USDA-ARS?s Scientific Manuscript database
A Multilocus Sequence Typing (MLST) method based on allelic variation of 7 chromosomal loci was developed for characterizing genotypes within the genus Bradyrhizobium. With the method 29 distinct multilocus genotypes (GTs) were identified among 191 culture collection soybean strains. The occupancy ...
Multilocus sequence analysis of phytopathogenic species of the genus Streptomyces
USDA-ARS?s Scientific Manuscript database
The identification and classification of species within the genus Streptomyces is difficult because there are presently 576 validly described species and this number increases every year. The value of the application of multilocus sequence analysis scheme to the systematics of Streptomyces species h...
USDA-ARS?s Scientific Manuscript database
Flavobacterium psychrophilum is an important pathogen of salmonids worldwide. Multilocus sequence typing (MLST) has identified a recombinogenic population structure from which emerged a few epidemic clonal complexes particularly threatening for salmonid aquaculture. To date, MLST genotypes for this ...
USDA-ARS?s Scientific Manuscript database
Multi-locus sequence analysis has been demonstrated to be a useful tool for identification of Streptomyces species and was previously applied to phylogenetically differentiate the type strains of species pathogenic on potatoes (Solanum tuberosum L.). The ARS Culture Collection (NRRL) contains 43 str...
Diamant, Eran; Palti, Yniv; Gur-Arie, Riva; Cohen, Helit; Hallerman, Eric M; Kashi, Yechezkel
2004-04-01
Multilocus sequencing of housekeeping genes has been used previously for bacterial strain typing and for inferring evolutionary relationships among strains of Escherichia coli. In this study, we used shorter intergenic sequences that contained simple sequence repeats (SSRs) of repeating mononucleotide motifs (mononucleotide repeats [MNRs]) to infer the phylogeny of pathogenic and commensal E. coli strains. Seven noncoding loci (four MNRs and three non-SSRs) were sequenced in 27 strains, including enterohemorrhagic (six isolates of O157:H7), enteropathogenic, enterotoxigenic, B, and K-12 strains. The four MNRs were also sequenced in 20 representative strains of the E. coli reference (ECOR) collection. Sequence polymorphism was significantly higher at the MNR loci, including the flanking sequences, indicating a higher mutation rate in the sequences flanking the MNR tracts. The four MNR loci were amplifiable by PCR in the standard ECOR A, B1, and D groups, but only one (yaiN) in the B2 group was amplified, which is consistent with previous studies that suggested that B2 is the most ancient group. High sequence compatibility was found between the four MNR loci, indicating that they are in the same clonal frame. The phylogenetic trees that were constructed from the sequence data were in good agreement with those of previous studies that used multilocus enzyme electrophoresis. The results demonstrate that MNR loci are useful for inferring phylogenetic relationships and provide much higher sequence variation than housekeeping genes. Therefore, the use of MNR loci for multilocus sequence typing should prove efficient for clinical diagnostics, epidemiology, and evolutionary study of bacteria.
Diamant, Eran; Palti, Yniv; Gur-Arie, Riva; Cohen, Helit; Hallerman, Eric M.; Kashi, Yechezkel
2004-01-01
Multilocus sequencing of housekeeping genes has been used previously for bacterial strain typing and for inferring evolutionary relationships among strains of Escherichia coli. In this study, we used shorter intergenic sequences that contained simple sequence repeats (SSRs) of repeating mononucleotide motifs (mononucleotide repeats [MNRs]) to infer the phylogeny of pathogenic and commensal E. coli strains. Seven noncoding loci (four MNRs and three non-SSRs) were sequenced in 27 strains, including enterohemorrhagic (six isolates of O157:H7), enteropathogenic, enterotoxigenic, B, and K-12 strains. The four MNRs were also sequenced in 20 representative strains of the E. coli reference (ECOR) collection. Sequence polymorphism was significantly higher at the MNR loci, including the flanking sequences, indicating a higher mutation rate in the sequences flanking the MNR tracts. The four MNR loci were amplifiable by PCR in the standard ECOR A, B1, and D groups, but only one (yaiN) in the B2 group was amplified, which is consistent with previous studies that suggested that B2 is the most ancient group. High sequence compatibility was found between the four MNR loci, indicating that they are in the same clonal frame. The phylogenetic trees that were constructed from the sequence data were in good agreement with those of previous studies that used multilocus enzyme electrophoresis. The results demonstrate that MNR loci are useful for inferring phylogenetic relationships and provide much higher sequence variation than housekeeping genes. Therefore, the use of MNR loci for multilocus sequence typing should prove efficient for clinical diagnostics, epidemiology, and evolutionary study of bacteria. PMID:15066845
Rickettsia asembonensis Characterization by Multilocus Sequence Typing of Complete Genes, Peru.
Loyola, Steev; Flores-Mendoza, Carmen; Torre, Armando; Kocher, Claudine; Melendrez, Melanie; Luce-Fedrow, Alison; Maina, Alice N; Richards, Allen L; Leguia, Mariana
2018-05-01
While studying rickettsial infections in Peru, we detected Rickettsia asembonensis in fleas from domestic animals. We characterized 5 complete genomic regions (17kDa, gltA, ompA, ompB, and sca4) and conducted multilocus sequence typing and phylogenetic analyses. The molecular isolate from Peru is distinct from the original R. asembonensis strain from Kenya.
Ko, Kwan Soo; Oh, Won Sup; Peck, Kyong Ran; Lee, Jang Ho; Lee, Nam Yong; Song, Jae-Hoon
2005-07-01
Non-typeable isolates of Streptococcus pneumoniae collected from Asian countries were characterized by optochin susceptibility test, bile solubility test, multilocus sequence typing of housekeeping genes, amplification of virulence-related genes, 16S rDNA-RsaI digestion, and 16S rDNA sequencing. Six of 54 non-typeable pneumococcal isolates showed divergence of gene sequences of recP and xpt from typical pneumococcal strains. Of these six atypical pneumococcal strains, two showed different results in optochin susceptibility or bile solubility test from typical pneumococcal strains. All six isolates showed high sequence dissimilarities of multilocus sequence typing, 16S rDNA sequences, and lytA sequences from typical S. pneumoniae strains. Data from this study suggest that classic tests such as optochin susceptibility and bile solubility tests may lead to incorrect identification of S. pneumoniae. These atypical strains may belong to different bacterial species from S. pneumoniae.
Cholley, Pascal; Stojanov, Milos; Hocquet, Didier; Thouverez, Michelle; Bertrand, Xavier; Blanc, Dominique S
2015-08-01
Reliable molecular typing methods are necessary to investigate the epidemiology of bacterial pathogens. Reference methods such as multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) are costly and time consuming. Here, we compared our newly developed double-locus sequence typing (DLST) method for Pseudomonas aeruginosa to MLST and PFGE on a collection of 281 isolates. DLST was as discriminatory as MLST and was able to recognize "high-risk" epidemic clones. Both methods were highly congruent. Not surprisingly, a higher discriminatory power was observed with PFGE. In conclusion, being a simple method (single-strand sequencing of only 2 loci), DLST is valuable as a first-line typing tool for epidemiological investigations of P. aeruginosa. Coupled to a more discriminant method like PFGE or whole genome sequencing, it might represent an efficient typing strategy to investigate or prevent outbreaks. Copyright © 2015 Elsevier Inc. All rights reserved.
Phylogenetic relationships of Malassezia species based on multilocus sequence analysis.
Castellá, Gemma; Coutinho, Selene Dall' Acqua; Cabañes, F Javier
2014-01-01
Members of the genus Malassezia are lipophilic basidiomycetous yeasts, which are part of the normal cutaneous microbiota of humans and other warm-blooded animals. Currently, this genus consists of 14 species that have been characterized by phenetic and molecular methods. Although several molecular methods have been used to identify and/or differentiate Malassezia species, the sequencing of the rRNA genes and the chitin synthase-2 gene (CHS2) are the most widely employed. There is little information about the β-tubulin gene in the genus Malassezia, a gene has been used for the analysis of complex species groups. The aim of the present study was to sequence a fragment of the β-tubulin gene of Malassezia species and analyze their phylogenetic relationship using a multilocus sequence approach based on two rRNA genes (ITS including 5.8S rRNA and D1/D2 region of 26S rRNA) together with two protein encoding genes (CHS2 and β-tubulin). The phylogenetic study of the partial β-tubulin gene sequences indicated that this molecular marker can be used to assess diversity and identify new species. The multilocus sequence analysis of the four loci provides robust support to delineate species at the terminal nodes and could help to estimate divergence times for the origin and diversification of Malassezia species.
Development of Mycoplasma synoviae (MS) core genome multilocus sequence typing (cgMLST) scheme.
Ghanem, Mostafa; El-Gazzar, Mohamed
2018-05-01
Mycoplasma synoviae (MS) is a poultry pathogen with reported increased prevalence and virulence in recent years. MS strain identification is essential for prevention, control efforts and epidemiological outbreak investigations. Multiple multilocus based sequence typing schemes have been developed for MS, yet the resolution of these schemes could be limited for outbreak investigation. The cost of whole genome sequencing became close to that of sequencing the seven MLST targets; however, there is no standardized method for typing MS strains based on whole genome sequences. In this paper, we propose a core genome multilocus sequence typing (cgMLST) scheme as a standardized and reproducible method for typing MS based whole genome sequences. A diverse set of 25 MS whole genome sequences were used to identify 302 core genome genes as cgMLST targets (35.5% of MS genome) and 44 whole genome sequences of MS isolates from six countries in four continents were used for typing applying this scheme. cgMLST based phylogenetic trees displayed a high degree of agreement with core genome SNP based analysis and available epidemiological information. cgMLST allowed evaluation of two conventional MLST schemes of MS. The high discriminatory power of cgMLST allowed differentiation between samples of the same conventional MLST type. cgMLST represents a standardized, accurate, highly discriminatory, and reproducible method for differentiation between MS isolates. Like conventional MLST, it provides stable and expandable nomenclature, allowing for comparing and sharing the typing results between different laboratories worldwide. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
spads 1.0: a toolbox to perform spatial analyses on DNA sequence data sets.
Dellicour, Simon; Mardulyn, Patrick
2014-05-01
SPADS 1.0 (for 'Spatial and Population Analysis of DNA Sequences') is a population genetic toolbox for characterizing genetic variability within and among populations from DNA sequences. In view of the drastic increase in genetic information available through sequencing methods, spads was specifically designed to deal with multilocus data sets of DNA sequences. It computes several summary statistics from populations or groups of populations, performs input file conversions for other population genetic programs and implements locus-by-locus and multilocus versions of two clustering algorithms to study the genetic structure of populations. The toolbox also includes two MATLAB and r functions, GDISPAL and GDIVPAL, to display differentiation and diversity patterns across landscapes. These functions aim to generate interpolating surfaces based on multilocus distance and diversity indices. In the case of multiple loci, such surfaces can represent a useful alternative to multiple pie charts maps traditionally used in phylogeography to represent the spatial distribution of genetic diversity. These coloured surfaces can also be used to compare different data sets or different diversity and/or distance measures estimated on the same data set. © 2013 John Wiley & Sons Ltd.
Sharma, Anshul; Kaur, Jasmine; Lee, Sulhee; Park, Young-Seo
2018-06-01
In the present study, 35 Leuconostoc mesenteroides strains isolated from vegetables and food products from South Korea were studied by multilocus sequence typing (MLST) of seven housekeeping genes (atpA, groEL, gyrB, pheS, pyrG, rpoA, and uvrC). The fragment sizes of the seven amplified housekeeping genes ranged in length from 366 to 1414 bp. Sequence analysis indicated 27 different sequence types (STs) with 25 of them being represented by a single strain indicating high genetic diversity, whereas the remaining 2 were characterized by five strains each. In total, 220 polymorphic nucleotide sites were detected among seven housekeeping genes. The phylogenetic analysis based on the STs of the seven loci indicated that the 35 strains belonged to two major groups, A (28 strains) and B (7 strains). Split decomposition analysis showed that intraspecies recombination played a role in generating diversity among strains. The minimum spanning tree showed that the evolution of the STs was not correlated with food source. This study signifies that the multilocus sequence typing is a valuable tool to access the genetic diversity among L. mesenteroides strains from South Korea and can be used further to monitor the evolutionary changes.
Salvi, Daniele; Macali, Armando; Mariottini, Paolo
2014-01-01
The bivalve family Ostreidae has a worldwide distribution and includes species of high economic importance. Phylogenetics and systematic of oysters based on morphology have proved difficult because of their high phenotypic plasticity. In this study we explore the phylogenetic information of the DNA sequence and secondary structure of the nuclear, fast-evolving, ITS2 rRNA and the mitochondrial 16S rRNA genes from the Ostreidae and we implemented a multi-locus framework based on four loci for oyster phylogenetics and systematics. Sequence-structure rRNA models aid sequence alignment and improved accuracy and nodal support of phylogenetic trees. In agreement with previous molecular studies, our phylogenetic results indicate that none of the currently recognized subfamilies, Crassostreinae, Ostreinae, and Lophinae, is monophyletic. Single gene trees based on Maximum likelihood (ML) and Bayesian (BA) methods and on sequence-structure ML were congruent with multilocus trees based on a concatenated (ML and BA) and coalescent based (BA) approaches and consistently supported three main clades: (i) Crassostrea, (ii) Saccostrea, and (iii) an Ostreinae-Lophinae lineage. Therefore, the subfamily Crassotreinae (including Crassostrea), Saccostreinae subfam. nov. (including Saccostrea and tentatively Striostrea) and Ostreinae (including Ostreinae and Lophinae taxa) are recognized. Based on phylogenetic and biogeographical evidence the Asian species of Crassostrea from the Pacific Ocean are assigned to Magallana gen. nov., whereas an integrative taxonomic revision is required for the genera Ostrea and Dendostrea. This study pointed out the suitability of the ITS2 marker for DNA barcoding of oyster and the relevance of using sequence-structure rRNA models and features of the ITS2 folding in molecular phylogenetics and taxonomy. The multilocus approach allowed inferring a robust phylogeny of Ostreidae providing a broad molecular perspective on their systematics. PMID:25250663
Salvi, Daniele; Macali, Armando; Mariottini, Paolo
2014-01-01
The bivalve family Ostreidae has a worldwide distribution and includes species of high economic importance. Phylogenetics and systematic of oysters based on morphology have proved difficult because of their high phenotypic plasticity. In this study we explore the phylogenetic information of the DNA sequence and secondary structure of the nuclear, fast-evolving, ITS2 rRNA and the mitochondrial 16S rRNA genes from the Ostreidae and we implemented a multi-locus framework based on four loci for oyster phylogenetics and systematics. Sequence-structure rRNA models aid sequence alignment and improved accuracy and nodal support of phylogenetic trees. In agreement with previous molecular studies, our phylogenetic results indicate that none of the currently recognized subfamilies, Crassostreinae, Ostreinae, and Lophinae, is monophyletic. Single gene trees based on Maximum likelihood (ML) and Bayesian (BA) methods and on sequence-structure ML were congruent with multilocus trees based on a concatenated (ML and BA) and coalescent based (BA) approaches and consistently supported three main clades: (i) Crassostrea, (ii) Saccostrea, and (iii) an Ostreinae-Lophinae lineage. Therefore, the subfamily Crassostreinae (including Crassostrea), Saccostreinae subfam. nov. (including Saccostrea and tentatively Striostrea) and Ostreinae (including Ostreinae and Lophinae taxa) are recognized [corrected]. Based on phylogenetic and biogeographical evidence the Asian species of Crassostrea from the Pacific Ocean are assigned to Magallana gen. nov., whereas an integrative taxonomic revision is required for the genera Ostrea and Dendostrea. This study pointed out the suitability of the ITS2 marker for DNA barcoding of oyster and the relevance of using sequence-structure rRNA models and features of the ITS2 folding in molecular phylogenetics and taxonomy. The multilocus approach allowed inferring a robust phylogeny of Ostreidae providing a broad molecular perspective on their systematics.
USDA-ARS?s Scientific Manuscript database
The ARS Microbial Genome Sequence Database (http://199.133.98.43), a web-based database server, was established utilizing the BIGSdb (Bacterial Isolate Genomics Sequence Database) software package, developed at Oxford University, as a tool to manage multi-locus sequence data for the family Streptomy...
Labeda, David P
2016-03-01
Multi-locus sequence analysis has been demonstrated to be a useful tool for identification of Streptomyces species and was previously applied to phylogenetically differentiate the type strains of species pathogenic on potatoes (Solanum tuberosum L.). The ARS Culture Collection (NRRL) contains 43 strains identified as Streptomyces scabiei deposited at various times since the 1950s and these were subjected to multi-locus sequence analysis utilising partial sequences of the house-keeping genes atpD, gyrB, recA, rpoB and trpB. Phylogenetic analyses confirmed the identity of 17 of these strains as Streptomyces scabiei, 9 of the strains as the potato-pathogenic species Streptomyces europaeiscabiei and 6 strains as potentially new phytopathogenic species. Of the 16 other strains, 12 were identified as members of previously described non-pathogenic Streptomyces species while the remaining 4 strains may represent heretofore unrecognised non-pathogenic species. This study demonstrated the value of this technique for the relatively rapid, simple and sensitive molecular identification of Streptomyces strains held in culture collections.
Sanz, Yolanda
2017-01-01
Abstract The miniaturized and portable DNA sequencer MinION™ has demonstrated great potential in different analyses such as genome-wide sequencing, pathogen outbreak detection and surveillance, human genome variability, and microbial diversity. In this study, we tested the ability of the MinION™ platform to perform long amplicon sequencing in order to design new approaches to study microbial diversity using a multi-locus approach. After compiling a robust database by parsing and extracting the rrn bacterial region from more than 67000 complete or draft bacterial genomes, we demonstrated that the data obtained during sequencing of the long amplicon in the MinION™ device using R9 and R9.4 chemistries were sufficient to study 2 mock microbial communities in a multiplex manner and to almost completely reconstruct the microbial diversity contained in the HM782D and D6305 mock communities. Although nanopore-based sequencing produces reads with lower per-base accuracy compared with other platforms, we presented a novel approach consisting of multi-locus and long amplicon sequencing using the MinION™ MkIb DNA sequencer and R9 and R9.4 chemistries that help to overcome the main disadvantage of this portable sequencing platform. Furthermore, the nanopore sequencing library, constructed with the last releases of pore chemistry (R9.4) and sequencing kit (SQK-LSK108), permitted the retrieval of the higher level of 1D read accuracy sufficient to characterize the microbial species present in each mock community analysed. Improvements in nanopore chemistry, such as minimizing base-calling errors and new library protocols able to produce rapid 1D libraries, will provide more reliable information in the near future. Such data will be useful for more comprehensive and faster specific detection of microbial species and strains in complex ecosystems. PMID:28605506
USDA-ARS?s Scientific Manuscript database
The strains TII7 and A5 formed an effective and ineffective symbiosis with Medicago truncatula Jemalong A17, respectively. Both were shown to have identical chromsomes with strains Rm1021 and RCR2011 using a Multilocus Sequence Typing method. The 2260 bp segments of DNA stretching from the 3’ end ...
de Gier, Camilla; Kirkham, Lea-Ann S.
2015-01-01
Nonhemolytic variants of Haemophilus haemolyticus are difficult to differentiate from Haemophilus influenzae despite a wide difference in pathogenic potential. A previous investigation characterized a challenging set of 60 clinical strains using multiple PCRs for marker genes and described strains that could not be unequivocally identified as either species. We have analyzed the same set of strains by multilocus sequence analysis (MLSA) and near-full-length 16S rRNA gene sequencing. MLSA unambiguously allocated all study strains to either of the two species, while identification by 16S rRNA sequence was inconclusive for three strains. Notably, the two methods yielded conflicting identifications for two strains. Most of the “fuzzy species” strains were identified as H. influenzae that had undergone complete deletion of the fucose operon. Such strains, which are untypeable by the H. influenzae multilocus sequence type (MLST) scheme, have sporadically been reported and predominantly belong to a single branch of H. influenzae MLSA phylogenetic group II. We also found evidence of interspecies recombination between H. influenzae and H. haemolyticus within the 16S rRNA genes. Establishing an accurate method for rapid and inexpensive identification of H. influenzae is important for disease surveillance and treatment. PMID:26378279
Molecular characterization of Giardia psittaci by multilocus sequence analysis.
Abe, Niichiro; Makino, Ikuko; Kojima, Atsushi
2012-12-01
Multilocus sequence analyses targeting small subunit ribosomal DNA (SSU rDNA), elongation factor 1 alpha (ef1α), glutamate dehydrogenase (gdh), and beta giardin (β-giardin) were performed on Giardia psittaci isolates from three Budgerigars (Melopsittacus undulates) and four Barred parakeets (Bolborhynchus lineola) kept in individual households or imported from overseas. Nucleotide differences and phylogenetic analyses at four loci indicate the distinction of G. psittaci from the other known Giardia species: Giardia muris, Giardia microti, Giardia ardeae, and Giardia duodenalis assemblages. Furthermore, G. psittaci was related more closely to G. duodenalis than to the other known Giardia species, except for G. microti. Conflicting signals regarded as "double peaks" were found at the same nucleotide positions of the ef1α in all isolates. However, the sequences of the other three loci, including gdh and β-giardin, which are known to be highly variable, from all isolates were also mutually identical at every locus. They showed no double peaks. These results suggest that double peaks found in the ef1α sequences are caused not by mixed infection with genetically different G. psittaci isolates but by allelic sequence heterogeneity (ASH), which is observed in diplomonad lineages including G. duodenalis. No sequence difference was found in any G. psittaci isolates at the gdh and β-giardin, suggesting that G. psittaci is indeed not more diverse genetically than other Giardia species. This report is the first to provide evidence related to the genetic characteristics of G. psittaci obtained using multilocus sequence analysis. Copyright © 2012 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The ARS Culture Collection (NRRL) currently contains 7569 strains within the family Streptomycetaceae but 4368 of them have not been characterized to the species level. A gene sequence database using the Bacterial Isolate Genomic Sequence Database package (BIGSdb) (Jolley & Maiden, 2010) is availabl...
Taxonomic evaluation of Streptomyces albus and related species using multilocus sequence analysis
USDA-ARS?s Scientific Manuscript database
In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp. albus NRRL B-1811T formed a cluster with 5 other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these ot...
Antonov, V A; Altukhova, V V; Savchenko, S S; Zamaraev, V S; Iliukhin, V I; Alekseev, V V
2007-01-01
Burkholderia mallei is highly pathogenic microorganism for both humans and animals. In this work, the possibility of the use of the genotyping method for differentiation between strains of B. mallei was studied. A collection of 14 isolates of B. mallei was characterized using randomly amplified polymorphic DNA (RAPD) and multilocus sequence typing (MLST). RAPD was the best method used for detecting strain differences of B. mallei. It was suggested that this method would be an increasingly useful molecular epidemiological tool.
Brassac, Jonathan; Blattner, Frank R
2015-09-01
Polyploidization is an important speciation mechanism in the barley genus Hordeum. To analyze evolutionary changes after allopolyploidization, knowledge of parental relationships is essential. One chloroplast and 12 nuclear single-copy loci were amplified by polymerase chain reaction (PCR) in all Hordeum plus six out-group species. Amplicons from each of 96 individuals were pooled, sheared, labeled with individual-specific barcodes and sequenced in a single run on a 454 platform. Reference sequences were obtained by cloning and Sanger sequencing of all loci for nine supplementary individuals. The 454 reads were assembled into contigs representing the 13 loci and, for polyploids, also homoeologues. Phylogenetic analyses were conducted for all loci separately and for a concatenated data matrix of all loci. For diploid taxa, a Bayesian concordance analysis and a coalescent-based dated species tree was inferred from all gene trees. Chloroplast matK was used to determine the maternal parent in allopolyploid taxa. The relative performance of different multilocus analyses in the presence of incomplete lineage sorting and hybridization was also assessed. The resulting multilocus phylogeny reveals for the first time species phylogeny and progenitor-derivative relationships of all di- and polyploid Hordeum taxa within a single analysis. Our study proves that it is possible to obtain a multilocus species-level phylogeny for di- and polyploid taxa by combining PCR with next-generation sequencing, without cloning and without creating a heavy load of sequence data. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
Multilocus sequence typing of total-genome-sequenced bacteria.
Larsen, Mette V; Cosentino, Salvatore; Rasmussen, Simon; Friis, Carsten; Hasman, Henrik; Marvig, Rasmus Lykke; Jelsbak, Lars; Sicheritz-Pontén, Thomas; Ussery, David W; Aarestrup, Frank M; Lund, Ole
2012-04-01
Accurate strain identification is essential for anyone working with bacteria. For many species, multilocus sequence typing (MLST) is considered the "gold standard" of typing, but it is traditionally performed in an expensive and time-consuming manner. As the costs of whole-genome sequencing (WGS) continue to decline, it becomes increasingly available to scientists and routine diagnostic laboratories. Currently, the cost is below that of traditional MLST. The new challenges will be how to extract the relevant information from the large amount of data so as to allow for comparison over time and between laboratories. Ideally, this information should also allow for comparison to historical data. We developed a Web-based method for MLST of 66 bacterial species based on WGS data. As input, the method uses short sequence reads from four sequencing platforms or preassembled genomes. Updates from the MLST databases are downloaded monthly, and the best-matching MLST alleles of the specified MLST scheme are found using a BLAST-based ranking method. The sequence type is then determined by the combination of alleles identified. The method was tested on preassembled genomes from 336 isolates covering 56 MLST schemes, on short sequence reads from 387 isolates covering 10 schemes, and on a small test set of short sequence reads from 29 isolates for which the sequence type had been determined by traditional methods. The method presented here enables investigators to determine the sequence types of their isolates on the basis of WGS data. This method is publicly available at www.cbs.dtu.dk/services/MLST.
Uncommonly isolated clinical Pseudomonas: identification and phylogenetic assignation.
Mulet, M; Gomila, M; Ramírez, A; Cardew, S; Moore, E R B; Lalucat, J; García-Valdés, E
2017-02-01
Fifty-two Pseudomonas strains that were difficult to identify at the species level in the phenotypic routine characterizations employed by clinical microbiology laboratories were selected for genotypic-based analysis. Species level identifications were done initially by partial sequencing of the DNA dependent RNA polymerase sub-unit D gene (rpoD). Two other gene sequences, for the small sub-unit ribosonal RNA (16S rRNA) and for DNA gyrase sub-unit B (gyrB) were added in a multilocus sequence analysis (MLSA) study to confirm the species identifications. These sequences were analyzed with a collection of reference sequences from the type strains of 161 Pseudomonas species within an in-house multi-locus sequence analysis database. Whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analyses of these strains complemented the DNA sequenced-based phylogenetic analyses and were observed to be in accordance with the results of the sequence data. Twenty-three out of 52 strains were assigned to 12 recognized species not commonly detected in clinical specimens and 29 (56 %) were considered representatives of at least ten putative new species. Most strains were distributed within the P. fluorescens and P. aeruginosa lineages. The value of rpoD sequences in species-level identifications for Pseudomonas is emphasized. The correct species identifications of clinical strains is essential for establishing the intrinsic antibiotic resistance patterns and improved treatment plans.
Couto, Natacha; Chlebowicz, Monika A; Raangs, Erwin C; Friedrich, Alex W; Rossen, John W
2018-04-05
The emergence of nosocomial infections by multidrug-resistant Staphylococcus haemolyticus isolates has been reported in several European countries. Here, we report the first two complete genome sequences of S. haemolyticus sequence type 25 (ST25) isolates 83131A and 83131B. Both isolates were isolated from the same clinical sample and were first identified through shotgun metagenomics. Copyright © 2018 Couto et al.
Liu, Wenjun; Yu, Jie; Sun, Zhihong; Song, Yuqin; Wang, Xueni; Wang, Hongmei; Wuren, Tuoya; Zha, Musu; Menghe, Bilige; Heping, Zhang
2016-01-01
Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) is well known for its worldwide application in yogurt production. Flavor production and acid producing are considered as the most important characteristics for starter culture screening. To our knowledge this is the first study applying functional gene sequence multilocus sequence typing technology to predict the fermentation and flavor-producing characteristics of yogurt-producing bacteria. In the present study, phenotypic characteristics of 35 L. bulgaricus strains were quantified during the fermentation of milk to yogurt and during its subsequent storage; these included fermentation time, acidification rate, pH, titratable acidity, and flavor characteristics (acetaldehyde concentration). Furthermore, multilocus sequence typing analysis of 7 functional genes associated with fermentation time, acid production, and flavor formation was done to elucidate the phylogeny and genetic evolution of the same L. bulgaricus isolates. The results showed that strains significantly differed in fermentation time, acidification rate, and acetaldehyde production. Combining functional gene sequence analysis with phenotypic characteristics demonstrated that groups of strains established using genotype data were consistent with groups identified based on their phenotypic traits. This study has established an efficient and rapid molecular genotyping method to identify strains with good fermentation traits; this has the potential to replace time-consuming conventional methods based on direct measurement of phenotypic traits. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Sun, Zhihong; Liu, Wenjun; Song, Yuqin; Xu, Haiyan; Yu, Jie; Bilige, Menghe; Zhang, Heping; Chen, Yongfu
2015-05-01
Lactobacillus helveticus is an economically important lactic acid bacterium used in industrial dairy fermentation. In the present study, the population structure of 245 isolates of L. helveticus from different naturally fermented dairy products in China and Mongolia were investigated using an multilocus sequence typing scheme with 11 housekeeping genes. A total of 108 sequence types were detected, which formed 8 clonal complexes and 27 singletons. Results from Structure, SplitsTree, and ClonalFrame software analyses demonstrated the presence of 3 subpopulations in the L. helveticus isolates used in our study, namely koumiss, kurut-tarag, and panmictic lineages. Most L. helveticus isolates from particular ecological origins had specific population structures. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Kotetishvili, Mamuka; Stine, O. Colin; Chen, Yuansha; Kreger, Arnold; Sulakvelidze, Alexander; Sozhamannan, Shanmuga; Morris, Jr., J. Glenn
2003-01-01
Twenty-two Vibrio cholerae isolates, including some from “epidemic” (O1 and O139) and “nonepidemic” serogroups, were characterized by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) by using three housekeeping genes, gyrB, pgm, and recA; sequence data were also obtained for the virulence-associated genes tcpA, ctxA, and ctxB. Even with the small number of loci used, MLST had better discriminatory ability than did PFGE. On MLST analysis, there was clear clustering of epidemic serogroups; much greater diversity was seen among tcpA- and ctxAB-positive V. cholerae strains from other, nonepidemic serogroups, with a number of tcpA and ctxAB alleles identified. PMID:12734277
The multilocus sequence typing network: mlst.net.
Aanensen, David M; Spratt, Brian G
2005-07-01
The unambiguous characterization of strains of a pathogen is crucial for addressing questions relating to its epidemiology, population and evolutionary biology. Multilocus sequence typing (MLST), which defines strains from the sequences at seven house-keeping loci, has become the method of choice for molecular typing of many bacterial and fungal pathogens (and non-pathogens), and MLST schemes and strain databases are available for a growing number of prokaryotic and eukaryotic organisms. Sequence data are ideal for strain characterization as they are unambiguous, meaning strains can readily be compared between laboratories via the Internet. Laboratories undertaking MLST can quickly progress from sequencing the seven gene fragments to characterizing their strains and relating them to those submitted by others and to the population as a whole. We provide the gateway to a number of MLST schemes, each of which contain a set of tools for the initial characterization of strains, and methods for relating query strains to other strains of the species, including clustering based on differences in allelic profiles, phylogenetic trees based on concatenated sequences, and a recently developed method (eBURST) for identifying clonal complexes within a species and displaying the overall structure of the population. This network of MLST websites is available at http://www.mlst.net.
Boité, Mariana C.; Mauricio, Isabel L.; Miles, Michael A.; Cupolillo, Elisa
2012-01-01
The Leishmania genus comprises up to 35 species, some with status still under discussion. The multilocus sequence typing (MLST)—extensively used for bacteria—has been proposed for pathogenic trypanosomatids. For Leishmania, however, a detailed analysis and revision on the taxonomy is still required. We have partially sequenced four housekeeping genes—glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), mannose phosphate isomerase (MPI) and isocitrate dehydrogenase (ICD)—from 96 Leishmania (Viannia) strains and assessed their discriminatory typing capacity. The fragments had different degrees of diversity, and are thus suitable to be used in combination for intra- and inter-specific inferences. Species-specific single nucleotide polymorphisms were detected, but not for all species; ambiguous sites indicating heterozygosis were observed, as well as the putative homozygous donor. A large number of haplotypes were detected for each marker; for 6PGD a possible ancestral allele for L. (Viannia) was found. Maximum parsimony-based haplotype networks were built. Strains of different species, as identified by multilocus enzyme electrophoresis (MLEE), formed separated clusters in each network, with exceptions. NeighborNet of concatenated sequences confirmed species-specific clusters, suggesting recombination occurring in L. braziliensis and L. guyanensis. Phylogenetic analysis indicates L. lainsoni and L. naiffi as the most divergent species and does not support L. shawi as a distinct species, placing it in the L. guyanensis cluster. BURST analysis resulted in six clonal complexes (CC), corresponding to distinct species. The L. braziliensis strains evaluated correspond to one widely geographically distributed CC and another restricted to one endemic area. This study demonstrates the value of systematic multilocus sequence analysis (MLSA) for determining intra- and inter-species relationships and presents an approach to validate the species status of some entities. Furthermore, it contributes to the phylogeny of L. (Viannia) and might be helpful for epidemiological and population genetics analysis based on haplotype/diplotype determinations and inferences. PMID:23133690
Tanabe, Akifumi S
2011-09-01
Proportional and separate models able to apply different combination of substitution rate matrix (SRM) and among-site rate variation model (ASRVM) to each locus are frequently used in phylogenetic studies of multilocus data. A proportional model assumes that branch lengths are proportional among partitions and a separate model assumes that each partition has an independent set of branch lengths. However, the selection from among nonpartitioned (i.e., a common combination of models is applied to all-loci concatenated sequences), proportional and separate models is usually based on the researcher's preference rather than on any information criteria. This study describes two programs, 'Kakusan4' (for DNA sequences) and 'Aminosan' (for amino-acid sequences), which allow the selection of evolutionary models based on several types of information criteria. The programs can handle both multilocus and single-locus data, in addition to providing an easy-to-use wizard interface and a noninteractive command line interface. In the case of multilocus data, SRMs and ASRVMs are compared at each locus and at all-loci concatenated sequences, after which nonpartitioned, proportional and separate models are compared based on information criteria. The programs also provide model configuration files for mrbayes, paup*, phyml, raxml and Treefinder to support further phylogenetic analysis using a selected model. When likelihoods are optimized by Treefinder, the best-fit models were found to differ depending on the data set. Furthermore, differences in the information criteria among nonpartitioned, proportional and separate models were much larger than those among the nonpartitioned models. These findings suggest that selecting from nonpartitioned, proportional and separate models results in a better phylogenetic tree. Kakusan4 and Aminosan are available at http://www.fifthdimension.jp/. They are licensed under gnugpl Ver.2, and are able to run on Windows, MacOS X and Linux. © 2011 Blackwell Publishing Ltd.
USDA-ARS?s Scientific Manuscript database
Phylogenetic analyses of species of Streptomyces based on 16S rRNA gene sequences resulted in a statistically well-supported clade (100% bootstrap value) containing 8 species having very similar gross morphology. These species, including Streptomyces bambergiensis, Streptomyces chlorus, Streptomyces...
[Multilocus Sequence Typing analysis of human Campylobacter coli in Granada (Spain)].
Carrillo-Ávila, J A; Sorlózano-Puerto, A; Pérez-Ruiz, M; Gutiérrez-Fernández, J
2016-12-01
Different subtypes of Campylobacter spp. have been associated with diarrhoea and a Multilocus Sequence Typing (MLST) method has been performed for subtyping. In the present work, MLST was used to analyse the genetic diversity of eight strains of Campylobacter coli. Nineteen genetic markers were amplified for MLST analysis: AnsB, DmsA, ggt, Cj1585c, CJJ81176-1367/1371, Tlp7, cj1321-cj1326, fucP, cj0178, cj0755/cfrA, ceuE, pldA, cstII, cstIII. After comparing the obtained sequences with the Campylobacter MLST database, the allele numbers, sequence types (STs) and clonal complexes (CCs) were assigned. The 8 C. coli isolates yielded 4 different STs belonging to 2 CCs. Seven isolates belong to ST-828 clonal complex and only one isolate belong to ST-21. Two samples came from the same patient, but were isolated in two different periods of time. MLST can be useful for taxonomic characterization of C. coli isolates.
Charpentier, Elena; Garnaud, Cécile; Wintenberger, Claire; Bailly, Sébastien; Murat, Jean-Benjamin; Rendu, John; Pavese, Patricia; Drouet, Thibault; Augier, Caroline; Malvezzi, Paolo; Thiébaut-Bertrand, Anne; Mallaret, Marie-Reine; Epaulard, Olivier; Cornet, Muriel; Larrat, Sylvie; Maubon, Danièle
2017-08-01
Pneumocystis jirovecii is a major threat for immunocompromised patients, and clusters of pneumocystis pneumonia (PCP) have been increasingly described in transplant units during the past decade. Exploring an outbreak transmission network requires complementary spatiotemporal and strain-typing approaches. We analyzed a PCP outbreak and demonstrated the added value of next-generation sequencing (NGS) for the multilocus sequence typing (MLST) study of P. jirovecii strains. Thirty-two PCP patients were included. Among the 12 solid organ transplant patients, 5 shared a major and unique genotype that was also found as a minor strain in a sixth patient. A transmission map analysis strengthened the suspicion of nosocomial acquisition of this strain for the 6 patients. NGS-MLST enables accurate determination of subpopulation, which allowed excluding other patients from the transmission network. NGS-MLST genotyping approach was essential to deciphering this outbreak. This innovative approach brings new insights for future epidemiologic studies on this uncultivable opportunistic fungus.
Charpentier, Elena; Garnaud, Cécile; Wintenberger, Claire; Bailly, Sébastien; Murat, Jean-Benjamin; Rendu, John; Pavese, Patricia; Drouet, Thibault; Augier, Caroline; Malvezzi, Paolo; Thiébaut-Bertrand, Anne; Mallaret, Marie-Reine; Epaulard, Olivier; Cornet, Muriel; Larrat, Sylvie
2017-01-01
Pneumocystis jirovecii is a major threat for immunocompromised patients, and clusters of pneumocystis pneumonia (PCP) have been increasingly described in transplant units during the past decade. Exploring an outbreak transmission network requires complementary spatiotemporal and strain-typing approaches. We analyzed a PCP outbreak and demonstrated the added value of next-generation sequencing (NGS) for the multilocus sequence typing (MLST) study of P. jirovecii strains. Thirty-two PCP patients were included. Among the 12 solid organ transplant patients, 5 shared a major and unique genotype that was also found as a minor strain in a sixth patient. A transmission map analysis strengthened the suspicion of nosocomial acquisition of this strain for the 6 patients. NGS-MLST enables accurate determination of subpopulation, which allowed excluding other patients from the transmission network. NGS-MLST genotyping approach was essential to deciphering this outbreak. This innovative approach brings new insights for future epidemiologic studies on this uncultivable opportunistic fungus. PMID:28726611
Phylogenetic relationships in the family Streptomycetaceae using multi-locus sequence analysis
USDA-ARS?s Scientific Manuscript database
The family Streptomycetaceae, notably species in the genus Streptomyces, have long been the subject of investigation due to their well-known ability to produce secondary metabolites. The emergence of drug resistant pathogens and the relative ease of producing genome sequences has renewed the importa...
Gorgé, Olivier; Lopez, Stéphanie; Hilaire, Valérie; Lisanti, Olivier; Ramisse, Vincent; Vergnaud, Gilles
2008-01-01
The Shigella genus has historically been separated into four species, based on biochemical assays. The classification within each species relies on serotyping. Recently, genome sequencing and DNA assays, in particular the multilocus sequence typing (MLST) approach, greatly improved the current knowledge of the origin and phylogenetic evolution of Shigella spp. The Shigella and Escherichia genera are now considered to belong to a unique genomospecies. Multilocus variable-number tandem-repeat (VNTR) analysis (MLVA) provides valuable polymorphic markers for genotyping and performing phylogenetic analyses of highly homogeneous bacterial pathogens. Here, we assess the capability of MLVA for Shigella typing. Thirty-two potentially polymorphic VNTRs were selected by analyzing in silico five Shigella genomic sequences and subsequently evaluated. Eventually, a panel of 15 VNTRs was selected (i.e., MLVA15 analysis). MLVA15 analysis of 78 strains or genome sequences of Shigella spp. and 11 strains or genome sequences of Escherichia coli distinguished 83 genotypes. Shigella population cluster analysis gave consistent results compared to MLST. MLVA15 analysis showed capabilities for E. coli typing, providing classification among pathogenic and nonpathogenic E. coli strains included in the study. The resulting data can be queried on our genotyping webpage (http://mlva.u-psud.fr). The MLVA15 assay is rapid, highly discriminatory, and reproducible for Shigella and Escherichia strains, suggesting that it could significantly contribute to epidemiological trace-back analysis of Shigella infections and pathogenic Escherichia outbreaks. Typing was performed on strains obtained mostly from collections. Further studies should include strains of much more diverse origins, including all pathogenic E. coli types. PMID:18216214
Optimization of Multilocus Sequence Analysis for Identification of Species in the Genus Vibrio
Gabriel, Michael W.; Matsui, George Y.; Friedman, Robert
2014-01-01
Multilocus sequence analysis (MLSA) is an important method for identification of taxa that are not well differentiated by 16S rRNA gene sequences alone. In this procedure, concatenated sequences of selected genes are constructed and then analyzed. The effects that the number and the order of genes used in MLSA have on reconstruction of phylogenetic relationships were examined. The recA, rpoA, gapA, 16S rRNA gene, gyrB, and ftsZ sequences from 56 species of the genus Vibrio were used to construct molecular phylogenies, and these were evaluated individually and using various gene combinations. Phylogenies from two-gene sequences employing recA and rpoA in both possible gene orders were different. The addition of the gapA gene sequence, producing all six possible concatenated sequences, reduced the differences in phylogenies to degrees of statistical (bootstrap) support for some nodes. The overall statistical support for the phylogenetic tree, assayed on the basis of a reliability score (calculated from the number of nodes having bootstrap values of ≥80 divided by the total number of nodes) increased with increasing numbers of genes used, up to a maximum of four. No further improvement was observed from addition of the fifth gene sequence (ftsZ), and addition of the sixth gene (gyrB) resulted in lower proportions of strongly supported nodes. Reductions in the numbers of strongly supported nodes were also observed when maximum parsimony was employed for tree construction. Use of a small number of gene sequences in MLSA resulted in accurate identification of Vibrio species. PMID:24951781
USDA-ARS?s Scientific Manuscript database
In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp. albus NRRL B-1811T forms a cluster with 5 other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these oth...
Rapid Multi-Locus Sequence Typing Using Microfluidic Biochips
2010-05-12
Sequence Types. The evolutionary history of all the B. cereus MLST concatenated Sequence Types (545 taxa, 2,394 nucleotide positions) was inferred using...the Neighbor-Joining method [28]. The bootstrap consensus tree inferred from 100 replicates was taken to represent the evolutionary history of the... Chlamydia (manuscript in preparation) and performed pilot studies on Staphylococcus aureus and Streptoccus pneumoniae (Data S4 and Text S2). Another potential
USDA-ARS?s Scientific Manuscript database
Fifty-eight fusaria isolated from 52 Italian patients between 2004 and 2007 were subject to multilocus DNA sequence typing to characterize the spectrum of species and circulating sequence types (STs) associated with dermatological infections, especially onychomycoses and paronychia, and other fusari...
Pathogenic Leptospira Species in Insectivorous Bats, China, 2015.
Han, Hui-Ju; Wen, Hong-Ling; Liu, Jian-Wei; Qin, Xiang-Rong; Zhao, Min; Wang, Li-Jun; Luo, Li-Mei; Zhou, Chuan-Min; Zhu, Ye-Lei; Qi, Rui; Li, Wen-Qian; Yu, Hao; Yu, Xue-Jie
2018-06-01
PCR amplification of the rrs2 gene indicated that 50% (62/124) of insectivorous bats from eastern China were infected with Leptospira borgpetersenii, L. kirschneri, and several potentially new Leptospira species. Multilocus sequence typing defined 3 novel sequence types in L. kirschneri, suggesting that bats are major carriers of Leptospira.
Aspergillus section Versicolores: nine new species and multilocus DNA sequence based phylogeny
USDA-ARS?s Scientific Manuscript database
ß-tubulin, calmodulin, internal transcribed spacer and partial lsu-rDNA, RNA polymerase, DNA replication licensing factor Mcm7, and pre-rRNA processing protein Tsr1 were amplified and sequenced from 62 A. versicolor clade isolates and analyzed phylogenetically using the concordance model to establis...
Aspergillus section Versicolores, nine new species and multilocus DNA sequence based phylogeny
USDA-ARS?s Scientific Manuscript database
ß-tubulin, calmodulin, internal transcribed spacer and partial lsu-rDNA, RNA polymerase, DNA replication licensing factor Mcm7, and pre-rRNA processing protein Tsr1 were amplified and sequenced from 62 A. versicolor clade isolates and analyzed phylogenetically using the concordance model to establis...
High-Resolution Melting Analysis for Rapid Detection of Sequence Type 131 Escherichia coli.
Harrison, Lucas B; Hanson, Nancy D
2017-06-01
Escherichia coli isolates belonging to the sequence type 131 (ST131) clonal complex have been associated with the global distribution of fluoroquinolone and β-lactam resistance. Whole-genome sequencing and multilocus sequence typing identify sequence type but are expensive when evaluating large numbers of samples. This study was designed to develop a cost-effective screening tool using high-resolution melting (HRM) analysis to differentiate ST131 from non-ST131 E. coli in large sample populations in the absence of sequence analysis. The method was optimized using DNA from 12 E. coli isolates. Singleplex PCR was performed using 10 ng of DNA, Type-it HRM buffer, and multilocus sequence typing primers and was followed by multiplex PCR. The amplicon sizes ranged from 630 to 737 bp. Melt temperature peaks were determined by performing HRM analysis at 0.1°C resolution from 50 to 95°C on a Rotor-Gene Q 5-plex HRM system. Derivative melt curves were compared between sequence types and analyzed by principal component analysis. A blinded study of 191 E. coli isolates of ST131 and unknown sequence types validated this methodology. This methodology returned 99.2% specificity (124 true negatives and 1 false positive) and 100% sensitivity (66 true positives and 0 false negatives). This HRM methodology distinguishes ST131 from non-ST131 E. coli without sequence analysis. The analysis can be accomplished in about 3 h in any laboratory with an HRM-capable instrument and principal component analysis software. Therefore, this assay is a fast and cost-effective alternative to sequencing-based ST131 identification. Copyright © 2017 Harrison and Hanson.
Barony, Gustavo M; Tavares, Guilherme C; Pereira, Felipe L; Carvalho, Alex F; Dorella, Fernanda A; Leal, Carlos A G; Figueiredo, Henrique C P
2017-10-19
Streptococcus agalactiae is a major pathogen and a hindrance on tilapia farming worldwide. The aims of this work were to analyze the genomic evolution of Brazilian strains of S. agalactiae and to establish spatial and temporal relations between strains isolated from different outbreaks of streptococcosis. A total of 39 strains were obtained from outbreaks and their whole genomes were sequenced and annotated for comparative analysis of multilocus sequence typing, genomic similarity and whole genome multilocus sequence typing (wgMLST). The Brazilian strains presented two sequence types, including a newly described ST, and a non-typeable lineage. The use of wgMLST could differentiate each strain in a single clone and was used to establish temporal and geographical correlations among strains. Bayesian phylogenomic analysis suggests that the studied Brazilian population was co-introduced in the country with their host, approximately 60 years ago. Brazilian strains of S. agalactiae were shown to be heterogeneous in their genome sequences and were distributed in different regions of the country according to their genotype, which allowed the use of wgMLST analysis to track each outbreak event individually.
Hall, Miquette; Chattaway, Marie A.; Reuter, Sandra; Savin, Cyril; Strauch, Eckhard; Carniel, Elisabeth; Connor, Thomas; Van Damme, Inge; Rajakaruna, Lakshani; Rajendram, Dunstan; Jenkins, Claire; Thomson, Nicholas R.
2014-01-01
The genus Yersinia is a large and diverse bacterial genus consisting of human-pathogenic species, a fish-pathogenic species, and a large number of environmental species. Recently, the phylogenetic and population structure of the entire genus was elucidated through the genome sequence data of 241 strains encompassing every known species in the genus. Here we report the mining of this enormous data set to create a multilocus sequence typing-based scheme that can identify Yersinia strains to the species level to a level of resolution equal to that for whole-genome sequencing. Our assay is designed to be able to accurately subtype the important human-pathogenic species Yersinia enterocolitica to whole-genome resolution levels. We also report the validation of the scheme on 386 strains from reference laboratory collections across Europe. We propose that the scheme is an important molecular typing system to allow accurate and reproducible identification of Yersinia isolates to the species level, a process often inconsistent in nonspecialist laboratories. Additionally, our assay is the most phylogenetically informative typing scheme available for Y. enterocolitica. PMID:25339391
Wang, Tao; Li, Hua; Wang, Hua; Su, Jing
2015-04-16
The present study established a typing method with NotI-based pulsed-field gel electrophoresis (PFGE) and stress response gene schemed multilocus sequence typing (MLST) for 55 Oenococcus oeni strains isolated from six individual regions in China and two model strains PSU-1 (CP000411) and ATCC BAA-1163 (AAUV00000000). Seven stress response genes, cfa, clpL, clpP, ctsR, mleA, mleP and omrA, were selected for MLST testing, and positive selective pressure was detected for these genes. Furthermore, both methods separated the strains into two clusters. The PFGE clusters are correlated with the region, whereas the sequence types (STs) formed by the MLST confirm the two clusters identified by PFGE. In addition, the population structure was a mixture of evolutionary pathways, and the strains exhibited both clonal and panmictic characteristics. Copyright © 2015 Elsevier B.V. All rights reserved.
Bouchez, Valérie; Guglielmini, Julien; Dazas, Mélody; Landier, Annie; Toubiana, Julie; Guillot, Sophie; Criscuolo, Alexis; Brisse, Sylvain
2018-06-01
Bordetella pertussis causes whooping cough, a highly contagious respiratory disease that is reemerging in many world regions. The spread of antigen-deficient strains may threaten acellular vaccine efficacy. Dynamics of strain transmission are poorly defined because of shortcomings in current strain genotyping methods. Our objective was to develop a whole-genome genotyping strategy with sufficient resolution for local epidemiologic questions and sufficient reproducibility to enable international comparisons of clinical isolates. We defined a core genome multilocus sequence typing scheme comprising 2,038 loci and demonstrated its congruence with whole-genome single-nucleotide polymorphism variation. Most cases of intrafamilial groups of isolates or of multiple isolates recovered from the same patient were distinguished from temporally and geographically cocirculating isolates. However, epidemiologically unrelated isolates were sometimes nearly undistinguishable. We set up a publicly accessible core genome multilocus sequence typing database to enable global comparisons of B. pertussis isolates, opening the way for internationally coordinated surveillance.
Development of Multilocus Sequence Typing (MLST) for Mycoplasma synoviae.
El-Gazzar, Mohamed; Ghanem, Mostafa; McDonald, Kristina; Ferguson-Noel, Naola; Raviv, Ziv; Slemons, Richard D
2017-03-01
Mycoplasma synoviae (MS) is a poultry pathogen that has had an increasing incidence and economic impact over the past few years. Strain identification is necessary for outbreak investigation, infection source identification, and facilitating prevention and control as well as eradication efforts. Currently, a segment of the variable lipoprotein hemagglutinin A (vlhA) gene (420 bp) is the only target that is used for MS strain identification. A major limitation of this assay is that colonality of typed samples can only be inferred if their vlhA sequences are identical; however, if their sequences are different, the degree of relatedness is uncertain. In this study we propose a multilocus sequence typing (MLST) assay to further refine MS strain identification. After initial screening of 24 housekeeping genes as potential targets, seven genes were selected for the MLST assay. An internal segment (450-711 bp) from each of the seven genes was successfully amplified and sequenced from 58 different MS strains and field isolates (n = 30) or positive clinical samples (n = 28). The collective sequence of all seven gene segments (3960 bp total) was used for MS sequence typing. The 58 tested MS samples were typed into 30 different sequence types using the MLST assay and, coincidentally, all the samples were typed into 30 sequence types using the vlhA assay. However, the phylogenetic tree generated using the MLST data was more congruent to the epidemiologic information than was the tree generated by the vlhA assay. We suggest that the newly developed MLST assay and the vlhA assay could be used in tandem for MS typing. The MLST assay will be a valuable and more reliable tool for MS sequence typing, providing better understanding of the epidemiology of MS infection. This in turn will aid disease prevention, control, and eradication efforts.
Meats, Emma; Feil, Edward J.; Stringer, Suzanna; Cody, Alison J.; Goldstein, Richard; Kroll, J. Simon; Popovic, Tanja; Spratt, Brian G.
2003-01-01
A multilocus sequence typing (MLST) scheme has been developed for the unambiguous characterization of encapsulated and noncapsulated Haemophilus influenzae isolates. The sequences of internal fragments of seven housekeeping genes were determined for 131 isolates, comprising a diverse set of 104 serotype a, b, c, d, e, and f isolates and 27 noncapsulated isolates. Many of the encapsulated isolates had previously been characterized by multilocus enzyme electrophoresis (MLEE), and the validity of the MLST scheme was established by the very similar clustering of isolates obtained by these methods. Isolates of serotypes c, d, e, and f formed monophyletic groups on a dendrogram constructed from the differences in the allelic profiles of the isolates, whereas there were highly divergent lineages of both serotype a and b isolates. Noncapsulated isolates were distinct from encapsulated isolates and, with one exception, were within two highly divergent clusters. The relationships between the major lineages of encapsulated H. influenzae inferred from MLEE data could not be discerned on a dendrogram constructed from differences in the allelic profiles, but were apparent on a tree reconstructed from the concatenated nucleotide sequences. Recombination has not therefore completely eliminated phylogenetic signal, and in support of this, for encapsulated isolates, there was significant congruence between many of the trees reconstructed from the sequences of the seven individual loci. Congruence was less apparent for noncapsulated isolates, suggesting that the impact of recombination is greater among noncapsulated than encapsulated isolates. The H. influenzae MLST scheme is available at www.mlst.net, it allows any isolate to be compared with those in the MLST database, and (for encapsulated isolates) it assigns isolates to their phylogenetic lineage, via the Internet. PMID:12682154
Roisin, S; Gaudin, C; De Mendonça, R; Bellon, J; Van Vaerenbergh, K; De Bruyne, K; Byl, B; Pouseele, H; Denis, O; Supply, P
2016-06-01
We used a two-step whole genome sequencing analysis for resolving two concurrent outbreaks in two neonatal services in Belgium, caused by exfoliative toxin A-encoding-gene-positive (eta+) methicillin-susceptible Staphylococcus aureus with an otherwise sporadic spa-type t209 (ST-109). Outbreak A involved 19 neonates and one healthcare worker in a Brussels hospital from May 2011 to October 2013. After a first episode interrupted by decolonization procedures applied over 7 months, the outbreak resumed concomitantly with the onset of outbreak B in a hospital in Asse, comprising 11 neonates and one healthcare worker from mid-2012 to January 2013. Pan-genome multilocus sequence typing, defined on the basis of 42 core and accessory reference genomes, and single-nucleotide polymorphisms mapped on an outbreak-specific de novo assembly were used to compare 28 available outbreak isolates and 19 eta+/spa-type t209 isolates identified by routine or nationwide surveillance. Pan-genome multilocus sequence typing showed that the outbreaks were caused by independent clones not closely related to any of the surveillance isolates. Isolates from only ten cases with overlapping stays in outbreak A, including four pairs of twins, showed no or only a single nucleotide polymorphism variation, indicating limited sequential transmission. Detection of larger genomic variation, even from the start of the outbreak, pointed to sporadic seeding from a pre-existing exogenous source, which persisted throughout the whole course of outbreak A. Whole genome sequencing analysis can provide unique fine-tuned insights into transmission pathways of complex outbreaks even at their inception, which, with timely use, could valuably guide efforts for early source identification. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
A wild badger (Meles meles) with a severe nodular dermatitis was presented for post mortem examination. Numerous cutaneous granulomas with superficial ulceration were present especially on head, dorsum, and forearms were found at necropsy. Histopathological examination of the skin revealed a severe ...
Diversity of the Cronobacter Genus as Revealed by Multilocus Sequence Typing
Joseph, S.; Sonbol, H.; Hariri, S.; Desai, P.; McClelland, M.
2012-01-01
Cronobacter (previously known as Enterobacter sakazakii) is a diverse bacterial genus consisting of seven species: C. sakazakii, C. malonaticus, C. turicensis, C. universalis, C. muytjensii, C. dublinensis, and C. condimenti. In this study, we have used a multilocus sequence typing (MLST) approach employing the alleles of 7 genes (atpD, fusA, glnS, gltB, gyrB, infB, and ppsA; total length, 3,036 bp) to investigate the phylogenetic relationship of 325 Cronobacter species isolates. Strains were chosen on the basis of their species, geographic and temporal distribution, source, and clinical outcome. The earliest strain was isolated from milk powder in 1950, and the earliest clinical strain was isolated in 1953. The existence of seven species was supported by MLST. Intraspecific variation ranged from low diversity in C. sakazakii to extensive diversity within some species, such as C. muytjensii and C. dublinensis, including evidence of gene conversion between species. The predominant species from clinical sources was found to be C. sakazakii. C. sakazakii sequence type 4 (ST4) was the predominant sequence type of cerebral spinal fluid isolates from cases of meningitis. PMID:22785185
Dan, Tong; Liu, Wenjun; Sun, Zhihong; Lv, Qiang; Xu, Haiyan; Song, Yuqin; Zhang, Heping
2014-06-09
Economically, Leuconostoc lactis is one of the most important species in the genus Leuconostoc. It plays an important role in the food industry including the production of dextrans and bacteriocins. Currently, traditional molecular typing approaches for characterisation of this species at the isolate level are either unavailable or are not sufficiently reliable for practical use. Multilocus sequence typing (MLST) is a robust and reliable method for characterising bacterial and fungal species at the molecular level. In this study, a novel MLST protocol was developed for 50 L. lactis isolates from Mongolia and China. Sequences from eight targeted genes (groEL, carB, recA, pheS, murC, pyrG, rpoB and uvrC) were obtained. Sequence analysis indicated 20 different sequence types (STs), with 13 of them being represented by a single isolate. Phylogenetic analysis based on the sequences of eight MLST loci indicated that the isolates belonged to two major groups, A (34 isolates) and B (16 isolates). Linkage disequilibrium analyses indicated that recombination occurred at a low frequency in L. lactis, indicating a clonal population structure. Split-decomposition analysis indicated that intraspecies recombination played a role in generating genotypic diversity amongst isolates. Our results indicated that MLST is a valuable tool for typing L. lactis isolates that can be used for further monitoring of evolutionary changes and population genetics.
USDA-ARS?s Scientific Manuscript database
The increase in the consumption of fresh produce in the United States has correlated with a rise in the number of reported foodborne illnesses. To identify potential risk factors associated with post-harvest practices, the present study employed multilocus sequence typing (MLST) for the genotypic c...
USDA-ARS?s Scientific Manuscript database
Previous phylogenetic analyses of species of Streptomyces based on 16S rRNA gene sequences resulted in a statistically well-supported clade (100% bootstrap value) containing 8 species that exhibited very similar gross morphology in producing open looped (Retinaculum-Apertum) to spiral (Spira) chains...
Streptococcus mutans clonal variation revealed by multilocus sequence typing.
Nakano, Kazuhiko; Lapirattanakul, Jinthana; Nomura, Ryota; Nemoto, Hirotoshi; Alaluusua, Satu; Grönroos, Lisa; Vaara, Martti; Hamada, Shigeyuki; Ooshima, Takashi; Nakagawa, Ichiro
2007-08-01
Streptococcus mutans is the major pathogen of dental caries, a biofilm-dependent infectious disease, and occasionally causes infective endocarditis. S. mutans strains have been classified into four serotypes (c, e, f, and k). However, little is known about the S. mutans population, including the clonal relationships among strains of S. mutans, in relation to the particular clones that cause systemic diseases. To address this issue, we have developed a multilocus sequence typing (MLST) scheme for S. mutans. Eight housekeeping gene fragments were sequenced from each of 102 S. mutans isolates collected from the four serotypes in Japan and Finland. Between 14 and 23 alleles per locus were identified, allowing us theoretically to distinguish more than 1.2 x 10(10) sequence types. We identified 92 sequence types in these 102 isolates, indicating that S. mutans contains a diverse population. Whereas serotype c strains were widely distributed in the dendrogram, serotype e, f, and k strains were differentiated into clonal complexes. Therefore, we conclude that the ancestral strain of S. mutans was serotype c. No geographic specificity was identified. However, the distribution of the collagen-binding protein gene (cnm) and direct evidence of mother-to-child transmission were clearly evident. In conclusion, the superior discriminatory capacity of this MLST scheme for S. mutans may have important practical implications.
Bouvet, Philippe; Ferraris, Laurent; Dauphin, Brunhilde; Popoff, Michel-Robert; Butel, Marie Jose
2014-01-01
In 2002, an outbreak of necrotizing enterocolitis in a Canadian neonatal intensive care unit was associated with a proposed novel species of Clostridium, “Clostridium neonatale.” To date, there are no data about the isolation, identification, or clinical significance of this species. Additionally, C. neonatale has not been formally classified as a new species, rendering its identification challenging. Indeed, the C. neonatale 16S rRNA gene sequence shows high similarity to another Clostridium species involved in neonatal necrotizing enterocolitis, Clostridium butyricum. By performing a polyphasic study combining phylogenetic analysis (16S rRNA gene sequencing and multilocus sequence analysis) and phenotypic characterization with mass spectrometry, we demonstrated that C. neonatale is a new species within the Clostridium genus sensu stricto, for which we propose the name Clostridium neonatale sp. nov. Now that the status of C. neonatale has been clarified, matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) can be used for better differential identification of C. neonatale and C. butyricum clinical isolates. This is necessary to precisely define the role and clinical significance of C. neonatale, a species that may have been misidentified and underrepresented during previous neonatal necrotizing enterocolitis studies. PMID:25232167
Killgore, George; Thompson, Angela; Johnson, Stuart; Brazier, Jon; Kuijper, Ed; Pepin, Jacques; Frost, Eric H; Savelkoul, Paul; Nicholson, Brad; van den Berg, Renate J; Kato, Haru; Sambol, Susan P; Zukowski, Walter; Woods, Christopher; Limbago, Brandi; Gerding, Dale N; McDonald, L Clifford
2008-02-01
Using 42 isolates contributed by laboratories in Canada, The Netherlands, the United Kingdom, and the United States, we compared the results of analyses done with seven Clostridium difficile typing techniques: multilocus variable-number tandem-repeat analysis (MLVA), amplified fragment length polymorphism (AFLP), surface layer protein A gene sequence typing (slpAST), PCR-ribotyping, restriction endonuclease analysis (REA), multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE). We assessed the discriminating ability and typeability of each technique as well as the agreement among techniques in grouping isolates by allele profile A (AP-A) through AP-F, which are defined by toxinotype, the presence of the binary toxin gene, and deletion in the tcdC gene. We found that all isolates were typeable by all techniques and that discrimination index scores for the techniques tested ranged from 0.964 to 0.631 in the following order: MLVA, REA, PFGE, slpAST, PCR-ribotyping, MLST, and AFLP. All the techniques were able to distinguish the current epidemic strain of C. difficile (BI/027/NAP1) from other strains. All of the techniques showed multiple types for AP-A (toxinotype 0, binary toxin negative, and no tcdC gene deletion). REA, slpAST, MLST, and PCR-ribotyping all included AP-B (toxinotype III, binary toxin positive, and an 18-bp deletion in tcdC) in a single group that excluded other APs. PFGE, AFLP, and MLVA grouped two, one, and two different non-AP-B isolates, respectively, with their AP-B isolates. All techniques appear to be capable of detecting outbreak strains, but only REA and MLVA showed sufficient discrimination to distinguish strains from different outbreaks.
Michael DeGiorgio; John Syring; Andrew J. Eckert; Aaron Liston; Richard Cronn; David B. Neale; Noah A. Rosenberg
2014-01-01
Background: As it becomes increasingly possible to obtain DNA sequences of orthologous genes from diverse sets of taxa, species trees are frequently being inferred from multilocus data. However, the behavior of many methods for performing this inference has remained largely unexplored. Some methods have been proven to be consistent given certain evolutionary models,...
Tellapragada, Chaitanya; Kamthan, Aayushi; Shaw, Tushar; Ke, Vandana; Kumar, Subodh; Bhat, Vinod; Mukhopadhyay, Chiranjay
2016-01-01
There is a slow but steady rise in the case detection rates of melioidosis from various parts of the Indian sub-continent in the past two decades. However, the epidemiology of the disease in India and the surrounding South Asian countries remains far from well elucidated. Multi-locus sequence typing (MLST) is a useful epidemiological tool to study the genetic relatedness of bacterial isolates both with-in and across the countries. With this background, we studied the molecular epidemiology of 32 Burkholderia pseudomallei isolates (31 clinical and 1 soil isolate) obtained during 2006-2015 from various parts of south India using multi-locus sequencing typing and analysis. Of the 32 isolates included in the analysis, 30 (93.7%) had novel allelic profiles that were not reported previously. Sequence type (ST) 1368 (n = 15, 46.8%) with allelic profile (1, 4, 6, 4, 1, 1, 3) was the most common genotype observed. We did not observe a genotypic association of STs with geographical location, type of infection and year of isolation in the present study. Measure of genetic differentiation (FST) between Indian and the rest of world isolates was 0.14413. Occurrence of the same ST across three adjacent states of south India suggest the dispersion of B.pseudomallei across the south western coastal part of India with limited geographical clustering. However, majority of the STs reported from the present study remained as "outliers" on the eBURST "Population snapshot", suggesting the genetic diversity of Indian isolates from the Australasian and Southeast Asian isolates.
Li, Zhirong; Liu, Xiaolei; Zhao, Jianhong; Xu, Kaiyue; Tian, Tiantian; Yang, Jing; Qiang, Cuixin; Shi, Dongyan; Wei, Honglian; Sun, Suju; Cui, Qingqing; Li, Ruxin; Niu, Yanan; Huang, Bixing
2018-04-01
Clostridium difficile is the causative pathogen for antibiotic-related nosocomial diarrhea. For epidemiological study and identification of virulent clones, a new binary typing method was developed for C. difficile in this study. The usefulness of this newly developed optimized 10-loci binary typing method was compared with two widely used methods ribotyping and multilocus sequence typing (MLST) in 189 C. difficile samples. The binary typing, ribotyping and MLST typed the samples into 53 binary types (BTs), 26 ribotypes (RTs), and 33 MLST sequence types (STs), respectively. The typing ability of the binary method was better than that of either ribotyping or MLST expressed in Simpson Index (SI) at 0.937, 0.892 and 0.859, respectively. The ease of testing, portability and cost-effectiveness of the new binary typing would make it a useful typing alternative for outbreak investigations within healthcare facilities and epidemiological research. Copyright © 2018 Elsevier B.V. All rights reserved.
Multilocus sequence type profiles of Bacillus cereus isolates from infant formula in China.
Yang, Yong; Yu, Xiaofeng; Zhan, Li; Chen, Jiancai; Zhang, Yunyi; Zhang, Junyan; Chen, Honghu; Zhang, Zheng; Zhang, Yanjun; Lu, Yiyu; Mei, Lingling
2017-04-01
Bacillus cereus sensu stricto is an opportunistic foodborne pathogen. The multilocus sequence type (MLST) of 74 B. cereus isolated from 513 non-random infant formula in China was analyzed. Of 64 sequence types (STs) detected, 50 STs and 6 alleles were newly found in PubMLST database. All isolates except for one singleton (ST-1049), were classified into 7 clonal complexes (CC) by BURST (n-4), in which CC1 with core ancestral clone ST-26 was the largest group including 86% isolates, and CC2, 3, 9, 10 and 13 were first reported in China. MLST profiles of the isolates from 8 infant formula brands were compared. It was found the brands might be potentially tracked by the variety of STs, such as ST-1049 of singleton and ST-1062 of isolate from goat milk source, though they could not be easily tracked just by clonal complex types of the isolates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Multilocus Sequence Types of Campylobacter jejuni Isolates from Different Sources in Eastern China.
Zhang, Gong; Zhang, Xiaoyan; Hu, Yuanqing; Jiao, Xin-An; Huang, Jinlin
2015-09-01
Campylobacter jejuni is a major food-borne pathogen that causes human gastroenteritis in many developed countries. In our study, we applied multilocus sequence typing (MLST) technology to 167 C. jejuni isolates from diverse sources in Eastern China to examine their genetic diversity. MLST defined 94 sequence types (STs) belonging to 18 clonal complexes (CCs). Forty-five STs from 60 isolates (36%) and 22 alleles have not been previously documented in an international database. One hundred and two isolates, accounting for 61.1% of all isolates, belonged to eight clonal complexes. The eight major CCs were also the most common complexes from different sources. The most common ST type of isolates from human and food was ST-353. The dominant ST type in chicken and foods was ST-354. Among 21 STs that contained two or more different sources isolates, 15 STs contained human isolates and isolates from other sources, suggesting that potentially pathogenic strains are not restricted to specific lineages.
Two Atypical Cases of Kingella kingae Invasive Infection with Concomitant Human Rhinovirus Infection
Basmaci, Romain; Ilharreborde, Brice; Doit, Catherine; Presedo, Ana; Lorrot, Mathie; Alison, Marianne; Mazda, Keyvan; Bidet, Philippe
2013-01-01
We describe two atypical cases of Kingella kingae infection in children diagnosed by PCR, one case involving a soft tissue abscess and one case a femoral Brodie abscess. Both patients had concomitant human rhinovirus infection. K. kingae strains, isolated from an oropharyngeal swab, were characterized by multilocus sequence typing and rtxA sequencing. PMID:23784119
Chaloner, Gemma L.; Harrison, Timothy G.; Coyne, Karen P.; Aanensen, David M.; Birtles, Richard J.
2011-01-01
Bartonella henselae is one of the most common zoonotic agents acquired from companion animals (cats) in industrialized countries. Nonetheless, although the prevalence of infections in cats is high, the number of human cases reported is relatively low. One hypothesis for this discrepancy is that B. henselae strains vary in their zoonotic potential. To test this hypothesis, we employed structured sampling to explore the population structure of B. henselae in the United Kingdom and to determine the distribution of strains associated with zoonotic disease within this structure. A total of 118 B. henselae strains were delineated into 12 sequence types (STs) using multilocus sequence typing. We observed that most (85%) of the zoonosis-associated strains belonged to only three genotypes, i.e., ST2, ST5, and ST8. Conversely, most (74%) of the feline isolates belonged to ST4, ST6, and ST7. The difference in host association of ST2, ST5, and ST8 (zoonosis associated) and ST6 (feline) was statistically significant (P < 0.05), indicating that a few, uncommon STs were responsible for the majority of symptomatic human infections. PMID:21471345
Nunney, L; Elfekih, S; Stouthamer, R
2012-05-01
Microbial identification methods have evolved rapidly over the last few decades. One such method is multilocus sequence typing (MLST). MLST is a powerful tool for understanding the evolutionary dynamics of pathogens and to gain insight into their genetic diversity. We illustrate the importance of accurate typing by reporting on three problems that have arisen in the study of a single bacterial species, the plant pathogen Xylella fastidiosa. Two of these were particularly serious since they concerned contamination of important research material that has had detrimental consequences for Xylella research: the contamination of DNA used in the sequencing of an X. fastidiosa genome (Ann-1) with DNA from another X. fastidiosa strain, and the unrecognized mislabeling of a strain (Temecula1) distributed from a culture collection (ATCC). We advocate the routine use of MLST to define strains maintained in culture collections and emphasize the importance of confirming the purity of DNA submitted for sequencing. We also present a third example that illustrates the value of MLST in guiding the choice of taxonomic types. Beyond these situations, there is a strong case for MLST whenever an isolate is used experimentally, especially where genotypic differences are suspected to influence the outcome.
Pinho, Marcos D; Erol, Erdal; Ribeiro-Gonçalves, Bruno; Mendes, Catarina I; Carriço, João A; Matos, Sandra C; Preziuso, Silvia; Luebke-Becker, Antina; Wieler, Lothar H; Melo-Cristino, Jose; Ramirez, Mario
2016-08-17
The pathogenic role of beta-hemolytic Streptococcus dysgalactiae in the equine host is increasingly recognized. A collection of 108 Lancefield group C (n = 96) or L (n = 12) horse isolates recovered in the United States and in three European countries presented multilocus sequence typing (MLST) alleles, sequence types and emm types (only 56% of the isolates could be emm typed) that were, with few exceptions, distinct from those previously found in human Streptococcus dysgalactiae subsp. equisimilis. Characterization of a subset of horse isolates by multilocus sequence analysis (MLSA) and 16S rRNA gene sequence showed that most equine isolates could also be differentiated from S. dysgalactiae strains from other animal species, supporting the existence of a horse specific genomovar. Draft genome information confirms the distinctiveness of the horse genomovar and indicates the presence of potentially horse-specific virulence factors. While this genomovar represents most of the isolates recovered from horses, a smaller MLST and MLSA defined sub-population seems to be able to cause infections in horses, other animals and humans, indicating that transmission between hosts of strains belonging to this group may occur.
Genotyping of Indian antigenic, vaccine, and field Brucella spp. using multilocus sequence typing.
Shome, Rajeswari; Krithiga, Natesan; Shankaranarayana, Padmashree B; Jegadesan, Sankarasubramanian; Udayakumar S, Vishnu; Shome, Bibek Ranjan; Saikia, Girin Kumar; Sharma, Narendra Kumar; Chauhan, Harshad; Chandel, Bharat Singh; Jeyaprakash, Rajendhran; Rahman, Habibur
2016-03-31
Brucellosis is one of the most important zoonotic diseases that affects multiple livestock species and causes great economic losses. The highly conserved genomes of Brucella, with > 90% homology among species, makes it important to study the genetic diversity circulating in the country. A total of 26 Brucella spp. (4 reference strains and 22 field isolates) and 1 B. melitensis draft genome sequence from India (B. melitensis Bm IND1) were included for sequence typing. The field isolates were identified by biochemical tests and confirmed by both conventional and quantitative polymerase chain reaction (qPCR) targeting bcsp 31Brucella genus-specific marker. Brucella speciation and biotyping was done by Bruce ladder, probe qPCR, and AMOS PCRs, respectively, and genotyping was done by multilocus sequence typing (MLST). The MLST typing of 27 Brucella spp. revealed five distinct sequence types (STs); the B. abortus S99 reference strain and 21 B. abortus field isolates belonged to ST1. On the other hand, the vaccine strain B. abortus S19 was genotyped as ST5. Similarly, B. melitensis 16M reference strain and one B. melitensis field isolate were grouped into ST7. Another B. melitensis field isolate belonged to ST8 (draft genome sequence from India), and only B. suis 1330 reference strain was found to be ST14. The sequences revealed genetic similarity of the Indian strains to the global reference and field strains. The study highlights the usefulness of MLST for typing of field isolates and validation of reference strains used for diagnosis and vaccination against brucellosis.
Blanchard, Adam M; Jolley, Keith A; Maiden, Martin C J; Coffey, Tracey J; Maboni, Grazieli; Staley, Ceri E; Bollard, Nicola J; Warry, Andrew; Emes, Richard D; Davies, Peers L; Tötemeyer, Sabine
2018-01-01
Dichelobacter nodosus ( D. nodosus ) is the causative pathogen of ovine footrot, a disease that has a significant welfare and financial impact on the global sheep industry. Previous studies into the phylogenetics of D. nodosus have focused on Australia and Scandinavia, meaning the current diversity in the United Kingdom (U.K.) population and its relationship globally, is poorly understood. Numerous epidemiological methods are available for bacterial typing; however, few account for whole genome diversity or provide the opportunity for future application of new computational techniques. Multilocus sequence typing (MLST) measures nucleotide variations within several loci with slow accumulation of variation to enable the designation of allele numbers to determine a sequence type. The usage of whole genome sequence data enables the application of MLST, but also core and whole genome MLST for higher levels of strain discrimination with a negligible increase in experimental cost. An MLST database was developed alongside a seven loci scheme using publically available whole genome data from the sequence read archive. Sequence type designation and strain discrimination was compared to previously published data to ensure reproducibility. Multiple D. nodosus isolates from U.K. farms were directly compared to populations from other countries. The U.K. isolates define new clades within the global population of D. nodosus and predominantly consist of serogroups A, B and H, however serogroups C, D, E, and I were also found. The scheme is publically available at https://pubmlst.org/dnodosus/.
2014-01-01
Background Economically, Leuconostoc lactis is one of the most important species in the genus Leuconostoc. It plays an important role in the food industry including the production of dextrans and bacteriocins. Currently, traditional molecular typing approaches for characterisation of this species at the isolate level are either unavailable or are not sufficiently reliable for practical use. Multilocus sequence typing (MLST) is a robust and reliable method for characterising bacterial and fungal species at the molecular level. In this study, a novel MLST protocol was developed for 50 L. lactis isolates from Mongolia and China. Results Sequences from eight targeted genes (groEL, carB, recA, pheS, murC, pyrG, rpoB and uvrC) were obtained. Sequence analysis indicated 20 different sequence types (STs), with 13 of them being represented by a single isolate. Phylogenetic analysis based on the sequences of eight MLST loci indicated that the isolates belonged to two major groups, A (34 isolates) and B (16 isolates). Linkage disequilibrium analyses indicated that recombination occurred at a low frequency in L. lactis, indicating a clonal population structure. Split-decomposition analysis indicated that intraspecies recombination played a role in generating genotypic diversity amongst isolates. Conclusions Our results indicated that MLST is a valuable tool for typing L. lactis isolates that can be used for further monitoring of evolutionary changes and population genetics. PMID:24912963
Multilocus sequence typing reveals a novel subspeciation of Lactobacillus delbrueckii.
Tanigawa, Kana; Watanabe, Koichi
2011-03-01
Currently, the species Lactobacillus delbrueckii is divided into four subspecies, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. bulgaricus, L. delbrueckii subsp. indicus and L. delbrueckii subsp. lactis. These classifications were based mainly on phenotypic identification methods and few studies have used genotypic identification methods. As a result, these subspecies have not yet been reliably delineated. In this study, the four subspecies of L. delbrueckii were discriminated by phenotype and by genotypic identification [amplified-fragment length polymorphism (AFLP) and multilocus sequence typing (MLST)] methods. The MLST method developed here was based on the analysis of seven housekeeping genes (fusA, gyrB, hsp60, ileS, pyrG, recA and recG). The MLST method had good discriminatory ability: the 41 strains of L. delbrueckii examined were divided into 34 sequence types, with 29 sequence types represented by only a single strain. The sequence types were divided into eight groups. These groups could be discriminated as representing different subspecies. The results of the AFLP and MLST analyses were consistent. The type strain of L. delbrueckii subsp. delbrueckii, YIT 0080(T), was clearly discriminated from the other strains currently classified as members of this subspecies, which were located close to strains of L. delbrueckii subsp. lactis. The MLST scheme developed in this study should be a useful tool for the identification of strains of L. delbrueckii to the subspecies level.
Chassain, Benoît; Lemée, Ludovic; Didi, Jennifer; Thiberge, Jean-Michel; Brisse, Sylvain; Pons, Jean-Louis
2012-01-01
Staphylococcus lugdunensis is recognized as one of the major pathogenic species within the genus Staphylococcus, even though it belongs to the coagulase-negative group. A multilocus sequence typing (MLST) scheme was developed to study the genetic relationships and population structure of 87 S. lugdunensis isolates from various clinical and geographic sources by DNA sequence analysis of seven housekeeping genes (aroE, dat, ddl, gmk, ldh, recA, and yqiL). The number of alleles ranged from four (gmk and ldh) to nine (yqiL). Allelic profiles allowed the definition of 20 different sequence types (STs) and five clonal complexes. The 20 STs lacked correlation with geographic source. Isolates recovered from hematogenic infections (blood or osteoarticular isolates) or from skin and soft tissue infections did not cluster in separate lineages. Penicillin-resistant isolates clustered mainly in one clonal complex, unlike glycopeptide-tolerant isolates, which did not constitute a distinct subpopulation within S. lugdunensis. Phylogenies from the sequences of the seven individual housekeeping genes were congruent, indicating a predominantly mutational evolution of these genes. Quantitative analysis of the linkages between alleles from the seven loci revealed a significant linkage disequilibrium, thus confirming a clonal population structure for S. lugdunensis. This first MLST scheme for S. lugdunensis provides a new tool for investigating the macroepidemiology and phylogeny of this unusually virulent coagulase-negative Staphylococcus. PMID:22785196
Multilocus sequence typing scheme for the Mycobacterium abscessus complex.
Macheras, Edouard; Konjek, Julie; Roux, Anne-Laure; Thiberge, Jean-Michel; Bastian, Sylvaine; Leão, Sylvia Cardoso; Palaci, Moises; Sivadon-Tardy, Valérie; Gutierrez, Cristina; Richter, Elvira; Rüsch-Gerdes, Sabine; Pfyffer, Gaby E; Bodmer, Thomas; Jarlier, Vincent; Cambau, Emmanuelle; Brisse, Sylvain; Caro, Valérie; Rastogi, Nalin; Gaillard, Jean-Louis; Heym, Beate
2014-01-01
We developed a multilocus sequence typing (MLST) scheme for Mycobacterium abscessus sensu lato, based on the partial sequencing of seven housekeeping genes: argH, cya, glpK, gnd, murC, pta and purH. This scheme was used to characterize a collection of 227 isolates recovered between 1994 and 2010 in France, Germany, Switzerland and Brazil. We identified 100 different sequence types (STs), which were distributed into three groups on the tree obtained by concatenating the sequences of the seven housekeeping gene fragments (3576bp): the M. abscessus sensu stricto group (44 STs), the "M. massiliense" group (31 STs) and the "M. bolletii" group (25 STs). SplitTree analysis showed a degree of intergroup lateral transfers. There was also evidence of lateral transfer events involving rpoB. The most prevalent STs in our collection were ST1 (CC5; 20 isolates) and ST23 (CC3; 31 isolates). Both STs were found in Europe and Brazil, and the latter was implicated in a large post-surgical procedure outbreak in Brazil. Respiratory isolates from patients with cystic fibrosis belonged to a large variety of STs; however, ST2 was predominant in this group of patients. Our MLST scheme, publicly available at www.pasteur.fr/mlst, offers investigators a valuable typing tool for M. abscessus sensu lato in future epidemiological studies throughout the world. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Dan, Tong; Liu, Wenjun; Song, Yuqin; Xu, Haiyan; Menghe, Bilige; Zhang, Heping; Sun, Zhihong
2015-05-20
Lactobacillus fermentum is economically important in the production and preservation of fermented foods. A repeatable and discriminative typing method was devised to characterize L. fermentum at the molecular level. The multilocus sequence typing (MLST) scheme developed was based on analysis of the internal sequence of 11 housekeeping gene fragments (clpX, dnaA, dnaK, groEL, murC, murE, pepX, pyrG, recA, rpoB, and uvrC). MLST analysis of 203 isolates of L. fermentum from Mongolia and seven provinces/ autonomous regions in China identified 57 sequence types (ST), 27 of which were represented by only a single isolate, indicating high genetic diversity. Phylogenetic analyses based on the sequence of the 11 housekeeping gene fragments indicated that the L. fermentum isolates analyzed belonged to two major groups. A standardized index of association (I A (S)) indicated a weak clonal population structure in L. fermentum. Split decomposition analysis indicated that recombination played an important role in generating the genetic diversity observed in L. fermentum. The results from the minimum spanning tree strongly suggested that evolution of L. fermentum STs was not correlated with geography or food-type. The MLST scheme developed will be valuable for further studies on the evolution and population structure of L. fermentum isolates used in food products.
[Standard algorithm of molecular typing of Yersinia pestis strains].
Eroshenko, G A; Odinokov, G N; Kukleva, L M; Pavlova, A I; Krasnov, Ia M; Shavina, N Iu; Guseva, N P; Vinogradova, N A; Kutyrev, V V
2012-01-01
Development of the standard algorithm of molecular typing of Yersinia pestis that ensures establishing of subspecies, biovar and focus membership of the studied isolate. Determination of the characteristic strain genotypes of plague infectious agent of main and nonmain subspecies from various natural foci of plague of the Russian Federation and the near abroad. Genotyping of 192 natural Y. pestis strains of main and nonmain subspecies was performed by using PCR methods, multilocus sequencing and multilocus analysis of variable tandem repeat number. A standard algorithm of molecular typing of plague infectious agent including several stages of Yersinia pestis differentiation by membership: in main and nonmain subspecies, various biovars of the main subspecies, specific subspecies; natural foci and geographic territories was developed. The algorithm is based on 3 typing methods--PCR, multilocus sequence typing and multilocus analysis of variable tandem repeat number using standard DNA targets--life support genes (terC, ilvN, inv, glpD, napA, rhaS and araC) and 7 loci of variable tandem repeats (ms01, ms04, ms06, ms07, ms46, ms62, ms70). The effectiveness of the developed algorithm is shown on the large number of natural Y. pestis strains. Characteristic sequence types of Y. pestis strains of various subspecies and biovars as well as MLVA7 genotypes of strains from natural foci of plague of the Russian Federation and the near abroad were established. The application of the developed algorithm will increase the effectiveness of epidemiologic monitoring of plague infectious agent, and analysis of epidemics and outbreaks of plague with establishing the source of origin of the strain and routes of introduction of the infection.
Hughes, L A; Wigley, P; Bennett, M; Chantrey, J; Williams, N
2010-10-01
Recent studies have suggested that Salmonella Typhimurium strains associated with mortality in UK garden birds are significantly different from strains that cause disease in humans and livestock and that wild bird strains may be host adapted. However, without further genomic characterization of these strains, it is not possible to determine whether they are host adapted. The aim of this study was to characterize a representative sample of Salm. Typhimurium strains detected in wild garden birds using multi-locus sequence typing (MLST)to investigate evolutionary relationships between them. Multi-locus sequence typing was performed on nine Salm. Typhimurium strains isolated from wild garden birds. Two sequence types were identified, the most common of which was ST568. Examination of the public Salmonella enterica MLST database revealed that only three other ST568 isolates had been cultured from a human in Scotland. Two further isolates of Salm. Typhimurium were determined to be ST19. Results of MLST analysis suggest that there is a predominant strain of Salm. Typhimurium circulating among garden bird populations in the United Kingdom, which is rarely detected in other species, supporting the hypothesis that this strain is host adapted. Host-pathogen evolution is often assumed to lead to pathogens becoming less virulent to avoid the death of their host; however, infection with ST568 led to high mortality rates among the wild birds examined, which were all found dead at wild bird-feeding stations. We hypothesize that by attracting unnaturally high densities of birds, wild bird-feeding stations may facilitate the transmission of ST568 between wild birds, therefore reducing the evolutionary cost of this pathogen killing its host, resulting in a host-adapted strain with increased virulence.
Enterobacter muelleri sp. nov., isolated from the rhizosphere of Zea mays.
Kämpfer, Peter; McInroy, John A; Glaeser, Stefanie P
2015-11-01
A beige-pigmented, oxidase-negative bacterial strain (JM-458T), isolated from a rhizosphere sample, was studied using a polyphasic taxonomic approach. Cells of the isolate were rod-shaped and stained Gram-negative. A comparison of the 16S rRNA gene sequence of strain JM-458T with sequences of the type strains of closely related species of the genus Enterobacter showed that it shared highest sequence similarity with Enterobacter mori (98.7 %), Enterobacter hormaechei (98.3 %), Enterobacter cloacae subsp. dissolvens, Enterobacter ludwigii and Enterobacter asburiae (all 98.2 %). 16S rRNA gene sequence similarities to all other Enterobacter species were below 98 %. Multilocus sequence analysis based on concatenated partial rpoB, gyrB, infB and atpD gene sequences showed a clear distinction of strain JM-458T from its closest related type strains. The fatty acid profile of the strain consisted of C16 : 0, C17 : 0 cyclo, iso-C15 : 0 2-OH/C16 : 1ω7c and C18 : 1ω7c as major components. DNA-DNA hybridizations between strain JM-458T and the type strains of E. mori, E. hormaechei and E. ludwigii resulted in relatedness values of 29 % (reciprocal 25 %), 24 % (reciprocal 43 %) and 16 % (reciprocal 17 %), respectively. DNA-DNA hybridization results together with multilocus sequence analysis results and differential biochemical and chemotaxonomic properties showed that strain JM-458T represents a novel species of the genus Enterobacter, for which the name Enterobacter muelleri sp. nov. is proposed. The type strain is JM-458T ( = DSM 29346T = CIP 110826T = LMG 28480T = CCM 8546T).
Bull, Carolee T; Clarke, Christopher R; Cai, Rongman; Vinatzer, Boris A; Jardini, Teresa M; Koike, Steven T
2011-07-01
Since 2002, severe leaf spotting on parsley (Petroselinum crispum) has occurred in Monterey County, CA. Either of two different pathovars of Pseudomonas syringae sensu lato were isolated from diseased leaves from eight distinct outbreaks and once from the same outbreak. Fragment analysis of DNA amplified between repetitive sequence polymerase chain reaction; 16S rDNA sequence analysis; and biochemical, physiological, and host range tests identified the pathogens as Pseudomonas syringae pv. apii and P. syringae pv. coriandricola. Koch's postulates were completed for the isolates from parsley, and host range tests with parsley isolates and pathotype strains demonstrated that P. syringae pv. apii and P. syringae pv. coriandricola cause leaf spot diseases on parsley, celery, and coriander or cilantro. In a multilocus sequence typing (MLST) approach, four housekeeping gene fragments were sequenced from 10 strains isolated from parsley and 56 pathotype strains of P. syringae. Allele sequences were uploaded to the Plant-Associated Microbes Database and a phylogenetic tree was built based on concatenated sequences. Tree topology directly corresponded to P. syringae genomospecies and P. syringae pv. apii was allocated appropriately to genomospecies 3. This is the first demonstration that MLST can accurately allocate new pathogens directly to P. syringae sensu lato genomospecies. According to MLST, P. syringae pv. coriandricola is a member of genomospecies 9, P. cannabina. In a blind test, both P. syringae pv. coriandricola and P. syringae pv. apii isolates from parsley were correctly identified to pathovar. In both cases, MLST described diversity within each pathovar that was previously unknown.
First isolation of Actinobacillus genomospecies 2 in Japan.
Murakami, Miyuki; Shimonishi, Yoshimasa; Hobo, Seiji; Niwa, Hidekazu; Ito, Hiroya
2016-05-03
We describe here the first isolation of Actinobacillus genomospecies 2 in Japan. The isolate was found in a septicemic foal and characterized by phenotypic and genetic analyses, with the latter consisting of 16S rDNA nucleotide sequence analysis plus multilocus sequence analysis using three housekeeping genes, recN, rpoA and thdF, that have been proposed for use as a genomic tool in place of DNA-DNA hybridization.
Clonality and serotypes of Streptococcus mutans among children by multilocus sequence typing
Momeni, Stephanie S.; Whiddon, Jennifer; Cheon, Kyounga; Moser, Stephen A.; Childers, Noel K.
2015-01-01
Studies using multilocus sequence typing (MLST) have demonstrated that Streptococcus mutans isolates are genetically diverse. Our laboratory previously demonstrated clonality of S. mutans using MLST but could not discount the possibility of sampling bias. In this study, the clonality of randomly selected S. mutans plaque isolates from African American children was examined using MLST. Serotype and presence of collagen-binding proteins (CBP) cnm/cbm were also assessed. One hundred S. mutans isolates were randomly selected for MLST analysis. Sequence analysis was performed and phylogenetic trees were generated using START2 and MEGA. Thirty-four sequence types (ST) were identified of which 27 were unique to this population. Seventy-five percent of the isolates clustered into 16 clonal groups. Serotypes observed were c (n=84), e (n=3), and k (n=11). The prevalence of S. mutans isolates serotype k was notably high at 17.5%. All isolates were cnm/cbm negative. The clonality of S. mutans demonstrated in this study illustrates the importance of localized populations studies and are consistent with transmission. The prevalence of serotype k, a recently proposed systemic pathogen, observed in this study is higher than reported in most populations and is the first report of S. mutans serotype k in a US population. PMID:26443288
Platonov, A E; Mironov, K O; Iatsyshina, S B; Koroleva, I S; Platonova, O V; Gushchin, A E; Shipulin, G A
2003-01-01
Haemophilius influenzae, type b (Hib) bacteria, were genotyped by multilocus sequence typing (MLST) using 5 loci (adk, fucK, mdh, pgi, recA). 42 Moscow Hib strains (including 38 isolates form cerebrospinal fluid of children, who had purulent meningitis in 1999-2001, and 4 strains isolated from healthy carriers of Hib), as well as 2 strains from Yekaterinburg were studied. In MLST a strain is characterized, by alleles and their combinations (an allele profile) referred to also as sequence-type (ST). 9 Sts were identified within the Russian Hib bacteria: ST-1 was found in 25 strains (57%), ST-12 was found in 8 strains (18%), ST-11 was found in 4 strains (9%) and ST-15 was found in 2 strains (4.5%); all other STs strains (13, 14, 16, 17, 51) were found in isolated cases (2.3%). A comparison of allelic profiles and of nucleotide sequences showed that 93% of Russian isolates, i.e. strain with ST-1, 11, 12, 13, 15 and 17, belong to one and the same clonal complex. 2 isolates from Norway and Sweden from among 7 foreign Hib strains studied up to now can be described as belonging to the same clonal complex; 5 Hib strains were different from the Russian ones.
Otero, Verónica; Rodríguez-Calleja, José-María; Otero, Andrés; García-López, María-Luisa
2013-01-01
A collection of 81 isolates of enteropathogenic Escherichia coli (EPEC) was obtained from samples of bulk tank sheep milk (62 isolates), ovine feces (4 isolates), sheep farm environment (water, 4 isolates; air, 1 isolate), and human stool samples (9 isolates). The strains were considered atypical EPEC organisms, carrying the eae gene without harboring the pEAF plasmid. Multilocus sequence typing (MLST) was carried out with seven housekeeping genes and 19 sequence types (ST) were detected, with none of them having been previously reported for atypical EPEC. The most frequent ST included 41 strains isolated from milk and human stool samples. Genetic typing by pulsed-field gel electrophoresis (PFGE) resulted in 57 patterns which grouped in 24 clusters. Comparison of strains isolated from the different samples showed phylogenetic relationships between milk and human isolates and also between milk and water isolates. The results obtained show a possible risk for humans due to the presence of atypical EPEC in ewes' milk and suggest a transmission route for this emerging pathogen through contaminated water. PMID:23872571
Bernhardt, A; Sedlacek, L; Wagner, S; Schwarz, C; Würstl, B; Tintelnot, K
2013-12-01
Scedosporium and Pseudallescheria species are the second most common lung-colonising fungi in cystic fibrosis (CF) patients. For epidemiological reasons it is important to trace sources of infection, routes of transmission and to determine whether these fungi are transient or permanent colonisers of the respiratory tract. Molecular typing methods like multilocus sequence typing (MLST) help provide this data. Clinical isolates of the P. boydii complex (including S. apiospermum and P. boydii) from CF patients in different regions of Germany were studied using MLST. Five gene loci, ACT, CAL, RPB2, BT2 and SOD2, were analysed. The S. apiospermum isolates from 34 patients were assigned to 32 sequence types (STs), and the P. boydii isolates from 14 patients to 8 STs. The results revealed that patients can be colonised by individual strains for years. The MLST scheme developed for S. apiospermum and P. boydii is a highly effective tool for epidemiologic studies worldwide. The MLST data are accessible at http://mlst.mycologylab.org/. Copyright © 2013 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Klein, Günter
2011-07-01
Bacillus cereus var. toyoi strain NCIMB 40112 (Toyocerin), a probiotic authorized in the European Union as feed additive for swine, bovines, poultry, and rabbits, was characterized by DNA fingerprinting applying pulsed-field gel electrophoresis and multilocus sequence typing and was compared with reference strains (of clinical and environmental origins). The probiotic strain was clearly characterized by pulsed-field gel electrophoresis using the restriction enzymes Apa I and Sma I resulting in unique DNA patterns. The comparison to the clinical reference strain B. cereus DSM 4312 was done with the same restriction enzymes, and again a clear differentiation of the two strains was possible by the resulting DNA patterns. The use of the restriction enzymes Apa I and Sma I is recommended for further studies. Furthermore, multilocus sequence typing analysis revealed a sequence type (ST 111) that was different from all known STs of B. cereus strains from food poisoning incidents. Thus, a strain characterization and differentiation from food poisoning strains for the probiotic strain was possible. Copyright ©, International Association for Food Protection
Marco, Jorge D; Bhutto, Abdul M; Soomro, Farooq R; Baloch, Javed H; Barroso, Paola A; Kato, Hirotomo; Uezato, Hiroshi; Katakura, Ken; Korenaga, Masataka; Nonaka, Shigeo; Hashiguchi, Yoshihisa
2006-08-01
Seventeen Leishmania stocks isolated from cutaneous lesions of Pakistani patients were studied by multilocus enzyme electrophoresis and by polymerase chain reaction amplification and sequencing of the cytochrome b (Cyt b) gene. Eleven stocks that expressed nine zymodemes were assigned to L. (Leishmania) major. All of them were isolated from patients in the lowlands of Larkana district and Sibi city in Sindh and Balochistan provinces, respectively. The remaining six, distributed in two zymodemes (five and one), isolated from the highland of Quetta city, Balochistan, were identified as L. (L.) tropica. The same result at species level was obtained by the Cyt b sequencing for all the stocks examined. No clear-cut association between the clinical features (wet or dry type lesions) and the Leishmania species involved was found. Leishmania (L.) major was highly polymorphic compared with L. (L.) tropica. This difference may be explained by the fact that humans may act as a sole reservoir of L. (L.) tropica in anthroponotic cycles; however, many wild mammals can be reservoirs of L. (L.) major in zoonotic cycles.
Prolonged and mixed non-O157 Escherichia coli infection in an Australian household.
Staples, M; Graham, R M A; Doyle, C J; Smith, H V; Jennison, A V
2012-05-01
An Australian family was identified through a Public Health follow up on a Shiga-toxigenic Escherichia coli (STEC) positive bloody diarrhoea case, with three of the four family members experiencing either symptomatic or asymptomatic STEC shedding. Bacterial isolates were submitted to stx sequence sub-typing, multi-locus variable number tandem repeat analysis (MLVA), multi-locus sequence typing (MLST) and binary typing. The analysis revealed that there were multiple strains of STEC being shed by the family members, with similar virulence gene profiles and the same serogroup but differing in their MLVA and MLST profiles. This study illustrates the potentially complicated nature of non-O157 STEC infections and the importance of molecular epidemiology in understanding disease clusters. © 2012 QUEENSLAND HEALTH. Clinical Microbiology and Infection © 2012 European Society of Clinical Microbiology and Infectious Diseases.
Reimer, Aleisha; Verghese, Bindhu; Lok, Mei; Ziegler, Jennifer; Farber, Jeffrey; Pagotto, Franco; Graham, Morag; Nadon, Celine A.
2012-01-01
Human listeriosis outbreaks in Canada have been predominantly caused by serotype 1/2a isolates with highly similar pulsed-field gel electrophoresis (PFGE) patterns. Multilocus sequence typing (MLST) and multi-virulence-locus sequence typing (MVLST) each identified a diverse population of Listeria monocytogenes isolates, and within that, both methods had congruent subtypes that substantiated a predominant clone (clonal complex 8; virulence type 59; proposed epidemic clone 5 [ECV]) that has been causing human illness across Canada for more than 2 decades. PMID:22337989
Rapid Detection & Identification of Bacillus Species using MALDI-TOF/TOF and Biomarker Database
2006-06-01
rRNA sequence analysis. Multilocus enzyme electrophoresis ( MEE ) and comparative DNA sequence analysis suggest that they may represent a single species...adaptation of the MEE method [63] but with greater discrimination [64]. All of these new PCR-based subtyping methods are certainly superior and more...Demirev, P.A., Lin, J.S., Pineda , F.J., and Fenselau, C. (2001). Bioinformatics and mass spectrometry for microorganism identification: proteome-wide
First isolation of Actinobacillus genomospecies 2 in Japan
MURAKAMI, Miyuki; SHIMONISHI, Yoshimasa; HOBO, Seiji; NIWA, Hidekazu; ITO, Hiroya
2015-01-01
We describe here the first isolation of Actinobacillus genomospecies 2 in Japan. The isolate was found in a septicemic foal and characterized by phenotypic and genetic analyses, with the latter consisting of 16S rDNA nucleotide sequence analysis plus multilocus sequence analysis using three housekeeping genes, recN, rpoA and thdF, that have been proposed for use as a genomic tool in place of DNA-DNA hybridization. PMID:26668165
Doroghazi, J. R.; Ju, K.-S.; Metcalf, W. W.
2014-01-01
In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp. albus NRRL B-1811T forms a cluster with five other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these other species, including Streptomyces almquistii NRRL B-1685T, Streptomyces flocculus NRRL B-2465T, Streptomyces gibsonii NRRL B-1335T and Streptomyces rangoonensis NRRL B-12378T are quite similar. This cluster is of particular taxonomic interest because Streptomyces albus is the type species of the genus Streptomyces. The related strains were subjected to multilocus sequence analysis (MLSA) utilizing partial sequences of the housekeeping genes atpD, gyrB, recA, rpoB and trpB and confirmation of previously reported phenotypic characteristics. The five strains formed a coherent cluster supported by a 100 % bootstrap value in phylogenetic trees generated from sequence alignments prepared by concatenating the sequences of the housekeeping genes, and identical tree topology was observed using various different tree-making algorithms. Moreover, all but one strain, S. flocculus NRRL B-2465T, exhibited identical sequences for all of the five housekeeping gene loci sequenced, but NRRL B-2465T still exhibited an MLSA evolutionary distance of 0.005 from the other strains, a value that is lower than the 0.007 MLSA evolutionary distance threshold proposed for species-level relatedness. These data support a proposal to reclassify S. almquistii, S. flocculus, S. gibsonii and S. rangoonensis as later heterotypic synonyms of S. albus with NRRL B-1811T as the type strain. The MLSA sequence database also demonstrated utility for quickly and conclusively confirming that numerous strains within the ARS Culture Collection had been previously misidentified as subspecies of S. albus and that Streptomyces albus subsp. pathocidicus should be redescribed as a novel species, Streptomyces pathocidini sp. nov., with the type strain NRRL B-24287T. PMID:24277863
Didi, Jennifer; Lemée, Ludovic; Gibert, Laure; Pons, Jean-Louis
2014-01-01
Staphylococcus lugdunensis is an emergent virulent coagulase-negative staphylococcus responsible for severe infections similar to those caused by Staphylococcus aureus. To understand its potentially pathogenic capacity and have further detailed knowledge of the molecular traits of this organism, 93 isolates from various geographic origins were analyzed by multi-virulence-locus sequence typing (MVLST), targeting seven known or putative virulence-associated loci (atlLR2, atlLR3, hlb, isdJ, SLUG_09050, SLUG_16930, and vwbl). The polymorphisms of the putative virulence-associated loci were moderate and comparable to those of the housekeeping genes analyzed by multilocus sequence typing (MLST). However, the MVLST scheme generated 43 virulence types (VTs) compared to 20 sequence types (STs) based on MLST, indicating that MVLST was significantly more discriminating (Simpson's index [D], 0.943). No hypervirulent lineage or cluster specific to carriage strains was defined. The results of multilocus sequence analysis of known and putative virulence-associated loci are consistent with a clonal population structure for S. lugdunensis, suggesting a coevolution of these genes with housekeeping genes. Indeed, the nonsynonymous to synonymous evolutionary substitutions (dN/dS) ratio, the Tajima's D test, and Single-likelihood ancestor counting (SLAC) analysis suggest that all virulence-associated loci were under negative selection, even atlLR2 (AtlL protein) and SLUG_16930 (FbpA homologue), for which the dN/dS ratios were higher. In addition, this analysis of virulence-associated loci allowed us to propose a trilocus sequence typing scheme based on the intragenic regions of atlLR3, isdJ, and SLUG_16930, which is more discriminant than MLST for studying short-term epidemiology and further characterizing the lineages of the rare but highly pathogenic S. lugdunensis. PMID:25078912
Gharout-Sait, Alima; Touati, Abdelaziz; Guillard, Thomas; Brasme, Lucien; de Champs, Christophe
2015-01-01
In this study, 922 consecutive non-duplicate clinical isolates of Enterobacteriaceae obtained from hospitalized and non-hospitalized patients at Bejaia, Algeria were analyzed for AmpC-type β-lactamases production. The ampC genes and their genetic environment were characterized using polymerase chain reaction (PCR) and sequencing. Plasmid incompatibility groups were determined by using PCR-based replicon typing. Phylogenetic grouping and multilocus sequence typing were determined for molecular typing of the plasmid-mediated AmpC (pAmpC) isolates. Of the isolates, 15 (1.6%) were identified as AmpC producers including 14 CMY-4-producing isolates and one DHA-1-producing Klebsiella pneumoniae. All AmpC-producing isolates co-expressed the broad-spectrum TEM-1 β-lactamase and three of them co-produced CTX-M and/or SHV-12 ESBL. Phylogenetic grouping and virulence genotyping of the E. coli isolates revealed that most of them belonged to groups D and B1. Multilocus sequence typing analysis of K. pneumoniae isolates identified four different sequence types (STs) with two new sequences: ST1617 and ST1618. Plasmid replicon typing indicates that blaCMY-4 gene was located on broad host range A/C plasmid, while LVPK replicon was associated with blaDHA-1. All isolates carrying blaCMY-4 displayed the transposon-like structures ISEcp1/ΔISEcp1-blaCMY-blc-sugE. Our study showed that CMY-4 was the main pAmpC in the Enterobacteriaceae isolates in Algeria. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.
Shahin, Arwa; Smulders, Marinus J. M.; van Tuyl, Jaap M.; Arens, Paul; Bakker, Freek T.
2014-01-01
Next Generation Sequencing (NGS) may enable estimating relationships among genotypes using allelic variation of multiple nuclear genes simultaneously. We explored the potential and caveats of this strategy in four genetically distant Lilium cultivars to estimate their genetic divergence from transcriptome sequences using three approaches: POFAD (Phylogeny of Organisms from Allelic Data, uses allelic information of sequence data), RAxML (Randomized Accelerated Maximum Likelihood, tree building based on concatenated consensus sequences) and Consensus Network (constructing a network summarizing among gene tree conflicts). Twenty six gene contigs were chosen based on the presence of orthologous sequences in all cultivars, seven of which also had an orthologous sequence in Tulipa, used as out-group. The three approaches generated the same topology. Although the resolution offered by these approaches is high, in this case there was no extra benefit in using allelic information. We conclude that these 26 genes can be widely applied to construct a species tree for the genus Lilium. PMID:25368628
Li, Xiang; Tambong, James; Yuan, Kat Xiaoli; Chen, Wen; Xu, Huimin; Lévesque, C André; De Boer, Solke H
2018-01-01
Although the genus Clavibacter was originally proposed to accommodate all phytopathogenic coryneform bacteria containing B2γ diaminobutyrate in the peptidoglycan, reclassification of all but one species into other genera has resulted in the current monospecific status of the genus. The single species in the genus, Clavibacter michiganensis, has multiple subspecies, which are all highly host-specific plant pathogens. Whole genome analysis based on average nucleotide identity and digital DNA-DNA hybridization as well as multi-locus sequence analysis (MLSA) of seven housekeeping genes support raising each of the C. michiganensis subspecies to species status. On the basis of whole genome and MLSA data, we propose the establishment of two new species and three new combinations: Clavibacter capsici sp. nov., comb. nov. and Clavibacter tessellarius sp. nov., comb. nov., and Clavibacter insidiosus comb. nov., Clavibacter nebraskensis comb. nov. and Clavibacter sepedonicus comb. nov.
Li, Xiang; Tambong, James; Yuan, Kat (Xiaoli); Chen, Wen; Xu, Huimin; Lévesque, C. André; De Boer, Solke H.
2018-01-01
Although the genus Clavibacter was originally proposed to accommodate all phytopathogenic coryneform bacteria containing B2γ diaminobutyrate in the peptidoglycan, reclassification of all but one species into other genera has resulted in the current monospecific status of the genus. The single species in the genus, Clavibacter michiganensis, has multiple subspecies, which are all highly host-specific plant pathogens. Whole genome analysis based on average nucleotide identity and digital DNA–DNA hybridization as well as multi-locus sequence analysis (MLSA) of seven housekeeping genes support raising each of the C. michiganensis subspecies to species status. On the basis of whole genome and MLSA data, we propose the establishment of two new species and three new combinations: Clavibacter capsici sp. nov., comb. nov. and Clavibacter tessellarius sp. nov., comb. nov., and Clavibacter insidiosus comb. nov., Clavibacter nebraskensis comb. nov. and Clavibacter sepedonicus comb. nov. PMID:29160202
Vite-Garín, Tania; Estrada-Bárcenas, Daniel Alfonso; Cifuentes, Joaquín; Taylor, Maria Lucia
2014-01-01
Advances in the classification of the human pathogen Histoplasma capsulatum (H. capsulatum) (ascomycete) are sustained by the results of several genetic analyses that support the high diversity of this dimorphic fungus. The present mini-review highlights the great genetic plasticity of H. capsulatum. Important records with different molecular tools, mainly single- or multi-locus sequence analyses developed with this fungus, are discussed. Recent phylogenetic data with a multi-locus sequence analysis using 5 polymorphic loci support a new clade and/or phylogenetic species of H. capsulatum for the Americas, which was associated with fungal isolates obtained from the migratory bat Tadarida brasiliensis. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Colonisation with toxigenic Corynebacterium diphtheriae in a Scottish burns patient, June 2015.
Deshpande, Ashutosh; Inkster, Teresa; Hamilton, Kate; Litt, David; Fry, Norman; Kennedy, Iain T R; Shookhye-Dickson, Jacqueline; Hill, Robert L R
2015-01-01
On 12 June 2015, Corynebacterium diphtheriae was identified in a skin swab from a burns patient in Scotland. The isolate was confirmed to be genotypically and phenotypically toxigenic. Multilocus sequence typing of three patient isolates yielded sequence type ST 125. The patient was clinically well. We summarise findings of this case, and results of close contact identification and screening: 12 family and close contacts and 32 hospital staff have been found negative for C. diphtheriae.
Woksepp, Hanna; Ryberg, Anna; Berglind, Linda; Schön, Thomas; Söderman, Jan
2017-12-01
Enhanced precision of epidemiological typing in clinically suspected nosocomial outbreaks is crucial. Our aim was to investigate whether single nucleotide polymorphism (SNP) analysis and core genome (cg) multilocus sequence typing (MLST) of whole genome sequencing (WGS) data would more reliably identify a nosocomial outbreak, compared to earlier molecular typing methods. Sixteen isolates from a nosocomial outbreak of ESBL E. coli ST-131 in southeastern Sweden and three control strains were subjected to WGS. Sequences were explored by SNP analysis and cgMLST. cgMLST clearly differentiated between the outbreak isolates and the control isolates (>1400 differences). All clinically identified outbreak isolates showed close clustering (≥2 allele differences), except for two isolates (>50 allele differences). These data confirmed that the isolates with >50 differing genes did not belong to the nosocomial outbreak. The number of SNPs within the outbreak was ≤7, whereas the two discrepant isolates had >700 SNPs. Two of the ESBL E. coli ST-131 isolates did not belong to the clinically identified outbreak. Our results illustrate the power of WGS in terms of resolution, which may avoid overestimation of patients belonging to outbreaks as judged from epidemiological data and previously employed molecular methods with lower discriminatory ability. © 2017 APMIS. Published by John Wiley & Sons Ltd.
Momeni, Stephanie S; Whiddon, Jennifer; Cheon, Kyounga; Moser, Stephen A; Childers, Noel K
2015-12-01
Studies using multilocus sequence typing (MLST) have demonstrated that Streptococcus mutans isolates are genetically diverse. Our laboratory previously demonstrated clonality of S. mutans using MLST but could not discount the possibility of sampling bias. In this study, the clonality of randomly selected S. mutans plaque isolates from African-American children was examined using MLST. Serotype and the presence of collagen-binding proteins (CBPs) encoded by cnm/cbm were also assessed. One-hundred S. mutans isolates were randomly selected for MLST analysis. Sequence analysis was performed and phylogenetic trees were generated using start2 and mega. Thirty-four sequence types were identified, of which 27 were unique to this population. Seventy-five per cent of the isolates clustered into 16 clonal groups. The serotypes observed were c (n = 84), e (n = 3), and k (n = 11). The prevalence of S. mutans isolates of serotype k was notably high, at 17.5%. All isolates were cnm/cbm negative. The clonality of S. mutans demonstrated in this study illustrates the importance of localized population studies and are consistent with transmission. The prevalence of serotype k, a recently proposed systemic pathogen, observed in this study, is higher than reported in most populations and is the first report of S. mutans serotype k in a United States population. © 2015 Eur J Oral Sci.
Álvarez-Pérez, Sergio; de Vega, Clara; Herrera, Carlos M.
2013-01-01
The genetic and evolutionary relationships among floral nectar-dwelling Pseudomonas ‘sensu stricto’ isolates associated to South African and Mediterranean plants were investigated by multilocus sequence analysis (MLSA) of four core housekeeping genes (rrs, gyrB, rpoB and rpoD). A total of 35 different sequence types were found for the 38 nectar bacterial isolates characterised. Phylogenetic analyses resulted in the identification of three main clades [nectar groups (NGs) 1, 2 and 3] of nectar pseudomonads, which were closely related to five intrageneric groups: Pseudomonas oryzihabitans (NG 1); P. fluorescens, P. lutea and P. syringae (NG 2); and P. rhizosphaerae (NG 3). Linkage disequilibrium analysis pointed to a mostly clonal population structure, even when the analysis was restricted to isolates from the same floristic region or belonging to the same NG. Nevertheless, signatures of recombination were observed for NG 3, which exclusively included isolates retrieved from the floral nectar of insect-pollinated Mediterranean plants. In contrast, the other two NGs comprised both South African and Mediterranean isolates. Analyses relating diversification to floristic region and pollinator type revealed that there has been more unique evolution of the nectar pseudomonads within the Mediterranean region than would be expected by chance. This is the first work analysing the sequence of multiple loci to reveal geno- and ecotypes of nectar bacteria. PMID:24116076
Development and evaluation of a multi-locus sequence typing scheme for Mycoplasma synoviae.
Dijkman, R; Feberwee, A; Landman, W J M
2016-08-01
Reproducible molecular Mycoplasma synoviae typing techniques with sufficient discriminatory power may help to expand knowledge on its epidemiology and contribute to the improvement of control and eradication programmes of this mycoplasma species. The present study describes the development and validation of a novel multi-locus sequence typing (MLST) scheme for M. synoviae. Thirteen M. synoviae isolates originating from different poultry categories, farms and lesions, were subjected to whole genome sequencing. Their sequences were compared to that of M. synoviae reference strain MS53. A high number of single nucleotide polymorphisms (SNPs) indicating considerable genetic diversity were identified. SNPs were present in over 40 putative target genes for MLST of which five target genes were selected (nanA, uvrA, lepA, ruvB and ugpA) for the MLST scheme. This scheme was evaluated analysing 209 M. synoviae samples from different countries, categories of poultry, farms and lesions. Eleven clonal clusters and 76 different sequence types (STs) were obtained. Clustering occurred following geographical origin, supporting the hypothesis of regional population evolution. M. synoviae samples obtained from epidemiologically linked outbreaks often harboured the same ST. In contrast, multiple M. synoviae lineages were found in samples originating from swollen joints or oviducts from hens that produce eggs with eggshell apex abnormalities indicating that further research is needed to identify the genetic factors of M. synoviae that may explain its variations in tissue tropism and disease inducing potential. Furthermore, MLST proved to have a higher discriminatory power compared to variable lipoprotein and haemagglutinin A typing, which generated 50 different genotypes on the same database.
Desoubeaux, Guillaume; Debourgogne, Anne; Wiederhold, Nathan P; Zaffino, Marie; Sutton, Deanna; Burns, Rachel E; Frasca, Salvatore; Hyatt, Michael W; Cray, Carolyn
2018-07-01
Fusarium spp. are saprobic moulds that are responsible for severe opportunistic infections in humans and animals. However, we need epidemiological tools to reliably trace the circulation of such fungal strains within medical or veterinary facilities, to recognize environmental contaminations that might lead to infection and to improve our understanding of factors responsible for the onset of outbreaks. In this study, we used molecular genotyping to investigate clustered cases of Fusarium solani species complex (FSSC) infection that occurred in eight Sphyrnidae sharks under managed care at a public aquarium. Genetic relationships between fungal strains were determined by multi-locus sequence typing (MLST) analysis based on DNA sequencing at five loci, followed by comparison with sequences of 50 epidemiologically unrelated FSSC strains. Our genotyping approach revealed that F. keratoplasticum and F. solani haplotype 9x were most commonly isolated. In one case, the infection proved to be with another Hypocrealian rare opportunistic pathogen Metarhizium robertsii. Twice, sharks proved to be infected with FSSC strains with the same MLST sequence type, supporting the hypothesis the hypothesis that common environmental populations of fungi existed for these sharks and would suggest the longtime persistence of the two clonal strains within the environment, perhaps in holding pools and life support systems of the aquarium. This study highlights how molecular tools like MLST can be used to investigate outbreaks of microbiological disease. This work reinforces the need for regular controls of water quality to reduce microbiological contamination due to waterborne microorganisms.
MULTILOCUS SEQUENCE TYPING OF BRUCELLA ISOLATES FROM THAILAND.
Chawjiraphan, Wireeya; Sonthayanon, Piengchan; Chanket, Phanita; Benjathummarak, Surachet; Kerdsin, Anusak; Kalambhaheti, Thareerat
2016-11-01
Although brucellosis outbreaks in Thailand are rare, they cause abortions and infertility in animals, resulting in significant economic loss. Because Brucella spp display > 90% DNA homology, multilocus sequence typing (MLST) was employed to categorize local Brucella isolates into sequence types (STs) and to determine their genetic relatedness. Brucella samples were isolated from vaginal secretion of cows and goats, and from blood cultures of infected individuals. Brucella species were determined by multiplex PCR of eight loci, in addition to MLST based on partial DNA sequences of nine house-keeping genes. MLST analysis of 36 isolates revealed 78 distinct novel allele types and 34 novel STs, while two isolates possessed the known ST8. Sequence alignments identified polymorphic sites in each allele, ranging from 2-6%, while overall genetic diversity was 3.6%. MLST analysis of the 36 Brucella isolates classified them into three species, namely, B. melitensis, B. abortus and B. suis, in agreement with multiplex PCR results. Genetic relatedness among ST members of B. melitensis and B. abortus determined by eBURST program revealed ST2 as founder of B. abortus isolates and ST8 the founder of B. melitensis isolates. ST 36, 41 and 50 of Thai Brucella isolates were identified as single locus variants of clonal cluster (CC) 8, while the majority of STs were diverse. The genetic diversity and relatedness identified using MLST revealed hitherto unexpected diversity among Thai Brucella isolates. Genetic classification of isolates could reveal the route of brucellosis transmission among humans and farm animals and also reveal their relationship with other isolates in the region and other parts of the world.
Allnutt, T R; Roper, K; Henry, C
2008-01-23
A genetic marker system based on the S1 Short Interspersed Elements (SINEs) in the important commercial crop, oilseed rape ( Brassica napus L.) has been developed. SINEs provided a successful multilocus, dominant marker system that was capable of clearly delineating winter- and spring-type crop varieties. Sixteen of 20 varieties tested showed unique profiles from the 17 polymorphic SINE markers generated. The 3' or 5' flank region of nine SINE markers were cloned, and DNA was sequenced. In addition, one putative pre-transposition SINE allele was cloned and sequenced. Two SINE flanking sequences were used to design real-time PCR assays. These quantitative SINE assays were applied to study the genetic structure of eight fields of oilseed rape crops. Studied fields were more genetically diverse than expected for the chosen loci (mean H T = 0.23). The spatial distribution of SINE marker frequencies was highly structured in some fields, suggesting locations of volunteer impurities within the crop. In one case, the assay identified a mislabeling of the crop variety. SINE markers were a useful tool for crop genetics, phylogenetics, variety identification, and purity analysis. The use and further application of quantitative, real-time PCR markers are discussed.
Wang, Liyan; Ma, Lina; Liu, Yongan; Gao, Pengcheng; Li, Youquan; Li, Xuerui; Liu, Yongsheng
2016-10-01
Haemophilus parasuis is the etiological agent of Glässers disease, which causes high morbidity and mortality in swine herds. Although H. parasuis strains can be classified into 15 serovars with the Kielstein-Rapp-Gabrielson serotyping scheme, a large number of isolates cannot be classified and have been designated 'nontypeable' strains. In this study, multilocus sequence typing (MLST) of H. parasuis was used to analyze 48 H. parasuis field strains isolated in China and two strains from Australia. Twenty-six new alleles and 29 new sequence types (STs) were detected, enriching the H. parasuis MLST databases. A BURST analysis indicated that H. parasuis lacks stable population structure and is highly heterogeneous, and that there is no association between STs and geographic area. When an UPGMA dendrogram was constructed, two major clades, clade A and clade B, were defined. Animal experiments, in which guinea pigs were challenged intraperitoneally with the bacterial isolates, supported the hypothesis that the H. parasuis STs in clade A are generally avirulent or weakly virulent, whereas the STs in clade B tend to be virulent. Copyright © 2016 Elsevier B.V. All rights reserved.
Johnson, Jennifer K.; Arduino, Sonia M.; Stine, O. Colin; Johnson, Judith A.; Harris, Anthony D.
2007-01-01
For hospital epidemiologists, determining a system of typing that is discriminatory is essential for measuring the effectiveness of infection control measures. In situations in which the incidence of resistant Pseudomonas aeruginosa is increasing, the ability to discern whether it is due to patient-to-patient transmission versus an increase in patient endogenous strains is often made on the basis of molecular typing. The present study compared the discriminatory abilities of pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) for 90 P. aeruginosa isolates obtained from cultures of perirectal surveillance swabs from patients in an intensive care unit. PFGE identified 85 distinct types and 76 distinct groups when similarity cutoffs of 100% and 87%, respectively, were used. By comparison, MLST identified 60 sequence types that could be clustered into 11 clonal complexes and 32 singletons. By using the Simpson index of diversity (D), PFGE had a greater discriminatory ability than MLST for P. aeruginosa isolates (D values, 0.999 versus 0.975, respectively). Thus, while MLST was better for detecting genetic relatedness, we determined that PFGE was more discriminatory than MLST for determining genetic differences in P. aeruginosa. PMID:17881548
Coipan, E Claudia; Jahfari, Setareh; Fonville, Manoj; Oei, G Anneke; Spanjaard, Lodewijk; Takumi, Katsuhisa; Hovius, Joppe W R; Sprong, Hein
2016-08-01
In this study we used typing based on the eight multilocus sequence typing scheme housekeeping genes (MLST) and 5S-23S rDNA intergenic spacer (IGS) to explore the population structure of Borrelia burgdorferi sensu lato isolates from patients with Lyme borreliosis (LB) and to test the association between the B. burgdorferi s.l. sequence types (ST) and the clinical manifestations they cause in humans. Isolates of B. burgdorferi from 183 LB cases across Europe, with distinct clinical manifestations, and 257 Ixodes ricinus lysates from The Netherlands, were analyzed for this study alone. For completeness, we incorporated in our analysis also 335 European B. burgdorferi s.l. MLST profiles retrieved from literature. Borrelia afzelii and Borrelia bavariensis were associated with human cases of LB while Borrelia garinii, Borrelia lusitaniae and Borrelia valaisiana were associated with questing I. ricinus ticks. B. afzelii was associated with acrodermatitis chronica atrophicans, while B. garinii and B. bavariensis were associated with neuroborreliosis. The samples in our study belonged to 251 different STs, of which 94 are newly described, adding to the overall picture of the genetic diversity of Borrelia genospecies. The fraction of STs that were isolated from human samples was significantly higher for the genospecies that are known to be maintained in enzootic cycles by mammals (B. afzelii, B. bavariensis, and Borrelia spielmanii) than for genospecies that are maintained by birds (B. garinii and B. valaisiana) or lizards (B. lusitaniae). We found six multilocus sequence types that were significantly associated to clinical manifestations in humans and five IGS haplotypes that were associated with the human LB cases. While IGS could perform just as well as the housekeeping genes in the MLST scheme for predicting the infectivity of B. burgdorferi s.l., the advantage of MLST is that it can also capture the differential invasiveness of the various STs. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Multilocus sequence analysis and rpoB sequencing of Mycobacterium abscessus (sensu lato) strains.
Macheras, Edouard; Roux, Anne-Laure; Bastian, Sylvaine; Leão, Sylvia Cardoso; Palaci, Moises; Sivadon-Tardy, Valérie; Gutierrez, Cristina; Richter, Elvira; Rüsch-Gerdes, Sabine; Pfyffer, Gaby; Bodmer, Thomas; Cambau, Emmanuelle; Gaillard, Jean-Louis; Heym, Beate
2011-02-01
Mycobacterium abscessus, Mycobacterium bolletii, and Mycobacterium massiliense (Mycobacterium abscessus sensu lato) are closely related species that currently are identified by the sequencing of the rpoB gene. However, recent studies show that rpoB sequencing alone is insufficient to discriminate between these species, and some authors have questioned their current taxonomic classification. We studied here a large collection of M. abscessus (sensu lato) strains by partial rpoB sequencing (752 bp) and multilocus sequence analysis (MLSA). The final MLSA scheme developed was based on the partial sequences of eight housekeeping genes: argH, cya, glpK, gnd, murC, pgm, pta, and purH. The strains studied included the three type strains (M. abscessus CIP 104536(T), M. massiliense CIP 108297(T), and M. bolletii CIP 108541(T)) and 120 isolates recovered between 1997 and 2007 in France, Germany, Switzerland, and Brazil. The rpoB phylogenetic tree confirmed the existence of three main clusters, each comprising the type strain of one species. However, divergence values between the M. massiliense and M. bolletii clusters all were below 3% and between the M. abscessus and M. massiliense clusters were from 2.66 to 3.59%. The tree produced using the concatenated MLSA gene sequences (4,071 bp) also showed three main clusters, each comprising the type strain of one species. The M. abscessus cluster had a bootstrap value of 100% and was mostly compact. Bootstrap values for the M. massiliense and M. bolletii branches were much lower (71 and 61%, respectively), with the M. massiliense cluster having a fuzzy aspect. Mean (range) divergence values were 2.17% (1.13 to 2.58%) between the M. abscessus and M. massiliense clusters, 2.37% (1.5 to 2.85%) between the M. abscessus and M. bolletii clusters, and 2.28% (0.86 to 2.68%) between the M. massiliense and M. bolletii clusters. Adding the rpoB sequence to the MLSA-concatenated sequence (total sequence, 4,823 bp) had little effect on the clustering of strains. We found 10/120 (8.3%) isolates for which the concatenated MLSA gene sequence and rpoB sequence were discordant (e.g., M. massiliense MLSA sequence and M. abscessus rpoB sequence), suggesting the intergroup lateral transfers of rpoB. In conclusion, our study strongly supports the recent proposal that M. abscessus, M. massiliense, and M. bolletii should constitute a single species. Our findings also indicate that there has been a horizontal transfer of rpoB sequences between these subgroups, precluding the use of rpoB sequencing alone for the accurate identification of the two proposed M. abscessus subspecies.
Multilocus Sequence Analysis and rpoB Sequencing of Mycobacterium abscessus (Sensu Lato) Strains▿
Macheras, Edouard; Roux, Anne-Laure; Bastian, Sylvaine; Leão, Sylvia Cardoso; Palaci, Moises; Sivadon-Tardy, Valérie; Gutierrez, Cristina; Richter, Elvira; Rüsch-Gerdes, Sabine; Pfyffer, Gaby; Bodmer, Thomas; Cambau, Emmanuelle; Gaillard, Jean-Louis; Heym, Beate
2011-01-01
Mycobacterium abscessus, Mycobacterium bolletii, and Mycobacterium massiliense (Mycobacterium abscessus sensu lato) are closely related species that currently are identified by the sequencing of the rpoB gene. However, recent studies show that rpoB sequencing alone is insufficient to discriminate between these species, and some authors have questioned their current taxonomic classification. We studied here a large collection of M. abscessus (sensu lato) strains by partial rpoB sequencing (752 bp) and multilocus sequence analysis (MLSA). The final MLSA scheme developed was based on the partial sequences of eight housekeeping genes: argH, cya, glpK, gnd, murC, pgm, pta, and purH. The strains studied included the three type strains (M. abscessus CIP 104536T, M. massiliense CIP 108297T, and M. bolletii CIP 108541T) and 120 isolates recovered between 1997 and 2007 in France, Germany, Switzerland, and Brazil. The rpoB phylogenetic tree confirmed the existence of three main clusters, each comprising the type strain of one species. However, divergence values between the M. massiliense and M. bolletii clusters all were below 3% and between the M. abscessus and M. massiliense clusters were from 2.66 to 3.59%. The tree produced using the concatenated MLSA gene sequences (4,071 bp) also showed three main clusters, each comprising the type strain of one species. The M. abscessus cluster had a bootstrap value of 100% and was mostly compact. Bootstrap values for the M. massiliense and M. bolletii branches were much lower (71 and 61%, respectively), with the M. massiliense cluster having a fuzzy aspect. Mean (range) divergence values were 2.17% (1.13 to 2.58%) between the M. abscessus and M. massiliense clusters, 2.37% (1.5 to 2.85%) between the M. abscessus and M. bolletii clusters, and 2.28% (0.86 to 2.68%) between the M. massiliense and M. bolletii clusters. Adding the rpoB sequence to the MLSA-concatenated sequence (total sequence, 4,823 bp) had little effect on the clustering of strains. We found 10/120 (8.3%) isolates for which the concatenated MLSA gene sequence and rpoB sequence were discordant (e.g., M. massiliense MLSA sequence and M. abscessus rpoB sequence), suggesting the intergroup lateral transfers of rpoB. In conclusion, our study strongly supports the recent proposal that M. abscessus, M. massiliense, and M. bolletii should constitute a single species. Our findings also indicate that there has been a horizontal transfer of rpoB sequences between these subgroups, precluding the use of rpoB sequencing alone for the accurate identification of the two proposed M. abscessus subspecies. PMID:21106786
The population structure of Vibrio cholerae from the Chandigarh Region of Northern India.
Abd El Ghany, Moataz; Chander, Jagadish; Mutreja, Ankur; Rashid, Mamoon; Hill-Cawthorne, Grant A; Ali, Shahjahan; Naeem, Raeece; Thomson, Nicholas R; Dougan, Gordon; Pain, Arnab
2014-07-01
Cholera infection continues to be a threat to global public health. The current cholera pandemic associated with Vibrio cholerae El Tor has now been ongoing for over half a century. Thirty-eight V. cholerae El Tor isolates associated with a cholera outbreak in 2009 from the Chandigarh region of India were characterised by a combination of microbiology, molecular typing and whole-genome sequencing. The genomic analysis indicated that two clones of V. cholera circulated in the region and caused disease during this time. These clones fell into two distinct sub-clades that map independently onto wave 3 of the phylogenetic tree of seventh pandemic V. cholerae El Tor. Sequence analyses of the cholera toxin gene, the Vibrio seventh Pandemic Island II (VSPII) and SXT element correlated with this phylogenetic position of the two clades on the El Tor tree. The clade 2 isolates, characterized by a drug-resistant profile and the expression of a distinct cholera toxin, are closely related to the recent V. cholerae isolated elsewhere, including Haiti, but fell on a distinct branch of the tree, showing they were independent outbreaks. Multi-Locus Sequence Typing (MLST) distinguishes two sequence types among the 38 isolates, that did not correspond to the clades defined by whole-genome sequencing. Multi-Locus Variable-length tandem-nucleotide repeat Analysis (MLVA) identified 16 distinct clusters. The use of whole-genome sequencing enabled the identification of two clones of V. cholerae that circulated during the 2009 Chandigarh outbreak. These clones harboured a similar structure of ICEVchHai1 but differed mainly in the structure of CTX phage and VSPII. The limited capacity of MLST and MLVA to discriminate between the clones that circulated in the 2009 Chandigarh outbreak highlights the value of whole-genome sequencing as a route to the identification of further genetic markers to subtype V. cholerae isolates.
Veterinary Fusarioses within the United States
USDA-ARS?s Scientific Manuscript database
Multilocus DNA sequence data was used to retrospectively assess the genetic diversity and evolutionary relationships of 67 Fusarium strains from veterinary sources, most of which were from the United States. Molecular phylogenetic analyses revealed that the strains comprised 23 phylogenetically dist...
Sun, Qinghui; Ba, Zhaofen; Wu, Guoying; Wang, Wei; Lin, Shuxiang; Yang, Hongjiang
2016-05-01
Carbapenem resistance mechanisms were investigated in 32 imipenem-resistant Pseudomonas aeruginosa clinical isolates recovered from hospitalised children. Sequence analysis revealed that 31 of the isolates had an insertion sequence element ISRP10 disrupting the porin gene oprD, demonstrating that ISRP10 inactivation of oprD conferred imipenem resistance in the majority of the isolates. Multilocus sequence typing (MLST) was used to discriminate the isolates. In total, 11 sequence types (STs) were identified including 3 novel STs, and 68.3% (28/41) of the tested strains were characterised as clone ST253. In combination with random amplified polymorphic DNA (RAPD) analysis, the imipenem-resistant isolates displayed a relatively high degree of genetic variability and were unlikely associated with nosocomial infections. Copyright © 2016 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Freitas, Ana R.; Novais, Carla; Ruiz-Garbajosa, Patricia; Coque, Teresa M.; Peixe, Luísa
2009-01-01
The population structure of 56 Enterococcus faecium isolates selected from a collection of enterococci from humans, animals, and the environment in Portugal (1997 to 2007) was analyzed by multilocus sequence typing. We identified 41 sequence types clustering into CC17, CC5, CC9, CC22 and CC94, all clonal lineages comprising isolates from different hosts. Our findings highlight the role of community-associated hosts as reservoirs of enterococci able to cause human infections. PMID:19447948
AMPLISAS: a web server for multilocus genotyping using next-generation amplicon sequencing data.
Sebastian, Alvaro; Herdegen, Magdalena; Migalska, Magdalena; Radwan, Jacek
2016-03-01
Next-generation sequencing (NGS) technologies are revolutionizing the fields of biology and medicine as powerful tools for amplicon sequencing (AS). Using combinations of primers and barcodes, it is possible to sequence targeted genomic regions with deep coverage for hundreds, even thousands, of individuals in a single experiment. This is extremely valuable for the genotyping of gene families in which locus-specific primers are often difficult to design, such as the major histocompatibility complex (MHC). The utility of AS is, however, limited by the high intrinsic sequencing error rates of NGS technologies and other sources of error such as polymerase amplification or chimera formation. Correcting these errors requires extensive bioinformatic post-processing of NGS data. Amplicon Sequence Assignment (AMPLISAS) is a tool that performs analysis of AS results in a simple and efficient way, while offering customization options for advanced users. AMPLISAS is designed as a three-step pipeline consisting of (i) read demultiplexing, (ii) unique sequence clustering and (iii) erroneous sequence filtering. Allele sequences and frequencies are retrieved in excel spreadsheet format, making them easy to interpret. AMPLISAS performance has been successfully benchmarked against previously published genotyped MHC data sets obtained with various NGS technologies. © 2015 John Wiley & Sons Ltd.
Boonkhot, Phacharaporn; Tadee, Pakpoom; Yamsakul, Panuwat; Pocharoen, Chairoj; Chokesajjawatee, Nipa; Patchanee, Prapas
2015-05-01
Pigs and pork products are well known as an important source of Salmonella, one of the major zoonotic foodborne pathogens. The emergence and spread of antimicrobial resistance is becoming a major public health concern worldwide. Integrons are genetic elements known to have a role in the acquisition and expression of genes conferring antibiotic resistance. This study focuses on the prevalence of class 1 integrons-carrying Salmonella, the genetic diversity of strains of those organisms obtained from swine production chains in Chiang Mai and Lamphun provinces, Thailand, using multilocus sequence typing (MLST) and comparison of genetic diversity of sequence types of Salmonella from this study with pulsotypes identified in previous study. In 175 Salmonella strains, the overall prevalence of class 1 integrons-carrying-Salmonella was 14%. The gene cassettes array pattern "dfrA12-orfF-aadA2" was the most frequently observed. Most of the antimicrobial resistance identified was not associated with related gene cassettes harbored by Salmonella. Six sequence types were generated from 30 randomly selected strains detected by MLST. Salmonella at the human-animal-environment interface was confirmed. Linkages both in the farm to slaughterhouse contamination route and the horizontal transmission of resistance genes were demonstrated. To reduce this problem, the use of antimicrobials in livestock should be controlled by veterinarians. Education and training of food handlers as well as promotion of safe methods of food consumption are important avenues for helping prevent foodborne illness.
Joseph, Susan; Forsythe, Stephen J.
2012-01-01
Cronobacter spp. (previously known as Enterobacter sakazakii) is a bacterial pathogen affecting all age groups, with particularly severe clinical complications in neonates and infants. One recognized route of infection being the consumption of contaminated infant formula. As a recently recognized bacterial pathogen of considerable importance and regulatory control, appropriate detection, and identification schemes are required. The application of multilocus sequence typing (MLST) and analysis (MLSA) of the seven alleles atpD, fusA, glnS, gltB, gyrB, infB, and ppsA (concatenated length 3036 base pairs) has led to considerable advances in our understanding of the genus. This approach is supported by both the reliability of DNA sequencing over subjective phenotyping and the establishment of a MLST database which has open access and is also curated; http://www.pubMLST.org/cronobacter. MLST has been used to describe the diversity of the newly recognized genus, instrumental in the formal recognition of new Cronobacter species (C. universalis and C. condimenti) and revealed the high clonality of strains and the association of clonal complex 4 with neonatal meningitis cases. Clearly the MLST approach has considerable benefits over the use of non-DNA sequence based methods of analysis for newly emergent bacterial pathogens. The application of MLST and MLSA has dramatically enabled us to better understand this opportunistic bacterium which can cause irreparable damage to a newborn baby’s brain, and has contributed to improved control measures to protect neonatal health. PMID:23189075
Arvand, Mardjan; Feil, Edward J.; Giladi, Michael; Boulouis, Henri-Jean; Viezens, Juliane
2007-01-01
Bartonella henselae is a zoonotic pathogen and the causative agent of cat scratch disease and a variety of other disease manifestations in humans. Previous investigations have suggested that a limited subset of B. henselae isolates may be associated with human disease. In the present study, 182 human and feline B. henselae isolates from Europe, North America and Australia were analysed by multi-locus sequence typing (MLST) to detect any associations between sequence type (ST), host species and geographical distribution of the isolates. A total of 14 sequence types were detected, but over 66% (16/24) of the isolates recovered from human disease corresponded to a single genotype, ST1, and this type was detected in all three continents. In contrast, 27.2% (43/158) of the feline isolates corresponded to ST7, but this ST was not recovered from humans and was restricted to Europe. The difference in host association of STs 1 (human) and 7 (feline) was statistically significant (P≤0.001). eBURST analysis assigned the 14 STs to three clonal lineages, which contained two or more STs, and a singleton comprising ST7. These groups were broadly consistent with a neighbour-joining tree, although splits decomposition analysis was indicative of a history of recombination. These data indicate that B. henselae lineages differ in their virulence properties for humans and contribute to a better understanding of the population structure of B. henselae. PMID:18094753
Xiao, Yinghua; Wagendorp, Arjen; Moezelaar, Roy; Abee, Tjakko
2012-01-01
Of 98 suspected food-borne Clostridium perfringens isolates obtained from a nationwide survey by the Food and Consumer Product Safety Authority in The Netherlands, 59 strains were identified as C. perfringens type A. Using PCR-based techniques, the cpe gene encoding enterotoxin was detected in eight isolates, showing a chromosomal location for seven isolates and a plasmid location for one isolate. Further characterization of these strains by using (GTG)5 fingerprint repetitive sequence-based PCR analysis distinguished C. perfringens from other sulfite-reducing clostridia but did not allow for differentiation between various types of C. perfringens strains. To characterize the C. perfringens strains further, multilocus sequence typing (MLST) analysis was performed on eight housekeeping genes of both enterotoxic and non-cpe isolates, and the data were combined with a previous global survey covering strains associated with food poisoning, gas gangrene, and isolates from food or healthy individuals. This revealed that the chromosomal cpe strains (food strains and isolates from food poisoning cases) belong to a distinct cluster that is significantly distant from all the other cpe plasmid-carrying and cpe-negative strains. These results suggest that different groups of C. perfringens have undergone niche specialization and that a distinct group of food isolates has specific core genome sequences. Such findings have epidemiological and evolutionary significance. Better understanding of the origin and reservoir of enterotoxic C. perfringens may allow for improved control of this organism in foods. PMID:22865060
Cooper, Vaughn S.; Hatcher, Philip J.; Verheyde, Bart; Carlier, Aurélien; Vandamme, Peter
2017-01-01
The natural environment serves as a reservoir of opportunistic pathogens. A well-established method for studying the epidemiology of such opportunists is multilocus sequence typing, which in many cases has defined strains predisposed to causing infection. Burkholderia multivorans is an important pathogen in people with cystic fibrosis (CF) and its epidemiology suggests that strains are acquired from non-human sources such as the natural environment. This raises the central question of whether the isolation source (CF or environment) or the multilocus sequence type (ST) of B. multivorans better predicts their genomic content and functionality. We identified four pairs of B. multivorans isolates, representing distinct STs and consisting of one CF and one environmental isolate each. All genomes were sequenced using the PacBio SMRT sequencing technology, which resulted in eight high-quality B. multivorans genome assemblies. The present study demonstrated that the genomic structure of the examined B. multivorans STs is highly conserved and that the B. multivorans genomic lineages are defined by their ST. Orthologous protein families were not uniformly distributed among chromosomes, with core orthologs being enriched on the primary chromosome and ST-specific orthologs being enriched on the second and third chromosome. The ST-specific orthologs were enriched in genes involved in defense mechanisms and secondary metabolism, corroborating the strain-specificity of these virulence characteristics. Finally, the same B. multivorans genomic lineages occur in both CF and environmental samples and on different continents, demonstrating their ubiquity and evolutionary persistence. PMID:28430818
Biogeography of Burkholderia pseudomallei in the Torres Strait Islands of Northern Australia
Baker, Anthony; Mayo, Mark; Owens, Leigh; Burgess, Graham; Norton, Robert; McBride, William John Hannan; Currie, Bart J.
2013-01-01
It has been hypothesized that biogeographical boundaries are a feature of Burkholderia pseudomallei ecology, and they impact the epidemiology of melioidosis on a global scale. This study examined the relatedness of B. pseudomallei sourced from islands in the Torres Strait of Northern Australia to determine if the geography of isolated island communities is a determinant of the organisms' dispersal. Environmental sampling on Badu Island in the Near Western Island cluster recovered a single clone. An additional 32 clinical isolates from the region were sourced. Isolates were characterized using multilocus sequence typing and a multiplex PCR targeting the flagellum gene cluster. Gene cluster analysis determined that 69% of the isolates from the region encoded the ancestral Burkholderia thailandensis-like flagellum and chemotaxis gene cluster, a proportion significantly lower than that reported from mainland Australia and consistent with observations of isolates from southern Papua New Guinea. A goodness-of-fit test indicated that there was geographic localization of sequence types throughout the archipelago, with the exception of Thursday Island, the economic and cultural hub of the region. Sequence types common to mainland Australia and Papua New Guinea were identified. These findings demonstrate for the first time an environmental reservoir for B. pseudomallei in the Torres Strait, and multilocus sequence typing suggests that the organism is not randomly distributed throughout this region and that seawater may provide a barrier to dispersal of the organism. Moreover, these findings support an anthropogenic dispersal hypothesis for the spread of B. pseudomallei throughout this region. PMID:23698533
Keller, Judith I; Shriver, W Gregory
2014-01-01
Campylobacter jejuni is responsible for the majority of bacterial foodborne gastroenteritis in the US, usually due to the consumption of undercooked poultry. Research on which avian species transmit the bacterium is limited, especially in the US. We sampled wild birds in three families-Anatidae, Scolopacidae, and Laridae-in eastern North America to determine the prevalence and specific strains of Campylobacter. The overall prevalence of Campylobacter spp. was 9.2% for all wild birds sampled (n = 781). Campylobacter jejuni was the most prevalent species (8.1%), while Campylobacter coli and Campylobacter lari prevalence estimates were low (1.4% and 0.3%, respectively). We used multilocus sequence typing PCR specific to C. jejuni to characterize clonal complexes and sequence types isolated from wild bird samples and detected 13 novel sequence types, along with a clonal complex previously only associated with human disease (ST-658). Wild birds share an increasing amount of habitat with humans as more landscapes become fragmented and developed for human needs. Wild birds are and will remain an important aspect of public health due to their ability to carry and disperse emerging zoonotic pathogens or their arthropod vectors. As basic information such as prevalence is limited or lacking from a majority of wild birds in the US, this study provides further insight into Campylobacter epidemiology, host preference, and strain characterization of C. jejuni.
Entomopathogen ID: A multi-locus sequence alignment resource for entomopathogenic fungi
USDA-ARS?s Scientific Manuscript database
The ability to correctly identify entomopathogenic fungi is an important step in developing biopesticides and effectively communicating research results. Over the years, identifying entomopathogenic fungi has evolved from a system based on diagnostic morphological and physiological characters to mol...
Genotypic analysis of Mucor from the platypus in Australia.
Connolly, J H; Stodart, B J; Ash, G J
2010-01-01
Mucor amphibiorum is the only pathogen known to cause significant morbidity and mortality in the free-living platypus (Ornithorhynchus anatinus) in Tasmania. Infection has also been reported in free-ranging cane toads (Bufo marinus) and green tree frogs (Litoria caerulea) from mainland Australia but has not been confirmed in platypuses from the mainland. To date, there has been little genotyping specifically conducted on M. amphibiorum. A collection of 21 Mucor isolates representing isolates from the platypus, frogs and toads, and environmental samples were obtained for genotypic analysis. Internal transcribed spacer (ITS) region sequencing and GenBank comparison confirmed the identity of most of the isolates. Representative isolates from infected platypuses formed a clade containing the reference isolates of M. amphibiorum from the Centraal Bureau voor Schimmelcultures repository. The M. amphibiorum isolates showed a close sequence identity with Mucor indicus and consisted of two haplotypes, differentiated by single nucleotide polymorphisms within the ITS1 and ITS2 regions. With the exception of isolate 96-4049, all isolates from platypuses were in one haplotype. Multilocus fingerprinting via the use of intersimple sequence repeats polymerase chain reaction identified 19 genotypes. Two major clusters were evident: 1) M. amphibiorum and Mucor racemosus; and 2) Mucor circinelloides, Mucor ramosissimus, and Mucor fragilis. Seven M. amphibiorum isolates from platypuses were present in two subclusters, with isolate 96-4053 appearing genetically distinct from all other isolates. Isolates classified as M. circinelloides by sequence analysis formed a separate subcluster, distinct from other Mucor spp. The combination of sequencing and multilocus fingerprinting has the potential to provide the tools for rapid identification of M. amphibiorum. Data presented on the diversity of the pathogen and further work in linking genetic diversity to functional diversity will provide critical information for its management in Tasmanian river systems.
Bletz, Stefan; Janezic, Sandra; Harmsen, Dag; Rupnik, Maja; Mellmann, Alexander
2018-06-01
Clostridium difficile , recently renamed Clostridioides difficile , is the most common cause of antibiotic-associated nosocomial gastrointestinal infections worldwide. To differentiate endogenous infections and transmission events, highly discriminatory subtyping is necessary. Today, methods based on whole-genome sequencing data are increasingly used to subtype bacterial pathogens; however, frequently a standardized methodology and typing nomenclature are missing. Here we report a core genome multilocus sequence typing (cgMLST) approach developed for C. difficile Initially, we determined the breadth of the C. difficile population based on all available MLST sequence types with Bayesian inference (BAPS). The resulting BAPS partitions were used in combination with C. difficile clade information to select representative isolates that were subsequently used to define cgMLST target genes. Finally, we evaluated the novel cgMLST scheme with genomes from 3,025 isolates. BAPS grouping ( n = 6 groups) together with the clade information led to a total of 11 representative isolates that were included for cgMLST definition and resulted in 2,270 cgMLST genes that were present in all isolates. Overall, 2,184 to 2,268 cgMLST targets were detected in the genome sequences of 70 outbreak-associated and reference strains, and on average 99.3% cgMLST targets (1,116 to 2,270 targets) were present in 2,954 genomes downloaded from the NCBI database, underlining the representativeness of the cgMLST scheme. Moreover, reanalyzing different cluster scenarios with cgMLST were concordant to published single nucleotide variant analyses. In conclusion, the novel cgMLST is representative for the whole C. difficile population, is highly discriminatory in outbreak situations, and provides a unique nomenclature facilitating interlaboratory exchange. Copyright © 2018 American Society for Microbiology.
Core Genome Multilocus Sequence Typing Scheme for High-Resolution Typing of Enterococcus faecium
de Been, Mark; Pinholt, Mette; Top, Janetta; Bletz, Stefan; van Schaik, Willem; Brouwer, Ellen; Rogers, Malbert; Kraat, Yvette; Bonten, Marc; Corander, Jukka; Westh, Henrik; Harmsen, Dag
2015-01-01
Enterococcus faecium, a common inhabitant of the human gut, has emerged in the last 2 decades as an important multidrug-resistant nosocomial pathogen. Since the start of the 21st century, multilocus sequence typing (MLST) has been used to study the molecular epidemiology of E. faecium. However, due to the use of a small number of genes, the resolution of MLST is limited. Whole-genome sequencing (WGS) now allows for high-resolution tracing of outbreaks, but current WGS-based approaches lack standardization, rendering them less suitable for interlaboratory prospective surveillance. To overcome this limitation, we developed a core genome MLST (cgMLST) scheme for E. faecium. cgMLST transfers genome-wide single nucleotide polymorphism (SNP) diversity into a standardized and portable allele numbering system that is far less computationally intensive than SNP-based analysis of WGS data. The E. faecium cgMLST scheme was built using 40 genome sequences that represented the diversity of the species. The scheme consists of 1,423 cgMLST target genes. To test the performance of the scheme, we performed WGS analysis of 103 outbreak isolates from five different hospitals in the Netherlands, Denmark, and Germany. The cgMLST scheme performed well in distinguishing between epidemiologically related and unrelated isolates, even between those that had the same sequence type (ST), which denotes the higher discriminatory power of this cgMLST scheme over that of conventional MLST. We also show that in terms of resolution, the performance of the E. faecium cgMLST scheme is equivalent to that of an SNP-based approach. In conclusion, the cgMLST scheme developed in this study facilitates rapid, standardized, and high-resolution tracing of E. faecium outbreaks. PMID:26400782
Parker, Jennifer K.; Havird, Justin C.
2012-01-01
Isolates of the plant pathogen Xylella fastidiosa are genetically very similar, but studies on their biological traits have indicated differences in virulence and infection symptomatology. Taxonomic analyses have identified several subspecies, and phylogenetic analyses of housekeeping genes have shown broad host-based genetic differences; however, results are still inconclusive for genetic differentiation of isolates within subspecies. This study employs multilocus sequence analysis of environmentally mediated genes (MLSA-E; genes influenced by environmental factors) to investigate X. fastidiosa relationships and differentiate isolates with low genetic variability. Potential environmentally mediated genes, including host colonization and survival genes related to infection establishment, were identified a priori. The ratio of the rate of nonsynonymous substitutions to the rate of synonymous substitutions (dN/dS) was calculated to select genes that may be under increased positive selection compared to previously studied housekeeping genes. Nine genes were sequenced from 54 X. fastidiosa isolates infecting different host plants across the United States. Results of maximum likelihood (ML) and Bayesian phylogenetic (BP) analyses are in agreement with known X. fastidiosa subspecies clades but show novel within-subspecies differentiation, including geographic differentiation, and provide additional information regarding host-based isolate variation and specificity. dN/dS ratios of environmentally mediated genes, though <1 due to high sequence similarity, are significantly greater than housekeeping gene dN/dS ratios and correlate with increased sequence variability. MLSA-E can more precisely resolve relationships between closely related bacterial strains with low genetic variability, such as X. fastidiosa isolates. Discovering the genetic relationships between X. fastidiosa isolates will provide new insights into the epidemiology of populations of X. fastidiosa, allowing improved disease management in economically important crops. PMID:22194287
Parker, Jennifer K; Havird, Justin C; De La Fuente, Leonardo
2012-03-01
Isolates of the plant pathogen Xylella fastidiosa are genetically very similar, but studies on their biological traits have indicated differences in virulence and infection symptomatology. Taxonomic analyses have identified several subspecies, and phylogenetic analyses of housekeeping genes have shown broad host-based genetic differences; however, results are still inconclusive for genetic differentiation of isolates within subspecies. This study employs multilocus sequence analysis of environmentally mediated genes (MLSA-E; genes influenced by environmental factors) to investigate X. fastidiosa relationships and differentiate isolates with low genetic variability. Potential environmentally mediated genes, including host colonization and survival genes related to infection establishment, were identified a priori. The ratio of the rate of nonsynonymous substitutions to the rate of synonymous substitutions (dN/dS) was calculated to select genes that may be under increased positive selection compared to previously studied housekeeping genes. Nine genes were sequenced from 54 X. fastidiosa isolates infecting different host plants across the United States. Results of maximum likelihood (ML) and Bayesian phylogenetic (BP) analyses are in agreement with known X. fastidiosa subspecies clades but show novel within-subspecies differentiation, including geographic differentiation, and provide additional information regarding host-based isolate variation and specificity. dN/dS ratios of environmentally mediated genes, though <1 due to high sequence similarity, are significantly greater than housekeeping gene dN/dS ratios and correlate with increased sequence variability. MLSA-E can more precisely resolve relationships between closely related bacterial strains with low genetic variability, such as X. fastidiosa isolates. Discovering the genetic relationships between X. fastidiosa isolates will provide new insights into the epidemiology of populations of X. fastidiosa, allowing improved disease management in economically important crops.
Wagner, Isaac D.; Varghese, Litty B.; Hemme, Christopher L.; Wiegel, Juergen
2013-01-01
Thermal environments have island-like characteristics and provide a unique opportunity to study population structure and diversity patterns of microbial taxa inhabiting these sites. Strains having ≥98% 16S rRNA gene sequence similarity to the obligately anaerobic Firmicutes Thermoanaerobacter uzonensis were isolated from seven geothermal springs, separated by up to 1600 m, within the Uzon Caldera (Kamchatka, Russian Far East). The intraspecies variation and spatial patterns of diversity for this taxon were assessed by multilocus sequence analysis (MLSA) of 106 strains. Analysis of eight protein-coding loci (gyrB, lepA, leuS, pyrG, recA, recG, rplB, and rpoB) revealed that all loci were polymorphic and that nucleotide substitutions were mostly synonymous. There were 148 variable nucleotide sites across 8003 bp concatenates of the protein-coding loci. While pairwise FST values indicated a small but significant level of genetic differentiation between most subpopulations, there was a negligible relationship between genetic divergence and spatial separation. Strains with the same allelic profile were only isolated from the same hot spring, occasionally from consecutive years, and single locus variant (SLV) sequence types were usually derived from the same spring. While recombination occurred, there was an “epidemic” population structure in which a particular T. uzonensis sequence type rose in frequency relative to the rest of the population. These results demonstrate spatial diversity patterns for an anaerobic bacterial species in a relative small geographic location and reinforce the view that terrestrial geothermal springs are excellent places to look for biogeographic diversity patterns regardless of the involved distances. PMID:23801987
Rademaker, Jan L. W.; Herbet, Hélène; Starrenburg, Marjo J. C.; Naser, Sabri M.; Gevers, Dirk; Kelly, William J.; Hugenholtz, Jeroen; Swings, Jean; van Hylckama Vlieg, Johan E. T.
2007-01-01
The diversity of a collection of 102 lactococcus isolates including 91 Lactococcus lactis isolates of dairy and nondairy origin was explored using partial small subunit rRNA gene sequence analysis and limited phenotypic analyses. A subset of 89 strains of L. lactis subsp. cremoris and L. lactis subsp. lactis isolates was further analyzed by (GTG)5-PCR fingerprinting and a novel multilocus sequence analysis (MLSA) scheme. Two major genomic lineages within L. lactis were found. The L. lactis subsp. cremoris type-strain-like genotype lineage included both L. lactis subsp. cremoris and L. lactis subsp. lactis isolates. The other major lineage, with a L. lactis subsp. lactis type-strain-like genotype, comprised L. lactis subsp. lactis isolates only. A novel third genomic lineage represented two L. lactis subsp. lactis isolates of nondairy origin. The genomic lineages deviate from the subspecific classification of L. lactis that is based on a few phenotypic traits only. MLSA of six partial genes (atpA, encoding ATP synthase alpha subunit; pheS, encoding phenylalanine tRNA synthetase; rpoA, encoding RNA polymerase alpha chain; bcaT, encoding branched chain amino acid aminotransferase; pepN, encoding aminopeptidase N; and pepX, encoding X-prolyl dipeptidyl peptidase) revealed 363 polymorphic sites (total length, 1,970 bases) among 89 L. lactis subsp. cremoris and L. lactis subsp. lactis isolates with unique sequence types for most isolates. This allowed high-resolution cluster analysis in which dairy isolates form subclusters of limited diversity within the genomic lineages. The pheS DNA sequence analysis yielded two genetic groups dissimilar to the other genotyping analysis-based lineages, indicating a disparate acquisition route for this gene. PMID:17890345
Rademaker, Jan L W; Herbet, Hélène; Starrenburg, Marjo J C; Naser, Sabri M; Gevers, Dirk; Kelly, William J; Hugenholtz, Jeroen; Swings, Jean; van Hylckama Vlieg, Johan E T
2007-11-01
The diversity of a collection of 102 lactococcus isolates including 91 Lactococcus lactis isolates of dairy and nondairy origin was explored using partial small subunit rRNA gene sequence analysis and limited phenotypic analyses. A subset of 89 strains of L. lactis subsp. cremoris and L. lactis subsp. lactis isolates was further analyzed by (GTG)(5)-PCR fingerprinting and a novel multilocus sequence analysis (MLSA) scheme. Two major genomic lineages within L. lactis were found. The L. lactis subsp. cremoris type-strain-like genotype lineage included both L. lactis subsp. cremoris and L. lactis subsp. lactis isolates. The other major lineage, with a L. lactis subsp. lactis type-strain-like genotype, comprised L. lactis subsp. lactis isolates only. A novel third genomic lineage represented two L. lactis subsp. lactis isolates of nondairy origin. The genomic lineages deviate from the subspecific classification of L. lactis that is based on a few phenotypic traits only. MLSA of six partial genes (atpA, encoding ATP synthase alpha subunit; pheS, encoding phenylalanine tRNA synthetase; rpoA, encoding RNA polymerase alpha chain; bcaT, encoding branched chain amino acid aminotransferase; pepN, encoding aminopeptidase N; and pepX, encoding X-prolyl dipeptidyl peptidase) revealed 363 polymorphic sites (total length, 1,970 bases) among 89 L. lactis subsp. cremoris and L. lactis subsp. lactis isolates with unique sequence types for most isolates. This allowed high-resolution cluster analysis in which dairy isolates form subclusters of limited diversity within the genomic lineages. The pheS DNA sequence analysis yielded two genetic groups dissimilar to the other genotyping analysis-based lineages, indicating a disparate acquisition route for this gene.
Core Genome Multilocus Sequence Typing Scheme for High- Resolution Typing of Enterococcus faecium.
de Been, Mark; Pinholt, Mette; Top, Janetta; Bletz, Stefan; Mellmann, Alexander; van Schaik, Willem; Brouwer, Ellen; Rogers, Malbert; Kraat, Yvette; Bonten, Marc; Corander, Jukka; Westh, Henrik; Harmsen, Dag; Willems, Rob J L
2015-12-01
Enterococcus faecium, a common inhabitant of the human gut, has emerged in the last 2 decades as an important multidrug-resistant nosocomial pathogen. Since the start of the 21st century, multilocus sequence typing (MLST) has been used to study the molecular epidemiology of E. faecium. However, due to the use of a small number of genes, the resolution of MLST is limited. Whole-genome sequencing (WGS) now allows for high-resolution tracing of outbreaks, but current WGS-based approaches lack standardization, rendering them less suitable for interlaboratory prospective surveillance. To overcome this limitation, we developed a core genome MLST (cgMLST) scheme for E. faecium. cgMLST transfers genome-wide single nucleotide polymorphism(SNP) diversity into a standardized and portable allele numbering system that is far less computationally intensive than SNP-based analysis of WGS data. The E. faecium cgMLST scheme was built using 40 genome sequences that represented the diversity of the species. The scheme consists of 1,423 cgMLST target genes. To test the performance of the scheme, we performed WGS analysis of 103 outbreak isolates from five different hospitals in the Netherlands, Denmark, and Germany. The cgMLST scheme performed well in distinguishing between epidemiologically related and unrelated isolates, even between those that had the same sequence type (ST), which denotes the higher discriminatory power of this cgMLST scheme over that of conventional MLST. We also show that in terms of resolution, the performance of the E. faecium cgMLST scheme is equivalent to that of an SNP-based approach. In conclusion, the cgMLST scheme developed in this study facilitates rapid, standardized, and high-resolution tracing of E. faecium outbreaks.
Park, Kyung-Hwa; Greenwood-Quaintance, Kerryl E; Uhl, James R; Cunningham, Scott A; Chia, Nicholas; Jeraldo, Patricio R; Sampathkumar, Priya; Nelson, Heidi; Patel, Robin
2017-01-01
Staphylococcus aureus is a leading cause of bacteremia in hospitalized patients. Whether or not S. aureus bacteremia (SAB) is associated with clonality, implicating potential nosocomial transmission, has not, however, been investigated. Herein, we examined the epidemiology of SAB using whole genome sequencing (WGS). 152 SAB isolates collected over the course of 2015 at a single large Minnesota medical center were studied. Staphylococcus protein A (spa) typing was performed by PCR/Sanger sequencing; multilocus sequence typing (MLST) and core genome MLST (cgMLST) were determined by WGS. Forty-eight isolates (32%) were methicillin-resistant S. aureus (MRSA). The isolates encompassed 66 spa types, clustered into 11 spa clonal complexes (CCs) and 10 singleton types. 88% of 48 MRSA isolates belonged to spa CC-002 or -008. Methicillin-susceptible S. aureus (MSSA) isolates were more genotypically diverse, with 61% distributed across four spa CCs (CC-002, CC-012, CC-008 and CC-084). By MLST, there was 31 sequence types (STs), including 18 divided into 6 CCs and 13 singleton STs. Amongst MSSA isolates, the common MLST clones were CC5 (23%), CC30 (19%), CC8 (15%) and CC15 (11%). Common MRSA clones were CC5 (67%) and CC8 (25%); there were no MRSA isolates in CC45 or CC30. By cgMLST analysis, there were 9 allelic differences between two isolates, with the remaining 150 isolates differing from each other by over 40 alleles. The two isolates were retroactively epidemiologically linked by medical record review. Overall, cgMLST analysis resulted in higher resolution epidemiological typing than did multilocus sequence or spa typing.
STBase: one million species trees for comparative biology.
McMahon, Michelle M; Deepak, Akshay; Fernández-Baca, David; Boss, Darren; Sanderson, Michael J
2015-01-01
Comprehensively sampled phylogenetic trees provide the most compelling foundations for strong inferences in comparative evolutionary biology. Mismatches are common, however, between the taxa for which comparative data are available and the taxa sampled by published phylogenetic analyses. Moreover, many published phylogenies are gene trees, which cannot always be adapted immediately for species level comparisons because of discordance, gene duplication, and other confounding biological processes. A new database, STBase, lets comparative biologists quickly retrieve species level phylogenetic hypotheses in response to a query list of species names. The database consists of 1 million single- and multi-locus data sets, each with a confidence set of 1000 putative species trees, computed from GenBank sequence data for 413,000 eukaryotic taxa. Two bodies of theoretical work are leveraged to aid in the assembly of multi-locus concatenated data sets for species tree construction. First, multiply labeled gene trees are pruned to conflict-free singly-labeled species-level trees that can be combined between loci. Second, impacts of missing data in multi-locus data sets are ameliorated by assembling only decisive data sets. Data sets overlapping with the user's query are ranked using a scheme that depends on user-provided weights for tree quality and for taxonomic overlap of the tree with the query. Retrieval times are independent of the size of the database, typically a few seconds. Tree quality is assessed by a real-time evaluation of bootstrap support on just the overlapping subtree. Associated sequence alignments, tree files and metadata can be downloaded for subsequent analysis. STBase provides a tool for comparative biologists interested in exploiting the most relevant sequence data available for the taxa of interest. It may also serve as a prototype for future species tree oriented databases and as a resource for assembly of larger species phylogenies from precomputed trees.
Carter, Stuart D.; Birtles, Richard J.; Brown, Jennifer M.; Hart, C. Anthony; Evans, Nicholas J.
2016-01-01
ABSTRACT Treponema species are implicated in many diseases of humans and animals. Digital dermatitis (DD) treponemes are reported to cause severe lesions in cattle, sheep, pigs, goats, and wild elk, causing substantial global animal welfare issues and economic losses. The fastidiousness of these spirochetes has previously precluded studies investigating within-phylogroup genetic diversity. An archive of treponemes that we isolated enabled multilocus sequence typing to quantify the diversity and population structure of DD treponemes. Isolates (n = 121) were obtained from different animal hosts in nine countries on three continents. The analyses herein of currently isolated DD treponemes at seven housekeeping gene loci confirm the classification of the three previously designated phylogroups: the Treponema medium, Treponema phagedenis, and Treponema pedis phylogroups. Sequence analysis of seven DD treponeme housekeeping genes revealed a generally low level of diversity among the strains within each phylogroup, removing the need for the previously used “-like” suffix. Surprisingly, all isolates within each phylogroup clustered together, regardless of host or geographic origin, suggesting that the same sequence types (STs) can infect different animals. Some STs were derived from multiple animals from the same farm, highlighting probable within-farm transmissions. Several STs infected multiple hosts from similar geographic regions, identifying probable frequent between-host transmissions. Interestingly, T. pedis appears to be evolving more quickly than the T. medium or T. phagedenis DD treponeme phylogroup, by forming two unique ST complexes. The lack of phylogenetic discrimination between treponemes isolated from different hosts or geographic regions substantially contrasts with the data for other clinically relevant spirochetes. IMPORTANCE The recent expansion of the host range of digital dermatitis (DD) treponemes from cattle to sheep, goats, pigs, and wild elk, coupled with the high level of 16S rRNA gene sequence similarity across hosts and with human treponemes, suggests that the same bacterial species can cause disease in multiple different hosts. This multilocus sequence typing (MLST) study further demonstrates that these bacteria isolated from different hosts are indeed very similar, raising the potential for cross-species transmission. The study also shows that infection spread occurs frequently, both locally and globally, suggesting transmission by routes other than animal-animal transmission alone. These results indicate that on-farm biosecurity is important for controlling disease spread in domesticated species. Continued surveillance and vigilance are important for ascertaining the evolution and tracking any further host range expansion of these important pathogens. PMID:27208135
Clegg, Simon R; Carter, Stuart D; Birtles, Richard J; Brown, Jennifer M; Hart, C Anthony; Evans, Nicholas J
2016-08-01
Treponema species are implicated in many diseases of humans and animals. Digital dermatitis (DD) treponemes are reported to cause severe lesions in cattle, sheep, pigs, goats, and wild elk, causing substantial global animal welfare issues and economic losses. The fastidiousness of these spirochetes has previously precluded studies investigating within-phylogroup genetic diversity. An archive of treponemes that we isolated enabled multilocus sequence typing to quantify the diversity and population structure of DD treponemes. Isolates (n = 121) were obtained from different animal hosts in nine countries on three continents. The analyses herein of currently isolated DD treponemes at seven housekeeping gene loci confirm the classification of the three previously designated phylogroups: the Treponema medium, Treponema phagedenis, and Treponema pedis phylogroups. Sequence analysis of seven DD treponeme housekeeping genes revealed a generally low level of diversity among the strains within each phylogroup, removing the need for the previously used "-like" suffix. Surprisingly, all isolates within each phylogroup clustered together, regardless of host or geographic origin, suggesting that the same sequence types (STs) can infect different animals. Some STs were derived from multiple animals from the same farm, highlighting probable within-farm transmissions. Several STs infected multiple hosts from similar geographic regions, identifying probable frequent between-host transmissions. Interestingly, T. pedis appears to be evolving more quickly than the T. medium or T. phagedenis DD treponeme phylogroup, by forming two unique ST complexes. The lack of phylogenetic discrimination between treponemes isolated from different hosts or geographic regions substantially contrasts with the data for other clinically relevant spirochetes. The recent expansion of the host range of digital dermatitis (DD) treponemes from cattle to sheep, goats, pigs, and wild elk, coupled with the high level of 16S rRNA gene sequence similarity across hosts and with human treponemes, suggests that the same bacterial species can cause disease in multiple different hosts. This multilocus sequence typing (MLST) study further demonstrates that these bacteria isolated from different hosts are indeed very similar, raising the potential for cross-species transmission. The study also shows that infection spread occurs frequently, both locally and globally, suggesting transmission by routes other than animal-animal transmission alone. These results indicate that on-farm biosecurity is important for controlling disease spread in domesticated species. Continued surveillance and vigilance are important for ascertaining the evolution and tracking any further host range expansion of these important pathogens. Copyright © 2016 Clegg et al.
Reads2Type: a web application for rapid microbial taxonomy identification.
Saputra, Dhany; Rasmussen, Simon; Larsen, Mette V; Haddad, Nizar; Sperotto, Maria Maddalena; Aarestrup, Frank M; Lund, Ole; Sicheritz-Pontén, Thomas
2015-11-25
Identification of bacteria may be based on sequencing and molecular analysis of a specific locus such as 16S rRNA, or a set of loci such as in multilocus sequence typing. In the near future, healthcare institutions and routine diagnostic microbiology laboratories may need to sequence the entire genome of microbial isolates. Therefore we have developed Reads2Type, a web-based tool for taxonomy identification based on whole bacterial genome sequence data. Raw sequencing data provided by the user are mapped against a set of marker probes that are derived from currently available bacteria complete genomes. Using a dataset of 1003 whole genome sequenced bacteria from various sequencing platforms, Reads2Type was able to identify the species with 99.5 % accuracy and on the minutes time scale. In comparison with other tools, Reads2Type offers the advantage of not needing to transfer sequencing files, as the entire computational analysis is done on the computer of whom utilizes the web application. This also prevents data privacy issues to arise. The Reads2Type tool is available at http://www.cbs.dtu.dk/~dhany/reads2type.html.
High-resolution typing of Chlamydia trachomatis: epidemiological and clinical uses.
de Vries, Henry J C; Schim van der Loeff, Maarten F; Bruisten, Sylvia M
2015-02-01
A state-of-the-art overview of molecular Chlamydia trachomatis typing methods that are used for routine diagnostics and scientific studies. Molecular epidemiology uses high-resolution typing techniques such as multilocus sequence typing, multilocus variable number of tandem repeats analysis, and whole-genome sequencing to identify strains based on their DNA sequence. These data can be used for cluster, network and phylogenetic analyses, and are used to unveil transmission networks, risk groups, and evolutionary pathways. High-resolution typing of C. trachomatis strains is applied to monitor treatment efficacy and re-infections, and to study the recent emergence of lymphogranuloma venereum (LGV) amongst men who have sex with men in high-income countries. Chlamydia strain typing has clinical relevance in disease management, as LGV needs longer treatment than non-LGV C. trachomatis. It has also led to the discovery of a new variant Chlamydia strain in Sweden, which was not detected by some commercial C. trachomatis diagnostic platforms. After a brief history and comparison of the various Chlamydia typing methods, the applications of the current techniques are described and future endeavors to extend scientific understanding are formulated. High-resolution typing will likely help to further unravel the pathophysiological mechanisms behind the wide clinical spectrum of chlamydial disease.
Phillips, Anastasia; Sotomayor, Cristina; Wang, Qinning; Holmes, Nadine; Furlong, Catriona; Ward, Kate; Howard, Peter; Octavia, Sophie; Lan, Ruiting; Sintchenko, Vitali
2016-09-15
Salmonella Typhimurium (STM) is an important cause of foodborne outbreaks worldwide. Subtyping of STM remains critical to outbreak investigation, yet current techniques (e.g. multilocus variable number tandem repeat analysis, MLVA) may provide insufficient discrimination. Whole genome sequencing (WGS) offers potentially greater discriminatory power to support infectious disease surveillance. We performed WGS on 62 STM isolates of a single, endemic MLVA type associated with two epidemiologically independent, food-borne outbreaks along with sporadic cases in New South Wales, Australia, during 2014. Genomes of case and environmental isolates were sequenced using HiSeq (Illumina) and the genetic distance between them was assessed by single nucleotide polymorphism (SNP) analysis. SNP analysis was compared to the epidemiological context. The WGS analysis supported epidemiological evidence and genomes of within-outbreak isolates were nearly identical. Sporadic cases differed from outbreak cases by a small number of SNPs, although their close relationship to outbreak cases may represent an unidentified common food source that may warrant further public health follow up. Previously unrecognised mini-clusters were detected. WGS of STM can discriminate foodborne community outbreaks within a single endemic MLVA clone. Our findings support the translation of WGS into public health laboratory surveillance of salmonellosis.
Buján, Noemí; Balboa, Sabela; L Romalde, Jesús; E Toranzo, Alicia; Magariños, Beatriz
2018-05-08
At present, the genus Edwardsiella compiles five species: E. tarda, E. hoshinae, E. ictaluri, E. piscicida and E. anguillarum. Some species of this genus such us E. ictaluri and E. piscicida are important pathogens of numerous fish species. With the description of the two latter species, the phylogeny of Edwardsiella became more complicated. With the aim to clarify the relationships among all species in the genus, a multilocus sequence typing (MLST) approach was developed and applied to characterize 56 isolates and 6 reference strains belonging to the five Edwardsiella species. Moreover, several analyses based on the MLST scheme were performed to investigate the evolution within the genus, as well as the influence of recombination and mutation in the speciation. Edwardsiella isolates presented a high genetic variability reflected in the fourteen sequence types (ST) represented by a single isolates out of eighteen total ST. Mutation events were considerably more frequent than recombination, although both approximately equal influenced the genetic diversification. However, the speciation among species occurred mostly by recombination. Edwardsiella genus displays a non-clonal population structure with some degree of geographical isolation followed by a population expansion of E. piscicida. A database from this study was created and hosted on pubmlst.org (http://pubmlst.org/edwardsiella/). Copyright © 2018 Elsevier Inc. All rights reserved.
Danet, Jean Luc; Balakishiyeva, Gulnara; Cimerman, Agnès; Sauvion, Nicolas; Marie-Jeanne, Véronique; Labonne, Gérard; Lavina, Amparo; Batlle, Assumpcio; Krizanac, Ivana; Skoric, Dijana; Ermacora, Paolo; Serçe, Cigdem Ulubas; Caglayan, Kadriye; Jarausch, Wolfgang; Foissac, Xavier
2011-02-01
The genetic diversity of three temperate fruit tree phytoplasmas 'Candidatus Phytoplasma prunorum', 'Ca. P. mali' and 'Ca. P. pyri' has been established by multilocus sequence analysis. Among the four genetic loci used, the genes imp and aceF distinguished 30 and 24 genotypes, respectively, and showed the highest variability. Percentage of substitution for imp ranged from 50 to 68 % according to species. Percentage of substitution varied between 9 and 12 % for aceF, whereas it was between 5 and 6 % for pnp and secY. In the case of 'Ca P. prunorum' the three most prevalent aceF genotypes were detected in both plants and insect vectors, confirming that the prevalent isolates are propagated by insects. The four isolates known to be hypo-virulent had the same aceF sequence, indicating a possible monophyletic origin. Haplotype network reconstructed by eBURST revealed that among the 34 haplotypes of 'Ca. P. prunorum', the four hypo-virulent isolates also grouped together in the same clade. Genotyping of some Spanish and Azerbaijanese 'Ca. P. pyri' isolates showed that they shared some alleles with 'Ca. P. prunorum', supporting for the first time to our knowledge, the existence of inter-species recombination between these two species.
Laukkanen-Ninios, Riikka; Didelot, Xavier; Jolley, Keith A.; Morelli, Giovanna; Sangal, Vartul; Kristo, Paula; Imori, Priscilla F. M.; Fukushima, Hiroshi; Siitonen, Anja; Tseneva, Galina; Voskressenskaya, Ekaterina; Falcao, Juliana P.; Korkeala, Hannu; Maiden, Martin C. J.; Mazzoni, Camila; Carniel, Elisabeth; Skurnik, Mikael; Achtman, Mark
2014-01-01
Summary Multilocus sequence analysis of 417 strains of Yersinia pseudotuberculosis revealed that it is a complex of four populations, three of which have been previously assigned species status [Y. pseudotuberculosis sensu stricto (s.s.), Yersinia pestis and Yersinia similis] and a fourth population, which we refer to as the Korean group, which may be in the process of speciation. We detected clear signs of recombination within Y. pseudotuberculosis s.s. as well as imports from Y. similis and the Korean group. The sources of genetic diversification within Y. pseudotuberculosis s.s. were approximately equally divided between recombination and mutation, whereas recombination has not yet been demonstrated in Y. pestis, which is also much more genetically monomorphic than is Y. pseudotuberculosis s.s. Most Y. pseudotuberculosis s.s. belong to a diffuse group of sequence types lacking clear population structure, although this species contains a melibiose-negative clade that is present globally in domesticated animals. Yersinia similis corresponds to the previously identified Y. pseudotuberculosis genetic type G4, which is probably not pathogenic because it lacks the virulence factors that are typical for Y. pseudotuberculosis s.s. In contrast, Y. pseudotuberculosis s.s., the Korean group and Y. pestis can all cause disease in humans. PMID:21951486
mec-associated dru typing in the epidemiological analysis of ST239 MRSA in Malaysia.
Ghaznavi-Rad, E; Goering, R V; Nor Shamsudin, M; Weng, P L; Sekawi, Z; Tavakol, M; van Belkum, A; Neela, V
2011-11-01
The usefulness of mec-associated dru typing in the epidemiological analysis of methicillin-resistant Staphylococcus aureus (MRSA) isolated in Malaysia was investigated and compared with pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and spa and SCCmec typing. The isolates studied included all MRSA types in Malaysia. Multilocus sequence type ST188 and ST1 isolates were highly clonal by all typing methods. However, the dru typing of ST239 isolates produced the clearest discrimination between SCCmec IIIa and III isolates, yielding more subtypes than any other method. Evaluation of the discriminatory power for each method identified dru typing and PFGE as the most discriminatory, with Simpson's index of diversity (SID) values over 89%, including an isolate which was non-typeable by spa, but dru-typed as dt13j. The discriminatory ability of dru typing, especially with closely related MRSA ST239 strains (e.g., Brazilian and Hungarian), underscores its utility as a tool for the epidemiological investigation of MRSA.
Wu, Shi; Wu, Qingping; Zhang, Jumei; Chen, Moutong; Guo, Weipeng
2016-01-01
Eighty Listeria monocytogenes isolates were obtained from Chinese retail ready-to-eat (RTE) food and were previously characterized with serotyping and antibiotic susceptibility tests. The aim of this study was to characterize the subtype and virulence potential of these L. monocytogenes isolates by multilocus sequence typing (MLST), virulence-associate genes, epidemic clones (ECs), and sequence analysis of the important virulence factor: internalin A (inlA). The result of MLST revealed that these L. monocytogenes isolates belonged to 14 different sequence types (STs). With the exception of four new STs (ST804, ST805, ST806, and ST807), all other STs observed in this study have been associated with human listeriosis and outbreaks to varying extents. Six virulence-associate genes (inlA, inlB, inlC, inlJ, hly, and llsX) were selected and their presence was investigated using PCR. All strains carried inlA, inlB, inlC, inlJ, and hly, whereas 38.8% (31/80) of strains harbored the listeriolysin S genes (llsX). A multiplex PCR assay was used to evaluate the presence of markers specific to epidemic clones of L. monocytogenes and identified 26.3% (21/80) of ECI in the 4b-4d-4e strains. Further study of inlA sequencing revealed that most strains contained the full-length InlA required for host cell invasion, whereas three mutations lead to premature stop codons (PMSC) within a novel PMSCs at position 326 (GAA → TAA). MLST and inlA sequence analysis results were concordant, and different virulence potentials within isolates were observed. These findings suggest that L. monocytogenes isolates from RTE food in China could be virulent and be capable of causing human illness. Furthermore, the STs and virulence profiles of L. monocytogenes isolates have significant implications for epidemiological and public health studies of this pathogen. PMID:26909076
Wu, Shi; Wu, Qingping; Zhang, Jumei; Chen, Moutong; Guo, Weipeng
2016-01-01
Eighty Listeria monocytogenes isolates were obtained from Chinese retail ready-to-eat (RTE) food and were previously characterized with serotyping and antibiotic susceptibility tests. The aim of this study was to characterize the subtype and virulence potential of these L. monocytogenes isolates by multilocus sequence typing (MLST), virulence-associate genes, epidemic clones (ECs), and sequence analysis of the important virulence factor: internalin A (inlA). The result of MLST revealed that these L. monocytogenes isolates belonged to 14 different sequence types (STs). With the exception of four new STs (ST804, ST805, ST806, and ST807), all other STs observed in this study have been associated with human listeriosis and outbreaks to varying extents. Six virulence-associate genes (inlA, inlB, inlC, inlJ, hly, and llsX) were selected and their presence was investigated using PCR. All strains carried inlA, inlB, inlC, inlJ, and hly, whereas 38.8% (31/80) of strains harbored the listeriolysin S genes (llsX). A multiplex PCR assay was used to evaluate the presence of markers specific to epidemic clones of L. monocytogenes and identified 26.3% (21/80) of ECI in the 4b-4d-4e strains. Further study of inlA sequencing revealed that most strains contained the full-length InlA required for host cell invasion, whereas three mutations lead to premature stop codons (PMSC) within a novel PMSCs at position 326 (GAA → TAA). MLST and inlA sequence analysis results were concordant, and different virulence potentials within isolates were observed. These findings suggest that L. monocytogenes isolates from RTE food in China could be virulent and be capable of causing human illness. Furthermore, the STs and virulence profiles of L. monocytogenes isolates have significant implications for epidemiological and public health studies of this pathogen.
Didi, Jennifer; Lemée, Ludovic; Gibert, Laure; Pons, Jean-Louis; Pestel-Caron, Martine
2014-10-01
Staphylococcus lugdunensis is an emergent virulent coagulase-negative staphylococcus responsible for severe infections similar to those caused by Staphylococcus aureus. To understand its potentially pathogenic capacity and have further detailed knowledge of the molecular traits of this organism, 93 isolates from various geographic origins were analyzed by multi-virulence-locus sequence typing (MVLST), targeting seven known or putative virulence-associated loci (atlLR2, atlLR3, hlb, isdJ, SLUG_09050, SLUG_16930, and vwbl). The polymorphisms of the putative virulence-associated loci were moderate and comparable to those of the housekeeping genes analyzed by multilocus sequence typing (MLST). However, the MVLST scheme generated 43 virulence types (VTs) compared to 20 sequence types (STs) based on MLST, indicating that MVLST was significantly more discriminating (Simpson's index [D], 0.943). No hypervirulent lineage or cluster specific to carriage strains was defined. The results of multilocus sequence analysis of known and putative virulence-associated loci are consistent with a clonal population structure for S. lugdunensis, suggesting a coevolution of these genes with housekeeping genes. Indeed, the nonsynonymous to synonymous evolutionary substitutions (dN/dS) ratio, the Tajima's D test, and Single-likelihood ancestor counting (SLAC) analysis suggest that all virulence-associated loci were under negative selection, even atlLR2 (AtlL protein) and SLUG_16930 (FbpA homologue), for which the dN/dS ratios were higher. In addition, this analysis of virulence-associated loci allowed us to propose a trilocus sequence typing scheme based on the intragenic regions of atlLR3, isdJ, and SLUG_16930, which is more discriminant than MLST for studying short-term epidemiology and further characterizing the lineages of the rare but highly pathogenic S. lugdunensis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Are commercial providers a viable option for clinical bacterial sequencing?
Raven, Kathy; Blane, Beth; Churcher, Carol; Parkhill, Julian; Peacock, Sharon J
2018-04-05
Bacterial whole-genome sequencing in the clinical setting has the potential to bring major improvements to infection control and clinical practice. Sequencing instruments are not currently available in the majority of routine microbiology laboratories worldwide, but an alternative is to use external sequencing providers. To foster discussion around this we investigated whether send-out services were a viable option. Four providers offering MiSeq sequencing were selected based on cost and evaluated based on the service provided and sequence data quality. DNA was prepared from five methicillin-resistant Staphylococcus aureus (MRSA) isolates, four of which were investigated during a previously published outbreak in the UK together with a reference MRSA isolate (ST22 HO 5096 0412). Cost of sequencing per isolate ranged from £155 to £342 and turnaround times from DNA postage to arrival of sequence data ranged from 12 to 63 days. Comparison of commercially generated genomes against the original sequence data demonstrated very high concordance, with no more than one single nucleotide polymorphism (SNP) difference on core genome mapping between the original sequences and the new sequence for all four providers. Multilocus sequence type could not be assigned based on assembly for the two cheapest sequence providers due to fragmented assemblies probably caused by a lower output of sequence data per isolate. Our results indicate that external providers returned highly accurate genome data, but that improvements are required in turnaround time to make this a viable option for use in clinical practice.
Mel-36 – preliminary description of a new morel species
USDA-ARS?s Scientific Manuscript database
A pilot survey of true morels (Morchella) of Newfoundland and Labrador (NL), employing phylogenetic analyses of multilocus DNA sequence data, resulted in the discovery of a novel species that is currently only known from NL and New Brunswick. This unnamed species was informally designated Morchella ...
Resolving the Mortierellaceae phylogeny through Multi-Locus Sequence Typing (MLST) and phylogenomics
USDA-ARS?s Scientific Manuscript database
The Mortierellaceae (Mortierellomycotina) are a diverse family of fungi that are of evolutionary and ecological relevance. They are the closest lineage to the arbuscular mycorrhizae (Glomeromycotina) and include some of the first species to evolve fruiting body production. The Mortierellaceae are es...
Trichoderma asperellum reconsidered: two cryptic species
USDA-ARS?s Scientific Manuscript database
Analysis of a world-wide collection of strains of Trichoderma asperellum using multilocus genealogies of four genomic regions (tef1, rbp2, act, ITS1, 2, 5.8s), sequence polymorphism-derived (SPD) markers, matrix-assisted laser desorption/ionisation–time of flight mass spectrometry (MALDI-TOF MS) of ...
Pneumocystis jirovecii multilocus gene sequencing: findings and implications.
Matos, Olga; Esteves, Francisco
2010-08-01
Pneumocystis jirovecii pneumonia (PcP) remains a major cause of respiratory illness among immunocompromised patients, especially patients infected with HIV, but it has also been isolated from immunocompetent persons. This article discusses the application of multilocus genotyping analysis to the study of the genetic diversity of P. jirovecii and its epidemiological and clinical parameters, and the important concepts achieved to date with these approaches. The multilocus typing studies performed until now have shown that there is an important genetic diversity of stable and ubiquitous P. jirovecii genotypes; infection with P. jirovecii is not necessarily clonal, recombination between some P. jirovecii multilocus genotypes has been suggested. P. jirovecii-specific multilocus genotypes can be associated with severity of PcP. Patients infected with P. jirovecii, regardless of the form of infection they present with, are part of a common human reservoir for future infections. The CYB, DHFR, DHPS, mtLSU rRNA, SOD and the ITS loci are suitable genetic targets to be used in further epidemiological studies focused on the identification and characterization of P. jirovecii haplotypes correlated with drug resistance and PcP outcome.
Clark, Clifford G; Berry, Chrystal; Walker, Matthew; Petkau, Aaron; Barker, Dillon O R; Guan, Cai; Reimer, Aleisha; Taboada, Eduardo N
2016-12-03
Whole genome sequencing (WGS) is useful for determining clusters of human cases, investigating outbreaks, and defining the population genetics of bacteria. It also provides information about other aspects of bacterial biology, including classical typing results, virulence, and adaptive strategies of the organism. Cell culture invasion and protein expression patterns of four related multilocus sequence type 21 (ST21) C. jejuni isolates from a significant Canadian water-borne outbreak were previously associated with the presence of a CJIE1 prophage. Whole genome sequencing was used to examine the genetic diversity among these isolates and confirm that previous observations could be attributed to differential prophage carriage. Moreover, we sought to determine the presence of genome sequences that could be used as surrogate markers to delineate outbreak-associated isolates. Differential carriage of the CJIE1 prophage was identified as the major genetic difference among the four outbreak isolates. High quality single-nucleotide variant (hqSNV) and core genome multilocus sequence typing (cgMLST) clustered these isolates within expanded datasets consisting of additional C. jejuni strains. The number and location of homopolymeric tract regions was identical in all four outbreak isolates but differed from all other C. jejuni examined. Comparative genomics and PCR amplification enabled the identification of large chromosomal inversions of approximately 93 kb and 388 kb within the outbreak isolates associated with transducer-like proteins containing long nucleotide repeat sequences. The 93-kb inversion was characteristic of the outbreak-associated isolates, and the gene content of this inverted region displayed high synteny with the reference strain. The four outbreak isolates were clonally derived and differed mainly in the presence of the CJIE1 prophage, validating earlier findings linking the prophage to phenotypic differences in virulence assays and protein expression. The identification of large, genetically syntenous chromosomal inversions in the genomes of outbreak-associated isolates provided a unique method for discriminating outbreak isolates from the background population. Transducer-like proteins appear to be associated with the chromosomal inversions. CgMLST and hqSNV analysis also effectively delineated the outbreak isolates within the larger C. jejuni population structure.
Kobayashi, Nobumichi; Nagashima, Shigeo
2009-01-01
We carried out the first study of Enterococcus faecalis clinical isolates in Cuba by multilocus sequence typing linking the molecular typing data with the presence of virulence determinants and the antibiotic resistance genes. A total of 23 E. faecalis isolates recovered from several clinic sources and geographic areas of Cuba during a period between 2000 and 2005 were typed by multilocus sequence typing. Thirteen sequence types (STs) including five novel STs were identified, and the ST 64 (clonal complex [CC] 8), ST 6 (CC2), ST 21(CC21), and ST 16 (CC58) were found in more than one strain. Sixty-seven percent of STs corresponded to STs reported previously in Spain, Poland, and The Netherlands, and other STs (ST115, ST64, ST6, and ST40) were genetically close to those detected in the United States. Prevalence of both antimicrobial resistance genes [aac(6′)-aph(2″), aph(3′), ant(6), ant(3″)(9), aph(2″)-Id, aph(2″)-Ic, erm(B), erm(A), erm(C), mef(A), tet(M), and tet(L)] and virulence genes (agg, gelE, cylA, esp, ccf, and efaAfs) were examined by polymerase chain reaction. Aminoglycoside resistance genes aac(6′)-Ie-aph(2″)-Ia, aph(3′), ant(6), ant(3″)(9) were more frequently detected in ST6, ST16, ST23, ST64, and ST115. The multidrug resistance was distributed to all STs detected, except for ST117 and singleton ST225. The presence of cyl gene was specifically linked to the ST64 and ST16. Presence of the esp, gel, and agg genes was not specific to any particular ST. This research provided the first insight into the population structure of E. faecalis in Cuba, that is, most Cuban strains were related to European strains, whereas others to U.S. strains. The CC2, CC21, and CC8, three of the biggest CCs in the world, were evidently circulating in Cuba, associated with multidrug resistance and virulence traits. PMID:19857135
Sulaiman, Irshad M; Jacobs, Emily; Simpson, Steven; Kerdahi, Khalil
2017-06-01
The primary mission of the U.S. Food and Drug Administration is to enforce the Food, Drug, and Cosmetic Act and regulate food, drug, and cosmetic products. Thus, this agency monitors the presence of pathogenic microorganisms in these products, including canned foods, as one of the regulatory action criteria and also ensures that these products are safe for human consumption. This study was carried out to investigate the effectiveness of pathogen control and integrity of ready-to-eat canned food containing Black Bean Corn Poblano Salsa. A total of nine unopened and recalled canned glass jars from the same lot were examined initially by conventional microbiologic protocols that involved a two-step enrichment, followed by streaking on selective agar plates, for the presence of gram-positive and gram-negative bacteria. Of the eight subsamples examined for each sample, all subsamples of one of the containers were found positive for the presence of slow-growing rod-shaped, gram-positive, facultative anaerobic bacteria. The recovered isolates were subsequently sequenced at rRNA and gyrB loci. Afterward, multilocus sequence typing (MLST) was performed characterizing 11 additional known MLST loci (clpX, dnaA, dnaK, groEL, murC, murE, pepX, pyrG, recA, rpoB, and uvrC). Analyses of the nucleotide sequences of rRNA, gyrB, and 11 MLST loci confirmed these gram-positive bacteria recovered from canned food to be Lactobacillus fermentum . Thus, the DNA sequencing of housekeeping MLST genes can provide species identification of L. fermentum and can be used in the canned food monitoring program of public health importance.
Lai, Qiliang; Liu, Yang; Yuan, Jun; Du, Juan; Wang, Liping; Sun, Fengqin; Shao, Zongze
2014-01-01
Thalassospira bacteria are widespread and have been isolated from various marine environments. Less is known about their genetic diversity and biogeography, as well as their role in marine environments, many of them cannot be discriminated merely using the 16S rRNA gene. To address these issues, in this report, the phylogenetic analysis of 58 strains from seawater and deep sea sediments were carried out using the multilocus sequence analysis (MLSA) based on acsA, aroE, gyrB, mutL, rpoD and trpB genes, and the DNA-DNA hybridization (DDH) and average nucleotide identity (ANI) based on genome sequences. The MLSA analysis demonstrated that the 58 strains were clearly separated into 15 lineages, corresponding to seven validly described species and eight potential novel species. The DDH and ANI values further confirmed the validity of the MLSA analysis and eight potential novel species. The MLSA interspecies gap of the genus Thalassospira was determined to be 96.16-97.12% sequence identity on the basis of the combined analyses of the DDH and MLSA, while the ANIm interspecies gap was 95.76-97.20% based on the in silico DDH analysis. Meanwhile, phylogenetic analyses showed that the Thalassospira bacteria exhibited distribution pattern to a certain degree according to geographic regions. Moreover, they clustered together according to the habitats depth. For short, the phylogenetic analyses and biogeography of the Thalassospira bacteria were systematically investigated for the first time. These results will be helpful to explore further their ecological role and adaptive evolution in marine environments.
Yuan, Jun; Du, Juan; Wang, Liping; Sun, Fengqin; Shao, Zongze
2014-01-01
Thalassospira bacteria are widespread and have been isolated from various marine environments. Less is known about their genetic diversity and biogeography, as well as their role in marine environments, many of them cannot be discriminated merely using the 16S rRNA gene. To address these issues, in this report, the phylogenetic analysis of 58 strains from seawater and deep sea sediments were carried out using the multilocus sequence analysis (MLSA) based on acsA, aroE, gyrB, mutL, rpoD and trpB genes, and the DNA-DNA hybridization (DDH) and average nucleotide identity (ANI) based on genome sequences. The MLSA analysis demonstrated that the 58 strains were clearly separated into 15 lineages, corresponding to seven validly described species and eight potential novel species. The DDH and ANI values further confirmed the validity of the MLSA analysis and eight potential novel species. The MLSA interspecies gap of the genus Thalassospira was determined to be 96.16–97.12% sequence identity on the basis of the combined analyses of the DDH and MLSA, while the ANIm interspecies gap was 95.76–97.20% based on the in silico DDH analysis. Meanwhile, phylogenetic analyses showed that the Thalassospira bacteria exhibited distribution pattern to a certain degree according to geographic regions. Moreover, they clustered together according to the habitats depth. For short, the phylogenetic analyses and biogeography of the Thalassospira bacteria were systematically investigated for the first time. These results will be helpful to explore further their ecological role and adaptive evolution in marine environments. PMID:25198177
Vibrio aphrogenes sp. nov., in the Rumoiensis clade isolated from a seaweed.
Tanaka, Mami; Endo, Shoko; Kotake, Fumihito; Al-Saari, Nurhidayu; Amin, A K M Rohul; Feng, Gao; Mino, Sayaka; Doi, Hidetaka; Ogura, Yoshitoshi; Hayashi, Tetsuya; Suda, Wataru; Hattori, Masahira; Yumoto, Isao; Sawabe, Toko; Sawabe, Tomoo; Araki, Toshiyoshi
2017-01-01
A novel strain Vibrio aphrogenes sp. nov. strain CA-1004T isolated from the surface of seaweed collected on the coast of Mie Prefecture in 1994 [1] was characterized using polyphasic taxonomy including multilocus sequence analysis (MLSA) and a genome based comparison. Both phylogenetic analyses on the basis of 16S rRNA gene sequences and MLSA based on eight protein-coding genes (gapA, gyrB, ftsZ, mreB, pyrH, recA, rpoA, and topA) showed the strain could be placed in the Rumoiensis clade in the genus Vibrio. Sequence similarities of the 16S rRNA gene and the multilocus genes against the Rumoiensis clade members, V. rumoiensis, V. algivorus, V. casei, and V. litoralis, were low enough to propose V. aphrogenes sp. nov. strain CA-1004T as a separate species. The experimental DNA-DNA hybridization data also revealed that the strain CA-1004T was separate from four known Rumoiensis clade species. The G+C content of the V. aphrogenes strain was determined as 42.1% based on the genome sequence. Major traits of the strain were non-motile, halophilic, fermentative, alginolytic, and gas production. A total of 27 traits (motility, growth temperature range, amylase, alginase and lipase productions, and assimilation of 19 carbon compounds) distinguished the strain from the other species in the Rumoiensis clade. The name V. aphrogenes sp. nov. is proposed for this species in the Rumoiensis clade, with CA-1004T as the type strain (JCM 31643T = DSM 103759T).
Mak, Tim N; Yu, Shu-Han; De Marzo, Angelo M; Brüggemann, Holger; Sfanos, Karen S
2013-05-01
Inflammation is commonly observed in radical prostatectomy specimens, and evidence suggests that inflammation may contribute to prostate carcinogenesis. Multiple microorganisms have been implicated in serving as a stimulus for prostatic inflammation. The pro-inflammatory anaerobe, Propionibacterium acnes, is ubiquitously found on human skin and is associated with the skin disease acne vulgaris. Recent studies have shown that P. acnes can be detected in prostatectomy specimens by bacterial culture or by culture-independent molecular techniques. Radical prostatectomy tissue samples were obtained from 30 prostate cancer patients and subject to both aerobic and anaerobic culture. Cultured species were identified by 16S rDNA gene sequencing. Propionibacterium acnes isolates were typed using multilocus sequence typing (MLST). Our study confirmed that P. acnes can be readily cultured from prostatectomy tissues (7 of 30 cases, 23%). In some cases, multiple isolates of P. acnes were cultured as well as other Propionibacterium species, such as P. granulosum and P. avidum. Overall, 9 of 30 cases (30%) were positive for Propionibacterium spp. MLST analyses identified eight different sequence types (STs) among prostate-derived P. acnes isolates. These STs belong to two clonal complexes, namely CC36 (type I-2) and CC53/60 (type II), or are CC53/60-related singletons. MLST typing results indicated that prostate-derived P. acnes isolates do not fall within the typical skin/acne STs, but rather are characteristic of STs associated with opportunistic infections and/or urethral flora. The MLST typing results argue against the likelihood that prostatectomy-derived P. acnes isolates represent contamination from skin flora. Copyright © 2012 Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
Cryptococcus flavescens strain OH182.9_3C (3C) previously displayed significant biological control activity against Fusarium head blight, a globally important disease of wheat; however, the diversity within C. flavescens has not been previously characterized. Multilocus sequence typing was performed...
USDA-ARS?s Scientific Manuscript database
Bacterial spot of tomato (BST) is a major constraint to tomato production in Ethiopia and many other countries leading to significant crop losses. In the present study, using pathogenicity tests, sensitivity to copper and streptomycin, and multilocus sequence analysis, a diverse group of Xanthomonas...
USDA-ARS?s Scientific Manuscript database
Vibrio parahaemolyticus is a gram-negative bacterium that inhabits coastal and marine environments. Thermostable direct hemolysin (tdh), tdh-related hemolysin (trh) and the type III secretion system are considered the potential virulent factors of pathogenic V. parahaemolyticus. The frequency of str...
USDA-ARS?s Scientific Manuscript database
Strains from a collection of 3,639 diverse Bacillus thuringiensis isolates were classified based on phenotypic profiles resulting from six biochemical tests, including production of amylase (T), lecithinase (L), urease (U), acid from sucrose (S) and salicin (A), and the hydrolysis of esculin (E). St...
USDA-ARS?s Scientific Manuscript database
The objective of this study was to compare subtypes of Campylobacter jejuni and coli detected on three discreet selective Campylobacter plating media to determine if different media select for different subtypes. Fifty ceca and fifty carcasses (n=100, representing 50 flocks) were collected from the...
USDA-ARS?s Scientific Manuscript database
Mycoplasma bovis is a primary agent of mastitis, pneumonia and arthritis in cattle and is the bacterium isolated most frequently from the polymicrobial syndrome known as bovine respiratory disease complex (BRDC). Recently, M. bovis has emerged as a significant health problem in bison, causing necro...
A multilocus sequence typing method and curated database for Mycoplasma bovis
USDA-ARS?s Scientific Manuscript database
Mycoplasma bovis is a primary agent of mastitis, pneumonia and arthritis in cattle and is the bacterium isolated most frequently from the polymicrobial syndrome known as bovine respiratory disease complex (BRDC). Recently, M. bovis has emerged as a significant problem in bison, causing necrotic pha...
Campylobacter multi-locus sequence typing subtypes detected on chicken livers available at retail.
USDA-ARS?s Scientific Manuscript database
Foodborne campylobacteriosis has been traced to undercooked chicken liver. It is not known what prevalence of Campylobacter to expect on fresh chicken livers available at retail. The objectives of this study were to measure prevalence of Campylobacter associated with chicken livers at retail and d...
Jolley, Keith A.; Reed, Elizabeth; Martinez-Urtaza, Jaime
2017-01-01
ABSTRACT Vibrio parahaemolyticus is an important human foodborne pathogen whose transmission is associated with the consumption of contaminated seafood, with a growing number of infections reported over recent years worldwide. A multilocus sequence typing (MLST) database for V. parahaemolyticus was created in 2008, and a large number of clones have been identified, causing severe outbreaks worldwide (sequence type 3 [ST3]), recurrent outbreaks in certain regions (e.g., ST36), or spreading to other regions where they are nonendemic (e.g., ST88 or ST189). The current MLST scheme uses sequences of 7 genes to generate an ST, which results in a powerful tool for inferring the population structure of this pathogen, although with limited resolution, especially compared to pulsed-field gel electrophoresis (PFGE). The application of whole-genome sequencing (WGS) has become routine for trace back investigations, with core genome MLST (cgMLST) analysis as one of the most straightforward ways to explore complex genomic data in an epidemiological context. Therefore, there is a need to generate a new, portable, standardized, and more advanced system that provides higher resolution and discriminatory power among V. parahaemolyticus strains using WGS data. We sequenced 92 V. parahaemolyticus genomes and used the genome of strain RIMD 2210633 as a reference (with a total of 4,832 genes) to determine which genes were suitable for establishing a V. parahaemolyticus cgMLST scheme. This analysis resulted in the identification of 2,254 suitable core genes for use in the cgMLST scheme. To evaluate the performance of this scheme, we performed a cgMLST analysis of 92 newly sequenced genomes, plus an additional 142 strains with genomes available at NCBI. cgMLST analysis was able to distinguish related and unrelated strains, including those with the same ST, clearly showing its enhanced resolution over conventional MLST analysis. It also distinguished outbreak-related from non-outbreak-related strains within the same ST. The sequences obtained from this work were deposited and are available in the public database (http://pubmlst.org/vparahaemolyticus). The application of this cgMLST scheme to the characterization of V. parahaemolyticus strains provided by different laboratories from around the world will reveal the global picture of the epidemiology, spread, and evolution of this pathogen and will become a powerful tool for outbreak investigations, allowing for the unambiguous comparison of strains with global coverage. PMID:28330888
Bybee, Seth M; Bracken-Grissom, Heather; Haynes, Benjamin D; Hermansen, Russell A; Byers, Robert L; Clement, Mark J; Udall, Joshua A; Wilcox, Edward R; Crandall, Keith A
2011-01-01
Next-gen sequencing technologies have revolutionized data collection in genetic studies and advanced genome biology to novel frontiers. However, to date, next-gen technologies have been used principally for whole genome sequencing and transcriptome sequencing. Yet many questions in population genetics and systematics rely on sequencing specific genes of known function or diversity levels. Here, we describe a targeted amplicon sequencing (TAS) approach capitalizing on next-gen capacity to sequence large numbers of targeted gene regions from a large number of samples. Our TAS approach is easily scalable, simple in execution, neither time-nor labor-intensive, relatively inexpensive, and can be applied to a broad diversity of organisms and/or genes. Our TAS approach includes a bioinformatic application, BarcodeCrucher, to take raw next-gen sequence reads and perform quality control checks and convert the data into FASTA format organized by gene and sample, ready for phylogenetic analyses. We demonstrate our approach by sequencing targeted genes of known phylogenetic utility to estimate a phylogeny for the Pancrustacea. We generated data from 44 taxa using 68 different 10-bp multiplexing identifiers. The overall quality of data produced was robust and was informative for phylogeny estimation. The potential for this method to produce copious amounts of data from a single 454 plate (e.g., 325 taxa for 24 loci) significantly reduces sequencing expenses incurred from traditional Sanger sequencing. We further discuss the advantages and disadvantages of this method, while offering suggestions to enhance the approach.
Bybee, Seth M.; Bracken-Grissom, Heather; Haynes, Benjamin D.; Hermansen, Russell A.; Byers, Robert L.; Clement, Mark J.; Udall, Joshua A.; Wilcox, Edward R.; Crandall, Keith A.
2011-01-01
Next-gen sequencing technologies have revolutionized data collection in genetic studies and advanced genome biology to novel frontiers. However, to date, next-gen technologies have been used principally for whole genome sequencing and transcriptome sequencing. Yet many questions in population genetics and systematics rely on sequencing specific genes of known function or diversity levels. Here, we describe a targeted amplicon sequencing (TAS) approach capitalizing on next-gen capacity to sequence large numbers of targeted gene regions from a large number of samples. Our TAS approach is easily scalable, simple in execution, neither time-nor labor-intensive, relatively inexpensive, and can be applied to a broad diversity of organisms and/or genes. Our TAS approach includes a bioinformatic application, BarcodeCrucher, to take raw next-gen sequence reads and perform quality control checks and convert the data into FASTA format organized by gene and sample, ready for phylogenetic analyses. We demonstrate our approach by sequencing targeted genes of known phylogenetic utility to estimate a phylogeny for the Pancrustacea. We generated data from 44 taxa using 68 different 10-bp multiplexing identifiers. The overall quality of data produced was robust and was informative for phylogeny estimation. The potential for this method to produce copious amounts of data from a single 454 plate (e.g., 325 taxa for 24 loci) significantly reduces sequencing expenses incurred from traditional Sanger sequencing. We further discuss the advantages and disadvantages of this method, while offering suggestions to enhance the approach. PMID:22002916
O'Hara, F. Patrick; Suaya, Jose A.; Ray, G. Thomas; Baxter, Roger; Brown, Megan L.; Mera, Robertino M.; Close, Nicole M.; Thomas, Elizabeth
2016-01-01
A number of molecular typing methods have been developed for characterization of Staphylococcus aureus isolates. The utility of these systems depends on the nature of the investigation for which they are used. We compared two commonly used methods of molecular typing, multilocus sequence typing (MLST) (and its clustering algorithm, Based Upon Related Sequence Type [BURST]) with the staphylococcal protein A (spa) typing (and its clustering algorithm, Based Upon Repeat Pattern [BURP]), to assess the utility of these methods for macroepidemiology and evolutionary studies of S. aureus in the United States. We typed a total of 366 clinical isolates of S. aureus by these methods and evaluated indices of diversity and concordance values. Our results show that, when combined with the BURP clustering algorithm to delineate clonal lineages, spa typing produces results that are highly comparable with those produced by MLST/BURST. Therefore, spa typing is appropriate for use in macroepidemiology and evolutionary studies and, given its lower implementation cost, this method appears to be more efficient. The findings are robust and are consistent across different settings, patient ages, and specimen sources. Our results also support a model in which the methicillin-resistant S. aureus (MRSA) population in the United States comprises two major lineages (USA300 and USA100), which each consist of closely related variants. PMID:26669861
O'Hara, F Patrick; Suaya, Jose A; Ray, G Thomas; Baxter, Roger; Brown, Megan L; Mera, Robertino M; Close, Nicole M; Thomas, Elizabeth; Amrine-Madsen, Heather
2016-01-01
A number of molecular typing methods have been developed for characterization of Staphylococcus aureus isolates. The utility of these systems depends on the nature of the investigation for which they are used. We compared two commonly used methods of molecular typing, multilocus sequence typing (MLST) (and its clustering algorithm, Based Upon Related Sequence Type [BURST]) with the staphylococcal protein A (spa) typing (and its clustering algorithm, Based Upon Repeat Pattern [BURP]), to assess the utility of these methods for macroepidemiology and evolutionary studies of S. aureus in the United States. We typed a total of 366 clinical isolates of S. aureus by these methods and evaluated indices of diversity and concordance values. Our results show that, when combined with the BURP clustering algorithm to delineate clonal lineages, spa typing produces results that are highly comparable with those produced by MLST/BURST. Therefore, spa typing is appropriate for use in macroepidemiology and evolutionary studies and, given its lower implementation cost, this method appears to be more efficient. The findings are robust and are consistent across different settings, patient ages, and specimen sources. Our results also support a model in which the methicillin-resistant S. aureus (MRSA) population in the United States comprises two major lineages (USA300 and USA100), which each consist of closely related variants.
Nakano, V; Ignacio, A; Llanco, L; Bueris, V; Sircili, M P; Avila-Campos, M J
2017-04-01
Clostridium perfringens is an anaerobic bacterium ubiquitous in various environments, especially in soil and the gastrointestinal tract of healthy humans and animals. In this study, multilocus sequence typing protocol was used to investigate genotypic relationships among 40 C. perfringens strains isolated from humans and broiler chicken with necrotic enteritis [NE]. The results indicated a few clonal populations, mainly observed in human strains, with 32.5% of all strains associated with one of three clonal complexes and 30 sequences types. The CC-1 cluster showed an interesting and unexpected result because it contained seven strains [six from animals and one of human origin]. Detection assays for toxin genes tpeL and netB were also performed. The netB gene was only observed in 7.5% of the strains from healthy human. The toxin gene tpeL was detected in 22.5% of the C. perfringens strains isolated from three individuals and in six broilers with NE. Our study describes the role of some C. perfringens strains of human origin acting as reservoirs of virulence genes and sources of infection. In addition, the strains of human and animal origin were found to be genetically distinct but phylogenetically close, and the human strains showed more diversity than the animal strains. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rodriguez, C; Taminiau, B; Brévers, B; Avesani, V; Van Broeck, J; Leroux, A A; Amory, H; Delmée, M; Daube, G
2014-08-06
Clostridium difficile has been identified as a significant agent of diarrhoea and enterocolitis in both foals and adult horses. Hospitalization, antibiotic therapy or changes in diet may contribute to the development of C. difficile infection. Horses admitted to a care unit are therefore at greater risk of being colonized. The aim of this study was to investigate the carriage of C. difficile in hospitalized horses and the possible influence of some risk factors in colonization. During a seven-month period, faecal samples and data relating the clinical history of horses admitted to a veterinary teaching hospital were collected. C. difficile isolates were characterized through toxin profiles, cytotoxicity activity, PCR-ribotyping, antimicrobial resistance and multilocus sequence typing (MLST). Ten isolates were obtained with a total of seven different PCR-ribotypes, including PCR-ribotype 014. Five of them were identified as toxinogenic. A high resistance to gentamicin, clindamycin and ceftiofur was found. MLST revealed four different sequencing types (ST), which included ST11, ST26, ST2 and ST15, and phylogenetic analysis showed that most of the isolates clustered in the same lineage. Clinical history suggests that horses frequently harbour toxigenic and non-toxigenic C. difficile and that in most cases they are colonized regardless of the reason for hospitalization; the development of diarrhoea is more unusual. Copyright © 2014 Elsevier B.V. All rights reserved.
Methicillin-resistant Staphylococcus aureus from dental school clinic surfaces and students.
Roberts, Marilyn C; Soge, Olusegun O; Horst, Jeremy A; Ly, Kiet A; Milgrom, Peter
2011-10-01
Methicillin-resistant Staphylococcus aureus (MRSA) isolated from frequently touched dental school clinic surfaces were compared with MRSA isolated nasal cultures of dental students. Sixty-one dental students and 95 environmental surfaces from 7 clinics were sampled using SANICULT (Starplex Scientific Inc, Etobicoke, Ontario, Canada) swabs. Antimicrobial susceptibility testing was performed, and pulsed-field gel electrophoresis analysis, the mecA gene, multilocus sequence type, and SCCmec type were determined by polymerase chain reaction and sequencing. Thirteen (21%) dental students and 8 (8.4%) surfaces were MRSA positive. Three MRSA strains were SCCmec type IV, whereas 3 were nontypeable isolates and Panton-Valentine leukocidin positive (PVL+), and none were USA300. One surface and 1 student isolate shared the same multilocus sequence type ST 8 and were 75% related. Two groups of students carried the same MRSA strains. The MRSA-positive samples were from 4 of 7 dental clinics. In addition, 21% of the dental students carried MRSA, which is > 10 times higher than the general public and twice as frequent as in other university students. This is the first study to characterize MRSA from dental clinic surfaces and dental students and suggests that both may be reservoirs for MRSA. Further studies are needed to verify this premise. Copyright © 2011 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
Wang, Ping; Tong, Jing-jing; Ma, Xiu-hua; Song, Feng-li; Fan, Ling; Guo, Cui-mei; Shi, Wei; Yu, Sang-jie; Yao, Kai-hu; Yang, Yong-hong
2015-01-01
To investigate the serotypes, antibiotic susceptibilities, and multi-locus sequence type (MLST) profiles of Streptococcus agalactiae (S. agalactiae) in Beijing to provide references for the prevention and treatment of S. agalactiae infections. All isolates were identified using the CAMP test and the latex-agglutination assay and serotyped using a Strep-B-Latex kit, after which they were assessed for antibiotic susceptibility, macrolide-resistance genes, and MLST profiles. In total, 56 S. agalactiae isolates were identified in 863 pregnant women (6.5%). Serotypes Ia, Ib, II, III, and V were identified, among which types III (32.1%), Ia (17.9%), Ib (16.1%), and V (14.3%) were the predominant serotypes. All isolates were susceptible to penicillin and ceftriaxone. The nonsusceptiblity rates measured for erythromycin, clarithromycin, azithromycin, telithromycin, clindamycin, tetracycline, and levofloxacin were 85.7%, 92.9%, 98.2%, 30.4%, 73.2%, 91%, and 39.3%, respectively. We identified 14 sequence types (STs) for the 56 isolates, among which ST19 (30.4%) was predominant. The rate of fluoroquinolone resistance was higher in serotype III than in the other serotypes. Among the 44 erythromycin-resistant isolates, 32 (72.7%) carried ermB. S. agalactiae isolates of the serotypes Ia, Ib, III, and V are common in Beijing. Among the S. agalactiae isolates, the macrolide and clindamycin resistance rates are extremely high. Most of the erythromycin-resistant isolates carry ermB.
Pantoea hericii sp. nov., Isolated from the Fruiting Bodies of Hericium erinaceus.
Rong, Chengbo; Ma, Yuanwei; Wang, Shouxian; Liu, Yu; Chen, Sanfeng; Huang, Bin; Wang, Jing; Xu, Feng
2016-06-01
Three Gram-negative, facultatively anaerobic bacterial isolates were obtained from the fruiting bodies of the edible mushroom Hericium erinaceus showing symptoms of soft rot disease in Beijing, China. Sequences of partial 16S rRNA gene placed these isolates in the genus Pantoea. Multilocus sequence analysis based on the partial sequences of atpD, gyrB, infB and rpoB revealed P. eucalypti and P. anthophila as their closest phylogenetic relatives and indicated that these isolates constituted a possible novel species. DNA-DNA hybridization studies confirmed the classification of these isolates as a novel species and phenotypic tests allowed for differentiation from the closest phylogenetic neighbours. The name Pantoea hericii sp. nov. [Type strain LMG 28847(T) = CGMCC 1.15224(T) = JZB 2120024(T)] is proposed.
USDA-ARS?s Scientific Manuscript database
Since 2002, severe leaf spotting on parsley (Petroselinum crispum L.) has occurred in Monterey County, California. One of two different pathovars of Pseudomonas syringae sensu lato were isolated from diseased leaves from seven distinct outbreaks and twice from the same outbreak (2002 and 2009). Frag...
Typing of Lymphogranuloma Venereum Chlamydia trachomatis Strains
Christerson, Linus; de Vries, Henry J.C.; de Barbeyrac, Bertille; Gaydos, Charlotte A.; Henrich, Birgit; Hoffmann, Steen; Schachter, Julius; Thorvaldsen, Johannes; Vall-Mayans, Martí; Klint, Markus; Morré, Servaas A.
2010-01-01
We analyzed by multilocus sequence typing 77 lymphogranuloma venereum Chlamydia trachomatis strains from men who have sex with men in Europe and the United States. Specimens from an outbreak in 2003 in Europe were monoclonal. In contrast, several strains were in the United States in the 1980s, including a variant from Europe. PMID:21029543
Streptococcus agalactiae serotype Ib as an agent of meningitis in two adult nonpregnant women.
Martins, E R; Florindo, C; Martins, F; Aldir, I; Borrego, M J; Brum, L; Ramirez, M; Melo-Cristino, J
2007-11-01
Two temporally and geographically clustered cases of meningitis caused by Streptococcus agalactiae expressing the infrequent Ib serotype are reported. Characterization by pulsed-field gel electrophoresis and multilocus sequence typing revealed that the isolates were identical and represented the widely distributed ST10/ST8 lineage associated with serotype Ib.
USDA-ARS?s Scientific Manuscript database
Recent work has shown that Fusarium species and genotypes most commonly associated with human infections, particularly of the cornea (mycotic keratitis), are the same as those most commonly isolated from plumbing systems. The species most dominant in plumbing biofilms is Fusarium keratoplasticum, a ...
USDA-ARS?s Scientific Manuscript database
Foodborne campylobacteriosis has been traced to undercooked chicken liver. The objectives of this study were to measure prevalence of Campylobacter associated with chicken livers at retail and determine which subtypes are detected on the surface and inner tissue of livers. Fifteen packages of fres...
Olsen, Anne Berit; Gulla, Snorre; Steinum, Terje; Colquhoun, Duncan J; Nilsen, Hanne K; Duchaud, Eric
2017-06-01
Skin ulcer development in sea-reared salmonids, commonly associated with Tenacibaculum spp., is a significant fish welfare- and economical problem in Norwegian aquaculture. A collection of 89 Tenacibaculum isolates was subjected to multilocus sequence analysis (MLSA). The isolates were retrieved from outbreaks of clinical disease in farms spread along the Norwegian coast line from seven different fish species over a period of 19 years. MLSA analysis reveals considerable genetic diversity, but allows identification of four main clades. One clade encompasses isolates belonging to the species T. dicentrarchi, whereas three clades encompass bacteria that likely represent novel, as yet undescribed species. The study identified T. maritimum in lumpsucker, T. ovolyticum in halibut, and has extended the host and geographic range for T. soleae, isolated from wrasse. The overall lack of clonality and host specificity, with some indication of geographical range restriction argue for local epidemics involving multiple strains. The diversity of Tenacibaculum isolates from fish displaying ulcerative disease may complicate vaccine development. Copyright © 2017 Elsevier B.V. All rights reserved.
Diaz, Maureen H; Winchell, Jonas M
2016-01-01
Over the past decade there have been significant advancements in the methods used for detecting and characterizing Mycoplasma pneumoniae, a common cause of respiratory illness and community-acquired pneumonia worldwide. The repertoire of available molecular diagnostics has greatly expanded from nucleic acid amplification techniques (NAATs) that encompass a variety of chemistries used for detection, to more sophisticated characterizing methods such as multi-locus variable-number tandem-repeat analysis (MLVA), Multi-locus sequence typing (MLST), matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS), single nucleotide polymorphism typing, and numerous macrolide susceptibility profiling methods, among others. These many molecular-based approaches have been developed and employed to continually increase the level of discrimination and characterization in order to better understand the epidemiology and biology of M. pneumoniae. This review will summarize recent molecular techniques and procedures and lend perspective to how each has enhanced the current understanding of this organism and will emphasize how Next Generation Sequencing may serve as a resource for researchers to gain a more comprehensive understanding of the genomic complexities of this insidious pathogen.
Benamrouche, N; Hasnaoui, S; Badell, E; Guettou, B; Lazri, M; Guiso, N; Rahal, K
2016-12-01
The objectives of this study were to undertake the microbiological and molecular characterization of Corynebacterium diphtheriae isolates collected in Algeria during epidemic and post-epidemic periods between 1992 and 2015. Microbiological characterization includes the determination of biotype and toxigenicity status using phenotypic and genotypic methods. Antimicrobial susceptibility was determined by the E-test method. Molecular characterization was performed by multi-locus sequence typing. In total, there were 157 cases of C. diphtheriae isolates, 127 in patients with respiratory diphtheria and 30 with ozena. Isolates with a mitis biotype were predominant (122 out of 157; 77.7%) followed by belfanti (28 out of 157; 17.8%) and gravis biotype (seven out of 157; 4.5%). Toxigenic isolates were predominant in the period 1992-2006 (74 out of 134) whereas in the period 2007-2015, only non-toxigenic isolates circulated (23 out of 23). All 157 isolates were susceptible to erythromycin, gentamicin, vancomycin and cotrimoxazole. Reduced susceptibility to penicillin G, cefotaxime, tetracycline and chloramphenicol was detected in 90 (57.3%), 88 (56.1%), 112 (71.3%) and 90 (57.3%) isolates, respectively. Multi-locus sequence typing analysis indicates that sequence type 116 (ST-116) was the most frequent, with 65 out of 100 isolates analysed, in particular during the epidemic period 1992-1999 (57 out of 65 isolates). In the post-epidemic period, 2000-2015, 13 different sequence types were isolated. All belfanti isolates (ten out of 100 isolates) belonged to closely related sequence types grouped in a phylogenetically distinct eBurst group and were collected exclusively in ozena cases. In conclusion, the epidemic period was associated with ST-116 while the post-epidemic period was characterized by more diversity. Belfanti isolates are grouped in a phylogenetically distinct clonal complex. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Scholz, Christian F. P.; Poulsen, Knud
2012-01-01
The close phylogenetic relationship of the important pathogen Streptococcus pneumoniae and several species of commensal streptococci, particularly Streptococcus mitis and Streptococcus pseudopneumoniae, and the recently demonstrated sharing of genes and phenotypic traits previously considered specific for S. pneumoniae hamper the exact identification of S. pneumoniae. Based on sequence analysis of 16S rRNA genes of a collection of 634 streptococcal strains, identified by multilocus sequence analysis, we detected a cytosine at position 203 present in all 440 strains of S. pneumoniae but replaced by an adenosine residue in all strains representing other species of mitis group streptococci. The S. pneumoniae-specific sequence signature could be demonstrated by sequence analysis or indirectly by restriction endonuclease digestion of a PCR amplicon covering the site. The S. pneumoniae-specific signature offers an inexpensive means for validation of the identity of clinical isolates and should be used as an integrated marker in the annotation procedure employed in 16S rRNA-based molecular studies of complex human microbiotas. This may avoid frequent misidentifications such as those we demonstrate to have occurred in previous reports and in reference sequence databases. PMID:22442329
Naser, Sabri M; Vancanneyt, Marc; Hoste, Bart; Snauwaert, Cindy; Swings, Jean
2006-07-01
The applicability of a multilocus sequence analysis (MLSA)-based identification system for lactobacilli was evaluated. Two housekeeping genes that code for the phenylalanyl-tRNA synthase alpha-subunit (pheS) and RNA polymerase alpha-subunit (rpoA) were sequenced and analysed for members of the Lactobacillus salivarius species group. The type strains of Lactobacillus acidipiscis and Lactobacillus cypricasei were investigated further using a third gene that encodes the alpha-subunit of ATP synthase (atpA). The MLSA data revealed close relatedness between L. acidipiscis and L. cypricasei, with 99.8-100 % pheS, rpoA and atpA gene sequence similarities. Comparison of the 16S rRNA gene sequences of the type strains of the two species confirmed the close relatedness (99.8 % gene sequence similarity) between the two taxa. Similar phenotypes and high DNA-DNA binding values in the range of 84 to 97.5 % confirmed that L. acidipiscis and L. cypricasei are synonymous species. On the basis of the present study, it is proposed that Lactobacillus cypricasei is a later heterotypic synonym of Lactobacillus acidipiscis.
Yeo, Matthew; Mauricio, Isabel L; Messenger, Louisa A; Lewis, Michael D; Llewellyn, Martin S; Acosta, Nidia; Bhattacharyya, Tapan; Diosque, Patricio; Carrasco, Hernan J; Miles, Michael A
2011-06-01
Multilocus sequence typing (MLST) is a powerful and highly discriminatory method for analysing pathogen population structure and epidemiology. Trypanosoma cruzi, the protozoan agent of American trypanosomiasis (Chagas disease), has remarkable genetic and ecological diversity. A standardised MLST protocol that is suitable for assignment of T. cruzi isolates to genetic lineage and for higher resolution diversity studies has not been developed. We have sequenced and diplotyped nine single copy housekeeping genes and assessed their value as part of a systematic MLST scheme for T. cruzi. A minimum panel of four MLST targets (Met-III, RB19, TcGPXII, and DHFR-TS) was shown to provide unambiguous assignment of isolates to the six known T. cruzi lineages (Discrete Typing Units, DTUs TcI-TcVI). In addition, we recommend six MLST targets (Met-II, Met-III, RB19, TcMPX, DHFR-TS, and TR) for more in depth diversity studies on the basis that diploid sequence typing (DST) with this expanded panel distinguished 38 out of 39 reference isolates. Phylogenetic analysis implies a subdivision between North and South American TcIV isolates. Single Nucleotide Polymorphism (SNP) data revealed high levels of heterozygosity among DTUs TcI, TcIII, TcIV and, for three targets, putative corresponding homozygous and heterozygous loci within DTUs TcI and TcIII. Furthermore, individual gene trees gave incongruent topologies at inter- and intra-DTU levels, inconsistent with a model of strict clonality. We demonstrate the value of systematic MLST diplotyping for describing inter-DTU relationships and for higher resolution diversity studies of T. cruzi, including presence of recombination events. The high levels of heterozygosity will facilitate future population genetics analysis based on MLST haplotypes.
Carro, Lorena; Spröer, Cathrin; Alonso, Pilar; Trujillo, Martha E
2012-03-01
It was recently reported that Micromonospora inhabits the intracellular tissues of nitrogen fixing nodules of the wild legume Lupinus angustifolius. To determine if Micromonospora populations are also present in nitrogen fixing nodules of cultivated legumes such as Pisum sativum, we carried out the isolation of this actinobacterium from P. sativum plants collected in two man-managed fields in the region of Castilla and León (Spain). In this work, we describe the isolation of 93 Micromonospora strains recovered from nitrogen fixing nodules and the rhizosphere of P. sativum. The genomic diversity of the strains was analyzed by amplified ribosomal DNA restriction analysis (ARDRA). Forty-six isolates and 34 reference strains were further analyzed using a multilocus sequence analysis scheme developed to address the phylogeny of the genus Micromonospora and to evaluate the species distribution in the two studied habitats. The MLSA results were evaluated by DNA-DNA hybridization to determine their usefulness for the delineation of Micromonospora at the species level. In most cases, DDH values below 70% were obtained with strains that shared a sequence similarity of 98.5% or less. Thus, MLSA studies clearly supported the established taxonomy of the genus Micromonospora and indicated that genomic species could be delineated as groups of strains that share > 98.5% sequence similarity based on the 5 genes selected. The species diversity of the strains isolated from both the rhizosphere and nodules was very high and in many cases the new strains could not be related to any of the currently described species. Copyright © 2011 Elsevier GmbH. All rights reserved.
A Single Multilocus Sequence Typing (MLST) Scheme for Seven Pathogenic Leptospira Species
Amornchai, Premjit; Wuthiekanun, Vanaporn; Bailey, Mark S.; Holden, Matthew T. G.; Zhang, Cuicai; Jiang, Xiugao; Koizumi, Nobuo; Taylor, Kyle; Galloway, Renee; Hoffmaster, Alex R.; Craig, Scott; Smythe, Lee D.; Hartskeerl, Rudy A.; Day, Nicholas P.; Chantratita, Narisara; Feil, Edward J.; Aanensen, David M.; Spratt, Brian G.; Peacock, Sharon J.
2013-01-01
Background The available Leptospira multilocus sequence typing (MLST) scheme supported by a MLST website is limited to L. interrogans and L. kirschneri. Our aim was to broaden the utility of this scheme to incorporate a total of seven pathogenic species. Methodology and Findings We modified the existing scheme by replacing one of the seven MLST loci (fadD was changed to caiB), as the former gene did not appear to be present in some pathogenic species. Comparison of the original and modified schemes using data for L. interrogans and L. kirschneri demonstrated that the discriminatory power of the two schemes was not significantly different. The modified scheme was used to further characterize 325 isolates (L. alexanderi [n = 5], L. borgpetersenii [n = 34], L. interrogans [n = 222], L. kirschneri [n = 29], L. noguchii [n = 9], L. santarosai [n = 10], and L. weilii [n = 16]). Phylogenetic analysis using concatenated sequences of the 7 loci demonstrated that each species corresponded to a discrete clade, and that no strains were misclassified at the species level. Comparison between genotype and serovar was possible for 254 isolates. Of the 31 sequence types (STs) represented by at least two isolates, 18 STs included isolates assigned to two or three different serovars. Conversely, 14 serovars were identified that contained between 2 to 10 different STs. New observations were made on the global phylogeography of Leptospira spp., and the utility of MLST in making associations between human disease and specific maintenance hosts was demonstrated. Conclusion The new MLST scheme, supported by an updated MLST website, allows the characterization and species assignment of isolates of the seven major pathogenic species associated with leptospirosis. PMID:23359622
Li, Zhangcheng; Cheng, Fangjun; Lan, Shimei; Guo, Jianhua; Liu, Wei; Li, Xiaoyan; Luo, Zeli; Zhang, Manli; Wu, Juan; Shi, Yang
2018-04-25
Fowl cholera caused by Pasteurella multocida has always been a disease of global importance for poultry production. The aim of this study was to obtain more information about the epidemiology of avian P. multocida infection in southwest China and the genetic characteristics of clinical isolates. P. multocida isolates were characterized by biochemical and molecular-biological methods. The distributions of the capsular serogroups, the phenotypic antimicrobial resistance profiles, lipopolysaccharide (LPS) genotyping and the presence of 19 virulence genes were investigated in 45 isolates of P. multocida that were associated with clinical disease in poultry. The genetic diversity of P. multocida strains was performed by 16S rRNA and rpoB gene sequence analysis as well as multilocus sequence typing (MLST). The results showed that most (80.0%) of the P. multocida isolates in this study represented special P. multocida subspecies, and 71.1% of the isolates showed multiple-drug resistance. 45 isolates belonged to capsular types: A (100%) and two LPS genotypes: L1 (95.6%) and L3 (4.4%). MLST revealed two new alleles (pmi77 and gdh57) and one new sequence type (ST342). ST129 types dominated in 45 P. multocida isolates. Isolates belonging to ST129 were with the genes ompH+plpB+ptfA+tonB, whereas ST342 included isolates with fur+hgbA+tonB genes. Population genetic analysis and the MLST results revealed that at least one new ST genotype was present in the avian P. multocida in China. These findings provide novel insights into the epidemiological characteristics of avian P. multocida isolates in southwest China.
Bojarska, A; Molska, E; Janas, K; Skoczyńska, A; Stefaniuk, E; Hryniewicz, W; Sadowy, E
2016-06-01
The purpose of this study was to perform an analysis of Streptococcus suis human invasive isolates, collected in Poland by the National Reference Centre for Bacterial Meningitis. Isolates obtained from 21 patients during 2000-2013 were investigated by phenotypic tests, multilocus sequence typing (MLST), analysis of the TR9 locus from the multilocus variable number tandem repeat (VNTR) analysis (MLVA) scheme and pulsed-field gel electrophoresis (PFGE) of SmaI-digested DNA. Determinants of virulence and antimicrobial resistance were detected by polymerase chain reaction (PCR) and analysed by sequencing. All isolates represented sequence type 1 (ST1) and were suggested to be serotype 2. PFGE and analysis of the TR9 locus allowed the discrimination of four and 17 types, respectively. Most of the isolates were haemolysis- and DNase-positive, and around half of them formed biofilm. Genes encoding suilysin, extracellular protein factor, fibronectin-binding protein, muramidase-released protein, surface antigen one, enolase, serum opacity factor and pili were ubiquitous in the studied group, while none of the isolates carried sequences characteristic for the 89K pathogenicity island. All isolates were susceptible to penicillin, cefotaxime, imipenem, moxifloxacin, chloramphenicol, rifampicin, gentamicin, linezolid, vancomycin and daptomycin. Five isolates (24 %) were concomitantly non-susceptible to erythromycin, clindamycin and tetracycline, and harboured the tet(O) and erm(B) genes; for one isolate, lsa(E) and lnu(B) were additionally detected. Streptococcus suis isolated in Poland from human invasive infections belongs to a globally distributed clonal complex of this pathogen, enriched in virulence markers. This is the first report of the lsa(E) and lnu(B) resistance genes in S. suis.
Machado, Gabriel Esquitini; Matsumoto, Cristianne Kayoko; Chimara, Erica; Duarte, Rafael da Silva; de Freitas, Denise; Palaci, Moises; Hadad, David Jamil; Lima, Karla Valéria Batista; Lopes, Maria Luiza; Ramos, Jesus Pais; Campos, Carlos Eduardo; Caldas, Paulo César; Heym, Beate; Leão, Sylvia Cardoso
2014-08-01
Outbreaks of infections by rapidly growing mycobacteria following invasive procedures, such as ophthalmological, laparoscopic, arthroscopic, plastic, and cardiac surgeries, mesotherapy, and vaccination, have been detected in Brazil since 1998. Members of the Mycobacterium chelonae-Mycobacterium abscessus group have caused most of these outbreaks. As part of an epidemiological investigation, the isolates were typed by pulsed-field gel electrophoresis (PFGE). In this project, we performed a large-scale comparison of PFGE profiles with the results of a recently developed multilocus sequence typing (MLST) scheme for M. abscessus. Ninety-three isolates were analyzed, with 40 M. abscessus subsp. abscessus isolates, 47 M. abscessus subsp. bolletii isolates, and six isolates with no assigned subspecies. Forty-five isolates were obtained during five outbreaks, and 48 were sporadic isolates that were not associated with outbreaks. For MLST, seven housekeeping genes (argH, cya, glpK, gnd, murC, pta, and purH) were sequenced, and each isolate was assigned a sequence type (ST) from the combination of obtained alleles. The PFGE patterns of DraI-digested DNA were compared with the MLST results. All isolates were analyzable by both methods. Isolates from monoclonal outbreaks showed unique STs and indistinguishable or very similar PFGE patterns. Thirty-three STs and 49 unique PFGE patterns were identified among the 93 isolates. The Simpson's index of diversity values for MLST and PFGE were 0.69 and 0.93, respectively, for M. abscessus subsp. abscessus and 0.96 and 0.97, respectively, for M. abscessus subsp. bolletii. In conclusion, the MLST scheme showed 100% typeability and grouped monoclonal outbreak isolates in agreement with PFGE, but it was less discriminative than PFGE for M. abscessus. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Killer, Jiří; Skřivanová, Eva; Hochel, Igor; Marounek, Milan
2015-06-01
Cronobacter spp. are bacterial pathogens that affect children and immunocompromised adults. In this study, we used multilocus sequence typing (MLST) to determine sequence types (STs) in 11 Cronobacter spp. strains isolated from retail foods, 29 strains from dust samples obtained from vacuum cleaners, and 4 clinical isolates. Using biochemical tests, species-specific polymerase chain reaction, and MLST analysis, 36 strains were identified as Cronobacter sakazakii, and 6 were identified as Cronobacter malonaticus. In addition, one strain that originated from retail food and one from a dust sample from a vacuum cleaner were identified on the basis of MLST analysis as Cronobacter dublinensis and Cronobacter turicensis, respectively. Cronobacter spp. strains isolated from the retail foods were assigned to eight different MLST sequence types, seven of which were newly identified. The strains isolated from the dust samples were assigned to 7 known STs and 14 unknown STs. Three clinical isolates and one household dust isolate were assigned to ST4, which is the predominant ST associated with neonatal meningitis. One clinical isolate was classified based on MLST analysis as Cronobacter malonaticus and belonged to an as-yet-unknown ST. Three strains isolated from the household dust samples were assigned to ST1, which is another clinically significant ST. It can be concluded that Cronobacter spp. strains of different origin are genetically quite variable. The recovery of C. sakazakii strains belonging to ST1 and ST4 from the dust samples suggests the possibility that contamination could occur during food preparation. All of the novel STs and alleles for C. sakazakii, C. malonaticus, C. dublinensis, and C. turicensis determined in this study were deposited in the Cronobacter MLST database available online ( http://pubmlst.org/cronobacter/).
Ruan, Zhi; Yang, Ting; Shi, Xinyan; Kong, Yingying; Xie, Xinyou
2017-01-01
Ureaplasma spp. have gained increasing recognition as pathogens in both adult and neonatal patients with multiple clinical presentations. However, the clonality of this organism in the male population and infertile couples in China is largely unknown. In this study, 96 (53 U. parvum and 43 U. urealyticum) of 103 Ureaplasma spp. strains recovered from genital specimens from male patients and 15 pairs of infertile couples were analyzed using multilocus sequence typing (MLST)/expanded multilocus sequence typing (eMLST) schemes. A total of 39 sequence types (STs) and 53 expanded sequence types (eSTs) were identified, with three predominant STs (ST1, ST9 and ST22) and eSTs (eST16, eST41 and eST82). Moreover, phylogenetic analysis revealed two distinct clusters that were highly congruent with the taxonomic differences between the two Ureaplasma species. We found significant differences in the distributions of both clusters and sub-groups between the male and female patients (P < 0.001). Moreover, 66.7% and 40.0% of the male and female partners of the infertile couples tested positive for Ureaplasma spp. The present study also attained excellent agreement of the identification of both Ureaplasma species between paired urine and semen specimens from the male partners (k > 0.80). However, this concordance was observed only for the detection of U. urealyticum within the infertile couples. In conclusion, the distributions of the clusters and sub-groups significantly differed between the male and female patients. U. urealyticum is more likely to transmit between infertile couples and be associated with clinical manifestations by the specific epidemic clonal lineages. PMID:28859153
Ruan, Zhi; Yang, Ting; Shi, Xinyan; Kong, Yingying; Xie, Xinyou; Zhang, Jun
2017-01-01
Ureaplasma spp. have gained increasing recognition as pathogens in both adult and neonatal patients with multiple clinical presentations. However, the clonality of this organism in the male population and infertile couples in China is largely unknown. In this study, 96 (53 U. parvum and 43 U. urealyticum) of 103 Ureaplasma spp. strains recovered from genital specimens from male patients and 15 pairs of infertile couples were analyzed using multilocus sequence typing (MLST)/expanded multilocus sequence typing (eMLST) schemes. A total of 39 sequence types (STs) and 53 expanded sequence types (eSTs) were identified, with three predominant STs (ST1, ST9 and ST22) and eSTs (eST16, eST41 and eST82). Moreover, phylogenetic analysis revealed two distinct clusters that were highly congruent with the taxonomic differences between the two Ureaplasma species. We found significant differences in the distributions of both clusters and sub-groups between the male and female patients (P < 0.001). Moreover, 66.7% and 40.0% of the male and female partners of the infertile couples tested positive for Ureaplasma spp. The present study also attained excellent agreement of the identification of both Ureaplasma species between paired urine and semen specimens from the male partners (k > 0.80). However, this concordance was observed only for the detection of U. urealyticum within the infertile couples. In conclusion, the distributions of the clusters and sub-groups significantly differed between the male and female patients. U. urealyticum is more likely to transmit between infertile couples and be associated with clinical manifestations by the specific epidemic clonal lineages.
Nørskov-Lauritsen, Niels; Overballe, Merete D.; Kilian, Mogens
2009-01-01
To obtain more information on the much-debated definition of prokaryotic species, we investigated the borders of Haemophilus influenzae by comparative analysis of H. influenzae reference strains with closely related bacteria including strains assigned to Haemophilus haemolyticus, cryptic genospecies biotype IV, and the never formally validated species “Haemophilus intermedius”. Multilocus sequence phylogeny based on six housekeeping genes separated a cluster encompassing the type and the reference strains of H. influenzae from 31 more distantly related strains. Comparison of 16S rRNA gene sequences supported this delineation but was obscured by a conspicuously high number of polymorphic sites in many of the strains that did not belong to the core group of H. influenzae strains. The division was corroborated by the differential presence of genes encoding H. influenzae adhesion and penetration protein, fuculokinase, and Cu,Zn-superoxide dismutase, whereas immunoglobulin A1 protease activity or the presence of the iga gene was of limited discriminatory value. The existence of porphyrin-synthesizing strains (“H. intermedius”) closely related to H. influenzae was confirmed. Several chromosomally encoded hemin biosynthesis genes were identified, and sequence analysis showed these genes to represent an ancestral genotype rather than recent transfers from, e.g., Haemophilus parainfluenzae. Strains previously assigned to H. haemolyticus formed several separate lineages within a distinct but deeply branching cluster, intermingled with strains of “H. intermedius” and cryptic genospecies biotype IV. Although H. influenzae is phenotypically more homogenous than some other Haemophilus species, the genetic diversity and multicluster structure of strains traditionally associated with H. influenzae make it difficult to define the natural borders of that species. PMID:19060144
Apablaza, P; Løland, A D; Brevik, Ø J; Ilardi, P; Battaglia, J; Nylund, A
2013-04-01
To aim of the study was to describe the genetic relationship between isolates of Flavobacterium psychrophilum with a main emphasis of samples from Chile and Norway. The isolates have been obtained from farmed salmonids in Norway and Chile, and from wild salmonids in Norway, but isolates from North America and European countries are also included in the analysis. The study is based on phylogenetic analysis of 16S rRNA and seven housekeeping genes (HG), gyrB, atpA, dnaK, trpB, fumC, murG and tuf, and the use of a multilocus sequence typing (MLST) system, based on nucleotide polymorphism in the HG, as an alternative to the phylogenies. The variation within the selected genes was limited, and the phylogenetic analysis gave little resolution between the isolates. The MLST gave a much better resolution resulting in 53 sequence types where the same sequences types could be found in Chile, North America and European countries, and in different host species. Multilocus sequence typing give a relatively good separation of different isolates of Fl. psychrophilum and show that there are no distinct geographical or host-specific isolates in the studied material from Chile, North America and Europe. Nor was it possible to separate between isolates from ulcers and systemic infections vs isolates from the surface of healthy salmonids. This study shows a wide geographical distribution of Fl. psychrophilum, indicating that the bacterium has a large potential for transmission over long distances, and between different salmonid hosts species. This knowledge will be important for future management of salmonids diseases connected to Fl. psychrophilum. © 2013 The Society for Applied Microbiology.
Godoy, Daniel; Randle, Gaynor; Simpson, Andrew J; Aanensen, David M; Pitt, Tyrone L; Kinoshita, Reimi; Spratt, Brian G
2003-05-01
A collection of 147 isolates of Burkholderia pseudomallei, B. mallei, and B. thailandensis was characterized by multilocus sequence typing (MLST). The 128 isolates of B. pseudomallei, the causative agent of melioidosis, were obtained from diverse geographic locations, from humans and animals with disease, and from the environment and were resolved into 71 sequence types. The utility of the MLST scheme for epidemiological investigations was established by analyzing isolates from captive marine mammals and birds and from humans in Hong Kong with melioidosis. MLST gave a level of resolution similar to that given by pulsed-field gel electrophoresis and identified the same three clones causing disease in animals, each of which was also associated with disease in humans. The average divergence between the alleles of B. thailandensis and B. pseudomallei was 3.2%, and there was no sharing of alleles between these species. Trees constructed from differences in the allelic profiles of the isolates and from the concatenated sequences of the seven loci showed that the B. pseudomallei isolates formed a cluster of closely related lineages that were fully resolved from the cluster of B. thailandensis isolates, confirming their separate species status. However, isolates of B. mallei, the causative agent of glanders, recovered from three continents over a 30-year period had identical allelic profiles, and the B. mallei isolates clustered within the B. pseudomallei group of isolates. Alleles at six of the seven loci in B. mallei were also present within B. pseudomallei isolates, and B. mallei is a clone of B. pseudomallei that, on population genetics grounds, should not be given separate species status.
STBase: One Million Species Trees for Comparative Biology
McMahon, Michelle M.; Deepak, Akshay; Fernández-Baca, David; Boss, Darren; Sanderson, Michael J.
2015-01-01
Comprehensively sampled phylogenetic trees provide the most compelling foundations for strong inferences in comparative evolutionary biology. Mismatches are common, however, between the taxa for which comparative data are available and the taxa sampled by published phylogenetic analyses. Moreover, many published phylogenies are gene trees, which cannot always be adapted immediately for species level comparisons because of discordance, gene duplication, and other confounding biological processes. A new database, STBase, lets comparative biologists quickly retrieve species level phylogenetic hypotheses in response to a query list of species names. The database consists of 1 million single- and multi-locus data sets, each with a confidence set of 1000 putative species trees, computed from GenBank sequence data for 413,000 eukaryotic taxa. Two bodies of theoretical work are leveraged to aid in the assembly of multi-locus concatenated data sets for species tree construction. First, multiply labeled gene trees are pruned to conflict-free singly-labeled species-level trees that can be combined between loci. Second, impacts of missing data in multi-locus data sets are ameliorated by assembling only decisive data sets. Data sets overlapping with the user’s query are ranked using a scheme that depends on user-provided weights for tree quality and for taxonomic overlap of the tree with the query. Retrieval times are independent of the size of the database, typically a few seconds. Tree quality is assessed by a real-time evaluation of bootstrap support on just the overlapping subtree. Associated sequence alignments, tree files and metadata can be downloaded for subsequent analysis. STBase provides a tool for comparative biologists interested in exploiting the most relevant sequence data available for the taxa of interest. It may also serve as a prototype for future species tree oriented databases and as a resource for assembly of larger species phylogenies from precomputed trees. PMID:25679219
Xu, Haiyan; Sun, Zhihong; Liu, Wenjun; Yu, Jie; Song, Yuqin; Lv, Qiang; Zhang, Jiachao; Shao, Yuyu; Menghe, Bilige; Zhang, Heping
2014-05-01
To determine the genetic diversity and phylogenetic relationships among Lactococcus lactis isolates, 197 strains isolated from naturally homemade yogurt in 9 ethnic minority areas of 6 provinces of China were subjected to multilocus sequence typing (MLST). The MLST analysis was performed using internal fragment sequences of 12 housekeeping genes (carB, clpX, dnaA, groEL, murC, murE, pepN, pepX, pyrG, recA, rpoB, and pheS). Six (dnaA) to 8 (murC) different alleles were detected for these genes, which ranged from 33.62 (clpX) to 41.95% (recA) GC (guanine-cytosine) content. The nucleotide diversity (π) ranged from 0.00362 (murE) to 0.08439 (carB). Despite this limited allelic diversity, the allele combinations of each strain revealed 72 different sequence types, which denoted significant genotypic diversity. The dN/dS ratios (where dS is the number of synonymous substitutions per synonymous site, and dN is the number of nonsynonymous substitutions per nonsynonymous site) were lower than 1, suggesting potential negative selection for these genes. The standardized index of association of the alleles IA(S)=0.3038 supported the clonality of Lc. lactis, but the presence of network structure revealed by the split decomposition analysis of the concatenated sequence was strong evidence for intraspecies recombination. Therefore, this suggests that recombination contributed to the evolution of Lc. lactis. A minimum spanning tree analysis of the 197 isolates identified 14 clonal complexes and 23 singletons. Phylogenetic trees were constructed based on the sequence types, using the minimum evolution algorithm, and on the concatenated sequence (6,192 bp), using the unweighted pair-group method with arithmetic mean, and these trees indicated that the evolution of our Lc. lactis population was correlated with geographic origin. Taken together, our results demonstrated that MLST could provide a better understanding of Lc. lactis genome evolution, as well as useful information for future studies on global Lc. lactis structure and genetic evolution, which will lay the foundation for screening Lc. lactis as starter cultures in fermented dairy products. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
2013-01-01
A need for a genomic species definition is emerging from several independent studies worldwide. In this commentary paper, we discuss recent studies on the genomic taxonomy of diverse microbial groups and a unified species definition based on genomics. Accordingly, strains from the same microbial species share >95% Average Amino Acid Identity (AAI) and Average Nucleotide Identity (ANI), >95% identity based on multiple alignment genes, <10 in Karlin genomic signature, and > 70% in silico Genome-to-Genome Hybridization similarity (GGDH). Species of the same genus will form monophyletic groups on the basis of 16S rRNA gene sequences, Multilocus Sequence Analysis (MLSA) and supertree analysis. In addition to the established requirements for species descriptions, we propose that new taxa descriptions should also include at least a draft genome sequence of the type strain in order to obtain a clear outlook on the genomic landscape of the novel microbe. The application of the new genomic species definition put forward here will allow researchers to use genome sequences to define simultaneously coherent phenotypic and genomic groups. PMID:24365132
Jackson, Brendan R.; Tarr, Cheryl; Strain, Errol; Jackson, Kelly A.; Conrad, Amanda; Carleton, Heather; Katz, Lee S.; Stroika, Steven; Gould, L. Hannah; Mody, Rajal K.; Silk, Benjamin J.; Beal, Jennifer; Chen, Yi; Timme, Ruth; Doyle, Matthew; Fields, Angela; Wise, Matthew; Tillman, Glenn; Defibaugh-Chavez, Stephanie; Kucerova, Zuzana; Sabol, Ashley; Roache, Katie; Trees, Eija; Simmons, Mustafa; Wasilenko, Jamie; Kubota, Kristy; Pouseele, Hannes; Klimke, William; Besser, John; Brown, Eric; Allard, Marc; Gerner-Smidt, Peter
2016-01-01
Listeria monocytogenes (Lm) causes severe foodborne illness (listeriosis). Previous molecular subtyping methods, such as pulsed-field gel electrophoresis (PFGE), were critical in detecting outbreaks that led to food safety improvements and declining incidence, but PFGE provides limited genetic resolution. A multiagency collaboration began performing real-time, whole-genome sequencing (WGS) on all US Lm isolates from patients, food, and the environment in September 2013, posting sequencing data into a public repository. Compared with the year before the project began, WGS, combined with epidemiologic and product trace-back data, detected more listeriosis clusters and solved more outbreaks (2 outbreaks in pre-WGS year, 5 in WGS year 1, and 9 in year 2). Whole-genome multilocus sequence typing and single nucleotide polymorphism analyses provided equivalent phylogenetic relationships relevant to investigations; results were most useful when interpreted in context of epidemiological data. WGS has transformed listeriosis outbreak surveillance and is being implemented for other foodborne pathogens. PMID:27090985
Listeria monocytogenes sequence type 1 is predominant in ruminant rhombencephalitis
Dreyer, Margaux; Aguilar-Bultet, Lisandra; Rupp, Sebastian; Guldimann, Claudia; Stephan, Roger; Schock, Alexandra; Otter, Arthur; Schüpbach, Gertraud; Brisse, Sylvain; Lecuit, Marc; Frey, Joachim; Oevermann, Anna
2016-01-01
Listeria (L.) monocytogenes is an opportunistic pathogen causing life-threatening infections in diverse mammalian species including humans and ruminants. As little is known on the link between strains and clinicopathological phenotypes, we studied potential strain-associated virulence and organ tropism in L. monocytogenes isolates from well-defined ruminant cases of clinical infections and the farm environment. The phylogeny of isolates and their virulence-associated genes were analyzed by multilocus sequence typing (MLST) and sequence analysis of virulence-associated genes. Additionally, a panel of representative isolates was subjected to in vitro infection assays. Our data suggest the environmental exposure of ruminants to a broad range of strains and yet the strong association of sequence type (ST) 1 from clonal complex (CC) 1 with rhombencephalitis, suggesting increased neurotropism of ST1 in ruminants, which is possibly related to its hypervirulence. This study emphasizes the importance of considering clonal background of L. monocytogenes isolates in surveillance, epidemiological investigation and disease control. PMID:27848981
Genomic Definition of Hypervirulent and Multidrug-Resistant Klebsiella pneumoniae Clonal Groups
Bialek-Davenet, Suzanne; Criscuolo, Alexis; Ailloud, Florent; Passet, Virginie; Jones, Louis; Delannoy-Vieillard, Anne-Sophie; Garin, Benoit; Le Hello, Simon; Arlet, Guillaume; Nicolas-Chanoine, Marie-Hélène; Decré, Dominique
2014-01-01
Multidrug-resistant and highly virulent Klebsiella pneumoniae isolates are emerging, but the clonal groups (CGs) corresponding to these high-risk strains have remained imprecisely defined. We aimed to identify K. pneumoniae CGs on the basis of genome-wide sequence variation and to provide a simple bioinformatics tool to extract virulence and resistance gene data from genomic data. We sequenced 48 K. pneumoniae isolates, mostly of serotypes K1 and K2, and compared the genomes with 119 publicly available genomes. A total of 694 highly conserved genes were included in a core-genome multilocus sequence typing scheme, and cluster analysis of the data enabled precise definition of globally distributed hypervirulent and multidrug-resistant CGs. In addition, we created a freely accessible database, BIGSdb-Kp, to enable rapid extraction of medically and epidemiologically relevant information from genomic sequences of K. pneumoniae. Although drug-resistant and virulent K. pneumoniae populations were largely nonoverlapping, isolates with combined virulence and resistance features were detected. PMID:25341126
Jackson, K. A.; Stroika, S.; Katz, L. S.; Beal, J.; Brandt, E.; Nadon, C.; Reimer, A.; Major, B.; Conrad, A.; Tarr, C.; Jackson, B. R.; Mody, R. K.
2016-01-01
We report on a case of listeriosis in a patient who probably consumed a prepackaged romaine lettuce–containing product recalled for Listeria monocytogenes contamination. Although definitive epidemiological information demonstrating exposure to the specific recalled product was lacking, the patient reported consumption of a prepackaged romaine lettuce–containing product of either the recalled brand or a different brand. A multinational investigation found that patient and food isolates from the recalled product were indistinguishable by pulsed-field gel electrophoresis and were highly related by whole genome sequencing, differing by four alleles by whole genome multilocus sequence typing and by five high-quality single nucleotide polymorphisms, suggesting a common source. To our knowledge, this is the first time prepackaged lettuce has been identified as a likely source for listeriosis. This investigation highlights the power of whole genome sequencing, as well as the continued need for timely and thorough epidemiological exposure data to identify sources of foodborne infections. PMID:27296429
Cluster of Serogroup W135 Meningococci, Southeastern Florida, 2008–2009
Mejia-Echeverry, Alvaro; Fiorella, Paul; Leguen, Fermin; Livengood, John; Kay, Robyn; Hopkins, Richard
2010-01-01
Recently, 14 persons in southeastern Florida were identified with Neisseria meningitidis serogroup W135 invasive infections. All isolates tested had matching or near-matching pulsed-field gel electrophoresis patterns and belonged to the multilocus sequence type 11 clonal complex. The epidemiologic investigation suggested recent endemic transmission of this clonal complex in southeastern Florida. PMID:20031054
Clonal origins of Vibrio cholerae O1 El Tor strains, Papua New Guinea, 2009-2011.
Horwood, Paul F; Collins, Deirdre; Jonduo, Marinjho H; Rosewell, Alexander; Dutta, Samir R; Dagina, Rosheila; Ropa, Berry; Siba, Peter M; Greenhill, Andrew R
2011-11-01
We used multilocus sequence typing and variable number tandem repeat analysis to determine the clonal origins of Vibrio cholerae O1 El Tor strains from an outbreak of cholera that began in 2009 in Papua New Guinea. The epidemic is ongoing, and transmission risk is elevated within the Pacific region.
Legione, Alistair R; Amery-Gale, Jemima; Lynch, Michael; Haynes, Leesa; Gilkerson, James R; Sansom, Fiona M; Devlin, Joanne M
2016-04-28
We detected Chlamydia pecorum in two koalas ( Phascolarctos cinereus ) from a closed island population in Victoria, Australia, previously free of Chlamydia infection. The ompA and multilocus sequence type were most closely related to published isolates of livestock rather than koala origin, suggesting potential cross-species transmission of C. pecorum .
USDA-ARS?s Scientific Manuscript database
The objective of this study was to assess genetic diversity and antimicrobial susceptibility of Campylobacter jejuni and coli recovered from broiler ceca at slaughter. Ceca from one broiler were collected from the evisceration line in a commercial processing plant, once or twice weekly for two year...
Giardia duodenalis Infections in Humans and Other Animals in China
Li, Junqiang; Wang, Haiyan; Wang, Rongjun; Zhang, Longxian
2017-01-01
Giardia duodenalis is an important zoonotic pathogen in both public and veterinary health, and has been genotyped into at least eight assemblages (A–H), each with a distinct host range. In recent years, this intestinal protozoan parasite has been identified widely in humans and various other animals, and has even been recorded in environmental contaminants. Along with whole genome sequencing of G. duodenalis, multilocus sequence typing is increasingly being used to characterize G. duodenalis isolates. Here, we review the epidemiology, genotyping, and subtyping of G. duodenalis from humans and a wide range of other animals, as well as from wastewater, in China. PMID:29081771
Li, Mei Jia; Deng, Jian Xin; Paul, Narayan Chandra; Lee, Hyang Burm; Yu, Seung Hun
2014-12-01
Alternaria from different Allium plants was characterized by multilocus sequence analysis. Based on sequences of the β-tubulin (BT2b), the Alternaria allergen a1 (Alt a1), and the RNA polymerase II second largest subunit (RPB2) genes and phylogenetic data analysis, isolates were divided into two groups. The two groups were identical to representative isolates of A. porri (EGS48-147) and A. vanuatuensis (EGS45-018). The conidial characteristics and pathogenicity of A. vanuatuensis also well supported the molecular characteristics. This is the first record of A. vanuatuensis E. G. Simmons & C. F. Hill from Korea and China.
Hau, Samantha J.; Frana, Timothy; Sun, Jisun; Davies, Peter R.
2017-01-01
ABSTRACT Zinc resistance in livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) sequence type 398 (ST398) is primarily mediated by the czrC gene colocated with the mecA gene, encoding methicillin resistance, within the type V staphylococcal cassette chromosome mec (SCCmec) element. Because czrC and mecA are located within the same mobile genetic element, it has been suggested that the use of zinc in feed as an antidiarrheal agent has the potential to contribute to the emergence and spread of methicillin-resistant S. aureus (MRSA) in swine, through increased selection pressure to maintain the SCCmec element in isolates obtained from pigs. In this study, we report the prevalence of the czrC gene and phenotypic zinc resistance in U.S. swine-associated LA-MRSA ST5 isolates, MRSA ST5 isolates from humans with no swine contact, and U.S. swine-associated LA-MRSA ST398 isolates. We demonstrated that the prevalence of zinc resistance in U.S. swine-associated LA-MRSA ST5 isolates was significantly lower than the prevalence of zinc resistance in MRSA ST5 isolates from humans with no swine contact and swine-associated LA-MRSA ST398 isolates, as well as prevalences from previous reports describing zinc resistance in other LA-MRSA ST398 isolates. Collectively, our data suggest that selection pressure associated with zinc supplementation in feed is unlikely to have played a significant role in the emergence of LA-MRSA ST5 in the U.S. swine population. Additionally, our data indicate that zinc resistance is associated with the multilocus sequence type lineage, suggesting a potential link between the genetic lineage and the carriage of resistance determinants. IMPORTANCE Our data suggest that coselection thought to be associated with the use of zinc in feed as an antimicrobial agent is not playing a role in the emergence of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) ST5 in the U.S. swine population. Additionally, our data indicate that zinc resistance is more associated with the multilocus sequence type lineage, suggesting a potential link between the genetic lineage and the carriage of resistance markers. This information is important for public health professionals, veterinarians, producers, and consumers. PMID:28526788
Hau, Samantha J; Frana, Timothy; Sun, Jisun; Davies, Peter R; Nicholson, Tracy L
2017-08-01
Zinc resistance in livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) sequence type 398 (ST398) is primarily mediated by the czrC gene colocated with the mecA gene, encoding methicillin resistance, within the type V staphylococcal cassette chromosome mec (SCC mec ) element. Because czrC and mecA are located within the same mobile genetic element, it has been suggested that the use of zinc in feed as an antidiarrheal agent has the potential to contribute to the emergence and spread of methicillin-resistant S. aureus (MRSA) in swine, through increased selection pressure to maintain the SCC mec element in isolates obtained from pigs. In this study, we report the prevalence of the czrC gene and phenotypic zinc resistance in U.S. swine-associated LA-MRSA ST5 isolates, MRSA ST5 isolates from humans with no swine contact, and U.S. swine-associated LA-MRSA ST398 isolates. We demonstrated that the prevalence of zinc resistance in U.S. swine-associated LA-MRSA ST5 isolates was significantly lower than the prevalence of zinc resistance in MRSA ST5 isolates from humans with no swine contact and swine-associated LA-MRSA ST398 isolates, as well as prevalences from previous reports describing zinc resistance in other LA-MRSA ST398 isolates. Collectively, our data suggest that selection pressure associated with zinc supplementation in feed is unlikely to have played a significant role in the emergence of LA-MRSA ST5 in the U.S. swine population. Additionally, our data indicate that zinc resistance is associated with the multilocus sequence type lineage, suggesting a potential link between the genetic lineage and the carriage of resistance determinants. IMPORTANCE Our data suggest that coselection thought to be associated with the use of zinc in feed as an antimicrobial agent is not playing a role in the emergence of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) ST5 in the U.S. swine population. Additionally, our data indicate that zinc resistance is more associated with the multilocus sequence type lineage, suggesting a potential link between the genetic lineage and the carriage of resistance markers. This information is important for public health professionals, veterinarians, producers, and consumers. Copyright © 2017 American Society for Microbiology.
Gonzalez-Escalona, Narjol; Jolley, Keith A; Reed, Elizabeth; Martinez-Urtaza, Jaime
2017-06-01
Vibrio parahaemolyticus is an important human foodborne pathogen whose transmission is associated with the consumption of contaminated seafood, with a growing number of infections reported over recent years worldwide. A multilocus sequence typing (MLST) database for V. parahaemolyticus was created in 2008, and a large number of clones have been identified, causing severe outbreaks worldwide (sequence type 3 [ST3]), recurrent outbreaks in certain regions (e.g., ST36), or spreading to other regions where they are nonendemic (e.g., ST88 or ST189). The current MLST scheme uses sequences of 7 genes to generate an ST, which results in a powerful tool for inferring the population structure of this pathogen, although with limited resolution, especially compared to pulsed-field gel electrophoresis (PFGE). The application of whole-genome sequencing (WGS) has become routine for trace back investigations, with core genome MLST (cgMLST) analysis as one of the most straightforward ways to explore complex genomic data in an epidemiological context. Therefore, there is a need to generate a new, portable, standardized, and more advanced system that provides higher resolution and discriminatory power among V. parahaemolyticus strains using WGS data. We sequenced 92 V. parahaemolyticus genomes and used the genome of strain RIMD 2210633 as a reference (with a total of 4,832 genes) to determine which genes were suitable for establishing a V. parahaemolyticus cgMLST scheme. This analysis resulted in the identification of 2,254 suitable core genes for use in the cgMLST scheme. To evaluate the performance of this scheme, we performed a cgMLST analysis of 92 newly sequenced genomes, plus an additional 142 strains with genomes available at NCBI. cgMLST analysis was able to distinguish related and unrelated strains, including those with the same ST, clearly showing its enhanced resolution over conventional MLST analysis. It also distinguished outbreak-related from non-outbreak-related strains within the same ST. The sequences obtained from this work were deposited and are available in the public database (http://pubmlst.org/vparahaemolyticus). The application of this cgMLST scheme to the characterization of V. parahaemolyticus strains provided by different laboratories from around the world will reveal the global picture of the epidemiology, spread, and evolution of this pathogen and will become a powerful tool for outbreak investigations, allowing for the unambiguous comparison of strains with global coverage. Copyright © 2017 Gonzalez-Escalona et al.
Voronina, O L; Kunda, M S; Dmitrenko, O A; Lunin, V G; Gintsburg, A L
2011-01-01
Development of Staphylococcus haemolyticus strain typing method based on multilocus sequencing for resolving problems of molecular epidemiology. 102 strains of coagulase negative staphylococci (CNS) isolated in hospitals of various specialization in N. Novgorod and Moscow were studied. Species identification of strain was performed by using tuf gene fragment sequencing, S. haemolyticus strain differentiation--by MLST results. eBURST approach was used for cluster analysis of MLST data; structural changes in tagatose-6-phosphate kinase were studied by using InterProScan platform and SWISS-MODEL site programs; MLST scheme gene allele variability analysis was performed by using MEGA4.0 program package. In the 102 strains sampled CNS was detected in 28 strains of the S. haemolyticus species. The MLST scheme developed for the first time for S. haemolyticus including mvaK, rphE, tphK, gtr, arcC, triA, aroE genes allowed the differentiation of the sampled strains by 11 genotypes. Strains with ST 3, 8, 6, 1, 4, 5 and 11 differed by highest epidemiologic significance. Cluster and phylogenetic analysis of the data obtained showed a high adaptive ability of the nosocomial S. haemolyticus strains. Multiresistance to antibacterial preparations was detected in the analyzed strains. The MLST method developed was effective in the differentiation of S. haemolyticus strains that circulate in hospitals and threaten both neonates and hospitalized adult patients.
Naushad, Sohail; Barkema, Herman W.; Luby, Christopher; Condas, Larissa A. Z.; Nobrega, Diego B.; Carson, Domonique A.; De Buck, Jeroen
2016-01-01
Non-aureus staphylococci (NAS), a heterogeneous group of a large number of species and subspecies, are the most frequently isolated pathogens from intramammary infections in dairy cattle. Phylogenetic relationships among bovine NAS species are controversial and have mostly been determined based on single-gene trees. Herein, we analyzed phylogeny of bovine NAS species using whole-genome sequencing (WGS) of 441 distinct isolates. In addition, evolutionary relationships among bovine NAS were estimated from multilocus data of 16S rRNA, hsp60, rpoB, sodA, and tuf genes and sequences from these and numerous other single genes/proteins. All phylogenies were created with FastTree, Maximum-Likelihood, Maximum-Parsimony, and Neighbor-Joining methods. Regardless of methodology, WGS-trees clearly separated bovine NAS species into five monophyletic coherent clades. Furthermore, there were consistent interspecies relationships within clades in all WGS phylogenetic reconstructions. Except for the Maximum-Parsimony tree, multilocus data analysis similarly produced five clades. There were large variations in determining clades and interspecies relationships in single gene/protein trees, under different methods of tree constructions, highlighting limitations of using single genes for determining bovine NAS phylogeny. However, based on WGS data, we established a robust phylogeny of bovine NAS species, unaffected by method or model of evolutionary reconstructions. Therefore, it is now possible to determine associations between phylogeny and many biological traits, such as virulence, antimicrobial resistance, environmental niche, geographical distribution, and host specificity. PMID:28066335
Markovska, Rumyana; Stoeva, Temenuga; Schneider, Ines; Boyanova, Lyudmila; Popova, Valentina; Dacheva, Daniela; Kaneva, Radka; Bauernfeind, Adolf; Mitev, Vanyo; Mitov, Ivan
2015-10-01
A total of 36 consecutive clinical and two fecal-screening carbapenem-resistant Klebsiella pneumoniae isolates from two Bulgarian university hospitals (Varna and Pleven) were investigated. Susceptibility testing, conjugation experiments, and plasmid replicon typing were carried out. Beta-lactamases were characterized by isoelectric focusing, PCR, and sequencing. Clonal relatedness was investigated by RAPD and multilocus sequence typing (MLST). Most of the isolates demonstrated multidrug resistance profile. Amikacin and tigecycline retained good activity with susceptibility rates of 95 and 87%, respectively. The resistance rate to colistin was 63%. Six RAPD- and MLST-types were identified: the dominating MLST-type was ST15 (27 isolates), followed by ST76 (six isolates), and ST1350 (two isolates). ST101, ST258, and ST151 were detected once. All except one of the K. pneumoniae produced KPC-2, mostly in combination with CTX-M-15, while for one isolate (ST101) the enzymes OXA-48 and CTX-M-14 were found. All KPC-2-producing transconjugants revealed the presence of IncFII plasmid. The OXA-48- and CTX-M-14-producing isolate showed the presence of L/M replicon type. The dissemination of KPC-2-producing K.pneumoniae in Bulgaria is mainly due to the sustained spread of successful ST15 clone and to a lesser extent of ST76 clone. This is the first report of OXA-48 producing ST101 K. pneumoniae in Bulgaria. © 2015 APMIS. Published by John Wiley & Sons Ltd.
Chen, Lei; Song, Yajing; Wei, Zigong; He, Hongkui; Zhang, Anding; Jin, Meilin
2013-01-01
Streptococcus suis (S. suis) is an emerging zoonotic pathogen causing significant economic losses in the swine industry. Here, we investigated the antimicrobial susceptibility, associated antibiotic-resistant determinants and sequence type (ST) of S. suis isolates from diseased pigs in China from 2008 to 2010. Serotype 2 was the most frequently observed strain (n=95) among the 106 S. suis strains collected, followed by serotypes 3 (n=3), 5 (n=3), 4 (n=2), 7 (n=1), 11 (n=1) and 28 (n=1). Multilocus sequence typing analysis revealed that ST1 (n=21) and ST7 (n=74) were the predominant STs, and serotype 2 was found to be significantly correlated with ST7 (P=0.017, Fisher's exact test) and CC1 (P=0.024, Fisher's exact test). The antimicrobial susceptibility results indicated that the antibiotic resistance rate was highest for tetracycline (99.1%), followed by azithromycin (68.9%), erythromycin (67.9%), clindamycin (67.9%), trimethoprim/sulfamethoxazole (16%), levofloxacin (2.8%), chloramphenicol (1.9%), cefaclor (0.9%) and ceftriaxone (0.9%). Antibiotic-resistant genes tet(M), tet(O), tet(O/W/32/O), tet(O/32/O), tet(S), tet(W), tet(L), tet(40), erm(B), mef(A/E) and msr(D) could be detected, and several tandem organizations of antibiotic resistance genes were also found in this study. In conclusion, S. suis strains isolated from diseased pigs in China were less diverse and multi-drug resistant.
Development of a multilocus sequence typing scheme for Ureaplasma.
Zhang, J; Kong, Y; Feng, Y; Huang, J; Song, T; Ruan, Z; Song, J; Jiang, Y; Yu, Y; Xie, X
2014-04-01
Ureaplasma is a commensal of the human urogenital tract but is always associated with invasive diseases such as non-gonococcal urethritis and infertility adverse pregnancy outcomes. To better understand the molecular epidemiology and population structure of Ureaplasma, a multilocus sequence typing (MLST) scheme based on four housekeeping genes (ftsH, rpL22, valS, thrS) was developed and validated using 283 isolates, including 14 serovars of reference strains and 269 strains obtained from clinical patients. A total of 99 sequence types (STs) were revealed: the 14 type strains of the Ureaplasma serovars were assigned to 12 STs, and 87 novel and special STs appeared among the clinical isolates. ST1 and ST22 were the predominant STs, which contained 68 and 70 isolates, respectively. Two clonal lineages (CC1 and CC2) were shown by eBURST analysis, and linkage disequilibrium was revealed through a standardized index of association (I A (S)). The neighbor-joining tree results of 14 Ureaplasma serovars showed two genetically significantly distant clusters, which was highly congruent with the species taxonomy of ureaplasmas [Ureaplasma parvum (UPA) and Ureaplasma urealyticum (UUR)]. Analysis of the biotypes of 269 clinical isolates revealed that all the isolates of CC1 were UPA and those of CC2 were UUR. Additionally, CC2 was found more often in symptomatic patients with vaginitis, tubal obstruction, and cervicitis. In conclusion, this MLST scheme is adequate for investigations of molecular epidemiology and population structure with highly discriminating capacity.
Choi, Dasom; Chon, Jung-Whan; Kim, Hong-Seok; Kim, Dong-Hyeon; Lim, Jong-Soo; Yim, Jin-Hyeok; Seo, Kun-Ho
2015-11-01
The present study was undertaken to determine the prevalence of Salmonella in 100 chicken carcass samples from five integrated broiler operation brands in Korea. Serotypes, antibiotic resistance patterns, extended-spectrum β-lactamase (ESBL) genotype, and clonal divergence using multilocus sequence typing of the isolated strains were analyzed. A total of 42 chicken samples were contaminated with nontyphoidal Salmonella (NTS) isolates: 16 isolates (38%) were Salmonella Virchow, 9 (21%) were Salmonella Bareilly, and 8 (19%) were Salmonella Infantis. A multidrug resistance (MDR; resistant to more than three classes of antibiotics) phenotype was observed in 29% of the isolates, which were resistant to five or more classes of antibiotics. The dominant MDR type was resistance to classes of penicillin, cephalosporins, aminoglycosides, quinolones, and tetracyclines. All the MDR isolates were positive for ESBL producers, and all but one (with the CTX-M-1 genotype) had the CTX-M-15 genotype. Multilocus sequence typing of the isolates revealed ST16 as the dominant sequence type; Salmonella Virchow, Salmonella Infantis, and Salmonella Richmond were all ST16, indicating a close genetic relationship between these serovars. This is the first study in Korea showing the CTX-M-1 type of NTS and the prevalence of ESBL-producing strains among NTS isolated from retail chicken meat. Our findings suggest that MDR Salmonella contamination is widely prevalent in retail chicken meat, and consumption of inadequately cooked products could lead to dissemination of NTS, which is hazardous to human health.
Ma, Xiu-hua; Song, Feng-li; Fan, Ling; Guo, Cui-mei; Shi, Wei; Yu, Sang-jie; Yao, Kai-hu; Yang, Yong-hong
2015-01-01
Background To investigate the serotypes, antibiotic susceptibilities, and multi-locus sequence type (MLST) profiles of Streptococcus agalactiae (S. agalactiae) in Beijing to provide references for the prevention and treatment of S. agalactiae infections. Methods All isolates were identified using the CAMP test and the latex-agglutination assay and serotyped using a Strep-B-Latex kit, after which they were assessed for antibiotic susceptibility, macrolide-resistance genes, and MLST profiles. Results In total, 56 S. agalactiae isolates were identified in 863 pregnant women (6.5%). Serotypes Ia, Ib, II, III, and V were identified, among which types III (32.1%), Ia (17.9%), Ib (16.1%), and V (14.3%) were the predominant serotypes. All isolates were susceptible to penicillin and ceftriaxone. The nonsusceptiblity rates measured for erythromycin, clarithromycin, azithromycin, telithromycin, clindamycin, tetracycline, and levofloxacin were 85.7%, 92.9%, 98.2%, 30.4%, 73.2%, 91%, and 39.3%, respectively. We identified 14 sequence types (STs) for the 56 isolates, among which ST19 (30.4%) was predominant. The rate of fluoroquinolone resistance was higher in serotype III than in the other serotypes. Among the 44 erythromycin-resistant isolates, 32 (72.7%) carried ermB. Conclusion S. agalactiae isolates of the serotypes Ia, Ib, III, and V are common in Beijing. Among the S. agalactiae isolates, the macrolide and clindamycin resistance rates are extremely high. Most of the erythromycin-resistant isolates carry ermB. PMID:25781346
Landman, W J M; Buter, G J; Dijkman, R; van Eck, J H H
2014-01-01
Escherichia coli colonies isolated from the bone marrow of fresh dead hens of laying flocks with the E. coli peritonitis syndrome (EPS) were genotyped using pulsed-field gel electrophoresis (PFGE). Typing is important from an epidemiological point of view and also if the use of autogenous (auto)vaccines is considered. Birds with EPS originated from one house of each of three layer farms and one broiler breeder farm. Farms were considered as separate epidemiological units. In total, six flocks were examined including two successive flocks of one layer farm and the broiler breeder farm. E. coli colonies (one per bird) from nine to 16 hens of each flock were genotyped. The clonality of E. coli within birds was studied using five colonies of each of nine to 14 birds per flock. E. coli genotypes, which totalled 15, differed between farms and flocks except for two successive layer flocks that shared three genotypes. One to five genotypes were found per flock with one or two genotypes dominating each outbreak. Within hens, E. coli bacteria were always clonal. Colonies of the same PFGE type always had the same multilocus sequence type. However, four PFGE types shared sequence type 95. Neither PFGE types nor multilocus sequence types were unambiguously related to avian pathogenic E. coli from EPS. In cases where persistence of E. coli strains associated with EPS is found to occur frequently, routine genotyping to select strains for autovaccines should be considered.
Miragaia, M.; Thomas, J. C.; Couto, I.; Enright, M. C.; de Lencastre, H.
2007-01-01
Despite its importance as a human pathogen, information on population structure and global epidemiology of Staphylococcus epidermidis is scarce and the relative importance of the mechanisms contributing to clonal diversification is unknown. In this study, we addressed these issues by analyzing a representative collection of S. epidermidis isolates from diverse geographic and clinical origins using multilocus sequence typing (MLST). Additionally, we characterized the mobile element (SCCmec) carrying the genetic determinant of methicillin resistance. The 217 S. epidermidis isolates from our collection were split by MLST into 74 types, suggesting a high level of genetic diversity. Analysis of MLST data using the eBURST algorithm revealed the existence of nine epidemic clonal lineages that were disseminated worldwide. One single clonal lineage (clonal complex 2) comprised 74% of the isolates, whereas the remaining isolates were clustered into 8 minor clonal lineages and 13 singletons. According to our evolutionary model, SCCmec was acquired at least 56 times by S. epidermidis. Although geographic dissemination of S. epidermidis strains and the value of the index of association between the alleles, 0.2898 (P < 0.05), support the clonality of S. epidermidis species, examination of the sequence changes at MLST loci during clonal diversification showed that recombination gives rise to new alleles approximately twice as frequently as point mutations. We suggest that S. epidermidis has a population with an epidemic structure, in which nine clones have emerged upon a recombining background and evolved quickly through frequent transfer of genetic mobile elements, including SCCmec. PMID:17220222
Population genetic analysis of Enterocytozoon bieneusi in humans.
Li, Wei; Cama, Vitaliano; Feng, Yaoyu; Gilman, Robert H; Bern, Caryn; Zhang, Xichen; Xiao, Lihua
2012-01-01
Genotyping based on sequence analysis of the ribosomal internal transcribed spacer has revealed significant genetic diversity in Enterocytozoonbieneusi. Thus far, the population genetics of E. bieneusi and its significance in the epidemiology of microsporidiosis have not been examined. In this study, a multilocus sequence typing of E. bieneusi in AIDS patients in Lima, Peru was conducted, using 72 specimens previously genotyped as A, D, IV, EbpC, WL11, Peru7, Peru8, Peru10 and Peru11 at the internal transcribed spacer locus. Altogether, 39 multilocus genotypes were identified among the 72 specimens. The observation of strong intragenic linkage disequilibria and limited genetic recombination among markers were indicative of an overall clonal population structure of E. bieneusi. Measures of pair-wise intergenic linkage disequilibria and a standardised index of association (IAS) based on allelic profile data further supported this conclusion. Both sequence-based and allelic profile-based phylogenetic analyses showed the presence of two genetically isolated groups in the study population, one (group 1) containing isolates of the anthroponotic internal transcribed spacer genotype A, and the other (group 2) containing isolates of multiple internal transcribed spacer genotypes (mainly genotypes D and IV) with zoonotic potential. The measurement of linkage disequilibria and recombination indicated group 2 had a clonal population structure, whereas group 1 had an epidemic population structure. The formation of the two sub-populations was confirmed by STRUCTURE and Wright's fixation index (FST) analyses. The data highlight the power of MLST in understanding the epidemiology of E. bieneusi. Published by Elsevier Ltd.
Tong, Steven Y C; Xie, Shirley; Richardson, Leisha J; Ballard, Susan A; Dakh, Farshid; Grabsch, Elizabeth A; Grayson, M Lindsay; Howden, Benjamin P; Johnson, Paul D R; Giffard, Philip M
2011-01-01
We have developed a single nucleotide polymorphism (SNP) nucleated high-resolution melting (HRM) technique to genotype Enterococcus faecium. Eight SNPs were derived from the E. faecium multilocus sequence typing (MLST) database and amplified fragments containing these SNPs were interrogated by HRM. We tested the HRM genotyping scheme on 85 E. faecium bloodstream isolates and compared the results with MLST, pulsed-field gel electrophoresis (PFGE) and an allele specific real-time PCR (AS kinetic PCR) SNP typing method. In silico analysis based on predicted HRM curves according to the G+C content of each fragment for all 567 sequence types (STs) in the MLST database together with empiric data from the 85 isolates demonstrated that HRM analysis resolves E. faecium into 231 "melting types" (MelTs) and provides a Simpson's Index of Diversity (D) of 0.991 with respect to MLST. This is a significant improvement on the AS kinetic PCR SNP typing scheme that resolves 61 SNP types with D of 0.95. The MelTs were concordant with the known ST of the isolates. For the 85 isolates, there were 13 PFGE patterns, 17 STs, 14 MelTs and eight SNP types. There was excellent concordance between PFGE, MLST and MelTs with Adjusted Rand Indices of PFGE to MelT 0.936 and ST to MelT 0.973. In conclusion, this HRM based method appears rapid and reproducible. The results are concordant with MLST and the MLST based population structure.
Kim, Moon Jung; Bae, Il Kwon; Jeong, Seok Hoon; Kim, So Hyun; Song, Jae Hoon; Choi, Jae Young; Yoon, Sang Sun; Thamlikitkul, Visanu; Hsueh, Po-Ren; Yasin, Rohani Md; Lalitha, M K; Lee, Kyungwon
2013-12-01
To investigate the epidemiological traits of metallo-β-lactamase (MBL)-producing Pseudomonas aeruginosa (MPPA) clinical isolates collected by the Asian Network for Surveillance of Resistant Pathogens (ANSORP). A total of 16 MPPA clinical isolates were collected from six Asian countries in 2000 to 2009 by ANSORP. The MBL gene was detected by PCR amplification. The genetic organization of the class 1 integron carrying the MBL gene cassette was investigated by PCR mapping and sequencing. Southern blotting, repetitive sequence-based PCR and multilocus sequence typing (MLST) experiments were performed to characterize the isolates. PCR and sequencing experiments detected the blaVIM-2 (n = 12), blaVIM-3 (n = 1), blaIMP-6 (n = 2) and blaIMP-26 (n = 1) genes. The MBL genes were located on the chromosome in all isolates except one. Furthermore, all the MBL genes were located in a class 1 integron. All the MPPA isolates from Malaysia, Thailand, Sri Lanka and Korea were identified as sequence type (ST) 235 by MLST. Three VIM-2-producing isolates from India were identified as ST773, and one isolate harbouring VIM-3 from Taiwan was identified as ST298. P. aeruginosa ST235 might play a role in dissemination of MBL genes in Asian countries.
Clonal Origins of Vibrio cholerae O1 El Tor Strains, Papua New Guinea, 2009–2011
Collins, Deirdre; Jonduo, Marinjho H.; Rosewell, Alexander; Dutta, Samir R.; Dagina, Rosheila; Ropa, Berry; Siba, Peter M.; Greenhill, Andrew R.
2011-01-01
We used multilocus sequence typing and variable number tandem repeat analysis to determine the clonal origins of Vibrio cholerae O1 El Tor strains from an outbreak of cholera that began in 2009 in Papua New Guinea. The epidemic is ongoing, and transmission risk is elevated within the Pacific region. PMID:22099099
Ellis, Crystal N.; Schuster, Brian M.; Striplin, Megan J.; Jones, Stephen H.; Whistler, Cheryl A.
2012-01-01
Risk of gastric infection with Vibrio parahaemolyticus increases with favorable environmental conditions and population shifts that increase prevalence of infective strains. Genetic analysis of New Hampshire strains revealed a unique population with some isolates similar to outbreak-causing strains and high-level diversity that increased as waters warmed. PMID:22407686
Ellis, Crystal N; Schuster, Brian M; Striplin, Megan J; Jones, Stephen H; Whistler, Cheryl A; Cooper, Vaughn S
2012-05-01
Risk of gastric infection with Vibrio parahaemolyticus increases with favorable environmental conditions and population shifts that increase prevalence of infective strains. Genetic analysis of New Hampshire strains revealed a unique population with some isolates similar to outbreak-causing strains and high-level diversity that increased as waters warmed.
USDA-ARS?s Scientific Manuscript database
A growing interest in the biological control of locusts and grasshoppers (Acrididae) has led to the development of biopesticides based on naturally occurring pathogens which offers an environmentally safe alternative to chemical pesticides. However, the fungal strains which are being sought for biop...
A critical re-evaluation of multilocus sequence typing (MLST) efforts in Wolbachia.
Bleidorn, Christoph; Gerth, Michael
2018-01-01
Wolbachia (Alphaproteobacteria, Rickettsiales) is the most common, and arguably one of the most important inherited symbionts. Molecular differentiation of Wolbachia strains is routinely performed with a set of five multilocus sequence typing (MLST) markers. However, since its inception in 2006, the performance of MLST in Wolbachia strain typing has not been assessed objectively. Here, we evaluate the properties of Wolbachia MLST markers and compare it to 252 other single copy loci present in the genome of most Wolbachia strains. Specifically, we investigated how well MLST performs at strain differentiation, at reflecting genetic diversity of strains, and as phylogenetic marker. We find that MLST loci are outperformed by other loci at all tasks they are currently employed for, and thus that they do not reflect the properties of a Wolbachia strain very well. We argue that whole genome typing approaches should be used for Wolbachia typing in the future. Alternatively, if few loci approaches are necessary, we provide a characterisation of 252 single copy loci for a number a criteria, which may assist in designing specific typing systems or phylogenetic studies. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Serra, Rita; Peterson, Stephen; Venâncio, Armando
2008-04-01
Despite several studies reporting Penicillium as one of the most frequent fungal genera in cork planks, the isolates were rarely identified to species level. We conducted a detailed study to identify Penicillium species from the field to the factory environment prior to and after boiling the cork planks. A total of 84 samples were analyzed. Of the 486 Penicillium isolates phenotypically identified, 32 representative or unusual strains were selected for identification by multilocus DNA sequence type. Cork proved to be a rich source of Penicillium biodiversity. A total of 30 taxa were recognized from cork including rarely seen species and 6 phylogenetically unique groups. Spores of some species lodged deep in cork can survive the boiling process. P. glabrum, P. glandicola and P. toxicarium, species with high CFU numbers in the field, are still frequently present in cork after boiling. Other species are killed by the boiling treatment and replaced by Penicillium species originating from the factory environment. Species known to contribute to cork taint were isolated at all stages. Good manufacturing practices are necessary at all stages in the preparation of cork planks to minimize the load of Penicillium species that produce cork taint.
Leavitt, Dean H; Starrett, James; Westphal, Michael F; Hedin, Marshal
2015-10-01
We use mitochondrial and multi-locus nuclear DNA sequence data to infer both species boundaries and species relationships within California nemesiid spiders. Higher-level phylogenetic data show that the California radiation is monophyletic and distantly related to European members of the genus Brachythele. As such, we consider all California nemesiid taxa to belong to the genus Calisoga Chamberlin, 1937. Rather than find support for one or two taxa as previously hypothesized, genetic data reveal Calisoga to be a species-rich radiation of spiders, including perhaps dozens of species. This conclusion is supported by multiple mitochondrial barcoding analyses, and also independent analyses of nuclear data that reveal general genealogical congruence. We discovered three instances of sympatry, and genetic data indicate reproductive isolation when in sympatry. An examination of female reproductive morphology does not reveal species-specific characters, and observed male morphological differences for a subset of putative species are subtle. Our coalescent species tree analysis of putative species lays the groundwork for future research on the taxonomy and biogeographic history of this remarkable endemic radiation. Copyright © 2015 Elsevier Inc. All rights reserved.
Tatay-Dualde, Juan; Prats-van der Ham, Miranda; Paterna, Ana; Sánchez, Antonio; Corrales, Juan Carlos; Contreras, Antonio; Tola, Sebastiana; Gómez-Martin, Ángel
2017-01-01
Mycoplasma capricolum subsp. capricolum is one of the causative agents of contagious agalactia (CA). Nevertheless, there is still a lack of information about its antimicrobial susceptibility and genetic characteristics. Therefore, the aim of this work was to study the antimicrobial and genetic variability of different Mycoplasma capricolum subsp. capricolum field isolates. For this purpose, the growth inhibition effect of 18 antimicrobials and a multilocus sequence typing (MLST) scheme based on five housekeeping genes (fusA, glpQ, gyrB, lepA and rpoB) were performed on 32 selected field isolates from Italy and Spain.The results showed a wide range of growth inhibitory effects for almost all the antimicrobials studied. Macrolides presented lower efficacy inhibiting Mcc growth than in previous works performed on other CA-causative mycoplasmas. Erythromycin was not able to inhibit the growth of any of the studied strains, contrary to doxycycline, which inhibited the growth of all of them from low concentrations. On the other hand, the study of the concatenated genes revealed a high genetic variability among the different Mcc isolates. Hence, these genetic variations were greater than the ones reported in prior works on other mycoplasma species. PMID:28346546
Lee, Mellesia F; Cadogan, Paul; Eytle, Sarah; Copeland, Sonia; Walochnik, Julia; Lindo, John F
2017-01-01
Giardia spp. are the causative agents of intestinal infections in a wide variety of mammals including humans and companion animals. Dogs may be reservoirs of zoonotic Giardia spp.; however, the potential for transmission between dogs and humans in Jamaica has not been studied. Conventional PCR was used to screen 285 human and 225 dog stool samples for Giardia targeting the SSU rDNA gene followed by multilocus sequencing of the triosephosphate isomerase (tpi), glutamate dehydrogenase (gdh), and β-giardin (bg) genes. Prevalence of human infections based on PCR was 6.7 % (19/285) and canine infections 19.6 % (44/225). Nested PCR conducted on all 63 positive samples revealed the exclusive presence of assemblage A in both humans and dogs. Sub-assemblage A-II was responsible for 79.0 % (15/19) and 70.5 % (31/44) of the infections in humans and dogs, respectively, while sub-assemblage A-I was identified at a rate of 15.8 % (3/19) and 29.5 % (13/44) in humans and dogs, respectively. The predominance of a single circulating assemblage among both humans and dogs in Jamaica suggests possible zoonotic transmission of Giardia infections.
Clavibacter michiganensis subsp. phaseoli subsp. nov., pathogenic in bean.
González, Ana J; Trapiello, Estefanía
2014-05-01
A yellow Gram-reaction-positive bacterium isolated from bean seeds (Phaseolus vulgaris L.) was identified as Clavibacter michiganensis by 16S rRNA gene sequencing. Molecular methods were employed in order to identify the subspecies. Such methods included the amplification of specific sequences by PCR, 16S amplified rDNA restriction analysis (ARDRA), RFLP and multilocus sequence analysis as well as the analysis of biochemical and phenotypic traits including API 50CH and API ZYM results. The results showed that strain LPPA 982T did not represent any known subspecies of C. michiganensis. Pathogenicity tests revealed that the strain is a bean pathogen causing a newly identified bacterial disease that we name bacterial bean leaf yellowing. On the basis of these results, strain LPPA 982T is regarded as representing a novel subspecies for which the name Clavibacter michiganensis subsp. phaseoli subsp. nov. is proposed. The type strain is LPPA 982T (=CECT 8144T=LMG 27667T).
BrucellaBase: Genome information resource.
Sankarasubramanian, Jagadesan; Vishnu, Udayakumar S; Khader, L K M Abdul; Sridhar, Jayavel; Gunasekaran, Paramasamy; Rajendhran, Jeyaprakash
2016-09-01
Brucella sp. causes a major zoonotic disease, brucellosis. Brucella belongs to the family Brucellaceae under the order Rhizobiales of Alphaproteobacteria. We present BrucellaBase, a web-based platform, providing features of a genome database together with unique analysis tools. We have developed a web version of the multilocus sequence typing (MLST) (Whatmore et al., 2007) and phylogenetic analysis of Brucella spp. BrucellaBase currently contains genome data of 510 Brucella strains along with the user interfaces for BLAST, VFDB, CARD, pairwise genome alignment and MLST typing. Availability of these tools will enable the researchers interested in Brucella to get meaningful information from Brucella genome sequences. BrucellaBase will regularly be updated with new genome sequences, new features along with improvements in genome annotations. BrucellaBase is available online at http://www.dbtbrucellosis.in/brucellabase.html or http://59.99.226.203/brucellabase/homepage.html. Copyright © 2016 Elsevier B.V. All rights reserved.
Lin, Jingxia; Wang, Xiuna; Deng, Xianbo; Feng, Youjun
2016-01-01
The emergence of the mobilized colistin resistance gene, representing a novel mechanism for bacterial drug resistance, challenges the last resort against the severe infections by Gram-negative bacteria with multi-drug resistances. Very recently, we showed the diversity in the mcr-1-carrying plasmid reservoirs from the gut microbiota. Here, we reported that a similar but more complex scenario is present in the healthy swine populations, Southern China, 2016. Amongst the 1026 pieces of Escherichia coli isolates from 3 different pig farms, 302 E. coli isolates were determined to be positive for the mcr-1 gene (30%, 302/1026). Multi-locus sequence typing assigned no less than 11 kinds of sequence types including one novel Sequence Type to these mcr-1-positive strains. PCR analyses combined with the direct DNA sequencing revealed unexpected complexity of the mcr-1-harbouring plasmids whose backbones are at least grouped into 6 types four of which are new. Transcriptional analyses showed that the mcr-1 promoter of different origins exhibits similar activity. It seems likely that complex dissemination of the diversified mcr-1-bearing plasmids occurs amongst the various ST E. coli inhabiting the healthy swine populations, in Southern China. PMID:27741523
Torres-Cruz, Terry J.; Billingsley Tobias, Terri L.; Almatruk, Maryam; ...
2017-08-08
Illumina amplicon sequencing of soil in a temperate pine forest in the southeastern United States detected an abundant, nitrogen (N)-responsive fungal genotype of unknown phylogenetic affiliation. Two isolates with ribosomal sequences consistent with that genotype were subsequently obtained. Examination of records in GenBank revealed that a genetically similar fungus had been isolated previously as an endophyte of moss in a pine forest in the southwestern United States. The three isolates were characterized using morphological, genomic, and multilocus molecular data (18S, internal transcribed spacer [ITS], and 28S rRNA sequences). Phylogenetic and maximum likelihood phylogenomic reconstructions revealed that the taxon represents amore » novel lineage in Mucoromycotina, only preceded by Calcarisporiella, the earliest diverging lineage in the subphylum. Sequences for the novel taxon are frequently detected in environmental sequencing studies, and it is currently part of UNITE’s dynamic list of most wanted fungi. The fungus is dimorphic, grows best at room temperature, and is associated with a wide variety of bacteria. In this paper, a new monotypic genus, Bifiguratus, is proposed, typified by Bifiguratus adelaidae.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torres-Cruz, Terry J.; Billingsley Tobias, Terri L.; Almatruk, Maryam
Illumina amplicon sequencing of soil in a temperate pine forest in the southeastern United States detected an abundant, nitrogen (N)-responsive fungal genotype of unknown phylogenetic affiliation. Two isolates with ribosomal sequences consistent with that genotype were subsequently obtained. Examination of records in GenBank revealed that a genetically similar fungus had been isolated previously as an endophyte of moss in a pine forest in the southwestern United States. The three isolates were characterized using morphological, genomic, and multilocus molecular data (18S, internal transcribed spacer [ITS], and 28S rRNA sequences). Phylogenetic and maximum likelihood phylogenomic reconstructions revealed that the taxon represents amore » novel lineage in Mucoromycotina, only preceded by Calcarisporiella, the earliest diverging lineage in the subphylum. Sequences for the novel taxon are frequently detected in environmental sequencing studies, and it is currently part of UNITE’s dynamic list of most wanted fungi. The fungus is dimorphic, grows best at room temperature, and is associated with a wide variety of bacteria. In this paper, a new monotypic genus, Bifiguratus, is proposed, typified by Bifiguratus adelaidae.« less
Karim, Md Robiul; Wang, Rongjun; Yu, Fuchang; Li, Tongyi; Dong, Haiju; Li, Dezhong; Zhang, Longxian; Li, Junqiang; Jian, Fuchun; Zhang, Sumei; Rume, Farzana Islam; Ning, Changshen; Xiao, Lihua
2015-03-01
Only a few studies based on single locus characterization have been conducted on the molecular epidemiology of Giardia duodenalis in nonhuman primates (NHPs). The present study was conducted to examine the occurrence and genotype identity of G. duodenalis in NHPs based on multi-locus analysis of the small-subunit ribosomal RNA (SSU rRNA), triose phosphate isomerase (tpi), glutamate dehydrogenase (gdh), and beta-giardin (bg) genes. Fecal specimens were collected from 496 animals of 36 NHP species kept in seven zoos in China and screened for G. duodenalis by tpi-based PCR. G. duodenalis was detected in 92 (18.6%) specimens from 18 NHP species, belonging to assemblage A (n=4) and B (n=88). In positive NHP species, the infection rates ranged from 4.8% to 100%. In tpi sequence analysis, the assemblage A included subtypes A1, A2 and one novel subtype. Multi-locus analysis of the tpi, gdh, and bg genes detected 11 (8 known and 3 new), 6 (3 known and 3 new) and 9 (2 known and 7 new) subtypes in 88, 47 and 35 isolates in assemblage B, respectively. Thirty-two assemblage B isolates with data at all three loci yielded 15 multi-locus genotypes (MLGs), including 2 known and 13 new MLGs. Phylogenetic analysis of concatenated sequences of assemblage B showed that MLGs found here were genetically different from those of humans, NHPs, rabbit and guinea pig in Italy and Sweden. It further indicated that assemblage B isolates in ring-tailed lemurs and squirrel monkeys might be genetically different from those in other NHPs. These data suggest that NHPs are mainly infected with G. duodenalis assemblage B and there might be geographical segregation and host-adaptation in assemblage B in NHPs. Copyright © 2014 Elsevier B.V. All rights reserved.
Adamiak, Paul; Vanderkooi, Otto G; Kellner, James D; Schryvers, Anthony B; Bettinger, Julie A; Alcantara, Joenel
2014-06-03
Multi-locus sequence typing (MLST) is a portable, broadly applicable method for classifying bacterial isolates at an intra-species level. This methodology provides clinical and scientific investigators with a standardized means of monitoring evolution within bacterial populations. MLST uses the DNA sequences from a set of genes such that each unique combination of sequences defines an isolate's sequence type. In order to reliably determine the sequence of a typing gene, matching sequence reads for both strands of the gene must be obtained. This study assesses the ability of both the standard, and an alternative set of, Streptococcus pneumoniae MLST primers to completely sequence, in both directions, the required typing alleles. The results demonstrated that for five (aroE, recP, spi, xpt, ddl) of the seven S. pneumoniae typing alleles, the standard primers were unable to obtain the complete forward and reverse sequences. This is due to the standard primers annealing too closely to the target regions, and current sequencing technology failing to sequence the bases that are too close to the primer. The alternative primer set described here, which includes a combination of primers proposed by the CDC and several designed as part of this study, addresses this limitation by annealing to highly conserved segments further from the target region. This primer set was subsequently employed to sequence type 105 S. pneumoniae isolates collected by the Canadian Immunization Monitoring Program ACTive (IMPACT) over a period of 18 years. The inability of several of the standard S. pneumoniae MLST primers to fully sequence the required region was consistently observed and is the result of a shift in sequencing technology occurring after the original primers were designed. The results presented here introduce clear documentation describing this phenomenon into the literature, and provide additional guidance, through the introduction of a widely validated set of alternative primers, to research groups seeking to undertake S. pneumoniae MLST based studies.
Karami, Nahid; Helldal, Lisa; Welinder-Olsson, Christina; Ahrén, Christina; Moore, Edward R B
2013-01-01
Extended-spectrum β-lactamase producing Escherichia coli (ESBL-E. coli) were isolated from infants hospitalized in a neonatal, post-surgery ward during a four-month-long nosocomial outbreak and six-month follow-up period. A multi-locus variable number tandem repeat analysis (MLVA), using 10 loci (GECM-10), for 'generic' (i.e., non-STEC) E. coli was applied for sub-species-level (i.e., sub-typing) delineation and characterization of the bacterial isolates. Ten distinct GECM-10 types were detected among 50 isolates, correlating with the types defined by pulsed-field gel electrophoresis (PFGE), which is recognized to be the 'gold-standard' method for clinical epidemiological analyses. Multi-locus sequence typing (MLST), multiplex PCR genotyping of bla CTX-M, bla TEM, bla OXA and bla SHV genes and antibiotic resistance profiling, as well as a PCR assay specific for detecting isolates of the pandemic O25b-ST131 strain, further characterized the outbreak isolates. Two clusters of isolates with distinct GECM-10 types (G06-04 and G07-02), corresponding to two major PFGE types and the MLST-based sequence types (STs) 131 and 1444, respectively, were confirmed to be responsible for the outbreak. The application of GECM-10 sub-typing provided reliable, rapid and cost-effective epidemiological characterizations of the ESBL-producing isolates from a nosocomial outbreak that correlated with and may be used to replace the laborious PFGE protocol for analyzing generic E. coli.
Identification and characterization of Burkholderia multivorans CCA53.
Akita, Hironaga; Kimura, Zen-Ichiro; Yusoff, Mohd Zulkhairi Mohd; Nakashima, Nobutaka; Hoshino, Tamotsu
2017-07-06
A lignin-degrading bacterium, Burkholderia sp. CCA53, was previously isolated from leaf soil. The purpose of this study was to determine phenotypic and biochemical features of Burkholderia sp. CCA53. Multilocus sequence typing (MLST) analysis based on fragments of the atpD, gltD, gyrB, lepA, recA and trpB gene sequences was performed to identify Burkholderia sp. CCA53. The MLST analysis revealed that Burkholderia sp. CCA53 was tightly clustered with B. multivorans ATCC BAA-247 T . The quinone and cellular fatty acid profiles, carbon source utilization, growth temperature and pH were consistent with the characteristics of B. multivorans species. Burkholderia sp. CCA53 was therefore identified as B. multivorans CCA53.
Li, Mei Jia; Deng, Jian Xin; Paul, Narayan Chandra
2014-01-01
Alternaria from different Allium plants was characterized by multilocus sequence analysis. Based on sequences of the β-tubulin (BT2b), the Alternaria allergen a1 (Alt a1), and the RNA polymerase II second largest subunit (RPB2) genes and phylogenetic data analysis, isolates were divided into two groups. The two groups were identical to representative isolates of A. porri (EGS48-147) and A. vanuatuensis (EGS45-018). The conidial characteristics and pathogenicity of A. vanuatuensis also well supported the molecular characteristics. This is the first record of A. vanuatuensis E. G. Simmons & C. F. Hill from Korea and China. PMID:25606017
Holmes, Anne; Allison, Lesley; Ward, Melissa; Dallman, Timothy J; Clark, Richard; Fawkes, Angie; Murphy, Lee; Hanson, Mary
2015-11-01
Detailed laboratory characterization of Escherichia coli O157 is essential to inform epidemiological investigations. This study assessed the utility of whole-genome sequencing (WGS) for outbreak detection and epidemiological surveillance of E. coli O157, and the data were used to identify discernible associations between genotypes and clinical outcomes. One hundred five E. coli O157 strains isolated over a 5-year period from human fecal samples in Lothian, Scotland, were sequenced with the Ion Torrent Personal Genome Machine. A total of 8,721 variable sites in the core genome were identified among the 105 isolates; 47% of the single nucleotide polymorphisms (SNPs) were attributable to six "atypical" E. coli O157 strains and included recombinant regions. Phylogenetic analyses showed that WGS correlated well with the epidemiological data. Epidemiological links existed between cases whose isolates differed by three or fewer SNPs. WGS also correlated well with multilocus variable-number tandem repeat analysis (MLVA) typing data, with only three discordant results observed, all among isolates from cases not known to be epidemiologically related. WGS produced a better-supported, higher-resolution phylogeny than MLVA, confirming that the method is more suitable for epidemiological surveillance of E. coli O157. A combination of in silico analyses (VirulenceFinder, ResFinder, and local BLAST searches) were used to determine stx subtypes, multilocus sequence types (15 loci), and the presence of virulence and acquired antimicrobial resistance genes. There was a high level of correlation between the WGS data and our routine typing methods, although some discordant results were observed, mostly related to the limitation of short sequence read assembly. The data were used to identify sublineages and clades of E. coli O157, and when they were correlated with the clinical outcome data, they showed that one clade, Ic3, was significantly associated with severe disease. Together, the results show that WGS data can provide higher resolution of the relationships between E. coli O157 isolates than that provided by MLVA. The method has the potential to streamline the laboratory workflow and provide detailed information for the clinical management of patients and public health interventions. Copyright © 2015, Holmes et al.
Allison, Lesley; Ward, Melissa; Dallman, Timothy J.; Clark, Richard; Fawkes, Angie; Murphy, Lee; Hanson, Mary
2015-01-01
Detailed laboratory characterization of Escherichia coli O157 is essential to inform epidemiological investigations. This study assessed the utility of whole-genome sequencing (WGS) for outbreak detection and epidemiological surveillance of E. coli O157, and the data were used to identify discernible associations between genotypes and clinical outcomes. One hundred five E. coli O157 strains isolated over a 5-year period from human fecal samples in Lothian, Scotland, were sequenced with the Ion Torrent Personal Genome Machine. A total of 8,721 variable sites in the core genome were identified among the 105 isolates; 47% of the single nucleotide polymorphisms (SNPs) were attributable to six “atypical” E. coli O157 strains and included recombinant regions. Phylogenetic analyses showed that WGS correlated well with the epidemiological data. Epidemiological links existed between cases whose isolates differed by three or fewer SNPs. WGS also correlated well with multilocus variable-number tandem repeat analysis (MLVA) typing data, with only three discordant results observed, all among isolates from cases not known to be epidemiologically related. WGS produced a better-supported, higher-resolution phylogeny than MLVA, confirming that the method is more suitable for epidemiological surveillance of E. coli O157. A combination of in silico analyses (VirulenceFinder, ResFinder, and local BLAST searches) were used to determine stx subtypes, multilocus sequence types (15 loci), and the presence of virulence and acquired antimicrobial resistance genes. There was a high level of correlation between the WGS data and our routine typing methods, although some discordant results were observed, mostly related to the limitation of short sequence read assembly. The data were used to identify sublineages and clades of E. coli O157, and when they were correlated with the clinical outcome data, they showed that one clade, Ic3, was significantly associated with severe disease. Together, the results show that WGS data can provide higher resolution of the relationships between E. coli O157 isolates than that provided by MLVA. The method has the potential to streamline the laboratory workflow and provide detailed information for the clinical management of patients and public health interventions. PMID:26354815
Brucella papionis sp. nov., isolated from baboons (Papio spp.)
Davison, Nicholas; Cloeckaert, Axel; Al Dahouk, Sascha; Zygmunt, Michel S.; Brew, Simon D.; Perrett, Lorraine L.; Koylass, Mark S.; Vergnaud, Gilles; Quance, Christine; Scholz, Holger C.; Dick, Edward J.; Hubbard, Gene; Schlabritz-Loutsevitch, Natalia E.
2014-01-01
Two Gram-negative, non-motile, non-spore-forming coccoid bacteria (strains F8/08-60T and F8/08-61) isolated from clinical specimens obtained from baboons (Papio spp.) that had delivered stillborn offspring were subjected to a polyphasic taxonomic study. On the basis of 16S rRNA gene sequence similarities, both strains, which possessed identical sequences, were assigned to the genus Brucella. This placement was confirmed by extended multilocus sequence analysis (MLSA), where both strains possessed identical sequences, and whole-genome sequencing of a representative isolate. All of the above analyses suggested that the two strains represent a novel lineage within the genus Brucella. The strains also possessed a unique profile when subjected to the phenotyping approach classically used to separate species of the genus Brucella, reacting only with Brucella A monospecific antiserum, being sensitive to the dyes thionin and fuchsin, being lysed by bacteriophage Wb, Bk2 and Fi phage at routine test dilution (RTD) but only partially sensitive to bacteriophage Tb, and with no requirement for CO2 and no production of H2S but strong urease activity. Biochemical profiling revealed a pattern of enzyme activity and metabolic capabilities distinct from existing species of the genus Brucella. Molecular analysis of the omp2 locus genes showed that both strains had a novel combination of two highly similar omp2b gene copies. The two strains shared a unique fingerprint profile of the multiple-copy Brucella-specific element IS711. Like MLSA, a multilocus variable number of tandem repeat analysis (MLVA) showed that the isolates clustered together very closely, but represent a distinct group within the genus Brucella. Isolates F8/08-60T and F8/08-61 could be distinguished clearly from all known species of the genus Brucellaand their biovars by both phenotypic and molecular properties. Therefore, by applying the species concept for the genus Brucellasuggested by the ICSP Subcommittee on the Taxonomy of Brucella, they represent a novel species within the genus Brucella, for which the name Brucella papionis sp. nov. is proposed, with the type strain F8/08-60T ( = NCTC 13660T = CIRMBP 0958T). PMID:25242540
Shuel, Michelle L; Karlowsky, Kathleen E; Law, Dennis K S; Tsang, Raymond S W
2011-12-01
Population biology of Haemophilus influenzae can be studied by multilocus sequence typing (MLST), and isolates are assigned sequence types (STs) based on nucleotide sequence variations in seven housekeeping genes, including fucK. However, the ST cannot be assigned if one of the housekeeping genes is absent or cannot be detected by the current protocol. Occasionally, strains of H. influenzae have been reported to lack the fucK gene. In this study, we examined the prevalence of this mutation among our collection of H. influenzae isolates. Of the 704 isolates studied, including 282 encapsulated and 422 nonencapsulated isolates, nine were not typeable by MLST owing to failure to detect the fucK gene. All nine fucK-negative isolates were nonencapsulated and belonged to various biotypes. DNA sequencing of the fucose operon region confirmed complete deletion of genes in the operon in seven of the nine isolates, while in the remaining two isolates, some of the genes were found intact or in parts. The significance of these findings is discussed.
Ivanović, Žarko; Perović, Tatjana; Popović, Tatjana; Blagojević, Jovana; Trkulja, Nenad; Hrnčić, Snježana
2017-02-01
Citrus blast caused by bacterium Pseudomonas syringae is a very important disease of citrus occuring in many areas of the world, but with few data about genetic structure of the pathogen involved. Considering the above fact, this study reports genetic characterization of 43 P. syringae isolates obtained from plant tissue displaying citrus blast symptoms on mandarin ( Citrus reticulata ) in Montenegro, using multilocus sequence analysis of gyrB , rpoD , and gap1 gene sequences. Gene sequences from a collection of 54 reference pathotype strains of P. syringae from the Plant Associated and Environmental Microbes Database (PAMDB) was used to establish a genetic relationship with our isolates obtained from mandarin. Phylogenetic analyses of gyrB , rpoD , and gap1 gene sequences showed that P. syringae pv. syringae causes citrus blast in mandarin in Montenegro, and belongs to genomospecies 1. Genetic homogeneity of isolates suggested that the Montenegrian population might be clonal which indicates a possible common source of infection. These findings may assist in further epidemiological studies of this pathogen and for determining mandarin breeding strategies for P. syringae control.
Ivanović, Žarko; Perović, Tatjana; Popović, Tatjana; Blagojević, Jovana; Trkulja, Nenad; Hrnčić, Snježana
2017-01-01
Citrus blast caused by bacterium Pseudomonas syringae is a very important disease of citrus occuring in many areas of the world, but with few data about genetic structure of the pathogen involved. Considering the above fact, this study reports genetic characterization of 43 P. syringae isolates obtained from plant tissue displaying citrus blast symptoms on mandarin (Citrus reticulata) in Montenegro, using multilocus sequence analysis of gyrB, rpoD, and gap1 gene sequences. Gene sequences from a collection of 54 reference pathotype strains of P. syringae from the Plant Associated and Environmental Microbes Database (PAMDB) was used to establish a genetic relationship with our isolates obtained from mandarin. Phylogenetic analyses of gyrB, rpoD, and gap1 gene sequences showed that P. syringae pv. syringae causes citrus blast in mandarin in Montenegro, and belongs to genomospecies 1. Genetic homogeneity of isolates suggested that the Montenegrian population might be clonal which indicates a possible common source of infection. These findings may assist in further epidemiological studies of this pathogen and for determining mandarin breeding strategies for P. syringae control. PMID:28167885
Kim, Dae Hun; Ko, Kwan Soo
2015-07-01
To investigate pmrCAB sequence divergence in 5 species of Acinetobacter baumannii complex, a total of 80 isolates from a Korean hospital were explored. We evaluated nucleotide and amino acid polymorphisms of pmrCAB operon, and phylogenetic trees were constructed for each gene of prmCAB operon. Colistin and polymyxin B susceptibility was determined for all isolates, and multilocus sequence typing was also performed for A. baumannii isolates. Our results showed that each species of A. baumannii complex has divergent pmrCAB operon sequences. We identified a distinct pmrCAB allele allied with Acinetobacter nosocomialis in gene trees. Different grouping in each gene tree suggests sporadic recombination or emergence of pmrCAB genes among Acinetobacter species. Sequence polymorphisms among Acinetobacter species might not be associated with colistin resistance. We revealed that a distinct pmrCAB allele may be widespread across the continents such as North America and Asia and that sporadic genetic recombination or emergence of pmrCAB genes might occur. Copyright © 2015 Elsevier Inc. All rights reserved.
Cryptic Diversity of Malassezia pachydermatis from Healthy and Diseased Domestic Animals.
Puig, Laura; Castellá, Gemma; Cabañes, F Javier
2016-10-01
Malassezia pachydermatis is part of the normal cutaneous microbiota of wild and domestic carnivores. However, under certain conditions this yeast can overproliferate and cause several diseases in its host, mainly otitis and dermatitis in dogs. The aim of this study was to conduct a molecular characterization of M. pachydermatis isolates from healthy and diseased domestic animals, in order to assess the molecular diversity and phylogenetic relationship within this species. The large subunit (LSU) and the internal transcribed spacer (ITS) of ribosomal RNA, chitin synthase 2 (CHS2) and β-tubulin genes from sixteen strains isolated from dogs, cats, a goat, a pig and a horse were sequenced. A different number of types of sequences were identified for each target gene, including some types described for the first time. Five sequence types were characterized for the LSU, eleven for the ITS region, nine for CHS2 and eight for β-tubulin. A multilocus analysis was performed including the four genes, and the resulting phylogenetic tree revealed fifteen genotypes. Genotypes were distributed in two well-supported clades. One clade comprised strains isolated from different domestic animals and a strongly supported cluster constituted by strains isolated from cats. The second clade included strains isolated mainly from dogs and an outlier strain isolated from a horse. No apparent association could be observed between the health status of the animal hosts and concrete strains. The multilocus phylogenetic analysis is a useful tool to assess the intraspecific variation within this species and could help understand the ecology, epidemiology and speciation process of M. pachydermatis.
Veterinary Fusarioses within the United States
Sutton, Deanna A.; Wiederhold, Nathan; Robert, Vincent A. R. G.; Crous, Pedro W.; Geiser, David M.
2016-01-01
Multilocus DNA sequence data were used to assess the genetic diversity and evolutionary relationships of 67 Fusarium strains from veterinary sources, most of which were from the United States. Molecular phylogenetic analyses revealed that the strains comprised 23 phylogenetically distinct species, all but two of which were previously known to infect humans, distributed among eight species complexes. The majority of the veterinary isolates (47/67 = 70.1%) were nested within the Fusarium solani species complex (FSSC), and these included 8 phylospecies and 33 unique 3-locus sequence types (STs). Three of the FSSC species (Fusarium falciforme, Fusarium keratoplasticum, and Fusarium sp. FSSC 12) accounted for four-fifths of the veterinary strains (38/47) and STs (27/33) within this clade. Most of the F. falciforme strains (12/15) were recovered from equine keratitis infections; however, strains of F. keratoplasticum and Fusarium sp. FSSC 12 were mostly (25/27) isolated from marine vertebrates and invertebrates. Our sampling suggests that the Fusarium incarnatum-equiseti species complex (FIESC), with eight mycoses-associated species, may represent the second most important clade of veterinary relevance within Fusarium. Six of the multilocus STs within the FSSC (3+4-eee, 1-b, 12-a, 12-b, 12-f, and 12-h) and one each within the FIESC (1-a) and the Fusarium oxysporum species complex (ST-33) were widespread geographically, including three STs with transoceanic disjunctions. In conclusion, fusaria associated with veterinary mycoses are phylogenetically diverse and typically can only be identified to the species level using DNA sequence data from portions of one or more informative genes. PMID:27605713
Method for identifying mutagenic agents which induce large, multilocus deletions in DNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, W.E.C.; Belouchi, A.; Dewyse, P.
1993-07-13
A method of identifying a mutagenic agent is described which includes a large, multilocus deletions in DNA in mammalian cells comprising: (i) exposing a class III heterozygous CHO cell line to a potential mutagenic agent under investigation, and allowing any mutation of the cell line to proceed, said cell line being characterized in that a restriction fragment length variation exists in on mutation it becomes resistant to 2,6-diaminopurine and in that the DNA sequence adjacent to the two alleles of the APRT gene such that the DNA sequence adjacent to one of the two alleles can be digested with themore » enzyme BclI but the DNA sequence variation adjacent to the other of the two alleles cannot be digested with BclI, (ii) isolating induced mutations of the cell line deficient in APRT function, (iii) isolating DNA from the induced mutants, (iv) digesting the isolated DNA with BclI enzyme to produce digested fragments including a 19 kb fragment and any 2 kb fragment, which fragments hybridize with the labeled probe derived from DNA fragment PDI, (v) separating any digested fragments, (vi) transferring the separated fragments of (v) to a solid support, (vii) hybridizing the supported separated fragments with a labeled probe derived from the clone DNA fragment PD 1, (viii) determining fragments having undergone loss of the 2 kb band identified by the probe, as an identification of parent mutants in which the loss occurred, and (ix) evaluating the mutating ability of the potential mutagenic agent.« less
Veterinary Fusarioses within the United States.
O'Donnell, Kerry; Sutton, Deanna A; Wiederhold, Nathan; Robert, Vincent A R G; Crous, Pedro W; Geiser, David M
2016-11-01
Multilocus DNA sequence data were used to assess the genetic diversity and evolutionary relationships of 67 Fusarium strains from veterinary sources, most of which were from the United States. Molecular phylogenetic analyses revealed that the strains comprised 23 phylogenetically distinct species, all but two of which were previously known to infect humans, distributed among eight species complexes. The majority of the veterinary isolates (47/67 = 70.1%) were nested within the Fusarium solani species complex (FSSC), and these included 8 phylospecies and 33 unique 3-locus sequence types (STs). Three of the FSSC species (Fusarium falciforme, Fusarium keratoplasticum, and Fusarium sp. FSSC 12) accounted for four-fifths of the veterinary strains (38/47) and STs (27/33) within this clade. Most of the F. falciforme strains (12/15) were recovered from equine keratitis infections; however, strains of F. keratoplasticum and Fusarium sp. FSSC 12 were mostly (25/27) isolated from marine vertebrates and invertebrates. Our sampling suggests that the Fusarium incarnatum-equiseti species complex (FIESC), with eight mycoses-associated species, may represent the second most important clade of veterinary relevance within Fusarium Six of the multilocus STs within the FSSC (3+4-eee, 1-b, 12-a, 12-b, 12-f, and 12-h) and one each within the FIESC (1-a) and the Fusarium oxysporum species complex (ST-33) were widespread geographically, including three STs with transoceanic disjunctions. In conclusion, fusaria associated with veterinary mycoses are phylogenetically diverse and typically can only be identified to the species level using DNA sequence data from portions of one or more informative genes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
CRISPR: A Useful Genetic Feature to Follow Vaginal Carriage of Group B Streptococcus
Beauruelle, Clémence; Pastuszka, Adeline; Horvath, Philippe; Perrotin, Franck; Mereghetti, Laurent; Lanotte, Philippe
2017-01-01
Clustered regularly interspaced short palindromic repeats (CRISPR) and Cas (CRISPR-associated proteins) play a critical role in adaptive immunity against mobile genetic elements, especially phages, through their ability to acquire novel spacer sequences. Polarized spacer acquisition results in spacer polymorphism and temporal organization of CRISPR loci, making them attractive epidemiological markers. Group B Streptococcus (GBS), a genital commensal for 10 to 30% of healthy women and a major neonatal pathogen, possesses a ubiquitous and functional CRISPR1 locus. Our aim was to assess the CRISPR1 locus as an epidemiological marker to follow vaginal carriage of GBS in women. This study also allowed us to observe the evolution of the CRISPR1 locus in response to probable phage infection occurring in vivo. We followed carriage of GBS among 100 women over an 11-year period, with a median duration of approximately 2 years. The CRISPR1 locus was highly conserved over time. The isolates that show the same CRISPR1 genotype were collected from 83% of women. There was an agreement between CRISPR genotyping and other typing methods [MLVA (multilocus variable number of tandem repeat Analysis) and MLST (multilocus sequence typing)] for 94% of the cases. The CRISPR1 locus of the isolates from 18 women showed modifications, four of which acquired polarized spacer, highlighting the in vivo functionality of the system. The novel spacer of one isolate had sequence similarity with phage, suggesting that phage infection occurred during carriage. These findings improve our understanding of CRISPR-Cas evolution in GBS and provide a glimpse of host-phage dynamics in vivo. PMID:29075246
Cho, Hye Hyun; Sung, Ji Youn; Kwon, Kye Chul; Koo, Sun Hoe
2012-01-01
Stenotrophomonas maltophilia has emerged as an important opportunistic pathogen, which causes infections that are often difficult to manage because of the inherent resistance of the pathogen to a variety of antimicrobial agents. In this study, we analyzed the expressions of smeABC and smeDEF and their correlation with antimicrobial susceptibility. We also evaluated the genetic relatedness and epidemiological links among 33 isolates of S. maltophilia. In total, 33 S. maltophilia strains were isolated from patients in a tertiary hospital in Daejeon. Minimum inhibitory concentrations (MICs) of 11 antimicrobial agents were determined by using agar dilution method and E-test (BioMérieux, France). Real-time PCR analysis was performed to evaluate the expression of the Sme efflux systems in the S. maltophilia isolates. Additionally, an epidemiological investigation was performed using multilocus sequence typing (MLST) assays. The findings of susceptibility testing showed that the majority of the S. maltophilia isolates were resistant to β-lactams and aminoglycosides. Twenty-one clinical isolates overexpressed smeABC and showed high resistance to ciprofloxacin. Moreover, a high degree of genetic diversity was observed among the S. maltophilia isolates; 3 sequence types (STs) and 23 allelic profiles were observed. The smeABC efflux pump was associated with multidrug resistance in clinical isolates of S. maltophilia. In particular, smeABC efflux pumps appear to perform an important role in ciprofloxacin resistance of S. maltophilia. The MLST scheme for S. maltophilia represents a discriminatory typing method with stable markers and is appropriate for studying population structures.
Population genetics of Enterocytozoon bieneusi in captive giant pandas of China.
Li, Wei; Song, Yuan; Zhong, Zhijun; Huang, Xiangming; Wang, Chengdong; Li, Caiwu; Yang, Haidi; Liu, Haifeng; Ren, Zhihua; Lan, Jingchao; Wu, Kongju; Peng, Guangneng
2017-10-18
Most studies on Enterocytozoon bieneusi are conducted based on the internal transcribed spacer (ITS) region of the rRNA gene, whereas some have examined E. bieneusi population structures. Currently, the population genetics of this pathogen in giant panda remains unknown. The objective of this study was to determine the E. bieneusi population in captive giant pandas in China. We examined 69 E. bieneusi-positive specimens from captive giant pandas in China using five loci (ITS, MS1, MS3, MS4 and MS7) to infer E. bieneusi population genetics. For multilocus genotype (MLG) analysis of E. bieneusi-positive isolates, the MS1, MS3, MS4, and MS7 microsatellite and minisatellite loci were amplified and sequenced in 48, 45, 50 and 47 specimens, respectively, generating ten, eight, nine and five types. We successfully amplified 36 specimens and sequenced all five loci, forming 24 MLGs. Multilocus sequence analysis revealed a strong and significant linkage disequilibrium (LD), indicating a clonal population. This result was further supported by measurements of pairwise intergenic LD and a standardized index of association (I S A ) from allelic profile data. The analysis in STRUCTURE suggested three subpopulations in E. bieneusi, further confirmed using right's fixation index (F ST ). Subpopulations 1 and 2 exhibited an epidemic structure, whereas subpopulation 3 had a clonal structure. Our results describe E. bieneusi population genetics in giant pandas for the first time, improving the current understanding E. bieneusi epidemiology in the studied region. These data also benefit future studies exploring potential transmission risks from pandas to other animals, including humans.
Moon, Seong Mi; Kim, Su-Young; Jhun, Byung Woo; Lee, Hyun; Park, Hye Yun; Jeon, Kyeongman; Huh, Hee Jae; Ki, Chang-Seok; Lee, Nam Yong; Shin, Sung Jae; Koh, Won-Jung
2016-12-01
Mycobacterium chimaera is a recently described species distinct from M. intracellulare. M. chimaera is regarded as less virulent than M. intracellulare. Using multi-locus sequence-based identification, M. chimaera lung disease was diagnosed in 11 patients. Clinical characteristics and outcomes of M. chimaera lung disease were comparable to M. intracellulare lung disease. Copyright © 2016 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Results of the present study reveal that members of the Fusarium incarnatum-equiseti (FIESC) and F. chlamydosporum species complexes (FCSC) collectively account for approximately 15% of all fusarial infections of humans and other animals within the U. S. Moreover, the diverse toxins these fungi pro...
Cao, Yongzhong; Shen, Yongxiu; Cheng, Lingling; Zhang, Xiaorong; Wang, Chao; Wang, Yan; Zhou, Xiaohui; Chao, Guoxiang; Wu, Yantao
2018-03-01
Salmonellae is one of the most important foodborne pathogens and becomes resistant to multiple antibiotics, which represents a significant challenge to food industry and public health. However, a molecular signature that can be used to distinguish antimicrobial resistance profile, particularly multi-drug resistance or extensive-drug resistance (XDR). In the current study, 168 isolates from the chicken and pork production chains and ill chickens were characterized by serotyping, antimicrobial susceptibility test, multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). The results showed that these isolates belonged to 13 serotypes, 14 multilocus sequence types (STs), 94 PFGE genotypes, and 70 antimicrobial resistant profiles. S. Enteritidis, S. Indiana, and S. Derby were the predominant serotypes, corresponding to the ST11, ST17, and ST40 clones, respectively and the PFGE Cluster A, Cluster E, and Cluster D, respectively. Among the ST11-S. Enteritidis (Cluster A) and the ST40-S. Derby (Cluster D) clones, the majority of isolates were resistant to 4-8 antimicrobial agents, whereas in the ST17S. Indiana (Cluster E) clone, isolates showed extensive-drug resistance (XDR) to 9-16 antimicrobial agents. The bla TEM-1-like gene was prevalent in the ST11 and ST17 clones corresponding to high ampicillin resistance. The bla TEM-1-like , bla CTX-M , bla OXA-1-like , sul1, aaC4, aac(6')-1b, dfrA17, and floR gene complex was highly prevalent among isolates of ST17, corresponding to an XDR phenotype. These results demonstrated the association of the resistant phenotypes and genotypes with ST clone and PFGE cluster. Our results also indicated that the newly identified gene complex comprising bla TEM-1-like , bla CTX-M , bla OXA-1-like , sul1, aaC4, aac(6')-1b, dfrA17, and floR, was responsible for the emergence of the ST17S. Indiana XDR clone. ST17 could be potentially used as a molecular signature to distinguish S. Indiana XDR clone. Copyright © 2017 Elsevier GmbH. All rights reserved.
O'Donnell, Kerry; Sutton, Deanna A; Fothergill, Annette; McCarthy, Dora; Rinaldi, Michael G; Brandt, Mary E; Zhang, Ning; Geiser, David M
2008-08-01
Members of the species-rich Fusarium solani species complex (FSSC) are responsible for approximately two-thirds all fusarioses of humans and other animals. In addition, many economically important phytopathogenic species are nested within this complex. Due to their increasing clinical relevance and because most of the human pathogenic and plant pathogenic FSSC lack Latin binomials, we have extended the multilocus haplotype nomenclatural system introduced in a previous study (D. C. Chang, G. B. Grant, K. O'Donnell, K. A. Wannemuehler, J. Noble-Wang, C. Y. Rao, L. M. Jacobson, C. S. Crowell, R. S. Sneed, F. M. T. Lewis, J. K. Schaffzin, M. A. Kainer, C. A. Genese, E. C. Alfonso, D. B. Jones, A. Srinivasan, S. K. Fridkin, and B. J. Park, JAMA 296:953-963, 2006) to all 34 species within the medically important FSSC clade 3 to facilitate global epidemiological studies. The typing scheme is based on polymorphisms in portions of the following three genes: the internal transcribed spacer region and domains D1 plus D2 of the nuclear large-subunit rRNA, the translation elongation factor 1 alpha gene (EF-1alpha), and the second largest subunit of RNA polymerase II gene (RPB2). Of the 251 isolates subjected to multilocus DNA sequence typing, 191 sequence types were differentiated, and these were distributed among three strongly supported clades designated 1, 2, and 3. All of the mycosis-associated isolates were restricted to FSSC clade 3, as previously reported (N. Zhang, K. O'Donnell, D. A. Sutton, F. A Nalim, R. C. Summerbell, A. A. Padhye, and D. M. Geiser, J. Clin. Microbiol. 44:2186-2190, 2006), and these represent at least 20 phylogenetically distinct species. Analyses of the combined DNA sequence data by use of two separate phylogenetic methods yielded the most robust hypothesis of evolutionary relationships and genetic diversity within the FSSC to date. The in vitro activities of 10 antifungals tested against 19 isolates representing 18 species that span the breadth of the FSSC phylogeny show that members of this complex are broadly resistant to these drugs.
Muñoz, Marina; Ríos-Chaparro, Dora Inés; Patarroyo, Manuel Alfonso; Ramírez, Juan David
2017-03-14
Multilocus sequence typing (MLST) is a highly discriminatory typing strategy; it is reproducible and scalable. There is a MLST scheme for Clostridium difficile (CD), a gram positive bacillus causing different pathologies of the gastrointestinal tract. This work was aimed at describing the frequency of sequence types (STs) and Clades (C) reported and evalute the intra-taxa diversity in the CD MLST database (CD-MLST-db) using an MLSA approach. Analysis of 1778 available isolates showed that clade 1 (C1) was the most frequent worldwide (57.7%), followed by C2 (29.1%). Regarding sequence types (STs), it was found that ST-1, belonging to C2, was the most frequent. The isolates analysed came from 17 countries, mostly from the United Kingdom (UK) (1541 STs, 87.0%). The diversity of the seven housekeeping genes in the MLST scheme was evaluated, and alleles from the profiles (STs), for identifying CD population structure. It was found that adk and atpA are conserved genes allowing a limited amount of clusters to be discriminated; however, different genes such as drx, glyA and particularly sodA showed high diversity indexes and grouped CD populations in many clusters, suggesting that these genes' contribution to CD typing should be revised. It was identified that CD STs reported to date have a mostly clonal population structure with foreseen events of recombination; however, one group of STs was not assigned to a clade being highly different containing at least nine well-supported clusters, suggesting a greater amount of clades for CD. This study shows the usefulness of CD-MLST-db as a tool for studying CD distribution and population structure, identifying the need for reviewing the usefulness of sodA as housekeeping gene within the MLST scheme and suggesting the existence of a greater amount of CD clades. The study also shows the plausible exchange of genetic material between STs, contributing towards intra-taxa genetic diversity.
Van Neste, Christophe; Vandewoestyne, Mado; Van Criekinge, Wim; Deforce, Dieter; Van Nieuwerburgh, Filip
2014-03-01
Forensic scientists are currently investigating how to transition from capillary electrophoresis (CE) to massive parallel sequencing (MPS) for analysis of forensic DNA profiles. MPS offers several advantages over CE such as virtually unlimited multiplexy of loci, combining both short tandem repeat (STR) and single nucleotide polymorphism (SNP) loci, small amplicons without constraints of size separation, more discrimination power, deep mixture resolution and sample multiplexing. We present our bioinformatic framework My-Forensic-Loci-queries (MyFLq) for analysis of MPS forensic data. For allele calling, the framework uses a MySQL reference allele database with automatically determined regions of interest (ROIs) by a generic maximal flanking algorithm which makes it possible to use any STR or SNP forensic locus. Python scripts were designed to automatically make allele calls starting from raw MPS data. We also present a method to assess the usefulness and overall performance of a forensic locus with respect to MPS, as well as methods to estimate whether an unknown allele, which sequence is not present in the MySQL database, is in fact a new allele or a sequencing error. The MyFLq framework was applied to an Illumina MiSeq dataset of a forensic Illumina amplicon library, generated from multilocus STR polymerase chain reaction (PCR) on both single contributor samples and multiple person DNA mixtures. Although the multilocus PCR was not yet optimized for MPS in terms of amplicon length or locus selection, the results show excellent results for most loci. The results show a high signal-to-noise ratio, correct allele calls, and a low limit of detection for minor DNA contributors in mixed DNA samples. Technically, forensic MPS affords great promise for routine implementation in forensic genomics. The method is also applicable to adjacent disciplines such as molecular autopsy in legal medicine and in mitochondrial DNA research. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Ankarklev, Johan; Lebbad, Marianne; Einarsson, Elin; Franzén, Oscar; Ahola, Harri; Troell, Karin; Svärd, Staffan G
2018-06-01
Molecular epidemiology and genotyping studies of the parasitic protozoan Giardia intestinalis have proven difficult due to multiple factors, such as low discriminatory power in the commonly used genotyping loci, which has hampered molecular analyses of outbreak sources, zoonotic transmission and virulence types. Here we have focused on assemblage A Giardia and developed a high-resolution assemblage-specific multilocus sequence typing (MLST) method. Analyses of sequenced G. intestinalis assemblage A genomes from different sub-assemblages identified a set of six genetic loci with high genetic variability. DNA samples from both humans (n = 44) and animals (n = 18) that harbored Giardia assemblage A infections, were PCR amplified (557-700 bp products) and sequenced at the six novel genetic loci. Bioinformatic analyses showed five to ten-fold higher levels of polymorphic sites than what was previously found among assemblage A samples using the classic genotyping loci. Phylogenetically, a division of two major clusters in assemblage A became apparent, separating samples of human and animal origin. A subset of human samples (n = 9) from a documented Giardia outbreak in a Swedish day-care center, showed full complementarity at nine genetic loci (the six new and the standard BG, TPI and GDH loci), strongly suggesting one source of infection. Furthermore, three samples of human origin displayed MLST profiles that were phylogenetically more closely related to MLST profiles from animal derived samples, suggesting zoonotic transmission. These new genotyping loci enabled us to detect events of recombination between different assemblage A isolates but also between assemblage A and E isolates. In summary, we present a novel and expanded MLST strategy with significantly improved sensitivity for molecular analyses of virulence types, zoonotic potential and source tracking for assemblage A Giardia. Copyright © 2018. Published by Elsevier B.V.
Wang, He; Xiao, Meng; Kong, Fanrong; Chen, Sharon; Dou, Hong-Tao; Sorrell, Tania; Li, Ruo-Yu; Xu, Ying-Chun
2011-01-01
Eleven reference and 25 clinical isolates of Fusarium were subject to multilocus DNA sequence analysis to determine the species and haplotypes of the fusarial isolates from Beijing and Shandong, China. Seven loci were analyzed: the translation elongation factor 1 alpha gene (EF-1α); the nuclear rRNA internal transcribed spacer (ITS), large subunit (LSU), and intergenic spacer (IGS) regions; the second largest subunit of the RNA polymerase gene (RPB2); the calmodulin gene (CAM); and the mitochondrial small subunit (mtSSU) rRNA gene. We also evaluated an IGS-targeted PCR/reverse line blot (RLB) assay for species/haplotype identification of Fusarium. Twenty Fusarium species and seven species complexes were identified. Of 25 clinical isolates (10 species), the Gibberella (Fusarium) fujikuroi species complex was the commonest (40%) and was followed by the Fusarium solani species complex (FSSC) (36%) and the F. incarnatum-F. equiseti species complex (12%). Six FSSC isolates were identified to the species level as FSSC-3+4, and three as FSSC-5. Twenty-nine IGS, 27 EF-1α, 26 RPB2, 24 CAM, 18 ITS, 19 LSU, and 18 mtSSU haplotypes were identified; 29 were unique, and haplotypes for 24 clinical strains were novel. By parsimony informative character analysis, the IGS locus was the most phylogenetically informative, and the rRNA gene regions were the least. Results by RLB were concordant with multilocus sequence analysis for all isolates. Amphotericin B was the most active drug against all species. Voriconazole MICs were high (>8 μg/ml) for 15 (42%) isolates, including FSSC. Analysis of larger numbers of isolates is required to determine the clinical utility of the seven-locus sequence analysis and RLB assay in species classification of fusaria. PMID:21389150
Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances.
Xu, Jianping
2006-06-01
Microbial ecology examines the diversity and activity of micro-organisms in Earth's biosphere. In the last 20 years, the application of genomics tools have revolutionized microbial ecological studies and drastically expanded our view on the previously underappreciated microbial world. This review first introduces the basic concepts in microbial ecology and the main genomics methods that have been used to examine natural microbial populations and communities. In the ensuing three specific sections, the applications of the genomics in microbial ecological research are highlighted. The first describes the widespread application of multilocus sequence typing and representational difference analysis in studying genetic variation within microbial species. Such investigations have identified that migration, horizontal gene transfer and recombination are common in natural microbial populations and that microbial strains can be highly variable in genome size and gene content. The second section highlights and summarizes the use of four specific genomics methods (phylogenetic analysis of ribosomal RNA, DNA-DNA re-association kinetics, metagenomics, and micro-arrays) in analysing the diversity and potential activity of microbial populations and communities from a variety of terrestrial and aquatic environments. Such analyses have identified many unexpected phylogenetic lineages in viruses, bacteria, archaea, and microbial eukaryotes. Functional analyses of environmental DNA also revealed highly prevalent, but previously unknown, metabolic processes in natural microbial communities. In the third section, the ecological implications of sequenced microbial genomes are briefly discussed. Comparative analyses of prokaryotic genomic sequences suggest the importance of ecology in determining microbial genome size and gene content. The significant variability in genome size and gene content among strains and species of prokaryotes indicate the highly fluid nature of prokaryotic genomes, a result consistent with those from multilocus sequence typing and representational difference analyses. The integration of various levels of ecological analyses coupled to the application and further development of high throughput technologies are accelerating the pace of discovery in microbial ecology.
Scally, Mark; Schuenzel, Erin L; Stouthamer, Richard; Nunney, Leonard
2005-12-01
Multilocus sequence typing (MLST) identifies and groups bacterial strains based on DNA sequence data from (typically) seven housekeeping genes. MLST has also been employed to estimate the relative contributions of recombination and point mutation to clonal divergence. We applied MLST to the plant pathogen Xylella fastidiosa using an initial set of sequences for 10 loci (9.3 kb) of 25 strains from five different host plants, grapevine (PD strains), oleander (OLS strains), oak (OAK strains), almond (ALS strains), and peach (PP strains). An eBURST analysis identified six clonal complexes using the grouping criterion that each member must be identical to at least one other member at 7 or more of the 10 loci. These clonal complexes corresponded to previously identified phylogenetic clades; clonal complex 1 (CC1) (all PD strains plus two ALS strains) and CC2 (OLS strains) defined the X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. sandyi clades, while CC3 (ALS strains), CC4 (OAK strains), and CC5 (PP strains) were subclades of X. fastidiosa subsp. multiplex. CC6 (ALS strains) identified an X. fastidiosa subsp. multiplex-like group characterized by a high frequency of intersubspecific recombination. Compared to the recombination rate in other bacterial species, the recombination rate in X. fastidiosa is relatively low. Recombination between different alleles was estimated to give rise to 76% of the nucleotide changes and 31% of the allelic changes observed. The housekeeping loci holC, nuoL, leuA, gltT, cysG, petC, and lacF were chosen to form the basis of a public database for typing X. fastidiosa (www.mlst.net). These loci identified the same six clonal complexes using the strain grouping criterion of identity at five or more loci with at least one other member.
Palanisamy, Srikanth; Chang, YuChen; Scaria, Joy; Penha Filho, Rafael Antonio Casarin; Peters, Kenlyn E; Doiphode, Sanjay H; Sultan, Ali; Mohammed, Hussni O
2017-06-01
Pathogenic Escherichia coli has been listed among the most important bacteria associated with foodborne illnesses around the world. We investigated the genetic relatedness among Shiga toxin-producing E. coli (STEC) isolated along the animal food supply chain and from humans diagnosed with gastroenteritis in Qatar. Samples were collected from different sources along the food supply chain and from patients admitted to the hospital with complaints of gastroenteritis. All samples were screened for the presence of E. coli O157:H7 and non-O157 STEC using a combination of bacterial enrichment and molecular detection techniques. A proportional sampling approach was used to select positive samples from each source for further multilocus sequence typing (MLST) analysis. Seven housekeeping genes described for STEC were amplified by polymerase chain reaction, sequenced, and analyzed by MLST. Isolates were characterized by allele composition, sequence type (ST) and assessed for epidemiologic relationship within and among different sources. Nei's genetic distance was calculated at the allele level between sample pools in each site downstream. E. coli O157:H7 occurred at a higher rate in slaughterhouse and retail samples than at the farm or in humans in our sampling. The ST171, an ST common to enterotoxigenic E. coli and atypical enteropathogenic E. coli, was the most common ST (15%) in the food supply chain. None of the genetic distances among the different sources was statistically significant. Enterohemorrhagic E. coli pathogenic strains are present along the supply chain at different levels and with varying relatedness. Clinical isolates were the most diverse, as expected, considering the polyclonal diversity in the human microbiota. The high occurrence of these food adulterants among the farm products suggests that implementation of sanitary measures at that level might reduce the risk of human exposure.
Takahashi, Takashi; Arai, Kazuaki; Lee, Dong Hyun; Koh, Eun Ha; Yoshida, Haruno; Yano, Hisakazu; Kaku, Mitsuo; Kim, Sunjoo
2016-01-01
We determined the epidemiological characteristics of erythromycin (EM)-resistant Streptococcus pyogenes (group A streptococci, GAS) strains isolated from Korea and Japan, using emm genotyping and multilocus sequence typing (MLST). Clinical isolates of GAS had been collected from 1992 to 2012 in Korea and from 2004 to 2009 in Japan. EM resistance was determined by the microdilution method, and resistance genotypes were assessed by PCR. The emm genotyping and MLST were performed by DNA sequencing. The emm genotypes and sequence types (STs) were concordant in 143 (85.1%) of 168 EM-resistant GAS strains from Korea. ST36/emm12 (35.1%), ST52/emm28 (22.6%), and ST49/emm75 (16.1%) were the most common types. Most of the ST36 (93.9%) and ST52 (95.8%) strains harbored erm(B), whereas strains ST49, ST42, and ST15 contained mef(A). The concordance between emm genotypes and STs was 41 (93.2%) among 44 EM-resistant GAS strains from Japan. ST36/emm12 (34.1%), ST49/emm75 (18.2%), and ST28/emm1 (15.9%) were the major types. ST36 isolates harbored either erm(B) (56.3%) or mef(A) (37.5%), whereas isolates ST28, ST49, and ST38 carried only mef(A). The proportion of erm(B) and mef(A) was 66.1% and 33.3% in Korea and 22.7% and 68.2% in Japan, respectively. The common STs in Korea and Japan were ST36 and ST49, whereas ST52 was present only in Korea and ST28 only in Japan. Genotype erm(B) was predominant in Korea, whereas mef(A) was frequent in Japan. There were differences between Korea and Japan regarding the frequencies of emm genotypes, STs, and EM resistance genes among the EM-resistant GAS.
Fan, X; Xiao, M; Chen, S; Kong, F; Dou, H-T; Wang, H; Xiao, Y-L; Kang, M; Sun, Z-Y; Hu, Z-D; Wan, Z; Chen, S-L; Liao, K; Chu, Y-Z; Hu, T-S; Zou, G-L; Hou, X; Zhang, L; Zhao, Y-P; Xu, Y-C; Liu, Z-Y
2016-10-01
There are few data on the molecular epidemiology of cryptococcosis in China. Here we investigated the species distribution, molecular types and antifungal susceptibilities of 312 Cryptococcus neoformans species complex isolates from ten hospitals over 5 years. Isolates were identified by internal transcribed spacer (ITS) sequencing and by two matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems. Multilocus sequence typing (MLST) was used to verify species/variety and to designate molecular types. Susceptibility to six antifungal drugs was determined by the Sensititre YeastOne™ method. Cryptococcus neoformans was the predominant species (305/312 isolates (97.8%), all were ITS type 1, serotype A), of which 89.2% (272/305) were C. neoformans var. grubii MLST sequence type (ST) 5 and 6.2% (19/305) were ST31. Other C. neoformans var. grubii STs were rare but included six novel STs. Only two strains were C. neoformans var. neoformans (both serotype AD). Cryptococcus gattii was uncommon (n = 7, four ITS types) and comprised five MLST STs including one novel ST. For C. neoformans var. grubii, the proportion of isolates with non-wild-type MICs to fluconazole significantly rose in the fourth study year (from 0% (0/56 isolates) in the first year to 23.9% (17/71) in the fourth year), including five isolates with fluconazole MICs of ≥32 mg/L. The study has provided useful data on the species epidemiology and their genetic diversity and antifungal susceptibility. The proportional increase in isolates with non-wild-type MICs to fluconazole is noted. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
AgdbNet – antigen sequence database software for bacterial typing
Jolley, Keith A; Maiden, Martin CJ
2006-01-01
Background Bacterial typing schemes based on the sequences of genes encoding surface antigens require databases that provide a uniform, curated, and widely accepted nomenclature of the variants identified. Due to the differences in typing schemes, imposed by the diversity of genes targeted, creating these databases has typically required the writing of one-off code to link the database to a web interface. Here we describe agdbNet, widely applicable web database software that facilitates simultaneous BLAST querying of multiple loci using either nucleotide or peptide sequences. Results Databases are described by XML files that are parsed by a Perl CGI script. Each database can have any number of loci, which may be defined by nucleotide and/or peptide sequences. The software is currently in use on at least five public databases for the typing of Neisseria meningitidis, Campylobacter jejuni and Streptococcus equi and can be set up to query internal isolate tables or suitably-configured external isolate databases, such as those used for multilocus sequence typing. The style of the resulting website can be fully configured by modifying stylesheets and through the use of customised header and footer files that surround the output of the script. Conclusion The software provides a rapid means of setting up customised Internet antigen sequence databases. The flexible configuration options enable typing schemes with differing requirements to be accommodated. PMID:16790057
Kamada, Mayumi; Hase, Sumitaka; Fujii, Kazushi; Miyake, Masato; Sato, Kengo; Kimura, Keitarou; Sakakibara, Yasubumi
2015-01-01
Bacillus subtilis is the main component in the fermentation of soybeans. To investigate the genetics of the soybean-fermenting B. subtilis strains and its relationship with the productivity of extracellular poly-γ-glutamic acid (γPGA), we sequenced the whole genome of eight B. subtilis stains isolated from non-salted fermented soybean foods in Southeast Asia. Assembled nucleotide sequences were compared with those of a natto (fermented soybean food) starter strain B. subtilis BEST195 and the laboratory standard strain B. subtilis 168 that is incapable of γPGA production. Detected variants were investigated in terms of insertion sequences, biotin synthesis, production of subtilisin NAT, and regulatory genes for γPGA synthesis, which were related to fermentation process. Comparing genome sequences, we found that the strains that produce γPGA have a deletion in a protein that constitutes the flagellar basal body, and this deletion was not found in the non-producing strains. We further identified diversity in variants of the bio operon, which is responsible for the biotin auxotrophism of the natto starter strains. Phylogenetic analysis using multilocus sequencing typing revealed that the B. subtilis strains isolated from the non-salted fermented soybeans were not clustered together, while the natto-fermenting strains were tightly clustered; this analysis also suggested that the strain isolated from "Tua Nao" of Thailand traces a different evolutionary process from other strains.
2013-01-01
Background Hypodontus macropi is a common intestinal nematode of a range of kangaroos and wallabies (macropodid marsupials). Based on previous multilocus enzyme electrophoresis (MEE) and nuclear ribosomal DNA sequence data sets, H. macropi has been proposed to be complex of species. To test this proposal using independent molecular data, we sequenced the whole mitochondrial (mt) genomes of individuals of H. macropi from three different species of hosts (Macropus robustus robustus, Thylogale billardierii and Macropus [Wallabia] bicolor) as well as that of Macropicola ocydromi (a related nematode), and undertook a comparative analysis of the amino acid sequence datasets derived from these genomes. Results The mt genomes sequenced by next-generation (454) technology from H. macropi from the three host species varied from 13,634 bp to 13,699 bp in size. Pairwise comparisons of the amino acid sequences predicted from these three mt genomes revealed differences of 5.8% to 18%. Phylogenetic analysis of the amino acid sequence data sets using Bayesian Inference (BI) showed that H. macropi from the three different host species formed distinct, well-supported clades. In addition, sliding window analysis of the mt genomes defined variable regions for future population genetic studies of H. macropi in different macropodid hosts and geographical regions around Australia. Conclusions The present analyses of inferred mt protein sequence datasets clearly supported the hypothesis that H. macropi from M. robustus robustus, M. bicolor and T. billardierii represent distinct species. PMID:24261823
Microbe-ID: an open source toolbox for microbial genotyping and species identification.
Tabima, Javier F; Everhart, Sydney E; Larsen, Meredith M; Weisberg, Alexandra J; Kamvar, Zhian N; Tancos, Matthew A; Smart, Christine D; Chang, Jeff H; Grünwald, Niklaus J
2016-01-01
Development of tools to identify species, genotypes, or novel strains of invasive organisms is critical for monitoring emergence and implementing rapid response measures. Molecular markers, although critical to identifying species or genotypes, require bioinformatic tools for analysis. However, user-friendly analytical tools for fast identification are not readily available. To address this need, we created a web-based set of applications called Microbe-ID that allow for customizing a toolbox for rapid species identification and strain genotyping using any genetic markers of choice. Two components of Microbe-ID, named Sequence-ID and Genotype-ID, implement species and genotype identification, respectively. Sequence-ID allows identification of species by using BLAST to query sequences for any locus of interest against a custom reference sequence database. Genotype-ID allows placement of an unknown multilocus marker in either a minimum spanning network or dendrogram with bootstrap support from a user-created reference database. Microbe-ID can be used for identification of any organism based on nucleotide sequences or any molecular marker type and several examples are provided. We created a public website for demonstration purposes called Microbe-ID (microbe-id.org) and provided a working implementation for the genus Phytophthora (phytophthora-id.org). In Phytophthora-ID, the Sequence-ID application allows identification based on ITS or cox spacer sequences. Genotype-ID groups individuals into clonal lineages based on simple sequence repeat (SSR) markers for the two invasive plant pathogen species P. infestans and P. ramorum. All code is open source and available on github and CRAN. Instructions for installation and use are provided at https://github.com/grunwaldlab/Microbe-ID.
Novel type of VanB2 teicoplanin-resistant hospital-associated Enterococcus faecium.
Santona, Antonella; Paglietti, Bianca; Al-Qahtani, Ahmed A; Bohol, Marie Fe F; Senok, Abiola; Deligios, Massimo; Rubino, Salvatore; Al-Ahdal, Mohammed N
2014-08-01
Seven high-risk clones of vancomycin-resistant Enterococcus faecium (VREF) belonging to clonal complex 17 were identified using multilocus sequence typing (MLST) among clinical isolates from Saudi Arabia. Among these isolates, a new hospital-associated sequence type (ST795), VanB(2)-type teicoplanin-resistant strain was detected. Its unusual phenotype resulted from a new combination of mutations in the ddl, vanS and vanW genes, which confirmed the trend of evolution in VanB-type resistance. Furthermore, characteristics of adaptation and persistence in the hospital environment of ST795 were emphasised by the presence of genes and clusters recognised to be specific for hospital-associated VREF. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Isolation of Brucella inopinata-Like Bacteria from White's and Denny's Tree Frogs.
Kimura, Masanobu; Une, Yumi; Suzuki, Michio; Park, Eun-Sil; Imaoka, Koichi; Morikawa, Shigeru
2017-05-01
Brucella inopinata strain BO1 and B. sp. strain BO2 isolated from human patients, respectively, are genetically different from classical Brucella species. We isolated bacteria of the genus Brucella from two species of wild-caught tropical frogs kept in the facilities in Japan: White's tree frog, which inhabits Oceania, and Denny's tree frog, which inhabits Southeast Asia. Phylogenetic analyses based on 16S rRNA and recA gene sequences and multilocus sequence analysis showed that two isolates of Brucella spp. showed significant similarity to BO1, BO2, and the isolates from other wild-caught frogs. These results suggest that a variety of frog species are susceptible to a novel clade of Brucella bacteria, including B. inopinata.
CRISPR-cas loci profiling of Cronobacter sakazakii pathovars.
Ogrodzki, Pauline; Forsythe, Stephen James
2016-12-01
Cronobacter sakazakii sequence types 1, 4, 8 and 12 are associated with outbreaks of neonatal meningitis and necrotizing enterocolitis infections. However clonality results in strains which are indistinguishable using conventional methods. This study investigated the use of clustered regularly interspaced short palindromic repeats (CRISPR)-cas loci profiling for epidemiological investigations. Seventy whole genomes of C. sakazakii strains from four clonal complexes which were widely distributed temporally, geographically and origin of source were profiled. All strains encoded the same type I-E subtype CRISPR-cas system with a total of 12 different CRISPR spacer arrays. This study demonstrated the greater discriminatory power of CRISPR spacer array profiling compared with multilocus sequence typing, which will be of use in source attribution during Cronobacter outbreak investigations.
Molecular characterization of vancomycin-resistant Enterococcus faecium isolates from Bermuda
Akpaka, Patrick Eberechi; Kissoon, Shivnarine; Wilson, Clyde; Jayaratne, Padman; Smith, Ashley; Golding, George R.
2017-01-01
Molecular characteristics of vancomycin resistant enterococci isolates from Bermuda Island is currently unknown. This study was conducted to investigate phenotypic and genotypic characteristics of VRE isolates from Bermuda Island using the chromogenic agar, E-tests, polymerase chain reaction (PCR), pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Eighteen E. faecium isolates were completely analyzed and were all resistant to vancomycin, susceptible to linezolid and quinupristin/dalfopristin, positive for vanA and esp genes. The MLST analysis confirmed most isolates were of the sequence types linked to clonal complex 17 (CC17) that is widely associated with outbreaks in hospitals. Infection control measures, antibiotic stewardship, and surveillance activities will continue to be a priority in hospital on the Island. PMID:28267763
Molecular characterization of vancomycin-resistant Enterococcus faecium isolates from Bermuda.
Akpaka, Patrick Eberechi; Kissoon, Shivnarine; Wilson, Clyde; Jayaratne, Padman; Smith, Ashley; Golding, George R
2017-01-01
Molecular characteristics of vancomycin resistant enterococci isolates from Bermuda Island is currently unknown. This study was conducted to investigate phenotypic and genotypic characteristics of VRE isolates from Bermuda Island using the chromogenic agar, E-tests, polymerase chain reaction (PCR), pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Eighteen E. faecium isolates were completely analyzed and were all resistant to vancomycin, susceptible to linezolid and quinupristin/dalfopristin, positive for vanA and esp genes. The MLST analysis confirmed most isolates were of the sequence types linked to clonal complex 17 (CC17) that is widely associated with outbreaks in hospitals. Infection control measures, antibiotic stewardship, and surveillance activities will continue to be a priority in hospital on the Island.
Genotypic Diversity of Methicillin-Resistant Staphylococcus aureus Isolates in Korean Hospitals
Soo Ko, Kwan; Kim, Yeon-Sook; Song, Jae-Hoon; Yeom, Joon-Sup; Lee, Hyuck; Jung, Sook-In; Jeong, Doo-Ryun; Kim, Shin-Woo; Chang, Hyun-Ha; Ki, Hyun Kyun; Moon, Chisook; Oh, Won Sup; Peck, Kyong Ran; Lee, Nam Yong
2005-01-01
Ninety-six methicillin-resistant Staphylococcus aureus (MRSA) isolates from eight Korean hospitals were analyzed by multilocus sequence typing, SCCmec typing, and spa typing. The predominant genotype was ST5-MRSA-II of clonal complex 5, which was found in 36 isolates from six hospitals, but ST239-MRSA-III was also common. Overall, results showed a notable genotypic diversity of MRSA strains circulating in Korean hospitals. PMID:16048991
Genotypic diversity of methicillin-resistant Staphylococcus aureus isolates in Korean hospitals.
Soo Ko, Kwan; Kim, Yeon-Sook; Song, Jae-Hoon; Yeom, Joon-Sup; Lee, Hyuck; Jung, Sook-In; Jeong, Doo-Ryun; Kim, Shin-Woo; Chang, Hyun-Ha; Ki, Hyun Kyun; Moon, Chisook; Oh, Won Sup; Peck, Kyong Ran; Lee, Nam Yong
2005-08-01
Ninety-six methicillin-resistant Staphylococcus aureus (MRSA) isolates from eight Korean hospitals were analyzed by multilocus sequence typing, SCCmec typing, and spa typing. The predominant genotype was ST5-MRSA-II of clonal complex 5, which was found in 36 isolates from six hospitals, but ST239-MRSA-III was also common. Overall, results showed a notable genotypic diversity of MRSA strains circulating in Korean hospitals.
Coagulase-Negative Staphylococci in Human Milk From Mothers of Preterm Compared With Term Neonates.
Soeorg, Hiie; Metsvaht, Tuuli; Eelmäe, Imbi; Metsvaht, Hanna Kadri; Treumuth, Sirli; Merila, Mirjam; Ilmoja, Mari-Liis; Lutsar, Irja
2017-05-01
Human milk is the preferred nutrition for neonates and a source of bacteria. Research aim: The authors aimed to characterize the molecular epidemiology and genetic content of staphylococci in the human milk of mothers of preterm and term neonates. Staphylococci were isolated once per week in the 1st month postpartum from the human milk of mothers of 20 healthy term and 49 preterm neonates hospitalized in the neonatal intensive care unit. Multilocus variable-number tandem-repeats analysis and multilocus sequence typing were used. The presence of the mecA gene, icaA gene of the ica-operon, IS 256, and ACME genetic elements was determined by PCR. The human milk of mothers of preterm compared with term neonates had higher counts of staphylococci but lower species diversity. The human milk of mothers of preterm compared with term neonates more often contained Staphylococcus epidermidis mecA (32.7% vs. 2.6%), icaA (18.8% vs. 6%), IS 256 (7.9% vs. 0.9%), and ACME (15.4% vs. 5.1%), as well as Staphylococcus haemolyticus mecA (90.5% vs. 10%) and IS 256 (61.9% vs. 10%). The overall distribution of multilocus variable-number tandem-repeats analysis (MLVA) types and sequence types was similar between the human milk of mothers of preterm and term neonates, but a few mecA-IS 256-positive MLVA types colonized only mothers of preterm neonates. Maternal hospitalization within 1 month postpartum and the use of an arterial catheter or antibacterial treatment in the neonate increased the odds of harboring mecA-positive staphylococci in human milk. Limiting exposure of mothers of preterm neonates to the hospital could prevent human milk colonization with more pathogenic staphylococci.
Khankhet, Jordan; Vanderwolf, Karen J.; McAlpine, Donald F.; McBurney, Scott; Overy, David P.; Slavic, Durda; Xu, Jianping
2014-01-01
Pseudogymnoascus destructans is the causative agent of an emerging infectious disease that threatens populations of several North American bat species. The fungal disease was first observed in 2006 and has since caused the death of nearly six million bats. The disease, commonly known as white-nose syndrome, is characterized by a cutaneous infection with P. destructans causing erosions and ulcers in the skin of nose, ears and/or wings of bats. Previous studies based on sequences from eight loci have found that isolates of P. destructans from bats in the US all belong to one multilocus genotype. Using the same multilocus sequence typing method, we found that isolates from eastern and central Canada also had the same genotype as those from the US, consistent with the clonal expansion of P. destructans into Canada. However, our PCR fingerprinting revealed that among the 112 North American isolates we analyzed, three, all from Canada, showed minor genetic variation. Furthermore, we found significant variations among isolates in mycelial growth rate; the production of mycelial exudates; and pigment production and diffusion into agar media. These phenotypic differences were influenced by culture medium and incubation temperature, indicating significant variation in environmental condition - dependent phenotypic expression among isolates of the clonal P. destructans genotype in North America. PMID:25122221
Khankhet, Jordan; Vanderwolf, Karen J; McAlpine, Donald F; McBurney, Scott; Overy, David P; Slavic, Durda; Xu, Jianping
2014-01-01
Pseudogymnoascus destructans is the causative agent of an emerging infectious disease that threatens populations of several North American bat species. The fungal disease was first observed in 2006 and has since caused the death of nearly six million bats. The disease, commonly known as white-nose syndrome, is characterized by a cutaneous infection with P. destructans causing erosions and ulcers in the skin of nose, ears and/or wings of bats. Previous studies based on sequences from eight loci have found that isolates of P. destructans from bats in the US all belong to one multilocus genotype. Using the same multilocus sequence typing method, we found that isolates from eastern and central Canada also had the same genotype as those from the US, consistent with the clonal expansion of P. destructans into Canada. However, our PCR fingerprinting revealed that among the 112 North American isolates we analyzed, three, all from Canada, showed minor genetic variation. Furthermore, we found significant variations among isolates in mycelial growth rate; the production of mycelial exudates; and pigment production and diffusion into agar media. These phenotypic differences were influenced by culture medium and incubation temperature, indicating significant variation in environmental condition--dependent phenotypic expression among isolates of the clonal P. destructans genotype in North America.
Ktari, Sonia; Ksibi, Boutheina; Gharsallah, Houda; Mnif, Basma; Maalej, Sonda; Rhimi, Fouzia; Hammami, Adnene
2016-03-01
Enteritidis, Typhimurium and Livingstone are the main Salmonella enterica serovars recovered in Tunisia. Here, we aimed to assess the genetic diversity of fifty-seven Salmonella enterica strains from different sampling periods, origins and settings using pulsed-field gel electrophoresis (PFGE), multi-locus sequence typing (MLST) and multi-locus variable-number tandem repeat analysis (MLVA). Salmonella Enteritidis, isolated from human and food sources from two regions in Sfax in 2007, were grouped into one cluster using PFGE. However, using MLVA these strains were divided into two clusters. Salmonella Typhimurium strains, recovered in 2012 and represent sporadic cases of human clinical isolates, were included in one PFGE cluster. Nevertheless, the MLVA technique, divided Salmonella Typhimurium isolates into six clusters with diversity index reaching (DI = 0.757). For Salmonella Livingstone which was responsible of two nosocomial outbreaks during 2000-2003, the PFGE and MLVA methods showed that these strains were genetically closely related. Salmonella Enteritidis and Salmonella Livingstone populations showed a single ST lineage ST11 and ST543 respectively. For Salmonella Typhimurium, two MLST sequence types ST19 and ST328 were defined. Salmonella Enteritidis and Salmonella Typhimurium strains were clearly differentiated by MLVA which was not the case using PFGE. © 2015 APMIS. Published by John Wiley & Sons Ltd.
Cliff, P R; Sandoe, J A T; Heritage, J; Barton, R C
2008-05-01
A prospective study was performed to determine the prevalence of candidal colonisation on the general intensive care unit at a large teaching hospital. Colonisation with Candida spp. was found to be common, occurring in 79% of patients on the unit. C. albicans was the commonest species, colonising 64% of patients, followed by C. glabrata (18%) and C. parapsilosis (14%). Most of the members of staff tested carried Candida spp. at some point, although carriage appeared to be transient. C. parapsilosis was the most commonly isolated species from staff hands, whereas C. albicans was the most commonly isolated species from the mouth. The molecular epidemiology of C. albicans was investigated using Ca3 typing and multilocus sequence typing (MLST). MLST proved to be a reproducible typing method and a useful tool for the investigation of the molecular epidemiology of C. albicans. The results of the molecular typing provided evidence for the presence of an endemic strain on the unit, which was isolated repeatedly from patients and staff. This finding suggests horizontal transmission of C. albicans on the unit though it may also reflect the relative frequency of C. albicans strain types colonising patients on admission. This study has important implications for the epidemiology of systemic candidal infections.
Bom, Reinier J M; Matser, Amy; Bruisten, Sylvia M; van Rooijen, Martijn S; Heijman, Titia; Morré, Servaas A; de Vries, Henry J C; Schim van der Loeff, Maarten F
2013-09-01
Previous studies identified specific Chlamydia trachomatis strains circulating among men who have sex with men (MSM). This study investigates whether distinct C. trachomatis strains circulate among subpopulations within the MSM community. Participants were recruited at the sexually transmitted infection clinic of the Public Health Service of Amsterdam from 2008 to 2009. C. trachomatis samples were typed using multilocus sequence typing. Epidemiological and clinical data were derived from questionnaires and patient records. Typing of 277 samples from 260 MSM identified distinct C. trachomatis strains circulating concurrently over time. Men with lymphogranuloma venereum (LGV)-inducing strains were more likely to be infected with human immunodeficiency virus, more often had a history of STI, and had a higher frequency of risky sexual behavior. No such associations were found for non-LGV-inducing strains. MSM infected with heterosexual-associated strains were often younger (P = .04) and more often reported sex with women (P = .03), compared with men infected with MSM-associated strains. With the exception of LGV-inducing strains, no evidence was found that different C. trachomatis strains circulated in distinct subpopulations of MSM. This indicates that no separate transmission networks for C. trachomatis among MSM existed. However, younger MSM and bisexuals were more often infected with heterosexual-associated C. trachomatis strains.
Ivors, K; Garbelotto, M; Vries, I D E; Ruyter-Spira, C; Te Hekkert, B; Rosenzweig, N; Bonants, P
2006-05-01
Analysis of 12 polymorphic simple sequence repeats identified in the genome sequence of Phytophthora ramorum, causal agent of 'sudden oak death', revealed genotypic diversity to be significantly higher in nurseries (91% of total) than in forests (18% of total). Our analysis identified only two closely related genotypes in US forests, while the genetic structure of populations from European nurseries was of intermediate complexity, including multiple, closely related genotypes. Multilocus analysis determined populations in US forests reproduce clonally and are likely descendants of a single introduced individual. The 151 isolates analysed clustered in three clades. US forest and European nursery isolates clustered into two distinct clades, while one isolate from a US nursery belonged to a third novel clade. The combined microsatellite, sequencing and morphological analyses suggest the three clades represent distinct evolutionary lineages. All three clades were identified in some US nurseries, emphasizing the role of commercial plant trade in the movement of this pathogen.
Genetic characterization of Vibrio vulnificus strains isolated from oyster samples in Mexico.
Guerrero, Abraham; Gómez Gil Rodríguez, Bruno; Wong-Chang, Irma; Lizárraga-Partida, Marcial Leonardo
2015-01-01
Vibrio vulnificus strains were isolated from oysters that were collected at the main seafood market in Mexico City. Strains were characterized with regard to vvhA, vcg genotype, PFGE, multilocus sequence typing (MLST), and rtxA1. Analyses included a comparison with rtxA1 reference sequences. Environmental (vcgE) and clinical (vcgC) genotypes were isolated at nearly equal percentages. PFGE had high heterogeneity, but the strains clustered by vcgE or vcgC genotype. Select housekeeping genes for MLST and primers that were designed for rtxA1 domains divided the strains into two clusters according to the E or C genotype. Reference rtxA1 sequences and those from this study were also clustered according to genotype. These results confirm that this genetic dimorphism is not limited to vcg genotyping, as other studies have reported. Some environmental C genotype strains had high similarity to reference strains, which have been reported to be virulent, indicating a potential risk for oyster consumers in Mexico City.
Fischer, Sebastian; Greipel, Leonie; Klockgether, Jens; Dorda, Marie; Wiehlmann, Lutz; Cramer, Nina; Tümmler, Burkhard
2017-05-01
Early antimicrobial chemotherapy can prevent or at least delay chronic cystic fibrosis (CF) airways infections with Pseudomonas aeruginosa. During a 10-year study period P. aeruginosa was detected for the first time in 54 CF patients regularly seen at the CF centre Hannover. Amplicon sequencing of 34 loci of the P. aeruginosa core genome was performed in baseline and post-treatment isolates of the 15 CF patients who had remained P. aeruginosa - positive after the first round of antipseudomonal chemotherapy. Deep sequencing uncovered coexisting alternative nucleotides at in total 33 of 55,284 examined genome positions including six non-synonymous polymorphisms in the lasR gene, a key regulator of quorum sensing. After early treatment 42 of 50 novel nucleotide substitutions had emerged in exopolysaccharide biosynthesis, efflux pump and porin genes. Early treatment selects pathoadaptive mutations in P. aeruginosa that are typical for chronic infections of CF lungs. Copyright © 2016 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Fan, Long; Hui, Jerome H L; Yu, Zu Guo; Chu, Ka Hou
2014-07-01
Species identification based on short sequences of DNA markers, that is, DNA barcoding, has emerged as an integral part of modern taxonomy. However, software for the analysis of large and multilocus barcoding data sets is scarce. The Basic Local Alignment Search Tool (BLAST) is currently the fastest tool capable of handling large databases (e.g. >5000 sequences), but its accuracy is a concern and has been criticized for its local optimization. However, current more accurate software requires sequence alignment or complex calculations, which are time-consuming when dealing with large data sets during data preprocessing or during the search stage. Therefore, it is imperative to develop a practical program for both accurate and scalable species identification for DNA barcoding. In this context, we present VIP Barcoding: a user-friendly software in graphical user interface for rapid DNA barcoding. It adopts a hybrid, two-stage algorithm. First, an alignment-free composition vector (CV) method is utilized to reduce searching space by screening a reference database. The alignment-based K2P distance nearest-neighbour method is then employed to analyse the smaller data set generated in the first stage. In comparison with other software, we demonstrate that VIP Barcoding has (i) higher accuracy than Blastn and several alignment-free methods and (ii) higher scalability than alignment-based distance methods and character-based methods. These results suggest that this platform is able to deal with both large-scale and multilocus barcoding data with accuracy and can contribute to DNA barcoding for modern taxonomy. VIP Barcoding is free and available at http://msl.sls.cuhk.edu.hk/vipbarcoding/. © 2014 John Wiley & Sons Ltd.
Scordino, Fabio; Giuffrè, Letterio; Barberi, Giuseppina; Marino Merlo, Francesca; Orlando, Maria Grazia; Giosa, Domenico; Romeo, Orazio
2018-01-01
Candida tropicalis is a pathogenic yeast that has emerged as an important cause of candidemia especially in elderly patients with hematological malignancies. Infections caused by this species are mainly reported from Latin America and Asian-Pacific countries although recent epidemiological data revealed that C. tropicalis accounts for 6-16.4% of the Candida bloodstream infections (BSIs) in Italy by representing a relevant issue especially for patients receiving long-term hospital care. The aim of this study was to describe the genetic diversity of C. tropicalis isolates contaminating the hands of healthcare workers (HCWs) and hospital environments and/or associated with BSIs occurring in patients with different neurological disorders and without hematological disease. A total of 28 C. tropicalis isolates were genotyped using multilocus sequence typing analysis of six housekeeping ( ICL1, MDR1, SAPT2, SAPT4, XYR1 , and ZWF1 ) genes and data revealed the presence of only eight diploid sequence types (DSTs) of which 6 (75%) were completely new. Four eBURST clonal complexes (CC2, CC10, CC11, and CC33) contained all DSTs found in this study and the CC33 resulted in an exclusive, well-defined, clonal cluster from Italy. In conclusion, C. tropicalis could represent an important cause of BSIs in long-term hospitalized patients with no underlying hematological disease. The findings of this study also suggest a potential horizontal transmission of a specific C. tropicalis clone through hands of HCWs and expand our understanding of the molecular epidemiology of this pathogen whose population structure is still far from being fully elucidated as its complexity increases as different categories of patients and geographic areas are examined.
McManus, Brenda A.; Maguire, Rory; Cashin, Phillipa J.; Claffey, Noel; Flint, Stephen; Abdulrahim, Mohammed H.
2012-01-01
This study investigated the prevalence and cell density of Candida species in periodontal pockets, healthy subgingival sites, and oral rinse samples of patients with untreated periodontitis. Twenty-one periodontitis patients underwent sampling at two periodontitis sites, and 19/21 of these patients underwent sampling at one periodontally healthy site. Both paper point and curette sampling techniques were employed. The periodontitis patients and 50 healthy subjects were also sampled by oral rinse. Candida isolates were recovered on CHROMagar Candida medium, and representative isolates were identified. Candida spp. were recovered from 10/21 (46.7%) periodontitis patients and from 16/50 (32%) healthy subjects. C. albicans predominated in both groups and was recovered from all Candida-positive subjects. Candida-positive periodontitis patients yielded Candida from periodontal pockets with average densities of 3,528 and 3,910 CFU/sample from curette and paper point samples, respectively, and 1,536 CFU/ml from oral rinse samples. The majority (18/19) of the healthy sites sampled from periodontitis patients were Candida negative. The 16 Candida-positive healthy subjects yielded an average of 279 CFU/ml from oral rinse samples. C. albicans isolates were investigated by multilocus sequence typing (MLST) to determine if specific clonal groups were associated with periodontitis. MLST analysis of 31 C. albicans isolates from periodontitis patients yielded 19 sequence types (STs), 13 of which were novel. Eleven STs belonged to MLST clade 1. In contrast, 16 C. albicans isolates from separate healthy subjects belonged to 16 STs, with 4 isolates belonging to clade 1. The distributions of STs between both groups were significantly different (P = 0.04) and indicated an enrichment of C. albicans isolates in periodontal pockets, which warrants a larger study. PMID:22875886
NASA Astrophysics Data System (ADS)
Kuo, Chun Wei; Hao Huang, Kuan; Hsu, Bing Mu; Tsai, Hsien Lung; Tseng, Shao Feng; Kao, Po Min; Shen, Shu Min; Chou Chiu, Yi; Chen, Jung Sheng
2013-04-01
Salmonella is one of the most important pathogens of waterborne diseases with outbreaks from contaminated water reported worldwide. In addition, Salmonella spp. can survive for long periods in aquatic environments. To realize genotypes and serovars of Salmonella in aquatic environments, we isolated the Salmonella strains by selective culture plates to identify the serovars of Salmonella by serological assay, and identify the genotypes by Multilocus sequence typing (MLST) based on the sequence data from University College Cork (UCC), respectively. The results show that 36 stream water samples (30.1%) and 18 drinking water samples (23.3%) were confirmed the existence of Salmonella using culture method combined PCR specific invA gene amplification. In this study, 24 cultured isolates of Salmonella from water samples were classified to fifteen Salmonella enterica serovars. In addition, we construct phylogenetic analysis using phylogenetic tree and Minimum spanning tree (MST) method to analyze the relationship of clinical, environmental, and geographical data. Phylogenetic tree showed that four main clusters and our strains can be distributed in all. The genotypes of isolates from stream water are more biodiversity while comparing the Salmonella strains genotypes from drinking water sources. According to MST data, we can found the positive correlation between serovars and genotypes of Salmonella. Previous studies revealed that the result of Pulsed field gel electrophoresis (PFGE) method can predict the serovars of Salmonella strain. Hence, we used the MLST data combined phylogenetic analysis to identify the serovars of Salmonella strain and achieved effectiveness. While using the geographical data combined phylogenetic analysis, the result showed that the dominant strains were existed in whole stream area in rainy season. Keywords: Salmonella spp., MLST, phylogenetic analysis, PFGE
Toboldt, Anne; Tietze, Erhard; Helmuth, Reiner; Fruth, Angelika; Junker, Ernst
2012-01-01
In this study, the population structure, incidence, and potential sources of human infection caused by the d-tartrate-fermenting variant of Salmonella enterica serovar Paratyphi B [S. Paratyphi B (dT+)] was investigated. In Germany, the serovar is frequently isolated from broilers. Therefore, a selection of 108 epidemiologically unrelated S. enterica serovar Paratyphi B (dT+) strains isolated in Germany between 2002 and 2010 especially from humans, poultry/poultry meat, and reptiles was investigated by phenotypic and genotypic methods. Strains isolated from poultry and products thereof were strongly associated with multilocus sequence type ST28 and showed antimicrobial multiresistance profiles. Pulsed-field gel electrophoresis XbaI profiles were highly homogeneous, with only a few minor XbaI profile variants. All strains isolated from reptiles, except one, were strongly associated with ST88, another distantly related type. Most of the strains were susceptible to antimicrobial agents, and XbaI profiles were heterogeneous. Strains isolated from humans yielded seven sequence types (STs) clustering in three distantly related lineages. The first lineage, comprising five STs, represented mainly strains belonging to ST43 and ST149. The other two lineages were represented only by one ST each, ST28 and ST88. The relatedness of strains based on the pathogenicity gene repertoire (102 markers tested) was mostly in agreement with the multilocus sequence type. Because ST28 was frequently isolated from poultry but rarely in humans over the 9-year period investigated, overall, this study indicates that in Germany S. enterica serovar Paratyphi B (dT+) poses a health risk preferentially by contact with reptiles and, to a less extent, by exposure to poultry or poultry meat. PMID:22885742
Adherent and Invasive Escherichia coli Is Associated with Granulomatous Colitis in Boxer Dogs
Simpson, Kenneth W.; Dogan, Belgin; Rishniw, Mark; Goldstein, Richard E.; Klaessig, Suzanne; McDonough, Patrick L.; German, Alex J.; Yates, Robin M.; Russell, David G.; Johnson, Susan E.; Berg, Douglas E.; Harel, Josee; Bruant, Guillaume; McDonough, Sean P.; Schukken, Ynte H.
2006-01-01
The mucosa-associated microflora is increasingly considered to play a pivotal role in the pathogenesis of inflammatory bowel disease. This study explored the possibility that an abnormal mucosal flora is involved in the etiopathogenesis of granulomatous colitis of Boxer dogs (GCB). Colonic biopsy samples from affected dogs (n = 13) and controls (n = 38) were examined by fluorescent in situ hybridization (FISH) with a eubacterial 16S rRNA probe. Culture, 16S ribosomal DNA sequencing, and histochemistry were used to guide subsequent FISH. GCB-associated Escherichia coli isolates were evaluated for their ability to invade and persist in cultured epithelial cells and macrophages as well as for serotype, phylogenetic group, genome size, overall genotype, and presence of virulence genes. Intramucosal gram-negative coccobacilli were present in 100% of GCB samples but not controls. Invasive bacteria hybridized with FISH probes to E. coli. Three of four GCB-associated E. coli isolates adhered to, invaded, and replicated within cultured epithelial cells. Invasion triggered a “splash”-type response, was decreased by cytochalasin D, genistein, colchicine, and wortmannin, and paralleled the behavior of the Crohn's disease-associated strain E. coli LF 82. GCB E. coli and LF 82 were diverse in serotype and overall genotype but similar in phylogeny (B2 and D), in virulence gene profiles (fyuA, irp1, irp2, chuA, fepC, ibeA, kpsMII, iss), in having a larger genome size than commensal E. coli, and in the presence of novel multilocus sequence types. We conclude that GCB is associated with selective intramucosal colonization by E. coli. E. coli strains associated with GCB and Crohn's disease have an adherent and invasive phenotype and novel multilocus sequence types and resemble E. coli associated with extraintestinal disease in phylogeny and virulence gene profile. PMID:16861666
Toltzis, Philip; Dul, Michael; O'Riordan, Mary Ann; Jacobs, Michael R; Blumer, Jeffrey
2006-01-01
Asia has experienced a striking incidence of infection by highly resistant pneumococi containing both principal macrolide resistance determinants, namely, the mef efflux pump and the erm ribosomal methylase. mef/erm-containing pneumococci have not been identified in significant numbers in North America. Pneumococci were isolated as part of a larger study in Cleveland, OH examining colonization patterns among children randomized to 1 of 4 outpatient antibiotics for acute otitis media. Azithromycin-resistant organisms were tested for the presence of mef and erm sequences by polymerase chain reaction. The clonal relationship of pneumococci containing both genes was determined by pulsed field gel electrophoresis and multilocus sequence testing. Selected characteristics of children harboring mef/erm-containing organisms were compared with other participants of the larger study. Of 221 children colonized by pneumococci, 17 (7.7%) were colonized with an organism containing both determinants. All mef/erm-positive organisms demonstrated azithromycin minimum inhibitory concentrations > or =256 microg/mL and were coresistant to all other agents tested. The mef/erm-containing organisms were serotype 19A and 19F, all but 1 of which manifested similar pulsed field gel electrophoresis patterns. Multilocus sequence testing analysis indicated a relationship to the Taiwan-14 macrolide-resistant strain that has spread throughout Eastern Asia. More than one-third of children colonized by a mef/erm-containing organism had received > or =1 dose of conjugate pneumococcal vaccine, a significantly higher proportion than children carrying less resistant organisms (P< 0.01). No other characteristics distinguished children harboring a mef/erm-containing pneumococcus from other children enrolled in the larger study. Clonally related mef/erm-containing serogroup 19 pneumococci were prominent among otherwise healthy children in a North American metropolitan area. Our findings suggest that spread of these organisms may be poorly contained by immunization.
Ali, Habib; Muhammad, Abrar; Hou, Youming
2018-05-28
The intracellular bacterium Wolbachia pipientis is widespread in arthropods. Recently, possibilities of novel Wolbachia -mediated hosts, their distribution, and natural rate have been anticipated, and the coconut leaf beetle Brontispa longissima (Gestro) (Coleoptera: Chrysomelidae), which has garnered attention as a serious pest of palms, was subjected to this interrogation. By adopting Wolbachia surface protein ( wsp ) and multilocus sequence type (MLST) genotypic systems, we determined the Wolbachia infection density within host developmental stages, body parts, and tissues, and the results revealed that all the tested samples of B. longissima were infected with the same Wolbachia strain (wLog), suggesting complete vertical transmission. The MLST profile elucidated two new alleles ( ftsZ -234 and coxA-266) that define a new sequence type (ST-483), which indicates the particular genotypic association of B. longissima and Wolbachia . The quantitative real-time PCR analysis revealed a higher infection density in the eggs and adult stage, followed by the abdomen and reproductive tissues, respectively. However, no significant differences were observed in the infection density between sexes. Moreover, the wsp and concatenated MLST alignment analysis of this study with other known Wolbachia-mediated arthropods revealed similar clustering with distinct monophyletic supergroup B. This is the first comprehensive report on the prevalence, infection dynamics, and phylogeny of the Wolbachia endosymbiont in B. longissima , which demonstrated that Wolbachia is ubiquitous across all developmental stages and distributed in the entire body of B. longissima . Understanding the Wolbachia infection dynamics would provide useful insight to build a framework for future investigations, understand its impacts on host physiology, and exploit it as a potential biocontrol agent.
Prakash, A; Sharma, C; Singh, A; Kumar Singh, P; Kumar, A; Hagen, F; Govender, N P; Colombo, A L; Meis, J F; Chowdhary, A
2016-03-01
Candida auris is a multidrug-resistant nosocomial bloodstream pathogen that has been reported from Asian countries and South Africa. Herein, we studied the population structure and genetic relatedness among 104 global C. auris isolates from India, South Africa and Brazil using multilocus sequence typing (MLST), amplified fragment length polymorphism (AFLP) fingerprinting and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). RPB1, RPB2 and internal transcribed spacer (ITS) and D1/D2 regions of the ribosomal DNA were sequenced for MLST. Further, genetic variation and proteomic assessment was carried out using AFLP and MALDI-TOF MS, respectively. Both MLST and AFLP typing clearly demarcated two major clusters comprising Indian and Brazilian isolates. However, the South African isolates were randomly distributed, suggesting different genotypes. MALDI-TOF MS spectral profiling also revealed evidence of geographical clustering but did not correlate fully with the genotyping methods. Notably, overall the population structure of C. auris showed evidence of geographical clustering by all the three techniques analysed. Antifungal susceptibility testing by the CLSI microbroth dilution method revealed that fluconazole had limited activity against 87% of isolates (MIC90, 64 mg/L). Also, MIC90 of AMB was 4 mg/L. Candida auris is emerging as an important yeast pathogen globally and requires reproducible laboratory methods for identification and typing. Evaluation of MALDI-TOF MS as a typing method for this yeast is warranted. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Brhelova, Eva; Kocmanova, Iva; Racil, Zdenek; Hanslianova, Marketa; Antonova, Mariya; Mayer, Jiri; Lengerova, Martina
2016-09-01
Minim typing is derived from the multi-locus sequence typing (MLST). It targets the same genes, but sequencing is replaced by high resolution melt analysis. Typing can be performed by analysing six loci (6MelT), four loci (4MelT) or using data from four loci plus sequencing the tonB gene (HybridMelT). The aim of this study was to evaluate Minim typing to discriminate extended-spectrum beta-lactamase producing Klebsiella pneumoniae (ESBL-KLPN) isolates at our hospital. In total, 380 isolates were analyzed. The obtained alleles were assigned according to both the 6MelT and 4MelT typing scheme. In 97 isolates, the tonB gene was sequenced to enable HybridMelT typing. We found that the presented method is suitable to quickly monitor isolates of ESBL-KLPN; results are obtained in less than 2 hours and at a lower cost than MLST. We identified a local ESBL-KLPN outbreak and a comparison of colonizing and invasive isolates revealed a long term colonization of patients with the same strain. Copyright © 2016 Elsevier Inc. All rights reserved.
Population Structure in Nontypeable Haemophilus influenzae
LaCross, Nathan C.; Marrs, Carl F.; Gilsdorf, Janet R.
2013-01-01
Nontypeable Haemophilus influenzae (NTHi) frequently colonize the human pharynx asymptomatically, and are an important cause of otitis media in children. Past studies have identified typeable H. influenzae as being clonal, but the population structure of NTHi has not been extensively characterized. The research presented here investigated the diversity and population structure in a well-characterized collection of NTHi isolated from the middle ears of children with otitis media or the pharynges of healthy children in three disparate geographic regions. Multilocus sequence typing identified 109 unique sequence types among 170 commensal and otitis media-associated NTHi isolates from Finland, Israel, and the US. The largest clonal complex contained only five sequence types, indicating a high level of genetic diversity. The eBURST v3, ClonalFrame 1.1, and structure 2.3.3 programs were used to further characterize diversity and population structure from the sequence typing data. Little clustering was apparent by either disease state (otitis media or commensalism) or geography in the ClonalFrame phylogeny. Population structure was clearly evident, with support for eight populations when all 170 isolates were analyzed. Interestingly, one population contained only commensal isolates, while two others consisted solely of otitis media isolates, suggesting associations between population structure and disease. PMID:23266487
Jackson, Brendan R; Tarr, Cheryl; Strain, Errol; Jackson, Kelly A; Conrad, Amanda; Carleton, Heather; Katz, Lee S; Stroika, Steven; Gould, L Hannah; Mody, Rajal K; Silk, Benjamin J; Beal, Jennifer; Chen, Yi; Timme, Ruth; Doyle, Matthew; Fields, Angela; Wise, Matthew; Tillman, Glenn; Defibaugh-Chavez, Stephanie; Kucerova, Zuzana; Sabol, Ashley; Roache, Katie; Trees, Eija; Simmons, Mustafa; Wasilenko, Jamie; Kubota, Kristy; Pouseele, Hannes; Klimke, William; Besser, John; Brown, Eric; Allard, Marc; Gerner-Smidt, Peter
2016-08-01
Listeria monocytogenes (Lm) causes severe foodborne illness (listeriosis). Previous molecular subtyping methods, such as pulsed-field gel electrophoresis (PFGE), were critical in detecting outbreaks that led to food safety improvements and declining incidence, but PFGE provides limited genetic resolution. A multiagency collaboration began performing real-time, whole-genome sequencing (WGS) on all US Lm isolates from patients, food, and the environment in September 2013, posting sequencing data into a public repository. Compared with the year before the project began, WGS, combined with epidemiologic and product trace-back data, detected more listeriosis clusters and solved more outbreaks (2 outbreaks in pre-WGS year, 5 in WGS year 1, and 9 in year 2). Whole-genome multilocus sequence typing and single nucleotide polymorphism analyses provided equivalent phylogenetic relationships relevant to investigations; results were most useful when interpreted in context of epidemiological data. WGS has transformed listeriosis outbreak surveillance and is being implemented for other foodborne pathogens. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Streptococcus oriloxodontae sp. nov., isolated from the oral cavities of elephants.
Shinozaki-Kuwahara, Noriko; Saito, Masanori; Hirasawa, Masatomo; Takada, Kazuko
2014-11-01
Two strains were isolated from oral cavity samples of healthy elephants. The isolates were Gram-positive, catalase-negative, coccus-shaped organisms that were tentatively identified as a streptococcal species based on the results of biochemical tests. Comparative 16S rRNA gene sequence analysis suggested classification of these organisms in the genus Streptococcus with Streptococcus criceti ATCC 19642(T) and Streptococcus orisuis NUM 1001(T) as their closest phylogenetic neighbours with 98.2 and 96.9% gene sequence similarity, respectively. When multi-locus sequence analysis using four housekeeping genes, groEL, rpoB, gyrB and sodA, was carried out, similarity of concatenated sequences of the four housekeeping genes from the new isolates and Streptococcus mutans was 89.7%. DNA-DNA hybridization experiments suggested that the new isolates were distinct from S. criceti and other species of the genus Streptococcus. On the basis of genotypic and phenotypic differences, it is proposed that the novel isolates are classified in the genus Streptococcus as representatives of Streptococcus oriloxodontae sp. nov. The type strain of S. oriloxodontae is NUM 2101(T) ( =JCM 19285(T) =DSM 27377(T)). © 2014 IUMS.
Sherry, Norelle L.; Porter, Jessica L.; Seemann, Torsten; Watkins, Andrew; Stinear, Timothy P.
2013-01-01
Next-generation sequencing (NGS) of bacterial genomes has recently become more accessible and is now available to the routine diagnostic microbiology laboratory. However, questions remain regarding its feasibility, particularly with respect to data analysis in nonspecialist centers. To test the applicability of NGS to outbreak investigations, Ion Torrent sequencing was used to investigate a putative multidrug-resistant Escherichia coli outbreak in the neonatal unit of the Mercy Hospital for Women, Melbourne, Australia. Four suspected outbreak strains and a comparator strain were sequenced. Genome-wide single nucleotide polymorphism (SNP) analysis demonstrated that the four neonatal intensive care unit (NICU) strains were identical and easily differentiated from the comparator strain. Genome sequence data also determined that the NICU strains belonged to multilocus sequence type 131 and carried the blaCTX-M-15 extended-spectrum beta-lactamase. Comparison of the outbreak strains to all publicly available complete E. coli genome sequences showed that they clustered with neonatal meningitis and uropathogenic isolates. The turnaround time from a positive culture to the completion of sequencing (prior to data analysis) was 5 days, and the cost was approximately $300 per strain (for the reagents only). The main obstacles to a mainstream adoption of NGS technologies in diagnostic microbiology laboratories are currently cost (although this is decreasing), a paucity of user-friendly and clinically focused bioinformatics platforms, and a lack of genomics expertise outside the research environment. Despite these hurdles, NGS technologies provide unparalleled high-resolution genotyping in a short time frame and are likely to be widely implemented in the field of diagnostic microbiology in the next few years, particularly for epidemiological investigations (replacing current typing methods) and the characterization of resistance determinants. Clinical microbiologists need to familiarize themselves with these technologies and their applications. PMID:23408689
Microbe-ID: an open source toolbox for microbial genotyping and species identification
Tabima, Javier F.; Everhart, Sydney E.; Larsen, Meredith M.; Weisberg, Alexandra J.; Kamvar, Zhian N.; Tancos, Matthew A.; Smart, Christine D.; Chang, Jeff H.
2016-01-01
Development of tools to identify species, genotypes, or novel strains of invasive organisms is critical for monitoring emergence and implementing rapid response measures. Molecular markers, although critical to identifying species or genotypes, require bioinformatic tools for analysis. However, user-friendly analytical tools for fast identification are not readily available. To address this need, we created a web-based set of applications called Microbe-ID that allow for customizing a toolbox for rapid species identification and strain genotyping using any genetic markers of choice. Two components of Microbe-ID, named Sequence-ID and Genotype-ID, implement species and genotype identification, respectively. Sequence-ID allows identification of species by using BLAST to query sequences for any locus of interest against a custom reference sequence database. Genotype-ID allows placement of an unknown multilocus marker in either a minimum spanning network or dendrogram with bootstrap support from a user-created reference database. Microbe-ID can be used for identification of any organism based on nucleotide sequences or any molecular marker type and several examples are provided. We created a public website for demonstration purposes called Microbe-ID (microbe-id.org) and provided a working implementation for the genus Phytophthora (phytophthora-id.org). In Phytophthora-ID, the Sequence-ID application allows identification based on ITS or cox spacer sequences. Genotype-ID groups individuals into clonal lineages based on simple sequence repeat (SSR) markers for the two invasive plant pathogen species P. infestans and P. ramorum. All code is open source and available on github and CRAN. Instructions for installation and use are provided at https://github.com/grunwaldlab/Microbe-ID. PMID:27602267
Haendiges, Julie; Jones, Jessica; Myers, Robert A.; Mitchell, Clifford S.; Butler, Erin
2016-01-01
ABSTRACT In the summer of 2010, Vibrio parahaemolyticus caused an outbreak in Maryland linked to the consumption of oysters. Strains isolated from both stool and oyster samples were indistinguishable by pulsed-field gel electrophoresis (PFGE). However, the oysters contained other potentially pathogenic V. parahaemolyticus strains exhibiting different PFGE patterns. In order to assess the identity, genetic makeup, relatedness, and potential pathogenicity of the V. parahaemolyticus strains, we sequenced 11 such strains (2 clinical strains and 9 oyster strains). We analyzed these genomes by in silico multilocus sequence typing (MLST) and determined their phylogeny using a whole-genome MLST (wgMLST) analysis. Our in silico MLST analysis identified six different sequence types (STs) (ST8, ST676, ST810, ST811, ST34, and ST768), with both of the clinical and four of the oyster strains being identified as belonging to ST8. Using wgMLST, we showed that the ST8 strains from clinical and oyster samples were nearly indistinguishable and belonged to the same outbreak, confirming that local oysters were the source of the infections. The remaining oyster strains were genetically diverse, differing in >3,000 loci from the Maryland ST8 strains. eBURST analysis comparing these strains with strains of other STs available at the V. parahaemolyticus MLST website showed that the Maryland ST8 strains belonged to a clonal complex endemic to Asia. This indicates that the ST8 isolates from clinical and oyster sources were likely not endemic to Maryland. Finally, this study demonstrates the utility of whole-genome sequencing (WGS) and associated analyses for source-tracking investigations. IMPORTANCE Vibrio parahaemolyticus is an important foodborne pathogen and the leading cause of bacterial infections in the United States associated with the consumption of seafood. In the summer of 2010, Vibrio parahaemolyticus caused an outbreak in Maryland linked to oyster consumption. Strains isolated from stool and oyster samples were indistinguishable by pulsed-field gel electrophoresis (PFGE). The oysters also contained other potentially pathogenic V. parahaemolyticus strains with different PFGE patterns. Since their identity, genetic makeup, relatedness, and potential pathogenicity were unknown, their genomes were determined by using next-generation sequencing. Whole-genome sequencing (WGS) analysis by whole-genome multilocus sequence typing (wgMLST) allowed (i) identification of clinical and oyster strains with matching PFGE profiles as belonging to ST8, (ii) determination of oyster strain diversity, and (iii) identification of the clinical strains as belonging to a clonal complex (CC) described only in Asia. Finally, WGS and associated analyses demonstrated their utility for trace-back investigations. PMID:26994080
Haendiges, Julie; Jones, Jessica; Myers, Robert A; Mitchell, Clifford S; Butler, Erin; Toro, Magaly; Gonzalez-Escalona, Narjol
2016-06-01
In the summer of 2010, Vibrio parahaemolyticus caused an outbreak in Maryland linked to the consumption of oysters. Strains isolated from both stool and oyster samples were indistinguishable by pulsed-field gel electrophoresis (PFGE). However, the oysters contained other potentially pathogenic V. parahaemolyticus strains exhibiting different PFGE patterns. In order to assess the identity, genetic makeup, relatedness, and potential pathogenicity of the V. parahaemolyticus strains, we sequenced 11 such strains (2 clinical strains and 9 oyster strains). We analyzed these genomes by in silico multilocus sequence typing (MLST) and determined their phylogeny using a whole-genome MLST (wgMLST) analysis. Our in silico MLST analysis identified six different sequence types (STs) (ST8, ST676, ST810, ST811, ST34, and ST768), with both of the clinical and four of the oyster strains being identified as belonging to ST8. Using wgMLST, we showed that the ST8 strains from clinical and oyster samples were nearly indistinguishable and belonged to the same outbreak, confirming that local oysters were the source of the infections. The remaining oyster strains were genetically diverse, differing in >3,000 loci from the Maryland ST8 strains. eBURST analysis comparing these strains with strains of other STs available at the V. parahaemolyticus MLST website showed that the Maryland ST8 strains belonged to a clonal complex endemic to Asia. This indicates that the ST8 isolates from clinical and oyster sources were likely not endemic to Maryland. Finally, this study demonstrates the utility of whole-genome sequencing (WGS) and associated analyses for source-tracking investigations. Vibrio parahaemolyticus is an important foodborne pathogen and the leading cause of bacterial infections in the United States associated with the consumption of seafood. In the summer of 2010, Vibrio parahaemolyticus caused an outbreak in Maryland linked to oyster consumption. Strains isolated from stool and oyster samples were indistinguishable by pulsed-field gel electrophoresis (PFGE). The oysters also contained other potentially pathogenic V. parahaemolyticus strains with different PFGE patterns. Since their identity, genetic makeup, relatedness, and potential pathogenicity were unknown, their genomes were determined by using next-generation sequencing. Whole-genome sequencing (WGS) analysis by whole-genome multilocus sequence typing (wgMLST) allowed (i) identification of clinical and oyster strains with matching PFGE profiles as belonging to ST8, (ii) determination of oyster strain diversity, and (iii) identification of the clinical strains as belonging to a clonal complex (CC) described only in Asia. Finally, WGS and associated analyses demonstrated their utility for trace-back investigations. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Kamada, Mayumi; Hase, Sumitaka; Fujii, Kazushi; Miyake, Masato; Sato, Kengo; Kimura, Keitarou; Sakakibara, Yasubumi
2015-01-01
Bacillus subtilis is the main component in the fermentation of soybeans. To investigate the genetics of the soybean-fermenting B. subtilis strains and its relationship with the productivity of extracellular poly-γ-glutamic acid (γPGA), we sequenced the whole genome of eight B. subtilis stains isolated from non-salted fermented soybean foods in Southeast Asia. Assembled nucleotide sequences were compared with those of a natto (fermented soybean food) starter strain B. subtilis BEST195 and the laboratory standard strain B. subtilis 168 that is incapable of γPGA production. Detected variants were investigated in terms of insertion sequences, biotin synthesis, production of subtilisin NAT, and regulatory genes for γPGA synthesis, which were related to fermentation process. Comparing genome sequences, we found that the strains that produce γPGA have a deletion in a protein that constitutes the flagellar basal body, and this deletion was not found in the non-producing strains. We further identified diversity in variants of the bio operon, which is responsible for the biotin auxotrophism of the natto starter strains. Phylogenetic analysis using multilocus sequencing typing revealed that the B. subtilis strains isolated from the non-salted fermented soybeans were not clustered together, while the natto-fermenting strains were tightly clustered; this analysis also suggested that the strain isolated from “Tua Nao” of Thailand traces a different evolutionary process from other strains. PMID:26505996
Hailer, Frank; Kutschera, Verena E; Hallström, Björn M; Fain, Steven R; Leonard, Jennifer A; Arnason, Ulfur; Janke, Axel
2013-03-29
Nakagome et al. reanalyzed some of our data and assert that we cannot refute the mitochondrial DNA-based scenario for polar bear evolution. Their single-locus test statistic is strongly affected by introgression and incomplete lineage sorting, whereas our multilocus approaches are better suited to recover the true species relationships. Indeed, our sister-lineage model receives high support in a Bayesian model comparison.
Reclassification of Borrelia spp. isolated in South Korea using Multilocus Sequence Typing.
Park, Kyung-Hee; Choi, Yeon-Joo; Kim, Jeoungyeon; Park, Hye-Jin; Song, Dayoung; Jang, Won-Jong
2018-05-31
Using Borrelia isolated from South Korea, we evaluated by MLST and three intergenic genes (16S rRNA, ospA, and 5S-23S IGS) typing to analyze the relationship between host and vector and molecular background. Using the MLST analysis, we identified B. afzelii, B. yangtzensis, B. garinii, and B. bavariensis. This study was first report of the identification of B. yangtzensis using the MLST in South Korea.
2009-01-01
Background Bacterial genomes are mosaic structures composed of genes present in every strain of the same species (core genome), and genes present in some but not all strains of a species (accessory genome). The aim of this study was to compare the genetic diversity of core and accessory genes of a Salmonella enterica subspecies enterica serovar Typhimurium (Typhimurium) population isolated from food-animal and human sources in four regions of Mexico. Multilocus sequence typing (MLST) and macrorestriction fingerprints by pulsed-field gel electrophoresis (PFGE) were used to address the core genetic variation, and genes involved in pathogenesis and antibiotic resistance were selected to evaluate the accessory genome. Results We found a low genetic diversity for both housekeeping and accessory genes. Sequence type 19 (ST19) was supported as the founder genotype of STs 213, 302 and 429. We found a temporal pattern in which the derived ST213 is replacing the founder ST19 in the four geographic regions analyzed and a geographic trend in the number of resistance determinants. The distribution of the accessory genes was not random among chromosomal genotypes. We detected strong associations among the different accessory genes and the multilocus chromosomal genotypes (STs). First, the Salmonella virulence plasmid (pSTV) was found mostly in ST19 isolates. Second, the plasmid-borne betalactamase cmy-2 was found only in ST213 isolates. Third, the most abundant integron, IP-1 (dfrA12, orfF and aadA2), was found only in ST213 isolates. Fourth, the Salmonella genomic island (SGI1) was found mainly in a subgroup of ST19 isolates carrying pSTV. The mapping of accessory genes and multilocus genotypes on the dendrogram derived from macrorestiction fingerprints allowed the establishment of genetic subgroups within the population. Conclusion Despite the low levels of genetic diversity of core and accessory genes, the non-random distribution of the accessory genes across chromosomal backgrounds allowed us to discover genetic subgroups within the population. This study provides information about the importance of the accessory genome in generating genetic variability within a bacterial population. PMID:19573249
Rodas, Claudia; Klena, John D.; Nicklasson, Matilda; Iniguez, Volga; Sjöling, Åsa
2011-01-01
Background Enterotoxigenic Escherichia coli (ETEC) is a major cause of traveller's and infantile diarrhoea in the developing world. ETEC produces two toxins, a heat-stable toxin (known as ST) and a heat-labile toxin (LT) and colonization factors that help the bacteria to attach to epithelial cells. Methodology/Principal Findings In this study, we characterized a subset of ETEC clinical isolates recovered from Bolivian children under 5 years of age using a combination of multilocus sequence typing (MLST) analysis, virulence typing, serotyping and antimicrobial resistance test patterns in order to determine the genetic background of ETEC strains circulating in Bolivia. We found that strains expressing the heat-labile (LT) enterotoxin and colonization factor CS17 were common and belonged to several MLST sequence types but mainly to sequence type-423 and sequence type-443 (Achtman scheme). To further study the LT/CS17 strains we analysed the nucleotide sequence of the CS17 operon and compared the structure to LT/CS17 ETEC isolates from Bangladesh. Sequence analysis confirmed that all sequence type-423 strains from Bolivia had a single nucleotide polymorphism; SNPbol in the CS17 operon that was also found in some other MLST sequence types from Bolivia but not in strains recovered from Bangladeshi children. The dominant ETEC clone in Bolivia (sequence type-423/SNPbol) was found to persist over multiple years and was associated with severe diarrhoea but these strains were variable with respect to antimicrobial resistance patterns. Conclusion/Significance The results showed that although the LT/CS17 phenotype is common among ETEC strains in Bolivia, multiple clones, as determined by unique MLST sequence types, populate this phenotype. Our data also appear to suggest that acquisition and loss of antimicrobial resistance in LT-expressing CS17 ETEC clones is more dynamic than acquisition or loss of virulence factors. PMID:22140423
Rodas, Claudia; Klena, John D; Nicklasson, Matilda; Iniguez, Volga; Sjöling, Asa
2011-01-01
Enterotoxigenic Escherichia coli (ETEC) is a major cause of traveller's and infantile diarrhoea in the developing world. ETEC produces two toxins, a heat-stable toxin (known as ST) and a heat-labile toxin (LT) and colonization factors that help the bacteria to attach to epithelial cells. In this study, we characterized a subset of ETEC clinical isolates recovered from Bolivian children under 5 years of age using a combination of multilocus sequence typing (MLST) analysis, virulence typing, serotyping and antimicrobial resistance test patterns in order to determine the genetic background of ETEC strains circulating in Bolivia. We found that strains expressing the heat-labile (LT) enterotoxin and colonization factor CS17 were common and belonged to several MLST sequence types but mainly to sequence type-423 and sequence type-443 (Achtman scheme). To further study the LT/CS17 strains we analysed the nucleotide sequence of the CS17 operon and compared the structure to LT/CS17 ETEC isolates from Bangladesh. Sequence analysis confirmed that all sequence type-423 strains from Bolivia had a single nucleotide polymorphism; SNP(bol) in the CS17 operon that was also found in some other MLST sequence types from Bolivia but not in strains recovered from Bangladeshi children. The dominant ETEC clone in Bolivia (sequence type-423/SNP(bol)) was found to persist over multiple years and was associated with severe diarrhoea but these strains were variable with respect to antimicrobial resistance patterns. The results showed that although the LT/CS17 phenotype is common among ETEC strains in Bolivia, multiple clones, as determined by unique MLST sequence types, populate this phenotype. Our data also appear to suggest that acquisition and loss of antimicrobial resistance in LT-expressing CS17 ETEC clones is more dynamic than acquisition or loss of virulence factors.
Yu, Jie; Sun, Zhihong; Liu, Wenjun; Xi, Xiaoxia; Song, Yuqin; Xu, Haiyan; Lv, Qiang; Bao, Qiuhua; Menghe, Bilige; Sun, Tiansong
2015-10-26
Streptococcus thermophilus is a major dairy starter used for manufacturing of dairy products. In the present study, we developed a multilocus sequence typing (MLST) scheme for this important food bacterium. Sequences of 10 housekeeping genes (carB, clpX, dnaA, murC, murE, pepN, pepX, pyrG, recA, and rpoB) were obtained for 239 S. thermophilus strains, which were isolated from home-made fermented dairy foods in 18 different regions of Mongolia and China. All 10 genes of S. thermophilus were sequenced, aligned, and defined sequence types (STs) using the BioNumerics Software. The nucleotide diversity was calculated by START v2.0. The population structure, phylogenetic relationships and the role of recombination were inferred using ClonalFrame v1.2, SplitsTree 4.0 and Structure v2.3. The 239 S. thermophilus isolates and 18 reference strains could be assigned into 119 different STs, which could be further separated into 16 clonal complexes (CCs) and 38 singletons. Among the 10 loci, a total of 132 polymorphic sites were detected. The standardized index of association (IAS=0.0916), split-decomposition and ρ/θ (relative frequency of occurrence of recombination and mutation) and r/m value (relative impact of recombination and mutation in the diversification) confirms that recombination may have occurred, but it occurred at a low frequency in these 10 loci. Phylogenetic trees indicated that there were five lineages in the S. thermophilus isolates used in our study. MSTree and ClonalFrame tree analyses suggest that the evolution of S. thermophilus isolates have little relationship with geographic locality, but revealed no association with the types of fermented dairy product. Phylogenetic analysis of 36 whole genome strains (18 S. thermophilus, 2 S. vestibularis and 16 S. salivarius strains) indicated that our MLST scheme could clearly separate three closely related species within the salivarius group and is suitable for analyzing the population structure of the other two species in the salivarius group. Our newly developed MLST scheme improved the understanding on the genetic diversity and population structure of the S. thermophilus, as well as provided useful information for further studies on the genotyping and evolutionary research for S. thermophilus strains with global diversity.
Brucella papionis sp. nov., isolated from baboons (Papio spp.).
Whatmore, Adrian M; Davison, Nicholas; Cloeckaert, Axel; Al Dahouk, Sascha; Zygmunt, Michel S; Brew, Simon D; Perrett, Lorraine L; Koylass, Mark S; Vergnaud, Gilles; Quance, Christine; Scholz, Holger C; Dick, Edward J; Hubbard, Gene; Schlabritz-Loutsevitch, Natalia E
2014-12-01
Two Gram-negative, non-motile, non-spore-forming coccoid bacteria (strains F8/08-60(T) and F8/08-61) isolated from clinical specimens obtained from baboons (Papio spp.) that had delivered stillborn offspring were subjected to a polyphasic taxonomic study. On the basis of 16S rRNA gene sequence similarities, both strains, which possessed identical sequences, were assigned to the genus Brucella. This placement was confirmed by extended multilocus sequence analysis (MLSA), where both strains possessed identical sequences, and whole-genome sequencing of a representative isolate. All of the above analyses suggested that the two strains represent a novel lineage within the genus Brucella. The strains also possessed a unique profile when subjected to the phenotyping approach classically used to separate species of the genus Brucella, reacting only with Brucella A monospecific antiserum, being sensitive to the dyes thionin and fuchsin, being lysed by bacteriophage Wb, Bk2 and Fi phage at routine test dilution (RTD) but only partially sensitive to bacteriophage Tb, and with no requirement for CO2 and no production of H2S but strong urease activity. Biochemical profiling revealed a pattern of enzyme activity and metabolic capabilities distinct from existing species of the genus Brucella. Molecular analysis of the omp2 locus genes showed that both strains had a novel combination of two highly similar omp2b gene copies. The two strains shared a unique fingerprint profile of the multiple-copy Brucella-specific element IS711. Like MLSA, a multilocus variable number of tandem repeat analysis (MLVA) showed that the isolates clustered together very closely, but represent a distinct group within the genus Brucella. Isolates F8/08-60(T) and F8/08-61 could be distinguished clearly from all known species of the genus Brucella and their biovars by both phenotypic and molecular properties. Therefore, by applying the species concept for the genus Brucella suggested by the ICSP Subcommittee on the Taxonomy of Brucella, they represent a novel species within the genus Brucella, for which the name Brucella papionis sp. nov. is proposed, with the type strain F8/08-60(T) ( = NCTC 13660(T) = CIRMBP 0958(T)). Crown Copyright 2014. Reproduced with the permission of the Controller of Her Majesty's Stationery Office/Queen's Printer for Scotland and AHVLA.
Vibrio chromosomes share common history.
Kirkup, Benjamin C; Chang, LeeAnn; Chang, Sarah; Gevers, Dirk; Polz, Martin F
2010-05-10
While most gamma proteobacteria have a single circular chromosome, Vibrionales have two circular chromosomes. Horizontal gene transfer is common among Vibrios, and in light of this genetic mobility, it is an open question to what extent the two chromosomes themselves share a common history since their formation. Single copy genes from each chromosome (142 genes from chromosome I and 42 genes from chromosome II) were identified from 19 sequenced Vibrionales genomes and their phylogenetic comparison suggests consistent phylogenies for each chromosome. Additionally, study of the gene organization and phylogeny of the respective origins of replication confirmed the shared history. Thus, while elements within the chromosomes may have experienced significant genetic mobility, the backbones share a common history. This allows conclusions based on multilocus sequence analysis (MLSA) for one chromosome to be applied equally to both chromosomes.
Characteristics of Streptococcus suis isolated from patients in Japan.
Chang, Bin; Wada, Akihito; Ikebe, Tadayoshi; Ohnishi, Makoto; Mita, Kazuhito; Endo, Miyoko; Matsuo, Hirosuke; Asatuma, Yoshinori; Kuramoto, Sanae; Sekiguchi, Hiroshi; Yamazaki, Motoyosi; Yoshikawa, Hiroko; Watabe, Nobuei; Yamada, Hideko; Kurita, Shohachi; Imai, Yumiko; Watanabe, Haruo
2006-12-01
Seven cases of Streptococcus suis infection in Japan during 1994 and 2006 were summarized. All cases had porcine exposure and five of them had hand skin injury during the exposure. Five cases presented symptoms of meningitis, three presented symptoms of sepsis, and one resulted in sudden death. All of the isolated S. suis belonged to Lancefield's group D and to serotype 2. They were susceptible to penicillin G, ampicillin, cefotaxime, and ciprofloxacin. However, six of them were resistant to both erythromycin and clindamycin, and four were also resistant to minocycline. Multilocus sequence typing of six isolates showed that they belonged to sequence type (ST) 1, and their pulsed-field gel electrophoresis (PFGE) patterns were similar. The remaining isolate was ST28 and its PFGE pattern was distinct from those of the others.
Unemo, Magnus; Dillon, Jo-Anne R.
2011-01-01
Summary: Gonorrhea, which may become untreatable due to multiple resistance to available antibiotics, remains a public health problem worldwide. Precise methods for typing Neisseria gonorrhoeae, together with epidemiological information, are crucial for an enhanced understanding regarding issues involving epidemiology, test of cure and contact tracing, identifying core groups and risk behaviors, and recommending effective antimicrobial treatment, control, and preventive measures. This review evaluates methods for typing N. gonorrhoeae isolates and recommends various methods for different situations. Phenotypic typing methods, as well as some now-outdated DNA-based methods, have limited usefulness in differentiating between strains of N. gonorrhoeae. Genotypic methods based on DNA sequencing are preferred, and the selection of the appropriate genotypic method should be guided by its performance characteristics and whether short-term epidemiology (microepidemiology) or long-term and/or global epidemiology (macroepidemiology) matters are being investigated. Currently, for microepidemiological questions, the best methods for fast, objective, portable, highly discriminatory, reproducible, typeable, and high-throughput characterization are N. gonorrhoeae multiantigen sequence typing (NG-MAST) or full- or extended-length porB gene sequencing. However, pulsed-field gel electrophoresis (PFGE) and Opa typing can be valuable in specific situations, i.e., extreme microepidemiology, despite their limitations. For macroepidemiological studies and phylogenetic studies, DNA sequencing of chromosomal housekeeping genes, such as multilocus sequence typing (MLST), provides a more nuanced understanding. PMID:21734242
Li, Puyuan; Huang, Yong; Yu, Lan; Liu, Yannan; Niu, Wenkai; Zou, Dayang; Liu, Huiying; Zheng, Jing; Yin, Xiuyun; Yuan, Jing; Yuan, Xin; Bai, Changqing
2017-09-01
Heteroresistance is a phenomenon in which there are various responses to antibiotics from bacterial cells within the same population. Here, we isolated and characterised an imipenem heteroresistant Acinetobacter baumannii strain (HRAB-85). The genome of strain HRAB-85 was completely sequenced and analysed to understand its antibiotic resistance mechanisms. Population analysis and multilocus sequence typing were performed. Subpopulations grew in the presence of imipenem at concentrations of up to 64μg/mL, and the strain was found to belong to ST208. The total length of strain HRAB-85 was 4,098,585bp with a GC content of 39.98%. The genome harboured at least four insertion sequences: the common ISAba1, ISAba22, ISAba24, and newly reported ISAba26. Additionally, 19 antibiotic-resistance genes against eight classes of antimicrobial agents were found, and 11 genomic islands (GIs) were identified. Among them, GI3, GI10, and GI11 contained many ISs and antibiotic-resistance determinants. The existence of imipenem heteroresistant phenotypes in A. baumannii was substantiated in this hospital, and imipenem pressure, which could induce imipenem-heteroresistant subpopulations, may select for highly resistant strains. The complete genome sequencing and bioinformatics analysis of HRAB-85 could improve our understanding of the epidemiology and resistance mechanisms of carbapenem-heteroresistant A. baumannii. Copyright © 2017. Published by Elsevier Ltd.
Chang, Yu C; Scaria, Joy; Ibraham, Mariamma; Doiphode, Sanjay; Chang, Yung-Fu; Sultan, Ali; Mohammed, Hussni O
2016-01-01
Salmonella enterica is one of the most commonly reported causes of bacterial foodborne illness around the world. Understanding the sources of this pathogen and the associated factors that exacerbate its risk to humans will help in developing risk mitigation strategies. The genetic relatedness among Salmonella isolates recovered from human gastroenteritis cases and food animals in Qatar were investigated in the hope of shedding light on these sources, their possible transmission routes, and any associated factors. A repeat cross-sectional study was conducted in which the samples and associated data were collected from both populations (gastroenteritis cases and animals). Salmonella isolates were initially analyzed using multi-locus sequence typing (MLST) to investigate the genetic diversity and clonality. The relatedness among the isolates was assessed using the minimum spanning tree (MST). Twenty-seven different sequence types (STs) were identified in this study; among them, seven were novel, including ST1695, ST1696, ST1697, ST1698, ST1699, ST1702, and ST1703. The pattern of overall ST distribution was diverse; in particular, it was revealed that ST11 and ST19 were the most common sequence types, presenting 29.5% and 11.5% within the whole population. In addition, 20 eBurst Groups (eBGs) were identified in our data, which indicates that ST11 and ST19 belonged to eBG4 and eBG1, respectively. In addition, the potential association between the putative risk factors and eBGs were evaluated. There was no significant clustering of these eBGs by season; however, a significant association was identified in terms of nationality in that Qataris were six times more likely to present with eBG1 compared to non-Qataris. In the MST analysis, four major clusters were presented, namely, ST11, ST19, ST16, and ST31. The linkages between the clusters alluded to a possible transmission route. The results of the study have provided insight into the ST distributions of S. enterica and their possible zoonotic associations in Qatar. Published by Elsevier Ltd.
Gherardi, Giovanni; Creti, Roberta; Pompilio, Arianna; Di Bonaventura, Giovanni
2015-03-01
Typing of bacterial isolates has been used for decades to study local outbreaks as well as in national and international surveillances for monitoring newly emerging resistant clones. Despite being recognized as a nosocomial pathogen, the precise modes of transmission of Stenotrophomonas maltophilia in health care settings are unknown. Due to the high genetic diversity observed among S. maltophilia clinical isolates, the typing results might be better interpreted if also environmental strains were included. This could help to identify preventative measures to be designed and implemented for decreasing the possibility of outbreaks and nosocomial infections. In this review, we attempt to provide an overview on the most common typing methods used for clinical epidemiology of S. maltophilia strains, such as PCR-based fingerprinting analyses, pulsed-field gel electrophoresis, multilocus variable number tandem repeat analysis, and multilocus sequence type. Application of the proteomic-based mass spectrometry by matrix-assisted laser desorption ionization-time of flight is also described. Improvements of typing methods already in use have to be achieved to facilitate S. maltophilia infection control at any level. In the near future, when novel Web-based platforms for rapid data processing and analysis will be available, whole genome sequencing technologies will likely become a highly powerful tool for outbreak investigations and surveillance studies in routine clinical practices. Copyright © 2015 Elsevier Inc. All rights reserved.
Ogihara, Shinji; Saito, Ryoichi; Sawabe, Etsuko; Kozakai, Takahiro; Shima, Mari; Aiso, Yoshibumi; Fujie, Toshihide; Nukui, Yoko; Koike, Ryuji; Hagihara, Michio; Tohda, Shuji
2018-04-01
The recently developed PCR-based open reading frame typing (POT) method is a useful molecular typing tool. Here, we evaluated the performance of POT for molecular typing of methicillin-resistant Staphylococcus aureus (MRSA) isolates and compared its performance to those of multilocus sequence typing (MLST) and Staphylococcus protein A gene typing (spa typing). Thirty-seven MRSA isolates were collected between July 2012 and May 2015. MLST, spa typing, and POT were performed, and their discriminatory powers were evaluated using Simpson's index analysis. The MRSA isolates were classified into 11, 18, and 33 types by MLST, spa typing, and POT, respectively. The predominant strains identified by MLST, spa typing, and POT were ST8 and ST764, t002, and 93-191-127, respectively. The discriminatory power of MLST, spa typing, and POT was 0.853, 0.875, and 0.992, respectively, indicating that POT had the highest discriminatory power. Moreover, the results of MLST and spa were available after 2 days, whereas that of POT was available in 5 h. Furthermore, POT is rapid and easy to perform and interpret. Therefore, POT is a superior molecular typing tool for monitoring nosocomial transmission of MRSA. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Ahmed, Sara; Besser, Thomas E; Call, Douglas R; Weissman, Scott J; Jones, Lisa P; Davis, Margaret A
2016-05-01
Multi-locus sequence typing (MLST) is a useful system for phylogenetic and epidemiological studies of multidrug-resistant Escherichiacoli. Most studies utilize a seven-locus MLST, but an alternate two-locus typing method (fumC and fimH; CH typing) has been proposed that may offer a similar degree of discrimination at lower cost. Herein, we compare CH typing to the standard seven-locus method for typing commensal E. coli isolates from dairy cattle. In addition, we evaluated alternative combinations of eight loci to identify combinations that maximize discrimination and congruence with standard seven-locus MLST among commensal E. coli while minimizing the cost. We also compared both methods when used for typing uropathogenic E. coli (UPEC). CH typing was less discriminatory for commensal E. coli than the standard seven-locus method (Simpson's Index of Diversity=0.933 [0.902-0.964] and 0.97 [0.96-0.979], respectively). Combining fimH with housekeeping gene loci improved discriminatory power for commensal E. coli from cattle but resulted in poor congruence with MLST. We found that a four-locus typing method including the housekeeping genes adk, purA, gyrB and recA could be used to minimize cost without sacrificing discriminatory power or congruence with Achtman seven-locus MLST when typing commensal E. coli. Copyright © 2016 Elsevier B.V. All rights reserved.
Wardal, Ewa; Markowska, Katarzyna; Żabicka, Dorota; Wróblewska, Marta; Giemza, Małgorzata; Mik, Ewa; Połowniak-Pracka, Hanna; Woźniak, Agnieszka; Hryniewicz, Waleria; Sadowy, Ewa
2014-01-01
Vancomycin-resistant Enterococcus faecium represents a growing threat in hospital-acquired infections. Two outbreaks of this pathogen from neighboring Warsaw hospitals have been analyzed in this study. Pulsed-field gel electrophoresis (PFGE) of SmaI-digested DNA, multilocus VNTR analysis (MLVA), and multilocus sequence typing (MLST) revealed a clonal variability of isolates which belonged to three main lineages (17, 18, and 78) of nosocomial E. faecium. All isolates were multidrug resistant and carried several resistance, virulence, and plasmid-specific genes. Almost all isolates shared the same variant of Tn1546 transposon, characterized by the presence of insertion sequence ISEf1 and a point mutation in the vanA gene. In the majority of cases, this transposon was located on 50 kb or 100 kb pRUM-related plasmids, which lacked, however, the axe-txe toxin-antitoxin genes. 100 kb plasmid was easily transferred by conjugation and was found in various clonal backgrounds in both institutions, while 50 kb plasmid was not transferable and occurred solely in MT159/ST78 strains that disseminated clonally in one institution. Although molecular data indicated the spread of VRE between two institutions or a potential common source of this alert pathogen, epidemiological investigations did not reveal the possible route by which outbreak strains disseminated. PMID:25003118
Mammella, Marco A; Martin, Frank N; Cacciola, Santa O; Coffey, Michael D; Faedda, Roberto; Schena, Leonardo
2013-06-01
Genetic variation within the heterothallic cosmopolitan plant pathogen Phytophthora nicotianae was determined in 96 isolates from a wide range of hosts and geographic locations by characterizing four mitochondrial (10% of the genome) and three nuclear loci. In all, 52 single-nucleotide polymorphisms (SNPs) (an average of 1 every 58 bp) and 313 sites with gaps representing 5,450 bases enabled the identification of 50 different multilocus mitochondrial haplotypes. Similarly, 24 SNPs (an average of 1 every 69 bp), with heterozygosity observed at each locus, were observed in three nuclear regions (hyp, scp, and β-tub) differentiating 40 multilocus nuclear genotypes. Both mitochondrial and nuclear markers revealed a high level of dispersal of isolates and an inconsistent geographic structuring of populations. However, a specific association was observed for host of origin and genetic grouping with both nuclear and mitochondrial sequences. In particular, the majority of citrus isolates from Italy, California, Florida, Syria, Albania, and the Philippines clustered in the same mitochondrial group and shared at least one nuclear allele. A similar association was also observed for isolates recovered from Nicotiana and Solanum spp. The present study suggests an important role of nursery populations in increasing genetic recombination within the species and the existence of extensive phenomena of migration of isolates that have been likely spread worldwide with infected plant material.
Krongdang, Sasiprapa; Evans, Jay D; Pettis, Jeffery S; Chantawannakul, Panuwan
2017-01-01
Paenibacillus larvae is a Gram positive bacterium and the causative agent of the most widespread fatal brood disease of honey bees, American foulbrood (AFB). A total of thirty-three independent Paenibacillus larvae isolates from various geographical origins in North America and five reference strains were investigated for genetic diversity using multilocus sequence typing (MLST). This technique is regarded to be a powerful tool for epidemiological studies of pathogenic bacteria and is widely used in genotyping assays. For MLST, seven housekeeping gene loci, ilvD (dihydroxy-acid dyhydrogenase), tri (triosephosphate isomerase), purH (phospharibosyl-aminoimidazolecarboxamide), recF (DNA replication and repair protein), pyrE (orotate phosphoribosyltransferase), sucC (succinyl coenzyme A synthetase β subunit) and glpF (glycerol uptake facilitator protein) were studied and applied for primer designs. Previously, ERIC type DNA fingerprinting was applied to these same isolates and the data showed that almost all represented the ERIC I type, whereas using BOX-PCR gave an indication of more diversity. All isolates were screened for resistance to four antibiotics used by U.S. beekeepers, showing extensive resistance to tetracycline and the first records of resistance to tylosin and lincomycin. Our data highlight the intraspecies relationships of P. larvae and the potential application of MLST methods in enhancing our understanding of epidemiological relationships among bacterial isolates of different origins.
Zhou, Li-Wei; Cao, Yun; Wu, Sheng-Hua; Vlasák, Josef; Li, De-Wei; Li, Meng-Jie; Dai, Yu-Cheng
2015-06-01
Species of the Ganoderma lucidum complex are used in many types of health products. However, the taxonomy of this complex has long been chaotic, thus limiting its uses. In the present study, 32 collections of the complex from Asia, Europe and North America were analyzed from both morphological and molecular phylogenetic perspectives. The combined dataset, including an outgroup, comprised 33 ITS, 24 tef1α, 24 rpb1 and 21 rpb2 sequences, of which 19 ITS, 20 tef1α, 20 rpb1 and 17 rpb2 sequences were newly generated. A total of 13 species of the complex were recovered in the multilocus phylogeny. These 13 species were not strongly supported as a single monophyletic lineage, and were further grouped into three lineages that cannot be defined by their geographic distributions. Clade A comprised Ganoderma curtisii, Ganoderma flexipes, Ganoderma lingzhi, Ganoderma multipileum, Ganoderma resinaceum, Ganoderma sessile, Ganoderma sichuanense and Ganoderma tropicum, Clade B comprised G. lucidum, Ganoderma oregonense and Ganoderma tsugae, and Clade C comprised Ganoderma boninense and Ganoderma zonatum. A dichotomous key to the 13 species is provided, and their key morphological characters from context, pores, cuticle cells and basidiospores are presented in a table. The taxonomic positions of these species are briefly discussed. Noteworthy, the epitypification of G. sichuanense is rejected. Copyright © 2014 Elsevier Ltd. All rights reserved.
Delamuta, Jakeline Renata Marçon; Ribeiro, Renan Augusto; Menna, Pâmela; Bangel, Eliane Villamil; Hungria, Mariangela
2012-04-01
Symbiotic association of several genera of bacteria collectively called as rhizobia and plants belonging to the family Leguminosae (=Fabaceae) results in the process of biological nitrogen fixation, playing a key role in global N cycling, and also bringing relevant contributions to the agriculture. Bradyrhizobium is considered as the ancestral of all nitrogen-fixing rhizobial species, probably originated in the tropics. The genus encompasses a variety of diverse bacteria, but the diversity captured in the analysis of the 16S rRNA is often low. In this study, we analyzed twelve Bradyrhizobium strains selected from previous studies performed by our group for showing high genetic diversity in relation to the described species. In addition to the 16S rRNA, five housekeeping genes (recA, atpD, glnII, gyrB and rpoB) were analyzed in the MLSA (multilocus sequence analysis) approach. Analysis of each gene and of the concatenated housekeeping genes captured a considerably higher level of genetic diversity, with indication of putative new species. The results highlight the high genetic variability associated with Bradyrhizobium microsymbionts of a variety of legumes. In addition, the MLSA approach has proved to represent a rapid and reliable method to be employed in phylogenetic and taxonomic studies, speeding the identification of the still poorly known diversity of nitrogen-fixing rhizobia in the tropics.
Use of Variable-Number Tandem Repeats To Examine Genetic Diversity of Neisseria meningitidis
Yazdankhah, Siamak P.; Lindstedt, Bjørn-Arne; Caugant, Dominique A.
2005-01-01
Repetitive DNA motifs with potential variable-number tandem repeats (VNTR) were identified in the genome of Neisseria meningitidis and used to develop a typing method. A total of 146 meningococcal isolates recovered from carriers and patients were studied. These included 82 of the 107 N. meningitidis isolates previously used in the development of multilocus sequence typing (MLST), 45 isolates recovered from different counties in Norway in connection with local outbreaks, and 19 serogroup W135 isolates of sequence type 11 (ST-11), which were recovered in several parts of the world. The latter group comprised isolates related to the Hajj outbreak of 2000 and isolates recovered from outbreaks in Burkina Faso in 2001 and 2002. All isolates had been characterized previously by MLST or multilocus enzyme electrophoresis (MLEE). VNTR analysis showed that meningococcal isolates with similar MLST or MLEE types recovered from epidemiologically linked cases in a defined geographical area often presented similar VNTR patterns while isolates of the same MLST or MLEE types without an obvious epidemiological link showed variable VNTR patterns. Thus, VNTR analysis may be used for fine typing of meningococcal isolates after MLST or MLEE typing. The method might be especially valuable for differentiating among ST-11 strains, as shown by the VNTR analyses of serogroup W135 ST-11 meningococcal isolates recovered since the mid-1990s. PMID:15814988
Wang, Xiaoli; Xie, Yingzhou; Li, Gang; Liu, Jialin; Li, Xiaobin; Tian, Lijun; Sun, Jingyong; Ou, Hong-Yu; Qu, Hongping
2018-01-01
Hypervirulent K. pneumoniae variants (hvKP) have been increasingly reported worldwide, causing metastasis of severe infections such as liver abscesses and bacteremia. The capsular serotype K2 hvKP strains show diverse multi-locus sequence types (MLSTs), but with limited genetics and virulence information. In this study, we report a hypermucoviscous K. pneumoniae strain, RJF293, isolated from a human bloodstream sample in a Chinese hospital. It caused a metastatic infection and fatal septic shock in a critical patient. The microbiological features and genetic background were investigated with multiple approaches. The Strain RJF293 was determined to be multilocis sequence type (ST) 374 and serotype K2, displayed a median lethal dose (LD50) of 1.5 × 10 2 CFU in BALB/c mice and was as virulent as the ST23 K1 serotype hvKP strain NTUH-K2044 in a mouse lethality assay. Whole genome sequencing revealed that the RJF293 genome codes for 32 putative virulence factors and exhibits a unique presence/absence pattern in comparison to the other 105 completely sequenced K. pneumoniae genomes. Whole genome SNP-based phylogenetic analysis revealed that strain RJF293 formed a single clade, distant from those containing either ST66 or ST86 hvKP. Compared to the other sequenced hvKP chromosomes, RJF293 contains several strain-variable regions, including one prophage, one ICEKp1 family integrative and conjugative element and six large genomic islands. The sequencing of the first complete genome of an ST374 K2 hvKP clinical strain should reinforce our understanding of the epidemiology and virulence mechanisms of this bloodstream infection-causing hvKP with clinical significance.
Wang, Xiaoli; Xie, Yingzhou; Li, Gang; Liu, Jialin; Li, Xiaobin; Tian, Lijun; Sun, Jingyong; Qu, Hongping
2018-01-01
ABSTRACT Hypervirulent K. pneumoniae variants (hvKP) have been increasingly reported worldwide, causing metastasis of severe infections such as liver abscesses and bacteremia. The capsular serotype K2 hvKP strains show diverse multi-locus sequence types (MLSTs), but with limited genetics and virulence information. In this study, we report a hypermucoviscous K. pneumoniae strain, RJF293, isolated from a human bloodstream sample in a Chinese hospital. It caused a metastatic infection and fatal septic shock in a critical patient. The microbiological features and genetic background were investigated with multiple approaches. The Strain RJF293 was determined to be multilocis sequence type (ST) 374 and serotype K2, displayed a median lethal dose (LD50) of 1.5 × 102 CFU in BALB/c mice and was as virulent as the ST23 K1 serotype hvKP strain NTUH-K2044 in a mouse lethality assay. Whole genome sequencing revealed that the RJF293 genome codes for 32 putative virulence factors and exhibits a unique presence/absence pattern in comparison to the other 105 completely sequenced K. pneumoniae genomes. Whole genome SNP-based phylogenetic analysis revealed that strain RJF293 formed a single clade, distant from those containing either ST66 or ST86 hvKP. Compared to the other sequenced hvKP chromosomes, RJF293 contains several strain-variable regions, including one prophage, one ICEKp1 family integrative and conjugative element and six large genomic islands. The sequencing of the first complete genome of an ST374 K2 hvKP clinical strain should reinforce our understanding of the epidemiology and virulence mechanisms of this bloodstream infection-causing hvKP with clinical significance. PMID:29338592
Henssge, Uta; Do, Thuy; Gilbert, Steven C.; Cox, Steven; Clark, Douglas; Wickström, Claes; Ligtenberg, A. J. M.; Radford, David R.; Beighton, David
2011-01-01
Actinomyces naeslundii and Actinomyces oris are members of the oral biofilm. Their identification using 16S rRNA sequencing is problematic and better achieved by comparison of metG partial sequences. A. oris is more abundant and more frequently isolated than A. naeslundii. We used a multi-locus sequence typing approach to investigate the genotypic diversity of these species and assigned A. naeslundii (n = 37) and A. oris (n = 68) isolates to 32 and 68 sequence types (ST), respectively. Neighbor-joining and ClonalFrame dendrograms derived from the concatenated partial sequences of 7 house-keeping genes identified at least 4 significant subclusters within A. oris and 3 within A. naeslundii. The strain collection we had investigated was an under-representation of the total population since at least 3 STs composed of single strains may represent discrete clusters of strains not well represented in the collection. The integrity of these sub-clusters was supported by the sequence analysis of fimP and fimA, genes coding for the type 1 and 2 fimbriae, respectively. An A. naeslundii subcluster was identified with both fimA and fimP genes and these strains were able to bind to MUC7 and statherin while all other A. naeslundii strains possessed only fimA and did not bind to statherin. An A. oris subcluster harboured a fimA gene similar to that of Actinomyces odontolyticus but no detectable fimP failed to bind significantly to either MUC7 or statherin. These data are evidence of extensive genotypic and phenotypic diversity within the species A. oris and A. naeslundii but the status of the subclusters identified here will require genome comparisons before their phylogenic position can be unequivocally established. PMID:21738661
Henssge, Uta; Do, Thuy; Gilbert, Steven C; Cox, Steven; Clark, Douglas; Wickström, Claes; Ligtenberg, A J M; Radford, David R; Beighton, David
2011-01-01
Actinomyces naeslundii and Actinomyces oris are members of the oral biofilm. Their identification using 16S rRNA sequencing is problematic and better achieved by comparison of metG partial sequences. A. oris is more abundant and more frequently isolated than A. naeslundii. We used a multi-locus sequence typing approach to investigate the genotypic diversity of these species and assigned A. naeslundii (n = 37) and A. oris (n = 68) isolates to 32 and 68 sequence types (ST), respectively. Neighbor-joining and ClonalFrame dendrograms derived from the concatenated partial sequences of 7 house-keeping genes identified at least 4 significant subclusters within A. oris and 3 within A. naeslundii. The strain collection we had investigated was an under-representation of the total population since at least 3 STs composed of single strains may represent discrete clusters of strains not well represented in the collection. The integrity of these sub-clusters was supported by the sequence analysis of fimP and fimA, genes coding for the type 1 and 2 fimbriae, respectively. An A. naeslundii subcluster was identified with both fimA and fimP genes and these strains were able to bind to MUC7 and statherin while all other A. naeslundii strains possessed only fimA and did not bind to statherin. An A. oris subcluster harboured a fimA gene similar to that of Actinomyces odontolyticus but no detectable fimP failed to bind significantly to either MUC7 or statherin. These data are evidence of extensive genotypic and phenotypic diversity within the species A. oris and A. naeslundii but the status of the subclusters identified here will require genome comparisons before their phylogenic position can be unequivocally established.
A RESTful application programming interface for the PubMLST molecular typing and genome databases
Bray, James E.; Maiden, Martin C. J.
2017-01-01
Abstract Molecular typing is used to differentiate microorganisms at the subspecies or strain level for epidemiological investigations, infection control, public health and environmental sampling. DNA sequence-based typing methods require authoritative databases that link sequence variants to nomenclature in order to facilitate communication and comparison of identified types in national or global settings. The PubMLST website (https://pubmlst.org/) fulfils this role for over a hundred microorganisms for which it hosts curated molecular sequence typing data, providing sequence and allelic profile definitions for multi-locus sequence typing (MLST) and single-gene typing approaches. In recent years, these have expanded to cover the whole genome with schemes such as core genome MLST (cgMLST) and whole genome MLST (wgMLST) which catalogue the allelic diversity found in hundreds to thousands of genes. These approaches provide a common nomenclature for high-resolution strain characterization and comparison. Molecular typing information is linked to isolate provenance, phenotype, and increasingly genome assemblies, providing a resource for outbreak investigation and research in to population structure, gene association, global epidemiology and vaccine coverage. A Representational State Transfer (REST) Application Programming Interface (API) has been developed for the PubMLST website to make these large quantities of structured molecular typing and whole genome sequence data available for programmatic access by any third party application. The API is an integral component of the Bacterial Isolate Genome Sequence Database (BIGSdb) platform that is used to host PubMLST resources, and exposes all public data within the site. In addition to data browsing, searching and download, the API supports authentication and submission of new data to curator queues. Database URL: http://rest.pubmlst.org/ PMID:29220452
Comparative Analysis of the Orphan CRISPR2 Locus in 242 Enterococcus faecalis Strains
Hullahalli, Karthik; Rodrigues, Marinelle; Schmidt, Brendan D.; Li, Xiang; Bhardwaj, Pooja; Palmer, Kelli L.
2015-01-01
Clustered, Regularly Interspaced Short Palindromic Repeats and their associated Cas proteins (CRISPR-Cas) provide prokaryotes with a mechanism for defense against mobile genetic elements (MGEs). A CRISPR locus is a molecular memory of MGE encounters. It contains an array of short sequences, called spacers, that generally have sequence identity to MGEs. Three different CRISPR loci have been identified among strains of the opportunistic pathogen Enterococcus faecalis. CRISPR1 and CRISPR3 are associated with the cas genes necessary for blocking MGEs, but these loci are present in only a subset of E. faecalis strains. The orphan CRISPR2 lacks cas genes and is ubiquitous in E. faecalis, although its spacer content varies from strain to strain. Because CRISPR2 is a variable locus occurring in all E. faecalis, comparative analysis of CRISPR2 sequences may provide information about the clonality of E. faecalis strains. We examined CRISPR2 sequences from 228 E. faecalis genomes in relationship to subspecies phylogenetic lineages (sequence types; STs) determined by multilocus sequence typing (MLST), and to a genome phylogeny generated for a representative 71 genomes. We found that specific CRISPR2 sequences are associated with specific STs and with specific branches on the genome tree. To explore possible applications of CRISPR2 analysis, we evaluated 14 E. faecalis bloodstream isolates using CRISPR2 analysis and MLST. CRISPR2 analysis identified two groups of clonal strains among the 14 isolates, an assessment that was confirmed by MLST. CRISPR2 analysis was also used to accurately predict the ST of a subset of isolates. We conclude that CRISPR2 analysis, while not a replacement for MLST, is an inexpensive method to assess clonality among E. faecalis isolates, and can be used in conjunction with MLST to identify recombination events occurring between STs. PMID:26398194
NASA Astrophysics Data System (ADS)
Nallaseth, Ferez Soli
The Y-chromosome presents a unique cytogenetic framework for the evolution of nucleotide sequences. Alignment of nine Y-chromosomal fragments in their increasing Y-specific/non Y-specific (male/female) sequence divergence ratios was directly and inversely related to their interspersion on these two respective genomic fractions. Sequence analysis confirmed a direct relationship between divergence ratios and the Alu, LINE-1, Satellite and their derivative oligonucleotide contents. Thus their relocation on the Y-chromosome is followed by sequence divergence rather than the well documented concerted evolution of these non-coding progenitor repeated sequences. Five of the nine Y-chromosomal fragments are non-pseudoautosomal and transcribed into heterogeneous PolyA^+ RNA and thus can be retrotransposed. Evolutionary and computer analysis identified homologous oligonucleotide tracts in several human loci suggesting common and random mechanistic origins. Dysgenic genomes represent the accelerated evolution driving sequence divergence (McClintock, 1984). Sex reversal and sterility characterizing dysgenesis occurs in C57BL/6JY ^{rm Pos} but not in 129/SvY^{rm Pos} derivative strains. High frequency, random, multi-locus deletion products of the feral Y^{ rm Pos}-chromosome are generated in the germlines of F1(C57BL/6J X 129/SvY^{ rm Pos})(male) and C57BL/6JY ^{rm Pos}(male) but not in 129/SvY^{rm Pos}(male). Equal, 10^{-1}, 10^ {-2}, and 0 copies (relative to males) of Y^{rm Pos}-specific deletion products respectively characterize C57BL/6JY ^{rm Pos} (HC), (LC), (T) and (F) females. The testes determining loci of inactive Y^{rm Pos}-chromosomes in C57BL/6JY^{rm Pos} HC females are the preferentially deleted/rearranged Y ^{rm Pos}-sequences. Disruption of regulation of plasma testosterone and hepatic MUP-A mRNA levels, TRD of a 4.7 Kbp EcoR1 fragment suggest disruption of autosomal/X-chromosomal sequences. These data and the highly repeated progenitor (Alu, GATA, LINE-1) sequence content of deletion products confirmed the previously unidentified loss of genetic control of mammalian chromosome biology and hybrid dysgenesis.
Gardner, Shea N; Wagner, Mark C
2005-01-01
Background Microbial forensics is important in tracking the source of a pathogen, whether the disease is a naturally occurring outbreak or part of a criminal investigation. Results A method and SPR Opt (SNP and PCR-RFLP Optimization) software to perform a comprehensive, whole-genome analysis to forensically discriminate multiple sequences is presented. Tools for the optimization of forensic typing using Single Nucleotide Polymorphism (SNP) and PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) analyses across multiple isolate sequences of a species are described. The PCR-RFLP analysis includes prediction and selection of optimal primers and restriction enzymes to enable maximum isolate discrimination based on sequence information. SPR Opt calculates all SNP or PCR-RFLP variations present in the sequences, groups them into haplotypes according to their co-segregation across those sequences, and performs combinatoric analyses to determine which sets of haplotypes provide maximal discrimination among all the input sequences. Those set combinations requiring that membership in the fewest haplotypes be queried (i.e. the fewest assays be performed) are found. These analyses highlight variable regions based on existing sequence data. These markers may be heterogeneous among unsequenced isolates as well, and thus may be useful for characterizing the relationships among unsequenced as well as sequenced isolates. The predictions are multi-locus. Analyses of mumps and SARS viruses are summarized. Phylogenetic trees created based on SNPs, PCR-RFLPs, and full genomes are compared for SARS virus, illustrating that purported phylogenies based only on SNP or PCR-RFLP variations do not match those based on multiple sequence alignment of the full genomes. Conclusion This is the first software to optimize the selection of forensic markers to maximize information gained from the fewest assays, accepting whole or partial genome sequence data as input. As more sequence data becomes available for multiple strains and isolates of a species, automated, computational approaches such as those described here will be essential to make sense of large amounts of information, and to guide and optimize efforts in the laboratory. The software and source code for SPR Opt is publicly available and free for non-profit use at . PMID:15904493
Thomsen, Martin Christen Frølund; Ahrenfeldt, Johanne; Cisneros, Jose Luis Bellod; Jurtz, Vanessa; Larsen, Mette Voldby; Hasman, Henrik; Aarestrup, Frank Møller; Lund, Ole
2016-01-01
Recent advances in whole genome sequencing have made the technology available for routine use in microbiological laboratories. However, a major obstacle for using this technology is the availability of simple and automatic bioinformatics tools. Based on previously published and already available web-based tools we developed a single pipeline for batch uploading of whole genome sequencing data from multiple bacterial isolates. The pipeline will automatically identify the bacterial species and, if applicable, assemble the genome, identify the multilocus sequence type, plasmids, virulence genes and antimicrobial resistance genes. A short printable report for each sample will be provided and an Excel spreadsheet containing all the metadata and a summary of the results for all submitted samples can be downloaded. The pipeline was benchmarked using datasets previously used to test the individual services. The reported results enable a rapid overview of the major results, and comparing that to the previously found results showed that the platform is reliable and able to correctly predict the species and find most of the expected genes automatically. In conclusion, a combined bioinformatics platform was developed and made publicly available, providing easy-to-use automated analysis of bacterial whole genome sequencing data. The platform may be of immediate relevance as a guide for investigators using whole genome sequencing for clinical diagnostics and surveillance. The platform is freely available at: https://cge.cbs.dtu.dk/services/CGEpipeline-1.1 and it is the intention that it will continue to be expanded with new features as these become available.
Pettengill, James B; Pightling, Arthur W; Baugher, Joseph D; Rand, Hugh; Strain, Errol
2016-01-01
The adoption of whole-genome sequencing within the public health realm for molecular characterization of bacterial pathogens has been followed by an increased emphasis on real-time detection of emerging outbreaks (e.g., food-borne Salmonellosis). In turn, large databases of whole-genome sequence data are being populated. These databases currently contain tens of thousands of samples and are expected to grow to hundreds of thousands within a few years. For these databases to be of optimal use one must be able to quickly interrogate them to accurately determine the genetic distances among a set of samples. Being able to do so is challenging due to both biological (evolutionary diverse samples) and computational (petabytes of sequence data) issues. We evaluated seven measures of genetic distance, which were estimated from either k-mer profiles (Jaccard, Euclidean, Manhattan, Mash Jaccard, and Mash distances) or nucleotide sites (NUCmer and an extended multi-locus sequence typing (MLST) scheme). When analyzing empirical data (whole-genome sequence data from 18,997 Salmonella isolates) there are features (e.g., genomic, assembly, and contamination) that cause distances inferred from k-mer profiles, which treat absent data as informative, to fail to accurately capture the distance between samples when compared to distances inferred from differences in nucleotide sites. Thus, site-based distances, like NUCmer and extended MLST, are superior in performance, but accessing the computing resources necessary to perform them may be challenging when analyzing large databases.
Pettengill, James B.; Pightling, Arthur W.; Baugher, Joseph D.; ...
2016-11-10
The adoption of whole-genome sequencing within the public health realm for molecular characterization of bacterial pathogens has been followed by an increased emphasis on real-time detection of emerging outbreaks (e.g., food-borne Salmonellosis). In turn, large databases of whole-genome sequence data are being populated. These databases currently contain tens of thousands of samples and are expected to grow to hundreds of thousands within a few years. For these databases to be of optimal use one must be able to quickly interrogate them to accurately determine the genetic distances among a set of samples. Being able to do so is challenging duemore » to both biological (evolutionary diverse samples) and computational (petabytes of sequence data) issues. We evaluated seven measures of genetic distance, which were estimated from either k-mer profiles (Jaccard, Euclidean, Manhattan, Mash Jaccard, and Mash distances) or nucleotide sites (NUCmer and an extended multi-locus sequence typing (MLST) scheme). Finally, when analyzing empirical data (wholegenome sequence data from 18,997 Salmonella isolates) there are features (e.g., genomic, assembly, and contamination) that cause distances inferred from k-mer profiles, which treat absent data as informative, to fail to accurately capture the distance between samples when compared to distances inferred from differences in nucleotide sites. Thus, site-based distances, like NUCmer and extended MLST, are superior in performance, but accessing the computing resources necessary to perform them may be challenging when analyzing large databases.« less
Tong, Steven Y.C.; Holden, Matthew T.G.; Nickerson, Emma K.; Cooper, Ben S.; Köser, Claudio U.; Cori, Anne; Jombart, Thibaut; Cauchemez, Simon; Fraser, Christophe; Wuthiekanun, Vanaporn; Thaipadungpanit, Janjira; Hongsuwan, Maliwan; Day, Nicholas P.; Limmathurotsakul, Direk; Parkhill, Julian; Peacock, Sharon J.
2015-01-01
Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of nosocomial infection. Whole-genome sequencing of MRSA has been used to define phylogeny and transmission in well-resourced healthcare settings, yet the greatest burden of nosocomial infection occurs in resource-restricted settings where barriers to transmission are lower. Here, we study the flux and genetic diversity of MRSA on ward and individual patient levels in a hospital where transmission was common. We repeatedly screened all patients on two intensive care units for MRSA carriage over a 3-mo period. All MRSA belonged to multilocus sequence type 239 (ST 239). We defined the population structure and charted the spread of MRSA by sequencing 79 isolates from 46 patients and five members of staff, including the first MRSA-positive screen isolates and up to two repeat isolates where available. Phylogenetic analysis identified a flux of distinct ST 239 clades over time in each intensive care unit. In total, five main clades were identified, which varied in the carriage of plasmids encoding antiseptic and antimicrobial resistance determinants. Sequence data confirmed intra- and interwards transmission events and identified individual patients who were colonized by more than one clade. One patient on each unit was the source of numerous transmission events, and deep sampling of one of these cases demonstrated colonization with a “cloud” of related MRSA variants. The application of whole-genome sequencing and analysis provides novel insights into the transmission of MRSA in under-resourced healthcare settings and has relevance to wider global health. PMID:25491771
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettengill, James B.; Pightling, Arthur W.; Baugher, Joseph D.
The adoption of whole-genome sequencing within the public health realm for molecular characterization of bacterial pathogens has been followed by an increased emphasis on real-time detection of emerging outbreaks (e.g., food-borne Salmonellosis). In turn, large databases of whole-genome sequence data are being populated. These databases currently contain tens of thousands of samples and are expected to grow to hundreds of thousands within a few years. For these databases to be of optimal use one must be able to quickly interrogate them to accurately determine the genetic distances among a set of samples. Being able to do so is challenging duemore » to both biological (evolutionary diverse samples) and computational (petabytes of sequence data) issues. We evaluated seven measures of genetic distance, which were estimated from either k-mer profiles (Jaccard, Euclidean, Manhattan, Mash Jaccard, and Mash distances) or nucleotide sites (NUCmer and an extended multi-locus sequence typing (MLST) scheme). Finally, when analyzing empirical data (wholegenome sequence data from 18,997 Salmonella isolates) there are features (e.g., genomic, assembly, and contamination) that cause distances inferred from k-mer profiles, which treat absent data as informative, to fail to accurately capture the distance between samples when compared to distances inferred from differences in nucleotide sites. Thus, site-based distances, like NUCmer and extended MLST, are superior in performance, but accessing the computing resources necessary to perform them may be challenging when analyzing large databases.« less
Podin, Yuwana; Sarovich, Derek S.; Price, Erin P.; Kaestli, Mirjam; Mayo, Mark; Hii, KingChing; Ngian, HieUng; Wong, SeeChang; Wong, IngTien; Wong, JinShyan; Mohan, Anand; Ooi, MongHow; Fam, TemLom; Wong, Jack; Tuanyok, Apichai; Keim, Paul; Giffard, Philip M.
2014-01-01
Melioidosis is a potentially fatal disease caused by the saprophytic bacterium Burkholderia pseudomallei. Resistance to gentamicin is generally a hallmark of B. pseudomallei, and gentamicin is a selective agent in media used for diagnosis of melioidosis. In this study, we determined the prevalence and mechanism of gentamicin susceptibility found in B. pseudomallei isolates from Sarawak, Malaysian Borneo. We performed multilocus sequence typing and antibiotic susceptibility testing on 44 B. pseudomallei clinical isolates from melioidosis patients in Sarawak district hospitals. Whole-genome sequencing was used to identify the mechanism of gentamicin susceptibility. A novel allelic-specific PCR was designed to differentiate gentamicin-sensitive isolates from wild-type B. pseudomallei. A reversion assay was performed to confirm the involvement of this mechanism in gentamicin susceptibility. A substantial proportion (86%) of B. pseudomallei clinical isolates in Sarawak, Malaysian Borneo, were found to be susceptible to the aminoglycoside gentamicin, a rare occurrence in other regions where B. pseudomallei is endemic. Gentamicin sensitivity was restricted to genetically related strains belonging to sequence type 881 or its single-locus variant, sequence type 997. Whole-genome sequencing identified a novel nonsynonymous mutation within amrB, encoding an essential component of the AmrAB-OprA multidrug efflux pump. We confirmed the role of this mutation in conferring aminoglycoside and macrolide sensitivity by reversion of this mutation to the wild-type sequence. Our study demonstrates that alternative B. pseudomallei selective media without gentamicin are needed for accurate melioidosis laboratory diagnosis in Sarawak. This finding may also have implications for environmental sampling of other locations to test for B. pseudomallei endemicity. PMID:24145517
Podin, Yuwana; Sarovich, Derek S; Price, Erin P; Kaestli, Mirjam; Mayo, Mark; Hii, KingChing; Ngian, Hieung; Wong, SeeChang; Wong, IngTien; Wong, JinShyan; Mohan, Anand; Ooi, MongHow; Fam, TemLom; Wong, Jack; Tuanyok, Apichai; Keim, Paul; Giffard, Philip M; Currie, Bart J
2014-01-01
Melioidosis is a potentially fatal disease caused by the saprophytic bacterium Burkholderia pseudomallei. Resistance to gentamicin is generally a hallmark of B. pseudomallei, and gentamicin is a selective agent in media used for diagnosis of melioidosis. In this study, we determined the prevalence and mechanism of gentamicin susceptibility found in B. pseudomallei isolates from Sarawak, Malaysian Borneo. We performed multilocus sequence typing and antibiotic susceptibility testing on 44 B. pseudomallei clinical isolates from melioidosis patients in Sarawak district hospitals. Whole-genome sequencing was used to identify the mechanism of gentamicin susceptibility. A novel allelic-specific PCR was designed to differentiate gentamicin-sensitive isolates from wild-type B. pseudomallei. A reversion assay was performed to confirm the involvement of this mechanism in gentamicin susceptibility. A substantial proportion (86%) of B. pseudomallei clinical isolates in Sarawak, Malaysian Borneo, were found to be susceptible to the aminoglycoside gentamicin, a rare occurrence in other regions where B. pseudomallei is endemic. Gentamicin sensitivity was restricted to genetically related strains belonging to sequence type 881 or its single-locus variant, sequence type 997. Whole-genome sequencing identified a novel nonsynonymous mutation within amrB, encoding an essential component of the AmrAB-OprA multidrug efflux pump. We confirmed the role of this mutation in conferring aminoglycoside and macrolide sensitivity by reversion of this mutation to the wild-type sequence. Our study demonstrates that alternative B. pseudomallei selective media without gentamicin are needed for accurate melioidosis laboratory diagnosis in Sarawak. This finding may also have implications for environmental sampling of other locations to test for B. pseudomallei endemicity.
Johnson, Timothy J; Kariyawasam, Subhashinie; Wannemuehler, Yvonne; Mangiamele, Paul; Johnson, Sara J; Doetkott, Curt; Skyberg, Jerod A; Lynne, Aaron M; Johnson, James R; Nolan, Lisa K
2007-04-01
Escherichia coli strains that cause disease outside the intestine are known as extraintestinal pathogenic E. coli (ExPEC) and include human uropathogenic E. coli (UPEC) and avian pathogenic E. coli (APEC). Regardless of host of origin, ExPEC strains share many traits. It has been suggested that these commonalities may enable APEC to cause disease in humans. Here, we begin to test the hypothesis that certain APEC strains possess potential to cause human urinary tract infection through virulence genotyping of 1,000 APEC and UPEC strains, generation of the first complete genomic sequence of an APEC (APEC O1:K1:H7) strain, and comparison of this genome to all available human ExPEC genomic sequences. The genomes of APEC O1 and three human UPEC strains were found to be remarkably similar, with only 4.5% of APEC O1's genome not found in other sequenced ExPEC genomes. Also, use of multilocus sequence typing showed that some of the sequenced human ExPEC strains were more like APEC O1 than other human ExPEC strains. This work provides evidence that at least some human and avian ExPEC strains are highly similar to one another, and it supports the possibility that a food-borne link between some APEC and UPEC strains exists. Future studies are necessary to assess the ability of APEC to overcome the hurdles necessary for such a food-borne transmission, and epidemiological studies are required to confirm that such a phenomenon actually occurs.
Population sub-structuring among Trypanosoma evansi stocks.
Njiru, Z K; Constantine, C C
2007-10-01
To investigate the population genetic structure of Trypanosoma evansi from domesticated animals, we have analysed 112 stocks from camels, buffaloes, cattle and horses using the tandemly repeated coding sequence (MORF2) and minisatellite markers 292 and cysteine-rich acidic integral membrane protein (CRAM). We recorded a total of six alleles at the MORF2 locus, seven at 292 and 12 at the CRAM loci. Nei's genetic distance showed reduced allelic diversity between buffaloes and cattle stocks (1.2) as compared to the diversity between camels and buffaloes (3.75) and camels and cattle stock (1.69). The mean index of association (IA=0.92) significantly deviated from zero, and the average number of multilocus genotypes (G/N ratio) was 0.21. Twenty-four multilocus genotypes were defined from the combination of alleles at the three loci. The Kenyan sub-populations showed Fst=0.28 and analysis of molecular variance showed significant divergence (22.7%) between the Laikipia, Kulal and Galana regions. The regional and host distribution of multi-locus genotypes significant population differentiation and high Nei's genetic distances suggest existence of genetic sub-structuring within T. evansi stocks while the few multi-locus genotypes and deviation of association index from zero indicate the lack of recombination. In conclusion, this study reveals that some genetic sub-structuring does occur within T. evansi, which has a clonal population structure.
Taboada, Eduardo; Grant, Christopher C. R.; Blakeston, Connie; Pollari, Frank; Marshall, Barbara; Rahn, Kris; MacKinnon, Joanne; Daignault, Danielle; Pillai, Dylan; Ng, Lai-King
2012-01-01
Campylobacter spp. may be responsible for unreported outbreaks of food-borne disease. The detection of these outbreaks is made more difficult by the fact that appropriate methods for detecting clusters of Campylobacter have not been well defined. We have compared the characteristics of five molecular typing methods on Campylobacter jejuni and C. coli isolates obtained from human and nonhuman sources during sentinel site surveillance during a 3-year period. Comparative genomic fingerprinting (CGF) appears to be one of the optimal methods for the detection of clusters of cases, and it could be supplemented by the sequencing of the flaA gene short variable region (flaA SVR sequence typing), with or without subsequent multilocus sequence typing (MLST). Different methods may be optimal for uncovering different aspects of source attribution. Finally, the use of several different molecular typing or analysis methods for comparing individuals within a population reveals much more about that population than a single method. Similarly, comparing several different typing methods reveals a great deal about differences in how the methods group individuals within the population. PMID:22162562
Bradyrhizobium sacchari sp. nov., a legume nodulating bacterium isolated from sugarcane roots.
de Matos, Gustavo Feitosa; Zilli, Jerri Edson; de Araújo, Jean Luiz Simões; Parma, Marcia Maria; Melo, Itamar Soares; Radl, Viviane; Baldani, José Ivo; Rouws, Luc Felicianus Marie
2017-11-01
Members of the genus Bradyrhizobium are well-known as nitrogen-fixing microsymbionts of a wide variety of leguminous species, but they have also been found in different environments, notably as endophytes in non-legumes such as sugarcane. This study presents a detailed polyphasic characterization of four Bradyrhizobium strains (type strain BR 10280 T ), previously isolated from roots of sugarcane in Brazil. 16S rRNA sequence analysis, multilocus sequence analysis (MLSA) and analysis of the 16S-23S rRNA internal transcribed spacer showed that these strains form a novel clade close to, but different from B. huanghuaihaiense strain CCBAU 23303 T . Average nucleotide identity (ANI) analyses confirmed that BR 10280 T represents a novel species. Phylogenetic analysis based on nodC gene sequences also placed the strains close to CCBAU 23303 T , but different from this latter strain, the sugarcane strains did not nodulate soybean, although they effectively nodulated Vigna unguiculata, Cajanus cajan and Macroptilium atropurpureum. Physiological traits are in agreement with the placement of the strains in the genus Bradyrhizobium as a novel species for which the name Bradyrhizobium sacchari sp. nov. is proposed.
Lefoulon, Emilie; Bourret, Jérôme; Junker, Kerstin; Guerrero, Ricardo; Cañizales, Israel; Kuzmin, Yuriy; Satoto, Tri Baskoro T.; Cardenas-Callirgos, Jorge Manuel; de Souza Lima, Sueli; Raccurt, Christian; Mutafchiev, Yasen; Gavotte, Laurent; Martin, Coralie
2015-01-01
During the past twenty years, a number of molecular analyses have been performed to determine the evolutionary relationships of Onchocercidae, a family of filarial nematodes encompassing several species of medical or veterinary importance. However, opportunities for broad taxonomic sampling have been scarce, and analyses were based mainly on 12S rDNA and coxI gene sequences. While being suitable for species differentiation, these mitochondrial genes cannot be used to infer phylogenetic hypotheses at higher taxonomic levels. In the present study, 48 species, representing seven of eight subfamilies within the Onchocercidae, were sampled and sequences of seven gene loci (nuclear and mitochondrial) analysed, resulting in the hitherto largest molecular phylogenetic investigation into this family. Although our data support the current hypothesis that the Oswaldofilariinae, Waltonellinae and Icosiellinae subfamilies separated early from the remaining onchocercids, Setariinae was recovered as a well separated clade. Dirofilaria, Loxodontofilaria and Onchocerca constituted a strongly supported clade despite belonging to different subfamilies (Onchocercinae and Dirofilariinae). Finally, the separation between Splendidofilariinae, Dirofilariinae and Onchocercinae will have to be reconsidered. PMID:26588229
Halbedel, Sven; Prager, Rita; Fuchs, Stephan; Trost, Eva; Werner, Guido; Flieger, Antje
2018-06-01
Listeria monocytogenes causes foodborne outbreaks with high mortality. For improvement of outbreak cluster detection, the German consiliary laboratory for listeriosis implemented whole-genome sequencing (WGS) in 2015. A total of 424 human L. monocytogenes isolates collected in 2007 to 2017 were subjected to WGS and core-genome multilocus sequence typing (cgMLST). cgMLST grouped the isolates into 38 complexes, reflecting 4 known and 34 unknown disease clusters. Most of these complexes were confirmed by single nucleotide polymorphism (SNP) calling, but some were further differentiated. Interestingly, several cgMLST cluster types were further subtyped by pulsed-field gel electrophoresis, partly due to phage insertions in the accessory genome. Our results highlight the usefulness of cgMLST for routine cluster detection but also show that cgMLST complexes require validation by methods providing higher typing resolution. Twelve cgMLST clusters included recent cases, suggesting activity of the source. Therefore, the cgMLST nomenclature data presented here may support future public health actions. Copyright © 2018 American Society for Microbiology.
Rodriguero, Marcela S; Wirth, Sonia A; Alberghina, Josefina S; Lanteri, Analía A; Confalonieri, Viviana A
2018-01-01
Naupactus cervinus (Boheman) (Curculionidae, Naupactini) is a parthenogenetic weevil native to the Paranaense Forest which displays high levels of genetic variation. Two divergent clades were identified, one ranging in forest areas (Forest clade), and the other in open vegetation areas (Grassland clade). Both of them have individuals with high levels of heterozygosity in ribosomal sequences. Investigation of intraindividual variation in ITS1 sequences through cloning and posterior sequencing suggested that mating between both groups most likely occurred in the Paranaense Forest after a secondary contact, which led to fixed heterozygotes as a consequence of parthenogenesis. Otherwise, sexual segregation would have disrupted multilocus genotypes. Only a small number of heterozygous genotypes of all the possible combinations are found in nature. We propose the occurrence of a hybrid zone in the Paranaense Forest. The fact that it is one of the most important biodiversity hotspots of the world, together with its key role for investigating evolutionary processes, makes it worthy of conservation. This is the first genetic evidence of bisexuality in N. cervinus.
Anthrax Toxin-Expressing Bacillus cereus Isolated from an Anthrax-Like Eschar.
Marston, Chung K; Ibrahim, Hisham; Lee, Philip; Churchwell, George; Gumke, Megan; Stanek, Danielle; Gee, Jay E; Boyer, Anne E; Gallegos-Candela, Maribel; Barr, John R; Li, Han; Boulay, Darbi; Cronin, Li; Quinn, Conrad P; Hoffmaster, Alex R
2016-01-01
Bacillus cereus isolates have been described harboring Bacillus anthracis toxin genes, most notably B. cereus G9241, and capable of causing severe and fatal pneumonias. This report describes the characterization of a B. cereus isolate, BcFL2013, associated with a naturally occurring cutaneous lesion resembling an anthrax eschar. Similar to G9241, BcFL2013 is positive for the B. anthracis pXO1 toxin genes, has a multi-locus sequence type of 78, and a pagA sequence type of 9. Whole genome sequencing confirms the similarity to G9241. In addition to the chromosome having an average nucleotide identity of 99.98% when compared to G9241, BcFL2013 harbors three plasmids with varying homology to the G9241 plasmids (pBCXO1, pBC210 and pBFH_1). This is also the first report to include serologic testing of patient specimens associated with this type of B. cereus infection which resulted in the detection of anthrax lethal factor toxemia, a quantifiable serum antibody response to protective antigen (PA), and lethal toxin neutralization activity.
Dutheil, Julien; Gaillard, Sylvain; Bazin, Eric; Glémin, Sylvain; Ranwez, Vincent; Galtier, Nicolas; Belkhir, Khalid
2006-04-04
A large number of bioinformatics applications in the fields of bio-sequence analysis, molecular evolution and population genetics typically share input/output methods, data storage requirements and data analysis algorithms. Such common features may be conveniently bundled into re-usable libraries, which enable the rapid development of new methods and robust applications. We present Bio++, a set of Object Oriented libraries written in C++. Available components include classes for data storage and handling (nucleotide/amino-acid/codon sequences, trees, distance matrices, population genetics datasets), various input/output formats, basic sequence manipulation (concatenation, transcription, translation, etc.), phylogenetic analysis (maximum parsimony, markov models, distance methods, likelihood computation and maximization), population genetics/genomics (diversity statistics, neutrality tests, various multi-locus analyses) and various algorithms for numerical calculus. Implementation of methods aims at being both efficient and user-friendly. A special concern was given to the library design to enable easy extension and new methods development. We defined a general hierarchy of classes that allow the developer to implement its own algorithms while remaining compatible with the rest of the libraries. Bio++ source code is distributed free of charge under the CeCILL general public licence from its website http://kimura.univ-montp2.fr/BioPP.
Zhang, Haifang; Zhang, Xiaolei; Yan, Meiying; Pang, Bo; Kan, Biao; Xu, Huaxi; Huang, Xinxiang
2011-12-15
To determine the genotype of Salmonella enterica serovar Typhi (S. Typhi) strains in China and analyze their genetic diversity. We collected S. Typhi strains from 1959 to 2006 in five highly endemic Chinese provinces and chose 40 representative strains. Multilocus sequence typing was used to determine the genotypes or sequence types (ST) and microarray-based comparative genomic hybridization (M-CGH) to investigate the differences in gene content among these strains. Forty representative S. Typhi strains belonged to 4 sequence types (ST1, ST2, ST890, and ST892). The predominant S. Typhi genotype (31/40) was ST2 and it had a diverse geographic distribution. We discovered two novel STs - ST890 and ST892. M-CGH showed that 69 genes in these two novel STs were divergent from S. Typhi Ty2, which belongs to ST1. In addition, 5 representative Typhi strains of ST2 isolated from Guizhou province showed differences in divergent genes. We determined two novel sequence types, ST890 and ST892, and found that ST2 was the most prevalent genotype of S. Typhi in China. Genetic diversity was present even within a highly clonal bacterial population.
“Epidemic Clones” of Listeria monocytogenes Are Widespread and Ancient Clonal Groups
Cantinelli, Thomas; Chenal-Francisque, Viviane; Diancourt, Laure; Frezal, Lise; Leclercq, Alexandre; Wirth, Thierry
2013-01-01
The food-borne pathogen Listeria monocytogenes is genetically heterogeneous. Although some clonal groups have been implicated in multiple outbreaks, there is currently no consensus on how “epidemic clones” should be defined. The objectives of this work were to compare the patterns of sequence diversity on two sets of genes that have been widely used to define L. monocytogenes clonal groups: multilocus sequence typing (MLST) and multi-virulence-locus sequence typing (MvLST). Further, we evaluated the diversity within clonal groups by pulsed-field gel electrophoresis (PFGE). Based on 125 isolates of diverse temporal, geographical, and source origins, MLST and MvLST genes (i) had similar patterns of sequence polymorphisms, recombination, and selection, (ii) provided concordant phylogenetic clustering, and (iii) had similar discriminatory power, which was not improved when we combined both data sets. Inclusion of representative strains of previous outbreaks demonstrated the correspondence of epidemic clones with previously recognized MLST clonal complexes. PFGE analysis demonstrated heterogeneity within major clones, most of which were isolated decades before their involvement in outbreaks. We conclude that the “epidemic clone” denominations represent a redundant but largely incomplete nomenclature system for MLST-defined clones, which must be regarded as successful genetic groups that are widely distributed across time and space. PMID:24006010
Genomic insights into the taxonomic status of the Bacillus cereus group
Liu, Yang; Lai, Qiliang; Göker, Markus; Meier-Kolthoff, Jan P.; Wang, Meng; Sun, Yamin; Wang, Lei; Shao, Zongze
2015-01-01
The identification and phylogenetic relationships of bacteria within the Bacillus cereus group are controversial. This study aimed at determining the taxonomic affiliations of these strains using the whole-genome sequence-based Genome BLAST Distance Phylogeny (GBDP) approach. The GBDP analysis clearly separated 224 strains into 30 clusters, representing eleven known, partially merged species and accordingly 19–20 putative novel species. Additionally, 16S rRNA gene analysis, a novel variant of multi-locus sequence analysis (nMLSA) and screening of virulence genes were performed. The 16S rRNA gene sequence was not sufficient to differentiate the bacteria within this group due to its high conservation. The nMLSA results were consistent with GBDP. Moreover, a fast typing method was proposed using the pycA gene, and where necessary, the ccpA gene. The pXO plasmids and cry genes were widely distributed, suggesting little correlation with the phylogenetic positions of the host bacteria. This might explain why classifications based on virulence characteristics proved unsatisfactory in the past. In summary, this is the first large-scale and systematic study of the taxonomic status of the bacteria within the B. cereus group using whole-genome sequences, and is likely to contribute to further insights into their pathogenicity, phylogeny and adaptation to diverse environments. PMID:26373441
Kumar, Rakshak; Acharya, Vishal; Singh, Dharam; Kumar, Sanjay
2018-01-01
A light pink coloured bacterial strain ERGS5:01 isolated from glacial stream water of Sikkim Himalaya was affiliated to Janthinobacterium lividum based on 16S rRNA gene sequence identity and phylogenetic clustering. Whole genome sequencing was performed for the strain to confirm its taxonomy as it lacked the typical violet pigmentation of the genus and also to decipher its survival strategy at the aquatic ecosystem of high elevation. The PacBio RSII sequencing generated genome of 5,168,928 bp with 4575 protein-coding genes and 118 RNA genes. Whole genome-based multilocus sequence analysis clustering, in silico DDH similarity value of 95.1% and, the ANI value of 99.25% established the identity of the strain ERGS5:01 (MCC 2953) as a non-violacein producing J. lividum . The genome comparisons across genus Janthinobacterium revealed an open pan-genome with the scope of the addition of new orthologous cluster to complete the genomic inventory. The genomic insight provided the genetic basis of freezing and frequent freeze-thaw cycle tolerance and, for industrially important enzymes. Extended insight into the genome provided clues of crucial genes associated with adaptation in the harsh aquatic ecosystem of high altitude.
Bachiri, Taous; Bakour, Sofiane; Lalaoui, Rym; Belkebla, Nadia; Allouache, Meriem; Rolain, Jean Marc; Touati, Abdelaziz
2018-04-01
The aim of the present study was to screen for the presence of carbapenemase-producing Enterobacteriaceae (CPE) isolates from wild boars and Barbary macaques in Algeria. Fecal samples were collected from wild boars (n = 168) and Barbary macaques (n = 212), in Bejaia, Algeria, between September 2014 and April 2016. The isolates were identified and antimicrobial susceptibility was determined. Carbapenem resistance determinants were studied using PCR and sequencing, while clonal relatedness was performed using multilocus sequence typing (MLST). PCR was used to investigate certain virulence genes. Three CPE isolates from three different samples (1.8%) recovered from wild boars were identified as Escherichia coli (two isolates) and Klebsiella pneumoniae (one isolate). These isolates were resistant to amoxicillin, amoxicillin-clavulanate, tobramycin, ertapenem, and meropenem. The results of PCR and sequencing analysis showed that all three isolates produced the OXA-48 enzyme. The MLST showed that the two E. coli isolates were assigned to the same sequence type, ST635, and belonged to phylogroup A, whereas K. pneumoniae strain belonged to ST13. The K. pneumoniae strain was positive for multiple virulence factors, whereas no virulence determinants were found in E. coli isolates. This is the first report of OXA-48-producing Enterobacteriaceae in wild animals from Algeria and Africa.
Seok, Yoonmi; Bae, Il Kwon; Jeong, Seok Hoon; Kim, Soo Hyun; Lee, Hyukmin; Lee, Kyungwon
2011-12-01
To investigate the epidemiological traits of Pseudomonas aeruginosa clinical isolates producing metallo-β-lactamases (MBLs) in Korea. A total of 386 non-duplicate P. aeruginosa clinical isolates were collected from Korea in 2009. Detection of MBL genes was performed by PCR. The genetic organization of class 1 integrons carrying the MBL gene cassette was investigated by PCR mapping and sequencing. The epidemiological relationships of the isolates were investigated by multilocus sequence typing and PFGE. Of 386 P. aeruginosa isolates, 30 (7.8%) isolates carried the bla(IMP-6) gene and 1 (0.3%) isolate carried the bla(VIM-2) gene. A probe specific for the bla(IMP-6) gene was hybridized to an ∼950 kbp I-CeuI-macrorestriction fragment from all 30 isolates and a probe specific for the bla(VIM-2) gene also hybridized to an ∼500 kbp I-CeuI-macrorestriction fragment from 1 isolate (BDC10). All 31 MBL-producing isolates shared an identical sequence type (ST), ST235, and they carried the same bla(OXA-50) allelic type, bla(OXA-50g). All MBL-producing isolates showed similar XbaI-macrorestriction patterns (similarity >85%), irrespective of MBL genotype. P. aeruginosa ST235 carrying the chromosomally located bla(IMP-6) gene is widely disseminated in Korea.
Yan, Qiongqiong; Fanning, Séamus
2015-01-01
Cronobacter species are emerging opportunistic food-borne pathogens, which consists of seven species, including C. sakazakii, C. malonaticus, C. muytjensii, C. turicensis, C. dublinensis, C. universalis, and C. condimenti. The organism can cause severe clinical infections, including necrotizing enterocolitis, septicemia, and meningitis, predominately among neonates <4 weeks of age. Cronobacter species can be isolated from various foods and their surrounding environments; however, powdered infant formula (PIF) is the most frequently implicated food source linked with Cronobacter infection. This review aims to provide a summary of laboratory-based strategies that can be used to identify and trace Cronobacter species. The identification of Cronobacter species using conventional culture method and immuno-based detection protocols were first presented. The molecular detection and identification at genus-, and species-level along with molecular-based serogroup approaches are also described, followed by the molecular sub-typing methods, in particular pulsed-field gel electrophoresis and multi-locus sequence typing. Next generation sequence approaches, including whole genome sequencing, DNA microarray, and high-throughput whole-transcriptome sequencing, are also highlighted. Appropriate application of these strategies would contribute to reduce the risk of Cronobacter contamination in PIF and production environments, thereby improving food safety and protecting public health. PMID:26000266
Pantoea allii sp. nov., isolated from onion plants and seed.
Brady, Carrie L; Goszczynska, Teresa; Venter, Stephanus N; Cleenwerck, Ilse; De Vos, Paul; Gitaitis, Ronald D; Coutinho, Teresa A
2011-04-01
Eight yellow-pigmented, Gram-negative, rod-shaped, oxidase-negative, motile, facultatively anaerobic bacteria were isolated from onion seed in South Africa and from an onion plant exhibiting centre rot symptoms in the USA. The isolates were assigned to the genus Pantoea on the basis of phenotypic and biochemical tests. 16S rRNA gene sequence analysis and multilocus sequence analysis (MLSA), based on gyrB, rpoB, infB and atpD sequences, confirmed the allocation of the isolates to the genus Pantoea. MLSA further indicated that the isolates represented a novel species, which was phylogenetically most closely related to Pantoea ananatis and Pantoea stewartii. Amplified fragment length polymorphism analysis also placed the isolates into a cluster separate from P. ananatis and P. stewartii. Compared with type strains of species of the genus Pantoea that showed >97 % 16S rRNA gene sequence similarity with strain BD 390(T), the isolates exhibited 11-55 % whole-genome DNA-DNA relatedness, which confirmed the classification of the isolates in a novel species. The most useful phenotypic characteristics for the differentiation of the isolates from their closest phylogenetic neighbours are production of acid from amygdalin and utilization of adonitol and sorbitol. A novel species, Pantoea allii sp. nov., is proposed, with type strain BD 390(T) ( = LMG 24248(T)).
Pseudomonas aestus sp. nov., a plant growth-promoting bacterium isolated from mangrove sediments.
Vasconcellos, Rafael L F; Santos, Suikinai Nobre; Zucchi, Tiago Domingues; Silva, Fábio Sérgio Paulino; Souza, Danilo Tosta; Melo, Itamar Soares
2017-10-01
Strain CMAA 1215 T , a Gram-reaction-negative, aerobic, catalase positive, polarly flagellated, motile, rod-shaped (0.5-0.8 × 1.3-1.9 µm) bacterium, was isolated from mangrove sediments, Cananéia Island, Brazil. Analysis of the 16S rRNA gene sequences showed that strain CMAA 1215 T forms a distinct phyletic line within the Pseudomonas putida subclade, being closely related to P. plecoglossicida ATCC 700383 T , P. monteilii NBRC 103158 T , and P. taiwanensis BCRC 17751 T of sequence similarity of 98.86, 98.73, and 98.71%, respectively. Genomic comparisons of the strain CMAA 1215 T with its closest phylogenetic type strains using average nucleotide index (ANI) and DNA:DNA relatedness approaches revealed 84.3-85.3% and 56.0-63.0%, respectively. A multilocus sequence analysis (MLSA) performed concatenating 16S rRNA, gyrB and rpoB gene sequences from the novel species was related with Pseudomonas putida subcluster and formed a new phylogenetic lineage. The phenotypic, physiological, biochemical, and genetic characteristics support the assignment of CMAA 1215 T to the genus Pseudomonas, representing a novel species. The name Pseudomonas aestus sp.nov. is proposed, with CMAA 1215 T (=NRRL B-653100 T = CBMAI 1962 T ) as the type strain.
Plantmediated horizontal transmission of Wolbachia between whiteflies
Li, Shao-Jian; Ahmed, Muhammad Z; Lv, Ning; Shi, Pei-Qiong; Wang, Xing-Min; Huang, Ji-Lei; Qiu, Bao-Li
2017-01-01
Maternal transmission is the main transmission pathway of facultative bacterial endosymbionts, but phylogenetically distant insect hosts harbor closely related endosymbionts, suggesting that horizontal transmission occurs in nature. Here we report the first case of plant-mediated horizontal transmission of Wolbachia between infected and uninfected Bemisia tabaci AsiaII7 whiteflies. After infected whiteflies fed on cotton leaves, Wolbachia was visualized, both in the phloem vessels and in some novel ‘reservoir' spherules along the phloem by fluorescence in situ hybridization using Wolbachia-specific 16S rRNA probes and transmission electron microscopy. Wolbachia persisted in the plant leaves for at least 50 days. When the Wolbachia-free whiteflies fed on the infected plant leaves, the majority of them became infected with the symbiont and vertically transmitted it to their progeny. Multilocus sequence typing and sequencing of the wsp (Wolbachia surface protein) gene confirmed that the sequence type of Wolbachia in the donor whiteflies, cotton phloem and the recipient whiteflies are all identical (sequence type 388). These results were replicated using cowpea and cucumber plants, suggesting that horizontal transmission is also possible through other plant species. Our findings may help explain why Wolbachia bacteria are so abundant in arthropods, and suggest that in some species, Wolbachia may be maintained in populations by horizontal transmission. PMID:27935594
Van der Bij, A K; Van der Zwan, D; Peirano, G; Severin, J A; Pitout, J D D; Van Westreenen, M; Goessens, W H F
2012-09-01
Recently, the first outbreak of clonally related VIM-2 metallo-β-lactamase (MBL)-producing Pseudomonas aeruginosa in a Dutch tertiary-care centre was described. Subsequently, a nationwide surveillance study was performed in 2010-2011, which identified the presence of VIM-2 MBL-producing P. aeruginosa in 11 different hospitals. Genotyping by multiple-locus variable-number tandem-repeat analysis (MLVA) showed that the majority of the 82 MBL-producing isolates found belonged to a single MLVA type (n = 70, 85%), identified as ST111 by multilocus sequence typing (MLST). As MBL-producing isolates cause serious infections that are difficult to treat, the presence of clonally related isolates in various hospitals throughout the Netherlands is of nationwide concern. © 2012 The Authors. Clinical Microbiology and Infection © 2012 European Society of Clinical Microbiology and Infectious Diseases.
2009-09-04
apparent GAS-associated conditions were sampled by oropharyn- geal swab. Swabs were streaked on blood agar plates using Table 3. Isolate properties by...testing, samples were re-streaked on blood agar plates (5% sheep blood in TSA base) (Hardy Diagnostics, Santa Maria, CA), and incubated at 35–37uC with 5–10...sensitivity (A-disk method, Hardy Diagnostics) and positive GAS latex agglutination reaction (Hardy Diagnostics). Confirmed GAS isolates were then
Khayhan, Kantarawee; Hagen, Ferry; Norkaew, Treepradab; Puengchan, Tanpalang; Boekhout, Teun; Sriburee, Pojana
2017-04-01
The pathogenic yeast Cryptococcus gattii was isolated from a tree hollow of a Castanopsis argyrophylla King ex Hook.f. (Fagaceae) in Chiang Mai, Thailand. Molecular characterization with amplified fragment length polymorphism analysis and multi-locus sequence typing showed that this isolate belonged to genotype AFLP4/VGI representing C. gattii sensu stricto. Subsequent comparison of the environmental isolate with those from clinical samples from Thailand showed that they grouped closely together in a single cluster.
Suh, Ji-Yoeun; Son, Jun Seong; Chung, Doo Ryeon; Peck, Kyong Ran; Ko, Kwan Soo; Song, Jae-Hoon
2010-01-01
In vitro activities of colistin and other drugs were tested against 221 Klebsiella pneumoniae isolates that were collected between 2006 and 2007 in nine tertiary care South Korean hospitals from patients with bacteremia. The clonality of colistin-resistant K. pneumoniae (CRKP) isolates was assessed by multilocus sequence typing (MLST). We found that 15 isolates (6.8%) were resistant to colistin. MLST showed that CRKP isolates were nonclonal, with colistin resistance in K. pneumoniae occurring independently and not by clonal spreading.
Three Divergent Subpopulations of the Malaria Parasite Plasmodium knowlesi
Lin, Lee C.; Rovie-Ryan, Jeffrine J.; Kadir, Khamisah A.; Anderios, Fread; Hisam, Shamilah; Sharma, Reuben S.K.; Singh, Balbir; Conway, David J.
2017-01-01
Multilocus microsatellite genotyping of Plasmodium knowlesi isolates previously indicated 2 divergent parasite subpopulations in humans on the island of Borneo, each associated with a different macaque reservoir host species. Geographic divergence was also apparent, and independent sequence data have indicated particularly deep divergence between parasites from mainland Southeast Asia and Borneo. To resolve the overall population structure, multilocus microsatellite genotyping was conducted on a new sample of 182 P. knowlesi infections (obtained from 134 humans and 48 wild macaques) from diverse areas of Malaysia, first analyzed separately and then in combination with previous data. All analyses confirmed 2 divergent clusters of human cases in Malaysian Borneo, associated with long-tailed macaques and pig-tailed macaques, and a third cluster in humans and most macaques in peninsular Malaysia. High levels of pairwise divergence between each of these sympatric and allopatric subpopulations have implications for the epidemiology and control of this zoonotic species. PMID:28322705
Comparison of four molecular methods to type Salmonella Enteritidis strains.
Campioni, Fábio; Pitondo-Silva, André; Bergamini, Alzira M M; Falcão, Juliana P
2015-05-01
This study compared the pulsed-field gel electrophoresis (PFGE), enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR), multilocus variable-number of tanden-repeat analysis (MLVA), and multilocus sequence typing (MLST) methods for typing 188 Salmonella Enteritidis strains from different sources isolated over a 24-year period in Brazil. PFGE and ERIC-PCR were more efficient than MLVA for subtyping the strains. However, MLVA provided additional epidemiological information for those strains. In addition, MLST showed the Brazilian strains as belonging to the main clonal complex of S. Enteritidis, CC11, and provided the first report of two new STs in the S. enterica database but could not properly subtype the strains. Our results showed that the use of PFGE or ERIC-PCR together with MLVA is suitable to efficiently subtype S. Enteritidis strains and provide important epidemiological information. © 2015 APMIS. Published by John Wiley & Sons Ltd.
Holmes, A; Perry, N; Willshaw, G; Hanson, M; Allison, L
2015-01-01
Multi-locus variable number tandem repeat analysis (MLVA) is used in clinical and reference laboratories for subtyping verocytotoxin-producing Escherichia coli O157 (VTEC O157). However, as yet there is no common allelic or profile nomenclature to enable laboratories to easily compare data. In this study, we carried out an inter-laboratory comparison of an eight-loci MLVA scheme using a set of 67 isolates of VTEC O157. We found all but two isolates were identical in profile in the two laboratories, and repeat units were homogeneous in size but some were incomplete. A subset of the isolates (n = 17) were sequenced to determine the actual copy number of representative alleles, thereby enabling alleles to be named according to international consensus guidelines. This work has enabled us to realize the potential of MLVA as a portable, highly discriminatory and convenient subtyping method.
Transforming microbial genotyping: a robotic pipeline for genotyping bacterial strains.
O'Farrell, Brian; Haase, Jana K; Velayudhan, Vimalkumar; Murphy, Ronan A; Achtman, Mark
2012-01-01
Microbial genotyping increasingly deals with large numbers of samples, and data are commonly evaluated by unstructured approaches, such as spread-sheets. The efficiency, reliability and throughput of genotyping would benefit from the automation of manual manipulations within the context of sophisticated data storage. We developed a medium- throughput genotyping pipeline for MultiLocus Sequence Typing (MLST) of bacterial pathogens. This pipeline was implemented through a combination of four automated liquid handling systems, a Laboratory Information Management System (LIMS) consisting of a variety of dedicated commercial operating systems and programs, including a Sample Management System, plus numerous Python scripts. All tubes and microwell racks were bar-coded and their locations and status were recorded in the LIMS. We also created a hierarchical set of items that could be used to represent bacterial species, their products and experiments. The LIMS allowed reliable, semi-automated, traceable bacterial genotyping from initial single colony isolation and sub-cultivation through DNA extraction and normalization to PCRs, sequencing and MLST sequence trace evaluation. We also describe robotic sequencing to facilitate cherrypicking of sequence dropouts. This pipeline is user-friendly, with a throughput of 96 strains within 10 working days at a total cost of < €25 per strain. Since developing this pipeline, >200,000 items were processed by two to three people. Our sophisticated automated pipeline can be implemented by a small microbiology group without extensive external support, and provides a general framework for semi-automated bacterial genotyping of large numbers of samples at low cost.
Athey, Taryn B T; Teatero, Sarah; Takamatsu, Daisuke; Wasserscheid, Jessica; Dewar, Ken; Gottschalk, Marcelo; Fittipaldi, Nahuel
2016-01-01
Strains of serotype 2 Streptococcus suis are responsible for swine and human infections. Different serotype 2 genetic backgrounds have been defined using multilocus sequence typing (MLST). However, little is known about the genetic diversity within each MLST sequence type (ST). Here, we used whole-genome sequencing to test the hypothesis that S. suis serotype 2 strains of the ST25 lineage are genetically heterogeneous. We evaluated 51 serotype 2 ST25 S. suis strains isolated from diseased pigs and humans in Canada, the United States of America, and Thailand. Whole-genome sequencing revealed numerous large-scale rearrangements in the ST25 genome, compared to the genomes of ST1 and ST28 S. suis strains, which result, among other changes, in disruption of a pilus island locus. We report that recombination and lateral gene transfer contribute to ST25 genetic diversity. Phylogenetic analysis identified two main and distinct Thai and North American clades grouping most strains investigated. These clades also possessed distinct patterns of antimicrobial resistance genes, which correlated with acquisition of different integrative and conjugative elements (ICEs). Some of these ICEs were found to be integrated at a recombination hot spot, previously identified as the site of integration of the 89K pathogenicity island in serotype 2 ST7 S. suis strains. Our results highlight the limitations of MLST for phylogenetic analysis of S. suis, and the importance of lateral gene transfer and recombination as drivers of diversity in this swine pathogen and zoonotic agent.
Athey, Taryn B. T.; Teatero, Sarah; Takamatsu, Daisuke; Wasserscheid, Jessica; Dewar, Ken; Gottschalk, Marcelo; Fittipaldi, Nahuel
2016-01-01
Strains of serotype 2 Streptococcus suis are responsible for swine and human infections. Different serotype 2 genetic backgrounds have been defined using multilocus sequence typing (MLST). However, little is known about the genetic diversity within each MLST sequence type (ST). Here, we used whole-genome sequencing to test the hypothesis that S. suis serotype 2 strains of the ST25 lineage are genetically heterogeneous. We evaluated 51 serotype 2 ST25 S. suis strains isolated from diseased pigs and humans in Canada, the United States of America, and Thailand. Whole-genome sequencing revealed numerous large-scale rearrangements in the ST25 genome, compared to the genomes of ST1 and ST28 S. suis strains, which result, among other changes, in disruption of a pilus island locus. We report that recombination and lateral gene transfer contribute to ST25 genetic diversity. Phylogenetic analysis identified two main and distinct Thai and North American clades grouping most strains investigated. These clades also possessed distinct patterns of antimicrobial resistance genes, which correlated with acquisition of different integrative and conjugative elements (ICEs). Some of these ICEs were found to be integrated at a recombination hot spot, previously identified as the site of integration of the 89K pathogenicity island in serotype 2 ST7 S. suis strains. Our results highlight the limitations of MLST for phylogenetic analysis of S. suis, and the importance of lateral gene transfer and recombination as drivers of diversity in this swine pathogen and zoonotic agent. PMID:26954687
Transforming Microbial Genotyping: A Robotic Pipeline for Genotyping Bacterial Strains
Velayudhan, Vimalkumar; Murphy, Ronan A.; Achtman, Mark
2012-01-01
Microbial genotyping increasingly deals with large numbers of samples, and data are commonly evaluated by unstructured approaches, such as spread-sheets. The efficiency, reliability and throughput of genotyping would benefit from the automation of manual manipulations within the context of sophisticated data storage. We developed a medium- throughput genotyping pipeline for MultiLocus Sequence Typing (MLST) of bacterial pathogens. This pipeline was implemented through a combination of four automated liquid handling systems, a Laboratory Information Management System (LIMS) consisting of a variety of dedicated commercial operating systems and programs, including a Sample Management System, plus numerous Python scripts. All tubes and microwell racks were bar-coded and their locations and status were recorded in the LIMS. We also created a hierarchical set of items that could be used to represent bacterial species, their products and experiments. The LIMS allowed reliable, semi-automated, traceable bacterial genotyping from initial single colony isolation and sub-cultivation through DNA extraction and normalization to PCRs, sequencing and MLST sequence trace evaluation. We also describe robotic sequencing to facilitate cherrypicking of sequence dropouts. This pipeline is user-friendly, with a throughput of 96 strains within 10 working days at a total cost of < €25 per strain. Since developing this pipeline, >200,000 items were processed by two to three people. Our sophisticated automated pipeline can be implemented by a small microbiology group without extensive external support, and provides a general framework for semi-automated bacterial genotyping of large numbers of samples at low cost. PMID:23144721
Forsythe, Stephen J; Dickins, Benjamin; Jolley, Keith A
2014-12-16
Following the association of Cronobacter spp. to several publicized fatal outbreaks in neonatal intensive care units of meningitis and necrotising enterocolitis, the World Health Organization (WHO) in 2004 requested the establishment of a molecular typing scheme to enable the international control of the organism. This paper presents the application of Next Generation Sequencing (NGS) to Cronobacter which has led to the establishment of the Cronobacter PubMLST genome and sequence definition database (http://pubmlst.org/cronobacter/) containing over 1000 isolates with metadata along with the recognition of specific clonal lineages linked to neonatal meningitis and adult infections Whole genome sequencing and multilocus sequence typing (MLST) has supports the formal recognition of the genus Cronobacter composed of seven species to replace the former single species Enterobacter sakazakii. Applying the 7-loci MLST scheme to 1007 strains revealed 298 definable sequence types, yet only C. sakazakii clonal complex 4 (CC4) was principally associated with neonatal meningitis. This clonal lineage has been confirmed using ribosomal-MLST (51-loci) and whole genome-MLST (1865 loci) to analyse 107 whole genomes via the Cronobacter PubMLST database. This database has enabled the retrospective analysis of historic cases and outbreaks following re-identification of those strains. The Cronobacter PubMLST database offers a central, open access, reliable sequence-based repository for researchers. It has the capacity to create new analysis schemes 'on the fly', and to integrate metadata (source, geographic distribution, clinical presentation). It is also expandable and adaptable to changes in taxonomy, and able to support the development of reliable detection methods of use to industry and regulatory authorities. Therefore it meets the WHO (2004) request for the establishment of a typing scheme for this emergent bacterial pathogen. Whole genome sequencing has additionally shown a range of potential virulence and environmental fitness traits which may account for the association of C. sakazakii CC4 pathogenicity, and propensity for neonatal CNS.
Harris, Simon R; Cole, Michelle J; Spiteri, Gianfranco; Sánchez-Busó, Leonor; Golparian, Daniel; Jacobsson, Susanne; Goater, Richard; Abudahab, Khalil; Yeats, Corin A; Bercot, Beatrice; Borrego, Maria José; Crowley, Brendan; Stefanelli, Paola; Tripodo, Francesco; Abad, Raquel; Aanensen, David M; Unemo, Magnus
2018-05-15
Traditional methods for molecular epidemiology of Neisseria gonorrhoeae are suboptimal. Whole-genome sequencing (WGS) offers ideal resolution to describe population dynamics and to predict and infer transmission of antimicrobial resistance, and can enhance infection control through linkage with epidemiological data. We used WGS, in conjunction with linked epidemiological and phenotypic data, to describe the gonococcal population in 20 European countries. We aimed to detail changes in phenotypic antimicrobial resistance levels (and the reasons for these changes) and strain distribution (with a focus on antimicrobial resistance strains in risk groups), and to predict antimicrobial resistance from WGS data. We carried out an observational study, in which we sequenced isolates taken from patients with gonorrhoea from the European Gonococcal Antimicrobial Surveillance Programme in 20 countries from September to November, 2013. We also developed a web platform that we used for automated antimicrobial resistance prediction, molecular typing (N gonorrhoeae multi-antigen sequence typing [NG-MAST] and multilocus sequence typing), and phylogenetic clustering in conjunction with epidemiological and phenotypic data. The multidrug-resistant NG-MAST genogroup G1407 was predominant and accounted for the most cephalosporin resistance, but the prevalence of this genogroup decreased from 248 (23%) of 1066 isolates in a previous study from 2009-10 to 174 (17%) of 1054 isolates in this survey in 2013. This genogroup previously showed an association with men who have sex with men, but changed to an association with heterosexual people (odds ratio=4·29). WGS provided substantially improved resolution and accuracy over NG-MAST and multilocus sequence typing, predicted antimicrobial resistance relatively well, and identified discrepant isolates, mixed infections or contaminants, and multidrug-resistant clades linked to risk groups. To our knowledge, we provide the first use of joint analysis of WGS and epidemiological data in an international programme for regional surveillance of sexually transmitted infections. WGS provided enhanced understanding of the distribution of antimicrobial resistance clones, including replacement with clones that were more susceptible to antimicrobials, in several risk groups nationally and regionally. We provide a framework for genomic surveillance of gonococci through standardised sampling, use of WGS, and a shared information architecture for interpretation and dissemination by use of open access software. The European Centre for Disease Prevention and Control, The Centre for Genomic Pathogen Surveillance, Örebro University Hospital, and Wellcome. Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
McFadden, C. S.; Brown, A. S.; Brayton, C.; Hunt, C. B.; van Ofwegen, L. P.
2014-06-01
The application of DNA barcoding to anthozoan cnidarians has been hindered by their slow rates of mitochondrial gene evolution and the failure to identify alternative molecular markers that distinguish species reliably. Among octocorals, however, multilocus barcodes can distinguish up to 70 % of morphospecies, thereby facilitating the identification of species that are ecologically important but still very poorly known taxonomically. We tested the ability of these imperfect DNA barcodes to estimate species richness in a biodiversity survey of the shallow-water octocoral fauna of Palau using multilocus ( COI, mtMutS, 28S rDNA) sequences obtained from 305 specimens representing 38 genera of octocorals. Numbers and identities of species were estimated independently (1) by a taxonomic expert using morphological criteria and (2) by assigning sequences to molecular operational taxonomic units (MOTUs) using predefined genetic distance thresholds. Estimated numbers of MOTUs ranged from 73 to 128 depending on the barcode and distance threshold applied, bracketing the estimated number of 118 morphospecies. Concordance between morphospecies identifications and MOTUs ranged from 71 to 75 % and differed little among barcodes. For the speciose and ecologically dominant genus Sinularia, however, we were able to identify 95 % of specimens correctly simply by comparing mtMutS sequences and in situ photographs of colonies to an existing vouchered database. Because we lack a clear understanding of species boundaries in most of these taxa, numbers of morphospecies and MOTUs are both estimates of the true species diversity, and we cannot currently determine which is more accurate. Our results suggest, however, that the two methods provide comparable estimates of species richness for shallow-water Indo-Pacific octocorals. Use of molecular barcodes in biodiversity surveys will facilitate comparisons of species richness and composition among localities and over time, data that do not currently exist for any octocoral community.
Godornes, Charmie; Giacani, Lorenzo; Barry, Alyssa E.; Mitja, Oriol
2017-01-01
Background Yaws is a neglected tropical disease, caused by Treponema pallidum subsp. pertenue. The disease causes chronic lesions, primarily in young children living in remote villages in tropical climates. As part of a global yaws eradication campaign initiated by the World Health Organization, we sought to develop and evaluate a molecular typing method to distinguish different strains of T. pallidum subsp. pertenue for disease control and epidemiological purposes. Methods and principal findings Published genome sequences of strains of T. pallidum subsp. pertenue and pallidum were compared to identify polymorphic genetic loci among the strains. DNA from a number of existing historical Treponema isolates, as well as a subset of samples from yaws patients collected in Lihir Island, Papua New Guinea, were analyzed using these targets. From these data, three genes (tp0548, tp0136 and tp0326) were ultimately selected to give a high discriminating capability among the T. pallidum subsp. pertenue samples tested. Intragenic regions of these three target genes were then selected to enhance the discriminating capability of the typing scheme using short readily amplifiable loci. This 3-gene multilocus sequence typing (MLST) method was applied to existing historical human yaws strains, the Fribourg-Blanc simian isolate, and DNA from 194 lesion swabs from yaws patients on Lihir Island, Papua New Guinea. Among all samples tested, fourteen molecular types were identified, seven of which were found in patient samples and seven among historical isolates or DNA. Three types (JG8, TD6, and SE7) were predominant on Lihir Island. Conclusions This MLST approach allows molecular typing and differentiation of yaws strains. This method could be a useful tool to complement epidemiological studies in regions where T. pallidum subsp. pertenue is prevalent with the overall goals of improving our understanding of yaws transmission dynamics and helping the yaws eradication campaign to succeed. PMID:29281641
Yang, Xiaojuan; Yu, Shubo; Wu, Qingping; Zhang, Jumei; Wu, Shi; Rong, Dongli
2018-01-01
The aim of this study was to characterize the subtypes and virulence profiles of 69 Staphylococcus aureus isolates obtained from retail ready-to-eat food in China. The isolates were analyzed using multilocus sequence typing (MLST) and polymerase chain reaction (PCR) analysis of important virulence factor genes, including the staphylococcal enterotoxin (SE) genes ( sea , seb , sec , sed , see , seg , seh , sei , sej ), the exfoliative toxin genes ( eta and etb ), the toxic shock syndrome toxin-1 gene ( tst ), and the Panton-Valentine leucocidin-encoding gene ( pvl ). The isolates encompassed 26 different sequence types (STs), including four new STs (ST3482, ST3484, ST3485, ST3504), clustered in three clonal complexes and 17 singletons. The most prevalent STs were ST1, ST6, and ST15, constituting 34.8% of all isolates. Most STs (15/26, 57.7%) detected have previously been associated with human infections. All 13 toxin genes examined were detected in the S. aureus isolates, with 84.1% of isolates containing toxin genes. The three most prevalent toxin genes were seb (36.2%), sea (33.3%), and seg (33.3%). The classical SE genes ( sea - see ), which contribute significantly to staphylococcal food poisoning (SFP), were detected in 72.5% of the S. aureus isolates. In addition, pvl , eta , etb , and tst were found in 11.6, 10.1, 10.1, and 7.2% of the S. aureus isolates, respectively. Strains ST6 carrying sea and ST1 harboring sec-seh enterotoxin profile, which are the two most common clones associated with SFP, were also frequently detected in the food samples in this study. This study indicates that these S. aureus isolates present in Chinese ready-to-eat food represents a potential public health risk. These data are valuable for epidemiological studies, risk management, and public health strategies.
Yang, Xiaojuan; Yu, Shubo; Wu, Qingping; Zhang, Jumei; Wu, Shi; Rong, Dongli
2018-01-01
The aim of this study was to characterize the subtypes and virulence profiles of 69 Staphylococcus aureus isolates obtained from retail ready-to-eat food in China. The isolates were analyzed using multilocus sequence typing (MLST) and polymerase chain reaction (PCR) analysis of important virulence factor genes, including the staphylococcal enterotoxin (SE) genes (sea, seb, sec, sed, see, seg, seh, sei, sej), the exfoliative toxin genes (eta and etb), the toxic shock syndrome toxin-1 gene (tst), and the Panton-Valentine leucocidin-encoding gene (pvl). The isolates encompassed 26 different sequence types (STs), including four new STs (ST3482, ST3484, ST3485, ST3504), clustered in three clonal complexes and 17 singletons. The most prevalent STs were ST1, ST6, and ST15, constituting 34.8% of all isolates. Most STs (15/26, 57.7%) detected have previously been associated with human infections. All 13 toxin genes examined were detected in the S. aureus isolates, with 84.1% of isolates containing toxin genes. The three most prevalent toxin genes were seb (36.2%), sea (33.3%), and seg (33.3%). The classical SE genes (sea–see), which contribute significantly to staphylococcal food poisoning (SFP), were detected in 72.5% of the S. aureus isolates. In addition, pvl, eta, etb, and tst were found in 11.6, 10.1, 10.1, and 7.2% of the S. aureus isolates, respectively. Strains ST6 carrying sea and ST1 harboring sec-seh enterotoxin profile, which are the two most common clones associated with SFP, were also frequently detected in the food samples in this study. This study indicates that these S. aureus isolates present in Chinese ready-to-eat food represents a potential public health risk. These data are valuable for epidemiological studies, risk management, and public health strategies. PMID:29662467
Molecular epidemiology, phylogeny and evolution of Candida albicans.
McManus, Brenda A; Coleman, David C
2014-01-01
A small number of Candida species form part of the normal microbial flora of mucosal surfaces in humans and may give rise to opportunistic infections when host defences are impaired. Candida albicans is by far the most prevalent commensal and pathogenic Candida species. Several different molecular typing approaches including multilocus sequence typing, multilocus microsatellite typing and DNA fingerprinting using C. albicans-specific repetitive sequence-containing DNA probes have yielded a wealth of information regarding the epidemiology and population structure of this species. Such studies revealed that the C. albicans population structure consists of multiple major and minor clades, some of which exhibit geographical or phenotypic enrichment and that C. albicans reproduction is predominantly clonal. Despite this, losses of heterozygosity by recombination, the existence of a parasexual cycle, toleration of a wide range of aneuploidies and the recent description of viable haploid strains have all demonstrated the extensive plasticity of the C. albicans genome. Recombination and gross chromosomal rearrangements are more common under stressful environmental conditions, and have played a significant role in the evolution of this opportunistic pathogen. Surprisingly, Candida dubliniensis, the closest relative of C. albicans exhibits more karyotype variability than C. albicans, but is significantly less adaptable to unfavourable environments. This disparity most likely reflects the evolutionary processes that occurred during or soon after the divergence of both species from their common ancestor. Whilst C. dubliniensis underwent significant gene loss and pseudogenisation, C. albicans expanded gene families considered to be important in virulence. It is likely that technological developments in whole genome sequencing and data analysis in coming years will facilitate its routine use for population structure, epidemiological investigations, and phylogenetic analyses of Candida species. These are likely to reveal more minor C. albicans clades and to enhance our understanding of the population biology of this versatile organism. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Tomasello, Salvatore; Álvarez, Inés; Vargas, Pablo; Oberprieler, Christoph
2015-01-01
The present study provides results of multi-species coalescent species tree analyses of DNA sequences sampled from multiple nuclear and plastid regions to infer the phylogenetic relationships among the members of the subtribe Leucanthemopsidinae (Compositae, Anthemideae), to which besides the annual Castrilanthemum debeauxii (Degen, Hervier & É.Rev.) Vogt & Oberp., one of the rarest flowering plant species of the Iberian Peninsula, two other unispecific genera (Hymenostemma, Prolongoa), and the polyploidy complex of the genus Leucanthemopsis belong. Based on sequence information from two single- to low-copy nuclear regions (C16, D35, characterised by Chapman et al. (2007)), the multi-copy region of the nrDNA internal transcribed spacer regions ITS1 and ITS2, and two intergenic spacer regions of the cpDNA gene trees were reconstructed using Bayesian inference methods. For the reconstruction of a multi-locus species tree we applied three different methods: (a) analysis of concatenated sequences using Bayesian inference (MrBayes), (b) a tree reconciliation approach by minimizing the number of deep coalescences (PhyloNet), and (c) a coalescent-based species-tree method in a Bayesian framework ((∗)BEAST). All three species tree reconstruction methods unequivocally support the close relationship of the subtribe with the hitherto unclassified genus Phalacrocarpum, the sister-group relationship of Castrilanthemum with the three remaining genera of the subtribe, and the further sister-group relationship of the clade of Hymenostemma+Prolongoa with a monophyletic genus Leucanthemopsis. Dating of the (∗)BEAST phylogeny supports the long-lasting (Early Miocene, 15-22Ma) taxonomical independence and the switch from the plesiomorphic perennial to the apomorphic annual life-form assumed for the Castrilanthemum lineage that may have occurred not earlier than in the Pliocene (3Ma) when the establishment of a Mediterranean climate with summer droughts triggered evolution towards annuality. Copyright © 2014 Elsevier Inc. All rights reserved.
Gharsa, H; Slama, K Ben; Gómez-Sanz, E; Gómez, P; Klibi, N; Zarazaga, M; Boudabous, A; Torres, C
2015-07-01
Staphylococcus intermedius group (SIG) bacteria can colonise the nares of some animals but are also emerging pathogens in humans and animals. To analyse SIG nasal carriage in healthy donkeys destined for food consumption in Tunisia and to characterise recovered isolates. Nasal swabs from 100 healthy donkeys were tested for SIG recovery, and isolates were identified by biochemical and molecular methods. Antimicrobial susceptibility of isolates was tested and detection of antimicrobial resistance and virulence genes was performed. Isolates were typed at the clonal level by multilocus sequence typing and SmaI pulsed-field gel electrophoresis. Staphylococcus delphini and Staphylococcus pseudintermedius (included in SIG) were obtained in 19% and 2% of the tested samples, respectively, and one isolate per sample was characterised. All isolates were meticillin susceptible and mecA negative. Most S. delphini and S. pseudintermedius isolates showed susceptibility to all antimicrobials tested, with the exception of 2 isolates resistant to tetracycline (tet(M) gene) or fusidic acid. The following toxin genes were identified (percentage of isolates): lukS-I (100%), lukF-I (9.5%), siet (100%), se-int (90%), seccanine (19%) and expA (9.5%). Thirteen different pulsed-field gel electrophoresis profiles were identified among the 21 SIG isolates. Additionally, the following 9 different sequence types (STs) were detected by multilocus sequence typing, 6 of them new: ST219 (6 isolates), ST12 (5 isolates), ST220 (3 isolates), ST13, ST50, ST193, ST196, ST218 and ST221 (one isolate each). Staphylococcus delphini and S. pseudintermedius are common nasal colonisers of donkeys, generally susceptible to the antimicrobials tested; nevertheless, these SIG isolates contain virulence genes, including the recently described exfoliative gene (expA) and several enterotoxin genes, with potential implications for public health. This is the first description of S. delphini in Tunisia. The Summary is available in Chinese - see Supporting information. © 2014 EVJ Ltd.
Nikmanesh, Bahram; Mirhendi, Hossein; Mahmoudi, Shahram; Rokni, Mohammad Bagher
2017-12-01
Echinococcus granulosus is now considered a complex consisting of at least four species and ten genotypes. Different molecular targets have been described for molecular characterization of E. granulosus; however, in almost all studies only one or two of the targets have been used, and only limited data is available on the utilization of multiple loci. Therefore, we investigated the genetic diversity among 64 strains isolated from 138 cyst specimens of human and animal isolates, using a set of nuclear and mitochondrial genes; i.e., cytochrome c oxidase subunit 1 (cox1), NADH dehydrogenase subunit 1 (nad1), ATPase subunit 6 (atp6), 12S rRNA (12S), and Actin II (act II). In comparison to the use of molecular reference targets (nad1 + cox1), using singular target (act II or 12S or atp6) yielded lower discriminatory power. Act II and 12S genes could accurately discriminate the G6 genotype, but they were not able to differentiate between G1 and G3 genotypes. As the G1 and G3 genotypes belong to the E. granulosus sensu stricto, low intra-species variation was observed for act II and 12S. The atp6 gene could identify the G3 genotype but could not differentiate G6 and G1 genotypes. Using concatenated sequence of five genes (cox1 + nad1 + atp6 + 12S + act II), genotypes were identified accurately, and markedly higher resolution was obtained in comparison with the use of reference markers (nad1 + cox1) only. Application of multilocus sequence analysis (MLSA) to large-scale studies could provide valuable epidemiological data to make efficient control and management measures for cystic echinococcosis. Copyright © 2017 Elsevier Inc. All rights reserved.
Stepan, Ryan M; Sherwood, Julie S; Petermann, Shana R; Logue, Catherine M
2011-06-27
Salmonella species are recognized worldwide as a significant cause of human and animal disease. In this study the molecular profiles and characteristics of Salmonella enterica Senftenberg isolated from human cases of illness and those recovered from healthy or diagnostic cases in animals were assessed. Included in the study was a comparison with our own sequenced strain of S. Senfteberg recovered from production turkeys in North Dakota. Isolates examined in this study were subjected to antimicrobial susceptibility profiling using the National Antimicrobial Resistance Monitoring System (NARMS) panel which tested susceptibility to 15 different antimicrobial agents. The molecular profiles of all isolates were determined using Pulsed Field Gel Electrophoresis (PFGE) and the sequence types of the strains were obtained using Multi-Locus Sequence Type (MLST) analysis based on amplification and sequence interrogation of seven housekeeping genes (aroC, dnaN, hemD, hisD, purE, sucA, and thrA). PFGE data was input into BioNumerics analysis software to generate a dendrogram of relatedness among the strains. The study found 93 profiles among 98 S. Senftenberg isolates tested and there were primarily two sequence types associated with humans and animals (ST185 and ST14) with overlap observed in all host types suggesting that the distribution of S. Senftenberg sequence types is not host dependent. Antimicrobial resistance was observed among the animal strains, however no resistance was detected in human isolates suggesting that animal husbandry has a significant influence on the selection and promotion of antimicrobial resistance. The data demonstrates the circulation of at least two strain types in both animal and human health suggesting that S. Senftenberg is relatively homogeneous in its distribution. The data generated in this study could be used towards defining a pathotype for this serovar.
Benchmarking of Methods for Genomic Taxonomy
Larsen, Mette V.; Cosentino, Salvatore; Lukjancenko, Oksana; ...
2014-02-26
One of the first issues that emerges when a prokaryotic organism of interest is encountered is the question of what it is—that is, which species it is. The 16S rRNA gene formed the basis of the first method for sequence-based taxonomy and has had a tremendous impact on the field of microbiology. Nevertheless, the method has been found to have a number of shortcomings. In this paper, we trained and benchmarked five methods for whole-genome sequence-based prokaryotic species identification on a common data set of complete genomes: (i) SpeciesFinder, which is based on the complete 16S rRNA gene; (ii) Reads2Typemore » that searches for species-specific 50-mers in either the 16S rRNA gene or the gyrB gene (for the Enterobacteraceae family); (iii) the ribosomal multilocus sequence typing (rMLST) method that samples up to 53 ribosomal genes; (iv) TaxonomyFinder, which is based on species-specific functional protein domain profiles; and finally (v) KmerFinder, which examines the number of cooccurring k-mers (substrings of k nucleotides in DNA sequence data). The performances of the methods were subsequently evaluated on three data sets of short sequence reads or draft genomes from public databases. In total, the evaluation sets constituted sequence data from more than 11,000 isolates covering 159 genera and 243 species. Our results indicate that methods that sample only chromosomal, core genes have difficulties in distinguishing closely related species which only recently diverged. Finally, the KmerFinder method had the overall highest accuracy and correctly identified from 93% to 97% of the isolates in the evaluations sets.« less
Fei, Peng; Man, Chaoxin; Lou, Binbin; Forsythe, Stephen J.; Chai, Yunlei; Li, Ran; Niu, Jieting
2015-01-01
Cronobacter spp. (formerly defined as Enterobacter sakazakii) are opportunistic bacterial pathogens of both infants and adults. In this study, we analyzed 70 Cronobacter isolates from powdered infant formula (PIF) and an infant formula production facility in China to determine possible contamination routes. The strains were profiled by multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), PCR-based O-antigen serotyping, and ompA and rpoB sequence analyses. The isolates were primarily Cronobacter sakazakii (66/70) or Cronobacter malonaticus (4/70). The strains were divided into 38 pulsotypes (PTs) using PFGE and 19 sequence types (STs) by MLST. In contrast, rpoB and ompA sequence analyses divided the strains into 10 overlapping clusters each. PCR serotyping of the 66 C. sakazakii and 4 C. malonaticus strains resulted in the identification of four C. sakazakii serotypes (O1, O2, O4, and O7) and a single C. malonaticus serotype, O2. The dominant C. sakazakii sequence types from PIF and an infant formula production factory in China were C. sakazakii clonal complex 4 (CC4) (n = 19), ST1 (n = 14), and ST64 (n = 11). C. sakazakii CC4 is a clonal lineage strongly associated with neonatal meningitis. In the process of manufacturing PIF, the spray-drying, fluidized-bed-drying, and packing areas were the main areas with Cronobacter contamination. C. sakazakii strains with the same pulsotypes (PT3 and PT2) and sequence types (ST1 and ST64) were isolated both from processing equipment and from the PIF finished product. PMID:26048942
Fei, Peng; Man, Chaoxin; Lou, Binbin; Forsythe, Stephen J; Chai, Yunlei; Li, Ran; Niu, Jieting; Jiang, Yujun
2015-08-15
Cronobacter spp. (formerly defined as Enterobacter sakazakii) are opportunistic bacterial pathogens of both infants and adults. In this study, we analyzed 70 Cronobacter isolates from powdered infant formula (PIF) and an infant formula production facility in China to determine possible contamination routes. The strains were profiled by multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), PCR-based O-antigen serotyping, and ompA and rpoB sequence analyses. The isolates were primarily Cronobacter sakazakii (66/70) or Cronobacter malonaticus (4/70). The strains were divided into 38 pulsotypes (PTs) using PFGE and 19 sequence types (STs) by MLST. In contrast, rpoB and ompA sequence analyses divided the strains into 10 overlapping clusters each. PCR serotyping of the 66 C. sakazakii and 4 C. malonaticus strains resulted in the identification of four C. sakazakii serotypes (O1, O2, O4, and O7) and a single C. malonaticus serotype, O2. The dominant C. sakazakii sequence types from PIF and an infant formula production factory in China were C. sakazakii clonal complex 4 (CC4) (n = 19), ST1 (n = 14), and ST64 (n = 11). C. sakazakii CC4 is a clonal lineage strongly associated with neonatal meningitis. In the process of manufacturing PIF, the spray-drying, fluidized-bed-drying, and packing areas were the main areas with Cronobacter contamination. C. sakazakii strains with the same pulsotypes (PT3 and PT2) and sequence types (ST1 and ST64) were isolated both from processing equipment and from the PIF finished product. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Qi, Meng; Dong, Haiju; Wang, Rongjun; Li, Junqiang; Zhao, Jinfeng; Zhang, Longxian; Luo, Jianxun
2016-04-01
Giardia duodenalis is an important protozoan parasite that is known to be zoonotic. To assess the potential zoonotic transmission of giardiasis from dogs and to identify genetic diversity of G. duodenalis in dog populations, we examined the infection rate and genotypes of G. duodenalis in both pet dogs (from pet dog farms, pet shops, pet hospitals, pet markets) and stray dogs of different ages in Henan Province, China. A total of 940 fresh fecal specimens were collected from 2007 to 2013 in Henan Province. The overall infection rate of G. duodenalis was 14.3% (134/940) as determined by microscopy, with the highest infection rate (17.3%) observed in dogs from shelters. Young dogs were more likely to be infected with G. duodenalis than adult dogs, and G. duodenalis cysts were found more frequently in diarrheic dogs. All G. duodenalis-positive isolates were characterized at the triose phosphate isomerase (tpi), glutamate dehydrogenase (gdh), and β-giardin (bg) loci, and 37, 51, and 48 sequences were obtained, respectively. The dog-specific assemblages C and D were identified using multi-locus sequence analysis. Six novel sequences of the tpi locus, one novel sequence of the gdh locus and two novel sequences of the bg locus were detected among the G. duodenalis assemblage C isolates, while two novel sequences of the gdh locus were found among the G. duodenalis assemblage D isolates. Our data indicate that G. duodenalis is a common parasite and cause of diarrheal disease in dogs in Henan Province. However, there was no evidence for zoonotic G. duodenalis assemblages in the study population. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Viau, Roberto A; Hujer, Andrea M; Marshall, Steven H; Perez, Federico; Hujer, Kristine M; Briceño, David F; Dul, Michael; Jacobs, Michael R; Grossberg, Richard; Toltzis, Philip; Bonomo, Robert A
2012-05-01
Klebsiella pneumoniae isolates harboring the K. pneumoniae carbapenemase gene (bla(KPC)) are creating a significant healthcare threat in both acute and long-term care facilities (LTCFs). As part of a study conducted in 2004 to determine the risk of stool colonization with extended-spectrum cephalosporin-resistant gram-negative bacteria, 12 isolates of K. pneumoniae that exhibited nonsusceptibility to extended-spectrum cephalosporins were detected. All were gastrointestinal carriage isolates that were not associated with infection. Reassessment of the carbapenem minimum inhibitory concentrations using revised 2011 Clinical Laboratory Standards Institute breakpoints uncovered carbapenem resistance. To further investigate, a DNA microarray assay, PCR-sequencing of bla genes, immunoblotting, repetitive-sequence-based PCR (rep-PCR) and multilocus sequence typing (MLST) were performed. The DNA microarray detected bla(KPC) in all 12 isolates, and bla(KPC-3) was identified by PCR amplification and sequencing of the amplicon. In addition, a bla(SHV-11) gene was detected in all isolates. Immunoblotting revealed "low-level" production of the K. pneumoniae carbapenemase, and rep-PCR indicated that all bla(KPC-3)-positive K. pneumoniae strains were genetically related (≥98% similar). According to MLST, all isolates belonged to sequence type 36. This sequence type has not been previously linked with bla(KPC) carriage. Plasmids from 3 representative isolates readily transferred the bla(KPC-3) to Escherichia coli J-53 recipients. Our findings reveal the "silent" dissemination of bla(KPC-3) as part of Tn4401b on a mobile plasmid in Northeast Ohio nearly a decade ago and establish the first report, to our knowledge, of K. pneumoniae containing bla(KPC-3) in an LTCF caring for neurologically impaired children and young adults.
Hoshino, Tomonori; Fujiwara, Taku; Kilian, Mogens
2005-12-01
The aim of this study was to evaluate molecular and phenotypic methods for the identification of nonhemolytic streptococci. A collection of 148 strains consisting of 115 clinical isolates from cases of infective endocarditis, septicemia, and meningitis and 33 reference strains, including type strains of all relevant Streptococcus species, were examined. Identification was performed by phylogenetic analysis of nucleotide sequences of four housekeeping genes, ddl, gdh, rpoB, and sodA; by PCR analysis of the glucosyltransferase (gtf) gene; and by conventional phenotypic characterization and identification using two commercial kits, Rapid ID 32 STREP and STREPTOGRAM and the associated databases. A phylogenetic tree based on concatenated sequences of the four housekeeping genes allowed unequivocal differentiation of recognized species and was used as the reference. Analysis of single gene sequences revealed deviation clustering in eight strains (5.4%) due to homologous recombination with other species. This was particularly evident in S. sanguinis and in members of the anginosus group of streptococci. The rate of correct identification of the strains by both commercial identification kits was below 50% but varied significantly between species. The most significant problems were observed with S. mitis and S. oralis and 11 Streptococcus species described since 1991. Our data indicate that identification based on multilocus sequence analysis is optimal. As a more practical alternative we recommend identification based on sodA sequences with reference to a comprehensive set of sequences that is available for downloading from our server. An analysis of the species distribution of 107 nonhemolytic streptococci from bacteremic patients showed a predominance of S. oralis and S. anginosus with various underlying infections.
Yuan, Xiaoli; Morano, Lisa; Bromley, Robin; Spring-Pearson, Senanu; Stouthamer, Richard; Nunney, Leonard
2010-06-01
Using a modified multilocus sequence typing (MLST) scheme for the bacterial plant pathogen Xylella fastidiosa based on the same seven housekeeping genes employed in a previously published MLST, we studied the genetic diversity of two subspecies, X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. sandyi, which cause Pierce's disease and oleander leaf scorch, respectively. Typing of 85 U.S. isolates (plus one from northern Mexico) of X. fastidiosa subsp. fastidiosa from 15 different plant hosts and 21 isolates of X. fastidiosa subsp. sandyi from 4 different hosts in California and Texas supported their subspecific status. Analysis using the MLST genes plus one cell-surface gene showed no significant genetic differentiation based on geography or host plant within either subspecies. Two cases of homologous recombination (with X. fastidiosa subsp. multiplex, the third U.S. subspecies) were detected in X. fastidiosa subsp. fastidiosa. Excluding recombination, MLST site polymorphism in X. fastidiosa subsp. fastidiosa (0.048%) and X. fastidiosa subsp. sandyi (0.000%) was substantially lower than in X. fastidiosa subsp. multiplex (0.240%), consistent with the hypothesis that X. fastidiosa subspp. fastidiosa and sandyi were introduced into the United States (probably just prior to 1880 and 1980, respectively). Using whole-genome analysis, we showed that MLST is more effective at genetic discrimination at the specific and subspecific level than other typing methods applied to X. fastidiosa. Moreover, MLST is the only technique effective in detecting recombination.
Dolatabadi, Somayeh; Kolecka, Anna; Versteeg, Matthijs; de Hoog, Sybren G; Boekhout, Teun
2015-07-01
This study addresses the usefulness of matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) MS for reliable identification of the two most frequently occurring clinical species of Rhizopus, namely Rhizopus arrhizus with its two varieties, arrhizus and delemar, and Rhizopus microsporus. The test-set comprised 38 isolates of clinical and environmental origin previously identified by internal transcribed spacer (ITS) sequencing of rDNA. Multi-locus sequence data targeting three gene markers (ITS, ACT, TEF ) showed two monophylic clades for Rhizopus arrhizus and Rhizopus microsporus (bootstrap values of 99 %). Cluster analysis confirmed the presence of two distinct clades within Rhizopus arrhizus representing its varieties arrhizus and delemar. The MALDI Biotyper 3.0 Microflex LT platform (Bruker Daltonics) was used to confirm the distinction between Rhizopus arrhizus and Rhizopus microsporus and the presence of two varieties within the species Rhizopus arrhizus. An in-house database of 30 reference main spectra (MSPs) was initially tested for correctness using commercially available databases of Bruker Daltonics. By challenging the database with the same strains of which an in-house database was created, automatic identification runs confirmed that MALDI-TOF MS is able to recognize the strains at the variety level. Based on principal component analysis, two MSP dendrograms were created and showed concordance with the multi-locus tree; thus, MALDI-TOF MS is a useful tool for diagnostics of mucoralean species.
Chonsin, Kaknokrat; Matsuda, Shigeaki; Theethakaew, Chonchanok; Kodama, Toshio; Junjhon, Jiraphan; Suzuki, Yasuhiko; Suthienkul, Orasa; Iida, Tetsuya
2016-01-01
Acute hepatopancreatic necrosis disease (AHPND) is an emerging shrimp disease that causes massive die-offs in farmed shrimps. Recent outbreaks of AHPND in Asia have been causing great losses for shrimp culture and have become a serious socioeconomic problem. The causative agent of AHPND is Vibrio parahaemolyticus, which is typically known to cause food-borne gastroenteritis in humans. However, there have been few reports of the epidemiology of V. parahaemolyticus AHPND strains, and the genetic relationship among AHPND strains is unclear. Here, we report the genetic characterization of V. parahaemolyticus strains isolated from AHPND outbreaks in Thailand. We found eight isolates from AHPND-suspected shrimps and pond water that were positive for AHPND markers AP1 and AP2. PCR analysis confirmed that none of these eight AP-positive AHPND strains possesses the genes for the conventional virulence factors affecting to humans, such as thermostable direct hemolysin (TDH), TDH-related hemolysin (TRH) and type III secretion system 2. Phylogenetic analysis by multilocus sequence typing showed that the AHPND strains are genetically diverse, suggesting that AHPND strains were not derived from a single genetic lineage. Our study represents the first report of molecular epidemiology of AHPND-causing V. parahaemolyticus strains using multilocus sequence typing, and provides an insight into their evolutionary mechanisms. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Golovchenko, Maryna; Vancová, Marie; Clark, Kerry; Oliver, James H; Grubhoffer, Libor; Rudenko, Nataliia
2016-02-04
Out of 20 spirochete species from Borrelia burgdorferi sensu lato (s.l.) complex recognized to date some are considered to have a limited distribution, while others are worldwide dispersed. Among those are Borrelia burgdorferi sensu stricto (s.s.) and Borrelia bissettii which are distributed both in North America and in Europe. While B. burgdorferi s.s. is recognized as a cause of Lyme borreliosis worldwide, involvement of B. bissettii in human Lyme disease was not so definite yet. Multilocus sequence typing of spirochete isolates originating from residents of Georgia and Florida, USA, revealed the presence of two Borrelia burgdorferi sensu stricto strains highly similar to those from endemic Lyme borreliosis regions of the northeastern United States, and an unusual strain that differed from any previously described in Europe or North America. Based on phylogenetic analysis of eight chromosomally located housekeeping genes divergent strain clustered between Borrelia bissettii and Borrelia carolinensis, two species from the B.burgdorferi s.l. complex, widely distributed among the multiple hosts and vector ticks in the southeastern United States. The genetic distance analysis showed a close relationship of the diverged strain to B. bissettii. Here, we present the analysis of the first North American human originated live spirochete strain that revealed close relatedness to B. bissettii. The potential of B. bissettii to cause human disease, even if it is infrequent, is of importance for clinicians due to the extensive range of its geographic distribution.
Giuffrè, Mario; Amodio, Emanuele; Bonura, Celestino; Geraci, Daniela M; Saporito, Laura; Ortolano, Rita; Corsello, Giovanni; Mammina, Caterina
2015-05-01
To describe epidemiologic features and identify risk factors for methicillin-resistant Staphylococcus aureus (MRSA) acquisition in a level III neonatal intensive care unit (NICU). A prospective, cohort study in a university-affiliated NICU with an infection control program including weekly nasal cultures of all neonates. Demographic, clinical, and microbiologic data were prospectively collected between June 2009 and June 2013. Molecular characterization of MRSA isolates was done by multilocus variable number tandem repeat fingerprinting, staphylococcal cassette chromosome mec typing, and on representative isolates by multilocus sequence typing and spa typing. Of 949 neonates, 217 (22.87%) had a culture growing MRSA, including 117 neonates testing positive at their first sampling. Of these latter infants, 96 (82.05%) were inborn and 59 (50.43%) had been transferred from the nursery. Length of stay and colonization pressure were strong independent predictors of MRSA acquisition. Among MRSA isolates, 7 sequence types were identified, with ST22-IVa, spa type t223, being the predominant strain. In an endemic area, early MRSA acquisition and high colonization pressure, likely related to an influx of colonized infants from a well-infant nursery, can support persistence of MRSA in NICUs. Surveillance, molecular tracking of strains, and reinforcement of infection control practices, involving well-infant nurseries in a comprehensive infection control program, could be helpful in containing MRSA transmission. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
Van Wyk, Marelize; Govender, Nelesh P.; Litvintseva, Anastasia P.
2014-01-01
Patients with cryptococcal meningitis in sub-Saharan Africa frequently relapse following treatment. The natural history and etiology of these recurrent episodes warrant investigation. Here, we used multilocus sequence typing (MLST) to compare the molecular genotypes of strains of Cryptococcus neoformans and Cryptococcus gattii isolated from serial episodes of cryptococcal meningitis that were separated by at least 110 days. The most common MLST genotypes among the isolates were the dominant global clinical genotypes (M5 and M4) of molecular type VNI, as well as the VNI genotypes apparently restricted to southern Africa. In addition, there was considerable genetic diversity among these South African isolates, as 15% of the patients had unique genotypes. Eleven percent of the patients were reinfected with a genetically different strain following their initial diagnosis and treatment. However, the majority of serial episodes (89%) were caused by strains with the same genotype as the original strain. These results indicate that serial episodes of cryptococcosis in South Africa are frequently associated with persistence or relapse of the original infection. Using a reference broth microdilution method, we found that the serial isolates of 11% of the patients infected with strains of C. neoformans var. grubii with identical genotypes exhibited ≥4-fold increases in the MICs to fluconazole. Therefore, these recurrent episodes may have been precipitated by inadequate induction or consolidation of antifungal treatment and occasionally may have been due to increased resistance to fluconazole, which may have developed during the chronic infection. PMID:24648562
Massardo, Darli; Fornel, Rodrigo; Kronforst, Marcus; Gonçalves, Gislene Lopes; Moreira, Gilson Rudinei Pires
2015-01-01
The tribe Heliconiini (Lepidoptera: Nymphalidae) is a diverse group of butterflies distributed throughout the Neotropics, which has been studied extensively, in particular the genus Heliconius. However, most of the other lineages, such as Dione, which are less diverse and considered basal within the group, have received little attention. Basic information, such as species limits and geographical distributions remain uncertain for this genus. Here we used multilocus DNA sequence data and the geographical distribution analysis across the entire range of Dione in the Neotropical region in order to make inferences on the evolutionary history of this poorly explored lineage. Bayesian time-tree reconstruction allows inferring two major diversification events in this tribe around 25mya. Lineages thought to be ancient, such as Dione and Agraulis, are as recent as Heliconius. Dione formed a monophyletic clade, sister to the genus Agraulis. Dione juno, D. glycera and D. moneta were reciprocally monophyletic and formed genetic clusters, with the first two more close related than each other in relation to the third. Divergence time estimates support the hypothesis that speciation in Dione coincided with both the rise of Passifloraceae (the host plants) and the uplift of the Andes. Since the sister species D. glycera and D. moneta are specialized feeders on passion-vine lineages that are endemic to areas located either within or adjacent to the Andes, we inferred that they co-speciated with their host plants during this vicariant event. Copyright © 2014 Elsevier Inc. All rights reserved.
Poulin, L.; Grygiel, P.; Magne, M.; Rodriguez-R, L. M.; Forero Serna, N.; Zhao, S.; El Rafii, M.; Dao, S.; Tekete, C.; Wonni, I.; Koita, O.; Pruvost, O.; Verdier, V.; Vernière, C.
2014-01-01
Multilocus variable-number tandem-repeat analysis (MLVA) is efficient for routine typing and for investigating the genetic structures of natural microbial populations. Two distinct pathovars of Xanthomonas oryzae can cause significant crop losses in tropical and temperate rice-growing countries. Bacterial leaf streak is caused by X. oryzae pv. oryzicola, and bacterial leaf blight is caused by X. oryzae pv. oryzae. For the latter, two genetic lineages have been described in the literature. We developed a universal MLVA typing tool both for the identification of the three X. oryzae genetic lineages and for epidemiological analyses. Sixteen candidate variable-number tandem-repeat (VNTR) loci were selected according to their presence and polymorphism in 10 draft or complete genome sequences of the three X. oryzae lineages and by VNTR sequencing of a subset of loci of interest in 20 strains per lineage. The MLVA-16 scheme was then applied to 338 strains of X. oryzae representing different pathovars and geographical locations. Linkage disequilibrium between MLVA loci was calculated by index association on different scales, and the 16 loci showed linear Mantel correlation with MLSA data on 56 X. oryzae strains, suggesting that they provide a good phylogenetic signal. Furthermore, analyses of sets of strains for different lineages indicated the possibility of using the scheme for deeper epidemiological investigation on small spatial scales. PMID:25398857
Neisseria meningitidis; clones, carriage, and disease.
Read, R C
2014-05-01
Neisseria meningitidis, the cause of meningococcal disease, has been the subject of sophisticated molecular epidemiological investigation as a consequence of the significant public health threat posed by this organism. The use of multilocus sequence typing and whole genome sequencing classifies the organism into clonal complexes. Extensive phenotypic, genotypic and epidemiological information is available on the PubMLST website. The human nasopharynx is the sole ecological niche of this species, and carrier isolates show extensive genetic diversity as compared with hyperinvasive lineages. Horizontal gene exchange and recombinant events within the meningococcal genome during residence in the human nasopharynx result in antigenic diversity even within clonal complexes, so that individual clones may express, for example, more than one capsular polysaccharide (serogroup). Successful clones are capable of wide global dissemination, and may be associated with explosive epidemics of invasive disease. © 2014 The Author Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.
Streptococcus mitis Strains Causing Severe Clinical Disease in Cancer Patients
Sahasrabhojane, Pranoti; Saldana, Miguel; Yao, Hui; Su, Xiaoping; Horstmann, Nicola; Thompson, Erika; Flores, Anthony R.
2014-01-01
The genetically diverse viridans group streptococci (VGS) are increasingly recognized as the cause of a variety of human diseases. We used a recently developed multilocus sequence analysis scheme to define the species of 118 unique VGS strains causing bacteremia in patients with cancer; Streptococcus mitis (68 patients) and S. oralis (22 patients) were the most frequently identified strains. Compared with patients infected with non–S. mitis strains, patients infected with S. mitis strains were more likely to have moderate or severe clinical disease (e.g., VGS shock syndrome). Combined with the sequence data, whole-genome analyses showed that S. mitis strains may more precisely be considered as >2 species. Furthermore, we found that multiple S. mitis strains induced disease in neutropenic mice in a dose-dependent fashion. Our data define the prominent clinical effect of the group of organisms currently classified as S. mitis and lay the groundwork for increased understanding of this understudied pathogen. PMID:24750901
Microbiological Features of KPC-Producing Enterobacter Isolates Identified in a U.S. Hospital System
Ahn, Chulsoo; Syed, Alveena; Hu, Fupin; O’Hara, Jessica A.; Rivera, Jesabel I.; Doi, Yohei
2014-01-01
Microbiological data regarding KPC-producing Enterobacter spp. are scarce. In this study, 11 unique KPC-producing Enterobacter isolates were identified among 44 ertapenem-non-susceptible Enterobacter isolates collected between 2009 and 2013 at a hospital system in Western Pennsylvania. All cases were healthcare-associated and occurred in medically complex patients. While pulsed-field gel electrophoresis (PFGE) showed diverse restriction patterns overall, multilocus sequence typing (MLST) identified Enterobacter cloacae isolates with sequence types (STs) 93 and 171 from two hospitals each. The levels of carbapenem minimum inhibitory concentrations were highly variable. All isolates remained susceptible to colistin, tigecycline, and the majority to amikacin and doxycycline. A blaKPC-carrying IncN plasmid conferring trimethoprim-sulfamethoxazole resistance was identified in three of the isolates. Spread of blaKPC in Enterobacter spp. appears to be due to a combination of plasmid-mediated and clonal processes. PMID:25053203
Ford, Laura; Wang, Qinning; Stafford, Russell; Ressler, Kelly-Anne; Norton, Sophie; Shadbolt, Craig; Hope, Kirsty; Franklin, Neil; Krsteski, Radomir; Carswell, Adrienne; Carter, Glen P; Seemann, Torsten; Howard, Peter; Valcanis, Mary; Castillo, Cristina Fabiola Sotomayor; Bates, John; Glass, Kathryn; Williamson, Deborah A; Sintchenko, Vitali; Howden, Benjamin P; Kirk, Martyn D
2018-05-01
Salmonella Typhimurium is a common cause of foodborne illness in Australia. We report on seven outbreaks of Salmonella Typhimurium multilocus variable-number tandem-repeat analysis (MLVA) 03-26-13-08-523 (European convention 2-24-12-7-0212) in three Australian states and territories investigated between November 2015 and March 2016. We identified a common egg grading facility in five of the outbreaks. While no Salmonella Typhimurium was detected at the grading facility and eggs could not be traced back to a particular farm, whole genome sequencing (WGS) of isolates from cases from all seven outbreaks indicated a common source. WGS was able to provide higher discriminatory power than MLVA and will likely link more Salmonella Typhimurium cases between states and territories in the future. National harmonization of Salmonella surveillance is important for effective implementation of WGS for Salmonella outbreak investigations.
Streptococcus agalactiae Serotype IV in Humans and Cattle, Northern Europe1
Lyhs, Ulrike; Kulkas, Laura; Katholm, Jørgen; Waller, Karin Persson; Saha, Kerttu; Tomusk, Richard J.
2016-01-01
Streptococcus agalactiae is an emerging pathogen of nonpregnant human adults worldwide and a reemerging pathogen of dairy cattle in parts of Europe. To learn more about interspecies transmission of this bacterium, we compared contemporaneously collected isolates from humans and cattle in Finland and Sweden. Multilocus sequence typing identified 5 sequence types (STs) (ST1, 8, 12, 23, and 196) shared across the 2 host species, suggesting possible interspecies transmission. More than 54% of the isolates belonged to those STs. Molecular serotyping and pilus island typing of those isolates did not differentiate between populations isolated from different host species. Isolates from humans and cattle differed in lactose fermentation, which is encoded on the accessory genome and represents an adaptation to the bovine mammary gland. Serotype IV-ST196 isolates were obtained from multiple dairy herds in both countries. Cattle may constitute a previously unknown reservoir of this strain. PMID:27869599
2014-01-01
Background As it becomes increasingly possible to obtain DNA sequences of orthologous genes from diverse sets of taxa, species trees are frequently being inferred from multilocus data. However, the behavior of many methods for performing this inference has remained largely unexplored. Some methods have been proven to be consistent given certain evolutionary models, whereas others rely on criteria that, although appropriate for many parameter values, have peculiar zones of the parameter space in which they fail to converge on the correct estimate as data sets increase in size. Results Here, using North American pines, we empirically evaluate the behavior of 24 strategies for species tree inference using three alternative outgroups (72 strategies total). The data consist of 120 individuals sampled in eight ingroup species from subsection Strobus and three outgroup species from subsection Gerardianae, spanning ∼47 kilobases of sequence at 121 loci. Each “strategy” for inferring species trees consists of three features: a species tree construction method, a gene tree inference method, and a choice of outgroup. We use multivariate analysis techniques such as principal components analysis and hierarchical clustering to identify tree characteristics that are robustly observed across strategies, as well as to identify groups of strategies that produce trees with similar features. We find that strategies that construct species trees using only topological information cluster together and that strategies that use additional non-topological information (e.g., branch lengths) also cluster together. Strategies that utilize more than one individual within a species to infer gene trees tend to produce estimates of species trees that contain clades present in trees estimated by other strategies. Strategies that use the minimize-deep-coalescences criterion to construct species trees tend to produce species tree estimates that contain clades that are not present in trees estimated by the Concatenation, RTC, SMRT, STAR, and STEAC methods, and that in general are more balanced than those inferred by these other strategies. Conclusions When constructing a species tree from a multilocus set of sequences, our observations provide a basis for interpreting differences in species tree estimates obtained via different approaches that have a two-stage structure in common, one step for gene tree estimation and a second step for species tree estimation. The methods explored here employ a number of distinct features of the data, and our analysis suggests that recovery of the same results from multiple methods that tend to differ in their patterns of inference can be a valuable tool for obtaining reliable estimates. PMID:24678701
DeGiorgio, Michael; Syring, John; Eckert, Andrew J; Liston, Aaron; Cronn, Richard; Neale, David B; Rosenberg, Noah A
2014-03-29
As it becomes increasingly possible to obtain DNA sequences of orthologous genes from diverse sets of taxa, species trees are frequently being inferred from multilocus data. However, the behavior of many methods for performing this inference has remained largely unexplored. Some methods have been proven to be consistent given certain evolutionary models, whereas others rely on criteria that, although appropriate for many parameter values, have peculiar zones of the parameter space in which they fail to converge on the correct estimate as data sets increase in size. Here, using North American pines, we empirically evaluate the behavior of 24 strategies for species tree inference using three alternative outgroups (72 strategies total). The data consist of 120 individuals sampled in eight ingroup species from subsection Strobus and three outgroup species from subsection Gerardianae, spanning ∼47 kilobases of sequence at 121 loci. Each "strategy" for inferring species trees consists of three features: a species tree construction method, a gene tree inference method, and a choice of outgroup. We use multivariate analysis techniques such as principal components analysis and hierarchical clustering to identify tree characteristics that are robustly observed across strategies, as well as to identify groups of strategies that produce trees with similar features. We find that strategies that construct species trees using only topological information cluster together and that strategies that use additional non-topological information (e.g., branch lengths) also cluster together. Strategies that utilize more than one individual within a species to infer gene trees tend to produce estimates of species trees that contain clades present in trees estimated by other strategies. Strategies that use the minimize-deep-coalescences criterion to construct species trees tend to produce species tree estimates that contain clades that are not present in trees estimated by the Concatenation, RTC, SMRT, STAR, and STEAC methods, and that in general are more balanced than those inferred by these other strategies. When constructing a species tree from a multilocus set of sequences, our observations provide a basis for interpreting differences in species tree estimates obtained via different approaches that have a two-stage structure in common, one step for gene tree estimation and a second step for species tree estimation. The methods explored here employ a number of distinct features of the data, and our analysis suggests that recovery of the same results from multiple methods that tend to differ in their patterns of inference can be a valuable tool for obtaining reliable estimates.
Multilocus inference of species trees and DNA barcoding.
Mallo, Diego; Posada, David
2016-09-05
The unprecedented amount of data resulting from next-generation sequencing has opened a new era in phylogenetic estimation. Although large datasets should, in theory, increase phylogenetic resolution, massive, multilocus datasets have uncovered a great deal of phylogenetic incongruence among different genomic regions, due both to stochastic error and to the action of different evolutionary process such as incomplete lineage sorting, gene duplication and loss and horizontal gene transfer. This incongruence violates one of the fundamental assumptions of the DNA barcoding approach, which assumes that gene history and species history are identical. In this review, we explain some of the most important challenges we will have to face to reconstruct the history of species, and the advantages and disadvantages of different strategies for the phylogenetic analysis of multilocus data. In particular, we describe the evolutionary events that can generate species tree-gene tree discordance, compare the most popular methods for species tree reconstruction, highlight the challenges we need to face when using them and discuss their potential utility in barcoding. Current barcoding methods sacrifice a great amount of statistical power by only considering one locus, and a transition to multilocus barcodes would not only improve current barcoding methods, but also facilitate an eventual transition to species-tree-based barcoding strategies, which could better accommodate scenarios where the barcode gap is too small or inexistent.This article is part of the themed issue 'From DNA barcodes to biomes'. © 2016 The Authors.
Molecular Epidemiology of Human Oral Chagas Disease Outbreaks in Colombia
Ramírez, Juan David; Montilla, Marleny; Cucunubá, Zulma M.; Floréz, Astrid Carolina; Zambrano, Pilar; Guhl, Felipe
2013-01-01
Background Trypanosoma cruzi, the causative agent of Chagas disease, displays significant genetic variability revealed by six Discrete Typing Units (TcI-TcVI). In this pathology, oral transmission represents an emerging epidemiological scenario where different outbreaks associated to food/beverages consumption have been reported in Argentina, Bolivia, Brazil, Ecuador and Venezuela. In Colombia, six human oral outbreaks have been reported corroborating the importance of this transmission route. Molecular epidemiology of oral outbreaks is barely known observing the incrimination of TcI, TcII, TcIV and TcV genotypes. Methodology and Principal Findings High-throughput molecular characterization was conducted performing MLMT (Multilocus Microsatellite Typing) and mtMLST (mitochondrial Multilocus Sequence Typing) strategies on 50 clones from ten isolates. Results allowed observing the occurrence of TcI, TcIV and mixed infection of distinct TcI genotypes. Thus, a majority of specific mitochondrial haplotypes and allelic multilocus genotypes associated to the sylvatic cycle of transmission were detected in the dataset with the foreseen presence of mitochondrial haplotypes and allelic multilocus genotypes associated to the domestic cycle of transmission. Conclusions These findings suggest the incrimination of sylvatic genotypes in the oral outbreaks occurred in Colombia. We observed patterns of super-infection and/or co-infection with a tailored association with the severe forms of myocarditis in the acute phase of the disease. The transmission dynamics of this infection route based on molecular epidemiology evidence was unraveled and the clinical and biological implications are discussed. PMID:23437405
Demczuk, W; Sidhu, S; Unemo, M; Whiley, D M; Allen, V G; Dillon, J R; Cole, M; Seah, C; Trembizki, E; Trees, D L; Kersh, E N; Abrams, A J; de Vries, H J C; van Dam, A P; Medina, I; Bharat, A; Mulvey, M R; Van Domselaar, G; Martin, I
2017-05-01
A curated Web-based user-friendly sequence typing tool based on antimicrobial resistance determinants in Neisseria gonorrhoeae was developed and is publicly accessible (https://ngstar.canada.ca). The N. gonorrhoeae Sequence Typing for Antimicrobial Resistance (NG-STAR) molecular typing scheme uses the DNA sequences of 7 genes ( penA , mtrR , porB , ponA , gyrA , parC , and 23S rRNA) associated with resistance to β-lactam antimicrobials, macrolides, or fluoroquinolones. NG-STAR uses the entire penA sequence, combining the historical nomenclature for penA types I to XXXVIII with novel nucleotide sequence designations; the full mtrR sequence and a portion of its promoter region; portions of ponA , porB , gyrA , and parC ; and 23S rRNA sequences. NG-STAR grouped 768 isolates into 139 sequence types (STs) ( n = 660) consisting of 29 clonal complexes (CCs) having a maximum of a single-locus variation, and 76 NG-STAR STs ( n = 109) were identified as unrelated singletons. NG-STAR had a high Simpson's diversity index value of 96.5% (95% confidence interval [CI] = 0.959 to 0.969). The most common STs were NG-STAR ST-90 ( n = 100; 13.0%), ST-42 and ST-91 ( n = 45; 5.9%), ST-64 ( n = 44; 5.72%), and ST-139 ( n = 42; 5.5%). Decreased susceptibility to azithromycin was associated with NG-STAR ST-58, ST-61, ST-64, ST-79, ST-91, and ST-139 ( n = 156; 92.3%); decreased susceptibility to cephalosporins was associated with NG-STAR ST-90, ST-91, and ST-97 ( n = 162; 94.2%); and ciprofloxacin resistance was associated with NG-STAR ST-26, ST-90, ST-91, ST-97, ST-150, and ST-158 ( n = 196; 98.0%). All isolates of NG-STAR ST-42, ST-43, ST-63, ST-81, and ST-160 ( n = 106) were susceptible to all four antimicrobials. The standardization of nomenclature associated with antimicrobial resistance determinants through an internationally available database will facilitate the monitoring of the global dissemination of antimicrobial-resistant N. gonorrhoeae strains. © Crown copyright 2017.
Schink, Anne-Kathrin; Kadlec, Kristina; Schwarz, Stefan
2011-01-01
In this study, 417 Escherichia coli isolates from defined disease conditions of companion and farm animals collected in the BfT-GermVet study were investigated for the presence of extended-spectrum β-lactamase (ESBL) genes. Three ESBL-producing E. coli isolates were identified among the 100 ampicillin-resistant isolates. The E. coli isolates 168 and 246, of canine and porcine origins, respectively, harbored blaCTX-M-1, and the canine isolate 913 harbored blaCTX-M-15, as confirmed by PCR and sequence analysis. The isolates 168 and 246 belonged to the novel multilocus sequence typing (MLST) types ST1576 and ST1153, respectively, while isolate 913 had the MLST type ST410. The ESBL genes were located on structurally related IncN plasmids in isolates 168 and 246 and on an IncF plasmid in isolate 913. The blaCTX-M-1 upstream regions of plasmids pCTX168 and pCTX246 were similar, whereas the downstream regions showed structural differences. The genetic environment of the blaCTX-M-15 gene on plasmid pCTX913 differed distinctly from that of both blaCTX-M-1 genes. Detailed sequence analysis showed that the integration of insertion sequences, as well as interplasmid recombination events, accounted for the structural variability in the blaCTX-M gene regions. PMID:21685166
Comparative Analysis of the First Complete Enterococcus faecium Genome
Lam, Margaret M. C.; Seemann, Torsten; Bulach, Dieter M.; Gladman, Simon L.; Chen, Honglei; Haring, Volker; Moore, Robert J.; Ballard, Susan; Grayson, M. Lindsay; Johnson, Paul D. R.; Howden, Benjamin P.
2012-01-01
Vancomycin-resistant enterococci (VRE) are one of the leading causes of nosocomial infections in health care facilities around the globe. In particular, infections caused by vancomycin-resistant Enterococcus faecium are becoming increasingly common. Comparative and functional genomic studies of E. faecium isolates have so far been limited owing to the lack of a fully assembled E. faecium genome sequence. Here we address this issue and report the complete 3.0-Mb genome sequence of the multilocus sequence type 17 vancomycin-resistant Enterococcus faecium strain Aus0004, isolated from the bloodstream of a patient in Melbourne, Australia, in 1998. The genome comprises a 2.9-Mb circular chromosome and three circular plasmids. The chromosome harbors putative E. faecium virulence factors such as enterococcal surface protein, hemolysin, and collagen-binding adhesin. Aus0004 has a very large accessory genome (38%) that includes three prophage and two genomic islands absent among 22 other E. faecium genomes. One of the prophage was present as inverted 50-kb repeats that appear to have facilitated a 683-kb chromosomal inversion across the replication terminus, resulting in a striking replichore imbalance. Other distinctive features include 76 insertion sequence elements and a single chromosomal copy of Tn1549 containing the vanB vancomycin resistance element. A complete E. faecium genome will be a useful resource to assist our understanding of this emerging nosocomial pathogen. PMID:22366422
Pneumocystis jirovecii multilocus genotyping profiles in patients from Portugal and Spain.
Esteves, F; Montes-Cano, M A; de la Horra, C; Costa, M C; Calderón, E J; Antunes, F; Matos, O
2008-04-01
Pneumonia caused by the opportunistic organism Pneumocystis jirovecii is a clinically important infection affecting AIDS and other immunocompromised patients. The present study aimed to compare and characterise the frequency pattern of DNA sequences from the P. jirovecii mitochondrial large-subunit rRNA (mtLSU rRNA) gene, the dihydropteroate synthase (DHPS) gene and the internal transcribed spacer (ITS) regions of the nuclear rRNA operon in specimens from Lisbon (Portugal) and Seville (Spain). Total DNA was extracted and used for specific molecular sequence analysis of the three loci. In both populations, mtLSU rRNA gene analysis revealed an overall prevalence of genotype 1. In the Portuguese population, genotype 2 was the second most common, followed by genotype 3. Inversely, in the Spanish population, genotype 3 was the second most common, followed by genotype 2. The DHPS wild-type sequence was the genotype observed most frequently in both populations, and the DHPS genotype frequency pattern was identical to distribution patterns revealed in other European studies. ITS types showed a significant diversity in both populations because of the high sequence variability in these genomic regions. The most prevalent ITS type in the Portuguese population was Eg, followed by Cg. In contrast to other European studies, Bi was the most common ITS type in the Spanish samples, followed by Eg. A statistically significant association between mtLSU rRNA genotype 1 and ITS type Eg was revealed.
Rafei, Rayane; Dabboussi, Fouad; Hamze, Monzer; Eveillard, Matthieu; Lemarié, Carole; Mallat, Hassan; Rolain, Jean-Marc; Joly-Guillou, Marie-Laure; Kempf, Marie
2014-04-01
The emergence of carbapenem-resistant Acinetobacter baumannii has been observed worldwide. We describe the first detection of A. baumannii carrying the blaNDM-1 gene in Lebanon, isolated from Syrian patients wounded during the civil war. Four carbapenem-resistant A. baumannii strains isolated in 2012 in the Tripoli Government Hospital, Lebanon, from civilians wounded during the Syrian war, were analysed. Susceptibility was determined by disk diffusion testing, and resistance to carbapenems was confirmed by Etest. The presence of blaOXA-23-like, blaOXA-24-like, blaOXA-58-like, blaOXA-143-like, and blaNDM was investigated by PCR. Clonal relationships were studied by pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and blaOXA-51 sequence-based typing. All isolates harboured the blaNDM-1 gene and were negative for other tested carbapenemases. They all belonged to the sequence type 85 and formed a single cluster by PFGE. Finally, blaOXA-51-like gene sequencing revealed the presence of the blaOXA-94 variant in all four isolates. These findings show that Syria constitutes a reservoir for NDM-1-producing bacteria. These results also highlight the need for effective measures to stop the threatening spread of such strains. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Characterization of Streptococcus pneumoniae isolates from Austrian companion animals and horses.
Ginders, Maximilian; Leschnik, Michael; Künzel, Frank; Kampner, Doris; Mikula, Claudia; Steindl, Georg; Eichhorn, Inga; Feßler, Andrea T; Schwarz, Stefan; Spergser, Joachim; Loncaric, Igor
2017-11-14
The aim of the present study was to investigate the genetic relatedness and the antimicrobial resistance profiles of a collection of Austrian Streptococcus pneumoniae isolates from companion animals and horses. A total of 12 non-repetitive isolates presumptively identified as S. pneumoniae were obtained during routinely diagnostic activities between March 2009 and January 2017. Isolates were confirmed as S. pneumoniae by bile solubility and optochin susceptibility testing, matrix-assisted laser desorption-ionization-time of flight (MALDI-TOF) mass spectrometry and sequence analysis of a part recA and the 16S rRNA genes. Isolates were further characterized by pneumolysin polymerase chain reaction (PCR) and genotyped by multilocus sequence typing (MLST). Antimicrobial susceptibility testing was performed and resistance genes were detected by specific PCR assays. All isolates were serotyped. Four sequence types (ST) (ST36, ST3546, ST6934 and ST6937) and four serotypes (3, 19A, 19F and 23F) were detected. Two isolates from twelve displayed a multidrug-resistance pheno- and genotype. This study represents the first comprehensive investigation on characteristics of S. pneumoniae isolates recovered from Austrian companion animals and horses. The obtained results indicate that common human sero- (23F) and sequence type (ST36) implicated in causing invasive pneumococcal disease (IPD) may circulate in dogs. Isolates obtained from other examined animals seem to be host-adapted.
Zurfluh, Katrin; Wang, Juan; Klumpp, Jochen; Nüesch-Inderbinen, Magdalena; Fanning, Séamus; Stephan, Roger
2014-01-01
Objectives: The purpose of this study was to characterize sets of extended-spectrum β-lactamases (ESBL)-producing Enterobacteriaceae collected longitudinally from different flocks of broiler breeders, meconium of 1-day-old broilers from theses breeder flocks, as well as from these broiler flocks before slaughter. Methods: Five sets of ESBL-producing Escherichia coli were studied by multi-locus sequence typing (MLST), phylogenetic grouping, PCR-based replicon typing and resistance profiling. The blaCTX-M-1-harboring plasmids of one set (pHV295.1, pHV114.1, and pHV292.1) were fully sequenced and subjected to comparative analysis. Results: Eleven different MLST sequence types (ST) were identified with ST1056 the predominant one, isolated in all five sets either on the broiler breeder or meconium level. Plasmid sequencing revealed that blaCTX-M-1 was carried by highly similar IncI1/ST3 plasmids that were 105 076 bp, 110 997 bp, and 117 269 bp in size, respectively. Conclusions: The fact that genetically similar IncI1/ST3 plasmids were found in ESBL-producing E. coli of different MLST types isolated at the different levels in the broiler production pyramid provides strong evidence for a vertical transmission of these plasmids from a common source (nucleus poultry flocks). PMID:25324838
Zurfluh, Katrin; Wang, Juan; Klumpp, Jochen; Nüesch-Inderbinen, Magdalena; Fanning, Séamus; Stephan, Roger
2014-01-01
The purpose of this study was to characterize sets of extended-spectrum β-lactamases (ESBL)-producing Enterobacteriaceae collected longitudinally from different flocks of broiler breeders, meconium of 1-day-old broilers from theses breeder flocks, as well as from these broiler flocks before slaughter. Five sets of ESBL-producing Escherichia coli were studied by multi-locus sequence typing (MLST), phylogenetic grouping, PCR-based replicon typing and resistance profiling. The bla CTX-M-1-harboring plasmids of one set (pHV295.1, pHV114.1, and pHV292.1) were fully sequenced and subjected to comparative analysis. Eleven different MLST sequence types (ST) were identified with ST1056 the predominant one, isolated in all five sets either on the broiler breeder or meconium level. Plasmid sequencing revealed that bla CTX-M-1 was carried by highly similar IncI1/ST3 plasmids that were 105 076 bp, 110 997 bp, and 117 269 bp in size, respectively. The fact that genetically similar IncI1/ST3 plasmids were found in ESBL-producing E. coli of different MLST types isolated at the different levels in the broiler production pyramid provides strong evidence for a vertical transmission of these plasmids from a common source (nucleus poultry flocks).
Magnússon, S H; Guðmundsdóttir, S; Reynisson, E; Rúnarsson, A R; Harðardóttir, H; Gunnarson, E; Georgsson, F; Reiersen, J; Marteinsson, V Th
2011-10-01
Campylobacter jejuni isolates from various sources in Iceland were genotyped with the aim of assessing the genetic diversity, population structure, source distribution and campylobacter transmission routes to humans. A collection of 584 Campylobacter isolates were collected from clinical cases, food, animals and environment in Iceland in 1999-2002, during a period of national Campylobacter epidemic in Iceland. All isolates were characterized by pulse field gel electrophoresis (PFGE), and selected subset of 52 isolates representing the diversity of the identified PFGE types was further genotyped using multilocus sequence typing (MLST) and fla-SVR sequencing to gain better insight into the population structure. The results show a substantial diversity within the Icelandic Campylobacter population. Majority of the human Campylobacter infections originated from domestic chicken and cattle isolates. MLST showed the isolates to be distributed among previously reported and common sequence type complexes in the MLST database. The genotyping of Campylobacter from various sources has not previously been reported from Iceland, and the results of the study gave a valuable insight into the population structure of Camp. jejuni in Iceland, source distribution and transmission routes to humans. The geographical isolation of Iceland in the north Atlantic provides new information on Campylobacter population dynamics on a global scale. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology No claim to Icelandic Government works.
Genetic Diversity among Clostridium botulinum Strains Harboring bont/A2 and bont/A3 Genes
Raphael, Brian H.; Joseph, Lavin A.; Meno, Sarah R.; Fernández, Rafael A.; Maslanka, Susan E.
2012-01-01
Clostridium botulinum type A strains are known to be genetically diverse and widespread throughout the world. Genetic diversity studies have focused mainly on strains harboring one type A botulinum toxin gene, bont/A1, although all reported bont/A gene variants have been associated with botulism cases. Our study provides insight into the genetic diversity of C. botulinum type A strains, which contain bont/A2 (n = 42) and bont/A3 (n = 4) genes, isolated from diverse samples and geographic origins. Genetic diversity was assessed by using bont nucleotide sequencing, content analysis of the bont gene clusters, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE). Sequences of bont genes obtained in this study showed 99.9 to 100% identity with other bont/A2 or bont/A3 gene sequences available in public databases. The neurotoxin gene clusters of the subtype A2 and A3 strains analyzed in this study were similar in gene content. C. botulinum strains harboring bont/A2 and bont/A3 genes were divided into six and two MLST profiles, respectively. Four groups of strains shared a similarity of at least 95% by PFGE; the largest group included 21 out of 46 strains. The strains analyzed in this study showed relatively limited genetic diversity using either MLST or PFGE. PMID:23042179
Mauchline, Tim H.; Knox, Rachel; Mohan, Sharad; Powers, Stephen J.; Kerry, Brian R.; Davies, Keith G.; Hirsch, Penny R.
2011-01-01
Protein-encoding and 16S rRNA genes of Pasteuria penetrans populations from a wide range of geographic locations were examined. Most interpopulation single nucleotide polymorphisms (SNPs) were detected in the 16S rRNA gene. However, in order to fully resolve all populations, these were supplemented with SNPs from protein-encoding genes in a multilocus SNP typing approach. Examination of individual 16S rRNA gene sequences revealed the occurrence of “cryptic” SNPs which were not present in the consensus sequences of any P. penetrans population. Additionally, hierarchical cluster analysis separated P. penetrans 16S rRNA gene clones into four groups, and one of which contained sequences from the most highly passaged population, demonstrating that it is possible to manipulate the population structure of this fastidious bacterium. The other groups were made from representatives of the other populations in various proportions. Comparison of sequences among three Pasteuria species, namely, P. penetrans, P. hartismeri, and P. ramosa, showed that the protein-encoding genes provided greater discrimination than the 16S rRNA gene. From these findings, we have developed a toolbox for the discrimination of Pasteuria at both the inter- and intraspecies levels. We also provide a model to monitor genetic variation in other obligate hyperparasites and difficult-to-culture microorganisms. PMID:21803895
Mauchline, Tim H; Knox, Rachel; Mohan, Sharad; Powers, Stephen J; Kerry, Brian R; Davies, Keith G; Hirsch, Penny R
2011-09-01
Protein-encoding and 16S rRNA genes of Pasteuria penetrans populations from a wide range of geographic locations were examined. Most interpopulation single nucleotide polymorphisms (SNPs) were detected in the 16S rRNA gene. However, in order to fully resolve all populations, these were supplemented with SNPs from protein-encoding genes in a multilocus SNP typing approach. Examination of individual 16S rRNA gene sequences revealed the occurrence of "cryptic" SNPs which were not present in the consensus sequences of any P. penetrans population. Additionally, hierarchical cluster analysis separated P. penetrans 16S rRNA gene clones into four groups, and one of which contained sequences from the most highly passaged population, demonstrating that it is possible to manipulate the population structure of this fastidious bacterium. The other groups were made from representatives of the other populations in various proportions. Comparison of sequences among three Pasteuria species, namely, P. penetrans, P. hartismeri, and P. ramosa, showed that the protein-encoding genes provided greater discrimination than the 16S rRNA gene. From these findings, we have developed a toolbox for the discrimination of Pasteuria at both the inter- and intraspecies levels. We also provide a model to monitor genetic variation in other obligate hyperparasites and difficult-to-culture microorganisms.
Hill-Cawthorne, Grant A.; Hudson, Lyndsey O.; El Ghany, Moataz Fouad Abd; Piepenburg, Olaf; Nair, Mridul; Dodgson, Andrew; Forrest, Matthew S.
2014-01-01
Clinical laboratories are increasingly using molecular tests for methicillin-resistant Staphylococcus aureus (MRSA) screening. However, primers have to be targeted to a variable chromosomal region, the staphylococcal cassette chromosome mec (SCCmec). We initially screened 726 MRSA isolates from a single UK hospital trust by recombinase polymerase amplification (RPA), a novel, isothermal alternative to PCR. Undetected isolates were further characterised using multilocus sequence, spa typing and whole genome sequencing. 96% of our tested phenotypically MRSA isolates contained one of the six orfX-SCCmec junctions our RPA test and commercially available molecular tests target. However 30 isolates could not be detected. Sequencing of 24 of these isolates demonstrated recombinations within the SCCmec element with novel insertions that interfered with the RPA, preventing identification as MRSA. This result suggests that clinical laboratories cannot rely solely upon molecular assays to reliably detect all methicillin-resistance. The presence of significant recombinations in the SCCmec element, where the majority of assays target their primers, suggests that there will continue to be isolates that escape identification. We caution that dependence on amplification-based molecular assays will continue to result in failure to diagnose a small proportion (∼4%) of MRSA isolates, unless the true level of SCCmec natural diversity is determined by whole genome sequencing of a large collection of MRSA isolates. PMID:24972080
Yang, Yilong
2017-01-01
Abstract The subgenomic compositions of the octoploid (2n = 8× = 56) strawberry (Fragaria) species, including the economically important cultivated species Fragaria x ananassa, have been a topic of long-standing interest. Phylogenomic approaches utilizing next-generation sequencing technologies offer a new window into species relationships and the subgenomic compositions of polyploids. We have conducted a large-scale phylogenetic analysis of Fragaria (strawberry) species using the Fluidigm Access Array system and 454 sequencing platform. About 24 single-copy or low-copy nuclear genes distributed across the genome were amplified and sequenced from 96 genomic DNA samples representing 16 Fragaria species from diploid (2×) to decaploid (10×), including the most extensive sampling of octoploid taxa yet reported. Individual gene trees were constructed by different tree-building methods. Mosaic genomic structures of diploid Fragaria species consisting of sequences at different phylogenetic positions were observed. Our findings support the presence in octoploid species of genetic signatures from at least five diploid ancestors (F. vesca, F. iinumae, F. bucharica, F. viridis, and at least one additional allele contributor of unknown identity), and questions the extent to which distinct subgenomes are preserved over evolutionary time in the allopolyploid Fragaria species. In addition, our data support divergence between the two wild octoploid species, F. virginiana and F. chiloensis. PMID:29045639
Versteeg, Bart; Bruisten, Sylvia M; van der Ende, Arie; Pannekoek, Yvonne
2016-04-18
Chlamydia trachomatis infections remain the most common bacterial sexually transmitted infection worldwide. To gain more insight into the epidemiology and transmission of C. trachomatis, several schemes of multilocus sequence typing (MLST) have been developed. We investigated the clustering of C. trachomatis strains derived from men who have sex with men (MSM) and heterosexuals using the MLST scheme based on 7 housekeeping genes (MLST-7) adapted for clinical specimens and a high-resolution MLST scheme based on 6 polymorphic genes, including ompA (hr-MLST-6). Specimens from 100 C. trachomatis infected men who have sex with men (MSM) and 100 heterosexual women were randomly selected from previous studies and sequenced. We adapted the MLST-7 scheme to a nested assay to be suitable for direct typing of clinical specimens. All selected specimens were typed using both the adapted MLST-7 scheme and the hr-MLST-6 scheme. Clustering of C. trachomatis strains derived from MSM and heterosexuals was assessed using minimum spanning tree analysis. Sufficient chlamydial DNA was present in 188 of the 200 (94 %) selected samples. Using the adapted MLST-7 scheme, full MLST profiles were obtained for 187 of 188 tested specimens resulting in a high success rate of 99.5 %. Of these 187 specimens, 91 (48.7 %) were from MSM and 96 (51.3 %) from heterosexuals. We detected 21 sequence types (STs) using the adapted MLST-7 and 79 STs using the hr-MLST-6 scheme. Minimum spanning tree analyses was used to examine the clustering of MLST-7 data, which showed no reflection of separate transmission in MSM and heterosexual hosts. Moreover, typing using the hr-MLST-6 scheme identified genetically related clusters within each of clusters that were identified by using the MLST-7 scheme. No distinct transmission of C. trachomatis could be observed in MSM and heterosexuals using the adapted MLST-7 scheme in contrast to using the hr-MLST-6. In addition, we compared clustering of both MLST schemes and demonstrated that typing using the hr-MLST-6 scheme is able to identify genetically related clusters of C. trachomatis strains within each of the clusters that were identified by using the MLST-7 scheme.
Srinivasan, Velusamy; Gertz, Robert E; Shewmaker, Patricia L; Patrick, Sarah; Chitnis, Amit S; O'Connell, Heather; Benowitz, Isaac; Patel, Priti; Guh, Alice Y; Noble-Wang, Judith; Turabelidze, George; Beall, Bernard
2012-01-01
We recently investigated three cases of bacterial meningitis that were reported from a midwestern radiology clinic where facemasks were not worn during spinal injection of contrast agent during myelography procedures. Using pulsed field gel electrophoresis we linked a case strain of S. salivarius to an oral specimen of a radiology physician assistant (RPA). We also used a real-time PCR assay to detect S. salivarius DNA within a culture-negative cerebrospinal fluid (CSF) specimen. Here we extend this investigation through using a nested PCR/sequencing strategy to link the culture-negative CSF specimen to the case strain. We also provide validation of the real-time PCR assay used, demonstrating that it is not solely specific for Streptococcus salivarius, but is also highly sensitive for detection of the closely related oral species Streptococcus vestibularis. Through using multilocus sequence typing and 16S rDNA sequencing we further strengthen the link between the CSF case isolate and the RPA carriage isolate. We also demonstrate that the newly characterized strains from this study are distinct from previously characterized S. salivarius strains associated with carriage and meningitis.
Bier, Nadja; Jäckel, Claudia; Dieckmann, Ralf; Brennholt, Nicole; Böer, Simone I; Strauch, Eckhard
2015-12-15
Vibrio vulnificus is a halophilic bacterium of coastal environments known for sporadically causing severe foodborne or wound infections. Global warming is expected to lead to a rising occurrence of V. vulnificus and an increasing incidence of human infections in Northern Europe. So far, infections in Germany were exclusively documented for the Baltic Sea coast, while no cases from the North Sea region have been reported. Regional variations in the prevalence of infections may be influenced by differences in the pathogenicity of V. vulnificus populations in both areas. This study aimed to compare the distribution of virulence-associated traits and genotypes among 101 V. vulnificus isolates from the Baltic Sea and North Sea in order to assess their pathogenicity potential. Furthermore, genetic relationships were examined by multilocus sequence typing (MLST). A high diversity of MLST sequences (74 sequence types) and differences regarding the presence of six potential pathogenicity markers were observed in the V. vulnificus populations of both areas. Strains with genotypes and markers associated with pathogenicity are not restricted to a particular geographic region. This indicates that lack of reported cases in the North Sea region is not caused by the absence of potentially pathogenic strains.
Genetic affinities of Helicobacter pylori isolates from ethnic Arabs in Kuwait
2010-01-01
Helicobacter pylori is one of the most genetically diverse of bacterial species, and since the 5'-end of cagA gene and the middle allele of vacA gene of H. pylori from different populations exhibit considerable polymorphisms, these sequence diversities were used to gain insights into the genetic affinities of this gastric pathogen from different populations. Because the genetic affinity of Arab strains from the Arabian Gulf is not known, we carried out genetic analysis based on sequence diversities of the cagA and the vacA genes of H. pylori from 9 ethnic Arabs in Kuwait. The analysis showed that the Kuwaiti isolates are closely related to the Indo-European group of strains, although some strains have a tendency to form a separate cluster close to the Indo- European group, but clearly distinct from East Asian strains. However, these results need to be confirmed by analyses of neutral markers (house-keeping genes in a multi-locus sequence typing [MLST]) platform. The profiling of virulence-associated genes may have resulted from ecologically distinct populations due to human migration and geographical separation over long periods of time. PMID:20602767
Hu, Yun; Kan, Yunchao; Zhang, Zhengtian; Lu, Zhanning; Li, Yanqiu; Leng, Chaoliang; Ji, Jun; Song, Shiyang; Shi, Hongfei
2018-02-23
Streptococcus agalactiae is a causal agent of bovine mastitis and is treated by β-lactam antibiotics (BLAs). Compared to penicillin-resistant S. agalactiae from humans, resistant strains in bovine are rarely reported. In this study, we aimed to investigate BLA resistance and mutations in penicillin-binding proteins (PBPs) of S. agalactiae in central and northeast China. The minimum inhibitory concentrations (MICs) of 129 penicillin-resistant S. agalactiae isolates from cows with mastitis were determined, and the related PBP genes were detected and sequenced. All strains were unsusceptible to penicillin G and mostly resistant to ampicillin, cefalexin, and ceftiofur sodium. One hundred twenty-nine strains were divided into 4 clonal groups and 8 sequence types by multilocus sequence typing analysis. We found a set of new substitutions in PBP1B, PBP2B, and PBP2X from most strains isolated from three provinces. The strains with high PBP mutations showed a broader unsusceptible spectrum and higher MICs than those with few or single mutation. Our research indicates unpredicted mutations in the PBP genes of S. agalactiae isolated from cows with mastitis treated by BLAs. This screening is the first of S. agalactiae from cattle.
Lopes-Santos, Lucilene; Castro, Daniel Bedo Assumpção; Ferreira-Tonin, Mariana; Corrêa, Daniele Bussioli Alves; Weir, Bevan Simon; Park, Duckchul; Ottoboni, Laura Maria Mariscal; Neto, Júlio Rodrigues; Destéfano, Suzete Aparecida Lanza
2017-06-01
The phylogenetic classification of the species Burkholderia andropogonis within the Burkholderia genus was reassessed using 16S rRNA gene phylogenetic analysis and multilocus sequence analysis (MLSA). Both phylogenetic trees revealed two main groups, named A and B, strongly supported by high bootstrap values (100%). Group A encompassed all of the Burkholderia species complex, whi.le Group B only comprised B. andropogonis species, with low percentage similarities with other species of the genus, from 92 to 95% for 16S rRNA gene sequences and 83% for conserved gene sequences. Average nucleotide identity (ANI), tetranucleotide signature frequency, and percentage of conserved proteins POCP analyses were also carried out, and in the three analyses B. andropogonis showed lower values when compared to the other Burkholderia species complex, near 71% for ANI, from 0.484 to 0.724 for tetranucleotide signature frequency, and around 50% for POCP, reinforcing the distance observed in the phylogenetic analyses. Our findings provide an important insight into the taxonomy of B. andropogonis. It is clear from the results that this bacterial species exhibits genotypic differences and represents a new genus described herein as Robbsia andropogonis gen. nov., comb. nov.
Population and genomic analysis of the genus Halorubrum
Fullmer, Matthew S.; Soucy, Shannon M.; Swithers, Kristen S.; Makkay, Andrea M.; Wheeler, Ryan; Ventosa, Antonio; Gogarten, J. Peter; Papke, R. Thane
2014-01-01
The Halobacteria are known to engage in frequent gene transfer and homologous recombination. For stably diverged lineages to persist some checks on the rate of between lineage recombination must exist. We surveyed a group of isolates from the Aran-Bidgol endorheic lake in Iran and sequenced a selection of them. Multilocus Sequence Analysis (MLSA) and Average Nucleotide Identity (ANI) revealed multiple clusters (phylogroups) of organisms present in the lake. Patterns of intein and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) presence/absence and their sequence similarity, GC usage along with the ANI and the identities of the genes used in the MLSA revealed that two of these clusters share an exchange bias toward others in their phylogroup while showing reduced rates of exchange with other organisms in the environment. However, a third cluster, composed in part of named species from other areas of central Asia, displayed many indications of variability in exchange partners, from within the lake as well as outside the lake. We conclude that barriers to gene exchange exist between the two purely Aran-Bidgol phylogroups, and that the third cluster with members from other regions is not a single population and likely reflects an amalgamation of several populations. PMID:24782836
Yun, Ki Wook; Choi, Eun Hwa; Lee, Hoan Jong
2017-01-01
Pneumococcal surface protein A (PspA) is an important virulence factor of pneumococci and has been investigated as a primary component of a capsular serotype-independent pneumococcal vaccine. Thus, we sought to determine the genetic diversity of PspA to explore its potential as a vaccine candidate. Among the 190 invasive pneumococcal isolates collected from Korean children between 1991 and 2016, two (1.1%) isolates were found to have no pspA by multiple polymerase chain reactions. The full length pspA genes from 185 pneumococcal isolates were sequenced. The length of pspA varied, ranging from 1,719 to 2,301 base pairs with 55.7-100% nucleotide identity. Based on the sequences of the clade-defining regions, 68.7% and 49.7% were in PspA family 2 and clade 3/family 2, respectively. PspA clade types were correlated with genotypes using multilocus sequence typing and divided into several subclades based on diversity analysis of the N-terminal α-helical regions, which showed nucleotide sequence identities of 45.7-100% and amino acid sequence identities of 23.1-100%. Putative antigenicity plots were also diverse among individual clades and subclades. The differences in antigenicity patterns were concentrated within the N-terminal 120 amino acids. In conclusion, the N-terminal α-helical domain, which is known to be the major immunogenic portion of PspA, is genetically variable and should be further evaluated for antigenic differences and cross-reactivity between various PspA types from pneumococcal isolates.
Kong, L Y; Eyre, D W; Corbeil, J; Raymond, F; Walker, A S; Wilcox, M H; Crook, D W; Michaud, S; Toye, B; Frost, E; Dendukuri, N; Schiller, I; Bourgault, A M; Dascal, A; Oughton, M; Longtin, Y; Poirier, L; Brassard, P; Turgeon, N; Gilca, R; Loo, V G
2018-05-28
Whole genome sequencing (WGS) studies can enhance our understanding of the role of patients with asymptomatic Clostridium difficile colonization in transmission. Isolates obtained from patients with Clostridium difficile infection (CDI) and colonization identified in a study conducted during 2006 - 2007 at six Canadian hospitals underwent typing by pulsed-field gel electrophoresis, multilocus sequence typing, and WGS. Isolates from incident CDI cases not in the initial study were also sequenced where possible. Ward movement and typing data were combined to identify plausible donors for each CDI case, as defined by shared time and space within predefined limits. Proportions of plausible donors for CDI cases that were colonized, infected, or both were examined. Five hundred and fifty-four isolates were sequenced successfully, 353 from colonized and 201 from CDI cases. The NAP1/027/ST1 strain was the most common strain, found in 124 (62%) of infected and 92 (26%) of colonized patients. A donor with a plausible ward link was found for 81 CDI cases (40%) using WGS with a threshold of ≤2 single nucleotide variants to determine relatedness. Sixty-five (32%) CDI cases could be linked to both infected and colonized donors. Exclusive linkages to infected and colonized donors were found for 28 (14%) and 12 (6%) CDI cases, respectively. Colonized patients contribute to transmission, but CDI cases are more likely linked to other infected patients than colonized patients in this cohort with high rates of NAP1/027/ST1 strain, highlighting the importance of local prevalence of virulent strains in determining transmission dynamics.
Saijuntha, Weerachai; Sithithaworn, Paiboon; Duenngai, Kunyarat; Kiatsopit, Nadda; Andrews, Ross H; Petney, Trevor N
2011-03-01
Multilocus enzyme electrophoresis (MEE) and DNA sequencing of the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene were used to genetically compare four species of echinostomes of human health importance. Fixed genetic differences among adults of Echinostoma revolutum, Echinostoma malayanum, Echinoparyphium recurvatum and Hypoderaeum conoideum were detected at 51-75% of the enzyme loci examined, while interspecific differences in CO1 sequence were detected at 16-32 (8-16%) of the 205 alignment positions. The results of the MEE analyses also revealed fixed genetic differences between E. revolutum from Thailand and Lao PDR at five (19%) of 27 loci, which could either represent genetic variation between geographically separated populations of a single species, or the existence of a cryptic (i.e. genetically distinct but morphologically similar) species. However, there was no support for the existence of cryptic species within E. revolutum based on the CO1 sequence between the two geographical areas sampled. Genetic variation in CO1 sequence was also detected among E. malayanum from three different species of snail intermediate host. Separate phylogenetic analyses of the MEE and DNA sequence data revealed that the two species of Echinostoma (E. revolutum and E. malayanum) did not form a monophyletic clade. These results, together with the large number of morphologically similar species with inadequate descriptions, poor specific diagnoses and extensive synonymy, suggest that the morphological characters used for species taxonomy of echinostomes in South-East Asia should be reconsidered according to the concordance of biology, morphology and molecular classification. Copyright © 2010 Elsevier B.V. All rights reserved.
Smith, Hilde; Bossers, Alex; Harders, Frank; Wu, Guanghui; Woodford, Neil; Schwarz, Stefan; Guerra, Beatriz; Rodríguez, Irene; van Essen-Zandbergen, Alieda; Brouwer, Michael; Mevius, Dik
2015-09-01
The aim of the study was to identify the plasmid-encoded factors contributing to the emergence and spread of epidemic IncI1-Iγ plasmids obtained from Escherichia coli and Salmonella enterica isolates from animal and human reservoirs. For this, 251 IncI1-Iγ plasmids carrying various extended-spectrum β-lactamase (ESBL) or AmpC β-lactamase genes were compared using plasmid multilocus sequence typing (pMLST). Thirty-two of these plasmids belonging to different pMLST types were sequenced using Roche 454 and Illumina platforms. Epidemic IncI1-Iγ plasmids could be assigned to various dominant clades, whereas rarely detected plasmids clustered together as a distinct clade. Similar phylogenetic trees were obtained using only the plasmid backbone sequences, showing that the differences observed between the plasmids belonging to distinct clades resulted mainly from differences between their backbone sequences. Plasmids belonging to the various clades differed particularly in the presence/absence of genes encoding partitioning and addiction systems, which contribute to stable inheritance during cell division and plasmid maintenance. Despite this, plasmids belonging to the various phylogenetic clades also showed marked resistance gene associations, indicating the circulation of successful plasmid-gene combinations. The variation in traY and excA genes found in IncI1-Iγ plasmids is conserved within pMLST sequence types and plays a role in incompatibility, although functional study is needed to elucidate the role of these genes in plasmid epidemiology. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Adimpong, David B; Nielsen, Dennis S; Sørensen, Kim I; Vogensen, Finn K; Sawadogo-Lingani, Hagrétou; Derkx, Patrick M F; Jespersen, Lene
2013-10-01
Lactobacillus delbrueckii is divided into five subspecies based on phenotypic and genotypic differences. A novel isolate, designated ZN7a-9(T), was isolated from malted sorghum wort used for making an alcoholic beverage (dolo) in Burkina Faso. The results of 16S rRNA gene sequencing, DNA-DNA hybridization and peptidoglycan cell-wall structure type analyses indicated that it belongs to the species L. delbrueckii. The genome sequence of isolate ZN7a-9(T) was determined by Illumina-based sequencing. Multilocus sequence typing (MLST) and split-decomposition analyses were performed on seven concatenated housekeeping genes obtained from the genome sequence of strain ZN7a-9(T) together with 41 additional L. delbrueckii strains. The results of the MLST and split-decomposition analyses could not establish the exact subspecies of L. delbrueckii represented by strain ZN7a-9(T) as it clustered with L. delbrueckii strains unassigned to any of the recognized subspecies of L. delbrueckii. Strain ZN7a-9(T) additionally differed from the recognized type strains of the subspecies of L. delbrueckii with respect to its carbohydrate fermentation profile. In conclusion, the cumulative results indicate that strain ZN7a-9(T) represents a novel subspecies of L. delbrueckii closely related to Lactobacillus delbrueckii subsp. lactis and Lactobacillus delbrueckii subsp. delbrueckii for which the name Lactobacillus delbrueckii subsp. jakobsenii subsp. nov. is proposed. The type strain is ZN7a-9(T) = DSM 26046(T) = LMG 27067(T).
Hamby, Stephen E; Joseph, Susan; Forsythe, Stephen J; Chuzhanova, Nadia
2011-09-20
Cronobacter, formerly known as Enterobacter sakazakii, is a food-borne pathogen known to cause neonatal meningitis, septicaemia and death. Current diagnostic tests for identification of Cronobacter do not differentiate between species, necessitating time consuming 16S rDNA gene sequencing or multilocus sequence typing (MLST). The organism is ubiquitous, being found in the environment and in a wide range of foods, although there is variation in pathogenicity between Cronobacter isolates and between species. Therefore to be able to differentiate between the pathogenic and non-pathogenic strains is of interest to the food industry and regulators. Here we report the use of Expectation Maximization clustering to categorise 98 strains of Cronobacter as pathogenic or non-pathogenic based on biochemical test results from standard diagnostic test kits. Pathogenicity of a strain was postulated on the basis of either pathogenic symptoms associated with strain source or corresponding MLST sequence types, allowing the clusters to be labelled as containing either pathogenic or non-pathogenic strains. The resulting clusters gave good differentiation of strains into pathogenic and non-pathogenic groups, corresponding well to isolate source and MLST sequence type. The results also revealed a potential association between pathogenicity and inositol fermentation. An investigation of the genomes of Cronobacter sakazakii and C. turicensis revealed the gene for inositol monophosphatase is associated with putative virulence factors in pathogenic strains of Cronobacter. We demonstrated a computational approach allowing existing diagnostic kits to be used to identify pathogenic strains of Cronobacter. The resulting clusters correlated well with MLST sequence types and revealed new information about the pathogenicity of Cronobacter species.
Lelliottia aquatilis sp. nov., isolated from drinking water.
Kämpfer, Peter; Glaeser, Stefanie P; Packroff, Gabriele; Behringer, Katja; Exner, Martin; Chakraborty, Trinad; Schmithausen, Ricarda M; Doijad, Swapnil
2018-06-22
Five beige-pigmented, oxidase-negative bacterial isolates, 6331-17 T , 6332-17, 6333-17, 6334-17 and 9827-07, isolated either from a drinking water storage reservoir or drinking water in 2006 and 2017 in Germany, were examined in detail applying by a polyphasic taxonomic approach. Cells of the isolates were rod-shaped and Gram-stain-negative. Comparison of the 16S rRNA gene sequences of these five isolates showed highest sequence similarities to Lelliottia amnigena (99.98 %) and Lelliottia nimipressuralis (99.99 %). Multilocus sequence analyses based on concatenated partial rpoB, gyrB, infB and atpD sequences confirmed the clustering of these isolates with Lelliottia species, but also revealed a clear distinction to the closest related type strains. Analysis of the genome sequences of these isolates indicated >70 % in silico DNA-DNA hybridization and high average nucleotide identities between strains. Nevertheless, they showed only <70 and <95 % similarity to the type strains of these two Lelliottia species. The fatty acid profiles of these isolates were very similar and consisted of the major fatty acids C16:0, C17 : 0cyclo, C15 : 0iso 2-OH/C16 : 1ω7c and C18 : 1ω7c. In addition, physiological/biochemical tests revealed high phenotypic similarity to each other. These cumulative data indicate that these isolates represent a novel Lelliottia species, for which the name Lelliottia aquatilis sp. nov. is proposed, with strain 6331-17 T (=CCM 8846 T =CIP 111609 T =LMG 30560 T ) as the type strain.
Urabe, N; Ishii, Y; Hyodo, Y; Aoki, K; Yoshizawa, S; Saga, T; Murayama, S Y; Sakai, K; Homma, S; Tateda, K
2016-04-01
Between 18 November and 3 December 2011, five renal transplant patients at the Department of Nephrology, Toho University Omori Medical Centre, Tokyo, were diagnosed with Pneumocystis pneumonia (PCP). We used molecular epidemiologic methods to determine whether the patients were infected with the same strain of Pneumocystis jirovecii. DNA extracted from the residual bronchoalveolar lavage fluid from the five outbreak cases and from another 20 cases of PCP between 2007 and 2014 were used for multilocus sequence typing to compare the genetic similarity of the P. jirovecii. DNA base sequencing by the Sanger method showed some regions where two bases overlapped and could not be defined. A next-generation sequencer was used to analyse the types and ratios of these overlapping bases. DNA base sequences of P. jirovecii in the bronchoalveolar lavage fluid from four of the five PCP patients in the 2011 outbreak and from another two renal transplant patients who developed PCP in 2013 were highly homologous. The Sanger method revealed 14 genomic regions where two differing DNA bases overlapped and could not be identified. Analyses of the overlapping bases by a next-generation sequencer revealed that the differing types of base were present in almost identical ratios. There is a strong possibility that the PCP outbreak at the Toho University Omori Medical Centre was caused by the same strain of P. jirovecii. Two different types of base present in some regions may be due to P. jirovecii's being a diploid species. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Extrahuman Epidemiology of Acinetobacter baumannii in Lebanon
Rafei, Rayane; Hamze, Monzer; Pailhoriès, Hélène; Eveillard, Matthieu; Marsollier, Laurent; Joly-Guillou, Marie-Laure; Dabboussi, Fouad
2015-01-01
The presence of Acinetobacter baumannii outside hospitals is still a controversial issue. The objective of our study was to explore the extrahospital epidemiology of A. baumannii in Lebanon. From February 2012 to October 2013, a total of 73 water samples, 51 soil samples, 37 raw cow milk samples, 50 cow meat samples, 7 raw cheese samples, and 379 animal samples were analyzed by cultural methods for the presence of A. baumannii. Species identification was performed by rpoB gene sequencing. Antibiotic susceptibility was investigated, and the A. baumannii population was studied by two genotyping approaches: multilocus sequence typing (MLST) and blaOXA-51 sequence-based typing (SBT). A. baumannii was detected in 6.9% of water samples, 2.7% of milk samples, 8.0% of meat samples, 14.3% of cheese samples, and 7.7% of animal samples. All isolates showed a susceptible phenotype against most of the antibiotics tested and lacked carbapenemase-encoding genes, except one that harbored a blaOXA-143 gene. MLST analysis revealed the presence of 36 sequence types (STs), among which 24 were novel STs reported for the first time in this study. blaOXA-51 SBT showed the presence of 34 variants, among which 21 were novel and all were isolated from animal origins. Finally, 30 isolates had new partial rpoB sequences and were considered putative new Acinetobacter species. In conclusion, animals can be a potential reservoir for A. baumannii and the dissemination of new emerging carbapenemases. The roles of the novel animal clones identified in community-acquired infections should be investigated. PMID:25616788
Dialdestoro, Kevin; Sibbesen, Jonas Andreas; Maretty, Lasse; Raghwani, Jayna; Gall, Astrid; Kellam, Paul; Pybus, Oliver G.; Hein, Jotun; Jenkins, Paul A.
2016-01-01
Human immunodeficiency virus (HIV) is a rapidly evolving pathogen that causes chronic infections, so genetic diversity within a single infection can be very high. High-throughput “deep” sequencing can now measure this diversity in unprecedented detail, particularly since it can be performed at different time points during an infection, and this offers a potentially powerful way to infer the evolutionary dynamics of the intrahost viral population. However, population genomic inference from HIV sequence data is challenging because of high rates of mutation and recombination, rapid demographic changes, and ongoing selective pressures. In this article we develop a new method for inference using HIV deep sequencing data, using an approach based on importance sampling of ancestral recombination graphs under a multilocus coalescent model. The approach further extends recent progress in the approximation of so-called conditional sampling distributions, a quantity of key interest when approximating coalescent likelihoods. The chief novelties of our method are that it is able to infer rates of recombination and mutation, as well as the effective population size, while handling sampling over different time points and missing data without extra computational difficulty. We apply our method to a data set of HIV-1, in which several hundred sequences were obtained from an infected individual at seven time points over 2 years. We find mutation rate and effective population size estimates to be comparable to those produced by the software BEAST. Additionally, our method is able to produce local recombination rate estimates. The software underlying our method, Coalescenator, is freely available. PMID:26857628
Ben Tanfous, Farah; Alonso, Carla Andrea; Achour, Wafa; Ruiz-Ripa, Laura; Torres, Carmen; Ben Hassen, Assia
2017-04-01
The aim of this study was to investigate the molecular features among Klebsiella pneumoniae and Escherichia coli strains showing a resistant/intermediate-resistant phenotype to ertapenem (R/IR-ERT), implicated in colonization/infection in patients of the Hematology and Graft Units of the National Bone Marrow Transplant Center of Tunisia (3-year period, 2011-2014). The major carbapenemase, extended-spectrum beta-lactamase, and plasmidic AmpC beta-lactamase genes were analyzed and characterized by PCR and sequencing. Genetic relatedness was determined by pulsed-field gel electrophoresis (PFGE) using XbaI and multilocus sequencing typing. The bla OXA-48 and bla KPC carbapenemase genes were detected among R/IR-ERT isolates. All R/IR-ERT K. pneumoniae strains (n = 19) had bla OXA-48 gene, and 14/19 strains also harbored the bla CTX-M-15 gene. Eight different PFGE patterns were detected among these K. pneumoniae isolates, and they showed eight different sequences types, ST11 and ST15 being the most prevalent ones. Two out of three R/IR-ERT E. coli isolates carried bla OXA-48 and one coproduced the bla CTX-M-15 gene. One E. coli strain, ascribed to the new sequence type ST5700, harbored the bla KPC-2 gene. E. coli isolates were not clonally related and belonged to different sequence types (ST5700, ST227, and ST58). To our knowledge, this is the first report in Tunisia of either KPC-2 carbapenemase in E. coli or OXA-48 carbapenemase in K. pneumoniae of lineage ST15.
Development of a Web Tool for Escherichia coli Subtyping Based on fimH Alleles.
Roer, Louise; Tchesnokova, Veronika; Allesøe, Rosa; Muradova, Mariya; Chattopadhyay, Sujay; Ahrenfeldt, Johanne; Thomsen, Martin C F; Lund, Ole; Hansen, Frank; Hammerum, Anette M; Sokurenko, Evgeni; Hasman, Henrik
2017-08-01
The aim of this study was to construct a valid publicly available method for in silico fimH subtyping of Escherichia coli particularly suitable for differentiation of fine-resolution subgroups within clonal groups defined by standard multilocus sequence typing (MLST). FimTyper was constructed as a FASTA database containing all currently known fimH alleles. The software source code is publicly available at https://bitbucket.org/genomicepidemiology/fimtyper, the database is freely available at https://bitbucket.org/genomicepidemiology/fimtyper_db, and a service implementing the software is available at https://cge.cbs.dtu.dk/services/FimTyper FimTyper was validated on three data sets: one containing Sanger sequences of fimH alleles of 42 E. coli isolates generated prior to the current study (data set 1), one containing whole-genome sequence (WGS) data of 243 third-generation-cephalosporin-resistant E. coli isolates (data set 2), and one containing a randomly chosen subset of 40 E. coli isolates from data set 2 that were subjected to conventional fimH subtyping (data set 3). The combination of the three data sets enabled an evaluation and comparison of FimTyper on both Sanger sequences and WGS data. FimTyper correctly predicted all 42 fimH subtypes from the Sanger sequences from data set 1 and successfully analyzed all 243 draft genomes from data set 2. FimTyper subtyping of the Sanger sequences and WGS data from data set 3 were in complete agreement. Additionally, fimH subtyping was evaluated on a phylogenetic network of 122 sequence type 131 (ST131) E. coli isolates. There was perfect concordance between the typology and fimH -based subclones within ST131, with accurate identification of the pandemic multidrug-resistant clonal subgroup ST131- H 30. FimTyper provides a standardized tool, as a rapid alternative to conventional fimH subtyping, highly suitable for surveillance and outbreak detection. Copyright © 2017 American Society for Microbiology.
dCITE: Measuring Necessary Cladistic Information Can Help You Reduce Polytomy Artefacts in Trees.
Wise, Michael J
2016-01-01
Biologists regularly create phylogenetic trees to better understand the evolutionary origins of their species of interest, and often use genomes as their data source. However, as more and more incomplete genomes are published, in many cases it may not be possible to compute genome-based phylogenetic trees due to large gaps in the assembled sequences. In addition, comparison of complete genomes may not even be desirable due to the presence of horizontally acquired and homologous genes. A decision must therefore be made about which gene, or gene combinations, should be used to compute a tree. Deflated Cladistic Information based on Total Entropy (dCITE) is proposed as an easily computed metric for measuring the cladistic information in multiple sequence alignments representing a range of taxa, without the need to first compute the corresponding trees. dCITE scores can be used to rank candidate genes or decide whether input sequences provide insufficient cladistic information, making artefactual polytomies more likely. The dCITE method can be applied to protein, nucleotide or encoded phenotypic data, so can be used to select which data-type is most appropriate, given the choice. In a series of experiments the dCITE method was compared with related measures. Then, as a practical demonstration, the ideas developed in the paper were applied to a dataset representing species from the order Campylobacterales; trees based on sequence combinations, selected on the basis of their dCITE scores, were compared with a tree constructed to mimic Multi-Locus Sequence Typing (MLST) combinations of fragments. We see that the greater the dCITE score the more likely it is that the computed phylogenetic tree will be free of artefactual polytomies. Secondly, cladistic information saturates, beyond which little additional cladistic information can be obtained by adding additional sequences. Finally, sequences with high cladistic information produce more consistent trees for the same taxa.
dCITE: Measuring Necessary Cladistic Information Can Help You Reduce Polytomy Artefacts in Trees
2016-01-01
Biologists regularly create phylogenetic trees to better understand the evolutionary origins of their species of interest, and often use genomes as their data source. However, as more and more incomplete genomes are published, in many cases it may not be possible to compute genome-based phylogenetic trees due to large gaps in the assembled sequences. In addition, comparison of complete genomes may not even be desirable due to the presence of horizontally acquired and homologous genes. A decision must therefore be made about which gene, or gene combinations, should be used to compute a tree. Deflated Cladistic Information based on Total Entropy (dCITE) is proposed as an easily computed metric for measuring the cladistic information in multiple sequence alignments representing a range of taxa, without the need to first compute the corresponding trees. dCITE scores can be used to rank candidate genes or decide whether input sequences provide insufficient cladistic information, making artefactual polytomies more likely. The dCITE method can be applied to protein, nucleotide or encoded phenotypic data, so can be used to select which data-type is most appropriate, given the choice. In a series of experiments the dCITE method was compared with related measures. Then, as a practical demonstration, the ideas developed in the paper were applied to a dataset representing species from the order Campylobacterales; trees based on sequence combinations, selected on the basis of their dCITE scores, were compared with a tree constructed to mimic Multi-Locus Sequence Typing (MLST) combinations of fragments. We see that the greater the dCITE score the more likely it is that the computed phylogenetic tree will be free of artefactual polytomies. Secondly, cladistic information saturates, beyond which little additional cladistic information can be obtained by adding additional sequences. Finally, sequences with high cladistic information produce more consistent trees for the same taxa. PMID:27898695
King, Timothy L.; Eackles, Michael S.; Reshetnikov, Andrey N.
2015-01-01
Human-mediated translocations and subsequent large-scale colonization by the invasive fish rotan (Perccottus glenii Dybowski, 1877; Perciformes, Odontobutidae), also known as Amur or Chinese sleeper, has resulted in dramatic transformations of small lentic ecosystems. However, no detailed genetic information exists on population structure, levels of effective movement, or relatedness among geographic populations of P. glenii within the European part of the range. We used massively parallel genomic DNA shotgun sequencing on the semiconductor-based Ion Torrent Personal Genome Machine (PGM) sequencing platform to identify nuclear microsatellite and mitochondrial DNA sequences in P. glenii from European Russia. Here we describe the characterization of nine nuclear microsatellite loci, ascertain levels of allelic diversity, heterozygosity, and demographic status of P. glenii collected from Ilev, Russia, one of several initial introduction points in European Russia. In addition, we mapped sequence reads to the complete P. glenii mitochondrial DNA sequence to identify polymorphic regions. Nuclear microsatellite markers developed for P. glenii yielded sufficient genetic diversity to: (1) produce unique multilocus genotypes; (2) elucidate structure among geographic populations; and (3) provide unique perspectives for analysis of population sizes and historical demographics. Among 4.9 million filtered P. glenii Ion Torrent PGM sequence reads, 11,304 mapped to the mitochondrial genome (NC_020350). This resulted in 100 % coverage of this genome to a mean coverage depth of 102X. A total of 130 variable sites were observed between the publicly available genome from China and the studied composite mitochondrial genome. Among these, 82 were diagnostic and monomorphic between the mitochondrial genomes and distributed among 15 genome regions. The polymorphic sites (N = 48) were distributed among 11 mitochondrial genome regions. Our results also indicate that sequence reads generated from two three-hour runs on the Ion Torrent PGM can generate a sufficient number of nuclear and mitochondrial markers to improve understanding of the evolutionary and ecological dynamics of non-model and in particular, invasive species.
Bartonella dromedarii sp. nov. isolated from domesticated camels (Camelus dromedarius) in Israel.
Rasis, Michal; Rudoler, Nir; Schwartz, David; Giladi, Michael
2014-11-01
Bartonella spp. are fastidious, Gram-negative bacilli that cause a wide spectrum of diseases in humans. Most Bartonella spp. have adapted to a specific host, generally a domestic or wild mammal. Dromedary camels (Camelus dromedarius) have become a focus of growing public-health interest because they have been identified as a reservoir host for the Middle East respiratory syndrome coronavirus. Nevertheless, data on camel zoonoses are limited. We aimed to study the occurrence of Bartonella bacteremia among dromedaries in Israel. Nine of 51 (17.6%) camels were found to be bacteremic with Bartonella spp.; bacteremia levels ranged from five to >1000 colony-forming units/mL. Phylogenetic reconstruction based on the concatenated sequences of gltA and rpoB genes demonstrated that the dromedary Bartonella isolates are closely related to other ruminant-derived Bartonella spp., with B. bovis being the nearest relative. Using electron microscopy, the novel isolates were shown to be flagellated, whereas B. bovis is nonflagellated. Sequence comparisons analysis of the housekeeping genes ftsZ, ribC, and groEL showed the highest homology to B. chomelii, B. capreoli, and B. birtlesii, respectively. Sequence analysis of the gltA and rpoB revealed ∼96% identity to B. bovis, a previously suggested cutoff value for sequence-based differentiation of Bartonella spp., suggesting that this approach does not have sufficient discriminatory power for differentiating ruminant-related Bartonella spp. A comprehensive multilocus sequence typing (MLST) analysis based on nine genetic loci (gltA, rpoB, ftsZ, internal transcribed spacer (ITS), 16S rRNA, ribC, groEL, nuoG, and SsrA) identified seven sequence types of the new dromedary isolates. This is the first description of a Bartonella sp. from camelids. On the basis of a distinct reservoir and ecological niche, sequence analyses, and expression of flagella, we designate these isolates as a novel Bartonella sp. named Bartonella dromedarii sp. nov. Further studies are required to explore its zoonotic potential.
Chalker, Victoria J; Waller, Andrew; Webb, Katy; Spearing, Emma; Crosse, Patricia; Brownlie, Joe; Erles, Kerstin
2012-06-01
The genetic diversity and antibiotic resistance profiles of 38 Streptococcus equi subsp. zooepidemicus isolates were determined from a kennelled canine population during two outbreaks of hemorrhagic pneumonia (1999 to 2002 and 2007 to 2010). Analysis of the szp gene hypervariable region and the 16S-23S rRNA intergenic spacer region and multilocus sequence typing (MLST) indicated a predominant tetO-positive, doxycycline-resistant ST-10 strain during 1999 to 2002 and a predominant tetM-positive doxycycline-resistant ST-62 strain during 2007 to 2010.
Chalker, Victoria J.; Waller, Andrew; Webb, Katy; Spearing, Emma; Crosse, Patricia; Brownlie, Joe
2012-01-01
The genetic diversity and antibiotic resistance profiles of 38 Streptococcus equi subsp. zooepidemicus isolates were determined from a kennelled canine population during two outbreaks of hemorrhagic pneumonia (1999 to 2002 and 2007 to 2010). Analysis of the szp gene hypervariable region and the 16S-23S rRNA intergenic spacer region and multilocus sequence typing (MLST) indicated a predominant tetO-positive, doxycycline-resistant ST-10 strain during 1999 to 2002 and a predominant tetM-positive doxycycline-resistant ST-62 strain during 2007 to 2010. PMID:22495558
Suh, Ji-Yoeun; Son, Jun Seong; Chung, Doo Ryeon; Peck, Kyong Ran; Ko, Kwan Soo; Song, Jae-Hoon
2010-01-01
In vitro activities of colistin and other drugs were tested against 221 Klebsiella pneumoniae isolates that were collected between 2006 and 2007 in nine tertiary care South Korean hospitals from patients with bacteremia. The clonality of colistin-resistant K. pneumoniae (CRKP) isolates was assessed by multilocus sequence typing (MLST). We found that 15 isolates (6.8%) were resistant to colistin. MLST showed that CRKP isolates were nonclonal, with colistin resistance in K. pneumoniae occurring independently and not by clonal spreading. PMID:19752282
Yang, Qi; Franco, Christopher M M; Sorokin, Shirley J; Zhang, Wei
2017-02-02
For sponges (phylum Porifera), there is no reliable molecular protocol available for species identification. To address this gap, we developed a multilocus-based Sponge Identification Protocol (SIP) validated by a sample of 37 sponge species belonging to 10 orders from South Australia. The universal barcode COI mtDNA, 28S rRNA gene (D3-D5), and the nuclear ITS1-5.8S-ITS2 region were evaluated for their suitability and capacity for sponge identification. The highest Bit Score was applied to infer the identity. The reliability of SIP was validated by phylogenetic analysis. The 28S rRNA gene and COI mtDNA performed better than the ITS region in classifying sponges at various taxonomic levels. A major limitation is that the databases are not well populated and possess low diversity, making it difficult to conduct the molecular identification protocol. The identification is also impacted by the accuracy of the morphological classification of the sponges whose sequences have been submitted to the database. Re-examination of the morphological identification further demonstrated and improved the reliability of sponge identification by SIP. Integrated with morphological identification, the multilocus-based SIP offers an improved protocol for more reliable and effective sponge identification, by coupling the accuracy of different DNA markers.
Yang, Qi; Franco, Christopher M. M.; Sorokin, Shirley J.; Zhang, Wei
2017-01-01
For sponges (phylum Porifera), there is no reliable molecular protocol available for species identification. To address this gap, we developed a multilocus-based Sponge Identification Protocol (SIP) validated by a sample of 37 sponge species belonging to 10 orders from South Australia. The universal barcode COI mtDNA, 28S rRNA gene (D3–D5), and the nuclear ITS1-5.8S-ITS2 region were evaluated for their suitability and capacity for sponge identification. The highest Bit Score was applied to infer the identity. The reliability of SIP was validated by phylogenetic analysis. The 28S rRNA gene and COI mtDNA performed better than the ITS region in classifying sponges at various taxonomic levels. A major limitation is that the databases are not well populated and possess low diversity, making it difficult to conduct the molecular identification protocol. The identification is also impacted by the accuracy of the morphological classification of the sponges whose sequences have been submitted to the database. Re-examination of the morphological identification further demonstrated and improved the reliability of sponge identification by SIP. Integrated with morphological identification, the multilocus-based SIP offers an improved protocol for more reliable and effective sponge identification, by coupling the accuracy of different DNA markers. PMID:28150727
Colletotrichum – current status and future directions
Cannon, P.F.; Damm, U.; Johnston, P.R.; Weir, B.S.
2012-01-01
A review is provided of the current state of understanding of Colletotrichum systematics, focusing on species-level data and the major clades. The taxonomic placement of the genus is discussed, and the evolution of our approach to species concepts and anamorph-teleomorph relationships is described. The application of multilocus technologies to phylogenetic analysis of Colletotrichum is reviewed, and selection of potential genes/loci for barcoding purposes is discussed. Host specificity and its relation to speciation and taxonomy is briefly addressed. A short review is presented of the current status of classification of the species clusters that are currently without comprehensive multilocus analyses, emphasising the orbiculare and destructivum aggregates. The future for Colletotrichum biology will be reliant on consensus classification and robust identification tools. In support of these goals, a Subcommission on Colletotrichum has been formed under the auspices of the International Commission on Taxonomy of Fungi, which will administer a carefully curated barcode database for sequence-based identification of species within the BioloMICS web environment. PMID:23136460
da Silva Malone, Camila Francieli; Rigonato, Janaína; Laughinghouse, Haywood Dail; Schmidt, Éder Carlos; Bouzon, Zenilda Laurita; Wilmotte, Annick; Fiore, Marli Fátima; Sant'Anna, Célia Leite
2015-09-01
For more than a decade, the taxonomy of the Phormidiaceae has been problematic, since morphologically similar organisms represent phylogenetically distinct entities. Based on 16S rRNA gene sequence analyses, the polyphyletic genus Phormidium and other gas-vacuolated oscillatorioids appear scattered throughout the cyanobacterial tree of life. Recently, several studies have focused on understanding the oscillatorioid taxa at the generic level. At the specific level, few studies have characterized cyanobacterial strains using combined datasets (morphology, ultrastructure and molecular multilocus analyses). Using a multifaceted approach, we propose a new, well-defined genus, Cephalothrix gen. nov., by analysing seven filamentous strains that are morphologically 'intermediate' between gas-vacuolated taxa and Phormidium. Furthermore, we characterize two novel species: Cephalothrix komarekiana sp. nov. (strains CCIBt 3277, CCIBt 3279, CCIBt 3523, CCALA 155, SAG 75.79 and UTEX 1580) and Cephalothrix lacustris sp. nov. (strain CCIBt 3261). The generic name and specific epithets are proposed under the provisions of the International Code of Nomenclature for Algae, Fungi, and Plants.
den Bakker, Henk C; Manuel, Clyde S; Fortes, Esther D; Wiedmann, Martin; Nightingale, Kendra K
2013-09-01
Twenty Listeria-like isolates were obtained from environmental samples collected on a cattle ranch in northern Colorado; all of these isolates were found to share an identical partial sigB sequence, suggesting close relatedness. The isolates were similar to members of the genus Listeria in that they were Gram-stain-positive, short rods, oxidase-negative and catalase-positive; the isolates were similar to Listeria fleischmannii because they were non-motile at 25 °C. 16S rRNA gene sequencing for representative isolates and whole genome sequencing for one isolate was performed. The genome of the type strain of Listeria fleischmannii (strain LU2006-1(T)) was also sequenced. The draft genomes were very similar in size and the average MUMmer nucleotide identity across 91% of the genomes was 95.16%. Genome sequence data were used to design primers for a six-gene multi-locus sequence analysis (MLSA) scheme. Phylogenies based on (i) the near-complete 16S rRNA gene, (ii) 31 core genes and (iii) six housekeeping genes illustrated the close relationship of these Listeria-like isolates to Listeria fleischmannii LU2006-1(T). Sufficient genetic divergence of the Listeria-like isolates from the type strain of Listeria fleischmannii and differing phenotypic characteristics warrant these isolates to be classified as members of a distinct infraspecific taxon, for which the name Listeria fleischmannii subsp. coloradonensis subsp. nov. is proposed. The type strain is TTU M1-001(T) ( =BAA-2414(T) =DSM 25391(T)). The isolates of Listeria fleischmannii subsp. coloradonensis subsp. nov. differ from the nominate subspecies by the inability to utilize melezitose, turanose and sucrose, and the ability to utilize inositol. The results also demonstrate the utility of whole genome sequencing to facilitate identification of novel taxa within a well-described genus. The genomes of both subspecies of Listeria fleischmannii contained putative enhancin genes; the Listeria fleischmannii subsp. coloradonensis subsp. nov. genome also encoded a putative mosquitocidal toxin. The presence of these genes suggests possible adaptation to an insect host, and further studies are needed to probe niche adaptation of Listeria fleischmannii.
Inter-hospital outbreak of Klebsiella pneumoniae producing KPC-2 carbapenemase in Ireland.
Morris, Dearbháile; Boyle, Fiona; Morris, Carol; Condon, Iris; Delannoy-Vieillard, Anne-Sophie; Power, Lorraine; Khan, Aliya; Morris-Downes, Margaret; Finnegan, Cathriona; Powell, James; Monahan, Regina; Burns, Karen; O'Connell, Nuala; Boyle, Liz; O'Gorman, Alan; Humphreys, Hilary; Brisse, Sylvain; Turton, Jane; Woodford, Neil; Cormican, Martin
2012-10-01
To describe an outbreak of KPC-2-producing Klebsiella pneumoniae with inter-hospital spread and measures taken to control transmission. Between January and March 2011, 13 K. pneumoniae isolates were collected from nine patients at hospital A and two patients at hospital B. Meropenem, imipenem and ertapenem MICs were determined by Etest, carbapenemase production was confirmed by the modified Hodge method and by a disc synergy test, and confirmed carbapenemase producers were tested for the presence of carbapenemase-encoding genes by PCR. PFGE, plasmid analysis, multilocus variable-number tandem-repeat analysis (MLVA) and multilocus sequence typing (MLST) analysis were performed on all or a subset of isolates. Meropenem, imipenem and ertapenem MICs were 4 to >32, 8-32 and >16 mg/L, respectively. PCR and sequencing confirmed the presence of bla(KPC-2). PFGE identified four distinguishable (≥88%) pulsed-field profiles (PFPs). Isolates distinguishable by PFGE had identical MLVA profiles, and MLST analysis indicated all isolates belonged to the ST258 clone. Stringent infection prevention and control measures were implemented. Over a period of almost 8 months no further carbapenemase-producing Enterobacteriaceae (CPE) were isolated. However, KPC-2-producing K. pneumoniae was detected in two further patients in hospital A in August (PFP indistinguishable from previous isolates) and October 2011 (PFP similar to but distinguishable from previous isolates). Stringent infection prevention and control measures help contain CPE in the healthcare setting; however, in the case of hospital A, where CPE appears to be established in the population served, it may be virtually impossible to achieve eradication or avoid reintroduction into the hospital.
Chastagner, Amélie; Dugat, Thibaud; Vourc'h, Gwenaël; Verheyden, Hélène; Legrand, Loïc; Bachy, Véronique; Chabanne, Luc; Joncour, Guy; Maillard, Renaud; Boulouis, Henri-Jean; Haddad, Nadia; Bailly, Xavier; Leblond, Agnès
2014-12-09
Molecular epidemiology represents a powerful approach to elucidate the complex epidemiological cycles of multi-host pathogens, such as Anaplasma phagocytophilum. A. phagocytophilum is a tick-borne bacterium that affects a wide range of wild and domesticated animals. Here, we characterized its genetic diversity in populations of French cattle; we then compared the observed genotypes with those found in horses, dogs, and roe deer to determine whether genotypes of A. phagocytophilum are shared among different hosts. We sampled 120 domesticated animals (104 cattle, 13 horses, and 3 dogs) and 40 wild animals (roe deer) and used multilocus sequence analysis on nine loci (ankA, msp4, groESL, typA, pled, gyrA, recG, polA, and an intergenic region) to characterize the genotypes of A. phagocytophilum present. Phylogenic analysis revealed three genetic clusters of bacterial variants in domesticated animals. The two principal clusters included 98% of the bacterial genotypes found in cattle, which were only distantly related to those in roe deer. One cluster comprised only cattle genotypes, while the second contained genotypes from cattle, horses, and dogs. The third contained all roe deer genotypes and three cattle genotypes. Geographical factors could not explain this clustering pattern. These results suggest that roe deer do not contribute to the spread of A. phagocytophilum in cattle in France. Further studies should explore if these different clusters are associated with differing disease severity in domesticated hosts. Additionally, it remains to be seen if the three clusters of A. phagocytophilum genotypes in cattle correspond to distinct epidemiological cycles, potentially involving different reservoir hosts.
Kanagavel, Murugesan; Princy Margreat, Alphonse Asirvatham; Arunkumar, Manivel; Prabhakaran, Shanmugarajan Gnanasekaran; Shanmughapriya, Santhanam; Natarajaseenivasan, Kalimuthusamy
2016-01-01
Here the rodent carrier status for the transmission of human leptospirosis in Tiruchirappalli, district, Tamil Nadu, India was assessed. The predominantly circulating leptospiral STs were recognized by multilocus sequence typing (MLST). A total of 113 rodents were trapped from different provinces of the Tiruchirappalli district. The most prevalent rodent was Bandicota bengalensis (37.2%), and of the total, 52.2% (n=59) rodents were found to be positive for leptospiral 16S rRNA. These results were validated with a leptospiral culture positivity of 45.8% (n=27). Three isolates from Chennai (2 rodents and 1 human) and 1 human isolate from Tiruchirappalli were included to understand the spatial variations and to track the source of human leptospirosis. The serogroup, serovar, and species level identification of all 31 isolates identified 28 to be Leptospira borgpetersenii serovar Javanica and three as Leptospira interrogans serovar Autumnalis. MLST analysis defined all isolates to the existing ST profiles (ST145 and ST27) with the exception of 6 L. borgpetersenii (ST DR) isolates that showed variations in the sucA and pfkB loci. The DR ST was locally confined to Chatram province of Tiruchirappalli suggesting an epidemiological link. The predominant STs, ST145 and ST-DR form a group, indicating the presence of original strain that subsequently diverged evolutionarily into two STs. The variations between L. borgpetersenii in sucA and pfkB loci may be an indication that evolutionary changes transpired in Tiruchirappalli. Copyright © 2015 Elsevier B.V. All rights reserved.
Nagib, Samy; Glaeser, Stefanie P; Eisenberg, Tobias; Sammra, Osama; Lämmler, Christoph; Kämpfer, Peter; Schauerte, Nicole; Geiger, Christina; Kaim, Ute; Prenger-Berninghoff, Ellen; Becker, André; Abdulmawjood, Amir
2017-08-29
Trueperella pyogenes is a worldwide known bacterium causing mastitis, abortion and various other pyogenic infections in domestic animals like ruminants and pigs. In this study we represent the first case report of three unusual fatal infections of Grey Slender Lorises caused by Trueperella pyogenes. Meanwhile, this study represents the first in-depth description of the multilocus sequence analysis (MLSA) on T. pyogenes species. Three Trueperella pyogenes were isolated from three different Grey Slender Lorises, which died within a period of two years at Frankfurt Zoo (Frankfurt am Main - Germany). The three Grey Slender Loris cases were suffering from severe sepsis and died from its complication. During the bacteriological investigation of the three cases, the T. pyogenes were isolated from different organisms in each case. The epidemiological relationship between the three isolates could be shown by four genomic DNA fingerprint methods (ERIC-PCR, BOX-PCR, (GTG) 5 -PCR, and RAPD-PCR) and by multilocus sequence analysis (MLSA) investigating four different housekeeping genes (fusA-tuf-metG-gyrA). In this study, we clearly showed by means of using three different rep-PCRs, by RAPD-PCR and by MLSA that the genomic fingerprinting of the investigated three T. pyogenes have the same clonal origin and are genetically identical. These results suggest that the same isolate contaminated the animal's facility and subsequently caused cross infection between the three different Grey Slender Lorises. To the best of our knowledge, this is the first epidemiological approach concentrating on T. pyogenes using MLSA.
Zhang, Jun; Kong, Yingying; Ruan, Zhi; Huang, Jun; Song, Tiejun; Song, Jingjuan; Jiang, Yan; Yu, Yunsong; Xie, Xinyou
2014-01-01
The multilocus sequence typing (MLST) scheme of Ureaplasma based on four housekeeping genes (ftsH, rpL22, valS, and thrS) was described in our previous study; here we introduced an expanded MLST (eMLST) scheme with improved discriminatory power, which was developed by adding two putative virulence genes (ureG and mba-np1) to the original MLST scheme. To evaluate the discriminatory power of eMLST, a total of 14 reference strains of Ureaplasma serovars and 269 clinical strains (134 isolated from symptomatic patients and 135 obtained from asymptomatic persons) were investigated. Our study confirmed that all 14 serotype strains could successfully be differentiated into 14 eMLST STs (eSTs), while some of them could not even be differentiated by the MLST, and a total of 136 eSTs were identified among the clinical isolates we investigated. In addition, phylogenetic analysis indicated that two genetically significantly distant clusters (cluster I and II) were revealed and most clinical isolates were located in cluster I. These findings were in accordance with and further support for the concept of two well-known genetic lineages (Ureaplasma parvum and Ureaplasma urealyticum) in our previous study. Interestingly, although both clusters were associated with clinical manifestation, the sub-group 2 of cluster II had pronounced and adverse effect on patients and might be a potential risk factor for clinical outcomes. In conclusion, the eMLST scheme offers investigators a highly discriminative typing tool that is capable for precise epidemiological investigations and clinical relevance of Ureaplasma.
Ruan, Zhi; Huang, Jun; Song, Tiejun; Song, Jingjuan; Jiang, Yan; Yu, Yunsong; Xie, Xinyou
2014-01-01
The multilocus sequence typing (MLST) scheme of Ureaplasma based on four housekeeping genes (ftsH, rpL22, valS, and thrS) was described in our previous study; here we introduced an expanded MLST (eMLST) scheme with improved discriminatory power, which was developed by adding two putative virulence genes (ureG and mba-np1) to the original MLST scheme. To evaluate the discriminatory power of eMLST, a total of 14 reference strains of Ureaplasma serovars and 269 clinical strains (134 isolated from symptomatic patients and 135 obtained from asymptomatic persons) were investigated. Our study confirmed that all 14 serotype strains could successfully be differentiated into 14 eMLST STs (eSTs), while some of them could not even be differentiated by the MLST, and a total of 136 eSTs were identified among the clinical isolates we investigated. In addition, phylogenetic analysis indicated that two genetically significantly distant clusters (cluster I and II) were revealed and most clinical isolates were located in cluster I. These findings were in accordance with and further support for the concept of two well-known genetic lineages (Ureaplasma parvum and Ureaplasma urealyticum) in our previous study. Interestingly, although both clusters were associated with clinical manifestation, the sub-group 2 of cluster II had pronounced and adverse effect on patients and might be a potential risk factor for clinical outcomes. In conclusion, the eMLST scheme offers investigators a highly discriminative typing tool that is capable for precise epidemiological investigations and clinical relevance of Ureaplasma. PMID:25093900
Reid, S D; Green, N M; Buss, J K; Lei, B; Musser, J M
2001-06-19
Species of pathogenic microbes are composed of an array of evolutionarily distinct chromosomal genotypes characterized by diversity in gene content and sequence (allelic variation). The occurrence of substantial genetic diversity has hindered progress in developing a comprehensive understanding of the molecular basis of virulence and new therapeutics such as vaccines. To provide new information that bears on these issues, 11 genes encoding extracellular proteins in the human bacterial pathogen group A Streptococcus identified by analysis of four genomes were studied. Eight of the 11 genes encode proteins with a LPXTG(L) motif that covalently links Gram-positive virulence factors to the bacterial cell surface. Sequence analysis of the 11 genes in 37 geographically and phylogenetically diverse group A Streptococcus strains cultured from patients with different infection types found that recent horizontal gene transfer has contributed substantially to chromosomal diversity. Regions of the inferred proteins likely to interact with the host were identified by molecular population genetic analysis, and Western immunoblot analysis with sera from infected patients confirmed that they were antigenic. Real-time reverse transcriptase-PCR (TaqMan) assays found that transcription of six of the 11 genes was substantially up-regulated in the stationary phase. In addition, transcription of many genes was influenced by the covR and mga trans-acting gene regulatory loci. Multilocus investigation of putative virulence genes by the integrated approach described herein provides an important strategy to aid microbial pathogenesis research and rapidly identify new targets for therapeutics research.
Fila, Libor; Dřevínek, Pavel
2017-11-01
Cystic fibrosis (CF) patients in the Czech Republic suffered in the late 1990s from an epidemic with ST32 strain of Burkholderia cepacia complex (Bcc). Cohort segregation of Bcc and of ST32 positive patients was introduced in 1999 and 2002, respectively. We performed a study to evaluate the molecular epidemiology of Bcc infection after implementation of these infection control measures. Patients attending the Prague CF adult Centre from 2000 to 2015 were included in the present study. Demographic data and microbial statuses were collected from patient records. All Bcc isolates were analyzed using multilocus sequence typing (MLST). The prevalences of epidemic strain ST32 and of other Bcc strains were calculated. Ninety out of 227 CF patients were infected with Bcc during the study period. The prevalence of ST32 cases significantly decreased from 46.5% in 2000-2001 to 10.4% in 2014-2015 (P < 0.001) due to occurrence of only one new case in 2003, as well as to the death of 72% of ST32-infected patients. Conversely, there was a significant increase in prevalence of other Bcc strains, which rose from 0 to 14.9% (P = 0.015) and of transient infections. A micro-epidemic of infection with ST630 strain was observed in 2014 in lung transplant patients hospitalized in intensive care unit. The prevalence of epidemic strain ST32 decreased, whereas that of non-clonal strains of Bcc increased. Routine use of MLST allowed early detection of new and potentially epidemic strains.
Multilocus genotyping of Giardia duodenalis in Brazilian children.
Scalia, Luana A M; Fava, Natália M N; Soares, Rodrigo M; Limongi, Jean E; da Cunha, Maria Júlia R; Pena, Isabella F; Kalapothakis, Evanguedes; Cury, Márcia C
2016-06-01
Giardia duodenalis is a parasite of several mammalian species, including humans, distributed worldwide. This research aimed to identify the molecular assemblages/sub-assemblages of G. duodenalis and to determine the intra-assemblage genetic variation of the different genes of assemblages A and B in pre-school children in the cities of Araguari and Uberlândia, Minas Gerais, Brazil. The molecular characterization followed β-giardin (bg), glutamate dehydrogenase (gdh) and triose phosphate isomerase (tpi) protocols. Of 226 stool samples, G. duodenalis cysts were found in 45 (19.9%). The tpi gene was amplified in 34 samples: 16 assemblage A, 14 B and four mixed samples A/B. The gdh gene was amplified in 32 samples, including 14 A, 16 B and two A/B. For the bg gene, 19 samples were sequenced: nine assemblage A, five B, three E, and two mixed, A/E and B/E. Animal-specific assemblage E were identified by bg, but were not confirmed for other genes. Twelve samples were characterized by full agreement of the three genes. Two new multilocus genotyping (MLGs) for assemblage A and two new MLGs for assemblage B were also described. These findings substantiate the importance of using more than one gene protocol since the sensitivity and genetic variability changes with the locus used.Access numbers: The GenBank access numbers for the nucleotide sequences reported in this article are: JQ794877-JQ794890, JX033113-JX033118. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Bouchami, Ons; de Lencastre, Herminia; Miragaia, Maria
2016-01-01
Staphylococcus haemolyticus is one of the most common pathogens associated with medical-device related infections, but its molecular epidemiology is poorly explored. In the current study, we aimed to better understand the genetic mechanisms contributing to S. haemolyticus diversity in the hospital environment and their impact on the population structure and clinical relevant phenotypic traits. The analysis of a representative S. haemolyticus collection by multilocus sequence typing (MLST) has identified a single highly prevalent and diverse genetic lineage of nosocomial S. haemolyticus clonal complex (CC) 29 accounting for 91% of the collection of isolates disseminated worldwide. The examination of the sequence changes at MLST loci during clonal diversification showed that recombination had a higher impact than mutation in shaping the S. haemolyticus population. Also, we ascertained that another mechanism contributing significantly to clonal diversification and adaptation was mediated by insertion sequence (IS) elements. We found that all nosocomial S. haemolyticus, belonging to different STs, were rich in IS1272 copies, as determined by Southern hybridization of macrorestriction patterns. In particular, we observed that the chromosome of a S. haemolyticus strain within CC29 was highly unstable during serial growth in vitro which paralleled with IS1272 transposition events and changes in clinically relevant phenotypic traits namely, mannitol fermentation, susceptibility to beta-lactams, biofilm formation and hemolysis. Our results suggest that recombination and IS transposition might be a strategy of adaptation, evolution and pathogenicity of the major S. haemolyticus prevalent lineage in the hospital environment.
Bouchami, Ons; de Lencastre, Herminia; Miragaia, Maria
2016-01-01
Staphylococcus haemolyticus is one of the most common pathogens associated with medical-device related infections, but its molecular epidemiology is poorly explored. In the current study, we aimed to better understand the genetic mechanisms contributing to S. haemolyticus diversity in the hospital environment and their impact on the population structure and clinical relevant phenotypic traits. The analysis of a representative S. haemolyticus collection by multilocus sequence typing (MLST) has identified a single highly prevalent and diverse genetic lineage of nosocomial S. haemolyticus clonal complex (CC) 29 accounting for 91% of the collection of isolates disseminated worldwide. The examination of the sequence changes at MLST loci during clonal diversification showed that recombination had a higher impact than mutation in shaping the S. haemolyticus population. Also, we ascertained that another mechanism contributing significantly to clonal diversification and adaptation was mediated by insertion sequence (IS) elements. We found that all nosocomial S. haemolyticus, belonging to different STs, were rich in IS1272 copies, as determined by Southern hybridization of macrorestriction patterns. In particular, we observed that the chromosome of a S. haemolyticus strain within CC29 was highly unstable during serial growth in vitro which paralleled with IS1272 transposition events and changes in clinically relevant phenotypic traits namely, mannitol fermentation, susceptibility to beta-lactams, biofilm formation and hemolysis. Our results suggest that recombination and IS transposition might be a strategy of adaptation, evolution and pathogenicity of the major S. haemolyticus prevalent lineage in the hospital environment. PMID:27249649
Nandi, Tannistha; Holden, Matthew T.G.; Didelot, Xavier; Mehershahi, Kurosh; Boddey, Justin A.; Beacham, Ifor; Peak, Ian; Harting, John; Baybayan, Primo; Guo, Yan; Wang, Susana; How, Lee Chee; Sim, Bernice; Essex-Lopresti, Angela; Sarkar-Tyson, Mitali; Nelson, Michelle; Smither, Sophie; Ong, Catherine; Aw, Lay Tin; Hoon, Chua Hui; Michell, Stephen; Studholme, David J.; Titball, Richard; Chen, Swaine L.; Parkhill, Julian
2015-01-01
Burkholderia pseudomallei (Bp) is the causative agent of the infectious disease melioidosis. To investigate population diversity, recombination, and horizontal gene transfer in closely related Bp isolates, we performed whole-genome sequencing (WGS) on 106 clinical, animal, and environmental strains from a restricted Asian locale. Whole-genome phylogenies resolved multiple genomic clades of Bp, largely congruent with multilocus sequence typing (MLST). We discovered widespread recombination in the Bp core genome, involving hundreds of regions associated with multiple haplotypes. Highly recombinant regions exhibited functional enrichments that may contribute to virulence. We observed clade-specific patterns of recombination and accessory gene exchange, and provide evidence that this is likely due to ongoing recombination between clade members. Reciprocally, interclade exchanges were rarely observed, suggesting mechanisms restricting gene flow between clades. Interrogation of accessory elements revealed that each clade harbored a distinct complement of restriction-modification (RM) systems, predicted to cause clade-specific patterns of DNA methylation. Using methylome sequencing, we confirmed that representative strains from separate clades indeed exhibit distinct methylation profiles. Finally, using an E. coli system, we demonstrate that Bp RM systems can inhibit uptake of non-self DNA. Our data suggest that RM systems borne on mobile elements, besides preventing foreign DNA invasion, may also contribute to limiting exchanges of genetic material between individuals of the same species. Genomic clades may thus represent functional units of genetic isolation in Bp, modulating intraspecies genetic diversity. PMID:25236617
Dallman, T J; Byrne, L; Launders, N; Glen, K; Grant, K A; Jenkins, C
2015-06-01
Many serogroups of Shiga toxin-producing Escherichia coli (STEC) other than serogroup O157 (non-O157 STEC), for example STEC O26:H11, are highly pathogenic and capable of causing haemolytic uraemic syndrome. A recent increase in non-O157 STEC cases identified in England, resulting from a change in the testing paradigm, prompted a review of the current methods available for detection and typing of non-O157 STEC for surveillance and outbreak investigations. Nineteen STEC O26:H11 strains, including four from a nursery outbreak were selected to assess typing methods. Serotyping and multilocus sequence typing were not able to discriminate between the stx-producing strains in the dataset. However, genome sequencing provided rapid and robust confirmation that isolates of STEC O26:H11 associated with a nursery outbreak were linked at the molecular level, had a common source and were distinct from the other strains analysed. Virulence gene profiling of DNA extracted from a polymerase chain reaction (PCR)-positive/culture-negative faecal specimen from a case that was epidemiologically linked to the STEC O26:H11 nursery outbreak, provided evidence at the molecular level to support that link. During this study, we describe the utility of PCR and the genome sequencing approach in facilitating surveillance and enhancing the response to outbreaks of non-O157 STEC.
Velineni, Sridhar; Russell, Kim; Hamlen, Heidi J.; Pesavento, Patricia; Fortney, William D.; Crawford, P. Cynda
2014-01-01
Acute hemorrhagic pneumonia caused by Streptococcus zooepidemicus has emerged as a major disease of shelter dogs and greyhounds. S. zooepidemicus strains differing in multilocus sequence typing (MLST), protective protein (SzP), and M-like protein (SzM) sequences were identified from 9 outbreaks in Texas, Kansas, Florida, Nevada, New Mexico, and Pennsylvania. Clonality based on 2 or more isolates was evident for 7 of these outbreaks. The Pennsylvania and Nevada outbreaks also involved cats. Goat antisera against acutely infected lung tissue as well as convalescent-phase sera reacted with a mucinase (Sz115), hyaluronidase (HylC), InlA domain-containing cell surface-anchored protein (INLA), membrane-anchored protein (MAP), SzP, SzM, and extracellular oligopeptide-binding protein (OppA). The amino acid sequences of SzP and SzM of the isolates varied greatly. The szp and szm alleles of the closely related Kansas clone (sequence type 129 [ST-129]) and United Kingdom isolate BHS5 (ST-123) were different, indicating that MLST was unreliable as a predictor of virulence phenotype. Combinations of conserved HylC and serine protease (ScpC) and variable SzM and SzP proteins of S. zooepidemicus strain NC78 were protectively immunogenic for mice challenged with a virulent canine strain. Thus, although canine pneumonia outbreaks are caused by different strains of S. zooepidemicus, protective immune responses were elicited in mice by combinations of conserved or variable S. zooepidemicus proteins from a single strain. PMID:24990905
Biogeography of sulfur-oxidizing Acidithiobacillus populations in extremely acidic cave biofilms
Jones, Daniel S; Schaperdoth, Irene; Macalady, Jennifer L
2016-01-01
Extremely acidic (pH 0–1.5) Acidithiobacillus-dominated biofilms known as snottites are found in sulfide-rich caves around the world. Given the extreme geochemistry and subsurface location of the biofilms, we hypothesized that snottite Acidithiobacillus populations would be genetically isolated. We therefore investigated biogeographic relationships among snottite Acidithiobacillus spp. separated by geographic distances ranging from meters to 1000s of kilometers. We determined genetic relationships among the populations using techniques with three levels of resolution: (i) 16S rRNA gene sequencing, (ii) 16S–23S intergenic transcribed spacer (ITS) region sequencing and (iii) multi-locus sequencing typing (MLST). We also used metagenomics to compare functional gene characteristics of select populations. Based on 16S rRNA genes, snottites in Italy and Mexico are dominated by different sulfur-oxidizing Acidithiobacillus spp. Based on ITS sequences, Acidithiobacillus thiooxidans strains from different cave systems in Italy are genetically distinct. Based on MLST of isolates from Italy, genetic distance is positively correlated with geographic distance both among and within caves. However, metagenomics revealed that At. thiooxidans populations from different cave systems in Italy have different sulfur oxidation pathways and potentially other significant differences in metabolic capabilities. In light of those genomic differences, we argue that the observed correlation between genetic and geographic distance among snottite Acidithiobacillus populations is partially explained by an evolutionary model in which separate cave systems were stochastically colonized by different ancestral surface populations, which then continued to diverge and adapt in situ. PMID:27187796
Kuhnert, Peter; Scholten, Edzard; Haefner, Stefan; Mayor, Désirée; Frey, Joachim
2010-01-01
Gram-negative, coccoid, non-motile bacteria that are catalase-, urease- and indole-negative, facultatively anaerobic and oxidase-positive were isolated from the bovine rumen using an improved selective medium for members of the Pasteurellaceae. All strains produced significant amounts of succinic acid under anaerobic conditions with glucose as substrate. Phenotypic characterization and multilocus sequence analysis (MLSA) using 16S rRNA, rpoB, infB and recN genes were performed on seven independent isolates. All four genes showed high sequence similarity to their counterparts in the genome sequence of the patent strain MBEL55E, but less than 95 % 16S rRNA gene sequence similarity to any other species of the Pasteurellaceae. Genetically these strains form a very homogeneous group in individual as well as combined phylogenetic trees, clearly separated from other genera of the family from which they can also be separated based on phenotypic markers. Genome relatedness as deduced from the recN gene showed high interspecies similarities, but again low similarity to any of the established genera of the family. No toxicity towards bovine, human or fish cells was observed and no RTX toxin genes were detected in members of the new taxon. Based on phylogenetic clustering in the MLSA analysis, the low genetic similarity to other genera and the phenotypic distinction, we suggest to classify these bovine rumen isolates as Basfia succiniciproducens gen. nov., sp. nov. The type strain is JF4016(T) (=DSM 22022(T) =CCUG 57335(T)).
DOE Office of Scientific and Technical Information (OSTI.GOV)
John C. Meeks
2001-12-31
Nostoc punctiforme is a filamentous cyanobacterium with extensive phenotypic characteristics and a relatively large genome, approaching 10 Mb. The phenotypic characteristics include a photoautotrophic, diazotrophic mode of growth, but N. punctiforme is also facultatively heterotrophic; its vegetative cells have multiple development alternatives, including terminal differentiation into nitrogen-fixing heterocysts and transient differentiation into spore-like akinetes or motile filaments called hormogonia; and N. punctiforme has broad symbiotic competence with fungi and terrestrial plants, including bryophytes, gymnosperms and an angiosperm. The shotgun-sequencing phase of the N. punctiforme strain ATCC 29133 genome has been completed by the Joint Genome Institute. Annotation of an 8.9more » Mb database yielded 7432 open reading frames, 45% of which encode proteins with known or probable known function and 29% of which are unique to N. punctiforme. Comparative analysis of the sequence indicates a genome that is highly plastic and in a state of flux, with numerous insertion sequences and multilocus repeats, as well as genes encoding transposases and DNA modification enzymes. The sequence also reveals the presence of genes encoding putative proteins that collectively define almost all characteristics of cyanobacteria as a group. N. punctiforme has an extensive potential to sense and respond to environmental signals as reflected by the presence of more than 400 genes encoding sensor protein kinases, response regulators and other transcriptional factors. The signal transduction systems and any of the large number of unique genes may play essential roles in the cell differentiation and symbiotic interaction properties of N. punctiforme.« less
Yang, Yilong; Davis, Thomas M
2017-12-01
The subgenomic compositions of the octoploid (2n = 8× = 56) strawberry (Fragaria) species, including the economically important cultivated species Fragaria x ananassa, have been a topic of long-standing interest. Phylogenomic approaches utilizing next-generation sequencing technologies offer a new window into species relationships and the subgenomic compositions of polyploids. We have conducted a large-scale phylogenetic analysis of Fragaria (strawberry) species using the Fluidigm Access Array system and 454 sequencing platform. About 24 single-copy or low-copy nuclear genes distributed across the genome were amplified and sequenced from 96 genomic DNA samples representing 16 Fragaria species from diploid (2×) to decaploid (10×), including the most extensive sampling of octoploid taxa yet reported. Individual gene trees were constructed by different tree-building methods. Mosaic genomic structures of diploid Fragaria species consisting of sequences at different phylogenetic positions were observed. Our findings support the presence in octoploid species of genetic signatures from at least five diploid ancestors (F. vesca, F. iinumae, F. bucharica, F. viridis, and at least one additional allele contributor of unknown identity), and questions the extent to which distinct subgenomes are preserved over evolutionary time in the allopolyploid Fragaria species. In addition, our data support divergence between the two wild octoploid species, F. virginiana and F. chiloensis. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Wan, Qiu-Hong; Zhang, Pei; Ni, Xiao-Wei; Wu, Hai-Long; Chen, Yi-Yan; Kuang, Ye-Ye; Ge, Yun-Fa; Fang, Sheng-Guo
2011-01-01
The Père David's deer is a highly inbred, but recovered, species, making it interesting to consider their adaptive molecular evolution from an immunological perspective. Prior to this study, genomic sequencing was the only method for isolating all functional MHC genes within a certain species. Here, we report a novel protocol for isolating MHC class II loci from a species, and its use to investigate the adaptive evolution of this endangered deer at the level of multi-locus haplotypes. This protocol was designated “HURRAH” based on its various steps and used to estimate the total number of MHC class II loci. We confirmed the validity of this novel protocol in the giant panda and then used it to examine the Père David's deer. Our results revealed that the Père David's deer possesses nine MHC class II loci and therefore has more functional MHC class II loci than the eight genome-sequenced mammals for which full MHC data are currently available. This could potentially account at least in part for the strong survival ability of this species in the face of severe bottlenecking. The results from the HURRAH protocol also revealed that: (1) All of the identified MHC class II loci were monomorphic at their antigen-binding regions, although DRA was dimorphic at its cytoplasmic tail; and (2) these genes constituted two asymmetric functional MHC class II multi-locus haplotypes: DRA1*01 ∼ DRB1 ∼ DRB3 ∼ DQA1 ∼ DQB2 (H1) and DRA1*02 ∼ DRB2 ∼ DRB4 ∼ DQA2 ∼ DQB1 (H2). The latter finding indicates that the current members of the deer species have lost the powerful ancestral MHC class II haplotypes of nine or more loci, and have instead fixed two relatively weak haplotypes containing five genes. As a result, the Père David's deer are currently at risk for increased susceptibility to infectious pathogens. PMID:21267075
van der Linden, Mark; Otten, Julia; Bergmann, Carina; Latorre, Cristina; Liñares, Josefina
2017-01-01
ABSTRACT The identification of commensal streptococci species is an everlasting problem due to their ability to genetically transform. A new challenge in this respect is the recent description of Streptococcus pseudopneumoniae as a new species, which was distinguished from closely related pathogenic S. pneumoniae and commensal S. mitis by a variety of physiological and molecular biological tests. Forty-one atypical S. pneumoniae isolates have been collected at the German National Reference Center for Streptococci (GNRCS). Multilocus sequence typing (MLST) confirmed 35 isolates as the species S. pseudopneumoniae. A comparison with the pbp2x sequences from 120 commensal streptococci isolated from different continents revealed that pbp2x is distinct among penicillin-susceptible S. pseudopneumoniae isolates. Four penicillin-binding protein x (PBPx) alleles of penicillin-sensitive S. mitis account for most of the diverse sequence blocks in resistant S. pseudopneumoniae, S. pneumoniae, and S. mitis, and S. infantis and S. oralis sequences were found in S. pneumoniae from Japan. PBP2x genes of the family of mosaic genes related to pbp2x in the S. pneumoniae clone Spain23F-1 were observed in S. oralis and S. infantis as well, confirming its global distribution. Thirty-eight sites were altered within the PBP2x transpeptidase domains of penicillin-resistant strains, excluding another 37 sites present in the reference genes of sensitive strains. Specific mutational patterns were detected depending on the parental sequence blocks, in agreement with distinct mutational pathways during the development of beta-lactam resistance. The majority of the mutations clustered around the active site, whereas others are likely to affect stability or interactions with the C-terminal domain or partner proteins. PMID:28193649
Petzold, Markus; Prior, Karola; Moran-Gilad, Jacob; Harmsen, Dag; Lück, Christian
2017-01-01
Introduction Whole genome sequencing (WGS) is increasingly used in Legionnaires’ disease (LD) outbreak investigations, owing to its higher resolution than sequence-based typing, the gold standard typing method for Legionella pneumophila, in the analysis of endemic strains. Recently, a gene-by-gene typing approach based on 1,521 core genes called core genome multilocus sequence typing (cgMLST) was described that enables a robust and standardised typing of L. pneumophila. Methods: We applied this cgMLST scheme to isolates obtained during the largest outbreak of LD reported so far in Germany. In this outbreak, the epidemic clone ST345 had been isolated from patients and four different environmental sources. In total 42 clinical and environmental isolates were retrospectively typed. Results: Epidemiologically unrelated ST345 isolates were clearly distinguishable from the epidemic clone. Remarkably, epidemic isolates split up into two distinct clusters, ST345-A and ST345-B, each respectively containing a mix of clinical and epidemiologically-related environmental samples. Discussion/conclusion: The outbreak was therefore likely caused by both variants of the single sequence type, which pre-existed in the environmental reservoirs. The two clusters differed by 40 alleles located in two neighbouring genomic regions of ca 42 and 26 kb. Additional analysis supported horizontal gene transfer of the two regions as responsible for the difference between the variants. Both regions comprise virulence genes and have previously been reported to be involved in recombination events. This corroborates the notion that genomic outbreak investigations should always take epidemiological information into consideration when making inferences. Overall, cgMLST proved helpful in disentangling the complex genomic epidemiology of the outbreak. PMID:29162202
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thorell, Kaisa; Hosseini, Shaghayegh; Palacios Gonzales, Reyna Victoria Palacios
In this study, Helicobacter pylori (H. pylori) is one of the most common bacterial infections in humans and this infection can lead to gastric ulcers and gastric cancer. H. pylori is one of the most genetically variable human pathogens and the ability of the bacterium to bind to the host epithelium as well as the presence of different virulence factors and genetic variants within these genes have been associated with disease severity. Nicaragua has particularly high gastric cancer incidence and we therefore studied Nicaraguan clinical H. pylori isolates for factors that could contribute to cancer risk. The complete genomes ofmore » fifty-two Nicaraguan H. pylorii isolates were sequenced and assembled de novo, and phylogenetic and virulence factor analyses were performed. The Nicaraguan isolates showed phylogenetic relationship with West African isolates in whole-genome sequence comparisons and with Western and urban South-and Central American isolates using MLSA (Multi-locus sequence analysis). A majority, 77 % of the isolates carried the cancer-associated virulence gene cagA and also the s1/i1/m1 vacuolating cytotoxin, vacA allele combination, which is linked to increased severity of disease. Specifically, we also found that Nicaraguan isolates have a blood group-binding adhesin (BabA) variant highly similar to previously reported BabA sequences from Latin America, including from isolates belonging to other phylogenetic groups. These BabA sequences were found to be under positive selection at several amino acid positions that differed from the global collection of isolates. In conclusion, the discovery of a Latin American BabA variant, independent of overall phylogenetic background, suggests hitherto unknown host or environmental factors within the Latin American population giving H. pylori isolates carrying this adhesin variant a selective advantage, which could affect pathogenesis and risk for sequelae through specific adherence properties.« less
Mentasti, Massimo; Tewolde, Rediat; Aslett, Martin; Harris, Simon R.; Afshar, Baharak; Underwood, Anthony; Harrison, Timothy G.
2016-01-01
Sequence-based typing (SBT), analogous to multilocus sequence typing (MLST), is the current “gold standard” typing method for investigation of legionellosis outbreaks caused by Legionella pneumophila. However, as common sequence types (STs) cause many infections, some investigations remain unresolved. In this study, various whole-genome sequencing (WGS)-based methods were evaluated according to published guidelines, including (i) a single nucleotide polymorphism (SNP)-based method, (ii) extended MLST using different numbers of genes, (iii) determination of gene presence or absence, and (iv) a kmer-based method. L. pneumophila serogroup 1 isolates (n = 106) from the standard “typing panel,” previously used by the European Society for Clinical Microbiology Study Group on Legionella Infections (ESGLI), were tested together with another 229 isolates. Over 98% of isolates were considered typeable using the SNP- and kmer-based methods. Percentages of isolates with complete extended MLST profiles ranged from 99.1% (50 genes) to 86.8% (1,455 genes), while only 41.5% produced a full profile with the gene presence/absence scheme. Replicates demonstrated that all methods offer 100% reproducibility. Indices of discrimination range from 0.972 (ribosomal MLST) to 0.999 (SNP based), and all values were higher than that achieved with SBT (0.940). Epidemiological concordance is generally inversely related to discriminatory power. We propose that an extended MLST scheme with ∼50 genes provides optimal epidemiological concordance while substantially improving the discrimination offered by SBT and can be used as part of a hierarchical typing scheme that should maintain backwards compatibility and increase discrimination where necessary. This analysis will be useful for the ESGLI to design a scheme that has the potential to become the new gold standard typing method for L. pneumophila. PMID:27280420
David, Sophia; Mentasti, Massimo; Tewolde, Rediat; Aslett, Martin; Harris, Simon R; Afshar, Baharak; Underwood, Anthony; Fry, Norman K; Parkhill, Julian; Harrison, Timothy G
2016-08-01
Sequence-based typing (SBT), analogous to multilocus sequence typing (MLST), is the current "gold standard" typing method for investigation of legionellosis outbreaks caused by Legionella pneumophila However, as common sequence types (STs) cause many infections, some investigations remain unresolved. In this study, various whole-genome sequencing (WGS)-based methods were evaluated according to published guidelines, including (i) a single nucleotide polymorphism (SNP)-based method, (ii) extended MLST using different numbers of genes, (iii) determination of gene presence or absence, and (iv) a kmer-based method. L. pneumophila serogroup 1 isolates (n = 106) from the standard "typing panel," previously used by the European Society for Clinical Microbiology Study Group on Legionella Infections (ESGLI), were tested together with another 229 isolates. Over 98% of isolates were considered typeable using the SNP- and kmer-based methods. Percentages of isolates with complete extended MLST profiles ranged from 99.1% (50 genes) to 86.8% (1,455 genes), while only 41.5% produced a full profile with the gene presence/absence scheme. Replicates demonstrated that all methods offer 100% reproducibility. Indices of discrimination range from 0.972 (ribosomal MLST) to 0.999 (SNP based), and all values were higher than that achieved with SBT (0.940). Epidemiological concordance is generally inversely related to discriminatory power. We propose that an extended MLST scheme with ∼50 genes provides optimal epidemiological concordance while substantially improving the discrimination offered by SBT and can be used as part of a hierarchical typing scheme that should maintain backwards compatibility and increase discrimination where necessary. This analysis will be useful for the ESGLI to design a scheme that has the potential to become the new gold standard typing method for L. pneumophila. Copyright © 2016 David et al.
Morrison, Cheryl L; Iwanowicz, Luke; Work, Thierry M; Fahsbender, Elizabeth; Breitbart, Mya; Adams, Cynthia; Iwanowicz, Deb; Sanders, Lakyn; Ackermann, Mathias; Cornman, Robert S
2018-01-01
Chelonid alphaherpesvirus 5 (ChHV5) is a herpesvirus associated with fibropapillomatosis (FP) in sea turtles worldwide. Single-locus typing has previously shown differentiation between Atlantic and Pacific strains of this virus, with low variation within each geographic clade. However, a lack of multi-locus genomic sequence data hinders understanding of the rate and mechanisms of ChHV5 evolutionary divergence, as well as how these genomic changes may contribute to differences in disease manifestation. To assess genomic variation in ChHV5 among five Hawaii and three Florida green sea turtles, we used high-throughput short-read sequencing of long-range PCR products amplified from tumor tissue using primers designed from the single available ChHV5 reference genome from a Hawaii green sea turtle. This strategy recovered sequence data from both geographic regions for approximately 75% of the predicted ChHV5 coding sequences. The average nucleotide divergence between geographic populations was 1.5%; most of the substitutions were fixed differences between regions. Protein divergence was generally low (average 0.08%), and ranged between 0 and 5.3%. Several atypical genes originally identified and annotated in the reference genome were confirmed in ChHV5 genomes from both geographic locations. Unambiguous recombination events between geographic regions were identified, and clustering of private alleles suggests the prevalence of recombination in the evolutionary history of ChHV5. This study significantly increased the amount of sequence data available from ChHV5 strains, enabling informed selection of loci for future population genetic and natural history studies, and suggesting the (possibly latent) co-infection of individuals by well-differentiated geographic variants.
Morrison, Cheryl L.; Iwanowicz, Luke R.; Work, Thierry M.; Fahsbender, Elizabeth; Breitbart, Mya; Adams, Cynthia; Iwanowicz, Deborah; Sanders, Lakyn; Ackermann, Mathias; Cornman, Robert S.
2018-01-01
Chelonid alphaherpesvirus 5 (ChHV5) is a herpesvirus associated with fibropapillomatosis (FP) in sea turtles worldwide. Single-locus typing has previously shown differentiation between Atlantic and Pacific strains of this virus, with low variation within each geographic clade. However, a lack of multi-locus genomic sequence data hinders understanding of the rate and mechanisms of ChHV5 evolutionary divergence, as well as how these genomic changes may contribute to differences in disease manifestation. To assess genomic variation in ChHV5 among five Hawaii and three Florida green sea turtles, we used high-throughput short-read sequencing of long-range PCR products amplified from tumor tissue using primers designed from the single available ChHV5 reference genome from a Hawaii green sea turtle. This strategy recovered sequence data from both geographic regions for approximately 75% of the predicted ChHV5 coding sequences. The average nucleotide divergence between geographic populations was 1.5%; most of the substitutions were fixed differences between regions. Protein divergence was generally low (average 0.08%), and ranged between 0 and 5.3%. Several atypical genes originally identified and annotated in the reference genome were confirmed in ChHV5 genomes from both geographic locations. Unambiguous recombination events between geographic regions were identified, and clustering of private alleles suggests the prevalence of recombination in the evolutionary history of ChHV5. This study significantly increased the amount of sequence data available from ChHV5 strains, enabling informed selection of loci for future population genetic and natural history studies, and suggesting the (possibly latent) co-infection of individuals by well-differentiated geographic variants.
Draft genome sequence of non-shiga toxin-producing Escherichia coli O157 NCCP15738.
Kwon, Taesoo; Kim, Jung-Beom; Bak, Young-Seok; Yu, Young-Bin; Kwon, Ki Sung; Kim, Won; Cho, Seung-Hak
2016-01-01
The non-shiga toxin-producing Escherichia coli (non-STEC) O157 is a pathogenic strain that cause diarrhea but does not cause hemolytic-uremic syndrome, or hemorrhagic colitis. Here, we present the 5-Mb draft genome sequence of non-STEC O157 NCCP15738, which was isolated from the feces of a Korean patient with diarrhea, and describe its features and the structural basis for its genome evolution. A total of 565-Mbp paired-end reads were generated using the Illumina-HiSeq 2000 platform. The reads were assembled into 135 scaffolds throughout the de novo assembly. The assembled genome size of NCCP15738 was 5,005,278 bp with an N50 value of 142,450 bp and 50.65 % G+C content. Using Rapid Annotation using Subsystem Technology analysis, we predicted 4780 ORFs and 31 RNA genes. The evolutionary tree was inferred from multiple sequence alignment of 45 E. coli species. The most closely related neighbor of NCCP15738 indicated by whole-genome phylogeny was E. coli UMNK88, but that indicated by multilocus sequence analysis was E. coli DH1(ME8569). A comparison between the NCCP15738 genome and those of reference strains, E. coli K-12 substr. MG1655 and EHEC O157:H7 EDL933 by bioinformatics analyses revealed unique genes in NCCP15738 associated with lysis protein S, two-component signal transduction system, conjugation, the flagellum, nucleotide-binding proteins, and metal-ion binding proteins. Notably, NCCP15738 has a dual flagella system like that in Vibrio parahaemolyticus, Aeromonas spp., and Rhodospirillum centenum. The draft genome sequence and the results of bioinformatics analysis of NCCP15738 provide the basis for understanding the genomic evolution of this strain.
Petzold, Markus; Prior, Karola; Moran-Gilad, Jacob; Harmsen, Dag; Lück, Christian
2017-11-01
IntroductionWhole genome sequencing (WGS) is increasingly used in Legionnaires' disease (LD) outbreak investigations, owing to its higher resolution than sequence-based typing, the gold standard typing method for Legionella pneumophila, in the analysis of endemic strains. Recently, a gene-by-gene typing approach based on 1,521 core genes called core genome multilocus sequence typing (cgMLST) was described that enables a robust and standardised typing of L. pneumophila . Methods : We applied this cgMLST scheme to isolates obtained during the largest outbreak of LD reported so far in Germany. In this outbreak, the epidemic clone ST345 had been isolated from patients and four different environmental sources. In total 42 clinical and environmental isolates were retrospectively typed. Results : Epidemiologically unrelated ST345 isolates were clearly distinguishable from the epidemic clone. Remarkably, epidemic isolates split up into two distinct clusters, ST345-A and ST345-B, each respectively containing a mix of clinical and epidemiologically-related environmental samples. Discussion/conclusion : The outbreak was therefore likely caused by both variants of the single sequence type, which pre-existed in the environmental reservoirs. The two clusters differed by 40 alleles located in two neighbouring genomic regions of ca 42 and 26 kb. Additional analysis supported horizontal gene transfer of the two regions as responsible for the difference between the variants. Both regions comprise virulence genes and have previously been reported to be involved in recombination events. This corroborates the notion that genomic outbreak investigations should always take epidemiological information into consideration when making inferences. Overall, cgMLST proved helpful in disentangling the complex genomic epidemiology of the outbreak.
De Barba, M; Miquel, C; Lobréaux, S; Quenette, P Y; Swenson, J E; Taberlet, P
2017-05-01
Microsatellite markers have played a major role in ecological, evolutionary and conservation research during the past 20 years. However, technical constrains related to the use of capillary electrophoresis and a recent technological revolution that has impacted other marker types have brought to question the continued use of microsatellites for certain applications. We present a study for improving microsatellite genotyping in ecology using high-throughput sequencing (HTS). This approach entails selection of short markers suitable for HTS, sequencing PCR-amplified microsatellites on an Illumina platform and bioinformatic treatment of the sequence data to obtain multilocus genotypes. It takes advantage of the fact that HTS gives direct access to microsatellite sequences, allowing unambiguous allele identification and enabling automation of the genotyping process through bioinformatics. In addition, the massive parallel sequencing abilities expand the information content of single experimental runs far beyond capillary electrophoresis. We illustrated the method by genotyping brown bear samples amplified with a multiplex PCR of 13 new microsatellite markers and a sex marker. HTS of microsatellites provided accurate individual identification and parentage assignment and resulted in a significant improvement of genotyping success (84%) of faecal degraded DNA and costs reduction compared to capillary electrophoresis. The HTS approach holds vast potential for improving success, accuracy, efficiency and standardization of microsatellite genotyping in ecological and conservation applications, especially those that rely on profiling of low-quantity/quality DNA and on the construction of genetic databases. We discuss and give perspectives for the implementation of the method in the light of the challenges encountered in wildlife studies. © 2016 John Wiley & Sons Ltd.
Brehony, Carina; O'Connor, Lois; Meyler, Kenneth; Jolley, Keith A.; Bray, James; Bennett, Desiree; Maiden, Martin C. J.; Cunney, Robert
2016-01-01
A carriage study was undertaken (n = 112) to ascertain the prevalence of Neisseria spp. following the eighth case of invasive meningococcal disease in young children (5 to 46 months) and members of a large extended indigenous ethnic minority Traveller family (n = 123), typically associated with high-occupancy living conditions. Nested multilocus sequence typing (MLST) was employed for case specimen extracts. Isolates were genome sequenced and then were assembled de novo and deposited into the Bacterial Isolate Genome Sequencing Database (BIGSdb). This facilitated an expanded MLST approach utilizing large numbers of loci for isolate characterization and discrimination. A rare sequence type, ST-6697, predominated in disease specimens and isolates that were carried (n = 8/14), persisting for at least 44 months, likely driven by the high population density of houses (n = 67/112) and trailers (n = 45/112). Carriage for Neisseria meningitidis (P < 0.05) and Neisseria lactamica (P < 0.002) (2-sided Fisher's exact test) was more likely in the smaller, more densely populated trailers. Meningococcal carriage was highest in 24- to 39-year-olds (45%, n = 9/20). Evidence of horizontal gene transfer (HGT) was observed in four individuals cocolonized by Neisseria lactamica and Neisseria meningitidis. One HGT event resulted in the acquisition of 26 consecutive N. lactamica alleles. This study demonstrates how housing density can drive meningococcal transmission and carriage, which likely facilitated the persistence of ST-6697 and prolonged the outbreak. Whole-genome MLST effectively distinguished between highly similar outbreak strain isolates, including those isolated from person-to-person transmission, and also highlighted how a few HGT events can distort the true phylogenetic relationship between highly similar clonal isolates. PMID:27629899
Serratia aquatilis sp. nov., isolated from drinking water systems.
Kämpfer, Peter; Glaeser, Stefanie P
2016-01-01
A cream-white-pigmented, oxidase-negative bacterium (strain 2015-2462-01T), isolated from a drinking water system, was investigated in detail to determine its taxonomic position. Cells of the isolate were rod-shaped and stained Gram-negative. A comparison of the 16S rRNA gene sequence of strain 2015-2462-01T with sequences of the type strains of closely related species of the genus Serratia revealed highest similarity to Serratia fonticola (98.4 %), Serratia proteamaculans (97.8 %), Serratia liquefaciens and Serratia grimesii (both 97.7 %). 16S rRNA gene sequence similarities to all other Serratia species were below 97.4 %. Multilocus sequence analysis (MLSA) on the basis of concatenated partial gyrB, rpoB, infB and atpD gene sequences showed a clear distinction of strain 2015-2462-01T from the type strains of the closest related Serratia species. The fatty acid profile of the strain consisted of C16 : 1 ω7c, C16 : 0; C14 : 0 and C14 : 0 3-OH/iso-C16 : 1 I as major components. DNA-DNA hybridizations between 2015-2462-01T and S. fonticola ATCC 29844T resulted in a relatedness value of 27 % (reciprocal 20 %). This DNA-DNA hybridization result in combination with the MLSA results and the differential biochemical properties indicated that strain 2015-2462-01T represents a novel species of the genus Serratia, for which the name Serratia aquatilis sp. nov. is proposed. The type strain is 2015-2462-01T ( = LMG 29119T = CCM 8626T).
Kozyreva, Varvara K.; Truong, Chau-Linda; Greninger, Alexander L.; Crandall, John; Mukhopadhyay, Rituparna
2017-01-01
ABSTRACT Public health microbiology laboratories (PHLs) are on the cusp of unprecedented improvements in pathogen identification, antibiotic resistance detection, and outbreak investigation by using whole-genome sequencing (WGS). However, considerable challenges remain due to the lack of common standards. Here, we describe the validation of WGS on the Illumina platform for routine use in PHLs according to Clinical Laboratory Improvements Act (CLIA) guidelines for laboratory-developed tests (LDTs). We developed a validation panel comprising 10 Enterobacteriaceae isolates, 5 Gram-positive cocci, 5 Gram-negative nonfermenting species, 9 Mycobacterium tuberculosis isolates, and 5 miscellaneous bacteria. The genome coverage range was 15.71× to 216.4× (average, 79.72×; median, 71.55×); the limit of detection (LOD) for single nucleotide polymorphisms (SNPs) was 60×. The accuracy, reproducibility, and repeatability of base calling were >99.9%. The accuracy of phylogenetic analysis was 100%. The specificity and sensitivity inferred from multilocus sequence typing (MLST) and genome-wide SNP-based phylogenetic assays were 100%. The following objectives were accomplished: (i) the establishment of the performance specifications for WGS applications in PHLs according to CLIA guidelines, (ii) the development of quality assurance and quality control measures, (iii) the development of a reporting format for end users with or without WGS expertise, (iv) the availability of a validation set of microorganisms, and (v) the creation of a modular template for the validation of WGS processes in PHLs. The validation panel, sequencing analytics, and raw sequences could facilitate multilaboratory comparisons of WGS data. Additionally, the WGS performance specifications and modular template are adaptable for the validation of other platforms and reagent kits. PMID:28592550
Kinnevey, Peter M.; Shore, Anna C.; Brennan, Grainne I.; Sullivan, Derek J.; Ehricht, Ralf; Monecke, Stefan; Slickers, Peter
2013-01-01
Methicillin-resistant Staphylococcus aureus (MRSA) has been a major cause of nosocomial infection in Irish hospitals for 4 decades, and replacement of predominant MRSA clones has occurred several times. An MRSA isolate recovered in 2006 as part of a larger study of sporadic MRSA exhibited a rare spa (t878) and multilocus sequence (ST779) type and was nontypeable by PCR- and DNA microarray-based staphylococcal cassette chromosome mec (SCCmec) element typing. Whole-genome sequencing revealed the presence of a novel 51-kb composite island (CI) element with three distinct domains, each flanked by direct repeat and inverted repeat sequences, including (i) a pseudo SCCmec element (16.3 kb) carrying mecA with a novel mec class region, a fusidic acid resistance gene (fusC), and two copper resistance genes (copB and copC) but lacking ccr genes; (ii) an SCC element (17.5 kb) carrying a novel ccrAB4 allele; and (iii) an SCC element (17.4 kb) carrying a novel ccrC allele and a clustered regularly interspaced short palindromic repeat (CRISPR) region. The novel CI was subsequently identified by PCR in an additional 13 t878/ST779 MRSA isolates, six from bloodstream infections, recovered between 2006 and 2011 in 11 hospitals. Analysis of open reading frames (ORFs) carried by the CI showed amino acid sequence similarity of 44 to 100% to ORFs from S. aureus and coagulase-negative staphylococci (CoNS). These findings provide further evidence of genetic transfer between S. aureus and CoNS and show how this contributes to the emergence of novel SCCmec elements and MRSA strains. Ongoing surveillance of this MRSA strain is warranted and will require updating of currently used SCCmec typing methods. PMID:23147725
Fei, Peng; Jiang, Yichao; Jiang, Yan; Yuan, Xiujuan; Yang, Tongxiang; Chen, Junliang; Wang, Ziyuan; Kang, Huaibin; Forsythe, Stephen J.
2017-01-01
Cronobacter sakazakii is an opportunistic pathogen that causes severe infections in neonates and infants through contaminated powdered infant formula (PIF). Therefore, the aim of this study was a large-scale study on determine the prevalence, molecular characterization and antibiotic susceptibility of C. sakazakii isolates from PIF purchased from Chinese retail markets. Two thousand and twenty PIF samples were collected from different institutions. Fifty-six C. sakazakii strains were isolated, and identified using fusA sequencing analysis, giving a contamination rate of 2.8%. Multilocus sequence typing (MLST) was more discriminatory than other genotyping methods. The C. sakazakii isolates were divided into 14 sequence types (STs) by MLST, compared with only seven clusters by ompA and rpoB sequence analysis, and four C. sakazakii serotypes by PCR-based O-antigen serotyping. C. sakazakii ST4 (19/56, 33.9%), ST1 (12/56, 21.4%), and ST64 (11/56, 16.1%) were the dominant sequence types isolated. C. sakazakii serotype O2 (34/56, 60.7%) was the primary serotype, along with ompA6 and rpoB1 as the main allele profiles, respectively. Antibiotic susceptibility testing indicated that all C. sakazakii isolates were susceptible to ampicillin-sulbactam, cefotaxime, ciprofloxacin, meropenem, tetracycline, piperacillin-tazobactam, and trimethoprim-sulfamethoxazole. The majority of C. sakazakii strains were susceptible to chloramphenicol and gentamicin (87.5 and 92.9%, respectively). In contrast, 55.4% C. sakazakii strains were resistant to cephalothin. In conclusion, this large-scale study revealed the prevalence and characteristics of C. sakazakii from PIF in Chinese retail markets, demonstrating a potential risk for neonates and infants, and provide a guided to effective control the contamination of C. sakazakii in production process. PMID:29089940
Ogrodzki, Pauline; Forsythe, Stephen J.
2017-01-01
The Cronobacter genus is composed of seven species, within which a number of pathovars have been described. The most notable infections by Cronobacter spp. are of infants through the consumption of contaminated infant formula. The description of the genus has greatly improved in recent years through DNA sequencing techniques, and this has led to a robust means of identification. However some species are highly clonal and this limits the ability to discriminate between unrelated strains by some methods of genotyping. This article updates the application of three genotyping methods across the Cronobacter genus. The three genotyping methods were multilocus sequence typing (MLST), capsular profiling of the K-antigen and colanic acid (CA) biosynthesis regions, and CRISPR-cas array profiling. A total of 1654 MLST profiled and 286 whole genome sequenced strains, available by open access at the PubMLST Cronobacter database, were used this analysis. The predominance of C. sakazakii and C. malonaticus in clinical infections was confirmed. The majority of clinical strains being in the C. sakazakii clonal complexes (CC) 1 and 4, sequence types (ST) 8 and 12 and C. malonaticus ST7. The capsular profile K2:CA2, previously proposed as being strongly associated with C. sakazakii and C. malonaticus isolates from severe neonatal infections, was also found in C. turicensis, C. dublinensis and C. universalis. The majority of CRISPR-cas types across the genus was the I-E (Ecoli) type. Some strains of C. dublinensis and C. muytjensii encoded the I-F (Ypseudo) type, and others lacked the cas gene loci. The significance of the expanding profiling will be of benefit to researchers as well as governmental and industrial risk assessors. PMID:29033918
Loquasto, Joseph R.; Barrangou, Rodolphe; Dudley, Edward G.; Stahl, Buffy; Chen, Chun
2013-01-01
Many strains of Bifidobacterium animalis subsp. lactis are considered health-promoting probiotic microorganisms and are commonly formulated into fermented dairy foods. Analyses of previously sequenced genomes of B. animalis subsp. lactis have revealed little genetic diversity, suggesting that it is a monomorphic subspecies. However, during a multilocus sequence typing survey of Bifidobacterium, it was revealed that B. animalis subsp. lactis ATCC 27673 gave a profile distinct from that of the other strains of the subspecies. As part of an ongoing study designed to understand the genetic diversity of this subspecies, the genome of this strain was sequenced and compared to other sequenced genomes of B. animalis subsp. lactis and B. animalis subsp. animalis. The complete genome of ATCC 27673 was 1,963,012 bp, contained 1,616 genes and 4 rRNA operons, and had a G+C content of 61.55%. Comparative analyses revealed that the genome of ATCC 27673 contained six distinct genomic islands encoding 83 open reading frames not found in other strains of the same subspecies. In four islands, either phage or mobile genetic elements were identified. In island 6, a novel clustered regularly interspaced short palindromic repeat (CRISPR) locus which contained 81 unique spacers was identified. This type I-E CRISPR-cas system differs from the type I-C systems previously identified in this subspecies, representing the first identification of a different system in B. animalis subsp. lactis. This study revealed that ATCC 27673 is a strain of B. animalis subsp. lactis with novel genetic content and suggests that the lack of genetic variability observed is likely due to the repeated sequencing of a limited number of widely distributed commercial strains. PMID:23995933
Ivy, Reid A; Farber, Jeffrey M; Pagotto, Franco; Wiedmann, Martin
2013-01-01
Foodborne pathogen isolate collections are important for the development of detection methods, for validation of intervention strategies, and to develop an understanding of pathogenesis and virulence. We have assembled a publicly available Cronobacter (formerly Enterobacter sakazakii) isolate set that consists of (i) 25 Cronobacter sakazakii isolates, (ii) two Cronobacter malonaticus isolates, (iii) one Cronobacter muytjensii isolate, which displays some atypical phenotypic characteristics, biochemical profiles, and colony color on selected differential media, and (iv) two nonclinical Enterobacter asburiae isolates, which show some phenotypic characteristics similar to those of Cronobacter spp. The set consists of human (n = 10), food (n = 11), and environmental (n = 9) isolates. Analysis of partial 16S rDNA sequence and seven-gene multilocus sequence typing data allowed for reliable identification of these isolates to species and identification of 14 isolates as sequence type 4, which had previously been shown to be the most common C. sakazakii sequence type associated with neonatal meningitis. Phenotypic characterization was carried out with API 20E and API 32E test strips and streaking on two selective chromogenic agars; isolates were also assessed for sorbitol fermentation and growth at 45°C. Although these strategies typically produced the same classification as sequence-based strategies, based on a panel of four biochemical tests, one C. sakazakii isolate yielded inconclusive data and one was classified as C. malonaticus. EcoRI automated ribotyping and pulsed-field gel electrophoresis (PFGE) with XbaI separated the set into 23 unique ribotypes and 30 unique PFGE types, respectively, indicating subtype diversity within the set. Subtype and source data for the collection are publicly available in the PathogenTracker database (www. pathogentracker. net), which allows for continuous updating of information on the set, including links to publications that include information on isolates from this collection.
Iwanowicz, Luke; Work, Thierry M.; Fahsbender, Elizabeth; Breitbart, Mya; Adams, Cynthia; Iwanowicz, Deb; Sanders, Lakyn; Ackermann, Mathias; Cornman, Robert S.
2018-01-01
Chelonid alphaherpesvirus 5 (ChHV5) is a herpesvirus associated with fibropapillomatosis (FP) in sea turtles worldwide. Single-locus typing has previously shown differentiation between Atlantic and Pacific strains of this virus, with low variation within each geographic clade. However, a lack of multi-locus genomic sequence data hinders understanding of the rate and mechanisms of ChHV5 evolutionary divergence, as well as how these genomic changes may contribute to differences in disease manifestation. To assess genomic variation in ChHV5 among five Hawaii and three Florida green sea turtles, we used high-throughput short-read sequencing of long-range PCR products amplified from tumor tissue using primers designed from the single available ChHV5 reference genome from a Hawaii green sea turtle. This strategy recovered sequence data from both geographic regions for approximately 75% of the predicted ChHV5 coding sequences. The average nucleotide divergence between geographic populations was 1.5%; most of the substitutions were fixed differences between regions. Protein divergence was generally low (average 0.08%), and ranged between 0 and 5.3%. Several atypical genes originally identified and annotated in the reference genome were confirmed in ChHV5 genomes from both geographic locations. Unambiguous recombination events between geographic regions were identified, and clustering of private alleles suggests the prevalence of recombination in the evolutionary history of ChHV5. This study significantly increased the amount of sequence data available from ChHV5 strains, enabling informed selection of loci for future population genetic and natural history studies, and suggesting the (possibly latent) co-infection of individuals by well-differentiated geographic variants. PMID:29479497
Miller, Melissa A; Burgess, Tristan L; Dodd, Erin M; Rhyan, Jack C; Jang, Spencer S; Byrne, Barbara A; Gulland, Frances M D; Murray, Michael J; Toy-Choutka, Sharon; Conrad, Patricia A; Field, Cara L; Sidor, Inga F; Smith, Woutrina A
2017-04-01
We characterize Brucella infection in a wild southern sea otter ( Enhydra lutris nereis) with osteolytic lesions similar to those reported in other marine mammals and humans. This otter stranded twice along the central California coast, US over a 1-yr period and was handled extensively at two wildlife rehabilitation facilities, undergoing multiple surgeries and months of postsurgical care. Ultimately the otter was euthanized due to severe, progressive neurologic disease. Necropsy and postmortem radiographs revealed chronic, severe osteoarthritis spanning the proximal interphalangeal joint of the left hind fifth digit. Numerous coccobacilli within the joint were strongly positive on Brucella immunohistochemical labelling, and Brucella sp. was isolated in pure culture from this lesion. Sparse Brucella-immunopositive bacteria were also observed in the cytoplasm of a pulmonary vascular monocyte, and multifocal granulomas were observed in the spinal cord and liver on histopathology. Findings from biochemical characterization, 16S ribosomal DNA, and bp26 gene sequencing of the bacterial isolate were identical to those from marine-origin brucellae isolated from cetaceans and phocids. Although omp2a gene sequencing revealed 100% homology with marine Brucella spp. infecting pinnipeds, whales, and humans, omp2b gene sequences were identical only to pinniped-origin isolates. Multilocus sequence typing classified the sea otter isolate as ST26, a sequence type previously associated only with cetaceans. Our data suggest that the sea otter Brucella strain represents a novel marine lineage that is distinct from both Brucella pinnipedialis and Brucella ceti. Prior reports document the zoonotic potential of the marine brucellae. Isolation of Brucella sp. from a stranded sea otter highlights the importance of wearing personal protective equipment when handling sea otters and other marine mammals as part of wildlife conservation and rehabilitation efforts.
Kozyreva, Varvara K; Truong, Chau-Linda; Greninger, Alexander L; Crandall, John; Mukhopadhyay, Rituparna; Chaturvedi, Vishnu
2017-08-01
Public health microbiology laboratories (PHLs) are on the cusp of unprecedented improvements in pathogen identification, antibiotic resistance detection, and outbreak investigation by using whole-genome sequencing (WGS). However, considerable challenges remain due to the lack of common standards. Here, we describe the validation of WGS on the Illumina platform for routine use in PHLs according to Clinical Laboratory Improvements Act (CLIA) guidelines for laboratory-developed tests (LDTs). We developed a validation panel comprising 10 Enterobacteriaceae isolates, 5 Gram-positive cocci, 5 Gram-negative nonfermenting species, 9 Mycobacterium tuberculosis isolates, and 5 miscellaneous bacteria. The genome coverage range was 15.71× to 216.4× (average, 79.72×; median, 71.55×); the limit of detection (LOD) for single nucleotide polymorphisms (SNPs) was 60×. The accuracy, reproducibility, and repeatability of base calling were >99.9%. The accuracy of phylogenetic analysis was 100%. The specificity and sensitivity inferred from multilocus sequence typing (MLST) and genome-wide SNP-based phylogenetic assays were 100%. The following objectives were accomplished: (i) the establishment of the performance specifications for WGS applications in PHLs according to CLIA guidelines, (ii) the development of quality assurance and quality control measures, (iii) the development of a reporting format for end users with or without WGS expertise, (iv) the availability of a validation set of microorganisms, and (v) the creation of a modular template for the validation of WGS processes in PHLs. The validation panel, sequencing analytics, and raw sequences could facilitate multilaboratory comparisons of WGS data. Additionally, the WGS performance specifications and modular template are adaptable for the validation of other platforms and reagent kits. Copyright © 2017 Kozyreva et al.
Serotype IV and invasive group B Streptococcus disease in neonates, Minnesota, USA, 2000-2010.
Ferrieri, Patricia; Lynfield, Ruth; Creti, Roberta; Flores, Aurea E
2013-04-01
Group B Streptococcus (GBS) is a major cause of invasive disease in neonates in the United States. Surveillance of invasive GBS disease in Minnesota, USA, during 2000-2010 yielded 449 isolates from 449 infants; 257 had early-onset (EO) disease (by age 6 days) and 192 late-onset (LO) disease (180 at age 7-89 days, 12 at age 90-180 days). Isolates were characterized by capsular polysaccharide serotype and surface-protein profile; types III and Ia predominated. However, because previously uncommon serotype IV constitutes 5/31 EO isolates in 2010, twelve type IV isolates collected during 2000-2010 were studied further. By pulsed-field gel electrophoresis, they were classified into 3 profiles; by multilocus sequence typing, representative isolates included new sequence type 468. Resistance to clindamycin or erythromycin was detected in 4/5 serotype IV isolates. Emergence of serotype IV GBS in Minnesota highlights the need for serotype prevalence monitoring to detect trends that could affect prevention strategies.