA, -B and -C genes from Pseudomonas aeruginosa in the pET expression vector, adding a His-tag to their C termini. The three proteins were overproduced in Escherichia coli and purified to homogeneity in milligram quantities. MurA and -B were combinatorially used to synthesize the MurC substrate UDP-N-acetylmuramate, the identity of which was confirmed by mass spectrometry and nuclear magnetic resonance analysis. Two phage-display libraries were screened against MurC in order to identify peptide ligands to the enzyme. Three rounds of biopanning were carried out, successively increasing elution specificity from round 1 to 3. The third round was accomplished with both non-specific elution and competitive elution with each of the three MurC substrates, UDP-N-acetylmuramic acid (UNAM), ATP and L-alanine. The DNA of 10 phage, selected randomly from each group, was extracted and sequenced, and consensus peptide sequences were elucidated. Peptides were synthesized and tested for inhibition of the MurC-catalysed reaction, and two peptides were shown to be inhibitors of MurC activity with IC(50)s of 1.5 and 0.9 mM, respectively. The powerful selection technique of phage display allowed us to identify two peptide inhibitors of the essential bacterial enzyme MurC. The peptide sequences represent the basis for the synthesis of inhibitory peptidomimetic molecules.
Molecular Targeting of Prostate Cancer During Androgen Ablation: Inhibition of CHES1/FOXN3
2013-05-01
the DNA sequences (~25^6 reads/sample) were mapped to the human genome reference sequence (hg19...tumor the AR has a genomic abnormality, placing the novel sequence 3’ of the transcriptional start site. However, it is unclear if a genomic alteration...exon/intron organization of the CHES1 gene was determined by BLAST analysis of the human genome using the 1,473-bp CHES1 cDNA sequence
Ng, T B; Parkash, A; Tso, W W
2002-10-01
From fresh brown pumpkin seeds, two proteins with a molecular mass of 12kDa and an N-terminal sequence rich in arginine and glutamate residues were obtained. The protein designated alpha-moschin closely resembled the fruitfly programmed-cell death gene product and the protein designated beta-moschin demonstrated striking similarity to prepro 2S albumin in N-terminal sequence. alpha- and beta-moschins inhibited translation in the rabbit reticulocyte lysate system with an IC(50) of 17 microM and 300nM, respectively.
Kandpal, Raj P; Rajasimha, Harsha K; Brooks, Matthew J; Nellissery, Jacob; Wan, Jun; Qian, Jiang; Kern, Timothy S; Swaroop, Anand
2012-01-01
To define gene expression changes associated with diabetic retinopathy in a mouse model using next generation sequencing, and to utilize transcriptome signatures to assess molecular pathways by which pharmacological agents inhibit diabetic retinopathy. We applied a high throughput RNA sequencing (RNA-seq) strategy using Illumina GAIIx to characterize the entire retinal transcriptome from nondiabetic and from streptozotocin-treated mice 32 weeks after induction of diabetes. Some of the diabetic mice were treated with inhibitors of receptor for advanced glycation endproducts (RAGE) and p38 mitogen activated protein (MAP) kinase, which have previously been shown to inhibit diabetic retinopathy in rodent models. The transcripts and alternatively spliced variants were determined in all experimental groups. Next generation sequencing-based RNA-seq profiles provided comprehensive signatures of transcripts that are altered in early stages of diabetic retinopathy. These transcripts encoded proteins involved in distinct yet physiologically relevant disease-associated pathways such as inflammation, microvasculature formation, apoptosis, glucose metabolism, Wnt signaling, xenobiotic metabolism, and photoreceptor biology. Significant upregulation of crystallin transcripts was observed in diabetic animals, and the diabetes-induced upregulation of these transcripts was inhibited in diabetic animals treated with inhibitors of either RAGE or p38 MAP kinase. These two therapies also showed dissimilar regulation of some subsets of transcripts that included alternatively spliced versions of arrestin, neutral sphingomyelinase activation associated factor (Nsmaf), SH3-domain GRB2-like interacting protein 1 (Sgip1), and axin. Diabetes alters many transcripts in the retina, and two therapies that inhibit the vascular pathology similarly inhibit a portion of these changes, pointing to possible molecular mechanisms for their beneficial effects. These therapies also changed the abundance of various alternatively spliced versions of signaling transcripts, suggesting a possible role of alternative splicing in disease etiology. Our studies clearly demonstrate RNA-seq as a comprehensive strategy for identifying disease-specific transcripts, and for determining comparative profiles of molecular changes mediated by candidate drugs.
Stoppani, Elena; Bassi, Ivan; Dotti, Silvia; Lizier, Michela; Ferrari, Maura; Lucchini, Franco
2015-08-01
Influenza A virus is the principal agent responsible of the respiratory tract's infections in humans. Every year, highly pathogenic and infectious strains with new antigenic assets appear, making ineffective vaccines so far developed. The discovery of RNA interference (RNAi) opened the way to the progress of new promising drugs against Influenza A virus and also to the introduction of disease resistance traits in genetically modified animals. In this paper, we show that Madin-Darby Canine Kidney (MDCK) cell line expressing short hairpin RNAs (shRNAs) cassette, designed on a specific conserved region of the nucleoprotein (NP) viral genome, can strongly inhibit the viral replication of four viral strains sharing the target sequence, reducing the viral mRNA respectively to 2.5×10(-4), 7.5×10(-5), 1.7×10(-3), 1.9×10(-4) compared to the control, as assessed by real-time PCR. Moreover, we demonstrate that during the challenge with a viral strain bearing a single mismatch on the target sequence, although a weaker inhibition is observed, viral mRNA is still lowered down to 1.2×10(-3) folds in the shRNA-expressing clone compared to the control, indicating a broad potential use of this approach. In addition, we developed a highly predictive and fast screening test of siRNA sequences based on dual-luciferase assay, useful for the in vitro prediction of the potential effect of viral inhibition. In conclusion, these findings reveal new siRNA sequences able to inhibit Influenza A virus replication and provide a basis for the development of siRNAs as prophylaxis and therapy for influenza infection both in humans and animals. Copyright © 2015 Elsevier B.V. All rights reserved.
Fienberg, Stephen; Cozier, Gyles E; Acharya, K Ravi; Chibale, Kelly; Sturrock, Edward D
2018-01-11
Angiotensin-I converting enzyme (ACE) is a zinc metalloprotease consisting of two catalytic domains (N- and C-). Most clinical ACE inhibitor(s) (ACEi) have been shown to inhibit both domains nonselectively, resulting in adverse effects such as cough and angioedema. Selectively inhibiting the individual domains is likely to reduce these effects and potentially treat fibrosis in addition to hypertension. ACEi from the GVK Biosciences database were inspected for possible N-domain selective binding patterns. From this set, a diprolyl chemical series was modeled using docking simulations. The series was expanded based on key target interactions involving residues known to impart N-domain selectivity. In total, seven diprolyl compounds were synthesized and tested for N-domain selective ACE inhibition. One compound with an aspartic acid in the P 2 position (compound 16) displayed potent inhibition (K i = 11.45 nM) and was 84-fold more selective toward the N-domain. A high-resolution crystal structure of compound 16 in complex with the N-domain revealed the molecular basis for the observed selectivity.
Simsek, Meric; Quezada-Calvillo, Roberto; Ferruzzi, Mario G; Nichols, Buford L; Hamaker, Bruce R
2015-04-22
In this study, it was hypothesized that dietary phenolic compounds selectively inhibit the individual C- and N-terminal (Ct, Nt) subunits of the two small intestinal α-glucosidases, maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI), for a modulated glycemic carbohydrate digestion. The inhibition by chlorogenic acid, caffeic acid, gallic acid, (+)-catechin, and (-)-epigallocatechin gallate (EGCG) on individual recombinant human Nt-MGAM and Nt-SI and on mouse Ct-MGAM and Ct-SI was assayed using maltose as the substrate. Inhibition constants, inhibition mechanisms, and IC50 values for each combination of phenolic compound and enzymatic subunit were determined. EGCG and chlorogenic acid were found to be more potent inhibitors for selectively inhibiting the two subunits with highest activity, Ct-MGAM and Ct-SI. All compounds displayed noncompetitive type inhibition. Inhibition of fast-digesting Ct-MGAM and Ct-SI by EGCG and chlorogenic acid could lead to a slow, but complete, digestion of starch for improved glycemic response of starchy foods with potential health benefit.
Price, L H; Li, Y; Patel, A; Gyawali, C Prakash
2014-05-01
Multiple rapid swallows (MRS) during esophageal high resolution manometry (HRM) assess esophageal neuromuscular integrity by evaluating postdeglutitive inhibition and rebound contraction, but most reports performed only a single MRS sequence. We assessed patterns of MRS reproducibility during clinical HRM in comparison to a normal cohort. Consecutive clinical HRM studies were included if two separate MRS sequences (four to six rapid swallows ≤4 s apart) were successfully performed. Chicago Classification diagnoses were identified; contraction wave abnormalities were additionally recorded. MRS-induced inhibition (contraction ≤3 cm during inhibition phase) and rebound contraction was assessed, and findings compared to 18 controls (28.0 ± 0.7 year, 50.0% female). Reproducibility consisted of similar inhibition and contraction responses with both sequences; discordance was segregated into inhibition and contraction phases. Multiple rapid swallows were successfully performed in 89.3% patients and all controls; 225 subjects (56.2 ± 0.9 year, 62.7% female) met study inclusion criteria. Multiple rapid swallows were reproducible in 76.9% patients and 94.4% controls (inhibition phase: 88.0% vs 94.4%, contraction phase 86.7% vs 100%, respectively, p = ns). A gradient of reproducibility was noted, highest in well-developed motor disorders (achalasia spectrum, hypermotility disorders, and aperistalsis, 91.7-100%, p = ns compared to controls); and lower in lesser motor disorders (contraction wave abnormalities, esophageal body hypomotility) or normal studies (62.2-70.8%, p < 0.0001 compared to well-developed motor disorders). Inhibition phase was most discordant in contraction wave abnormalities, while contraction phase was most discordant when studies were designated normal. Multiple rapid swallows are highly reproducible, especially in well-developed motor disorders, and complement the standard wet swallow manometry protocol. © 2014 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peabody, David S.; Chackerian, Bryce; Ashley, Carlee
The invention relates to virus-like particles of bacteriophage MS2 (MS2 VLPs) displaying peptide epitopes or peptide mimics of epitopes of Nipah Virus envelope glycoprotein that elicit an immune response against Nipah Virus upon vaccination of humans or animals. Affinity selection on Nipah Virus-neutralizing monoclonal antibodies using random sequence peptide libraries on MS2 VLPs selected peptides with sequence similarity to peptide sequences found within the envelope glycoprotein of Nipah itself, thus identifying the epitopes the antibodies recognize. The selected peptide sequences themselves are not necessarily identical in all respects to a sequence within Nipah Virus glycoprotein, and therefore may be referredmore » to as epitope mimics VLPs displaying these epitope mimics can serve as vaccine. On the other hand, display of the corresponding wild-type sequence derived from Nipah Virus and corresponding to the epitope mapped by affinity selection, may also be used as a vaccine.« less
A cost effective 5΄ selective single cell transcriptome profiling approach with improved UMI design
Arguel, Marie-Jeanne; LeBrigand, Kevin; Paquet, Agnès; Ruiz García, Sandra; Zaragosi, Laure-Emmanuelle; Waldmann, Rainer
2017-01-01
Abstract Single cell RNA sequencing approaches are instrumental in studies of cell-to-cell variability. 5΄ selective transcriptome profiling approaches allow simultaneous definition of the transcription start size and have advantages over 3΄ selective approaches which just provide internal sequences close to the 3΄ end. The only currently existing 5΄ selective approach requires costly and labor intensive fragmentation and cell barcoding after cDNA amplification. We developed an optimized 5΄ selective workflow where all the cell indexing is done prior to fragmentation. With our protocol, cell indexing can be performed in the Fluidigm C1 microfluidic device, resulting in a significant reduction of cost and labor. We also designed optimized unique molecular identifiers that show less sequence bias and vulnerability towards sequencing errors resulting in an improved accuracy of molecule counting. We provide comprehensive experimental workflows for Illumina and Ion Proton sequencers that allow single cell sequencing in a cost range comparable to qPCR assays. PMID:27940562
In silico simulations of STAT1 and STAT3 inhibitors predict SH2 domain cross-binding specificity.
Szelag, Malgorzata; Sikorski, Krzysztof; Czerwoniec, Anna; Szatkowska, Katarzyna; Wesoly, Joanna; Bluyssen, Hans A R
2013-11-15
Signal transducers and activators of transcription (STATs) comprise a family of transcription factors that are structurally related and which participate in signaling pathways activated by cytokines, growth factors and pathogens. Activation of STAT proteins is mediated by the highly conserved Src homology 2 (SH2) domain, which interacts with phosphotyrosine motifs for specific contacts between STATs and receptors and for STAT dimerization. By generating new models for human (h)STAT1, hSTAT2 and hSTAT3 we applied comparative in silico docking to determine SH2-binding specificity of the STAT3 inhibitor stattic, and of fludarabine (STAT1 inhibitor). Thus, we provide evidence that by primarily targeting the highly conserved phosphotyrosine (pY+0) SH2 binding pocket stattic is not a specific hSTAT3 inhibitor, but is equally effective towards hSTAT1 and hSTAT2. This was confirmed in Human Micro-vascular Endothelial Cells (HMECs) in vitro, in which stattic inhibited interferon-α-induced phosphorylation of all three STATs. Likewise, fludarabine inhibits both hSTAT1 and hSTAT3 phosphorylation, but not hSTAT2, by competing with the highly conserved pY+0 and pY-X binding sites, which are less well-preserved in hSTAT2. Moreover we observed that in HMECs in vitro fludarabine inhibits cytokine and lipopolysaccharide-induced phosphorylation of hSTAT1 and hSTAT3 but does not affect hSTAT2. Finally, multiple sequence alignment of STAT-SH2 domain sequences confirmed high conservation between hSTAT1 and hSTAT3, but not hSTAT2, with respect to stattic and fludarabine binding sites. Together our data offer a molecular basis that explains STAT cross-binding specificity of stattic and fludarabine, thereby questioning the present selection strategies of SH2 domain-based competitive small inhibitors. © 2013 Elsevier B.V. All rights reserved.
Cha, S; Leung, P S; Van de Water, J; Tsuneyama, K; Joplin, R E; Ansari, A A; Nakanuma, Y; Schatz, P J; Cwirla, S; Fabris, L E; Neuberger, J M; Gershwin, M E; Coppel, R L
1996-01-01
Dihydrolipoamide acetyltransferase, the E2 component of the pyruvate dehydrogenase complex (PDC-E2), is the autoantigen most commonly recognized by autoantibodies in primary biliary cirrhosis (PBC). We identified a peptide mimotope(s) of PDC-E2 by screening a phage-epitope library expressing random dodecapeptides in the pIII coat protein of fd phage using C355.1, a murine monoclonal antibody (mAb) that recognizes a conformation-dependent epitope in the inner lipoyl domain of PDC-E2 and uniquely stains the apical region of bile duct epithelium (BDE) only in patients with PBC. Eight different sequences were identified in 36 phage clones. WMSYPDRTLRTS was present in 29 clones; WESYPFRVGTSL, APKTYVSVSGMV, LTYVSLQGRQGH, LDYVPLKHRHRH, AALWGVKVRHVS, KVLNRIMAGVRH and GNVALVSSRVNA were singly represented. Three common amino acid motifs (W-SYP, TYVS, and VRH) were shared among all peptide sequences. Competitive inhibition of the immunohistochemical staining of PBC BDE was performed by incubating the peptides WMSYPDRTLRTS, WESYPDRTLRTS, APKTYVSVSGMV, and AALWGVKVRHVS with either C355.1 or a second PDC-E2-specific mAb, C150.1. Both mAbs were originally generated to PDC-E2 but map to distinct regions of PDC-E2. Two of the peptides, although selected by reaction with C355.1, strongly inhibited the staining of BDE by C150.1, whereas the peptide APKTYVSVSGMV consistently inhibited the staining of C355.1 on biliary duct epithelium more strongly than the typical mitochondrial staining of hepatocytes. Rabbit sera raised against the peptide WMSYPDRTLRTS stained BDE of livers and isolated bile duct epithelial cells of PBC patients more intensively than controls. The rabbit sera stained all size ducts in normals, but only small/medium-sized ductules in PBC livers. These studies provide evidence that the antigen present in BDE is a molecular mimic of PDC-E2, and not PDC-E2 itself. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8855289
Wang, Wei; Lim, Liangzhong; Baskaran, Yohendran; Manser, Ed; Song, Jianxing
2013-08-16
Six human PAK members are classified into groups I (PAKs 1-3) and II (PAK4-6). Previously, only group I PAKs were thought to be auto-inhibited but very recently PAK4, the prototype of group II PAKs, has also been shown to be auto-inhibited by its N-terminal regulatory domain. However, the complete auto-inhibitory domain (AID) sequence remains undefined and the mechanism underlying its auto-inhibition is largely elusive. Here, the N-terminal regulatory domain of PAK4 sufficient for auto-inhibiting and binding Cdc42/Rac was characterized to be intrinsically unstructured, but nevertheless we identified the entire AID sequence by NMR. Strikingly, an AID peptide was derived by deleting the binding-unnecessary residues, which has a Kd of 320 nM to the PAK4 catalytic domain. Consequently, the PAK4 crystal structure complexed with the entire AID has been determined, which reveals that the complete kinase cleft is occupied by 20 AID residuescomposed of an N-terminal α-helix and a previously-identified pseudosubstrate motif, thus achieving auto-inhibition. Our study reveals that PAK4 is auto-inhibited by a novel mechanism which is completely different from that for PAK1, thus bearing critical implications for design of inhibitors specific for group II PAKs. Copyright © 2013 Elsevier Inc. All rights reserved.
Inhibition of angiogenesis in vitro by Arg-Gly-Asp-containing synthetic peptide.
Nicosia, R. F.; Bonanno, E.
1991-01-01
This study was designed to evaluate the effect of the synthetic peptide Gly-Arg-Gly-Asp-Ser (GRGDS) on angiogenesis in serum-free collagen gel culture of rat aorta. The GRGDS peptide contains the amino acid sequence Arg-Gly-Asp (RGD), which has been implicated as a recognition site in interactions between extracellular matrix (ECM) molecules and cell membrane receptors. RGD-containing synthetic peptides are known to inhibit attachment of endothelial cells to substrates, but their effect on angiogenesis has not been fully characterized. Aortic explants embedded in collagen gel in the absence of GRGDS generated branching microvessels through a process of endothelial migration and proliferation. Addition of GRGDS to the culture medium caused a marked inhibition of angiogenesis. In contrast, GRGES, a control peptide lacking the RGD sequence, failed to inhibit angiogenesis. The inhibitory effect of GRGDS was nontoxic and reversible. The angiogenic activity of aortic explants previously inhibited with GRGDS could be restored by incubating the cultures in GRGDS-free medium. These findings suggest that angiogenesis is an anchorage-dependent process that can be inhibited by interfering with the attachment of endothelial cells to the ECM. It also indicates that synthetic peptides can be used as probes to study the mechanisms by which the ECM regulates angiogenesis. Images Figure 1 PMID:1707235
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fradkin, L.G.; Yoshinaga, S.K.; Berk, A.J.
1987-11-01
The inhibition of transcription by RNA polymerase III in poliovirus-infected cells was studied. Experiments utilizing two different cell lines showed that the initiation step of transcription by RNA polymerase III was impaired by infection of these cells with the virus. The observed inhibition of transcription was not due to shut-off of host cell protein synthesis by poliovirus. Among four distinct components required for accurate transcription in vitro from cloned DNA templates, activities of RNA polymerase III and transcription factor TFIIIA were not significantly affected by virus infection. The activity of transcription factor TFIIIC, the limiting component required for transcription ofmore » RNA polymerase III genes, was severely inhibited in infected cells, whereas that of transcription factor TFIIIB was inhibited to a lesser extent. The sequence-specific DNA-binding of TFIIIC to the adenovirus VA1 gene internal promoted, however, was not altered by infection of cells with the virus. The authors conclude that (i) at least two transcription factors, TFIIIB and TFIIIC, are inhibited by infection of cells with poliovirtus, (ii) inactivation of TFIIIC does not involve destruction of its DNA-binding domain, and (iii) sequence-specific DNA binding by TFIIIC may be necessary but is not sufficient for the formation of productive transcription complexes.« less
Neuhof, Andrea; Rolls, Melissa M.; Jungnickel, Berit; Kalies, Kai-Uwe; Rapoport, Tom A.
1998-01-01
Most secretory and membrane proteins are sorted by signal sequences to the endoplasmic reticulum (ER) membrane early during their synthesis. Targeting of the ribosome-nascent chain complex (RNC) involves the binding of the signal sequence to the signal recognition particle (SRP), followed by an interaction of ribosome-bound SRP with the SRP receptor. However, ribosomes can also independently bind to the ER translocation channel formed by the Sec61p complex. To explain the specificity of membrane targeting, it has therefore been proposed that nascent polypeptide-associated complex functions as a cytosolic inhibitor of signal sequence- and SRP-independent ribosome binding to the ER membrane. We report here that SRP-independent binding of RNCs to the ER membrane can occur in the presence of all cytosolic factors, including nascent polypeptide-associated complex. Nontranslating ribosomes competitively inhibit SRP-independent membrane binding of RNCs but have no effect when SRP is bound to the RNCs. The protective effect of SRP against ribosome competition depends on a functional signal sequence in the nascent chain and is also observed with reconstituted proteoliposomes containing only the Sec61p complex and the SRP receptor. We conclude that cytosolic factors do not prevent the membrane binding of ribosomes. Instead, specific ribosome targeting to the Sec61p complex is provided by the binding of SRP to RNCs, followed by an interaction with the SRP receptor, which gives RNC–SRP complexes a selective advantage in membrane targeting over nontranslating ribosomes. PMID:9436994
Amino acid sequence of a trypsin inhibitor from a Spirometra (Spirometra erinaceieuropaei).
Sanda, A; Uchida, A; Itagaki, T; Kobayashi, H; Inokuchi, N; Koyama, T; Iwama, M; Ohgi, K; Irie, M
2001-12-01
A trypsin inhibitor that is highly homologous with bovine pancreatic trypsin inhibitor (BPTI) was co-purified along with RNase from Spirometra (Spirometra erinaceieuropaei). The amino acid sequence of this inhibitor (SETI) and the nucleotide sequence of the cDNA encoding this protein were determined by protein chemistry and gene technology. SETI contains 68 amino acid residues and has a molecular mass of 7,798 Da. SETI has 31 amino acid residues that are identical with BPTI's sequence, including 6 half-cystine and 5 aromatic amino acid residues. The active site Lys residue in BPTI is replaced by an Arg residue in SETI. SETI is an effective inhibitor of trypsin and moderately inhibits a-chymotrypsin, but less inhibits elastase or subtilisin. SETI was expressed by E. coli containing a PelB vector carrying the SETI encoding cDNA; an expression yield of 0.68 mg/l was obtained. The phylogenetic relationship of SETI and the other BPTI-like trypsin inhibitors was analyzed using most likelihood inference methods.
Dynamic peptide libraries for the discovery of supramolecular nanomaterials
NASA Astrophysics Data System (ADS)
Pappas, Charalampos G.; Shafi, Ramim; Sasselli, Ivan R.; Siccardi, Henry; Wang, Tong; Narang, Vishal; Abzalimov, Rinat; Wijerathne, Nadeesha; Ulijn, Rein V.
2016-11-01
Sequence-specific polymers, such as oligonucleotides and peptides, can be used as building blocks for functional supramolecular nanomaterials. The design and selection of suitable self-assembling sequences is, however, challenging because of the vast combinatorial space available. Here we report a methodology that allows the peptide sequence space to be searched for self-assembling structures. In this approach, unprotected homo- and heterodipeptides (including aromatic, aliphatic, polar and charged amino acids) are subjected to continuous enzymatic condensation, hydrolysis and sequence exchange to create a dynamic combinatorial peptide library. The free-energy change associated with the assembly process itself gives rise to selective amplification of self-assembling candidates. By changing the environmental conditions during the selection process, different sequences and consequent nanoscale morphologies are selected.
Dynamic peptide libraries for the discovery of supramolecular nanomaterials.
Pappas, Charalampos G; Shafi, Ramim; Sasselli, Ivan R; Siccardi, Henry; Wang, Tong; Narang, Vishal; Abzalimov, Rinat; Wijerathne, Nadeesha; Ulijn, Rein V
2016-11-01
Sequence-specific polymers, such as oligonucleotides and peptides, can be used as building blocks for functional supramolecular nanomaterials. The design and selection of suitable self-assembling sequences is, however, challenging because of the vast combinatorial space available. Here we report a methodology that allows the peptide sequence space to be searched for self-assembling structures. In this approach, unprotected homo- and heterodipeptides (including aromatic, aliphatic, polar and charged amino acids) are subjected to continuous enzymatic condensation, hydrolysis and sequence exchange to create a dynamic combinatorial peptide library. The free-energy change associated with the assembly process itself gives rise to selective amplification of self-assembling candidates. By changing the environmental conditions during the selection process, different sequences and consequent nanoscale morphologies are selected.
Deng, Gejing; Shen, Junqing; Yin, Ming; McManus, Jessica; Mathieu, Magali; Gee, Patricia; He, Timothy; Shi, Chaomei; Bedel, Olivier; McLean, Larry R.; Le-Strat, Frank; Zhang, Ying; Marquette, Jean-Pierre; Gao, Qiang; Zhang, Bailin; Rak, Alexey; Hoffmann, Dietmar; Rooney, Eamonn; Vassort, Aurelie; Englaro, Walter; Li, Yi; Patel, Vinod; Adrian, Francisco; Gross, Stefan; Wiederschain, Dmitri; Cheng, Hong; Licht, Stuart
2015-01-01
Cancer-associated point mutations in isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) confer a neomorphic enzymatic activity: the reduction of α-ketoglutarate to d-2-hydroxyglutaric acid, which is proposed to act as an oncogenic metabolite by inducing hypermethylation of histones and DNA. Although selective inhibitors of mutant IDH1 and IDH2 have been identified and are currently under investigation as potential cancer therapeutics, the mechanistic basis for their selectivity is not yet well understood. A high throughput screen for selective inhibitors of IDH1 bearing the oncogenic mutation R132H identified compound 1, a bis-imidazole phenol that inhibits d-2-hydroxyglutaric acid production in cells. We investigated the mode of inhibition of compound 1 and a previously published IDH1 mutant inhibitor with a different chemical scaffold. Steady-state kinetics and biophysical studies show that both of these compounds selectively inhibit mutant IDH1 by binding to an allosteric site and that inhibition is competitive with respect to Mg2+. A crystal structure of compound 1 complexed with R132H IDH1 indicates that the inhibitor binds at the dimer interface and makes direct contact with a residue involved in binding of the catalytically essential divalent cation. These results show that targeting a divalent cation binding residue can enable selective inhibition of mutant IDH1 and suggest that differences in magnesium binding between wild-type and mutant enzymes may contribute to the inhibitors' selectivity for the mutant enzyme. PMID:25391653
Primary structure of the abundant seed albumin of Theobroma cacao by mass spectrometry.
Kochhar, S; Gartenmann, K; Juillerat, M A
2000-11-01
The most abundant albumin present in seeds of Theobroma cacao was purified to apparent homogeneity as judged by high-performance liquid chromatography/electrospray ionization mass spectrometry (HPLC/ESI-MS), sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and NH(2)-terminal sequence analysis. Tryptic peptide mass fingerprinting of the purified protein by HPLC/ESI-MS showed the presence of 16 masses that matched the expected tryptic peptides corresponding to 95% of the translated amino acid sequence from the cDNA of the 21 kDa cocoa albumin. Collision-induced dissociation MS/MS analysis of the C-terminal peptide isolated from the CNBr cleavage products provided unequivocal evidence that the mature cocoa albumin protein is nine amino acid residues shorter than expected from the reported cDNA of its corresponding gene. The experimentally determined M(r) value of 20234 was in excellent agreement with the truncated version of the amino acid sequence. The purified cocoa albumin inhibited the catalytic activities of bovine trypsin and chymotrypsin. The inhibition was stoichiometric with 1 mol of trypsin or chymotrypsin being inhibited by 1 mol of inhibitor with apparent dissociation constants (K(i)) of 9.5 x 10(-8) and 2. 3 x 10(-6) M, respectively, for inhibitor binding at pH 8.5 and 37 degrees C. No inhibition of the catalytic activities of subtilisin, papain, pepsin, and cocoa endoproteases was detected under their optimal reaction conditions.
Chromosome specific repetitive DNA sequences
Moyzis, Robert K.; Meyne, Julianne
1991-01-01
A method is provided for determining specific nucleotide sequences useful in forming a probe which can identify specific chromosomes, preferably through in situ hybridization within the cell itself. In one embodiment, chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family me This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).
Murali, Reena; John, Philips George; Peter S, David
2015-05-15
The ability of small interfering RNA (siRNA) to do posttranscriptional gene regulation by knocking down targeted genes is an important research topic in functional genomics, biomedical research and in cancer therapeutics. Many tools had been developed to design exogenous siRNA with high experimental inhibition. Even though considerable amount of work has been done in designing exogenous siRNA, design of effective siRNA sequences is still a challenging work because the target mRNAs must be selected such that their corresponding siRNAs are likely to be efficient against that target and unlikely to accidentally silence other transcripts due to sequence similarity. In some cases, siRNAs may tolerate mismatches with the target mRNA, but knockdown of genes other than the intended target could make serious consequences. Hence to design siRNAs, two important concepts must be considered: the ability in knocking down target genes and the off target possibility on any nontarget genes. So before doing gene silencing by siRNAs, it is essential to analyze their off target effects in addition to their inhibition efficacy against a particular target. Only a few methods have been developed by considering both efficacy and off target possibility of siRNA against a gene. In this paper we present a new design of neural network model with whole stacking energy (ΔG) that enables to identify the efficacy and off target effect of siRNAs against target genes. The tool lists all siRNAs against a particular target with their inhibition efficacy and number of matches or sequence similarity with other genes in the database. We could achieve an excellent performance of Pearson Correlation Coefficient (R=0. 74) and Area Under Curve (AUC=0.906) when the threshold of whole stacking energy is ≥-34.6 kcal/mol. To the best of the author's knowledge, this is one of the best score while considering the "combined efficacy and off target possibility" of siRNA for silencing a gene. The proposed model shall be useful for designing exogenous siRNA for therapeutic applications and gene silencing techniques in the area of bioinformatics. The software is developed as a desktop application and available at http://opsid.in/opsid/. Copyright © 2015 Elsevier B.V. All rights reserved.
Whole-Genome Thermodynamic Analysis Reduces siRNA Off-Target Effects
Chen, Xi; Liu, Peng; Chou, Hui-Hsien
2013-01-01
Small interfering RNAs (siRNAs) are important tools for knocking down targeted genes, and have been widely applied to biological and biomedical research. To design siRNAs, two important aspects must be considered: the potency in knocking down target genes and the off-target effect on any nontarget genes. Although many studies have produced useful tools to design potent siRNAs, off-target prevention has mostly been delegated to sequence-level alignment tools such as BLAST. We hypothesize that whole-genome thermodynamic analysis can identify potential off-targets with higher precision and help us avoid siRNAs that may have strong off-target effects. To validate this hypothesis, two siRNA sets were designed to target three human genes IDH1, ITPR2 and TRIM28. They were selected from the output of two popular siRNA design tools, siDirect and siDesign. Both siRNA design tools have incorporated sequence-level screening to avoid off-targets, thus their output is believed to be optimal. However, one of the sets we tested has off-target genes predicted by Picky, a whole-genome thermodynamic analysis tool. Picky can identify off-target genes that may hybridize to a siRNA within a user-specified melting temperature range. Our experiments validated that some off-target genes predicted by Picky can indeed be inhibited by siRNAs. Similar experiments were performed using commercially available siRNAs and a few off-target genes were also found to be inhibited as predicted by Picky. In summary, we demonstrate that whole-genome thermodynamic analysis can identify off-target genes that are missed in sequence-level screening. Because Picky prediction is deterministic according to thermodynamics, if a siRNA candidate has no Picky predicted off-targets, it is unlikely to cause off-target effects. Therefore, we recommend including Picky as an additional screening step in siRNA design. PMID:23484018
Deep sequencing in library selection projects: what insight does it bring?
Glanville, J; D'Angelo, S; Khan, T A; Reddy, S T; Naranjo, L; Ferrara, F; Bradbury, A R M
2015-08-01
High throughput sequencing is poised to change all aspects of the way antibodies and other binders are discovered and engineered. Millions of available sequence reads provide an unprecedented sampling depth able to guide the design and construction of effective, high quality naïve libraries containing tens of billions of unique molecules. Furthermore, during selections, high throughput sequencing enables quantitative tracing of enriched clones and position-specific guidance to amino acid variation under positive selection during antibody engineering. Successful application of the technologies relies on specific PCR reagent design, correct sequencing platform selection, and effective use of computational tools and statistical measures to remove error, identify antibodies, estimate diversity, and extract signatures of selection from the clone down to individual structural positions. Here we review these considerations and discuss some of the remaining challenges to the widespread adoption of the technology. Copyright © 2015 Elsevier Ltd. All rights reserved.
Deep sequencing in library selection projects: what insight does it bring?
Glanville, J; D’Angelo, S; Khan, T.A.; Reddy, S. T.; Naranjo, L.; Ferrara, F.; Bradbury, A.R.M.
2015-01-01
High throughput sequencing is poised to change all aspects of the way antibodies and other binders are discovered and engineered. Millions of available sequence reads provide an unprecedented sampling depth able to guide the design and construction of effective, high quality naïve libraries containing tens of billions of unique molecules. Furthermore, during selections, high throughput sequencing enables quantitative tracing of enriched clones and position-specific guidance to amino acid variation under positive selection during antibody engineering. Successful application of the technologies relies on specific PCR reagent design, correct sequencing platform selection, and effective use of computational tools and statistical measures to remove error, identify antibodies, estimate diversity, and extract signatures of selection from the clone down to individual structural positions. Here we review these considerations and discuss some of the remaining challenges to the widespread adoption of the technology. PMID:26451649
Cloning of precursors for two MIH/VIH-related peptides in the prawn, Macrobrachium rosenbergii.
Yang, W J; Rao, K R
2001-11-30
Two cDNA clones (634 and 1366 bp) encoding MIH/VIH (molt-inhibiting hormone/vitellogenesis-inhibiting hormone)-related peptides were isolated and sequenced from a Macrobrachium rosenbergii eyestalk ganglia cDNA library. The clones contain a 360 and 339 bp open-reading frame, and their conceptually translated peptides consist of a 41 and 34 amino acid signal peptide, respectively, and a 78 amino acid residue mature peptide hormone. The amino acid sequences of the peptides exhibit higher identities with other known MIHs and VIH (44-69%) than with CHHs (28-33%). This is the first report describing the cloning and sequencing of two MIH/VIH-related peptides in a single crustacean species. Transcription of these mRNAs was detected in the eyestalk ganglia, but not in the thoracic ganglia, hepatopancreas, gut, gill, heart, or muscle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahren, B.
The thyroid gland is known to harbor cholinergic and VIPergic nerves. In the present study, the influences of cholinergic stimulation by carbachol, cholinergic blockade by methylatropine and stimulation with various VIP sequences on basal, TSH-induced and VIP-induced thyroid hormone secretion were investigated in vivo in mice. The mice were pretreated with /sup 125/I and thyroxine; the subsequent release of /sup 125/I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was inhibited by both carbachol and methylatropine. Furthermore, TSH-induced radioiodine secretion was inhibited already by a low dose of carbachol. Moreover, a high dose ofmore » carbachol could inhibit VIP-induced radioiodine secretion. Methylatropine did not influence TSH- or VIP-stimulated radioiodine secretion, but counteracted the inhibitory action of carbachol on TSH- and VIP-induced radioiodine release. In addition, contrary to VIP, six various synthesized VIP fragments had no effect on basal or stimulated radioiodine release. It is concluded that basal thyroid hormone secretion is inhibited by both cholinergic activation and blockade. Furthermore, TSH-induced thyroid hormone secretion is more sensitive to inhibition with cholinergic stimulation than is VIP-induced thyroid hormone secretion. In addition, the VIP stimulation of thyroid hormone secretion seems to require the full VIP sequence.« less
USDA-ARS?s Scientific Manuscript database
Major whole genome sequencing projects promise to identify rare and causal variants within livestock species; however, the efficient selection of animals for sequencing remains a major problem within these surveys. The goal of this project was to develop a library of high accuracy genetic variants f...
Green, Timothy J; Dixon, Tom J; Devic, Emilie; Adlard, Robert D; Barnes, Andrew C
2009-05-01
Sydney rock oysters (Saccostrea glomerata) selectively bred for disease resistance (R) and wild-caught control oysters (W) were exposed to a field infection of disseminating neoplasia. Cumulative mortality of W oysters (31.7%) was significantly greater than R oysters (0.0%) over the 118 days of the experiment. In an attempt to understand the biochemical and molecular pathways involved in disease resistance, differentially expressed sequence tags (ESTs) between R and W S. glomerata hemocytes were identified using the PCR technique, suppression subtractive hybridisation (SSH). Sequencing of 300 clones from two SSH libraries revealed 183 distinct sequences of which 113 shared high similarity to sequences in the public databases. Putative function could be assigned to 64 of the sequences. Expression of nine ESTs homologous to genes previously shown to be involved in bivalve immunity was further studied using quantitative reverse-transcriptase PCR (qRT-PCR). The base-line expression of an extracellular superoxide dismutase (ecSOD) and a small heat shock protein (sHsP) were significantly increased, whilst peroxiredoxin 6 (Prx6) and interferon inhibiting cytokine factor (IK) were significantly decreased in R oysters. From these results it was hypothesised that R oysters would be able to generate the anti-parasitic compound, hydrogen peroxide (H(2)O(2)) faster and to higher concentrations during respiratory burst due to the differential expression of genes for the two anti-oxidant enzymes of ecSOD and Prx6. To investigate this hypothesis, protein extracts from hemolymph were analysed for oxidative burst enzyme activity. Analysis of the cell free hemolymph proteins separated by native-polyacrylamide gel electrophoresis (PAGE) failed to detect true superoxide dismutase (SOD) activity by assaying dismutation of superoxide anion in zymograms. However, the ecSOD enzyme appears to generate hydrogen peroxide, presumably via another process, which is yet to be elucidated. This corroborates our hypothesis, whilst phylogenetic analysis of the complete coding sequence (CDS) of the S. glomerata ecSOD gene is supportive of the atypical nature of the ecSOD enzyme. Results obtained from this work further the current understanding of the molecular mechanisms involved in resistance to disease in this economically important bivalve, and shed further light on the anomalous oxidative processes involved.
Improta, G; Broccardo, M
1992-01-01
Pharmacological assays in isolated tissues and binding tests have recently shown that two peptides, with the sequence Tyr-D-Ala-Phe-Asp-(or Glu)- Val-Val-Gly-NH2, isolated from skin extracts of Phyllomedusa bicolor and named [D-Ala2]deltorphin I and II, respectively, possess a higher affinity and selectivity for delta-opioid receptors than any other known natural compound. Since much evidence supports the role of spinal delta-opioid sites in producing antinociceptive effects, we investigated whether analgesia might be detected by direct spinal cord administration of [D-Ala2]deltorphin II (DADELT II) in the rat. The thermal antinociceptive effects of intrathecal DADELT II and dermorphin, a potent mu-selective agonist, were compared at different postinjection times by means of the tail-flick test. The DADELT II produced a dose-related inhibition of the tail-flick response, which lasted 10-60 min depending on the dose and appeared to be of shorter duration than the analgesia produced in rats after intrathecal injection of dermorphin (20-120 min). The analgesic effect of infused or injected DADELT II was completely abolished by naltrindole, the highly selective delta antagonist. These results confirm the involvement of delta receptors in spinal analgesic activity in the rat.
Ma, Jun; Wu, Kaiming; Zhao, Zhenxian; Miao, Rong; Xu, Zhe
2017-03-01
Esophageal squamous cell carcinoma is one of the most aggressive malignancies worldwide. Special AT-rich sequence binding protein 1 is a nuclear matrix attachment region binding protein which participates in higher order chromatin organization and tissue-specific gene expression. However, the role of special AT-rich sequence binding protein 1 in esophageal squamous cell carcinoma remains unknown. In this study, western blot and quantitative real-time polymerase chain reaction analysis were performed to identify differentially expressed special AT-rich sequence binding protein 1 in a series of esophageal squamous cell carcinoma tissue samples. The effects of special AT-rich sequence binding protein 1 silencing by two short-hairpin RNAs on cell proliferation, migration, and invasion were assessed by the CCK-8 assay and transwell assays in esophageal squamous cell carcinoma in vitro. Special AT-rich sequence binding protein 1 was significantly upregulated in esophageal squamous cell carcinoma tissue samples and cell lines. Silencing of special AT-rich sequence binding protein 1 inhibited the proliferation of KYSE450 and EC9706 cells which have a relatively high level of special AT-rich sequence binding protein 1, and the ability of migration and invasion of KYSE450 and EC9706 cells was distinctly suppressed. Special AT-rich sequence binding protein 1 could be a potential target for the treatment of esophageal squamous cell carcinoma and inhibition of special AT-rich sequence binding protein 1 may provide a new strategy for the prevention of esophageal squamous cell carcinoma invasion and metastasis.
Tomatidine Is a Lead Antibiotic Molecule That Targets Staphylococcus aureus ATP Synthase Subunit C.
Lamontagne Boulet, Maxime; Isabelle, Charles; Guay, Isabelle; Brouillette, Eric; Langlois, Jean-Philippe; Jacques, Pierre-Étienne; Rodrigue, Sébastien; Brzezinski, Ryszard; Beauregard, Pascale B; Bouarab, Kamal; Boyapelly, Kumaraswamy; Boudreault, Pierre-Luc; Marsault, Éric; Malouin, François
2018-06-01
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of deadly hospital-acquired infections. The discovery of anti- Staphylococcus antibiotics and new classes of drugs not susceptible to the mechanisms of resistance shared among bacteria is imperative. We recently showed that tomatidine (TO), a steroidal alkaloid from solanaceous plants, possesses potent antibacterial activity against S. aureus small-colony variants (SCVs), the notoriously persistent form of this bacterium that has been associated with recurrence of infections. Here, using genomic analysis of in vitro -generated TO-resistant S. aureus strains to identify mutations in genes involved in resistance, we identified the bacterial ATP synthase as the cellular target. Sequence alignments were performed to highlight the modified sequences, and the structural consequences of the mutations were evaluated in structural models. Overexpression of the atpE gene in S. aureus SCVs or introducing the mutation found in the atpE gene of one of the high-level TO-resistant S. aureus mutants into the Bacillus subtilis atpE gene provided resistance to TO and further validated the identity of the cellular target. FC04-100, a TO derivative which also possesses activity against non-SCV strains, prevents high-level resistance development in prototypic strains and limits the level of resistance observed in SCVs. An ATP synthesis assay allowed the observation of a correlation between antibiotic potency and ATP synthase inhibition. The selectivity index (inhibition of ATP production by mitochondria versus that of bacterial ATP synthase) is estimated to be >10 5 -fold for FC04-100. Copyright © 2018 American Society for Microbiology.
Wang, Jiao; Song, Jingjing; Zhou, Shuimei; Fu, Yourong; Bailey, Jeffrey A; Shen, Changxin
2018-01-16
Identification of RhD antigen epitopes is a key component in understanding the pathogenesis of haemolytic disease of the foetus and newborn. Research has indicated that phage display libraries are useful tools for identifying novel mimic epitopes (mimotopes) which may help to determine antigen specificity. We selected the mimotopes of blood group RhD antigen by affinity panning a phage display library using monoclonal anti-D. After three rounds of biopanning, positive phage clones were identified by enzyme-linked immunosorbent assay (ELISA) and then sent for sequencing and peptides synthesis. Next, competitive ELISA and erythrocyte haemagglutination inhibition tests were carried out to confirm the inhibitory activity of the synthetic peptide. To evaluate the diagnostic performance of the synthetic peptide, a diagnostic ELISA was examined. Fourteen of 35 phage clones that were chosen randomly from the titering plate were considered to be positive. Following DNA sequencing and translation, 11 phage clones were found to represent the same peptide - RMKMLMMLMRRK (P4) - whereas each of the other three clones represented a unique peptide. Through the competitive ELISA and erythrocyte haemagglutination inhibition tests, the peptide (P4) was verified to have the ability to mimic the RhD antigen. The diagnostic ELISA for P4 proved to be sensitive (82.61%) and specific (88.57%). This study reveals that the P4 peptide can mimic RhD antigen and paves the way for the development of promising targeted diagnostic and therapeutic platforms for haemolytic disease of the foetus and newborn.
Hanphakphoom, Srisuda; Maneewong, Narisara; Sukkhum, Sukhumaporn; Tokuyama, Shinji; Kitpreechavanich, Vichien
2014-01-01
Eleven strains of poly(L-lactide) (PLLA)-degrading thermophilic bacteria were isolated from forest soils and selected based on clear zone formation on an emulsified PLLA agar plate at 50°C. Among the isolates, strain LP175 showed the highest PLLA-degrading ability. It was closely related to Laceyella sacchari, with 99.9% similarity based on the 16S rRNA gene sequence. The PLLA-degrading enzyme produced by the strain was purified to homogeneity by 48.1% yield and specific activity of 328 U·mg-protein-1 with a 15.3-fold purity increase. The purified enzyme was strongly active against specific substrates such as casein and gelatin and weakly active against Suc-(Ala)₃-pNA. Optimum enzyme activity was exhibited at a temperature of 60°C with thermal stability up to 50°C and a pH of 9.0 with pH stability in a range of 8.5-10.5. Molecular weight of the enzyme was approximately 28.0 kDa, as determined by gel filtration and SDS-PAGE. The inhibitors phenylmethylsulfonyl fluoride (PMSF), ethylenediaminetetraacetate (EDTA), and ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) strongly inhibited enzyme activity, but the activity was not inhibited by 1 mM 1,10-phenanthroline (1,10-phen). The N-terminal amino acid sequences had 100% homology with thermostable serine protease (thermitase) from Thermoactinomyces vulgaris. The results obtained suggest that the PLLA-degrading enzyme produced by L. sacchari strain LP175 is serine protease.
High-Resolution Sequence-Function Mapping of Full-Length Proteins
Kowalsky, Caitlin A.; Klesmith, Justin R.; Stapleton, James A.; Kelly, Vince; Reichkitzer, Nolan; Whitehead, Timothy A.
2015-01-01
Comprehensive sequence-function mapping involves detailing the fitness contribution of every possible single mutation to a gene by comparing the abundance of each library variant before and after selection for the phenotype of interest. Deep sequencing of library DNA allows frequency reconstruction for tens of thousands of variants in a single experiment, yet short read lengths of current sequencers makes it challenging to probe genes encoding full-length proteins. Here we extend the scope of sequence-function maps to entire protein sequences with a modular, universal sequence tiling method. We demonstrate the approach with both growth-based selections and FACS screening, offer parameters and best practices that simplify design of experiments, and present analytical solutions to normalize data across independent selections. Using this protocol, sequence-function maps covering full sequences can be obtained in four to six weeks. Best practices introduced in this manuscript are fully compatible with, and complementary to, other recently published sequence-function mapping protocols. PMID:25790064
Deval, Jerome; Hong, Jin; Wang, Guangyi; Taylor, Josh; Smith, Lucas K.; Fung, Amy; Stevens, Sarah K.; Liu, Hong; Jin, Zhinan; Dyatkina, Natalia; Prhavc, Marija; Stoycheva, Antitsa D.; Serebryany, Vladimir; Liu, Jyanwei; Smith, David B.; Tam, Yuen; Zhang, Qingling; Moore, Martin L.; Fearns, Rachel; Chanda, Sushmita M.; Blatt, Lawrence M.; Symons, Julian A.; Beigelman, Leo
2015-01-01
Respiratory syncytial virus (RSV) causes severe lower respiratory tract infections, yet no vaccines or effective therapeutics are available. ALS-8176 is a first-in-class nucleoside analog prodrug effective in RSV-infected adult volunteers, and currently under evaluation in hospitalized infants. Here, we report the mechanism of inhibition and selectivity of ALS-8176 and its parent ALS-8112. ALS-8176 inhibited RSV replication in non-human primates, while ALS-8112 inhibited all strains of RSV in vitro and was specific for paramyxoviruses and rhabdoviruses. The antiviral effect of ALS-8112 was mediated by the intracellular formation of its 5'-triphosphate metabolite (ALS-8112-TP) inhibiting the viral RNA polymerase. ALS-8112 selected for resistance-associated mutations within the region of the L gene of RSV encoding the RNA polymerase. In biochemical assays, ALS-8112-TP was efficiently recognized by the recombinant RSV polymerase complex, causing chain termination of RNA synthesis. ALS-8112-TP did not inhibit polymerases from host or viruses unrelated to RSV such as hepatitis C virus (HCV), whereas structurally related molecules displayed dual RSV/HCV inhibition. The combination of molecular modeling and enzymatic analysis showed that both the 2'F and the 4'ClCH2 groups contributed to the selectivity of ALS-8112-TP. The lack of antiviral effect of ALS-8112-TP against HCV polymerase was caused by Asn291 that is well-conserved within positive-strand RNA viruses. This represents the first comparative study employing recombinant RSV and HCV polymerases to define the selectivity of clinically relevant nucleotide analogs. Understanding nucleotide selectivity towards distant viral RNA polymerases could not only be used to repurpose existing drugs against new viral infections, but also to design novel molecules. PMID:26098424
Otsuki, Tetsuji; Ota, Toshio; Nishikawa, Tetsuo; Hayashi, Koji; Suzuki, Yutaka; Yamamoto, Jun-ichi; Wakamatsu, Ai; Kimura, Kouichi; Sakamoto, Katsuhiko; Hatano, Naoto; Kawai, Yuri; Ishii, Shizuko; Saito, Kaoru; Kojima, Shin-ichi; Sugiyama, Tomoyasu; Ono, Tetsuyoshi; Okano, Kazunori; Yoshikawa, Yoko; Aotsuka, Satoshi; Sasaki, Naokazu; Hattori, Atsushi; Okumura, Koji; Nagai, Keiichi; Sugano, Sumio; Isogai, Takao
2005-01-01
We have developed an in silico method of selection of human full-length cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries. Fullness rates were increased to about 80% by combination of the oligo-capping method and ATGpr, software for prediction of translation start point and the coding potential. Then, using 5'-end single-pass sequences, cDNAs having the signal sequence were selected by PSORT ('signal sequence trap'). We also applied 'secretion or membrane protein-related keyword trap' based on the result of BLAST search against the SWISS-PROT database for the cDNAs which could not be selected by PSORT. Using the above procedures, 789 cDNAs were primarily selected and subjected to full-length sequencing, and 334 of these cDNAs were finally selected as novel. Most of the cDNAs (295 cDNAs: 88.3%) were predicted to encode secretion or membrane proteins. In particular, 165(80.5%) of the 205 cDNAs selected by PSORT were predicted to have signal sequences, while 70 (54.2%) of the 129 cDNAs selected by 'keyword trap' preserved the secretion or membrane protein-related keywords. Many important cDNAs were obtained, including transporters, receptors, and ligands, involved in significant cellular functions. Thus, an efficient method of selecting secretion or membrane protein-encoding cDNAs was developed by combining the above four procedures.
Pyridinylquinazolines Selectively Inhibit Human Methionine Aminopeptidase-1 in Cells
Zhang, Feiran; Bhat, Shridhar; Gabelli, Sandra B.; Chen, Xiaochun; Miller, Michelle S.; Nacev, Benjamin A.; Cheng, Yim Ling; Meyers, David J.; Tenney, Karen; Shim, Joong Sup; Crews, Phillip; Amzel, L. Mario; Ma, Dawei; Liu, Jun O.
2013-01-01
Methionine aminopeptidases (MetAPs) which remove the initiator methionine from nascent peptides are essential in all organisms. While MetAP2 has been demonstrated to be a therapeutic target for inhibiting angiogenesis in mammals, MetAP1 seems to be vital for cell proliferation. Our earlier efforts identified two structural classes of human MetAP1 (HsMetAP1)-selective inhibitors (1–4). But all of them failed to inhibit cellular HsMetAP1. Using Mn(II) or Zn(II) to activate HsMetAP1, we found that 1–4 could only effectively inhibit purified HsMetAP1 in the presence of physiologically unachievable concentrations of Co(II). In an effort to seek Co(II)-independent inhibitors, a novel structural class containing a 2-(pyridin-2-yl)quinazoline core has been discovered. Many compounds in this class potently and selectively inhibited HsMetAP1 without Co(II). Subsequently, we demonstrated that 11j, an auxiliary metal-dependent inhibitor, effectively inhibited HsMetAP1 in primary cells. This is the first report that an HsMetAP1-selective inhibitor is effective against its target in cells. PMID:23634668
3-Coumaranone derivatives as inhibitors of monoamine oxidase.
Van Dyk, Adriaan S; Petzer, Jacobus P; Petzer, Anél; Legoabe, Lesetja J
2015-01-01
The present study examines the monoamine oxidase (MAO) inhibitory properties of a series of 20 3-coumaranone [benzofuran-3(2H)-one] derivatives. The 3-coumaranone derivatives are structurally related to series of α-tetralone and 1-indanone derivatives, which have recently been shown to potently inhibit MAO, with selectivity for MAO-B (in preference to the MAO-A isoform). 3-Coumaranones are similarly found to selectively inhibit human MAO-B with half-maximal inhibitory concentration (IC50) values of 0.004-1.05 µM. Nine compounds exhibited IC50<0.05 µM for the inhibition of MAO-B. For the inhibition of human MAO-A, IC50 values ranged from 0.586 to >100 µM, with only one compound possessing an IC50<1 µM. For selected 3-coumaranone derivatives, it is established that MAO-A and MAO-B inhibition are reversible since dialysis of enzyme-inhibitor mixtures almost completely restores enzyme activity. On the basis of the selectivity profiles and potent action, it may be concluded that the 3-coumaranone derivatives are suitable leads for the development of selective MAO-B inhibitors as potential treatment for disorders such as Parkinson's disease and Alzheimer's disease.
3-Coumaranone derivatives as inhibitors of monoamine oxidase
Van Dyk, Adriaan S; Petzer, Jacobus P; Petzer, Anél; Legoabe, Lesetja J
2015-01-01
The present study examines the monoamine oxidase (MAO) inhibitory properties of a series of 20 3-coumaranone [benzofuran-3(2H)-one] derivatives. The 3-coumaranone derivatives are structurally related to series of α-tetralone and 1-indanone derivatives, which have recently been shown to potently inhibit MAO, with selectivity for MAO-B (in preference to the MAO-A isoform). 3-Coumaranones are similarly found to selectively inhibit human MAO-B with half-maximal inhibitory concentration (IC50) values of 0.004–1.05 µM. Nine compounds exhibited IC50<0.05 µM for the inhibition of MAO-B. For the inhibition of human MAO-A, IC50 values ranged from 0.586 to >100 µM, with only one compound possessing an IC50<1 µM. For selected 3-coumaranone derivatives, it is established that MAO-A and MAO-B inhibition are reversible since dialysis of enzyme–inhibitor mixtures almost completely restores enzyme activity. On the basis of the selectivity profiles and potent action, it may be concluded that the 3-coumaranone derivatives are suitable leads for the development of selective MAO-B inhibitors as potential treatment for disorders such as Parkinson’s disease and Alzheimer’s disease. PMID:26491258
Akamine, Pearl; Madhusudan; Brunton, Laurence L; Ou, Horng D; Canaves, Jaume M; Xuong, Nguyen-huu; Taylor, Susan S
2004-01-13
The protein kinase family is a prime target for therapeutic agents, since unregulated protein kinase activities are linked to myriad diseases. Balanol, a fungal metabolite consisting of four rings, potently inhibits Ser/Thr protein kinases and can be modified to yield potent inhibitors that are selective-characteristics of a desirable pharmaceutical compound. Here, we characterize three balanol analogues that inhibit cyclic 3',5'-adenosine monophosphate-dependent protein kinase (PKA) more specifically and potently than calcium- and phospholipid-dependent protein kinase (PKC). Correlation of thermostability and inhibition potency suggests that better inhibitors confer enhanced protection against thermal denaturation. Crystal structures of the PKA catalytic (C) subunit complexed to each analogue show the Gly-rich loop stabilized in an "intermediate" conformation, disengaged from important phosphoryl transfer residues. An analogue that perturbs the PKA C-terminal tail has slightly weaker inhibition potency. The malleability of the PKA C subunit is illustrated by active site residues that adopt alternate rotamers depending on the ligand bound. On the basis of sequence homology to PKA, a preliminary model of the PKC active site is described. The balanol analogues serve to test the model and to highlight differences in the active site local environment of PKA and PKC. The PKA C subunit appears to tolerate balanol analogues with D-ring modifications; PKC does not. We attribute this difference in preference to the variable B helix and C-terminal tail. By understanding the details of ligand binding, more specific and potent inhibitors may be designed that differentiate among closely related AGC protein kinase family members.
Automatic rapid attachable warhead section
Trennel, A.J.
1994-05-10
Disclosed are a method and apparatus for automatically selecting warheads or reentry vehicles from a storage area containing a plurality of types of warheads or reentry vehicles, automatically selecting weapon carriers from a storage area containing at least one type of weapon carrier, manipulating and aligning the selected warheads or reentry vehicles and weapon carriers, and automatically coupling the warheads or reentry vehicles with the weapon carriers such that coupling of improperly selected warheads or reentry vehicles with weapon carriers is inhibited. Such inhibition enhances safety of operations and is achieved by a number of means including computer control of the process of selection and coupling and use of connectorless interfaces capable of assuring that improperly selected items will be rejected or rendered inoperable prior to coupling. Also disclosed are a method and apparatus wherein the stated principles pertaining to selection, coupling and inhibition are extended to apply to any item-to-be-carried and any carrying assembly. 10 figures.
Automatic rapid attachable warhead section
Trennel, Anthony J.
1994-05-10
Disclosed are a method and apparatus for (1) automatically selecting warheads or reentry vehicles from a storage area containing a plurality of types of warheads or reentry vehicles, (2) automatically selecting weapon carriers from a storage area containing at least one type of weapon carrier, (3) manipulating and aligning the selected warheads or reentry vehicles and weapon carriers, and (4) automatically coupling the warheads or reentry vehicles with the weapon carriers such that coupling of improperly selected warheads or reentry vehicles with weapon carriers is inhibited. Such inhibition enhances safety of operations and is achieved by a number of means including computer control of the process of selection and coupling and use of connectorless interfaces capable of assuring that improperly selected items will be rejected or rendered inoperable prior to coupling. Also disclosed are a method and apparatus wherein the stated principles pertaining to selection, coupling and inhibition are extended to apply to any item-to-be-carried and any carrying assembly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chattopadhyay, Saket; Ely, Abdullah; Bloom, Kristie
2009-11-20
RNA interference (RNAi) may be harnessed to inhibit viral gene expression and this approach is being developed to counter chronic infection with hepatitis B virus (HBV). Compared to synthetic RNAi activators, DNA expression cassettes that generate silencing sequences have advantages of sustained efficacy and ease of propagation in plasmid DNA (pDNA). However, the large size of pDNAs and inclusion of sequences conferring antibiotic resistance and immunostimulation limit delivery efficiency and safety. To develop use of alternative DNA templates that may be applied for therapeutic gene silencing, we assessed the usefulness of PCR-generated linear expression cassettes that produce anti-HBV micro-RNA (miR)more » shuttles. We found that silencing of HBV markers of replication was efficient (>75%) in cell culture and in vivo. miR shuttles were processed to form anti-HBV guide strands and there was no evidence of induction of the interferon response. Modification of terminal sequences to include flanking human adenoviral type-5 inverted terminal repeats was easily achieved and did not compromise silencing efficacy. These linear DNA sequences should have utility in the development of gene silencing applications where modifications of terminal elements with elimination of potentially harmful and non-essential sequences are required.« less
PRISE2: software for designing sequence-selective PCR primers and probes.
Huang, Yu-Ting; Yang, Jiue-in; Chrobak, Marek; Borneman, James
2014-09-25
PRISE2 is a new software tool for designing sequence-selective PCR primers and probes. To achieve high level of selectivity, PRISE2 allows the user to specify a collection of target sequences that the primers are supposed to amplify, as well as non-target sequences that should not be amplified. The program emphasizes primer selectivity on the 3' end, which is crucial for selective amplification of conserved sequences such as rRNA genes. In PRISE2, users can specify desired properties of primers, including length, GC content, and others. They can interactively manipulate the list of candidate primers, to choose primer pairs that are best suited for their needs. A similar process is used to add probes to selected primer pairs. More advanced features include, for example, the capability to define a custom mismatch penalty function. PRISE2 is equipped with a graphical, user-friendly interface, and it runs on Windows, Macintosh or Linux machines. PRISE2 has been tested on two very similar strains of the fungus Dactylella oviparasitica, and it was able to create highly selective primers and probes for each of them, demonstrating the ability to create useful sequence-selective assays. PRISE2 is a user-friendly, interactive software package that can be used to design high-quality selective primers for PCR experiments. In addition to choosing primers, users have an option to add a probe to any selected primer pair, enabling design of Taqman and other primer-probe based assays. PRISE2 can also be used to design probes for FISH and other hybridization-based assays.
In vitro validation of self designed "universal human Influenza A siRNA".
Jain, Bhawana; Jain, Amita; Prakash, Om; Singh, Ajay Kr; Dangi, Tanushree; Singh, Mastan; Singh, K P
2015-08-01
The genomic variability of Influenza A virus (IAV) makes it difficult for the existing vaccines or anti-influenza drugs to control. The siRNA targeting viral gene induces RNAi mechanism in the host and silent the gene by cleaving mRNA. In this study, we developed an universal siRNA and validated its efficiency in vitro. The siRNA was designed rationally, targeting the most conserved region (delineated with the help of multiple sequence alignment) of M gene of IAV strains. Three level screening method was adopted, and the most efficient one was selected on the basis of its unique position in the conserved region. The siRNA efficacy was confirmed in vitro with the Madin Darby Canine Kidney (MDCK) cell line for IAV propagation using two clinical isolates i.e., Influenza A/H3N2 and Influenza A/pdmH1N1. Of the total 168 strains worldwide and 33 strains from India, 97 bp long (position 137-233) conserved region was identified. The longest ORF of matrix gene was targeted by the selected siRNA, which showed 73.6% inhibition in replication of Influenza A/pdmH1N1 and 62.1% inhibition in replication of Influenza A/H3N2 at 48 h post infection on MDCK cell line. This study provides a basis for the development of siRNA which can be used as universal anti-IAV therapeutic agent.
Guo, Jun; Lam, Lloyd T; Longenecker, Kenton L; Bui, Mai H; Idler, Kenneth B; Glaser, Keith B; Wilsbacher, Julie L; Tse, Chris; Pappano, William N; Huang, Tzu-Hsuan
2017-09-23
Cancer cells have an unusually high requirement for the central and intermediary metabolite nicotinamide adenine dinucleotide (NAD + ), and NAD + depletion ultimately results in cell death. The rate limiting step within the NAD + salvage pathway required for converting nicotinamide to NAD + is catalyzed by nicotinamide phosphoribosyltransferase (NAMPT). Targeting NAMPT has been investigated as an anti-cancer strategy, and several highly selective small molecule inhibitors have been found to potently inhibit NAMPT in cancer cells, resulting in NAD + depletion and cytotoxicity. To identify mechanisms that could cause resistance to NAMPT inhibitor treatment, we generated a human fibrosarcoma cell line refractory to the highly potent and selective NAMPT small molecule inhibitor, GMX1778. We uncovered novel and unexpected mechanisms of resistance including significantly increased expression of quinolinate phosphoribosyl transferase (QPRT), a key enzyme in the de novo NAD + synthesis pathway. Additionally, exome sequencing of the NAMPT gene in the resistant cells identified a single heterozygous point mutation that was not present in the parental cell line. The combination of upregulation of the NAD + de novo synthesis pathway through QPRT over-expression and NAMPT mutation confers resistance to GMX1778, but the cells are only partially resistant to next-generation NAMPT inhibitors. The resistance mechanisms uncovered herein provide a potential avenue to continue exploration of next generation NAMPT inhibitors to treat neoplasms in the clinic. Copyright © 2017 Elsevier Inc. All rights reserved.
Abdurakhmanov, Eldar; Øie Solbak, Sara; Danielson, U Helena
2017-06-16
Allosteric inhibitors of hepatitis C virus (HCV) non-structural protein 5B (NS5B) polymerase are effective for treatment of genotype 1, although their mode of action and potential to inhibit other isolates and genotypes are not well established. We have used biophysical techniques and a novel biosensor-based real-time polymerase assay to investigate the mode-of-action and selectivity of four inhibitors against enzyme from genotypes 1b (BK and Con1) and 3a. Two thumb inhibitors (lomibuvir and filibuvir) interacted with all three NS5B variants, although the affinities for the 3a enzyme were low. Of the two tested palm inhibitors (dasabuvir and nesbuvir), only dasabuvir interacted with the 1b variant, and nesbuvir interacted with NS5B 3a. Lomibuvir, filibuvir and dasabuvir stabilized the structure of the two 1b variants, but not the 3a enzyme. The thumb compounds interfered with the interaction between the enzyme and RNA and blocked the transition from initiation to elongation. The two allosteric inhibitor types have different inhibition mechanisms. Sequence and structure analysis revealed differences in the binding sites for 1b and 3a variants, explaining the poor effect against genotype 3a NS5B. The indirect mode-of-action needs to be considered when designing allosteric compounds. The current approach provides an efficient strategy for identifying and optimizing allosteric inhibitors targeting HCV genotype 3a.
An RNAi in silico approach to find an optimal shRNA cocktail against HIV-1
2010-01-01
Background HIV-1 can be inhibited by RNA interference in vitro through the expression of short hairpin RNAs (shRNAs) that target conserved genome sequences. In silico shRNA design for HIV has lacked a detailed study of virus variability constituting a possible breaking point in a clinical setting. We designed shRNAs against HIV-1 considering the variability observed in naïve and drug-resistant isolates available at public databases. Methods A Bioperl-based algorithm was developed to automatically scan multiple sequence alignments of HIV, while evaluating the possibility of identifying dominant and subdominant viral variants that could be used as efficient silencing molecules. Student t-test and Bonferroni Dunn correction test were used to assess statistical significance of our findings. Results Our in silico approach identified the most common viral variants within highly conserved genome regions, with a calculated free energy of ≥ -6.6 kcal/mol. This is crucial for strand loading to RISC complex and for a predicted silencing efficiency score, which could be used in combination for achieving over 90% silencing. Resistant and naïve isolate variability revealed that the most frequent shRNA per region targets a maximum of 85% of viral sequences. Adding more divergent sequences maintained this percentage. Specific sequence features that have been found to be related with higher silencing efficiency were hardly accomplished in conserved regions, even when lower entropy values correlated with better scores. We identified a conserved region among most HIV-1 genomes, which meets as many sequence features for efficient silencing. Conclusions HIV-1 variability is an obstacle to achieving absolute silencing using shRNAs designed against a consensus sequence, mainly because there are many functional viral variants. Our shRNA cocktail could be truly effective at silencing dominant and subdominant naïve viral variants. Additionally, resistant isolates might be targeted under specific antiretroviral selective pressure, but in both cases these should be tested exhaustively prior to clinical use. PMID:21172023
Pérez Sirkin, Daniela I; Lafont, Anne-Gaëlle; Kamech, Nédia; Somoza, Gustavo M; Vissio, Paula G; Dufour, Sylvie
2017-01-01
GnRH-associated peptide (GAP) is the C-terminal portion of the gonadotropin-releasing hormone (GnRH) preprohormone. Although it was reported in mammals that GAP may act as a prolactin-inhibiting factor and can be co-secreted with GnRH into the hypophyseal portal blood, GAP has been practically out of the research circuit for about 20 years. Comparative studies highlighted the low conservation of GAP primary amino acid sequences among vertebrates, contributing to consider that this peptide only participates in the folding or carrying process of GnRH. Considering that the three-dimensional (3D) structure of a protein may define its function, the aim of this study was to evaluate if GAP sequences and 3D structures are conserved in the vertebrate lineage. GAP sequences from various vertebrates were retrieved from databases. Analysis of primary amino acid sequence identity and similarity, molecular phylogeny, and prediction of 3D structures were performed. Amino acid sequence comparison and phylogeny analyses confirmed the large variation of GAP sequences throughout vertebrate radiation. In contrast, prediction of the 3D structure revealed a striking conservation of the 3D structure of GAP1 (GAP associated with the hypophysiotropic type 1 GnRH), despite low amino acid sequence conservation. This GAP1 peptide presented a typical helix-loop-helix (HLH) structure in all the vertebrate species analyzed. This HLH structure could also be predicted for GAP2 in some but not all vertebrate species and in none of the GAP3 analyzed. These results allowed us to infer that selective pressures have maintained GAP1 HLH structure throughout the vertebrate lineage. The conservation of the HLH motif, known to confer biological activity to various proteins, suggests that GAP1 peptides may exert some hypophysiotropic biological functions across vertebrate radiation.
Pérez Sirkin, Daniela I.; Lafont, Anne-Gaëlle; Kamech, Nédia; Somoza, Gustavo M.; Vissio, Paula G.; Dufour, Sylvie
2017-01-01
GnRH-associated peptide (GAP) is the C-terminal portion of the gonadotropin-releasing hormone (GnRH) preprohormone. Although it was reported in mammals that GAP may act as a prolactin-inhibiting factor and can be co-secreted with GnRH into the hypophyseal portal blood, GAP has been practically out of the research circuit for about 20 years. Comparative studies highlighted the low conservation of GAP primary amino acid sequences among vertebrates, contributing to consider that this peptide only participates in the folding or carrying process of GnRH. Considering that the three-dimensional (3D) structure of a protein may define its function, the aim of this study was to evaluate if GAP sequences and 3D structures are conserved in the vertebrate lineage. GAP sequences from various vertebrates were retrieved from databases. Analysis of primary amino acid sequence identity and similarity, molecular phylogeny, and prediction of 3D structures were performed. Amino acid sequence comparison and phylogeny analyses confirmed the large variation of GAP sequences throughout vertebrate radiation. In contrast, prediction of the 3D structure revealed a striking conservation of the 3D structure of GAP1 (GAP associated with the hypophysiotropic type 1 GnRH), despite low amino acid sequence conservation. This GAP1 peptide presented a typical helix-loop-helix (HLH) structure in all the vertebrate species analyzed. This HLH structure could also be predicted for GAP2 in some but not all vertebrate species and in none of the GAP3 analyzed. These results allowed us to infer that selective pressures have maintained GAP1 HLH structure throughout the vertebrate lineage. The conservation of the HLH motif, known to confer biological activity to various proteins, suggests that GAP1 peptides may exert some hypophysiotropic biological functions across vertebrate radiation. PMID:28878737
Senescence responsive transcriptional element
Campisi, Judith; Testori, Alessandro
1999-01-01
Recombinant polynucleotides have expression control sequences that have a senescence responsive element and a minimal promoter, and which are operatively linked to a heterologous nucleotide sequence. The molecules are useful for achieving high levels of expression of genes in senescent cells. Methods of inhibiting expression of genes in senescent cells also are provided.
USDA-ARS?s Scientific Manuscript database
A reassociation kinetics-based approach was used to reduce the complexity of genomic DNA from the Deutsch laboratory strain of the cattle tick, Rhipicephalus microplus, to facilitate genome sequencing. Selected genomic DNA (Cot value = 660) was sequenced using 454 GS FLX technology, resulting in 356...
Biological function in the twilight zone of sequence conservation.
Ponting, Chris P
2017-08-16
Strong DNA conservation among divergent species is an indicator of enduring functionality. With weaker sequence conservation we enter a vast 'twilight zone' in which sequence subject to transient or lower constraint cannot be distinguished easily from neutrally evolving, non-functional sequence. Twilight zone functional sequence is illuminated instead by principles of selective constraint and positive selection using genomic data acquired from within a species' population. Application of these principles reveals that despite being biochemically active, most twilight zone sequence is not functional.
Voels, Brent; Wang, Liping; Sens, Donald A; Garrett, Scott H; Zhang, Ke; Somji, Seema
2017-05-25
The 3rd isoform of the metallothionein (MT3) gene family has been shown to be overexpressed in most ductal breast cancers. A previous study has shown that the stable transfection of MCF-7 cells with the MT3 gene inhibits cell growth. The goal of the present study was to determine the role of the unique C-terminal and N-terminal sequences of MT3 on phenotypic properties and gene expression profiles of MCF-7 cells. MCF-7 cells were transfected with various metallothionein gene constructs which contain the insertion or the removal of the unique MT3 C- and N-terminal domains. Global gene expression analysis was performed on the MCF-7 cells containing the various constructs and the expression of the unique C- and N- terminal domains of MT3 was correlated to phenotypic properties of the cells. The results of the present study demonstrate that the C-terminal sequence of MT3, in the absence of the N-terminal sequence, induces dome formation in MCF-7 cells, which in cell cultures is the phenotypic manifestation of a cell's ability to perform vectorial active transport. Global gene expression analysis demonstrated that the increased expression of the GAGE gene family correlated with dome formation. Expression of the C-terminal domain induced GAGE gene expression, whereas the N-terminal domain inhibited GAGE gene expression and that the effect of the N-terminal domain inhibition was dominant over the C-terminal domain of MT3. Transfection with the metallothionein 1E gene increased the expression of GAGE genes. In addition, both the C- and the N-terminal sequences of the MT3 gene had growth inhibitory properties, which correlated to an increased expression of the interferon alpha-inducible protein 6. Our study shows that the C-terminal domain of MT3 confers dome formation in MCF-7 cells and the presence of this domain induces expression of the GAGE family of genes. The differential effects of MT3 and metallothionein 1E on the expression of GAGE genes suggests unique roles of these genes in the development and progression of breast cancer. The finding that interferon alpha-inducible protein 6 expression is associated with the ability of MT3 to inhibit growth needs further investigation.
Hsp90 and environmental stress transform the adaptive value of natural genetic variation.
Jarosz, Daniel F; Lindquist, Susan
2010-12-24
How can species remain unaltered for long periods yet also undergo rapid diversification? By linking genetic variation to phenotypic variation via environmental stress, the Hsp90 protein-folding reservoir might promote both stasis and change. However, the nature and adaptive value of Hsp90-contingent traits remain uncertain. In ecologically and genetically diverse yeasts, we find such traits to be both common and frequently adaptive. Most are based on preexisting variation, with causative polymorphisms occurring in coding and regulatory sequences alike. A common temperature stress alters phenotypes similarly. Both selective inhibition of Hsp90 and temperature stress increase correlations between genotype and phenotype. This system broadly determines the adaptive value of standing genetic variation and, in so doing, has influenced the evolution of current genomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Evandro Fei; Wong, Jack Ho; Bah, Clara Shui Fern
Here we report for the first time of a new Kunitz-type trypsin inhibitor (termed BvvTI) from seeds of the Camel's foot tree, Bauhinia variegata var. variegata. BvvTI shares the same reactive site residues (Arg, Ser) and exhibits a homology of N-terminal amino acid sequence to other Bauhinia protease inhibitors. The trypsin inhibitory activity (K{sub i}, 0.1 x 10{sup -9} M) of BvvTI ranks the highest among them. Besides anti-HIV-1 reverse transcriptase activity, BvvTI could significantly inhibit the proliferation of nasopharyngeal cancer CNE-1 cells in a selective way. This may partially be contributed by its induction of cytokines and apoptotic bodies.more » These results unveil potential medicinal applications of BvvTI.« less
Fang, Evandro Fei; Wong, Jack Ho; Bah, Clara Shui Fern; Lin, Peng; Tsao, Sai Wah; Ng, Tzi Bun
2010-06-11
Here we report for the first time of a new Kunitz-type trypsin inhibitor (termed BvvTI) from seeds of the Camel's foot tree, Bauhinia variegata var. variegata. BvvTI shares the same reactive site residues (Arg, Ser) and exhibits a homology of N-terminal amino acid sequence to other Bauhinia protease inhibitors. The trypsin inhibitory activity (K(i), 0.1 x 10(-9)M) of BvvTI ranks the highest among them. Besides anti-HIV-1 reverse transcriptase activity, BvvTI could significantly inhibit the proliferation of nasopharyngeal cancer CNE-1 cells in a selective way. This may partially be contributed by its induction of cytokines and apoptotic bodies. These results unveil potential medicinal applications of BvvTI. (c) 2010 Elsevier Inc. All rights reserved.
Robinson, Gail A; Walker, David G; Biggs, Vivien; Shallice, Tim
2016-06-01
Initiation and inhibition of responses are crucial for appropriate behaviour across different settings. Initiation and inhibition difficulties are well documented following frontal damage, although task differences have limited our understanding. The Hayling Sentence Completion Test was designed to assess verbal initiation and inhibition within the same task. This study investigates the ability of two patients with left frontal tumours (KI: high grade glioma; PM: meningioma) to use a strategy to overcome profound suppression failures on the Hayling Test. KI and PM completed the Hayling Test and two experimental tasks. The Selection Investigation assessed verbal initiation on a sentence completion task that varied selection demands (high/low). The Suppression and Strategy Investigation assessed ability to implement four strategies aimed to override a suppression failure and facilitate production of an unconnected word. On the Hayling Test, KI and PM initiated responses to complete high constraint sentences, in contrast to impaired suppression. KI benefitted minimally from strategies to overcome suppression failure although one strategy (object naming) was partially successful. KI's errors revealed fast suppression errors, in contrast to slow no responses, and selection ability was also impaired for verbal initiation. PM, however, implemented each strategy 100% to overcome a suppression failure and had no difficulty completing sentences meaningfully, regardless of selection demands. This first investigation of strategy implementation to overcome profound suppression impairments provides insights into verbal initiation, inhibition, selection and strategy mechanisms, which has implications for neurorehabilitation. Specifically, both patients had profound inhibition deficits but KI also presented with a selection deficit and was unable to implement a strategy. By contrast, PM's selection ability was intact but she was unable to generate, rather than implement, a strategy. We suggest that KI has both fast, uncontrolled semantic output and response inhibition difficulty, whereas PM's difficulty is underpinned by motivational factors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhao, Shanrong; Zhang, Ying; Gamini, Ramya; Zhang, Baohong; von Schack, David
2018-03-19
To allow efficient transcript/gene detection, highly abundant ribosomal RNAs (rRNA) are generally removed from total RNA either by positive polyA+ selection or by rRNA depletion (negative selection) before sequencing. Comparisons between the two methods have been carried out by various groups, but the assessments have relied largely on non-clinical samples. In this study, we evaluated these two RNA sequencing approaches using human blood and colon tissue samples. Our analyses showed that rRNA depletion captured more unique transcriptome features, whereas polyA+ selection outperformed rRNA depletion with higher exonic coverage and better accuracy of gene quantification. For blood- and colon-derived RNAs, we found that 220% and 50% more reads, respectively, would have to be sequenced to achieve the same level of exonic coverage in the rRNA depletion method compared with the polyA+ selection method. Therefore, in most cases we strongly recommend polyA+ selection over rRNA depletion for gene quantification in clinical RNA sequencing. Our evaluation revealed that a small number of lncRNAs and small RNAs made up a large fraction of the reads in the rRNA depletion RNA sequencing data. Thus, we recommend that these RNAs are specifically depleted to improve the sequencing depth of the remaining RNAs.
Object tracking using plenoptic image sequences
NASA Astrophysics Data System (ADS)
Kim, Jae Woo; Bae, Seong-Joon; Park, Seongjin; Kim, Do Hyung
2017-05-01
Object tracking is a very important problem in computer vision research. Among the difficulties of object tracking, partial occlusion problem is one of the most serious and challenging problems. To address the problem, we proposed novel approaches to object tracking on plenoptic image sequences. Our approaches take advantage of the refocusing capability that plenoptic images provide. Our approaches input the sequences of focal stacks constructed from plenoptic image sequences. The proposed image selection algorithms select the sequence of optimal images that can maximize the tracking accuracy from the sequence of focal stacks. Focus measure approach and confidence measure approach were proposed for image selection and both of the approaches were validated by the experiments using thirteen plenoptic image sequences that include heavily occluded target objects. The experimental results showed that the proposed approaches were satisfactory comparing to the conventional 2D object tracking algorithms.
Comparison and evaluation of two exome capture kits and sequencing platforms for variant calling.
Zhang, Guoqiang; Wang, Jianfeng; Yang, Jin; Li, Wenjie; Deng, Yutian; Li, Jing; Huang, Jun; Hu, Songnian; Zhang, Bing
2015-08-05
To promote the clinical application of next-generation sequencing, it is important to obtain accurate and consistent variants of target genomic regions at low cost. Ion Proton, the latest updated semiconductor-based sequencing instrument from Life Technologies, is designed to provide investigators with an inexpensive platform for human whole exome sequencing that achieves a rapid turnaround time. However, few studies have comprehensively compared and evaluated the accuracy of variant calling between Ion Proton and Illumina sequencing platforms such as HiSeq 2000, which is the most popular sequencing platform for the human genome. The Ion Proton sequencer combined with the Ion TargetSeq Exome Enrichment Kit together make up TargetSeq-Proton, whereas SureSelect-Hiseq is based on the Agilent SureSelect Human All Exon v4 Kit and the HiSeq 2000 sequencer. Here, we sequenced exonic DNA from four human blood samples using both TargetSeq-Proton and SureSelect-HiSeq. We then called variants in the exonic regions that overlapped between the two exome capture kits (33.6 Mb). The rates of shared variant loci called by two sequencing platforms were from 68.0 to 75.3% in four samples, whereas the concordance of co-detected variant loci reached 99%. Sanger sequencing validation revealed that the validated rate of concordant single nucleotide polymorphisms (SNPs) (91.5%) was higher than the SNPs specific to TargetSeq-Proton (60.0%) or specific to SureSelect-HiSeq (88.3%). With regard to 1-bp small insertions and deletions (InDels), the Sanger sequencing validated rates of concordant variants (100.0%) and SureSelect-HiSeq-specific (89.6%) were higher than those of TargetSeq-Proton-specific (15.8%). In the sequencing of exonic regions, a combination of using of two sequencing strategies (SureSelect-HiSeq and TargetSeq-Proton) increased the variant calling specificity for concordant variant loci and the sensitivity for variant loci called by any one platform. However, for the sequencing of platform-specific variants, the accuracy of variant calling by HiSeq 2000 was higher than that of Ion Proton, specifically for the InDel detection. Moreover, the variant calling software also influences the detection of SNPs and, specifically, InDels in Ion Proton exome sequencing.
Amino acid signature enables proteins to recognize modified tRNA.
Spears, Jessica L; Xiao, Xingqing; Hall, Carol K; Agris, Paul F
2014-02-25
Human tRNA(Lys3)UUU is the primer for HIV replication. The HIV-1 nucleocapsid protein, NCp7, facilitates htRNA(Lys3)UUU recruitment from the host cell by binding to and remodeling the tRNA structure. Human tRNA(Lys3)UUU is post-transcriptionally modified, but until recently, the importance of those modifications in tRNA recognition by NCp7 was unknown. Modifications such as the 5-methoxycarbonylmethyl-2-thiouridine at anticodon wobble position-34 and 2-methylthio-N(6)-threonylcarbamoyladenosine, adjacent to the anticodon at position-37, are important to the recognition of htRNA(Lys3)UUU by NCp7. Several short peptides selected from phage display libraries were found to also preferentially recognize these modifications. Evolutionary algorithms (Monte Carlo and self-consistent mean field) and assisted model building with energy refinement were used to optimize the peptide sequence in silico, while fluorescence assays were developed and conducted to verify the in silico results and elucidate a 15-amino acid signature sequence (R-W-Q/N-H-X2-F-Pho-X-G/A-W-R-X2-G, where X can be most amino acids, and Pho is hydrophobic) that recognized the tRNA's fully modified anticodon stem and loop domain, hASL(Lys3)UUU. Peptides of this sequence specifically recognized and bound modified htRNA(Lys3)UUU with an affinity 10-fold higher than that of the starting sequence. Thus, this approach provides an effective means of predicting sequences of RNA binding peptides that have better binding properties. Such peptides can be used in cell and molecular biology as well as biochemistry to explore RNA binding proteins and to inhibit those protein functions.
Isolation, Purification and Molecular Mechanism of a Peanut Protein-Derived ACE-Inhibitory Peptide
Shi, Aimin; Liu, Hongzhi; Liu, Li; Hu, Hui; Wang, Qiang; Adhikari, Benu
2014-01-01
Although a number of bioactive peptides are capable of angiotensin I-converting enzyme (ACE) inhibitory effects, little is known regarding the mechanism of peanut peptides using molecular simulation. The aim of this study was to obtain ACE inhibiting peptide from peanut protein and provide insight on the molecular mechanism of its ACE inhibiting action. Peanut peptides having ACE inhibitory activity were isolated through enzymatic hydrolysis and ultrafiltration. Further chromatographic fractionation was conducted to isolate a more potent peanut peptide and its antihypertensive activity was analyzed through in vitro ACE inhibitory tests and in vivo animal experiments. MALDI-TOF/TOF-MS was used to identify its amino acid sequence. Mechanism of ACE inhibition of P8 was analyzed using molecular docking and molecular dynamics simulation. A peanut peptide (P8) having Lys-Leu-Tyr-Met-Arg-Pro amino acid sequence was obtained which had the highest ACE inhibiting activity of 85.77% (half maximal inhibitory concentration (IC50): 0.0052 mg/ml). This peanut peptide is a competitive inhibitor and show significant short term (12 h) and long term (28 days) antihypertensive activity. Dynamic tests illustrated that P8 can be successfully docked into the active pocket of ACE and can be combined with several amino acid residues. Hydrogen bond, electrostatic bond and Pi-bond were found to be the three main interaction contributing to the structural stability of ACE-peptide complex. In addition, zinc atom could form metal-carboxylic coordination bond with Tyr, Met residues of P8, resulting into its high ACE inhibiting activity. Our finding indicated that the peanut peptide (P8) having a Lys-Leu-Tyr-Met-Arg-Pro amino acid sequence can be a promising candidate for functional foods and prescription drug aimed at control of hypertension. PMID:25347076
Structure and inhibition analysis of the mouse SAD-B C-terminal fragment.
Ma, Hui; Wu, Jing-Xiang; Wang, Jue; Wang, Zhi-Xin; Wu, Jia-Wei
2016-10-01
The SAD (synapses of amphids defective) kinases, including SAD-A and SAD-B, play important roles in the regulation of neuronal development, cell cycle, and energy metabolism. Our recent study of mouse SAD-A identified a unique autoinhibitory sequence (AIS), which binds at the junction of the kinase domain (KD) and the ubiquitin-associated (UBA) domain and exerts autoregulation in cooperation with UBA. Here, we report the crystal structure of the mouse SAD-B C-terminal fragment including the AIS and the kinase-associated domain 1 (KA1) at 2.8 Å resolution. The KA1 domain is structurally conserved, while the isolated AIS sequence is highly flexible and solvent-accessible. Our biochemical studies indicated that the SAD-B AIS exerts the same autoinhibitory role as that in SAD-A. We believe that the flexible isolated AIS sequence is readily available for interaction with KD-UBA and thus inhibits SAD-B activity.
USDA-ARS?s Scientific Manuscript database
Expressed sequence tag (EST) simple sequence repeats (SSRs) in Prunus were mined, and flanking primers designed and used for genome-wide characterization and selection of primers to optimize marker distribution and reliability. A total of 12,618 contigs were assembled from 84,727 ESTs, along with 34...
Knee joint effusion following ipsilateral hip surgery.
Christodoulou, A G; Givissis, P; Antonarakos, P D; Petsatodis, G E; Hatzokos, I; Pournaras, J D
2010-12-01
To correlate patellar reflex inhibition with sympathetic knee joint effusion. 65 women and 40 men aged 45 to 75 (mean, 65) years underwent hip surgery. The surgery entailed dynamic hip screw fixation using the lateral approach with reflection of the vastus lateralis for pertrochantric fractures (n = 49), and hip hemiarthroplasty or total hip replacement using the Watson-Jones approach (n = 38) or hip hemiarthroplasty using the posterior approach (n = 18) for subcapital femoral fractures (n = 28) or osteoarthritis (n = 28). Knee joint effusion, patellar reflex, and thigh circumference were assessed in both legs before and after surgery (at day 0.5, 2, 7, 14, 30, and 45). Time-sequence plots were used for chronological analysis, and correlation between patellar reflex inhibition and knee joint effusion was tested. In the time-sequence plot, the peak frequency of patellar reflex inhibition (on day 0.5) preceded that of the knee joint effusion and the thigh circumference increase (on day 2). Patellar reflex inhibition correlated positively with the knee joint effusion (r = 0.843, p = 0.035). These 2 factors correlated significantly for all 3 surgical approaches (p < 0.0005). All 3 approaches were associated with patellar reflex inhibition on day 0.5 (p = 0.033) and knee joint effusion on day 2 (p = 0.051). Surgical trauma of the thigh may cause patellar reflex inhibition and subsequently knee joint effusion.
Identification of azabenzimidazoles as potent JAK1 selective inhibitors.
Vasbinder, Melissa M; Alimzhanov, Marat; Augustin, Martin; Bebernitz, Geraldine; Bell, Kirsten; Chuaqui, Claudio; Deegan, Tracy; Ferguson, Andrew D; Goodwin, Kelly; Huszar, Dennis; Kawatkar, Aarti; Kawatkar, Sameer; Read, Jon; Shi, Jie; Steinbacher, Stefan; Steuber, Holger; Su, Qibin; Toader, Dorin; Wang, Haixia; Woessner, Richard; Wu, Allan; Ye, Minwei; Zinda, Michael
2016-01-01
We have identified a class of azabenzimidazoles as potent and selective JAK1 inhibitors. Investigations into the SAR are presented along with the structural features required to achieve selectivity for JAK1 versus other JAK family members. An example from the series demonstrated highly selective inhibition of JAK1 versus JAK2 and JAK3, along with inhibition of pSTAT3 in vivo, enabling it to serve as a JAK1 selective tool compound to further probe the biology of JAK1 selective inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jiang, Shuai; Chen, Yijie; Wang, Man; Yin, Yalin; Pan, Yongfu; Gu, Bianli; Yu, Guojun; Li, Yamu; Wong, Barry Hon Cheung; Liang, Yi; Sun, Hui
2012-01-01
A novel lectin was isolated from the mushroom Agrocybe aegerita (designated AAL-2) by affinity chromatography with GlcNAc (N-acetylglucosamine)-coupled Sepharose 6B after ammonium sulfate precipitation. The AAL-2 coding sequence (1224 bp) was identified by performing a homologous search of the five tryptic peptides identified by MS against the translated transcriptome of A. aegerita. The molecular mass of AAL-2 was calculated to be 43.175 kDa from MS, which was consistent with the data calculated from the amino acid sequence. To analyse the carbohydrate-binding properties of AAL-2, a glycan array composed of 465 glycan candidates was employed, and the result showed that AAL-2 bound with high selectivity to terminal non-reducing GlcNAc residues, and further analysis revealed that AAL-2 bound to terminal non-reducing GlcNAc residues with higher affinity than previously well-known GlcNAc-binding lectins such as WGA (wheatgerm agglutinin) and GSL-II (Griffonia simplicifolia lectin-II). ITC (isothermal titration calorimetry) showed further that GlcNAc bound to AAL-2 in a sequential manner with moderate affinity. In the present study, we also evaluated the anti-tumour activity of AAL-2. The results showed that AAL-2 could bind to the surface of hepatoma cells, leading to induced cell apoptosis in vitro. Furthermore, AAL-2 exerted an anti-hepatoma effect via inhibition of tumour growth and prolongation of survival time of tumour-bearing mice in vivo. PMID:22268569
Harvey, William T.; Benton, Donald J.; Gregory, Victoria; Hall, James P. J.; Daniels, Rodney S.; Bedford, Trevor; Haydon, Daniel T.; Hay, Alan J.; McCauley, John W.; Reeve, Richard
2016-01-01
Determining phenotype from genetic data is a fundamental challenge. Identification of emerging antigenic variants among circulating influenza viruses is critical to the vaccine virus selection process, with vaccine effectiveness maximized when constituents are antigenically similar to circulating viruses. Hemagglutination inhibition (HI) assay data are commonly used to assess influenza antigenicity. Here, sequence and 3-D structural information of hemagglutinin (HA) glycoproteins were analyzed together with corresponding HI assay data for former seasonal influenza A(H1N1) virus isolates (1997–2009) and reference viruses. The models developed identify and quantify the impact of eighteen amino acid substitutions on the antigenicity of HA, two of which were responsible for major transitions in antigenic phenotype. We used reverse genetics to demonstrate the causal effect on antigenicity for a subset of these substitutions. Information on the impact of substitutions allowed us to predict antigenic phenotypes of emerging viruses directly from HA gene sequence data and accuracy was doubled by including all substitutions causing antigenic changes over a model incorporating only the substitutions with the largest impact. The ability to quantify the phenotypic impact of specific amino acid substitutions should help refine emerging techniques that predict the evolution of virus populations from one year to the next, leading to stronger theoretical foundations for selection of candidate vaccine viruses. These techniques have great potential to be extended to other antigenically variable pathogens. PMID:27057693
[Construction of BAD Lentivirus Vector and Its Effect on Proliferation in A549 Cell Lines].
Huang, Na; He, Yan-qi; Zhu, Jing; Li, Wei-min
2015-05-01
To construct the recombinant lentivirus expressing vector BAD (Bcl-2-associated death protein) gene and to study its effect on A549 cell proliferation. The BAD gene was amplified from plasmid pAV-MCMV-BAD-GFP by PCR. The purified BAD gene fragment was inserted into a lentivirus vector (pLVX-IRES-ZsGreen 1), and the insertion was identified by PCR, restriction endonuclease analysis and DNA sequencing. A549 cells were then transfected with the packaged recombinant lentivirus, and resistant cell clones were selected with flow cytometry. The expression of BAD in A549 cell lines stably transduction with a lentivirus was examined using Western blot. The effect of BAD overexpression on proliferation of A549 cells was evaluated by using CCK-8 kit. Restriction enzyme digestion and DNA sequencing showed that the full-length BAD gene (507 bp) had been successfully subcloned into the lentiviral vector to result in the recombinant vector pLVX-IRES-ZsGreen 1. Monoclonal cell lines BAD-A549 was produced after transfection with the recombinant lentivirus and selected with flow cytometry. Stable expression of BAD protein was verified by Western blot. In vitro, the OD value in BAD group was significantly lower than that of control groups from 120-144 h (P<0. 05). A549 cell lines stably transduced with a lentivirus expressing the BAD gene had been successfully generated. In vitro, BAD overexpression significantly inhibited A549 cells proliferation.
Ran, Yidong; Patron, Nicola; Kay, Pippa; Wong, Debbie; Buchanan, Margaret; Cao, Ying-Ying; Sawbridge, Tim; Davies, John P; Mason, John; Webb, Steven R; Spangenberg, German; Ainley, William M; Walsh, Terence A; Hayden, Matthew J
2018-05-07
Sequence-specific nucleases have been used to engineer targeted genome modifications in various plants. While targeted gene knockouts resulting in loss of function have been reported with relatively high rates of success, targeted gene editing using an exogenously supplied DNA repair template and site-specific transgene integration has been more challenging. Here, we report the first application of zinc finger nuclease (ZFN)-mediated, nonhomologous end-joining (NHEJ)-directed editing of a native gene in allohexaploid bread wheat to introduce, via a supplied DNA repair template, a specific single amino acid change into the coding sequence of acetohydroxyacid synthase (AHAS) to confer resistance to imidazolinone herbicides. We recovered edited wheat plants having the targeted amino acid modification in one or more AHAS homoalleles via direct selection for resistance to imazamox, an AHAS-inhibiting imidazolinone herbicide. Using a cotransformation strategy based on chemical selection for an exogenous marker, we achieved a 1.2% recovery rate of edited plants having the desired amino acid change and a 2.9% recovery of plants with targeted mutations at the AHAS locus resulting in a loss-of-function gene knockout. The latter results demonstrate a broadly applicable approach to introduce targeted modifications into native genes for nonselectable traits. All ZFN-mediated changes were faithfully transmitted to the next generation. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Maggini, Valentina; Presta, Luana; Miceli, Elisangela; Fondi, Marco; Bosi, Emanuele; Chiellini, Carolina; Fagorzi, Camilla; Bogani, Patrizia; Di Pilato, Vincenzo; Rossolini, Gian Maria; Mengoni, Alessio; Firenzuoli, Fabio; Perrin, Elena; Fani, Renato
2017-05-18
In this announcement, we detail the draft genome sequence of the Pseudomonas sp. strain Ep R1, isolated from the roots of the medicinal plant Echinacea purpurea The elucidation of this genome sequence may allow the identification of genes associated with the production of antimicrobial compounds. Copyright © 2017 Maggini et al.
Maggini, Valentina; Presta, Luana; Miceli, Elisangela; Fondi, Marco; Bosi, Emanuele; Chiellini, Carolina; Fagorzi, Camilla; Bogani, Patrizia; Di Pilato, Vincenzo; Rossolini, Gian Maria; Mengoni, Alessio; Firenzuoli, Fabio; Perrin, Elena
2017-01-01
ABSTRACT In this announcement, we detail the draft genome sequence of the Pseudomonas sp. strain Ep R1, isolated from the roots of the medicinal plant Echinacea purpurea. The elucidation of this genome sequence may allow the identification of genes associated with the production of antimicrobial compounds. PMID:28522712
Takahashi, Mayumi; Wu, Xiwei; Ho, Michelle; Chomchan, Pritsana; Rossi, John J; Burnett, John C; Zhou, Jiehua
2016-09-22
The systemic evolution of ligands by exponential enrichment (SELEX) technique is a powerful and effective aptamer-selection procedure. However, modifications to the process can dramatically improve selection efficiency and aptamer performance. For example, droplet digital PCR (ddPCR) has been recently incorporated into SELEX selection protocols to putatively reduce the propagation of byproducts and avoid selection bias that result from differences in PCR efficiency of sequences within the random library. However, a detailed, parallel comparison of the efficacy of conventional solution PCR versus the ddPCR modification in the RNA aptamer-selection process is needed to understand effects on overall SELEX performance. In the present study, we took advantage of powerful high throughput sequencing technology and bioinformatics analysis coupled with SELEX (HT-SELEX) to thoroughly investigate the effects of initial library and PCR methods in the RNA aptamer identification. Our analysis revealed that distinct "biased sequences" and nucleotide composition existed in the initial, unselected libraries purchased from two different manufacturers and that the fate of the "biased sequences" was target-dependent during selection. Our comparison of solution PCR- and ddPCR-driven HT-SELEX demonstrated that PCR method affected not only the nucleotide composition of the enriched sequences, but also the overall SELEX efficiency and aptamer efficacy.
Primer-Free Aptamer Selection Using A Random DNA Library
Pan, Weihua; Xin, Ping; Patrick, Susan; Dean, Stacey; Keating, Christine; Clawson, Gary
2010-01-01
Aptamers are highly structured oligonucleotides (DNA or RNA) that can bind to targets with affinities comparable to antibodies 1. They are identified through an in vitro selection process called Systematic Evolution of Ligands by EXponential enrichment (SELEX) to recognize a wide variety of targets, from small molecules to proteins and other macromolecules 2-4. Aptamers have properties that are well suited for in vivo diagnostic and/or therapeutic applications: Besides good specificity and affinity, they are easily synthesized, survive more rigorous processing conditions, they are poorly immunogenic, and their relatively small size can result in facile penetration of tissues. Aptamers that are identified through the standard SELEX process usually comprise ~80 nucleotides (nt), since they are typically selected from nucleic acid libraries with ~40 nt long randomized regions plus fixed primer sites of ~20 nt on each side. The fixed primer sequences thus can comprise nearly ~50% of the library sequences, and therefore may positively or negatively compromise identification of aptamers in the selection process 3, although bioinformatics approaches suggest that the fixed sequences do not contribute significantly to aptamer structure after selection 5. To address these potential problems, primer sequences have been blocked by complementary oligonucleotides or switched to different sequences midway during the rounds of SELEX 6, or they have been trimmed to 6-9 nt 7, 8. Wen and Gray 9 designed a primer-free genomic SELEX method, in which the primer sequences were completely removed from the library before selection and were then regenerated to allow amplification of the selected genomic fragments. However, to employ the technique, a unique genomic library has to be constructed, which possesses limited diversity, and regeneration after rounds of selection relies on a linear reamplification step. Alternatively, efforts to circumvent problems caused by fixed primer sequences using high efficiency partitioning are met with problems regarding PCR amplification 10. We have developed a primer-free (PF) selection method that significantly simplifies SELEX procedures and effectively eliminates primer-interference problems 11, 12. The protocols work in a straightforward manner. The central random region of the library is purified without extraneous flanking sequences and is bound to a suitable target (for example to a purified protein or complex mixtures such as cell lines). Then the bound sequences are obtained, reunited with flanking sequences, and re-amplified to generate selected sub-libraries. As an example, here we selected aptamers to S100B, a protein marker for melanoma. Binding assays showed Kd s in the 10-7 - 10-8 M range after a few rounds of selection, and we demonstrate that the aptamers function effectively in a sandwich binding format. PMID:20689511
Hiraoka, Koichi; Kinoshita, Atsushi; Kunimura, Hiroshi; Matsuoka, Masakazu
2018-05-31
This study investigated whether the variability of the sequence length of the go trials preceding a stop trial enhanced or interfered with inhibitory control. The hypotheses tested were either inhibitory control improves when the sequence length of the go trials varies as a consequence of increased preparatory effort or it degrades as a consequence of the switching cost from the go trial to the stop trial. The right-handed participants abducted the left or right index finger in response to a go cue during the go trials. A stop cue was given at 50, 90, or 130 ms after the go cue, with 0.25 probability in the stop trial. In the less variable session, a stop trial was presented after two, three, or four consecutive go trials. In the variable session, a stop trial was presented after one, two, three, four, or five consecutive go trials. The reaction time and stop-signal reaction time were not significantly different between the sessions and between the response sides. Nevertheless, the probability of successful inhibition of the right-hand response in the variable session was higher than that in the less variable session when the stop cue was given 50 ms after a go cue. This finding supports the view that preparatory effort due to less predictability of the chance of a forthcoming response inhibition enhances the ability of the right-hand response inhibition when the stop process begins earlier.
Sim, B K; Orlandi, P A; Haynes, J D; Klotz, F W; Carter, J M; Camus, D; Zegans, M E; Chulay, J D
1990-11-01
The Plasmodium falciparum gene encoding erythrocyte binding antigen-175 (EBA-175), a putative receptor for red cell invasion (Camus, D., and T. J. Hadley. 1985. Science (Wash. DC). 230:553-556.), has been isolated and characterized. DNA sequencing demonstrated a single open reading frame encoding a translation product of 1,435 amino acid residues. Peptides corresponding to regions on the deduced amino acid sequence predicted to be B cell epitopes were assessed for immunogenicity. Immunization of mice and rabbits with EBA-peptide 4, a synthetic peptide encompassing amino acid residues 1,062-1,103, produced antibodies that recognized P. falciparum merozoites in an indirect fluorescent antibody assay. When compared to sera from rabbits immunized with the same adjuvant and carrier protein, sera from rabbits immunized with EBA-peptide 4 inhibited merozoite invasion of erythrocytes in vitro by 80% at a 1:5 dilution. Furthermore, these sera inhibited the binding of purified, authentic EBA-175 to erythrocytes, suggesting that their activity in inhibiting merozoite invasion of erythrocytes is mediated by blocking the binding of EBA-175 to erythrocytes. Since the nucleotide sequence of EBA-peptide 4 is conserved among seven strains of P. falciparum from throughout the world (Sim, B. K. L. 1990. Mol. Biochem. Parasitol. 41:293-296.), these data identify a region of the protein that should be a focus of vaccine development efforts.
Identification of Bacterial Species in Kuwaiti Waters Through DNA Sequencing
NASA Astrophysics Data System (ADS)
Chen, K.
2017-01-01
With an objective of identifying the bacterial diversity associated with ecosystem of various Kuwaiti Seas, bacteria were cultured and isolated from 3 water samples. Due to the difficulties for cultured and isolated fecal coliforms on the selective agar plates, bacterial isolates from marine agar plates were selected for molecular identification. 16S rRNA genes were successfully amplified from the genome of the selected isolates using Universal Eubacterial 16S rRNA primers. The resulted amplification products were subjected to automated DNA sequencing. Partial 16S rDNA sequences obtained were compared directly with sequences in the NCBI database using BLAST as well as with the sequences available with Ribosomal Database Project (RDP).
Evolutionary Origins of a Bioactive Peptide Buried within Preproalbumin[C][W
Elliott, Alysha G.; Delay, Christina; Liu, Huanle; Phua, Zaiyang; Rosengren, K. Johan; Benfield, Aurélie H.; Panero, Jose L.; Colgrave, Michelle L.; Jayasena, Achala S.; Dunse, Kerry M.; Anderson, Marilyn A.; Schilling, Edward E.; Ortiz-Barrientos, Daniel; Craik, David J.; Mylne, Joshua S.
2014-01-01
The de novo evolution of proteins is now considered a frequented route for biological innovation, but the genetic and biochemical processes that lead to each newly created protein are often poorly documented. The common sunflower (Helianthus annuus) contains the unusual gene PawS1 (Preproalbumin with SFTI-1) that encodes a precursor for seed storage albumin; however, in a region usually discarded during albumin maturation, its sequence is matured into SFTI-1, a protease-inhibiting cyclic peptide with a motif homologous to unrelated inhibitors from legumes, cereals, and frogs. To understand how PawS1 acquired this additional peptide with novel biochemical functionality, we cloned PawS1 genes and showed that this dual destiny is over 18 million years old. This new family of mostly backbone-cyclic peptides is structurally diverse, but the protease-inhibitory motif was restricted to peptides from sunflower and close relatives from its subtribe. We describe a widely distributed, potential evolutionary intermediate PawS-Like1 (PawL1), which is matured into storage albumin, but makes no stable peptide despite possessing residues essential for processing and cyclization from within PawS1. Using sequences we cloned, we retrodict the likely stepwise creation of PawS1’s additional destiny within a simple albumin precursor. We propose that relaxed selection enabled SFTI-1 to evolve its inhibitor function by converging upon a successful sequence and structure. PMID:24681618
Okamoto, Toru; Campbell, Stephanie; Mehta, Ninad; Thibault, John; Colman, Peter M; Barry, Michele; Huang, David C S; Kvansakul, Marc
2012-11-01
Many viruses express inhibitors of programmed cell death (apoptosis), thereby countering host defenses that would otherwise rapidly clear infected cells. To counter this, viruses such as adenoviruses and herpesviruses express recognizable homologs of the mammalian prosurvival protein Bcl-2. In contrast, the majority of poxviruses lack viral Bcl-2 (vBcl-2) homologs that are readily identified by sequence similarities. One such virus, myxoma virus, which is the causative agent of myxomatosis, expresses a virulence factor that is a potent inhibitor of apoptosis. In spite of the scant sequence similarity to Bcl-2, myxoma virus M11L adopts an almost identical 3-dimensional fold. We used M11L as bait in a sequence similarity search for other Bcl-2-like proteins and identified six putative vBcl-2 proteins from poxviruses. Some are potent inhibitors of apoptosis, in particular sheeppox virus SPPV14, which inhibited cell death induced by multiple agents. Importantly, SPPV14 compensated for the loss of antiapoptotic F1L in vaccinia virus and acts to directly counter the cell death mediators Bax and Bak. SPPV14 also engages a unique subset of the death-promoting BH3-only ligands, including Bim, Puma, Bmf, and Hrk. This suggests that SPPV14 may have been selected for specific biological roles as a virulence factor for sheeppox virus.
Tchurikov, Nickolai A; Fedoseeva, Daria M; Gashnikova, Natalya M; Sosin, Dmitri V; Gorbacheva, Maria A; Alembekov, Ildar R; Chechetkin, Vladimir R; Kravatsky, Yuri V; Kretova, Olga V
2016-05-25
Highly active antiretroviral therapy has greatly reduced the morbidity and mortality of AIDS. However, many of the antiretroviral drugs are toxic with long-term use, and all currently used anti-HIV agents generate drug-resistant mutants. Therefore, there is a great need for new approaches to AIDS therapy. RNAi is a powerful means of inhibiting HIV-1 production in human cells. We propose to use RNAi for gene therapy of HIV/AIDS. Previously we identified a number of new biologically active siRNAs targeting several moderately conserved regions in HIV-1 transcripts. Here we analyze the heterogeneity of nucleotide sequences in three RNAi targets in sequences encoding the reverse transcriptase and integrase domains of current isolates of HIV-1 subtype A in Russia. These data were used to generate genetic constructs expressing short hairpin RNAs 28-30-bp in length that could be processed in cells into siRNAs. After transfection of the constructs we observed siRNAs that efficiently attacked the selected targets. We expect that targeting several viral genes important for HIV-1 reproduction will help overcome the problem of viral adaptation and will prevent the appearance of RNAi escape mutants in current virus strains, an important feature of gene therapy of HIV/AIDS. Copyright © 2016 Elsevier B.V. All rights reserved.
A computational proposal for designing structured RNA pools for in vitro selection of RNAs.
Kim, Namhee; Gan, Hin Hark; Schlick, Tamar
2007-04-01
Although in vitro selection technology is a versatile experimental tool for discovering novel synthetic RNA molecules, finding complex RNA molecules is difficult because most RNAs identified from random sequence pools are simple motifs, consistent with recent computational analysis of such sequence pools. Thus, enriching in vitro selection pools with complex structures could increase the probability of discovering novel RNAs. Here we develop an approach for engineering sequence pools that links RNA sequence space regions with corresponding structural distributions via a "mixing matrix" approach combined with a graph theory analysis. We define five classes of mixing matrices motivated by covariance mutations in RNA; these constructs define nucleotide transition rates and are applied to chosen starting sequences to yield specific nonrandom pools. We examine the coverage of sequence space as a function of the mixing matrix and starting sequence via clustering analysis. We show that, in contrast to random sequences, which are associated only with a local region of sequence space, our designed pools, including a structured pool for GTP aptamers, can target specific motifs. It follows that experimental synthesis of designed pools can benefit from using optimized starting sequences, mixing matrices, and pool fractions associated with each of our constructed pools as a guide. Automation of our approach could provide practical tools for pool design applications for in vitro selection of RNAs and related problems.
Selective attention impairments in Alzheimer's disease: evidence for dissociable components.
Levinoff, Elise J; Li, Karen Z H; Murtha, Susan; Chertkow, Howard
2004-07-01
Tasks emphasizing 3 different aspects of selective attention-inhibition, visuospatial selective attention, and decision making-were administered to subjects with mild Alzheimer's disease (AD) and to healthy elderly control (HEC) subjects to determine which components of selective attention were impaired in AD subjects and whether selective attention could be dissociated into different components. The tasks were administered with easy versus hard levels of difficulty to assess proportional slowing as the key variable across tasks. The results indicated that the inhibitory and visual search tasks showed greater proportional slowing in subjects with AD than in HEC subjects, and that the task involving inhibition was significantly more affected in subjects with AD. Furthermore, there were no significant intertask correlations, and the results cannot be explained simply in terms of generalized cognitive slowing. These results provide evidence that inhibition is the most strikingly affected aspect of selective attention that is observed to be impaired in early stages of AD.
Selected HIV-1 Env trimeric formulations act as potent immunogens in a rabbit vaccination model.
Heyndrickx, Leo; Stewart-Jones, Guillaume; Jansson, Marianne; Schuitemaker, Hanneke; Bowles, Emma; Buonaguro, Luigi; Grevstad, Berit; Vinner, Lasse; Vereecken, Katleen; Parker, Joe; Ramaswamy, Meghna; Biswas, Priscilla; Vanham, Guido; Scarlatti, Gabriella; Fomsgaard, Anders
2013-01-01
Ten to 30% of HIV-1 infected subjects develop broadly neutralizing antibodies (bNAbs) during chronic infection. We hypothesized that immunizing rabbits with viral envelope glycoproteins (Envs) from these patients may induce bNAbs, when formulated as a trimeric protein and in the presence of an adjuvant. Based on in vitro neutralizing activity in serum, patients with bNAbs were selected for cloning of their HIV-1 Env. Seven stable soluble trimeric gp140 proteins were generated from sequences derived from four adults and two children infected with either clade A or B HIV-1. From one of the clade A Envs both the monomeric and trimeric Env were produced for comparison. Rabbits were immunized with soluble gp120 or trimeric gp140 proteins in combination with the adjuvant dimethyl dioctadecyl ammonium/trehalose dibehenate (CAF01). Env binding in rabbit immune serum was determined using ELISAs based on gp120-IIIB protein. Neutralizing activity of IgG purified from rabbit immune sera was measured with the pseudovirus-TZMbl assay and a PBMC-based neutralization assay for selected experiments. It was initially established that gp140 trimers induce better antibody responses over gp120 monomers and that the adjuvant CAF01 was necessary for such strong responses. Gp140 trimers, based on HIV-1 variants from patients with bNAbs, were able to elicit both gp120IIIB specific IgG and NAbs to Tier 1 viruses of different subtypes. Potency of NAbs closely correlated with titers, and an gp120-binding IgG titer above a threshold of 100,000 was predictive of neutralization capability. Finally, peptide inhibition experiments showed that a large fraction of the neutralizing IgG was directed against the gp120 V3 region. Our results indicate that the strategy of reverse immunology based on selected Env sequences is promising when immunogens are delivered as stabilized trimers in CAF01 adjuvant and that the rabbit is a valuable model for HIV vaccine studies.
Levi, M; Sällberg, M; Rudén, U; Herlyn, D; Maruyama, H; Wigzell, H; Marks, J; Wahren, B
1993-01-01
A complementarity-determining region (CDR) of the mouse monoclonal antibody (mAb) F58 was constructed with specificity to a neutralization-inducing region of human immunodeficiency virus type 1 (HIV-1). The mAb has its major reactivity to the amino acid sequence I--GPGRA in the V3 viral envelope region. All CDRs including several framework amino acids were synthesized from the sequence deduced by cloning and sequencing mAb F58 heavy- and light-chain variable domains. Peptides derived from the third heavy-chain domain (CDR-H3) alone or in combination with the other CDR sequences competed with F58 mAb for the V3 region. The CDR-H3 peptide was chemically modified by cyclization and then inhibited HIV-1 replication as well as syncytium formation by infected cells. Both the homologous IIIB viral strain to which the F58 mAb was induced and the heterologous SF2 strain were inhibited. This synthetic peptide had unexpectedly potent antiviral activity and may be a potential tool for treatment of HIV-infected persons. PMID:7685100
NASA Technical Reports Server (NTRS)
Hochstein, Lawrence I.; Emrich, Errol; Stan-Lotter, Helga; DeVincenzi, Donald L. (Technical Monitor)
1995-01-01
The vacuolar-like ATPase from Halobacterium saccha vorum is inhibited by N-ethylmaleimide and p-chloromercudphenylsulfonate. The failure of adenine nucleotides to protect against p-chloromercuriphenyisulfonate inhibition, of p-chloromercuriphenylsulfonate to protect against N-ethylmaleimide inhibition, and the difference in the temperature dependence of inactivation infers that the enzyme contains at least two thiols that are essential for enzyme activity. CNBr cleavage of C-14-N-ethylmaleimide labeled subunit results in two radioactive peptides that locates the N-ethylmaleimide-reactive cysteinyl residue as cysteine-262 in the H. salinarium sequence.
The effect of episodic retrieval on inhibition in task switching.
Grange, James A; Kowalczyk, Agnieszka W; O'Loughlin, Rory
2017-08-01
Inhibition in task switching is inferred from n-2 repetition costs: the observation that ABA task switching sequences are responded to slower than CBA sequences. This is thought to reflect the persisting inhibition of Task A, which slows reactivation attempts. Mayr (2002) reported an experiment testing a critical noninhibitory account of this effect, namely episodic retrieval: If the trial parameters for Task A match across an ABA sequence, responses should be facilitated because of priming from episodic retrieval; a cost would occur if trial parameters mismatch. In a rule-switching paradigm, Mayr reported no significant difference in n-2 repetition cost when the trial parameters repeated or switched across an ABA sequence, in clear contrast to the episodic retrieval account. What remains unclear is whether successful episodic retrieval modulates the n-2 repetition cost. Across 3 experiments-including a close replication of Mayr-we find clear evidence of reduced n-2 task repetition costs when episodic retrieval is controlled. We find that the effect of episodic retrieval on the n-2 task repetition cost is increased when the cue-task relationship is made more abstract, suggesting the effect is because of interference in establishing the relevant attentional set. We also demonstrate that the episodic retrieval effect is not influenced by retrieval of low-level, perceptual, elements. Together, the data suggest the n-2 task repetition cost-typically attributable to an inhibitory mechanism-also reflects episodic retrieval effects. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Civra, Andrea; Giuffrida, Maria Gabriella; Donalisio, Manuela; Napolitano, Lorenzo; Takada, Yoshikazu; Coulson, Barbara S; Conti, Amedeo; Lembo, David
2015-05-08
Human rotavirus is the leading cause of severe gastroenteritis in infants and children under the age of 5 years in both developed and developing countries. Human lactadherin, a milk fat globule membrane glycoprotein, inhibits human rotavirus infection in vitro, whereas bovine lactadherin is not active. Moreover, it protects breastfed infants against symptomatic rotavirus infections. To explore the potential antiviral activity of lactadherin sourced by equines, we undertook a proteomic analysis of milk fat globule membrane proteins from donkey milk and elucidated its amino acid sequence. Alignment of the human, bovine, and donkey lactadherin sequences revealed the presence of an Asp-Gly-Glu (DGE) α2β1 integrin-binding motif in the N-terminal domain of donkey sequence only. Because integrin α2β1 plays a critical role during early steps of rotavirus host cell adhesion, we tested a minilibrary of donkey lactadherin-derived peptides containing DGE sequence for anti-rotavirus activity. A 20-amino acid peptide containing both DGE and RGD motifs (named pDGE-RGD) showed the greatest activity, and its mechanism of antiviral action was characterized; pDGE-RGD binds to integrin α2β1 by means of the DGE motif and inhibits rotavirus attachment to the cell surface. These findings suggest the potential anti-rotavirus activity of equine lactadherin and support the feasibility of developing an anti-rotavirus peptide that acts by hindering virus-receptor binding. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Hess, M A; Duncan, R F
1996-01-01
Preferential translation of Drosophila heat shock protein 70 (Hsp70) mRNA requires only the 5'-untranslated region (5'-UTR). The sequence of this region suggests that it has relatively little secondary structure, which may facilitate efficient protein synthesis initiation. To determine whether minimal 5'-UTR secondary structure is required for preferential translation during heat shock, the effect of introducing stem-loops into the Hsp70 mRNA 5'-UTR was measured. Stem-loops of -11 kcal/mol abolished translation during heat shock, but did not reduce translation in non-heat shocked cells. A -22 kcal/mol stem-loop was required to comparably inhibit translation during growth at normal temperatures. To investigate whether specific sequence elements are also required for efficient preferential translation, deletion and mutation analyses were conducted in a truncated Hsp70 5'-UTR containing only the cap-proximal and AUG-proximal segments. Linker-scanner mutations in the cap-proximal segment (+1 to +37) did not impair translation. Re-ordering the segments reduced mRNA translational efficiency by 50%. Deleting the AUG-proximal segment severely inhibited translation. A 5-extension of the full-length leader specifically impaired heat shock translation. These results indicate that heat shock reduces the capacity to unwind 5-UTR secondary structure, allowing only mRNAs with minimal 5'-UTR secondary structure to be efficiently translated. A function for specific sequences is also suggested. PMID:8710519
Singh, Nitin K.; Blachowicz, Adriana; Romsdahl, Jillian; ...
2017-04-13
Presented here are the whole-genome sequences of eight fungal strains that were selected for exposure to microgravity at the International Space Station. These baseline sequences will help to understand the observed production of novel bioactive compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Nitin K.; Blachowicz, Adriana; Romsdahl, Jillian
Presented here are the whole-genome sequences of eight fungal strains that were selected for exposure to microgravity at the International Space Station. These baseline sequences will help to understand the observed production of novel bioactive compounds.
Ward, Robert; Ward, Ronnie
2008-10-01
This study examined the selective attention abilities of a simple, artificial, evolved agent and considered implications of the agent's performance for theories of selective attention and action. The agent processed two targets in continuous time, catching one and then the other. This task required many cognitive operations, including prioritizing the first target (T1) over the second (T2); selectively focusing responses on T1, while preventing T2 from interfering with responses; creating a memory for the unselected T2 item, so that it could be efficiently processed later; and reallocating processing towards T2 after catching T1. The evolved agent demonstrated all these abilities. Analysis shows that the agent used reactive inhibition to selectively focus behavior. That is, the more salient T2, the more strongly responses towards T2 were inhibited and the slower the agent was to subsequently reallocate processing towards T2. Reactive inhibition was also suggested in two experiments with people, performing a virtually identical catch task. The presence of reactive inhibition in the simple agent and in people suggests that it is an important mechanism for selective processing.
Selective inhibition of a multicomponent response can be achieved without cost
Westrick, Zachary; Ivry, Richard B.
2014-01-01
Behavioral flexibility frequently requires the ability to modify an on-going action. In some situations, optimal performance requires modifying some components of an on-going action without interrupting other components of that action. This form of control has been studied with the selective stop-signal task, in which participants are instructed to abort only one movement of a multicomponent response. Previous studies have shown a transient disruption of the nonaborted component, suggesting limitations in our ability to use selective inhibition. This cost has been attributed to a structural limitation associated with the recruitment of a cortico-basal ganglia pathway that allows for the rapid inhibition of action but operates in a relatively generic manner. Using a model-based approach, we demonstrate that, with a modest amount of training and highly compatible stimulus-response mappings, people can perform a selective-stop task without any cost on the nonaborted component. Prior reports of behavioral costs in selective-stop tasks reflect, at least in part, a sampling bias in the method commonly used to estimate such costs. These results suggest that inhibition can be selectively controlled and present a challenge for models of inhibitory control that posit the operation of generic processes. PMID:25339712
Serine protease activity in m-1 cortical collecting duct cells.
Liu, Lian; Hering-Smith, Kathleen S; Schiro, Faith R; Hamm, L Lee
2002-04-01
An apical serine protease, channel-activating protease 1 (CAP1), augments sodium transport in A6 cells. Prostasin, a novel serine protease originally purified from seminal fluid, has been proposed to be the mammalian ortholog of CAP1. We have recently found functional evidence for a similar protease activity in the M-1 cortical collecting duct cell line. The purposes of the present studies were to determine whether prostasin (or CAP1) is present in collecting duct cells by use of mouse M-1 cells, to sequence mouse prostasin, and to further characterize the identity of the serine protease activity and additional functional features in M-1 cells. Using mouse expressed sequence tag sequences that are highly homologous to the published human prostasin sequence as templates, reverse transcription-polymerase chain reaction and RACE (rapid amplification of cDNA ends) were used to sequence mouse prostasin mRNA, which shows 99% identical to published mouse CAP1 sequence. A single 1800-bp transcript was found by Northern analysis, and this was not altered by aldosterone. Equivalent short-circuit current (I(eq)), which represents sodium transport in these cells, dropped to 59+/-3% of control value within 1 hour of incubation with aprotinin, a serine protease inhibitor. Trypsin increased the I(eq) in aprotinin-treated cells to the value of the control group within 5 minutes. Application of aprotinin not only inhibited amiloride sensitive I(eq) but also reduced transepithelial resistance (R(te)) to 43+/-2%, an effect not expected with simple inhibition of sodium channels. Trypsin partially reversed the effect of aprotinin on R(te). Another serine protease inhibitor, soybean trypsin inhibitor (STI), decreased I(eq) in M-1 cells. STI inhibited I(eq) gradually over 6 hours, and the inhibition of I(eq) by 2 inhibitors was additive. STI decreased transepithelial resistance much less than did aprotinin. Neither aldosterone nor dexamethasone significantly augmented protease activity or prostasin mRNA levels, and in fact, dexamethasone decreased prostasin mRNA expression. In conclusion, although prostasin is present in M-1 cells and probably augments sodium transport in these cells, serine proteases probably have other effects (eg, resistance) in the collecting duct in addition to effects on sodium channels. Steroids do not alter these effects in M-1 cells. Additional proteases are likely also present in mouse collecting duct cells.
Domeneghetti, Stefania; Franzoi, Marco; Damiano, Nunzio; Norante, Rosa; El Halfawy, Nancy M; Mammi, Stefano; Marin, Oriano; Bellanda, Massimo; Venier, Paola
2015-10-28
Mussels (Mytilus spp.) have a large repertoire of cysteine-stabilized α,β peptides, and myticin C (MytC) was identified in some hundreds of transcript variants after in vivo immunostimulation. Using a sequence expressed in Italian mussels, we computed the MytC structure and synthesized the mature MytC and related peptide fragments (some of them also prepared in oxidized form) to accurately assess their antibacterial and antifungal activity. Only when tested at pH 5 was the reduced MytC as well as reduced and oxidized fragments including structural β-elements able to inhibit Gram-positive and -negative bacteria (MIC ranges of 4-32 and 8-32 μM, respectively). Such fragments caused selective Escherichia coli killing (MBC of 8-32 μM) but scarcely inhibited two fungal strains. In detail, the antimicrobial β-hairpin MytC[19-40]SOX caused membrane-disrupting effects in E. coli despite its partially ordered conformation in membrane-mimetic environments. In perspective, MytC-derived peptides could be employed to protect acidic mucosal tissues, in cosmetic and food products, and, possibly, as adjuvants in aquaculture.
Influence of time and length size feature selections for human activity sequences recognition.
Fang, Hongqing; Chen, Long; Srinivasan, Raghavendiran
2014-01-01
In this paper, Viterbi algorithm based on a hidden Markov model is applied to recognize activity sequences from observed sensors events. Alternative features selections of time feature values of sensors events and activity length size feature values are tested, respectively, and then the results of activity sequences recognition performances of Viterbi algorithm are evaluated. The results show that the selection of larger time feature values of sensor events and/or smaller activity length size feature values will generate relatively better results on the activity sequences recognition performances. © 2013 ISA Published by ISA All rights reserved.
Pinto, João; Gribaldo, Simonetta; Legrand, Eric; Niang, Makhtar; Kim, Nimol; Pharath, Lim; Volnay, Béatrice; Ekala, Marie Therese; Bouchier, Christiane; Fandeur, Thierry; Berzosa, Pedro; Benito, Agustin; Ferreira, Isabel Dinis; Ferreira, Cynthia; Vieira, Pedro Paulo; Alecrim, Maria das Graças; Mercereau-Puijalon, Odile; Cravo, Pedro
2010-01-01
Artemisinin, a thapsigargin-like sesquiterpene has been shown to inhibit the Plasmodium falciparum sarco/endoplasmic reticulum calcium-ATPase PfSERCA. To collect baseline pfserca sequence information before field deployment of Artemisinin-based Combination therapies that may select mutant parasites, we conducted a sequence analysis of 100 isolates from multiple sites in Africa, Asia and South America. Coding sequence diversity was large, with 29 mutated codons, including 32 SNPs (average of one SNP/115 bp), of which 19 were novel mutations. Most SNP detected in this study were clustered within a region in the cytosolic head of the protein. The PfSERCA functional domains were very well conserved, with non synonymous mutations located outside the functional domains, except for the S769N mutation associated in French Guiana with elevated IC50 for artemether. The S769N mutation is located close to the hinge of the headpiece, which in other species modulates calcium affinity and in consequence efficacy of inhibitors, possibly linking calcium homeostasis to drug resistance. Genetic diversity was highest in Senegal, Brazil and French Guiana, and few mutations were identified in Asia. Population genetic analysis was conducted for a partial fragment of the gene encompassing nucleotide coordinates 87-2862 (unambiguous sequence available for 96 isolates). This supported a geographic clustering, with a separation between Old and New World samples and one dominant ancestral haplotype. Genetic drift alone cannot explain the observed polymorphism, suggesting that other evolutionary mechanisms are operating. One possible contributor could be the frequency of haemoglobinopathies that are associated with calcium dysregulation in the erythrocyte. PMID:20195531
Maeda, Yasuhiro; Yamaguchi, Terufumi; Ueda, Satomi; Matsuo, Koki; Morita, Yasuyoshi; Naiki, Yoshito; Miyazato, Hajime; Shimada, Takahiro; Miyatake, Jun-Ichi; Matsuda, Mitsuhiro; Kanamaru, Akihisa
2003-07-01
In this study, we observed the expression of the GSTT-1 gene in patients with myelodysplastic syndrome (MDS) at the messenger RNA level. Reverse transcription-polymerase chain reaction (RT-PCR) for GSTT-1 was performed with a pair of primers complementary to the 5' coding section and the 3' coding section of the GSTT-1 cDNA for amplifying the 623-bp band. Among 20 patients with MDS, 8 patients showed the expected 623-bp band on RT-PCR, and 12 patients showed a 500-bp band on RT-PCR, indicating that a 123-bp sequence was deleted as a mutant of the GSTT-1 gene. Furthermore, a BLAST DNA search showed that the deletion of a 123 bp sequence creates a sequence that is 63% homologous to human FKBP-rapamycin associated protein (FRAP); this protein has been termed a mammalian target of rapamycin (mTOR). We respectively transfected the wild type and the mutant type GSTT-1 gene in an expression vector to two cell lines (K562 and HL-60). The stable transformants for the wild type and the mutant type GSTT-1 genes were made by G418 selection. Interestingly, rapamycin could induce significant growth inhibition of the stable transformants for mutant type GSTT-1, which was indicative of apoptosis, but not that of those for wild type GSTT-1. These results suggest that rapamycin could be included in the therapeutic modality for the patients with MDS who have the mTOR sequences in GSTT-1 gene.
Identification of peptide sequences that target to the brain using in vivo phage display.
Li, Jingwei; Zhang, Qizhi; Pang, Zhiqing; Wang, Yuchen; Liu, Qingfeng; Guo, Liangran; Jiang, Xinguo
2012-06-01
Phage display technology could provide a rapid means for the discovery of novel peptides. To find peptide ligands specific for the brain vascular receptors, we performed a modified phage display method. Phages were recovered from mice brain parenchyma after administrated with a random 7-mer peptide library intravenously. A longer circulation time was arranged according to the biodistributive brain/blood ratios of phage particles. Following sequential rounds of isolation, a number of phages were sequenced and a peptide sequence (CTSTSAPYC, denoted as PepC7) was identified. Clone 7-1, which encodes PepC7, exhibited translocation efficiency about 41-fold higher than the random library phage. Immunofluorescence analysis revealed that Clone 7-1 had a significant superiority on transport efficiency into the brain compared with native M13 phage. Clone 7-1 was inhibited from homing to the brain in a dose-dependent fashion when cyclic peptides of the same sequence were present in a competition assay. Interestingly, the linear peptide (ATSTSAPYA, Pep7) and a scrambled control peptide PepSC7 (CSPATSYTC) did not compete with the phage at the same tested concentration (0.2-200 pg). Labeled by Cy5.5, PepC7 exhibited significant brain-targeting capability in in vivo optical imaging analysis. The cyclic conformation of PepC7 formed by disulfide bond, and the correct structure itself play a critical role in maintaining the selectivity and affinity for the brain. In conclusion, PepC7 is a promising brain-target motif never been reported before and it could be applied to targeted drug delivery into the brain.
Reptilian Transcriptomes v2.0: An Extensive Resource for Sauropsida Genomics and Transcriptomics
Tzika, Athanasia C.; Ullate-Agote, Asier; Grbic, Djordje; Milinkovitch, Michel C.
2015-01-01
Despite the availability of deep-sequencing techniques, genomic and transcriptomic data remain unevenly distributed across phylogenetic groups. For example, reptiles are poorly represented in sequence databases, hindering functional evolutionary and developmental studies in these lineages substantially more diverse than mammals. In addition, different studies use different assembly and annotation protocols, inhibiting meaningful comparisons. Here, we present the “Reptilian Transcriptomes Database 2.0,” which provides extensive annotation of transcriptomes and genomes from species covering the major reptilian lineages. To this end, we sequenced normalized complementary DNA libraries of multiple adult tissues and various embryonic stages of the leopard gecko and the corn snake and gathered published reptilian sequence data sets from representatives of the four extant orders of reptiles: Squamata (snakes and lizards), the tuatara, crocodiles, and turtles. The LANE runner 2.0 software was implemented to annotate all assemblies within a single integrated pipeline. We show that this approach increases the annotation completeness of the assembled transcriptomes/genomes. We then built large concatenated protein alignments of single-copy genes and inferred phylogenetic trees that support the positions of turtles and the tuatara as sister groups of Archosauria and Squamata, respectively. The Reptilian Transcriptomes Database 2.0 resource will be updated to include selected new data sets as they become available, thus making it a reference for differential expression studies, comparative genomics and transcriptomics, linkage mapping, molecular ecology, and phylogenomic analyses involving reptiles. The database is available at www.reptilian-transcriptomes.org and can be enquired using a wwwblast server installed at the University of Geneva. PMID:26133641
Potent and selective inhibition of magnolol on catalytic activities of UGT1A7 and 1A9.
Zhu, Liangliang; Ge, Guangbo; Liu, Yong; He, Guiyuan; Liang, Sicheng; Fang, Zhongze; Dong, Peipei; Cao, Yunfeng; Yang, Ling
2012-10-01
1. Human exposure to magnolol can reach a high dose in daily life. Our previous studies indicated that magnolol showed high affinities to several UDP-glucuronosyltransferases (UGTs) This study was designed to examine the in vitro inhibitory effects of magnolol on UGTs, and further to evaluate the possibility of the in vivo inhibition that might happen. 2. Assays with recombinant UGTs and human liver microsomes (HLM) indicated that magnolol (10 µM) can selectively inhibit activities of UGT1A9 and extra-hepatic UGT1A7. Inhibition of magnolol on UGT1A7 followed competitive inhibition mechanism, while the inhibition on UGT1A9 obeyed either competitive or mixed inhibition mechanism, depending on substrates. The K(i) values for UGT1A7 and 1A9 are all in nanomolar ranges, lower than possible magnolol concentrations in human gut lumen and blood, indicating the in vivo inhibition on these two enzymes would likely occur. 3. In conclusion, UGT1A7 and 1A9 can be strongly inhibited by magnolol, raising the alarm for safe application of magnolol and traditional Chinese medicines containing magnolol. Additionally, given that UGT1A7 is an extra-hepatic enzyme, magnolol can serve as a selective UGT1A9 inhibitor that will act as a new useful tool in future hepatic glucuronidation phenotyping.
Ugarte-Berzal, Estefanía; Bailón, Elvira; Amigo-Jiménez, Irene; Albar, Juan Pablo; García-Marco, José A; García-Pardo, Angeles
2014-05-30
(pro)MMP-9 binds to CLL cells through the PEX9 domain and contributes to CLL progression. To biochemically characterize this interaction and identify potential therapeutic targets, we prepared GST-PEX9 forms containing structural blades B1B2 or B3B4. We recently described a sequence in blade B4 (P3 sequence) that bound α4β1 integrin and partially impaired cell adhesion and migration. We have now studied the possible contribution of the B1B2 region to cell interaction with PEX9. CLL cells bound to GST-B1B2 and CD44 was the primary receptor. GST-B1B2 inhibited CLL cell migration as effectively as GST-B3B4. Overlapping synthetic peptides spanning the B1B2 region identified the sequence FDAIAEIGNQLYLFKDGKYW, present in B1 and contained in peptide P6, as the most effective site. P6 inhibited cell adhesion to PEX9 in a dose-dependent manner and with an IC50 value of 90 μM. P6 also inhibited cell adhesion to hyaluronan but had no effect on adhesion to VCAM-1 (α4β1 integrin ligand), confirming its specific interaction with CD44. Spatial localization analyses mapped P6 to the central cavity of PEX9, in close proximity to the previously identified P3 sequence. Both P6 and P3 equally impaired cell adhesion to (pro)MMP-9. Moreover, P6 synergistically cooperated with P3, resulting in complete inhibition of CLL cell binding to PEX9, chemotaxis, and transendothelial migration. Thus, P6 is a novel sequence in PEX9 involved in cell-PEX9/(pro)MMP-9 binding by interacting with CD44. Targeting both sites, P6 and P3, should efficiently prevent (pro)MMP-9 binding to CLL cells and its pathological consequences. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Adaptive Learning Resources Sequencing in Educational Hypermedia Systems
ERIC Educational Resources Information Center
Karampiperis, Pythagoras; Sampson, Demetrios
2005-01-01
Adaptive learning resources selection and sequencing is recognized as among the most interesting research questions in adaptive educational hypermedia systems (AEHS). In order to adaptively select and sequence learning resources in AEHS, the definition of adaptation rules contained in the Adaptation Model, is required. Although, some efforts have…
Singh, Nitin K.; Blachowicz, Adriana; Romsdahl, Jillian; Wang, Clay; Torok, Tamas
2017-01-01
ABSTRACT The whole-genome sequences of eight fungal strains that were selected for exposure to microgravity at the International Space Station are presented here. These baseline sequences will help to understand the observed production of novel bioactive compounds. PMID:28408692
Amirhaeri, S; Wohlrab, F; Wells, R D
1995-02-17
The influence of simple repeat sequences, cloned into different positions relative to the SV40 early promoter/enhancer, on the transient expression of the chloramphenicol acetyltransferase (CAT) gene was investigated. Insertion of (G)29.(C)29 in either orientation into the 5'-untranslated region of the CAT gene reduced expression in CV-1 cells 50-100 fold when compared with controls with random sequence inserts. Analysis of CAT-specific mRNA levels demonstrated that the effect was due to a reduction of CAT mRNA production rather than to posttranscriptional events. In contrast, insertion of the same insert in either orientation upstream of the promoter-enhancer or downstream of the gene stimulated gene expression 2-3-fold. These effects could be reversed by cotransfection of a competitor plasmid carrying (G)25.(C)25 sequences. The results suggest that a G.C-binding transcription factor modulates gene expression in this system and that promoter strength can be regulated by providing protein-binding sites in trans. Although constructs containing longer tracts of alternating (C-G), (T-G), or (A-T) sequences inhibited CAT expression when inserted in the 5'-untranslated region of the CAT gene, the amount of CAT mRNA was unaffected. Hence, these inhibitions must be due to posttranscriptional events, presumably at the level of translation. These effects of microsatellite sequences on gene expression are discussed with respect to recent data on related simple repeat sequences which cause several human genetic diseases.
Bálint, Balázs; Wéber, Csaba; Cruzalegui, Francisco; Burbridge, Mike; Kotschy, Andras
2017-06-21
Dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A) is an emerging biological target with implications in diverse therapeutic areas such as neurological disorders (Down syndrome, in particular), metabolism, and oncology. Harmine, a natural product that selectively inhibits DYRK1A amongst kinases, could serve as a tool compound to better understand the biological processes that arise from DYRK1A inhibition. On the other hand, harmine is also a potent inhibitor of monoamine oxidase A (MAO-A). Using structure-based design, we synthesized a collection of harmine analogues with tunable selectivity toward these two enzymes. Modifications at the 7-position typically decreased affinity for DYRK1A, whereas substitution at the 9-position had a similar effect on MAO-A inhibition but DYRK1A inhibition was maintained. The resulting collection of compounds can help to understand the biological role of DYRK1A and also to assess the interference in the biological effect originating in MAO-A inhibition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Decursin and decursinol angelate selectively inhibit NADH-fumarate reductase of Ascaris suum.
Shiomi, Kazuro; Hatano, Hiroko; Morimoto, Hiromi; Ui, Hideaki; Sakamoto, Kimitoshi; Kita, Kiyoshi; Tomoda, Hiroshi; Lee, Eun Woo; Heo, Tae Ryeon; Kawagishi, Hirokazu; Omura, Satoshi
2007-11-01
NADH-fumarate reductase (NFRD) is a key enzyme in many anaerobic helminths. Decursin and decursinol angelate have been isolated from the roots of ANGELICA GIGAS Nakai (Apiaceae) as NFRD inhibitors. They inhibited ASCARIS SUUM NFRD with IC (50) values of 1.1 and 2.7 microM, respectively. Their target is the electron transport enzyme complex I. Since the inhibitory activities of decursin against bovine heart complexes are weak, it is a selective inhibitor of the nematode complex I. In contrast, decursinol angelate moderately inhibits bovine heart complexes II and III. Decursinol inhibits A. SUUM NFRD to a similar extent, but its target is complex II. It also inhibits bovine heart complexes II and III.
Paulino, Margot; Alvareda, Elena; Iribarne, Federico; Miranda, Pablo; Espinosa, Victoria; Aguilera, Sara; Pardo, Helena
2016-12-01
Propolis and grape pomace have significant amounts of phenols which can take part in anti-inflammatory mechanisms. As the cyclooxygenases 1 and 2 (COX-1 and COX-2) are involved in said mechanisms, the possibility for a selective inhibition of COX-2 was analyzed in vitro and in silico. Propolis and grape pomace from Uruguayan species were collected, extracted in hydroalcoholic mixture and analyzed. Based on phenols previously identified, and taking as reference the crystallographic structures of COX-1 and COX-2 in complex with the commercial drug Celecoxib, a molecular docking procedure was devised to adjust 123 phenolic molecular models at the enzyme-binding sites. The most important results of this work are that the extracts have an overall inhibition activity very similar in COX-1 and COX-2, i.e. they do not possess selective inhibition activity for COX-2. Nevertheless, 10 compounds of the phenolic database turned out to be more selective and 94 phenols resulted with similar selectivity than Celecoxib, an outcome that accounts for the overall experimental inhibition measures. Binding site environment observations showed increased polarity in COX-2 as compared with COX-1, suggesting that polarity is the key for selectivity. Accordingly, the screening of molecular contacts pointed to the residues: Arg106, Gln178, Leu338, Ser339, Tyr341, Tyr371, Arg499, Ala502, Val509, and Ser516, which would explain, at the atomic level, the anti-inflammatory effect of the phenolic compounds. Among them, Gln178 and Arg499 appear to be essential for the selective inhibition of COX-2.
Targeting the CACNA1A IRES as a Treatment for Spinocerebellar Ataxia Type 6.
Pastor, Parviz Daniel Hejazi; Du, Xiaofei; Fazal, Sarah; Davies, Andre N; Gomez, Christopher M
2018-02-01
We have discovered that the P/Q-type voltage-gated Ca 2+ channel (VGCC) gene, CACNA1A, encodes both the α1A (Cav2.1) subunit and a newly recognized transcription factor, α1ACT, by means of a novel internal ribosomal entry site (IRES) within the α1A C-terminal coding region. α1ACT, when mutated with an expansion of the polyglutamine tract in the C-terminus, gives rise to spinocerebellar ataxia type 6 (SCA6). Because silencing of the entire CACNA1A gene would result in the loss of the essential Cav2.1 channel, the IRES controlling α1ACT expression is an excellent target for selective silencing of α1ACT as a therapeutic intervention for SCA6. We performed a high-throughput screen of FDA-approved small molecules using a dual luciferase reporter system and identified ten hits able to selectively inhibit the IRES. We identified four main candidates that showed selective suppression of α1ACT relative to α1A in HEK cells expressing a native CACNA1A vector. We previously pursued another avenue of molecular intervention through miRNA silencing. We studied three human miRNAs (miRNA-711, -3191-5p, -4786) that would potentially bind to sequences within the CACNA1A IRES region, based on an miRNA prediction program. Only miRNA-3191-5p was found to selectively inhibit the translation of α1ACT in cells. We developed a hyperacute model of SCA6 in mice by injecting a pathogenic form of the IRES-mediated α1ACT (AAV9-α1ACTQ33). Finally, we tested the effectiveness of the miRNA therapy by co-expressing either control miRNA or miRNA-3191-5p and found that miRNA-3191-5p decreased the levels of α1ACTQ33 and prevented the hyperacute disease in mice. These studies provide the proof of principle that a therapy directed at selectively preventing α1ACT expression could be used to treat SCA6.
Misra, Rajeev; Morrison, Keith D; Cho, Hyun Jae; Khuu, Thanh
2015-08-01
The constitutively expressed AcrAB multidrug efflux system of Escherichia coli shows a high degree of homology with the normally silent AcrEF system. Exposure of a strain with acrAB deleted to antibiotic selection pressure frequently leads to the insertion sequence-mediated activation of the homologous AcrEF system. In this study, we used strains constitutively expressing either AcrAB or AcrEF from their normal chromosomal locations to resolve a controversy about whether phenylalanylarginine β-naphthylamide (PAβN) inhibits the activities of AcrAB and AcrEF and/or acts synergistically with antibiotics by destabilizing the outer membrane permeability barrier. Real-time efflux assays allowed a clear distinction between the efflux pump-inhibiting activity of PAβN and the outer membrane-destabilizing action of polymyxin B nonapeptide (PMXBN). When added in equal amounts, PAβN, but not PMXBN, strongly inhibited the efflux activities of both AcrAB and AcrEF pumps. In contrast, when outer membrane destabilization was assessed by the nitrocefin hydrolysis assay, PMXBN exerted a much greater damaging effect than PAβN. Strong action of PAβN in inhibiting efflux activity compared to its weak action in destabilizing the outer membrane permeability barrier suggests that PAβN acts mainly by inhibiting efflux pumps. We concluded that at low concentrations, PAβN acts specifically as an inhibitor of both AcrAB and AcrEF efflux pumps; however, at high concentrations, PAβN in the efflux-proficient background not only inhibits efflux pump activity but also destabilizes the membrane. The effects of PAβN on membrane integrity are compounded in cells unable to extrude PAβN. The increase in multidrug-resistant bacterial pathogens at an alarming rate has accelerated the need for implementation of better antimicrobial stewardship, discovery of new antibiotics, and deeper understanding of the mechanism of drug resistance. The work carried out in this study highlights the importance of employing real-time fluorescence-based assays in differentiating multidrug efflux-inhibitory and outer membrane-destabilizing activities of antibacterial compounds. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Smothers, C. Thetford; Jin, Chun; Woodward, John J.
2013-01-01
Background Ethanol inhibition of NMDA receptors is poorly understood due in part to the organizational complexity of the receptor that provides ample locations for sites of action. Among these the N-terminal domain of NMDA receptor subunits contains binding sites for a variety of modulatory agents including zinc, protons and GluN2B selective antagonists such as ifenprodil or Ro-25–6981. Ethanol inhibition of neuronal NMDA receptors expressed in some brain areas has been reported to be occluded by the presence of ifenprodil or similar compounds suggesting that the N-terminal domain may be important in regulating the ethanol sensitivity of NMDA receptors. Methods Wild-type GluN1 and GluN2 subunits and those in which the coding sequence for the N-terminal domain was deleted were expressed in HEK293 cells. Whole-cell voltage-clamp recording was used to assess ethanol inhibition of wild-type and mutant receptors lacking the N-terminal domain. Results As compared to wild-type GluN1/GluN2A receptors, ethanol inhibition was slightly greater in cells expressing GluN2A subunits lacking the N-terminal domain. In contrast, GluN2B N-terminal deletion mutants showed normal ethanol inhibition while those lacking the N-terminal domain in both GluN1 and GluN2B subunits had decreased ethanol inhibition as compared to wild-type receptors. N-terminal domain lacking GluN2B receptors were insensitive to ifenprodil but retained normal sensitivity to ethanol. Conclusions These findings indicate that the N-terminal domain modestly influences the ethanol sensitivity of NMDA receptors in a subunit-dependent manner. They also show that ifenprodil’s actions on GluN2B containing receptors can be dissociated from those of ethanol. These results suggest that while the N-terminal domain is not a primary site of action for ethanol on NMDA receptors, it likely affects sensitivity via actions on intrinsic channel properties. PMID:23905549
NASA Astrophysics Data System (ADS)
Ibrahim, I. M.; Kassim, E. S. Mohd; Husin, H.; Jai, J.; Daud, M.; Hashim, M. A.
2018-05-01
This paper contains a review on the effect of halide ion with a selected inhibitor which is imidazole derivatives on the efficiency of corrosion inhibition. The paper first describes the mechanism of synergistic inhibition effect among halide ions enhancer with inhibitor on the steel surface. Then the paper describes the measured inhibition efficiency and summarizes the synergistic inhibition condition of imidazoline derivatives inhibitor with iodide ions. The characteristic of synergistic inhibition effect and the relationship between the amount of iodide ion consumption and the amount of organic inhibitor consumption are also discussed. It has been shown that, the synergistic effect between imidazole derivative and iodide ion is an effective method to improve the inhibitive performance in different aqueous media.
Selective conversion of carbon monoxide to hydrogen by anaerobic mixed culture.
Liu, Yafeng; Wan, Jingjing; Han, Sheng; Zhang, Shicheng; Luo, Gang
2016-02-01
A new method for the conversion of CO to H2 was developed by anaerobic mixed culture in the current study. Higher CO consumption rate was obtained by anaerobic granular sludge (AGS) compared to waste activated sludge (WAS) at 55 °C and pH 7.5. However, H2 was the intermediate and CH4 was the final product. Fermentation at pH 5.5 by AGS inhibited CH4 production, while the lower CO consumption rate (50% of that at pH 7.5) and the production of acetate were found. Fermentation at pH 7.5 with the addition of chloroform achieved efficient and selective conversion of CO to H2. Stable and efficient H2 production was achieved in a continuous reactor inoculated with AGS, and gas recirculation was crucial to increase the CO conversion efficiency. Microbial community analysis showed that high abundance (44%) of unclassified sequences and low relative abundance (1%) of known CO-utilizing bacteria Desulfotomaculum were enriched in the reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.
Clark, Tobias; Hapiak, Vera; Oakes, Mitchell; Mills, Holly; Komuniecki, Richard
2018-01-01
Monoamines and neuropeptides often modulate the same behavior, but monoaminergic-peptidergic crosstalk remains poorly understood. In Caenorhabditis elegans, the adrenergic-like ligands, tyramine (TA) and octopamine (OA) require distinct subsets of neuropeptides in the two ASI sensory neurons to inhibit nociception. TA selectively increases the release of ASI neuropeptides encoded by nlp-14 or nlp-18 from either synaptic/perisynaptic regions of ASI axons or the ASI soma, respectively, and OA selectively increases the release of ASI neuropeptides encoded by nlp-9 asymmetrically, from only the synaptic/perisynaptic region of the right ASI axon. The predicted amino acid preprosequences of genes encoding either TA- or OA-dependent neuropeptides differed markedly. However, these distinct preprosequences were not sufficient to confer monoamine-specificity and additional N-terminal peptide-encoding sequence was required. Collectively, our results demonstrate that TA and OA specifically and differentially modulate the release of distinct subsets of neuropeptides from different subcellular sites within the ASIs, highlighting the complexity of monoaminergic/peptidergic modulation, even in animals with a relatively simple nervous system.
Thong, Kwai-Lin; Tang, Swee-Seong; Tan, Wen-Siang; Devi, Shamala
2007-01-01
Polyclonal sera from typhoid patients and a monoclonal antibody, mAb ATVi, which recognizes the capsular polysaccharide Vi antigen (ViCPS), were used to select for peptides that mimic the ViCPS by using a phage-displayed random 12-mer peptide library. Two major common mimotopes selected from the library carried the amino acid sequences TSHHDSHGLHRV and ENHSPVNIAHKL. Enzyme-linked immunosorbent assays (ELISAs) showed that these peptides carry mimotopes to ViCPS. Phage clones that contained the 12-mer peptides were also tested against pooled/individual typhoid patients' sera and found to have 3 to 5 times higher binding compared to normal sera. By using Phage-ELISA assays, the derived synthetic peptides, TSHHDSHGLHRV and ENHSPVNIAHKL, were tested against a monoclonal antibody mAb ATVi and over 2-fold difference in binding was found between these peptides and a control unrelated peptide, CTLTTKLYC. Inhibition of the mAb's binding to ViCPS indicated that the synthetic peptides successfully competed with the capsular polysaccharide for antibody binding.
Oakes, Mitchell; Mills, Holly; Komuniecki, Richard
2018-01-01
Monoamines and neuropeptides often modulate the same behavior, but monoaminergic-peptidergic crosstalk remains poorly understood. In Caenorhabditis elegans, the adrenergic-like ligands, tyramine (TA) and octopamine (OA) require distinct subsets of neuropeptides in the two ASI sensory neurons to inhibit nociception. TA selectively increases the release of ASI neuropeptides encoded by nlp-14 or nlp-18 from either synaptic/perisynaptic regions of ASI axons or the ASI soma, respectively, and OA selectively increases the release of ASI neuropeptides encoded by nlp-9 asymmetrically, from only the synaptic/perisynaptic region of the right ASI axon. The predicted amino acid preprosequences of genes encoding either TA- or OA-dependent neuropeptides differed markedly. However, these distinct preprosequences were not sufficient to confer monoamine-specificity and additional N-terminal peptide-encoding sequence was required. Collectively, our results demonstrate that TA and OA specifically and differentially modulate the release of distinct subsets of neuropeptides from different subcellular sites within the ASIs, highlighting the complexity of monoaminergic/peptidergic modulation, even in animals with a relatively simple nervous system. PMID:29723289
Akazawa, Takashi; Ohashi, Toshimitsu; Nakajima, Hiroko; Nishizawa, Yasuko; Kodama, Ken; Sugiura, Kikuya; Inaba, Toshio; Inoue, Norimitsu
2014-12-15
Materials used for the past 30 years as immunoadjuvants induce suboptimal antitumor immune responses and often cause undesirable local inflammation. Some bacterial lipopeptides that act as Toll-like receptor (TLR) 2 ligands activate immune cells as immunoadjuvants and induce antitumor effects. Here, we developed a new dendritic cell (DC)-targeting lipopeptide, h11c (P2C-ATPEDNGRSFS), which uses the CD11c-binding sequence of intracellular adhesion molecule-1 to selectively and efficiently activate DCs but not other immune cells. Although the h11c lipopeptide activated DCs similarly to an artificial lipopeptide, P2C-SKKKK (P2CSK4), via TLR2 in vitro, h11c induced more effective tumor inhibition than P2CSK4 at low doses in vivo with tumor antigens. Even without tumor antigens, h11c lipopeptide significantly inhibited tumor growth and induced tumor-specific cytotoxic T cells. P2CSK4 was retained subcutaneously at the vaccination site and induced severe local inflammation in in vivo experiments. In contrast, h11c was not retained at the vaccination site and was transported into the tumor within 24 hr. The recruitment of DCs into the tumor was induced by h11c more effectively, while P2CSK4 induced the accumulation of neutrophils leading to severe inflammation at the vaccination site. Because CD11b+ cells, but not CD11c+ cells, produced neutrophil chemotactic factors such as macrophage inflammatory protein (MIP)-2 in response to stimulation with TLR2 ligands, the DC-targeting lipopeptide h11c induced less MIP-2 production by splenocytes than P2CSK4. In this study, we succeeded in developing a novel immunoadjuvant, h11c, which effectively induces antitumor activity without adverse effects such as local inflammation via the selective activation of DCs. © 2014 UICC.
RETREG1 (FAM134B): A new player in human diseases: 15 years after the discovery in cancer.
Islam, Farhadul; Gopalan, Vinod; Lam, Alfred King-Yin
2018-06-01
FAM134B (family with sequence similarity 134, member B)/RETREG1 and its functional roles are relatively new in human diseases. This review aimed to summarize various functions of FAM134B since our first discovery of the gene in 2001. The protein encoded by FAM134B is a reticulophagy receptor that regulates turnover of the endoplasmic reticulum (ER) by selective phagocytosis. Absence or non-functional expression of FAM134B protein impairs ER-turnover and thereby is involved in the pathogenesis of some human diseases. FAM134B inhibition contributes to impair proteostasis in the ER due to the accumulation of misfolded or aggregated proteins, which in turn leads to compromised neuronal survival and progressive neuronal degenerative diseases. Mutations in FAM134B associated with hereditary sensory and autonomic neuropathy type IIB (HSAN IIB). Selective cleavage of FAM134B by Dengue, Zika, and West Nile virus encoded protease NS2B3 leads to the increased production of infection units, whereas upregulation of FAM134B inhibits viral replication. In cancer, FAM134B acts as a tumor suppressor and inhibit cancer growth both in-vitro and in-vivo. Pharmacological upregulation of FAM134B resulted in reduced cancer cell growth and proliferation. In addition, FAM134B mutations are common in patients with colorectal adenocarcinoma, and oesophageal squamous cell carcinoma. These mutations and expression changes of FAM134B were associated with the biological aggressiveness of these cancers. FAM134B also plays a role in allergic rhinitis, vascular dementia, and identification of stem cells. Taken together, information available in the literature suggests that FAM134B plays critical roles in human diseases, by interacting with different biological and chemical mediators, which are primarily regulated by ER turnover. © 2017 Wiley Periodicals, Inc.
Janova, Eva; Matiasovic, Jan; Vahala, Jiri; Vodicka, Roman; Van Dyk, Enette; Horin, Petr
2009-07-01
The major histocompatibility complex genes coding for antigen binding and presenting molecules are the most polymorphic genes in the vertebrate genome. We studied the DRA and DQA gene polymorphism of the family Equidae. In addition to 11 previously reported DRA and 24 DQA alleles, six new DRA sequences and 13 new DQA alleles were identified in the genus Equus. Phylogenetic analysis of both DRA and DQA sequences provided evidence for trans-species polymorphism in the family Equidae. The phylogenetic trees differed from species relationships defined by standard taxonomy of Equidae and from trees based on mitochondrial or neutral gene sequence data. Analysis of selection showed differences between the less variable DRA and more variable DQA genes. DRA alleles were more often shared by more species. The DQA sequences analysed showed strong amongst-species positive selection; the selected amino acid positions mostly corresponded to selected positions in rodent and human DQA genes.
Cho, Hyun Joo; Panyakaew, Pattamon; Thirugnanasambandam, Nivethida; Wu, Tianxia; Hallett, Mark
2016-06-01
During highly selective finger movement, corticospinal excitability is reduced in surrounding muscles at the onset of movement but this phenomenon has not been demonstrated during maintenance of movement. Sensorimotor integration may play an important role in selective movement. We sought to investigate how corticospinal excitability and short-latency afferent inhibition changes in active and surrounding muscles during onset and maintenance of selective finger movement. Using transcranial magnetic stimulation (TMS) and paired peripheral stimulation, input-output recruitment curve and short-latency afferent inhibition (SAI) were measured in the first dorsal interosseus and abductor digiti minimi muscles during selective index finger flexion. Motor surround inhibition was present only at the onset phase, but not at the maintenance phase of movement. SAI was reduced at onset but not at the maintenance phase of movement in both active and surrounding muscles. Our study showed dynamic changes in corticospinal excitability and sensorimotor modulation for active and surrounding muscles in different movement states. SAI does not appear to contribute to motor surround inhibition at the movement onset phase. Also, there seems to be different inhibitory circuit(s) other than SAI for the movement maintenance phase in order to delineate the motor output selectively when corticospinal excitability is increased in both active and surrounding muscles. This study enhances our knowledge of dynamic changes in corticospinal excitability and sensorimotor interaction in different movement states to understand normal and disordered movements. Published by Elsevier Ireland Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foltz, R.; Wilson, G.; DeGroot, A.
We study the slope, intercept, and scatter of the color–magnitude and color–mass relations for a sample of 10 infrared red-sequence-selected clusters at z ∼ 1. The quiescent galaxies in these clusters formed the bulk of their stars above z ≳ 3 with an age spread Δt ≳ 1 Gyr. We compare UVJ color–color and spectroscopic-based galaxy selection techniques, and find a 15% difference in the galaxy populations classified as quiescent by these methods. We compare the color–magnitude relations from our red-sequence selected sample with X-ray- and photometric-redshift-selected cluster samples of similar mass and redshift. Within uncertainties, we are unable tomore » detect any difference in the ages and star formation histories of quiescent cluster members in clusters selected by different methods, suggesting that the dominant quenching mechanism is insensitive to cluster baryon partitioning at z ∼ 1.« less
van Schouwenburg, Martine R; den Ouden, Hanneke E M; Cools, Roshan
2015-06-01
The prefrontal cortex and the basal ganglia interact to selectively gate a desired action. Recent studies have shown that this selective gating mechanism of the basal ganglia extends to the domain of attention. Here, we investigate the nature of this action-like gating mechanism for attention using a spatial attention-switching paradigm in combination with functional neuroimaging and dynamic causal modeling. We show that the basal ganglia guide attention by focally releasing inhibition of task-relevant representations, while simultaneously inhibiting task-irrelevant representations by selectively modulating prefrontal top-down connections. These results strengthen and specify the role of the basal ganglia in attention. Moreover, our findings have implications for psychological theorizing by suggesting that inhibition of unattended sensory regions is not only a consequence of mutual suppression, but is an active process, subserved by the basal ganglia. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Bis-Aryl Urea Derivatives as Potent and Selective LIM Kinase (Limk) Inhibitors
Yin, Yan; Zheng, Ke; Eid, Nibal; Howard, Shannon; Jeong, Ji-Hak; Yi, Fei; Guo, Jia; Park, Chul M; Bibian, Mathieu; Wu, Weilin; Hernandez, Pamela; Park, HaJeung; Wu, Yuntao; Luo, Jun-Li; LoGrasso, Philip V.; Feng, Yangbo
2015-01-01
The discovery/optimization of bis-aryl ureas as Limk inhibitors to obtain high potency and selectivity, and appropriate pharmacokinetic properties through systematic SAR studies is reported. Docking studies supported the observed SAR. Optimized Limk inhibitors had high biochemical potency (IC50 < 25 nM), excellent selectivity against ROCK and JNK kinases (> 400-fold), potent inhibition of cofilin phosphorylation in A7r5,PC-3, and CEM-SS T cells (IC50 < 1 μM), and good in vitro and in vivo pharmacokinetic properties. In the profiling against a panel of 61 kinases, compound 18b at 1 μM inhibited only Limk1 and STK16 with ≥ 80% inhibition. Compounds 18b and 18f were highly efficient in inhibiting cell-invasion/migration in PC-3 cells. In addition, compound 18w was demonstrated to be effective on reducing intraocular pressure (IOP) on rat eyes. Taken together, these data demonstrated that we had developed a novel class of bis-aryl urea derived potent and selective Limk inhibitors. PMID:25621531
Selective Chemical Modulation of Gene Transcription Favors Oligodendrocyte Lineage Progression
Plotnikov, Alexander N.; Zhang, Guangtao; Zeng, Lei; Kaur, Jasbir; Moy, Gregory; Rusinova, Elena; Rodriguez, Yoel; Matikainen, Bridget; Vincek, Adam; Joshua, Jennifer; Casaccia, Patrizia; Zhou, Ming-Ming
2014-01-01
SUMMARY Lysine acetylation regulates gene expression through modulating protein-protein interactions in chromatin. Chemical inhibition of acetyl-lysine binding bromodomains of the major chromatin regulators BET (bromodomain and extra-terminal domain) proteins, has been shown to effectively block cell proliferation in cancer and inflammation. However, whether selective inhibition of individual BET bromodomains has distinctive functional consequences, remains only partially understood. In this study, we show that selective chemical inhibition of the first bromodomain of BET proteins using our newly designed small molecule inhibitor, Olinone, accelerated the progression of mouse primary oligodendrocyte progenitors towards differentiation, while inhibition of both bromodomains of BET proteins hindered differentiation. This effect was target-specific, as it was not detected in cells treated with inactive analogues and independent of any effect on proliferation. Therefore, selective chemical modulation of individual bromodomains, rather than use of broad-based inhibitors may enhance regenerative strategies in disorders characterized by myelin loss such as aging and neurodegeneration. PMID:24954007
Antiwhirl PDC bits increased penetration rates in Alberta drilling. [Polycrystalline Diamond Compact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobrosky, D.; Osmak, G.
1993-07-05
The antiwhirl PDC bits and an inhibitive mud system contributed to the quicker drilling of the time-sensitive shales. The hole washouts in the intermediate section were dramatically reduced, resulting in better intermediate casing cement jobs. Also, the use of antirotation PDC-drillable cementing plugs eliminated the need to drill out plugs and float equipment with a steel tooth bit and then trip for the PDC bit. By using an antiwhirl PDC bit, at least one trip was eliminated in the intermediate section. Offset data indicated that two to six conventional bits would have been required to drill the intermediate hole interval.more » The PDC bit was rebuildable and therefore rerunnable even after being used on five wells. In each instance, the cost of replacing chipped cutters was less than the cost of a new insert roller cone bit. The paper describes the antiwhirl bits; the development of the bits; and their application in a clastic sequence, a carbonate sequence, and the Shekilie oil field; the improvement in the rate of penetration; the selection of bottom hole assemblies; washout problems; and drill-out characteristics.« less
Hong, Xutao; Chen, Jing; Liu, Lin; Wu, Huan; Tan, Haiqin; Xie, Guangfa; Xu, Qian; Zou, Huijun; Yu, Wenjing; Wang, Lan; Qin, Nan
2016-01-01
Chinese Rice Wine (CRW) is a common alcoholic beverage in China. To investigate the influence of microbial composition on the quality of CRW, high throughput sequencing was performed for 110 wine samples on bacterial 16S rRNA gene and fungal Internal Transcribed Spacer II (ITS2). Bioinformatic analyses demonstrated that the quality of yeast starter and final wine correlated with microbial taxonomic composition, which was exemplified by our finding that wine spoilage resulted from a high proportion of genus Lactobacillus. Subsequently, based on Lactobacillus abundance of an early stage, a model was constructed to predict final wine quality. In addition, three batches of 20 representative wine samples selected from a pool of 110 samples were further analyzed in metagenomics. The results revealed that wine spoilage was due to rapid growth of Lactobacillus brevis at the early stage of fermentation. Gene functional analysis indicated the importance of some pathways such as synthesis of biotin, malolactic fermentation and production of short-chain fatty acid. These results led to a conclusion that metabolisms of microbes influence the wine quality. Thus, nurturing of beneficial microbes and inhibition of undesired ones are both important for the mechanized brewery. PMID:27241862
Hong, Xutao; Chen, Jing; Liu, Lin; Wu, Huan; Tan, Haiqin; Xie, Guangfa; Xu, Qian; Zou, Huijun; Yu, Wenjing; Wang, Lan; Qin, Nan
2016-05-31
Chinese Rice Wine (CRW) is a common alcoholic beverage in China. To investigate the influence of microbial composition on the quality of CRW, high throughput sequencing was performed for 110 wine samples on bacterial 16S rRNA gene and fungal Internal Transcribed Spacer II (ITS2). Bioinformatic analyses demonstrated that the quality of yeast starter and final wine correlated with microbial taxonomic composition, which was exemplified by our finding that wine spoilage resulted from a high proportion of genus Lactobacillus. Subsequently, based on Lactobacillus abundance of an early stage, a model was constructed to predict final wine quality. In addition, three batches of 20 representative wine samples selected from a pool of 110 samples were further analyzed in metagenomics. The results revealed that wine spoilage was due to rapid growth of Lactobacillus brevis at the early stage of fermentation. Gene functional analysis indicated the importance of some pathways such as synthesis of biotin, malolactic fermentation and production of short-chain fatty acid. These results led to a conclusion that metabolisms of microbes influence the wine quality. Thus, nurturing of beneficial microbes and inhibition of undesired ones are both important for the mechanized brewery.
Kittel, Christian; Wressnigg, Nina; Shurygina, Anna Polina; Wolschek, Markus; Stukova, Marina; Romanovskaya-Romanko, Ekatherina; Romanova, Julia; Kiselev, Oleg; Muster, Thomas; Egorov, Andrej
2015-10-01
The existence of multiple antigenically distinct types and subtypes of influenza viruses allows the construction of a multivalent vector system for the mucosal delivery of foreign sequences. Influenza A viruses have been exploited successfully for the expression of extraneous antigens as well as immunostimulatory molecules. In this study, we describe the development of an influenza B virus vector whose functional part of the interferon antagonist NS1 was replaced by human interleukin 2 (IL2) as a genetic adjuvant. We demonstrate that IL2 expressed by this viral vector displays immune adjuvant activity in immunized mice. Animals vaccinated with the IL2 viral vector showed an increased hemagglutination inhibition antibody response and higher protective efficacy after challenge with a wild-type influenza B virus when compared to mice vaccinated with a control virus. Our results demonstrate that it is feasible to construct influenza B vaccine strains expressing immune-potentiating foreign sequences from the NS genomic segment. Based on these data, it is now hypothetically possible to create a trivalent (or quadrivalent) live attenuated influenza vaccine in which each component expresses a selected genetic adjuvant with tailored expression levels.
A disulfide-bond A oxidoreductase-like protein (DsbA-L) regulates adiponectin multimerization
Liu, Meilian; Zhou, Lijun; Xu, Aimin; Lam, Karen S. L.; Wetzel, Michael D.; Xiang, Ruihua; Zhang, Jingjing; Xin, Xiaoban; Dong, Lily Q.; Liu, Feng
2008-01-01
Impairments in adiponectin multimerization lead to defects in adiponectin secretion and function and are associated with diabetes, yet the underlying mechanisms remain largely unknown. We have identified an adiponectin-interacting protein, previously named GST-kappa, by yeast 2-hybrid screening. The adiponectin-interacting protein contains 2 thioredoxin domains and has very little sequence similarity to other GST isoforms. However, this protein shares high sequence and secondary structure homology to bacterial disulfide-bond A oxidoreductase (DsbA) and is thus renamed DsbA-like protein (DsbA-L). DsbA-L is highly expressed in adipose tissue, and its expression level is negatively correlated with obesity in mice and humans. DsbA-L expression in 3T3-L1 adipocytes is stimulated by the insulin sensitizer rosiglitazone and inhibited by the inflammatory cytokine TNFα. Overexpression of DsbA-L promoted adiponectin multimerization while suppressing DsbA-L expression by RNAi markedly and selectively reduced adiponectin levels and secretion in 3T3-L1 adipocytes. Our results identify DsbA-L as a key regulator for adiponectin biosynthesis and uncover a potential new target for developing therapeutic drugs for the treatment of insulin resistance and its associated metabolic disorders. PMID:19011089
Treccani, Laura; Mann, Karlheinz; Heinemann, Fabian; Fritz, Monika
2006-01-01
We have isolated a new protein from the nacreous layer of the shell of the sea snail Haliotis laevigata (abalone). Amino acid sequence analysis showed the protein to consist of 134 amino acids and to contain three sequence repeats of ∼40 amino acids which were very similar to the well-known whey acidic protein domains of other proteins. The new protein was therefore named perlwapin. In addition to the major sequence, we identified several minor variants. Atomic force microscopy was used to explore the interaction of perlwapin with calcite crystals. Monomolecular layers of calcite crystals dissolve very slowly in deionized water and recrystallize in supersaturated calcium carbonate solution. When perlwapin was dissolved in the supersaturated calcium carbonate solution, growth of the crystal was inhibited immediately. Perlwapin molecules bound tightly to distinct step edges, preventing the crystal layers from growing. Using lower concentrations of perlwapin in a saturated calcium carbonate solution, we could distinguish native, active perlwapin molecules from denaturated ones. These observations showed that perlwapin can act as a growth inhibitor for calcium carbonate crystals in saturated calcium carbonate solution. The function of perlwapin in nacre growth may be to inhibit the growth of certain crystallographic planes in the mineral phase of the polymer/mineral composite nacre. PMID:16861275
Inhibition of HMGA2 binding to DNA by netropsin
Miao, Yi; Cui, Tengjiao; Leng, Fenfei; Wilson, W. David
2008-01-01
The design of small synthetic molecules that can be used to affect gene expression is an area of active interest for development of agents in therapeutic and biotechnology applications. Many compounds that target the minor groove in AT sequences in DNA are well characterized and are promising reagents for use as modulators of protein-DNA complexes. The mammalian high mobility group transcriptional factor, HMGA2, also targets the DNA minor groove and plays critical roles in disease processes from cancer to obesity. Biosensor-surface plasmon resonance methods were used to monitor HMGA2 binding to target sites on immobilized DNA and a competition assay for inhibition of the HMGA2-DNA complex was designed. HMGA2 binds strongly to the DNA through AT hook domains with KD values of 20 - 30 nM depending on the DNA sequence. The well-characterized minor groove binder, netropsin, was used to develop and test the assay. The compound has two binding sites in the protein-DNA interaction sequence and this provides an advantage for inhibition. An equation for analysis of results when the inhibitor has two binding sites in the biopolymer recognition surface is presented with the results. The assay provides a platform for discovery of HMGA2 inhibitors. PMID:18023407
From amino acid sequence to bioactivity: The biomedical potential of antitumor peptides.
Blanco-Míguez, Aitor; Gutiérrez-Jácome, Alberto; Pérez-Pérez, Martín; Pérez-Rodríguez, Gael; Catalán-García, Sandra; Fdez-Riverola, Florentino; Lourenço, Anália; Sánchez, Borja
2016-06-01
Chemoprevention is the use of natural and/or synthetic substances to block, reverse, or retard the process of carcinogenesis. In this field, the use of antitumor peptides is of interest as, (i) these molecules are small in size, (ii) they show good cell diffusion and permeability, (iii) they affect one or more specific molecular pathways involved in carcinogenesis, and (iv) they are not usually genotoxic. We have checked the Web of Science Database (23/11/2015) in order to collect papers reporting on bioactive peptide (1691 registers), which was further filtered searching terms such as "antiproliferative," "antitumoral," or "apoptosis" among others. Works reporting the amino acid sequence of an antiproliferative peptide were kept (60 registers), and this was complemented with the peptides included in CancerPPD, an extensive resource for antiproliferative peptides and proteins. Peptides were grouped according to one of the following mechanism of action: inhibition of cell migration, inhibition of tumor angiogenesis, antioxidative mechanisms, inhibition of gene transcription/cell proliferation, induction of apoptosis, disorganization of tubulin structure, cytotoxicity, or unknown mechanisms. The main mechanisms of action of those antiproliferative peptides with known amino acid sequences are presented and finally, their potential clinical usefulness and future challenges on their application is discussed. © 2016 The Protein Society.
From amino acid sequence to bioactivity: The biomedical potential of antitumor peptides
Blanco‐Míguez, Aitor; Gutiérrez‐Jácome, Alberto; Pérez‐Pérez, Martín; Pérez‐Rodríguez, Gael; Catalán‐García, Sandra; Fdez‐Riverola, Florentino; Lourenço, Anália
2016-01-01
Abstract Chemoprevention is the use of natural and/or synthetic substances to block, reverse, or retard the process of carcinogenesis. In this field, the use of antitumor peptides is of interest as, (i) these molecules are small in size, (ii) they show good cell diffusion and permeability, (iii) they affect one or more specific molecular pathways involved in carcinogenesis, and (iv) they are not usually genotoxic. We have checked the Web of Science Database (23/11/2015) in order to collect papers reporting on bioactive peptide (1691 registers), which was further filtered searching terms such as “antiproliferative,” “antitumoral,” or “apoptosis” among others. Works reporting the amino acid sequence of an antiproliferative peptide were kept (60 registers), and this was complemented with the peptides included in CancerPPD, an extensive resource for antiproliferative peptides and proteins. Peptides were grouped according to one of the following mechanism of action: inhibition of cell migration, inhibition of tumor angiogenesis, antioxidative mechanisms, inhibition of gene transcription/cell proliferation, induction of apoptosis, disorganization of tubulin structure, cytotoxicity, or unknown mechanisms. The main mechanisms of action of those antiproliferative peptides with known amino acid sequences are presented and finally, their potential clinical usefulness and future challenges on their application is discussed. PMID:27010507
Kumarasamy, Vishnu Muthuraj; Sun, Daekyu
2017-01-01
Dominant-activating mutations in the RET (rearranged during transfection) proto-oncogene, which encodes a receptor tyrosine kinase, is often associated with the development of medullary thyroid carcinoma (MTC). The proximal promoter region of the RET gene consists of a guanine-rich sequence containing five runs of three consecutive guanine residues that serve as the binding site for transcriptional factors. As we have recently shown, this stretch of nucleotides in the promoter region is highly dynamic in nature and tend to form non-B DNA secondary structures called G-quadruplexes, which suppress the transcription of the RET gene. In the present study, ellipticine and its derivatives were identified as excellent RET G-quadruplex stabilizing agents. Circular dichroism (CD) spectroscopic studies revealed that the incorporation of a piperidine ring in an ellipticine derivative, NSC311153 improves its binding with the G-quadruplex structure and the stability induced by this compound is more potent than ellipticine. Furthermore, this compound also interfered with the transcriptional mechanism of the RET gene in an MTC derived cell line, TT cells and significantly decreased the endogenous RET protein expression. We demonstrated the specificity of NSC311153 by using papillary thyroid carcinoma (PTC) cells, the TPC1 cell line which lacks the G-quadruplex forming sequence in the promoter region due to chromosomal rearrangement. The RET downregulation selectively suppresses cell proliferation by inhibiting the intracellular Raf/MEK/ERK and PI3K/Akt/mTOR signaling pathways in the TT cells. In the present study, we also showed that the systemic administration of a water soluble NSC311153 analog in a mouse MTC xenograft model inhibited the tumor growth through RET downregulation. PMID:28498409
Arnold, Anne-Sophie; Tang, Yao Liang; Qian, Keping; Shen, Leping; Valencia, Valery; Phillips, Michael Ian; Zhang, Yuan Clare
2007-01-01
Beta-blockers are widely used and effective for treating hypertension, acute myocardial infarction (MI) and heart failure, but they present side-effects mainly due to antagonism of beta2-adrenergic receptor (AR). Currently available beta-blockers are at best selective but not specific for beta1 or beta2-AR. To specifically inhibit the expression of the beta1-AR, we developed a small interfering RNA (siRNA) targeted to beta1-AR. Three different sequences of beta1 siRNA were delivered into C6-2B cells with 90% efficiency. One of the three sequences reduced the level of beta1-AR mRNA by 70%. The siRNA was highly specific for beta1-AR inhibition with no overlap with beta2-AR. To test this in vivo, systemic injection of beta1 siRNA complexed with liposomes resulted in efficient delivery into the heart, lung, kidney and liver, and effectively reduced beta1-AR expression in the heart without altering beta2-AR. beta1 siRNA significantly lowered blood pressure of spontaneously hypertensive rats (SHR) for at least 12 days and reduced cardiac hypertrophy following a single injection. Pretreatment with beta1 siRNA 3 days before induction of MI in Wistar rats significantly improved cardiac function, as demonstrated by dP/dt and electrocardiogram following the MI. The protective mechanism involved reduction of cardiomyocyte apoptosis in the beta1 siRNA-treated hearts. The present study demonstrates the possibility of using siRNA for treating cardiovascular diseases and may represent a novel beta-blocker specific for beta1-AR.
Křížová, Lucie; Kuchař, Milan; Petroková, Hana; Osička, Radim; Hlavničková, Marie; Pelák, Ondřej; Černý, Jiří; Kalina, Tomáš; Malý, Petr
2017-03-01
Interleukin-23 (IL-23), a heterodimeric cytokine of covalently bound p19 and p40 proteins, has recently been closely associated with development of several chronic autoimmune diseases such as psoriasis, psoriatic arthritis or inflammatory bowel disease. Released by activated dendritic cells, IL-23 interacts with IL-23 receptor (IL-23R) on Th17 cells, thus promoting intracellular signaling, a pivotal step in Th17-driven pro-inflammatory axis. Here, we aimed to block the binding of IL-23 cytokine to its cell-surface receptor by novel inhibitory protein binders targeted to the p19 subunit of human IL-23. To this goal, we used a combinatorial library derived from a scaffold of albumin-binding domain (ABD) of streptococcal protein G, and ribosome display selection, to yield a collection of ABD-derived p19-targeted variants, called ILP binders. From 214 clones analyzed by ELISA, Western blot and DNA sequencing, 53 provided 35 different sequence variants that were further characterized. Using in silico docking in combination with cell-surface competition binding assay, we identified a group of inhibitory candidates that substantially diminished binding of recombinant p19 to the IL-23R on human monocytic THP-1 cells. Of these best p19-blockers, ILP030, ILP317 and ILP323 inhibited IL-23-driven expansion of IL-17-producing primary human CD4 + T-cells. Thus, these novel binders represent unique IL-23-targeted probes useful for IL-23/IL-23R epitope mapping studies and could be used for designing novel p19/IL-23-targeted anti-inflammatory biologics.
Cardiomyocyte ryanodine receptor degradation by chaperone-mediated autophagy
Pedrozo, Zully; Torrealba, Natalia; Fernández, Carolina; Gatica, Damian; Toro, Barbra; Quiroga, Clara; Rodriguez, Andrea E.; Sanchez, Gina; Gillette, Thomas G.; Hill, Joseph A.; Donoso, Paulina; Lavandero, Sergio
2013-01-01
Time for primary review: 15 days Aims Chaperone-mediated autophagy (CMA) is a selective mechanism for the degradation of soluble cytosolic proteins bearing the sequence KFERQ. These proteins are targeted by chaperones and delivered to lysosomes where they are translocated into the lysosomal lumen and degraded via the lysosome-associated membrane protein type 2A (LAMP-2A). Mutations in LAMP2 that inhibit autophagy result in Danon disease characterized by hypertrophic cardiomyopathy. The ryanodine receptor type 2 (RyR2) plays a key role in cardiomyocyte excitation–contraction and its dysfunction can lead to cardiac failure. Whether RyR2 is degraded by CMA is unknown. Methods and results To induce CMA, cultured neonatal rat cardiomyocytes were treated with geldanamycin (GA) to promote protein degradation through this pathway. GA increased LAMP-2A levels together with its redistribution and colocalization with Hsc70 in the perinuclear region, changes indicative of CMA activation. The inhibition of lysosomes but not proteasomes prevented the loss of RyR2. The recovery of RyR2 content after incubation with GA by siRNA targeting LAMP-2A suggests that RyR2 is degraded via CMA. In silico analysis also revealed that the RyR2 sequence harbours six KFERQ motifs which are required for the recognition Hsc70 and its degradation via CMA. Our data suggest that presenilins are involved in RyR2 degradation by CMA. Conclusion These findings are consistent with a model in which oxidative damage of the RyR2 targets it for turnover by presenilins and CMA, which could lead to removal of damaged or leaky RyR2 channels. PMID:23404999
Alvarez, Pedro M; Beltrán, Fernando J; Rodríguez, Eva M
2005-01-01
Cherry stillage is a high strength organic wastewater arising from the manufacture of alcoholic products by distillation of fermented cherries. It is made up of biorefractory polyphenols in addition to readily biodegradable organic matter. An anaerobic sequencing batch reactor (AnSBR) was used to treat cherry stillage at influent COD ranging from 5 to 50 g/L. Different cycle times were selected to test biomass organic loading rates (OLR(B)), from 0.3 to 1.2 g COD/g VSS.d. COD and TOC efficiency removals higher than 80% were achieved at influent COD up to 28.5 g/L but minimum OLR(B) tested. However, as a result of the temporary inhibition of acetogens and methanogens, volatile fatty acids (VFA) noticeably accumulated and methane production came to a transient standstill when operating at influent COD higher than 10 g/L. At these conditions, the AnSBR showed signs of instability and could not operate efficiently at OLR(B) higher than 0.3 g COD/g VSS.d. A feasible explanation for this inhibition is the presence of toxic polyphenols in cherry stillage. Thus, an ozonation step prior to the AnSBR was observed to be useful, since more than 75% of polyphenols could be removed by ozone. The integrated process was shown to be a suitable treatment technology as the following advantages compared to the single AnSBR treatment were observed: greater polyphenols and color removals, higher COD and TOC removal rates thus enabling the process to effectively operate at higher OLR, higher degree of biomethanation, and good stability with less risk of acidification.
A Herpesvirus Protein Selectively Inhibits Cellular mRNA Nuclear Export.
Gong, Danyang; Kim, Yong Hoon; Xiao, Yuchen; Du, Yushen; Xie, Yafang; Lee, Kevin K; Feng, Jun; Farhat, Nisar; Zhao, Dawei; Shu, Sara; Dai, Xinghong; Chanda, Sumit K; Rana, Tariq M; Krogan, Nevan J; Sun, Ren; Wu, Ting-Ting
2016-11-09
Nuclear mRNA export is highly regulated to ensure accurate cellular gene expression. Viral inhibition of cellular mRNA export can enhance viral access to the cellular translation machinery and prevent anti-viral protein production but is generally thought to be nonselective. We report that ORF10 of Kaposi's sarcoma-associated herpesvirus (KSHV), a nuclear DNA virus, inhibits mRNA export in a transcript-selective manner to control cellular gene expression. Nuclear export inhibition by ORF10 requires an interaction with an RNA export factor, Rae1. Genome-wide analysis reveals a subset of cellular mRNAs whose nuclear export is blocked by ORF10 with the 3' UTRs of ORF10-targeted transcripts conferring sensitivity to export inhibition. The ORF10-Rae1 interaction is important for the virus to express viral genes and produce infectious virions. These results suggest that a nuclear DNA virus can selectively interfere with RNA export to restrict host gene expression for optimal replication. Published by Elsevier Inc.
USDA-ARS?s Scientific Manuscript database
The size and repetitive nature of the Rhipicephalus microplus genome makes obtaining a full genome sequence difficult. Cot filtration/selection techniques were used to reduce the repetitive fraction of the tick genome and enrich for the fraction of DNA with gene-containing regions. The Cot-selected ...
Processing Dynamic Image Sequences from a Moving Sensor.
1984-02-01
65 Roadsign Image Sequence ..... ................ ... 70 Roadsign Sequence with Redundant Features .. ........ . 79 Roadsign Subimage...Selected Feature Error Values .. ........ 66 2c. Industrial Image Selected Feature Local Search Values. .. .... 67 3ab. Roadsign Image Error Values...72 3c. Roadsign Image Local Search Values ............. 73 4ab. Roadsign Redundant Feature Error Values. ............ 8 4c. Roadsign
Singh, Nitin K; Blachowicz, Adriana; Romsdahl, Jillian; Wang, Clay; Torok, Tamas; Venkateswaran, Kasthuri
2017-04-13
The whole-genome sequences of eight fungal strains that were selected for exposure to microgravity at the International Space Station are presented here. These baseline sequences will help to understand the observed production of novel bioactive compounds. Copyright © 2017 Singh et al.
Identifying functionally informative evolutionary sequence profiles.
Gil, Nelson; Fiser, Andras
2018-04-15
Multiple sequence alignments (MSAs) can provide essential input to many bioinformatics applications, including protein structure prediction and functional annotation. However, the optimal selection of sequences to obtain biologically informative MSAs for such purposes is poorly explored, and has traditionally been performed manually. We present Selection of Alignment by Maximal Mutual Information (SAMMI), an automated, sequence-based approach to objectively select an optimal MSA from a large set of alternatives sampled from a general sequence database search. The hypothesis of this approach is that the mutual information among MSA columns will be maximal for those MSAs that contain the most diverse set possible of the most structurally and functionally homogeneous protein sequences. SAMMI was tested to select MSAs for functional site residue prediction by analysis of conservation patterns on a set of 435 proteins obtained from protein-ligand (peptides, nucleic acids and small substrates) and protein-protein interaction databases. Availability and implementation: A freely accessible program, including source code, implementing SAMMI is available at https://github.com/nelsongil92/SAMMI.git. andras.fiser@einstein.yu.edu. Supplementary data are available at Bioinformatics online.
[Construction of lentiviral mediated CyPA siRNA and its functions in non-small cell lung cancer].
FENG, Yan-ming; WU, Yi-ming; TU, Xin-ming; XU, Zheng-shun; WU, Wei-dong
2010-02-01
To construct a lentiviral-vector-mediated CyPA small interference RNA (siRNA) and study its function in non-small cell lung cancer. First, four target sequences were selected according to CyPA mRNA sequence, the complementary DNA contained both sense and antisense oligonucleotides were designed, synthesized and cloned into the pGCL-GFP vector, which contained U6 promoter and green fluorescent protein (GFP). The resulting lentiviral vector containing CyPA shRNA was named Lv-shCyPA, and it was confirmed by PCR and sequencing. Next, it was cotransfected by Lipofectamine 2000 along with pHelper1.0 and pHelper 2.0 into 293T cells to package lentivirus particles. At the same time, the packed virus infected non-small cell lung cancer cell (A549), the level of CyPA protein at 5 d after infection was detected by Western Blot to screen the target of CyPA. A549 were infected with Lv-shCyPA and grown as xenografts in severe combined immunodeficient mice. Cell cycle and apoptosis were measured by FCM. It was confirmed by PCR and DNA sequencing that lentiviral-vector-mediated CyPA siRNA (Lv-shCyPA) producing CyPA shRNA was constructed successfully. The titer of concentrated virus were 1 x 10(7) TU/ml. Flow cytometric analysis demonstrated G2-M phase (11.40% +/- 0.68%) was decreased relatively in A549/LvshCyPA compared with control groups (14.52% +/- 1.19%) (P<0.05). The apoptosis rate of A549/Lv-shCyPA (5.01% +/- 0.5%) was higher than control groups (0.35% +/- 0.17%) (P<0.05). Visible tumors were only detectable at 6th day after inoculated by A549/Lv-shCyPA. The xenograft tumors of A549/Lv-shCyPA remarkably delayed tumor growth and remained at a similarly small average size at 38th days after inoculation compared with the control group (P < 0.05). Lentiviral-vector-mediated siRNA technique effectively inhibits the expression of CyPA, induces the NSCLC cell apoptosis, inhibits the tumor growth. Elucidation of the precise role of CypA in these pathways may lead to new targeted therapies for non-small cell lung cancer.
Riggs, John W.; Cavales, Philip C.; Chapiro, Sonia M.; ...
2017-04-26
Background Fructose is an abundant sugar in plants as it is a breakdown product of both major sucrose-cleaving enzymes. To enter metabolism, fructose is phosphorylated by a fructokinase (FRK). Known FRKs are members of a diverse family of carbohydrate/purine kinases known as the phosphofructokinase B (pfkB) family. The complete complement of active fructokinases has not been reported for any plant species. Results Protein sequence analysis of the 22 Arabidopsis thaliana pfkB members identified eight highly related predicted proteins, including one with previously demonstrated FRK activity. For one, At1g50390, the predicted open reading frame is half the size of active FRKs,more » and only incompletely spliced RNAs were identified, which led to a premature stop codon, both indicating that this gene does not produce active FRK. The remaining seven proteins were expressed in E. coli and phosphorylated fructose specifically in vitro leading us to propose a unifying nomenclature (FRK1–7). Substrate inhibition was observed for fructose in all FRKs except FRK1. Fructose binding was on the same order of magnitude for FRK1–6, between 260 and 480 μM. FRK7 was an outlier with a fructose Km of 12 μM. ATP binding was similar for all FRKs and ranged between 52 and 280 μM. YFP-tagged AtFRKs were cytosolic, except plastidic FRK3. T-DNA alleles with non-detectable wild-type RNAs in five of the seven active FRK genes produced no overt phenotype. We extended our sequence comparisons to include putative FRKs encoded in other plant sequenced genomes. We observed that different subgroups expanded subsequent to speciation. Conclusions Arabidopsis thaliana as well as all other plant species analyzed contain multiple copies of genes encoding FRK activity. Sequence comparisons among multiple species identified a minimal set of three distinct FRKs present on all species investigated including a plastid-localized form. The selective expansion of specific isozymes results in differences in FRK gene number among species. AtFRKs exhibit substrate inhibition, typical of their mammalian counterparts with the single AtFRK1 lacking this property, suggesting it may have a distinct in vivo role. Results presented here provide a starting point for the engineering of specific FRKs to affect biomass production.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riggs, John W.; Cavales, Philip C.; Chapiro, Sonia M.
Background Fructose is an abundant sugar in plants as it is a breakdown product of both major sucrose-cleaving enzymes. To enter metabolism, fructose is phosphorylated by a fructokinase (FRK). Known FRKs are members of a diverse family of carbohydrate/purine kinases known as the phosphofructokinase B (pfkB) family. The complete complement of active fructokinases has not been reported for any plant species. Results Protein sequence analysis of the 22 Arabidopsis thaliana pfkB members identified eight highly related predicted proteins, including one with previously demonstrated FRK activity. For one, At1g50390, the predicted open reading frame is half the size of active FRKs,more » and only incompletely spliced RNAs were identified, which led to a premature stop codon, both indicating that this gene does not produce active FRK. The remaining seven proteins were expressed in E. coli and phosphorylated fructose specifically in vitro leading us to propose a unifying nomenclature (FRK1–7). Substrate inhibition was observed for fructose in all FRKs except FRK1. Fructose binding was on the same order of magnitude for FRK1–6, between 260 and 480 μM. FRK7 was an outlier with a fructose Km of 12 μM. ATP binding was similar for all FRKs and ranged between 52 and 280 μM. YFP-tagged AtFRKs were cytosolic, except plastidic FRK3. T-DNA alleles with non-detectable wild-type RNAs in five of the seven active FRK genes produced no overt phenotype. We extended our sequence comparisons to include putative FRKs encoded in other plant sequenced genomes. We observed that different subgroups expanded subsequent to speciation. Conclusions Arabidopsis thaliana as well as all other plant species analyzed contain multiple copies of genes encoding FRK activity. Sequence comparisons among multiple species identified a minimal set of three distinct FRKs present on all species investigated including a plastid-localized form. The selective expansion of specific isozymes results in differences in FRK gene number among species. AtFRKs exhibit substrate inhibition, typical of their mammalian counterparts with the single AtFRK1 lacking this property, suggesting it may have a distinct in vivo role. Results presented here provide a starting point for the engineering of specific FRKs to affect biomass production.« less
Potent and Selective Peptide-based Inhibition of the G Protein Gαq*
Charpentier, Thomas H.; Waldo, Gary L.; Lowery-Gionta, Emily G.; Krajewski, Krzysztof; Strahl, Brian D.; Kash, Thomas L.; Harden, T. Kendall; Sondek, John
2016-01-01
In contrast to G protein-coupled receptors, for which chemical and peptidic inhibitors have been extensively explored, few compounds are available that directly modulate heterotrimeric G proteins. Active Gαq binds its two major classes of effectors, the phospholipase C (PLC)-β isozymes and Rho guanine nucleotide exchange factors (RhoGEFs) related to Trio, in a strikingly similar fashion: a continuous helix-turn-helix of the effectors engages Gαq within its canonical binding site consisting of a groove formed between switch II and helix α3. This information was exploited to synthesize peptides that bound active Gαq in vitro with affinities similar to full-length effectors and directly competed with effectors for engagement of Gαq. A representative peptide was specific for active Gαq because it did not bind inactive Gαq or other classes of active Gα subunits and did not inhibit the activation of PLC-β3 by Gβ1γ2. In contrast, the peptide robustly prevented activation of PLC-β3 or p63RhoGEF by Gαq; it also prevented G protein-coupled receptor-promoted neuronal depolarization downstream of Gαq in the mouse prefrontal cortex. Moreover, a genetically encoded form of this peptide flanked by fluorescent proteins inhibited Gαq-dependent activation of PLC-β3 at least as effectively as a dominant-negative form of full-length PLC-β3. These attributes suggest that related, cell-penetrating peptides should effectively inhibit active Gαq in cells and that these and genetically encoded sequences may find application as molecular probes, drug leads, and biosensors to monitor the spatiotemporal activation of Gαq in cells. PMID:27742837
Potent and Selective Peptide-based Inhibition of the G Protein Gαq.
Charpentier, Thomas H; Waldo, Gary L; Lowery-Gionta, Emily G; Krajewski, Krzysztof; Strahl, Brian D; Kash, Thomas L; Harden, T Kendall; Sondek, John
2016-12-02
In contrast to G protein-coupled receptors, for which chemical and peptidic inhibitors have been extensively explored, few compounds are available that directly modulate heterotrimeric G proteins. Active Gα q binds its two major classes of effectors, the phospholipase C (PLC)-β isozymes and Rho guanine nucleotide exchange factors (RhoGEFs) related to Trio, in a strikingly similar fashion: a continuous helix-turn-helix of the effectors engages Gα q within its canonical binding site consisting of a groove formed between switch II and helix α3. This information was exploited to synthesize peptides that bound active Gα q in vitro with affinities similar to full-length effectors and directly competed with effectors for engagement of Gα q A representative peptide was specific for active Gα q because it did not bind inactive Gα q or other classes of active Gα subunits and did not inhibit the activation of PLC-β3 by Gβ 1 γ 2 In contrast, the peptide robustly prevented activation of PLC-β3 or p63RhoGEF by Gα q ; it also prevented G protein-coupled receptor-promoted neuronal depolarization downstream of Gα q in the mouse prefrontal cortex. Moreover, a genetically encoded form of this peptide flanked by fluorescent proteins inhibited Gα q -dependent activation of PLC-β3 at least as effectively as a dominant-negative form of full-length PLC-β3. These attributes suggest that related, cell-penetrating peptides should effectively inhibit active Gα q in cells and that these and genetically encoded sequences may find application as molecular probes, drug leads, and biosensors to monitor the spatiotemporal activation of Gα q in cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Mechanistic Assessment of DNA Ligase as an Antibacterial Target in Staphylococcus aureus
Podos, Steven D.; Thanassi, Jane A.
2012-01-01
We report the use of a known pyridochromanone inhibitor with antibacterial activity to assess the validity of NAD+-dependent DNA ligase (LigA) as an antibacterial target in Staphylococcus aureus. Potent inhibition of purified LigA was demonstrated in a DNA ligation assay (inhibition constant [Ki] = 4.0 nM) and in a DNA-independent enzyme adenylation assay using full-length LigA (50% inhibitory concentration [IC50] = 28 nM) or its isolated adenylation domain (IC50 = 36 nM). Antistaphylococcal activity was confirmed against methicillin-susceptible and -resistant S. aureus (MSSA and MRSA) strains (MIC = 1.0 μg/ml). Analysis of spontaneous resistance potential revealed a high frequency of emergence (4 × 10−7) of high-level resistant mutants (MIC > 64) with associated ligA lesions. There were no observable effects on growth rate in these mutants. Of 22 sequenced clones, 3 encoded point substitutions within the catalytic adenylation domain and 19 in the downstream oligonucleotide-binding (OB) fold and helix-hairpin-helix (HhH) domains. In vitro characterization of the enzymatic properties of four selected mutants revealed distinct signatures underlying their resistance to inhibition. The infrequent adenylation domain mutations altered the kinetics of adenylation and probably elicited resistance directly. In contrast, the highly represented OB fold domain mutations demonstrated a generalized resistance mechanism in which covalent LigA activation proceeds normally and yet the parameters of downstream ligation steps are altered. A resulting decrease in substrate Km and a consequent increase in substrate occupancy render LigA resistant to competitive inhibition. We conclude that the observed tolerance of staphylococcal cells to such hypomorphic mutations probably invalidates LigA as a viable target for antistaphylococcal chemotherapy. PMID:22585221
The rde-1 gene, RNA interference, and transposon silencing in C. elegans.
Tabara, H; Sarkissian, M; Kelly, W G; Fleenor, J; Grishok, A; Timmons, L; Fire, A; Mello, C C
1999-10-15
Double-stranded (ds) RNA can induce sequence-specific inhibition of gene function in several organisms. However, both the mechanism and the physiological role of the interference process remain mysterious. In order to study the interference process, we have selected C. elegans mutants resistant to dsRNA-mediated interference (RNAi). Two loci, rde-1 and rde-4, are defined by mutants strongly resistant to RNAi but with no obvious defects in growth or development. We show that rde-1 is a member of the piwi/sting/argonaute/zwille/eIF2C gene family conserved from plants to vertebrates. Interestingly, several, but not all, RNAi-deficient strains exhibit mobilization of the endogenous transposons. We discuss implications for the mechanism of RNAi and the possibility that one natural function of RNAi is transposon silencing.
Sousa, Sérgio B; Jenkins, Dagan; Chanudet, Estelle; Tasseva, Guergana; Ishida, Miho; Anderson, Glenn; Docker, James; Ryten, Mina; Sa, Joaquim; Saraiva, Jorge M; Barnicoat, Angela; Scott, Richard; Calder, Alistair; Wattanasirichaigoon, Duangrurdee; Chrzanowska, Krystyna; Simandlová, Martina; Van Maldergem, Lionel; Stanier, Philip; Beales, Philip L; Vance, Jean E; Moore, Gudrun E
2014-01-01
Lenz-Majewski syndrome (LMS) is a syndrome of intellectual disability and multiple congenital anomalies that features generalized craniotubular hyperostosis. By using whole-exome sequencing and selecting variants consistent with the predicted dominant de novo etiology of LMS, we identified causative heterozygous missense mutations in PTDSS1, which encodes phosphatidylserine synthase 1 (PSS1). PSS1 is one of two enzymes involved in the production of phosphatidylserine. Phosphatidylserine synthesis was increased in intact fibroblasts from affected individuals, and end-product inhibition of PSS1 by phosphatidylserine was markedly reduced. Therefore, these mutations cause a gain-of-function effect associated with regulatory dysfunction of PSS1. We have identified LMS as the first human disease, to our knowledge, caused by disrupted phosphatidylserine metabolism. Our results point to an unexplored link between phosphatidylserine synthesis and bone metabolism.
Fajardo, Teodoro; Sung, Po-Yu; Roy, Polly
2015-01-01
Bluetongue virus (BTV) causes hemorrhagic disease in economically important livestock. The BTV genome is organized into ten discrete double-stranded RNA molecules (S1-S10) which have been suggested to follow a sequential packaging pathway from smallest to largest segment during virus capsid assembly. To substantiate and extend these studies, we have investigated the RNA sorting and packaging mechanisms with a new experimental approach using inhibitory oligonucleotides. Putative packaging signals present in the 3’untranslated regions of BTV segments were targeted by a number of nuclease resistant oligoribonucleotides (ORNs) and their effects on virus replication in cell culture were assessed. ORNs complementary to the 3’ UTR of BTV RNAs significantly inhibited virus replication without affecting protein synthesis. Same ORNs were found to inhibit complex formation when added to a novel RNA-RNA interaction assay which measured the formation of supramolecular complexes between and among different RNA segments. ORNs targeting the 3’UTR of BTV segment 10, the smallest RNA segment, were shown to be the most potent and deletions or substitution mutations of the targeted sequences diminished the RNA complexes and abolished the recovery of viable viruses using reverse genetics. Cell-free capsid assembly/RNA packaging assay also confirmed that the inhibitory ORNs could interfere with RNA packaging and further substitution mutations within the putative RNA packaging sequence have identified the recognition sequence concerned. Exchange of 3’UTR between segments have further demonstrated that RNA recognition was segment specific, most likely acting as part of the secondary structure of the entire genomic segment. Our data confirm that genome packaging in this segmented dsRNA virus occurs via the formation of supramolecular complexes formed by the interaction of specific sequences located in the 3’ UTRs. Additionally, the inhibition of packaging in-trans with inhibitory ORNs suggests this that interaction is a bona fide target for the design of compounds with antiviral activity. PMID:26646790
Fajardo, Teodoro; Sung, Po-Yu; Roy, Polly
2015-12-01
Bluetongue virus (BTV) causes hemorrhagic disease in economically important livestock. The BTV genome is organized into ten discrete double-stranded RNA molecules (S1-S10) which have been suggested to follow a sequential packaging pathway from smallest to largest segment during virus capsid assembly. To substantiate and extend these studies, we have investigated the RNA sorting and packaging mechanisms with a new experimental approach using inhibitory oligonucleotides. Putative packaging signals present in the 3'untranslated regions of BTV segments were targeted by a number of nuclease resistant oligoribonucleotides (ORNs) and their effects on virus replication in cell culture were assessed. ORNs complementary to the 3' UTR of BTV RNAs significantly inhibited virus replication without affecting protein synthesis. Same ORNs were found to inhibit complex formation when added to a novel RNA-RNA interaction assay which measured the formation of supramolecular complexes between and among different RNA segments. ORNs targeting the 3'UTR of BTV segment 10, the smallest RNA segment, were shown to be the most potent and deletions or substitution mutations of the targeted sequences diminished the RNA complexes and abolished the recovery of viable viruses using reverse genetics. Cell-free capsid assembly/RNA packaging assay also confirmed that the inhibitory ORNs could interfere with RNA packaging and further substitution mutations within the putative RNA packaging sequence have identified the recognition sequence concerned. Exchange of 3'UTR between segments have further demonstrated that RNA recognition was segment specific, most likely acting as part of the secondary structure of the entire genomic segment. Our data confirm that genome packaging in this segmented dsRNA virus occurs via the formation of supramolecular complexes formed by the interaction of specific sequences located in the 3' UTRs. Additionally, the inhibition of packaging in-trans with inhibitory ORNs suggests this that interaction is a bona fide target for the design of compounds with antiviral activity.
Dudakovic, Amel; Camilleri, Emily T.; Riester, Scott M.; Paradise, Christopher R.; Gluscevic, Martina; O'Toole, Thomas M.; Thaler, Roman; Evans, Jared M.; Yan, Huihuang; Subramaniam, Malayannan; Hawse, John R.; Stein, Gary S.; Montecino, Martin A.; McGee-Lawrence, Meghan E.; Westendorf, Jennifer J.; van Wijnen, Andre J.
2016-01-01
Perturbations in skeletal development and bone degeneration may result in reduced bone mass and quality, leading to greater fracture risk. Bone loss is mitigated by bone protective therapies, but there is a clinical need for new bone-anabolic agents. Previous work has demonstrated that Ezh2 (enhancer of zeste homolog 2), a histone 3 lysine 27 (H3K27) methyltransferase, suppressed differentiation of osteogenic progenitors. Here, we investigated whether inhibition of Ezh2 can be leveraged for bone stimulatory applications. Pharmacologic inhibition and siRNA knockdown of Ezh2 enhanced osteogenic commitment of MC3T3 preosteoblasts. Next generation RNA sequencing of mRNAs and real time quantitative PCR profiling established that Ezh2 inactivation promotes expression of bone-related gene regulators and extracellular matrix proteins. Mechanistically, enhanced gene expression was linked to decreased H3K27 trimethylation (H3K27me3) near transcriptional start sites in genome-wide sequencing of chromatin immunoprecipitations assays. Administration of an Ezh2 inhibitor modestly increases bone density parameters of adult mice. Furthermore, Ezh2 inhibition also alleviated bone loss in an estrogen-deficient mammalian model for osteoporosis. Ezh2 inhibition enhanced expression of Wnt10b and Pth1r and increased the BMP-dependent phosphorylation of Smad1/5. Thus, these data suggest that inhibition of Ezh2 promotes paracrine signaling in osteoblasts and has bone-anabolic and osteoprotective potential in adults. PMID:27758858
Granja, Aitor G; Nogal, Maria L; Hurtado, Carolina; Vila, Virginia; Carrascosa, Angel L; Salas, María L; Fresno, Manuel; Revilla, Yolanda
2004-12-17
Cyclooxygenase-2 is transiently induced upon cell activation or viral infections, resulting in inflammation and modulation of the immune response. Here we report that A238L, an African swine fever virus protein, efficiently inhibits cyclooxygenase-2 gene expression in Jurkat T cells and in virus-infected Vero cells. Transfection of Jurkat cells stably expressing A238L with cyclooxygenase-2 promoter-luciferase constructs containing 5'-terminal deletions or mutations in distal or proximal nuclear factor of activated T cell (NFAT) response elements revealed that these sequences are involved in the inhibition induced by A238L. Overexpression of a constitutively active version of the calcium-dependent phosphatase calcineurin or NFAT reversed the inhibition mediated by A238L on cyclooxygenase-2 promoter activation, whereas overexpression of p65 NFkappaB had no effect. A238L does not modify the nuclear localization of NFAT after phorbol 12-myristate 13-acetate/calcium ionophore stimulation. Moreover, we show that the mechanism by which the viral protein down-regulates cyclooxygenase-2 activity does not involve inhibition of the binding between NFAT and its specific DNA sequences into the cyclooxygenase-2 promoter. Strikingly, A238L dramatically inhibited the transactivation mediated by a GAL4-NFAT fusion protein containing the N-terminal transactivation domain of NFAT1. Taken together, these data indicate that A238L down-regulates cyclooxygenase-2 transcription through the NFAT response elements, being NFAT-dependent transactivation implicated in this down-regulation.
[The course of melanization and its inhibition in pupae of the cabbage whitePieris brassicae L.
Bückmann, Detlef
1971-09-01
The melanization of the Cabbage White pupae varies in response to light conditions. As abdomina, which are isolated by a ligature, become strongly melanized, the control evidently works in the way of gradual inhibition.The melanine patches of light pupae are not paler than those of dark pupae, but they are smaller. Apparently there is a gradient of reactivity to inhibition from the margin of the patches towards their center. Different patches are affected by the inhibition to a different extent.The black patches appear during the first 6 hours after pupation, not simultaneously but in a certain sequence. The first and the last patches of this sequence are most reactive to inhibition. On light pupae they may be entirely absent.A classification of pupal melanization is based on differences in the shape of certain patches, which can easily be recognized even on operated pupae and isolated parts of the body.Equally strong melanization as from ligating results from nerve section between brain an suboesophageal ganglion, somewhat weaker melanization results from section between suboesophageal and prothoracic ganglia.The melanizing effects of ligatures and nerve sections decrease during a critical period. They are entirely lost 12 hours after the prepupa has fastened itself to the ground by spinning the girdle-thread.It is suggested that during this critical period a melanization inhibiting factor is secreted by a thoracic center, which itself is under nervous control of the brain.
Cooperation for Better Inhibiting.
Novoa, Eva Maria; Ribas de Pouplana, Lluís
2015-06-18
Cladosporin is an antimalarial drug that acts as an ATP-mimetic to selectively inhibit Plasmodium lysyl-tRNA synthetase. Using multiple crystal structures, Fang et al. (2015) reveal in this issue of Chemistry & Biology the fascinating mechanism responsible for cladosporin selectivity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Prakash, Thazha P.; Johnston, Joseph F.; Graham, Mark J.; Condon, Thomas P.; Manoharan, Muthiah
2004-01-01
Synthesis and antisense activity of oligonucleotides modified with 2′-O-[2-[(N,N-dimethylamino)oxy] ethyl] (2′-O-DMAOE) are described. The 2′-O-DMAOE-modified oligonucleotides showed superior metabolic stability in mice. The phosphorothioate oligonucleotide ‘gapmers’, with 2′-O-DMAOE- modified nucleoside residues at the ends and 2′-deoxy nucleosides residues in the central region, showed dose-dependent inhibition of mRNA expression in cell culture for two targets. ‘Gapmer’ oligonucleotides have one or two 2′-O-modified regions and a 2′-deoxyoligonucleotide phosphorothioate region that allows RNase H digestion of target mRNA. To determine the in vivo potency and efficacy, BalbC mice were treated with 2′-O-DMAOE gapmers and a dose-dependent reduction in the targeted C-raf mRNA expression was observed. Oligonucleotides with 2′-O-DMAOE modifications throughout the sequences reduced the intercellular adhesion molecule-1 (ICAM-1) protein expression very efficiently in HUVEC cells with an IC50 of 1.8 nM. The inhibition of ICAM-1 protein expression by these uniformly modified 2′-O-DMAOE oligonucleotides may be due to selective interference with the formation of the translational initiation complex. These results demonstrate that 2′-O-DMAOE- modified oligonucleotides are useful for antisense-based therapeutics when either RNase H-dependent or RNase H-independent target reduction mechanisms are employed. PMID:14762210
Visual attention spreads broadly but selects information locally.
Shioiri, Satoshi; Honjyo, Hajime; Kashiwase, Yoshiyuki; Matsumiya, Kazumichi; Kuriki, Ichiro
2016-10-19
Visual attention spreads over a range around the focus as the spotlight metaphor describes. Spatial spread of attentional enhancement and local selection/inhibition are crucial factors determining the profile of the spatial attention. Enhancement and ignorance/suppression are opposite effects of attention, and appeared to be mutually exclusive. Yet, no unified view of the factors has been provided despite their necessity for understanding the functions of spatial attention. This report provides electroencephalographic and behavioral evidence for the attentional spread at an early stage and selection/inhibition at a later stage of visual processing. Steady state visual evoked potential showed broad spatial tuning whereas the P3 component of the event related potential showed local selection or inhibition of the adjacent areas. Based on these results, we propose a two-stage model of spatial attention with broad spread at an early stage and local selection at a later stage.
Layzer, Juliana M; Sullenger, Bruce A
2007-01-01
By using the in vitro selection method SELEX against the complex mixture of GLA proteins and utilizing methods to deconvolute the resulting ligands, we were able to successfully generate 2'-ribo purine, 2'-fluoro pyrimidine aptamers to various individual targets in the GLA protein proteome that ranged in concentration from 10 nM to 1.4 microM in plasma. Perhaps not unexpectedly, the majority of the aptamers isolated following SELEX bind the most abundant protein in the mixture, prothrombin (FII), with high affinity. We show that by deselecting the dominant prothrombin aptamer the selection can be redirected. By using this DeSELEX approach, we were able to shift the selection toward other sequences and to less abundant protein targets and obtained an aptamer to Factor IX (FIX). We also demonstrate that by using an RNA library that is focused around a proteome, purified protein targets can then be used to rapidly generate aptamers to the protein targets that are rare in the initial mixture such as Factor VII (FVII) and Factor X (FX). Moreover, for all four proteins targeted (FII, FVII, FIX, and FX), aptamers were identified that could inhibit the individual protein's activitity in coagulation assays. Thus, by applying the concepts of DeSELEX and focused library selection, aptamers specific for any protein in a particular proteome can theoretically be generated, even when the proteins in the mixture are present at very different concentrations.
Neutrality and evolvability of designed protein sequences
NASA Astrophysics Data System (ADS)
Bhattacherjee, Arnab; Biswas, Parbati
2010-07-01
The effect of foldability on protein’s evolvability is analyzed by a two-prong approach consisting of a self-consistent mean-field theory and Monte Carlo simulations. Theory and simulation models representing protein sequences with binary patterning of amino acid residues compatible with a particular foldability criteria are used. This generalized foldability criterion is derived using the high temperature cumulant expansion approximating the free energy of folding. The effect of cumulative point mutations on these designed proteins is studied under neutral condition. The robustness, protein’s ability to tolerate random point mutations is determined with a selective pressure of stability (ΔΔG) for the theory designed sequences, which are found to be more robust than that of Monte Carlo and mean-field-biased Monte Carlo generated sequences. The results show that this foldability criterion selects viable protein sequences more effectively compared to the Monte Carlo method, which has a marked effect on how the selective pressure shapes the evolutionary sequence space. These observations may impact de novo sequence design and its applications in protein engineering.
This invention describes the use of chromatin insulators, or gamma satellite DNA, to inhibit gene silencing in a cell, which may have a significant impact on gene therapy across multiple diseases where gene silencing is the cause. Experimental data has demonstrated these gamma satellite DNAs overcome gene position effects and ultimately inhibit gene silencing.
Bryner, J.S.
1961-07-01
The growth of thorium bismutaide particles, which are formed when thorium is suspended in liquid bismuth, is inhibited when the liquid metal suspension is being flowed through a reactor and through a heat exchanger in sequence. It involves the addition of as little as 1 part by weight of tellurium to 100 parts of thorium. This addition is sufficient to inhibit particle growth and agglomeration.
Hybrid selection for sequencing pathogen genomes from clinical samples
2011-01-01
We have adapted a solution hybrid selection protocol to enrich pathogen DNA in clinical samples dominated by human genetic material. Using mock mixtures of human and Plasmodium falciparum malaria parasite DNA as well as clinical samples from infected patients, we demonstrate an average of approximately 40-fold enrichment of parasite DNA after hybrid selection. This approach will enable efficient genome sequencing of pathogens from clinical samples, as well as sequencing of endosymbiotic organisms such as Wolbachia that live inside diverse metazoan phyla. PMID:21835008
Wijeakumar, Sobanawartiny; Magnotta, Vincent A; Buss, Aaron T; Ambrose, Joseph P; Wifall, Timothy A; Hazeltine, Eliot; Spencer, John P
2015-10-15
Recent evidence has sparked debate about the neural bases of response selection and inhibition. In the current study, we employed two reactive inhibition tasks, the Go/Nogo (GnG) and Simon tasks, to examine questions central to these debates. First, we investigated whether a fronto-cortical-striatal system was sensitive to the need for inhibition per se or the presentation of infrequent stimuli, by manipulating the proportion of trials that do not require inhibition (Go/Compatible trials) relative to trials that require inhibition (Nogo/Incompatible trials). A cortico-subcortical network composed of insula, putamen, and thalamus showed greater activation on salient and infrequent events, regardless of the need for inhibition. Thus, consistent with recent findings, key parts of the fronto-cortical-striatal system are engaged by salient events and do not appear to play a selective role in response inhibition. Second, we examined how the fronto-cortical-striatal system is modulated by working memory demands by varying the number of stimulus-response (SR) mappings. Right inferior parietal lobule showed decreasing activation as the number of SR mappings increased, suggesting that a form of associative memory - rather than working memory - might underlie performance in these tasks. A broad motor planning and control network showed similar trends that were also modulated by the number of motor responses required in each task. Finally, bilateral lingual gyri were more robustly engaged in the Simon task, consistent with the role of this area in shifts of visuo-spatial attention. The current study sheds light on how the fronto-cortical-striatal network is selectively engaged in reactive control tasks and how control is modulated by manipulations of attention and memory load. Copyright © 2015 Elsevier Inc. All rights reserved.
Nucleic acid constructs containing orthogonal site selective recombinases (OSSRs)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilmore, Joshua M.; Anderson, J. Christopher; Dueber, John E.
The present invention provides for a recombinant nucleic acid comprising a nucleotide sequence comprising a plurality of constructs, wherein each construct independently comprises a nucleotide sequence of interest flanked by a pair of recombinase recognition sequences. Each pair of recombinase recognition sequences is recognized by a distinct recombinase. Optionally, each construct can, independently, further comprise one or more genes encoding a recombinase capable of recognizing the pair of recombinase recognition sequences of the construct. The recombinase can be an orthogonal (non-cross reacting), site-selective recombinase (OSSR).
Kim, Seongman; Dai, Gan; O’Callaghan, Dennis J.; Kim, Seong Kee
2012-01-01
The immediate-early protein (IEP), the major regulatory protein encoded by the IE gene of equine herpesvirus 1 (EHV-1), plays a crucial role as both transcription activator and repressor during a productive lytic infection. To investigate the mechanism by which the EHV-1 IEP inhibits its own promoter, IE promoter-luciferase reporter plasmids containing wild-type and mutant IEP-binding site (IEBS) were constructed and used for luciferase reporter assays. The IEP inhibited transcription from its own promoter in the presence of a consensus IEBS (5’-ATCGT-3’) located near the transcription initiation site but did not inhibit when the consensus sequence was deleted. To determine whether the distance between the TATA box and the IEBS affects transcriptional repression, the IEBS was displaced from the original site by the insertion of synthetic DNA sequences. Luciferase reporter assays revealed that the IEP is able to repress its own promoter when the IEBS is located within 26-bp from the TATA box. We also found that the proper orientation and position of the IEBS were required for the repression by the IEP. Interestingly, the level of repression was significantly reduced when a consensus TATA sequence was deleted from the promoter region, indicating that the IEP efficiently inhibits its own promoter in a TATA box-dependent manner. Taken together, these results suggest that the EHV-1 IEP delicately modulates autoregulation of its gene through the consensus IEBS that is near the transcription initiation site and the TATA box. PMID:22265772
Kim, Seongman; Dai, Gan; O'Callaghan, Dennis J; Kim, Seong Kee
2012-04-01
The immediate-early protein (IEP), the major regulatory protein encoded by the IE gene of equine herpesvirus 1 (EHV-1), plays a crucial role as both transcription activator and repressor during a productive lytic infection. To investigate the mechanism by which the EHV-1 IEP inhibits its own promoter, IE promoter-luciferase reporter plasmids containing wild-type and mutant IEP-binding site (IEBS) were constructed and used for luciferase reporter assays. The IEP inhibited transcription from its own promoter in the presence of a consensus IEBS (5'-ATCGT-3') located near the transcription initiation site but did not inhibit when the consensus sequence was deleted. To determine whether the distance between the TATA box and the IEBS affects transcriptional repression, the IEBS was displaced from the original site by the insertion of synthetic DNA sequences. Luciferase reporter assays revealed that the IEP is able to repress its own promoter when the IEBS is located within 26-bp from the TATA box. We also found that the proper orientation and position of the IEBS were required for the repression by the IEP. Interestingly, the level of repression was significantly reduced when a consensus TATA sequence was deleted from the promoter region, indicating that the IEP efficiently inhibits its own promoter in a TATA box-dependent manner. Taken together, these results suggest that the EHV-1 IEP delicately modulates autoregulation of its gene through the consensus IEBS that is near the transcription initiation site and the TATA box. Copyright © 2012. Published by Elsevier B.V.
The evolution of energy-transducing systems: Studies with archaebacteria
NASA Technical Reports Server (NTRS)
Stan-Lotter, Helga
1993-01-01
N-ethylmaleimide (NEM) inhibits the ATPase of H. saccharovorum in a nucleotide protectable manner. The bulk of 14C-NEM is incorporated into subunit 1. Inhibition kinetics indicated a single binding site. To determine the sequence around this site, cyanogen bromide peptides of NEM-labeled ATPase enzyme were prepared and separated on Tris-Tricine gels. Autoradiography indicated that the NEM binding site is probably located in a fragment of Mr 10-12 K. This result will be confirmed by N-terminal sequencing of the peptide. Since the cysteinyl residue, to which NEM is bound, may be located at the C-terminal end, purification and proteolytic treatment of the 10 K peptide will be required. One inhibitor of V-type ATPases, fluoresceinisothiocyanate (FITC) inhibited also the ATPase of H. saccharovorum. Preliminary results indicated protection against inhibition by nucleotides. Localization of the binding sited to the major subunits is in progress. An extraction procedure for the membrane sector of the ATPase complex of H. saccharovorum yielded a preparation which was enriched in a peptide of Mr 5 500. Experiments to test the immunological crossreaction with subunit c from the Escherichia coli F-type ATPase and the labeling with 14C-DCCD are currently carried out. Polyclonal antiserum to the smaller of the major subunits of the ATPase from H. saccharovorum (subunit ll) reacts in Western blots strongly with the alpha and beta subunits of the F1 ATPase of E. coli, suggesting highly conserved regions on both types of ATPases. To elucidate further the regions of homology, cyanogen bromide peptides of the beta subunits were prepared for sequence analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Elda E.; Galan, Jacob A.; Russell, William K.
2006-04-01
Disintegrins and disintegrin-like proteins are molecules found in the venom of four snake families (Atractaspididae, Elapidae, Viperidae, and Colubridae). The disintegrins are nonenzymatic proteins that inhibit cell-cell interactions, cell-matrix interactions, and signal transduction, and may have potential in the treatment of strokes, heart attacks, cancers, and osteoporosis. Prior to 1983, the venom of Crotalus scutulatus scutulatus (Mohave Rattlesnake) was known to be only neurotoxic; however, now there is evidence that these snakes can contain venom with: (1) neurotoxins; (2) hemorrhagins; and (3) both neurotoxins and hemorrhagins. In this study, two disintegrins, mojastin 1 and mojastin 2, from the venom ofmore » a Mohave rattlesnake collected in central Arizona (Pinal County), were isolated and characterized. The disintegrins in these venoms were identified by mass-analyzed laser desorption ionization/time-of-flight/time-of-flight (MALDI/TOF/TOF) mass spectrometry as having masses of 7.436 and 7.636 kDa. Their amino acid sequences are similar to crotratroxin, a disintegrin isolated from the venom of the western diamondback rattlesnake (C. atrox). The amino acid sequence of mojastin 1 was identical to the amino acid sequence of a disintegrin isolated from the venom of the Timber rattlesnake (C. horridus). The disintegrins from the Mohave rattlesnake venom were able to inhibit ADP-induced platelet aggregation in whole human blood both having IC{sub 5}s of 13.8 nM, but were not effective in inhibiting the binding of human urinary bladder carcinoma cells (T24) to fibronectin.« less
NASA Astrophysics Data System (ADS)
Noirel, Josselin; Simonson, Thomas
2008-11-01
Following Kimura's neutral theory of molecular evolution [M. Kimura, The Neutral Theory of Molecular Evolution (Cambridge University Press, Cambridge, 1983) (reprinted in 1986)], it has become common to assume that the vast majority of viable mutations of a gene confer little or no functional advantage. Yet, in silico models of protein evolution have shown that mutational robustness of sequences could be selected for, even in the context of neutral evolution. The evolution of a biological population can be seen as a diffusion on the network of viable sequences. This network is called a "neutral network." Depending on the mutation rate μ and the population size N, the biological population can evolve purely randomly (μN ≪1) or it can evolve in such a way as to select for sequences of higher mutational robustness (μN ≫1). The stringency of the selection depends not only on the product μN but also on the exact topology of the neutral network, the special arrangement of which was named "superfunnel." Even though the relation between mutation rate, population size, and selection was thoroughly investigated, a study of the salient topological features of the superfunnel that could affect the strength of the selection was wanting. This question is addressed in this study. We use two different models of proteins: on lattice and off lattice. We compare neutral networks computed using these models to random networks. From this, we identify two important factors of the topology that determine the stringency of the selection for mutationally robust sequences. First, the presence of highly connected nodes ("hubs") in the network increases the selection for mutationally robust sequences. Second, the stringency of the selection increases when the correlation between a sequence's mutational robustness and its neighbors' increases. The latter finding relates a global characteristic of the neutral network to a local one, which is attainable through experiments or molecular modeling.
Noirel, Josselin; Simonson, Thomas
2008-11-14
Following Kimura's neutral theory of molecular evolution [M. Kimura, The Neutral Theory of Molecular Evolution (Cambridge University Press, Cambridge, 1983) (reprinted in 1986)], it has become common to assume that the vast majority of viable mutations of a gene confer little or no functional advantage. Yet, in silico models of protein evolution have shown that mutational robustness of sequences could be selected for, even in the context of neutral evolution. The evolution of a biological population can be seen as a diffusion on the network of viable sequences. This network is called a "neutral network." Depending on the mutation rate mu and the population size N, the biological population can evolve purely randomly (muN<1) or it can evolve in such a way as to select for sequences of higher mutational robustness (muN>1). The stringency of the selection depends not only on the product muN but also on the exact topology of the neutral network, the special arrangement of which was named "superfunnel." Even though the relation between mutation rate, population size, and selection was thoroughly investigated, a study of the salient topological features of the superfunnel that could affect the strength of the selection was wanting. This question is addressed in this study. We use two different models of proteins: on lattice and off lattice. We compare neutral networks computed using these models to random networks. From this, we identify two important factors of the topology that determine the stringency of the selection for mutationally robust sequences. First, the presence of highly connected nodes ("hubs") in the network increases the selection for mutationally robust sequences. Second, the stringency of the selection increases when the correlation between a sequence's mutational robustness and its neighbors' increases. The latter finding relates a global characteristic of the neutral network to a local one, which is attainable through experiments or molecular modeling.
Stacking up CRISPR against RNAi for therapeutic gene inhibition.
Haussecker, Dirk
2016-09-01
Both RNA interference (RNAi) and clustered regularly-interspaced short palindromic repeats (CRISPR) technologies allow for the sequence-specific inhibition of gene function and therefore have the potential to be used as therapeutic modalities. By judging the current public and scientific journal interest, it would seem that CRISPR, by enabling clean, durable knockouts, will dominate therapeutic gene inhibition, also at the expense of RNAi. This review aims to look behind prevailing sentiments and to more clearly define the likely scope of the therapeutic applications of the more recently developed CRISPR technology and its relative strengths and weaknesses with regards to RNAi. It is found that largely because of their broadly overlapping delivery constraints, while CRISPR presents formidable competition for DNA-directed RNAi strategies, its impact on RNAi therapeutics triggered by synthetic oligonucleotides will likely be more moderate. Instead, RNAi and genome editing, and in particular CRISPR, are poised to jointly promote a further shift toward sequence-targeted precision medicines. © 2016 Federation of European Biochemical Societies.